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Editorial on the Research Topic

Canine osteosarcoma as a model in comparative oncology: Advances
and perspective

Canine osteosarcoma (OSA) is an aggressive malignancy, sharing biological and clinical
similarities with the human counterpart. The prognosis of patients with high-grade OSA still
remains relatively poor in both species, with survival rates not having significantly improved
during the recent decades. Thus, novel biomarkers of disease progression and response to
treatment, as well as molecular targets for development of novel therapeutics, are urgently
needed to improve the outcome of both human and canine OSA. Given the similarities between
human and canine OSA, and the higher incidence rates of OSA in dogs, the canine population
is a valid natural model of human disease. Therefore, the identification of specific altered
pathways in canine OSA could facilitate the establishment of improved treatment strategies
and provide the basis for the development of a personalized approach to OSA therapy in
comparative oncology.

In this respect, the present Research Topic features original studies and reviews relevant
to our theme of “Canine osteosarcoma as a model in comparative oncology: Advances and
perspective” by bringing together scientific contributions from multiple experts in this field
of study.

By an integrated analysis of whole-exome and RNA sequencing, the original research of
Gola et al. provided the molecular characterization of a large number of canine OSA cell
lines, allowing future investigations on their functional implications and drug response, and
representing excellent translational models. In fact, cell lines constitute one of the most suitable
and reproducible pre-clinical models and therefore, the knowledge of their molecular network
is essential to explore oncogenic mechanisms and drug response (1). In particular, mutations in
eight genes, previously described as human OSA drivers and including TP53, PTCH1, MED12,
and PI3KCA, were detected in the investigated cell lines (Gola et al.).

MicroRNAs (miRNAs) are small non-coding RNAs involved in the regulation of gene
expression, and a growing body of literature exists exploring the significance of their expression
changes in OSA (2–10). miRNAs are also attractive molecules for biomarker/target discovery
efforts (11–13). In this respect, Dailey et al. successfully identified miRNA expression changes
associated with patient outcome in both canine OSA tumors and patient serum samples.
Focusing on tumor-derived miRNAs associated with poor outcome, pathway and miRNA target
prediction analyses were used to integrate miRNA and gene expression data to identify potential
aberrant pathways contributing to OSA progression. These integrated analyses suggested that
the interaction between OSA cells and the primary tumor microenvironment may contribute to
the metastatic phenotype of aggressive tumors.
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The importance of glucose transporter member 1 (GLUT-1, also
known as SLC2A1), matrix metallopeptidase 3 (MMP3) and nuclear
factor erythroid 2–related factor 2 (NFE2L2/NRF2) is also well-
established in human OSA (14–17). For this purpose, Rutland et al.
investigated the immunohistochemical expression of these cancer
promoting proteins, that have been shown to be upregulated at
the gene level in canine OSA compared to normal bone tissue
(18). The study of Rutland et al. confirmed the expression of
GLUT1, MMP3 and NRF2 in canine OSA, suggesting them as good
potential candidates for prognostication and therapeutic targets, and
encouraging clinical trials using drugs targeting these proteins.

Studies have also demonstrated the roles of parathyroid
hormone-related protein (PTHrP) and its receptor (PTHR1) in the
development, progression and metastasis of several tumors, including
OSA. In this respect, the review of Al-Khan et al. highlighted the
latest findings about functions of PTHrP and PTHR1 in normal and
neoplastic tissues by focusing on their roles in OSA progression and
discussing the possible related pathways in humans and canines.

Vasculogenic mimicry (VM) is a unique property of malignant
cancer cells to create their own fluid-conducting microvascular
channels without the involvement of endothelial cells, and has
emerged as a potential target for anti-tumor therapy (19, 20). For this
reason, the review of Massimini et al. illustrated the main findings
concerning VM process in human OSA, as well as the related current
knowledge in canine pathology and oncology, in order to provide a
basis for future investigations on VM in canine tumors.

As well, in order to accelerate the understanding of the molecular
basis of OSA, potentially facilitating a more rapid identification of
novel therapeutic targets relevant to both people and dogs, the review
of Simpson et al. focused on the shared molecular mechanisms
between human and canine OSA, also presenting key differences
revealed in comparative studies.

Evidence also suggests that OSA is an immunogenic tumor, and
development of immunotherapies for the treatment of pulmonary
micrometastases might improve long-term outcomes. The core
hypothesis of adoptive natural killer (NK) cell therapy is the existence
of a natural defect in innate immunity that can be restored by
adoptive transfer of NK cells in cancer patients (21). In this respect,
the perspective article of Kisseberth and Lee described the rationale
for adoptive NK cell immunotherapy, NK cell biology, TGFβ and
the immunosuppressive microenvironment in canine OSA, also
illustrating the manufacturing of ex vivo expanded canine NK
cells and providing perspectives on the present and future clinical
applications of adoptive NK cell immunotherapy in spontaneous
OSA and other tumors in dogs. The review of Razmara et al.
also focused on the recent literature characterizing NK and T cell

infiltration in OSA tumors and their prognostic significance in
humans and dogs.

Finally, in the study of Flesner et al., a multimodal pain
assessment methodology was used to evaluate pain relief after
therapeutic intervention in dogs with primary bone cancer,
suggesting that an improved assessment of pain severity and relief
in dogs with cancer may allow a better evaluation of the efficacy
of therapy. A direct benefit for people with cancer-induced bone
pain was also highlighted, by potentially decreasing the amount of
subtherapeutic novel drugs entering human clinical trials.

In conclusion, the studies collected in this Research Topic further
support spontaneous OSA in dogs as a valuable model system
to inform the development of new prognostic and therapeutic
tools for both human and canine OSA. We hope that the
contributing articles will inspire and encourage future studies on OSA
pathogenesis, disease progression and therapeutic management in
comparative oncology.
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and Its Receptor (PTHR1) in Normal
and Tumor Tissues: Focus on Their
Roles in Osteosarcoma
Awf A. Al-Khan 1,2, Noora R. Al Balushi 1, Samantha J. Richardson 1,3 and

Janine A. Danks 3,4*

1 School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia, 2Department of Pathology, Sohar

Hospital, Sohar, Oman, 3 School of Science, RMIT University, Bundoora, VIC, Australia, 4 The University of Melbourne,

Department of Medicine, Austin Health, Heidelberg, VIC, Australia

Osteosarcoma (OS) is the most common primary bone tumor and originates from bone

forming mesenchymal cells and primarily affects children and adolescents. The 5-year

survival rate for OS is 60 to 65%, with little improvement in prognosis during the last four

decades. Studies have demonstrated the evolving roles of parathyroid hormone-related

protein (PTHrP) and its receptor (PTHR1) in bone formation, bone remodeling, regulation

of calcium transport from blood to milk, regulation of maternal calcium transport to the

fetus and reabsorption of calcium in kidneys. These two molecules also play critical roles

in the development, progression andmetastasis of several tumors such as breast cancer,

lung carcinoma, chondrosarcoma, squamous cell carcinoma, melanoma and OS. The

protein expression of both PTHrP and PTHR1 have been demonstrated in OS, and their

functions and proposed signaling pathways have been investigated yet their roles in OS

have not been fully elucidated. This review aims to discuss the latest research with PTHrP

and PTHR1 in OS tumorigenesis and possible mechanistic pathways.

This review is dedicated to Professor Michael Day who died in May 2020 and was a very

generous collaborator.

Keywords: canine, osteosarcoma, parathyroid hormone, parathyroid hormone related protein, prognostic factor

INTRODUCTION

Osteosarcoma (OS) or osteogenic sarcoma is defined as the malignancy that originates from
bone-forming mesenchymal cells (1–5). This tumor is also known as the “growing bone tumor” (6).
OS is the primary malignant tumor of the skeleton in which tumor cells directly form immature
bone or osteoid (7). OS is the most prevalent type of primary bone cancer in both humans and
dogs (8–11). OS occurs more frequently in children, adolescents, taller humans, and large breeds
of dogs (9, 12). In both species, OS mostly affects the ends of long bones near the metaphyseal
regions (9, 13). The femur, tibia and humerus are the locations that are most often affected by OS
in humans (14).

OS is not a modern disease. A recent study revealed that dinosaurs also were affected by OS
(15). Ekhtiari et al. confirmed this grossly, radiographically, and histologically in a fibula from
a Centrosaurus in Canada. The dinosaur dates from around 77 to 75.5 million years ago (15).
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Previously, paleontologists found periosteal OS using micro-
computerized tomography (CT) in the hindleg of a fossilized
turtle (16). This was the oldest OS to be found in an amniote
indicating that OS was present in this fossil that has been dated
to 240 million years old.

There has been little improvement in the treatment of OS
and its prognosis in the last 40 years, especially for those
patients with metastatic OS (17–21). The reason behind this
could be the unavailability of novel biomarkers. Perhaps if there
were confirmed prognostic tumor markers, this might assist in
categorizing patients for risk-based treatment. Furthermore, the
complexity of OS is such that no two tumors look alike (22).

The current treatment strategy for human OS involves
neoadjuvant chemotherapy followed by surgical removal of the
tumor and adjuvant chemotherapy (23). Standard chemotherapy
uses a combination of doxorubicin and cisplatin with a high dose
of methotrexate in the neoadjuvant and adjuvant regimens (24).
This treatment procedure can improve the five-year survival rate
by 60-65% (23, 25). However, early surgical removal of the tumor
is the most successful treatment method (26, 27).

Canine and human OS share several key features such as
presence of micrometastatic disease at diagnosis, p53 mutations,
abnormal expression of several proteins (e.g., activator of
transcription 3, tensin homolog, Met, phosphatase, signal
transducer and ezrin), affected site and development of
chemotherapy-resistance (28). Furthermore, OS in dogs and
humans share similar DNA copy number aberrations and show
overlapping transcriptional profiles, suggesting that these two
diseases are similar at the molecular level. In addition, the
metastatic rate of OS without chemotherapy is 90% for dogs and
85–90% for humans and occur mostly in lung, bone and soft
tissues, in both species (28).

The high metastasis rate of OS results from the primary
bone tumor spread via hematogenous path to other secondary
locations (28). The most common cause of death in OS patients is
the development of pulmonary metastasis (28). Metastasis occurs
most frequently in lungs but rarely occurs in the surrounding
pleura. There is one case report where this happened and the
authors suggested it was due to the direct contact of pleura with
the lungs (29).

Even though <15% of OS metastases in canine and human
patients are detected at diagnosis radiologically, 85 to 90%
of patients develop gross metastases regardless of effective
management of the primary bone tumor (28). This shows that
microscopic metastases arise in the early stages of the disease
(30). The overall 5-year survival rate for OS in humans is around
60 to 70% in patients with nometastases and 10 to 30% in patients
with metastases at diagnosis (24, 31–33). On the other hand,
long-term survival rates for OS in dogs is only 10 to 15% (34),
supporting the idea that the canine OS may be more aggressive
compared to human OS (28).

One study found that overexpression of membrane-
cytoskeleton linker ezrin is involved with early development of
OS metastases in dogs (35). In line with canine OS data, it has
been found that increased expression of ezrin is significantly
associated with poor prognosis in OS cases in children (28).
Using canine OS cell lines, Hong et al. found that there is

an association between PKC and ezrin-radixin-moesin (36).
They showed that PKC inhibitor stops ezrin phosphorylation
and tumor cell migration (36). Jaroensong et al. reported that
overexpression of p-ezrin-radixin-moesin occurred early in
the development of pulmonary micrometastases of OS using
orthotopic xenograft mouse model of canine OS (37). This
expression decreased at later stages suggesting that ezrin is
involved in roles related to the survival of cancer cells after their
arrival at secondary metastatic sites (37).

Development of metastatic OS is the major cause of death in
dogs and humans. So, the identification of new and significant
treatments are crucial for the prevention of tumor metastasis
which would lead to the reduction of the number of deaths in
both dogs and humans (28).

The only basic prognostic indicators of human OS are the
patient’s response to chemotherapy, the presence of metastases
and satisfactory surgical margins (38). Other prognostic
indicators such as histological subtype, age, high concentration
of serum lactate dehydrogenase or alkaline phosphatase (ALP),
tumor size and site are still contentious (38). Recently, it has been
shown that the expression of parathyroid hormone receptor 1
(PTHR1) is a prognostic indicator in canine OS (39). Although
several studies have been carried out to elucidate the molecular
pathogenesis and related signaling pathways of OS using human
tissue, murine, canine models and cell lines, the disease remains
an unsolved puzzle.

Parathyroid hormone-related protein (PTHrP) was first
discovered as a causative factor of humoral hypercalcemia of
malignancy syndrome (40, 41). This syndrome occurs because
of increased secretion of PTHrP from tumor cells resulting
in elevated levels of calcium in serum and increasing cyclic
adenosine 3′,5′-monophosphate (cAMP) excretion in urine
(42, 43). In humans, PTHrP is synthesized as a protein with
either 139, 141, or 173 amino acids due to differences in mRNA
splicing (44). PTHrP shares homology of its N-terminal amino
acid sequence (1–34) with parathyroid hormone (PTH) (41).
This allows both hormones to act through a common receptor
(PTH/PTHrP receptor or PTHR1) (45).

PTHR1 is a seven-transmembrane class B G-protein-coupled
receptor (GPCR) (46). Examples of receptors included in
this family are the receptors for secretin, glucagon, pituitary
adenylate cyclase-activating peptide, growth hormone-releasing
hormone, vasoactive intestinal peptide, corticotrophin-
releasing factor, glucagon-like peptide, calcitonin, and
gastric inhibitory peptide (47). Structurally, PTHR1 contains
N-terminal extracellular domain (ECD) of ∼100–160 amino
acid residues, a transmembrane domain (TMD) containing
the seven membrane-spanning α-helices and a C-terminal
tail (48).

PTHR1 is activated by the binding of the N-terminal (1–34)
amino acids of PTH or PTHrP (47). The NH2-terminal part
of PTH/PTHrP binds to the extracellular connecting loops
and the TMD α-helices of PTHR1 (49, 50). This interaction
induces conformational changes in PTHR1, which initiates
intracellular signaling (51, 52). However, the COOH-terminal
part of PTH/PTHrP binds to the N-terminal ECD of PTHR1
(53, 54).
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FIGURE 1 | The regulation of cartilage and bone formation. Diagrammatic representation of the network of signaling factors involved in cartilage and bone formation.

Starting with the creation of mesenchymal condensations and their subsequent transition to differentiated cartilage and bone. The cells are represented as

osteoblasts , pre-osteoblasts , chondroblasts , chondrocytes , osteoclasts , hypertrophic chondrocytes , adipocytes

and myocytes . Reproduced with permission from reference (59).

Activation of PTHR1 initiates events of intracellular processes
by signaling through the stimulatory G-protein α-subunit (Gsα)
(55). Subsequently, the synthesis of cAMP is stimulated and
PKA is triggered (56). However, PTHR1 can be activated by
another signaling pathway through the Gq class of G-protein
α-subunits (Gqα) (57). This activation results in triggering
phospholipase C (57) which in turn activates PKC and
raises inositol triphosphate and intracellular calcium in tissues
(56, 58).

Numerous studies have established the roles of PTHrP and
PTHR1 in bone formation, remodeling (Figures 1, 2) and
regulation of calcium transport (60–64). In addition, these
molecules play a role in the progression and metastasis of many
human tumor types such as lung and breast cancers (65, 66).
The aim of this review is to highlight the latest findings about
functions of PTHrP and PTHR1 in normal and neoplastic tissues
by focusing on their roles in the progression of OS and discuss
the possible related pathways.

ROLES OF PTHrP IN NORMAL AND
TUMOR TISSUES

PTHrP acts as an autocrine or paracrine factor and has a
role in a number of significant physiological processes in
bone, such as the regulation of chondrocyte and osteoblast
differentiation and the proliferation (Figure 1) in the growth
plates of developing long bones (60, 61). In bone tissue, PTHrP
maintains the columnar organization of the chondrocytes and
slows down their differentiation (61). Garcia-Martin et al. (67)
suggested that PTHrP promotes proliferation of osteoblasts and
matrix mineralization via three partially redundant mechanisms.
These mechanisms are an intracrine nuclear localization
signal-dependent mechanism, an autocrine/paracrine signal-
peptide/PTHR1-dependent mechanism, and mixed mechanism
(67). Thus, secretion of PTHrP and subsequent activation
of PTHR1 would induce proliferation and mineralization of
osteoblastic cells (67) (Figure 1).
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FIGURE 2 | The actions of PTH and PTHrP on new bone formation. If PTHrP and PTH are given intermittently to patients, they increase the formation of

new bone but if either are given continuously, they increase resorption by stimulating osteoclasts to remodel bone . Both act via PTHR1 .

Reproduced with permission from reference (59).

In addition, PTHrP is involved in significant processes in
other tissues including breast (62, 68) and placenta (63, 64). In
the breast, PTHrP is abundant in milk, produced via the lactating
breast and has an important role in branching morphogenesis of
the mammary glands (62, 68). The concentration of PTHrP in
plasma is increased during lactation resulting in the regulation
of calcium transport from blood into the milk (62) and
stimulation of calcium mobilization from bone (68). In the
placenta, PTHrP has a role in regulating the direct transport of
maternal calcium to the fetus across the placental membrane
(63, 64).

Over and above its normal roles, increasing evidence has
indicated that PTHrP plays critical roles in tumorigenesis
(69–72). It has been found that PTHrP has a role in the activation
of protein kinase A (PKA) and C (PKC) pathways (73), regulation
of primary tumor growth and in metastasis (72). Luparello

et al. (69) found that PTHrP stimulates cell invasion using the
8701-BC human primary breast ductal infiltrating carcinoma
cell line. Further data obtained from immortalized human
mammary epithelial cell lines (S1T3, S2T2, and NS2T2A1)
indicated that PTHrP stimulates proliferation of tumor cells (70).
In addition, it has been found that knockdown of PTHrP reduced
tumor growth, induced apoptosis of osteoblasts and stimulated
the formation of autophagosomes using human MDA-MB-231
breast cancer cell line (74). The authors suggested that blocking
of PTHrP in the tumor cells might be a possible targeted therapy
for breast cancers, particularly those with skeletal metastases (74).
Similarly, Li et al. showed that PTHrP promotes breast tumor
initiation, progression and metastasis in mice and it could be a
novel therapy target (75). Together, these studies revealed that
PTHrP plays a critical role in the initiation of breast cancer
(74, 75).
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TABLE 1 | Roles of PTHrP in progression of OS.

Role of PTHrP in OS Type of

tissue

Species References

Increased expression of PTHrP is associated with reduced tumor growth and cell proliferation Cell line Rat (95)

Increased expression of PTHrP is correlated with decreased cell proliferation and tumor growth Cell line Mouse (96)

Overexpression of PTHrP caused tumor chemoresistance Cell line Human (97)

Overexpression of PTHrP stimulates migration of tumor cells Cell line Human (98)

Inhibition of PTHrP reduced cell growth and invasion Cell line Mouse (99)

Knockdown of PTHrP increased apoptosis and growth inhibition Tissue Mouse (99)

Presence of PTHrP protein in tumors was not a prognostic marker Tissue Dog (39)

A retrospective study found that increased circulating PTHrP
levels might be prognostic with shorter survival time and bone
metastases in patients with lung carcinoma (71). Recently,
Hastings et al. (65) also examined whether N-terminus or C-
terminus of PTHrP correlated with different lung carcinoma
type and prognosis. They established that C-terminus of PTHrP
may reduce the effect of N-terminus PTHrP on tumor growth
and progression (65). Iguchi et al. (76) established the role of
PTHrP in bone metastasis in mice models using human lung
squamous cell carcinoma-derived cells. Breast and lung cancers
usually cause osteolytic metastases in bone (77). This osteolytic
process depends on osteoclast-mediated bone resorption via
up-regulated osteoclastogenesis (77). Osteoclast differentiation
factors, which play a significant role in this process are receptor
activator of nuclear factor-jB (RANK), its ligand (RANKL) and
the decoy receptor, osteoprotegerin (OPG) (77). In humans,
positive PTHrP staining was seen in 60% of primary breast
tumors (78) and 92% of bone metastases (79). Recently Kim
et al. (66) showed that activation of the calcium-sensing receptor
(CaSR), a GPCR, up-regulated the production of PTHrP in breast
cancer in vitro. As a result, this enhanced proliferation of breast
cancer cells and reduced apoptosis (66). It was observed that
reducing the expression of CaSR in vivo and in vitro inhibited
the production of PTHrP and reduced the growth of the breast
cancer (66).

In addition to breast and lung cancers, PTHrP has been found
to stimulate tumor cell survival and proliferation in other cancers
including chondrosarcoma (80), anaplastic thyroid cancer (81),
medulloblastoma (82), adrenocortical cancer (83), oral squamous
cancer (84), colon cancer (85), prostate cancer (86) and renal
cancer (87). It has also been found that PTHrP is an essential
growth factor for human clear cell renal carcinoma (CCRC) and
acts as a novel target for the vonHippel-Lindau tumor suppressor
protein in vitro (88). Talon et al. (87) demonstrated that apoptosis
could be induced in the human CCRC cell line via the induction
of PTHrP-neutralizing antibodies followed by the inhibition of
PTHR1. Furthermore, Danilin et al. (89) showed that the mRNA-
binding protein HuR is involved in increased expression of
PTHrP and in mRNA stabilization in CCRC. A number of case
studies reported a strong expression of PTHrP in pancreatic
adenocarcinoma (90), intrahepatic cholangiocarcinoma (91),
pancreatic neuroendocrine cancer and that PTHrP levels were
elevated in the patient serum (92).

In addition to its role in tumorigenesis, Kir et al. (93) showed
that PTHrP is involved in cancer cachexia, a wasting disorder
of adipose and skeletal muscle tissues that leads to intensive
weight loss resulting in reduced survival time in patients with
cancer. PTHrP drives the expression of genes that are involved
in thermogenesis in adipose tissue (93). It was demonstrated
that the genes responsible for fat and muscle tissue loss were
neutralized by anti-PTHrP antiserum (93). In summary, PTHrP
is appearing to be a crucial factor in the pathogenesis of a large
range of epithelial and non-epithelial tumors.

ROLES OF PTHrP IN OS

The first attempt to understand the role of PTH in OS was
by Martin et al. (94) by inducing OS in rats using radioactive
phosphorous isotopes. Several later studies found that PTHrP
also plays a role in pathogenesis of OS (Table 1, Figure 3)
(96, 101–104). Suda et al. (102) demonstrated the expression of
PTHrP mRNA in all investigated rat UMR 106-01 and UMR
106-06 OS cell lines. Ho et al. (99) revealed that PTHrP is also
expressed bymurineOS cells. Recently, PTHrPwas detected in all
primary canine OS tissues (n= 50) using immunohistochemistry
staining (39). The findings showed that 50% of these canine
OS tissues had weak staining intensity and 50% strong staining
intensity. The study also found that there was not significant
correlation between the staining intensity and the prognosis of
OS in dogs (39).

In fact, the immunohistochemical (IHC) staining of PTHrP
demonstrated the presence of the protein in the OS at the time of
staining, but it does not tell us howmuch PTHrP is produced and
secreted over the time (39). This association between the presence
of PTHrP protein and prognosis has not yet been investigated
in humans

In contrast, PTHrP mRNA was not detected in aggressive
human OS xenografts (105). It has also been found that increased
expression of the PTHrP gene is associated with reduced tumor
growth and cell proliferation (Table 1) using a murine OS cell
line (96) and a rat OS cell line (106). Previous findings discussed
above showed that over-expression of PTHrP could be correlated
with a better prognosis for OS (Figure 4).

However, Gagiannis et al. (97) noted that PTHrP caused
tumor cells of SaOS2 human OS cell line to be chemoresistant
(Table 1). This was observed after inhibiting major apoptosis
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FIGURE 3 | Roles of PTHrP on two of the OS subtypes. Subtypes of OS arise from pre-osteoblasts that accrue mutations (possibly in Rb or p53). PTHrP, PTHR1 and

CREB activity are increased in osteoblastic OS influencing proliferation (99, 100) when compared to fibroblastic OS. Also, the intracrine PTHrP (iPTHrP) may contribute

to this process.

signaling pathways via blocking the death receptor and
mitochondria-mediated apoptosis signaling (97). It has also been
found that PTHrP stimulates migration of SaOS-2 and MG-
63 human OS cell lines (98). These two studies suggest that
overexpression of PTHrP could be correlated with a poorer
prognosis of OS (97, 98). These conflicting data may be related to
the use of different portion of PTHrP sequences in these different
studies (67, 107). If PTHrP influences chemoresistance then it
would be a good therapeutic target. Blocking this action could
improve patient survival with current treatments.

Ho et al. (99) found that the three major OS subtypes
(osteoblastic, chondroblastic and fibroblastic OS) produce
PTHrP, which act through the PTHR1 to activate adenylyl
cyclase, PKA, and the transcription factor cAMP responsive
element binding protein 1 (CREB1) (Figure 3) (99). The
osteoblastic subtype had an increased level of PTHR1 compared
with the fibroblastic subtype but the PTHrP levels were no
different (99). The knockdown of PTHrP in OS reduced cell
growth and invasion in vitro and increased apoptosis and growth
inhibition in vivo, while the knockdown of CREB1 had much
greater growth inhibition and apoptosis (99). Moreover, Walia
et al. (108), found that PTHrP is a key factor for initiation
of OS in p53-deficient osteoblasts. The production of cAMP
is stimulated by PTHrP (108). This stimulation is followed by
PTHR1 activation, then, phosphorylation and transcription of
CREB1 is activated in p53-deficient OS (Figure 3) (108). It was
suggested that PTHrP-cAMP-CREB1-axis is essential for the
initiation and progression of OS in p53-deficient osteoblasts
(108). These findings are significant because P53 deficiency is a

common event in OS and understanding of this pathway could
lead to a better elucidation of this disease (108).

All of the above data showed that PTHrP is crucial for
tumorigenesis of OS and increased expression could be linked
with poor prognosis in mice (Table 1). However, further in vivo
studies are necessary to clarify the exact roles of PTHrP in the
progression of OS, possibly to be undertaken in dogs.

ROLES OF HUMAN PARATHYROID
HORMONE IN OS

The active portion of human parathyroid hormone is a 34-amino
acid peptide (109). Studies demonstrated that PTH (1–34) and
the native 84-amino acid hormone have identical spectrum of
biological responses in bone (110, 111). It has been shown
that single-daily subcutaneous administration of PTH (1–
34) accelerates the production of new bone matrix on the
endocortical, trabecular and periosteal surfaces via the stimulated
osteoblasts (Figure 2) (110). This leads to significant elevation
of bone mineral density, bone mass and strength of the bones
(112, 113). Because of this, PTH (1–34) or teriparatide has been
used in the management of adult patients with osteoporosis to
increase bone mass and prevent bone fracture (114–117).

The Food and Drug Administration (FDA) approved
teriparatide Eli Lilly & Co. (Indianapolis, IN, USA) as a treatment
for osteoporosis under the name “Forteo” in November 2002
(118). The approval of this drug came after preclinical and clinical
trials produced some conflicting results. Data from preclinical

Frontiers in Veterinary Science | www.frontiersin.org 6 March 2021 | Volume 8 | Article 63761412

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Al-Khan et al. PTHrP and PTHR1 in Canine Osteosarcoma

FIGURE 4 | Possible outcomes for dogs with osteosarcoma. Dogs with strong PTHR1 immunostaining tumors had shorter overall survival times compared to those

with weak immunostaining. Overabundance of PTHR1 could activate neoplastic osteoblasts to detach via up-regulation of integrin adhesion molecules (αvβ3, β1,

α2β1, α5β1, α6β1), resulting in pulmonary metastases. Other possible mechanisms which could explain the effects of PTHR1 expression including increased

chemoresistance, increased tumor growth and decreased apoptosis. This might result in shorter survival time.

trials revealed that a high number of rodents developed OS
after the treatment with very large doses of teriparatide for
most of their lifespan. For this reason, the FDA was required
to balance the possible side effects with the vital benefits

of this distinctive product (118). In addition, teriparatide is
not used to treat patients affected by primary malignant and
metastatic bone tumors (119), Paget’s disease (120) or who
have had radiotherapy (121). All these conditions may increase
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the probability of OS development in patient treated with
teriparatide (122).

Watanabe et al. showed that the induction of OS in rats treated
with teriparatide depends on the duration and dose of treatment
(123). In 2004, Vahle et al. described a safe regime of teriparatide
for rats (124), starting with 5 µg/kg at 6 months of age and
continued for either six or 20 months (up to 70% of life span)
resulted in significant increase in bonemass with no development
of neoplasms (124).

In humans, two cases of OS after treatment with teriparatide
have been reported in the USA (122). Nevertheless, in the
first case, the connection between teriparatide and the OS was
not clear (121). In the second case, the patient was treated
with radiotherapy before treated with teriparatide; thus, it is
uncertain whether the teriparatide treatment or radiotherapy
was associated with development of OS (119). Recently, another
patient developed OS after administration of teriparatide (122).
This patient had no history of Paget’s disease and had never
received any radiotherapy. According to Ogawa et al. (122),
this case was the first case with definite correlation between
teriparatide and acceleration of growth of a pre-existing
malignant tumor in humans.

Hyaluronan (HA) is a glycosaminoglycan component of the
extracellular matrix. It is involved is regulation of cancer cell
function (125, 126). It has been found that PTH increases the
production of HA in osteoblast-like OS cell line (UMR 106-
01 BSP) (127). Furthermore, as a response to PTH, endosteal
and periosteal osteoblastic cells exhibited metabolic variances
in their HA synthesis (128). It is suggested that PTH (1–34)
has a role in an administration mode-dependent manner, on
HA metabolism that is vital for migration of OS cell (98).
This role is correlated with OS cell differentiation and behavior
(98). Treatment of aggressive and poorly differentiated MG-
63 cells with intermittent PTH (1–34) was found to increase
expression of their HA-synthase-2, which lead to enhanced high-
molecular size HA deposition in the pericellular matrix and
increased migration of these cells. Continuous treatment of well-
differentiated Saos2 cell with PTH (1–34) also increased the
production of HA and modestly stimulated their migration (98).
Another study showed that the anabolic effect of PTH (1–34)
on bone metabolism was associated with changes in fibroblast
growth factor-2 (FGF-2) expression (129). These FGF variations
could modify the nuclear accumulation and subsequent action
of runt-related transcription factor 2 (Runx-2) and CREB
transcription factors which are important in the regulation of
osteoblast differentiation and growth (129).

Although the mechanism responsible for the rodent bone
neoplasms is still a puzzle, it was suggested that the incidence of
bone tumors is increased as a result of the prolonged treatment
period in these rats in conjunction with an extreme response
of the skeleton to the elevated bone formation effect of daily
administration of teriparatide (110). Moreover, as mentioned
previously, PTHR1 is activated by the binding of the N-terminal
(1–34) amino acids of PTH or PTHrP (47). The abundant
production of PTHrP which can bind to PTHR1 and promote
the formation of cAMP could result in induction of OS as
it will be discussed in the section “Roles of PTHR1 in OS”

(130). Hypothetically, treatment with teriparatide and blocking
of PTHR1 at the same time could reduce the possibility of OS
induction. More studies are warranted to clarify the correlation
between PTH, PTHR1, and OS.

ROLES OF PTHR1 IN NORMAL AND
TUMOR TISSUES

PTHR1 is found mainly in bones and kidneys (131), and
is involved in mineral ion homeostasis, bone turnover and
skeletal development (132). In bone, PTHR1 regulates function,
differentiation and proliferation of chondrocytes and osteoblasts
(Figure 1) (133–135). It also controls calcium release from the
matrix (136, 137).

In the kidney, PTHR1 has a role in the reabsorption of
calcium in the distal convoluted tubule (46, 138) and in the
maintenance of blood phosphate levels via inhibiting phosphate
reabsorption in the distal and proximal tubules (139, 140). It also
increases the activity of 1α-hydroxylase, resulting in increased
calcium absorption from the intestine through increasing levels
of 1,25-dihydroxycholecalciferol (46, 138).

Expression of PTHR1 protein has been detected in human
primary tumors, including melanoma (100%), prostate
adenocarcinoma (100%), colorectal carcinoma (100%), OS
(50%), renal cell carcinoma (23%), and breast carcinoma (17%)
(141). Studies showed that expression of PTHR1 was also
detected in several human breast cancer cell lines (70, 142).
Previously, Linforth et al. (143) found that expression of PTHR1
is correlated with poor prognosis in patients with primary
breast cancer whilst Hoey et al. (144) reported that PTHR1
was highly expressed in human breast cancer bone metastases
samples compared to primary breast cancer. The overexpression
of PTHR1 in MCF-7 cells stimulated tumor cell proliferation
through autocrine signals, which are mediated by cAMP and
extracellular signal-regulated kinase (ERK) pathways (144).

In addition to PTHR1, recent studies have shown that
overexpression of other GPCRs were associated with poor
prognosis in pancreatic, breast and prostate cancers (145–147). Li
et al. (146) found that increased expression of purinergic receptor
P2Y2, a class A GPCR, correlated with a poor prognosis in
prostate cancer. Moreover, protease-activated receptor 1 (PAR1),
a second-class A GPCR, was reported to be highly expressed
in aggressive breast tumors (146). Wang et al. (147) found
that overexpression of GPR87, another class A GPCR, was
linked with reduced survival for patients with pancreatic cancer.
Furthermore, GPR87 was reported to promote aggressiveness in
primary cell lines derived from the above patients’ tumors (147).
These data might support the carcinogenicity of PTHR1 and
other GPCRs.

PTHR1 was not well-studied in cancers other than breast and
OS. The next section highlights the critical roles of PTHR1 in OS.

ROLES OF PTHR1 IN OS

Numerous studies using human cell lines (105), murine
(99), human (141) and canine (39) tissues have reported
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TABLE 2 | Roles of PTHR1 in progression of osteosarcoma.

Role of PTHR1 in OS Type of

tissue

Species References

Overexpression of PTHR1 is linked with increased invasion and proliferation Cell line Human (105)

Knockdown of PTHR1 stimulated tumor differentiation and decreased invasion and growth Tissue Mouse (99)

Blocking of PTHR1 reduced metastatic cell invasion, proliferation, migration and adhesion Cell line Human (148)

Patients with strongly staining for PTHR1 OS tumors had reduced survival times compare to

those with weak immunostaining intensity OS tumors

Tissue Dog (39)

Decreased mRNA expression of PTHR1 inhibited proliferation, migration and invasion Cell line Human (149)

the association between overexpression of PTHR1 and OS
progression (Table 2). Mutsaers et al. (100) detected PTHR1
in primary and metastatic OS of osteoblastic and fibroblastic
subtypes in vivo from two different types of transgenic mice. It
has been suggested that increased expression of PTHR1 in OS
could stimulate progression by formation of a more aggressive
subtype (105).

PTHR1 mRNA is highly expressed in metastatic human OS
compared with primary tumors (105). Overexpression of PTHR1
was linked with increased invasion and proliferation in 143B,
U2OS, SaOD-2 and HOS cell lines (105). In addition, Ho
et al. (99) reported that knockdown of PTHR1 in murine OS
cells stimulated tumor differentiation and decreased invasion
and growth. It has been found that reduced expression of
PTHR1 in vivo enhanced mineralization and differentiation in
OS (99).

Recently, immunostaining for PTHR1 was detected in all
canine OS tissues (n = 50) (39). The findings showed that dogs
with PTHR1 strongly staining OS tumors had significant shorter
survival time compared to those with weakly staining tumors
(39). According to this study, dogs with appendicular OS showing
PTHR1 strong immunostaining lived for 212 days compared
to those with weak immunostaining who lived for more than
double the time (459 days). The conclusion was that expression of
PTHR1 could be a significant prognostic indicator in canine OS
(39). As was mentioned previously, the relationship between the
expression of PTHR1 and survival time of OS patient has not yet
studied in humans. However, recent experiments by the group at
Liaoning Cancer Hospital showed that treatment of human Saos-
2 and U2OS cell lines with mangiferin, a xanthonoid, decreased
mRNA expression of PTHR1 in vitro (149). This study suggested
that the inhibition of proliferation, migration and invasion of
OS cells that resulted from this treatment are correlated with
inhibition of PTHR1 (149). Moreover, a recent evidence revealed
that blocking of PTHR1 in human Saos-2 and U2OS cell lines by
using of Quercetin, a flavonoid found in vegetables, fruits, and
grains, reduced metastatic cell invasion, proliferation, migration,
and adhesion (148). These findings suggest that PTHR1 could be
a novel and promising therapeutic target for OS.

The pathway of PTHR1 in tumorigenesis of OS was suggested
by Walkley et al. (130). Under normal conditions, PTHrP
binds and activates PTHR1which is located on the surface
of osteoblasts. Activation of PTHR1 leads to the synthesis of
cAMP from ATP via adenylyl cyclase. Consequently, cAMP

induces the detachment of cAMP-dependent PKA from its α

regulatory subunit of PKA type 1 (PRKAR1A) (130). Activated
PKA translocates into the nucleus to phosphorylate and activates
CREB. As a result, target genes downstream of PTHR1 signaling
are activated (130). In OS, several abnormalities in the PTHrP-
PTHR1-PKA pathway increased the activity of PKA pathway.
This includes an elevated number of PTHR1 on the cell surface
and increased expression of the Prkaca gene that encodes the
catalytic component of PKA (130). Other abnormalities are
increased production of PTHrP, which can bind to PTHR1 and
promote the formation of cAMP and mutations in PRKAR1A
gene, which result in an increase in the PKA activity (130).

A recent study carried by Li et al. (150) proposed that
the effects of PTHR1 could be mediated by angiogenesis,
inflammation and the Wnt pathway through altering the
expression of the crucial enriched genes (Dkk1, Lef1, Agt-CCR3,
and Agt-CCL9) using mouse OS cells.

Previous studies have reported that integrin adhesion
molecules are involved in the migration of OS cells (151–
153). Up-regulation of integrins including α5β1, α2β1, α6β1
(151), β1 (152) and αvβ3 (153) was associated with aggressive
metastastic OS. PTHR1 could have a role in down-regulation
or up-regulation of cell-cell or cell-extracellular matrix adhesion
molecules. Integrins might be upregulated by PTHR1 in
aggressive OS (Figure 4). To validate the current hypothesis and
to further understand OS, future studies should investigate the
correlation between PTHR1 and integrins in OS.

The results from all these studies taken together, show that
detection of PTHR1 in OS could predict prognosis and therefore
may be a potential therapeutic target.

The obvious question that may arise from this review is, why
increased immunostaining of PTHR1 is correlated with reduced
survival time, although dogs studied by Al-Khan et al. (39). had
no clear evidence of metastasis at presentation in the smaller
group (n = 20 dogs). This suggests that increased amounts of
PTHR1 may activate tumor cells later to detach and metastasize
to the lung, which leads to a reduced survival time (see Figure 4).
The increase in PTHR1 in OS could be correlated with increasing
the capability of tumor cells tometastasize and this was supported
by a recent study (99). Knockdown of PTHR1 in OS reduced
invasion of tumor cells in vitro (99). In addition, Yang et al. (105)
revealed that overexpression of PTHR1 increased invasion and
showed that metastatic OS had increased expression of PTHR1
mRNA compared to the primary tumor.
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CYTOPLASMIC AND NUCLEAR
LOCALIZATION OF PTHrP AND PTHR1
IN OS

It has been found that full length PTHrP has a nuclear
localization signal (NLS) that allows transport into the nucleus
after binding to the transport regulatory protein, importin β

in the cytoplasm (154). PTHR1 binds to both importin α1
and importin β (155). PTHR1 overexpression has been found
in the nucleus during early interphase stage (G0/G1, S, and
G2 phases) of the cell cycle in the following cell lines; SaOS-
2 human OS, MC3T3-E1 mouse non-transformed osteoblasts
and ROS 17/2.8 rat OS (155). At G0/G1, S, and G2 phases,
DNA is more open to transcriptional activity compared to the
later phases where DNA is compact, transcriptional activities
are reduced and the immunofluorescent staining of PTHR1 was
weaker (155).

The localization of PTHrP was observed in the cytoplasm of
canine primary OS cells in 66% cases and in the nucleus plus the
cytoplasm in 34% cases (n = 50 dogs) (39). Similarly, PTHrP
was detected in the cytoplasm and nucleus using murine OS
tissue (99) and human metastatic bone lesions in patients with
prostate carcinoma (156). In contrast, PTHR1 was localized to
the cytoplasmic plus nucleus of canine OS cells in 100% cases.
Another study detected PTHR1 in the cytoplasm of murine
OS cell (99), while it was detected also in the nucleus and
cytoplasm of normal rat liver cells (157). The study of Al-
Khan found that there was no significant correlation between
the localization of PTHrP and PTHR1 and prognosis of OS
in dogs (39). According to this study, the increased nuclear
localization of PTHR1 in OS cells could be linked to the high
rate of mitosis. Moreover, most of these cells are at stage G0
and G1.

On the other hand, it has been found that nuclear localization
of PTHrP is correlated with inhibition of apoptosis using nine
human and rat prostate cancer cell lines [PC-3, PC-3MB, LNCaP,
DU-145, AT-2.1, MLL, AT-3.1, MAT-Lu (ML), and GP9F3] (156).
It is suggested that PTHrP has a vital role in the promotion of
prostate tumor growth and/or progression (123). Another study
revealed that nuclear localization of PTHrP promotes survival
of chondrocytes under conditions that stimulate cell death using
COS-7 cell line (158).

The only study that investigated the immuno-localization of
PTHR1 in human OS cells did not mention the pattern of the
immunostaining and they used only four cases of OS (141). The
study of Al-Khan et al. (39) is the only immunohistochemical
study that investigated the localization of PTHR1 in canine OS.
More studies are warranted to confirm the present findings.

CONCLUSION

In conclusion, this review has shown that canine OS is a good
model for the human disease and highlighted the roles of PTHrP
and PTHR1 in normal tissue and in OS. Both PTHrP and PTHR1
are crucial factors for induction of OS. Increased expression of
these two proteins in OS is correlated with a poor prognosis.
PTHrP and PTHR1 play critical roles in pulmonary metastasis,
chemoresistance, tumor growth and decreased apoptosis in OS
patients. Although the function of these two proteins in bone,
breast, placenta, and kidney has been described, their evolving
roles in the pathogenesis of OS requires further investigation.
This review supported the proposition that PTHR1 could be a
novel and significant prognostic indicator in OS and both PTHrP
and PTHR1 could be targets for novel therapeutics for OS. Also,
future studies on the correlation between increased expression
of PTHR1 and integrins may improve our understanding of OS
progression via the discovery of novel signaling pathways that
could be manipulated to improve patient outcomes.
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MicroRNAs (miRNA) are small non-coding RNAmolecules involved in post-transcriptional

gene regulation. Deregulation of miRNA expression occurs in cancer, and miRNA

expression profiles have been associated with diagnosis and prognosis in many cancers.

Osteosarcoma (OS), an aggressive primary tumor of bone, affects ∼10,000 dogs each

year. Though survival has improved with the addition of chemotherapy, up to 80% of

canine patients will succumb to metastatic disease. Reliable prognostic markers are

lacking for this disease. miRNAs are attractive targets of biomarker discovery efforts due

to their increased stability in easily obtained body fluids as well as within fixed tissue.

Previous studies in our laboratory demonstrated that dysregulation of genes in aggressive

canine OS tumors that participate in miRNA regulatory networks is reportedly disrupted

in OS or other cancers. We utilized RT-qPCR in a 384-well-plate system to measure

the relative expression of 190 miRNAs in 14 canine tumors from two cohorts of dogs

with good or poor outcome (disease-free interval >300 or <100 days, respectively).

Differential expression analysis in this subset guided the selection of candidate miRNAs

in tumors and serum samples from larger groups of dogs. We ultimately identified a

tumor-based three-miR Cox proportional hazards regression model and a serum-based

two-miR model, each being able to distinguish patients with good and poor prognosis

via Kaplan–Meier analysis with log rank test. Additionally, we integrated miRNA and

gene expression data to identify potentially important miRNA–mRNA interactions that

are disrupted in canine OS. Integrated analyses of miRNAs in the three-miR predictive

model and disrupted genes from previous expression studies suggest the contribution of

the primary tumor microenvironment to the metastatic phenotype of aggressive tumors.

Keywords: osteosarcoma, bone cancer, prognosis, miRNA, microRNA, predictive signature, canine (dog)
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INTRODUCTION

Despite increased survival in osteosarcoma (OS) patients
resulting from the addition of chemotherapy to standard
treatment protocols, only about one-fourth of canine OS patients
will survive longer than a year (1). New treatment strategies are
needed to manage this disease and will likely include integration
of targeted therapies with standard chemotherapeutics in
an individualized medicine setting. To facilitate this effort,
biomarkers of disease progression and response to treatment are
needed to optimize the stratification of patients into groups most
likely to benefit from various treatments and identify targets for
development of novel therapeutics.

Previous gene expression studies in our laboratory identified
the activation of the Notch signaling pathway in OS but suggested
that Notch-independent changes in HES1expression resulted in
low HES1 expression in the most aggressive tumors. We also
identified upregulation of insulin-like growth factor 2 mRNA
binding protein 1 (IGF2BP1), an oncofetal protein and known
target of the let-7 tumor suppressor family of miRNAs that has
been implicated in various cancers (2–4). We hypothesized that
the disconnect between the HES1 and Notch pathway activation,
as well as the escape of IGF2BP1 from inhibitory mechanisms
present in normal adult cells, likely involved the disruption of
post-transcriptional regulation by miRNAs.

miRNAs are small non-coding RNAs involved in the
regulation of gene expression, providing fine-tuning of multiple
cellular processes involved in the development and maintenance
of homeostasis. In general, miRNAs suppress the expression of
their target genes, and it is estimated that half of mammalian
genes are subject to miRNA regulation via 3′ UTR binding
sites (5, 6). Since a 2002 report from the Croce laboratory, the
involvement of miRNA dysregulation in cancer has been well-
established (7). Molecular genomic techniques such as cDNA
microarrays and next-generation sequencing have been adapted
to facilitate miRNA expression biomarker and novel target
discovery efforts (8, 9).

A growing body of literature exploring the significance of
miRNA expression changes in OS exists. Several comprehensive
reviews have been written to summarize the involvement of
miRNAs in OS (10–18). Major findings in OS miRNA studies
include suggested or experimentally demonstrated oncogenic-
or metastasis-promoting roles for miR-17-92 cluster (19–21),
miR-181 family (22–24), miR-27a (23), and miR-21 (25, 26) as
well as tumor-suppressive roles for miR-15/16 family members
(23) and miR-34 (20, 27, 28). The roles of other miRNAs
are less clear, such as the miR-29 family with reports of both
elevated and decreased expression in osteosarcoma cell lines
and tumors compared to “normal” controls for each sample
type (20, 21, 23, 24). Significant bodies of work have explored
the association of miRNAs in OS with prognosis. Loss of
miRNAs located in the 14q32 locus has been associated with
poor patient outcome in both human and canine OS, with the
findings in human OS confirmed by multiple groups (29–31).
In addition to confirming the oncogene- and tumor-suppressive
roles of mir-27a and mir-16, respectively, both in vitro and
in vivo, Jones et al. (23) identified tumor-based signatures

associated with “osteosarcomagenesis,” metastasis, and response
to chemotherapy. Several reports have included functional
experiments confirming interactions betweenmiRNAs of interest
and genes previously identified as dysregulated in OS, such as
loss of 14q32 miRNAs and miR-135 with upregulation of c-MYC,
miR-34 with RUNX2, and miR-20a of the miR-17-92 cluster and
Fas (19, 28, 31, 32).

miRNAs are attractive molecules for biomarker discovery
efforts due primarily to increased stability in biologic fluids
and in formalin-fixed tissues compared to other RNA molecules
(33–35). These features exemplify the clinical utility of miRNA,
particularly in healthcare settings where stringent sample
collection and storage requirements necessary for the analysis of
mRNA are not always possible. A handful of studies focusing
on human OS have identified associations between miRNA
expression and outcome, including studies utilizing paraffin-
embedded, formalin-fixed tissues, and blood fluids (23, 29,
36). Consequently, we explored the hypothesis that cancer-
associated miRNAs would be measurable in tumor and serum
and associated with outcome.

Our first objective was to identify candidate biomarker
miRNAs differentially expressed in tumors from different
outcome groups and in all tumors relative to normal bone.
Candidate miRNAs were measured in a larger group of
tumors and similarly sized set of serum samples to determine
associations between miRNA expression changes and patient
outcome. Finally, pathway and miRNA target prediction analyses
were used to integrate miRNA and gene expression data to
identify potential miRNA–gene regulatory networks important
for OS progression.

MATERIALS AND METHODS

Patient and Tissue/Fluid Selection
Tumors in disease-free interval (DFI) cohorts from dogs with
DFI >300 or <100 days treated with limb amputation followed
by doxorubicin or platinum-based chemotherapy were collected
as previously described (2). Normal bone was obtained from dogs
with osteosarcoma from limbs post-amputation and harvested
so that “normal” bone included in the study was distant
from the tumor site and separated from the tumor by a
joint (e.g., a femoral tumor would have matched a distal
tibia bone collected). A 1–2-cm section of normal bone was
collected for each sample; marrow and medullary fat were
removed at collection. Supplementary Table 1 shows patient
data for these groups of tumors. Thirty-three additional tumors
were selected from the Colorado State University Flint Animal
Cancer Center’s tissue archive with post-treatment data to
document disease progression and matched serum or plasma
samples available for miRNA extraction and expression analysis
(Supplementary Table 2, COS33). Dogs from both cohorts were
confirmed to be free of metastatic lung disease at diagnosis
and surgery. Following RNA extraction and quality checks
of the serum or plasma samples from the second cohort,
24 of these patients were included in circulating miRNA
expression analysis.

Frontiers in Veterinary Science | www.frontiersin.org 2 April 2021 | Volume 8 | Article 63762223

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Dailey et al. Canine Osteosarcoma Prognostic miRNA Signature

Total RNA Isolation, Quantification, and
Quality Assessment (Tissues)
RNA was extracted from frozen samples using a freeze fracture
device, followed by homogenization and separation of RNA
from DNA and protein fractions using TRIzol R© Reagent (Life
Technologies, Grand Island, NY). The freeze fracture device and
the samples were placed in liquid nitrogen to chill for 15–20min.
Approximately 1 cm3 of tumor tissue and up to 4 cm3 of normal
metaphyseal bone were used for RNA extraction. Pulverized
tissue was transferred into 2 ml/cm3 of tissue of TRIzol in 15-ml
conical tubes. The tissue/TRIzol mixture was then homogenized
at medium to high speed for 1min. Homogenized samples were
gently shaken, centrifuged for 1min at 2,000 RPM, and then
incubated for 5min at room temperature. The supernatant was
collected into two 1.5-ml tubes and carried forward using the
TRIzol reagent manufacturer’s protocol for RNA extraction.

After resuspension of the extracted RNA pellet in nuclease-
free water, the mirVanaTM miRNA extraction kit (Life
Technologies, Grand Island, NY) was used for additional RNA
purification. RNA was eluted in 50 µl nuclease-free water and
treated in 20-µl batches with DNAse (2µl 10×DNAse buffer and
2 µl DNAse-I; DNA-freeTM kit, Life Technologies) to eliminate
genomic DNA contamination. RNA concentration and purity
were determined using the NanoDrop 1000 spectrophotometer
(NanoDrop Products, Thermo Scientific, Wilmington, DE). The
quality of isolated total RNA was determined by RNA integrity
number using a Bioanalyser 2100 (Agilent Technologies,
Santa Clara, CA) with a RNA 6000 Nano chip. Only samples
with RNA integrity number >6 were used. All samples were
stored at−80◦C.

Total RNA Isolation (Serum)
Archived serum samples stored at −80◦C were thawed at
room temperature, transferred to RNAse/DNAse Free 2-ml
microcentrifuge tubes, and centrifuged for 5min at 4◦C and
16,000 × g. Exactly 200 µl of the supernatant was moved
to a fresh 2-ml tube for extraction of RNA using the
miRNeasy Serum/Plasma Kit (Qiagen, Valencia, CA) following
the manufacturer’s directions. Synthetic ce-miR-39 mimic (1.6×
108 copies) was spiked in to each sample prior to addition of
chloroform. Strict preset volumes of reagents and sample RNA
were used following the manufacturer’s recommendations.

Real-Time Reverse Transcriptase
Quantitative PCR
cDNA synthesis of small non-coding RNAs was performed
using the miScript Reverse Transcription kit (Qiagen, Valencia,
CA) following the manufacturer’s instructions. Briefly, reverse
transcription (RT) was performed in 20-µl reactions containing
1 µg total RNA in nuclease-free water, 5× miScript RT
Buffer (Mg, dNTPs, and oligo-dTprimers), and 1 µl miScript
Reverse Transcriptase Mix [poly(A)polymerase and reverse
transcriptase]. Generated cDNAs were stored at −20◦C until
analysis. Quantitative PCR measurements were performed
in 384-well PCR plates in a 6-µl reaction containing 2×
Quantitect SYBR Green master mix (Qiagen, Valencia, CA),

10µM miRNA-specific forward primer (MWG Biotech), 10×
Universal Reverse Primer (Qiagen, Valencia, CA), 2 ng equivalent
cDNA, and nuclease-free water. miRNA-specific primers were
designed based on sequences of mature miRNA from MirBase
(Supplementary Table 8). Samples were run in duplicate with
non-template and reverse transcriptase-free (no RT) controls.

Modifications to this protocol for measurement of serum
miRNA were as follows: cDNA synthesis was carried out in 10-µl
reactions containing 2 µl 5× HiSpec Buffer, 1 µl Nucleics mix,
1 µl nuclease-free water, and 5 µl total serum RNA. The serum
cDNA was diluted 1:10 in nuclease-free water, and a consistent
volume (0.15 µl), rather than a consistent concentration, was
included in each 6-µl RT-qPCR reaction.

Data Analysis
For analysis of RT-qPCR data from tumor samples, both
GeNorm (37) and NormFinder (38) were used to identify the
best candidate reference miRNAs from 10 options, and data
was normalized to the geometric mean of miR-30a, miR-27b,
and miR-185. The 2−11Ct method was used for differential
expression analysis in the initial set of 14 tumors. Statistical
analysis of survival data was performed using normalized and
transformed expression data from 19miRNAs in the test set of 33
tumors and 13miRNAs in 31 serum samples using a combination
of Prism and the coxph and survfit functions from the survival
package in R.

Statistical Analysis
Associations between miRNA expression levels and DFI were
evaluated using Cox proportional hazards linear regression.
Multivariable Cox regression was then performed on a subset of
candidate miRNAs (p <0.25 from univariate analysis), utilizing
both forward and backward stepwise models based on the Akaike
information criterion (AIC). A risk score was calculated for each
sample based on the best multivariate model, and Kaplan–Meier
method was used to determine median DFI for low- and high-
risk groups based on the median risk score. Comparison between
groups was made with the log rank analysis, and a p-value of
<0.05 was considered significant.

This analysis pipeline wasmodified slightly for serum samples.
Raw Ct values were first adjusted based on the expression of
synthetic cel-miR-39 (33, 39). Then, two miRNAs, miR-16 and
miR-21, were selected as referencemiRNAs and normalized using
a variation of mean centering, termed concordance correlation
restricted, as described in Wylie et al. (40). This method was
found to be well-suited for biofluid samples.

RESULTS

Differentially Expressed miRNAs in Tumors
From Dogs With Poor Response Compared
to Those With Good Response
Expression of 188 miRNAs was measured in 14 tumors—seven
tumors from dogs with DFI >300 days (good responders)
and seven tumors from dogs with DFI <100 days (poor
responders)—using RT-qPCR. Four miRNAs were differentially
expressed in tumors from poor responders relative to those from
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TABLE 1 | Results of univariate Cox proportional hazard regression analysis for

expression of miRNAs in canine osteosarcoma tumors (n = 33; disease-free

interval range, 20–937 days).

miRNA name p-value HR 95% CI

mir.223.3p 0.001 2.25 1.38–3.68

mir.181b.5p 0.028 0.65 0.44–0.96

mir.130a.3p 0.107 0.70 0.46–1.08

mir.199a.5p 0.158 0.75 0.50–1.12

let.7b.5p 0.171 0.60 0.29–1.25

mir.451a 0.194 1.24 0.90–1.71

mir.7.5p 0.236 1.22 0.88–1.69

mir.26a.5p 0.315 0.80 0.52–1.24

mir.30c.5p 0.369 0.85 0.61–1.20

mir.142.3p 0.423 1.19 0.78–1.83

mir.206 0.583 0.91 0.65–1.27

mir.18a.5p 0.617 1.10 0.76–1.58

mir.16.5p 0.648 0.93 0.67–1.29

mir.196b.5p 0.668 0.92 0.63–1.35

mir.9.5p 0.742 0.94 0.65–1.36

mir.135a.5p 0.788 0.96 0.69–1.32

mir.128.3p 0.796 0.96 0.70–1.32

mir.210.3p 0.964 1.01 0.70–1.46

mir.17.5p 0.981 0.10 0.73–1.35

The italicized rows (p < 0.25) were selected for multivariate analysis.

good responders using a cutoff of p < 0.05 for significance.
Nineteen miRNAs were selected based on p < 0.1, fold
change >2.0, or biological interest based on human OS studies
for additional expression analyses in a larger set of tumors
(Supplementary Table 3, bold).

Cox proportional hazard univariable regression analysis of
expression of 19 miRNAs in 33 tumors from patients with
DFI ranging from 20 to 937 days identified miRNAs associated
with patient outcome (Table 1). The goal of multivariate Cox
proportional hazard analysis in this study was to identify the best
combination of candidate miRNAs whose expression explained a
significant proportion of the variability of patient outcome in this
group of tumors and which would be likely to predict outcome
in an independent set of canine tumors. Thus, expression values
for seven miRNAs with p < 0.25 based on the univariate
analysis were included in both forward and backward step-
wise multivariate Cox proportional hazard regression analysis.
A three-miRNA model was selected as the best model based on
AIC, a measurement of model selection that takes into account
the goodness-of-fit of the model with penalties for increased
complexity (Table 2).

Three-miRNA Signature for Patient
Outcome (DFI)
The Cox proportional hazard multivariate model with three
miRNAs—miR-223-3p, miR-130a-3p, and let-7b-5p—was used
to calculate the risk scores for each sample. The median risk
score was used as a cutoff to discriminate samples considered
high or low risk. Kaplan–Meier survival analysis with the log rank

TABLE 2 | Three-miRNA model with lowest Akaike information criterion via both

forward and backward step-wise Cox proportional hazard regression (R2
= 0.413,

concordance = 0.73).

miRNA name p-value HR 95% CI

mir.223.3p 0.0003 2.676 1.57–4.57

mir.130a.3p 0.0229 0.5718 0.35–0.93

let.7b.5p 0.1451 0.6034 0.31–1.19

test using the three-miRNAmodel-based risk score distinguished
patients with high risk and low risk with respective median DFIs
of 123.5 and 392 days (Figure 1A, p = 0.0002, hazard ratio 3.2,
95% confidence interval 2.5–12.9). Relative expression of each
miRNA in the signature (Figure 1B) indicated that Let-7b was
not significantly elevated in the low-risk group, while miR-103a
was significantly elevated in the low-risk group (p = 0.008), and
miR-223 was significantly reduced in the low risk group (p =

0.003). Additionally, if samples were separated into cohorts of
good and poor responders based on mean DFI, the three-miRNA
model signature had an accuracy, based on area under the curve
of 0.86 (Figure 1C).

Pathway Analysis of Dysregulated miRNAs
and Genes Suggests Roles for Tumor
Microenvironment and IGF2BP1
Regulatory Network in Aggressive OS
We used the mirPath tool from the Diana Tools website (41,
42) with species set to human to identify the top pathways
enriched for genes that are targets of the three miRNAs in
our Cox proportional hazards model. The top 20 significant
pathways using the microT-CDS database and the genes union
function include: FoxO signaling, ECM–receptor interaction,
signaling pathways regulating pluripotency of stem cells, TGF-
beta signaling, cytokine–cytokine receptor interaction, and p53
signaling (Table 3). The let-7 family, being among the earliest
miRNAs discovered and more widely studied, shows 682
targets in this tool, while miR-223 and miR-130a list only 367
and 552 genes, respectively. Since loss of let-7b-5p and mir-
130a-3p was associated with a shorter DFI, we explored the
pathways that they regulate separately from those pathways
regulated by mir-223-3p which was elevated in the tumors with
higher risk of metastasis. Mir-223-3p is specifically involved in
transcriptional misregulation in cancer and cytokine–cytokine
receptor interaction. Taken together, this suggests a role for
these miRNAs in the regulation of the extracellular environment,
immune system, and developmental pathways.

We next used multiMiR, a miRNA–target interaction R
package and database out of the Theodorescu lab (43), to
identify either experimentally validated or predicted miRNA–
mRNA interactions based on data from this study and
previous studies in our laboratory (Supplementary Table 6).
MultiMiR predicted potential interactions between miR-223,
over-expressed in tumors from dogs with shorter DFI, and both
dystonin (DST) and catenin (cadherin-associated protein), Alpha
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FIGURE 1 | Three-miRNA tumor-based predictive model. (A) Kaplan–Meier survival curve with log rank test (cutoff is median risk score: 0.8897). (B) Relative

expression (2−1Ct) of individual miRNAs in low- and high-risk groups (Mann–Whitney test). (C) Receiver operator characteristic curve for three-miRNA Cox

proportional hazard-based risk score dividing outcome groups based on mean disease-free interval.
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TABLE 3 | Top pathways (p < 0.05) enriched for genes targeted by let-7b-5p,

miR-223-3p, and/or miR-130a-3p.

KEGG pathway p-value #genes #miRNAs

Prion diseases 4.76 × 10E-19 1 1

Mucin type O-glycan biosynthesis 3.83 × 10E-16 9 3

FoxO signaling pathway 9.91 × 10E-05 27 3

Extracellular matrix–receptor interaction 9.91 × 10E-05 12 3

Signaling pathways regulating pluripotency

of stem cells

1.02 × 10E-04 29 3

TGF-beta signaling pathway 9.52 × 10E-04 19 3

Cytokine–cytokine receptor interaction 3.86 × 10E-03 30 3

Amoebiasis 0.011 16 3

p53 signaling pathway 0.046 13 3

Transcriptional misregulation in cancer 0.048 28 3

#genes, number of genes targeted by analyzed miRNAs in the pathway.

#miRNAs, number of analyzed miRNAs that have targets in the pathway.

FIGURE 2 | Correlation between low let-7b expression and high expression of

IGF2BP1 in eight osteosarcoma tumors as determined by RT-qPCR.

2 (CTNNA2). Both are adhesion proteins interacting with the
cytoskeleton, potentially implicating disruption of the tumor
microenvironment in the aggressiveness of OS. Interactions
between let-7b and six other under-expressed miRNAs and
IGF2BP1 confirm that miRNA expression changes likely play a
role in the high expression of this gene in tumors from dogs
with poor outcome. Relative expression of let-7b and IGF2BP1
in OS tumors with a short disease-free interval via RT-qPCR
confirms a statistically significant correlation, suggesting that this
interaction occurs in canine OS and may contribute to outcome
(Figure 2).

Differentially Expressed miRNAs in OS
Tumors Relative to Normal Bone Support
Dysregulation of the Notch Pathway in OS
Expression of 188 miRNAs was also measured via RT-qPCR
in seven normal bone samples. As has been our experience
with gene expression, more differentially expressed miRNAs
were identified with higher statistical significance and larger fold

changes. Forty differentially expressed miRNAs were identified
using cutoffs of p < 0.05 for significance and fold change
>2; 21 miRNAs had a lower expression in tumors than
normal bone, while 19 miRNAs were over-expressed in tumors
(Supplementary Tables 4, 5).

Based on our previous work associating the Notch signaling
pathway with OS and again using multiMiR, we sought
validated interactions between 21 downregulated miRNAs and
30 upregulated Notch/HES1-associated genes as well as between
19 upregulated miRNAs and 14 downregulated Notch/HES1-
associated genes. The pool of Notch/HES1-associated genes
was a subset of the genes previously published (44). MultiMiR
identified experimental, protein-based evidence for interactions
between 21 of 41 miRNAs and 17 of 44 genes or roughly half
of the miRNAs and genes entered into the analysis (Figure 3).
This data supports the hypothesis that dysregulation of the
Notch signaling pathway contributes to the pathogenesis of OS
and likely involves disruption of miRNA regulation of Notch
pathway-associated genes.

Serum miRNA Changes Associated With
OS Patient Outcome
Expression of 13 miRNAs in 31 serum samples from patients
with DFI ranging from 20 to 772 days was analyzed using a
similar Cox proportional hazard regression pipeline described
for tumor miRNA expression data. The 13 miRNAs evaluated
comprised a combination of 10 miRNAs selected from our
analysis of tumor-derived miRNA expression and three miRNAs
commonly highly expressed in human serum samples. Forward
and backward stepwise Cox multivariable proportional hazard
regression analysis identified a two-miRNA model (miR-23a-
3p and miR-30c-5p) with the best fit based on AIC (Table 4,
Figures 4A–C). The risk score based on this model separated the
samples into groups, with mean DFI of 272 days for the low-risk
group and 123.5 days for the high-risk group (p = 0.004, hazard
ratio 2.6, 95% confidence interval 1.6–8.5).

Tumor-Based miRNA Signature Compared
to Clinical Predictors
One measure of the value of a new prognostic biomarker is
its usefulness compared to other predictive markers including
clinical parameters (45). For OS, the most consistent clinical
indicators of outcome are proximal humerus location, weight,
and serum ALP (1, 46–48). We had access to an expanded
set of curated, quality-checked clinical data for a subset of our
tumors (n = 24) that were included in a large retrospective
study by Selmic et al. (46). Multivariate Cox proportional hazard
regression of the three miRNA expression-based risk score and
other clinical parameters (p < 0.25 on univariate analysis)
showed that, when adjusting for these indicators, the miRNA
expression based risk score remains a significant predictor of
outcome (Table 5). This suggests that incorporation of miRNA
expression signatures would improve the estimation of prognosis
for canine patients.
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FIGURE 3 | Notch/HES1-associated miRNA–mRNA interactions. Dysregulated genes are shown as ovals or polygons, dysregulated miRNAs are shown in text

boxes. In both cases, red indicates expression that is higher in tumors than in normal bone, blue indicates expression that is lower in tumors, and purple indicates that

one probe in the Affymetrix array showed NFKB1 as upregulated and another as downregulated. Genes on the left are ligands or inhibitors of Notch; genes on the

right are downstream targets of the Notch signaling pathway and/or specifically interact with HES1.

TABLE 4 | Two miRNA models after step-wise Cox proportional hazard regression

(R2
= 0.278, concordance = 0.69).

miRNA name p-value HR 95% CI

mir.23a.3p 0.0209 0.5652 0.35–0.92

mir.30c.5p 0.0099 0.5487 0.35–0.87

DISCUSSION

Aberrant miRNA expression patterns have been associated with
patient outcome for a variety of human tumors. Combined
with their stability in fixed tissues and less invasively obtained
body fluids, miRNAs make attractive candidates for biomarker
discovery efforts. In this study, we identified miRNA expression
signatures from both canine OS tumor and patient serum
samples that associated significantly with outcome following
surgical amputation of the affected limb and standard-of-
care chemotherapy. Pathway and miRNA–gene interaction
analyses focused on tumor-derived miRNAs associated with
poor outcome, suggesting that the interaction between OS cells
and the primary tumor microenvironment may be a major
determinant in the ultimate metastatic capabilities of OS tumor

cells. Additional miRNA–gene interaction analyses combining
expression changes identified in this study with gene expression
changes from earlier studies suggest that miRNA dysregulation
contributes to both (1) disruption of the Notch pathway in OS
compared to normal bone and (2) deregulation of the growth-
promoting oncofetal protein IGF2BP1 in the most aggressive OS
tumors. Finally, we demonstrated that the tumor-based three-
miRNA signature remains an independent predictor of outcome
when we control for possible effects of other clinical parameters
such as tumor location, patient weight, and age at diagnosis.

Although previous studies have established grading systems
for canine OS (49, 50), a limitation of the current study is the lack
of grading for the tumors in this data set.Meta-analysis and direct
comparisons have shown limited utility for these grading systems
in prognosis with simplified high- or low-grade models suggested
(48, 51). Variability within tumors as well as the complexity of the
criteria in the proposed grading schemes may contribute to high
subjectivity. Furthermore, more than 80% of tumors will fall into
high-grade histologic categories, within which variable patient
outcomes may be achieved. For OS, the most consistent clinical
indicators of outcome are proximal humerus location, weight,
and serum ALP (1, 46–48). Among these clinical parameters
(scoring p < 0.25 on univariate analysis), only location of the
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FIGURE 4 | Two-miRNA serum-based predictive model. (A) Kaplan–Meier survival curve with log rank test (cutoff is median risk score: 1.0372). (B) Scatter plot of risk

scores in two outcome groups based on mean disease-free interval (DFI) for all 33 samples (*p = 0.014, Mann–Whitney test). (C) Receiver operator characteristic

curve for serum two-miRNA Cox proportional hazard-based risk score dividing outcome groups based on mean DFI.

tumor in the proximal humerus and the three-miRNA risk score
were significant predictors of disease outcome. This suggests that
incorporation of miRNA expression signatures would improve
the estimation of prognosis for canine patients.

Our first goal of this study was to identify miRNAs associated
with progression of OS despite standard-of-care treatment
including surgical amputation and doxorubicin and/or platinum-
based chemotherapy. We identified a three-miRNA expression
signature that separated patients into two distinct outcome
groups. Within this signature, elevated expression of miR-223
and decreased expression of let-7b and miR-130a were associated
with increased risk and ultimately shorter median DFI. Of
these three, miR-223 was the most significantly associated with

DFI based on p-value in both the univariate and multivariate
regression analyses. Interestingly, the expression of miR-223 is
nearly 20 times lower in OS tumors compared to normal bone
(Supplementary Table 5), which is consistent with two reports
in human OS (21, 23). miRNA expression analyses performed
in canine cancer cell lines conducted in our laboratory showed
that miR-223 expression is similarly uniformly low across canine
osteosarcoma cell lines. We performed pathway and miRNA–
gene regulatory analyses to identify pathways potentially affected
by expression changes in miR-223. These analyses suggest
that the significant increase in miR-223 expression in canine
OS tumors may be either originating from or influenced by
interactions with the tumor microenvironment.
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TABLE 5 | Results of univariate/multivariate analysis of factors associated with

clinical outcome, including a three-miRNA expression-based risk score

(tumor-derived miRNA expression).

Med DFI (days) HR P 95% CI

Univariate analysis

Three-miRNA risk score Low 392 0.18 0.00061 0.070–0.484

High 123.5

Weight 1.05 0.046 1.001–1.103

Age at diagnosis 0.785 0.10 0.587–1.051

Proximal humerus Yes 3.055 0.057 0.969–9.628

No

Multivariate analysis

Three-miRNA risk score 0.185 0.0067 0.055–0.626

Proximal humerus 5.63 0.016 1.38–23.06

Pathways enriched for both miR-223 and miR-130a included
hematopoietic cell development and osteoclast differentiation.
Several lines of evidence support a role for miR-223 as an
important regulator of the immune response inhibiting the
differentiation of classically activated (M1) macrophages and
promoting anti-inflammatory and pro-tumor (M2) polarization
(52–54). Notch signaling, a pathway we have found to be
significantly dysregulated in aggressive canine OS, is also
important for pro-inflammatory M1 polarization (55). Normal
differentiation and function of osteoclasts, which are derived
from bone marrow monocyte precursors, are also reliant on
the expression of miR-223 (56). Given that miR-223 is highly
expressed by both M2 macrophages and osteoclasts, it is
possible that the increased expression of miR-223 in tumors
from poor responders is originating from or induced by
an interaction with the increased numbers of these cells in
the tumor microenvironment. For example, Yang et al. (57)
demonstrated that M2-polarized macrophages can shuttle miR-
223 via exosomal transport to breast cancer cells, increasing
their invasive ability. In addition, miR-223 may suppress the
maturation and immunogenicity of dendritic cells to promote a
tolerogenic environment (58, 59).

The role of both osteoclasts and macrophages in OS
remains controversial due to a variety of factors, including the
potentially different behaviors of these cells depending on the
level of differentiation, polarization, and response to external
stimuli (60–63). Despite this uncertainty, macrophage-activating
agents (promoting pro-inflammatory M1 polarization), such as
muramyl tripeptide phosphatidylethanolamine, have consistently
shown promise for treatment of OS (64, 65).

In further support of the influence of the tumor
microenvironment on miRNA expression changes in
OS, miRNA–gene interaction analysis identified potential
interactions between miR-223 and adhesion proteins DST and
CTNNA2. Both are involved in actin cytoskeletal remodeling,
a pathway commonly associated with metastasis (66) and
identified as enriched for dysregulated genes in our previous
gene expression studies (2). Changes in actin cytoskeletal
remodeling are commonly triggered by cell–cell interactions,

including those that may occur between tumor cells and
supporting stromal cells. The decreased expression of CTNNA2
in tumors from our poor responders supports a pro-metastatic
role for miR-223 as CTNNA2 acts as a tumor suppressor in
both endometrial and laryngeal carcinomas (67, 68). Additional
evidence for an association between miR-223 and metastasis or
chemotherapy resistance has been demonstrated in recurrent
ovarian tumors, renal cell metastases, and gastric cancer (69–71).

In contrast, recent reports support a potential tumor
suppressor role for miR-223 in vitro (72–74). Low miR-223
expression combined with elevated expression of its target gene,
epithelial cell transforming sequence 2, in OS tissues is associated
with poor outcome (72, 73). It is worth noting that only one of
these studies utilized patient tissues, and this included a mix of
pediatric and adult tumors (age range 8–66 years) (73). Canine
osteosarcoma most closely resembles the pediatric disease, while
human adult OS is frequently associated with Paget’s disease and
may thus involve different underlying molecular mechanisms of
progression (1, 75).

Another goal of this study was to integrate miRNA and gene
expression data to identify key aberrant pathways contributing
to pathogenesis and progression of OS. miRNA–gene expression
analysis revealed seven miRNAs with low expression in
aggressive tumors predicted or known to target IGF2BP1, an
oncogene of interest to our lab. IGF2BP1 has a 3′ UTR that is
thousands of kilobases long and with multiple well-conserved
binding sites for various miRNAs. This extended 3′ UTR
contains multiple polyadenylation sites, with alternate use of
polyadenylation sites to produce a shortened 3′ UTR serving as
a mechanism by which the gene may avoid miRNA regulation,
including at least four sites for the miRNA let-7 (3). We found
a statistically significant correlation between low expression of
let-7b and increased expression of IGF2BP1 via RT-qPCR in
eight OS tumors (Figure 2). Identification of potential miRNA
regulators of this protein will facilitate additional functional
studies. In addition to IGF2BP1, let-7b targets a variety of
oncogenes and has been proposed to act as a tumor suppressor
in human osteosarcoma by targeting insulin-like growth factor-
1 receptor (76). Despite challenges with effective delivery to
target tissues, restoration of tumor-suppressor miRNAs remains
a rapidly growing area of research. Studies such as ours may
identify new therapeutic miRNAs.

We did not identify any potential interactions between our
most dysregulated miRNAs and HES1 nor was Notch signaling
identified in our pathway analyses involving miRNAs aberrantly
expressed between our DFI cohort tumors. This is consistent with
our findings and those of Poos et al. (26) that Notch activation
likely contributes to the proliferative response but does not
appear to drive metastasis. To further explore the role of miRNAs
in Notch activation in OS, we utilizedmiRNA expression changes
identified by comparing tumors to normal bone. We found
experimental evidence for interactions between nearly half of the
dysregulated miRNAs and one or more Notch/HES1 associated.
A handful of these pathways are targetable via small molecule
inhibitors including Notch, Hedgehog, HER2/ERRB and PARP.
Several of these have been or are under investigation for potential
use in the treatment of OS (77, 78). Expression studies like ours
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might identify biomarkers to help stratify patients for optimal
therapeutic benefit or monitor therapeutic response.

The last aim of this study was to identify expression
changes of presumed tumor-associated miRNAs in the serum
associated with patient outcome. Reliable, repeatable RT-qPCR
results for measurement of serum are challenging due to
typically low miRNA yield, which inhibits efforts to identify
and control for poor-quality samples. This has contributed
to inconsistencies between circulating biomarker studies and
remains a considerable roadblock to the clinical utility and
reliability of such screens (79).

Despite these challenges, we set out to identify a data analysis
pipeline utilizing the same relatively affordable SYBR green RT-
qPCR platform to measure the relative expression of serum
miRNAs. We were able to ultimately identify a two-miRNA
signature which successfully stratified patients into distinct
outcome groups. The most significantly altered miRNA in this
signature was miR-30c, which shows a progressively decreased
expression from normal bone to tumors and from tumors from
dogs with good outcome to tumors from dogs with poor outcome
(Supplementary Tables 3–5). While promising, we acknowledge
that, for all of our miRNA signatures, predictive capability in an
independent tumor set remains to be established.

CONCLUSIONS

In conclusion, we successfully identified miRNA expression
changes associated with patient outcome in both OS tumor
and patient serum samples. miRNA–gene interactions of the
disrupted miRNAs in tumors with genes identified as aberrantly
expressed by previous studies (2) can be used to identify
targetable pathways disrupted in OS. These studies support the
value of miRNA expression studies in biomarker/target discovery
efforts for OS.
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Osteosarcoma (OSA) represents the most common primary bone tumor in dogs and

is characterized by a highly aggressive behavior. Cell lines represent one of the most

suitable and reproducible pre-clinical models, and therefore the knowledge of their

molecular landscape is mandatory to investigate oncogenic mechanisms and drug

response. The present study aims at determining variants, putative driver genes, and

gene expression aberrations by integrating whole-exome and RNA sequencing. For this

purpose, eight canine OSA cell lines and one matched pair of primary tumor and normal

tissue were analyzed. Overall, cell lines revealed a mean tumor mutational burden of

9.6 mutations/Mb (range 3.9–16.8). Several known oncogenes and tumor suppressor

genes, such as ALK, MYC, and MET, were prioritized as having a likely role in canine

OSA. Mutations in eight genes, previously described as human OSA drivers and including

TP53, PTCH1,MED12, and PI3KCA, were retrieved in our cell lines. When variants were

cross-referenced with human OSA driver mutations, the E273K mutation of TP53 was

identified in the Wall cell line and tumor sample. The transcriptome profiling detected two

possible p53 inactivation mechanisms in the Wall cell line on the one hand, and in D17

and D22 on the other. Moreover, MET overexpression, potentially leading to MAPK/ERK

pathway activation, was observed in D17 and D22 cell lines. In conclusion, our data

provide themolecular characterization of a large number of canine OSA cell lines, allowing

future investigations on potential therapeutic targets and associated biomarkers. Notably,

theWall cell line represents a valuable model to empower prospective in vitro studies both

in human and in dogs, since the TP53 driver mutation was maintained during cell line

establishment and was widely reported as a mutation hotspot in several human cancers.

Keywords: dog, osteosarcoma, cell line, next generation sequencing, whole-exome sequencing, RNA sequencing

INTRODUCTION

Canine osteosarcoma (cOSA) represents the most common primary malignant bone tumor in dogs
(1, 2) and is characterized by a natural history of disease and molecular abnormalities similar
to human osteosarcoma (hOSA) (3, 4). cOSA is locally aggressive and highly metastatic (5), and
despite significant improvements of surgical and chemotherapeutic treatments, most dogs perish
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within a year from the diagnosis (6), indicating a need for
identification of specific tumor targets to develop novel treatment
strategies. Recently, two whole-exome sequencing (WES) studies
revealed that several pathways and driver genes, such as TP53,
RB1, DLG2, PTEN, MYC, and MET, were equally mutated
in both cOSA and its human counterpart (7, 8). Moreover,
such genes have been previously identified as key players in
cOSA pathogenesis (4, 9) and potential therapeutic targets
(10–12). Two further studies characterized the genomic profile
of several canine cancer cell lines, including cOSA cell lines,
and investigated their relevance in comparative oncology (13,
14). Notably, driver mutations in MAPK/ERK and PI3K/AKT
signaling pathways were identified in cOSA cell lines, and
an anti-proliferative target inhibition using trametinib showed
encouraging results, while alterations of the TP53 pathway were
detected in non-sensitive cell lines (13).

These data highlight the importance of canine cancer
cell lines as effective and reproducible pre-clinical models to
provide crucial insights on pathogenetic mechanisms and drug
response (14). Even though canine cancer cells have been used
in oncologic research over decades, their mutational profiles
were never investigated thoroughly (15–17). Consequently, a
deep mutational analysis of such in vitro models will allow
the identification of new targets and offer valuable tools in
translational medicine (18, 19), considering that integration
of genomic data with drug screening is fundamental for the
development and pre-clinical evaluation of novel treatments that
would equally benefit canine and human patients.

The purpose of the current study was to describe the
mutational landscape and determine variants and putative driver
genes as well as gene expression aberrations by an integrated
analysis of whole-exome and RNA sequencing of eight cOSA cell
lines and one matched pair of primary OSA and normal tissue.

MATERIALS AND METHODS

Sample Collection and Cell Culture
Eight primary canine OSA cell lines and one matched pair of
FFPE primary OSA and normal tissue were analyzed.

Penny, Wall, Desmond, Sky, Lord, and Pedro cell lines were
previously established and validated by Maniscalco et al., while
D17 (ATCC R© CCL-183TM) and D22 (ATCC R© CRL-6250TM)
were obtained from American Type Culture Collection.

These were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; D17 and D22) and Iscove’s standard medium,
supplemented with 10% fetal bovine serum (FBS), 1% glutamine,
100µg/mL penicillin, and 100µg/mL streptomycin. Cells were
cultured at 37◦C in a humidified atmosphere of 5% CO2. The
FFPE samples were obtained from the same OSA from which the
Wall cell line was established.

DNA and RNA Isolation From Cell Lines
and FFPE Tissues
Genomic DNA (gDNA) was isolated and purified from cell lines
and the FFPE samples (Supplementary Table 1) using DNeasy
Blood and Tissue kit (Qiagen, Hilden, Germany) and GeneRead
DNA FFPE kit (Qiagen, Hilden, Germany), respectively. gDNA

concentration was determined using the Qubit 2.0 Fluorometer
(Thermo Fischer, Foster City, CA, USA). Total RNA was
extracted from six cell lines (Penny, Wall, Desmond, Sky,
D17, and D22; Supplementary Table 1) using QIAzol Lysis
reagent (Qiagen, Hilden, Germany) and purified. The total RNA
concentration was determined using the NanoDrop ND-1000
UV-Vis spectrophotometer, and its integrity was measured by the
Bioanalyzer 2100 instrument (Agilent Technologies, Santa Clara,
CA, USA). RNA samples with an RNA integrity number (RIN)
≥8 were considered for the RNA-seq library preparation.

The isolated DNA and RNA were stored at −20 and −80◦C,
respectively, until further use.

WES and RNA-Seq Library Preparation and
Sequencing
High-quality whole-genome libraries from 10 samples (eight
cells lines and two FFPE samples) were prepared using the
KAPA HyperPlus Library Preparation Kit (Roche Sequencing
and Life Science,Wilmington, MA). Exome capture was executed
using Roche’s SeqCap EZ Share Prime Developer Kit (Roche
Sequencing and Life Science, Wilmington, MA) for non-human
genomes following the SeqCap EZ HyperCap Workflow User’s
Guide. Probes for the exome capture were designed on the target
enrichment design of 150 megabases developed by Broeckx et al.
(20). The developer’s reagent (06684335001) was used in place
of COT-1, and index-specific hybridization enhancing oligos
were also used. The final concentration and size distribution
were tested with the Bioanalyzer 2100 workstation (Agilent
Technologies, Santa Clara, CA, USA). The libraries (fragments
ranging from 300 to 400 bp) were then sequenced on an
Illumina NovaSeq 6000 platform in a paired-end (150 PE)
mode. The chosen target sequencing coverage was 200×. Non-
normalized libraries for RNA sequencing experiments were
prepared using NEBNext R© UltraTM II Directional RNA Library
Prep (New England Biolabs) with Sample Purification Beads and
NEBNext R© Poly(A) mRNA Magnetic Isolation Module (New
England Biolabs).

A single-end sequencing (75 SE) was carried out on a NextSeq
500 platform (Illumina Inc., San Diego, CA, USA).

WES Data Analysis
Quality control prior to alignment was performed on output
from Illumina software and was processed by FastQC
v.0.11.9 (https://www.bioinformatics.babraham.ac.uk/projects/
download.html) software. Trimmomatic was used to select
high-quality reads and remove adapter sequences.

Filtered reads were mapped to the canine reference genome
(CanFam3.1; Broad Institute, release 99) using BWA software
(21). To verify coverage in the exonic regions, the resulting BAM
files were manually inspected using Integrative Genomic Viewer
(IGV) (22). Pre-processing for variant calling was performed
following the Genome Analysis Toolkit (GATK) v.4.1 Best
Practices (https://gatk.broadinstitute.org/hc/en-us/articles/
360035894731-Somatic-short-variant-discovery-SNVs-Indels).
Briefly, single-nucleotide variants (SNVs) and small insertion
and deletions (indels) were identified with the GATK Mutect2
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FIGURE 1 | Post-processing of somatic variants: outline of selection criteria, categorization, and analyses.

tool (23) and filtered for standard parameters of a min-alternate-
count of 2, a min-alternate-frequency of 0.05, and a read depth
> 10. To reduce germline artifacts, a panel of Normals (PON)
was built using the GATK CreateSomaticPanelOfNormals
tool by downloading public available WES data from 18 non-
tumor-bearing and unrelated dogs (normal stroma and blood
samples) from the NCBI SRA database (Supplementary Data 1)
(13, 24). An additional filter was added to exclude known
single-nucleotide polymorphisms as annotated in the dbSNP
146 using the Dog Genome SNP Database (http://dogsd.big.
ac.cn/) (25). Distribution and functional consequences of
variants were assessed using ANNOVAR. Additionally, missense
mutations were categorized according to their pathogenicity
using FidoSNP (26).

The detailed WES workflow applied to both canine
OSA cell lines and the FPPE samples is summarized in
Supplementary Figure 1.

RNA-Seq Data Analysis
All RNA-seq analyses were performed using conventional
RNA-seq analysis tools (27). Detailed information is provided
in Supplementary Figure 2. Briefly, post-alignment quality
parameters of RNA-seq (insert length, gene-mapping
bias, RNA junctions) were evaluated using RSeQC (28)
in standard mode. Next, the counts of aligned reads per
gene were obtained using htseq-count from the HTSeq
(29) software package in single-stranded mode. Only reads
that were uniquely aligned were retained. Finally, count
filtering and normalization were performed using EdgeR
R package (30).

Recurrent Variants and Putative Driver
Mutations Identification
Annotated variants were subjected to three filtering levels with
increasing stringency and designated as follows (Figure 1 and
Supplementary Data 2).

Level 1: variants included the totality of exonic-only SNV
and indels retrieved from the variant call described above. These
were further filtered for number of reads (min. 2), alternate
allele frequency (min. 0.05), and each variant’s depth of coverage
(min. 10). The resulting variants were analyzed to describe the
mutational profile of cOSA cell lines.

Level 2: these were non-synonymous exonic variants selected
from Level 1 to identify recurrently mutated genes having
a likely role in cOSA pathogenesis. Furthermore, variants
encoding for genes commonly mutated in human and canine
OSA were also prioritized (Supplementary Data 3) (7). Level
3: these were selected from Level 2 protein-coding variants
of genes listed in COSMIC Cancer Gene Census, (version

92, https://cancer.sanger.ac.uk/census) (31). 5
′

UTR and splice
site variants COSMIC-listed genes were also included in the
analysis due to their potential impact on protein expression
and function. These variants were also manually cross-checked
against known oncogenic variants in hOSA available on the
IntOgen platform (https://www.intogen.org/search?cancer=OS)
(32) to identify putative driver mutations.

Validation of TP53 Mutation
E273K mutation of TP53 identified in the Wall cell line and
FFPE tumor sample was validated by Sanger dideoxy sequencing
on Wall samples gDNA and Penny cell line (negative control).
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FIGURE 2 | Mutational landscape of canine osteosarcoma cell lines, Level 1

variants. (A) Tumor mutational burden. (B) Distribution of mutation types.

(C) Mutational spectrum of single-nucleotide variants.

Briefly, two primers (sense 3
′

-ATGAGGGTGGCTAGGAGTCA-

5
′

) and (antisense 5
′

-CAGTGCTGGGAAAGAGAGGA-3
′

)
spanning the mutated region were designed by PRIMER3
Express software, and PCR on gDNA was performed using
HotStar Taq (Qiagen) at 58◦C (annealing temperature) for 35
cycles. After evaluation of agarose gel, amplification products
were purified by QIAquick PCR Purification Kit (Qiagen).

RESULTS

The Mutational Profile of Primary Canine
Osteosarcoma Cell Lines
DNA extracted from eight canine OSA cell lines underwentWES,
and an average of 158 million reads per sample (range 143–164)
was obtained.

The mean depth of reads mapping to the canine reference
genome (CanFam3.1) was 187.7 (range 128–219), with over 99%
of the targeted exome uniquely aligned. The optimal coverage
was achieved for six out of eight cell lines. For each cell line,
all reads passed the quality control (Phred quality score) ≥ 30.
The FFPE samples (tumor andmatched normal) achieved amean
depth of 54.71.

The median tumor mutational burden of all Level 1 somatic
variants was 9.6 mutations/Mb (range 3.9–16.9); in the Wall
FFPE sample, the mutational burden reached 17.7 mutations/Mb
(Figure 2A). On average, 19.6% (range 13.3–26%) and 17.1%
of Level 1 variants of canine OSA cell line and Wall FFPE
sample, respectively, were annotated as synonymous and were
consequently excluded from downstream analyses.

In all our cell lines, missense mutations were the most
frequently represented somatic codingmutation type, accounting
for an average of 38.7% across all exonic variants. Frameshift
insertion and deletions were 15.8 and 12.5% of the variants,
respectively (Figure 2B). In Wall FFPE sample non-synonymous
variants, frameshift and non-frameshift deletions were the most
represented mutation types (36.3, 20.5, and 10.3%, respectively).

The most common base change identified in all samples was
C > T transition (Figure 2C). The analysis of the WES data
using Mutect2 revealed a total of 11,554 exonic variants (Level
1); 7,981 of these were identified as non-synonymous (Level 2)
and encoded for 4,045 genes (Figure 3). The number of genes in
each sample ranged from 318 (Lord) to 1,345 (D17) and reached
the maximum of 1,533 genes in theWall FFPE sample (Figure 4).

Using the FidoSNP pathogenicity prediction tool, 50.5%
(1,929/3,819 SNVs) of all missense point mutations were
categorized as deleterious.

Canine Osteosarcoma Cell Lines Show
Mutations in Several Known Oncogenes
and Tumor Suppressor Genes
As mentioned above, 4,045 genes with 7,981 protein-modifying
variants were identified (Supplementary Data 2). Overall, 483
genes were recurrently mutated in at least three cell lines.
Taking into account the recurrent variants across all cell
lines, a total of 234 variants were retrieved in three or more
samples, and 51.4% of all SNVs (54/105) were categorized as
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FIGURE 3 | Outline of mutated genes and variants distributed across Level 1, 2, and 3 variants.

pathogenic. When recurrent variants were collapsed to genes,
153 recurrently mutated genes were identified (Figure 3). In
addition, genes were filtered using the list of osteosarcoma-
associated genes retrieved from literature. Finally, a total of
27 genes likely implicated in OSA pathogenesis were identified
across all our cell lines. Among them, PDGFRB, PTCH1,
and WRN were retrieved in at least three cell lines, whereas
oncogenes and tumor suppressor genes, such as TP53, ALK,
MYC, and MET, were retrieved in only one cell line each
(Figure 5).

The number of genes ranged from two (Desmond
and Lord) to 10 genes (Sky) (Supplementary Figure 3).
Overall, these cancer genes were encoded by 51 variants,
and 53.3% of all SNVs (16/30) were categorized
as pathogenic.

Comparing these 27 genes to the top 20 most frequently
mutated genes in human cancers (Cancer Genome Atlas; https://
portal.gdc.cancer.gov/), four overlapping genes were identified,
namely, PIK3CA, KRAS, APC, and NF1, which ranked 2nd,
6th, 10th, and 13th, respectively. At last, four genes were also
identified in the Wall FFPE sample but did not overlap those of
the corresponding cell line (Supplementary Table 2).

Canine Osteosarcoma Cell Lines Share
Several Driver Genes With Human
Osteosarcoma
COSMIC Cancer Gene Census was used to identify candidate
driver variants (Level 3) in known cancer-causing genes
in humans.
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FIGURE 4 | Distribution of the mutated genes across the cell lines.

Level 3 included 438 variants coding for 235
genes, regardless of their incidence across the cell line
panel (Figure 3 and Supplementary Data 2). A total
of 19 genes were uniquely encoded by 5

′

UTR or
splice variants.

Overall, 190 genes were indicated as having a relevant
and documented activity that promotes oncogenic
transformation. In particular, 28 were designated as
fusion genes, 74 as tumor suppressors, and 63 as
oncogenes, and 25 functioned as both. The distribution of
putative driver mutations across all cell lines is depicted
in Figure 6.

About 88% of the SNVs encoding for these genes were
categorized as pathogenic.

When compared to the top 20 cancer driver genes involved
in human OSA (COSMIC Cancer Browser), eight genes,
encoded by 21 variants, were retrieved in Level 3 genes
(Table 1). Among these, well-known oncogenes and tumor
suppressor genes, such as TP53, PTCH1, MED12, and PI3KCA,
were identified.

Canine Osteosarcoma TP53 Putative
Driver Mutation Matches a known
Human-Equivalent Mutation Hotspot
All putative driver variants were cross-referenced with human
OSA driver mutations available on IntOgen. Only the Wall cell
line and FFPE tumor sample harbored a putative drivermutation,
namely, the TP53E273K mutation (c.818C>T) corresponding to
the human TP53E285K mutation hotspot.

This putative driver mutation was further validated in
homozygosis in the Wall cell line and tumor sample by Sanger
sequencing (Figure 7).

FIGURE 5 | Oncoplot of genes likely involved in canine osteosarcoma

pathogenesis retrieved in Level 2 analysis, including the mutational incidence

and the mutational type across the cell line panel.

The Oncogenic Potential of TP53 and MET
Gene Expression Aberrations
RNA sequencing generated over 10 million reads per sample.
Quality control and trimming procedures retained the vast
majority of the sequences, and unique alignment to the canine
reference genome was successful for 86% of the cleaned reads
(Supplementary Table 3).

The normalized gene expression of the osteosarcoma-
associated genes described above was then profiled within the
same gene across all samples.

In particular, TP53 gene expression was increased in the Wall
cell line, which harbored a hotspot mutation, as well as in D17
and D22, which retained a wild-type gene status. Interestingly,
D17 and D22 showed a 9-fold and 5.5-fold increase of MDM2
andMDM4 transcript levels, respectively, compared to the other
cell lines. Conversely, the MDM2 transcript level was decreased
by 2 to 20 times in the Wall cell line compared to the rest of the
cell lines.

Transcriptional upregulation ofMET by 19-fold was observed
in the D17 cell line, which harbored a frameshift insertion on
this gene, and to the same extent in D22 which retained a wild-
type gene status. Notably, genes involved in the downstream
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MAPK/ERK pathway, such as MAPK1, MEK, and MYC, showed
increased transcript levels, although no mutations were detected
in WES analysis.

FIGURE 6 | Distribution of putative driver variants and encoded genes across

canine osteosarcoma cell lines.

Conversely, downstream signaling components of
mutated cancer-associated genes, such as PTCH1, MED12,
PDGFRB, and PIK3CA, did not show any transcript
level change.

DISCUSSION

Cancer cell lines are considered valuable models in basic cancer
research, drug discovery, and translational medicine (14, 33, 34).

The recent characterization of a large panel of human cancer
cell lines with omics technologies has empowered data-driven
precision medicine (34, 35). Despite the substantial number of
studies, an analogous dataset modeling canine cancer cell lines is
currently unavailable (14).

In the present study, we integrated data from whole-exome
and RNA sequencing of eight cOSA cell lines to obtain genomic
and molecular data recapitulating in vivo cOSA pathogenesis
and identifying suitable targets for drug discovery. To date,
this dataset represents one of the largest explored for a single
tumor in dogs.

Specifically, two commercial and six primary cOSA cell lines
established and validated in our laboratory were analyzed. The
assorted cell lines were previously used in several studies to
investigate cOSA pathogenetic mechanisms and response to
therapies (11, 12, 14, 36–38). So far, only the D17 cell line
has been characterized at the genomic level by Das et al.
in 2019 (13).

About exome sequencing, variants were analyzed using three
levels of increased stringency: first, describing the mutational

TABLE 1 | List of putative driver genes and variants across all the cell lines.

Gene Mutation Cell lines FFPE

Penny Wall Sky Desmond Pedro D17 D22 Lord Wall

PTCH1 c.17A>G - - - - - - - X -

c.3850C>T X - - - - - - - -

c.4014insT - X - - - - - - X

c.4023delA - X - - - - - - X

c.4200_4201insAGTCCCCG - X - X - - - - X

c.4203_4210del - X - X - - - - X

LRP1B c.12056A>T - - - X - - - - -

c.3112A>C - - - - - - X - -

c.3105_3106insATTGGGCCTGTGATGGTGA - - - - - - X - -

ARID1A c.6276A>T - X - - - - - - X

c.4863_4862insCCCCCCA - - X - - - - - -

c.4858_4852del - - X - - - - - -

c.1877G>A - - - - X - - - -

NFATC2 c.510G>A - - - - X - - - -

TET2 c.1349G>C - - - - - X - - -

c.2817_2818insCTGTGACTTCCTCCCTGGTCAGACA - - - - - X - - -

c.2894_2897del - - - - X - - - -

PIK3CA c.2217G>T - - - - - X X - -

TP53 c.818C>T - X - - - - - - X

MED12 c.2089_2090insATGGACTGCCCTTCCCCTCAC - - - X - - - - -

c.2581G>A - - - - - X X - -
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FIGURE 7 | Sanger sequencing of TP53E273K mutation in the Wall cell line and

primary FFPE tumor, compared to wild-type TP53 Penny cell line and the

reference canine TP53 sequence.

profile of each cell line; second, identifying recurrently mutated
genes; and third, unraveling putative driver genes having a likely
role in cOSA pathogenesis.

Overall, the mutational burden in our cOSA cell lines ranged
between 3.9 and 16.9 mutations/Mb but was lower than the one
described by Das et al. (13). However, the diversity of the cell lines
and the differences in library preparation kits, exome capture
designs, and downstream stringency filters may have caused
this discrepancy.

Consistent with previous reports in cOSA cell lines and
hOSA, the mutational type distribution showed a prevalence
of missense mutations, and C>T transitions dominated this
mutational spectrum (13, 39).

Across genes identified in Level 2 analysis, the two tyrosine
kinase receptors PDGFRB and MET were retrieved. Both genes
are known to play an important role in the development
and progression of many canine cancers and were thoroughly
investigated in cOSA as well (4, 11, 36, 40).

In five cell lines, PDGFRB harbored both frameshift
and missense mutations, but only Desmond showed an
increased gene transcript level. Nevertheless, no overexpression
of PDGFRB downstream signaling molecules was detected,
suggesting that these mutations did not affect gene transcription
inDesmond. Gardner et al. reported previously that PDGFRB loci
are affected by copy number gains rather than point mutations;
however, no correlation with gene expression was found (7). The
MET oncogene was highly expressed in D17 and D22 cell lines
but resulted to be mutated only in the D17 cell line. However,
the frameshift insertion mutation was unlikely associated with
overexpression, since several stop codons were retrieved in the
transcript analysis. Nevertheless, MET is regulated by several
mechanisms, including amplifications and epigenetic aberrations
(41). In D17 and D22 cell lines, overexpression of MET
downstream genes, including MAPK1 and MEK, was observed,
suggesting a possible activation of the MAPK/ERK pathway
(36, 42, 43).

The MYC gene was mutated in the Penny cell line only.
However, increased transcript levels were identified in D17 and
D22 cell lines and likely related to the aforementioned MET
signaling. In hOSA cell lines,MYC overexpression promotes cell
invasion via MAPK/ERK signaling and is correlated with a poor
prognosis in vivo (44, 45). Such data are currently unavailable
in cOSA, but aberrant activations of MYC and MAPK pathway
genes have been reported (7, 13).

Mutations of TP53 in Wall and WRN in the Sky, D17, and
D22 cell lines were also retrieved. In particular, the putative
driver TP53E273K mutation was identified in the Wall cell line
and tumor sample and further validated by Sanger sequencing.
As most of the TP53 mutations, TP53E273K occurred in the
mutational hotspot corresponding to the DNA-binding domain
(46) and matched the human pathogenic hotspot mutation
E285K (7). Both canine TP53E273K and its human equivalent
were previously reported in cOSA and hOSA (7). According
to the IARC TP53 database (47), this mutant allele is listed
among the top 15 most common mutations in human cancers
predicted to disrupt protein structure and function (48). In our
experiment, the presence of this mutation in both Wall tumor
tissue and the derived cell line demonstrates a genetic fidelity
with the primary tumor that remained stable during cell line
establishment (34, 49).

Looking at gene expression, the mutant TP53 transcript
levels in Wall were twice as high as in Penny, Sky, and
Desmond cell lines. This is in accordance with the literature
where TP53 missense mutations are reported to moderately
affect the transcription but produce a full-length protein with a
scarce ability to bind specific DNA sequence motifs and activate
downstream target genes (48, 50). Concurrently, MDM2, a well-
known TP53 transcriptional target, showed a lower expression in
Wall compared with the other wild-type TP53 cell lines. This data
suggests that TP53 mutation in the Wall cell line might cause a
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loss of function rather than an altered mRNA expression (51).
Overall, this indicates that TP53E273K is a likely pathogenic driver
mutation providing a spontaneously inactivated TP53 in vitro
model for specific biological and reactivation assays (52).

Remarkably, D17 and D22 cell lines showed an increase of the
TP53 transcript compared to Wall, while retaining a wild-type
gene status. In association, MDM2 and MDM4 transcript levels
were increased, suggesting that TP53 function might be impaired
by their oncogenic and deregulated inhibiting activity in these cell
lines (53). In accordance with our findings, TP53 overexpression
in D17 was also detected in a recent report by Modesto et al. (38).

Besides TP53, putative driver genes such as PTCH1, MED12,
and PIK3CA were identified in Level 3 analysis. PTCH1 was
mutated in four out of eight cell lines. Physiologically, Hh ligand
binding to the Ptch1 receptor relieves its inhibitory effect on the
canonical Hedgehog pathway, whose activation plays a role in
both hOSA and cOSA (10, 54). Despite a low PTCH1 transcript
level in these cell lines, no constitutive expression of Hedgehog
pathway target genes was detected.

Similarly, MED12 and PIK3CA, which are known to
contribute to hOSA initiation and progression via the Wnt
and PI3K/Akt pathways (55, 56), did not show gene expression
aberrations in the mutated cell lines, suggesting a biological
irrelevant role in our cell lines.

Contrary to previous reports in dogs, no somatic mutations
neither gene expression aberrations affecting CDKN2A and
SETD2 were identified (7, 8). Regarding CDKN2A, it is
generally affected by germline mutations and copy number
variations, which were not investigated here (7, 8, 57),
whereas SETD2 mutations were only recently identified in
hOSA and cOSA, and their biological role remains to
be elucidated (7, 8, 58).

In conclusion, these data provide valuable insights into
the molecular mechanisms of a large number of cOSA
cell lines, allowing future investigations of their functional
implications and drug response. Since similarities were
identified with hOSA, these cell lines may also represent
excellent translational models. In future, the addition of
new primary cOSA cell lines and the integration of new
sequencing approaches, such as methylation analysis and
single-cell RNA-seq, are needed to provide an accurate
characterization of these models and explore the underlying
oncogenic mechanisms.
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Osteosarcoma is the most common primary bone tumor in both humans and dogs.

It is a highly metastatic cancer and therapy has not improved significantly since the

inclusion of adjuvant chemotherapy into disease treatment strategies. Osteosarcoma

is an immunogenic tumor, and thus development of immunotherapies for its treatment,

especially treatment of microscopic pulmonary metastases might improve outcomes.

NK cells are lymphocytes of the innate immune system and can recognize a variety

of stressed cells, including cancer cells, in the absence of major histocompatibility

complex (MHC)-restricted receptor ligand interactions. NK cells have a role in controlling

tumor progression and metastasis and are important mediators of different therapeutic

interventions. The core hypothesis of adoptive natural killer (NK) cell therapy is there

exists a natural defect in innate immunity (a combination of cancer-induced reduction in

NK cell numbers and immunosuppressive mechanisms resulting in suppressed function)

that can be restored by adoptive transfer of NK cells. Here, we review the rationale for

adoptive NK cell immunotherapy, NK cell biology, TGFβ and the immunosuppressive

microenvironment in osteosarcoma, manufacturing of ex vivo expanded NK cells for the

dog and provide perspective on the present and future clinical applications of adoptive

NK cell immunotherapy in spontaneous osteosarcoma and other cancers in the dog.

Keywords: canine, immunotherapy, osteosarcoma, NK cell, TGFβ

INTRODUCTION

Osteosarcoma is the most common primary bone tumor in both humans and dogs, with the
disease incidence being as much as 30–50 times higher in the latter (1). The similarities of
the disease in humans and dogs are well-described and include commonalities in underlying
molecular biology, including gene expression and genetic mutations, histopathology, clinical
presentation, disease progression, and response to therapy (2). Spontaneous osteosarcoma in the
dog has been used extensively as a preclinical large animal model to evaluate new therapies for
osteosarcoma in humans, including limb-sparing procedures (3–5), chemotherapy delivery (6, 7),
targeted therapeutics (8), and immunotherapeutics, including therapeutic vaccines and others (9–
11). New immunotherapeutic approaches to cancer treatment have emerged and are now making
a significant clinical impact for large numbers of cancer patients (12, 13). The development of
new immunotherapeutics can be greatly facilitated by the use of well-characterized and validated
animal models and spontaneously occurring osteosarcoma in pet dogs is exceptionally well-suited
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for this purpose. In addition to the similarities described
above, other features of the disease in dogs are particularly
relevant and important for evaluating immunotherapeutic
interventions. Notably, cancers in dogs occur in a relatively
outbred population that generally shares similar environmental
exposures with humans and the spontaneously occurring tumors
are heterogeneous, existing in a complex microenvironment and
in a host with an intact immune system; all critical features that
are poorly addressed in most rodent models (14).

RATIONALE FOR ADOPTIVE NK CELL
IMMUNOTHERAPY

The core hypothesis of adoptive natural killer (NK) cell
immunotherapy is that there exists a natural defect in innate
immunity (a combination of cancer-induced reduction in NK
cell numbers and immunosuppressive mechanisms resulting in
suppressed function) that can be restored by adoptive transfer of
NK cells (15). The immunosuppressive tumormicroenvironment
suppresses NK cell function (16), and although many drugs
and radiation can sensitize tumors for recognition by NK
cells, chemotherapy, anesthesia, and radiation therapies can
also adversely affect NK cell numbers and function (17–21).
While much effort has gone into T-cell based approaches for
immunotherapy, including chimeric antigen receptor (CAR) T-
cells and immune checkpoint inhibition, these approaches can
have significant problems that may impede their application such
as graft-vs. host disease (GVHD), cytokine release syndrome
(CRS), immune effector cell-associated neurotoxicity syndrome
(ICANS), or severe on-target off-tissue toxicities (22, 23).
Adoptive NK cell therapy is not associated with GVHD (24),
thus making it potentially safer than T-cell based therapies and
because allogeneic transfer is tolerated, NK cell products can
be manufactured and stored for later use in patients as needed,
rather than manufacturing “on-demand” for patient-specific use.

NK CELL BIOLOGY

NK cells are lymphocytes of the innate immune system. NK
cells can recognize a variety of stressed cells in the absence
of major histocompatibility complex (MHC)-restricted receptor
ligand interactions. NK cells are non-T, non-B lymphocytes,
and are known for their cytotoxicity and cytokine effector
functions. Importantly, they can kill target cells without
prior antigen sensitization. Also, NK cells can cross-talk with
dendritic cells in different ways, thus participating in the
shaping of the subsequent immune response. NK cells have
a role in controlling tumor progression and metastasis and
are important mediators of different therapeutic interventions,
including cytokines, antibodies, immunomodulatory drugs, and
stem cell transplantation.

NK Cell Receptors and Function
The number of NK cells as a percentage of peripheral
lymphocytes varies widely in humans (1–32.6%, median 7.6%)
and in dogs (2.5–15%) (25–29). In humans, NK cells are

identified by the lack of CD3 and the presence of CD56 and/or
CD16, and make up 85% of the large granular lymphocyte
(LGL) population (30). The phenotypic characteristics of NK
cells in the dog are not as clearly defined; however, distinct
phenotypic NK cell subsets have been described (31). NK cells
express many different cell surface receptors that can be grouped
as activating, inhibitory, adhesion, cytokine, or chemotactic
receptors. Although many of the cell surface molecules involved
in the regulation of NK cell function are found in both humans
and mice, only a small subset has been validated in the dog.
Canine NK cells do express at the mRNA level several genes
classically associated with NK cells, such as NKp30, NKp44,
NKp46, NKG2D, CD16, DNAM-1, perforin, and granzyme
B (25).

The regulation of NK cell function relies on a complex
interplay of activating and inhibitory signals. Unlike T-cells,
whose activation is highly restricted to an antigenic peptide
presented in the groove of MHC proteins, NK cell activation
is not antigen specific. NK cell activation and tolerance are
accomplished through a large variety of activating receptors for
recognition of danger, balanced with an equally large number of
inhibitory receptors that identify self. The balance between these
signals determines whether NK cells will activate their effector
function (e.g., FasL/TRAIL-mediated killing, perforin/granzyme
release, or cytokine production). In humans, there are several
families of activating receptors, including CD126 (FcRγIIIa),
natural cytotoxicity receptors (NCRs), NK Group 2 (NKG2)
lectin-like receptors, DNAM-1, and 2B4; however, most of these
have not been well-characterized in the dog (32). Activating
receptors generally recognize proteins that are upregulated by
cell stress or are of non-self-origin, whereas inhibitory receptors
primarily bind MHC for self-recognition (33). Inhibitory
receptors provide control for NK cell activity against healthy
tissue. The primary inhibitory receptors in human NK cells are
killer-cell immunoglobulin-like receptors (KIRs) and NKG2A,
both of which bind to HLA class I molecules, preventing NK
cell-mediated lysis of cells with normal HLA expression (33).
MHC class-I deficient targets have heightened sensitivity to
NK cell killing. This biology is reflected and summarized by
the “missing self ” hypothesis, which states that the presence
of MHC class I, ubiquitously expressed by healthy cells,
provides NK cells with a “self ” signal that is recognized by
NK cell inhibitory receptors and thus prevents NK cell self-
reactivity (34).

Canine NK Cells
While human NK cells are distinguished by the absence of
surface expression of CD3 and the presence of variable levels
of expression of CD56 and CD16, depending on differentiation
state (35), the phenotypic characterization of canine NK
cells is still evolving. Morphologically, canine NK cells are
medium- to large-sized lymphocytes containing electron-
dense intracytoplasmic granules that contain granzyme B
and perforin and lack expression of CD4 and CD20, T-cell
and B-cell markers, respectively (36). However, CD8 may
be expressed by a subset of these cells (37, 38). Canine NK
cell populations have also been defined based on density of
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CD5 surface marker expression, with CD5dim representing
a NK cell population (28), especially in the setting of IL-2
stimulation. Further, under ex vivo expansion conditions with
cytokine stimulation, the majority of cytotoxic large granular
lymphocytes expressed a CD5dimCD3+CD8+TCRαβ−TCRγδ
−CD4−CD21−CD11c+/−CD11d+/−CD44+ phenotype that
highly upregulated NKp46, and expressed traditional T-cell
lineage markers, but lacked T-cell receptors (39). NCR1/NKp46,
a NK-specific activating molecule, is considered a “pan-species”
NK cell marker (40). One study concluded that canine NK
cells are comprised of both CD3−GranzymeB+NCR1+ and
CD3−GranzymeB+NCR1− populations cells, with the presence
of NCR1/NKp46 positive cells representing an activated
state (27, 31). Similarly, a canine-specific antibody to NKp46
identifies CD3−NKp46+ and CD3−NKp46− NK subsets that
vary in cytotoxicity, with CD3−NKp46− population being less
cytotoxic, but could be induced to express NKp46 (25). Another
putative marker for canine NK cells is the C-type lectin-like
CD94 (KLRD-1). Experiments with a canine-specific anti-CD94
identifies a candidate NK cell population representing ∼7.7%
of PBMCs and subsets within the CD5dim population (26).
It should be noted that the KIR family of surface receptors
described above for humans has not been identified in dogs.
One gene of a similar paralogous family found in mice,
the Ly49 family, has been identified in the canine genome
(39, 41).

MECHANISMS OF NK CELL KILLING

NK cells exert direct and indirect antitumor activity and kill
target tumor cells via release of granules containing perforin
and granzyme, secretion of cytokines such as IFNγ and other
effector molecules, ligation and activation of death receptors, and
antibody-dependent cellular toxicity (ADCC) mediated through
CD16 when combined with anti-tumor antibodies. Further, the
release of pro-inflammatory cytokines enhances the recruitment
and maturation of adaptive immune responses (42, 43). The
mechanism by which NK cells induce apoptosis in osteosarcoma
cells may depend on both the activation state of the NK cells
and the death receptor and apoptotic pathways present and
functional in the target cell (33). For example, in vitro, direct
NK cell lysis of osteosarcoma cells is mediated via direct release
of granzyme B (44); however, granule-independent mechanisms
may be more relevant in vivo, as losing Fas and TRAIL may
be simpler mechanisms of escape than redundant downstream
death pathways (45). Degranulation of NK cells is mediated
by the balance of activating and inhibitory receptors, which
in turn is influenced by the expression of ligands on the
tumor cell. This suggests that NK cells isolated, expanded, and
activated using different techniques may differ as to which
activating receptors are highly expressed and important for
recognizing a particular tumor (33). For example, in one study
IL-15 stimulated NK cells targeted osteosarcoma predominantly
through DNAM1, whereas in another study IL-2 stimulated
NK cells targeted osteosarcoma predominantly through NKG2D
(44, 46).

OSTEOSARCOMA, THE
IMMUNOSUPPRESSIVE
MICROENVIRONMENT, AND TGFβ

Tumors, especially solid tumors, have evolved mechanisms to
actively suppress the immune system. These include induction
of inhibitory receptors on NK and T-cells, recruitment of
Tregs, myeloid derived suppressor cells and tumor associated
macrophage, and production of immunosuppressive cytokines
and other factors, including TGFβ (47). Overexpression of
TGFβ is a hallmark of many cancers, including osteosarcoma.
It inhibits NK cell activity through several mechanisms-
suppressing NKG2D and CD16 expression, decreasing perforin,
and inhibiting cytokine release (48–51). TGFβ is highly expressed
in cancer cell lines and notably, is more highly expressed
in osteosarcoma than most other solid tumor cell lines,
suggesting that TGFβ is an important contributor to the
immunosuppressive tumor microenvironment for osteosarcoma
in particular (52). TGFβ signaling is a crucial factor in cross-
talk between osteosarcoma cells and stroma cells. Secretion
of TGFβ by tumor cells or stroma cells can act in a
paracrine manner to regulate the tumor microenvironment,
promoting angiogenesis, bone remodeling and cell migration,
and by inhibiting immunosurveillance. TGFβ secretion and
TGFβ receptor expression has been demonstrated in canine
osteosarcoma cells (53). Our group has developed a NK
cell expansion technique that confers relative TGFβ-resistance
to NK cells in an attempt to improve their function in
the hostile immunosuppressive tumor microenvironment (54).
TGFβ resistance, or imprinting, is achieved by chronic exposure
of NK cells to IL-2 and TGFβ during the expansion process.
TGFβ-imprinted NK cells secrete more IFNγ and TNFα than
non-imprinted NK cells in the absence, or presence, of TGFβ.
Furthermore, TGFβ-imprinted NK cells have increased cellular
toxicity compared to non-imprinted cells and are more resistant
to TGFβ-mediated decreases in cellular cytotoxicity (54). Ex vivo
expanded canine NK cells cultured under similar conditions are
likewise conferred relative TGFβ-resistance (Lee, unpublished).

MANUFACTURING OF EX

VIVO-EXPANDED CANINE NK CELLS FOR
ADOPTIVE IMMUNOTHERAPY

NK cells for clinical use can be obtained through apheresis
with T-cell depletion, or by ex vivo expansion. In humans, NK
cells have been successfully expanded from peripheral blood,
cord blood, and pluripotent or embryonic stem cells (55).
Various methods for expanding purified NK cell populations
have been developed in people, using exposure to different
cytokines and co-culture with feeder cell lines (15, 55). Several
of these methods have been extrapolated to and modified
for canine studies (25, 56). In general, superior expansion
is achieved when recombinant canine cytokines are used vs.
recombinant human cytokines. In humans, the incorporation
of IL-21 cytokine exposure by co-culture with the K562 feeder
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FIGURE 1 | Adoptive natural killer (NK) cell therapy. PBMCs are isolated from blood buffy coats of healthy blood donor dogs by Ficoll separation. The separated cells

undergo CD5 cell depletion and are then co-cultured and recursively stimulated in the presence of IL-2 (±TGFβ) 3× over a 3-week period with irradiated K562 feeder

cells expressing membrane bound IL-21. Expanded NK cells can be used immediately, or cryopreserved for later use.

cell line, significantly enhanced NK cell expansion in IL-15/IL-2
expanded NK cells (55).

These techniques have been modified by our group to
manufacture ex vivo expanded canine NK cells with similarly
robust results (25). Clinical grade expanded NK cells are
produced using good manufacturing practices (GMP) principles
including closed-system processes and standardized release
testing and certification criteria. For our studies, the primary
donor NK cells used for expansion are obtained from the
buffy coats of routine whole blood donations from healthy
volunteer canine blood bank donors at our veterinary medical
center. Peripheral blood mononuclear cells (PBMCs) are isolated
by Ficoll separation from the buffy coats. The separated cells
undergo CD5 cell depletion and are then co-cultured and
recursively stimulated in the presence of IL-2 three times over a 3
week period with irradiated human K562 feeder cells expressing
the co-stimulatory ligand 4-1BBL and membrane bound IL-21
(Figure 1). The final ex vivo expanded NK cell product release
criteria include: ≥70% viability, CD3+ cells <5%, NKp46+ cells
as reported, endotoxin <5 EU/kg, and mycoplasma negative.
Expanded NK cells can be used immediately, or cryopreserved
for later use.

The influence and importance of the donor on the final NK

cell product is largely unexplored, although there does appear

to be individual donor variability in the robustness of expansion
and in vitro cytotoxicity of the final expanded NK cell product.

The influence of donor breed is also unknown. A preliminary
survey of NK cell numbers (NKp46+, CD3–) and expression
of DNAM-1 and TIM-3 receptors in the four most common
donor breeds (greyhound, pit bull, golden retriever, and Labrador
retriever) in our blood bank showed minor breed differences
with no one breed being a clearly superior donor source (Peck,
unpublished). Ultimately, for our initial clinical trials, we chose to
use greyhound donors exclusively, as they are the most common
breed in our blood donor population and by doing so, any
unknown breed associated variability in the final product could
be excluded.

CLINICAL APPLICATION OF ADOPTIVE NK
CELL IMMUNOTHERAPY IN CANINE
OSTEOSARCOMA

As described above, spontaneous osteosarcoma in pet dogs
provides an ideal large animal translational model for
studying new immuno-oncology approaches for treating
this cancer, including adoptive NK cell therapy. The more
recent development of canine-specific antibodies for identifying
canine NK cells and subsets, adaptation and development of
ex vivo NK cell expansion techniques, and overall gradually
increasing availability of canine-specific reagents and analysis
techniques, now makes clinical trials of adoptive NK cell therapy
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for osteosarcoma and other cancers in dogs more feasible and
informative. However, these studies and trials are only just
now beginning.

The first reported clinical trial of adoptive NK cell
immunotherapy in dogs with appendicular osteosarcoma
evaluated autologous ex vivo expanded NK cells administered
intra-tumorally following completion of a hypo-fractionated
palliative radiation protocol (56). In this study, NK cells
were isolated and expanded from the canine patient using an
expansion technique similar to that described above (56). Two
injections of 7.5× 106 NK cells/kg were co-injected with 250,000
IU/kg of rhIL-2. Ten dogs were treated in this study. Overall,
there was limited systemic toxicity with this protocol. One
dog had a grade 3 reaction of fever, chills, excessive salivation,
and dehydration consistent with IL-2 toxicity. Three dogs had
local infection/tissue breakdown at the NK cell injection site.
Persistence of labeled viable NK cells could be demonstrated in
tumor biopsies performed 1 week after intra-tumoral injection.
Interestingly, analysis of PBMCs pre- and post-treatment
demonstrated a significant increase in circulating granzyme B+
CD45+ cells (56).

Our group recently opened a phase I clinical trial of
intravenously administered allogeneic TGFβ-resistant
(imprinted) NK cells combined with adjuvant carboplatin
chemotherapy in dogs with appendicular osteosarcoma receiving
limb amputation (54). In this trial, dogs receive a single dose of
NK cells 24 h prior to amputation to evaluate NK cell trafficking
to the primary tumor. Three additional doses are administered
during the subsequent 48 h post-amputation period. Dogs then
receive standard adjuvant carboplatin chemotherapy every 3
weeks, with additional NK cell doses administered on the weeks
they are not receiving chemotherapy. In total, dogs receive a total
of twelve doses of adoptive NK cells—significantly more doses
than in most human NK cell immunotherapy trials, to date. The
use of allogeneic NK cells greatly increases the yield and potential
cell doses, reduces the cost of therapy, and simplifies the logistics
for delivery. Although this approach requires cryopreservation
of the product which may impact NK cell viability and function,
we have successfully used cryopreserved NK cells for several
human studies (57, 58).

One of the major strengths of clinical trials in dogs
with spontaneously occurring cancers is the ability to do
intensive longitudinal patient biospecimen sampling and clinical
assessments, often more intensively than is possible in a
comparable clinical trial in human patients. This is well-
illustrated in the afore described first-in-dog clinical trial,
where pre- and post-treatment serum cytokine concentrations
were assessed by ELISA, tumor gene expression profiles
by qRT-PCR, circulating immune cell phenotypes by flow
cytometry, and intra-tumoral immune cell phenotypes by
immunohistochemistry and qRT-PCR (59). Gradually increasing
availability of new canine-specific reagents and application of
new technologies to the dog, will further increase the number
and power of the correlative studies that can be done and their
translational relevance.

Understanding of the pharmacokinetics and trafficking of
adoptively transferred NK cells and consequent effects on

systemic and tumor immune cell phenotypes and responses
to therapy are important biological correlates for assessing
adoptive NK cell strategies and in principle can be addressed
in this model using a variety of approaches. Assessment
of circulating NK cell numbers and phenotypes in blood
can be assessed by flow cytometry; however, distinguishing
donor from patient cells is problematic. Optimization of
variable number tandem repeat PCR assays as is used to
assess tissue chimerism in human transplant patients (60) and
experimental canine bone marrow transplant models (61–63),
may be useful for assessing the relative circulating donor NK
cell component. Sex chromosome (XX/XY) FISH chimerism
testing may be another method that could be applied when
there is a sex-mismatched donor (64). Novel cell labeling
agents have been developed and tested in rodent and non-
human primate models and could be useful for evaluating
NK cell kinetics and trafficking in the canine osteosarcoma
model. Ex vivo-expanded human NK cells labeled with the
non-radioactive isotope fluorine 19 (19F) can be detected
in rodent tissues by NMR and imaged with 19F-MRI (65,
66). Similarly, expanded NK cells from rhesus macques were
labeled with 89zirconium-oxine (89Zr-oxine) cell labeling and
quantitated and imaged with positron emission tomography
(PET)/CT (67).

FUTURE APPLICATIONS

While these early studies of adoptive NK cell therapy in dogs
are demonstrating the feasibility, tolerability, and safety of
the approach, the model is well-suited for investigating many
ongoing and new important questions in the field. As one of
the mechanisms by which NK cells kill cancer cells is ADCC,
combining adoptive NK cell therapy with therapeutic antibodies
is of interest. Studying ADCC in spontaneous canine cancers may
be feasible in some cases with murine, chimeric, or humanized
antibodies, as canine Fc gamma receptors bind to dog, human,
and mouse IgGs. However, caninized therapeutic antibodies may
be preferred, as species differences in affinity may result in
significant differences in activity, and eventual alloimmunization
and neutralization by the hostmay significantly alter the antibody
half-life of non-canine antibodies (68, 69). Of great interest
is the genetic modification of NK cells to express chimeric
antigen receptors (CAR) to target and enhance their killing
(70, 71). Clinical trials investigating this approach are in their
early stages in people. However, investigation of new CAR-NK
constructs in dogs with osteosarcoma could address questions
of toxicity, tumor targeting, immunologic response and anti-
tumor activity. An important hurdle to genetic modification
of NK cells has been their relative resistance to lentiviral and
retroviral transduction (24, 72). Our group recently developed
a method for genome editing of human primary and expanded
NK cells using Cas9 ribonucleoprotein complexes (Cas9/RNPs)
that allows for efficient knockout of genes in NK cells, thus
opening the door for novel and innovative genetic modification
strategies, including modifications that would affect tumor
targeting and NK cell activation state, in vivo proliferative
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capacity, and cytotoxicity (73, 74). As the use of genetically
modified cells in humans has even more significant regulatory
hurdles to overcome compared to similar trials in dogs, clinical
trials in dogs can speed the evaluation of novel approaches,
identify those that are more promising, and provide additional
useful safety data to inform subsequent human trials. As
noted above, because of the ability to easily acquire patient
biospecimens, including tumor biopsies, and the relatively
comparable size to humans, the model is ideal for investigating
effects on tumor targeting achieved with different CAR-NK
constructs and for studying novel NK cell labeling and imaging
techniques (65–67).
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Osteosarcoma (OSA) is an aggressive bone malignancy. Unlike many other malignancies,

OSA outcomes have not improved in recent decades. One challenge to the development

of better diagnostic and therapeutic methods for OSA has been the lack of well

characterized experimental model systems. Spontaneous OSA in dogs provides a good

model for the disease seen in people and also remains an important veterinary clinical

challenge. We recently used RNA sequencing and qRT-PCR to provide a detailed

molecular characterization of OSA relative to non-malignant bone in dogs. We identified

differential mRNA expression of the solute carrier family 2 member 1 (SLC2A1/GLUT1),

matrix metallopeptidase 3 (MMP3) and nuclear factor erythroid 2–related factor 2

(NFE2L2/NRF2) genes in canine OSA tissue in comparison to paired non-tumor tissue.

Our present work characterizes protein expression of GLUT1, MMP3 and NRF2 using

immunohistochemistry. As these proteins affect key processes such as Wnt activation,

heme biosynthesis, glucose transport, understanding their expression and the enriched

pathways and gene ontologies enables us to further understand the potential molecular

pathways and mechanisms involved in OSA. This study further supports spontaneous

OSA in dogs as a model system to inform the development of new methods to diagnose

and treat OSA in both dogs and people.

Keywords: osteosarcoma, canine, solute carrier family 2 member 1, matrix metallopeptidase 3, nuclear factor

erythroid 2-related factor 2, pathology, cancer identification

INTRODUCTION

Canine osteosarcoma (OSA) presents a significant veterinary clinical challenge with an estimated
incidence rate of between 13.9–27.2/100,000 dogs, considerably higher than the rate in people,
1–3 cases/annum/1,000,000 people (1–4). It shares many clinical and molecular features with
human OSA (5–8). The current management of choice for canine OSA is surgery followed by
chemotherapy; the one year survival rarely exceeds 45% even for patients receiving treatment (5, 9–
14). In contrast to human OSA, canine OSA is most common in middle aged dogs and a degree of
heritability has been observed (1, 15, 16). Canine OSA presents a promising model for determining
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the underlying mechanisms of OSA carcinogenesis and
cancer progression, and also provides an opportunity for
the development of drugs targeting OSA-specific pathways.
Multidrug resistance is a critical limitation to the current
success of chemotherapy and, therefore, additional therapeutic
approaches are needed that could reduce the metastatic rate and
recurrence of OSA (17).

To support the development of more effective therapies, there
is a need to understand the underlying mechanisms of OSA
etiology and progression. OSA predominantly affects large and
giant breed dogs, particularly Irish Wolfhounds, Rottweilers,
Deerhounds, St Bernards, and Great Danes, with association
made with male dogs and increased height and weight (1, 18).
This is comparable to human OSA where male sex and height are
associated with higher incidence rates peaking at puberty (6, 19,
20). These findings in humans and canines support the potential
role of developmental factors and increased cell proliferation
in OSA etiology. Previous studies have implicated ezrin, a
membrane cytoskeleton linking protein, in poor prognosis and
metastasis (21–24). Evidence also supports a role of epigenetics in
the development of OSA, however, this is not yet well understood
(25, 26). Well-characterized oncogenes and tumor suppressors,
including MYC, EGFR, AKT2, TP53, CDKN2A/B, RB1, BCL2
and PTEN, have also been implicated in canine OSA (15, 25, 27).
Karyotypic instability, associated with mutations of TP53, is
characteristic of OSA (28).

More recently our group identified several genes significantly
differentially expressed between canine OSA and non-tumor
bone tissue (16). Consistent with the association with bone
growth and development, multiple gene ontologies of the
differentially expressed genes related to cellular differentiation,
morphogenesis, development, cellular proliferation, and
metabolism (16). Intracellular signaling, calcium homeostasis
and heme synthesis were also implicated. Analysis showed that
MMP3 and SLC2A1 expression were significantly higher in OSA
tissue compared to non-tumor tissue and protein expression
in OSA was confirmed by immunohistochemistry. This study
expands on the initial analysis (16) by investigating the levels
of MMP3, GLUT-1 (protein expressed by SLC2A1) and NRF2
(transcription factor encoded by NFE2L2), which are known to
play a role in human OSA, in an OSA canine cohort.

MATERIALS AND METHODS

Specimen Preparation
All animal tissue work in this study was approved by the
Ethics committee at the University of Nottingham School of
Veterinary Medicine and Science and complied with national
ethics procedures (permission number - UG 20331). Patients
were euthanised under normal veterinary practice under
circumstances unrelated to research. Diagnosis of OSA was
confirmed by a board certified histopathologist.

Immunohistochemistry and Microscopy
Proteins of interest were identified following gene expression
analysis (RNA sequencing), validated by qRT-PCR (16).
Immunohistochemistry was performed to show positive

protein expression of GLUT1, MMP3 and NRF2. Rottweiler
post-mortem OSA tissue (n = 15) was obtained from Bridge
Pathology, UK in the form of formalin fixed, paraffin embedded
OSA tissue. The OSA samples were all excised from Rottweilers,
9/15 female, 5/15 male and 1/15 not specified. The females
ages ranged between 7-9 years old and 2/9 were entire,
and the males were between 6-10 years old and 3/5 were
entire. OSA location was 10/15 appendicular, 3/15 axial, 1/15
mixed appendicular/axial, 1/15 not specified. A range of
morphologic types were studied including 10/15 osteoblastic;
3/15 chondroblastic or mixed osteoblastic/chondroblastic; and
2/15 suspected giant cell rich. In addition a range of mitotic
activity values [as previously defined (29)] were included: 3/15
value 1; 8/15 value 2; 4/15 value 4. All of these higher mitotic
values were observed in females, in addition the two cases
with highest mitotic activity overall were females and had large
amounts of osteoid. Given the deliberately mixed nature of
the OSA samples, statistics were not carried out on location,
morphologic type, sex or mitotic activity.

Tissue was post-fixed in 4% paraformaldehyde for 2 hours,
dehydrated through an ethanol series, embedded into paraffin
blocks, and sectioned at 7µm. Immunohistochemistry was
carried out u Proteins of interest were identified following
gene expression analysis (RNA sequencing), validated by qRT-
PCR (16). Immunohistochemistry was performed to show
positive protein expression of GLUT1, MMP3 and NRF2.
Rottweiler post-mortem OSA tissue (n = 15) was obtained
from Bridge Pathology, UK in the form of formalin fixed,
paraffin embedded OSA tissue. OSA samples from a variety
of bones including the humerus X2, scapula, femur X3,
mandible X2, temporomandibular joint, tibia, maxilla, stifle,
carpus and 2 unknown locations were excised from male
and female Rottweilers between the ages of 6-11 years old.
Tissue was post-fixed in 4% paraformaldehyde for 2 hours,
dehydrated through an ethanol series, embedded into paraffin
blocks, and sectioned at 7µm. Immunohistochemistry was
carried out using a Leica Novolink Polymer Detection Kit
(Leica, Wetzlar, Germany) according to manufacturer’s protocols
with primary antibodies diluted in fetal calf serum 1:100;
anti-SLC2A1(GLUT1) polyclonal unconjugated rabbit antibody
(100732-TOB-SIB; Stratech, Ely, UK), anti-MMP3 polyclonal
unconjugated rabbit antibody (GTX74514; GeneTex, Irvine,
CA, USA), anti-NRF2 (NFE2L2) polyclonal unconjugated rabbit
antibody (ab31163; Abcam, Cambridge, UK) were used to
stain proteins of interest. Microscopy was carried out to
confirm positive staining cytoplasmic and/or nuclear staining
(Leica, Wetzlar, GermanyUK) and systematic random sampling
employed to take photomicrographs for H-scoring. Negative
controls received no primary antibody and were incubated in
fetal calf serum only. Kidney sections from one of the patients
were used as positive controls, as the target markers were known
to be expressed in the kidney (30–32).

H-Scoring
H-scoring, a well-established semi-quantitative technique
for protein expression was used to analyse the samples.
It is often considered as one of the “gold standards” for
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immunohistochemistry evaluation (33–35). H-scores were
undertaken by one double-blinded researcher who established a
scoring definition and then undertook the scoring within a two
week period to ensure interpretation consistency. Two additional
researchers scored 10% of the samples, chosen randomly
to ensure concordance. Staining intensity was designated
into scores of 0, 1+, 2+, or 3+ (none, weak, moderate,
strong staining signal) for each antibody. The percentage of
cells/tissue containing positive staining (to the nearest 5%)
of either cytoplasmic and/or nuclear staining were calculated
independently for a fixed field of n = 4-5 photomicrographs per
sample (n = 10-13 OSA samples) for each antibody. H-scores
were calculated using the formula: H-score = [1 × (% cells 1+)
+ 2 × (% cells 2+) + 3 × (% cells 3+)] for both cytoplasmic
and nuclear staining separately. H-scores based on the resulting
0–300 scale were calculated for each specimen and each protein.
The mean, standard error of the mean, minimum, maximum
and range of H-scores were calculated. Data was plotted to
demonstrate both score distributions and staining intensities.
In addition, representative staining scores (based on these
samples only) were created as benchmarks to discuss results.
H-scores were also classified as low 0–45, moderate 45-90 or
high 90+ average scores in order to describe the overall scores.
Statistical analysis between cytoplasmic and nuclear H-scores
was conducted using paired T-test (SPSS v26). Comparisons
between the number of slides with 0, 1, 2, and 3 H-score
staining categories in the cytoplasm and nucleus were conducted
using chi-square.

Qualitative data was also recorded in order to describe general
immunohistochemical staining patterns. Qualitative data was
described for both neoplastic areas and, where possible, adjoining
areas where no tumor was present. In addition to describing the
cell/structure types present and the immunostaining observed,
general staining was identified for each sample (diffuse,
multifocal, focal), both cytoplasmic and nuclear staining were
described (absent, weak, moderate, strong) and the predominant
staining location was identified (cytoplasmic, nuclear or equal).

RESULTS

GLUT1 H-Score and Expression in OSA
GLUT1 staining (n = 47 sections from 13 patients) showed
H-score variations between the different patients, however all
specimens showed positive immunostaining. Only 1 of the 13
patients showed both low cytoplasmic and low nuclear average
scores (7.7%), while 2 of the 13 patients showed both high
cytoplasmic and high nuclear average scores (15.4%). Only
one patient had a low average GLUT-1 cytoplasmic score, 7
patients hadmoderate cytoplasmic scores (58.3%) and 5 had high
cytoplasmic scores (38.5%). Nuclear scores showed 4/13 patients
with low H scores (30.8%), 4/13 at moderate (30.8%) and 5/13 at
high (38.5%), overall these were not significantly different to the
cytoplasmic staining scores (P > 0.05). The 0-300 cytoplasmic H-
scores were slightly higher than the nuclear scores, however the
same range for both locations was observed and no significant
differences were present (P > 0.05, Table 1, Figures 1A,D).

TABLE 1 | H-scores from GLUT1, MMP3 and NRF2 immunostained canine OSA

specimens showing inter case variation.

H-Score

Protein

(number

of cases)

Cellular

location

Mean ± SEM Range (min-max)

GLUT1

(n = 13)

Cytoplasmic 74.89 ± 11.11 180 (5–185)

Nuclear 67.15 ± 11.38 180 (5–185)

MMP3

(n = 12)

Cytoplasmic 69.88 ± 4.60 95 (25–120)

Nuclear 38.58 ± 8.61 135 (0–135)

NRF2

(n = 10)

Cytoplasmic 71.89 ± 6.42 130 (10–140)

Nuclear 74.17 ± 13.08 200 (0–200)

H-Score indicates average scores calculated from several slides for each patient. N =

number of cases. Low was classified as 0–45, moderate 45–90 or high was a score of

90+.

The histopathology general report indicated that all specimens
showed diffuse staining distribution, with cytoplasmic staining
classified as mostly weak or weak to moderate (Table 2). Nuclear

stain intensity ranged from absent to weak – moderate, and
the majority of samples showed predominantly cytoplasmic

staining, but in some samples the predominant stain was nuclear
whereas in others the cytoplasm and nucleus were equally stained
(Table 2).

Despite GLUT1 staining being observed in every OSA
specimen, only half of the specimens stained with GLUT1
antibodies showed individual staining intensity scores of 3,
and it was notable that blood vessels frequently exhibited H-
score 3 nuclear staining in the tunica intima, whereas generally
nuclei in the tunica media exhibited lower H-scores (Figure 1).
Cytoplasmic staining produced higher H-scores in the tunica
intima in comparison to the tunica media whereas the osteoid
matrix did not exhibit immunopositive staining (Figure 2).
Generally staining was less pronounced in neoplastic cells in
comparison to the endothelium.

MMP3 H-Score and Expression in OSA
For MMP3 H-scoring (n = 51 sections from 12 patients), all
specimens showed positive immunostaining and less variation
was calculated between patients on the 0–300 score in
comparison to GLUT1 and NRF2 H-scoring. In total 8/12
(66.7%) patients had a low average nuclear score, while only
1/12 (8.3%) had a high nuclear score. In addition, 50% (6/12) of
the patients had a combination of moderate average cytoplasmic
scores and low average nuclear scores. Only 1 (8.3%) patient had
a low average cytoplasmic score. Low scores were more likely to
be observed in the nucleus, whereas moderate and high scores
were more frequently observed in the cytoplasm (P < 0.0001).
Overall, on the 0–300 scale the cytoplasmic H-scores were higher
than those observed in nuclei (P= 0.016, Table 1, Figures 1B,D).

The histopathology report showed that staining was diffuse
in all cases, with predominantly weak cytoplasmic staining, with
some cases showing weak-moderate or moderate cytoplasmic
staining (Table 2). The MMP3 nuclear staining was reported as
absent or absent-weak in the majority of cases, with some weak
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FIGURE 1 | Osteosarcoma H-scores in the cytoplasm and nucleus following immunohistochemical staining. Average H-scores for (A) GLUT1, (B) MMP3, and (C)

NRF2. H-score distributions across samples for (D) GLUT1 (P > 0.05), (E) MMP3 (****P < 0.0001), and (F) NRF2 (**P = 0.008). Differences between nuclear and

cytoplasmic staining were assessed using chi-square.

TABLE 2 | Overall blinded histopathology assessment for each OSA case.

Protein Staining

distribution

Cytoplasmic staining intensity (% of cases) Nuclear staining intensity (% of cases) Predominant staining

(% of cases)
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GLUT1 100% diffuse - 61.54 - 38.46 - - 23.08 30.77 15.38 30.77 - - 61.54 23.08 15.38

MMP3 100% diffuse - - 75.00 16.67 8.33 - 58.33 16.67 16.67 8.33 - - 91.66 - 8.33

NRF2 100% diffuse 12.50 12.50 62.50 12.50 - - 37.50 25.00 37.50 - - - 62.50 12.50 25.00

and weak-moderate nuclear staining in the remaining cases. In 11
out of the 12 cases, staining was predominant in the cytoplasm,
whereas the remaining sample had staining distributed equally
between the cytoplasm and nucleus (Table 2).

Staining was observed in the endothelium in all cases and
also within the fibroblastic cells present. In addition it was

noted that endothelial cell staining intensity was comparable the
neoplastic cell staining observed. In contrast, some focal areas
vascular/perivascular cells had distinct negative staining which
contrasted to neoplastic positive staining observed. In addition
connective tissue, muscle and blood vessels predominantly
showed weak, diffuse staining and muscle fibers were negative
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FIGURE 2 | Osteosarcoma GLUT1 immunohistochemical staining. (A–C) GLUT1 indicating positive nuclear and cytoplasmic immunostaining, immunopositive blood

vessels with more pronounced cytoplasmic staining in the tunica intima in comparison to the tunica media, and negative staining in the osteoid and in (D) a tumor-free

area. (E) Negative control OSA tissue showing no positive immunostaining. (F) Positive control canine kidney tissue staining primarily in the tubular epithelial cells.

Scale bars represent 100µm.

FIGURE 3 | Osteosarcoma immunohistochemical staining for MMP3. (A–D)

MMP3 positive staining in blood vessels, cytoplasm and nuclei but negative

staining in the osteoid, in four canine osteosarcoma samples. Scale bars

represent (A, B) 100µm, (C) 50µm, and (D) 200µm.

within the nucleus. One case showed rare, weak cytoplasmic
staining in the suspected leukocytes. Four patients (33.3%)
exhibited positive MMP3 immunostaining in the extracellular
matrix, however osteoid staining was not present in any samples
(Figure 3).

NRF2 H-Score and Expression in OSA
NRF2 H-scores (n = 51 sections from 10 OSA patients)
showed considerable variation between patient averages on the
0-300 scale, but positive immunostaining was observed in all

specimens. Some patients (20%, 2/10) demonstrated high average
H-scores of both cytoplasmic and nuclear NRF2 staining, some
patients demonstrated either high average nuclear staining (20%,
2/10) or high average cytoplasmic staining (10%, 1/10). The
remaining 50% (5/10) demonstrated moderate levels of both
nuclear and cytoplasmic NRF2 staining. In addition, low and
high scores were more likely to be present in the nucleus in
comparison to the moderate scores which were more frequent in
the cytoplasm (P = 0.008). Overall the 0–300 cytoplasmic and
nuclear staining H-scores were similar (within 5%, P > 0.05),
however the range of H-scores was greater in the nuclear staining
(Table 1, Figures 1C,E).

The histopathology report showed diffuse staining in 100%
of the samples (Table 2). The majority of samples showed
absent, weak or weak-moderate cytoplasmic and nuclear
staining intensities. In the majority of samples, staining was
predominantly observed in the cytoplasm, but in the remaining
samples staining was either predominantly nuclear or equally
cytoplasmic and nuclear (Table 2).

NRF2 immunopositive staining was observed in every blood
vessel, with positive cytoplasmic staining in the tunica intima
(all ten samples; 100%), while 8 patients also showed positive
nuclear staining in the tunica intima (8/10, 80%; Figure 3).
Positive staining was less frequent in the tunica media (4/10
positive cytoplasmic, 3/10 positive nuclear). Muscular tissue
was present in 30 of the sections analyzed from across the
patients. It was of interest that all 30 sections showed positive
NRF2 immunostaining (100%), 6 slides showed heterogeneous
immunostaining (20%) in terms of both distribution and stain
intensity, while the remainder (80%) showed homogenous
staining. Muscle, nerves and connective (adipose/fibrous) tissue
presented with diffuse staining which was generally more
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FIGURE 4 | Osteosarcoma immunohistochemical staining for NRF2. (A, B)

Immunopositive staining in blood vessels, primarily nuclear, in all 10 samples

within the tunica intima and in 40% of samples tunica media staining was

observed. (C) Negative staining in the osteoid (tumor free area). [(D)+inset]

Muscle tissue showing positive NRF2 staining. Scale bars represent (A)

100µm, (B–D) 50µm.

pronounced than the neoplastic cell population. Where mucosa
and inflammation were present, the staining intensity was similar
to that noted in neoplastic cells. The osteoid matrix remained
immunonegative in all specimens (Figure 4).

DISCUSSION

In recent years a detailed understanding of the transcriptional
heterogeneity and mechanistic processes in human osteosarcoma
has been established by the rigorous unbiased transcriptomic
analysis of match tumor and non-malignant specimens (36–40).
Such knowledge is driving advances in diagnostics and treatment
for this disease in man.

Canine OSA remains challenging to treat and carries a poor
prognosis due to the very aggressive and metastatic nature of the
tumors. Given how common OSA is in dogs and likely genetic
contribution to OSA in large breeds, we (16) and others (25,
41–43) have sought to extend understanding of the molecular
determinants of OSA in dogs and to compare these results to
those obtain from OSA from people.

Here we investigated three cancer promoting proteins that
have been shown to be up regulated at the gene level in
canine OSA compared to normal bone tissue (16). Indeed the
importance of GLUT-1 (37, 44), MMP3 (36, 37) and NRF2 (45)
is well established in human OSA. More recently a study used
single cell RNAseq to investigate the cellular heterogeneity within
human osteosarcoma specimens and identified MMP-3 as one
of the top differentially expressed genes in OSA specimens (40).
However little is known about the expression of these in canine
OSA tissue.

While glucose is an essential part of cellular metabolism,
glucose metabolism is enhanced in malignant cells (46). Glucose

transporter member 1 (GLUT1, also known as SLC2A1)
is a cell membrane glycoprotein responsible for glucose
transport that is widely expressed across cell types and is
overexpressed in many cancers (46, 47). The transcription
factor hypoxia-inducible factor 1-alpha (HIF-1α) was found to
induce GLUT1 thus increasing survival in hypoxic conditions
by allowing increased anaerobic glycolysis (48). Additionally,
increased GLUT1 expression allows cancer cells to survive
low glucose conditions (49), and hypoxic tumor cells are
resistant to conventional therapeutics, highlighting the potential
of glycolytic inhibitors in osteosarcomas (50). In human OSA,
higher expression of SLCA1I correlated with a poor prognosis,
shorter disease-free interval and increased angiogenesis (47).
GLUT1 staining was previously identified in 74% of human
OSA specimens and linked with increased tumor volume
and metastatic potential, as well as increased recurrence
rate (44).

In canine OSA, a study of 44 canine osteosarcoma specimens
showed 61% positive GLUT1 staining but no significant
correlation was identified between GLUT1 and disease-free
interval (51). Interestingly, Petty and colleagues also showed
a subset of canine OSA with no or low GLUT1 staining
as was seen in human OSA (44). Our findings of GLUT1
in OSA indicated that every specimen had some degree of
positive immunostaining, however this varied between patients.
Investigations into whether H-scoring differs between tumor
grades, type of bone affected/location, sex or other factors still
need to be conducted.

GLUT1 staining was observed in every OSA specimen
in the present study, and notably blood vessels frequently
exhibited H-score 3+ nuclear staining in the tunica intima,
and lower H-scores in tunica media nuclei, and cytoplasmic
staining in both structures (higher in the tunica intima). GLUT1
immunostaining has previously shown an abundance of the
protein in blood vessels within the diaphysis of normal long
bones, but not in the metaphysis (52). It has been suggested
that osteoblast differentiation is a high-energy demand process,
met by upregulation of GLUT1 in bone blood vessels (53).
Additionally the importance of GLUT1 in blood vessels has been
shown in relation to blood brain barrier function, where the
energy demand of the brain during childhood is greater due
to the rapidly developing nature of the brain (54). Expressed
in both luminal and abluminal endothelial cells within the
blood brain barrier (55), haploinsufficiency of SLC2A1 causes
GLUT1 deficiency syndrome resulting in delayed development,
movement disorders, and seizures (56). These links with high-
energy processes could not only explain expression in OSA
tissue, but may also highlight GLUT1 as a therapeutic target.
The potential of GLUT1 as a therapeutic target has also been
demonstrated in human OSA cells, where glycolytic inhibitor
sensitized hypoxic cells to chemotherapy (50). Furthermore,
increased SLC1A1 in human OSA microarray datasets has been
associated with metastatic tumors and a worse prognostic effect
(37). Our findings show that GLUT1 is expressed in canine OSA
and confirm the need to investigate the potential of glycolytic
inhibitors to increase therapeutic efficacy in both canine and
human OSA.
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In aggressive tumors, cell invasion and metastases require
breakdown of the extracellular matrix [ECM; (57)]. Matrix
metalloproteinases (MMPs) are enzymes that degrade the ECM
and changes in concentrations of MMPs are important in
invasion and metastasis of OSA (58, 59). Metastases in OSA
are critical for disease progression and are associated with poor
prognosis (60). High expression of MMP3 in many cancers
has been associated with poor prognosis (61). In human OSA,
MMP3 is highly expressed in OSA tissue in comparison with
normal bone (62), and has been shown to be regulated by tumor
suppressing microRNAs which are down-regulated in OSA (62,
63). MMP3 may also be associated with OSA metastasis, indeed
survival outcomes were improved in patients expressing lower
levels of MMP3 in microarray datasets (37). Complex pathways
such as estrogen receptor alpha (ERα) signaling induces FasL
transcription in osteoblasts leading to MMP3 expression in these
cells, resulting in sFasL production and osteoclast apoptosis (64).
Additionally, MMPs are synthesized in stromal cells adjacent
to tumor cells (65). Studies in people have also highlighted
differentially expressed genes in OSA tissue, including the MMPs
and genes which interact with the matrix metalloproteases (36,
59). In the present study, MMP3 staining varied between the
canine OSA, including in stromal cells consistent with results
in studies of human cancers (65). MMP3 in canine OSA could
be used as marker of more invasive and metastatic tumors. Of
interest, MMP3 is a druggable target, with a selective inhibitor
of MMP3 available (UK370106), but this has not been tested in
cancer cells (66). A generic MMP inhibitor Marimastat, showed
little promise in clinical trials (67, 68), but has not been tested
in OSA patients. More recently, sulfonamide-based inhibitors of
MMP3 have also been developed (69). Additionally, MMP3 has
been found in extracellular vesicles that were protumorigenic and
highly transmissive (70), highlighting another function of MMP3
in metastases and emphasizing it as a potential key therapeutic
target in canine OSA.

A feature of OSA and other cancers is chemoresistance.
Chemoresistance arises via up-regulation of mechanisms that
protect the cell from the impact of chemotherapy. Chemotherapy
increases reactive oxygen species (ROS) in cells, which then
trigger DNA damage which leads to apoptosis (71, 72). The
concentrations of ROS in normal cells are maintained by
inducible antioxidants which are regulated by the transcription
factor, NRF2 (73). Oncogene- induced NRF2 has been shown
to promote ROS detoxification (74) and play a role in
tumor progression, invasion, and metastases in many cancers
(75). In mice, deletion of NRF2 led to lower bone mineral
density and weaker long bones (76). NRF2 has also been
implicated in osteoclast activity as when NRF2 was depleted,
increased intracellular ROS was observed alongside increased
osteoclast numbers, suggesting increased osteoclastic activity
with decreased NRF2 (77).

Nuclear staining of NRF2 has been shown in bone metastases
of people with OSA (78), and expression of this protein has been
associated with poor outcome in OSA patients (45). In our study
we observed NRF2 staining in 100% of the canine OSA, however
variation in staining intensity was observed between the different
patients. This suggests that it has potential as both a prognostic

marker and therapeutic target. Knock down of NFE2L2 in
human cancer cells was effective in altering the NFE2L2/NRF2
pathway and improving chemosensitivity (79). Oridonin, a drug
isolated from a medicinal herb, has shown potent anti-tumor
effects in OSA, by reducing NRF2 and an antioxidant pathway,
leading to apoptosis (80). Tanshinone 11A also inhibited OSA
growth by targeting AMPk-NRF2 pathway, knockdown of both
NFE2L2/NRF2 and AMPK showed same effects as the drug (81).
A liposome-based siRNA targetingNFE2L2, given in conjunction
with cisplatin, improved treatment of OSA (82). These recent
developments in pharmacological drugs and RNA interference-
based therapies holds promise for treating canine OSA.

Canine OSA is divided into several morphologic subclasses:
osteoblastic, fibroblastic, chondroblastic, and teleangectatic (83),
however these subclassifications have not yielded significant
differences in the prognosis of either human or canine OSA
(83–85). In contrast, histologic grading of human tumors, serves
as a good indicator for prognosis (85), but is not been widely
used as a prognosticator in canine OSA and has failed to be a
significant indicator for decreased survival in flat and irregular
bones, including the mandible (86–88). However, a mandibular
OSA seemed to have a distinctly better clinical outcome than
does OSA of other locations (86). Another problematic feature in
grading canine OSA is that there are several published histologic
grading systems, none of which are universally accepted (89).
These difficulties providing a prognosis, make finding suitable
markers even more important.

Our results have shown that GLUT1, MMP3 and NRF2 are all
present in canine OSA from a number of different anatomical
locations including the humerus, scapula, femur, tibia, stifle,
carpus and the mandible, maxilla and temporomandibular joint.
Previous canine OSA studies have shown that tumor location and
mitotic index can be correlated with survival time and disease-
free interval (87, 89), therefore understanding expression in the
differing locations and mitotic index could be informative. The
H-scores of the three proteins varied greatly between individuals
in the present study. Although tumor size was not a factor
quantified in our clinical samples, it is potentially an area of
interest for future work. As larger tumors tend to show more
hypoxia and mutagenesis (90), and tumor hypoxia indicated
increased expression of GLUT1 in cervical carcinomas (91),
this could be an interesting factor to investigate. Higher tumor
grades have also been linked to both higher levels of necrosis,
and primary lesion location (with appendicular regions often
scoring at higher grades) (29); both of these factors are of interest.
Therefore larger studies considering multiple factors, such as
OSA grade and anatomical location, need to be undertaken and
compared to non-tumor tissue, in order to contextualize the
complex expression patterns of GLUT1, MMP3 and NRF2. In
conclusion, GLUT1, MMP3 and NRF2 are expressed in canine
OSA, are good potential candidates for prognostication in OSA
and therapeutic targets, and clinical trials using drugs which
already target these proteins are encouraged. In addition to
understanding canine OSA further, this study also supports
spontaneous OSA in dogs as a model system to inform the
development of new methods to diagnose and treat OSA in both
dogs and people.
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Canine tumors are valuable comparative models for human counterparts, especially

to explore novel biomarkers and to understand pathways and processes involved in

metastasis. Vasculogenic mimicry (VM) is a unique property of malignant cancer cells

which promote metastasis. Thus, it represents an opportunity to investigate both the

molecular mechanisms and the therapeutic targets of a crucial phenotypic malignant

switch. Although this biological process has been largely investigated in different human

cancer types, including osteosarcoma, it is still largely unknown in veterinary pathology,

where it has been mainly explored in canine mammary tumors. The presence of VM in

human osteosarcoma is associated with poor clinical outcome, reduced patient survival,

and increased risk of metastasis and it shares the main pathways involved in other type

of human tumors. This review illustrates the main findings concerning the VM process

in human osteosarcoma, search for the related current knowledge in canine pathology

and oncology, and potential involvement of multiple pathways in VM formation, in order

to provide a basis for future investigations on VM in canine tumors.

Keywords: comparative oncology, dog, osteosarcoma, vasculogenic mimicry, molecular pathways

INTRODUCTION

Vasculogenic mimicry (VM) is a unique ability of malignant cancer cells to create their own fluid-
conducting microvascular channels without the involvement of endothelial cells. It was firstly
described in human uveal melanomas as periodic acid–Schiff (PAS)-positive microvascular channel
networks (1). Since then, VM has been observed in a variety of humanmalignant tumors, including
osteosarcoma (OSA), glioblastoma and gallbladder, ovarian, prostate, lung, gastric, hepatocellular,
and breast cancer (2, 3). In addition, the presence of VM has been associated with high tumor
grade, invasion, metastasis, and poor prognosis in cancer patients (4, 5). Thus, VM has emerged as
a potential target for anti-tumor therapy (2, 3, 6).

In veterinary pathology, the VM process has been demonstrated in canine inflammatory
mammary carcinomas and in a palpebral melanocytoma (7, 8). Rasotto et al. explored the presence
of VM in primary canine mammary tumors, revealing no relation with lymphatic infiltration
(9). As well, primary cell lines from canine mammary tumors, showing ability to form VM in
vitro and in vivo, have been recently established and characterized (10–12). Moreover, canine
inflammatory mammary carcinomas were analyzed for the presence of VM by transmission and
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scanning electron microscopy (13). In addition, as far as canine
OSA is concerned, the presence of vessel-like structures in a
long-term canine D17 OSA cell cultured on type I collagen
has been recently described (14). As well, treatment with the
heat shock protein 90 (Hsp90) inhibitor 17-N-allylamino-17-
demethoxygeldanamycin (17-AAG) inhibited the migration of
D17 OSA cells, also decreasing VMmarkers in vitro and inducing
a reduction of hypoxia-inducible factor 1α (HIF1α) transcript
and protein expression (14). Notwithstanding this, information
regarding VM formation, molecular features, and prognostic
implications in canine oncology is still limited.

Since VM has been known from a relatively short time, the
molecular mechanisms involved in this process remain largely
unknown. Aggressive tumor cells capable of VM display a varied
gene profile which includes that of fibroblasts and epithelial
and endothelial cells (15). Hypoxia, epithelial-mesenchymal
transition (EMT) and in particular epithelial-endothelial
transition (EET), response to extracellular matrix (ECM), and
the presence of cancer stem cells (CSCs) are considered the key
regulators of VM (16, 17). Various signaling pathways, promoting
tumor migration and invasion, have been reported to participate
in VM formation, including those involved in vasculogenesis
such as vascular endothelial (VE)-cadherin, vascular endothelial
growth factor (VEGF)/VEGF receptor (VEGFR) and platelet-
derived growth factor (PDGF)/PDGF receptor (PDGFR) axis,
and HIF1α (3). VM progression is also mediated by pathways
involved in ECM adhesion and cell migration, such as focal
adhesion kinase (FAK) and migration inducting gene 7 (Mig7)
encoding for breast cancer anti-estrogen resistance protein 3
(BCARP 3), matrix metalloproteinases (MMPs), integrins and
erythropoietin-producing hepatocellular receptorA2 (EphA2), as
well as multiple signaling pathways including mechanistic target
of rapamycin (mTOR) and Rho-associated coiled-coil kinase
(RhoA/ROCK) (3). Finally, increasing evidence showed that VM
can be affected by microRNA (miRNA), long non-coding RNA
(lncRNA), and circular RNA (circRNA) (18).

Thus, the aim of this review is to illustrate the main findings
concerning the VM process in human OSA (Figures 1, 2),
as well as the current knowledge on the molecular pathways
potentially involved in VM formation in canine pathology and
oncology (Supplementary Table 1), in order to provide a basis
for establishing further investigations on VM in canine tumors
in the future.

CSCs MARKERS: CD133 AND ALDEHYDE
DEHYDROGENASE 1 (ALDH1)

CSCs represent an important feature of VM progression for
their ability to differentiate in endothelial cells forming new
microvessels (19). Stemness and differentiation potential of
CSCs are enhanced under hypoxic microenvironments, through
hypoxia-induced EET and ECM remodeling, thus determining
the formation of the specific features of VM (17). Bao et al. (30)
described a positive correlation between CD133 expression and
presence of VM in OSA, which was, in turn, positively associated
with ALDH1 expression. CD133, also called prominin-1, is a

common biomarker of CSCs, which encodes a 120-kDa five-
transmembrane domain glycoprotein. Its dysregulation has been
considered as a CSC biomarker in various human cancers
including OSA (20, 21), and it is correlated with VM, presence
of metastasis, and poor prognosis in different tumors (21, 22).
Little is still known about the mechanisms used by CSCs for
promoting angiogenesis and VM (23). In this respect, the ability
of CD133 to activate the Wingless-related integration site (Wnt)
signaling pathway, thus increasing the expression of VEGFα
and interleukin-8 (IL-8) (24), and its mechanistic link with cell
motility (25), may be involved in the VM process.

ALDH1 is another common biomarker of dysregulated CSCs
in a variety of human cancers (26, 27), the inhibition of
which could represent a target in OSA therapy (28, 29). In
the study of Bao et al. (30) multivariate analysis data showed
that the expression of CD133, ALDH1, and VM; grade of
differentiation; recurrence; as well as Enneking stages were
independent prognostic factors for OSA patients. Despite the
identified correlation with prognosis, the presence of CSC
markers lining VM-dependent vessels has not been demonstrated
inOSA tissues, even thoughCD133+ stem-like cell accumulation
has been observed in the melanoma perivascular niche (30, 31).

CD133 and ALDH1 as Canine CSC Markers
and Their Expression in Madin–Darby
Canine Kidney Cells
The general structure of prominin-1, including its membrane
topology, has been conserved throughout the animal kingdom
(32). Non-tumor canine cells, in particular MDCK cells, have
been widely used for understanding the mechanisms on the basis
of cell motility. In fact, considering that prominin-1 is associated
with plasma membrane protrusions, the overexpression of
Prom1 gene increased the number of MDCK microvilli, while
the overexpression of a dominant-negative mutant variant
significantly decreased ciliary length (25). The involvement of
CD133 in cell motility was also demonstrated by Liu et al.,
showing the ability of isolated canine CD133+ epithelial cells
to form a tubular-like structure when cultured on Matrigel (33).
Likewise, endothelial progenitor cells isolated from canine bone
marrow CD133+ are capable of forming a capillary structure on
Matrigel after 24 h of culture and can be transplanted in ischemic
injured tissues to enable neovascularization (34, 35).

In cancer, CD133 staining, together with functional properties
including ALDH enzyme activity and spheroids formation in
vitro, is commonly used to characterize potential CSCs in
canine OSA and others types of spontaneous canine cancer,
not only those deriving from a hematopoietic lineage (36–40).
Immunohistochemical investigations revealed that CD133 was
expressed in all grades of OSA, glioma, melanoma, hepatocellular
carcinoma, B-cell lymphoma, and granular cell tumor, with a
higher proportion of positive cells in high-grade tumors (41–45).

Although a direct association between CD133 and VM has
not been investigated in canine tumors, CD133+ cancer cells
showed different features linked to VM both in vivo and
in vitro. Highly invasive and tumorigenic canine insulinoma
CSC-like cells and canine prostate cancer cellsCD133+ showed
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FIGURE 1 | Schematic representation of VM through cancer cells (in purple) forming a vessel containing red blood cells. Figure shows the main molecular pathways

involved in the VM process in human osteosarcoma highlighting, in underlined bold, those found to be related with VM presence or tubular/vessel-like formation in

vitro in dog.

FIGURE 2 | Localization of the principal molecular pathways involved in VM. Figure shows the cellular and tumor microenvironmental distribution of the human OSA

pathways resumed in the review showing, when known, the possible interactions (black arrow) between them. Multiple arrows show multiple interactions between

pathways.
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an invasive and tumorigenic phenotype in vivo, similar to
hepatocellular carcinoma and lung adenocarcinoma cell lines
that were also capable of forming spheroids in culture (46–
49). CD133+ hemangiosarcoma cell lines cultured under normal
and sphere-forming conditions generated three distinct tumor
subtypes in vitro, associated with angiogenesis, inflammation,
and adipogenesis (50). CD133+ canine cell lines derived
from OSA, melanoma, transitional cell carcinoma, and lung
adenocarcinoma resulted to be significantly resistant against
X-ray irradiation (38). Gatti et al. observed that canine OSA
primary cultures containing CD133+ CSCs exhibited distinctive
sensitivity to anticancer agents (51), as well as spheroids derived
from canine mammary gland adenocarcinoma (52).

As far as ALDH1 is concerned, despite ALDH enzymatic
activity being also considered a cancer marker in canine samples
(37, 53, 54), to the best of our knowledge, its protein and gene
expression has not been directly investigated in canine tumors,
as well as in normal tissues or in other canine pathological
conditions (55–57).

ENDOTHELIAL MEDIATORS

VM takes place independently of angiogenesis or endothelial
cell proliferation, although it is often associated with endothelial
marker expression (15). Gene expression analysis showed that
aggressive tumor cells capable of VM display a diversified gene
profile, expressing genes from multiple cell types including those
of endothelial cells (58). In fact, the concept of “embryonic-like
and vascular phenotype in the absence of endothelial markers,”
referred to as the first histological definition of VM (1), is
controversial. In this respect, it has been demonstrated that
primary and established sarcoma cell lines, after prolonged
stimulation with post-surgery fluids from a cohort of patients
affected by giant cell tumors of bone, transdifferentiated into
VE-Cadherin+ and CD31+tubular-like structures (59). For this
reason, the term “endothelial mediators” (and not endothelial
markers) is preferred, to avoid controversy concerning the
attribution of specific endothelial markers to highly aggressive
cells that undergo VM. In several tumors, especially melanoma,
an important group of endothelial mediators has been found
in association with VM, including VE-cadherin (60–62) and
VEGFR1 (63).

In MG63 OSA cells, the inhibition of Cdh5 gene encoding for
VE-cadherin with small interfering RNA (siRNA) reduced the
ability of cells to form endothelial-like networks when cultured
on type I collagen or Matrigel (64), and the same phenomenon
has been observed in silencing the Vegf gene (65). In fact,
autocrine VEGF/VEGFR1 signaling, associated with increased
tumor growth and tumor vascularity, may possibly confer the
capacity to develop vasculogenic properties to OSA cells (66).
In recent studies, differentially expressed genes (DEGs) were
investigated between different OSA cells cultured on Matrigel
for profiling the molecular patterns involved in VM phenotypes.
Results from these studies showed that the endothelial mediators
PDGFRα and PDGFRβ were correlated with malignancy and
tubular-like structure formation in vitro (67, 68).

VE-Cadherin as Regulator of EMT and
Vascular Integrity in Canine Pathology
VE-cadherin is an endothelial cell-specific cadherin that
functions to stabilize cell structure because of its involvement in
calcium-dependent intercellular adhesion (69). In dog, it has not
been linked with VM, nor investigated in MDCK cells, although
its role in EMT, a process closely related to VM and vascular
integrity, has been explored (70, 71). In fact, VE-cadherin gene
expression and immunohistochemical staining was evaluated in
canine myxomatous mitral valve disease to investigate the role of
EMT in chronic valvulopathies, showing a significant cdh5 gene
dysregulation (72).

In cancer, VE-cadherin protein expression was observed at
intercellular junctions in both normal canine tissue-derived
cells (NECs) and in canine tumor-derived cells (TECs), isolated
from thyroid carcinoma and perianal gland epithelioma. The
observed zigzag pattern in TECs, with respect to the linear
in NECs, may be indicative of VE-cadherin dysfunction and
increased vascular permeability, probably dependent on the
high concentration of VEGF in the tumor microenvironment
in vivo. In fact, an abnormal VE-cadherin expression pattern
was observed in 100% confluent NECs, following culture in
a tumor-conditioned medium containing excessive VEGF (73).
Moreover, this study showed that Combretastatin A-4 phosphate
(CA4P) has selective effects on TEC morphology and NECs in
tumor culture conditions, also disrupting vasculature in canine
OSA xenografted into mice (74). Furthermore, genome-wide
methylation analysis performed in canine mammary tumors
showed a significant hypermethylation at the PAX5 (paired box
protein 5) motifs in the intron regions of cdh5 gene and a
consequent gene down-regulation (75).

VEGF/VEGFR Axis in Relation to VM in
Canine Osteosarcoma and Mammary
Tumors
As far as VEGF/VEGFR axis in veterinary oncology is concerned,
VEGF family members were identified in several canine cancers
(76), as well as OSA tissue, serum, and cultured cells (77–
79). A relation between VM and VERGFR was found in
D17 canine OSA cells cultured on type I collagen where
malignant cancer cells with endothelial morphology express
VEGFR1 (14). Correlation between VM and VEGF axis has
been firstly investigated in dogs with mammary tumors (7).
VEGFα, VEGFγ, and VEGFR3 were expressed in spontaneous
canine mammary tumor and xenograft models (80), showing
increased expression in the inflammatory mammary carcinoma
(IMC) model compared to non-IMC and mammary OSA (80,
81). VM has been shown to occur more frequently in IC
compared with other types of canine mammary tumors (7).
Furthermore, overexpression of VEGFα, VEGFγ, and VEGFR3
was observed in canine malignant non-IMC, and it was
correlated with cyclooxygenase 2 (COX2) immunoexpression,
which is particularly related to VM progression (82, 83).

Another indirect relation to VM can be found in the study of
Cam et al. in which VEGFα expression in different OSA cell lines
and its correlation with 1Np63 and cell migration on Matrigel
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was described, demonstrating that1Np63 exerts its angiogenesis
and invasion property through VEGFα (84). It has been also
demonstrated that VEGFα is the direct target of miR34a, which is
less expressed in OSA cell lines with respect to normal osteoblast;
OSA cells that have been induced to overexpressingmiR34a show
decreased motility and invasion ability onMatrigel and increased
levels of VEGFα (85). On the other hand, a correlation between
VEGFα transcript and chemical hypoxia was not observed (77).

As far as OSA ex vivo samples are concerned, literature
data regarding VEGF axis and VM are lacking. Moreover,
no correlation was observed between VEGF expression and
clinicopathological parameters or hypoxia markers, which
are often related to VM (77). On the contrary, its serum
concentration has been previously correlated with poor
prognosis in canine OSA (86). Increased levels of VEGF in
serum or in cell supernatant were also observed after treatment
of canine OSA with tyrosine kinase inhibitors such as Toceranib,
Erlotinib, and Masitinib mesylate, probably due to a mechanism
of feedback response to VEGFR2 inhibition (87–90).

PDGF/PDGFR Axis in Osteosarcoma and
Other Canine Tumors
An extensive knowledge concerning PDGF/PDGFR axis is
available in veterinary literature. This molecular axis has been
investigated as endothelial marker (91), in wound healing
(92), spontaneous canine astrocytoma (93), fibrosarcoma (94),
squamous cell carcinoma (95), lymphoma (96), prostate cancer
(97), hemangioma and hemangiosarcoma (98), melanoma
(99), mast cell tumors (100), hepatocellular carcinoma (101),
mammary tumors (102), and nervous system tumors (103, 104).

PDGFs and PDGFRs were also found to be coexpressed and
overexpressed in canine OSA, suggesting an autocrine and/or
paracrine loop. In particular, in the study of Maniscalco et al.
(105) all evaluated canine OSA cell lines overexpressed PDGFRα,
while 6/7 overexpressed PDGFRβ, when compared to a normal
osteoblastic cell line (106). The involvement of an autocrine loop
of PDGF signaling pathway in the pathogenesis of canine OSA
was confirmed in other studies, showing the overexpression of
cis, the coding gene of PDGFRβ, in a OSA cell line (CO8), and
the ability of its supernatant to induce tyrosine phosphorylation
and therefore the activation of the PDGFRα and PDGFRβ on
murine 3T3 cells (107, 108). Meyer et al. demonstrated that, in
addition to tumor cells, giant cells and osteoblasts in canine OSA
were positive for PDGFBB immunostaining, composed of two
subunits β, also showing the detection of its mRNA in all study
cases (109). Finally, the dysregulation of the expression levels
of PDGFRβ in canine OSA has been attributed to the strong
demethylation of CpG sites within the promoter (110).

No evidence currently exists concerning a relationship
between VM and PDGF/PDGFR axis in canine oncology.
Furthermore, no significant correlation was observed between
the expression of these molecules and survival or histological
grading in canine OSA (105). Despite this, the significant relation
of this axis with malignant features of canine OSA has been
observed both in vivo and in vitro (111). In fact, treatingOSA cells
with Toracenib, a potent inhibitor of PDGFRs, has been shown to

induce a decrease in cell growth, migration, motility, and colony
formation, as well as a significant blunting of tumor growth and
proliferation index in an orthotopic xenograft model (111). These
findings suggest that PDGF/PDGFR axis can represent a target
therapy more than a diagnostic tool. With the coming of new
technologies linked to miRNA, miR34a was tested on OSA cell
lines and xenograft mouse models, showing PDGFRα reduction,
together with decrease in cell proliferation and migration in vitro
and tumor growth in vivo (112).

RESPONSE TO ECM ENVIRONMENT AND
CELL ADHESION

Among the myriad of microenvironmental factors affecting
cancer cell resistance, cell adhesion to the ECM has been recently
identified as a key determinant (113). FAK is a non-receptor
tyrosine kinase that mediates signaling events downstream
of integrin engagement of the ECM, regulating cell survival,
proliferation, and migration and supporting neovascularization
and maintenance of CSCs (114). FAK is expressed in different
cancer types, where it is involved in the progression of tumor
aggressiveness. Small molecule FAK inhibitors in clinical phase
trials demonstrated to be effective in cancer by inducing tumor
cell apoptosis in addition to reducingmetastasis and angiogenesis
(115). Association between FAK and VMor invasive behavior has
been observed in different cancer types, including OSA. Ren et al.
showed FAK staining in the cytoplasm of OSA tissue cells with
high intensity around VM vessels (116). Similarly,Mig7 gene was
expressed in the cytoplasmwith higher percentage of positivity in
the VMwith respect to non-VM group, suggesting an association
between Mig7expression and VM formation and identifying in
VM a prognostic marker of OSA (116).Mig7 protein is enriched
in embryonic cytotrophoblast cells during placental development
and in more than 80% of tumors compared to normal tissue
samples and blood from normal subjects (117). It was found
to colocalize with VE-cadherin in cells lining VM structures
in a lymph node metastasis (118) and to initiate a signaling
cascade that results in tumor VM (119, 120). Moreover, Mig7
knockdown inhibited tubular-like vessel formation and invasion
of MG63 and 143B OSA cells cultured on Matrigel, as well as
growth and metastasis of OSA cells in a mouse model (121).
Parispolyphylla, from traditional Chinese medicine, inhibited cell
migration, invasion, and VM formation in vitro and in vivo by
reducing expression of FAK, Mig7, MMP2 (gelatinase A), and
MMP9 (gelatinase B) (122). MMP1 (interstitial collagenase) also
resulted to be the first upregulated gene among the DEGs of
the abovementioned studies performed on OSA cells cultured on
Matrigel (67, 68).

Among the plethora of membrane proteins interacting with
the ECM, integrin-α2 (ITGA2) has acquired an important
role for its involvement in tumor cell proliferation, invasion,
metastasis, and angiogenesis. In fact, its abnormal expression
correlates with unfavorable prognosis in multiple types of
cancer (123). Itga2 gene overexpression has been reported to
be related to increased OSA metastasis and invasion (124) and
was upregulated in malignant OSA cells in vitro (68). In the
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study of Yao et al., gene signal transduction networks (Signal-
net) were performed to identify the key genes involved in VM
formation in OSA and the top-ranked ones resulted to be Itga2,
integrin subunit alpha 1 (Itga1) and integrin subunit alpha 6
(Itga6) together with protein kinase cAMP-activated catalytic
subunit beta (Prkacb), actinin alpha 1(Actn1), actinin alpha 4
(Actn4), phospholipase C beta 4 (Plcb4), gap junction protein
alpha 1(Gja1), and the already mentioned gene encoding for
PDGFRβ and PDGFα. Finally, this study demonstrated that Itga1
knockdown inhibited VM formation by 143B cells in vitro and
in vivo (68).

In addition, the tyrosine kinase EphA2, which belongs to the
family of Eph tyrosine kinase receptors, is highly expressed in
tumors, while it has been found at relatively low levels in most
normal adult tissues, indicating its potential application in cancer
treatment (125). Recent evidence suggests that VM occurrence
is positively correlated with high expression of EphA2 and that
its gene silencing inhibits VM formation (126). Interesting is
also the correlation with Epstein–Barr virus (EBV) infection that
stimulates plasticity in epithelial cells to express an endothelial
phenotype (127). As well, Zhang et al. demonstrated that Epha2
gene silencing inhibited VM formation inMG63 OSA cells (128).

FAK Protein in Canine Tumor Progression
Interactions between tumor cells and tumor microenvironment
are considered critical in carcinogenesis, tumor invasion, and
metastasis (129). The involvement of adhesion proteins in canine
OSA has been demonstrated through an expression profiling
comparison between dogs with disease-free intervals (DFI) of
<100 and >300 days (130).

The study of Brachelente et al. exploring the differential
expression between melanomas and melanocytomas, identified
differentially expressed gene clusters including nine genes
belonging to the focal adhesion family (129). As far as FAK
protein in humans is concerned, it is well-established that FAK
serves as a scaffold for multiple protein signaling complexes, and
its scaffolding function is very important for tumor progression
(131). In canine oncology, interesting results were shown by
Rizzo et al., demonstrating that the treatment of highly invasive
D17 cells and other two OSA cell lines with Sulforaphane
significantly decreased the phosphorylated state of FAK, also
diminishing the invasion ability of cells cultured on Matrigel
(132). These findings indirectly suggest a correlation between
FAK activity and VM, considering that the inhibition of D17OSA
cell invasiveness corresponds to a decrease of VM features in vitro
(14). Moreover, inhibition of FAK phosphorylation improved
migration of canine hemangiosarcoma cells (133). FAK-mediated
signaling was induced by numerous microenvironmental inputs
and plays a central role in tumor-associated EMT and epithelial
cells extrusion, migration, and response to the transforming
growth factorβ (TGFβ) and the hepatocyte growth factor (HGF),
as often demonstrated on MDCK cells (134–140). The use of
these cells has also allowed understanding the involvement of
FAK in the EMT induced by latent membrane protein 1 (LMP1)
of EBV (141). Finally, the FAK inhibitor Masitinib mesylate
(AB1010) has been the first anticancer therapy approved in

veterinary medicine for the treatment of unresectable canine
mast cell tumors (142).

MMPs in Canine Tumors
In veterinary literature, current knowledge on the activity and
function of proteases and stroma and their relationship with
canine cancer malignancy is still limited (143), despite the fact
that MMPs have been widely explored in several human cancers
and are strictly related to the VM process (144, 145). Inhibition
of extracellular proteolysis, in particular of collagenases MMP1,
MMP2, and MMP9, is recognized as a valid approach to canine
cancer therapy including OSA (146). In fact, Doxycycline at
doses >5µg/ml significantly decreased OSA cell proliferation
and MMP1 activity in vitro (147).

Mmp1 is the most significantly downregulated gene in Hsp70
knockdown canine OSA cells, and increased expression ofmmp2
and mmp9 was linked to increased invasive capability in canine
OSA (78, 148, 149).

Furthermore, MMP2 and MMP9 enzyme activity was found
by means of zymography in three high malignant OSA cell
lines (150).

The association between collagenase expression and activity
and histological grade has also been demonstrated in canine mast
cell tumor and lymphoma, together with VEGF dysregulation
(151, 152), in mammary tumors, in relation to E-cadherin (153,
154), and in chondrosarcoma (153, 155–160). No differences in
MMP9 expression were observed between IMC and non-IMC,
although its expression was associated with higher nuclear grade
in IMC tumors (161). As well, MMP2 and MMP9 dysregulation
was found in canine oronasal tumors, hemangiosarcomas,
and meningiomas, not always in association with malignant
morphological patterns (143).

Integrin Signaling in MDCK Cells and
Canine Cancers
Integrin subunits may combine each other to affect the
characteristics of cancer cells and the progression of tumors, both
binding with proteins that directly regulate the actin cytoskeleton
of cells and by phosphorylating the relative kinases, including
FAKs (162). It is well-known that integrin complexes bind
ECM components to promote cell adhesion and invasion, also
mediating tissue tropism (163, 164). MDCK cells were used to
demonstrate that α2β1 integrin mediates adhesion to types I and
IV collagen in an Mg2+-dependent manner, thus improving cell
survival, EMT, cell spreading, and brunching morphogenesis.
Furthermore, overexpression of Galectin8, which activates
selective β1-integrins involved in EMT, promotes oncogenic-like
transformation of MDCK cells (134, 154, 165, 166).

In veterinary oncology, a deregulation of integrin pathway,
together with Wnt and chemokine/cytokine signaling, has
been found in relation to short survival in canine OSA
(167). The expressions of β1 integrin and α5β1 complex
were immunohistochemically evaluated in a series of normal,
dysplastic, and neoplastic canine mammary glands, and in
lymph node metastases (168, 169), while β2 integrin was
found in canine cutaneous histiocytoma (170). Finally, canine
hemangiosarcoma cell lines expressing several endothelial
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mediators including VEGF and αvβ3 integrin recapitulate
features of mitotically activated endothelia and stimulate robust
angiogenic responses in mice, forming tumor masses composed
of aberrant vascular channels. Furthermore, they showed
anchorage-independent growth and were motile and invasive,
forming vessel-like structures when cultured on a basement
membrane matrix (171, 172).

EphA2 Inhibition in Canine Tumor Therapy
and Its Mechanisms of Action
Targeting EphA2 represents an important goal in the
development of recent anti-cancer drugs also in veterinary
medicine, as shown by the attempt to evaluate the mechanism
of Desanitib in the treatment of canine histiocytic sarcoma and
the development of a cytotoxic compound that targets EphA2,
EphA3, EphAB2, and interleukin 31 receptor A2 (IL31RA2) in
canine high-grade gliomas (173, 174). The inhibition of EphA2
and IL31RA activity reduced up to 94% of tumor volume in
50% of dogs in the cohort (175). Furthermore, dogs were used
to test the performance of a nanotherapeutic encapsulating a
hydrolytically sensitive Docetaxel prodrug and conjugated to an
antibody specific for EphA2, demonstrating an improvement
in tumor penetration and antitumor activity (174). In ex vivo
specimens, EphA2 resulted to be highly overexpressed in
neoplastic cells of canine appendicular OSA, together with
EphA3 (176). In vitro, ephA2 expression was increased by up to
60-fold in canine prostate carcinoma lines derived from lung or
bone metastases (177). MDCK cells were used to demonstrate
the role of EphA2 in the epithelial morphogenesis in 3D culture
and in the apical extrusion of transformed epithelial cells as
a protective event. MDCK cells were also used to investigate
EphA2 role in the decreased integration of claudin4 into sites
of cell–cell contact as tumorigenic trigger and in the anoikis
resistance process (178–181).

mTOR AND RhoA/ROCK PATHWAYS

DEP domain-containing mTOR-interacting protein (DEPTOR)
is an important modulator of mTOR, a kinase at the center of two
important protein complexes named mTORC1 and mTORC2
(182). DEPTOR is able to interact with mTOR, thus inhibiting
its kinase activity. It is involved in several molecular pathways
controlling cellular homeostasis and it can behave either as an
oncogene or oncosuppressor, depending on the cell or tissue
type (183). It has been demonstrated that DEPTOR knockdown
significantly decreased the number of tube-like structures and the
invasion ability of the methylnitronitrosoguanidine transformed
human OSA cells (MNNG/HOS) (184).

RhoA/ROCK pathway is a versatile regulator of multiple
cellular processes, and it is dysregulated in several cancers.
Recently, ROCK has attracted attention for its crucial role in
angiogenesis, in regulating permeability, migration, proliferation,
and tubulogenesis of endothelial cells (185). RhoA/ROCK
stabilizes HIF1α during hypoxia inducing VM in hepatocellular
carcinoma (186). Moreover, RhoA/ROCK expression was found
to be higher in human OSA tissues and in the human OSA cell

line U2OS with respect to control. Inhibition of RhoA/ROCK
signaling pathway by the pharmacological inhibitor Fasudil
reduced vascular-like channels in U2OS and melanoma cells
cultured on Matrigel, decreasing cell plasticity and motility, both
of which play key roles in VM formation (187, 188).

Role of mTOR Pathway in Canine MDCK
Cells and Cancers
mTOR pathway belongs to the series of conserved pathways
that impact upon longevity and aging-related diseases such
as cancer (189). Phosphatidyl inositol 3-kinase (PI3K)-AKT-
mTOR was identified as one of the most relevant pathways
involved in OSA progression both in humans and canines
(190). The screening of protein kinase inhibitor compounds,
particularly against PI3K-AKT-mTOR activity, represents an
important topic of canine OSA therapy (191–193). Although
the effect of the aberrant PI3K-AKT-mTOR signaling on tumor
cell proliferation and apoptosis is well-known in canine OSA,
the relation between mTOR and migration, invasion, and
angiogenesis properties has been better explored in other types of
canine cancer including hemangiosarcoma (194), prostate cancer
(195), mammary tumors (196, 197), melanoma (198), and mast
cell tumors (199).

Of relevance, MDCK cell model was used to demonstrate
that mTOR signaling plays important roles in the regulation of
epithelial tubule formation onMatrigel. It was observed that PI3-
kinase regulates early epithelial remodeling stages, while mTOR
modulates latter stages of tubule development (200), suggesting
a possible involvement of mTOR pathway in VM progression.
To the best of our knowledge, there are no studies investigating
mTOR modulation mediated by the DEPTOR domain in dog.

RhoA/ROCK in Canine MDCK Cells
Considering that cell migration plays crucial roles in cancer cell
invasion, the study of mechanisms of junction and cytoskeletal
organization mediated by guanosine triphosphatases (GTPases)
of the Rho family has acquired great importance (201, 202).
RhoA/ROCK pathway has been widely investigated in MDCK
cells as a model of cell migration, cell-cell interaction and
adhesion, EMT promotion, and virus entry (201–204).

In Moloney sarcoma virus-(MDCK)-invasive (MSV-MDCK-
INV) variant tumor cells, it has been observed that Rho/ROCK
activation may affect tumor cell migration and metastasis
by stimulating the pseudopodal translocation of mRNAs and
thereby regulating the expression of local signaling tumorigenic
cascades (205, 206). RhoA hyperactivation can also influence
normal MDCK cell polarity (Yu et al., 2008). The inhibition of
RhoA pathway leads to a decrease of anchorage-independent
growth of MDCK cells in vitro and in syngeneic mice, also
downregulating Cox2gene (207, 208).

LncRNAs

Non-coding RNAs, especially miRNAs and lncRNAs, have
been widely investigated due to their roles as key players in
regulating various biological and pathological processes involved
in OSA progression, including cancer cell migration, invasion,
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angiogenesis, and metastasis (209, 210). LncRNAs are non-
coding transcripts >than 200 bp in length, and different studies
demonstrated the influence of these molecules in gene expression
at the epigenetic, transcriptional, and post-transcriptional
levels. One of the most classical mechanisms through which
lncRNAs regulate gene expression involves their association
with chromatin modeling complexes and transcription factors,
influencing transcriptional repression and activation of gene
promoters (211).

Ren et al. profiled the expression of lncRNAs in highly
aggressive OSA cell line 143B in comparison with its parental
poorly aggressive cell line HOS, both plated on Matrigel. The
top five upregulated lncRNAs were n337322, n333984, n381586,
n338209, and TCONS_l2_00028738-XLOC_l2_014777, while the
five downregulated lncRNAs were n334144, n342556,n410003,
n335665, and ENST00000442174, also indicating that the top-
ranked hub lncRNA that had the highest connections with
the majority of the others in the network was n340532 (67).
Through VM assay, this study also showed that VM ability of
143B cells strongly decreased following n340532 knockdown,
as well as the number of metastatic nodules after injection of
143B cells stably transfected with sh-n340532 into nude mice.
Tumor tissues collected from the sh-n340532 group exhibited
a decreased number of VM channels compared to the control
group (67). FTX and MALAT1 were also strongly upregulated
in this study. As far as FTX is concerned, its involvement in
migration and metastasis was also previously demonstrated, as
well as the induction of VM by MALAT1 (16, 212).

Among others, lncRNA AFAP1-AS1 was found to be
aberrantly expressed in OSA together with HOTAIR, HULC,
and H19 that were upregulated in human OSA tissues and
cell lines. Shi et al. also performed an in-depth investigation
to explore the role and the mechanism of AFAP1-AS1 in
OSA progression, demonstrating that the stable transfection
of different OSA cell lines with siRNA AFAP1-AS1 strongly
reduced their ability to form tube-like structures in vitro.
In the same work, a concomitant decrease of EMT and
RhoC/ROCK1/p38MAPK/Twist1 signaling pathway was also
observed (213).

Moreover, differences between non-VM and VM cells
compared in a microarray highlighted the significant
overexpression of the lncRNAs LINC00265 and LINC00342
in the VMOSA cell line with respect to control. The study
also confirmed that both LINC00265 and LINC00342 were
upregulated in OSA tissues and that the high expression of
LINC00265 was positively correlated with Spermine N1-
Acetyltransferase 1 (Sat1) and Vav Guanine Nucleotide Exchange
Factor 3 (Vav3) gene expression, as well as with poor prognosis.
LINC00265 was also demonstrated to promote proliferation,
migration, invasion, and tube formation via miR3825p targeting
Sat1 and Vav3 genes in OSA cells cultured on Matrigel. SAT1 is a
polyamine acetyltransferase that has a controversial role among
different tumors, although it has been demonstrated to promote
proliferation and metastasis of OSA cells both in vitro and in vivo
(214). VAV3 is an important factor regulating angiogenesis and
regulates the Rho/Rac family of GTPases involved in cell growth
and motility (214).

LncRNA in Dogs
Among the multiple epigenetic mechanisms found in canine
cancer, DNA methylation and histone modification have been
identified on the basis of OSA progression (211). Le Beguec et al.
characterized the expression profiles of 10.444 canine lncRNAs
in 26 distinct tissue types. Their study showed that lncRNA
expression is mainly clustered by tissue type, highlighting that
44% of canine lncRNAs are expressed in a tissue-specific manner
and also identifying more than 900 conserved dog-human
lncRNAs (215). An alignment-free program that accurately
annotates lncRNAs (FEELnc) was used on a real data set of
20 RNA-Seq from 16 different canine tissues, produced by
the European LUPA consortium to expand the canine genome
annotation, including 10.374 novel lncRNAs and 58.640 mRNAs
transcripts (216). This work allowed identifying three new
cancer susceptibility candidate lncRNAs in dogs, which are well-
described in human cancer, includingMALAT1, that is associated
with human VM and metastasis (16, 217). Other studies
observed more than 900 dog-human conserved lncRNAs using
comparative genomics, confirming the presence of well-studied
lncRNAs in dogs, such as HOTAIR and MALAT1 in canine B
cell lymphoma and identifying lncRNAs differential expression
as a prognostic tool (218–220). Of relevance, 417 differentially
expressed lncRNAs were identified in canine oral melanomas
in comparison with control samples, including the well-studied
lncRNA ZEB2-AS, a lncRNA involved in the regulation of the
transcription factor Zinc Finger E-Box Binding Homeobox 2
(Zeb2) during EMT in human colon, pancreatic, and breast
cancer cell lines, as well as SOX21Antisense Divergent Transcript
1(Sox21-as1) and Cancer Susceptibility 15(Casc15) (211, 221,
222). Finally, long non-coding transcripts from telomeres, called
telomeric repeat-containing RNA (TERRA), were identified as
blocking telomerase activity in canine tumor cell lines originated
from soft tissue sarcomas (223). MDCK cells were also tested for
the presence of tumorigenic lncRNAs, with the aim of preparing
a safer and more reliable non-neoplastic MDCK cell line for
vaccine production, founding several tumor-associated lncRNAs
(224). Furthermore, a highly upregulated lncRNA in liver cancer
was demonstrated to be a promoter during the epithelial and
smooth-muscle-like differentiation of adipose-derived stem cells
(ADSCs) via the bone morphogenetic protein 9(BMP9)/Wnt/β-
catenin/Notch network (225). Genome-wide association studies
(GWAS) identified a set of variants within the intron of a
lncRNA upstream of the adrenoceptor beta 1(Adrb1) gene which
is strongly associated with coat color. Two variants were found at
high frequency in single-coated dogs and are rare in wolves (226).

THERAPEUTIC POTENTIAL AND
CURRENT LIMITATIONS

Both western and traditional Chinese medicines were used to
evaluate a potential VM inhibition. Current anti-angiogenic
drugs are often useless in the dampening of VM, inhibiting
directly endothelial cell proliferation. At the same time, the
consequent vascular density decrease can cause hypoxia in
the tissue triggering VM as a compensatory stimulus (2).
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The combination of drugs targeting VM and classical tumor
angiogenesis can definitively reduce the blood and nutrient
supply of tumors (227). Furthermore, in the era of chimeric
antigen receptor (CAR)-T cell therapy, it is increasingly urgent
to find specific markers for cancer management, and VM can
represent an opportunity to find a cancer selective therapeutic
target. In fact, in the VM process, multipotent tumor cells with
CSC-like phenotype can transdifferentiate, generating ECM-rich,
CD31-negative, and PAS-positive vascular networks, but CD31+,
PAS-negative tubular-like structures have also been observed
(6, 59). This evidence demonstrates that the mechanism of
endothelial transdifferentiation of cancer cells within the tumor
is still unclear, and this issue complicates the identification of
specific cancer biomarkers. Recently, increasingly advanced in
vitromodels have been developed for the deeper investigation of
this relative new process.

CONCLUSION AND PERSPECTIVES

A growing body of evidence indicates that VMplays fundamental
roles in tumor invasion, metastasis, and poor prognosis in human
patients with malignant tumors, including OSA. Thus, VM may
represent a potential novel target of anti-tumor therapy, even
though the cellular mechanisms and molecular pathways by
which VM is promoted have not been fully clarified. Endothelial
mediators have been especially explored in human OSA and
in veterinary oncology, together with the presence of CSC

markers and the pathways involved in ECM interaction and cell
adhesion. The molecular pathways involving VEGF/VEGFR and
integrins have been found to be related to VM and vessel-like
formation in vitro in canine oncology, while CD133 resulted
to be determinant for tubular-like structure formation in vitro
of canine normal cells (Supplementary Table 1). Information
concerning the VM process and its biological implications
in cancer is still limited in veterinary literature, despite the
importance of canine tumor models in comparative oncology.
The current knowledge concerning VM findings in human OSA,
summarized in the present review, may provide a basis for
stimulating future studies investigating VM in canine oncology
as a possible target with great promise in cancer therapy.
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Metastatic osteosarcoma has a bleak prognosis in both humans and dogs, and there

have been minimal therapeutic advances in recent decades to improve outcomes.

Naturally occurring osteosarcoma in dogs is shown to be a highly suitable model

for human osteosarcoma, and limited data suggest the similarities between species

extend into immune responses to cancer. Studies show that immune infiltrates in canine

osteosarcoma resemble those of human osteosarcoma, and the analysis of tumor

immune constituents as predictors of therapeutic response is a promising direction

for future research. Additionally, clinical studies in dogs have piloted the use of NK

transfer to treat osteosarcoma and can serve as valuable precursors to clinical trials in

humans. Cytotoxic lymphocytes in dogs and humans with osteosarcoma have increased

activation and exhaustion markers within tumors compared with blood. Accordingly, NK

and T cells have complex interactions among cancer cells and other immune cells,

which can lead to changes in pathways that work both for and against the tumor.

Studies focused on NK and T cell interactions within the tumor microenvironment

can open the door to targeted therapies, such as checkpoint inhibitors. Specifically,

PD-1/PD-L1 checkpoint expression is conserved across tumors in both species, but

further characterization of PD-L1 in canine osteosarcoma is needed to assess its

prognostic significance compared with humans. Ultimately, a comparative understanding

of T and NK cells in the osteosarcoma tumor microenvironment in both dogs and humans

can be a platform for translational studies that improve outcomes in both dogs and

humans with this frequently aggressive disease.

Keywords: osteosarcoma, NK cells, T cells, tumor microenvironment (TME), immunotherapy, canine model

INTRODUCTION

Osteosarcoma (OSA) is an aggressive cancer of the skeleton in both dogs and humans with high
rates of metastasis. Untreated, 90% of dogs with OSA develop metastasis within 1 year, and 85–90%
of humans do so within 2 years (1). When gross metastatic disease develops, survival is dismal, and
fewer than 20% of human patients survive 5 years and fewer than 5% of dogs survive 2 years with
disseminated disease (2, 3). In the past few decades, there has been limited advancement of OSA
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therapies, and outcomes for patients with metastatic disease
have remained stagnant (4, 5). Canine OSA (cOSA) occurs
spontaneously and shares notable genomic profiles, clinical
presentations, and progression patterns with human OSA
(hOSA) (1, 6–8). The intact immune system of dogs with
naturally occurring cancer along with the relatively high
incidence of cOSA and extensive similarities between cOSA
and hOSA make companion dogs an ideal platform for
translational oncology, especially in the investigation of novel
immunotherapies (9, 10).

NK cells are innate immune cells with cytokine-producing
and cytotoxic effector capabilities that have been identified in
the OSA tumor microenvironment (TME) along with cytotoxic
and helper T cells (11, 12). Both NK and CD8+ T cells
have the capability to kill cancer cells using their cytotoxic
functions, but their potential cooperation is complex. The
downregulation of MHC-I by certain cancer cells effectively
circumvents recognition by CD8+ T cells but simultaneously
increases activation of NK cells by removing a major inhibitory
signal (13). Additionally, IFN-γ secreted by NK cells stimulates
CD4+ T cell activation and is required for proliferation of CD8+
T cell precursors (13). In many cancers, such as melanoma,
gastric cancer, and myeloma, among others, secretion of IFN-γ
is also shown to induce PD-L1 expression in tumor cells (14).
IFN-γ-induced upregulation of PD-L1 expression on immune
and tumor target cells is recognized as a conserved mechanism
of adaptive immune resistance and tolerance as a response to
chronic antigen stimulation, which is observed in both cancers
and chronic pathogen exposure (15–17). These cooperative
antitumor properties of NK and both CD4+ and CD8+ T cells
are contrasted by studies showing that NK cells kill activated
T cells to protect against virus-induced immunopathology (18,
19). Even among tumor-infiltrating T cells, tumor and immune
cells expressing PD-L1 can inhibit neighboring PD-1+ T cells
through the PD-1/PD-L1 axis, an immune checkpoint that cancer
cells can exploit to inhibit antitumor immune responses (20).
In humans, NK and T cells also show increased exhaustion
markers in the solid TME, making reversal of the resulting
immunosuppression a key aim of emerging immunotherapies
(21). Veterinary studies also identify features of immune
exhaustion in dogs with cancer (22, 23), but focused studies
are needed to answer lingering questions of the consistency of
these markers and how to target them. Analyses establishing the
extent to which cOSA infiltrating NK and T cells are comparable
to hOSA support a deeper understanding of the OSA TME
and advance bench-to-bedside studies to speed the translation
of novel immunotherapies. This review focuses on the recent
literature characterizing NK and T cell infiltrates in OSA tumors
and their prognostic significance in humans and dogs.

BLOOD VS. TUMOR

The TME is made up of tumor cells, healthy stromal
and nonimmune cells, and immune cells, all of which are
communicating in dynamic interactions that work both for and
against the tumor (24). These interactions occur in the context

of a systemic immune response, including immune cell activity
within the peripheral circulation, which, interestingly, does not
inherently parallel activity in the TME (25–29).

In healthy dogs, CD4+ and CD8+ T cells comprise
approximately 49 and 22% of lymphocytes, respectively, in
peripheral blood, and T regulatory cells (Tregs) account for 4.5%
of CD4+ T cells (25). Walter et al. (12) looked at peripheral
immune responses in dogs prior to and following chemotherapy
and found that dogs with osteosarcoma have fewer pretreatment
CD4+ and CD8+ T cells in the blood than healthy dogs. Canine
Tregs have also been identified and found to be higher in blood
from dogs with OSA compared with healthy dogs (25, 30, 31).
Later, the same working group established the clinical relevance
of circulating lymphocytes in cOSA. For example, Sottnik et
al. (32) observed that dogs with lower monocyte counts and
lymphopenia prior to treatment with amputation and adjuvant
chemotherapy had an increased disease-free interval (DFI). The
authors call attention to the fact that this contrasts with human
studies in which lymphopenia is associated with worse outcomes
in sarcomas and other cancers (33). However, recent hOSA
studies largely focus on lymphocytes in the context of other
blood parameters, such as high neutrophil-to-lymphocyte ratios
(NLRs) or low lymphocyte-to-monocyte ratios (LMRs), which
are both associated with poor prognosis (34, 35). The necessity
of lymphocyte ratios could be explained by the importance of
other immune cell populations and the conflicting functions of
different lymphocyte subsets, such as Tregs. For example, Biller
et al. (25) analyzed CD4+ T, CD8+ T, and Treg (defined as
CD4+FOXP3+) cells by flow cytometry in cOSA and found
that low circulating CD8/Treg ratios were associated with shorter
survival time. Investigation of NLR and LMR within cOSA are
needed for an accurate comparison of the prognostic significance
of circulating lymphocytes in dogs.

Although circulating CD8/Treg ratios were associated with a
significantly worse prognosis, this was not seen in cOSA tumor-
infiltrating lymphocytes (TIL), an indication of the differing
immune populations between blood and tumors (25). This
discordance is further substantiated with evidence from the
same study that Tregs are highest in cOSA tumors, making up
21% of lymphocytes in the TME, compared with Tregs in the
lymph nodes and circulation (25). The pattern stays consistent
in mouse and human OSA, where, compared with blood, tumors
have a higher concentration of Tregs as well as more activated
Tregs based on cellular proliferation and increased expression of
activation markers (26). The similarities extend to other immune
cell subsets. A recent comparative study by Judge et al. (27)
observed that proportions of T and NK cells (using CD3, CD8,
and NKG2D by PCR as readouts) were significantly higher in
peripheral blood compared with the TME in both cOSA and
human sarcomas. The authors also found that, though tumors
have low infiltration of lymphocytes, activation and exhaustion
markers of infiltrating CD8+ T and NK cells are higher than
those found in circulation (28). In another study, CD3+ T cells in
hOSA similarly had significantly higher expression of exhaustion
markers than those in peripheral blood (29).

Based on the current literature, both human and dog OSA
tumors contain CD3+ T, CD8+ T, and NK cells, and the
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activation and exhaustion of these immune cell subsets varies
significantly between the tumor and circulation. The immune
landscape of both the TME and peripheral circulation is
important in identifying novel immunotherapies and patients
most likely to respond to them (36). However, immunotherapies
targeting immune cells in the TME, such as PD-1/PD-L1
inhibitors, have the added benefit of eliciting targeted antitumor
responses, sometimes with minimal side effects (37). As a critical
window into the mechanism of immune cell and solid tumor
interaction, summarized in Figure 1, the remainder of this review
focuses on the OSA TME specifically and characteristics of
infiltrating T and NK cells.

T CELLS

Recent evaluation of cOSA tumors from our group using
immunohistochemistry (IHC) confirmed minimal CD3
infiltration compared with normal lymph nodes (27). There was
varied cOSA intra-tumoral CD3 and CD8 gene expression after
radiotherapy (RT) plus NK transfer, which did not correlate
significantly with survival, acknowledging that sample size was
a limiting factor (27). However, these results suggest that an
immune “cold” cOSA tumor could be transformed into a “hot”
tumor with immunotherapy (27). This hypothesis stems from
increasing studies of lymphocyte infiltration, or immune score,
in human cancers with higher levels indicating hot tumors and
those with low infiltration being cold tumors, whichmay bemore
accurate in predicting survival than the tumor-node-metastasis
staging system (38). The ability to increase immune scores
therapeutically is demonstrated by Modiano et al. (39), who
found that the percentage of CD3+ T cells in cOSA jumps
from 8 to 17% after fas-ligand gene therapy. The increase in
TILs also correlates with survival because dogs with greater
lymphocyte infiltration after treatment had longer survival
times than dogs with lower infiltration (39). Similarly, in hOSA,
CD8+ cells were observed in the majority of tumors but only
made up 1% of intra-tumor cells (40). Even with low CD8+
staining within hOSA tumors, CD8+ cells were still significantly
associated with improved prognosis and also favorably predicted
survival posttreatment with zoledronic acid (40). These results
together provide evidence of OSA being an immunologically
cold tumor that can be treated to increase immune cell activity
and improve survival.

On the other hand, some studies show cOSA to have varying
patterns of TILs. Biller et al. (25) were among the first to evaluate
tumor infiltrates of cOSA, finding that tumors were relatively
highly infiltrated, made up of 19.2% CD4+ and 8.6% CD8+ T
cells, but TILs were not associated with survival. The discrepancy
may be due to varying techniques as this study determined
percentage of cells by flow cytometric analysis of strained tumor
samples rather than IHC evaluation. But Withers et al. (41) later
also showed evidence of varying degrees of infiltration using
IHC with CD3+ cells ranging from 4.6 to 607.6 cells/mm2

in cOSA tumors. Although CD3+ infiltrates alone were not
prognostic, increased infiltration of CD204+ macrophages was
associated with increased DFI, leading the authors to suggest

that cOSA is an immunogenic tumor (41). In a second study,
Withers et al. (42) further examined heterogeneity of infiltrates
by comparing infiltrates within matched primary and metastatic
cOSA tumors. They reported that overall immune infiltrates of
the primary tumor correlated with a patient’s metastatic lesions,
but importantly, they also found that CD3+ and CD204+
macrophages were significantly higher in metastatic lung lesions
compared with their primary tumor (42). The range of TILs in
cOSA and inconsistent associations with survival, rather than
conflicting each other, may point to intra-tumoral heterogeneity
within cOSA and complicate the idea of cOSA being uniformly
cold. Cascio et al. (43) found cOSA to have virtually no
infiltration of CD3+ and CD8+ T cells within the tumors but
found both subsets in much higher concentrations in the peri-
tumor areas. This aligns well with the definition of “altered”
or “excluded” tumors, an intermediate between hot and cold,
that have T cells present in tumor margins that are excluded
from entering the tumor (38). The presence of distinct immune
subtypes with low, intermediate, and high immune infiltrate
has already been described in hOSA and is shown to affect
response to immunotherapy treatments (44). Each tumor type—
cold, altered, or hot—has distinct features that make them
more or less likely to respond to a specific treatment, such as
checkpoint inhibitors or adoptive cell therapy (38, 44, 45). Based
on the available literature, cOSA recapitulates the heterogeneity
of immune infiltrates and distinct immune score subtypes seen
in hOSA. Still, choosing therapeutics based on levels of immune
infiltrates has not yet been explored expressly in cOSA, and
further studies are needed to corroborate the use of immune
score to predict response to treatment and survival as seen
in humans.

CHECKPOINT INHIBITORS: PD-1/PD-L1

Although beyond the scope of this review and reviewed in
detail elsewhere (46, 47), an understanding of the PD-1/PD-
L1 pathway is critical to understanding the interactions of T
cells with tumor cells as well as other immune cells. PD-L1 is
frequently upregulated on tumor cells, and its interaction with
PD-1 on immune cells induces tumor tolerance and allows for
immune evasion (46). PD-L1 is also found to be expressed on T
cells in mouse models with PD-1+ T cells exhibiting multiform
interactions that lead to protumor effects (20). Both anticanine
PD-1 and PD-L1 therapeutic antibodies have been developed and
proven to possess antitumor activity in dogs with cancer (48, 49).

The first study to look at PD-L1 in cOSA did not find
expression in samples using IHC, although the study only had
three cOSA samples (50). Subsequent studies have found that
the majority or all cOSA samples evaluated by IHC express PD-
L1 (51, 52). PD-L1 expression in cOSA tumors was likewise
consistently found by Cascio et al. (43), whose results show
that expression of PD-L1 is associated with resistance to T
cell infiltration from the peri-tumor environment to within the
tumor, but the study did not evaluate prognostic significance.
Although the expression of PD-L1 varies in hOSA, it is
consistently associated with TILs. Studies found that PD-L1
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FIGURE 1 | Interactions between cancer and immune cells within the TME as well as relevant receptors and soluble factors. Created with BioRender.com.

is expressed in up to 25% of hOSA tumors and correlates
with increased infiltration of PD-1+, CD3+, and CD56+ cells;
however, there is no significant correlation to survival (53). A
later study found that more than 43% of hOSA harbor PD-
L1+ tumor cells with positive correlations to TILs (54). Similar
to overall levels of immune infiltration in OSA, the impact
of PD-L1 expression in hOSA is conflicting because PD-L1
expression is associated with a negative prognosis secondary
to immune dysfunction and also better event-free survival and
overall survival because of greater density of TILs and other
immune cells (54). Additionally, an increase in PD-L1-expressing
tumor-infiltrating immune cells is significantly associated with
response to humanized anti-PD-L1 antibody (55), though the
specific indications of these biomarkers for response to treatment
varies within different cancer types (56). Consequently, further
characterization of PD-L1 expressing cells in cOSA is needed
for accurate comparison to human studies and investigation of
cOSA’s sensitivity to PD-1/PD-L1 blockade.

NK CELLS

Even in scenarios in which T cells are present in the TME,
cancer cells can suppress MHC-I expression, which is necessary
for CD8+ T cells to recognize a target and enact their cytotoxic
functions. NK cells, on the other hand, recognize “missing-
self ” or the lack of MHC-I molecules and can exert their
cytotoxic functions in situations in which CD8+ T cells cannot,
forming a basis of reasoning for their use in immunotherapies

(13). This is seen specifically in hOSA, in which the majority
of tumors showed diminished expression of MHC-I, and its
downregulation is associated with a worse prognosis (57). NK
cells are proven to be capable of lysing hOSA cells (58), and
adoptive transfer of NK cells serves as a mechanism to increase
the numbers of cytotoxic cells capable of targeting OSA cells
in vivo. Canine and human NKp46+ NK cells show impressive
similarities in expression of natural cytotoxicity receptors and
secretion of factors, such as IFN-γ and TNF-α (59). In addition,
NKp46+ is not expressed uniformly across NK cells, and its
absence correlates with decreased cytotoxicity across species (59).
The similarities in both NK cells and OSA in general make dogs
an ideal candidate for comparative studies of NK cell infiltrates
in OSA.

Mouse models of osteomyelitis with concurrent OSA were
early implications of the role of innate immune cells, including
NK cells, in the OSA antitumor response (60). Through NK
cell depletion, NK cells were found to be critical in OSA
tumor growth inhibition (60). One mechanism by which tumors
continue to grow in the presence of NK cells may be through
overexpression of TGF-β, a potent inhibitor of NK cells.
Canine OSA tumors consistently stain positive for TGFβRI
and TGFβRII (61), providing a rational for the expansion
and transfer of expanded and TGF-β-imprinted NK cells
in cOSA therapy (62, 63). Imprinting of NK cells involves
prolonged coculture with IL-2 and TGF-β to produce NK cells
that are desensitized to the inhibitory effects of TGF-β and
thereby capable of prolonged hyperfunctionality with increased
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cytotoxicity, cytokine production, and longevity. This approach
has the potential for novel use in NK immunotherapies (63).
In their phase I trial using hypofractionated RT and autologous
intratumoral NK cell transfer in dogs with naturally occurring
OSA, Canter et al. (64) demonstrate increased progression-free
survival in dogs with OSA compared with historical controls.
The same group collected tumor specimens from patients in this
first-in-dog clinical trial and found that pre- to post-treatment
immune-related gene transcript changes varied considerably
between dogs (27). NK gene transcripts have significantly
less expression of both CD3+ and CD8+ cells in untreated
cOSA tumor samples, but there were no patterns of expression
that significantly correlated with survival at six months post-
treatment in paired samples (27). Intra-tumoral changes in
expression of IL-6, a gene linked to cytotoxic lymphocytes,
was higher in dogs with prolonged survival though statistical
significancemay have been limited by the sample size (27). Future
clinical trials with increased sample sizes are needed to better
evaluate the prognostic value of cOSA tumor-infiltrating NK cells
and the therapeutic benefit of NK cell immunotherapy. It should
be noted that the full characterization of canine NK cells and
their surface markers is still in progress compared with human
NK cells and could provide critical information in their use for
NK immunotherapies (65). The use of NK cell transfer has not
been explored extensively in hOSA, likely due to limiting factors
in the sourcing and expansion of NK cells (66, 67), but early
successes seen in cOSA can potentially drive translation of NK
immunotherapy to clinical trials in humans.

CONCLUSION

Osteosarcoma is an aggressive disease for which novel
therapeutics are needed, and dogs with spontaneously occurring
cancer are a useful model for hOSA studies. Both cOSA and
hOSA share extensive similarities, including the frequency and

phenotype of immune cells within the TME and peripheral
circulation. The OSA TME constitutes a complex web of
interactions, especially among NK and T cells, that can be
targeted with immunotherapies. OSA tumors in both humans
and dogs fall on a spectrum of immune infiltrate levels that
correlate with prognosis, express PD-L1 with association to
increased TILs, and show sensitivity to NK cell cytotoxicity.
The parallels between cOSA and hOSA can be best put to
used after filling the gaps in current knowledge regarding the
characterization of the cOSA TME and immunotherapies to
target it. Future studies in cOSA are needed to characterize
NK cells and the expression of PD-1/PD-L1 in TILs as
well as to validate the use of immune infiltrates to predict
immune response to therapeutics. Increased understanding
of intra-tumoral NK and T cells will influence clinical
applications of TIL-targeting treatments in both dogs and
humans, ultimately leading to better outcomes for patients
with OSA.
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Cancer-induced bone pain, despite its frequency and severity, is a poorly understood

phenomenon in people and animals. Despite excitement regarding translational

osteosarcoma studies, there is a lack of attention toward examining cancer pain in dogs.

In this pilot study, we used a multimodal pain assessment methodology to evaluate pain

relief after therapeutic intervention in dogs with primary bone cancer. We hypothesized

that intervention would cause objective evidence of pain relief. Evaluations of 8 dogs

with primary bone cancer included 18F-FDG PET/CT scans, kinetic analysis, validated

owner questionnaires (Canine Brief Pain Inventory, canine BPI), and serum N-telopeptide

(NTx) concentration. Dogs were routinely staged and had 18F-FDG PET/CT scans prior

to treatment with day 0, 7, 14, and 28 canine BPI, serum NTx, orthopedic exam, and

kinetic analysis. Dogs treated with zoledronate and radiation underwent day 28 18F-FDG

PET scans. All clinical trial work was approved by the University of Missouri IACUC. Four

dogs underwent amputation (AMP) for their appendicular bone tumors; four received

neoadjuvant zoledronate and hypofractionated radiation therapy (ZOL+RT). Canine BPI

revealed significant improvements in pain severity and pain interference scores compared

to baseline for all dogs. Positive changes in peak vertical force (+16.7%) and vertical

impulse (+29.1%) were noted at day 28 in ZOL+RT dogs. Dogs receiving ZOL+RT had

a significant (at least 30%) reduction in serum NTx from baseline compared to amputated

dogs (p = 0.029). SUVmax (p = 0.11) and intensity (p = 0.013) values from PET scans

decreased while tumor uniformity (p = 0.017) significantly increased in ZOL+RT-treated

tumors; gross tumor volume did not change (p = 0.78). Owner questionnaires, kinetic

analysis, and 18F-FDG PET/CT scans showed improved pain relief in dogs receiving

ZOL+RT. Serum NTx levels likely do not directly measure pain, but rather the degree

of systemic osteoclastic activity. Larger, prospective studies are warranted to identify the

ideal objective indicator of pain relief; however, use of multiple assessors is presumably

best. With improved assessment of pain severity and relief in dogs with cancer, we can
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better evaluate the efficacy of our interventions. This could directly benefit people with

cancer pain, potentially decreasing the amount of subtherapeutic novel drugs entering

human clinical trials.

Keywords: osteosarcoma, cancer-induced bone pain, comparative oncology, cancer pain, PET imaging

INTRODUCTION

The translational value of naturally occurring animal models
of pain is understudied and underutilized (1). Cancer-induced
bone pain (CIBP), despite its frequency and severity, is a
poorly understood phenomenon in humans and animals. Bone
is not only a common metastatic site in people; it is one
of the most frequent initiators of cancer pain (2–5). The
prevalence ofmetastatic to bone neoplasia andCIBP in veterinary
patients is lacking. However, primary bone tumors in dogs,
specifically osteosarcoma (OS), have a 10–50-fold increased
incidence compared to their human counterparts (6). The
similarities between human and canine OS are striking (7):
bimodal age distribution, appendicular location, metastatic rate
and route, genomic instability, and resistance to chemotherapy
in the macroscopic setting. These parallels are exploited in
nationwide collaborative efforts to better understand and treat
this aggressive disease in dogs, with the hope of positively
affecting outcome in their two-legged friends (8). Despite the
significant push of comparative OS models, there is a lack of
attention toward using the dog to study CIBP. A recent review
of translational pain assessment focused on the gaps in currently
used experimental animal models (1). The authors described
a “crisis” of both translational and reproducible affect, which
has contributed to drug development failure rates of over 90%
once reaching human clinical phases. Benefits of using natural
animalmodels (i.e., client-owned dogs) over experimental animal
models (i.e., laboratory rodents) include the spontaneity of
tumor occurrence, shared environments, long-term survival, and
genetic diversity (1).

CIBP is multifactorial, consisting of both background and

breakthrough pain (9). While background pain may be a dull

ache that increases with disease progression, breakthrough pain is
short, unpredictable, and difficult to treat with current analgesics
(10). The components of CIBP are at minimum tumorigenic,
inflammatory, and neurologic (11). Tumors, whether primary
or metastatic, invade normal tissue and often induce osteoclasts
to break down normal bone. This results in destruction of
distal sensory fibers of cancellous/cortical nerves (12, 13)
and a painful, acidic environment associated with osteoclastic
resorption (14). Inflammatory molecules, whether released by
pro- or antineoplastic cells, incite pain through nociceptive
activity. Prostaglandins, endothelins, and nerve growth factor
may directly activate sensory neurons or alter neurotransmitter
expression (10, 11). The neurologic system responds to this
inflammatory and cancerous milieu in complex ways. There
is direct stimulation of both periosteal, cortical, and marrow
sensory and sympathetic nerves (15). At the dorsal root ganglion
(DRG), peripheral sensory nerves (whether nociceptive-specific
or wide dynamic range) synapse with ascending neurons in the

spinal cord (11). There, CIBP differs from simple inflammatory
or neuropathic pain (16). Finally, neurochemicals, including
substance P and glutamate, may further contribute to CIBP and
excite the nervous system (11).

In human CIBP, the mainstay of therapy is radiation
therapy (17). As previously mentioned, the complex nature
of CIBP mandates multimodal therapy (10). Multiple studies
have evaluated biomarkers to better quantify response of CIBP
treated with radiotherapy. In a study of over 1,000 patients
with bone metastases, a normalized bone-resorption marker (N-
telopeptide, NTx) concentration after bisphosphonate treatment
resulted in reduced risks of skeletal related events and death
(18). However, a systematic review of clinical biomarkers of
analgesic response to radiotherapy for CIBP showed no predictor
of analgesic response (19). Because CIBP is not only caused
by osteoclastic bone resorption or direct tumor destruction,
better indicators of pain response are needed to modulate
analgesic care.

In dogs, OS has been used as amodel to study CIBP. Validation
of subjective pain assessment was performedwith a questionnaire
based on the human Brief Pain Inventory (BPI) (20). This
canine BPI was administered to owners of 100 dogs with bone
cancer and reliably measured this comparative tumor model.
Additionally, a group pioneering the use of bisphosphonates
in dogs with CIBP evaluated the use of pamidronate, radiation
therapy, and doxorubicin in canine OS. Subjective pain scores,
urine NTx excretion, tumor relative bone mineral density,
and pressure platform gait analysis were used to assess pain
response (21). This same group also evaluated the expression of
nociceptive ligands, including nerve growth factor, endothelin-
1, and prostaglandin E2 in canine OS cells (22). Most recently,
13 dogs with OS were compared with control dogs to assess
quantitative sensory testing, QST, in dogs receiving stepwise
palliative analgesic therapy (23). While this study assessed
techniques that evaluate central and peripheral sensitization, not
all dogs finished the study, and disease progression may have
affected the authors’ ability to assess efficacy of the analgesics
examined. To our knowledge, the use of a multimodal analgesic
assessment involving PET scans in dogs treated with standard
of care (surgical vs. non-surgical) has not been implemented.
Therefore, we aimed to assess CIBP in dogs with multiple
subjective and objective tools, while monitoring response during
standard treatment for primary bone cancer.

METHODS

Trial Design
We designed a single-site, two-arm [arm 1= amputation (AMP),
arm 2 = zoledronate and radiation therapy (ZOL+RT)], pilot
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study evaluating subjective and objective pain measures in client-
owned dogs with malignant primary bone tumors presenting to
the University ofMissouri Veterinary Health Center (MU-VHC).
Client-owned dogs of any age, sex, or breed and weighing>20 kg
were eligible for enrollment. All dogs were diagnosed with a
primary bone tumor of the appendicular skeleton via cytology
or histopathology. Informed owner consent was collected under
an approved University of Missouri Animal Care and Use
Committee protocol (#9336). Dogs needed to have adequate
bone marrow function as measured by complete blood count
and normal organ function as measured by biochemical profile
(ALT <3x ULN and normal creatinine) with the exception
of ALP, an enzyme frequently elevated in dogs with OS (24).
Treatment with NSAIDs and other analgesics was allowed prior
to enrollment and during the trial; all dogs were receiving an
NSAID before screening commenced. Dogs were not eligible
for the study if they were treated with prior chemotherapy,
radiation therapy, or surgery, if dogs had evidence of soft tissue
or bone metastasis, or if dogs had significant comorbidities that
would limit their expected lifespan. All dogs were screened for
evidence of pulmonary neoplasia with thoracic radiographs, and
lack of metastatic disease was confirmed on baseline whole-body
PET/CT scans.

Dogs received baseline (screening) orthopedic examinations,
weight/BMI, validated owner questionnaire (20), serum
collection for NTx assays, kinetic analysis, and 18F-FDG PET/CT
scans. Within 7 days of screening, treatment intervention
was initiated. Treatments were standardized; however,
dogs were not randomized. Ethically, it is inappropriate for
veterinarians to mandate amputation for dogs deemed as poor
amputation candidates. Client owners were given the option,
based on orthopedic soundness, to pursue AMP [complete
forequarter (scapulothoracic disarticulation) or hindquarter
(femoroacetabular disarticulation)] or ZOL+RT for their dog.
Dogs that received AMP had their malignant tumors confirmed
by histopathology and could receive adjuvant chemotherapy,
based on tumor confirmation and tumor grade. All ZOL+RT
dogs received neoadjuvant 0.1 mg/kg zoledronic acid (Mylan
Institutional LLC via McKesson, NDC 67457-390-54) 24 h prior
to their first fraction of radiation therapy. All irradiated dogs
received a total of 4 weekly fractions of 8Gy (32Gy total central
axis dose) from a Siemens ONCOR Impression Plus linear
accelerator (Siemens, Munich, Germany).

After starting treatment, dogs followed a weekly assessment of
their pain control. This included a 7-, 14-, and 28-day orthopedic
exam, owner questionnaire, kinetic analysis, and serum collection
for NTx assay. At day 28, a repeat 18F-FDG PET/CT scan was
performed for ZOL+RT dogs. Standard treatment and follow-up
were continued in all dogs after cessation of the trial.

Validated Pain Questionnaire
Client owners completed the validated canine Brief Pain
Inventory (canine BPI) questionnaire, totaling 11 questions,
at each visit: baseline, days 7, 14, and 28. The canine BPI
tool can be found here: https://www.vet.upenn.edu/research/
clinical-trials-vcic/our-services/pennchart/cbpi-tool. Treatment
response assessments (positive responder or non-responder)

were determined by assignment of canine BPI scores. Briefly,
the canine BPI system involves assignment of scores ranging
from 0 to 10 on the basis of the degree to which pain appears
to interfere with 6 daily activities (Pain Interference Score or
PIS; 0 = no interference and 10 = complete interference) and
perceived pain severity (Pain Severity Score or PSS; 0 = no pain
and 10 = severe pain). For this study, the mean PSS and PIS
scores obtained for all dogs at each examination period were
compared between treatments (AMP vs. ZOL+RT) and testing
time points.

Biomarker—Serum N-Telopeptide
Whole blood was collected via jugular venipuncture at each
timepoint as previously described. Whole blood (10ml) was
allowed to clot at room temperature for∼30–45min. The sample
was centrifuged at 2,000 × g for 15min at room temperature
to separate the serum. Leaving the clot undisturbed, serum
was removed and placed in polypropylene cryovials. Samples
were frozen within 1 h of collection in liquid nitrogen and
stored at −80◦C until the N-telopeptide assay was performed.
Serum NTx concentrations were measured using a commercially
available ELISA, Osteomark R© NTX (Alere Scarborough, Inc.,
Scarborough, ME, USA). Values were expressed as normalized
nanomolar (nM) bone collagen equivalents (BCE).

Kinetic Analysis
Kinetic data were obtained at days 0 (baseline), 7, 14, and 28 by
use of a pressure sensitive walkway (PSW) system (HR Walkway
4 VersaTek System, Tekscan Inc., South Boston, MA, USA). All
dogs were walked on a leash by the same handler on the PSW
in an isolated laboratory. Each dog was walked at a velocity
of 0.9–1.2 m/s and an acceleration of ±0.5 m/s2. The PSW
was calibrated according to the manufacturer’s specifications,
and the vertical ground reaction force (GRF) data obtained
from the PSW were reported and analyzed by use of designated
software (I scan 5.23, Tekscan Inc, South Boston, MA, USA).
Before data acquisition, each dog was weighed on an electronic
scale and walked across the walkway a minimum of 3–5 times
to allow habituation, or acclimation, to the environment, the
PSW, handler, and leash. At least 10 trials were recorded
for each dog, and data from the first 5 valid trials were
analyzed. A valid trial included a straightforward walk without
stopping, hesitating, trotting, or pacing; no overt headmovement
during the trial; and maintenance of a constant speed on the
PSW within the defined velocity and acceleration ranges. For
comparison, all values were reported as a percentage of body
weight (%BW).

18F-FDG PET Scans
Dogs underwent baseline 18F-FDG PET/CT imaging with a
Celesteion PET/CT system (Canon Medical Systems, Tustin,
CA, USA) under general anesthesia. Dogs were administered a
mean of 3.99 mCi (2.83–4.58 mCi) 18F-FDG IV 1 h prior to
initiation of scan. Whole-body PET was performed, immediately
followed by whole-body CT. Iodinated contrast (Omnipaque 350
at a dosage of 2 ml/kg) was administered, and 30-s and 3-min
post-contrast infusion images were acquired. Image assessment
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was performed by a board-certified radiologist (AZ) using MIM
Software Inc. (Cleveland, OH, USA). Tumor SUVMax, count
intensity, and count uniformity were measured by region-of-
interest (ROI) analysis using a combination of RayStation and
3D Slicer (Raysearch Labs, Stockholm, Sweden) (25). SUV, or
standard uptake value, is a measure of isotope uptake over
dose of 18F-FDG administered; it indicates metabolic activity
of a specific tissue. Count intensity is a measure of the total
counts of a tissue on the PET scan and is not normalized to
dose administered. GTV, or gross tumor volume, is measured
from the concurrent CT scan and allows one to measure tumor
size. Tumor count uniformity is a measure of the metabolic
(or other radioisotope) count rate heterogeneity among voxels
within a tissue. For neoplastic lesions, the entire volume was
contoured on MIM, and the whole tumor volume was evaluated.

SUVMax was calculated as the highest point of activity within the
tumor volume.

Statistical Evaluation
This was a pilot trial to evaluate subjective and objectivemeasures
of pain. Intra- and inter-treatment arm comparisons were made
for dogs receiving non-surgical therapy (ZOL+RT) or surgery
(AMP). Data were collected at baseline and 7, 14, and 28 days.
For canine BPI, the mean PSS and PIS scores obtained for
all dogs at each examination period were compared with an
analysis of variance and multiple comparisons were performed
with Holm–Sidak’s multiple-comparison test (Figure 2). For N-
telopeptide (NTx) concentrations, data were obtained for all
dogs at each examination period. For comparison, a response
to therapy was defined by changes from baseline measurements.

FIGURE 1 | CONSORT diagram of cases in our pilot study.
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FIGURE 2 | Canine Brief Pain Inventory scores (PSS and PIS) for the affected limb in dogs with and without amputation. A reduction in score indicates a clinical

improvement. (#) denotes a significant difference compared to baseline. (†) denotes a significant difference compared to day 7. **Significant difference (p < 0.05).

***Significant difference (p < 0.001).

These values were compared between and within treatment
days with an analysis of variance, and multiple comparisons
were performed with Holm–Sidak’s multiple-comparison test
(Figure 3). For GRF, only data from dogs in the ZOL+RT arm
were available for comparison as response to therapy was defined
by changes from baseline measurements. These values were
compared between treatment days with an analysis of variance,
and multiple comparisons were performed with Holm–Sidak’s
multiple comparisons test (Figure 4). 18F-FDG PET scan values
were recorded; comparisons were performed between pre- and
post-therapy values with a t-test, and clinical response to therapy
was graphically depicted by changes from baseline measurements
(Figure 5). All statistical comparisons were performed with the
use of GraphPad Prism 6.0 h software (GraphPad Software, San
Diego, CA, USA); normality testing was performed for all data,
and all comparisons were two-sided with statistical significance
set at p < 0.05.

RESULTS

Recruitment
Fourteen dogs with spontaneously occurring primary bone

tumors were screened for the pilot study. Six screened dogs

were not enrolled due to distant metastasis or client owner
decision to not pursue the trial (Figure 1, CONSORT diagram).

Therefore, 8 dogs were enrolled from July to October 2018. Four
were enrolled in the AMP arm, and four were enrolled in the

ZOL+RT arm. All dogs finished the 28-day study and were
then followed according to their clinical treatment protocol. Dog
breeds included Golden Retriever (n = 2), mixed breed (n =

2), Mastiff, Bullmastiff, Labrador Retriever, and IrishWolfhound.
The mean age was 9 years (range 5–13 years), and mean weight
was 46.7 kg (range 33.5–72.4 kg), similar to previous publications
(7). Tumor locations included the distal radius (n = 3), tibia
(n = 2), proximal humerus (n = 2), and distal femur (n =
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1). Three patients had increased ALP values, a known negative
prognostic indicator in dogs (26). ALP values in the rest of the
dogs were within reference intervals; ALP was not performed
on one dog at screening (only renal panel performed), but ALP
was normal on subsequent serum chemistries. An orthopedic
examination was performed by a board-certified orthopedic
surgeon at the initiation of each visit. During evaluation of study
dogs, none of the patients enrolled developed novel sources of
musculoskeletal disease (other than previously noted orthopedic
or CIBP at baseline).

Validated Pain Questionnaire
The canine BPI scores [Pain Severity Scores (PSS) and Pain
Interference Scores (PIS)] were reported and compared between
treatment and time points for dogs with and without an
amputation as part of their therapy. The mean (±SD) for PSS
were 4.4 (±2.7), 3.4 (±2.5), 2.8 (±2.2), and 1.8 (±2.3) for
ZOL+RT dogs and 3.2 (±1.2), 2.3 (±2.1), 1.1 (±0.8), and 1.2
(±1.6) for AMP dogs at days 0, 7, 14, and 28, respectively. The
mean (±SD) for PIS were 7.5 (±2.5), 2.9 (±2.7), 2.3 (±2.2),

and 1.8 (±2.6) for ZOL+RT dogs and 4.0 (±1.7), 5.1 (±3.4),
2.9 (±2.5), and 1.7 (±2.4) for AMP dogs at days 0, 7, 14,
and 28, respectively. There were no significant inter-treatment
differences for PSS and PIS on baseline and days 7, 14, and 28.
There were significant intra-treatment differences found for PSS
and PIS scores compared to baseline for both arms (AMP and
ZOL+RT, Figure 2). In all cases, a significant improvement in
pain relief, as indicated by a reduction in score, was found for
PSS and PIS scores as compared to baseline.

Biomarker—Serum N-Telopeptide
N-Telopeptide (NTx) concentration is a direct biomarker of bone
turnover, where osteoclasts degrade collagen and release NTx
into circulation. Circulating NTx is also referred to as BCE,
measured in nM/L. ZOL+RT dogs had a significant (at least
30%) reduction in serum NTx (BCE) from baseline compared to
AMP dogs, p = 0.029 (Figure 3); significant differences between
treatment arms and days are also noted in Figure 3. The mean
(±SD) serum NTx (BCE) concentrations were 37.9 (±6.1), 22.7
(±8.3), 22.4 (+/10.9), and 22.8 (±5.6) for ZOL+RT dogs and 3.9

FIGURE 3 | Violin plot of serum N-telopeptide (NTx) concentration, or bone collagen equivalent (BCE), as a percent change from baseline in dogs receiving either

zoledronate and RT or amputation for appendicular primary bone tumors. Dogs receiving zoledronate and RT had a 30% or greater percentage decrease in BCE by

day 28 of the study; no dogs in the amputation arm had a decrease of 30% (p = 0.029). Dogs are grouped by treatment modality (zoledronate and RT, circles;

amputation, squares). Individual dogs can be tracked by color in each group. Means and standard deviation are noted by thicker hash mark and thinner hash mark

within the violins, respectively. #Significantly different from RT Dogs on Day 7.
†
Significantly different from AMP Dogs on Day 7. ‡Significantly different from RT Dogs

on Day 14. ¤Significantly different from AMP Dogs on Day 14. USignificantly different from RT Dogs on Day 28. ØSignificantly different from AMP Dogs on Day 28.

**Significant difference (p < 0.01). ***Significant difference (p < 0.05).
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FIGURE 4 | Mean (±SD) ground reaction force (GRF) data (peak vertical force (PVF) and vertical impulse (VI)) presented as a percentage change from baseline

(normalized as a percentage of body weight). Data represent the affected limb of dogs with non-surgical treatment (i.e., ZOL+RT). Overall, improvements in GRF

measurements (PVF and VI) showed improved weight bearing in the affected limb as compared to baseline measurements, following therapy.
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FIGURE 5 | 18F-FDG PET scan values from dogs receiving zoledronate and coarse fraction radiation therapy for their primary bone tumors. Percent changes from

baseline for standard uptake value (SUV), count intensity, gross tumor volume (GTV), and count uniformity are shown. Maximum intensity significantly decreased in all

irradiated dogs (p = 0.013); maximum SUV decreased, but not significantly (p = 0.11). GTV was not statistically different pre- and post-therapy. Tumors became more

uniform after therapy (p = 0.017). #Significant difference between pre- and posttreatment measurements (p < 0.05).

(±12.0), 32.3 (±11.7), 32.9 (±12.9), and 30.7 (±13.1) for AMP
dogs at days 0, 7, 14, and 28, respectively. Comparing the two
groups, the mean 28-day serum NTx of ZOL+RT dogs (22.8
BCE) was significantly lower than that of AMP dogs (30.7 BCE,
p < 0.05). All dogs receiving ZOL+RT had a 30% or greater
reduction in BCE by day 28; no dogs in the AMP arm had a
decrease of 30%, with only one dog reaching >20% reduction in
BCE at day 28.

Kinetic Analysis
The vertical GRF variables (PVF and VI) from the affected limb
in dogs that received ZOL+RT were collected and reported as
a percentage change from baseline (Figure 4). For peak vertical
force (PVF), the mean percentage change (+/–SD) from baseline
was +15.1% (±3.5), +13.3% (±7.7), and +16.7% (±15.0) on
days 7, 14, and 28, respectively. For vertical impulse (VI), the
mean percentage change (±SD) from baseline was+9.4% (±8.7),
+9.7% (±15.7), and +29.1% (±27.6) on days 7, 14, and 28,
respectively. Data (PVF and VI) were not available for 2 dogs
on day 28. Additionally, comparable GRF data from the affected
limb of dogs that received an amputation as a part of therapy
were not available for comparison. Reduced pain and improved

TABLE 1 | 18F-FDG PET variables assessed in dogs receiving zoledronate and

radiation therapy (ZOL+RT) for appendicular osteosarcoma.

PET variable Scan Mean SD % Change p

Tumor SUV max Baseline 9.9 0.2 −32.3 0.107

Post-Tx 6.7 2.7

Tumor count intensity Baseline 8501.0 3012.0 −44.3 *0.013

Post-Tx 4729.0 2005.0

Gross tumor volume Baseline 43.5 16.6 −0.3 0.781

Post-Tx 44.4 21.8

Tumor count uniformity Baseline 0.0048 0.0019 73.8 *0.017

Post-Tx 0.0078 0.0013

*Signifies statistical significance p < 0.05.

weight bearing following therapy are indicated by a positive
percentage change from baseline. Overall, positive improvements
in GRF measurements (PVF and VI) were noted on each testing
day as compared to baseline measurements. However, there
were no statistically significant differences in these improvements
between testing days for PVF or VI.
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FIGURE 6 | Baseline and day 28 2D images of 18F-FDG PET scans in two dogs with appendicular primary bone tumors receiving ZOL+RT. Both dogs had

reductions in standard uptake value (SUVmax) and tumor count intensity, with no change in gross tumor volume (GTV), and increases in tumor count uniformity. Dog #5

(two left panels) had a distal femur lesion; dog #7 (two right panels) had a distal radius lesion. Primary bone tumors with high intensity 18F-FDG uptake are noted by

white arrows, with visual increase in tumor uniformity and decrease in intensity noted on 28-day scans.

18F-FDG PET Scans
All dogs had a screening 18F-FDG PET/CT scan. However, only
dogs receiving ZOL+RT had a repeat day 28 PET scan. Figure 5
shows percent changes from baseline for 18F-FDG PET scans.
Mean, standard deviation, % change, and p-values are provided
in Table 1. Maximum intensity significantly decreased in all
irradiated dogs (p = 0.013); maximum SUV decreased, but not
significantly (p= 0.11). Gross tumor volume was not statistically
different pre- and post-therapy, meaning that tumors did not
grow/shrink. Tumors became more uniform after zoledronate
and RT (p = 0.017). Visual representations of the increase

in uniformity and decrease in intensity of two dogs receiving
zoledronate and RT are shown in Figure 6.

DISCUSSION

We achieved our goal of assessing pain in dogs with primary
bone tumors using a multimodal pain assessment methodology.
However, our results do not indicate which objective/subjective
marker should play the most significant role. This is in part
due to the small sample size of our pilot study resulting
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in the inability to perform correlative statistical analysis and
to the multifactorial causes of cancer pain. A key problem
of relying on one pain indicator is shown by serum NTx,
which is often touted as a way to assess disease burden
and/or pain in animals and people with widespread osteolysis
(27, 28). While dogs in our trial receiving zoledronate and
radiation therapy had significant decreases (>30%) in serum
NTx at 28 days after treatment, dogs with tumors that had
been completely removed (i.e., amputation) did not have
corresponding reductions in serum NTx. A false conclusion
would be that dogs receiving amputation for their primary
bone tumors do not have resolution of their pain. More
likely, especially when validated owner questionnaires are
simultaneously evaluated over 4 weeks, those dogs’ pain did
improve after recovering from amputation (albeit delayed due
to postoperative recovery time). A potential cause for static
serum NTx is systemic bone remodeling to account for altered
weight bearing on three limbs. This is not to say that the other
methods we analyzed are perfect for monitoring pain in dogs
receiving more than one therapy, as kinetic analysis and PET
imaging require tumors to remain “on” the subject for valid
follow-up analysis.

Pain scales are used widely in human medicine and often
focus on degree of pain noted by a visual face scale and
depend on the patient’s or patient guardian’s assessment of
his/her pain (29, 30). Because questioning veterinary patients
about their pain is impossible, veterinarians often rate their
patients’ pain retrospectively via owner questionnaires (31)
or descriptive/numerical scales (32). Due to interobserver
variability and owner bias, multidimensional pain scales (33),
posture/facial expression [specifically in cats (34, 35)], and
quantitative sensory testing (36, 37) have more recently been
used. However, almost all of these pain assessments are used
in induced-pain models or in veterinary patients undergoing
surgery. While the aforementioned canine BPI (20) study was
validated in dogs with primary bone tumors, comprehensive
pain studies in naturally occurring, chronic pain diseases
are lacking.

Kinetic analysis in dogs is an objective metric that is widely
utilized as an indirect measure of pain in dogs. It is frequently
used to assess treatment efficacy in chronic painful conditions
such as osteoarthritis. In this study, positive improvements
in GRF data were demonstrated in the ZOL+RT dogs at
each time point when compared to baseline measurements.
However, these improvements were static with no statistically
significant changes between testing days. Overall, a >13%
improvement was seen in PVF for all time points and >9%
was seen in VI. These findings demonstrate that kinetic
data can be collected in dogs with CIBP and can provide
valuable objective assessments. However, these data are gleaned
from a limited number of dogs in this pilot study and the
population of dogs available for post-treatment kinetic testing
was diminutive as compared to what would be expected in
a larger clinical trial. It is possible that a larger population
or longer follow-up testing would have detected differences
between testing time points. Additionally, the impact of sources
of variability on this smaller population size is not known. Kinetic

data collection in dogs, especially those with chronic painful
conditions, can be influenced by factors including habituation,
handler variability, and extended physical exertion. Efforts were
made to reduce the impact of these sources of viability in
this study population. Habituation to the testing facility and
laboratory environment is critically important. Previous studies
have demonstrated that adequate habituation can improve
kinetic data collected in dogs by reducing data variability
(38). In this study, animals were allowed to habituate to the
testing environment for a minimum of 3–5min prior to data
collection. Prolonged physical exertion can also impact kinetic
data collection, and previous studies have demonstrated that
kinetic analysis in dogs with lameness secondary to osteoarthritis
can be exacerbated by exercise (39). The impact of physical
exertion on trials collected later in each testing period in
this study population is unknown. However, all efforts were
made to facilitate timely and efficient data collection. Finally,
data variability has been shown to be impacted by different
handlers and can result in up to 7% of data variance (40).
To address this, all dogs were walked by the same handler at
all-time points.

Our study is the first to include PET imaging in the assessment
of dogs with CIBP. In human medicine, several groups have
evaluated 18F-FDG PET scans in patients receiving RT for painful
bone metastases (41–43). Those studies have shown that SUVmax

could be used to predict the improvement in pain for people
receiving palliative radiation for their metastases, as well as pre-
RT pain severity. One study of 74 patients diagnosed with non-
small-cell lung cancer bone metastases showed that higher pre-
RT SUVmax resulted in worse progression-free and event-free
survivals (43). The relationship of 18F-FDG PET SUVmax and
pain or response to therapy is likely due to glucose metabolism’s
relationship to growth rate and biologic aggressiveness of a
tumor (43). In another chronic pain translational model, cats
with osteoarthritis-associated pain underwent 18F-FDG PET
scans (44); in 7 cats with OA, significant differences in brain
metabolism were noted compared to normal cats. While not
directly assessing pain, another group of veterinary researchers
evaluated 18F-FDG PET scans in dogs with OS (45). This group
found that dogs with treatment-naïve OS with 18F-FDG PET
scan SUVmax values ≥7.4 had shorter survival times than dogs
with SUVmax < 7.4. However, this study was retrospective
and dogs were allowed to have either surgical (amputation
vs. limb-spare) or stereotactic radiation, and follow-up PET
scans were not performed. While our study sample size is
small, patients were prospectively enrolled, treatments were
standardized, and our pilot study findings warrant further
investigation into the role of PET scans in assessing pain in dogs
with cancer.

A weakness of many canine OS studies is lack of definitive
diagnosis. In fact, because of confirmation of our cases with
either cytology or histopathology by a board-certified pathologist,
one of the dogs in our study was diagnosed with primary bone
chondrosarcoma, instead of osteosarcoma. The dog was included
in the amputation arm but did not receive chemotherapy due to
the low-grade nature of its tumor. Historical pain studies in dogs
with aggressive bone neoplasms have not uniformly confirmed a
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diagnosis of OS (20, 23), instead relying on radiographic findings,
signalment, and tumor location. The lack of definitive diagnosis
could result in inclusion of primary bone tumors of non-osteoid
lineage, potentially affecting outcomes such as progression-free
survival and overall survival. Future prospective studies should
always confirm diagnosis of OS, via either ALP-positive cytology
or histopathology, to remove non-osteoid primary bone tumors’
skewing of results.

CONCLUSION

Validated owner questionnaires (canine BPI), kinetic analysis,
and 18F-FDG PET scans showed improved pain relief in dogs
with appendicular primary bone tumors receiving ZOL+RT.
Serum NTx levels likely do not directly measure pain, but rather
the degree of systemic osteoclastic activity. Larger, prospective
studies are warranted to identify the ideal objective indicator of
pain relief; however, use of multiple assessors is presumably best.
Ongoing projects in our oncology/orthopedic research group
at the University of Missouri include evaluating novel pain
targets in dogs with PET imaging. With improved description
and quantification of pain severity and relief in dogs with
cancer, we can better evaluate the efficacy of our interventions.
Dogs could prove to be a better cancer pain model because
of their similar and shared environment with humans, genetic
diversity, long-term survival compared to rodents, and naturally
occurring (rather than induced) neoplasms. This could directly
benefit people with CIBP, potentially decreasing the amount of
subtherapeutic novel drugs entering human clinical trials.
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Cancer is a leading cause of non-communicable morbidity and mortality

throughout the world, similarly, in dogs, themost frequent cause of mortality is

tumors. Some types of cancer, including osteosarcoma (OSA), occur at much

higher rates in dogs than people. Dogs therefore not only require treatment

themselves but can also act as an e�ective parallel patient population for the

human disease equivalent. It should be noted that although there are many

similarities between canine and human OSA, there are also key di�erences and

it is important to research and highlight these features. Despite progress using

chorioallantoic membranemodels, 2D and 3D in vitromodels, and rodent OSA

models, many more insights into the molecular and cellular mechanisms, drug

development, and treatment are being discovered in a variety of canine OSA

patient populations.

KEYWORDS

bone cancer, canine, genes, human, osteosarcoma, protein, treatment

Introduction

In both human and canine patients the predominant bone cancer diagnosis is OSA

(1, 2). Sarcomas are tumors originating in tissues derived from the mesoderm, affecting

bone, cartilage and connective tissue (3). Osteosarcoma produces malignant bone or

osteoid tissue, but a unifying feature is that all types of OSA histologically produce tumor

osteoid (4). Archetypal OSA consists of a primary tumor, usually originating within the

medullary cavity and spreading to the surface of the bone, but they can be extra-osseous

(5). Typically the tumor grows, proliferates, invades, and left unchecked frequently

metastasises to the lungs (6). OSA subtypes include osteoblastic (bony), chondroblastic

(cartilaginous), and fibroblastic (resemble atypical fibroblasts), with a range of rare types,

and those not originating in the medullary cavity (5), see also a previous review (7).
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Overview of experimental OSA models

Rodent and chorioallantoic membrane (CAM) models have

been utilized in OSA studies, in addition to a variety of in

vitro methods, however each has a number of limitations.

Early rodent models represent OSA well-histologically, but

do not represent the true etiology of the disease (8).

Immunocompromised mice inoculated with human OSA cell

lines or grafts have served well for studying metastasis, drug

screening, and helped toward identifying activation pathways,

but have limited capacity in understanding OSA development

and immune system interactions, although advances in this

area are continuing (9–11). P53 and Rb mutation transgenic

mouse studies have an overall relatively high cost and difficulties

relating to breeding and development of non-OSA cancers, but

have shown similarities to the human disease (12–15).

Although CAM models have been used for over a century,

an avian environment does not always replicate the mammalian

tumor environment or immune system. Although angiogenesis

in this model can assist with looking at invasion, drug

development, and metastasis, it has not been widely used for

OSA models (16, 17). Indeed many of the models developed

for OSA failed to produce a tumor and/or osteoid, a key

component of OSA (18). The advancements in 3D in vitro

models over 2D ones, represents a step forward in understanding

microenvironment interactions and mechanisms, with fewer

limitations than traditional culturing models (19, 20). Examples

using liquid overlays (21) and ultra-low binding plates to

develop spheroid formation have been used, the latter helping

identify a potential role of miR-335 in OSA (21). Hanging

drop methods have also been used, especially alongside

2D cell cultures to investigate VEGF expression, vital for

angiogenesis (22).

Unfortunately, none of these methods perfectly recreate the

tumor microenvironment, or replicate growth and development

of the cancer. While these methods have improved prevention,

diagnosis, and treatment of a range of diseases, OSA cure rates

and survival times have not improved significantly in decades

(23, 24). What is really required is a model or parallel patient

population that accurately recapitulates the clinical, biological

and molecular aspects of human/pediatric OSA.

OSA in dogs and people–parallel patient
populations

Given the spontaneous nature of OSA in dogs, and the

clinical relevance of canine to human OSA, these natural

models might be better described as parallel patient populations

(7, 25). Naturally occurring parallel patient populations allow

researchers access to additional cases of disease without

inducing disease.

Current understanding of OSA disease processes and

treatments is largely based on studying affected individuals

compared to unaffected individuals, or assessing differing types

of OSA, with computer simulations/bioinformatics playing an

increasing role (26, 27). The development and progression of

OSA is frequently influenced by a combination of environmental

and genetic risk factors. Understanding the basis of disease

and development of new treatments via animal models,

particularly within naturally occurring animal populations, is

crucial, however care must be taken to ensure phenotypes are

representative of the disease.

The overall canine population is genetically heterogeneous,

however breeds can be comparatively homogeneous which

further enhances their value for comparing genetic mechanisms

of disease (28). Some breeds are at increased risk of developing

OSA (1), making them a valuable parallel patient population.

Human diseases may progress over a number of years, and

spontaneously occurring canine OSA reflects this progression

in contrast to laboratory models which are often investigated

over much shorter periods of time. Indeed many human disease

phenotypes are closely matched to canine disease phenotypes,

exhibiting similar pathologies, progression, treatment options,

and prognosis (29–31), this includes OSA (7). The canine and

human OSA biological and histological similarities, alongside

treatment trials and comparisons have been evidenced through

numerous studies across the decades. More recently, the

molecular and cellular comparisons undertaken between the two

species, as detailed within this review, have provided crucial

steps toward understanding both the limitations and benefits of

studying canine OSA as a parallel population.

Similarities and di�erences in OSA
incidence, risk factors and survival rates
between people and dogs

Dogs naturally have a higher OSA incidence than people.

Human population studies have shown there are roughly 0.89

cases of bone cancer per 100,000 people/annum (32, 33). In a

population of 394,061 insured dogs, 764 (0.19%) developed a

bone tumor (1), representing an incidence rate of 27.2 dogs per

100,000/annum, a much higher rate than in people. The higher

incidence rate of canine OSA makes the pet dog population an

ideal parallel patient population for investigating the disease in

humans. In people, there is increasing evidence of variation in

the incidence rate between families and different populations

(2, 34, 35). Interestingly, OSA in dogs is highly influenced by

breed, with Irish wolfhounds displaying the highest levels (12.3%

of the population), with some other breeds mostly unaffected

(1, 36).

Osteosarcoma is bimodal in people peaking in the young

(<20 years old) and elderly (>60 years old) (2, 32, 33, 37, 38).
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Although widely reported as a bimodal occurrence in canines,

with peaks at 1.5–3 and 7–9 years, this bimodal observation has

not been shown all studies (39–43). An additional important

difference between the species is that OSA is more prominent in

the older dog range (7–9 years), whereas in people the incidence

is highest within the pediatric population. The first cross-species

genomic analysis between canine and human OSA indicated

that there were very strong gene expression similarities between

the two species (25). Hierarchical clustering showed branching

between OSA and normal tissues but showed no distinct

branching of canine and human OSA. This study specifically

compared pediatric tumors from children against canine (ages

not stated) OSA and was able to draw the conclusion regarding

the similarities between canine and pediatric OSA but did not

test adult human tumors (25). Notably a later study looked

at both juvenile and adult canine tumors indicated that the

adult dog was a good model regarding genomic features and

clinical characteristics (44). This supports the data indicating

clinical presentation and diagnosis, histological presentation and

treatment similarities between canine and juvenile human OSA

(45, 46).

Despite a general trend of improving 5-year-event-free-

survival rates across all cancer types in people (24, 47), OSA

has not shown comparable improvements in mortality rates

(2, 47, 48). The 5-year-event-free-survival for individuals with

metastatic tumors at diagnosis was reported to be 27.4%,

increasing to 70% in individuals with no metastases at diagnosis

(2, 6). The 1-year survival rate for canines is typically<45% (49–

51). It is worth noting that for appendicular OSA, the 1 and

2-year survival rates have been published at just 11.5 and 2%,

respectively for dogs receiving amputation only as a treatment

option (52). These similarities in presentation not only support

the rationale for the dog as a parallel patient population for

studying OSA but also highlight the urgent need to develop

improved treatments and cures.

The common risk factors associated with OSA development

in both humans and canines include sex, growth, puberty (2, 34,

53), in addition to population/breed and a range of molecular

associations. Growth has been associated with the development

of OSA in both people and dogs (1, 36). In people, age of onset

frequently coincides with rapid bone growth during puberty,

tumor sites are most frequently situated at the end of bones

where active growth occurs (2). In canines there is not as much

evidence linking to growth, given the later onset of OSA in

general, however OSA predominantly occurs in weight-bearing

bones and adjacent to late-closing physes (1, 36). Large dog

breeds make up the majority of canine OSA cases reflecting the

human population where affected individuals are more likely to

be taller than average (1, 34, 54).

In the canine population, as with the human population,

there appears to be a skewed sex ratio with males typically more

affected by OSA, and at younger ages, than females (1, 2, 32, 34,

55). Additionally, neutering status, although less relevant in the

human context, appears to contribute to risk with neutered dogs

more likely to develop OSA than non-neutered counterparts

(36). The neutering effect, combined with the association with

puberty, indicates that sex hormone signaling may play complex

roles in OSA.

Presently there are over 544 canine “potential models for

human traits” listed in OMIA (Online Mendelian Inheritance

in Animals), more than any other species (29, 30). Dogs

are typically treated as family members and so inhabit the

same environment as their owners, alongside many of the

environmental and other risk factors impacting disease

risk, initiation and progression. Pet dogs also frequently

benefit from high quality medical care, such that illnesses

are detected and treated promptly, similar in a way to people

(56). This also means that the amount of information being

collected by veterinary clinics, researchers, and insurance

companies expands the data available. These canine population

characteristics represent a valuable resource for modeling

human disease. Although understanding diseases and

developing novel treatments in companion animals exhibiting

occurring disease is less contentious than inducing disease in

experimental animals, ethical concerns regarding treatment

of individuals and gaining informed consent from owners

remain (57).

Similarities and di�erences between OSA
molecular mechanisms in people and
dogs

Developing new treatments is expensive and time

consuming. Only 4.1% of potential new compounds progress

from preclinical discovery to patient use, taking on average 13.5

years (58, 59). In order to create targeted pharmaceuticals in

shorter time frames, understanding the genetic mechanisms

behind diseases are critical (60). Indeed, parallel animal patient

populations of disease, including OSA, play crucial roles in

identifying genetic loci associations and biomarkers, which

may lead to target identification, to help determine appropriate

drugs, leading through to target validation (61–63). Much of

the molecular work, underpinning early drug development

and repurposing, is facilitated by the conservation of many

fundamental biological pathways between species (64–66).

Pedigree breeds in dogs are generally fairly closed

populations, ancestry can often be traced for many generations,

and even back to the breed’s founding members (28, 67, 68).

Although this restricts genetic diversity within breeds, it

facilitates understanding the mode of inheritance of traits and

diseases (67). Both the founder effects and later inbreeding

within canine pedigree breeds have led to divergent allele

frequencies between breeds, resulting in some breeds exhibiting

higher disease frequencies (28, 69). As a result, differing breeds
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have homologs of numerous human conditions, making them

ideal for identifying potential genetic loci associated with disease

for both canine and human benefit.

Some cases of human OSA have been associated with

heritable cancer syndromes, and the genetic basis of these has

been established (70–72). Despite this, most human OSA cases

are not considered to be heritable. Some somatic mutations in

tumor suppressor genes have been identified in individuals with

heritable cancer syndromes such as Li-Fraumeni syndrome, and

other mutations have been identified in OSA tissue compared

to normal tissue (70, 73–75). Interesting, to date, only two

somatic genetic mutations have been specifically associated with

OSA (53). Despite the lack of heritability and somatic genetic

mutations, over 900 genes are associated with human OSA

(76). These associations have been identified due to differences

in expression, or identification of mutations, that have arisen

in the tumor compared to the non-tumor tissue (77–79).

Mutations within OSA tumor tissue may exist as a cause, or as

a result, of the tumor. Differential expression, and mutations,

may also exist via genomic and chromosomal instability,

which in itself is a reported factor in many types of cancer

progression (80, 81). Osteosarcoma in people has been shown

to display chromosomal instability associated with mutations in

the TP53 gene (82). Aneuploidy can occur as a consequence

of chromosomal instability, which can lead to the gene

overexpression in affected malignant cells, causing disruption to

the normal cell processes (83). Althoughmutations in TP53 look

likely to be associated with chromosomal instability, the gene

itself is not over expressed following aneuploidy (82, 83). TP53

has also been implicated in canine OSA with whole genome

sequencing and whole exome sequencing (WES) indicating

frequent TP53 mutations in canine OSA tumors, at rates of up

to 83%, specific mutation rates were variable between breeds (44,

84, 85). TP53mutations have featured heavily in many of canine

OSA studies, however findings still differ between these studies

overall. For example it was found that TP53missense mutations

in dogs who had amputation followed by chemotherapy were

associated with a longer DFI than wild type of null tumor

samples investigated (85). Although similar results have not yet

been observed in human OSA, other cancer types and mutant

cell lines have shown improved treatment responses (86, 87).

Gene expression following treatment has also highlighted

key similarities between people and dogs. Studies identifying

gene expression in canine patients responding, and not

responding, to chemotherapy treatment, were later found to be

similar in people, indicating the value of the dog as a parallel

patient population for human OSA (88). It should also be noted

that gene expression variations have been observed on some

occasions, despite the often-high similarities in many other

studies (25), thus indicating a potential limitation of canine

comparisons with human OSA.

In canine OSA patients, 33 loci have been associated with

the disease across three breeds, and an additional single locus

is associated in Deerhounds (89, 90). None of these loci are

consistently associated across breeds, suggesting there may be

a difference between breeds regarding genetic predisposition

to developing OSA (89, 90). In addition to the 34 genetic loci

identified, genes have been identified as differentially expressed

in canine OSA compared to non-tumor tissue, many of which

have implications for growth and metastasis, and are potential

drug targets (55, 91–96). These genes have been identified

utilizing canine OSA tumor tissue, and/or canine OSA cell

lines. Some proteins of interest have also had histological work

undertaken to start identifying their presence and relevance in

OSA (55, 95). There has also been variation in the expression

of genes within tumors associated with survival time in canine

OSA (97–100).

Shared genes and proteins of interest for
development of future treatments

In both humans and dogs, effective treatment for OSA

involves surgery to remove primary tumors 27, 32], often

combined with neoadjuvant and/or adjuvant radiotherapy and

chemotherapy [33, 34]. The type of surgery rarely has an impact

on survival for most human tumors [27], more important

prognostic factors are how the tumor responds to chemotherapy

and the presence of metastases prior to surgery [27]. In

order to advance the treatments available, genomics and drug

discovery are providing potential new treatments. Increasingly,

comparisons between results from human and canine OSA

studies are showing shared genes of interest between the two

species. Many of these studies also highlight the need for further

testing in relation to potential therapeutic agents.

Comparative transcriptional profiling of dogs and human

OSAs has highlighted the similarities between the tumor tissues

in the two species. One example was OSA tissue cluster analysis

undertaken on 265 orthologous transcripts on pediatric human

OSA compared to canine (age not stated) OSA (25). The

conclusion was that it was not possible to differentiate between

canine and pediatric humanOSA tissues yet normal tissues from

both species did branch (25). Similar outcome predictions for

specific genes in both humans and dogs were also observed.

Examples of these include interleukin-8 (IL-8) and solute carrier

family 1 (glial high affinity glutamate transporter), member

3 (SLC1A3). Increased expression levels of IL-8 and SLC1A3

predicted poor clinical outcomes in tissues from both species,

a result initially identified in canine samples, then followed up

and confirmed using human OSA data and both human and

canine OSA cell lines (25). Interestingly, increased expression

of SLC2A1 (GLUT1) within tumors also resulted in poorer

prognosis and a shorter disease free interval in people (101).

SLC2A1/GLUT1 (see Figure 1) levels were also significantly

increased in naturally occurring canine OSA tissue compared
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FIGURE 1

Immunohistochemical staining in naturally occurring canine

osteosarcoma tissue. (A,B) GLUT1 and (C,D) MMP3, both

staining patterns expressing positive nuclear, cytoplasmic and

vascular tissue with negative staining observed in the osteoid.

(E,F) Negative control. Scale bars represent (A–D) 100µm, (E,F)

500µm. Staining was conducted with ethics, techniques and

tissues as previously published (95).

to normal bone tissue (55, 95). Inhibition of SLC2A1 and

cellular glucose transport has been achieved by a number of

pharmaceuticals, however, as with the MMP3 inhibitors, these

have yet to be utilized in OSA trials in either people or

dogs (102–105). Monoclonal IL-8 antibody therapy could also

be of interest given the importance of this chemo-attractant

angiogenic factor, which has been implicated in a number of

cancers (106, 107). Although not yet tested in OSA, clinical trials

using IL-8 monoclonal antibodies in other cancers types are

ongoing (108) and provide an interesting target given the links

between increased IL-8 expression and doxorubicin resistance

(109, 110).

Another good example of comparative OSA highlighted

the role of MMP3, with increased expression linked with a

poor prognosis in OSA, and to formation of metastases (23,

111). Tsai et al. (112) and Huang et al. (113) identified higher

expression of MMP3 in human OSA compared to normal

bone. Additionally Adiguzel et al. (114) reported on MMP3

polymorphisms associated with OSA in people. Naturally

occurring OSA was also associated with increased MMP3 levels

in canine patients (55), and work was later undertaken to

show expression patterns (Figure 1) of the protein in tissue

(95). Despite the increasing evidence regarding MMP3, neither

the selective inhibitor of MMP3 (UK370106) (115) or the

generic MMP inhibitor (marimastat) (116) have been assessed

in relation to restricting primary tumors or metastatic tumor

growth in canine or human OSA, despite some trials in other

tumor types.

The Dickkopf proteins are differentially expressed in a

number of cancers, and inhibit Wnt signaling which, in

turn, is aberrant in many cancers (117–119). Reduced DKK3

expression in human breast, endometrial, and cervical cancer,

has implicated it as a tumor suppressor (120–123). DKK3

expression within OSA has resulted in conflicting reports.

In human OSA cell lines, and in xenograft mice, DKK3

expression was reduced, however subsequent restoration of

DKK3 expression resulted in reduced tumor and metastatic

growth (124). In contrast, DKK3 was more highly expressed

in human OSA cells overexpressing NKD2 and in tumor tissue

(125), and also in tumor tissue compared to non-affected bone

in naturally occurring canine OSA (55). Despite differences

compared to some cancers, this outcome agreed with DKK3

knockdown in cells overexpressing NKD2 which exhibited

increased proliferation, indicating a possible mechanism of

NKD2 induced metastasis, although the authors noted more

work into the mechanisms was required (125). With a lack of

drugs available acting on DKK3, development in this direction

could prove useful for OSA in both people and dogs. Although

these examples represent just a small number of the genes and

proteins of interest in both human and canine OSA, it helps

show the benefits of using the dog as a parallel patient population

for this cancer, especially in relation to drug development.

Table 1 provides a summary of the genes, proteins and pathways

detailed in this review.

Whole genome and exome sequencing have also discovered

not only where mutations within pathways such as PI3K and

MAPK are similar between human and canine OSA, but have

also identified novel aberrations in canines, such as those in

SETD and DMD, which have not yet been reported in people

(44). Although these aberrations have not yet been found

in human OSA cases, despite the high sequence homology

between the two species, it is known that dysregulation of

SETD2 has been implied in human OSA (25, 133). Although

the DMD gene encoding dystrophin is more commonly

associated with Duchene and Becker muscular dystrophy in

both species, other studies have shown somatic DMD variants

in human OSA patients (129). Comparative canine and human

transcriptomic studies have also identified annotations and

pathways unique to particular cancers. For example, annotations

unique to bone material synthesis, including COL5A2, COL6A3,

and COL12A, were discovered in OSA in both species but

were not present in melanoma, pulmonary carcinoma, or

B- and T-cell lymphoma (130). Considerable insights into

possible pathways and biomarkers can be provided by such

studies. Often potential biomarkers, or targets that have

known chemistries presently available, including examples such

as COL16A1 and KDELR2 (130), are highlighted as areas

needing more research.
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TABLE 1 Summary of key comparative genes, proteins and pathways in human and canine osteosarcoma.

Gene/Protein/Pathway Human Canine

TP53 Chromosomal instability associated with mutations in the

TP53 gene (82). Chromosomal abnormalities leading to

aneuploidy, resulting in overexpression, disrupted cell

processes (83).

Frequent TP53 mutations in canine OSA (44, 84, 85).

TP53, RB1, MYC, PTEN,

RUNX2, CDKN2A, CDKN2B

Copy number aberrations (126–128). Copy number aberrations (126–128).

DMD Somatic DMD variants found in 5/8 patients (44). DMD aberrations, including canine specific mutations, in

50% specimens (44).

SETD Dysregulation of SETD2 implied in human OSA (25, 101). Putatively inactivating somatic SETD2 in 42% of specimens

including some canine specific compared to human (44).

IL-8 and SLC1A3 Increased expression levels of IL-8 and SLC1A3 predicted

poor clinical outcomes (25). Increased expression of SLC2A1

(GLUT1) within tumors resulted in poorer prognosis and a

shorter disease free interval (104).

Increased expression levels of IL-8 and SLC1A3 predicted

poor clinical outcomes (25). Increased SLC2A1/GLUT1

levels in OSA tissue compared to normal bone tissue (55, 95).

MMP3 Higher expression ofMMP3 in OSA tissue compared to

normal bone (115, 116). MMP3 polymorphisms associated

with OSA (117). Increased expression linked with a poor

prognosis and to formation of metastases (23, 114).

IncreasedMMP3 levels associated with OSA (55), proteins

expression shown in OSA tissue (95).

DKK3 DKK3 expression reduced in OSA cell lines, but subsequent

restoration of DKK3 expression resulted in reduced tumor

and metastatic growth (129). In contrast, DKK3 was more

highly expressed in OSA cells overexpressing NKD2 and in

tumor tissue (130),

DKK3 expression increased in OSA tissue compared to

non-affected bone (55).

PI3K, P13K-Akt,

P13K/mTOR and MAPK

pathway mutations

PI3K/mTOR shared vulnerability for both species (131) Mutations in PI3K in 37% of the samples and 17% for

MAPK (44). Dysregulation of P13K-Akt pathway and

COL6A3, COL5A2, TNC, and ITGB5 activation (103, 132),

and PI3K/mTOR (131)

Shared MicroRNAs in comparative studies

Recent reviews outlining the potential comparative values

for investigating vasculogenic mimicry molecular pathways and

microRNAs (miRNA) in the dog, highlight how little work has

been conducted in this species compared to humans (134, 135).

They contain detailed discussions aroundmiRNAs and lncRNAs

and provide interesting reading around these areas, especially in

relation to vasculogenic mimicry in canines in comparison to

people, which is not therefore covered in the present review. In

both dogs and people decreased expression of miR-1, miR-133b

and miR-196A have been shown to be involved in proliferation-

invasion, miR-34 with proliferation and 14q32 locus (including

mir-544, miR-396-3p, miR134 and miR-382) with proliferation-

apoptosis in OSA (135). Additionally increased miR-9 has been

associated with invasion and increases in miR-106b cluster have

been associated with proliferation (135). Comparative examples

such as the dysregulation of the 14q32 miRNA cluster in both

dogs and people, not only identified a potentially conserved

mechanism related to the aggressive and invasive biological

behavior of OSA in both species, but yet again emphasize the

similarities between the two species (136). Another example

is the discovery of miR-1 and miR-133b which showed lower

expression levels in canine OSA compared to normal tissue,

yet increased expression of their targets MET and MCL1 (137).

Interestingly a previous study had shown that both miR-1

and miR-133b were differentially expressed in human OSA

affected tissue compared to non-OSA bone (138). MiR-34a

looks especially promising given its links to both human and

canine OSA, its anti-proliferation and metastasis inhibition

activities and the research relating to a genetically engineered

pre-microRNA-34a prodrug (139–141). Work published after

the recent review (135) compared 19 miRNA candidates

expressing differential expression in OSA samples compared

to non-affected tissue in both people and dogs were also

assessed (142). This research showed that expression miR-

223 increases and in let-7b and miR-130a decreases were

associated with increased risk and a shorter disease free interval.

These were highlighted as potential targets and/or biomarkers

for OSA.
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Translational drug development studies

In addition to the molecular studies highlighting potential

targets of interest, a number of canine OSA trials have

assessed treatment regimens which were primarily designed

to increase survival times. Early evidence showed that while

amputation alone increased canine survival by around 2.5

months, addition of liposome-encapsulated muramyl tripeptide

(L-MTP-PE) administration following amputation prolonged

survival by an additional 5 months, primarily by reducing

OSA metastasis development (143). Later randomized canine

trials showed the outcomes of combining differing protocols

of L-MTP-PE and cisplatin chemotherapy treatment. L-MTP-

PE exhibited antimetastatic activity when administered post

amputation, increasing survival times to around 14.4 months

when cisplatin was administered after L-MTP-PE (144). The

survival advantages observed following L-MTP-PE alone were

not observed when cisplatin and L-MTP-PE were administered

concurrently rather than sequentially, indicating that treatment

timing is crucial. Trials of this drug in children with OSA

revealed an 8% improvement in survival (145), but anti-tumor

effects and increased survival times were also noted when

treating human OSA patients with L-MTP-PE, especially when

chemotherapy was administered (146–148). For example, a

24-week treatment with L-MTP-PE increased median time to

relapse from 4.5 months for the control group to 9 months

for the treatment group (146, 147). It was also noted that

plasma levels of cytokines including IL-8, TNF-α and IL-6

reduced following treatment, all of which may play roles in

monocyte-mediated tumor cell death (146, 147). This work

followed the smaller phase II trial indicating histological changes

to pulmonary metastases in OSA patients (148).

HER2/neu, a tyrosine kinase receptor within the epidermal

growth factor receptor family, is expressed in osteosarcoma

stem cells (149). Expression has been found in 40% of pediatric

and canine osteosarcoma, and associated with higher metastatic

rates, reduced response to neoadjuvant chemotherapy, and

reduced survival times (150–152). A chimeric humanHER2/neu

fusion protein (ADXS31-164, also now known as ADXS-HER2

and OST-HER2) was tested in dogs with a histopathological

and immunohistochemical diagnosis of HER2/neu OSA,

following amputation/limb sparing surgery and treatment with

carboplatin (153). Disease-free interval (DFI) following the

intervention was 615 days, median survival time (MST) was

956 days, and overall survival rates at 1, 2, and 3 years were

77.8, 67, and 56%, respectively. The authors noted significant

outcome improvements compared to matched historical control

group rates showing a DFI of 123–257 days, a MST of 207–321

days, and overall survival rates of 35.4% (1 year) and 10–15%

(2 years). Additionally, this study showed only mild side-effects

of ADXS31-164 when administered to canine patients. This

therapy specifically induced HER2-specific immunity, targeting

the cells expressing HER2/neu, broke peripheral tolerance to

HER2/neu and mediated cytotoxic T-cell–dependent tumor

regression (153). In 2016, ADXS-HER2 was granted orphan-

drug designation, then rare pediatric disease designation in

2021, from the FDA and EMA, for the treatment of OSA. In

2021 ADVAXIS Immunotherapies, in collaboration with the

Children’s Oncology Group, reported that the first human OSA

patient had received doses in the Phase IIb trial of this drug

(154). The outcomes from this trial, including any clinical

results andmechanistic studies will be of great interest regarding

not only human and canine OSA, but in relation to other

cancer types which also express HER2 including mammary

carcinoma (126).

The angiotensin-receptor blocker losartan, when used in

combination with the kinase inhibitor toceranib, has also shown

promising results in canine OSA patients (127). By blocking

OSA-elicited monocyte recruitment via the action of losartan

inhibiting the CCL2–CCR2 axis, clinical benefits including

tumor stabilization and/or regression were observed in half

of the dogs. Notably, both human and canine OSA cells

secrete CCL2, resulting in monocyte migration. By interrupting

the CCR2–CCL2 axis and by blocking monocyte migration,

these trials have provided more insights into the tumor

microenvironment and indicated a direct mechanism by which

these therapeutic agents could work in human OSA patients.

Owing to the success of this canine OSA trial published in 2021,

a phase I clinical trial (NCT03900793) was initiated in pediatric

and young adult OSA patients with lung metastases.

Limitations of canine OSA models

One of the limitations of this area of research is that

frequently the research concentrates on either dogs or people

with relatively few comparisons of the two using the same

analysis and techniques. Although this individual species

specific research is required, the number of directly comparative

studies is much lower and makes comparative conclusions

more complex. This also complicates matters with regards

to potential differences observed between breeds and age of

onset, as highlighted in this review. For example although the

differences between breeds are often presented, in many cases

the comparisons between each of the breeds and human OSA

are not frequently investigated. Canines are often referred to

as a good model for juvenile human OSA but in addition

to the published comparisons between general canine OSA

and juvenile human OSA, it must be highlighted that many

studies do draw any conclusions regarding juvenile or later

onset OSA specifically in either species. In some OSA studies,

particularly the canine studies, the ages of the patients are not

presented or the juvenile/later onset differences, if any, are not

specifically referred to or investigated. Additionally, particularly

when thinking about juvenile OSA, matters such as whether
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growth is a risk factor is not as easy to justify in dogs compared

to people.

With molecular differences between OSA samples differing

between individuals within the same species, it is natural

to expect differences between the species and between the

ages of the individuals. When comparing canine OSA to

human pediatric OSA in particular, mutational burden must

be considered. Generally pediatric human cancers present with

fewer mutational burdens, compared with geriatric tumors [as

reviewed previously (128)], therefore this must be considered

when comparing against older canines with pediatric OSA.

There are concomitant arguments for using the dog as a model

of aging (also presenting with limitations and differences) (131).

Although similarities between canine and human DNA repair

machinery have been shown, such as in lymphoma, mammary

tumors and even OSA (132, 155, 156), not every mechanism

may be similar, for example base excision repair and nucleotide

excision repair have both been shown to be lower in canines

(157). Unfortunately little is known about DNA repair in canine

OSA (158) even though it may play significant roles when

comparing geriatric with juvenile/pediatric OSA. This further

accentuates the need for vigilance when researching OSA in

general including both OSA specific molecular mechanisms

and pathways, and those related to more general factors such

as aging.

Discussion

Canine OSA occurs naturally within the population,

reflecting the development of human OSA (7, 159). In

contrast animal models of OSA rely on chemical induction,

xeno/allografts, and genetically engineered animals which are

unlikely to reflect many aspects of naturally occurring disease

(159–162). Canine OSA has several features that can accelerate

the understanding of the molecular basis of OSA, potentially

facilitating more rapid development of novel diagnostic and

therapeutic targets relevant to both people and dogs. The

advantages of canine OSA parallel patient populations include

a shared environment with people, natural disease progression,

higher incidence rates, alongside shorter lifespans resulting

in a quicker clinical course. Arguments have also been put

forward that in addition to the dog being a good parallel patient

population for OSA in people, the reverse is also technically true.

It has also been indicated that canine OSAmay represent a more

accelerated biology than human OSA and that novel metastasis-

associated tumor targets may be more readily identifiable in

canine tissues (25). Whilst this review has concentrated on some

of the shared molecular observations and mechanisms, there

are many examples presented where canines do not exactly

mirror human OSA. Canine OSA parallel patient populations

can therefore give valuable insights, advancing knowledge about

disease progression and development, cellular and molecular

mechanisms, and therapeutic and treatment strategies, in both

people and dogs.
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