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Editorial on the Research Topic 
RNA Modification in Human Cancers: Roles and Therapeutic Implications

Rapid advances in high-throughput sequencing technologies have revolutionized our understanding of the mammalian DNA and RNA. The recently identified RNA modification has emerged as a new layer of regulatory mechanism controlling gene expression in human cancers. Moreover, these epigenetic modifications are found not only in messenger RNA but also in non-coding RNA, adding additional complexity to the RNA world. Non-coding RNAs consist mainly of microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) (Quinn and Chang, 2016). As the most prevalent internal RNA modification in eukaryotes, N6-methyladenosine (m6A) has been reported to not only regulate stability and degradation of non-coding RNA itself, but also participate in the pathogenesis of cancers by regulating cell proliferation, metastasis and homeostasis (Liu et al., 2018; Ma et al., 2019; Zhang et al., 2020). Accumulating research has witnessed the high frequency of m6A modification in cancers which could be used to predict diagnosis and prognosis of cancer patients (Chen et al., 2018). However, the details of the mechanism and the heterogeneity of how RNA modification influences cancer development and prognosis are still unknown. And targeting dysregulated RNA modification regulators represents an attractive strategy for cancer therapy. This research topic aimed to explore the roles and therapeutic implications of RNA modification in human cancers.
Recently, miRNA and lncRNA have been emerging as key regulators of gene expression in carcinogenesis (Bhan et al., 2017; Saliminejad et al., 2019). Lu et al. uncovered that miR-27a-3p modulated ferroptosis via targeting SLC7A11 in non-small cell lung cancer cells, implying the importance of miR-27a-3p/SLC7A11 in ferroptosis. Zhang et al. constructed a nine-miRNA risk signals associated with esophageal cancer prognosis and further bioinformatics analysis revealed several key signaling which could guide decision-making in clinic. By comparing differentially expressed miRNAs in metastatic melanoma with primary melanoma, Gao et al. identified three miRNAs which participated in melanoma metastasis through regulating their target genes. Du et al. revealed that overexpression of miR-1-3p significantly inhibited colorectal cancer cell proliferation and metastasis by restraining YWHAZ-mediated epithelial-mesenchymal transition. Ku et al. automated the acoustic microfluidics-based extracellular vesicles enrichment technique for small RNA sequencing and identified several miRNAs with potential diagnostic value in prostate cancer. Han et al. reviewed the fundamental biology and characteristics of exosomal lncRNAs as well as their functions between cancer cells and non-cancer cells. Shao et al. showed that exosomes from adipose-derived mesenchymal stem cells mediated lncRNA-MIAT alleviation of endometrial fibrosis via regulating miR-150-5p. Wang et al. indicated the sponge function of lncRNA FIRRE in promoting gallbladder cancer progression by regulating miR-520a-3p/YOD1 axis. Liu et al. discovered a novel androgen-induced lncRNA FAM83H-AS1 which stimulated prostate cancer progression through miR-15a/CCNE2 axis. In ovarian cancer, lncRNA NEAT1 was recognized by Jia et al. as a poor prognosis risk and induced chemotherapy resistance via miR-491-5p/SOX3 signaling pathway. Li et al. uncovered pharmacological mechanisms of Ketamine in suppression of ovarian cancer cell growth by controlling lncRNA-PVT1/EZH2/p57 axis. Through integrating advanced machine learning methods including Monte-Carlo feature selection, Incremental Feature Selection (IFS) and Support Vector Machine (SVM), Xia et al. discovered blood lncRNA signature associated with hepatocellular carcinoma progression. Niu et al. established a risk score model based on gene signature of multiple survival-associated differentially expressed genes and identified a five-lncRNAs signature to predict herapeutic efficacy and prognosis in glioblastoma. Chen et al. uncovered anti-tumor effects of Ginsenoside Rh7 through targeting ILF3-AS1-mediated miR-212/SMAD1 axis in non-small cell lung cancer.
Organized as a covalently closed loop, circRNA can modulate gene expression in various stages of tumor development (Kristensen et al., 2019). One of most widely studied mechanisms refers to its sponge function (Panda, 2018). Several studies in our topic elucidated this effect in various cancers. Ghafouri-Fard et al. reviewed the oncogenic role of circPVT1 which acted as sponges for dozens of miRNAs including miR-125a, miR-125b and miR-124-3p, among different cancers based on experimental and clinical investigations. Yang et al. revealed that circHIPK3 facilitated gastric cancer progression through miR-637/AKT1 pathway. Through analyzing gene expression profile of atherosclerosis, Kang et al. identified the function of circHIPK3/miR-637/CDK6 axis in stimulating cell proliferation in human vascular smooth muscle cells. Zhang et al. demonstrated the role of circDENND2A in accelerating non-small cell lung cancer progression through miR-34a/CCNE1 signaling. Liu et al. emphasized the importance of circHIPK3/miR-124/CCND2 axis in gliomagenesis.
Increasing studies have investigated m6A modification on the biological functions involved in cancer progression and our topic also collected these findings (Liu et al., 2018; Zhang et al., 2020). Qu et al. summarized the mechanism of m6A-related regulators as well as their potential therapeutic value in hepatocellular carcinoma. Tan et al. systematically conducted data analysis and identified key m6A-related lncRNAs in colon adenocarcinoma. Guo et al. built a prognostic model of hepatocellular carcinoma in order to discover m6A-related lncRNAs engaged in immune infiltration. Chen et al. demonstrated that GLS2 was regulated by METTL3 and METTL3/GLS2 signaling accelerated esophageal squamous cell carcinoma metastasis. Wei et al. globally investigated the genetic landscape of the m6A regulators in ovarian cancer and suggested their associations with clinical prognosis. Wang et al. found that m6A reader YTHDF1 aggravated the progression of cervical cancer by regulating its target gene RANBP2. Cheng et al. showed elevated m6A level for RNA methylation as well as METTL3 expression level in diffuse large B-cell lymphoma. Further analysis suggested METTL3 promoted cancer progression by regulating m6A level of pigment epithelium-derived factor.
Several studies also identified novel tumor promoter and suppressors in a variety of cancers. Annexin family proteins were identified and analyzed by Wu et al. that had prognostic value in bladder cancer and could be used as biomarkers for subtype classification. Liu et al. revealed the new function of PDK4 in modulating glucose metabolism as well as promoting gastric cancer progression. Gu et al. investigated the prognostic value and immune infiltration patterns of hippo pathway core genes in lung squamous cell carcinoma, contributing to precisely selection of patients with immunotherapy benefits in clinic. Gao et al. identified FoxM1/AKR1C1 axis as novel target of avasimibe by forming a positive regulatory loop, providing an alternative therapeutic option for cholangiocarcinoma. Hao et al. comprehensively analyzed aerobic exercise-related genes and found that CDCA4 depletion largely hinder osteosarcoma cancer progression. Through analysis of macrophage-regulated genes, Qi et al. indicated the tumor-promoting effects of PSMA2 in colorectal cancer. Using three separate datasets, Zhu et al. demonstrated key exercise-induced genes including ITGB2, WDFY4 and CYBB as well as corresponding pathways, implying their potential prognostic value in malignant melanoma. Hua et al. identified nine RNA binding protein genes through bioinformatics analysis and constructed a prognostic model based on these genes, exhibiting good efficiency in predicting patient survival of prostate cancer. Similarly, a study in hepatocellular carcinoma conducted by Huang et al. identified an RNA binding protein-related six-gene prognostic signature.
Other cancer risk factors were also investigated in this topic. Chen et al. found smoking quitting should be one of therapeutic methods for smoking-related squamous cell carcinoma. They also provided a risk score model to predict prognosis and select beneficial patients. Yang et al. developed a deep convolutional neural network-based framework to evaluate efficacy of immunological therapy for lung cancer from histopathological images. Huang et al. also proposed deep learning techniques to identify mutant genes for target-drug therapy in clinical practice of lung cancer. Li et al. systematically depicted the landscape of cis-and trans-acting expression quantitative trait loci of lncRNAs in human cancers and assessed its impacts on cancer immunity and treatment. Through single-cell RNA-seq analysis, Zhang et al. emphasized the crucial roles of humoral immunity infiltration and hepatocytic prognostic markers in hepatocellular carcinoma with cirrhosis. Through unsupervised clustering of T cell infiltrating levels of hepatocellular carcinoma patients, Li et al. evaluated their clinical significance and provided potential immunotherapeutic targets. Sun et al. also estimated immune infiltration status within microenvironment and identified CXCR4 and GPR183 as core genes for prostate cancer prognosis. Wang et al. developed a quantitative model to predict human age by integrating gene expression profiles from multiple tissues. Yang et al. reviewed the significant roles of circulating tumor DNA testing in diagnosis, tumor mutation burden, therapy response and clinical outcome prediction of non-small cell lung cancer. Gao et al. also reviewed current advance of application of liquid biopsy in metastatic colorectal cancer, especially in discovering new biomarkers. He et al. summarized advantages and disadvantages of in silico methods for repositioning drugs and chemical compounds in order to guide precise tumor treatment.
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Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, whose treatment still has a major challenge of achieving a satisfactory curative effect. The underlying mechanisms also have not been fully illustrated. N6-Methyladenosine (m6A) has been identified as the most prevalent internal modification of mRNAs present in eukaryotes, which is involved in the pathogenesis of cancers. It remains unclear how m6A mRNA methylation is functionally linked to the pathogenesis of DLBCL. In this study, we sought to explore the roles of METTL3 on DLBCL development. The results showed that m6A level for RNA methylation and the expression level of METTL3 were upregulated in DLBCL tissues and cell lines. Functionally, downregulated METTL3 expression in DLBCL cells inhibited the cell proliferation ability. Further mechanism analysis indicated that METTL3 knockdown abates the m6A methylation and total mRNA level of pigment epithelium-derived factor (PEDF). However, Wnt/β-catenin signaling was not thus activated. Overexpressed PEDF abrogates the inhibition of cell proliferation in DLBCL cells that is caused by METTL3 silence. In summary, the above-mentioned results demonstrated that the METTL3 promotes DLBCL progression by regulating the m6A level of PEDF.

Keywords: METTL3, DLBCL, PEDF, N6-methyladenosine, proliferation


INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, representing 30–40% of all cases with adult non-Hodgkin lymphoma (Cheson, 2020). While approximately 10% of patients with DLBCL can be cured by the first-line treatment regimen currently used in clinics (Shimazu and Nohgawa, 2019; Morin and Scott, 2020), combined autologous hematopoietic stem cells with the present rescue chemotherapy regimen can only cure around 10% of all cases with relapsed and refractory DLBCL (Miao et al., 2019). It has become a major challenge for the present DLBCL treatment to enhance the therapeutic effects of the remaining 30% patients. A better understanding of the mechanisms underlying the formation and progression of DLBCL would contribute to the identification of the potential therapeutic targets as well as development of novel treatment regimens. In recent years, a growing number of genes involved in the formation and development of DLBCL have been identified along with the advancement of technology. It is also a research hotspot to determine how these genes exert regulatory roles in the pathogenesis of DLBCL.

N6-Methyladenosine (m6A) has been identified as the most prevalent internal modification of mRNAs present in eukaryotes (Zhuang et al., 2019). While m6A methylation is installed by a methyltransferase complex comprising methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), and the associated proteins [6], this modification can be removed by alkylation repair homolog protein 5 (ALKBH5) or fat mass and obesity-associated protein (FTO), the m6A demethylases (Wei et al., 2018). In mammalian cells, coordinated regulation of the m6A methyltransferases and demethylases is crucial for maintaining this dynamic and reversible RNA modification. It has been shown that METTL3 acts in the pathogenesis of various diseases, including cancers (Zheng W. et al., 2019; Sergeeva et al., 2020; Xie et al., 2020; Yang et al., 2020). However, the role of METTL3 in DLBCL progression and the underlying mechanism have yet to be investigated.

The Wnt pathway is involved in a variety of biological and pathological processes, such as tissue homeostasis, organogenesis, stem cell regulation, and tumor development (Bernatik et al., 2020; Leibold et al., 2020). Upon activation, canonical Wnt ligands bind to the transmembrane receptor Frizzled and coreceptor LRP5/LRP6, inhibiting the degradation of cytoplasmic β-catenin. In this case, accumulated β-catenin in the cytoplasm translocates into the nucleus, where it binds to the transcription factors, regulating the expression of the target genes. The pigment epithelium-derived factor (PEDF) has been shown to act as an upstream regulator in the Wnt signaling pathway and has been implicated in a range of physiological and pathological activities (Park et al., 2011; Protiva et al., 2015; Gong et al., 2016; Ma et al., 2017). So far, it remains unclear how PEDF is functionally linked to m6A mRNA methylation in the pathogenesis of DLBCL.

In the present study, we showed an increase in the bulk m6A RNA methylation as well as METTL3 expression detected in DLBCL tissues and cell lines. Moreover, METTL3 knockdown inhibited DLBCL cell proliferation. Mechanistic studies revealed that silencing METTL3 in the DLBCL cells led to a reduction in m6A methylation in PEDF transcripts and mRNA expression of PEDF, thereby inhibiting Wnt signaling activities. Meanwhile, PEDF overexpression abolished the inhibitory effects of METTL3 knockdown on DLBCL cell proliferation. In all, these findings suggest that METTL3 facilitates DLBCL cell proliferation through regulating m6A modification in PEDF mRNAs as well as Wnt signaling activities. Thus, METTL3 may have a therapeutic potential for DLBCL.



MATERIALS AND METHODS


Tissue Samples

A total of 36 clinical specimens comprising 18 resected DLBCL lymph glands and 18 inflammatory lymph glands used in this study were collected from the Changzhou Traditional Chinese Medicine Hospital and The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology. This study obtained approval from the above-mentioned hospitals, and the sample collection was conducted in accordance with the Declaration of Helsinki. All patients enrolled between 2015 and 2019 for this study provided written informed consent. The high-throughput sequencing data of DLBCL from The Cancer Genome Atlas (TCGA)1 were used for validation.



Quantitative Real-Time PCR

TRIzol reagents were used to isolate the total RNA from the sample tissues or cultured cells, and the cDNA synthesis was carried out by using a One-Step RT-PCR Kit (Thermo Fisher Scientific). An ABI Vii7 system (Applied Biosystems, Foster City, CA, United States) was employed to perform the real-time PCR. GAPDH was included as a reference control. The primer sequences for each gene were presented below: the METTL3 forward 5′-AACAGAGCAAGAAGGTCGGG-3′ and the reverse 5′-GCGAGTGCCAGGAGATAGTC-3′; the METTL14 forward 5′-CTGAAAGTGCCGACAGCATTGG-3′ and the reverse 5′-CTCTCCTTCATCCAGATACTTACG-3′; the WTAP forward 5′-CAACCTCTTTAGCCAAACAAGAA-3′ and the reverse 5′-CGACAACGTGAGTCCTTA-3′; the PEDF forward 5′-CCGTCCGAGATGAACCCTT-3′ and the reverse 5′-GCTTGTTCACGGGGACTTTG-3′; the GAPDH forward 5′-TGACTTCAACAGCGACACCCA-3′ and the reverse 5′-CACCCTGTTGCTGTAGCCAAA-3′. The comparative CT method (DDCT) was applied for calculating relative gene expression.



Western Blotting

Western blot analysis was conducted using antibodies raised against METTL3, PEDF, β-catenin, LRP5, LRP6 (phospho S1490), lamin B1, and GAPDH (Abcam, Cambridge, MA, United States) as previously described elsewhere (Gavini and Parameshwaran, 2020). GAPDH or lamin B1 was applied for loading control.



Cell Culture

Human DLBCL cell lines SU-DHL4, OCILy10, Farage, U2932, and HBL1 as well as human B lymphocyte GM12878 cell line were obtained from the ATCC. The cells were grown in DMEM containing 10% FBS and 1% penicillin/streptomycin under normal conditions.



Cell Proliferation Assay

Cell proliferation was determined using the Cell Counting Kit-8 (CCK-8) (Beyotime, Shanghai, China) as described elsewhere (Lu et al., 2020). For MTT assay, transfected DLBCL cells were seeded at 1 × 104 cells per well in 96-well plates and incubated for 24, 48, 72, and 96 h periods. Then, 10 μl of MTT (5 mg/ml) was applied to each well for an additional 4 h of incubation. After the supernatants were removed, 100 μl of DMSO was added to each well. The OD values were measured at 490 nm using a microplate reader.



Lentivirus Production Transfection

The short hairpin RNA lentiviral expression plasmids targeting METTL3 and human PEDF cDNA lentivirus (LV-PEDF) were provided by Shanghai Genelily BioTech Co., Ltd. Forty-eight hours following transfection, the cells were selected with 2 μg/ml of puromycin for 2 weeks. Then, generation of cell lines with silenced expression of METTL3 was performed, and the transfection efficacy was determined by using RT-qPCR. Invitrogen Lipofectamine 3000 was used to conduct the plasmid transfection as instructed by the manufacturer.



Flow Cytometry

Flow cytometry was conducted as described elsewhere (Klanova et al., 2019). A flow cytometry-based detection of apoptosis was performed using FITC-conjugated annexin V early apoptosis kit. Transfected DLBCL cells with si-METTL3 or negative control (NC) were subjected to an analysis on FACScan flow cytometer (BD Biosciences) and then calculated using CellQuest software from BD Biosciences.



TOP/FOP-Flash Reporter Assay

TOP/FOP-Flash reporter assay was carried out as indicated elsewhere (Klanova et al., 2019). In brief, DLBCL cells were seeded into a 24-well plate and then transfected with the TOP/FOP-Flash plasmids (Simo Biomedical Technology, Shanghai, China). The Promega Dual Luciferase Assay kit was used to assay the luciferase activity.



m6A Quantification

The bulk m6A of total RNA isolated from the tissue or cells was determined by using the Abcam m6ARNA Methylation Assay Kit as indicated previously (Zhu et al., 2020). Briefly, 200 ng of sample RNA (2 μl), NC (2 μl), and diluted positive control (2 μl) were then added into the designated wells with binding solution and were incubated at 37°C for 90 min. Then, the binding solution was removed. Fifty microliters of the diluted capture antibody, diluted detection antibody, and diluted enhancer solution was added to each well in order and was incubated at room temperature for 30 min each. Then, 100 μL of developer solution was added and incubated at room temperature for 10 min away from the light. The developer solution will turn blue in the presence of sufficient m6A. The absorbance was read on a microplate reader at 450 nm.



Me-RIP Assay

The methylated m6A RNA immunoprecipitation (me-RIP) assay was carried out as indicated elsewhere (Niu et al., 2019). In brief, DLBCL cells (1 × 107) were firstly lysed with RIP lysis buffer. The extracted cells and anti-m6A antibodies (3 μg in 500 μl) conjugated with magnetic beads were co-incubated at 4°C for 6 h. Following the removal of the proteins with beads, quantitative real-time PCR (qRT-PCR) was employed to detect the methylated PEDF RNA.



RNA Stability Assay

The stability of PEDF transcripts was measured as indicated elsewhere (Zhang et al., 2020). Briefly, actinomycin D (5 mg/ml) was added to stop transcription, and samples at 0, 3, and 6 h decay were collected. ERCC RNA spike-in control (Ambion) was added to each sample before the isolation of mRNA to correct the decrease of the whole mRNA population during RNA decay. Then, qRT-PCR was employed to measure the PEDF transcripts.



Generation of DLBCL Cell-Bearing Mice

Intraperitoneal injection of DLBCL cells labeled with fluorochrome into BALB/c nude mice (aged 4–5 weeks) was performed to generate the mouse model bearing DLBCL cells. Three weeks following the injection, a Xenogen IVIS-200 in vivo imaging system (Caliper Life Sciences, Hopkinton, MA, United States) was utilized to observe and analyze the bioluminescence images of intraperitoneal tumors in the mice.



Immunofluorescent Staining (IF)

The sections were incubated with rabbit monoclonal anti-β-catenin (ab32572, 1:250) at 4°C overnight and then incubated with Alexa® 488-conjugated goat anti-rabbit secondary antibody (Thermo Fisher, Waltham, MA, United States). The nuclear stain Hoechst 34580 (5 μg/ml; Molecular Probes, Thermo Fisher, Waltham, MA, United States) was added prior to final washes after the incubation of secondary antibody. Images were collected via an Olympus confocal laser scanning microscope. DAPI was used for nuclear counterstaining.



Statistics

All data were presented as means ± SEM. Comparisons between two groups were performed by unpaired two-tailed Student’s t-test. ANOVA or repeated ANOVA, followed by Bonferroni post hoc test, was conducted for multiple comparisons using GraphPad Prism® version 6.0 software. Statistically, a p value < 0.05 was adopted for significance.



RESULTS


m6A RNA Methylation Levels and METTL3 Expression Are Increased in DLBCL

To determine if the m6A modification has a role in the pathogenesis of DLBCL, we first collected a total of 18 DLBCL tissues and 18 inflammatory lymph glands and analyzed the bulk m6A RNA methylation of these tissue samples. The characteristics of DLBCL patients were summarized in Supplementary Table S1. Compared with the control inflammatory lymph glands, a significant increase in the m6A levels was detected in DLBCL tissues (Figure 1A). Likewise, we found that DLBCL cell lines, including SU-DHL4, OCILy10, Farage, U2932, and HBL1, displayed a higher m6A level than the human B lymphocyte (GM12878) (Figure 1B). Next, we conducted an expression screening of the m6A methyltransferases. As shown in Figure 1C, we identified a consistent elevation in the mRNA levels of METTL3 in DLBCL tissues, based on qRT-PCR. This observation was in accordance with the data derived from the TCGA (Figure 1D). Moreover, while increased METTL3 expression in DLBCL tissues can be validated by western blotting (Figure 1F), we showed an upregulation in the mRNA levels of METTL3 in DLBCL cell lines (Figure 1E). Recent studies have shown that the m6A modification is deposited to RNAs by the m6A methyltransferase complex, a protein complex formed by the METTL3/METTL14 heterodimeric catalytic core and a regulatory subunit, Wilms’ tumor 1-associating protein (WTAP) (Park et al., 2019; Buker et al., 2020; Melstrom and Chen, 2020). Therefore, the expressions of METTL14 and WTAP were checked in DLBCL tissues and cell lines as well as data derived from TCGA (Figures 1G–L). The results showed that METTL14 and WTAP have similar expression patterns with METTL3 in DLBCL, which coordinates with the previous conclusion. Together, these data suggest that METTL3 may act as a pro-tumor gene involved in DLBCL pathogenesis through regulating m6A methylation.
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FIGURE 1. The bulk m6A RNA methylation and METTL3 expression are increased in DLBCL. (A) The bulk m6A RNA methylation in 18 DLBCL tissues and 18 inflammatory lymph glands. ∗P < 0.05. (B) The bulk m6A RNA methylation in DLBCL cell lines (SU-DHL4, OCILy10, Farage, U2932, HBL1) and Human B lymphocyte (GM12878). ∗∗P < 0.01. (C) mRNA expression of METTL3 in 18 DLBCL tissues and 18 inflammatory lymph glands was analyzed by qRT-PCR. ∗∗P < 0.01. (D) METTL3 expression in TCGA database between DLBCL tissues and normal counterparts. ∗P < 0.05. (E) qRT-PCR was used to analyze mRNA expression of METTL3 in DLBCL cell lines (SU-DHL4, OCILy10, Farage, U2932, HBL1) and Human B lymphocyte (GM12878). ∗∗P < 0.01. (F) METTL3 expression in 4 DLBCL tissues and 4 inflammatory lymph glands was analyzed by western blotting. ∗∗P < 0.01. (G) mRNA expression of METTL14 in 18 DLBCL tissues and 18 inflammatory lymph glands was analyzed by qRT-PCR. ∗∗P < 0.01. (H) qRT-PCR was used to analyze mRNA expression of METTL14 in DLBCL cell lines (SU-DHL4, OCILy10, Farage, U2932, HBL1) and Human B lymphocyte (GM12878). ∗∗P < 0.01. (I) METTL14 expression in TCGA database between DLBCL tissues and normal counterparts. ∗P < 0.05. (J) mRNA expression of WTAP in 18 DLBCL tissues and 18 inflammatory lymph glands was analyzed by qRT-PCR. ∗P < 0.05. (K) qRT-PCR was used to analyze mRNA expression of WTAP in DLBCL cell lines (SU-DHL4, OCILy10, Farage, U2932, HBL1) and Human B lymphocyte (GM12878). ∗P < 0.05. (L) WATP expression in TCGA database between DLBCL tissues and normal counterparts. ∗P < 0.05.




Silencing METTL3 Expression Leads to an Inhibition in DLBCL Cell Proliferation

To functionally characterize METTL3 in DLBCL, we knocked down METTL3 expression using lentivirus-mediated shRNAs in DLBCL cell lines (SU-DHL4 and HBL1) and examined whether reduced expression of METTL3 affects cell proliferation. Prior to cell proliferation assays, we validated the efficacy of METTL3 expression silencing in SU-DHL4 and HBL1 cells using qRT-PCR and western blotting (Figures 2A,B). To assess the proliferative ability of the DLBCL cells with reduced expression of METTL3, we first performed CCK-8 (Figure 2C) and MTT (Figure 2D) assays. As depicted in Figures 2C,D, silencing METTL3 expression resulted in an inhibition in the proliferation of SU-DHL4 and HBL1 cells. We next determined the cell cycle status of DLBCL cells with the silenced expression of METTL3 based on flow cytometry. The analysis revealed that the proportion of G2/M-phase cells was decreased in METTL3-silenced cells in comparison with that in the control cells (Figure 2E). Meanwhile, the annexin V assay showed a higher rate of apoptotic cells in DLBCL cell lines with reduced expression of METTL3 compared with the control ones (Figure 2F). All these observations indicated that METTL3 knockdown caused an inhibition in DLBCL cell proliferation in vitro.
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FIGURE 2. METTL3 knockdown suppresses the proliferation of DLBCL cells. qRT-PCR (A) and western blotting (B) were used to assess the efficacy of METTL3 silencing in SU-DHL4 and HBL1 cells, respectively. ∗∗P < 0.01. The viability of the DLBCL cells was determined using CCK8 (C) and MTT (D) assays. (E) The cell cycle distribution of the DLBCL cells was detected by flow cytometry. ∗P < 0.05. (F) Apoptosis in SU-DHL4 and HBL1 cells was examined by using Annexin V assay. ∗P < 0.05.




METTL3 Knockdown Inhibits PEDF Expression and m6A Methylation in PEDF mRNA

To investigate the mechanisms underlying the role of METTL3 silencing in inhibition of DLBCL cell proliferation, we examined if PEDF, the upstream Wnt pathway component, plays a role in METTL3-mediated effects on DLBCL. TCGA database search revealed that PEDF was overexpressed in DLBCL tissues, and further linear regression analysis identified a positive correlation between increased expression of PEDF and METTL3 expression in DLBCL tumor tissues and whole blood (Figure 3A). Similarly, our experiments showed that while mRNA expression of PEDF was markedly increased in DLBCL tissues, a positive correlation between upregulated PEDF expression and METTL3 levels was detected in those tissue samples (Figure 3B). We next sought to determine if METTL3 functions in regulating PEDF expression in DLBCL cells. As shown in Figures 3C,D, silencing METTL3 led to a reduction in both mRNA and protein expression of PEDF in SU-DHL4 and HBL1 cells. However, we found that transcriptional activity of TOP/FOP was not significantly impacted in SU-DHL4 and HBL1 cells with silenced expression of METTL3 (Figure 3E). Silencing METTL3 in SU-DHL4 and HBL1 cells also could not obviously modulate the expression of β-catenin in the nucleus and phosphorylation of LRP6 (Figures 3F–H). METTL3 silencing caused a decrease in m6A methylation in PEDF mRNAs in the DLBCL cells (Figure 3I). To determine if decreased m6A methylation affects the mRNA stability of PEDF in the cells, we carried out an RNA stability assay. The assay revealed that the half-life of PEDF gene transcripts was shortened in SU-DHL4 and HBL1 cells with silenced expression of METTL3 (Figure 3J), suggesting that decreased expression of PEDF in the DLBCL cells with METTL3 silencing can be at least partially attributed to reduced mRNA stability of PEDF linked to altered m6A methylation level. Thus, we reasoned that silencing METTL3 in DLBCL cells downregulates PEDF expression through acting on the mRNA methylation (m6A).
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FIGURE 3. METTL3 knockdown down-regulates PEDF expression and m6A methylation in PEDF mRNAs, as well as Wnt signaling activities. (A) PEDF expression and correlation of the expression of METTL3 with PEDF expression in TCGA database between DLBCL tissues and normal counterparts. ∗P < 0.05. (B) mRNA expression of PEDF in 18 DLBCL tissues and 18 inflammatory lymph gland specimens was determined using qRT-PCR. ∗∗P < 0.01. A positive correlation between mRNA expression of METTL3 and PEDF was detected by linear regression analysis. qRT-PCR (C) and western blotting (D) were used to analyze mRNA and protein expression of PEDF in SU-DHL4 and HBL1 cells with silenced expression of METTL3, respectively. ∗∗P < 0.01. TOP/FOP-Flash reporter (E) was employed to determine Wnt signaling activity in SU-DHL4 and HBL1 cells with silenced expression of METTL3. (F) Western blotting assay of total and nuclear β-catenin proteins in DLBCL cells with silenced expression of METTL3. GAPDH and Lamin B1 were used as internal control and endogenous control of cell nuclear fraction, respectively. (G) Accumulation of β-catenin in the nucleus of the DLBCL cells with silenced expression of METTL3 according to confocal microscope images. (H) Western blotting assay of total and phosphorylated LRP6 proteins in DLBCL cells with silenced expression of METTL3. GAPDH was used as internal control. Me-RIP (I) assay was conducted to determine m6A methylation in PEDF transcripts in SU-DHL4 and HBL1 cells with silenced expression of METTL3. ∗∗P < 0.01. (J) The half-life (T1/2) of PEDF mRNAs in SU-DHL4 and HBL1 cells transfected with Lv-shMETTL3 or Lv-NC (the control lentivirus).




PEDF Overexpression Abolishes the Inhibitory Effects of METTL3 Knockdown on DLBCL Cell Proliferation

Next, we sought to investigate if PEDF mediates the inhibitory effects of METTL3 knockdown on DLBCL cell proliferation. For this purpose, SU-DHL4 and HBL1 cells were transfected with NC, METTL3 shRNA plasmid, LV-PEDF, and shMETTL3 + LV-PEDF, respectively. As shown in Figures 4A,B, PEDF expression in the transfected cells was validated using qRT-PCR and western blotting. We then analyzed the effect of PEDF overexpression on METTL3 knockdown-mediated regulation of DLBCL cell proliferation. The cell proliferation (Figure 4C) and apoptotic assays (Figure 4D) revealed that PEDF overexpression markedly relieved the inhibitory effects of METTL3 silencing on DLBCL cell proliferation. To further test the role of PEDF in vivo, DLBCL cell-bearing mice were generated by intraperitoneal injection of SU-DHL4 and HBL1 cells stably expressing luciferase as well as indicated genes (SU-DHL4-Luc and HBL1-Luc) into the nude mice. Three weeks after the injection, an in vivo imaging system was employed to examine the mouse models. As depicted in Figure 4E, the mice bearing DLBCL cells with silenced expression of METTL3 displayed remarkably lower luminescence intensities than those in the control group, suggesting a METTL3 knockdown-induced inhibition in the tumor progression in vivo. Notably, we observed that the mice harboring PEDF-overexpressed DLBCL cells exhibited a comparable luminescence intensity with those in the control group. Collectively, these findings indicated that PEDF overexpression abolished the inhibitory effects of METTL3 knockdown on DLBCL cell activities in vivo.
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FIGURE 4. The overexpression of PEDF reverses the inhibitory effects of METTL3 knockdown on DLBCL cell proliferation. PEDF expression at mRNA (A) and protein levels (B) was determined using qRT-PCR and western blot analysis, respectively. CCK8 (C) and Annexin V assays (D) were employed to detect the viability and apoptotic rate of SU-DHL4 and HBL1 cells, respectively. (E) The proliferative activity of SU-DHL4 and HBL1 cells in the mouse model was assessed. Bioluminescence images of the mice bearing SU-DHL4-luc and HBL1-luc cells as well as relative luminescence intensities were illustrated. All experiments above were conducted after transfection with Lv-NC, Lv-shMETTL3, Lv-PEDF and Lv-shMETTL3 + Lv-PEDF. ∗P < 0.05, ∗∗P < 0.01 vs. the control groups.




DISCUSSION

Here, we provided the first demonstration that METTL3 and m6A RNA modifications are functionally implicated in DLBCL development. The present study showed that the bulk m6A RNA methylation and METTL3 expression were significantly increased in the tissues and cell lines of DLBCL.

N6-Methyladenosine methylation is considered one of the most prevalent chemical modifications in mRNAs and has been shown to be critically involved in cancer development. This study identified an increased expression of METTL3 in DLBCL tissues and cells. Furthermore, silencing METTL3 led to an inhibition in DLBCL cell proliferation both in vitro and in vivo, suggesting that METTL3 may act as a pro-tumor gene involved in the pathogenesis of DLBCL.

Recent studies showed that aberrant expression of METTL3 is associated with various cancers. TCGA data-based analysis has identified acute myeloid leukemia, DLBCL, and prostatic cancer as the top three malignancies with the most expression abundances of METTL3 among common tumors. These data suggest that highly expressed METTL3 may be functionally linked to the formation and progression of certain cancers. A subsequent study revealed that while METTL3 maintains leukemic cell growth via the sp1/c-MYC pathway, depletion of METTL3 leads to a cell cycle arrest and differentiation of the leukemic cells (Barbieri et al., 2017). In lung cancers, METTL3 was found to selectively promote the translation of mRNAs containing the m6A peaks around the stop codons, such as mRNA transcripts of the oncogenes EGFR and DNMT3A, and to increase the expression of the oncoproteins, thereby facilitating the proliferation and invasion of the tumor cells (Lin et al., 2016). Moreover, this study demonstrated that METTL3 recruits the initiator factor elF3 to the translational initiation complex for facilitating the translational efficacy, while the cytoplasmic METTL3 can be independent of its own or other methyltransferase activities and the N-terminus of METTL3 is capable of directly upregulating the translation of its target genes. Besides, reduced expression of METTL3 caused a marked inhibition in the proliferation and invasion of lung cancer cells, as well as an increased apoptosis. In the meantime, studies on leukemia indicated that m6A modification promotes the translation of oncogenes c-MYC, Bcl-2, and PTEN. In this case, depletion of METTL3 increased the phosphorylation of protein kinase B (AKT) and induced the differentiation and apoptosis of the leukemic cells, eliciting a delay in the progression of leukemia (Vu et al., 2017). Overall, these data support the notion that METTL3-catalyzed m6A methylation can affect the activities of certain tumor-specific mRNAs, eliciting a change in the expression of the oncoproteins and biological behaviors of the tumor cells and facilitating the cancer development. However, it is not the case that METTL3 is highly expressed in all tumors. Instead, a low expression level of METTL3 was detected in certain tumors in which upregulated expression of METTL3 could effectively inhibit the tumor development. It has been reported that kidney cancer tissues display a low expression of METTL3 that not only promotes the proliferation, growth, and colony formation of the cancer cells via the PI3K/Akt/mTOR pathway but also activates the EMT to facilitate the migration and invasion of the cells (Li et al., 2017). Notably, upregulating the expression of METTL3 also may significantly suppress the growth of solid tumors (Wang et al., 2017; Hu et al., 2020). Meanwhile, follow-up studies on prognosis showed that the patients with a high level of METTL3 expression exhibit a longer survival period.

It has been reported that aberrantly activated Wnt signaling is critically involved in DLBCL progression (Koch et al., 2014; Bognar et al., 2016). To explore the mechanism underlying the role of METTL3 in DLBCL, we analyzed the regulatory effects of METTL3 on Wnt signaling via m6A methylation in PEDF mRNA transcripts. However, we did not observe that METTL3 knockdown resulted in a corresponding regulation on Wnt signaling activities. As PEDF was usually regarded as a canonical Wnt signaling inhibitor in previous studies (Park et al., 2011; Protiva et al., 2015; Gong et al., 2016; Ma et al., 2017), this result strongly suggests that there might be a key back regulator of Wnt signaling synchronously enhanced that balances the effect of PEDF. It also indicated that canonical Wnt signaling may not be the primary pathway that affected METTL3 modulation in DLBCL cells. The back regulator and signaling involved need to be further identified through high-throughput sequencing. PEDF was widely considered as a tumor suppressor in solid tumors as it exhibits antiangiogenic and antimetastatic activities (Baxter-Holland and Dass, 2018; Nardi et al., 2018; Ansari et al., 2019; Honrubia-Gomez et al., 2019; Huang et al., 2019). Its role in hematologic malignancies such as leukemia, lymphoma, and multiple myeloma remains unclear. DLBCL cells are a sort of suspension cultured cells that exhibit different biological characteristics compared with conventional anchorage-dependent cells from solid tumors. They are freely transferred in human blood circulation in which the antiangiogenic or antimetastatic activities possessed by PEDF may not efficiently function. Therefore, PEDF presented a distinctive pro-tumor role in DLBCL in this study. Genes’ function may differ in various cancers. Erbin was reported to associate with the stage and progression in colorectal cancer (Yao et al., 2015), thereby exhibiting the characteristics of oncogenes. In contrast, Zheng Z. et al. (2019) found that depletion of Erbin in acute myeloid leukemia cells could enhance the cell proliferation and block the cell differentiation, which suggests that Erbin may exert carcinostasis in acute myeloid leukemia. The findings in this study led us to propose that increased m6A level in PEDF mRNAs may underlie METTL3-mediated regulation of DLBCL cell proliferation. However, the regulatory role of the METTL3/PEDF axis in DLBCL development needs to be further investigated.

In sum, this study presented evidence that the m6A methyltransferase METTL3 acts in DLBCL cell proliferation by regulating m6A modification in PEDF mRNAs. The METTL3/PEDF axis may have a therapeutic potential for DLBCL.
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As a malignant tumor of the central nervous system, glioma exhibits high incidence and poor prognosis. Circular RNA HIPK3 (circHIPK3) is a circular RNA (circRNA) related to cancer progression. However, the role of circHIPK3 in gliomas remains unclear. The purpose of this study was to investigate the role of circHIPK3 in gliomas and its mechanism. The qRT-PCR method was used to determine the expression pattern of circHIPK3 in glioma cell lines. CCK-8 assay was used to detect cell proliferation. Cell migration and invasion were evaluated using the Transwell assay. Our results showed that circHIPK3 expression was significantly up-regulated in glioma tissues and cell lines. In vitro, the down-regulation of circHIPK3 significantly inhibited the proliferation, migration and invasion of glioma cells. Besides, we demonstrated that circHIPK3 acted as a sponge to absorb miR-124 and promoted CCND2 expression. In summary, our results indicated that circHIPK3 had carcinogenic effects by regulating the expression of CCND2 in glioma by sponging miR-124. These findings provided favorable evidence to reveal the role of circHIPK3 in the development of gliomas.
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INTRODUCTION

Glioma is the most severe primary human central nervous tumor in adults worldwide, accounting for 40% of intracranial tumors, and has a poor prognosis (Geng et al., 2015). The growth and metastasis of glioma cells depend on angiogenesis, and a continuous increase in blood vessels has been considered a key feature of gliomas (Lund et al., 1998). This characteristic of rapid growth and high infiltration causes most patients already at stage IV when they are diagnosed with glioma (Shraddha et al., 2015). Pathological diagnosis is the basis for treatment. When considering the prognosis of osteosarcoma, a biopsy is performed to obtain confirmation by pathological examination as soon as possible, which is of great significance for the diagnosis and treatment. Despite the rapid development of science and technology in recent years, the comprehensive treatment of gliomas (including surgical resection, radiotherapy and chemotherapy) has also progressed, the treatment effect is still not ideal and the patient survival rate has not improved (Johnson and Sampson, 2010). Due to the special pathological and physiological characteristics of gliomas, there is currently no targeted treatment for them (Van Meir et al., 2010). In order to overcome the existing challenges, efforts need to be focused on developing new therapies for gliomas.

Circular RNA (circRNA) is a recently discovered class of endogenous non-coding RNA (ncRNA) that usually originates from exon regions, so it is also defined as exonic circRNA, but it may also arise from the intron and intergenic regions. It is proposed as an important regulator for understanding growth and development, tissue regeneration, potential pathological mechanisms and therapeutic targets for diseases, as it can transcriptionally or post-transcriptionally modulate gene expression by regulating microRNAs or other molecules. CircRNA sponges miRNAs to further regulate downstream gene expression (Ebbesen et al., 2016, 2017). For example, Yuan et al. (2019) showed that circRNA_005647 was upregulated in cardiac fibrosis and inhibited the expression of fibrosis-related genes through sponging miR-27b-3p in mouse CFs. Increasing evidence suggests that dysregulation of circRNAs plays a key role in the pathogenesis of many human diseases, such as malignancies.

CircHIPK3, produced by reverse splicing of the second exon of the HIPK3 gene, was reported to enhance cell growth and metastasis via binding and inhibiting many tumor-suppressive miRNAs (Zheng et al., 2016). For instance, there are reports indicating that circHIPK3 is overexpressed in prostate cancer tissues and is associated with tumor stage (Chen et al., 2019). Chen et al. (2018) found that circHIPK3 promoted cell proliferation and migration of liver cancer cells. Although circHIPK3 has been shown to increase expression in glioma tissues and can be used as a prognostic biomarker, the potential mechanism of circHIPK3 in gliomas remains unclear and requires further study (Jin et al., 2018).

MicroRNAs are endogenous short non-coding RNA molecules that negatively regulate gene expression at a post-transcriptional level. MiR-124 is one of the most abundantly expressed miRNAs in the brain that participates in the process of neurogenesis, synapse morphology, neurotransmission, inflammation and so on. Accumulating evidence shows that miR-124 plays an indispensable role in the progression of multiple diseases. For example, An et al. (2017) reported that miR-124 acted as a target for Alzheimer’s disease by regulating BACE1.

CCND2 is the abbreviation of cyclin D2. The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance through the cell cycle (Witt et al., 2013). Cyclin D has been shown in many cancer types to be misregulated. CCND2 has been the focus of major research and development efforts over the past decade. For example, Wang et al. found that lncRNA KCNQ1OT1 acting as a ceRNA for miR-4458 enhanced osteosarcoma progression by regulating CCND2 expression. All in all, the roles of miR-124 and CCND2 in glioma still keep unclear (Wang et al., 2019).



MATERIALS AND METHODS


Clinical Samples and Cell Culture

This study was approved by the Medical Ethical Committee of the First Affiliated Hospital of Zhengzhou University. Glioma tissues and normal tissues were obtained from the First Affiliated Hospital of Zhengzhou University between October 2015 and September 2018. We obtained the informed consent from all patients. SW1783, and U373 were purchased from the TCCCAS (Shanghai, China). RPMI-1640 medium with 10% FBS, 1% penicillin/streptomycin was used to culture cells. All regents were purchased from Hyclone (Hyclone, Logan, UT).



Cell Transfection

SW1783 and U373 cells in the logarithmic growth were transfected with 100nM si-circHIPK3/NC, the siRNA oligo was synthesized by Shanghai GenePharma Co., Ltd. The sequence of the siRNA for the circHIPK3 was 5′- CUACAGGUAUGGCCUCACA-3′ (si-circHIPK3). The sequence of negative control siRNA (si-NC) was 5′-UUCUCCGAACGUGUCACGUTT-3′. miR-124/NC inhibitor, miR-124/NC mimics, CCND2/empty vector plasmid (Genepharma, Shanghai, China) using Lipofectamine2000 (Invitrogen, CA) according to the manufacturer’s instructions.



Cell Proliferation Assay

CCK-8 kit (Beyotime, Shanghai, China) was applied to detect cell viability at 0, 1, 2, 3, or 4 days after transfection. Briefly, 2000 cells/well glioma cells were seeded into 96-well plates. CCK-8 assay was detected using the microplate reader (Bio-Tek, Winooski, VT) according to the manufacturer’s instructions.



Cell Migration and Invasion Assays

Cell metastasis was detected using Transwell chambers. For the invasion assay, chambers were coated with Matrigel. After transfection, the transfected cells were plated in the upper chamber with 1 × 105 cells/well, while the lower chamber was filled with complete medium. One day later, the cells were fixed with methanol and stained with DAPI (Solarbio, Beijing, China) for 10 min.



qRT-PCR

RNAs were extracted using TRIzol reagent. Reverse transcription of 2μg RNA was conducted using SuperScript RT kit. All reagents used in this section were purchased from Invitrogen (Invitrogen, Carlsbad, CA, United States). qRT-PCR was conducted using SYBR Premix ExTaqTM with an Applied Biosystems 7300 system (Applied Biosystems, CA, United States). GAPDH or U6 was used as internal references to determine the relative expressions of targets by using the 2–ΔΔCt method. The primers were purchased from Genepharm (Shanghai).



Targets Prediction

We aimed to construct a glioma specific circHIPK3 regulating ceRNA network following several steps. First, we identified survival related genes in gliomas using GSE33331 database, which included 13 glioma samples with short overall survival time and 13 glioma samples with long overall survival time. Second, we identified circHIPK3 binding miRNAs using circBase database. Third, we predicted the potential targets of circHIPK3 binding miRNAs with miRTarbase and Targetscan. Finally, the ceRNA network was constructed using Cytoscape software.



Gene Ontology and Pathway Enrichment Analyses

The Gene ontology and pathway enrichment analyses were conducted using DAVID system1.



Luciferase Reporter Assay

The fragments of circHIPK3 and CCND2 containing the wildtype or mutant miR-124 binding sites were purchased from Sangon Biotech (Shanghai, China), and sub-cloned into psiCHECK-2 system (Promega, Madison, WI, United States). The luciferase activity was measured using the dual-luciferase reporter assay system (Promega) according to the manufacturer’s instructions.



Statistical Analysis

The Student’s t-test was used for the statistical analysis. The SPSS software (version 20.0, SPSS, Inc., Chicago) was applied for the data analysis. P < 0.05 was considered statistically significant.



RESULTS


Construction of CircHIPK3-RNA Binding Protein (RBP) Interaction Network

In order to comprehensively predict the roles of circHIPK3 in human cancers, we first predicted the interacting RBPs of this circRNA using Circular RNA Interactome2. We found that circHIPK3 interacted with 20 RBPs, including AGO1, AGO2, AGO3, CAPRIN1, EIF4A3, ELAVL1, FMR1, FUS, FXR1, FXR2, IGF2BP1, IGF2BP2, IGF2BP3, LIN28A, LIN28A, LIN28B, MOV10, PTBP1, U2AF2, UPF1. Moreover, we constructed a complicated protein-protein interaction network to reveal the potential binding proteins of circHIPK3 interacting RBPs. As presented in Figure 1, the network included 1 circRNA, 121 proteins and 605 edges.
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FIGURE 1. Construction of circHIPK3-RNA binding protein (RBP) interaction network circHIPK3 interacted with 20 RBPs.




Construction of CircHIPK3 Regulating ceRNA Network in Glioma

Over the past decade, several previous studies showed circHIPK3 could acted as miRNA sponges to affect multiple genes’ expression. Very interestingly, we observed circHIPK3 could interacted with AGO1, AGO2, and AGO3, which were reported to be crucial regulators of miRNAs’ activity. Thus, we aimed to construct a glioma specific circHIPK3 regulating ceRNA network following several steps. First, we identified survival related genes in gliomas using GSE33331 database, which included 13 glioma samples with short overall survival time and 13 glioma samples with long overall survival time. As shown in Figure 2, a total of 955 survival related genes were identified in glioma. Among them, 432 genes were found to be related to long survival time and 523 genes were found to be related to short survival time. Second, we identified circHIPK3 binding miRNAs using circBase database. Third, we predicted the potential targets of circHIPK3 binding miRNAs. Finally, the ceRNA network was constructed using Cytoscape software.
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FIGURE 2. Survival related genes in gliomas were identified using the GSE33331 database of the 955 survival related genes identified in gliomas, 432 genes were related to long survival time, and 523 genes were related to short survival time.


As presented in Figure 3, the ceRNA network included 22 miRNAs (hsa-miR-190b, hsa-miR-382-5p, hsa-miR-338-3p, hsa-miR-499a-5p, hsa-miR-124-3p, hsa-miR-33a-5p, hsa-miR-506-3p, hsa-miR-653-5p, hsa-miR-190a-5p, hsa-miR-379-5p, hsa-miR-199b-5p, hsa-miR-10a-5p, hsa-miR-193b-3p, hsa-miR-193a-3p, hsa-miR-508-3p, hsa-miR-33b-5p, hsa-miR-132-3p, hsa-miR-30a-3p, hsa-miR-30e-3p, hsa-miR-551b-3p, hsa-miR-3529-5p, hsa-miR-302b-5p) and 372 mRNAs.


[image: image]

FIGURE 3. The ceRNA network was constructed using Cytoscape software the ceRNA network included 22 miRNAs and 372 mRNAs.




Bioinformatics Analysis of CircHIPK3 in Glioma

Then, we predicted the potential functions of circHIPK3 in glioma using ceRNA network. The GO analysis indicated that circHIPK3 was involved in regulating gene expression, gene transcription and microtubule cytoskeleton organization involved in mitosis (Figure 4A). The KEGG pathway analysis showed circHIPK3 was related to regulating Thyroid hormone signaling, Ras pathway, and ErbB signaling (Figure 4B).
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FIGURE 4. Bioinformatics analysis of circHIPK3 in glioma.(A) GO analysis of circHIPK3 in gliomas showed that it was involved in the regulation of gene expression and transcription. (B) Analysis of the KEGG pathway of circHIPK3 showed that it is involved in regulating Thyroid hormone signaling, Ras pathway, and ErbB signaling.




Silencing of CircHIPK3 Suppressed Glioma Cells Proliferation, Invasion and Migration

Then, we aimed to explore the roles of circHIPK3 by knocking down of circHIPK3 via transfecting si-circHIPK3. The silence efficiency was showed in Figures 5A,B). The impacts of circHIPK3 silencing on cell proliferation, invasion, and migration on SW1783 and U373 cells was further validated. The results indicated circHIPK3 knockdown markedly suppressed the cell proliferation (Figures 5C,D), invasion (Figure 5E) and migration (Figure 5F) of glioma cells.
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FIGURE 5. Silencing of circHIPK3 suppressed glioma cells proliferation, invasion and migration. (A,B) Silencing efficiency of small interfering RNA against circHIPK3. (C–F) CircHIPK3 knockdown markedly suppressed the cell proliferation (C,D), invasion (E) and migration (F) of glioma cells. ∗p < 0.05, ∗∗p < 0.01.




CircHIPK3 Affected CCND2 Expression by Directly Targeting miR-124

Based on bioinformatics prediction using online database, circHIPK3 had a potential role to sponge miR-124 (Figure 6A) and CCND2 was a potential target of miR-124 (Figure 6C). To confirm the online predictions, we performed luciferase reporter assays in glioma cells. As illustrated in Figure 6, we observed that miR-124 up-regulation markedly suppressed the luciferase activity when co-transfected miR-124 with circHIPK3 or CCND2 wild-type vectors (Figures 6B,D). Moreover, miR-124 RNA levels were induced after knockdown of circHIPK3 (Figure 6E). However, miR-124 overexpression repressed the expression of CCND2 (Figure 6F).
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FIGURE 6. CircHIPK3 affected CCND2 expression by directly targeting miR-124. (A) CircHIPK3 had a potential role to sponge miR-124. (B) MiR-124 up-regulation markedly suppressed the luciferase activity when co-transfected miR-124 with circHIPK3 wild-type vectors.(C) CCND2 was a potential target of miR-124. (D) MiR-124 overexpression markedly suppressed the luciferase activity when co-transfected miR-124 with CCND2 wild-type vectors. (E) MiR-124 RNA levels were induced after knockdown of circHIPK3. (F) MiR-124 overexpression repressed the expression of CCND2. ∗p < 0.05, ∗∗p < 0.01.




The Roles of CircHIPK3 Were Mediated by miR-124 in Glioma Cells

In order to elucidate the effects of miR-124 on the proliferation of glioma cells, we suppressed miR-124 expression in SW1783 and U373 cells using miR-124 inhibitor (Figures 7A,B). We found the silencing of miR-124 reversed the si-circHIPK3-induced suppressive effects on cell proliferation (Figures 7C,D).
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FIGURE 7. The roles of circHIPK3 were mediated by miR-124 in glioma cells. (A,B) MiR-124 expression suppressed in SW1783 and U373 cells using miR-124 inhibitor. (C,D) Silencing miR-124 could reverse the degree of optical density (OD) reduction in cells induced by si-circHIPK3 at 450 nm. ∗p < 0.05, ∗∗p < 0.01. The sign “&” indicates significant difference between non-control groups, p < 0.05.




CCND2 Mediated the Effects of miR-124 on Glioma Cells

CCND2, a key cell cycle regulator, has been reported to be an oncogene in human cancers. The TCGA data analysis showed that CCND2 was upregulation in glioma samples compared to normal tissues (Figure 8A). Higher expression levels of CCND2 were correlated to shorter overall survival time in patients with GBM (Figure 8B). To explore whether miR-124 played the tumor suppressive roles in SW1783 and U373 cells by targeting CCND2, we re-expressed CCND2 expression in SW1783 and U373 cells. As presented in Figure 8, overexpression of CCND2 markedly induced CCND2 levels in SW1783 and U373 cells transfected with miR-124 (Figures 8C,D). Further validations showed the reduced cell growth in miR-124 overexpression cells was suppressed by up-regulation of CCND2 (Figures 8E,F).
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FIGURE 8. CCND2 mediated the effects of miR-124 on glioma cells. (A) CCND2 was up-regulated in glioma samples. (B) Correlation between CCND2 expression level and overall survival time of GBM patients. (C,D) Overexpression of CCND2 markedly induced CCND2 levels in SW1783 and U373 cells transfected with miR-124. (E,F) The reduced cell growth in miR-124 overexpression cells were suppressed by up-regulation of CCND2. ∗p < 0.05. The sign “&” indicates significant difference between non-control groups, p < 0.05.




DISCUSSION

CircRNAs are a class of stable, abundant RNAs found in the human transcriptome. And unlike ordinary linear RNAs, circRNAs are more conserved and stable because they form a closed loop structure by connecting the 3′ and 5′ ends (Chen and Yang, 2015). CircRNA can act as a miRNA sponge and bind to RNA-binding proteins, thereby targeting miRNAs to perform their functions (Rong et al., 2017). More and more recent evidence indicates that circRNA is involved in a series of pathways and human diseases, including cancer, cardiovascular disease and neurological diseases (Chen et al., 2017). Of course, there are some findings suggesting that the abnormal expression of circRNA is related to the progression of glioma (Hao et al., 2019). Compared to control cells and tissues, the expression of circ-0014359 was increased in glioma cell lines and tissues. The silence of circ-0014359 effectively suppressed the viability, apoptosis and invasion of glioma cells. These indicated that upregulation of circ-0014359 in gliomas was associated with cancer progression.

Bioinformatics analysis showed abundant circHIPK3 modulated cell proliferation via sponging various miRNAs in tumors (Zheng et al., 2016). CircHIPK3 is an oncogene that is up-regulated in CRC, suggesting a poor prognosis (Xie et al., 2020). Moreover, circHIPK3 could sponge and suppress the activity of miR-7, leading to increased expression of FAK (Zeng et al., 2018). CircHIPK3 expression is higher in epithelial ovarian cancer samples than that in adjacent normal tissues (Shabaninejad et al., 2019). High expression of circHIPK3 is correlated to lymph node infiltration and poor prognosis. Therefore, circHIPK3 may be a novel biomarker for predicting EOC prognosis (Liu et al., 2018). CircHIPK3 silencing inhibited the growth of nasopharyngeal carcinoma (NPC) cells in vitro. Besides, the absence of circHIPK3 significantly inhibited tumor proliferation. Mechanisms analysis showed circHIPK3 was a miRNA sponge of miR-4288, targeting the ELF3 in NPC cells. Moreover, rescue assays showed circHIPK3 enhanced the malignant behavior of NPC cells by inhibiting miR-4288 and increasing the expression of ELF3, suggesting that circHIPK3 might be a potential target for NPC (Ke et al., 2019). In this study, we found a significant up-regulation in circHIPK3 in glioma tissues and cell lines compared to normal. The silencing of circHIPK3 suppressed the glioma cell proliferation and metastasis.

According to existing research, circular RNA can be interacted with miRNAs and act as a miRNA sponge, thereby regulating downstream genes, thereby promoting the development of many cancers (He et al., 2017). As previously discussed, circHIPK3 can also exert its carcinogenic and tumor-suppressive functions through sponging miRNAs. Analysis showed that miR-124 might be the sponge of circHIPK3. MiR-124 is a miRNA that is specifically expressed in the adult brain and has special potential to determine neural fate (Åkerblom et al., 2012). MiR-124 is found to be overexpressed in both prenatal and postnatal neuronal differentiation. Many scientific research results show that miR-124 can suppress the proliferation of myeloma and adult neural precursors (Maiorano and Mallamaci, 2009). MiR-124 has been shown to be a key progenitor cells differentiation regulator by suppressing PTBP1, which is a brain-specific inhibitor of pre-mRNA splicing (Makeyev et al., 2007). A recent study emphasized that miR-124 induced neurite elongation by inhibiting HDAC5 (Gu et al., 2018). However, the expression and molecular roles of miR-124 has not been explored in glioma. Nor does its underlying mechanism reveal. The present study detected the expression level and molecular function of miR-124 in glioma. We also investigated the potential mechanisms and found that miR-124 regulated glioma through the regulation of CCND2.

CCND2 is a cyclin that is expressed in many tumors and is a common cancer promoter in humans (Büschges et al., 1999). The expression of CCND2 RNA and protein was increased in colorectal cancer (CRC). Moreover, CCND2 expression inhibited by RNA interference suppressed CRC proliferation and migration (Park et al., 2019). In ovarian cancer cells, CCND2 has been proven to be a target of miR-145, and the recovery of this gene partially reverses the effect of miR-145 (Hua et al., 2019). In this study, we found that CCND2 expression was increased in gliomas and was a direct target of miR-124. Moreover, CCND2 overexpression could significantly prevent the reduction of cell proliferation, invasion, and migration caused by miR-124 overexpression. Reversely, miR-124 overexpression repressed the expression of CCND2. What’s more, miR-124 RNA levels were induced after knockdown of circHIPK3. The roles of circHIPK3 were mediated by miR-124 in glioma cells. All in all, circHIPK3 affected CCND2 expression by targeting miR-124, which revealed the correlation among circHIPK3, miR-124 and CCND2.

However, our study still has many limitations. In the present research results, there are many worthy of further study, however, due to the limited energy we have not done enough research. It is also a pity that the conclusion of this paper has not been verified more accurately by animal model experiments. First, the expression level of circHIPK3, miR-124 and CCND2 were not validated using clinical samples. Thus, we should collect more clinical glioma samples and validate the correlation among them in the near future. Second, the in vivo assay should be further conducted to demonstrate functional importance of these genes in glioma.



CONCLUSION

In summary, this study demonstrates that circHIPK3 is overexpressed in gliomas, and the knockdown of circHIPK3 can reduce the growth capacity of glioma cells, which indicates that its overexpression level promotes gliomas transfer of diffusion. Mechanistically, the interrelationships and interactions between circHIPK3, miR-124, and CCND2 are revealed. In conclusion, this discovery provides a new treatment strategy for gliomas.
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The mechanism regulating non-small cell lung cancers (NSCLCs) is unclear. In this study, we aimed to determine the roles of DENN domain containing 2A (circDENND2A) in the progression of NSCLC. Circular RNAs (circRNAs) are composited by “head to tail” splicing of coding or non-coding RNAs (ncRNAs), whose crucial roles in human cancers had been revealed. CircDENND2A, a new circRNA, was revealed to induce cell proliferation and migration. Our data indicated that circDENND2A was a probable oncogene in human cancers. However, the roles of circDENND2A in NSCLC remained unknown. Here, we demonstrated that circDENND2A was down-regulated in NSCLC samples. Loss-of-function assays showed circDENND2A knockdown suppressed cell growth via inducing cell cycle arrest and apoptosis and inhibited cell migration and invasion. Bioinformatics analysis and competing endogenous RNA (ceRNA) network analysis revealed that circDENND2A was involved in regulating cell cycle and tumor protein p53 (TP53) signaling via miR-34a/CCNE1 (cyclin E1). Further validation showed that circDENND2A could directly bind to miR-34a, promoting CCNE1 expression in NSCLC. In addition, rescue assays demonstrated that restoration of CCNE1 significantly impaired the suppressive effects of circDENND2A silencing in terms of NSCLC growth, migration, and invasion. We thought this study indicated that circDENND2A/miR-34a/CCNE1 may be a potential therapeutic target for NSCLC.

Keywords: circDENND2A, non-small cell lung cancer, biomarker, miR-34a, CCNE1


INTRODUCTION

The proportion of non-small cell lung cancers (NSCLCs) was about 85% among lung cancer (Gu et al., 2018; Luo et al., 2020). Although great progress has been made in the related researches on lung cancer, 5-year overall survival (OS) time in patients with NSCLC was not more than 15% because of distant metastasis in numerous NSCLC patients (Scheff and Schneider, 2013; Gu et al., 2016). Multiple “drivers” were identified to be related to the tumor genesis and metastasis of NSCLC, including protein, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) (Bousema et al., 2020; Chen Z. et al., 2020; Lee et al., 2020; Marin et al., 2020; No Authors, 2020). For example, GIAT4RA was found to be a carcinoma inhibitor in NSCLC via offsetting Uchl3-induced de-ubiquitination of LSH (Yang et al., 2019). A recent study demonstrated that LINC01234 promoted cell metastasis of NSCLC via causing VAV3 activation but BTG2 inhibition (Chen Z. et al., 2020). However, the molecular mechanisms regulating NSCLC metastasis are not well-understood.

Circular RNAs (circRNAs) have the characteristics of covalently closed continuous-loop shape (Wei et al., 2019; Kong et al., 2020). Multiple circRNAs were identified in human cells by virtue of high-throughput sequencing toolset. Increasing evidences demonstrated that circRNAs were involved in regulating lung cancer cell viability, apoptosis, autophagy, and invasion (Di et al., 2019). For instance, circPTPRA induced repression of epithelial–mesenchymal transition and NSCLC cell metastasis by sponging miR-96-5p (Wei et al., 2019). CircHIPK3 regulated autophagy by MIR124-3p-STAT3-PRKAA/AMPKα signaling in lung cancer with mutated STK11 (Chen X. et al., 2020) and retarded NSCLC apoptosis by sponging miR-149 (Lu et al., 2020). Down-regulation of circRNA ciRS-7 resulted in NSCLC apoptosis (Su et al., 2018). To explore unknown molecular functions and roles of circRNAs in NSCLC is therefore extremely important, suggesting it would be helpful for us to identify novel biomarkers for NSCLC.

DENND2A is a member of guanine nucleotide exchange factor (GEF), which may activate RAB9A and RAB9B. DENND2A may play a role in late endosomes back to trans-Golgi network (TGN) transport. CircDENND2A, a new circRNA, was revealed to induce cell proliferation and migration but declined apoptosis in H9C2 cells (Shao et al., 2020). Meanwhile, circDENND2A enhanced migration and invasion of glioma cells (Su et al., 2019). Our data indicated that circDENND2A was a probable oncogene in human cancers. However, the roles of circDENND2A in NSCLC remained to be unknown. Here, we identified the circDENND2A expression level in NSCLC specimens and revealed the potential functions of this circRNA in NSCLC using loss-of function assays. Up to date, we are the first to reveal that circDENND2A was a newly produced indicator for prognosis and a promising target in NSCLC therapy.



MATERIALS AND METHODS


Patients and Samples

In total, 20 pairs of NSCLC tissues and adjacent normal ones in treated NSCLC patients (from Jan 2013 to Jan 2016) were collected from our hospital. Our experiments were conducted after the approval of the Board and Ethics Committee of our hospital. All the subjects unanimously consented with written informed documents. All the harvested samples were kept in liquid nitrogen for the following use.



Cell Culture

NSCLC cells including A549 and H1299 were ordered from the American Type Culture Collection (ATCC) (Maryland, United States) and kept in Roswell Park Memorial Institute (RPMI) 1640 medium (GINSCLCO, Thermo Fisher Scientific, Inc., Waltham, MA, United States) supplied by 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (HyClone; GE Healthcare Life Sciences, Logan, UT, United States) at 37°C incubator with 5% CO2.



Extraction and Quantitation of RNA

TRIzol (Thermo Fisher Scientific, United States) was applied to extract whole RNA from tissues and cells as the manufacturer described. Nanodrop spectrophotometer (Thermo Fisher Scientific, United States) was performed to quantify RNA. Reverse Transcription Kit (TaKaRa, Japan) was used to perform reverse transcription for circRNA and mRNA per the manufacturer’s instruction. Quantitative real-time PCR (qRT-PCR) was run on Mx3005P QPCR Systems (Agilent Technologies, Inc., United States) as the manual described. GAPDH and small nuclear U6B were separately considered as internal reference for circRNAs and miRNAs. Primers used in this part were derived from Biosune (Shanghai, China). 2–ΔΔCt method was applied to calculate relative gene expression. The primers are as follows: circDENND2A forward, 5′-TGAACAGAAGACTGTGGACCG-3′ and reverse, 5′-CAGTCTCTAGGAATGGAATGGAGG-3′; DENND2A forward, 5′-AACTGAAGGCCATTCCCCAG-3′ and reverse, 5′-TCTTCGGCAGTAACCGAACC-3′; β-actin forward, 5′-ATCATTGCTCCTCCTGAGCG-3′ and reverse, 5′-ACTCCTGCTTGCTGATCCAC-3′; and DENND2A for- ward, 5′-CGGCTCGCTCCAGGAA-3′ and reverse, 5′-TCATCT GGATCCTGCAAAAAAA-3′.



Cell Viability Assay

A total of 3 × 103 of siRNA-transfected cells in each well were inoculated in 96-well plates overnight. At the following day, Cell Counting Kit-8 (CCK-8) kit (Promega, United States) was applied to detect cell viability as indicated by the manufacturer. The optical density (OD) value of 492 nm was detected with the use of Microplate Reader (Multiskan Sky, Thermo Fisher Scientific).



Competing Endogenous RNA Analysis and Target Prediction

We predicted the circRNA/miRNA interaction using the CircNet database1, and we constructed a circRNA–miRNA–gene regulatory networks using the Cytoscape software. The potential miRNA binding sites on circRNAs were predicted through RNA22 v2 and RNAhybrid.



Migration and Invasion Assay

Cell migration and invasion were detected in BD 24-well Transwell chamber (Costar, Massachusetts, United States) in the presence or absence of pre-coated Matrigel as the manual declared. A total of 6 × 104 cells in 500 μl of medium without serum were put to insert, and the corresponding volume of the medium with 10% FBS as chemoattractant was set in a lower chamber. At the following day, cells with invasion that occurred at the lower surface of the insert were fixed and dyed with 1% crystal violet, followed by counting and capturing.



Flow Cytometry Assay

Flow cytometry assay (FACSCalibur, BD Biosciences) was applied to detect cell apoptosis and cell cycle. Annexin V-FITC Apoptosis Kit (BD Biosciences) was used to measure cell apoptosis as the manual suggested. Propidium iodide (PI) along with Ribonuclease A (Sigma) was added into cells to measure cell cycle progression as referred to in the protocol of the manual.



Luciferase Reporter Assay

PGL3-Basic luciferase construct (GenePharma, Shanghai, China) containing circDENND2A-WT, circDENND2A-mutant, CCNE1-WT, and CCNE1-mutant was used as a reporter expression cassette to execute luciferase reporter assay. The above-mentioned reporter expression cassette and microRNAs were co-transfected into cells by Lipofectamine 2000 (Life Technologies). Dual-luciferase reporter assay system (Promega, Madison, WI, United States) was consequently performed to determine luciferase activity after relative to internal control renilla after 48-h transfection.



Western Blot Analysis

Harvested cells were lysed by radioimmunoprecipitation assay (RIPA) buffer. Protein separation was executed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis, followed by transferring to polyvinylidene difluoride (PVDF) membranes and incubating with respective primary antibodies overnight, such as 1:1,000 diluted anti-GAPDH antibody (Sigma) and anti-CCNE1 antibody (ab138222, Abcam). Enhanced chemical luminescence solution (32109; Thermo Fisher Scientific) was used for detecting band intensity.



Statistical Analysis

GraphPad Prism 7.0 (GraphPad, La Jolla, CA, United States) was conducted to perform statistical analysis. Our data were represented as mean ± SD (standard deviation). The difference of the two compared groups was counted by Student t-test. The progression-free survival (PFS) and OS between two groups was analyzed by Kaplan–Meier method and the log-rank test. Significant difference means P-value is not more than 0.05.



RESULTS


CircDENND2A Level Was Largely Up-Regulated While DENND2A Level Was Decreased in Non-small Cell Lung Cancer Tissues

We firstly detected the expression pattern of DENND2A in NSCLC, which was the corresponding liner RNA of circDENND2A. As presented in Figure 1, we found that DENND2A was significantly suppressed in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) samples compared with normal tissues (Figure 1A). Kaplan–Meier analysis demonstrated that higher expression levels of DENND2A were correlated to longer survival time in patients with NSCLC, LUAD, and LUSC by using the Kaplan–Meier plotter database (Figures 1B–D). These findings suggested that DENND2A may serve as a tumor suppressor.
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FIGURE 1. CircDENND2A is up-regulated in NSCLC. (A) GEPIA database indicated DENND2A was up-regulated in NSCLC samples compared with normal tissues. (B–D) Kaplan–Meier analysis demonstrated that higher expression levels of DENND2A correlated to longer survival time in patients with NSCLC, LUAD, and LUSC by using Kaplan–Meier plotter database. (E,F) The high expression levels of DENND2A (E) and circDENND2A (F) in 20 paired NSCLC tissues by qRT-PCR (**P < 0.01). NSCLC, non-small cell lung cancer; GEPIA, Gene Expression Profiling Interactive Analysis; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.


To further validate the above findings, we performed qRT-PCR analysis to detect circDENND2A and DENND2A expression patterns in NSCLC tissues and adjacent normal ones of 20 NSCLC patients. Figure 1C demonstrates that DENND2A expression was hugely suppressed in NSCLC tissues when compared with that in adjacent normal ones (Figure 1C). However, circDENND2A was up-regulated in NSCLC samples (Figure 1D). These results showed circDENND2A may have an opposite role in NSCLC as compared with DENND2A.



Reduced CircDENND2A Retarded Non-small Cell Lung Cancer Cell Viability, Migration, and Invasion

A549 and H1299 cells were selected to conduct loss-of-function assay and further explored whether circDENND2A exerted effects on NSCLC cell biological function. For that purpose, we firstly performed qRT-PCR analysis to verify that circDENND2A expression was indeed ablated after transfection of siRNA (Figure 2A). However, the expression of DENND2A was not affected after transfection of siRNA (Figure 2B). Cell Counting Kit-8 (CCK-8) assay was then executed and demonstrated that reduced circDENND2A immensely repressed capacity of A549 (Figure 2C) and H1299 cell viability (Figure 2D). Flow cytometry assessment was carried out to validate the effects on NSCLC cell apoptosis (Figure 2E) and cycle (Figure 2F) induced by circDENND2A. Our data indicated that down-regulation of circDENND2A largely induced A549 and H1299 cell apoptosis (Figure 2E) and restrained cell cycle at G0/G1 stage (Figure 2F). Transwell assay demonstrated that decreased circDENND2A resulted in greatly attenuated ability of NSCLC cell migration (Figures 2G,H) and invasion (Figures 2I,J).
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FIGURE 2. CircDENND2A promoted tumorigenesis in NSCLC cells. (A,B) Expression of circDENND2A and DENND2A was confirmed by qRT-PCR in A549 and H1299 cells transfected with Si-NC or Si-circDENND2A. (C,D) Knockdown of circDENND2A significantly inhibited cell proliferation of A549 (C) and H1299 (D) cells by CCK-8 assay. (E) Cell apoptosis was determined by flow cytometry in A549 and H1299 cells transfected with Si-NC or Si-circDENND2A. (F) Cell cycle was determined by flow cytometry in A549 and H1299 cells transfected with Si-NC or Si-circDENND2A. (G–J) Transwell assay was used to detect the migration and invasion of A549 (G,H) and H1299 (I,J) cells transfected with Si-NC or Si-circDENND2A. Our data were represented as mean ± SD (standard deviation) (*P < 0.05, **P < 0.01). NSCLC, non-small cell lung cancer; CCK-8, Cell Counting Kit-8.




Bioinformatics Analysis of CircDENND2A

We performed bioinformatics analysis to uncover the mechanisms of circDENND2A in NSCLC. Previous studies revealed that circRNAs-mediated modulation of miRNA level via sponging miRNA. To uncover whether circDENND2A sponged miRNA to regulate NSCLC cell progress, candidate miRNAs related to circDENND2A were forecasted by public bioinformatics tool Starbase2 and CircInteractome3, as previous study described (Gu et al., 2020). A total of 9,865 potential targets of circDENND2A were obtained. Then, we extracted different expressed genes in NSCLC using GEPIA datasets. Finally, we constructed circDENND2A associated competing endogenous RNA (ceRNA) networks, which included 39 miRNAs and 867 differently expressed mRNAs (Figure 3).
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FIGURE 3. Construction of circDENND2A associated ceRNA network. CircDENND2A associated ceRNA networks included 39 miRNAs and 867 differently expressed mRNAs. Purple node, circDENND2A; yellow nodes, miRNAs; blue nodes, mRNAs. ceRNA, competing endogenous RNA; miRNA, microRNA.


Then, we employed bioinformatics analysis for this network. As presented in Figure 4, the results showed that circDENND2A was involved in signaling pathways regulating pluripotency of stem cells via OTX1, LIFR, SMAD9, JAK2, MAPK11, FZD4, KLF4, TBX3, AXIN2, BMPR2, ID4, ID2, ID3, FGFR1, AKT3, FGF2, FGFR4, PIK3R1, and MEIS1, and also related to cell cycle and TP53 signaling via CHEK1, RRM2, YWHAZ, GTSE1, CCNE1, MAD2L1, CDC14A, CDKN2D, PLK1, TTK, GADD45B, CDC45, CCNA2, CDK1, SESN1, CDC25C, MCM2, IGFBP3, BUB1B, MCM4, PERP, CCND2, and THBS1.
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FIGURE 4. Bioinformatics analysis of circDENND2A associated ceRNA network. CircDENND2A associated ceRNA networks included 39 miRNAs and 867 differently expressed mRNAs. Purple node, circDENND2A; yellow nodes, miRNAs; blue nodes, mRNAs. ceRNA, competing endogenous RNA; miRNA, microRNA.




CircDENND2A Sponged MiR-34a and Induced CCNE1 Expression

The present study focused on exploring the effect of circDENND2A on CCNE1, which is a key cell cycle regulator. Three candidate miRNAs (miR-154, miR-339, and miR-34a) were predicted to target CCNE1 and circDENND2A, which acted as tumor inhibitors. qRT-PCR assay showed that overexpression of miR-154 and miR-34a suppressed circDENND2A levels (Figure 5A). Previous reports revealed that miR-34a was a tumor inhibitor and that its expression was weak in numerous cancers (Li et al., 2018; Haghi et al., 2019; Luo et al., 2019). Our data verified that miR-34a level was down-regulated in NSCLC tissues (Figure 5B). Subsequent dual-luciferase reporter assay was carried out to make forward to exploring whether circDENND2A possessed direct interaction with miR-34a. Our data illustrated that miR-34a mimics could greatly abolish the luciferase activity of the WT-circDENND2A instead of that of MUT-circDENND2A (Figure 5C). The opposite conclusion was demonstrated in miR-34a inhibitor-treated A549 and H1299 cells (Figure 5C). Simultaneously, reduced circDENND2A expression level notably enhanced miR-34a expression level (Figure 5D), revealing that miR-34a was modulated by circDENND2A and was downstream target of circDENND2A.
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FIGURE 5. CircDENND2A directly interacted with miR-34a and promoted CCNE1 expression. (A) CircDENND2A expression was detected after overexpression of miR-154, miR-34a, and miR-339. (B) The expression of miR-34a in tumor tissues was significantly down-regulated. (C) The relative luciferase activities were detected in the A549 transfected with the miR-34a or miR-34a inhibitors, reporter vector WT-circDENND2A, or MUT-circDENND2A. (D) The expression of miR-34a was inhibited in A549 and H1299 cells transfected with Si-circDENND2A. (E) The expression of CCNE1 was determined by qRT-PCR in A549 and H1299 cells transfected with NC, miR-34a inhibitor, and miR-34a mimics. (F) Western blot assay showed that miR-34a mimics could suppress CCNE1 level in A549 cells. (G) The relative luciferase activities were detected in the A549 transfected with the miR-34a or miR-34a inhibitors, reporter vector WT-CCNE1, or MUT-CCNE1 (*P < 0.05, **P < 0.01).


Our analysis suggested that miR-34a possessed binding site of CCNE1. Finally, miR-34a mimics could hinder CCNE1 level in NSCLC cells (Figure 5E). However, knockdown of miR-34a enhanced CCNE1 expression in A549 and H1299 (Figure 5E). Western blot assay showed that miR-34a mimics could suppress CCNE1 level in A549 cells (Figure 5F). We then conducted luciferase reporter assay to deeply unearth the interaction between miR-34a and CCNE1. Our data showed that miR-34a mimics decreased WT-CCNE1 3′-UTR activity instead of MUT-CCNE1 3′-UTR activity (Figure 5G). Our data revealed that circDENND2A mediated heightened CCNE1 expression in NSCLC cells through sponging miR-34a.



Rescued CCNE1 Reversed Decreased CircDENND2A-Mediated Hindered Effects on Non-small Cell Lung Cancer Cell

Then, we applied gain-of-function assays for CCNE1 in NSCLC cells. The results showed that both RNA and protein levels of CCNE1 were up-regulated in A549 cells after overexpressing CCNE1 overexpression plasmids (Figures 6A,B). To further validate if circDENND2A functioned via regulation of CCNE1 expression, we overexpressed CCNE1 in circDENND2A-knockdown NSCLC cells. As presented in Figures 6C,D, CCK-8 assay indicated that rescued CCNE1 level could evidently reverse the influence of down-regulated circDENND2A-induced restraint NSCLC cell growth (Figures 6C,D). Additionally, Transwell assay displayed that overexpression of CCNE1 could undermine inhibitory influence of decreased circDENND2A-mediated cell migration and invasion of NSCLC (Figures 6E–G). Collectively, our data demonstrated that circDENND2A actuated cell viability, migration, and invasion via increasing CCNE1 level through sponging miR-34a in NSCLC.


[image: image]

FIGURE 6. Restoration of CCNE1 impaired the inhibitory effects of circDENND2A silencing. (A,B) The mRNA (A) and protein (B) expression of CCNE1 was determined in A549 cells of circDENND2A knockdown. (C,D) CCK-8 assays demonstrated that CCNE1 overexpression could largely reverse the suppressive effects of circDENND2A silencing on proliferation of A549 and H1299 cells. (E–G) CCNE1 overexpression partly reversed the suppressive effects of circDENND2A silencing on migration and invasion of A549 and H1299 cells (*P < 0.05, **P < 0.01). CCK-8, Cell Counting Kit-8.




CCNE1 Level Was Up-Regulated in Non-small Cell Lung Cancer Tissues

We detected the expression pattern of CCNE1 in NSCLC. As presented in Figure 1, we found that CCNE1 was significantly suppressed in LUAD and LUSC samples compared with normal tissues (Figure 7A). Kaplan–Meier analysis demonstrated that higher expression levels of CCNE1 were correlated to longer survival time in patients with NSCLC, LUAD, and LUSC using the Kaplan–Meier plotter database (Figures 7B–D).


[image: image]

FIGURE 7. CCNE1 is up-regulated in NSCLC. (A) GEPIA database indicated CCNE1 was up-regulated in NSCLC samples when compared with normal tissues. (B–D) Kaplan–Meier analysis demonstrated that higher expression levels of CCNE1 correlated with longer survival time in patients with NSCLC, LUAD, and LUSC by using the Kaplan–Meier plotter database (*P < 0.05). NSCLC, non-small cell lung cancer; GEPIA, Gene Expression Profiling Interactive Analysis; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.




DISCUSSION

CircRNAs are composited by “head to tail” splicing of coding or non-coding RNAs (ncRNAs) (Bonnici et al., 2014). Increasing evidences demonstrated that circRNAs may play different even opposite effects on the cancer progression compared with their parental genes. For example, current studies have shown that FOXO3a was a carcinoma inhibitor (Warr et al., 2013; Liu et al., 2015). However, Kong et al. (2019) identified that circFOXO3 impelled prostate cancer development via sponging miR-29a-3p, and Zhang et al. (2019) revealed that circFOXO3 caused glioblastoma progress by competitive action with endogenous RNA for NFAT5. CircDENND2A was a novel circRNA and promoted glioma progression (Su et al., 2019). However, the expression levels and molecular functions of this circRNA in NSCLC remained largely unclear. The present study revealed that circDENND2A was up-regulated; however, DENND2A was down-regulated in 15 paired NSCLC samples. DENND2A belonged to class of DEEND2 gene family and was reported to be a particular GEF, which activated RAB9A and RAB9B and participated in trafficking between the TGN and late endosomes (Yoshimura et al., 2010). Previous studies indicated that DENND2A was related to ischemic stroke and Parkinson’s disease (Lang et al., 2019). Nevertheless, the function of DENND2A in cancers remained elusive. In order to further validate these findings, we analyze DENND2A mRNAs levels between NSCLC samples and normal lung tissues by using public databases. We found that DENND2A was significantly reduced in both LUAD and LUSC. Higher expression levels of DENND2A were correlated to longer OS and PFS time in patients with NSCLC.

CircDENND2A had been demonstrated to be an oncogene in glioma and enhanced glioma cell migration and invasion (Su et al., 2019; Shao et al., 2020). In myocardial ischemia model, circDENND2A was involved in promoting cell viability and migration but declining apoptosis of H9c2 (Shao et al., 2020). Our study firstly showed circDENND2A served as an oncogene in NSCLC through CCK-8 assay and Transwell assay. Ablated circDENND2A largely reduced biological performance of NSCLC cells. Emerging reports have manifested that circRNAs post-transcriptionally affected the expression of downstream targets through sponging miRNAs and acted as ceRNAs. For example, circPTPRA obstructed transition of epithelial–mesenchymal and metastasis via sponging miR-96-5p in NSCLC cells (Wei et al., 2019). CircRNA HIPK3 induced cell proliferation but repressed apoptosis in NSCLC through sponging miR-149 (Lu et al., 2020). CircRNA hsa_circ_0023404 induced viability, migration, and invasion in NSCLC via sponging miR-217 to enhance ZEB1 expression (Liu et al., 2019). In our study, bioinformatics analysis and dual-luciferase reporter experiments verified that circDENND2A directly targeted to miR-34a. Moreover, we found that decreasing circDENND2A largely raised miR-34a level. miR-34a was found to suppress cancer development in colon cancer (Sun et al., 2018), gastric cancer (Zhang et al., 2020), osteosarcoma, pancreatic ductal adenocarcinoma, breast cancer, and prostate cancer. In NSCLC, miR-34a was found to inhibit tumor genesis via targeting SIRT6 (Ruan et al., 2018), hindering cell viability, inducing apoptosis, and blocking cell-cycle progress through epidermal growth factor receptor (EGFR) (Yin et al., 2013) and to modulate ionizing radiation-induced senescence via targeting c-MYC and regulating gefitinib-acquired resistance via targeting Axl. These reports suggesting that miR-34a played a crucial role in NSCLC.

Then, bioinformatics analysis and luciferase reporter experiment displayed that miR-34a targeted to CCNE1 and performed negative regulation of its level. CCNE1 functioned as an elementary modulator in G1/S cell cycle (Wang et al., 2009). Aberrant increased CCNE1 indeed enhanced CDK2 conversely resulting in substrate phosphorylation of pRb, thus causing peculiar cell viability (Neganova et al., 2011). CCNE1 is found to be an oncogene in multiple cancer types, such as gastric cancer, colorectal cancer, prostate cancer, and NSCLC (Etemadmoghadam et al., 2010; Amininia et al., 2014; Pils et al., 2014; Kim et al., 2016; Noske et al., 2017). MiRNAs were considered as important regulators of CCNE1. MiR-15b (Yuan et al., 2019), miR-195 (Wang et al., 2019), and miR-34a (Han et al., 2015) were reported to regulate CCNE1 expression in multiple cancers. Here, our data revealed that miR-34a controlled CCNE1 expression level by targeting to CCNE1. Nevertheless, circDENND2A sponged miR-34a to induce CCNE1 expression in NSCLC cells. Moreover, rescue experiment indicated that circDENND2A played an oncogenic part in CCNE1-dependent way.

Several limitations should be noted in this study. First, the correlations between circDENND2A expression and survival time in NSCLC remained unclear. In the future study, we will collect more clinical samples to analyze the correlations among them. Second, the present study aimed to explore the potential functions of circDENND2A in NSCLC. However, the detailed mechanisms of DENND2A in NSCLC remained to be further investigated. The loss- or gain-of-function assays should be applied in the future study.

In summary, our study firstly demonstrated that circDENND2A is an oncogene in NSCLC. More importantly, our data illustrated that reduced circDENND2A protected cell viability and migration via targeting miR-34a/CCNE1 axis, revealing a newly generated target on circDENND2A in NSCLC therapy.
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Studying transcriptome chronological change from tissues across the whole body can provide valuable information for understanding aging and longevity. Although there has been research on the effect of single-tissue transcriptomes on human aging or aging in mice across multiple tissues, the study of human body-wide multi-tissue transcriptomes on aging is not yet available. In this study, we propose a quantitative model to predict human age by using gene expression data from 46 tissues generated by the Genotype-Tissue Expression (GTEx) project. Specifically, the biological age of a person is first predicted via the gene expression profile of a single tissue. Then, we combine the gene expression profiles from two tissues and compare the predictive accuracy between single and two tissues. The best performance as measured by the root-mean-square error is 3.92 years for single tissue (pituitary), which deceased to 3.6 years when we combined two tissues (pituitary and muscle) together. Different tissues have different potential in predicting chronological age. The prediction accuracy is improved by combining multiple tissues, supporting that aging is a systemic process involving multiple tissues across the human body.

Keywords: age prediction, aging, gene expression, RNA sequencing, genotype-tissue expression (GTEx)


INTRODUCTION

Different people may age at different rates as revealed by recent studies (Li et al., 2009; Horvath, 2013). Some people appear younger than their chronological age, and others appear older. In an extreme case, a 16-year-old girl without any known genetic syndromes or chromosomal abnormalities appeared to stop growing and looked like an infant (Walker et al., 2009). It is a challenge to identify her “actual” age. Many factors, for instance, lifestyle, and environmental factors, can hasten or delay aging (Feldman et al., 1994; Hultsch et al., 1999). Thus, a set of biomarkers that can reliably reflect real age has practical value. There are special cases in which such age biomarkers are particularly useful. For example, people may need to verify an athlete's age in sporting events such as the Olympic Games or to determine a suspect's age in certain forensic cases.

Different types of biomarkers have been proposed to quantify human age (Li et al., 2009). Physical parameters, such as visual acuity, auditory threshold, and maximum work rate, have been used as indicators of aging for more than three decades (Furukawa et al., 1975; Borkan and Norris, 1980). Other criteria, such as gray hair and skin wrinkles, can also reflect chronological age (Van Neste and Tobin, 2004). However, these parameters often do not provide accurate estimation of age and cannot reveal the internal molecular changes of the human body or the underlying aging mechanisms.

With the rapid development of high-throughput technologies, genomic, and epigenetic data are accumulating to an unprecedented status. This provides a new route of estimating aging at the molecular level. Associations between epigenetic variations (e.g., DNA methylation and histone modification) and age have been reported (Fraga and Esteller, 2007). It is manifested that gene expression and the methylation profile of blood (Bocklandt et al., 2011; Hannum et al., 2013; Horvath, 2013), the gene expression profile of brain (Fraser et al., 2005), and telomere length (Harley et al., 1990; Benetos et al., 2001) are good indicators of age in human and other primates. In addition, these biomarkers may also provide candidate targets for intervention to extend the human life span (Baker and Sprott, 1988).

Previous studies on age prediction using gene expression mainly rely on single tissues, such as blood or brain. The predictive ability of different tissues had not been thoroughly studied. Because aging is a concordant process involving multiple tissues (Kujoth et al., 2005), it might be effective to build an age-prediction model with information from multiple tissues. In this study, we built an optimal age prediction model by using the Genotype-Tissue Expression (GTEx) profile among 46 human tissues and then compared the predictive efficiency of a single tissue and combining two tissues.



METHODS


Tissue Gene Expression and Data Preprocessing

From the GTEx (V6), the gene expression profiles from 46 tissues were used. A detailed description of sample collection, RNA preparation, RNA sequencing, gene expression estimation, etc., are listed in the GTEx consortium paper (The GTEx Consortium, 2015). We first normalized the original gene expression data from GTEx via quantile normalization.



Pearson Correlation for Selecting Age-Associated Genes

The genes in each tissue were ranked based on the Pearson correlation of donor age and corresponding gene expression. Then, we picked top genes from 50 to 6400 with multiples of 2 as a model input and tuned it by 10-fold cross-validation (CV).



Accuracy of the Models

In this paper, we use root-mean-square error (RMSE) to measure the accuracy of the models. RMSE is a frequently used measure of the differences between values (sample or population values) predicted by a model or between an estimator and the values observed. In the age-prediction models, we use RMSE to measure the quality of the model: the smaller the RMSE, the higher the accuracy of the model—and on the contrary, the lower the accuracy of the model. The RMSE of predicted value ŷ, a regression's dependent variable y, is computed for different predictions as the square root of the mean of the squares of the deviations:

[image: image]
 

Prediction Based on Single Tissue

Our age-prediction model is based on the elastic net algorithm (Zhou and Hastile, 2005). The elastic net algorithm has a sparsity property and favors grouping effects so that strongly correlated predictors tend to be in or out of the model together. These properties let the method specifically fit our study because gene expression is highly interrelated, and our prediction model relies on only a small number of genes. The age-prediction process is formulated as follows:

[image: image]

where Agei is the chronological age of the donor of sample i with 1 ≤ i ≤ M, M is the number of samples in a particular tissue, xij is the log2-transformed expression of gene j with 1 ≤ j ≤ N for sample i, N is the number of preselected genes in the tissue, ω0 is the intercept, ωj is the weight of gene j, [image: image] is the predicted value of ω, 0 ≤ α ≤ 1 is a parameter to balance the L1 (e.g., lasso) and L2 (e.g., ridge regression) penalty, and λ is the lasso parameter. The two parameters α and λ are optimized by a 10-fold CV. After ω0 and ωj (1 ≤ j ≤ N) are determined, the following equation is used to predict age for a new sample y with an expression level known for selected genes:

[image: image]

It is worth noting that the main purpose of this study is to compare the predictive capability of a single tissue with double tissues. Because the main focus is not to identify the “best” predictive models, we do not compare the performance of elastic net with other machine learning methods. However, given the wide application of elastic net in age prediction (Hannum et al., 2013), we consider it to be an appropriate choice to serve the main purpose of this work.



Parameter Tuning and Model Selection

To identify the best age-prediction model, we applied the 10-fold CV strategy to the analysis. In addition, we bootstrapped the CV process 100 times and averaged the validation RMSE and Pearson correlation coefficient (PCC) to reduce the potential bias that originated from random sampling when splitting the sample into training and testing sets.

As stated above, there are three model parameters, namely the preselection threshold N, parameter α to balance the lasso and ridge regression penalties, and lasso parameter λ. These parameters are tuned by 10-fold CV. Specifically, we let N increase from 50 to 6400 by multiples of 2, α increase from 0 to 1 with a step-wise addition of 0.01, and λ increase from 2−10 to 210 with multiples of 2. The set of parameters yielding the lowest averaged validation RMSE in the 100 bootstrapped, 10-fold, CV runs were chosen as the optimal parameters for single and double tissue. It is of note that we reranked and selected genes (based on the 9 fold training data) in each CV to avoid overfitting.



Prediction Using Gene Expression Data of Two Tissues

Because the number of overlapping samples among three tissues are often less than 70, we only analyzed samples that came from two tissues. To balance the contribution of individual tissue, an equal number of top gene expression profiles from each tissue were combined as features in the prediction model. A similar analysis was then applied to tune the model parameters. The performance of each tissue and double tissues were evaluated by RMSE from both validation and testing data.



DAVID Analysis

The DAVID (6.7) (Huang et al., 2009) (https://david.ncifcrf.gov/tools.jsp) bioinformatics resource consists of an integrated biological knowledge base and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. We can use DAVID, a high-throughput and integrated data-mining environment, to analyze gene functional classification, functional annotation charts, or clustering and functional annotation tables through gene lists derived from our age-prediction models. By following this protocol, investigators are able to gain an in-depth understanding of the aging themes in lists of genes that are enriched in genome-scale studies.




RESULTS


Using GTEx Gene Expression Profile as Data Input

We develop a computational framework to predict donor age depending on the gene expression profile of one single or two tissues generated from GTEx (Version 6). GTEx contains expression profiles of more than 41,298 genes in 46 human tissues. There are 34,443 genes and 8,375 samples that passed the quality control and data processing procedure that was used as the benchmark data in this study. Detailed information on the samples for 46 tissues is provided in Table 1. As can be seen from Table 1, the ages of donors range from 20 to 70, and the number of samples varies from 71 to 430 for each tissue.


Table 1. Sample Information of 46 tissues in GTEX.
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Age Prediction Based on Single Tissue

As shown in Figure 1, our prediction framework has multiple steps. First, we rank the genes in each tissue based on the PCC of donor age and the corresponding gene expression. Top age-associated genes in one single or two tissues were then used to construct features in an elastic net regularization model, which is a sparse learning model capable of handling data with small sample sizes but numerous features (Zhou and Hastile, 2005). The parameters of the models were tuned through 10-fold CV according to the RMSE. Functions of genes were annotated by the DAVID Tools (see “Methods” for detailed information).


[image: Figure 1]
FIGURE 1. Overview of elastic net method for building age-prediction model. 1. Normalize the original gene expression data from GTEx via quantile normalization. 2. Select the top 50, 100, 200, 400, 600, 800, 1,600, 3,200, and 6,400 genes, obtained via the Pearson correlation of the age and corresponding gene expression, and build the age-prediction model for each of 46 tissues. 3. Construct age-prediction model for multiple tissues as was done for single tissues. Because overlapping samples among three tissues are often less than 70, only two-tissue studies are contained in the current study. 4. Use the selected genes for DAVID analysis.


Our method was first applied to 46 single tissues, respectively. The performance of each tissue is listed in Table 2. As mentioned above, the number of top age-associated genes was taken as a parameter to our model. We selected the top 50, 100, 200, 400, 600, 800, 1,600, 3,200, and 6,400 genes and tested their performances by the 10-fold CV. It turns out that the number of top genes has some influence on prediction accuracy. The lowest RMSE (i.e., 3.8 years) was achieved for pituitary while selecting 600 genes. Pituitary is one of the most studied tissues and is highly associated with human aging (Seeman and Robbins, 1994). Other good tissues for age prediction include small intestine terminal ileum, spleen and testis, and brain/spinal cord. The most accessible tissue, whole blood, seems to be unsuitable for this task. Hannum et al. (2013) applied a blood gene expression profile to predict age based on a much larger sample size (488 in total). However, the RMSE is 7.22 years, which is comparable to our result. We also plotted the RMSEs for all other tissues (using the top 600 genes) in Figure 2A for a better view.


Table 2. Prediction accuracy by using single tissue.
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FIGURE 2. The accuracy of 46 single tissues and five double tissues in age prediction. (A) The RMSE of single tissue age predictors for the top 600 genes. We select the top 50, 100, 200, 400, 600, 800, 1,600, 3,200, and 6,400 genes, which are obtained via Pearson correlation of age and gene expression, and then build the age-prediction model across the 46 single tissues. Because the best predictive model appears in the top 600 genes, here we show the RMSE of the top 600 gene model. As can be seen from the figure, the minimum RMSE is 3.8, which corresponds to the age-prediction model of pituitary tissue. (B) Blue represents the RMSE of the top 600 genes of pituitary and the top 50 genes of muscle, adipose subcutaneous, brain cerebellum, skin sun exposed, and whole blood, and brown represents RMSE of the first 50 genes of muscle, adipose subcutaneous, brain cerebellum, skin sun exposed, and whole blood.




Age Prediction Using Multiple Tissues

Because aging is a process associated with multiple tissues (Kujoth et al., 2005), it is reasonable to assume that combining multiple tissues can improve age-prediction accuracy. Because there are at least 71 samples in a single tissue, we selected people with at least 70 samples in two tissues for a relatively fair comparison, which derives 382 combinations in total. The combinations were used to train 382 elastic net models (Zhou and Hastile, 2005), whose performances were also evaluated by the 10-fold CV. The results show that it is possible to improve age prediction by combining two tissues. As we mentioned above, the best prediction RMSE for single tissue (3.8 years) was achieved at pituitary with 600 genes. We added 50, 100, 200, and 400 selected genes from one other tissue, including muscle skeletal, adipose subcutaneous, brain cerebellum, skin sun exposed, and whole blood, whose performances are listed in Table 3 and shown in Figure 2B. As can be seen, the validation RMSE decreases to 3.6 by combining 50 genes from muscle skeletal (see also Figures 3A,B). However, the prediction accuracy is worse when adding other tissues, indicating that different tissues might undergo aging at different rates or mechanisms. Generally speaking, the age-prediction accuracy is elevated with the increase of tissue number, which supports that aging is a concordant process involving multiple tissues (Kujoth et al., 2005).


Table 3. Prediction accuracy by combining double tissues.
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FIGURE 3. Scatterplot of age prediction and gene functional analysis. (A) Scatterplot of the pituitary age-prediction model for the top 600 genes in 46 single tissues. The RMSE is 3.8, and the PCC of real and predicted age is 0.93. (B) Scatterplot of pituitary for 600 genes and muscle skeletal for 50 genes age-prediction model. The RMSE is 3.6, and the PCC of real and predicted age is 0.95. (C) DAVID analysis of the age-prediction model in pituitary. (D) DAVID analysis of the age-prediction model in pituitary and muscle skeletal.




Effect of Model Parameters on Prediction Accuracy

In our model, we prefilter genes and only allow the top N genes as features to be selected by the elastic net model. There are two elastic net parameters, namely α, which controls the balance between lasso and ridge regression, and λ, the lasso parameter. Because the effects of α and λ have been extensively studied (Zhou and Hastile, 2005), we tested the effect of N on validation error in this study. For most prediction models with a small validation error, the number of genes involved in the model ranges from 300 to 1600. As an indication, only a small or moderate portion of genes are necessary to predict age. This finding is also supported by other studies (Bocklandt et al., 2011; Hannum et al., 2013), in which 200 methylation markers are used to predict the biological age of individuals. The parameters of the best model (e.g., “pituitary&muscle”) are α = 0, λ = 0.5, w0 = 49.1, that is, age = 49.1 − 0.5534609 × RF00019 + 0.4345046 × RASSF8 + 0.4238481 × ALOX15B + …

The model has an intercept of 49.1 years, which is quite close to the mean age of the samples 50.81.



Optimal Gene Set of Predicted Age and Functional Analysis

For the best prediction model, we listed the top 50 genes (according to the absolute value of coefficients) and their coefficients in Table 4. Among the top 50 genes, 49 are from pituitary, and only 1 is from muscle (ranked at 15). Interestingly, most of the top genes are age-associated. For example, RASSF8 (ras association domain-containing protein 8), ranks second in the list. RASSF8 encodes a protein that is a member of the transmembrane 4 superfamily and is a lung tumor–suppressor gene candidate. It plays important roles in the regulation of localization, methylation, cell–cell adhesion, cell migration, cell death, response to hypoxia, mitosis, cell growth, wound healing, contact inhibition, and epithelial cell migration (Falvella et al., 2006; Wang et al., 2017; Karthik et al., 2018; Shi L. et al., 2018). Accumulated evidence suggests that RASSF8 is associated with aging (Geigl et al., 2004; Shi Z. et al., 2018; Pagliai et al., 2019). Similarly, ALOX15B (Arachidonate 15-Lipoxygenase Type B), which ranks third on the list, is a protein-coding gene. Diseases associated with ALOX15B include autosomal recessive congenital ichthyosis and prostate cancer (Bhatia et al., 2005; Ginsburg et al., 2016; GeneCards, 2020). This gene is a senescent gene, which can also affect human aging with its expression increasing when prostate epithelial cells become senescent (Bhatia et al., 2005; Alfardan et al., 2019). In addition to age-associated genes, there are also many genes whose association with aging is unknown. For example, no association with aging could be identified in the literature for the top gene RF00019 on the list. In the future, further studies might be needed to elucidate the mechanism for age-dependent functions of RF00019.


Table 4. Best models for age prediction using pituitary & muscle skeletal tissue.
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Functional Annotation Clustering of Top Genes

To identify the biological processes associated with genes in the prediction model, we performed functional annotation analysis using the DAVID tools (Huang et al., 2009), a web-accessible set of tools that allow researchers to infer the biological meaning behind large lists of genes. Because our focus is on enriched functional categories rather than on individual genes, we selected the functional clustering with adjusted P < 0.05. The top cluster is related to glycoprotein (P = 1.79 × 10−8). Histidine-rich glycoprotein (HRG) is present at high levels in plasma, and it is synthesized by parenchymal liver cells and transported as a free protein as well as being stored in α-granules of platelets and released after thrombin stimulation (Blank and Shoenfeld, 2008). Levels of HRG variants in human blood are associated with chronological age and predict mortality (Hong et al., 2019). Also noteworthy were clusters related to age, for instance, GO:0045926~negative regulation of growth (P = 1.08 × 10−4) (Figures 3C,D).




DISCUSSION

Each human individual has two “ages.” One is the chronological age defined by the time that has passed since birth, and the other is biological age, which describes a shortfall between a population cohort average life expectancy and the perceived life expectancy of an individual of the same age (Jackson et al., 2003). An accurate estimation of biological age is helpful in studying aging, and several approaches have been proposed so far (Borkan and Norris, 1980; Dubina et al., 1983; Hannum et al., 2013). The aging prediction strategy in this study reflects the donor's biological age, effectively providing a possible way to identify key genetics or environmental factors that lead to younger biological age than the chronological age.

By constructing elastic net models, we can predict human age as well as identifying genes strongly associated with human aging. For example, RASSF8 and ALOX15B have been studied to be associated with human aging and age-associated diseases. The function enrichment analysis revealed some common functions, such as glycoprotein and signal peptide in prediction models of multiple tissues, suggesting their general association with aging. In the future, we will identify tissue-common and tissue-specific aging genes and functions.

Our results suggest that the expression level of a small number of genes can reliably predict human age. In the single-tissue model, the predicted age showed a higher deviation from the true chronological age compared to predictions based on two tissues. This reveals that tissues within the same individual have heterogeneous aging rates. The tissue specificity of aging is reported by studies performed in model organisms (Herndon et al., 2002; Libina et al., 2003; Niedernhofer, 2008). On the other hand, aging is a concordant process involving multiple tissues. Different tissues have different potentials for revealing the chronological age of the host, jointly considering that multiple tissues can reduce the variation derived from a single tissue. For instance, our results indicate that blood is a poor choice for age prediction although it is one of the most accessible tissues. In both validation and test data sets, predicted age is more easily deviated from chorological age in blood compared with other tissues. The poor prediction performance of blood is also supported by the other study using the human whole blood transcriptome (Hannum et al., 2013), suggesting that the blood transcriptome fluctuates more due to its frequent interactions with other tissues and environmental factors through circulation (Benetos et al., 1993; Franklin et al., 1997).

Some improvements can be expected to increase the prediction accuracy. First, only two tissues were considered in this study due to sample size limitation. In the future, we may include more tissues. Second, we only use gene expression to predict age. Many other molecular biomarkers have also been reported successfully in predicting human age, for example, methylation (Hannum et al., 2013) and telomere length (Harley et al., 1990; Benetos et al., 2001). Last, there are many choices of machine learning technologies that can be adopted, for example, support vector machine (Cortes and Vapnik, 1995) and neural network (Mcculloch and Pitts, 1990). Combining multiple types of genomics data and data analysis methods will certainly facilitate the prediction efficiency greatly (Dobin et al., 2013).



CONCLUSIONS

We have developed a computational framework to predict individual age through age-associated gene expression of single and two tissues. The predicted age is an indicator of biological age reflecting the life span and true functionality of a human body. Although gene expression from a single tissue could be used to estimate individual chronological age, the prediction accuracy is improved by properly combining those with other tissues. Different tissues provide different potential in predicting age, more reliable gene expression–based age markers are obtained in pituitary and skeletal muscle compared with blood.
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Tumor-infiltrating T-lymphocytes are defined as T-lymphocytes that infiltrated into tumor tissues; however, their composition, clinical significance, and underlying mechanism in hepatocellular carcinoma (HCC) and adjacent non-tumor tissues are still not completely understood. Herein, we collected marker genes of T cell subpopulations from a previous study and estimated their relative infiltrating levels in HCC and adjacent non-tumor tissues. Specifically, the infiltrating levels of all the T cells were significantly reduced in HCC as compared with non-tumor tissues. Unsupervised clustering of the HCC samples by the T cell infiltrating levels revealed that the HCC samples could be clearly classified into two groups. The driver genes, including PTK2B, ATM, PIK3C2B, and KIT, and several CNAs were observed to be associated with reduced T cell infiltrating levels. Particularly, deletion of TP53 more frequently occurred in low T cell infiltration HCC samples and resulted in its downregulation and cell cycle progression, indicating that cell cycle progression was closely associated with reduced T cell infiltration. In contrast, for the samples with high infiltration T cells, its immune evasion might be regulated by the immune checkpoint regulators, such as PD-1/PD-L1 and CTLA4. Moreover, Olaparib, one of the PARP inhibitors, and immune checkpoint inhibitors might be therapeutic candidates for the samples from the two T cell infiltrating clusters. Clinically, the tumor-infiltrating levels of cytotoxic CD4 cell, Mucosal associated invariant T (MAIT) cell, and exhausted CD8+ T cell might be used as predictors for vascular invasion, recurrence, and overall survival. Collectively, we systematically evaluated the clinical significance and potential molecular mechanisms of tumor-infiltrating T cell subpopulations in hepatocellular carcinoma, which might broaden our insights into the immunological features of HCC and provide potential immunotherapeutic targets.

Keywords: T cell infiltrating level, driver gene, cell cycle progression, immune checkpoint regulator, immunotherapeutic target


INTRODUCTION

Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer worldwide, with an increasing annual incidence (Pinyol and Llovet, 2014; Llovet et al., 2018). Etiologic factors of HCC mainly include hepatitis B/C viruses, alcohol abuse, and cirrhosis (Grandhi et al., 2016). Cirrhosis is an important indicator clinically, and patients are facing a higher risk of developing HCC and sometimes their lives are threatened (Mazzanti et al., 2008; Hartke et al., 2017). Poor prognoses of HCC are related to the fact that many patients have advanced-stage HCC upon diagnosis, where chemotherapy, radiotherapy, surgical resection, and transplantation are no longer curative (Fu et al., 2019). However, immunotherapy trials have hinted that immune checkpoint inhibition could be of better help to HCC patients when compared with other known therapies (Harding et al., 2016).

Since many HCC cases are associated with chronic inflammation, the assessment of inflammatory tumor microenvironment and its components seems promising (Chew et al., 2010; Hendry et al., 2017). Tumor infiltrating T-lymphocytes and their density are known to exhibit prognostic values in various types of solid tumors, and they are associated with the expression of certain biomarkers, which could serve as therapeutic targets (Ren and Zhang, 2019). One example is that for HBV-related HCC cases, the outcome of HDV/HBV infection could be related to virus-specific CD8 + T cells, and there is an established immunoscore based on immune infiltration to predict their prognosis (Deterding et al., 2009; Chen et al., 2019). To our knowledge, HCC often exhibits distinctive intratumoral immune states, and it is reported that a combination of low intratumoral regulatory T cells (Tregs) and high intratumoral activated CD8 + cytotoxic cells (CTLs) can serve as prognostic factors of HCC, as Tregs are associated with HCC invasiveness and CTLs could help mediate anti-tumor immune response (Gao et al., 2007; Thorsson et al., 2018). However, none of CD3+, CD4+, CD8+ TILs had independent prognostic value (Gao et al., 2007), suggesting that a further illustration of HCC-infiltrating T cells and identification of biomarkers in HCC immune responses are needed. The mucosal-associated invariant T (MAIT) cells are enriched in liver; however, its immunomodulatory role in HCC is controversial. Recently, HCC-infiltrating MAIT cells were found to be impaired and even reprogrammed in HCC (Duan et al., 2019), and their functionality had been altered from anticancer activity to tumor-promoting activity. In the present study, we aimed to explore the tumor-infiltrating levels of T cell subpopulations in HCC and non-tumor tissues, and anticipated we would evaluate their clinical significance and potential molecular mechanism in HCC.



MATERIALS AND METHODS


The Gene Expression, Somatic Mutation, DNA Methylation, and Copy Number Alteration Data

The level-3 data of gene expression profiles, somatic mutations, DNA methylation, and copy number alterations from TCGA LIHC cohort (Cancer Genome Atlas Research Network, 2017) were downloaded from TCGA Data Portal. The T cell subpopulations and the corresponding marker genes were obtained from previous study (Zheng et al., 2017). The normalized gene expression data of HCC samples with vascular invasion and recurrent tissues were downloaded from Gene Expression Omnibus (GEO) database with accession number GSE20017 (Minguez et al., 2011) (n = 135) and GSE56545 (n = 42), respectively. Moreover, the independent gene expression dataset with accession SRP068976 (n = 100) (Liu et al., 2016) was obtained in Sequence Read Archive (SRA) database.



The Tumor-Infiltrating Levels of T Cell Subpopulations

Following the previous study (Senbabaoglu et al., 2016), we estimated the tumor-infiltrating levels of T cell subpopulations using single-sample gene set enrichment analysis (ssGSEA), which used gene expression profiles and marker genes of T cells as input and returned the relative infiltrating levels of each T cell type for each sample. The ssGSEA was implemented in R/Bioconductor package GSVA (Hanzelmann et al., 2013), which could estimate the relative activity of immune cells.



Unsupervised Clustering Analysis

The K-means clustering analysis was employed to cluster the HCC samples based on the T cell relative infiltrating levels. The optimal number of clusters was determined by 30 indices and implemented in R package NbClust (Charrad et al., 2014), which classified the HCC samples into high and low immune infiltrating clusters.



The Gene Set Enrichment Analysis (GSEA)

The cell cycle related genes were obtained from Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa and Goto, 2000), and the genes were pre-ranked by the t-statistics that represent the difference between the High and Low groups. The GSEA (Subramanian et al., 2005) and its visualization were implemented in R fgsea package (Korotkevich et al., 2019).



The Correlation Analysis

The Pearson correlation analysis was conducted to evaluate the correlation between two objects. The correlation coefficients and P-values for the correlation tests were calculated by R cor and cor.test function, respectively.



The Survival Analysis

The Cox proportional hazard regression analysis was used in this study. The high and low infiltrating levels of the T cells were determined by scanning the threshold between 25 and 75% with the optimal statistical significance by Log-rank tests.



Statistical Analyses

The Wilcoxon rank sum test and t-test were used to test the two-sample mean differences. The proportion test or Chi-square test was used to test the two-sample differences of proportions. All these analyses were implemented in R with version 3.6.0. P < 0.05 was deemed as statistically significant.



RESULTS


The Tumor-Infiltrating Levels of T Cell Subpopulations in Hepatocellular Carcinoma and Non-tumor Tissues

To explore the tumor-infiltrating levels of T cell subpopulations in hepatocellular carcinoma and non-tumor tissues, we first collected the marker genes of 11 T cell types identified by previous study (Zheng et al., 2017) and excluded two of these cell types due to lack of enough marker genes (n > 30). Specifically, a total of 961 marker genes representing nine T cell types including naive CD8+ T cell, exhausted CD4+ T cell, cytotoxic CD4 cell, effector memory CD8+ T cell, Mucosal associated invariant T (MAIT) cell, exhausted CD8+ T cell, naive CD4+ T cell, peripheral T regulatory cell (Treg.), and tumor Treg. were used for the downstream data analysis.

To estimate the tumor-infiltrating levels of T cell subpopulations in hepatocellular carcinoma and non-tumor tissues, we conducted single-sample gene set enrichment analysis (ssGSEA) of the gene expression profiles of 371 hepatocellular carcinoma (HCC) and 50 non-tumor samples from TCGA liver hepatocellular carcinoma (LIHC) cohort (Supplementary Table S1). For the nine T cell types, their relative tumor-infiltrating levels were reduced in the HCC tissues as compared to the non-tumor tissues (Figure 1A, Wilcoxon rank sum test, P < 0.05). Particularly, the naive CD8+ T cell, cytotoxic CD4 cell, effector memory CD8+ T cell, MAIT cell, and naive CD4+ T cell had the highest statistical significances (P < 0.0001). Moreover, the tumor-infiltrating levels of the T cell types except exhausted CD4 + T cell and tumor Treg. were also observed to be reduced in HCC in an independent dataset (Liu et al., 2016) (SRA accession number SRP068976, Supplementary Figure S1). Consistently, the marker genes of these T cells were also downregulated in HCC tissues (Figure 1B). These findings indicated that the tumor-infiltrating levels of T cell subpopulations were reduced in hepatocellular carcinoma.


[image: image]

FIGURE 1. The tumor-infiltrating patterns of T cell subpopulations in HCC. (A) The T cell infiltrating levels in HCC and non-tumor tissues. The differential infiltrating levels were evaluated by Wilcoxon rank sum test. (B) The expression profiles of the marker genes of T cells in HCC and non-tumor tissues. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.




The T Cell-Related HCC Subgroups and Subgroup-Specific Genomic Alterations

With the relative tumor-infiltrating levels of T cells, we observed that tumor Treg. and exhausted CD8+ T cells had significantly higher infiltrating levels in HCC than other cell types (Figure 2A), suggesting that the two cell types might play a key role in immune evasion of HCC. Furthermore, the K-means clustering analysis was conducted on the tumor-infiltrating levels of T cells. The optimal number of clusters was determined by 30 indices and implemented in R package NbClust. As shown in Figure 2B, the HCC samples were stratified into two groups, termed as High and Low clusters.
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FIGURE 2. The differential infiltrating levels of T cells between the two HCC T-cell level clusters. (A) The HCC-infiltrating levels between T cell subpopulations. The cells were ordered by the median of the relative infiltrating levels. (B) The unsupervised clustering-identified T cell level clusters. The red and green color bands on the top represent the High and Low T cell level clusters. (C,D) The somatic mutations and copy number alterations (CNAs) preferentially mutated in the two T cell level clusters.


To characterize the genomic alterations associated with T cell infiltrating levels, we compared the somatic mutation and copy number alteration (CNA) frequencies of High cluster with those of Low cluster. The driver genes including PTK2B, ATM, PIK3C2B, and KIT were more frequently mutated in samples of Low cluster (Figure 2C), suggesting that these driver genes and their regulating pathways might be associated with the reduced T cell infiltration. In addition, more frequent gains in 1q21.3, 2p24.1, 5p15.33, 7q21.2, 7q31.2, 9q34.3, 13q34, and 17q22, and deletions in 2q37.3, 6q27, and 17p13.1, were observed in samples of Low cluster (Figure 2D). Specifically, CNAs of TERT located within 5p15.33 and HDAC4 within 2q37.3 were found to significantly affect their RNA expressions (Supplementary Figure S2). Collectively, somatic mutations and CNAs might be associated with T cell infiltrating levels in HCC.



Cell Cycle Progression Is Associated With the Reduction of T Cell Infiltration

As the CNAs more frequently occurred in samples with low T cell infiltration, we then investigated the driver genes located within those CNAs and the downstream signaling pathways associated with the T cell infiltration. Remarkably, copy numbers of TP53 were highly correlated with its expression in HCC (Figure 3A), and TP53 expression was downregulated in samples of Low cluster (Figure 3B). Moreover, cell cycle progression was also significantly enriched by the upregulated genes in samples of Low group (Figure 3C), indicating that cell cycle progression was closely associated with reduced T cell infiltration. Moreover, we also validated this finding in the independent dataset and found that cell cycle activity had significant negative correlation with the abundances of naive CD8+, cytotoxic CD4, effector memory CD8+, MAIT, and naive CD4+ (Figure 3D). Furthermore, we also investigated the potential drugs for the upregulated genes in samples of Low group. Notably, PARP2, one of the poly (ADP-ribose) polymerases, was upregulated in samples with low T cell infiltration (Figure 3E), giving us a hint that PARP inhibitors like Olaparib might be used as one of the potential drugs for Low cluster HCC.
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FIGURE 3. The molecular signatures of the Low T cell level cluster. (A) The correlation between TP53 copy numbers and mRNA expression levels. The x-axis and y-axis represent the log2 (copy number/2) and log2 (FPKM + 1). (B) The TP53 mRNA expression levels and statistical significance in the High and Low T cell level clusters. (C) The enrichment level of cell cycle pathway by the differentially expressed genes between the two T cell level clusters. (D) The correlation coefficients between T cell abundances and cell cycle activity in the validation dataset (SRP068976). (E) The PARP2 mRNA expression levels and statistical significance in the High and Low T cell level clusters. ***p < 0.001; ****p < 0.0001.




The Immune Checkpoint Regulators Contribute to HCC Immune Evasion

As the High cluster was highly infiltrated by the T cell subpopulations, we wondered whether the immune evasion in HCC was regulated by immune checkpoint proteins. The correlation analysis was then conducted to associate the immune checkpoint receptors and their corresponding ligands including PDCD1 (PD-1), CD274 (PD-L1), PDCD1LG2 (PD-L2), CTLA4, CD86, CD80, LAG3, and FGL1 and the nine types of T cells. All combinations of immune checkpoint gene and T cell pairs showed positive correlation (Figure 4A), indicating that the immune checkpoint inhibitors might be used as therapeutic candidates for High cluster samples. Particularly, correlations of CD86 and PDCD1LG2 were dominantly higher than those of other immune checkpoint genes. In general, the ligands could be secreted from the tumor cells, and their RNA expression levels might be regulated at genomic or epigenetic levels. Consistently, PDCD1LG2 was negatively correlated with its promoter methylation level (Figure 4B, Pearson correlation = −0.45), indicating that promoter hypomethylation of PDCD1LG2 in HCC might be one of the causes of its upregulation and immune evasion.
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FIGURE 4. The association between the T cell infiltrating levels and immune checkpoint genes. (A) The correlation coefficient matrix between the HCC-infiltrating T cells and immune checkpoint genes. (B) The reverse correlation between PDCD1LG2 promoter (cg07211259) methylation and mRNA expression.




The Clinical Significance of the T Cell Infiltrating Levels in HCC

To further explore the potential clinical significance of the T cell infiltrating levels in HCC, we collected another two gene expression datasets and estimated the T cell infiltrating levels for those samples. The relative infiltrating levels of cytotoxic CD4, MAIT, and exhausted CD8+ cells were reduced in samples with vascular invasion (GEO number: GSE20017, Figure 5A, P < 0.05) and recurrent HCC tissues (GEO number: GSE56545, Figure 5B, P < 0.05), respectively, indicating that the lower infiltrating level might cause worse prognosis. Furthermore, we also tested the prognostic values of the three cell types and observed that high infiltrating levels of cytotoxic CD4 and MAIT cells might be favorable indicators for HCC overall survival (Figure 5C, P < 0.05).
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FIGURE 5. The T cell subpopulations associated with HCC prognosis. The infiltrating levels of cytotoxic CD4, MAIT, and exhausted CD8 + T cells are reduced in HCC with vascular invasion (A) and recurrence (B). The association between the infiltrating levels of three T cells and HCC overall survival (C). *p < 0.05; **p < 0.01; ****p < 0.0001.




DISCUSSION

The tumor-infiltrating T cells in tumor immunity are now widely accepted to act as the vital roles in HCC. However, due to the different functionality and clinical significance, a further illustration of HCC-infiltrating T cells is needed. In this study, we estimated the HCC-infiltrating levels of T cells using gene expression data and marker genes of T cells. Specifically, the infiltrating levels of all the T cells were significantly reduced in HCC as compared with non-tumor tissues. Accordingly, the marker genes were downregulated in tumor tissues. Particularly, tumor Tregs. and exhausted CD8+ T cells were shown to have higher infiltrating levels in HCC tissues. Tregs. are well-recognized to suppress anti-tumor immune response (Curiel, 2008), and high infiltration level of Tregs in HCC is associated with poor prognosis (Lin et al., 2013). The CD8 T cells are usually exhausted in cancer with decreased effector function and proliferative capacity, partly caused by overexpression of inhibitory receptors, such as programmed cell death (PD-1) (Hashimoto et al., 2018). The HCC samples could be clearly classified into two groups by the tumor-infiltrating levels of the T cells. The driver genes including PTK2B, ATM, PIK3C2B, and KIT and several CNAs were observed to be associated with reduced T cell infiltrating levels. Moreover, these mutations were located within vital kinases regulating multiple intracellular transduction signaling pathways, such as chemokine signaling pathway, cell cycle, and PI3K-Akt signaling (Hosgood et al., 2008; Todd et al., 2014; Dios-Esponera et al., 2015; Russo et al., 2015). Particularly, deletion of TP53 more frequently occurred in low T cell infiltration HCC samples and resulted in its downregulation and cell cycle progression. The mutations in ATM, deletions in TP53, and cell cycle progression indicated that cell cycle progression was closely associated with reduced T cell infiltration. The co-occurrence of cell cycle progression and low immune cell infiltration has been found in osteosarcoma (Scott et al., 2018). In contrast, for the samples with high infiltration T cells, its immune evasion might be regulated by the immune checkpoint regulators, such as PD-1/PD-L1 and CTLA4.

Furthermore, analysis of differentially expressed genes between the two groups revealed that PARP2 and immune checkpoint regulators, such as PD-1, PD-L1, PD-L2, and CTLA4 were specifically upregulated in the Low and High groups, respectively. To discover the drug targets for the Low clusters, we found that PARP2 was highly upregulated and DNA repair damage was more frequently observed in Low cluster. Taken together, Olaparib, one of the PARP inhibitors, and immune checkpoint inhibitors might be therapeutic candidates for the samples from the two T cell infiltrating clusters, respectively. Olaparib has been found to have synergistic inhibition of hepatocellular carcinoma growth with suberoylanilide hydroxamic acid (SAHA) (Zhang et al., 2012). Recently, Camrelizumab, one PD-1 inhibitor, showed antitumor activity in pretreated Chinese patients with advanced hepatocellular carcinoma in a multicenter, open-label, parallel-group, randomized, phase-2 trial (Qin et al., 2020).

Clinically, the tumor-infiltrating levels of cytotoxic CD4 cell, mucosal associated invariant T (MAIT) cell, and exhausted CD8+ T cell were found to be reduced in not only primary HCC tissues with vascular invasion but also in recurrent HCC tissues, suggesting that reduced infiltrating levels of these T cells might be an indicator of poor prognosis. Consistently, the samples with higher levels of cytotoxic CD4 and MAIT cells had longer overall survival than others, which was consistent with previous studies (Gao et al., 2007; Zheng et al., 2017).

In summary, we systematically evaluated the clinical significance and potential molecular mechanism of tumor-infiltrating T cell subpopulations in hepatocellular carcinoma, which might broaden our insights into the immunological features of HCC.
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Many cancer risk loci act as expression quantitative trait loci (eQTLs) of transcripts including non-coding RNA. Long non-coding RNAs (lncRNAs) are implicated in various human cancers. However, the pathological and clinical impacts of the genetic determinants of lncRNAs in cancers remain largely unknown. In this study, we performed eQTL mapping of lncRNA expression (elncRNA) in 11 TCGA cancer types and characterized the biological processes of elncRNAs in the setting of genomic location, cancer treatment responses, and immune microenvironment. As a result, 10.86% of the cis-eQTLs and 1.67% of the trans-eQTLs of lncRNA were related to known genome-wide association studies (GWAS) cancer risk loci. The elncRNAs are significantly enriched for those which are previously annotated as predictive of drug sensitivities in cancer cell lines. We further revealed the downstream transcriptomic effectors of eQTL-elncRNA pairs. Our data specifically suggested that the genes affected by eQTL-elncRNA associations are enriched in the immune system processes and eQTL-elncRNA associations influence the constitution of tumor infiltrating lymphocytes. In ovarian cancer, the “rs34631313-AC092580.4” pair was associated with increased fraction of CD8+ T cells and M1 Macrophage; whereas in KIRC, the “rs9546285-LINC00426” pair was associated with increased fraction of CD8+ T cells and a decreased fraction of M2 macrophages. Our findings provide a systematic view of the transcriptomic impacts of the eQTL landscape of lncRNA in human cancers and suggest its strong potential relevance to cancer immunity and treatment.
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Introduction

Transcript abundance is an inheritable quantitative trait which serves as a major intermediate variable to explain the functional background of intergenic trait associated loci (TAL) (1). The germline variants which are associated with the transcript levels are known as “expression quantitative trait loci” (eQTL) (2). The eQTL may act either in-cis or in-trans, depending on the relative positioning between the loci and the target transcripts (1). The biological mechanisms underlying the functions of cis- and trans-acting eQTLs for mRNA have been addressed by a plethora of studies in various cell lines and tissues (3, 4). Mapping of eQTLs in tumor tissues provides fundamental clues the functional implications of non-coding, risk-associated variants (5–8). Quite a few cancer risk loci have been proven to be genetic determinants of gene expression. For example, the breast cancer risk loci 1p13.2 (rs11552449) acts in-cis to influence the activity of DCLRE1B, an evolutionarily conserved gene involved in DNA stability and the repair mechanism of inter-strand cross-link (9–11). Recent studies have reported associations between cancer risk loci and lncRNA expression and empirically verified the functional phenotypical effects with clinical significance (12).

Non-coding RNA (ncRNA) comprises diverse RNA transcripts including microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), and piwi-interacting RNA (piRNA), many of which are known to function as regulators of transcription (13). The altered abundance of ncRNAs affects the cancer transcriptome and the consequent processes of carcinogenesis and tumor development (14). Among the ncRNA species, lncRNAs participate in diverse regulatory activities in the cell, including chromatin structuring and reprogramming cis-regulation of enhancers, competing endogenous RNA (ceRNA) networks, immune response, and post-transcriptional regulation of mRNA processing (15–19). The regulatory activities of lncRNAs play a critical role in the immune-related disease and the biological processes which determine the pathological and clinical phenotypes of cancers (20, 21). Growing evidence indicated that dysregulation of lncRNAs involved in the regulation of immune system (22). Yongsheng Li et al. demonstrated the immune-associated lncRNAs (ImmLnc) show expression perturbation in cancers and are significantly correlated with immune cell infiltration (23), which suggested that lncRNA play an active role in cancer immunity.

Studying the genetic determinants of lncRNAs is crucial for understanding the etiology of carcinogenesis. For example, recent evidence has suggested that risk-associated loci in prostate cancer act in-cis on specific lncRNAs, thereby predisposing cells towards malignancy (24). However, eQTL mapping in cancer is more challenging than that in established cell lines due to tissue heterogeneity. In addition, other somatic changes in the genome, such as somatic copy number alterations and CpG methylation might confound the effect of germline determinants. To control for the confounders in the expression data, several studies used multivariate methods to adjust the eQTL mapping results for the effects of heterogeneity, sample purity, and somatic alterations on transcription activity (25). These methods have yielded valuable associations between germline variants and gene expression in cancer. Recent studies have reported eQTLs for various non-coding transcripts (lncRNA and miRNA) in human cancers (11, 26). Moreover, study of Xia et al. demonstrated that lncRNAs are active participants in immune regulation in 33 cancer types (23). However, the extensive biological impacts of cancer eQTLs of lncRNA on the whole cancer transcriptome and the tumor microenvironment and the consequential therapeutic implications have not been thoroughly investigated. In addition, differences in the landscape of genetic determinants of lncRNAs and mRNAs in human cancers have not yet been fully addressed. Hence, we investigated the eQTL landscape of lncRNAs in eleven cancer populations from TCGA and revealed the potential pathological and clinical significance of elncRNAs in cancer immunity and treatment responses using Instrumental Variable Analysis (IV) or called Mendelian Randomization (MR) (27).

Our findings suggest that the downstream targets of eQTL-elncRNA pairs are enriched for immune system pathways and are consistently associated with varied fractions of immune cell types and patient clinical outcomes. In addition, we show that the elncRNAs are significantly enriched for known predictors of the treatment responses. Altogether, our data confirm that elncRNAs are active intermediates between genetic variants and the transcriptional activities in cancers, which further influence the tumor immune microenvironment, treatment responses and clinical outcomes.



Materials and Methods


Genotype Data Collection, Imputation, and Processing

To identify the eQTLs across eleven cancer types, we obtained genotype data from the TCGA portal (https://portal.gdc.cancer.gov/), which contains Affymetrix genome-wide human SNP 6.0 array-based genotype data for 898,620 single nucleotide polymorphisms (SNPs). To increase the power for eQTL discovery, we imputed the variants on autosomal chromosomes for all samples in each cancer type using IMPUTE2 algorithm with 1000 Genomes Phase 3 (28) as the reference panel. Then, a two-step procedure of IMPUTE2 were performed, which consists of pre-phasing and imputation of the phased data. After that, the following criteria were used to select SNPs: (i) imputation confidence score, INFO ≥0.5, (ii) minor allele frequency (MAF) ≥5%, (iii) SNP missing rate <5% for best-guess genotypes at posterior probability ≥0.7, (iv) Hardy–Weinberg Equilibrium P-value >1×10−6 estimated using the Hardy–Weinberg R package (29).



Transcript Expression Data Collection and Processing

The lncRNA expression profiles of eleven TCGA cancer types were directly obtained from ‘The Atlas of Noncoding RNAs in Cancer’ (TANRIC) database (2018/06/11 – Version 1.3) (30). The expression levels of 12,727 lncRNAs were quantified as reads per kilobase per million mapped reads (RPKM). To ensure the detection power and reduce the noise, we applied a three-step filtering according to a previous study (31): (1) The lncRNAs with the 10th-percentile RPKM value is equal to 0 were excluded, and those with the 90th-percentile RPKM value is greater than 0.1 were retained for further analysis. (2) Quantile-normalization of the lncRNA expression matrix ensured that the underlying gene expression distribution was similar for all samples. (3) Finally, we applied an inverse normal transformation to the gene expression matrix, such that the expression levels of each lncRNA across samples was matched to the quantiles of standard normal distribution. The expression value of each lncRNA was also transformed based on log2(RPKM + 1).



Correction for Technical Confounders

The tumor microenvironment is the non-cancerous cells present in and around a tumor. These non-cancerous components of the tumor may play an important role in cancer biology. Therefore, we removed samples whose tumor purity less than 0.6 based on the criteria of prior study (32). In order to account for the possible latent confounding effects on transcript levels, we used the probabilistic estimation of expression residuals (PEER) method to estimate a set of latent covariates for the gene expression levels in each cancer type (25).



Covariates of Expression

Previous studies have shown that various factors affecting global gene expression confound eQTL-mapping (33). To exclude the effect of population structure on gene expression, we performed principal component analysis (PCA) for each cancer type and selected the CEU (Northern Europeans from Utah) population for further analysis. To regulate the other potential confounders, age, gender, gene-level somatic copy number alterations (SCNA), and CpG methylation levels were included as additional covariates. The copy number changes of a given lncRNA were determined by the segmented copy number scores of the tumor sample and paired-normal tissues obtained from the UCSC Xena database (https://xena.ucsc.edu/). Then, the CpG methylation status of the promoter area of each lncRNA (TSS 200/ TSS 1500) was determined by the respective discretized values obtained using Agilent HumanMethylation450K, with cutoff values 0.2 and 0.6.



Identification of eQTLs

For each cancer type, the genotype data, expression data, and covariates were processed to three N (genotype, expression, or covariates) × S (samples) matrices with matched sample identifiers. The lncRNA annotation file (hg19) was obtained from the GENCODE database (https://www.gencodegenes.org/). The SNP location (hg19) was downloaded from dbSNP148 (https://www.ncbi.nlm.nih.gov/projects/SNP/) (v148). eQTL analysis was performed according to the Genotype-Tissue Expression (GTEx) eQTL workflow (34) using the R package of “MatrixEQTL” in the linear regression model (35). The cis/trans-eQTL analysis was based on MatrixEQTL with PEER factors and other covariates:



where   is a Gaussian error term; Gi is the genotype of the ith sample; Ai is the age of the ith sample; Si is the sex of the ith sample. In the cis-eQTL analysis, we evaluated the associations between lncRNA expression levels and the genotype at a given SNP locus located within 1 Mb upstream and 1 Mb downstream of lncRNA. trans-eQTLs are defined as associations beyond the 2-Mbp interval. The PEER factors were computed using the R package PEER to exclude the effects of confounding variables (such as the “batch” effects) from the gene expression matrix.

To reveal the complete landscape of eQTLs in cancer, we also performed trans-analysis for the lncRNAs. A false discovery rate (FDR) cutoff of 0.1 was applied for the significant cis-eQTL-elncRNA pairs, and, due to the vast number of tests performed in the trans-analysis, we set a threshold for the test P-values as 1 × 10−7 for trans-eSNP-elncRNA pairs. In addition, Plink’s clump function was used to shorten the list of cis/trans-eQTLs. Then, only the most significant cis/trans-eSNPs per haplotype block (r2=0.2, clump distance =500 kb) was selected to perform the second round of validation based on multivariate regression, wherein DNA methylation and SCNA were adjusted.



where   is a Gaussian error term; cis - Gi  is the genotype of the most significant cis-eQTL per LD block of the ith  sample; trans - Gi  is the genotype of the most significant trans-eQTL per LD block of the ith  sample; Ai  is the age of the ith  sample; Si  is the sex of the ith  sample; SCNAi  is the somatic copy number alteration of the ith  sample; Mi  is the median of TSS200/1500 DNA methylation status of the nearest gene in the ith  sample. A complete eQTL analysis results are available at https://xcqxcq.github.io/lncRNA/LncRNA.html.



GWAS-Related eQTLs

Risk SNPs identified in GWAS studies were downloaded from the GWAS catalog (http://www.ebi.ac.uk/gwas/) (36). The GWAS linkage disequilibrium (LD) blocks were extracted from the rAggr database (raggr.usc.edu) based on the following parameters (SNP dataset: 1000 Genomes; r2 threshold =0.5; population panel: CEU (Utah Residents with Northern and Western European Ancestry; distance limit: 500 kb). eQTLs that overlap with GWAS cancer-related tagSNPs and LD SNPs (r2≥0.5) were identified as GWAS cancer-related eQTLs.



Functional Annotation of eQTLs

The eQTLs implicated in the analysis were functionally annotated by FUMA, a web-based bioinformatics tool that uses a combination of positional, eQTL and chromatin interaction mapping to prioritize likely causal variants and genes. The functional annotations included ANNOVAR categories and RegulomeDB scores. Moreover, the ANNOVAR categories identified the genomic positions of the SNPs (for example, intron, exon, intergenic) and the associated function. The RegulomeDB is a categorical score based on the information from normal tissue eQTLs and chromatin markers; 1a–7 with low scores indicate a decreased regulatory function. The scores are stated in (Supplementary Table S1).



Meta-Analysis of Epigenetic Markers

We used chromatin-immunoprecipitation sequencing (ChIP-seq) peak data from the ENCODE database. For cis-eQTL overlapped with epigenetics modifications, Bedtools was applied (https://bedtools.readthedocs.io/en/latest/content/tools/fisher.html) to calculate the enrichment of the cis-eQTLs for epigenetic markers. Then, meta-analysis was performed using the R package (meta) to integrate the fold-enrichment of each epigenetic marker.



Instrumental Variable Analysis

Instrumental variable (IV) analysis was employed to identify the cis-regulated lncRNAs that affect the transcription of protein-coding genes in-cis/trans according to the study performed by McDowell et al. (37). The genotype of an SNP as the genetic instrument across n individuals (eQTLs) directly affects the independent variable elncRNA in-cis, which in turn, affects the dependent variable mRNA in-cis/trans. Thus, the IV analysis was performed using the most significant eQTL-lncRNA pairs from the cis-analyses on the “AER” package in R-3.5.0, wherein the eQTLs are the genetic instrument, cis-lncRNA expression is the “mediator,” and the cis/trans-mRNA expression is the “outcome” (38). We obtained the mRNA expression data of the corresponding TCGA samples from UCSC Xena (https://xena.ucsc.edu). To reduce the burden of multiple statistical tests, we filtered the mRNA in each cancer type by the following criteria: (1) Coefficient of variation (CV) >0.5, the 30th percentile log2 (count + 1) value >0 and the 90th percentile log2 (count + 1) >5. (2). The absolute value of Spearman’s correlation between lncRNA and mRNA >0.3.

IV analysis of tumor infiltrating immune cells was conducted for the significant eQTL-elncRNA associations identified above. The immune cell fraction measures in TCGA cancer samples are based on published data from CIBERSORT (39). We picked the significant eQTL-elncRNA pairs (FDR<0.1, adjusted R2>0.1). Again, eQTL is considered as a genetic instrument and elncRNA as an independent variable. Since the dependent variable immune cell fraction is not normally distributed, it was log2 (immune cell fraction + 1) transformed.



Enrichment Test of elncRNAs for lncRNA Predictors of Anticancer Drug Sensitivity

We obtained drug sensitivity data for lncRNAs from Nath et al.’s (21) study from https://osf.io/m2qja/. We analyzed the following datasets: Effects_CTRP.csv, Pval_CTRP.csv, Effects_GDSC.csv, and Pval_GDSC.csv. We performed Fisher-exact test to assess the enrichment of cis-elncRNAs/trans-elncRNAs for annotated lncRNA predictors of anti-cancer drug sensitivity. The magnitude of enrichment using odds ratios.




Results


eQTL Mapping for 11 TCGA Cancer Types

We performed pan-cancer eQTL mapping for lncRNAs (30) in eleven TCGA cancer types, including ER-pos-BRCA (N=459), ER-neg-BRCA (N=96), COAD (N=146), LUAD (N=249), THCA (N=345), UCEC (N=234), KIRC (N=251), PRAD (N=283), OV (N=331), STAD (N=42), and LIHC (N=113) (Supplementary Table S2). The cis/trans-eQTL analyses were performed using a two-step regression model. In the first step, we used the MatrixEQTL software (35) to screen for significant expression SNPs (eSNP) (FDR<0.1). Next, to account for linkage disequilibrium (LD), we collapsed the significant eSNPs by the linkage disequilibrium into independent eQTL (r2=0.2, clump distance =500 kb). Each eQTL was represented by a tag-eSNP with maximal significance of association. Finally, we verified the significant cis/trans-eQTLs using multivariate model adjusting for somatic copy number alteration (SCNA) and DNA methylation in poise cis-regulatory regions (TSS-200/TSS-1500, Figure 1A).




Figure 1 | Expression of QTLs in TCGA cancer types. (A) Schematic plot showing the eQTL mapping workflow to identify the associations between germline genotype and tumor lncRNA expression in 11 cancer types. (B) Manhattan plot of cis-eQTLs in 11 cancer types showing -log10 P-values of cis-eQTLs in autosomes. Each dot represents a significant eQTL. (C) Manhattan plot of trans-eQTLs in 11 cancer types showing -log10 P-values of trans-eQTLs across the autosome. Each dot represents a significant eQTL. (D) Ring diagram showing the common cis/trans-eQTLs and cis/trans-elncRNAs across cancer types. “1” represents eQTLs occurring in one cancer type while “11” represents eQTLs occurring in 11 cancer types. (E) Log counts of cis/trans-eQTLs in each cancer type are positively correlated with sample size.





eQTL of lncRNAs Expression in Human Cancers

In the cis-eQTL analysis, we identified 74,804 significant cis-eQTL-lncRNA association pairs from 11 cancer types (FDR<0.1, data is available at https://xcqxcq.github.io/lncRNA/LncRNA.html), which were mapped to 59,542 unique cis-eQTLs and 4,742 unique elncRNAs (Figure 1B and Table 1). In the case of each cancer type, the number of significant cis-acting eQTLs varied from 461 (STAD) to 28,085 (THCA) (Table 1). The number of the lncRNAs in association with cis-eQTL (cis-elncRNA) ranged from 98 (STAD) to 2,970 (THCA). As eQTLs are widely reported for mRNA in cancers, we compared the cis-eQTLs of lncRNA to those of the mRNA reported previously (40). As a result, the eQTLs of lncRNA and mRNA differ substantially in cancers, with less than 1% (0.01–0.72%) of the mRNA eQTLs are associated with lncRNAs (Supplementary Table S3 and Supplementary Figure S1). Among the 11 cancer types investigated, 226 (KIRC) to 10,087 (THCA) mRNAs were influenced by eQTL as compared to 98 (2.69%, STAD) to 2,970 (83.33%, THCA) lncRNA. For each transcript, the mRNA was affected by 1 to 2 eQTLs, whereas each lncRNA was affected by 5 to 10 eQTLs (Supplementary Table S3).


Table 1 | Cancer type and summary statistics of the eQTL analyses.



A majority of the cis-eQTLs (65.86%) were cancer type specific. However, a set of cis-eQTLs were noted in multiple cancer types. For example, 2.4% cis-eQTLs were present in more than eight cancer types, which are termed as “pan-cancer” cis-eQTLs hereafter (Figure 1D). As for the elncRNAs in-cis, 1,150 (24.25%) were cancer-specific, and 237 (5.0%) occurred in more than eight cancer types (Figure 1D).

In the trans-eQTL analysis, we report 10,721 significant trans-eQTL-elncRNA association pairs with genome-wide P-values < 1 × 10−7; these pairs were mapped to 9,996 unique trans-acting eQTLs and 3,284 unique elncRNAs (Figure 1C and Table 1). Among the trans-eQTLs, 91.26% were cancer-specific, only 0.5% of the trans-eQTLs were observed in seven cancer types, suggesting that the trans-eQTLs of lncRNA are more cancer-specific (Figure 1D). As for the elncRNAs in-trans, 1,730 (52.67%) of elncRNAs in-trans were cancer-specific (Figure 1D), and only 1 (0.03%) elncRNA in-trans (RP11-667M19.2) were observed in eight cancer types. Together, these results suggested that that the overall eQTL landscape of elncRNAs are highly specific to the cancer types. However, trans-eQTL and their elncRNAs were more cancer-specific than their counterparts in-cis.

The eQTL-elncRNA association in cancers features a many-to-many relationship, where one lncRNA can associate with different eQTLs or one eQTL can associate with different elncRNAs. For example, a total of 3,107 elncRNAs were associated with both cis- and trans-eQTLs in the same cancer type (Supplementary Table S4). Moreover, a total of 1,039 eQTLs act both in-cis and in-trans on different lncRNAs in the same type of cancer (Supplementary Table S5). These results suggested that a complex network is involved in the genetic determinants of lncRNA transcription.

Consistent with previous eQTL studies for mRNA (40), the number of significant cis-eQTLs for lncRNA identified in the current study was strongly associated with the size of the cohort (Spearman’s correlation coefficient, rho=0.87, P=0.00095, Figure 1E). A similar tendency was observed in trans-eQTLs for lncRNA (rho=0.79, P=0.0061, Spearman’s correlation, Figure 1E).



Effect Size of the Determinants of lncRNA Transcript Levels

The fractions of variation attributed to the major factors of lncRNA expression, including age, sex, PEER factors, gene-level somatic copy number, DNA methylation and cis-/trans-eQTLs are calculated (Figure 2A). A total of five PEER factors were selected to remove the latent confounding effects and maximize the cis-elncRNA discovery (Supplementary Figure S2). In the 11 cancer types analyzed, cis-eQTLs accounted for 7.52% (OV) to 20.15% (STAD) of the total variance in the lncRNA transcript levels, whereas trans-eQTLs accounted for 2.16% (LUAD) to 27.76% (STAD) (Supplementary Figure S3). The other factors, such as SCNA, explain 1.09% to 11.82% of the total variance, which is much larger than the effect size of CpG methylation (0.01–0.42%) (Supplementary Figure S3). However, 9.05% to 26.20% of the variation in lncRNA expression was attributed to non-specific, random effects represented by the PEER factors (Supplementary Figure S3). Finally, the effects of age and sex were much smaller than the other factors (Figure 2A). Overall, the fractions of variation in lncRNA expression explained by the major factors in cancers are highly similar to that of mRNA, as shown by prior studies (40).




Figure 2 | Effect size of eQTLs and other determinants of transcription. (A) Cumulative fraction of variance of elncRNA expression was calculated based on sequential addition of the following factors: age, sex, 5 PEER factors, cis-eQTL, trans-eQTL, somatic copy number alteration and DNA CpG methylation. The bars represent the average fraction of variance for all elncRNAs across 11 TCGA cancer types. Definitions of cancer types are provided in Table 1. (B) Histograms showing the distribution of the fraction of variance in gene expression explained by the cis/trans-eQTLs for elncRNAs aggregated across all cancer types. (C) Histogram showing the distribution of the absolute effect size (β) of cis/trans-eQTLs for all cancer types.



As for the transcript-wise effect sizes, on average, 10.93% of the variance of the elncRNAs expression was attributed to cis-eQTLs, compared to 4.32% attributed to trans-eQTLs (Figure 2B). Notably, the average effect size of cis-eQTLs of lncRNA is twice as much as that of the mRNA (5.3%, based on prior eQTL data) (40). For the majority of the elncRNAs, 85.50% cis- and 98.16% trans-eQTLs accounted for less than 20% of the total variance. However, for a small fraction of the elncRNAs, the effect of genetic determinants mounts to 69.72% (cis) and 75.34% (trans) (Figure 2B). Furthermore, the average allelic effect size of cis-eQTLs of lncRNA (fold-change of elncRNA with every unit increase of the effect allele) was 0.54 (Figure 2C), which is larger than that of mRNA based on prior study (0.37, Supplementary Table S6) (40). For all elncRNA in cancers, the allelic effect sizes of the cis-eQTLs ranged from 0.002 to 2.71, compared to 3.0×10−6 to 3.04 for the trans-eQTLs (Figure 2C). Taken together, these results suggest that the effect size of genetic determinants on the expression of lncRNA is larger than that of mRNA.



Functional Characteristics of eQTLs of lncRNAs in Cancers

The majority of genetic determinants of transcripts are localized in intergenic or intronic regions. Thus, we sought to reveal functional characteristics of the eQTLs of lncRNA from three different aspects: the genomic location, the epigenetic landscape and the association with cancer risk-associated loci.

The genomic locations of the cis-eQTLs and trans-eQTLs were annotated by Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA) (41). The results demonstrated that the majority of cis-eQTLs of lncRNA are located in the intergenic regions (45.25%) and intronic regions (25.91%) (Figure 3A). Only a small fraction of cis-eQTLs was localized in the exonic (0.74%) or ncRNA exonic (3.66%) regions. The genomic distribution of cis-eQTLs of mRNA was similar to that of the cis-eQTLs of lncRNA (Supplementary Figure S4A). On the other hand, 62.42% of the trans-eQTLs of lncRNA were localized in the intergenic regions and 23.27% in the intronic regions (Figure 3A); while some were located in the exonic (0.44%) or ncRNA exonic (1.01%) regions. Overall, the genomic distribution of the eQTLs is highly comparable between lncRNA and mRNA.




Figure 3 | Characterization of cis/trans-eQTLs of lncRNA. (A) Genomic locations of cis/trans-eQTLs (r2≥ 0.2). (B) Distribution of RegulomeDB categories of cis/trans-eQTLs (r2≥ 0.2). (C) The location distribution of significant cis-eQTLs relative to their elncRNAs aggregated across all cancer types. (D) Meta-analysis of corresponding cancer cell lines showed significant enrichment of cis-eQTLs in H3K27Me3, H3K4Me3, and H3K9Ac. (E) The percentage of cis/trans-eQTLs that are associated with GWAS risk loci in 11 TCGA cancer types.



A number of non-coding QTLs interfered with the regulatory elements of the genome (42). The present study showed that 38.99% of the non-coding cis-eQTLs of lncRNAs were co-localized in the transcription factor (TF) binding sites and/or DNase I hypersensitive sites (RegulomeDB score <6) Figures 3B, C and Supplementary Table S1. Whereas 48.63% of the non-coding cis-eQTLs of mRNA were co-localized in the TF binding sites and/or DNase I hypersensitive sites, and 4.95% had a putative regulatory function (Supplementary Figure S4B).

Since chromatin structures are tightly associated with the cis-regulatory activities, we further evaluated the histone modification landscape of the eQTLs of lncRNA in matched cancer cell lines (Figure 3D) and normal tissues (Supplementary Figure S5A). As a result, the eQTLs for lncRNA in the matched cancer cell lines were significantly enriched in the active promoter or enhancer markers, such as, H3K4me3 (OR=2.78, 95% CI: 1.60 to 4.83) and H3K27ac (OR=1.91, 95% CI: 0.93–3.92). The eQTLs were also negatively enriched in transcription repressor markers, such as H3K27me3 (OR=0.31, 95% CI: 0.13–0.77) (Figure 3D). In the matched normal tissues, the eQTLs of lncRNA showed a consistent tendency of enrichment for the histone markers (Supplementary Figure S5A).

About 10.86% independent cis-eQTLs of lncRNAs was intercepted with known cancer risk loci (r2>0.5) (Figure 3E), which is much higher than that of cis-eQTLs of mRNAs (3.07%) reported recently (40), suggesting lncRNA is strongly related to GWAS cancer risk loci (Supplementary Table S6 and Figure S4C). Herein, the cis-eQTLs of lncRNA were significantly enriched for GWAS cancer risk loci than for non-eQTLs (fold of enrichment =3.51, P<2.2 × 10−16) (For example, in ER-positive BRCA, we identified 12 cis-eQTLs which were in LD (r2>0.5) with breast cancer risk loci of rs62073257 (17q21.31), rs7104902 (11p15.5), and rs9393716 (6p22.2). In the case of trans-eQTLs, about 1.67% independent trans-eQTLs were intercepted with known cancer risk loci (Figure 3E) which corresponds to 7.74-fold of enrichment (P<2.2 × 10−16) compared with non-eQTLs. In the case of TAL, we observed that an average of 40.82% of cis-eQTLs of lncRNA were overlapped with TAL, while 27.89% of that of mRNA were intercepted with TAL (Supplementary Table S6).



elncRNAs Enrich for lncRNAs with Known Clinical and Therapeutic Implications

To assess the clinical relevance of the elncRNAs, we retrieved the associations between the elncRNAs and the corresponding cancer types from the lncRNADisease v2.0 database (http://www.rnanut.net/lncrnadisease/). 462 of 4,742 (9.74%) elncRNAs in-cis and 679 of 3,284 (10.51%) elncRNAs in-trans were either proved or predicted to be associated with cancers from the lncRNADisease database (Figure 4A). Both elncRNA in-cis (OR=1.27, 95% CI: 1.16–1.40) and in-trans (OR=1.42, 95% CI:1.28–1.57) were significantly enriched in cancer-related lncRNAs (Figure 4B).




Figure 4 | Association between elncRNAs, cancers and drugs. (A) Venn diagram showing the overlap among elncRNAs in-cis, elncRNAs in-trans and cancer-associated lncRNAs annotated by lncRNADisease v2.0. (B) Forrest plot showing the enrichment of elncRNAs in-cis and elncRNAs in-trans in cancer-associated lncRNAs. (C) Venn diagram showing the overlap among elncRNAs in-cis, elncRNAs in-trans and predictive lncRNAs for drugs in GDSC database. (D) Venn diagram showing the overlap among elncRNAs in-cis, elncRNAs in-trans and predictive lncRNAs for drugs in CTRP database. (E) Forrest plot showing the enrichment of elncRNAs in-cis and elncRNAs in-trans in predictive lncRNA for all drug sensitivity in two databases. (F) Forrest plot showing the enrichment of elncRNAs in-cis and elncRNAs in-trans in predictive lncRNA for the selective drug sensitivity in two databases (Fisher test).



Recent studies suggest that lncRNA are associated with the treatment responses of cancers (21). Therefore, we evaluated the predictive power of the elncRNA in public databases contains drug IC50 for various cancer cell lines (21). As a result, both elncRNAs in-cis (OR=1.25, 95% CI: 1.23–1.27) and elncRNAs in-trans (OR=1.40, 95% CI: 1.38–1.43) were significantly enriched for lncRNAs which are proved predictive of the efficacy of anticancer drugs in the database of Cancer Therapeutics Response Portal (CTRP, https://portals.broadinstitute.org/ctrp/). Consistently, both elncRNAs in-cis (OR=1.97, 95% CI:1.95–2.00) and elncRNAs in-trans (OR=2.07, 95% CI:2.04 – 2.09) were enriched for the predictive lncRNAs in the database of Genomics of Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org/) (Figures 4C, E). In particular, we reported top drugs from each database with the highest significance of association to elncRNAs, namely, PX.12, decitabine, cytabarine hydrochloride in CTRP, and PIK-93 and I-BET-762 in GDSC (Figures 4D, F). There are also drugs which are specifically associated with elncRNAs in-cis, such as CH542802 (ALK inhibitor) in GDSC, and we found that except for CH542802 (ALK inhibitor), both the elncRNA in-cis/trans were significantly enriched in the predictive lncRNA sets of PX.12, decitabine, cytabarine hydrochloride in CTRP, and PIK-93 and I-BET-762 in GDSC (Figures 4D, F).

As prior studies show lncRNA strongly influence cancer immunity, we move on to evaluated the enrichment of elncRNAs in the annotated immunoreactive lncRNA database (23). As a result, both elncRNAs in-cis/trans were significantly overrepresented in the ImmLnc database (FDR<0.01). Moreover, the magnitude of enrichment of the cis-elncRNAs range from 1.20 fold (STAD) to 1.44 fold (THCA), while the enrichment for the trans-elncRNAs range from 1.18 fold (KIRC) to 1.47 fold (COAD) (Supplementary Figure S5B).



The Downstream Transcripts of eQTL-elncRNA Influence Tumor Immune Microenvironment

We further investigated the impact of eQTLs-lncRNA associations on the downstream transcripts and the consequent pathological clinical phenotypes, such as the tumor immune microenvironment and the disease outcomes.

We conducted IV analysis to identify the eQTL-elncRNA-mRNA regulatory axes in each cancer type. The IV regression takes the eQTL as an instrument to the independent variable (elncRNA in-cis), which in turn, affects the dependent variable (mRNA). Thus, we identified a total of 191 unique regulatory axes in 11 cancer types. (FDR<0.1; adjusted R2 >0.1, Supplementary Table S7 and Figure 5A). We then evaluated the biological processes enriched in the downstream transcripts of the significant regulatory axes. As a result, we noticed that a set of the downstream target genes such as IFNG, CALCA, CXCL1, NLRP6, BLK, CD79, FASLG, CCR4, GZMM, were significantly enriched in the immune system process and immune response pathways (FDR<0.01 Figure 5B). This result prompted us to further study the impacts of eQTL-elncRNA on cancer immunity. We evaluated the effects of the 191 eQTL-elncRNA pairs on the fractions of tumor infiltrating immune cells in each TCGA cancer type estimated by prior studies (39). As a result, we identified 23 eQTL-elncRNA pairs in different cancer types (10 elncRNAs in 5 cancer types) which were significantly associated with the fraction of at least one immune cell subtype (P<0.05 and R2>0, Supplementary Figure S7). The eQTL-elncRNA pairs showed two opposite ways of impact (Supplementary Figure S7). In one way, AC092580.4 in OV and LINC00426 in KIRC were associated with lower fraction of Macrophage M2 and higher fraction of Macrophage M1 and CD8+ T cells (Supplementary Figure S7). M1 macrophages and CD8+ T cells are well known for their anti-tumoral effect, while M2 macrophages are reported as anti-inflammatory and associated with pro-tumor phenotypes (43). In the other way, RP4-756H11.3 in LIHC and RP11-677M14.7 in THCA were associated with increased fraction of M2 macrophages and decreased percentage of CD8+ T cells hence a pro-cancer effect (Supplementary Figure S7).




Figure 5 | eQTL-elncRNA-mRNA regulatory axes are enriched in immune-related processes. (A) Circos plot showing the significant regulatory axes (inner circle) with FDR<0.1 and adjusted R2>0.1. the eQTL-elncRNA pairs are colored blue and the transcripts in-trans are colored in red. (B) Gene set enrichment analysis of the downstream target genes of the 191 eQTL-lncRNA-mRNA regulatory axes. (C) Illustration of the rs34631313(2p25.2)-AC092580.4-FASLG/GZMM/PYHIN1/TRAT1” regulatory axis in ovarian cancer. (D) Illustration of the rs9546285(13q12.3)-LINC00426-IFNG/TNIP3/DTHD1/ZBED2” regulatory axis in KIRC. (E) rs34631313(2p25.2)-AC092580.4 is positively associated with the fraction of tumor infiltrating CD8+ T cells in ovarian cancer. (F) rs34631313(2p25.2)-AC092580.4 is positively associated with the fraction of tumor infiltrating M1 macrophages in ovarian cancer. (G) rs9546285(13q12.3)-LINC00426 is positively associated with the fraction of tumor infiltrating CD8+ T cells in KIRC. (H) rs9546285(13q12.3)-LINC00426 is negatively associated with the fraction of tumor infiltrating M2 macrophages in KIRC.



We further investigate the biological processes of the immune-related eQTL-elncRNA pairs. We showed that rs34631313 was a robust genetic instrument of AC092580.4 (P = 3.93 × 10−4), which influences a set of immune genes in-trans, including FASLG (effect size (β) = 1.53, P = 4.99 × 10−9), GZMM (β=1.20, P = 5.95 × 10−6), PYHIN1 (β=1.54, P=3.42 × 10−6) and TRAT1 (β = 1.42, P = 2.00 × 10−5). These genes are known to be involved in the regulation of immune system and cancer progression (44–47) (Figure 5C, Supplementary Figure S6). Consistently, the very same pair is also associated with higher fraction of CD8+ T cells (β= 0.095, P = 0.032) and M1 macrophages (β=0.065, P = 5.95 × 10−6) in ovarian cancer (Figures 5E, F).

In another case, rs9546285 (13q12.3) was a robust genetic instrument for LINC00426 and thereby influences an immune gene set of TNIP3 (β=1.58, P=5.57 × 10−5), ZBED2 (β=1.98, P=6.51 × 10−8), IFNG (β=1.58, P=1.78 × 10−7), and DTHD1 (β=1.20, P=6.47 × 10−6) in-trans (Figure 5D, Supplementary Figure S6). These genes are involved in the antiviral and antitumor effects (48, 49). In KIRC, the same pair is associated with higher fraction of CD8+ T cells (β= 0.72, P = 6.34 × 10−4) and lower fraction of M2 macrophages (β = −0.39, P = 0.04) (Figures 5G, H). These results suggest that eQTLs of lncRNA influence the immune processes by regulating relevant genes and thus influence the constitutions of the tumor immune microenvironment.



eQTL-elncRNA Regulatory Axis Associated With Cancer Clinical Outcome

Finally, we report a regulatory axis, “rs4888920 (16q23.1)-RP11-319G9.3-FOXA1” (F-test for weak instrument, adjusted P=0.07, adjusted R2=0.14), with significant predictive power in KIRC (Figure 6A). rs4888920 (16q23.1) was a cis-eQTL of RP11-319G9.3 (P=8.69 × 10−6) which is, in turn, positively associated with the expression of FOXA1 (β=2.06, P=6.12 × 10−6) (Figure 6B). Our data suggested that the eQTL (G/G vs. A/A and A/G: HR = 0.57, CI= [0.32, 1.02], P=0.037) and its elncRNA (RP11-319G9.3) in-cis (HR = 0.68, CI= [0.49, 0.93], P=0.015) are consistently significantly predictive of the overall survival in TCGA KIRC cohort (Figure 6A). In addition, we also found 23 eQTL-elncRNA pairs for FOXA1 in KIRC with significance and we listed the results in Supplementary Table S8.




Figure 6 | eQTL-elncRNA-mRNA regulatory axes predict clinical outcome of KIRC. (A) Illustration of the “rs4888920 (16q23.1)-RP11-319G9.3-FOXA1” regulatory axis in KIRC (lower panel) and the Kaplan-Meier curves based on overall survival of TCGA KIRC cohort stratified by the genotypes of rs4888920 (left) and the median expression levels of RP11-319G9.3 (right). (B) Correlations between rs4888920 (16q23.1)-RP11-319G9.3-FOXA1 in KIRC.






Discussion

The present study aimed to provide an in-depth view of the eQTL landscape of lncRNA in cancers by systematic assessment the downstream effects of the eQTL-elncRNA associations (40). Our data suggested that the genetic determinants of lncRNA expression are more active in cancer than those of mRNA, as the latter is directly associated with cancer phenotypes hence subject to higher selection pressure. Nevertheless, our results confirmed that the eQTL-elncRNA associations show more diverse but indirect effects on the phenotypes via the transcriptome such as the treatment responses (50) and immune microenvironments (51, 52).

While mapping the eQTLs in cancer, we accounted for different confounding effects (such as PEERs, SCNA, DNA methylations). Thus, our model is more stringent than those reported previously (11, 26), and the eQTLs directly interfered with the regulome of cancers. In addition, we demonstrated that the genomic landscape of cis-eQTLs of lncRNA was similar to that of the cis-eQTLs of mRNA. However, the cis-eQTL of lncRNA was greater than that of mRNAs in both cis-acting gene numbers per eQTL and effect sizes, which suggested that lncRNA expression is more susceptible to the genetic regulators than mRNA expression in cancers. Intriguingly, a number of cancer-related studies have demonstrated that germline risk variants effectuate via specific lncRNAs to impact tumor phenotypes (24, 53, 54). Such differences might be attributed to the different selection pressure in mammals (55) or different regulatory mechanisms underlying these two types of transcripts (56). Furthermore, the current data showed a significant higher enrichment of cancer risk loci in the eQTLs of lncRNAs than in those of mRNA in cancer, which is consistent with a previous study (26).

LncRNAs are known for a variety of regulatory activities in gene expression, many of which might exert functional and phenotypical impact in cancers. Therefore, we hypothesized that these elncRNAs can further interact with various downstream mRNA targets to influence the whole cancer transcriptome. Therefore, IV analysis was performed to identify regulatory axes in different cancer types. Especially, we report that the downstream transcripts of the elncRNAs in cancers were significantly enriched for the immunoregulatory processes. These results suggested that the eQTL act on immune genes in trans via the elncRNA. A previous study of cis-eQTL analysis of mRNA in cancers has also demonstrated that the cis-eQTL regulated mRNA are enriched in immunity pathways (40). We further conducted a second round of IV analysis, and 23 eQTLs-elncRNAs pairs were found to be significantly associated with at least one immune cell type. We closely analyzed the top representative eQTL-elncRNA pairs to determine the target immune genes and immune cell types of these pairs. These observations suggest germline variants have a strong impact on cancer immunity and may serve as predictive markers for immune therapy.

Notably, the top immune related eQTL-elncRNA pairs reported in the present study are also reported for association with drug sensitivity in prior independent studies (21). For example, LINC00426 is a strong predictor for Dexamethasone sensitivity in CCLE cell lines (21). Dexamethasone is a glucocorticoid (GC) steroid that is used as a supportive care co-medication for cancer patients undergoing standard pemetrexed/platinum doublet chemotherapy. It is used to reduce inflammation and suppress the body’s immune response by inhibition of IL-2, IL-12, and IFN-γ of signaling activities in NK, Th1, and CD8+ T cells (57). LINC000426 is associated with IFNG transcription and the activities of tumor infiltrating CD8+ T cells, hence LINC000426 expressing tumors are more sensitive to Dexamethasone. Since rs9546285 is a robust genetic regulator of LINC00426, this eQTL-elncRNA pair can inform the efficacy of Dexamethasone in cancer patients and also for cancer immunotherapy.

In addition, we identified several regulatory axes involving eQTL, elncRNA and mRNA by taking eQTLs as instrument variables. These regulatory axes cannot be easily identified by conventional trans association analysis due to the huge number of tests needed and the stringent control of false discovery rate. Many studies have shown that instrument variable regression, which is also known as Mendelian Randomization, is more efficient in identification of potential causal relationships between germline variants and different traits.

In certain cancer types, different eQTL-lncRNAs pairs influence the same set of mRNA targets; for example, in ovarian cancer, two eQTL (2p25.2 and 7q34) eventually regulate the same set of mRNAs (FASLG, GZMM, PYHIN1 and TRAT1) but through different elncRNAs (AC092580.4 and TRBV11-2). These results suggested that lncRNA act as a flexible intermediate between germline variants and gene expression in-trans and hence may play more active roles in cancers.

Nevertheless, the present study has several limitations. First, the inferred interaction patterns were based on multi-omics data, and further cellular and molecular experiments are needed to validate the findings. Then, the results were derived from 11 cancer types, and, thus, our findings may not apply to other cancer types. Third, the mapping of eQTLs of lncRNA was limited by the sample size, missing data, and confounding factors. The current results for the trans-eQTL hold limited statistical power due to a relatively small sample size (2549 samples). As a consequence, many eQTLs with small effect sizes cannot be identified. Also, we used the IV analyses to identify several regulatory axes with functional implications. However, these associations can occur in different cell types in the tumor tissue, or even via more complex intercellular interactions (58). Further functional analysis is needed to reveal the underlying biological mechanisms.

Taken together, the current findings provided insight into the genetic regulation of lncRNAs in 11 cancer types and explored the biological role as well as clinical phenotypes of eQTL-elncRNA in cancer immunology. Our findings may provide valuable genetic or lncRNA biomarkers for drug sensitivity and cancer immune therapy.



Conclusions

This study investigated the eQTL landscape of lncRNAs in cancers and the potential biological function of elncRNAs in cancer microenvironment and drug sensitivity prediction. We performed instrumental analysis (Mendelian Randomization) to identify genes, pathways and immune cell types influenced by eQTL-elncRNA associations.

Our findings suggest that the downstream targets of eQTL-elncRNA pairs are enriched for immune system pathways and are consistently associated with varied fractions of immune cell types and patient clinical outcomes. Our data confirm that elncRNAs are active intermediates of non-coding genetic variants in cancer immunology and clinical outcome of cancers and provide valuable genetic and lncRNA biomarkers for drug sensitivity and cancer immune therapy.
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Prostate cancer (PCa) is a common lethal malignancy in men. RNA binding proteins (RBPs) have been proven to regulate the biological processes of various tumors, but their roles in PCa remain less defined. In the present study, we used bioinformatics analysis to identify RBP genes with prognostic and diagnostic values. A total of 59 differentially expressed RBPs in PCa were obtained, comprising 28 upregulated and 31 downregulated RBP genes, which may play important roles in PCa. Functional enrichment analyses showed that these RBPs were mainly involved in mRNA processing, RNA splicing, and regulation of RNA splicing. Additionally, we identified nine RBP genes (EXO1, PABPC1L, REXO2, MBNL2, MSI1, CTU1, MAEL, YBX2, and ESRP2) and their prognostic values by a protein–protein interaction network and Cox regression analyses. The expression of these nine RBPs was validated using immunohistochemical staining between the tumor and normal samples. Further, the associations between the expression of these nine RBPs and pathological T staging, Gleason score, and lymph node metastasis were evaluated. Moreover, these nine RBP genes showed good diagnostic values and could categorize the PCa patients into two clusters with different malignant phenotypes. Finally, we constructed a prognostic model based on these nine RBP genes and validated them using three external datasets. The model showed good efficiency in predicting patient survival and was independent of other clinical factors. Therefore, our model could be used as a supplement for clinical factors to predict patient prognosis and thereby improve patient survival.

Keywords: prostate cancer, RNA binding protein, bioinformatics, biomarker, prognostic model


INTRODUCTION

Prostate cancer (PCa), one of the most common and lethal neoplasms in the urologic system, results in approximately 260,000 annual deaths in men worldwide (Siegel et al., 2020). For the past few decades, the incidence rate of PCa has been constantly rising in developing countries and posing a great burden on public health systems (Zhu et al., 2015). At present, the main monitoring indicators of PCa include serum prostate-specific antigen (PSA) levels and pathological stage identification. Therefore, new biomarkers are needed to aid in the diagnosis and timely treatment of PCa. With advances in medical research, the disease-free survival of PCa patients has improved. However, approximately 30% of PCa patients experience recurrence and metastasis after undergoing surgical resection (Tomita et al., 2020). While androgen deprivation therapy is an effective therapeutic method employed in the initial stage of treatment, many PCa patients eventually develop aggressive castration-resistant PCa (CRPC; Graham et al., 2008; Wong et al., 2014). Therefore, the identification of valuable molecular markers and construction of a more effective and specific stratification model are of great significance to guide clinical treatment and improve the prognosis and diagnosis of PCa patients.

Recently, the functions of RNA-binding proteins (RBPs) have been widely studied. An RBP interacts with different classes of target RNA to form ribonucleoprotein complexes and regulates gene expression through RNA processing at the posttranscriptional level (Gerstberger et al., 2014a). The RBPs are abundantly expressed in cells and are involved in nearly every aspect of biological processes, including RNA stability, splicing, modification, transport, location, and translation (Gerstberger et al., 2014b; Perron et al., 2018). Hence, RBPs are critical for the stabilization and development of cells and organisms. The dysregulation of RBPs leads to an aberrant gene expression in cells, which may ultimately result in a disease. Moreover, previous studies have indicated that RBPs play a significant role in the initiation and progression of PCa; for instance, TDRD1, an ERG target gene, can promote the occurrence and development of PCa (Xiao et al., 2016), and PCBP1 could increase the tumorigenicity and metastasis of PCa by inhibiting the expression of mitogen-activated protein kinase 1 (Zhang et al., 2018). Further, multiple RBPs can regulate the androgen receptor (AR) pathway to influence PCa neoplasia and progression; for instance, HNRNPL is aberrantly expressed in PCa and regulates the alternative splicing of many types of RNA, including those encoding the AR, to influence the progression of PCa (Fei et al., 2017). In addition, PSF could induce the dysregulation of various spliceosome genes to promote the amplification and splicing of the AR in advanced PCa (Takayama et al., 2017). Further, Sam68 could enhance the expression of the AR and modulate the transcription function of the AR splice variant AR-V7, which drives the progression of CRPC (Stockley et al., 2015). Finally, the expression of Musashi2 is positively correlated with tumor grades and drives PCa progression by binding to the 3′-untranslated region to stabilize the AR (Zhao et al., 2020). However, the molecular functions of most RBPs involved in the tumorigenesis and progression of PCa have not been thoroughly studied. Therefore, a systematic study of the RBPs will not only help in discovering their potential values in PCa but also contribute in identifying specific and effective diagnostic and prognostic biomarkers.

Hence, we used comprehensive bioinformatic methods to identify potential biomarkers for PCa patients and constructed an RBP–based risk score model to stratify the patients. We acquired the relevant datasets and clinical information from public databases to screen for the RBP genes. Then, we investigated their prognostic impact in PCa through functional enrichment analyses, protein–protein interaction (PPI) networks, and Cox regression analyses. Finally, we validated our model in external datasets and identified the association of the key RBPs with different clinicopathological factors.



MATERIALS AND METHODS


Dataset Acquisition

We explored the pivotal roles and prognostic values of RBPs in PCa using an integrated bioinformatics analysis. The flowchart of this study is shown in Figure 1. The datasets were obtained from The Cancer Genome Atlas (TCGA1) and the Gene Expression Omnibus (GEO2) database. For TCGA dataset, the expression data and clinical information were downloaded using UCSC Xena3. Further, the disease-free survival information of the PCa patients was obtained from the cBio Cancer Genomics Portal4. A total of 52 normal samples and 498 PCa samples were obtained. Then, a differential expression analysis was performed between the PCa and normal samples using the “limma” package5 of R with the following criteria: false discovery rate (FDR) < 0.05 and |fold change| > 2. For the expression data in TCGA dataset, the data were log2(x + 1) transformed for normalization by the “RNA-Seq by Expectation-Maximization” package6. To select genes with prognostic values and establish a risk score model, PCa samples were screened based on following criteria: (1) repeated tumor samples in the same patient were removed, and (2) patients with unknown disease-free survival status and follow-up information were excluded. Finally, 491 PCa samples meeting the inclusion criteria were included.
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FIGURE 1. The flowchart of the present study design.


Next, the normalized microarray datasets, including GSE54460, GSE70768, and GSE70769, were directly downloaded from the GEO database. For the GSE54460 dataset, the expression data were measured by fragments per kilobase per million values. The GSE70768 and GSE70769 datasets were produced using the Illumina HumanHT-12 V4.0 expression BeadChip platform, and the probes were annotated using the corresponding “illuminaHumanv4.db” R package. The data of duplicate genes were averaged. The expression data in these two datasets were log2 transformed and quantile normalized. The GSE54460 dataset included 90 PCa samples and corresponding disease-free survival information. The GSE70768 and GSE70769 datasets included 111 and 92 PCa samples, respectively. These three datasets were used to validate our model. Finally, we obtained a list of RBPs from a previous study (Gerstberger et al., 2014b) and included a total of 1,524 RBPs in our study.



Functional Enrichment Analyses

We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the differentially expressed RBPs using the Database for Annotation, Visualization and Integrated Discovery7. We identified enriched terms for biological processes, cellular components, and molecular functions; a P-value <0.05 was set as the cutoff value. Moreover, a Gene Set Enrichment Analysis (GSEA) was performed to ascertain the molecular functional mechanisms. We selected the “h.all.v7.1.symbols.gmt” file as the reference gene set file and set FDR < 0.25 and normalized P-value <0.05 as the threshold values.



Construction of a Protein–Protein Interaction (PPI) Network and Screening for the Key Modules

We submitted the differentially expressed RBP genes in the Search Tool for the Retrieval of Interacting Genes database (STRING)8 to construct a PPI network and further explore the potential molecular functions of these RBPs in tumorigenesis and progression of PCa. Subsequently, we extracted and visualized genes with an interaction score of 0.4 using Cytoscape v3.7.1 software9. Finally, we screened the key modules from the PPI network with a k-core value of 4 using the Molecular Complex Detection (MCODE) plugin in Cytoscape.



Identification and Validation of the Survival-Related RBPs

To identify survival-related RBP genes, we performed a univariate Cox regression analysis for the differentially expressed RBPs. Next, we used the least absolute shrinkage and selection operator (lasso) Cox regression analysis (Tibshirani, 1997) to screen the most significant prognostic RBPs of PCa using the “survival” and “glmnet” R package10. The optimal values of penalty parameters (lambda value) were determined by 10-fold cross-validation. Then, the Kaplan–Meier curves were plotted and log-rank tests were performed to verify the prognostic values of these survival-related RBP genes. A P-value <0.05 was set as the cutoff value. We further validated the expression levels of these RBP genes in the Human Protein Atlas (HPA) database (Uhlen et al., 2017). Then, the receiver operating characteristic (ROC) curves and the areas under the curves (AUCs) were calculated using the “pROC” package11 in R to evaluate the diagnostic efficiency of these RBPs (Sing et al., 2005). Furthermore, we utilized the segmentation analysis and “Genomic Identification of Significant Targets in Cancer” algorithm from cBioPortal (GISTIC) (see text footnote 4) to determine the mutation and copy number alteration changes of each survival-related RBP (Gao et al., 2013).



Consensus Clustering of the Survival-Related RBPs

To further detect the functions and prognostic values of the RBPs in PCa, we performed a consensus clustering to determine the cluster numbers using the “ConsensusClusterPlus” R package12 based on the survival-related RBPs (Wu et al., 2017). Next, a principal component analysis (PCA) was used to assess the distribution patterns and confirm the cluster numbers using the “ggplot2” R package.



Construction of a Prognostic Model

Based on the selected survival-related RBP genes, we performed a multivariate Cox regression analysis to acquire their coefficients. Then, we constructed a prognostic risk score model to stratify the patients. The risk score was calculated using the following formula:
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where β and Exp represent the regression coefficients and gene expression levels, respectively. Finally, the Kaplan–Meier and ROC curves were used to evaluate the efficiency of the risk score model.



Statistical Analyses

We used Pearson’s chi-square test to investigate the differences in the distributions of the clinical information. We performed a t-test or Wilcoxon test for two samples and a Kruskal–Wallis test for multiple samples. The univariate and multivariate Cox regression analyses were performed to evaluate the prognostic values of the RBPs. The Kaplan–Meier curves and log-rank tests were used to identify the survival difference. All procedures involved in the present study were conducted using the R software. All statistical results were considered to be significant if the P-value is <0.05.




RESULTS


Acquisition of the Differentially Expressed RBPs

We obtained 59 differentially expressed RBP genes comprising 28 upregulated and 31 downregulated RBPs (Supplementary Table 1). The functional enrichment analyses of the upregulated differentially expressed RBPs revealed the following enriched terms: “translation and rRNA processing” for biological processes; “nucleolus, cytosolic large ribosomal subunit, and ribosome” for cellular component; and “RNA binding, poly(A) RNA binding, and nucleic acid binding” for molecular function (Supplementary Table 2). In contrast, the downregulated RBPs were primarily enriched in “mRNA processing, RNA splicing, regulation of RNA splicing, and cytidine deamination” for biological processes; “cytoplasm and nucleus” for cellular component; and “nucleotide binding, RNA binding, nucleic acid binding, and poly(A) RNA binding” for molecular function (Supplementary Table 3). In addition, the KEGG pathway analysis revealed that the upregulated RBPs were significantly enriched in “ribosome,” “mRNA surveillance pathway,” “RNA degradation,” and “RNA transport” (Supplementary Table 2).



PPI Network Construction and Module Screening

To further explore the potential molecular functions, we submitted these differentially expressed RBP genes to the STRING database to construct a PPI network (Figure 2). The upregulated and downregulated RBPs are shown in red and green circles, respectively. We obtained a total of 58 PPI nodes and 75 PPI edges with a PPI enrichment P-value <1.0e–16. The functional enrichment analyses of the PPI network revealed the following enriched terms: “mRNA metabolic process,” “RNA metabolic process,” “RNA process,” “nucleic acid metabolic process,” and “mRNA processing” in biological processes; “RNA binding,” “nucleic acid binding,” “heterocyclic compound binding,” “organic cyclic compound binding,” and “mRNA binding” in molecular function; and “ribonucleoprotein complex,” “cytoplasmic ribonucleoprotein granule,” “cytosolic ribosome,” and “cytosolic large ribosomal subunit” in cellular components. In the KEGG pathway analysis, the enriched terms were “ribosome,” “mRNA surveillance pathway,” and “RNA degradation.” Moreover, two key modules were obtained using the MCODE software (Figures 2B,C). We found that module 1 was mainly enriched in “cytosolic large ribosomal subunit” and “polysomal ribosome” (Figure 2B), while none of the enriched pathways were detected in module 2 (Figure 2C).
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FIGURE 2. Protein–protein interaction (PPI) network for the differentially expressed RNA binding proteins. (A) The upregulated and downregulated genes are shown in red and green circles, respectively. (B) Key module 1 in the PPI network. (C) Key module 2 in the PPI network.




Identification of the RBPs With Prognostic Values

A total of 58 differentially expressed RBP genes were obtained from the PPI network and used to perform the univariate Cox regression analysis to select survival-related RBPs (Supplementary Table 4). A total of 18 RBPs met the inclusion criterion (P < 0.05). These selected RBPs were used to perform the lasso Cox regression analysis to select nine prognostic RBPs (Supplementary Figure 1). The minimum lambda value used in the present study was 0.016. Six RBP genes (EXO1, PABPC1L, REXO2, MSI1, CTU1, and ESRP2) were upregulated, and three RBP genes (MAEL, MBNL2, and YBX2) were downregulated in the PCa samples when compared with normal samples. In addition, the Kaplan–Meier curves further confirmed the prognostic values of these RBPs, including EXO1, PABPC1L, REXO2, MBNL2, MSI1, CTU1, MAEL, YBX2, and ESRP2 (Figures 3A–I, respectively).
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FIGURE 3. Kaplan–Meier curves for the nine RNA binding proteins in prostate cancer from The Cancer Genome Atlas dataset. (A) EXO1; (B) PABPC1L; (C) REXO2; (D) MBNL2; (E) MSI1; (F) CTU1; (G) MAEL; (H) YBX2; (I) ESRP2.




Validation of the Nine Survival-Related RBPs

To further evaluate the expression levels of these nine RBPs in PCa, we obtained their immunohistochemical results from the HPA database (EXO1, PABPC1L, and MBNL2 were not tested here). REXO2, MSI1, and ESRP2 had high expression levels in tumors compared with normal tissues, while CTU1, MAEL, and YBX2 were undetermined in both tumor and normal tissues (Figure 4). In addition, we evaluated the diagnostic values of these RBPs to differentiate tumors from normal samples and found that all nine RBP genes showed moderate diagnostic efficiency (Supplementary Figures 2A–I). The mutation and copy number alterations of the RBP genes were determined, and 69 out of 489 (14%) PCa samples were found to be altered (Supplementary Figure 2J); the most frequent alteration was the deep deletion of the YBX2 gene. Moreover, the mutation frequencies of these nine RBPs were low. Further, the associations between the expression levels of these RBP genes and clinical factors were confirmed in TCGA dataset. We found high expression levels of EXO1 and REXO2 and low expression levels of YBX2 and ESRP2 in samples with high pathological T staging (Figure 5A); high expression levels of EXO1, PABPC1L, and REXO2 and low expression levels of YBX2 and ESRP2 in high pathological grade (Figure 5B); and high expression levels of EXO1, PABPC1L, REXO2, MSI1, and CTU1 and low expression levels of MBNL2, YBX2, and ESRP2 in high Gleason score (Figure 5C). The functional enrichment analysis for these nine RBP genes revealed enrichment in “nucleic acid binding,” “nucleotide binding,” “regulation of RNA splicing,” “RNA binding,” “mRNA surveillance pathway,” and “poly(A) RNA binding.”
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FIGURE 4. Immunohistochemistry results for RNA binding proteins in normal and prostate cancer tissues from the Human Protein Atlas database. (A) REXO2; (B) MSI1; (C) CTU1; (D) MAEL; (E) YBX2; (F) ESRP2.



[image: image]

FIGURE 5. The associations between the expression levels of the nine RNA binding proteins and clinical factors. (A) T2 staging vs. T3 and T4 staging; (B) N0 staging vs. N1 staging. (C) Gleason score for 6, 7, 8, 9, and 10. ns: P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. GS represents the Gleason score.




Identification of Two Clusters Using Consensus Clustering

To explore the prognostic value of the nine RBPs, we performed a consensus clustering analysis to select cluster numbers based on the similarity of these genes. We found that k = 5 seemed to be the most stable value from k = 2 to k = 10 in TCGA dataset (Figures 6A,B). Then, we performed a PCA analysis to evaluate the reliability of the consensus clustering. The results showed high similarity and overlap when the cluster numbers were three (Supplementary Figures 3C,D), four (Supplementary Figures 3E,F), and five (Supplementary Figures 3G,H). Therefore, we divided the patients into two clusters (Supplementary Figure 3A), and the PCA showed different distributions between these two clusters (Supplementary Figure 3B). The Kaplan–Meier curves showed different prognoses between the two clusters as cluster 2 showed poorer prognosis when compared with cluster 1 (Figure 6C). Finally, the GSEA of these two clusters highlighted several oncogenic pathways significantly enriched in cluster 2 (Figure 6D), including E2F targets [normalized enrichment score (NES) = 3.582, size = 187], G2M checkpoints (NES = 3.006, size = 184), protein secretion (NES = 1.709, size = 95), and mTORC1 signaling (NES = 1.526, size = 192).
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FIGURE 6. Consensus clustering based on the nine survival-related RNA binding proteins. (A) Consensus clustering cumulative distribution function (CDF) for k = 2 to k = 10. (B) The relative change in area under the CDF curve for k = 2 to k = 10. (C) The Kaplan–Meier curve for prostate cancer patients to evaluate disease-free survival. (D) The Gene Set Enrichment Analysis showed that several oncogenic pathways were significantly enriched in cluster 2.




Construction and Validation of a Risk Score Model

To effectively guide clinical treatment, we constructed a risk score model to stratify patients with PCa based on these nine RBP genes. The risk score for each PCa patient was calculated using the gene expressions levels multiplied by their coefficients from the multivariate Cox regression analysis. The detailed formula is as follows: Risk score = (0.31297 × EXO1) + (0.26564 × PABPC1L) + (0.32104 × REXO2) + (−0.05792 × MBNL2) + (0.15083 × MSI1) + (0.10192 × CTU1) + (−0.07827 × MAEL) + (−0.09089 × YBX2) + (−0.52454 × ESRP2). The patients were divided into high- and low-risk groups based on the median value of the risk score. The high-risk patients tended to have a worse prognosis compared with the low-risk patients (Figure 7A). Furthermore, the ROC curves showed a good performance of the model (Figure 7B); the AUC was 0.786 at 1 year, 0.758 at 3 years, 0.768 at 3 years, and 0.752 at 5 years. The model was further validated in GSE54460 (Figures 7C,D), GSE70768 (Figures 7E,F), and GSE70769 (Figures 7G,H). The high-risk patients in GSE70769 showed worse prognosis compared with the low-risk patients (P-value <0.05). Moreover, high-risk patients in GSE54460 and GSE70768 (Figures 7C,E, respectively) had a trend of worse prognosis compared with the low-risk patients despite a P-value >0.05. These results show the reliability and stability of the model in stratifying the patients. Moreover, the ROC curves showed a good performance in GSE54460 (Figure 7D) and GSE70769 (Figure 7H) with all AUCs larger than 0.6. The AUC for GSE70768 was 0.763 at 1 year, showing good performance. However, AUCs for time larger than 2 years were relatively low.


[image: image]

FIGURE 7. Construction and validation of a risk score model. The Kaplan–Meier curves and time-dependent ROC curves for The Cancer Genome Atlas dataset (A,B), GSE54460 dataset (C,D), GSE70768 dataset (E,F), and GSE70769 dataset (G,H).




Associations Between the Model and Clinicopathological Factors of PCa

The heat map shows the expression levels of the nine RBPs and the distributions of the clinicopathological factors between the high- and low-risk patients (Figure 8A). The results showed that the high-risk patients had higher proportions of high Gleason score (P < 0.0001), lymph node metastasis (P < 0.0001), high pathological T staging (P < 0.0001), advanced age (P < 0.05), and recurrence rate (P < 0.0001). The detailed distribution of the clinicopathological data across patient subgroups were shown in Table 1. The univariate Cox regression analysis showed that the risk score model was a risk factor for disease-free survival in PCa patients (Figure 8B), and the multiple Cox regression analysis revealed that the risk score model was an independent risk factor for disease-free survival after integration with age, pathological T staging, lymph node status, Gleason score, and PSA level (Figure 8C). In addition, we compared the risk scores between different clinical subgroups and found that patients with advanced age (Figure 8D), high pathological T staging (Figure 8E), lymph node metastasis (Figure 8F), high Gleason score (Figure 8G), high PSA (Figure 8H), and recurrence status (Figure 8I) tended to have higher risk scores. These results demonstrated that our risk score model was closely correlated with the clinicopathological factors of PCa.
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FIGURE 8. Relationship between the clinical factors and risk score model. (A) The heat map shows the expression levels of nine genes in high-risk and low-risk patients. The clinical factors are compared between these two patient groups, showing that high-risk patients have higher proportions of high Gleason score, lymph node metastasis, high pathological T staging, advanced age, and recurrence rate. The univariate (B) and multivariate (C) Cox regression analyses for evaluating the relationship between the risk score model and clinical factors. The bar chart shows that patients with advanced age (D), high T staging (E), node metastasis (F), high Gleason score (G), high prostate-specific antigen (H), and recurrence (I) tend to have a higher risk score. ns: P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.



TABLE 1. Association between the risk score model and patients’ clinical characteristics.

[image: Table 1]
To better predict patients’ prognosis and guide clinical practice, we integrated the risk score model and clinical factors of PCa to construct a nomogram (Figure 9A). The clinical factors included were risk factors for disease-free survival of PCa patients. Calibration plots were used to evaluate the performance of nomogram (Figure 9B) and showed good performance for predicting 1-, 3-, and 5-year disease-free survival probabilities. Moreover, we calculated Harrell’s concordance index (C-index) to evaluate the powers of selected factors (Table 2). As the results showed, the risk score model had a relative higher C-index [0.659; 95% confidence interval (CI): 0.610–0.708]. Further, the combination of the risk score model with clinical factors has a higher C-index (0.741; 95% CI: 0.684–0.798) than the risk score model or clinical factors alone, suggesting that combining the risk score model with clinical factors could improve prognostic accuracy for PCa patients.
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FIGURE 9. Established nomogram and calibration plots for predicting patients’ disease-free survival with prostate cancer. (A) Nomogram integrating the risk score model and clinical factors for prediction of 1-, 3-, and 5-year disease-free survival. (B) Calibration plots showing high predictive accuracy of the nomogram.



TABLE 2. Comparison of the predictive powers of multiple factors in TCGA dataset.
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DISCUSSION

PCa is the second most common cancer in men and poses a growing burden on healthcare systems worldwide (Mistry et al., 2011). It was estimated that almost 1.3 million new cases of PCa were diagnosed and that 359,000 associated deaths occurred worldwide in 2018 (Bray et al., 2018). Currently, the conventional treatment modalities for PCa include surgical resection, hormone therapy, radiotherapy, and chemotherapy (Abou et al., 2020). Moreover, the dichotomy of overtreatment and tumor progression of PCa poses a new challenge for modern medicine, owing to the substantial heterogeneity of PCa. Therefore, the exploration of molecular biomarkers and construction of an excellent risk stratification model for PCa patients will be useful for predicting the degree of malignancy and prognosis and guiding clinical treatments. Further, high-throughput sequencing and bioinformatics technologies provide convenient and effective tools to identify pivotal biomarkers for PCa and uncover their molecular functions (Bass et al., 2014). Prior studies have revealed that RBPs play vital roles in tumorigenesis and progression of PCa by regulating multiple fundamental biological processes through posttranscriptional events (Gerstberger et al., 2014b; Harvey et al., 2017). As the molecular functions of most RBPs in PCa remain unclear, we systematically investigated them in our present study. We obtained 59 differentially expressed RBPs, comprising 28 upregulated and 31 downregulated RBPs; subsequently, we explored the potential functional pathways and constructed a PPI network for the differentially expressed RBPs. The expression levels, genomic mutations, and prognostic and diagnostic values of the key RBPs were comprehensively assessed. Moreover, we implemented consensus clustering to determine the overall roles of these genes in PCa. Finally, we constructed a risk score model based on nine survival-related RBPs to predict the prognosis of the PCa patients and validated the efficiency of the model in three external datasets.

Studies have indicated that RNA splicing widely participates in posttranscriptional gene regulation and plays vital roles in the tumorigenesis and progression of cancer (De Maio et al., 2018). Further, RBPs are a critical factor and major component of the splicing machinery (Han et al., 2013); for example, HNRNPL drives the progression of PCa by directly regulating the targeted RNA alternative splicing (Fei et al., 2017). Meanwhile, RBPs also maintain the stability of various target RNAs to inhibit tumorigenesis and metastasis of multiple tumors, such as hepatocellular carcinoma (Han et al., 2019), breast cancer (Cheng et al., 2017), and glioblastoma (Vo et al., 2012). Moreover, the RBPs regulate biological processes at the posttranscriptional level and can function as activators or suppressors to affect tumor development and progression (Hopkins et al., 2016; Han et al., 2019; Iino et al., 2020) through multiple biological pathways. For example, NELFE could promote the progression of hepatocellular carcinoma by regulating MYC signaling (Dang et al., 2017), and TTP could inhibit cell proliferation and accelerate cell death in lung cancer through the autophagy pathway (Dong et al., 2018). However, the biological functions of most RBPs remain unexplored. In our study, the GO enriched terms showed that the differentially expressed RBPs were mainly enriched in translation, rRNA processing, mRNA processing, RNA splicing, nucleolus, cytosolic large ribosomal subunit, cytoplasm, RNA binding, poly(A) RNA binding, nucleic acid binding, and nucleotide binding, while the KEGG pathway analysis indicated that the upregulated RBPs in PCa could influence the occurrence and progression of cancer by regulating various pathways of ribosome, mRNA surveillance, RNA degradation, and RNA transport. Moreover, the key module identified from the PPI network revealed that the biological functions of module 1 were mainly involved in cytosolic large ribosomal subunits and polysomal ribosomes. As the differentially expressed RBPs were involved in multiple functional pathways and biological processes, it indicates their pivotal role in the occurrence and development of PCa.

In the present study, we identified nine survival-related RBPs: EXO1, PABPC1L, REXO2, MBNL2, MSI1, CTU1, MAEL, YBX2, and ESRP2. The Kaplan–Meier curves further confirmed their prognostic values; moreover, the associations with pathological T staging, pathological grade, and Gleason score of these nine RBPs were comprehensively evaluated. We found high expression levels of EXO1 and REXO2 and low expression levels of YBX2 and ESRP2 in samples with high pathological T staging, high pathological grade, and high Gleason score. Among these nine RBPs, the expression level of EXO1 was significantly correlated with clinical progression and prognosis of PCa. Patients with a high expression level of EXO1 showed poor prognosis and a high risk of lymph node metastasis (Luo et al., 2019). Moreover, ESRP2 is also overexpressed in PCa and is involved in AR-mediated splicing patterns (Munkley et al., 2019). However, the roles of other RBPs have not been reported in PCa but have been implicated in other cancers. For instance, PABPC1L is highly expressed in colorectal cancer and is significantly correlated with its clinical stage and prognosis (Wu et al., 2019). REXO2 has a 3′-to-5′ exonuclease activity, and its dysregulation leads to tumorigenesis of pheochromocytoma by disturbing the DNA replication, recombination, and repair processes (Laitman et al., 2020). MBNL2 possesses antitumor activity in lung and breast cancers and can inhibit cancer cell metastasis via the pAKT/EMT signaling pathway (Zhang et al., 2019). MSI1 regulates the Wnt and Notch signaling pathways; small molecule inhibitors targeting MSI1 have been investigated as blockers of cancer cell growth (Lan et al., 2015). CTU1 is crucial for maintaining genome stabilization and integrity, and its dysregulation can result in defects in the translation processes (Dewez et al., 2008). Finally, MAEL plays a key oncogenic role in bladder cancer by downregulating MTSS1 (Li et al., 2016). In the present study, these nine RBP genes showed a moderate diagnostic efficiency in differentiating PCa from normal samples. Hence, these RBP genes may be used as diagnostic and prognostic biomarkers for PCa in the future.

Two PCa subgroups (clusters 1 and 2) were identified after a consensus clustering analysis. Then, PCA confirmed the reliability of the two subgroups, and Kaplan–Meier curves showed significantly different prognoses between them. The patients in cluster 2 tended to have a worse prognosis and were associated with several oncogenic pathways involving E2F targets, G2M checkpoint, protein secretion, and mTORC1 signaling. These pathways are involved in the occurrence and progression of tumors; for instance, many cancer cells have defective G1 checkpoint mechanisms and thus depend upon the G2M checkpoint more than normal cells (Schmidt et al., 2017). Further, it is well known that mTORC1 signaling is necessary for cellular growth and metabolism and that its dysregulation is closely related to various human diseases, including cancers (Thomas et al., 2016; Ben-Sahra and Manning, 2017; Hare and Harvey, 2017). Therefore, a systematic exploration of the roles of these oncogenic pathways in PCa and their relationships with RBPs might provide novel insights for the treatment of PCa in the future.

Along with the advent of precision cancer medicine, more specific and effective risk stratification models are urgently needed to guide clinical practice and further improve the prognosis of PCa patients. In recent years, a variety of stratification models for PCa have been proposed; for example, Brockman et al. (2015) validated a model to predict the long-term risk of death of PCa patients with biochemical recurrence after undergoing surgical resection. Further, Van Neste et al. (2016) developed a multimodal risk model to identify high-grade PCa based on urinary molecular biomarkers and clinical risk factors, thus decreasing overtreatment. Mehralivand et al. (2018) constructed a risk model based on magnetic resonance imaging and clinical parameters to improve the predictive accuracy of PCa. In addition, Thurtle et al. (2019) introduced an individual multivariable predictive model that allowed the evaluation of potential treatment benefits for the PCa patients. Although these models showed good performance in predicting the therapeutic response or prognosis of PCa, some defects still exist as PCa is associated with complicated and polyfactorial tumors. Therefore, a single biomarker might have a limited effect on PCa prognosis (Jadvar, 2011). Hence, after considering the critical role of RBPs in the oncogenesis and progression of PCa, we constructed a risk score model based on nine survival-related RBPs for the prognostic stratification of the PCa patients. To our knowledge, this is the first PCa risk score model based on multi-RBPs and could be used to improve the evaluation of PCa patient prognosis. Our model showed significantly different prognoses for the high- and low-risk patients. Additionally, the model was validated using three external datasets (GSE54460, GSE70768, and GSE70769), and all three external datasets showed worse prognosis in the high-risk patients. We also investigated the correlations between the model and clinical factors. The results revealed that the high-risk PCa patients tended to have advanced stage, high Gleason score, high ratio of lymph node metastasis and recurrence, and poor prognosis, suggesting that our model was closely associated with traditional clinical variables. In addition, we found that this model was an independent risk factor for predicting disease-free survival in PCa patients. In general, our risk model shows great clinical applicability in distinguishing high-risk PCa patients and may be beneficial for early interventions to improve the clinical therapeutic effect.

Inevitably, our risk score model also has several limitations. All data used in the present study were obtained from public databases. Hence, a prospective study to further validate the efficacy of our model is needed. Moreover, the detailed functions and potential mechanisms of these nine RBP genes in PCa need to be further explored.



CONCLUSION

Our study systematically explored the potential roles of RBPs in PCa and identified nine survival-related differentially expressed RBP genes. The expression levels of these RBPs were validated in the HPA database, and their associations with clinical traits were evaluated. All nine RBPs showed good diagnostic and prognostic values for PCa. Moreover, the risk score model based on these nine RBP genes could stratify PCa patients into two subgroups with different prognoses and malignant phenotypes and showed high associations with the clinical traits of PCa. Thus, we believe that our risk score model could improve the evaluation of treatment response and prognosis in PCa patients.
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Hepatocellular carcinoma (HCC) is a highly malignant and aggressive cancer with high recurrence rates and mortality. Some studies have illustrated that RNA binding proteins (RBPs) were involved in the carcinogenesis and development of multiple cancers, but the roles in HCC were still unclear. We downloaded the RNA-seq and corresponding clinical information of HCC from The Cancer Genome Atlas (TCGA) database, and 330 differentially expressed RBPs were identified between normal and HCC tissues. Through series of the univariate, the least absolute shrinkage selection operator (LASSO), and the stepwise multivariate Cox regression analyses, six prognosis-related key RBPs (CNOT6, UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A) were screened out from DE RBPs, and a six-RBP gene risk score signature was constructed in training set. Survival analysis indicated that HCC patients with high-risk scores had significantly worse overall survival than low-risk patients, and furthermore, the signature can be used as an independent prognostic indicator. The good accuracy of this prognostic signature was confirmed by the ROC curve analysis and was further validated in the International Cancer Genome Consortium (ICGC) HCC cohort. Besides, a nomogram based on six RBP genes was established and internally validated in the TCGA cohort. Gene set enrichment analysis demonstrated some cancer-related phenotypes were significantly gathered in the high-risk group. Overall, our study first identified an RBP-related six-gene prognostic signature, which could serve as a promising prognostic biomarker and provide some potential therapeutic targets for HCC.
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Introduction

Liver cancer, the fifth most frequent type of malignancy with high morbidity and mortality, has become the second leading cause of cancer death globally. It was estimated that 841,080 new liver cancer cases were diagnosed worldwide and 781,631 deaths occurred in 2018 (1, 2). Hepatocellular carcinoma (HCC), the main pathological type of primary liver cancer, represents approximately 80–90% of all liver cancer cases (3, 4). At present, the major treatments include systemic pharmacological treatment, surgical resection, transplantation, ablation therapies, transcatheter arterial chemoembolization, and radiotherapy (3, 5). In recent decades, the incidence and mortality of HCC has been increasing globally (1). In spite of the significant progress made in diagnosis and treatment, the prognosis for patients with HCC still remains poor due to the high complexity and heterogeneity of hepatocarcinogenesis (3). Therefore, it is critical to identify prognostic biomarkers and develop novel accurate prediction models for predicting prognosis of patients with HCC and guiding clinical therapy.

RNA binding proteins (RBPs) play a crucial role in post‐transcriptional gene regulation (6). RBPs can bind various types of RNAs include coding RNAs (mRNAs) and no-coding RNAs (rRNAs, ncRNAs, snRNAs, miRNAs, tRNAs, snoRNAs) through an RNA-binding domain directly (7, 8). So far, more than 1,500 human RBPs (7.5% of the proteome) have been identified that contain 600 structurally distinct RNA-binding domains (7). They form ribonucleoprotein complexes by binding their target RNAs and regulate RNA metabolism, include RNA maturation, splicing, transport, localization, polyadenylation, stability, degradation, and translation (8, 9). Most RBPs are evolutionarily conserved and ubiquitously expressed to maintain cellular homeostasis (7, 10). Due to the extremely significant biological function of RBPs, its dysfunction can lead to the occurrence of multiple diseases, including cardiovascular system diseases (11), blood diseases (10), neurodegenerative disorders (12), and cancers (11–14).

Previous published studies have indicated that aberrant expression of some RBPs can affect cell growth and proliferation and promote tumor occurrence and progression (15). In addition, its aberrant expression is also significantly related to malignant degree and clinical prognosis of patients with cancer (16). For instance, the RNA binding proteins Musashi-1 and Musashi-2 were found to be overexpressed in colorectal cancer, and they regulate the mRNA stability and translation in essential oncogenic signaling pathways (17). Negative elongation factor E (NELFE) promotes metastasis of pancreatic cancer through activating the Wnt/β-catenin signaling pathway and decreasing the NDRG2 mRNA stabilization (18). Human ribosomal protein S3 (RPS3) is upregulated in HCC and is closely relevant to the prognosis of patients with HCC. RPS3 stabilized SIRT1 mRNA through binding with the 3′ UTR of SIRT1 mRNA to sustaining HCC progression and the somatic copy-number alterations of NELFE enhanced MYC signaling and promote cell proliferation in HCC (19, 20). The molecular mechanism by which RBPs promote carcinogenesis and development is still not clear.

Consequently, we considered that RBPs were potential prognostic biomarkers for HCC patients. In our study, the RNA-seq data and corresponding clinical information of HCC cases were obtained from The Cancer Genome Atlas (TCGA) database, and then we identified differentially expressed RBPs between tumor and normal liver tissue. Based on differentially expressed RBPs, survival related RBPs were screened out and an RBP-associated prognostic model was constructed to predict the clinical outcome of HCC patients. The prognostic value of this model was validated in another HCC cohort from the International Cancer Genome Consortium (ICGC) database.



Materials and Methods


TCGA HCC Dataset and Difference Analysis 

The normalized RNA-seq data (Fragments Per Kilobase Million, FPKM) and corresponding clinical data, which contained 374 HCC samples and 50 normal liver tissue samples, were downloaded from TCGA database as training set. Wilcox Test was utilized to perform difference analysis and identify the differentially expressed RBPs (DE RBPs) between the HCC and normal tissue. RBPs with |log2 fold change (FC)| ≥ 0.5 and adj P-value < 0.05 were used for subsequent analysis.



GO and KEGG Functional Enrichment Analyses

To explore main biological functions and signaling pathways of the differently expressed RBPs, the R package “clusterProfiler” was used to carry out Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses (21), and the results were visualized via “GOplot” R package. The false discovery rate (FDR) < 0.05 was thought to be statistically significant.



PPI Network 

Protein-protein interaction (PPI) networks in differently expressed RBPs were constructed by using the STRING database and visualized via Cytoscape software (22). The Cytoscape plugin Molecular Complex Detection (MCODE) was used to detect the important modules in PPI network (23), and GO and KEGG analyses were conducted to further investigate their molecular function in HCC.



Prognosis-Related Key RBPs Screening

The univariate Cox regression analysis was carried out to find the prognosis-related RBPs among the differentially expressed RBPs via “survival” R package, and P-value < 0.01 were considered for subsequent analysis, using the least absolute shrinkage selection operator (LASSO) regression analysis to further screen prognostic-related RBP genes with “glmnet” R package. Finally, the stepwise multivariate regression analysis was performed to screen out optimal key prognostic-related RBP genes and obtain their standardized regression coefficients.



Survival, Expression, and Genetic Alteration Analyses of Key Prognosis-Related RBP Genes

The Kaplan–Meier curves survival was utilized to evaluate the prognostic value of each key RBP gene in TCGA cohort, and P-value < 0.05 was considered to have statistical difference. The copy-number alterations and mutations were detected with the online database cBioPortal (24), and the protein expression was detected by Human Protein Atlas (HPA) database (25).



Construction of an RBP-Gene Prognostic Signature

A risk score signature was constructed by using multivariate Cox regression based on the previously obtained RBPs using the survival R package in TCGA. The risk score was calculated by the following formula: Risk score = Expression of gene1 × Coefficient of gene1 + Expression of gene2 × Coefficient of gene2 + … Expression of geneN × Coefficient of geneN (26, 27). By the median value of the risk score, all HCC patients were assigned into low-risk groups and high-risk groups, and the Kaplan-Meier curve analysis and log-rank test were used to assess the survival difference between two subgroups by “Survival” R package. The receiver operating characteristic (ROC) curves were plotted and the area under the curve (AUC) values were calculated with “SurvivalROC” R package, which was used to evaluate the predictive power (28). Then, the LIRI-JP project in ICGC dataset contained 229 HCC patient cases with complete clinical information and follow-time more than 1 month was used as testing set to validate the predictive capacity of this model (29). In addition, the univariate and multivariate Cox regression analyses were utilized to determine the correlation between RBP signature and clinical characteristics and OS in the TCGA and ICGC cohort, respectively. The statistical difference of risk scores between the stratified clinicopathologic features was calculated by using the Kruskal–Wallis test.

After that, a prognostic nomogram based on key prognosis-related RBP genes was generated by using “rms” R package to predict OS of HCC patients at 1-, 3-, and 5-years in the TCGA cohort. Meanwhile, the calibration curves were plotted to appraise the prognostic performance of the nomogram.



Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was conducted with GSEA v4.0.3 software to identify different signaling pathways between two subgroups. Hallmark gene sets (h.all.v6.0.symbol.gmt) were downloaded from Molecular Signatures Database as the reference gene set (30). Nominal p-value < 0.05 and FDR q-value < 0.05 were set as the cut-off.




Results


Identification of the Differentially Expressed RBPs

The 1,542 human RBPs found so far were included in our study (7), a total of 330 DE RBPs were identified by Wilcox Test between 374 HCC tissues and 50 normal liver tissues, including 208 upregulated and 122 downregulated RBPs, according to the adj P-value < 0.05, |log2FC| ≥ 0.5 (Figure 1).




Figure 1 | Identification of differentially expressed RNA binding proteins (DE RBPs) in TCGA dataset and enrichment analysis. (A) Volcano plot of all DE RBPs between HCC and normal samples, 208 were up-regulated and 122 were down-regulated. Red: up-regulated RBPs; Black: unchanged RBPs; Green: down-regulated RBPs. (B) Heat map of the DE RBPs based on their expression data log2 transformed FPKM values. The red represents high expression, and the green represents low expression.





Enrichment Analysis of DE RBPs

We carried out the GO and KEGG pathway enrichment analyses of the DE RBPs in HCC by using the R package “clusterProfiler.” GO analysis consists of biological process (BP), cellular component (CC), and molecular function (MF). The DE RBPs were significantly gathered in ncRNA processing, RNA splicing, regulation of translation, RNA catabolic process, and RNA phosphodiester bond hydrolysis of the BP category (Figure 2A); cytoplasmic ribonucleoprotein granule, ribonucleoprotein granule, spliceosomal complex, ribosome, ribosomal subunit, and P-body of the CC analysis (Figure 2B); RNA catalytic activity, mRNA 3'-UTR binding, single-stranded RNA binding, ribonuclease activity, nuclease activity, and endoribonuclease activity of the MF analysis (Figure 2C). The KEGG analysis results indicated that the DE RBPs were significantly gathered in RNA transport and degradation, mRNA surveillance pathway, spliceosome, ribosome, ribosome biogenesis in eukaryotes, and RIG-I-like receptor signaling pathway (Figure 2D). Many emerging studies have suggested that RBPs participate in RNA metabolism and formation of mRNA spliceosomal complex, and mediate post‐transcriptional gene regulation. The ribosome is a kind of ribonucleoprotein granule and is considered as a molecular machine for protein synthesis. Some RBPs are closely related to ribonucleoprotein formation, they can assemble specific RNAs to form ribonucleoprotein granules in eukaryotic cells, like P-bodies and stress granules. P-bodies are conserved cytoplasmic ribonucleoprotein granules in eukaryotic organisms, which involved in translational repression and mRNA decay and degradation (31–34). These results suggested that RBPs play an essential role in RNA processing and protein synthesis, and their aberrant expression could promote carcinogenesis and progression of a variety of tumors.




Figure 2 | GO and KEGG enrichment analyses of DE RBPs. (A–C) Top six enriched GO terms respectively enriched in Biological processes (BP), Cellular components (CC), and Molecular functions (MF); (D) Five significantly enriched KEGG pathways for DE RBPs. The outer circle shows a scatter plot for each term or pathway of the logFC of the assigned genes, red circles represent up-regulation and blue represent down-regulation.





PPI Network Analysis

For further understanding the function of DE RBPs in HCC procession, we constructed a PPI network that consists of 163 nodes and 1,047 edges by using STRING database and Cytoscape software (Figure 3A). Moreover, pivotal modules were identified from the PPI network using MODE plug in Cytoscape. Module 1 included 23 upregulated DE RBPs and 3 downregulated DE RBPs (Figure 3B), and enrichment analysis indicated they were correlated with RNA splicing, RNA 3'-end processing, and mRNA surveillance. Module 2 included 14 upregulated DE RBPs and 7 downregulated DE RBPs (Figure 3C), significantly enriched in ncRNA processing, rRNA processing, and ribosome biogenesis. Module 3 included 7 upregulated DE RBPs and 7 downregulated DE RBPs (Figure 3D), related to mitochondrial gene expression, mitochondrial translational termination, and elongation.




Figure 3 | PPI network and modules analysis. (A) PPI network for DE RPBs; (B) Key module 1 in PPI network; (C) Key module 2 in PPI network; (D) Key module 1 in PPI network. Red: up-regulation, Blue: down-regulation.





Selection of Prognosis-Related RBPs

We download the RNA-seq data and corresponding clinical information of HCC patients from the TCGA and ICGC databases, the TCGA HCC cohort as training set, the ICGC HCC cohort as testing set, and the clinical detailed characteristics were collated in Table 1. A total of 343 HCC cases with follow-up time more than 30 days in training set were included in the next series of analyses. The univariate Cox regression analysis was utilized to screen prognosis-related RBPs on DE RBPs by survival R package, and 37 survival-related RBPs among the DE RBPs were identified (p<0.01) (Figure 4A). Thereafter, the LASSO regression analysis was conducted for further decreasing the number of survival-related RBPs using 10-fold cross validation via “glmnet” R package (Figures 4B, C). Finally, we obtained six key prognosis-related RBP genes: CNOT6, UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A by stepwise multivariate regression analysis (Figure 4D and Table 1).


Table 1 | The clinical Characteristics of HCC patients from TCGA and ICGC database.






Figure 4 | Selection of prognosis-related RBPs in the training cohort. (A) Univariate Cox regression analysis; (B, C) LASSO regression analysis; (D) Multivariate Cox regression analysis to screen out the key RBPs most relevant to prognosis.





Expression, Alteration and Survival Analyses of the Six Prognosis-Related RBP Genes

We further analyzed the expression of these RBPs via HPA database, and the immunohistochemistry results of five key RBPs in HCC and normal tissues were presented in Figure 5A, with PPARGC1A not included in the database. By using the cBioPortal online database, we found that 39 out of the 366 HCC patients (11%) have genetic alterations (mutations and copy-number alterations) in the six RBP genes, and ZC3H13 with the highest alteration frequency (Figure 5B). The six key RBP genes were analyzed by using Kaplan–Meier curve analysis to further verify their prognostic value on the TCGA cohort, and the results demonstrated that HCC patients with UPF3B and CNOT6 low-expressions had longer OS, while patients with IFIT5, MRPL54, PPARGC1A, and ZC3H13 high-expression had better survival rate (Figure 5C).




Figure 5 | Comprehensive analysis of the six selected RBPs (CNOT6, UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A). (A) Immunohistochemistry of five RBPs using HPA database, except PPARGC1A. (B) Alteration analysis of these RBP genes. (C) Kaplan-Meier survival curves for the six genes.





Construction Validation of the RBP-Related Risk Score Signature

Based on the previously obtained six key prognosis-related RBP genes, we established a risk core model, and the risk score of each HCC patients was calculated using the formula: Risk score = (0.34900 × CNOT6 Exp) + (0.50277 × UPF3B Exp) + (-0.43143 × MRPL54 Exp) + ( -0.21809 × ZC3H13 Exp) + ( -0.46413 × IFIT5 Exp) + ( -0.19919 × PPARGC1A Exp). Among these six prognosis-related RBPs, CNOT6 and UPF3B were high-risk factors (HR>1); MRPL54, ZC3H13, IFIT5, and PPARGC1A were protective factors (HR<1) (Table 2).


Table 2 | The six prognosis-associated key RBPs identified by multivariate Cox regression analysis.



All of the 343 HCC patients were assigned into high-risk (n = 171) and low-risk groups (n = 172) using the median risk score in the testing cohort. Low-risk patients had a significantly longer OS compared with the patients in high-risk group (p=7.588e−07) (Figure 6A). The AUC value for this six-RBP gene risk score signature was 0.762 in the 1-year ROC curve, 0.737 in the 3-year ROC curve, and 0.692 in the 5-year ROC curve (Figure 6B). The risk scores and survival status distribution of HCC patients between two subgroups were presented in Figures 6C, D. We found that as the risk score increased, the number of HCC deaths also increased in the training set. The heatmap of six RBP genes expression level was shown in Figure 6E.




Figure 6 | Construction of the six-RBP gene prognostic signature in the TCGA cohort. (A) Kaplan-Meier survival curve of HCC patients in the high- and low-risk groups. (B) ROC curves for predicting 1-, 3-, 5-year overall survival. (C–E) Distribution of risk score, survival time, and heat map of six genes expression.



Next, to further verify the prognostic performance of this model, we collected 229 HCC cases with follow-up time >30d as the testing set from the ICGC database, and we used the same formula to calculate their risk score. Same as TCGA cohort, according to the cut-off value of TCGA cohort, the results showed that patients with high-risk scores (n=141) had a worse OS than those in low-risk group (n=88) (p=2.55e−2), the AUC value of 1-, 3-, 5-year was 0.822, 0.738 and 0.631, respectively (Figure 7). These results indicated that our prognostic signature had considerable robustness in predicting OS for HCC patients.




Figure 7 | Validation of the six-RBP gene prognostic signature in the ICGC cohort. (A) Kaplan-Meier survival curve of HCC patients in the high- and low-risk groups. (B) ROC curves for predicting 1-, 3-, 5-year overall survival. (C, E) Distribution of risk score, survival time, and heat map of six gene expression.





Association Between Clinical Characteristics and the Six-RBP Gene Signature 

Univariate and multivariate Cox regression analyses were performed for clinical features: age, gender, grade, stage, and risk score in training and testing set respectively. The results demonstrated the stage (P<0.001) and risk score (P<0.001) were independent prognostic indicators in the TCGA cohort (Figures 8A, B and Table 3), whereas in the ICGC cohort, the gender (P=0.014352), stage (P<0.001), and risk score (P<0.001) were independent prognostic indicators (Figures 8C, D and Table 3).




Figure 8 | Identification of independent prognostic indicators. (A) Forest plots for Univariate Cox regression analysis; (B) Multivariate Cox regression analysis in TCGA cohort; (C) Forest plots for Univariate Cox regression analysis; (D) Multivariate Cox regression analysis in ICGC cohort.




Table 3 | Univariate and multivariate analyses of different clinical characteristics in TCGA and ICGC cohorts.



As shown in Figure 9A, we found that most dead patients had higher risk scores, which suggested that high-risk patients usually had worse clinical outcomes. Moreover, HCC patients with advanced tumor clinicopathological parameters (stage II and stage III, G3 and G4, pT3 and pT4) were more likely to have higher risk scores than patients with early-stage HCC. We conducted further survival analyses that were stratified by clinical characteristics, and patients in the low-risk group had greater OS than high-risk in all clinical characteristics for stratification survival analyses, including age, gender, grade, and stage (Figure 9B).




Figure 9 | Correlation of risk score and clinical characteristics. (A) Risk score distribution between different clinical characteristics; (B) Kaplan-Meier survival analysis of the signature stratified by clinical characteristics.





A Nomogram Establishment on the Six Key Prognosis-Related RBP Genes

The selected six key prognosis-related RBP genes were used to establish a prognostic nomogram through the multivariate Cox regression analysis. We can plot a perpendicular line between the total points axis and each prognostic axis, and estimated the survival probability of HCC patients at 1-, 3-, and 5-year (Figure 10A). We also drew the calibration curves, which indicated that nomogram had good prediction performance in HCC patients (Figure 10B).




Figure 10 | A nomogram in TCGA HCC dataset. (A) The nomogram was built based on this six-RBP gene signature in the training cohort. (B–D) The calibration plots showed good predictive performance for OS at 1-, 3-, 5-year.





GSEA Analysis

To further explore biological functions and pathways correlated with the risk score signature, GSEA was carried out between high- and low-risk groups in the TCGA HCC cohort. Some cancer-related gene sets were significantly gathered in HCC patients with high risk score, including “DNA repair,” “MYC targets V1,” “mTORC1 signaling,” “PI3K-AKT-mTOR signaling,” “glycolysis,” “G2M checkpoint,” “E2F targets,” “Wnt/beta-catenin Signaling,” “P53 pathway,” shown in Figure 11.




Figure 11 | GSEA analysis between high- and low-risk groups. (A–I) Some cancer-related pathways were gathered in high-risk group: “DNA REPAIR,” “MTORC1_SIGNALING,” “MYC_TARGETS_V1,” “PI3K_AKT_MTOR SIGNALING,” “GLYCOLYSIS,” “G2M_CHECKPOINT,” “E2F_TARGETS,” “WNT_BETA_CATENIN_SIGNALING,” “P53_PATHWAY.” NES, Normalized enrichment score.






Discussion

HCC has become a severe health concern in China; its incidence and mortality rate are still gradually rising due to hepatitis virus infection (1–3). Some research has shown that RBPs were closely related to the tumorigenesis and development of multiple cancers, but what role RBPs play in HCC were still unclear (11–14). In this study, we integrated the RNA-seq data of HCC from TCGA database, then identified 330 DE RBPs. The PPI network and functional enrichment analysis were conducted to explore the biological function and signaling pathways of DE RBPs in HCC. Next, we filtered out six key RBP genes (CNOT6, UPF3B, MRPL54, ZC3H13, IFIT5, and PPARGC1A) that were most relevant to prognosis by using the univariate, LASSO, and multivariate Cox regression analyses. Based on the six prognosis-related RBP genes, we established a promising six-RBP gene signature and nomogram to predict OS of HCC patients and validated its robustness in the ICGC cohort. The HCC patients were assigned into two subgroups, high- and low-risk groups, and patients in the high-risk group had poorer outcomes. Next, the GSEA analysis was utilized to investigate the differences in some critical signaling pathways between two subgroups in the TCGA HCC cohort.

Among the six key RBP genes, CNOT6 and UPF3B were highly expressed in the HCC tissues relative to the normal tissues and were considered as unfavorable factors that may lead to worse overall survival. Four genes (MRPL54, ZC3H13, IFIT5, and PPARGC1A) were downregulated and may function as tumor suppressor genes in HCC, and showed a positive correlation with prognosis. CNOT6 encodes Ccr4a protein that was a deadenylase subunit of the CCR4-Not complex (5, 35), and the CNOT6 rs2453176 C>T polymorphism was related to an increased risk of lung cancer (36). Previous research found that CNOT6 was overexpressed in non-metastatic lung squamous cell carcinoma, and it may be associated with low invasiveness (37). Moreover, the CNOT6 expression level was significantly lower in acute leukemia patients than healthy controls (38). UPF3B encodes a protein that participated in nonsense-mediated mRNA decay, and the mutation of UPF3B was associated with mental retardation (39). However, the role of UPF3b in cancer has not yet been reported and needs further study. López et al. used the machine-learning classification model to recognize that MRPL54 may be strongly connected to breast cancer (40). In our study, we found for the first time that UPF3b and MRPL54 were independent prognostic indicators in HCC. Liu et al. suggested ZC3H13 was downregulated in HCC, and patients with lower ZC3H13 expression had poorer overall survival, consisten with our findings (41). ZC3H13 also has been demonstrated to have prognostic value in other cancer types, such as lung adenocarcinoma, clear cell renal carcinoma, and anal squamous cell carcinoma (42–44). ZC3H13 expression was higher in lung adenocarcinoma, and its expression pattern was the same as that in HCC. However, ZC3H13 had a lower expression level in clear cell renal carcinoma. Trilla et al. suggested that the genetic variant of ZC3H13 was associated with poor disease-free survival. IFIT5 belongs to the interferon-induced tetratricopeptide repeat (IFIT) protein family (44). Some previous studies have indicated that IFIT5 was high-expressed and negatively correlated with the prognosis in renal cell carcinoma, bladder cancer, and prostate cancer patients. IFIT5 may function as an oncogene, promote cancer invasion, metastasis, and progression by inducing epithelial–mesenchymal transition (EMT) via modulating turnover of tumor suppressive microRNAs, including miR-363, miR-99a, and miR-128 (45–48). PPARGC1A, also known as PGC-1α, functions as a master regulator of mitochondrial biogenesis and oxidative phosphorylation and plays a pivotal role in cancer cell metabolism and metastasis (49, 50). Some published studies have demonstrated that PPARGC1A was upregulated in lung cancer and invasive breast cancer, and facilitated cancer metastasis and invasion. Moreover, PPARGC1A high expression was correlated to poor prognosis in patients with lung cancer and breast cancer (49, 51). However, the opposite results have been observed in some other studies, and PPARGC1A has been suggested as a tumor suppressor that suppresses prostate cancer and melanoma cell proliferation, migration, and metastasis (52, 53). In addition, Zhang et al. observed that PPARGC1A rs2970847 C>T polymorphisms associated with HCC risk (54). Given the importance of the six RBP genes in kinds of cancer types, these genes might be potential prognostic biomarkers for patients with HCC, but detailed molecular mechanism during hepatocarcinogenesis needs further in-depth exploration.

GSEA analysis showed that some cancer-related pathways were enriched in high-risk HCC patients, such as Wnt/beta-catenin signaling, P53 pathway, PI3K-AKT-mTOR signaling, and MYC signaling. These molecular pathways have been confirmed to be implicated in HCC carcinogenesis. Autophagy can activate Wnt/β-catenin signaling and promote HCC cells metastasis and glycolysis (55). Alpha-fetoprotein (AFP) inhibited autophagy in HCC cells by activating of PI3K/Akt/mTOR signaling, thereby promoting proliferation, migration, and invasion (56). The c-Myc was a transcription factor that plays an important role in hepatocarcinogenesis, NELFE promoted HCC progression via enhancing MYC signaling (20). P53 as a tumor suppressor protein, inhibiting the p53 pathway, may promote HCC cells proliferation and inhibit apoptosis (57). 

Thanks to the great progress in microarray and next-generation sequencing technologies, a number of multigene prognostic models have been developed to predict survival for HCC patients, such as Wang et al. developed an immune-related prognostic model in HCC (58), and Li et al. developed a CIMP-associated prognostic model for HCC (59). However, RBPs-associated prognostic model for HCC has not been reported yet; this is the first study about a prognostic model in HCC patients constructed using multiple RBP genes, to our knowledge. According to our risk score signature, survival analysis displayed significant difference of OS between high- and low-risk subgroups, and usually low-risk patients had better survival than patients with high risk score. The ROC curves suggested that our prognostic model had a good accuracy, and the AUC values of 1-, 3-year were greater than 0.75 both in training and testing set. In addition, whether in the training set or testing set, TNM stage and risk score were independent prognostic indicators in HCC. Although our model has good prediction performance, there are still some limitations that need to be discussed. First, the six-RBP gene signature was built based on TCGA HCC dataset and was only validated in the ICGC HCC dataset, which has not been validated in our own clinical HCC cases cohort. Second, most HCC patients in TCGA database were Caucasian, and it is not clear whether it has the same predictive effect in non-Caucasian races. Finally, our study was retrospective and needs further validation by a larger prospective study.

In conclusion, we identified differently expressed RBP genes and constructed a promising six-RBP gene prognostic signature to predict clinical outcomes for HCC patients. This risk score signature was proven to have good predictive ability and function as an independent prognostic indicator for HCC patients, contributing to guided clinical decision making and personalized treatment. Moreover, this study would further help us understand the prognostic value and biological function of RBPs in HCC.
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Background

Prostate cancer (PCa) is one of the most common cancers and the fifth leading cause of cancer-related death in men. Immune responses in the tumor microenvironment are hypothesized to be related to the prognosis of PCa patients; however, no studies are available to confirm the same. In this study, we aimed to explore the potential link between these two factors and identify new biomarkers to estimate the survival rate of PCa patients.



Methods

A total of 490 cases were obtained from The Cancer Genome Atlas (TCGA) database. The gene expression data were analyzed by the ESTIMATE algorithm to evaluate the immune and stromal scores. The survival rate was calculated according to the case-specific clinical data. Enrichment analysis was performed to discover the main biological processes and signaling pathways of immune responses. We further identified and analyzed hub genes in the protein-protein interaction (PPI) network and evaluated their prognostic values.



Results

Immune score significantly correlated with immune cell infiltration and overall survival of PCa patients. The genes CXCR4 and GPR183, identified as hub genes in the PPI network, correlated with immune cell infiltration and prognosis of PCa patients.



Conclusion

CXCR4 and GPR183 participate in immune cell infiltration and function in PCa patients. The immune score, as well as the expression of CXCR4 and GPR183 in prostate cancer tissues, could be potential indexes for the prognosis of prostate cancer.





Keywords:  prostate tumor, prognostic genes, immune infiltrate, tumor microenvironment, CXCR4, GPR183



Introduction

Prostate cancer (PCa) is one of the most common cancers of men and the fifth leading cause of cancer-related morbidity in men worldwide (1). PCa patients during the early stages are prescribed with radical prostatectomy and radiotherapy, which have a high rate of complete cure (2). For metastatic PCa patients, surgery or androgen deprivation is advised. However, androgen deprivation therapy or androgen receptor-targeted therapy can also induce tumor resistance (3). Therefore, new and promising therapeutic strategies for PCa are required. Anti-tumor immunotherapy with CTLA-4-targeted monoclonal antibodies is now under clinical investigation (4, 5). However, the precise relationship between the prognosis of PCa and the immune responses is still unknown.

Currently, prostate-specific antigen (PSA) values, histopathological scores such as Gleason score, are used as clinical parameters to diagnose PCa and assess the risk stratification (6). However, PSA is not a tumor-specific marker and the specificity of PSA is only 12.8% (7). This led to the introduction of prostate health index (PHI) to elevate the diagnostic capacity of PSA (8). The Oncotype DX Genomic Prostate Score (GPS) assay was used in clinical trials to make a risk assessment and predict the time of recurrence (9, 10). But this multi-gene assay may be unable to select the active surveillance candidates (11). Identification of specific markers with significant potential for the prognosis of PCa in terms of immune response is necessary.

The tumor microenvironment (TME) of the PCa patients is associated with inflammation (12). An increasing number of studies have reported that infiltrated immune cells play a pro-tumorigenic or anti-tumorigenic role in the TME of PCa patients (13–17). The Cancer Genome Atlas (TCGA) database has provided a series of global gene expression profiles and clinical data of the patients worldwide (18). Yoshihara et al. developed the ESTIMATE algorithm to assess the expression levels of specific molecular entities in stromal and immune cells of the TME (19), so that the non-tumor cell infiltrations in the TME can be predicted. Shah et al. used the ESTIMATE algorithm to evaluate the stromal score of prostate cancer; however, the investigators did not analyze the TCGA database or compare the survival rate in different groups based on estimated score (20).

In this study, we explored the prostate cancer data from TCGA databank, calculated the immune and stromal scores of every sample by ESTIMATE algorithm, and estimated their potential values of prognosis for PCa patients. To identify some specific genes to forecast the overall survival rate of the PCa patients, we performed enrichment analysis, and interaction analysis and identified two hub genes. These hub genes were found to be highly correlated with the prognosis of PCa and associated with tumor purity and immune infiltration. We hypothesized that these two genes can be the potential biomarkers for prognosis of PCa and guide the selection of immunotherapy strategy for the PCa patients. Further, these genes may also play a significant role in the underlying molecular mechanisms of PCa.



Materials and Methods


Raw Data From TCGA Database

We searched the TCGA database (https://portal.gdc.cancer.gov) and downloaded prostate cancer datasets after restricting the disease types to adenomas and adenocarcinomas. A total of 490 cases were included in this dataset that contained the gene expression files and clinical data of every patient. These gene expression files were processed by the ESTIMATE algorithm, (19) and the immune, stromal, and ESTIMATE scores of each sample were calculated. Since we only use the data from public online database in this study, so the ethic approval was not required.



Survival Rate Analysis

Included participants were divided into two groups according to their immune, stromal, and ESTIMATE scores, and the expression levels of the candidate genes (separated by median values). We used Kaplan-Meier correlation analysis (95% CI) to evaluate the association between the overall survival rate and the immune, stromal, and ESTIMATE scores, and the identified genes expression levels. A log-rank test was used to check the significance of the relationships. The analyses were carried out using R software (version 3.6.1), and P<0.05 was considered statistically significant.



Correlation Analysis

Included participants were divided into sub-groups to evaluate the relationships between different tumor stages including T1-T4, N0-N1, and M0-M1 stages and the estimated immune, stromal, and ESTIMATE scores. Wilcoxon signed-rank test was used to evaluate the relationship between the two groups; the Kruskal-Wallis test was used to evaluate the relationships among three or more groups. The analyses were conducted using R (version 3.6.1), and P<0.05 was considered statistically significant.



Identification and Cluster Analysis of Differentially Expressed Genes

Gene expression files were processed by limma package (21) of R and the differentially expressed genes (DEGs) in immune-score-high and stromal-score-high groups were identified. The cut-off values were set as |fold change|>2 and adjust. P<0.05. Cluster analysis and heatmaps were generated by pheatmap package (22) of R, and the upregulated genes in both the high-rank groups were calculated by the VennDiagram package (23). Further, we analysed the immune cell specific markers such as CD14 (monocytes) and CD3 (T cells) between the two groups.



Enrichment Analysis

Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analysis of the upregulated genes were performed by R Packages clusterProfiler (24), enrichplot, and ggplot2 (25), and the significantly activated biological processes, molecular functions, cellular components, and signaling pathways were explored.



Protein-Protein Interaction (PPI) Network and Hub Genes Calculation

STRING tool (https://string-db.org/) was used to construct the Protein-Protein Interaction (PPI) network of the identified genes (CI=0.90). The network was reconstructed using CytoHubba, a plug-in of Cytoscape software (version 3.5). Using this software, we calculated the connection degree of every node in the network to identify the top 30 hub genes.



Specific Gene Expression Comparison and Immune Infiltration Analysis

TIMER tool (https://cistrome.shinyapps.io/timer/) was used to compare the specific gene expression levels between the tumor tissues and normal control tissues of different carcinomas. The correlation between specific gene expression and infiltration of different immune cells in PCa tissues was assessed by purity-corrected partial Spearman’s correlation analysis. Also, the relationship between the two particular genes was calculated by Spearman’s correlation analysis. P<0.05 was considered statistically significant.



Gene Set Enrichment Analysis (GSEA)

The gene expression files of the 490 cases downloaded from TCGA was separated into CXCR4 (or GPR183) high-express group and low-express group. Gene set enrichment analysis for KEGG pathway was conducted by using GSEA tool (https://www.gsea-msigdb.org/gsea/index.jsp). P<0.05 was considered as statistically significant.



GEO Datasets Analysis

We searched GEO database and downloaded the human PCa-related datasets. The transcriptome of CXCR4 and GPR183 were compared between tumor and paired normal tissues (GSE69223) (26), recurrent patients, and non-recurrent patients after surgical operation (GSE25163) (27), as well as castration-resistent patients and good prognosis patients (GSE37199) (28). P<0.05 was considered as statistically significant.




Results


Correlation Between Immune Score and Prognosis of Prostate Cancer Patients

Transcriptional expression files and clinical data of 490 prostate cancer (adenomas and adenocarcinomas) patients were downloaded from the TCGA databank. Out of these patients, one was American Indian (0.20%), 12 were Asian (2.45%), 58 were African American (11.84%), 407 patients were white (83.1%), and the race of rest of the 12 patients (2.41%) was unknown. All the patients whose data is included in this study were diagnosed with adenomas or adenocarcinomas.

Using the ESTIMATE algorithm, we evaluated the stromal, immune, and ESTIMATE scores of every sample. The stromal score of PCa patients varied from -1,925.26 to 1771.63, and the immune score varied from -1,339.23 to 1,646.97. The total ESTIMATE score, which is the combination of stromal score and immune score, ranged from -3,264.49 to 3,418.60.

To estimate the prospective relationship between the overall survival of PCa patients and their stromal, immune, and ESTIMATE scores, we separated the selected cases into a high-rank group and low-rank group based on these scores and compared the survival rate in the two groups. Intriguingly, the Kaplan-Meier survival curves revealed that PCa patients with higher immune scores live longer than those with lower scores (Figure 1A). Moreover, no significant differences were observed in the prognosis between stromal-scores-high and stromal-scores-low groups and between ESTIMATE-scores-high and ESTIMATE-scores-low groups (Figures 1B–C). So, we further compared the immune scores among the PCa patients under different stages, but no significant differences were observed in the immune scores among the different T stages, N stages, and M stages (Figures 1D–F). Further, we found that the immune score is significantly correlated with the overall survival of PCa patients, and it could be used as a potential index to forecast the prognosis of PCa.




Figure 1 | Prostate cancer (PCa) patients with higher immune score have better prognosis. (A) PCa patients were divided into two groups according to the immune scores, and the survival rate of these two groups was shown as Kaplan-Meier survival curve, which indicated the PCa patients with higher immune score have better prognosis (P = 0.005). (B) PCa patients were divided into two groups according to the stromal scores, and their survival rates did not show any significant difference (P = 0.772). (C) PCa patients were divided into two groups according to the ESTIMATE scores, and there was no significant difference on survival rates between these two groups (P = 0.397). (D) Immune scores of PCs patients in each tumor stage were shown by box-plot, but no significant association between the immune score and tumor stage was found (P = 0.855). (E) Immune scores of PCs patients with or without lymph node metastasis were shown by box-plot, but there was no significant difference between the two groups (P = 0.128). (F) Immune scores of PCs patients with or without metastasis were shown by box-plot, and no significant difference was shown between the two groups (P = 0.128).





Immune-Related Genes Were Highly Expressed in High-Rank Groups of Immune Scores and Stromal Scores

DEGs analysis was performed using R software to compare the DEGs between the high rank and the low-rank groups of immune score and stromal score. A total of 1467 genes were found upregulated and 9 genes were found downregulated in the immune-scores-high group (Supplement Figure 1); 1,712 genes were found upregulated and 14 genes were found down-regulated in the stromal-scores-high group (Supplement Figure 2). The expressions of immune cell CD markers were also estimated. Expression levels of cell-specific markers such as CD14 (monocytes), CD3 (T cells), CD4, CD8, CD19 (B cells), and CD163 (macrophages); co-stimulatory factors such as CD28 and CD40; cell activation markers such as CD48 and CD79, were found to be higher in the immune-scores-high group as compared with an immune-scores-low group (Figure 2A). Moreover, 883 genes were found to be commonly upregulated in the immune-scores-high group and the stromal-scores-high group (Figure 2B).




Figure 2 | PCa patients with higher immune score have more immune cell infiltration and more activated immune responses. (A) Heatmap of the CD markers gene expression levels between the immune score high group and low group (P < 0.05, Fold Change>2). (B) The number of commonly upregulated genes in immune score high group and stromal score high group shown by Venn diagram. (C) Top 10 GO terms, including BP, CC, and MF, respectively, enriched according to the commonly upregulated genes (P < 0.05). (D) Top 20 KEGG terms enriched according to the commonly upregulated genes (P < 0.05).



Next, we performed GO and KEGG enrichment analyses on these 883 commonly upregulated genes to identify their main functions. The top 10 of GO items including BP, CC, and MF items are listed in Figure 2C. The most significantly enriched GO items were adaptive immune response (GO: BP), plasma membrane (GO: CC) and antigen binding (GO: MF). Besides, these commonly upregulated genes were highly enriched in cytokine and cytokine receptor interaction, followed by items such as Th17 cell differentiation, Th1, and Th2 cell differentiation, and so forth (Figure 2D).

In conclusion, the PCa tumors with higher immune scores have more immune cell infiltration with monocytes, T-cells, B-cells, and macrophages. Also, the commonly upregulated genes pointed toward activated immune responses in the TME.



CXCR4, a Hub Gene in the PPI Network, Correlated With PCa Prognosis

PPI network was created through the STRING tool to analyze the connections of identified genes. GNG2, C3AR1, and C3 were located at the center of the network. Most chemokine and chemokine receptors such as CXCL3, CCR4, CXCR4, and CXCR3 were found to be tightly connected and located mainly at the lower-left region (Figure 3A); cytokine and cytokine receptors such as IL6, IL10, IL2RA, and IL2RB, co-stimulatory factors such as CD28, and CTLA4, and other important factors including IRF4, JAK3, and BTK were located at the upper-right region of the main network. To identify the critical genes in this network, we calculated the connection degree of each node in the network and identified the top 30 hub genes (Figure 3B). GNG2, with 55 connections with other nodes, was the most highly connected one, followed by C3, C3AR1, BDKRB2, ADCY7, FPR1, CCR5, PTAFR, FPR3, and CXCR4. We built a new network based on these 30 hub genes using CytoHubba plug-in of Cytoscape (version 3.5) (Figure 3C).




Figure 3 | CXCR4 and GPR183 were hub genes from the Interaction Network of upregulated genes, and associated with PCa prognosis. (A) Protein-Protein Interaction Network (CI=0.90) based on the upregulated genes, and the size and color of node indicate the connection degree. (B) Top 30 hub genes calculated by the connection degree of each node. (C) Interaction Network of top 30 hub genes. (D) PCa patients were divided into two groups according to the CXCR4 expression level, and the survival rate of these two groups indicated the PCa patients with higher CXCR4 expression level have better prognosis (P = 0.035). (E) Similarly, the PCa patients with higher GPR183 expression level have better prognosis, although it was not significant (P = 0.062).



To identify the potential prognostic markers of PCa, we analyzed the relationship between the expression levels of these 30 hub genes and the prognosis of PCa (Figures 3D, E, and Supplement Figure 3). CXCR4 was found to be correlated with PCa prognosis (Figure 3D), and PCa patients with elevated expression of CXCR4 in tumor tissues have a higher survival rate than those with relatively low expression of CXCR4. Besides, GPR183 was another critical gene, which tended to be upregulated in PCa patients with a better prognosis (Figure 3E), but the difference in the GPR183 expression levels between PCa and normal control patients was not statistically significant (P=0.062). However, there is no significant differences of CXCR4 and GPR183 expression levels among different tumor stage patients (Supplement Figure 4).

Therefore, CXCR4 and GPR183 can be potential candidate biomarkers to forecast the prognosis of PCa patients.



CXCR4 and GPR183 Are Down-Regulated in PCa Tissue and Are Associated With Immune Cell Infiltration in PCa Tumors

We used the TIMER tool to elucidate the role of CXCR4 and GPR183 in PCa tumors. We compared the expression levels of the different genes from the tumor and the normal tissues (control) using the information from the TCGA databank. The expression level of CXCR4 was found to be similar between PCa tumor and normal tissues (Figure 4A); however, GPR183 was down-regulated in the PCa tumor tissues (Figure 4B) as compared with the normal tissues. To confirm the different expression pattern, we searched the GEO database and reanalyzed the GSE69223 dataset (26), which compare the transcriptome of PCa tissue and paired normal tissues. Consequently, CXCR4 and GPR183 are both found to be downregulated in PCa tissues (Supplement Figure 5).




Figure 4 | CXCR4 and GPR183 correlated with immune cell infiltration in PCa tissue. (A) CXCR4 expression levels in different kinds of tumors and their control tissues according to the TCGA data, and there was no significant difference between prostate cancer tissue and its control normal tissue. (B) GPR183 expression levels in different kinds of tumors and their control tissues according to the TCGA data, and GPR183 was significantly decreased in prostate cancer tissue (P < 0.05). (C) Correlation analysis on CXCR4 and the tumor purity (Correlation Index=-0.412, P < 0.001) and immune cell infiltration of prostate cancer. The higher expression level of CXCR4 in tumor tissue was accompanied by increased infiltrated B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (P < 0.001). (D) Correlation analysis on GPR183 and the tumor purity (Correlation Index=-0.427, P < 0.001) and immune cell infiltration of prostate cancer. The higher expression level of CXCR4 in tumor tissue was accompanied by increased infiltrated B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (P < 0.001). (E) The expression level of CXCR4 and GPR183 in prostate cancer tissue was highly correlated (Correlation Index=0.842, P < 0.001).



According to the dataset of GES25136 (27), we analyzed the expression of CXCR4 and GPR183 in tumor of recurrent PCa patients and non-recurrent PCa patients. No significant differences of CXCR4 and GPR183 expression pattern was found between these two groups (Supplement Figure 6).

Further, neither CXCR4 nor GPR183 show a significantly different expression level in the blood of castration-resistant PCa patients and good prognosis PCa patients, when we reanalyzed the data from GSE37199 (28) (Supplement Figure 7).

Next, partial Spearman’s correlation analysis was used to assess the relationship among the expression of gene CXCR4, gene GPR183, and the immune cell infiltration levels in PCa tumors. The CXCR4 expression level was significantly associated with purity (correlation=-0.412, P<0.001) and positively correlated with the infiltration of B cells, CD4+ T-cells, CD8+ T-cells, macrophages, neutrophils, and dendritic cells (Figure 4C). Besides, GPR183 expression level had a negative relationship with purity (correlation=-0.427, P<0.001); infiltration of B cells, CD4+ T-cells, CD8+ T-cells, macrophages, neutrophils, and dendritic cells increased with the increase in expression of GPR183 (Figure 4D). Upon comparing the expressions of both CXCR4 and GPR183 in PCa tumors, we observed a high correlation (Figure 4E).

In addition, we separated the transcriptome data of the 490 cases into CXCR4-high (bigger than the median of all cases) and –low (smaller than the median of all cases) groups and GPR183-high and –low groups, respectively, to do gene set enrichment analysis (GSEA). Intriguingly, GSEA for KEGG pathway indicated that the CXCR4-high group are mostly enriched in Cytokine-Cytokine Receptor Interaction (M9809), Nature Killer Cell Mediated Signaling (M5669), Toll-Like Receptor Signaling (M3261), T Cell Receptor Signaling (M9904), and so on (Supplement Figure 8). Similarly, GPR183-high group are mainly enriched in MAPK Signaling (M10972), Cytokine-Cytokine Receptor Interaction (M9809), Toll-Like Receptor Signaling (M3261), and Nature Killer Cell Mediated Signaling (M5669), etc. (Supplement Figure 9). Therefore, we considered that CXCR4 and GPR183 have a deep relationship with immune reaction and immune cell function in PCa tissue.

In conclusion, CXCR4 and GPR183 were down-regulated in PCa tumors, and both of these genes were associated with tumor purity and immune cell infiltration.




Discussion

Prostate cancer is the second most common tumor among males worldwide (29). The incidence of PCa in the Chinese population is much lower than that of European and American countries, but the cases are substantially rising since the beginning of the 21st century (30, 31). Since some immunotherapy-based therapies have started showing promise in PCa treatment (32, 33), the pro-tumorigenic or anti-tumorigenic role of infiltrated immune cells attracted more attention than ever before. However, there is a lack of valid prognostic biomarkers to evaluate the immune status of TME and predict the survival rate of PCa patients.

Using the TCGA databank, we analyzed the expression profiles of prostate cancer patients, explored the TME, and selected hub genes with significant prognostic value. Further, we assessed the immune, stromal, and ESTIMATE scores of the PCa patients using the ESTIMATE algorithm and divided them into two groups (high-rank group and low-rank group) according to the median values of the scores. We compared the survival rates of the high and low-rank groups and observed that the PCa patients with higher immune score live longer than those with a lower score, contrary to the results reported for the other tumors such as glioblastoma and breast cancer (34–36). These variations might be attributed to the type of immune cells in TME since the majority of the T-cells identified in glioblastoma and breast cancer tissues are regulatory T-cells or exhausted effect T-cells. Immune escape is one of the most critical reasons for tumorigenesis, and immune cell infiltration can support the chemotherapies (37). For instance, tumors with an increased number of CD8+ T-cells along with some Foxp3+ Treg cells infiltrated in the TME are more likely to respond to chemotherapies (38). Further, we compared the immune scores according to the tumor stages, but no significant differences were observed among the different T stages, N stages, and M stages. Since the development and transformation of tumor cells depend more on their characteristics rather than the immune cell infiltration and reactions, immune scores make less contribution in evaluating the tumor stages.

After comparing the expression profiles of the prostate tumor tissues, we found a total of 883 genes to be commonly upregulated in the stromal/immune score high-rank groups. A large number of immune-related CD markers were found to be highly expressed in the immune score high group. Therefore, we concluded that the monocytes, T-cells, B-cells, and macrophages may infiltrate the TME, consistent with a published study that used mass cytometry to identify the immune cells in the human prostate (39). As per the GO- and KEGG enrichment analysis, many of the upregulated genes were found to be involved in the immune responses such as adaptive immune response, immune-regulating cell surface receptor signaling pathway, and cytokine-cytokine receptor interaction. After selecting the 30 hub genes from the commonly upregulated genes by analyzing the PPI network, we performed survival rate analyses according to the expression levels of these 30 hub genes. CXCR4 was found to be correlated with PCa prognosis, and GPR183 was found to be upregulated in PCa patients with a better prognosis. Both TCGA dataset and GEO dataset confirmed the lower expression levels of CXCR4 and GPR183 in PCa tissue when compared with normal tissue. However, the mortality of PCa patients is very low, so that the number of samples in survival curve is a limitation in this research. We believe a follow-up study based on a large cohort of PCa patients is necessary to confirm the prognosic value of CXCR4 and GPR183.

CXCR4 is a chemokine receptor mainly expressed in most hematopoietic cells and is specific for stromal cell-derived factor-1 (SDF-1) (also known as CXCL12) (40, 41). SDF-1 activates cells through the receptors CXCR4 and CXCR7, and these two receptors are expressed in different tumors either individually or in combination (42). CXCR7 rather than CXCR4 is expressed on most of the human glioblastoma cells and small-cell lung cancer cells (43). CXCR4 is a critical receptor to modulate tumor-stromal interactions including cell invasion and migration, and therapeutic resistance (44), and blocking of CXCR4 by AMD3100 increases the anti-tumor effect of docetaxel in PCa patients with tumor metastasis (45). But, we should not ignore that the high expression of CXCR4 was only observed in bone metastasis lesions and that the difference between the total expression levels of CXCR4 in PCa tissues in situ and the normal control tissues was not statistically significant (Figure 4A). The CXCR4/CXCL12 axis plays a key role in immune surveillance of tissues (46), since CXCR4 is expressed in macrophages, monocytes, T lymphocytes, B lymphocytes, and neutrophils these cells can be recruited by the expression of CXCL12 by stromal cells of TME. Thus, while separating the PCa patients by the expression levels of CXCR4, we found that the patients with a higher level of CXCR4, which may recruit more immune cells, have a better prognosis. The CXCR4 expression level was found to be significantly associated with tumor purity and positively correlated with the infiltration of B-cells, CD4+ T-cells, CD8+ T-cells, macrophages, neutrophils, and dendritic cells (Figure 4C). However, the exact immune cell atlas in the TME of PCa patients with different CXCR4 expression profiles need to be further identified and compared to confirm the potential phenotypical and functional differences in the infiltrating immune cells.

GPR183 (or EBI2), upregulated in primary B lymphocytes after Epstein-Barr virus (EBV) infection, is predicted to encode a G-protein coupled receptor that is closely related to the thrombin receptor (47). GPR183 plays an important role in promoting B-cell localization to the outer follicle and mediating B-cell migration, together with CXCR5, to regulate the germinal center reactions (48, 49). Besides, GPR183 can promote follicular helper T (Tfh) cells differentiation through the positioning of the activated T cells at the follicle-T-zone interface and mediating the dendritic cells to induce T/B cell responses (50–52). However, no studies have reported any links between GPR183 and prostate cancer. This might be because the expression of GPR183 is mostly specific to the immune cells especially to the B cells, and most of the earlier research about PCa did not focus on the immune cells in TME. In the present study, GPR183 was found to be downregulated in PCa tissues as compared with normal control tissues and upregulated in both the high-rank groups (immune score- and stromal score high). Besides, GPR183 expression levels negatively correlated with purity and positively correlated with the infiltrated B-cells, CD4+ T-cells, CD8+ T-cells, macrophages, neutrophils, and dendritic cells (Figure 4D). These findings may indicate that the B cells in TME of the prostate tumors are more active in migration. The group with lower scores, as well as lower expression of GPR183, showed a significantly decreased survival rate that may be attributed to the higher level of migration. However, further studies are needed to elucidate the exact underlying mechanisms.

In conclusion, using the ESTIMATE algorithm, we estimated the immune and stromal scores of the TCGA PCa cohort and concluded that the patients with a higher immune score have a better survival rate. CXCR4 and GPR183 are the two hub genes with significant prognostic value for PCa patients, which may attribute to their contribution to the immune cell infiltration and immune reaction.
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The occurrence of hepatocellular carcinoma (HCC) related to liver cirrhosis is mostly accompanied by extensive immune infiltration. To reveal the infiltration immune cells landscape, single-cell RNA sequencing data from the healthy donor (HD), patients with liver cirrhosis (LC) and HCC were collected for analysis. By drawing a cell map and calculating the proportion of each cell type, total B cells were identified with a significant higher proportion in HCC (24.26%) than in LC (5.41%) and HD (5.82%), in which plasma cells account for 97.1% in HCC. While in HCC, TCGA datasets were taken for further investigation, and it was found that patients with lower proportion of plasma cells showed better prognosis. The pseudotime cell trajectory analysis of B cell population found that humoral immunity continuously changes during HD, LC and HCC, and humoral immune-related genes are highly expressed in the HCC stage. This suggests humoral immunity may play a key role in the development of LC-associated HCC. At the same time, single cell data of hepatocytes identified differentially expressed genes in HD/LC and LC/HCC groups, and a prognostic model constructed with six of the differential genes (FTCD, MARCKSL1, CXCL3, RGS5, KNG1, and S100A16) could classify HCC patients to two distinct risk groups (median survival time 2.46 years vs. 6.73 years, p < 0.001). Our study demonstrated the power of single-cell data analysis in dissecting tissues into infiltration and main body cells, it revealed the pivotal roles of humoral immunity infiltration in the landscape of HCC associated with cirrhosis, and the key tumor prognostic genes in hepatocytes themselves. These brought novel insights into studying microenvironment and tumor cells parallelly in cancer research. The interaction of both, rather than factors from one side may have caused tumorigenesis and progression.
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Introduction

Liver cancer is the third leading cause of cancer-related mortality in the world (1), and hepatocellular carcinoma (HCC) accounts for approximately 90% of the incidence of all liver cancers (2, 3). The niche of liver tissue includes various cell lines such as hepatocytes, endothelial cells, fibroblasts, epithelial cells, and immune cells. In this unique ecosystem, tumor formation requires coordinated functions and crosstalk between specific cell types. Compared with other types of cancer, the HCC-compliant tumor microenvironment has a strong dependence on the number and state of immune cells (4), resulting in a lack of clinical success in the treatment of HCC. Recent advances in this area have demonstrated that many factors are related to the clinical response to checkpoint therapy (5). Unfortunately, these results are implicit and have not been further developed as clinical biomarkers (6). A detailed understanding of the various immune cells in the tumor microenvironment (TME) is essential for the development of effective immunotherapy for HCC and the identification of new biomarkers.

The immune microenvironment of HCC is a mixture of heterogeneous immune components (7, 8), immune cells migrate from the hematopoietic organ to the liver, establish an active immune niche that interacts with stromal cells, and affect differentiation, tumorigenesis and development. Therefore, it is important to explore the composition and state of immune cells during tumorigenesis. T cells and B cells are the most abundant and most characteristic cell groups in solid tumor TME (6). B cells are always important cellular components in the tumor microenvironment, and play a role through antibody production, antigen presentation and immune regulation. Some studies have shown that in human solid tumors such as breast cancer, oral cancer, non-small cell lung cancer (NSCLC), ovarian cancer and melanoma, the B cells that infiltrate the tumors are associated with a good prognosis (5). However, as a key factor in humoral immune response, the clinical relevance and prognostic significance of B cells and their subsets in HCC microenvironment are unclear.

HCC is highly heterogeneous, causing current curative effect restricted (9). The bulk omics analysis technique is to sequence the tissue blocks, and for the cell types with low richness, the complexity of cells and intracellular changes will be obscured (4). Single-cell isolates from individual tumor tissues contain carcinoma and non-carcinoma microenvironment cells (10). Each cell population has a unique pattern of gene expression, which cannot be resolved in the total mixed population (10). Single cell RNA-seq, which can resolve expression pattern of the unique cell population, makes it possible to study the relationship between unique subtypes and diseases.

Single cell sequencing technology (such as single cell RNA-seq, scRNA) has been applied in liver cancer or liver cirrhosis studies. Emerging data indicate that the mortality rate of HCC associated with cirrhosis is rising in some developed countries, whereas mortality from HCC with no cirrhosis complication is decreasing or is stable (11). Cohort studies indicate that HCC is the major cause of liver-related death in patients with concurrent cirrhosis (11). Cirrhosis from any cause predisposes to hepatocellular carcinoma (HCC) and hence can be considered a premalignant condition. Indeed, the majority of patients worldwide with HCC have underlying cirrhosis (12). On a global basis, some common risk factors lead to inflammatory fibrosis or cirrhosis, accompanied by extensive immune infiltration, which is considered to be a key factor in the development and progression of HCC (7).

In this study, the map of liver tissue cells and a small number of peripheral blood cells were drawn from three sources: healthy donors (HD), patients with liver cirrhosis (LC), and patients with hepatocellular carcinoma (HCC). Our results illustrated the role of B cells in the microenvironment of HCC, and simulated the development trajectory of B cells in three sources, providing a new insight into the impact of B cells on hepatocellular carcinoma. We also analyzed the impact of key genes of hepatocytes in this process that lead to the development of liver cirrhosis into liver cancer by prognostic analysis of patients. Our study may bring novel insights for the surveillance and treatment of cirrhosis-related HCC.



Materials and Methods


Data Collection and Preprocessing

To describe the landscape of the composition and functional states of hepatocellular carcinoma (HCC) during tumor progression, we collected single cell transcriptome datasets from liver tissues of healthy donors, patients with cirrhosis and HCC. The liver tissue cells of healthy donors and patients with cirrhosis come from GSE136103 (13), and the liver tissue cells of patients with HCC come from GSE125449 (14) (Downloaded from GEO database). By sampling and down-sampling to balance datasets, 3,913 hepatocellular carcinoma cells of tumor tissue, 10,000 cells of liver tissues from healthy donors, and 10,000 cells from patients with liver cirrhosis were included and incorporated. Alignment, tagging, gene, and transcript counting analysis of the two datasets were performed using the Cell Ranger single-cell software suite from 10X Genomics (GRCh38). Seurat (version 3.1.1) (15) was performed to pre-process the collected data, genes expressed in fewer than three cells in a sample were excluded, as well as cells that expressed fewer than 200 genes or cells with mitochondrial gene content >10% of the total unique molecular identifier (UMI) count.



Data Integration, Clustering, and Cell Type Identification

To integrate cells into a shared space from different datasets for unsupervised clustering, FindIntegrationAnchors function and IntegrateData function were used to identify anchors and run integration step and eliminate batch effect. Then unsupervised clustering and differential gene expression analyses were performed. Based on the shared nearest neighbor module optimization algorithm, the first 20 PCs (principal components) were applied for UMAP (Uniform Manifold Approximation and Projection) analysis according to the eigenvalues (data not shown). Further, cells were clustered by the FindClusters function with the resolution parameter of 0.2. Next, through the function FindAllMarkers, groups of over expressed genes were identified to find subclusters. All UMAP visualizations, violin plots, and feature plots in the paper were produced using Seurat functions in conjunction with the ggplot2 (version 3.2.1), and pheatmap (version 1.0.12) R packages. Finally, we used the R package SingleR (version 1.0.5) (16) and scHCL (version 0.1.1) (17) to annotate cell types, and the annotation results were kept as a reference.



Trajectory Analysis

In order to study the development trajectory of hepatocytes in the process of tumor development and progression, monocle (version 2.14.0, for pseudotime analysis) (18) was used to analyze the gene expression matrix with Seurat annotation. We screened the differentially expressed genes between HD and LC and between LC and HCC in B cells, arranged the cells in pseudo-time along the trajectory, drew heatmaps according to the genes of each branch of the trajectory, and divided them into five groups according to gene expression patterns.



GO and KEGG Pathway Functional Enrichment Analysis

Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by hypergeometric distribution using R package clusterProfiler (19) (version 3.14.3). The adjusted p-value were calculated using Benjamini and Hochberg method (20). P.adjust value < 0.05 was considered significant. Graphic visualization was implemented with function dotplot in clusterProfiler.



Copy Number Inference From RNA-Seq Data

In order to identify the malignant cells in the cells drawn from patients with hepatocellular carcinoma, we compared the cancer cell chromosomal gene expression pattern with the putative non-cancer cells. The R package used here is infercnv (21) (version 1.2.1). First the human genome annotation file from the gencode database (https://www.gencodegenes.org/human/) was downloaded and converted to a genome position file. Then, the expression profiles of normal liver tissues provided by healthy donors were used as a reference, and the HCC group and the cirrhotic patient group were used as the observation group, since the data were 10x single-cell data, usually the cutoff is set as 0.1, denoise = T. Here, the copy number variation analysis was performed on 15 clusters according to the clustering model of Seurat.



TCGA Data Analysis to Validate Results From Single Cell mRNA Sequencing

LIHC’s mRNA expression data and clinical data in TCGA were downloaded from UCSC Xena (http://xena.ucsc.edu/) database. We extracted the expression values of tumor associated genes from the TCGA mRNA expression matrix, combined with clinical data as input data. The univariate Cox regression analysis was used to screen tumor associated genes with OS values using the R package “survival” (version 3.1-8). The threshold of significance in all methods was set at value of p < 0.05. The multi-Cox regression analysis was used to establish prognostic models. In addition, Kaplan Meier (KM) survival curves were generated to graphically exhibit the prognostic outcomes between high and low risk groups that were divided through the median of the risk score. The proportion of 22 infiltrated immune cell types in patients was obtained by CIBERSORT (22). For correlation analysis, we used the proportion of the plasma cells and the proportion of total T cells. Spearman correlation between cell proportions were calculated with cor function in R. The relationship between the proportion of plasma cells with survival was also achieved using R package survival, and R package survminer was used to calculate the optimal threshold.




Results


Landscape of the Cell Composition and Characterization of Liver Tissue Cells in Healthy, Cirrhotic, and Cancerous Liver Tissues

To describe the composition and function of cells of liver tissues at different status, we collected single cell transcriptome datasets from liver tissues of healthy donors, patients with cirrhosis and HCC. Through the analysis of single cell transcriptome data on the progression of HCC, we studied the composition of different cell types and cell states. We conducted normalization and then applied principal-component analysis (PCA) based on the highly variable genes (HVGs) (k = 2000) across all cells to implement dimensionality reduction by projecting the original transcriptomic profiles to the eigenvector space. With the linearly uncorrelated principal components (PCs) (k = 20), we performed Uniform Manifold Approximation and Projection (UMAP) analysis, which is a technique well-suited for visualization of high-dimensional data in a two-dimensional space. Cells from different sources overlap to form different clusters. The existing cell types in the original data set were taken as a reference, and the marker genes of various cells were used to annotate the cell groups. Cells were divided into eight categories and cell types were annotated (Figure 1A), according to the expression level of marker genes (Figure 1D, Table S1). There are four types of immune cells, T cells (represented by marker genes: LTB, CD3D, CD3E), Macrophages (C1QA, C1QB, HLA-DRA), Monocytes (S100A8, S100A9, LYZ), and B cells (CD79A, IGHG1, IGHG3). Four types are non-immune cells, including endothelial cells (IFI27, PECAM1, PLVAP), Hepatocytes (ALB, KRT8, SPP1), fibroblasts (SOD3, ATCA2, BGN), and epithelial cells (STMN1, HMGB2, HMGN2).




Figure 1 | Landscape of liver tissue cells from healthy, cirrhotic and cancerous status. (A) The cells are divided into eight types, including T cells, Endothelial cells, Macrophages, Monocytes, B cells, Hepatocytes, Fibroblasts, and Epithelial cells. (B) Cell clustering through U-map dimensionality reduction, in which 14 clusters are divided, including three subtypes of T cells, two subtypes of Endothelial cells, two subtypes of Fibroblasts, two subtypes of B cells. (C) UMAP plot (in color) of 13,872 single cells from healthy donors (HD), liver cirrhosis (LC) and patients with hepatocellular carcinoma (HCC). (D) Heatmap of marker gene expression of eight cell types. (E) GO functional enrichment analysis of markers in eight cell types, p.adjust < 0.05. P.adjust were calculated using Benjamini and Hochberg method. (The color of the legend in (D, E) is consistent with that in (A).



Through the GO functional enrichment analysis of eight groups (all p.adjust < 0.05), it was found that the T cell activation was enriched in T cells population, the endothelial cell development was significantly enriched in endothelial cells population. Macrophages, as typical antigen presenting cells, was enriched in the antigen processing and presentation of exogenous peptide antigen via MHC class II. In monocytes, the enrichment of genes was related to neutrophil aggregation and activation. Genes associated with B cell receptor signaling were found in B cell population. The hepatocyte population enriched in the regeneration pathway contains hepatocytes derived from cirrhosis. However, hepatocytes derived from cirrhosis in an inflammatory environment are characterized by regeneration and proliferation. This environment puts large numbers of hepatocytes at risk for the development of transforming mutations, and inexorably progresses to HCC (23, 24). This suggests that we may be able to find key clues to the transformation of cirrhosis into hepatocellular carcinoma in the hepatocyte population located in a cirrhotic TME. In addition, genes associated with the collagen fibril organization were found in fibroblasts population. The oxygen transport was enriched in epithelial cells population (Figure 1E, Table S2). The results of enrichment analysis provided strong evidences to support the cell annotation.

Further, eight cell populations were divided into 14 subclusters according to the Seurat clustering result, including three T cell subgroups, two B cell subgroups and other subgroups (Figure 1B, Figure S1). Many cancer-related fibroblasts, tumor-related endothelial cells and liver cells, but also a large number of B cells in HCC cells (Figures 1A, C) can be seen.



The Role of Plasma Cells in the Tumor Microenvironment

The proportion of different cell types were analyzed then, we hypothesized that the proportion distribution change might be associated with the disease status alteration. We studied the proportion of each cell type in the three sources, liver tissues of healthy donors (HD), patients with liver cirrhosis (LC), and patients with hepatocellular carcinoma (HCC). Compared with the cells in healthy donor, except for monocytes, the proportion of immune cells such as T cells, B cells, and macrophages decreased 1.40%, 5.49%, 0.41% in liver cirrhosis, respectively. While compared with the liver cirrhosis, the proportion of B cells in HCC increased 18.85% (p.adjust < 0.001, Fisher exact test, Figure 2A), T cells and other immune cells decreased (p.adjust < 0.001).




Figure 2 | The role of plasma cells in the tumor microenvironment. (A) Bar plot showing the cell percent of different cell types in three sources, healthy donors (HD), patients with liver cirrhosis (LC), and patients with hepatocellular carcinoma (HCC). * p.adjust < 0.05, ** p.adjust < 0.01, and *** p.adjust < 0.001 (Fisher’s exact test). P.adjust values were calculated using Benjamini and Hochberg method. (B) The proportion of plasma cells and other B cells in the three sources. (C) Correlation of the plasma cells signature with T cells (TCGA LIHC data). Each dot represents a patient (Pearson’s correlation analysis). (D) Correlation between the proportion of plasma cell with survival rate, red is high proportion, blue is low proportion, p < 0.05 (Cutoff point = 0.008).



T cells and B cells have always played pivotal roles in tumor microenvironment. Here we observed the proportion of these two types of cells, and found the proportion of B cells from HCC (24.26%) liver tissue was significantly higher than that from healthy (5.82%) and cirrhotic (5.41%) liver tissue (p.adjust < 0.001). The proportion of T cells from HCC (4.71%) liver tissue was significantly lower than that from healthy (46.89%) and cirrhotic (45.49%) liver tissue (p.adjust < 0.001) (Figure 2A). B cell population in HCC are divided into two subgroups, B cells and plasma cells, and plasma cells accounted for 97.1% of the number of B cells (Figure 2B). Macrophages in HCC are tumor associated macrophages (TAMs), based on marker genes C1QA, C1QB (Figure 1D), co-express M1, and M2 signals (e.g. M1:CD64, M2: MACRO) (Figure S2) (2, 25). When M2 macrophages are present, plasma cells are tumor-promoting and have inhibitory effects on T cells (22, 26). The high proportion of plasma cells and the low proportion of T cells suggest that plasma cells may have a certain effect on the number of T cells. We further analyzed the infiltration proportion of immune cells in TCGA samples, such as plasma cells versus T cells, and the correlations between the infiltration proportion of plasma cells and total T cells was analyzed. It was found that the proportion of plasma cells has a negative regulatory relationship with the proportion of T cells. (R=-0.26, P=4.7e-05). In previous studies, it was also proved that in human HCC tissues, the number of plasma cells (>75% of them were IgG+) did inversely correlate with that of CD8+ T cells (27). To obtain a global understanding of the relationship between plasma cell population and the patient survival rate, a Cox proportional hazards model was applied, and the patients with lower proportion of plasma cells show a higher chance of survival (Figure 2C).

From the above results, it can be seen that plasma cells are related to the prognosis of patients with HCC, attention should be paid to plasma cells in the tumor microenvironment of HCC. Plasma cells should be considered to be potentially related to the occurrence and progression of HCC.



Construction of the Differential Trajectories of B Cells

In order to further explore the status of B cells in healthy, cirrhotic, and cancerous liver tissue microenvironment, we simulated the trajectory of B cells from three sources and observed the differentiation of B cell population.

We identified the differentially expressed genes in B cell population between healthy donors and patients with liver cirrhosis and liver cancer. R package monocle was then used to sort individual cells by these genes and construct the tree-like structure of the entire lineage differentiation trajectory (Figure 3A). From the perspective of cell typing, the starting point of branching is composed of B cells, and the two other branches are composed of plasma cells (Figure 3B), this trend is consistent with the differentiation process from B cells to plasma cells. From the perspective of cell sourcing, the starting point for cell differentiation (pre-branch) consists of a large number of cells from healthy donors, patients with liver cirrhosis, only very few cells from patients with HCC. The cell composition of cell fate 1 is similar to that of pre-branch. The cells at the beginning and middle of fate branch 2 were mainly from healthy donors and patients with cirrhosis, and almost all the cells at the end are from patients with HCC (Figure 3C). We performed branched heatmap to show the gene pattern of different cell fate branches, based on the expression dynamics, genes are divided into five clusters according to their expression patterns (Figure 3D). The gene cluster V (cluster 5) and II (cluster 2) were highly expressed in cell fate1, III (cluster 3) were highly expressed in cell fate 2. From the results of GO enrichment in B cell group, it was found that humoral immunity and B cell mediated immunity-related GO terms are enriched in gene cluster III (Figure 3E), regulation of innate immune response and neutrophil activation GO-related terms are enriched in gene cluster V (cluster 5) and II (cluster 2) (Figure 3E).




Figure 3 | Simulation of the development trajectory of B cells and the analysis of gene expression pattern. Simulation of the differentiation trajectory of B cells group from three sources, healthy donors (HD), patients with liver cirrhosis (LC), and patients with hepatocellular carcinoma (HCC), (A) pseudo-trajectory of B cells, (B) cell type transition, (C) cell source transition. (D) Heatmap shows the gene expression dynamics of B cell group. Genes (rows) are clustered and cells (columns) are ordered according to the pseudotime development. Genes are listed in Table S2. Gene clusters III, V, and II were selected for further analysis. (E) The GO function enrichment analysis results of gene cluster III, V and II of B cell group, p.adjust < 0.01. (The first 12 GO terms are retained). (F) Expression patterns of some genes enriched in humoral immunity under three sources.



We also analyzed the expression patterns of some genes enriched in humoral immune GO term (Figure 3F). Representatively, B cell and humoral immune response marker gene IGHG1 demonstrates a gene expression pattern of gradual up-regulation from normal cells to cancer cells, and then slightly droops. Similar patterns can be observed in IGHG2, IGHG4, and JCHAIN. Often patients with chronic liver disease have higher humoral immune index than healthy people (28, 29). This suggests that attention should be paid when the humoral immune index of patients with liver cirrhosis slows down after a rapid increase, it may be a dangerous signal for cirrhosis developing into HCC. This result might indicate that humoral immunity displays compensatory increase during tumorigenesis, and could be used as an important index for early HCC surveillance.



Tumor Prognosis Associated Genes Identified in Single-Cell Gene Expression Patterns of Hepatocytes

We conducted an analysis of copy number variation (CNV) for hepatocytes from each group of tissue source. Based on gene expression profiles aligned along the chromosomes as moving averages, we used chromosomal gene expression patterns to identify the malignant cells of hepatocytes (30, 31). With this approach of recapitulating tumor-specific CNVs (31), malignant cells would show distinct chromosomal expression patterns.

Genomic expression in liver tissue cells from healthy liver donors (HD), patients with Liver cirrhosis (LC), and patients with hepatocellular carcinoma (HCC) were compared on the basis of chromosomal gene expression patterns, the HD group of cells was used as a reference, the HCC group and the liver cirrhosis group were used as the observation group. We found that the copy number of cells provided by patients with HCC in hepatocytes (cluster 7) had a significant change (Figure 4A), so we believe that this hepatocyte cluster 7 were malignant HCC cells.




Figure 4 | Identification of HCC prognosis associated genes from malignant hepatocyte single cell cluster. (A) Copy number variation in hepatocyte group, the healthy group (healthy donor, HD) was used as a reference, the cirrhosis group (Liver cirrhotic patient, LC), and the HCC group (HCC patient) were used as observation groups, red represents overexpression of genes and blue represents low expression. (B) The result of GO functional enrichment analysis, p.adjust < 0.01. (C) The result of KEGG pathways enrichment analysis, p.adjust < 0.01. (D) Hazard ratio of the six genes. (E) Kaplan-Meier estimates of overall survival from HCC patients in TCGA based on six-gene signatures, patients were divided into low-risk group and high-risk group according to median risk score.



Therefore, through differential expression analysis, we identified a total of 119 marker genes in HCC cells from hepatocyte cluster 7. The GO functions were enriched in terms such as acute inflammatory response, humoral immune response and response to oxidative stress (Figure 4B), while the KEGG pathways were enriched to such as IL-17 signaling pathway and TNF signaling pathway (Figure 4C). The above results may indicate a compensatory phenomenon, suggesting that these genes may be associated with the tumorigenesis and progression of tumors.

Next, the bulk data in TCGA was used to identify HCC related prognostic markers out of this group of genes. The mRNA expression data of HCC in TCGA and the clinical data of 438 patients of LIHC were downloaded. The 119 differentially expressed genes were extracted from the mRNA expression data of TCGA for Univariate Cox hazard analysis. Single gene risk ratio and p-value were obtained, of which 11 genes (FTCD, ADH4, MARCKSL1, SPARCL1, CXCL3, HULC, RGS5, SORBS2, HPX, KNG1, S100A16) were identified significantly related to the patients’ overall survival (p < 0.01). Next, six genes, FTCD, MARCKSL1, CXCL3, RGS5, KNG1, and S100A16, were screened out by the Akaike information criterion (AIC) to construct a prognostic model. It is worth noting that FTCD is associated with autoimmune hepatitis, and S100A16 plays an important role in the development of various malignant tumors. Then the Multivariate Cox hazard analysis model was constructed, and Hazard ratio of each gene is shown (Figure 4D, Hazard Ratio (HR)> 1 is considered high risk, HR <1 is low risk). The model can predict the risk value of each patient, and draw a risk curve according to the patient’s high and low risk values (Figure 4E). Taking the median of the risk score as the threshold value, the samples are divided into two groups: high-risk group (n = 203) and low-risk group (n = 207). The median survival times are 2.46 years in the high-risk group vs. 6.73 years in the low-risk group, p < 0.001. The results show that the synergy of these six genes identified from single malignant hepatocytes plays an important role in the progression of HCC associated with cirrhosis.




Discussion

Single-cell RNA-seq (scRNA-seq) provides a cutting-edge method to study the cellular heterogeneity of the tumor microenvironment of many cancer types, by profiling the transcriptomics of thousands of individual cells. Bulk-tissue-level resolution may mask the complexity of alterations across cells and within cell groups, especially for less abundant cell types (32). ScRNA-seq analysis can help better understand cellular collective behavior and mutual regulatory mechanisms within a tissue ecosystem. Currently, studies on the relationship between cirrhosis and HCC at the single-cell level are still unclear. In our study, transcriptional level sequencing data of more than 20,000 single cells were collected and various cell types were analyzed, providing a new perspective for understanding the cell composition characteristics and pathogenesis development in the microenvironment of liver cirrhosis and HCC.

The microenvironment of cirrhotic and cancerized liver tissues are characterized with extensive immune infiltration. T cells and B cells are the most abundant and best-characterized population in tumor microenvironment (TME) of solid tumors (6). T cells are always the focus of anti-tumor activity research of HCC. A recent study found 11 T cell subsets of HCC based on their molecular characteristics through large-scale single-cell transcriptome sequencing (33). Meanwhile, the optimal efficacy of chimeric antigen receptor T cells in the immunotherapy of solid tumors inspired the research of CD8+T cells in HCC (34). The pivotal role of T cells in anti-tumor responses has been widely studied and well established. However, the importance of the immune response of B cells to tumorigenesis and development is not clear yet. B cells represent a heterogeneous population with functionally distinct subsets, contributing to both pro-tumor as well as anti-tumor immune responses, and the balance among the subtypes may affect tumor development and behavior (35, 36). Previous study demonstrated that B cells in tumor microenvironment are related to immune responses. Recent evidences show that B cells have the capacity to recognize antigens, regulate antigen processing and presentation, and mount and modulate T-cell and innate immune responses (37). In our study, we found that there may be a negative regulatory relationship between the number of plasma cells and T cells in the TME. It’s been reported recently, B cells may generate inhibitory factors that dampen the response of other immune cells, or generate molecules on the surface of B cells that hinder the targeting and destruction of tumor cells. The above process may cause tertiary lymphoid structures (TLS) in tumors to be immature TLS. If B cells have less interaction with T cells and greater interaction with malignant tumors, these two inhibitory mechanisms may appear at the same time. There are now three studies (38–40) that provide indirect evidence that immature TLS is associated with low T cell activity in tumors (41). In our study, plasma cells from HCC accounted for 97.1% of B cells, it was also found from the analysis of clinical data that the patients with lower proportion of plasma cells had higher chance of survival. Our results therefore provided a supportive reference for the impact of B cells on the occurrence and development of solid tumors.

From the clinical perspective, most patients with liver cancer have an anamnesis of hepatitis or cirrhosis, cirrhosis is a major risk factor for the development of HCC. Early detection of HCC associated with cirrhosis is a challenge and remains critical in guiding the optimal clinical treatment of the disease. Therefore, the presence of suggestive markers and diagnostic biomarkers for early events during the development of HCC is very valuable for early detection. The humoral immune index of patients with cirrhosis and other chronic liver diseases are higher than those of healthy liver. Our research found that changes in humoral immune index may be an important hint for the conversion of cirrhosis into HCC. By simulating the changes in cell sources and cell types in the cell differentiation trajectory, we found that a large number of plasma cells aggregated under the source of HCC. Functionally, plasma cells show potency to produce antibodies to participate in the humoral immune process. When the changes of enrichment genes in humoral immunity were investigated, it was also found that these genes were continuously upregulated in liver status from the healthy to cirrhosis to carcinoma (HCC), and there was a peak value in the liver status of HCC and then droops. Therefore, we believe that when the rise of humoral immunity index slows down after reaching a peak, it should be noted that there may be a risk of cancerization.

Through inferring the copy number variation of single-cell transcriptome data, the malignant and non-malignant cells of hepatocytes were separated. The tumor associated genes between malignant hepatocytes and cirrhotic hepatocytes were identified. We find that these genes were enriched in the GO terms, including humoral immune response and response to oxidative stress, etc., same with the highly expressed gene cluster III in B-cell differential trajectory fate2. JUN, a transcription factor, was differentially expressed both in tumor associated genes in hepatocytes and highly expressed gene cluster 3 in B-cell differential trajectory fate2. It is strongly expressed with inflammatory stimulation, promotes hepatocyte survival during acute hepatitis and acts as an oncogene in the process of chemically inducing mouse cancer. JUN plays an important role in transformation of liver from inflammation to tumor (42). All these results suggest that there may be a relationship between hepatocytes and B cells in HCC development, and further studies on their interaction can be carried out in the future. In addition, JUN is also a positive regulator of T cells, which can affect the changes of T cell receptor signaling pathway (43). These tumor associated genes combined with bulk RNA-seq data helped us screen out prognosis related molecular markers for HCC. In the six-gene prognostic modeling, four genes are the major contributors with HR>1, MARCKSL1, CXCL3, KNG1, S100A16 (p < 0.05). Studies have shown that these genes play roles in promoting various cancers. MARCKS/MARCKSL1 overexpression could restore the self-renewal of liver tumor–initiating cells (TICs), TICs form small subsets of cells in hepatocellular tumors and account for tumorigenesis, metastasis, recurrence, and drug resistance (44). S100A16 was expressed in lung adenocarcinoma (AC) tissues with poor prognosis. CXCL3 can be a potential target for precise therapy of HCC (45). KNG1 was demonstrated as a biomarker in the occurrence of HCC (46). The above reports combined with the results of this study suggest these genes could be potential cellular candidates for therapeutic targeting in multiple types of cancers.

In summary, our comprehensive characterization of cells at single level from different status of liver tissues revealed cell composition nature and gene expression pattern in both liver tissue microenvironment and liver malignant cells. Changes in humoral immunity, including plasma cells proportion increasing, and marker gene expression pattern of climbing and drooping, may be indicative surveillance for the alteration from cirrhosis to poor prognostic HCC. The potential prognostic biomarker signature constructed with tumor associated genes identified in hepatocytes comparison among HD, LC and HCC, might be conducive to developing therapeutic strategies.
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As one of the most common malignant tumors, hepatocellular carcinoma (HCC) is the fifth major cause of cancer-associated mortality worldwide. In 90% of cases, HCC develops in the context of liver cirrhosis and chronic hepatitis B virus (HBV) infection is an important etiology for cirrhosis and HCC, accounting for 53% of all HCC cases. To understand the underlying mechanisms of the dynamic chain reactions from normal to HBV infection, from HBV infection to liver cirrhosis, from liver cirrhosis to HCC, we analyzed the blood lncRNA expression profiles from 38 healthy control samples, 45 chronic hepatitis B patients, 46 liver cirrhosis patients, and 46 HCC patients. Advanced machine-learning methods including Monte Carlo feature selection, incremental feature selection (IFS), and support vector machine (SVM) were applied to discover the signature associated with HCC progression and construct the prediction model. One hundred seventy-one key HCC progression-associated lncRNAs were identified and their overall accuracy was 0.823 as evaluated with leave-one-out cross validation (LOOCV). The accuracies of the lncRNA signature for healthy control, chronic hepatitis B, liver cirrhosis, and HCC were 0.895, 0.711, 0.870, and 0.826, respectively. The 171-lncRNA signature is not only useful for early detection and intervention of HCC, but also helpful for understanding the multistage tumorigenic processes of HCC.
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INTRODUCTION

As one of the most common malignant tumors and the fifth major cause of cancer deaths worldwide (Jemal et al., 2011), hepatocellular carcinoma (HCC) is typical of highly invasive and metastatic potential. Although much progress has been made in clinical and experimental studies in HCC, the 5-year survival rate of HCC sufferers is still very low due to its poor prognosis, frequent clinical recurrence, and metastasis (Madkhali et al., 2015). The most important risk factors for liver cancer are hepatitis B virus (HBV), hepatitis C virus (HCV), excessive drinking, and exposure to aflatoxin B1. The geographical variability and heterogeneity of the incidence of HCC is different from the distribution of HBV and HCV infections on a global scale (Liu and Kao, 2007; Petruzziello et al., 2016). Globally, HBV accounts for about 80% of virus-related HCC cases, especially in Africa and East Asia, where the incidence of HCC is the highest. In low-incidence HCC areas such as Western Europe and North America, HCV infection accounts for about 20% of the total number of HCCs. HBV seems to be mainly related to the development of HCC (Blachier et al., 2013; Mittal and El-Serag, 2013; Kew, 2014; Ozakyol, 2017). About 15–40% of chronically infected people develop severe sequelae, such as cirrhosis, liver failure, and liver cancer, and nearly 1 million people die each year due to complications related to HBV1.

Hepatitis B virus infection facilitates virus-induced immune response through releasing cytokines and genotoxic reactive oxygen species, which triggers hepatocyte necrosis and may eventually contribute to the development of carcinogenesis with the speed-up of the hepatocyte cell cycles and raised risk of genetic variation (Budhu and Wang, 2006). Therefore, suppression of viral replication via antiviral therapy appears to decrease the risk of cirrhosis and HCC (Liaw et al., 2004; Hosaka et al., 2013). HCC in the early phase can be effectively treated through liver transplantation, resection, or ablation, whereas the treatment strategies are very limited for advanced patients (Llovet, 2014). Accordingly, comprehensive approaches to identify and validate novel markers are needed so as to provide a new idea for the early diagnosis and exploration of therapeutic targets of HCC.

Recently, loads of dysregulated long non-coding RNAs (lncRNAs) have been confirmed in HCC tumor tissue via high-throughput sequencing techniques, some of which may serve as early diagnostic biomarkers or therapeutic targets for HCC (Huo et al., 2017). LncRNAs are a subclass of non-coding RNAs that are able to modulate gene expression and cancer-related signaling pathways. Sufficient evidence suggested that lncRNAs are correlated with HCC cell biological functions, such as cell proliferation, cell apoptosis, the epithelial–mesenchymal transition (EMT) process, cell invasion, and tumor metastasis, and eventually result in the occurrence and progression of HCC (Qiu et al., 2017). For example, upregulation of several lncRNAs, including LncTCF-7, DANCR, ZEB1-AS1, and EGFR-AS1, have proven to play crucial roles in HCC progression via the activation of EMT and Wnt/β-catenin signaling (Yuen et al., 2009; Wang et al., 2015; Qi et al., 2016; Yuan et al., 2016). Downregulated lncRNA H19 has been shown to be associated with HCC metastasis (Zhang et al., 2013). Despite the fact that increasing studies have reported dysregulated lncRNAs in HCC, most of corresponding mechanisms and potential functions remain unclear. Further explorations on the regulation of these dysregulated lncRNAs, their mechanisms, and their association with the etiology of HCC may facilitate us to find more specific and sensitive markers to control HCC.

To identify the lncRNA signature associated with HCC progression, we analyzed the blood lncRNA expression profiles of 38 healthy control samples, 45 chronic hepatitis B patients, 46 liver cirrhosis patients, and 46 HCC patients. Advanced machine-learning methods like support vector machine (SVM), Monte Carlo feature selection, and incremental feature selection (IFS) were implemented for identification of the HCC progression-associated signature and construction of the prediction model.



MATERIALS AND METHODS


The lncRNA Expression Profiles of Patients From Different Tumorigenesis Stages

We downloaded the blood lncRNA expression profiles of 38 healthy control samples, 45 chronic hepatitis B patients, 46 liver cirrhosis patients, and 46 HCC sufferers from GSE78160 included in the Gene Expression Omnibus (GEO). Expression levels of 2,520 lncRNA probes were assessed by State Key Laboratory Human lncRNA array 2412 (GPL214942) developed by State Key Laboratory of Oncology in South China, Sun Yat-sen University. We would like to compare the differences among different tumorigenesis stages of HCC.



The Importance of lncRNAs Is Calculated Using the Monte Carlo Feature Selection Method

The Monte-Carlo feature selection (Draminski et al., 2008) was employed to identify the key HCC lncRNAs. It is a widely used method with excellent performance in finding key features (Chen et al., 2018b,c; Pan et al., 2019). Monte Carlo feature selection can evaluate the importance of a feature by considering the contribution of the feature to accurate classification through a series of decision trees. Three steps are included: First, it will randomly choose many feature subsets; then, on each feature subset, a tree classifier will be built; and last, based on these trees, a compressive feature importance score will be calculated (Chen et al., 2018a; Pan et al., 2018; Wang et al., 2018). The final feature-importance score will consider both the frequency of this feature being selected by a tree and how well the node of this feature on the tree can classify the samples.

To introduce the details of this algorithm, the total number of lncRNAs was represented by d, which was 2,520 in this study. Each time, m lncRNAs (m ≪ d) are chosen at random and a tree classifier t is trained and tested on the basis of the randomly divided patients in the training and the test groups. This procedure will repeat s times. At last, there will be a series of trees. On the basis of the times a lncRNA g selected through these trees and the contribution of this lncRNA g to the tree classification, the relative importance (RI) of the lncRNA g can be calculated as follows:
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where wAcc refers to the weighted classification accuracy of the decision tree τ; IG(ng(τ)) represents the information gained by node ng(τ), a decision rule based on lncRNA g expression; (no.inng(τ)) stands for the total number of patients in node ng(τ); (no.inτ) refers to the total number of the patients under the decision tree τ; and u and v represent the adjusted parameters.

With Eq. (1), all lncRNAs will have a RI score and they will be ranked in line with their importance. The Monte Carlo feature selection method was implemented using the dmLab software (Draminski et al., 2008) accessed at https://home.ipipan.waw.pl/m.draminski/mcfs.html.



Optimization of the lncRNA Signature With IFS Method

To optimize the number of selected lncRNAs, the IFS method (Jiang et al., 2013; Li et al., 2014; Shu et al., 2014; Zhang et al., 2014; Huang et al., 2015; Zhang P.W. et al., 2015; Chen L. et al., 2017) was employed. IFS can help determine how many features should be chosen. It assesses the performance of a series of SVM classifiers using various numbers of lncRNAs from one lncRNA, two lncRNAs, three lncRNAs to more lncRNAs. The SVM was a widely used classifier that was wrapped into IFS to evaluate the classification performance of different lncRNA sets. The lncRNA combination that had the best performance will be selected. It made the selection procedure objective and the chosen signatures had optimal performance.

In this study, the SVM classifier was established using the R function svm from package e10713 with default parameters (SVM-Type: C-classification; SVM-Kernel: radial; cost: 1) and the classification accuracy was assessed with the aid of the leave-one-out cross-validation (LOOCV) method and then used to represent the prediction performance.



RESULTS AND DISCUSSION


The HCC Progression lncRNAs Identified With Machine Learning Methods

The lncRNA importance was evaluated with the Monte Carlo feature selection method. It reflected how well the expression level of this lncRNA can correctly classify the healthy control samples, chronic hepatitis B patients, liver cirrhosis patients, and HCC patients. The rank of this importance provided basis for further optimization.

We optimized the top 500 ranked lncRNAs to 171 lncRNAs using the IFS method. Figure 1 shows the IFS curve in which the abscissa is the count of lncRNAs responsible for the establishment of the SVM classifier, and the vertical coordinate is the prediction accuracy assessed by LOOCV. The IFS curve peaked at (171, 0.823), which meant when 171 lncRNAs were used and the accuracy was the highest as 0.823. The accuracies of healthy control, chronic hepatitis B, liver cirrhosis, and HCC were 0.895, 0.711, 0.870, and 0.826, respectively. The 171 lncRNA probes are listed in Supplementary Table 1. The confusion matrix of the prediction performance using these 171 lncRNAs are listed in Table 1. It depicts that not only the overall accuracy, but also the accuracy of each progression stage.
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FIGURE 1. The IFS curve for key lncRNA selection. The x-axis is the number of lncRNAs used to build the SVM classifier. The y-axis is the prediction accuracy evaluated with LOOCV. When 171 lncRNAs were used, the accuracy was the highest as 0.823.



TABLE 1. The confusion matrix of the prediction performance using 171 lncRNAs.
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The Biological Functions of the Identified lncRNAs

Since the lncRNA array was customized and did not have too much annotation, we blasted their sequences onto the lncRNA sequences in LNCipedia, version 5.04 (Volders et al., 2018). Some of the identified lncRNAs were seen to be promising and may help understand the mechanisms underlying HCC tumorigenesis.

LUCAT1:20 ranked sixth in Supplementary Table 1. LUCAT1 (Lung Cancer Associated Transcript 1) was seen to be elevated in HCC tissue and cells relative to that in adjacent tissue, which was associated with pathological characteristics, such as tumor size, metastasis, and stage of HCC (Levine et al., 1988). Functional studies have unveiled the active role of LUCAT1 both in vitro and in vivo in potentiating the HCC tumor progression and metastasis (Levine et al., 1988; Gramantieri et al., 2018). LUCAT1 was also reported to bind to Annexin A2 (ANXA2) specifically, which is a phospholipids binding protein dependent on calcium and plays a vital role in the malignant behaviors of HCC cells with its expression elevated (Shi et al., 1993; Kohli et al., 2018). Zhang F. et al. (2015) indicated that the knock down of ANXA2 induced by shRNA inhibits hepatoma cell invasive and migratory capabilities and may hence become a therapeutic target for the molecular treatment of HCC in the future.

Lnc-RAP2B-5:1 ranked ninth in Supplementary Table 1. RAP2B, an Ras oncogene family (small GTP-binding proteins) member (Ohmstede et al., 1990), is a novel target of p53 regulating the cell pro-survival function (Qu et al., 2016). Increasing evidence suggests a critical role of RAP2B in the regulation of cytoskeletal organization, cell growth, cell proliferation, and other cellular processes (Uechi et al., 2009; Qu et al., 2016). Zhang et al. (2017) discovered the elevated expression of RAP2B in HCC tissue and cell lines, and revealed that the decreased RAP2B significantly downregulates the levels of p-FAK and MMP-2, and then inhibits HCC cell proliferation, invasion, and migration. Thus, Rap2B-targeted anticancer drugs are expected to become a novel therapy against cancer.

Lnc-FOXO1-2:3 ranked 15th in Supplementary Table 1. Forkhead Box Protein O1 (FOXO1), a member of the forkhead family, has been discovered to be dysregulated in multiple cancers including HCC, and it affects many cellular processes, like carcinogenesis, DNA damage repair, cell apoptosis, and tumor immunity (Huang and Tindall, 2007; Luo et al., 2016). It’s reported that higher FOXO1 significantly promotes replication and expression of HBV (Wang and Tian, 2017) and is related to a more favorable prognosis of HCC (Calvisi et al., 2009; Leung et al., 2015). EMT, a crucial process amid the occurrence of metastasis, is the principal reason for mortality in HCC (Papageorgis, 2015; Ye and Weinberg, 2015). Dong et al. (2017) found that FOXO1 is capable of reversing the EMT process through directly inhibiting transcription inducers like ZEB2, indicating the negative effect of FOXO1 on HCC cell proliferation and invasion. ZEB2 is reported to be upregulated in HCC cell-derived lung metastatic nodules, and its overexpression is responsible for HCC recurrence (Xia et al., 2014; Yang et al., 2015). Therefore, the enhancement of FOXO1 and the inhibition of EMT-related inducers like ZEB2 may have the potential to be applied in the clinical treatment of HCC with great value.

MALAT1:17 ranked 104th in Supplementary Table 1. As a long and highly conserved lncRNA widely expressed in different tissues (Zebisch et al., 2016), metastasis-associated lung adenocarcinoma transcription 1 (MALAT1) is regarded to be closely related to diverse cancer types, especially in the progression of HCC related to HBx (Jiang et al., 2014; Hou et al., 2017; He et al., 2019). The lncRNA−MALAT1 has been reported to be increased in HCC cell lines and it serves as a proto−oncogene amid the progression of HCC by means of activating the Wnt pathway and inducing the oncogenic splicing factor SRSF1 (Malakar et al., 2017). Furthermore, Liu et al. (2018) found that knockdown of MALAT1 suppresses the growth, migration, and motility of HCC cells by elevating miR-195, indicating that MALAT1 is an important player in the progression of HCC.

In addition to the aforementioned genes, lncRNAs including EPCAM (Yamashita et al., 2008), WDR5 (Cui et al., 2018), S1PR1 (Zhou et al., 2014), HMGA1 (Andreozzi et al., 2016), TGFBR2 (Chen Y.L. et al., 2017), CXCL12 (Semaan et al., 2017), and SENP2 (Shen et al., 2012) were also reported to participate in the pathogenesis of liver cirrhosis and HCC. Zhang et al. (2019) confirmed that silencing EPCAM can inhibit hepatic fibrosis and hepatic stellate cell proliferation in mice with alcoholic hepatitis through the PI3K/Akt/mTOR signaling pathway. Wenfang Tian et al. (2016) also found that WDR5 is an important epigenetic factor in the process of liver fibrosis. S1PR1 has been reported to be associated with cholestatic liver injury in early stage liver cancer and may be a potential target for the prevention of drug-induced cholestatic liver injury (Yang et al., 2017). HMGA1 was confirmed to be involved in the proliferation and invasion of HCC cells through the ilk/Akt/GSK3 signaling pathway (Liu et al., 2017). TGFBR2 is involved in regulating the regulation axis and aggravates liver fibrosis (Fu et al., 2020). The CXCL12/CXCR4 biological axis can inhibit the activation and migration of hepatic stellate cells in vitro and in vivo (Qin et al., 2018). SENP2 can reduce CCl4-induced liver fibrosis by promoting apoptosis and reversion of activated hepatic stellate cells (Bu et al., 2018).

Three lncRNAs mentioned earlier have been found to be associated with HBV. Studies have shown that MALAT1, WDR5, and CXCL12 are involved in the regulation of HCC induced by HBV through epigenetic mechanism. Bo He et al. (2019) found that interaction of lncRNA-MALAT1 and miR-124 regulates HBx-induced cancer stem cell properties through PI3K/Akt signaling. Weiwu Gao et al. found that WDR5 plays an important role in HBV-driven mouse hepatocyte proliferation and tumor growth (Gao et al., 2020). Chao Wang et al. (2017) found that HBx also upregulated the translocation of MDM2 into the nucleus and enhanced the transcriptional activity of CXCL12 and CXCR4.

Though the role of lncRNAs in HCC has been partially revealed, more large cohort studies and in-depth functional studies are still needed to validate the HCC lncRNA signature and to investigate the underlying mechanisms. In future research, we will focus on the biological functions of these lncRNAs in HBV infection, liver cirrhosis, and liver cancer, and further explore the molecular regulatory mechanism of these lncRNAs in cells to clarify the mechanism of lncRNAs and their important position in cells.



CONCLUSION

Tumorigenesis is a multistage process. HBV infection is a trigger factor for liver cirrhosis and liver cirrhosis is a transition stage to HCC. The dynamic changes from normal to HBV infection, from HBV infection to liver cirrhosis, from liver cirrhosis to HCC, formed the chain reaction of tumorigenesis. We analyzed the blood lncRNA expression profiles of different HCC progression stages: healthy, chronic hepatitis B, liver cirrhosis patients, and HCC. A 171-lncRNA signature was identified with advanced machine-learning methods. These lncRNAs can help explain the mechanisms of HCC tumorigenesis. They can be used as biomarkers of HCC progression to monitor how bad the situation is and provide early detection and intervention of HCC.
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Accumulating studies have confirmed the crucial role of long non-coding RNAs (ncRNAs) as favorable biomarkers for cancer diagnosis, therapy, and prognosis prediction. In our recent study, we established a robust model which is based on multi-gene signature to predict the therapeutic efficacy and prognosis in glioblastoma (GBM), based on Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases. lncRNA-seq data of GBM from TCGA and CGGA datasets were used to identify differentially expressed genes (DEGs) compared to normal brain tissues. The DEGs were then used for survival analysis by univariate and multivariate COX regression. Then we established a risk score model, depending on the gene signature of multiple survival-associated DEGs. Subsequently, Kaplan-Meier analysis was used for estimating the prognostic and predictive role of the model. Gene set enrichment analysis (GSEA) was applied to investigate the potential pathways associated to high-risk score by the R package “cluster profile” and Wiki-pathway. And five survival associated lncRNAs of GBM were identified: LNC01545, WDR11-AS1, NDUFA6-DT, FRY-AS1, TBX5-AS1. Then the risk score model was established and shows a desirable function for predicting overall survival (OS) in the GBM patients, which means the high-risk score significantly correlated with lower OS both in TCGA and CGGA cohort. GSEA showed that the high-risk score was enriched with PI3K-Akt, VEGFA-VEGFR2, TGF-beta, Notch, T-Cell pathways. Collectively, the five-lncRNAs signature-derived risk score presented satisfactory efficacies in predicting the therapeutic efficacy and prognosis in GBM and will be significant for guiding therapeutic strategies and research direction for GBM.
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Introduction

As one of the most common malignant brain tumor (1, 2), the 5-year survival rate for glioblastoma (GBM) in patients is less than 5%. Although great progress has occurred in the field of chemotherapy, radiotherapy, and surgical resection, the prognosis for GBM patients is still poor (3–5). Long-non-coding RNA (lncRNA) have been a focus in recent years since they play a nonnegligible role in a variety of biological processes and exert significant influence in human diseases. Particularly, the abnormal expression of lncRNA is tightly connected to the occurrence, prognosis, and survival of patients with cancer (6, 7). Numerous studies have illustrated that certain lncRNAs are aberrantly expressed in GBM tissue, and many of them have been confirmed to be involved in tumor invasion, immune escape and radiation resistance. In recent years, specific lncRNAs were also identified as prognostic biomarkers and therapeutic targets for GBM, while some of them were proposed to be novel indicators for survival prediction in GBM patients.

So, can we create a model on the basis of a multiple-gene signature that can advance the effectiveness of treatment evaluation and prognostic prediction for GBM? In the present study, we collected high-throughput data in TCGA and CGGA databases which were generated by microarrays and next-generation sequencing, then we identified some survival-related differentially expressed genes (DEGs) by analyzing the data of lncRNA expression in GBM, subsequently, a risk model for treatment evaluation and prognostic prediction was established on the basis of the identified gene signature. In this study, five lncRNAs in GBM were revealed notably related with survival independently, and the high-risk score was enriched with items of signaling pathways for oncogenesis and tumor progression. The risk score model based on the five-lncRNAs signature exhibited satisfactory efficacies in predicting the therapeutic efficacy and prognosis in GBM.



Materials and Methods


Publicly Available Clinical Data Sets

RNA-seq (Illumina RNASeqV2, Level 3; Illumina, San Diego, CA) FPKM (fragments per kilobase of transcript per million mapped reads) of GBM were downloaded from The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov) on October 1, 2019 (The database was updated to January 25, 2018 at that time), including 167 samples. RNA-seq expression data from STAR+RSEM (Illumina Hiseq; mRNAseq_693) of Glioma including 140 GBM samples were downloaded from Chinese Glioma Genome Atlas (CGGA; http://www.cgga.org.cn/index.jsp) on October 1, 2019 (8–10).



Statistical Analyses

All statistical analyses were performed by R. For the TCGA and CGGA dataset, we first converted them to the same gene symbols and selected the common lncRNA, performing log2(FPKM/RSEM+1) transformation. Then the univariate cox regression analysis was used to find the correlation between the expression level of each single gene and patients’ OS. The genes were filtered using a p-value below 0.05. Then, we overlapped the common genes with HR>1 or HR<1 in TCGA and CGGA. We got 3 HR>1 genes and 4 HR<1 genes to perform the multivariate cox regression analysis using the TCGA data set as the training cohort. And we got the risk score formula of the prognostic model. The resulting model according to the formula:  In the formula, every single lncRNA represented its expression value, the values of coefficients represented the relative contributions of the five lncRNAs in the multivariate cox regression analysis. TBX5-AS1 is a risk factor while the other four genes may be protective factors. In the calculation of risk score, the higher the value is, the higher the risk of the patient may be. The optimal cut-off value was used to calculate the high-risk and low-risk groups of TCGA, so we got a lower 37% to divide the patients into two groups. And for the CGGA data set, we used the same formula and percentile inherited from the TCGA data set. All the Time-dependent ROC were performed by the R package “survival ROC” (11). In this study, we construct a nomogram based on the risk score groups and clinical traits by the multivariable Cox regression analysis. Subsequently, validations were performed by discrimination and calibration using the R package “rms”. Concordance index (C‐index) was applied to calculate the discrimination of the nomogram. Then we evaluated the nomogram between the prediction probabilities and the observed rates using the calibration curves. The GSEA was performed by the R package “cluster profile” [22455463] (12–14).




Results


Selection of Candidate Genes to Build the Predictive Model

To describe our research clearly, we draw a flow chart of the analysis procedure (Figure S1). Firstly, we selected the common genes of the TCGA and CGGA data sets, including 930 common lncRNAs. Then, we overlapped the genes with HR>1 of TCGA and CGGA, or HR<1 of TCGA and CGGA (Figures 1A, B). And we show the result of the 7 lncRNAs univariate cox regression analysis in Figure 1C. As the results show, the 7 lncRNAs were significantly correlated with the patient’s OS in both TCGA and CGGA. And evaluated H19, LNC00968, and TBX5-AS1 expressions were negatively correlated with the patient’s OS, LNC01545, WDR11-AS1, NDUFA6-DT, and FRY-AS1 were in reverse. Then we used the 7 lncRNAs to perform the multivariate cox regression analysis (Figure 2A) and got the 5-lncRNA signature with C-index 0.65 (Figure 2A). We use the 5-lncRNA signature to divide the patients into two groups based on the optimal cut-off value with 37% low-risk group. The K-M OS curve shows that the high-risk score was significantly correlated with lower OS (HR = 2.12, P < 0.0001; Figure 2B). The AUC of a time-dependent ROC curve was calculated to represent the prognostic capacity of the 5-lncRNA signature (Figure 2C). The AUCs of the 5-lncRNA biomarker prognostic model was 0.67, 0.69, 0.74, 0.70, and 0.70 for the 6, 12, 18, 24, and 36 months OS times, respectively, implicating that the model possesses certain accuracy and classification capability (Figure 2C).




Figure 1 | lncRNA screening in the TCGA and CGGA data sets. (A, B) The overlapping genes with HR>1 or HR<1 between TCGA and CGGA data sets. (C) Univariate cox regression analysis of 7 lncRNAs in the overall survival assessment.






Figure 2 | The selection of 5 candidate lncRNAs and prognostic capacity assessment. (A) 5 lncRNAs were selected via the multivariate cox regression analysis. (B) K-M OS curve plotting with the 5-lncRNA signature. (C) The prognostic capacity evaluation of the model built by 5-lncRNA signature.





Evaluation the Predictive Model in Validation Cohorts

For independent validation, we assessed the predictive model in CGGA including 140 GBM samples. The risk score of CGGA was calculated in the same way as the TCGA data set. For the survival analysis of the CGGA validation cohort, we also calculated the risk score and divided patients into two groups based on a lower 37% same with TCGA. The result shows the high-risk score was significantly correlated with lower OS in the CGGA cohort (HR = 1.93, p = 0.0013; Figure 3B). Furthermore, the AUCs of time-dependent ROC curves for CGGA cohort were 0.61, 0.69, 0.69, 0.70, and 0.67 at 6, 12, 18, 24, and 36 months (Figure 3A), indicating that the predictive model had capacities for predicting OS in the GBM patients (Figure 3A).




Figure 3 | The evaluation of the predictive model in validation cohorts. (A) AUCs of time-dependent ROC curves for CGGA cohort. (B) The survival analysis of the CGGA validation cohort.





The Five-lncRNAs Signature Was Independent of Clinical Factors

The independent prognostic value of the five-lncRNAs signature was assessed by univariate and multivariate cox regression in 167 TCGA GBM with complete clinical information. As the result of Table 1 shows, age, risk score group, radiation therapy, chemotherapy, and IDH status were correlated with the patient’s OS, and the risk score group of C-index value was almost reached to the radiation therapy and chemotherapy. Then we incorporated the risk score group and all clinical factors to perform the multivariate cox regression. And we find age, radiation therapy, and risk score group were the independent prognostic factors correlated with OS (Table 1). And the risk score group combined with the clinical factors model can increase the C-index from 0.604 to 0.736 (Δ = 0.132), compared to a multivariate model which was mainly based on clinical features (Table 1). In conclusion, the risk score was a significant independent predictor of BCR, indicating that it may contribute to the guidance of treatment decisions in the clinical practice.


Table 1 | Multivariate cox regression of prognostic clinical factors.





Build the Risk Score Combined With Clinical Factors Nomogram

To establish a new model for predicting the patients’ OS in GBM, a nomogram was generated to predict the probability of the 6‐, 12‐, and 18‐months OS in the TCGA cohort. As Table 1 has shown that age, sex, risk score, and radiation therapy were independent prognostic factors (Selecting criteria: significance threshold of log-rank P <0.05), they were therefore embodied in the nomogram (Figure 4A). And the nomogram was visualized with calibration plots. The actual OS was represented by the red line and the blue line represented the predictive OS. Calibration plots showed that the nomogram performed well (Figures 4B–D). And C-index was used to evaluate the combined model (C-index: 0.736), compared to the clinical model (C-index: 0.604) (Table 1).




Figure 4 | The building of a nomogram and its performance on the OS prediction. (A) A nomogram was built with four prognostic factors. (B–D) The OS-predicting performance of the nomogram was evaluated by calibration plots.





Interaction Analysis of Target Proteins and Enrichment of Tumor-Related Signaling Pathway for the Five-lncRNAs Signature

In order to confirm the accuracy of gene screening, we predicted the target proteins of the 5 lncRNAs (Tables S1-S3), and conducted an interaction network analysis of the proteins (Figure S2). Finding that TBX5-AS1 may be related to some oncogenic protein (15–18), while the other 4 lncRNAs may be associated to some tumor suppressor proteins (19–22). Indicating that these lncRNAs may be key genes in GBM. We also performed the differential expression genes (DEGs) analysis using the R package “limma”, and selected the DEGs (adjust. p value <0.05) to perform GSEA using the R package “cluster profile” and Wiki-pathway. The four most significant pathways were showed in Figure S3 and Table S4. The risk group system was accompanied by PI3K-Akt, VEGFA-VEGFR2, TGF-beta, Notch, T-Cell Antigen Receptor signaling pathways, and so on (Figure S3 and Table S4). And these pathways are significantly correlated with tumor progression. Although few lncRNAs have been functionally annotated in GBM, we revealed the relevant signaling pathways of the five lncRNAs through GSEA. Which proved the reliability and distinguishing capability of the formula.




Discussion

LncRNA has been widely recognized as regulators for biological processes related to tumorigenesis and progression in GBM. Jiang et al. stated that blocking Lnc00152 can suppresses glioblastoma malignancy by impairing mesenchymal phenotype through the miR-612/AKT2/NF-κB pathway (23). Lnc-TALC has been proved to be associated with temozolomide (TMZ) resistance induced by AKT signaling pathway in GBM (24). Lnc-SChLAP1 can promote the growth of GBM through stabilization of ACTN4 and activation of NF-κB signaling (25). Growing evidence suggests that lncRNAs can be promising biomarkers for GBM diagnosis and treatment.

However, it is unconvincing to use a single lncRNA as a target due to the significant heterogeneity of GBM (26). More recently, the molecular research and gene exploration of the tumor, especially the statistical analysis research based on big data, has made rapid progress (27, 28). Polygenic research has become the focus of this field. In this present study, after comprehensive analysis of gene expression in GBM from TCGA and CGGA databases, five lncRNAs (LNC01545, WDR11-AS1, NDUFA6-DT, FRY-AS1, TBX5-AS1) were noticed abnormally expressed in GBM, which were also found related with OS. The five-lncRNAs signature-derived risk score presented satisfactory efficacies in predicting the therapeutic efficacy and prognosis in GBM. Additionally, high-risk score was enriched with items of signaling pathways for oncogenesis and tumor progression (29, 30).

The discovered DEGs might be more stably and specifically expressed in GBM based on TCGA and CCGA datasets (including 930 common lncRNAs), compared to just one dataset. Then univariate and multivariate Cox regression analysis were conducted on the DEGs, and five important genes were found associated with survival independently. Results show that TBX5-AS1 expressions were negatively correlated with the patient’s OS, which may function as oncogenes, whereas LNC01545, WDR11-AS1, NDUFA6-DT, and FRY-AS1 were in reverse, which may function as suppressor gene. A risk score model was then established on the basis of the signature of these five DEGs. Studies have indicated that gene signature containing multiple gene components can be more robust and convictive in the prediction of prognosis, while the usage of some single gene may result in instability and predictive bias. In the present study, the risk score based on the five-lncRNAs signature was effective and reproducible in predicting prognosis of the GBM patients from both TCGA and CCGA datasets. Additionally, the risk score model could also predict the radiotherapy response of GBM patient. Generally, the multi-gene signature-derived risk score model may be promising and valid in treatment evaluation and prognostic prediction in GBM.

LncRNA can promote or inhibit GBM by regulating signal transduction pathways, forming sponge adsorption effect, regulating the characteristics of glioma stem cells, regulating hypoxia response, and angiogenesis (31–33). The potential functions of the five genes may partially contribute to the prognostic prediction, but the underlying mechanisms upon these genes in GBM remains to be investigated (34–36). Of the five lncRNAs, apart from TBX5-AS1, which has been to reported be related with unfavorable prognosis in non-small-cell lung carcinoma (NSCLC) (37, 38), the other four has never been explored in cancer, and none of them has ever been explored in GBM. In this case, we believe that it is promising to explore the potential mechanisms of these genes (especially the TBX5-AS1 which acts as a risk factor in our model) related to GBM.

Generally speaking, clinical and pathological classification determine the treatment and prognosis of GBM. Independent of the traditional method, the value of this model lies in its clinical guidance for therapeutic strategies, which may help improve the prognosis in GBM patients. Intensive therapy should be applied to the patients with high-risk scores, while those with low risk scores should avoid excessive treatments that may cause therapeutic toxicities and deterioration. Although the values of AUCs for five genes were close to or more than 0.7, the accuracy and classification capability of the model are still not high enough, the interaction analysis of target proteins and enrichment of tumor-related signaling pathway proved the accuracy of gene screening and the reliability and distinguishing capability of the model. This also enlightens us to make some in-depth exploration on the mechanisms in the further study. On the other hand, compared with those genes that have just been screened and have not yet been verified, it may be another reliable choice to build models based on recognized genes. Moreover, except for TCGA, CGGA, and GEO, it is highly recommended to introduced other databases (e.g. NoncoRNA) in our further studies (39). Despite a long way ahead for the clinical application of this model, the prospects are considerable and worthy of further exploration.



Conclusions

In conclusion, the five-lncRNAs signature-derived risk score presented satisfactory efficacies in predicting the therapeutic efficacy and prognosis in GBM and will be significant for guiding therapeutic strategies and research direction for GBM. Since most of the genes we put forward have not been detailedly researched, confirmatory experiments are necessary in the further studies.



Data Availability Statement

Publicly available datasets were analyzed in this study. This data can be found here: The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov), and Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/index.jsp).



Author Contributions

XN, JS, and HL designed the study. LM, TF, and TZ collated the data. XN and JJ conducted data analyses and drafted the manuscript. All authors contributed to the article and approved the submitted version.



Funding

This work was supported by Tianjin Major Science and Technology Projects (17ZXMFSY00200), Tianjin Science and Technology Development Strategy Research Projects (18ZLZXZF00740).



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2020.590352/full#supplementary-material

Supplementary Figure 1 | The flow chart of the analysis procedure for this study.

Supplementary Figure 2 | Figure S2 Interaction network analysis of the target proteins for the five lncRNAs. The red circles represent the up-regulated proteins and the green represent the down regulated proteins.

Supplementary Figure 3 | Identification of 5-lncRNAs signature associated biological signaling pathway. PI3K-Akt, VEGFA-VEGFR2, TGF-beta, Notch, T-Cell Antigen Receptor signaling pathways were the main enrichment pathways.

Supplementary Table 1 | Prediction of target proteins for FRY-AS1, LNC01545, WDR11-AS1, and NDUFA6-DT.

Supplementary Table 2 | Prediction of target proteins for TBX5-AS1.

Supplementary Table 3 | Target protein prediction and related biological effects of the five lncRNAs.

Supplementary Table 4 | The related signaling pathways of the 5-lncRNAs signature.



Abbreviations

GBM, Glioblastoma; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; LncRNA, Long non-coding RNA; DEGs, Differentially expressed genes; GSEA, Gene set enrichment analysis; OS, Overall survival.



References

1. Scott, JG, Berglund, A, Schell, MJ, Mihaylov, I, Fulp, WJ, Yue, B, et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol (2017) 18:202–11. doi: 10.1016/S1470-2045(16)30648-9

2. Wang, C, Li, J, Sinha, S, Peterson, A, Grant, GA, and Yang, F. Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels. Biomaterials (2019) 202:35–44. doi: 10.1016/j.biomaterials.2019.02.024

3. Ostrom, QT, Gittleman, H, Fulop, J, Liu, M, Blanda, R, Kromer, C, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol (2015) 17(Suppl 4):iv1–1iv62. doi: 10.1093/neuonc/nov189

4. Stupp, R, Taillibert, S, Kanner, AA, Kesari, S, Steinberg, DM, Toms, SA, et al. Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. JAMA (2015) 314:2535–43. doi: 10.1001/jama.2015.16669

5. Tan, AC, Ashley, DM, López, GY, Malinzak, M, Friedman, HS, and Khasraw, M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin (2020) 70:299–312. doi: 10.3322/caac.21613

6. Hu, Q, Ye, Y, Chan, LC, Li, Y, Liang, K, Lin, A, et al. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol (2019) 20:835–51. doi: 10.1038/s41590-019-0400-7

7. Peng, Z, Liu, C, and Wu, M. New insights into long noncoding RNAs and their roles in glioma. Mol Cancer (2018) 17:61. doi: 10.1186/s12943-018-0812-2

8. Jalili, V, Matteucci, M, Morelli, MJ, and Masseroli, M. MuSERA: Multiple Sample Enriched Region Assessment. Brief Bioinform (2017) 18:367–81. doi: 10.1093/bib/bbw029

9. Love, MI, Huber, W, and Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol (2014) 15:550. doi: 10.1186/s13059-014-0550-8

10. Yin, T, Cook, D, and Lawrence, M. ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol (2012) 13:R77. doi: 10.1186/gb-2012-13-8-r77

11. Heagerty, PJ, Lumley, T, and Pepe, MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics (2000) 56:337–44. doi: 10.1111/j.0006-341x.2000.00337.x

12. Ellis, SE, Collado-Torres, L, Jaffe, A, and Leek, JT. Improving the value of public RNA-seq expression data by phenotype prediction. Nucleic Acids Res (2018) 46:e54. doi: 10.1093/nar/gky102

13. Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res (2015) 43:e47. doi: 10.1093/nar/gkv007

14. Seyednasrollah, F, Laiho, A, and Elo, LL. Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform (2015) 16:59–70. doi: 10.1093/bib/bbt086

15. Deininger, MH, Wybranietz, WA, Graepler, FT, Lauer, UM, Meyermann, R, and Schluesener, HJ. Endothelial endostatin release is induced by general cell stress and modulated by the nitric oxide/cGMP pathway. FASEB J (2003) 17:1267–76. doi: 10.1096/fj.02-1118com

16. Yang, J, Fan, J, Li, Y, Li, F, Chen, P, Fan, Y, et al. Genome-wide RNAi screening identifies genes inhibiting the migration of glioblastoma cells. PloS One (2013) 8:e61915. doi: 10.1371/journal.pone.0061915

17. Jiang, R, Choi, W, Hu, L, Gerner, EW, Hamilton, SR, and Zhang, W. Activation of polyamine catabolism by N1, N11-diethylnorspermine alters the cellular localization of mTOR and downregulates mTOR protein level in glioblastoma cells. Cancer Biol Ther (2007) 6:1644–8. doi: 10.4161/cbt.6.10.4800

18. Zhang, P, Guo, Z, Zhang, Y, Gao, Z, Ji, N, Wang, D, et al. A preliminary quantitative proteomic analysis of glioblastoma pseudoprogression. Proteome Sci (2015) 13:12. doi: 10.1186/s12953-015-0066-5

19. Izaguirre, DI, Zhu, W, Hai, T, Cheung, HC, Krahe, R, and Cote, GJ. PTBP1-dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis. Mol Carcinog (2012) 51:895–906. doi: 10.1002/mc.20859

20. Xu, J, Hou, X, Pang, L, Sun, S, He, S, Yang, Y, et al. Identification of Dysregulated Competitive Endogenous RNA Networks Driven by Copy Number Variations in Malignant Gliomas. Front Genet (2019) 10:1055. doi: 10.3389/fgene.2019.01055

21. Han, B, Wang, R, Chen, Y, Meng, X, Wu, P, Li, Z, et al. QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway. Cell Oncol (Dordr) (2019) 42:801–13. doi: 10.1007/s13402-019-00463-x

22. Gupta, MK, Polisetty, RV, Sharma, R, Ganesh, RA, Gowda, H, Purohit, AK, et al. Altered transcriptional regulatory proteins in glioblastoma and YBX1 as a potential regulator of tumor invasion. Sci Rep (2019) 9:10986. doi: 10.1038/s41598-019-47360-9

23. Cai, J, Zhang, J, Wu, P, Yang, W, Ye, Q, Chen, Q, et al. Blocking LINC00152 suppresses glioblastoma malignancy by impairing mesenchymal phenotype through the miR-612/AKT2/NF-κB pathway. J Neurooncol (2018) 140:225–36. doi: 10.1007/s11060-018-2951-0

24. Wu, P, Cai, J, Chen, Q, Han, B, Meng, X, Li, Y, et al. Lnc-TALC promotes O6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun (2019) 10:2045. doi: 10.1038/s41467-019-10025-2

25. Ji, J, Xu, R, Ding, K, Bao, G, Zhang, X, Huang, B, et al. Long Noncoding RNA SChLAP1 Forms a Growth-Promoting Complex with HNRNPL in Human Glioblastoma through Stabilization of ACTN4 and Activation of NF-κB Signaling. Clin Cancer Res (2019) 25:6868–81. doi: 10.1158/1078-0432.CCR-19-0747

26. Gong, Z, Hong, F, Wang, H, Zhang, X, and Chen, J. An eight-mRNA signature outperforms the lncRNA-based signature in predicting prognosis of patients with glioblastoma. BMC Med Genet (2020) 21:56. doi: 10.1186/s12881-020-0992-7

27. Budczies, J, Kluck, K, Walther, W, and Stein, U. Decoding and targeting the molecular basis of MACC1-driven metastatic spread: Lessons from big data mining and clinical-experimental approaches. Semin Cancer Biol (2020) 60:365–79. doi: 10.1016/j.semcancer.2019.08.010

28. Kuenzi, BM, and Ideker, T. A census of pathway maps in cancer systems biology. Nat Rev Cancer (2020) 20:233–46. doi: 10.1038/s41568-020-0240-7

29. Starmans, MH, Lieuwes, NG, Span, PN, Haider, S, Dubois, L, Nguyen, F, et al. Independent and functional validation of a multi-tumour-type proliferation signature. Br J Cancer (2012) 107:508–15. doi: 10.1038/bjc.2012.269

30. Subramanian, J, and Simon, R. What should physicians look for in evaluating prognostic gene-expression signatures. Nat Rev Clin Oncol (2010) 7:327–34. doi: 10.1038/nrclinonc.2010.60

31. Lin, A, Li, C, Xing, Z, Hu, Q, Liang, K, Han, L, et al. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol (2016) 18:213–24. doi: 10.1038/ncb3295

32. Wang, Y, Wu, S, Zhu, X, Zhang, L, Deng, J, Li, F, et al. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J Exp Med (2020) 217:jem.20190950. doi: 10.1084/jem.20190950

33. Yang, X, Xiao, Z, Du, X, Huang, L, and Du, G. Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep (2017) 37:555–62. doi: 10.3892/or.2016.5266

34. Liu, C, Zhang, Y, She, X, Fan, L, Li, P, Feng, J, et al. A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol (2018) 11:77. doi: 10.1186/s13045-018-0619-z

35. Pastori, C, Kapranov, P, Penas, C, Peschansky, V, Volmar, CH, Sarkaria, JN, et al. The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation. Proc Natl Acad Sci U S A (2015) 112:8326–31. doi: 10.1073/pnas.1424220112

36. Tan, SK, Pastori, C, Penas, C, Komotar, RJ, Ivan, ME, Wahlestedt, C, et al. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol Cancer (2018) 17:74. doi: 10.1186/s12943-018-0822-0

37. Qu, QH, Jiang, SZ, and Li, XY. LncRNA TBX5-AS1 Regulates the Tumor Progression Through the PI3K/AKT Pathway in Non-Small Cell Lung Cancer. Onco Targets Ther (2020) 13:7949–61. doi: 10.2147/OTT.S255195

38. Shih, JH, Chen, HY, Lin, SC, Yeh, YC, Shen, R, Lang, YD, et al. Integrative analyses of noncoding RNAs reveal the potential mechanisms augmenting tumor malignancy in lung adenocarcinoma. Nucleic Acids Res (2020) 48:1175–91. doi: 10.1093/nar/gkz1149

39. Li, L, Wu, P, Wang, Z, Meng, X, Zha, C, Li, Z, et al. NoncoRNA: a database of experimentally supported non-coding RNAs and drug targets in cancer. J Hematol Oncol (2020) 13:15. doi: 10.1186/s13045-020-00849-7



Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Niu, Sun, Meng, Fang, Zhang, Jiang and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




REVIEW

published: 14 January 2021

doi: 10.3389/fonc.2020.617837

[image: image2]


Exosomal Long Non-Coding RNA: Interaction Between Cancer Cells and Non-Cancer Cells


Shenqi Han 1,2, Yongqiang Qi 1,2, Yiming Luo 1,2, Xiaoping Chen 1,2,3* and Huifang Liang 1,2*


1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 2 Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China, 3 Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China




Edited by:
 You Zhou, First People’s Hospital of Changzhou, China

Reviewed by: 
Jiang Jianping, Fudan University, China
 Yang Shu, Sichuan University, China

*Correspondence:
 Xiaoping Chen
 chenxpchenxp@163.com
 Huifang Liang
 lianghuifang1997@126.com

Specialty section: 
 This article was submitted to Cancer Genetics, a section of the journal Frontiers in Oncology


Received: 15 October 2020

Accepted: 30 November 2020

Published: 14 January 2021

Citation:
Han S, Qi Y, Luo Y, Chen X and Liang H (2021) Exosomal Long Non-Coding RNA: Interaction Between Cancer Cells and Non-Cancer Cells. Front. Oncol. 10:617837. doi: 10.3389/fonc.2020.617837



Exosomes are small membranous vesicles released by many kinds of cells, and are indispensable in cell-to-cell communication by delivering functional biological components both locally and systemically. Long non-coding RNAs (lncRNAs) are long transcripts over 200 nucleotides that exhibit no or limited protein-coding potentials. LncRNAs are dramatic gene expression regulators, and can be selectively sorted into exosomes. Exosomal lncRNAs derived from cancer cells and stromal cells can mediate the generation of pre-metastatic niches (PMNs) and thus promote the progression of cancer. In this review, we summarized the fundamental biology and characteristics of exosomal lncRNAs. Besides, we provided an overview of current research on functions of exosomal lncRNAs between cancer cells and non-cancer cells. A deep understanding of exosomal lncRNAs’ role in cancer will be facilitated to find important implications for cancer development and treatment.
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Introduction

Exosomes are extracellular vesicles (EVs) with a size range of ~40 to 160 nm (average ~100 nm) in diameter from multivesicular bodies (MVBs) fusing with plasma membrane (1). In 1983, Johnstone RM et al. firstly discovered EVs in mature sheep reticulocytes, and named them as exosomes. They considered exosomes as cellular “debris” at that time (2). In 1996, Raposo et al. found that B lymphocytes secreted antigen-presenting exosomes which induced T cell response (3). In 2007, Valadi H. et al. put forward that exosomes containing both messenger RNAs (mRNAs) and microRNAs (miRNAs) can be transferred to another cell, and have function in the new location (4). Subsequently, more and more studies indicated that exosomes can mediate intercellular communication by carrying proteins, DNAs, and RNAs including non-coding RNAs (5). In addition, exosomes were presented in vast majority of body fluids, including plasma (6), urine (7), saliva (8), ascites (9). In tumor milieu, exosomes were derived among different kinds of cells like tumor cells, fibroblasts, and immune cells (10, 11), regulating tumor microenvironment (TME) mainly by autocrine, paracrine, or endocrine way (12). On account of the distinctive role in tumor development and the universality of existence, exosomes high prospects as therapeutic targets as well as the diagnosis biomarkers in cancer.

Long non-coding RNAs (lncRNAs) are defined as transcripts longer than 200 nucleotides that have no or limited protein-coding capacity (13). Owing to highly heterogeneous primary sequence and low expression level, lncRNAs were once believed as transcriptional “noise” (14). Thanks to high-throughput sequencing technology, it is now evident that lncRNAs have formidable functions in regulating gene expression and cell homeostasis. LncRNAs are located in either the cytoplasm or nucleus, which can interact with microRNAs, mRNAs, RNA-binding proteins (RBPs), transcription factors and chromatins, and act as enhancer-like RNAs (15, 16). The complex and extensive roles of lncRNAs in gene regulation are commonly separated into epigenetic, transcriptional and post-transcriptional levels (17). Beyond that, lncRNAs are reported to encode hidden polypeptides by the translation of small open reading frames (smORFs) (18–20). It should be emphasized that lncRNAs function as competing endogenous RNAs (ceRNAs) by sponging microRNAs, and hence inhibit microRNAs interacting with target mRNAs (21, 22). CeRNAs represent a new means of mechanism that involve in two kinds of non-coding RNAs in the same physiological process, which were largely showed in exosomal lncRNA regulation. A significant portion of lncRNAs are oncogenic lncRNAs that are associated with cancer occurrence, progression and outcome. Emerging evidence support the notion that lncRNAs play indispensable characters in proliferation (23), apoptosis (24), metastasis (25), angiogenesis (26), metabolism (27) of cancer (28). For example, lncRNA PTAR upregulated ZEB1 by competitively binding miR-101-3P like sponges, promoting TGF-β induced EMT and invasion in ovarian cancer (29). The diversity of lncRNAs function and mechanism implies a great potential in tumor malignant transformation, and exosomes amplify the function of lncRNAs by means of transporting them to distal region. As a novel way of acting, lncRNAs can be selectively sorted into exosomes and serve as signaling messengers in intercellular communication (4). LncRNAs were wrapped by exosomes and delivered to recipient cells, and then converted cell phenotypes by aforesaid mechanisms. In TME, exosomal lncRNAs have crucial impacts on proliferation, metastasis, angiogenesis, immunosuppression, and chemoresistance. It is fortunate that exosomes’ lipid membranes protect lncRNAs from degradation by ribonuclease. As a result, lncRNAs can be delivered to primary tumor tissue or distant organs safely (30). Therefore, the application of exosome-derived lncRNAs in tumorigenesis, development and treatment has attracted growing attention (31). In this review, we not only summarized basic information of exosomes, but also focused on the latest literatures related to the exosomal lncRNAs in cancers.



Exosome: Generation and Uptake

Exosomes originate from early and late-sorting endosomes formed by inward budding of the cell membranes (32). Subsequently, Late-sorting endosomes mature into MVBs (33). During this process, the endosomal limiting membranes inwardly invaginate and envelope proteins, RNAs and DNAs to form intraluminal vesicles (ILVs), which are the exosomes released to extracellular space subsequently. According to the condition and environment of the cells, MVBs would secret ILVs as exosomes by fusing with cell membrane, which is regulated by several RAB GTPases (including RAS-related protein RAB5, RAB7, RAB11, RAB27, and RAB35) as well as membrane fusion soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex proteins (34). It’s worth mentioning that lncRNAs are involved in the biogenesis of exosomes and tumor development. For example, Wang, F. W. et al. illuminated that lncRNA-APC1 can bind Rab5b mRNA and reduce its stability, leading to reduction of exosomes production, thereby inhibiting colorectal cancer (CRC) growth, metastasis, and angiogenesis (35). Also, MVBs can fuse with lysosomes or autophagosomes to be degraded. The generation of exosomes mainly involves in two sorting mechanisms, including endosomal sorting complex required for transport (ESCRT) pathway and the ESCRT independent pathway (36, 37). However, it is still unclear whether the production of the same exosomes can contain these two sorting methods, or whether the two sorting methods can coexist in one type of cells.

The capturing and uptaking of exosomes are firstly divided into two ways according to whether they enter the cell. One is to rely on the interaction of glycans, lectins, integrins, and other cell adhesion molecules on the surface of exosomes with the cell membrane to directly activate the signaling pathway, or have fusion with the cytoplasm membrane and release cargos into the cytosol (38, 39). The other is be internalized by cells through endocytosis to form endosomes (40), which mainly includes clathrin-dependent endocytosis and clathrin-independent macropinocytosis (41) or phagocytosis (42). Endosomes can release exosomes into the cytoplasm and further release the contents including lncRNAs. The released lncRNAs can exert regulatory effect through various mechanisms, which include sponging miRNAs to regulate target genes, participating alternative splicing or RNA editing by matching with mRNAs, and integrating with RNPs. Besides, lncRNAs can even act as protein-coding RNAs to translate short peptides. In the nucleus, lncRNAs can also interact with transcription factors to promote or suppress gene transcription, induce chromatin remodeling and histone modification, as well as function as enhancers (43–45). What’s more, Endosomes can be degraded by fusing with the lysosomes, or even re-fusing with the cell membranes to release exosomes outside the cell again (Figure 1). However, it is unknown whether the release of endogenous generated and exogenous captured exosomes occur together or separately. In vitro and in vivo experiments have shown that exosomes were more likely to be absorbed by parent cells and can be used to make targeted drug carriers (46). Exosomes’ generation and uptake ultimately depend on the cell type and environment. Therefore, an acknowledged mechanism is requisite to help us further understand the role of exosomes in cell-to-cell communication.




Figure 1 | The main process of exosomal long non-coding RNAs (lncRNAs) formation and release. The formation of exosomes stems from the endocytosis of some membrane proteins at the plasma membrane, forming early and late-sorting endosomes. Then intraluminal vesicles (ILVs) are formed through the inward budding of the late-sorting endosomal membrane with encapsulating the substances like proteins, DNAs and RNAs. Finally, late-sorting endosomes mature to multivesicular bodies (MVBs), which release ILVs as exosomes. Otherwise, they fuse with lysosomes to be degraded. Exosomes can directly recognize and transmit signal to recipient cells, as well as fuse with plasma membrane to release cargos. In the other hand, exosomes can be internalized to form endosomes mainly through clathrin-dependent endocytosis, clathrin-independent macropinocytosis, or phagocytosis. Deeping on the needs of cells, the endosomes release exosomal cargos, fuse with lysosomes for degradation, or even fuse with plasma membrane again to recycle exosomes. The exosomal lncRNAs are subsequently released to regulate cell function in various ways. In the cytoplasm, lncRNAs can affect post-transcriptional levels by binding miRNAs, mRNAs, and proteins. Besides, some lncRNAs can even encode short peptides. In the nucleus, lncRNAs can also interact with transcription factors and chromatins, as well as act as enhancer-like RNAs.





Exosomal Long Non-Coding RNA: Sequencing and Database

The confirmation of exosome derived lncRNA is the first step to start the research, and the ways to obtain the appropriate lncRNA worth studying are various and evolutionary. Four to five years ago, microarray once occupied the mainstream, Qu, L. et al. utilized lncRNA microarray to compare lncRNA expression profiles between parental and sunitinib resistant RCC cells, and finally confirmed the most discrepant lncRNA (47). In recent years, as the cost of high-throughput sequencing decreased, its advantages of high sensitivity, whole-genome coverage, and the ability to explore unknown sequences have been amplified, resulting in a significant increase in high-throughput sequencing applications (48). For example, Yu, S. et al. performed extracellular vesicle long RNA-seq (including lncRNA) on plasma samples collected from 501 subjects, and developed 8 long RNAs for the detection of pancreatic cancer (49). In addition, there are also studies based on star lncRNAs such as HOTAIR and H19 to explore their roles with exosomes in TME (50, 51). Nowadays, a series of exosome databases that collect various public exosome sequencing data are constructed. In exoRBase (http://www.exoRBase.org), 58,330 circular RNAs (circRNAs), 15,501 lncRNAs, and 18,333 mRNAs derived from RNA-seq data analyses of human blood exosomes and experimental validations from published literature are concluded (52). Besides, The exRNA Atlas (http://exrna-atlas.org) is the data repository of the extracellular RNA communication consortium (ERCC), including 7,570 small RNA sequencing and qPCR-derived exRNA profiles from human and mouse biofluids (53). The combination of high-throughput sequencing and exosome databases is conducive to understand the profile of exosomal lncRNAs under specific pathophysiological conditions, facilitating efficient screening of exosomal lncRNAs worthy of study.



Exosomal Long Non-Coding Rna: Functional Roles Between Cancer And Non-Cancer

Intercellular signaling interaction are constructed between cancer cells and non-cancer cells to accelerate malignant progression of cancer. Furthermore, intracellular signaling networks operate by integrated circuits to reprogram gene expression, which induce hallmark capabilities of cancer, such as sustaining proliferation and activating invasion (54). Originally, cell communicated through direct cell-to-cell contact and soluble factors (55). Now, exosomes emerge as vital participants in the intercellular signaling transmission. LncRNAs are key functional molecules that mediate intercellular signaling interaction due to the role in genetic and epigenetic modulation. Hence, growing enthusiasm and energy are devoted to investigating the specific role and mechanism of exosomal lncRNAs in cancer.

In exosomes associated TME, “seed-and-soil” hypothesis (56) has far-reaching implications. The exosomes secreted by tumor cells carry various inflammatory factors and immunosuppressive factors (“fertilizer”), such as macrophage migration inhibitory factor (MIF) (57) and PD-L1 (58), which perform in the surrounding or distant normal tissues or organs, causing vascular leakiness (59), inflammation infiltration (60), extracellular matrix (ECM) remodeling (61), and immune suppression (62). A series of stimulation transform the non-tumor environments into pro-tumorigenic pre-metastatic niches (PMNs) (“soil”), attracting tumor cells (“seeds”) to colonize and grow. Concretely speaking, activated stromal cells can release a lot of cytokines and chemoattractants through exosomes, such as IL-6, IL-8 (63), and S100A9 (64), which trigger the proliferation, invasion, stemness, and chemoresistance of tumor cells. In addition, among tumor cells of different malignant degree, exosomes will also be delivered by paracrine to enhance the overall metastatic burden. Consequently, we divided exosomal lncRNA associated studies into three categories: cancer to non-cancer, cancer to cancer, and non-cancer to cancer (Table 1), which are beneficial to understand the unique and important roles of exosomal lncRNAs in each stage of the interaction between cancer cells and non-cancer cells, so as to provide ideas for the development of targeted diagnostic methods and treatment strategies.


Table 1 | The biological function and mechanism of exosomal long non-coding RNAs (lncRNAs) in cancer.




Cancer to Non-Cancer

Cancer cells derived exosomes can promote non-cancer cells such as endothelial cells, mesenchymal stem cells (MSCs), carcinoma-associated fibroblasts (CAFs), and immune cells to generate PMNs (86). As a valuable kind of biomolecules, lncRNAs play important roles in various pathophysiological processes of forming PMNs, resulting in malignant tumors initiation and progression.

For example, cancer cells derived exosomes can influence endothelial cells to promote angiogenesis (87) which plays a momentous role in tumor proliferation, and induce vascular permeability (88) which is conducive to tumor metastasis (89). MiR-25-3p, a miRNA transferred from CRC cells to endothelial cells via exosomes, promoted vascular permeability and angiogenesis, finally led to hematogenous metastasis in CRC (90). Certainly, exosomal lncRNAs also show significant function in regulating endothelial cells. Bladder cancer (BCa) with lymph node (LN) metastasis has a poor prognosis (91), while PROX1 enhanced lymphatic endothelial cell differentiation and lymphatic budding through constructing interaction with p50 to upregulate VEGFR3 expression level (92). Chen, C. et al. pointed out lncRNA named LNMAT2, which interacted with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) in BCa cells. Under the direction of hnRNPA2B1, LNMAT2 was selectively packed into exosomes and transmitted to human lymphatic endothelial cells (HLECs). Subsequently, LNMAT2 formed a triplex by interacting and integrating with the promoter of PROX1. After epigenetic modification by hnRNPA2B1-mediated H3 lysine 4 trimethylation (H3K4me3), PROX1 transcription was enhanced. Consequently, LNMAT2 mediated lymphangiogenesis and LN metastasis in BCa (67). What’s more, MALAT1 is a well-known lncRNA associated with cancer angiogenesis and metastasis (93). In metastatic epithelial ovarian cancer (EOC), MALAT1 can be transported to human umbilical vein endothelial cells (HUVECs) by exosomes, influencing HUVECs by stimulating the expression of angiogenesis-related genes, such as angiogenin and bFGF (74). Glioma is one of the most malignant cancers of the central nervous system (94). There are numerous literatures relating to exosomal lncRNAs in regulating the angiogenesis of glioma. For example, the long non-coding RNA HOTAIR wrapped by glioma cells’ exosomes induced the proliferation, migration, and tube formation of endothelial cells by increasing the expression of VEGFA (95), a well-known proangiogenic factor (51). Similarly, exosomal lncRNA POU3F3 and CCAT2 also induced angiogenesis in glioma (72, 73).

Furthermore, exosomal lncRNAs delivered to other stromal cells can also change the cells into pro-tumorigenic phenotypes (96). Cancer cells can induce immune tolerance and evade immune surveillance by secreting exosomes (97), which is the major component of PMN creation. For example, γδT cells occupied small proportion of all T lymphocytes but had significant immunosuppressive function as well as positive modulation of immunity (98). Evidence have demonstrated that γδT cell consists an important element of tumor-infiltrating lymphocytes (TILs) and is associated with poor progression and prognosis of breast cancer (99), but considering its positive effect in the innate and adaptive immune systems, a biomarker to identify the truly immunosuppressive subpopulations is urgently requisite. A recent study indicated that exosomal lncRNA SNHG16 was responsible for cross-talk between breast cancer cells and γδ1 T cells, exerting an effect in CD73 expression and resulting in the transformation of γδ1 T cells into the CD73+ immunosuppressive subtype. As a matter of fact, CD73+ γδ1 T cells play a crucial tumor-promoting function in breast cancer microenvironment. As for concrete mechanism, it was speculated that the extraneous SNHG16 activated TGF-β1/SMAD5 pathway by serving as a ceRNA with miR-16-5p in γδ1 T cell (66). Beyond that, macrophages can transform into tumor-associated macrophages (TAMs) under activation by chemokines, inflammatory, and growth factors (100), as well as M1/M2 polarization (101), contributing to the formation of PMNs (102). And evidence have shown exosomal lncRNAs were favorable for this progress. Li, X. et al. figured out that hepatocellular carcinoma (HCC) derived exosomal lncRNA TUC339 induced macrophage activation and polarization. TUC339 was enriched in HCC cells and corresponding exosomes, and over-expression of TUC339 in macrophage cells led to reduced pro-inflammatory cytokine production, decreased co-stimulatory molecule expression, and compromised phagocytosis. Moreover, TUC339 was indispensable for luring M2 polarization. Combined with the transcriptome-wide analysis, cytokine-cytokine receptor interaction et al. may explain the mechanism behind the role of TUC339 (71). LncRNA RUNX2-AS1 was highly expressed in MSCs extracted from multiple myeloma patients (MM-MSCs), and enriched in exosomes of human myeloma cell lines (HMCLs), while RUNX2 was lowly expressed in MM-MSCs. By forming an RNA duplex with RUNX2 pre-mRNA, RUNX2-AS1 interfered RUNX2 pre-mRNA splicing, resulting in the reduction of RUNX2 expression. Ultimately, exosomal lncRNA RUNX2-AS1 mediated decreased osteogenic potential of MSCs, which is the most outstanding character of multiple myeloma (68). In glioma, astrocytes were upon the activation phenotype by exosomes derived from glioma cells carrying lncRNA−ATB, which targeted and suppressed miR-204-3p. And in turn, activated astrocytes promoted the migration and invasion of glioma cells (70).

As noted above, different kinds of cells work together to develop cancer in TME. However, the mutual effects can be bidirectional in some situations. For instance, when HUVECs co-cultured with TAMs derived exosomes, the migration capacity was decreased by targeting miR-146b-5p, which led to the activation of NF-κB phosphorylation. Whereas, when TAMs derived exosomes stimulated HUVECs combining exosomes secreted from EOC cells, the inhibition of HUVECs was reversed. Wu, Q. et al. confirmed two lncRNAs associated with NF-κB phosphorylation in exosomes derived from EOC cells, while the detailed mechanism of exosomal lncRNAs remained unknown (103).

In summary, tumor derived exosomal lncRNAs can transform the state and phenotype of stromal cells to support tumor cells invasion and growth (104). The formation of PMNs triggered by exosomal lncRNAs has become a novel and important focus. Further understanding of their precise mechanisms in stromal cells will provide promising prospects for the prevention and treatment of tumors.



Cancer to Cancer

Except for connecting the communication between cancer cells and stromal cells, exosomes derived from one cancer cell can also transmitted to another cancer cell under different conditions. For instance, resistant cancer cells can confer drug resistance to sensitive cells through exosomes (77). As a result, the invasion and dissemination of cancers are continually proceeding like virus replication, leading to more malignant phenotypes. Recent studies have indicated that exosomal lncRNAs can contribute to this kind of cell-to-cell communication. For example, Qu, L. et al. demonstrated that lncARSR can disseminate sunitinib resistance in renal cell carcinoma (RCC). Mechanistically, upon the interaction with hnRNPA2B1, lncARSR was specifically sorted into exosomes to drug-sensitive cells. And lncARSR bound miR-34 and miR-449 which targeted to AXL and c-MET as a competing endogenous RNA. The activation of AXL/c-MET caused phosphorylation of AKT, ERK, and STAT3 signal pathway, which counteracted sunitinib’s effect. Therefore, sunitinib-sensitive cells were converted into resistant cells. Furthermore, transcription factors FOXO1 and FOXO3a were phosphorylated and degraded by activated AKT, resulting in increased expression of lncARSR. Intriguingly, the whole process formed a positive feedback loop in RCC cells (47). Long non-coding RNA MRPL23-AS1 was highly expressed in exosomes secreted from salivary adenoid cystic carcinoma (SACC) cells. Besides, the RNA-protein complex consisted of MRPL23-AS1 and EZH2 increased H3K27me3 of the E-cadherin promoter region, causing the initiation of epithelial-mesenchymal transition (EMT). Additionally, exosomal MRPL23-AS1 can also contribute to microvascular permeability in pulmonary microvascular endothelial cells. Altogether, SACC patients tended to lung metastasis and low overall survival upon the role of exosomal MRPL23-AS1 (76). Pancreatic ductal adenocarcinoma (PDAC)is one of the most aggressive cancers (105) because of its low diagnostic rate in the early stage and rapid metastasis (106). Li, Z. et al. elucidated that high invasive PDAC cells can release exosomes carrying lncRNA Sox2ot to low invasive PDAC cells. Then, the internalized Sox2ot promoted EMT and stem cell-like properties by competitively binding the miR-200 family. In addition, Sox2ot embedded in exosomes was validated by orthotopic xenograft assay to confirm that the lncRNA can be used as a special biomarker for PDAC diagnosis and prognosis (78). Accumulated evidence have proofed that hypoxia can remodel primary tumor microenvironment via protection from apoptosis (107), activation of EMT (108), abnormal metabolism, as well as microangiogenesis (109), finally, leading to the metastasis of cancer (110). Long non-coding RNA-UCA1 enriched in exosomes derived from hypoxic bladder cancer cells can promote tumor proliferation, migration and invasion though EMT. Regretfully, the authors rarely investigate the detailed function of exosomal lncRNA-UCA1 in bladder cancer cells (79).

As mentioned above, exosomal transmission between cancer cells can increase tumor chemoresistance and metastasis. Since the exosomal lncRNA-mediated intercellular communication occurs in the local area, the study of lncRNA specific antagonists like antisense oligonucleotides (ASOs) (111, 112) will provide powerful aid for conventional chemotherapeutic drugs.



Non-Cancer to Cancer

In the formation of PMNs, stromal cells like macrophages and fibroblasts were stimulated by “fertilizer” such as inflammatory and immunosuppressive factors, then converted into TAMs and CAFs (113). Reciprocally, the TAMs and CAFs would ulteriorly accelerate PMNs establishment and promote tumor dissemination (114). Exosomes play a significant role in such intercellular communication. Thus, considerable attention has been focused on exosomes in the area of non-cancer cells to cancer cells interflow. And here we emphatically stated the studies about exosomal lncRNAs. HIF-1α-stabilizing long non-coding RNA (HISLA) level was positive correlated with poor overall survival of patients with breast cancer in clinical trial. Chen, F. et al. claimed HISLA wrapped by exosomes derived from TAMs can promote aerobic glycolysis, apoptotic resistance and chemoresistance of breast cancer cells. During this pathophysiological process, HIF-1α, a transcription factor, also played a key role in determining glucose glycolysis or oxidation (115). It is well elucidated that TAMs’ exosomal HISLA competitively bound PHD2, preventing PHD2 having synergistic interaction with HIF-1α. Therefore, the hydroxylation and degradation of HIF-1α were inhibited, leading to enhanced aerobic glycolysis and lactate production. Surprisingly, as the highlight of this study, HISLA in macrophages was upregulated by lactate released from glycolytic cancer cells, which established a feed-forward loop between TAMs and cancer cells (83). It is believed that CAFs play a critical character of matrix remodeling in PMNs formation (116). Previous studies have reported that lncRNA H19 contributed to oncogenesis in many kinds of cancer (117). Moreover, it was found that H19 embedded in exosomes from CAFs enhanced stem cell-like features and chemoresistance in CRC. The RNA-binding protein immunoprecipitation (RIP) experiment and luciferase assay were performed to uncover that H19 sponged miR-141 as ceRNA, resulting in the activation of β-catenin pathway (84). A few lncRNAs that block tumorigenesis were reported as well. Exosome-carrying lncRNA PTENP1 transmitted from normal cells to tumor cells was able to increase cell apoptosis, but decrease motility of BCa cells (85).

In conclusion, stromal cells can deliver lncRNAs to cancer cells via exosomes, activating cellular signaling pathways and changing gene expression to accelerate tumor progression. Further studies of this field will offer a novel horizon in exosome associated tumor research, contributing to the delay of tumor deterioration and the improvement of drug efficacy.




Conclusions And Prospects

Cancer is the most lethal disease in the world due to poor diagnosis and prognosis. What’s more, it is still not fully clear how cancer grows and colonizes until now. Exosomes represent a new manner of transporting information between cancer cells and other functional cells. lncRNAs play indispensable characters in cancer by regulating gene expression in diverse approaches. Especially, lncRNAs are involved in exosome-mediated intercellular signaling. In this review, we mainly summarized recent literatures about the biological functions and mechanisms of exosomal lncRNAs in tumor microenvironment (Figure 2). Meanwhile, we introduced fundamental characteristics and research techniques of exosomes. LncRNA-carrying exosomes from cancer cells or stromal cells can deliver pro-tumorigenesis signals to target cells, contributing to the proliferation, metastasis, angiogenesis and chemoresistance of tumor. Exosomal lncRNAs provide us a novel horizon of tumor generation and development. Since exosomes are non-immunogenic, minimal toxic effects, as well as existed in nearly all of body fluids, they are promising to be applied in clinic such as drug transporters.




Figure 2 | The communication of exosomal long non-coding RNAs (lncRNAs) between cancer cells and non-cancer cells in tumor microenvironment. Cancer cells derived exosomal lncRNAs active fibroblasts, macrophages (lncRNA BCRT1, lncRNA TUC339), endothelial cells (lncRNA LNMAT2, lncRNA POU3F3) and suppress immune cells to form the PMN (lncRNA SNHG16). Reciprocally, activated CAFs (lncRNA H19), TAMs (lncRNA HISLA) can also deliver exosomal lncRNAs to promote cancer progression. Moreover, high/low invasive or drug-resistance/sensitive tumor cells can communicate with each other via exosomal lncRNAs as well (lncRNA ARSR, lncRNA MRPL23-AS1). All of the above together promote tumor growth, metastasis, and chemoresistance.



However, there are still a number of issues remain poorly understood. For instance, a few studies have revealed that even when lncRNA expression was low in parental cells, it was enriched in exosomes (118, 119). This implicates that lncRNAs are selectively packaged into exosomes through active or passive mechanisms, such as binding to hnRNPA2B1 (47, 67). Nevertheless, the mechanism initially driving lncRNAs to be sorted into exosomes and its relevance with tumor progression are still elusive.

Additionally, a few limitations impede the in-depth exploration of exosomes, and the clinical translation of their functions. First, the results of many studies are only obtained through in vitro experiments between the two types of assigned cells and in vivo experiments of established animal models (67, 85), which mean that they cannot be confirmed in real pathophysiological conditions. Under these circumstances, if exosomes are served as transport vesicles, the transmission efficiency will not be guaranteed, and the treatment effect may be compromised if exosomes or lncRNAs are used as therapeutic targets. Beyond that, the same lncRNA has been reported to have inconsistent effects in exosomes from different cells and tumors (50, 69, 120). Therefore, it is necessary to control the dose and targeting of exosomal lncRNAs, otherwise, it will affect the homeostasis of the cells and cause great side effects. Based on the above limitations, multiple strategies have been designed for exosome labelling to trace the actual transport path in vivo, such as fluorescence (121, 122), bioluminescence (123), and radioactive isotope labelling (124, 125). In addition, the latest studies are focusing on targeted delivery to upgrade the capacity of recipient cells in capturing exosomes, including ligand-receptor binding (126, 127), pH/charge affinity (128, 129), and magnetic attraction (130). As these methods may be genetically altered or inefficient, we need to explore comprehensive techniques for exosome labelling and targeted delivery to maintain specificity, high efficiency, and native function of exosomes. Second, a large proportion of current studies are on the strength of the mechanism and function of cell and animal experiments, coupling with differences in the expression and prognosis of clinical samples (68, 78). Large-sample multicenter and prospective clinical studies are required to evaluate the authenticity and reliability of clinical application. Third, it is difficult to quantify and standardize exosomal lncRNAs in both experimental and clinical applications due to low abundance of lncRNAs in exosomes (131). Thus, a fast and sensitive analytical method is urgently needed.

With more researches conducted on exosome-derived lncRNAs, it is believed that exosomal lncRNAs will not only help us shed more light on the pathophysiology of tumors, but also be widely used in clinical diagnosis and therapeutics in the near future.
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Colorectal cancer (CRC) is the third most common cancer worldwide. Here, we identified tumor-associated macrophages (TAMs) as regulators of genes in CRC. In total, the expressions of 457 genes were dysregulated after TAM coculture; specifically, 344 genes were up-regulated, and 113 genes were down-regulated. Bioinformatic analysis implied that these TAM-related genes were associated with regulation of the processes of macromolecule metabolism, apoptosis, cell death, programmed cell death, and the response to stress. To further uncover the interplay among these proteins, we constructed a PPI network; 15 key regulators were identified in CRC, including VEGFA, FN1, JUN, CDH1, MAPK8, and FOS. Among the identified genes, we focused on PSMA2 and conducted loss-of-function experiments to validate the functions of PSMA2 in CRC. To further determine the mechanism by which PSMA2 affected CRC, we conducted multiple assays in CRC cell lines and tissues. PSMA2 enhanced the proliferation, migration and invasion of CRC cells. Moreover, our data indicated that PSMA2 expression was dramatically increased in stage 1, stage 2, stage 3, and stage 4 CRC samples. Our data indicated that PSMA2 was one target of miR-132. A miR-132 mimic greatly hindered CRC cell proliferation. In addition, the luciferase assay results revealed that miR-132 directly regulated PSMA2. Moreover, our data indicated that miR-132 expression was greatly decreased in CRC samples, which was associated with longer survival times of CRC patients, implying that miR-132 was a probable biomarker for CRC. Collectively, these data indicate that PSMA2 is a promising target for the therapy of CRC.
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Background

Colorectal cancer (CRC) is regarded as the third most common cancer worldwide, with greatly increasing rates of occurrence and death in China (1, 2). Multiple complex genetic and epigenetic alterations are involved in the progression of CRC (3, 4). For example, FXR modulates the proliferation of intestinal cancer stem cells (5). In colorectal carcinoma, METTL3 facilitates the progression of tumors through an m6A-IGF2BP2-dependent mechanism (6). Recently, non-coding RNAs were reported to exert major effects on CRC (7, 8). For example, colorectal carcinogenesis and glucose metabolism were found to be induced by the long non-coding RNA (lncRNA) GLCC1 via stabilization of c-Myc (9). The lncRNA SATB2-AS1 modulates SATB2 and then impedes tumor metastasis, thus affecting the microenvironment of tumor immune cells in CRC (10). Thus, it is urgent to establish a more accurate prognostic model for CRC and explore the factors driving tumor initiation.

As immune cells, tumor-associated macrophages (TAMs) usually perform important functions in promoting the growth of tumor cells in the TME by repressing the T cell-induced immune response (10–12). The TME directly mediates tumor growth via its interaction with tumor cells (13). TAMs either directly promote tumor cell growth by inducing angiogenesis (14) or indirectly inducing interactions among immune cells in the TME at the primary tumor site (15). TAMs can lead to tumor development through various mechanisms (16). Some studies have implied that an increase in the number of infiltrating macrophages in temporomandibular arthritis is associated with an increased survival rate of CRC patients (17). Sickert et al. and Zhongshan et al. reported that in CRC patients, a reduced number of macrophages were related to an advanced stage of CRC (18). A decrease in the number of CD68+ macrophages resulted from different isoforms of VEGF that were responsible for inducing tumor angiogenesis (19, 20). Several reports have shown that secreted genes participate in the regulation of TAMs during CRC progression. For instance, TAMs secrete VEGF to promote CRC angiogenesis and metastasis (21). Secreted VEGF can stimulate NF-κB activation and induce tumor cells to produce IL-10 in a manner mediated by STAT3 (22). In addition, TAMs are the main component of the tumor microenvironment and are usually associated with tumor metastasis in human cancers. Studies have shown that in CRC animal models, macrophage infiltration induced by lipopolysaccharide (LPS) or high cholesterol diet (HCD) significantly promotes the growth of CRC. LncRNA RPPH1 promotes the metastasis of CRC by interacting with TUBB3 and promoting the exosome-mediated polarization of macrophages M2. Exploring the mechanism of TAMs in CRC growth and metastasis could offer new strategies for the treatment of CRC.

It is well known that inhibition of the proteasome is more toxic in cancer cells than in normal cells (23). Another proteasome subunit gene, PSMD 10, also named Gankyrin or P28, was reported to have proteasome-independent biological functions. PSMD 10 acts as an oncogene by increasing Rb hyperphosphorylation by CDK4 and inducing p53 degradation by MDM2 (23, 24). PSMD2 modulates cell proliferation and cell cycle progression in breast cancer by modulating proteasomal degradation of p21 and p27 (23, 25). PSMC2 is highly up-regulated in pancreatic cancer and induces the proliferation of cancer cells, but blocks apoptosis (24). PSMA2 is widely expressed and encodes a peptidase, a component of the α subunit of the 20S key proteasome complex (26). The proteasome, a complex of multicatalytic proteases, is widely distributed in eukaryotic cells and degrades peptides in an ATP/ubiquitin-dependent manner (27). PSMA2 plays an important role in controlling many cellular activities, such as cell cycle progression (27, 28). However, the exact function of PSMA2 in CRC is unclear (29).

MiRNA is a small non-coding RNA molecule that contains about 22 nucleotides and plays a role in RNA silencing and post-transcriptional regulation of gene expression. By acting as a tumor suppressor and oncogene, the dysregulation of miRNA expression is associated with various cancers. Non-coding RNA plays a key role in the post-transcriptional regulation of mRNA translation and renewal in eukaryotes. miRNA interacts with its target RNA especially through protein-mediated sequence-specific binding, resulting in an extended and highly heterogeneous miRNA-RNA interaction network. In such a network, the competition for binding miRNAs can generate effective positive coupling between its targets. miRNA works mainly by binding to the 3′untranslated region (3′ UTR) of target mRNA. However, it is not clear how miR-132 mediates PSMA2 to regulate the occurrence and development of CRC.

Here, experiments with CRC tissues and cells (HCT-116 and RKO) were performed to explore the transcriptional level of PSMA2. The specific impact of PSMA2 on CRC proliferation and the antagonistic interaction between PSMA2 and miR-132 were validated. In addition, PSMA2/miR-132 signaling pathway-influenced CRC growth was investigated. The current results provide innovative insight into the function of PSMA2 in CRC occurrence and development. In the future, PSMA2 may potentially be a valuable clinical biomarker in CRC.



Materials and Methods


GEO Datasets Analysis

GSE21510 (30), a set of gene expression profile data for CRC, was obtained from the GEO database. All datasets included in the database were composed of more than 10 samples. To obtain the matrix data of each GEO dataset, we performed normalization and log2 transformation. To filter the DEGs in tumor and control tissues, we used the Limma package in R. To integrate the DEGs from the six datasets, we used the RobustRankAggreg (RRA) and limma packages on the basis of a robust rank aggregation method (31). A |log2FC | of >1.5 and an adjusted P value of <0.05 were considered the criteria for filtering DEGs with significant differences.



Functional Enrichment Analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/) (32), facilitated the translation of collected data to biological analysis. The DAVID online tool was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses (33). P  < 0.01 was considered the cut-off criterion.



Collection of Tissue

Thirteen paired CRC tissues and paired adjacent normal tissues of patients undergoing colorectal surgery were obtained from Minhang District Central Hospital (Shanghai, China). After collection, all tissues were immediately frozen in liquid nitrogen and then preserved in an ultralow temperature freezer. The Ethics Committee of Minhang Hospital of Fudan University reviewed, approved and supervised the protocols for all experiments utilizing tissues from human patients, and informed consent forms were obtained from all participants.



Cell Culture and Transfection

HFC, a normal human colorectal cell line provided by Kerafast (ECA001, USA), and two human colorectal cancer cell lines, RKO and HCT-116, provided by ATCC (USA), were seeded in DMEM (Invitrogen) supplemented with 10% FBS (Gibco) and grown in a 37°C incubator with 5% CO2. Si-PSMA2 purchased from GeneCopoeia (China) was transfected into the indicated cells to ablate PSMA2. A miR-132 mimic or miR-132 inhibitor (GeneCopoeia) was transfected into cells to overexpress or suppress miR-132. Accordingly, the si-negative control (si-NC) vector, mimic NC, or inhibitor NC was transfected as the negative controls (GeneCopoeia). The sequences are listed as follows: miR-132 mimic (5′-ACCGUGGCUUUCGAUUGUUACU-3′), mimic NC (5′-CAGGUAAUCAACGCGGAGGUCA-3′), miR-132 inhibitor (5′-AGUAACAAUCGAAAGCCACGGU-3′) and inhibitor NC (5′-CGUGGUGCUCGUGAAGGGUCGG-3′), siPSMA2 (5′-CCATTCATACAGCCATCTT-3′). Prior to transfection with the indicated siRNAs, mimics, or inhibitors, cells were inoculated in 96-well or 6-well plates. Cells were harvested 24 h post incubation.



Extraction and Quantitation of RNA

TRIzol reagent (Invitrogen) was applied to isolate total RNA from cells. To quantify miR-132, we used a Hairpin-it TM miRNA quantitative qPCR kit (GenePharma). The relative gene expression levels of PSMA2 were measured by SYBR Green-based qPCR. GAPDH was utilized as the normalization control. Standard quantification of gene expression levels was conducted with the 2−ΔΔCT method.



CCK-8 Assay

A CCK-8 assay was applied to measure cell viability. CRC cells transfected with the indicated vectors were reseeded at 1 × 103 cells per well in 96-well plates. On days 1, 2, 3, 4, and 5 post plating, cells were harvested for viability measurements. A colored formazan product that was enzymatically converted from CCK-8 was quantified as a readout for mitochondrial dehydrogenase activity. Briefly, a suitable volume of CCK-8 reagent was pipetted into each sample. After 2 h of incubation at 37°C, the cell numbers were determined by measuring the absorbance at 450 nm using a microplate reader (Bio-Tek).



Colony Formation

Colony formation test cells were seeded in a 6-well plate (300 cells per well) and incubated at 37°C for 14 days. Colony scoring: Cells were fixed in 0.5 ml methanol for 30 min and stained with crystal violet for 15 min (Beyotime Biotechnology, Nantong, China). The number of colonies was counted in at least three independent experiments, expressed as mean ± SEM.



Migration and Invasion Assay

The invasion assay was performed in Transwell chambers with membrane filter inserts that were coated with Matrigel (Corning Costar). The same protocols without Matrigel were applied for the migration assay. The chambers were placed in a 24-well plate. Serum-free DMEM was loaded into the upper chambers of Transwell filters. DMEM supplemented with 20% FBS was added to the lower chambers. Cells were only incubated in the upper chambers. After 24 h, cells on the top side of the filter were collected, and the cells that had crossed the membrane were fixed with methanol and stained with DAPI solution (Vazyme, China).



Luciferase Reporter Assay

A Dual Luciferase Reporter Assay System (Promega, WI, USA) was used to assess relative luciferase gene expression according to the manufacturer’s instructions. Briefly, CRC cells were transfected with wild-type/mutant PSMA2 (wt-PSMA2/mut-PSMA2) plasmids containing the luciferase gene and miR-132 inhibitor or mimic. Forty-eight hours post transfection, we detected relative luciferase reporter gene expression at least three times.



Statistical Analysis

Our data are shown as the mean ± standard deviation (SD) values. Comparisons between two groups were analyzed by paired Student’s t-test. One-way ANOVA was applied to analyze the differences among more than two groups. All experiments were performed in triplicate, and data analysis was conducted with SPSS 17.0 (34) (USA), with P < 0.05 suggesting a statistically significant difference.




Results


DEG Identification After Tumor-Associated Macrophage Treatment in Colorectal Cancer

A total of 344 up-regulated genes and 113 down-regulated genes among the 457 DEGs were identified by screening with the Limma/RobustRankAggreg packages and integration with the RRA package. Figure 1A showed the up-regulated and down-regulated genes identified by the integrated analysis.




Figure 1 | DEG identification after TAM treatment in CRC. (A) Demonstrated the increased and decreased genes after the integrated analysis. (B) GO analysis of DEG after TAM treatment in CRC. (C) KEGG analysis of DEG after TAM treatment in CRC.





Functional Enrichment Analysis

To explain the biological functions of the 457 genes differentially expressed after TAM treatment in HCT116 cells, we performed biological process and pathway enrichment analyses. The biological processes primarily involved organization of the extracellular matrix, negative modulation of biological processes and cellular processes, macromolecule metabolic processes, apoptotic process regulation, binding regulation, cell death and cellular processes, as well as programmed cell death regulation and the response to stress (Figure 1B).

KEGG pathway analysis data indicated that these selected genes primarily participated in AGE-RAGE signaling pathway modulation in diabetic complications, amoebiasis, ECM–receptor interactions, focal adhesion, HTLV-I infection, human papillomavirus infection, cancer pathways, the PI3K–Akt signaling pathway, small cell lung cancer, and toxoplasmosis (Figure 1C).



Hub Genes Selection and Analysis

The PPI network of DEGs comprised 334 nodes and 1,568 edges. Fifteen genes, namely, VEGFA, FN1, JUN, CDH1, MAPK8, FOS, CXCL8, EGR1, CDKN1A, PLK1, HSPA5, ITGB1, PPARG, ATF3, and COL1A1, were chosen as hub genes and aggregated together in a module in accordance with the cut-off criterion of a degree ≥ 15 (Figure 2).




Figure 2 | Hub genes selection and analysis. The PPI network of DEGs comprised 334 nodes and 1,568 edges.





PSMA2 Promoted Colorectal Cancer Cell Proliferation

In this study, we focused on exploring the roles of PSMA2, which was connected to 14 different mRNAs, suggesting that it may have a regulatory role in CRC. However, the detailed roles of this gene in CRC remained largely unclear. First, we assessed the PSMA2 expression profile in human CRC tissues. Our data suggested that compared to normal tissues, CRC tissues had high expression of PSMA2 (Figure 3A).




Figure 3 | PSMA2 promotes CRC cell proliferation. (A) PSMA2 mRNA is up-regulated in CRC samples using clinical samples. (B) Transfecting with si-PSMA2 significantly reduced the PSMA2 expression in FHC and two colorectal cancer cell lines. (C) PSMA2 silencing declined RKO and HCT-116 cell proliferation using CCK-8 assay. (D) PSMA2 silencing suppressed the colony formation abilities of RKO and HCT-116 cell. *P < 0.05, **P < 0.01, ***P < 0.001.



RKO and HCT-116 cells were used to evaluate certain effects of PSMA2 on CRC cell proliferation. Si-PSMA2 was separately transfected into the cells indicated above, and the data indicated that the silencing efficiency of PSMA2 was related to the amount of si-PSMA2 transfected to some extent (Figure 3B). The qPCR data showed that the PSMA2 level in CRC cell lines was increased when compared to that in the normal cell line FHC. Transfection with si-PSMA2 significantly reduced PSMA2 expression in FHC cells and the two colorectal cancer cell lines. Then, the proliferation of RKO and HCT-116 cells was assessed with CCK-8 assays. As expected, PSMA2 silencing decreased RKO and HCT-116 cell proliferation. Moreover, we found that PSMA2 silencing suppressed the colony-forming ability of RKO and HCT-116 cells (Figures 3C, D). These results revealed that CRC cell growth was inhibited by PSMA2 silencing.



PSMA2 Promoted Colorectal Cancer Cell Migration and Invasion

Then, the effect of PSMA2 on invasion was assessed by a Transwell assay. As shown in Figures 4A, B, the invasive capacity of RKO and HCT-116 cells was reduced after PSMA2 silencing. Then, the effect of PSMA2 on migration was investigated by a Matrigel Transwell assay. As anticipated, the migratory capacity of RKO and HCT-116 cells was reduced by PSMA2 silencing (Figures 4C, D). Thus, these data demonstrated that the migratory and invasive capacities of CRC cells were enhanced by PSMA2.




Figure 4 | PSMA2 promotes CRC cell migration and invasion. (A, B) The migratory capacity of RKO or HCT-116 cells was inhibited after silencing PSMA2. (C, D) The invasive capacity of RKO or HCT-116 cells was inhibited by PSMA2 silencing. *P < 0.05.





PSMA2 Was a Target of miR-132

In the study, HumanTargetScan was used to predict PSMA2 as a potential target of miR-132 from biological information (http://www.targetscan.org/cgi-bin/targetscan/vert_71/). To further study the interrelationship between miR-132 and PSMA2, miR-132 was transfected into two CRC cell lines, RKO and HCT-116. The expression of miR-132 was validated by qPCR (Figure 5A). PSMA2 expression in RKO and HCT-116 cells with miR-132-overexpression or knockdown was evaluated by qPCR (Figure 5B). As shown in Figure 5B, compared to the corresponding control cells, miR-132-overexpressing cells had obviously lower expression of PSMA2, while miR-132-knockdown cells had significantly higher expression of PSMA2. These findings showed the correlation between miR-132 and PSMA2 in CRC cell lines.




Figure 5 | PSMA2 was a target of miR-132. (A) The transfection efficiency of miR-132 overexpression or knockdown was determined in CRC using RT-PCR. (B) The expression level of PSMA2 was determined after miR-132 overexpression or knockdown. (C) Dual luciferase assay was applied to determine the interaction among miR-132 and PSMA2. *P < 0.05, **P < 0.01, ***P < 0.001.



The online prediction indicated that miR-132 could bind to PSMA2. Then, a wt-PSMA2 plasmid and a mut-PSMA2 plasmid with a 5 bp mutation in the predicted miR-132 binding site were constructed. The abovementioned plasmids and the miR-132 mimic or miR-132 inhibitor were cotransfected into HCT-116 cells to determine luciferase activity. Figure 5C showed that the miR-132 mimic and miR-132 inhibitor greatly decreased and increased, respectively, the luciferase activity of wt-PSMA2. More importantly, the miR-132 binding site mutation reversed the miR-132 inhibitor- or miR-132 mimic-induced changes in luciferase activity. These results revealed that PSMA2 was a target of miR-132.



MiR-132 Suppressed Colorectal Cancer Cell Proliferation

A series of reports stated that miRNAs were critical modulators of tumor cell proliferation (35, 36). MiR-132 is a new candidate due to its inhibitory activity on cancer cells. Here, proliferation assays were applied to identify the specific effect of miR-132 on CRC. The CCK-8 assay revealed that overexpression of miR-132 reduced but miR-132 inhibition improved RKO and HCT-116 cell viability (Figure 6).




Figure 6 | MiR-132 suppresses CRC cell proliferation. (A, B) The HCT-116 cell viability after miR-132 overexpression or knockdown was detected using CCK-8 assay. (C, D) The RKO cell viability after miR-132 overexpression or knockdown was detected using CCK-8 assay. *P < 0.05, **P < 0.01.





PSMA2 Was Up-Regulated and miR-132 Was Down-Regulated in Colorectal Cancer Samples

Then, we evaluated the expression of miR-132 and PSMA2 in CRC using the TCGA dataset. Our data showed that compared to normal tissues, both colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) tissues expressed low levels of miR-132 (Figure 7). However, we found that PSMA2 was significantly up-regulated in both COAD and READ samples. Next, Kaplan–Meier survival analysis was performed to evaluate the correlation between PSMA2 and miR-132 expression and overall survival time. The results demonstrated that CRC patients with higher expression of MIR-132 had longer overall survival times (Figure 8B); however, no significant correlation between PSMA2 expression and survival time was observed in CRC (Figure 8A).




Figure 7 | miR-132 was down-regulated and PSMA2 was up-regulated in CRC samples. (A, B) compared to normal tissues, both colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) tissues lowly expressed miR-132 levels. (C, D) PSMA2 was significantly up-regulated in both COAD and READ samples.






Figure 8 | The correlation between miR-132 or PSMA2 levels and overall survival time in CRC. (A) No significant correlation between PSMA2 expression and survival time was observed in CRC. (B) CRC patients with higher expression of MIR-132 displayed longer overall survival time.






Discussion

TAMs engender a good metastatic microenvironment and are key determinants of the effectiveness of anticancer strategies (37). TAMs have been revealed to have crucial regulatory roles in CRC progression. For instance, CRC metastasis mediated by mesenchymal circulating tumor cells requires crosstalk between cancer cells and TAMs (38). TAMs in CRC patients are associated with expansion of the microvascular bed. CD204-positive TAMs are related to the malignant transformation of colorectal adenomas (39). TAMs have been indicated to be a prognostic and predictive biomarker of stage II colon cancer in patients receiving adjuvant chemotherapy (40). M2-like macrophages promote the invasion of colon cancer cells via matrix metalloproteinases (41). However, the mechanisms by which TAMs affect CRC progression remain largely unknown. Here, 457 TAM-modulated genes were identified. A total of 344 genes were up-regulated, and 113 genes were down-regulated. Bioinformatic analysis revealed that these TAM-associated genes were related to the regulation of macromolecule metabolic processes, apoptotic processes, cell death and programmed cell death regulation and the response to stress. To clarify the interactions among these proteins, we constructed a PPI network. We identified 15 key regulators, including VEGFA, FN1, JUN, CDH1, MAPK8, and FOS, in CRC. Among these genes, we focused on PSMA2 and performed loss-of-function assays to evaluate the potential functions of PSMA2 in CRC.

The biophysical and biochemical clues of tumor-associated extracellular matrix can affect the characteristics of cancer and are therefore essential for malignant tumors. CRC is the most common malignant tumor of the digestive system, and the extracellular matrix organization may affect the tumor characteristics of CRC. A number of studies have shown that ECM–receptor interaction may be related to the occurrence and development of a variety of cancers, including breast cancer, atrial fibrillation, gastric cancer and bladder cancer. Many CRC-related genes studied by previous studies are also enriched in ECM-receptor interaction. Consistent with this article, ECM–receptor interaction might play an important role in CRC. Focal adhesion plays an important role in tumor invasion and metastasis, and can regulate cell function in CRC. The PI3K/AKT-signal pathway is one of the most frequently activated signal-transduction pathways in cancer. It has been reported that the molecular switch in the PI3K–AKT signaling pathway can be used as a potential target for the treatment of CRC.

Previous studies have shown that the expression of VEGFA in human CRC tissues is often down-regulated, miR-150-5p, miR-1249, and microRNA 452 can all regulate the expression of VEGFA and promote the progression of colorectal cancer. FN1 is involved in the process of cell adhesion and migration, and involves various biochemical processes. The up-regulation of FN1 in CRC tissue is a prognostic factor and potential target for CRC treatment. Studies have found that the oncogene transcription factor Jun can inhibit the transcription of miR-22 and play a key role in the progression of CRC. Somatic inactivation of CDH1 is a common early event, and germline mutations can lead to early-onset CRC. MAPK8 accelerates cell proliferation and inhibits the apoptosis of glioblastoma cells. The FOS gene is located on human chromosome 14q21–31 and encodes the nuclear oncoprotein c-Fos. The rs7101 and rs1063169 polymorphisms in the non-coding region of FOS are related to the risk of CRC and the occurrence of CRC. CXCL8 and its receptor are related to the development of various tumor types, especially CRC. The putative tumor suppressor gene EGR1 is transferred in CRC by its code mutations, showing the role in tumorigenesis. Long non-coding RNA CRNDE promotes the proliferation of colorectal cancer cells through epigenetic silencing of CDKN1A expression. The down-regulation of PLK1 is one of the potential mechanisms of the anti-cancer effect of dietary fiber-derived butyrate in CRC. HSPA5 regulates ferroptotic cell death in cancer cells. ITGB1mRNA levels in the recurrence group of CRC patients are up-regulated, which is a potential predictor of CRC recurrence and treatment targets, and predicts the high-risk population of stage II patients. PPARG rs3856806 C>T polymorphism can increase the risk of CRC. ATF3 increases in the serum of CRC patients, which is a potential diagnostic biomarker for CRC patients. COL1A1 can be used as an oncoprotein and can be used as a potential therapeutic target in CRC. We provided more evidence to illustrate the mechanisms in CRC progression.

The functions of PSMA2 in tumorigenesis have been revealed in numerous human cancers. For instance, PAN3-PSMA2 fusion in myelodysplastic syndrome was found to be related to tumorigenesis in acute myeloid leukemia (42). In basal-like breast cancer, knockdown of PSMA2 was found to be associated with both a significant decrease in cell viability and apoptosis induction. In this study, we found that PSMA2 acted as a pivotal node in mediating the effects of TAMs on CRC. Thus, we speculated that PSMA2 was a probable key regulator of CRC tumorigenesis and development. Here, we identified that knockdown of PSMA2 suppressed cell proliferation, migration and invasion, implying that PSMA2 functions as an oncogene in CRC. Moreover, our data indicated that PSMA2 expression was dramatically increased in stage 1, stage 2, stage 3, and stage 4 CRC samples.

MicroRNAs (miRNAs) are small non-coding RNAs that usually suppress messenger RNA (mRNA) translation, reduce mRNA stability, and control genes related to cellular processes, such as inflammation, cell cycle regulation, stress responses, differentiation, apoptosis and migration (43). Moreover, miRNAs participate in the modulation of numerous signaling pathways among most cells, and their dysregulation has been reported to result in cancer occurrence and development. MiR-132 is differentially expressed in a variety of human cancers, including hepatocellular carcinoma, gastric cancer, and breast cancer (44–46). Additionally, miR-132 was shown to participate in the modulation of cell proliferation, apoptosis and metastasis. For instance, miR-132 targets FoxA1 and acts as a tumor suppressor in thyroid cancer (47). MiR-132 inhibits lung cancer cell migration and invasion by preventing USP9X-induced epithelial–mesenchymal transition (48). MiR-132 inhibits ovarian cancer cell proliferation, invasion, and migration by targeting E2F5 (49). MiR-132 impedes the migration and invasion of lung cancer cells by targeting SOX4 (48). MiR-132 causes the metabolic transition of prostate cancer cells by targeting GLUT1 (50). Additionally, miR-132 ablation in CRC is associated with CRC cell invasion and prognosis (51). MiR-132 suppresses the invasion and metastasis of CRC cells by directly targeting ZEB2 (52) and modulates adriamycin resistance in CRC cells by targeting extracellular signal regulated kinase 1 (53). The RT-PCR and luciferase assay results revealed that PSMA2 was one target of miR-132. In addition, our data indicated that miR-132 expression was largely decreased in CRC samples, which was associated with longer survival times of CRC patients, implying that miR-132 is a probable biomarker for CRC.

In addition, our research also initially revealed the influence of PSMA2/miR-132 signaling pathway on the growth of CRC. As far as we know, there is no report about PSMA2/miR-132 in human cancer. We reported for the first time the interaction of PSMA2 and miR-132 in CRC, which provides a new direction for CRC research.

This study has some limitations. It is necessary to collect clinical samples and use clinical samples to confirm the expression of miR-132. In addition, the regulation between miR-132 and macrophages needs further study. Finally, whether macrophages regulate the expression of PSMA2 through miR-132 or other ways will also be explained in the next study.

Taken together, we identified TAM-regulated genes in CRC and constructed a PPI network to reveal the interactions among the selected genes. PSMA2 was identified as a key gene involved in modulating the effects of TAMs on CRC. We showed for the first time that PSMA2 might promote CRC cell proliferation, invasion, and metastasis. In addition, we found that PSMA2 was a target of miR-132, and miR-132 was significantly related to the survival time of CRC patients. miR-132 mimic significantly inhibits the proliferation of CRC cells. The miR-132/PSMA2 axis may be a key mechanism that mediates the development of CRC. These findings are expected to provide a new strategy for CRC treatment.
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Liquid biopsy, which generally refers to the analysis of biological components such as circulating nuclear acids and circulating tumor cells in body fluids, particularly in peripheral blood, has shown good capacity to overcome several limitations faced by conventional tissue biopsies. Emerging evidence in recent decades has confirmed the promising role of liquid biopsy in the clinical management of various cancers, including colorectal cancer, which is one of the most prevalent cancers and the second leading cause of cancer-related deaths worldwide. Despite the challenges and poor clinical outcomes, patients with metastatic colorectal cancer can expect potential clinical benefits with liquid biopsy. Therefore, in this review, we focus on the clinical prospects of liquid biopsy in metastatic colorectal cancer, specifically with regard to the recently discovered various biomarkers identified on liquid biopsy. These biomarkers have been shown to be potentially useful in multiple aspects of metastatic colorectal cancer, such as auxiliary diagnosis of metastasis, prognosis prediction, and monitoring of therapy response.
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INTRODUCTION

One of the most prevalent cancers worldwide, colorectal cancer (CRC) is the second leading cause of cancer-related mortality (Bray et al., 2018). Metastatic CRC constitutes an inevitable challenge for clinical management because of the considerably worse survival of metastatic patients compared to patients with non-metastatic CRC (Dekker et al., 2019). Approximately one quarter of CRC patients have metastasis when they are diagnosed and a considerable number of non-metastatic patients postoperatively develop metastasis. Eventually, more than half of all CRC patients will progress to metastatic disease and require corresponding therapy to prolong survival (Labianca et al., 2013; Siegel et al., 2020). Thus, early detection of CRC patients at high risk of developing metastatic CRC is crucial for early intervention to improve patient outcomes and save treatment costs. Current therapies for metastatic CRC patients include surgical resection, chemotherapy, targeted therapy, and immunotherapy (Woo and Jung, 2017; Chakedis and Schmidt, 2018; Nappi et al., 2018; Wrobel and Ahmed, 2019). The individualized selection and sequence of therapies usually differ noticeably based on findings on multidisciplinary evaluation of CRC patients. Therefore, biomarkers, including diagnostic, prognostic, and predictive factors obtained from cancer biopsies are critically important for guiding the therapeutic strategy for patients with metastatic CRC.

Owing to the intratumoral heterogeneity and dynamics of cancer genome modifications of the treatment or the development of cancer (Yates and Campbell, 2012; McGranahan and Swanton, 2015), routine tissue biopsies have a limited capacity to comprehensively obtain real-time information. There is an urgent need for a biopsy method without the disadvantages of tissue biopsy such as patient discomfort, risk of tumor seeding, limited sample accessibility, and procedural complications. The development of precision medicine could potentially eliminate the abovementioned limitations by liquid biopsy, which generally refers to the testing of biological components obtained from body fluids, especially whole blood. Several recent excellent reviews have discussed the application and potential scenarios of liquid biopsy in CRC (Gargalionis and Papavassiliou, 2017; Klein-Scory et al., 2018; Normanno et al., 2018; Tarazona and Cervantes, 2018; Wills et al., 2018; Yamada et al., 2019; Ding et al., 2020). Herein, we focus on the current application and clinical perspectives of liquid biopsy in metastatic CRC, particularly on advances in the discovery of potential roles of liquid biopsy in diagnosing metastasis, prognosis assessment, and therapy response monitoring.



METHODS OF LIQUID BIOPSY

The analytes of liquid biopsy mainly refer to circulating tumor DNA (ctDNA), circulating tumor cells (CTC), and circulating non-coding RNAs, which include non-coding RNAs released by cancer cells into the circulation and those traveling inside exosomes (Poulet et al., 2019; Rapado-González et al., 2019). Following a brief introduction of each analyte, their performance consistency with tissue biopsy, especially in metastatic CRC, is reviewed and compared in this section.

The fragmented DNA released by tumor cells into the circulating system constitute CtDNA, which carry the genetic information of both primary-site and metastatic-site tumors, and are mainly detected by PCR and next-generation sequencing (NGS) in liquid biopsy. The most sensitive PCR-based methods (e.g., digital PCR) detect unique hotspots or well-identified mutations, whereas NGS-based methods have greater advantage in broad-range screening of mutations (Franczak et al., 2019). Several studies that evaluated the concordance between the detection of plasma-based ctDNA and tissue biopsy-based genomic DNA in metastatic CRC confirmed a high overall agreement (Grasselli et al., 2017; Bando et al., 2019; Galbiati et al., 2019; Kang et al., 2020; Yu et al., 2020). A prospective retrospective cohort study that enrolled 146 metastatic CRC patients compared the RAS mutational status by the plasma ctDNA-BEAMing (digital PCR) and tissue reference methods, and showed an 89.7% concordance rate (Grasselli et al., 2017). A similar agreement of 86.4% was recently demonstrated in another multicenter prospective study of 280 patients with metastatic CRC (Bando et al., 2019). A higher concordance rate of 92% between plasma ctDNA detected by digital PCR and tissue reference DNA was identified in common KRAS and BRAF mutations among 150 patients with metastatic CRC (Yu et al., 2020). However, another study reported a low concordance of 63.3% for the KRAS gene, which was explained by the different timings of liquid and tissue biopsies of the patients (Galbiati et al., 2019), and highlights the distinct mutational profiles among patients with different cancer stages. Conversely, ctDNA detected by NGS and tumor genomic DNA showed high agreement. Using ultra-deep target sequencing, Kang et al. (2020) investigated mutations in 10 genes (38-kb length) from ctDNA and genomic DNA derived from matched tumor tissues, and found an overall 93% concordance rate.

Primary tumors or metastases shed CTC that circulate in peripheral blood and can be isolated by various methods based on epithelial markers expressed on the cell surface or on the physiological properties of cells (Pantel and Speicher, 2016; Cabel et al., 2017). The detection capacities of CTC and ctDNA for metastatic CRC were, respectively, evaluated in parallel in a cohort of 20 patients; ctDNA could be detected in all patients with metastatic CRC, whereas CTC were detectable in only one third of the patients (Germano et al., 2018). Buim et al. (2015) analyzed KRAS mutations in both CTC and matched primary tumor samples, and observed a concordance rate of 71% between CTC and tissues. Another study showed 50% KRAS mutation-status agreement between CTC and matched primary tumors of patients with metastatic colon cancer (Fabbri et al., 2013).

Studies have indicated that, besides ctDNA and CTC, circulating non-coding RNAs are emerging as important biomarkers for the clinical management of CRC patients (Rapado-González et al., 2019; Baassiri et al., 2020). In body fluids, circulating non-coding RNA mainly exist in either the cell-free state or the exosomal form. Exosomes are nano-sized extracellular vesicles secreted by various cell types and can be isolated using ultracentrifugation, density-based separation, and antibody-based immune-affinity capture (Greening et al., 2015). Furthermore, the intra-exosomal expression levels of non-coding RNAs could be evaluated. In a study of 326 CRC patients, the expression levels of exosomal miR-21 significantly correlated with those of the CRC tissue miR-21 (Tsukamoto et al., 2017). Similar correlations have been reported for the expression levels of miR-122 (Sun et al., 2020), miR-25-3p (Zeng et al., 2018), etc. The strengths and limitations of the abovementioned approaches are shown in Table 1 (Jia et al., 2017; Nordgård et al., 2018; Normanno et al., 2018; Burz and Rosca, 2019; Pantel and Alix-Panabières, 2019).


TABLE 1. Strengths and limitations of applying ctDNA, CTC, and non-coding RNA (Jia et al., 2017; Nordgård et al., 2018; Normanno et al., 2018; Burz and Rosca, 2019; Pantel and Alix-Panabières, 2019).
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Roles of Liquid Biopsy in Metastatic Crc

The clear advantages of liquid biopsy, compared with routine tissue-based methods, have generated interest in the application of non-invasive hematological methods to clinical oncology that has steadily increased in the past decades. From the clinical perspective of metastatic CRC, multiple aspects of liquid biopsy, primarily for the identification of diagnostic roles for metastasis, prognostic biomarkers, and monitoring the therapy response, have been explored.


Auxiliary Staging: Metastasis Diagnosis

Apart from the driver mutations shared with the primary tumor, metastatic cancers often carry new mutations, which may play essential roles in the metastatic process (Turajlic and Swanton, 2016; Robinson et al., 2017). The molecular landscape of metastatic tumors, rather than that of exclusive primary tumors, is preferably used to guide potential therapies or clinical trials for patients with metastatic cancer (Steeg, 2016). A review recently summarized the potential and methods of tumor metastasis prediction from genome sequencing data using various tools based on machine learning, protein–network, or biological pathways (Yuan et al., 2019). Liquid biopsy is capable of detecting emerging mutations in metastatic CRC. A study of 22 CRC patients with liver metastases compared NGS and digital PCR detection [sensitivity of 64% (23/36) and 89% (32/36)] of metastasis-related mutations in peripheral blood samples (Furuki et al., 2018). Another study conducted whole-exome sequencing of ctDNA in plasma samples, and used “differential presence of exon (DPE) analysis” to distinguish between metastatic and non-metastatic CRC, and the results imply that DPE characteristics might have a diagnostic value for CRC patients (Olmedillas-López et al., 2018). The association between the ctDNA level and CRC stage has been studied. Yang et al. (2018) analyzed ctDNA levels in 47 CRC patients in early or late cancer stages and found that Stage IV patients had significantly higher ctDNA concentrations than Stage I patients. These studies support the implication that ctDNA characteristics could facilitate the diagnosis of metastatic CRC.

The CTC are well known to play important roles in tumor metastasis (Massagué and Obenauf, 2016; Dasgupta et al., 2017; Micalizzi et al., 2017). Based 2 years of follow-up data and a microfluidic device utilizing antibody-conjugated non-fouling coating to capture and enumerate CTC, a multicohort study that included healthy control, non-metastatic, and metastatic CRC patients explored the correlation between neoplasm progression and CTC, and showed that a high CTC count was significantly associated with tumor progression, metastasis, and future occurrence of distant metastases in non-metastatic CRC patients (Tsai et al., 2016). An earlier study showed that liver metastasis in CRC patients was associated with apoptotic CTC, instead of intact CTC, in the peripheral blood (Allen et al., 2014).

Non-coding RNAs, especially the more studied microRNAs, are involved in tumor cell invasion, migration, and progression in CRC (Cekaite et al., 2016). The expression of circulating non-coding RNA generally reflects the profiles of both primary tumor and metastatic lesions, and non-coding RNA has potential application as a biomarker for the detection of metastatic cancer. Therefore, a study of CRC patients with or without liver metastases showed that the serum miR-29a expression level could, with 75% sensitivity and specificity, help to differentiate between patients with metastatic and non-metastatic CRC (Wang and Gu, 2012). A high serum miR-200c level was significantly associated with metastasis in CRC (Toiyama et al., 2014), and the serum miR-203 level significantly increased in relation to the tumor stage, especially in patients with liver or systemic metastasis (Hur et al., 2017). These results suggest the potential role of these serum microRNAs as metastasis-predictive biomarkers in CRC.

Besides the abovementioned cell-free microRNAs, potential roles of exosomal microRNAs in diagnosing metastasis have been extensively investigated. For example, the high expression of serum exosomal miR-203 correlated with distant metastasis, and xenograft mouse experiments further showed that miR-203-transfected CRC cells had more liver metastasis than controls (Takano et al., 2017). Exosomal miR-25-3p levels were significantly higher in metastatic CRC than in non-metastatic CRC (Zeng et al., 2018). Screening of differential exosomal microRNAs by sequencing and qPCR showed that exosomal miR-320d could distinguish, with an area under the ROC curve (AUC) of 0.633, a diagnosis of metastatic CRC (Tang et al., 2019). The expression of exosomal miR-139-3p was significantly decreased in metastatic CRC, and could facilitate a diagnosis of metastasis (AUC 0.766) (Liu et al., 2020). Furthermore, the level of exosomal miR-122 increased in CRC, especially in patients with liver metastasis, and its expression could help differentiate between patients with and without liver metastasis (AUC 0.81) (Sun et al., 2020).

Interestingly, other non-coding RNAs besides microRNA in liquid biopsy have emerged as potential biomarkers for metastatic CRC (Baassiri et al., 2020). Exosomal long non-coding RNA (lncRNA) CRNDE-h levels were significantly correlated with metastasis in CRC (Liu et al., 2016). Exosomal circular RNA (circRNA) hsa-circ0004771 was associated with distant metastasis (Pan et al., 2019). These findings suggest that circulating non-coding RNAs serve as novel potential diagnostic biomarkers for metastatic CRC.



Prognostic Biomarkers

With regard to the significance of providing prognostic and predictive information for cancer patients, liquid biopsy is promising as an indispensable clinical test for translational oncology. Increasingly, prognostic biomarkers for metastatic CRC patients have emerged with further research.

A study evaluating the prognostic value of ctDNA in 97 metastatic CRC patients showed that patients carrying more ctDNA had significantly decreased overall survival (OS), and the ctDNA fragmentation level was positively associated with shorter OS in the KRAS/BRAF-mutant cohort of patients, but not in the KRAS/BRAF-wild type cohort, indicating the roles of both qualitative and quantitative ctDNA analyses for prognostic assessment in metastatic CRC (El Messaoudi et al., 2016). This finding concurs with the conclusion of a meta-analysis that high pretreatment ctDNA levels correlated with shorter survival in patients with metastatic CRC (Spindler et al., 2017). A study of the prognostic value of pretreatment ctDNA in patients receiving first-line chemotherapy confirmed that increased ctDNA was associated with worse outcome in metastatic CRC patients (Hamfjord et al., 2019).

Multiple studies have confirmed the promising prognostic roles of baseline CTC for patients with metastatic CRC (Groot Koerkamp et al., 2013; Huang et al., 2015). In a prospective multicenter study comprising 430 metastatic CRC patients, Cohen et al. (2008) showed that patients with three or more baseline CTC had shorter median progression-free survival (PFS) (Cohen et al., 2008). Besides baseline CTC counts, the follow-up CTC levels persisted as strong predictors of PFS and OS during treatment for metastatic CRC patients. Importantly, the study further confirmed that the prognostic value of baseline CTC was unaffected by the characteristics of treatments or patients (Cohen et al., 2009). Besides CTC cell counts, the expression level of some genes in CTC may have prognostic effects. Ning et al. (2018) reported that the level of Akt-2 expression in CTC could predict PFS in metastatic CRC patients, Patients with Akt-2 expression in CTC had a significantly shorter PFS compared with those without Akt-2 expression in CTC.

Several circulating microRNAs are associated with survival in CRC patients (Rapado-González et al., 2019). For metastatic CRC, high plasma miR-141 levels are significantly associated with poor survival in metastatic CRC patients (Cheng et al., 2011). Increased plasma miR-200a and plasma miR-122 levels correlated with decreased OS in metastatic CRC (Maierthaler et al., 2017). Additionally, high levels of extracellular vesicle miR-222 were associated with shorter OS in patients with metastatic CRC (de Miguel Pérez et al., 2020).



Therapy Response Monitoring and Guiding

Efficient markers of therapeutic response in patients with metastatic CRC are very important for guiding individualized treatment optimization strategies. The real-time abilities of liquid biopsy to monitor the dynamics of the cancer disease promisingly meet this demand.

In a prospective study involving 53 metastatic CRC patients receiving standard first-line chemotherapy, Tie et al. (2015) assessed ctDNA levels of patients at several timepoints, corresponding to pretreatment, 3 days post-treatment, and before the next treatment cycle. They found that largely decreased ctDNA levels (≥ 10-fold) before the next cycle were significantly associated with the trend of increased PFS in these patients, and concluded that the response to later radiologic treatment could be predicted by the early dynamics of ctDNA level during first-line chemotherapy (Tie et al., 2015). Garlan et al. (2017) found a similar conclusion among consecutive patients receiving first-line or second-line chemotherapy for metastatic CRC. For metastatic CRC patients diagnosed with wild-type KRAS who received a standard FOLFIRI-cetuximab treatment, Toledo et al. (2017) observed that continued wild-type circulating DNA status was associated with prolonged response to anti-EGFR therapy, whereas clinical deterioration could be predicted by the explosion of mutation events. For patients with RAS/RAF mutation and metastatic CRC who received standard first-line treatment, changes in ctDNA levels during the treatment were significantly correlated with low or high risk of disease progression (Thomsen et al., 2018). In patients with metastatic CRC referred for potentially resectable liver metastasis, a recent study showed that poorer postoperative survival was associated with persistently detectable preoperative ctDNA levels (Bidard et al., 2019). In a multicenter study that enrolled 47 patients with metastatic CRC with indications for resection, 93% (26/28) of patients with R0 resection did not have postoperative ctDNA, and the remaining R0 cases with detectable ctDNA had recurrence after 6 months (Benešová et al., 2019). These findings indicate that the early dynamics of ctDNA concentration would be valuable and efficient for monitoring therapeutic efficacy in patients with metastatic CRC.

Besides the ctDNA concentration, the status of ctDNA modifications, such as methylation, are potential biomarkers for monitoring therapy response in cancer patients. A study to identify corresponding methylated biomarkers of metastatic CRC in liquid biopsy to monitor the therapy response (Barault et al., 2018) showed that the dynamics of five genes (EYA4, GRIA4, ITGA4, MAP3K14-AS1, and MSC) methylation panel, without being affected by chemotherapy or targeted therapy, were significantly associated with the treatment response and PFS in patients with metastatic CRC (Barault et al., 2018). Another study including 123 patients with metastatic CRC treated with combination chemotherapy showed that the levels of neuropeptide Y (NPY) promoter methylation in ctDNA after one cycle of chemotherapy significantly correlated with survival (Thomsen et al., 2020). Of note, an additional advantage of detecting ctDNA methylation is a possible benefit of the liquid biopsy-based follow-up of cancer patients without information on mutation status.

Sastre et al. (2012) demonstrated that metastatic CRC patients with low baseline CTC counts had significantly better survival (both median PFS and OS) than those carrying a high CTC count at baseline. A similar survival bias was associated with the CTC counts after three cycles of chemotherapy plus bevacizumab (Sastre et al., 2012). In patients with wild-type KRAS and metastatic CRC who received monoclonal antibody treatment, changes in CTC levels from baseline to the first follow-up timepoint were significantly correlated with PFS (Souza et al., 2016). Likewise, the dynamics of gene expression in CTC and changes in CTC counts are promising predictors of the outcome of patients with metastatic CRC. A study determined the level of CTC markers, including tissue-specific and epithelial-to-mesenchymal transition genes (GAPDH, VIL1, CLU, TIMP1, LOXL3, and ZEB2), from 50 patients with metastatic CRC at baseline and at follow-up after treatment onset. The authors observed that patients with decreased CTC markers during therapy had significantly longer PFS and OS than those with elevated markers (Barbazán et al., 2014). Notably, treatment-resistant patients were identified by detecting the abovementioned CTC markers corresponding to the expression levels of a six-gene panel, although they were not diagnosed by routine imaging techniques (Barbazán et al., 2014).

Evidence indicates that circulating microRNAs representing non-coding RNAs are promising potential biomarkers for clinical evaluation in the treatment of patients with CRC (Rapado-González et al., 2019; Baassiri et al., 2020). A study of metastatic CRC patients with or without tumor response to 5-fluorouracil- and oxaliplatin-based chemotherapy identified three plasma microRNAs (miR-106a, miR-484, and miR-130b) that are highly expressed in chemoresistant patients. The study found that high pretreatment plasma levels of these miRNAs were significantly associated with shorter PFS (Kjersem et al., 2014). Another study concluded that levels of exosomal miR-21-5p, miR-1246, miR-1229-5p, and miR-96-5p were elevated in patients with chemoresistant advanced CRC. More importantly, the panel of exosomal these four microRNAs could predict (AUC 0.804) the chemotherapy resistance of individuals with advanced CRC (Jin et al., 2019). In patients with metastatic CRC treated with bevacizumab, basal plasma levels of miR-20b-5p, miR-29b-3p, and miR-155-5p correlated with PFS and OS, respectively. This suggests the potential outcome predictive roles of circulating basal miRNA levels in bevacizumab-treated metastatic CRC (Ulivi et al., 2018).



CONCLUSION

Liquid biopsy, as a non-invasive and developing tool, could solve many limitations faced with conventional biopsies (Fernández-Lázaro et al., 2020). Studies have confirmed the promising roles of liquid biopsy in the clinical management of metastatic CRC. In the past decades, various biomarkers detected by liquid biopsy in metastatic CRC were found to be potentially useful in multiple areas, including auxiliary diagnosis of metastasis, prognosis prediction, and monitoring of therapy response. However, the practical clinical applications of these biomarkers in metastatic CRC, as well as other cancers, are very limited. One of the reasons for this is that most of the studies of the potential application of these biomarkers had small cohorts. Therefore, large, multicenter, and prospective clinical validation trials are needed for the implementation of these liquid biopsy-based biomarkers in clinical scenarios. Moreover, the standardization of the liquid biopsy process, for sample collection and subsequent analysis, is necessary in the clinical setting.
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Background: Exercise has a positive impact on patients with osteosarcoma, improving function, reducing disability, maintaining independence and quality of life. Exercise may also directly affect the effectiveness of cancer treatment. Cell division cycle-associated protein 4 (CDCA4) is reported to function importantly during numerous human cancers development. Nevertheless, the details toward CDCA4 function are still to be investigated.

Methods: This study comprehensively analyzed the GSE74194 database and obtained aerobic exercise-related genes. Protein-protein interaction network (PPI) and Gene Ontology (GO) analysis were performed on the differentially expressed genes (DEGs). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and tumor genome atlas (TCGA) data mining were applied to measure aerobic exercise-related gene CDCA4 level in osteosarcoma tissue. We conducted lots of functional experiments to uncover CDCA4 function and its corresponding mechanism in osteosarcoma.

Results: We screened a total of 547 DEGs related to aerobic exercise, of which 373 were up-regulated and 174 were down-regulated. PPI analysis revealed 90 genes that might play key roles. GO analysis showed that aerobic exercise-related DEGs were significantly enriched during the mitotic cell cycle, cell division, mitotic nuclear division and sister chromatid segregation, nuclear division, microtubule cytoskeleton organization involved protein, microtubule-based process, spindle organization, G2/M transition of mitotic cell cycle. Our results indicated that CDCA4 was increased in osteosarcoma tissues and cell lines, and its level had association with high mortality of osteosarcoma patients. Further studies revealed that absence of CDCA4 largely hindered osteosarcoma cancer cell proliferation, invasion, and migration.

Conclusion: Comprehensive bioinformatics analysis improves our understanding of the underlying molecular mechanisms of aerobic exercise on osteosarcoma. This provides evidence for the effect of aerobic exercise on CDCA4 expression. Our data suggested that CDCA4 could facilitate osteosarcoma development, and gave a hint that CDCA4 was a candidate target in the treatment of osteosarcoma, aerobic exercise might help the treatment and prognosis of patients with osteosarcoma.

Keywords: CDCA4, osteosarcoma, aerobic exercise, comprehensive analysis, progression


INTRODUCTION

Osteosarcoma, whose morbidity ranks high in adolescence, is the most common major bone tumor (Lamoureux et al., 2007; Ottaviani and Jaffe, 2009; Taran et al., 2017). At 15–19 years old, the annual morbidity is 8–11 per million each year (Biazzo and De Paolis, 2016). At present, the details relating to oncogenesis are not conclusive. The treatment schedules for osteosarcoma involve surgery, chemotherapy and radiotherapy. However, the therapies effect is far from satisfactory and often recurs (Chen et al., 2018). Currently, 60–65% of patients treated with multi-drug neoadjuvant chemotherapy can be cured, but it also causes a number of side effects which adversely affect the patients quality of life (Picci, 2007; Serra and Hattinger, 2017). Unfortunately, this cure rate has not improved for many years, and the attempts to improve the prognosis through intensive treatment have been unsuccessful. In addition, the drugs presently included in standard chemotherapy are almost exactly the same as those used since the 1970s–80s (Serra and Hattinger, 2017). Thus, new treatments and drugs are needed to improve the overall survival rate of osteosarcoma patients. Through the systematic integration of drug combination screening, bioinformatics analysis, functional research, and correlation with clinical results, Nan et al. (2020) found that imatinib could enhance the effect of metformin on Ewing’s sarcoma by weakening the tumor hypoxia response. Also, through deep RNA sequencing, Xie et al. (2018) revealed the dynamic regulation of miRNA, lncRNAs, and mRNAs in osteosarcoma tumorigenesis and pulmonary metastasis. Despite all these advances have been made utilizing bioinformatics and science technologies to find candidate targets for osteosarcoma treatment, the outcomes of osteosarcoma patients in clinical are not significantly ameliorated (Maehara et al., 2007; Sampson et al., 2015; Bishop et al., 2016). Herein, there is an urgent need to discover available targets and explore effective treatment for osteosarcoma.

The main goal of the new field of sports oncology research is to identify the efficacy and biological mechanisms by which aerobic exercise affects the development and metastasis of cancer (Ashcraft et al., 2016). Studies have found that a combination of aerobic exercise and breathing muscle training can be included in the rehabilitation plan of non-small cell lung cancer (NSCLC) patients with poor conditions after lung resection (Messaggi-Sartor et al., 2019). It is found in breast cancer that both aerobic exercise and resistance exercise cannot prominently improve the cancer-specific quality of life of breast cancer patients undergoing chemotherapy, whereas, it can improve the constitution, body composition and chemotherapy completion rate, without causing lymphedema or major disease events (Schmidt et al., 2015; Nelson, 2016; Dieli-Conwright et al., 2018). The feasibility and use of exercise or physical exercise in the treatment of osteosarcoma and its survivors have also been discussed (Garcia et al., 2020). However, little is known about the effect of aerobic exercise on osteosarcoma and its regulation of osteosarcoma gene expression profile.

Cell division cycle-associated protein 4 (CDCA4), also called SEI-3/hematopoietic progenitor protein, has been reported to have a unique role in regulating the cell cycle (Hayashi et al., 2006; Pang et al., 2019). Presently, there are increasing researches about the impacts of CDCA4 on human diseases. For instance, Pang S et al. revealed that CDCA4 probably participated in the modulation of human triple negative breast cancer (TNBC) progression and CDCA4 might be a newly produced target in TNBC treatment field (Pang et al., 2019). Though Alderman C, et al. reported that microRNA-15a targeted CDCA4 directly and impeded malignant melanoma growth and invasiveness, the veil of CDCA4 was not fully uncovered (Alderman et al., 2016).

Here, we selected the GSE74194 dataset from the Gene Expression Omnibus (GEO) database to identify genes related to aerobic exercise. We have obtained differentially expressed genes (DEGs) between anaerobic exercise and aerobic exercise. A protein-protein interaction network (PPI) was constructed to identify key genes related to aerobic exercise. The function of the selected DEGs was further summarized by Gene Ontology (GO) annotation analysis. Kaplan-Meier plotter analyzed the survival of the CDCA4 gene. Based on The Cancer Genome Atlas (TCGA) database, the gene expression level and clinicopathological characteristics of CDCA4 were analyzed. Our data indicated that osteosarcoma tissues and cell lines highly expressed CDCA4. Functional assays demonstrated that osteosarcoma cancer cell proliferation, invasion, and migration could be dramatically inhibited upon knockdown CDCA4. Our data collectively suggested that aerobic exercise-related CDCA4 displayed as a potential carcinogene in osteosarcoma development, implying that it was a prospective marker for osteosarcoma prognosis.



MATERIALS AND METHODS


Public Data

GSE741941 was downloaded from the GEO database. The database contained transcriptome profiles of aerobic and anaerobic exercises of 10 male subjects. The Cancer Genome Atlas (TCGA)2 with more than 20,000 molecular characteristics of primary cancers and matched normal ones covering 33 cancer types sample, is a landmark cancer genome project. The joint efforts of the National Cancer Institute and the National Human Genome Institute initially led in 2006, bringing together researchers from different disciplines and multiple institutions.



Analysis of GO Term Enrichment and Protein-Protein Interaction Network

The protein-protein interaction (PPI) network was applied to identify primary genes and gene modules participating in aerobic exercise. The detailed differential expressed genes (DEGs) information of PPI network derived from The Search Tool for the Retrieval of Interacting Genes (STRING) database3 and PPI network was established by Cytoscape software. Considering the bioconductor package “GOstats,” the significance of DEGs was assessed from biological process via the GO item enrichment analysis. P < 0.05 indicated statistically significant, representing significant enrichment.



Cell Culture

Human osteosarcoma cell lines (SW1353, U2OS, HOS) and normal osteoblasts (hFOB1.19) were extracted from the cell bank of the Chinese Academy of Sciences (Shanghai). RPMI 1640 (Gibco, Gaithersburg, MD., United States) was cultured with 10% fetal bovine serum (HyClone, Logan, United States) and 1% penicillin/streptomycin (Gibco) in an incubator at 37°C and 5% CO2. All cells were identified by short tandem repeat (STR) and passaged less than 6 months after recovery.



Preparation of Tissues

Twelve-pair glioma tissue and matched normal tissue were isolated from patients with glioma surgically removed at Minhang Hospital (Shanghai, China). No preoperative chemotherapy or radiotherapy were subjected to patients in this research. All studies were approved by The ethics committee of Minhang Hospital and observed with the Declaration of Helsinki. All the subjects received written informed consent.



Transfection of Cells

The cells were seeded into 6-well plates 1 day prior to transfection. The second day, when cell confluency was around 70–80%, Lipofectamine 2000 and small interfering RNA were diluted in serum-free medium for 5 min. Then diluted reagents were gently mixed and maintained for another 20 min. Next, cells were mixed with the mixture and incubated for 4–6 h. After that, cells were harvested for further experiments. The sequences of siRNAs were as follows: si-CDCA4, GCAGCUUUGCCACAUGCUUTT; si-NC, UUCUCCGAACGUGUCACGUTT.



Extraction and Quantation of RNA

Whole RNA was obtained from cultured cells and fresh tissue using Trizol Regent (Invitrogen, United States). cDNA was synthesized using PrimeScript RT Kit (Promega, Madison, Wisconsin, United States), and qRT-PCR was performed using SYBR premixed Ex-TAQTM(Dalian, China) on ABI 7500 real-time PCR system (Foster City applied Biological Systems, United States). GAPDH was an internal control. Determination of relative gene expression 2–ΔΔCt method.



Cell Proliferation Assay

1 × 103 cells were cultured overnight in 96-well plates. CCK-8 (Dojindo, Rockville, United States) was added to the above cells and incubated for 2 h. OD value of 450 nm was measured on an automatic label reader (Bio-RAD, Hercules, United States). Our data was derived from three independent experiments in triplicate.



Transwell Migration Assay

2 × 105 cells were suspended in serum-free medium and then placed in the superior compartment of 8 μm-well Transwells (BD Biosciences, San José, CA, United States). The lower compartment with 10% FBS was regarded as a chemical attractant. After cells incubating at 37°C for 2 days and staining for 15 min, 5 fields of view (× 200) were stochastically chosen under the microscope to calculate translocated cells.



Statistical Analysis

SPSS19.0 statistical software package was executed to analyze statistics. The mean ± standard deviation represented the data, derived from three separate experiments. Student’s t-test and one-way variance were applied to analyze qRT-PCR data. Two-tailed paired Student’s t-test was used for comparison between groups. Survival curves of patients with different CDCA4 expression levels were plotted and compared using Kaplan-Meier method. P < 0.05 suggested significant difference.



RESULTS


Identification of Genes Related to Aerobic Exercise

Twenty subsets of transcriptome data were downloaded from the database GSE74194, including GSM1914302, GSM1914318, GSM1914300, GSM1914314, GSM1914304, GSM1914306, GSM1914310, GSM1914316, GSM1914308, GSM1914312, GSM1914301, GSM1914319, GSM1914317, GSM1914303, GSM1914313, GSM1914313, GSM1914305, and GSM1914315. The mRNA expression levels of the anaerobic and aerobic exercise groups were analyzed using the database. Heatmap analysis showed that there were 547 DEGs between the anaerobic exercise group and the aerobic exercise group, with 373 up-regulated genes and 174 down-regulated genes (Figure 1). Among them, CDCA4 was down-regulated.


[image: image]

FIGURE 1. DEGs hierarchical cluster analysis between aerobic and anaerobic exercise groups in GSE74194 database. Three hundred seventy-three up-regulated DEGs related to aerobic exercise and 174 down-regulated DEGs related to aerobic exercise were identified. Red, up-regulated genes, blue, down-regulated genes.




Analysis of PPI Network and Biological Processes

On basis of the STRING database, Cytoscape software was performed to establish the DEGs PPI network. Ninety nodes were included in this network and probably displayed crucially in aerobic exercise (Figure 2). GO enrichment analysis of DEGs revealed that 20 terms were significantly enriched in biological processes, comprising mitotic cell cycle, cell division, mitotic nuclear division and sister chromatid segregation, nuclear division, microtubule cytoskeleton organization involved protein, microtubule-based process, spindle organization and G2/M transition of mitotic cell cycle (Figure 3).


[image: image]

FIGURE 2. Totally, 90 aerobic exercise-related DEGs were included in PPI network. The nodes indicated proteins. The edges represented proteins’ interaction.



[image: image]

FIGURE 3. GO enrichment analysis of biological process of aerobic exercise-related DEGs with fold change >2.




Highly Expressed CDCA4 in Osteosarcoma Patients Gave Rise to Poor Prognosis

Kaplan-Meier survival analysis revealed that highly expressed CDCA4 in osteosarcoma patients led to shorter overall survival (OS) and disease free survival time (Figures 4A,B). In addition, patients with highly expressed CDCA4 displayed shorter metastasis-free survival (MFS), compared to those with lowly expressed CDCA4 (Figure 4C).


[image: image]

FIGURE 4. Kaplan Meier plotter online tool was conducted to identify the association between CDCA4 expression and the OS time (A), disease-free survival (B), and metastasis-free survival (C) of osteosarcoma patients. Patients with high levels of CDCA4 glioma had lower survival rates, and high levels of CDCA4 were negatively correlated with non-metastatic survival.


In order to explore whether CDCA4 expression was related to the clinicopathological features of osteosarcoma, we further analyzed the clinical data of osteosarcoma patients. Figure 5A showed that compared with normal tissues, CDCA4 expression in Sarcoma (SARC) tissues was dramatically higher. CDCA4 expression was correlated with gender (Figure 5B) and age (Figure 5C) in osteosarcoma patients.


[image: image]

FIGURE 5. (A) According to the TCGA database, CDCA4 was highly expressed in SARC tissues. (B) CDCA4 expression level had correlation with the gender of SARC patients, and the expression was higher in female patients. (C) CDCA4 expression level displayed correlation with the age of SARC patients.




CDCA4 Expression Was Markedly Up-Regulated in Osteosarcoma Tissues and Cell Lines

To investigate CDCA4 functions in osteosarcoma, we measured CDCA4 expression in 12 paired normal and osteosarcoma tissues by qRT-PCR assays. The data indicated compared to normal tissue, CDCA4 expression level was largely raised in osteosarcoma tissues (Figure 6A). Next, we kept on evaluating CDCA4 expression in osteosarcoma cells (HOS, SW1353, and U2OS) and normal cell (hFOB1.19). The results showed that CDCA4 expression was greatly enhanced in osteosarcoma cells (Figure 6B).


[image: image]

FIGURE 6. (A) CDCA4 was more highly expressed in osteosarcoma tumor tissues than normal tissues (n = 12). (B) CDCA4 was more highly expressed in cancer cells than normal cell, *P < 0.05, **P < 0.01.




Reduction of CDCA4 Could Inhibit Osteosarcoma Cell Proliferation, Migration, and Invasion

For clearly clarifying CDCA4 function in osteosarcoma occurrence and development, we transfected siRNA specifically targeting CDCA4 into SW1353 and U2OS cells, respectively. qRT-PCR data suggested that siRNA efficiently knocked down CDCA4 in SW1353 (Figure 7A) and U2OS (Figure 7B) cell. CCK 8 detection results revealed that reduced CDCA4 would suppress SW1353 and U2OS cell proliferation (Figures 7C,D). As shown in Figure 8, the results of Transwell assay showed that knocking out CDCA4 inhibited the invasion and migration of osteosarcoma cells. Taken together, our data indicated that reduction of CDCA4 could result in inhibition of osteosarcoma cell proliferation, migration, and invasion.


[image: image]

FIGURE 7. (A) CDCA4 expression was decreased in SW1353 after transfection of si-CDCA4. (B) CDCA4 expression was decreased in U2OS after transfection of si-CDCA4. (C) Reduced CDCA4 resulted in inhibited SW1353 cell proliferation. (D) Reduced CDCA4 resulted in inhibited U2OS cell proliferation*P < 0.05, **P < 0.01.
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FIGURE 8. (A) Ablated CDCA4 obviously suppressed osteosarcoma cell invasion. (B) Ablated CDCA4 obviously suppressed osteosarcoma cell migration. (C) Detection of invasion and migration of osteosarcoma cells by Transwell assay, **P < 0.01, ***P < 0.001.




DISCUSSION

Aerobic exercise refers to a dynamic, rhythmic exercise involving a large number of muscle groups and aerobic metabolism in the body. Aerobic exercise can improve bone health and restore hemostasis of bone tissue by restoring bone biomarkers including bone alkaline phosphatase and calcium (Santos et al., 2017; Al Dahamsheh et al., 2019). Osteosarcoma is a malignant bone tumor consisting of mesenchymal cells that produce osteoid and immature bone. Successful treatment of osteosarcoma patients requires the close cooperation of an experienced multidisciplinary teams, including pediatric or internal oncologists, surgeons, pathologists, and radiologists (Kager et al., 2017; Xu et al., 2020). Physical exercise has been identified as a low-cost, safe and effective way to treat chronic intractable pain (Senba and Kami, 2017). Through the analysis of gene differential expression on the GSE74194 database, we obtained 547 aerobic exercise-related DEGs, 373 were up-regulated and 174 were down-regulated.

Many genes are reported to participate in osteosarcoma tumorigenesis (Cambien et al., 2008; Daino et al., 2009; Yang et al., 2020). Amid these genes, growth and differentiation factor 15 is one of representative gene. Its expression is increased in metastatic osteosarcoma tissues and has relation with the OS of osteosarcoma patients. Meanwhile, it is significantly related to the time of lung metastasis-free survival (MFS) (Chen et al., 2019). Yin et al. (2017) showed that the metastasis inhibitor gene KISS-1 modulated apoptosis and autophagy processes of osteosarcoma. However, the molecular mechanism of CDCA4 in osteosarcoma has not been clarified.

CDCA4 encodes a protein that belongs to the E2F family of transcription factors and is widely expressed in bone marrow. It can regulate the transcriptional activity of target genes like p53, E2F, JUN in the cell cycle and proliferation (Watanabe-Fukunaga et al., 2005; Hayashi et al., 2006; Tategu et al., 2008). CDCA4 functions importantly during many biological processes, such as proliferation and apoptosis (Hayashi et al., 2006; Xu et al., 2018). Although the research on the structure and function of CDCA4 has been gradually carried out, the depth and breadth still need to be expanded. In this study, 90 key genes related to aerobic exercise were obtained through PPI network analysis, including CDCA4, LMNB2, BUB1, TPX2, PAD51AP1, KIF4A, MEUK, SPDL1, RAN, and POLD2, etc. DAVID method was executed to perform Gene ontology analysis for biological processes (BP). The data revealed that DEGs modulated mitotic cell cycle, cell division, mitotic nuclear division and sister chromatid segregation, nuclear division, microtubule cytoskeleton organization involved protein, microtubule-based process, spindle organization, G2/M transition of mitotic cell cycle. GO enrichment analysis indicated that CDCA4 was largely enriched in cell cycle (P < 0.05). According to the results of the comprehensive analysis, CDCA4 was selected for further research.

In order to explore the role of CDCA4 in osteosarcoma, based on the TCGA database, CDCA4 expression, prognostic value and clinicopathological features in osteosarcoma were analyzed. Compared with normal tissue, CDCA4 expression was significantly increased in SARC tissues. The high CDCA4 level was associated with poor prognosis in SARC patients. In addition, in patients with SARC, CDCA4 expression was related to gender and age. Studies have found that osteosarcoma has a bimodal age distribution, with the first peak in adolescence and the second peak in adulthood (Ottaviani and Jaffe, 2009). The first peak is in the age range of 10–14 years, which coincides with the sudden increase in puberty growth. It is suggested that the sudden increase of osteosarcoma in adolescence is closely related to the occurrence of osteosarcoma. The second peak of osteosarcoma occurred in adults over 65 years old. A second malignancy is more likely to be associated with Paget’s disease (Gennari et al., 2019). It has always been believed that the incidence of osteosarcoma in men is higher than in women. Interestingly, the expression level of CDCA4 is higher in female SARC patients, which may be related to the patients’ aerobic exercise. Taken together, these findings indicated that CDCA4 was a potential novel target for the treatment of SARC patients and a biomarker for prognosis.

Subsequently, qRT-PCR analysis showed that CDCA4 was highly expression in osteosarcoma tissues and cell lines. In vitro functional test data showed that CDCA4 was closely related to the regulation of osteosarcoma cell proliferation, migration and invasion. In summary, our findings indicate that CDCA4 may play a carcinogenic role in osteogenic sarcoma. Interestingly, the analysis of the GSE74194 database found that the expression of CDCA4 decreased after aerobic exercise. The major objective of the exercise-oncology research is to evaluate how aerobic exercise affect the incidence, progression, and metastasis of cancer and relevant biological mechanisms. A number of observational evidence showed that higher levels of exercise were negatively associated with the incidence of several types of cancer (Campbell et al., 2007; Esser et al., 2009; Friedenreich et al., 2010; Jones and Alfano, 2013). Also, there are data showing that exercise after cancer diagnosis may improve prognosis of early-stage cancers such as prostate and colorectal cancer (Ballard-Barbash et al., 2012; Gueritat et al., 2014; Ashcraft et al., 2016). The current hypothesis is that exercise regulates tumor progression by regulating host-tumor interactions (Betof et al., 2013). Tumor progression is regulated by complex and multifaceted interactions between the host, tumor microenvironment and cancer cells which are subject to systemic and local growth factors, cytokines, hormones, and so on. Factors such as IL6,TNF, leptin, and insulin have already been reported to associate with higher recurrence and mortality (Betof et al., 2013). Obviously, manipulating these factors through exercise can influence cancer progression. Therefore, in our study, we guess that aerobic exercise can decrease the expression of oncogene CDCA4 to impede cancer development, indicating that appropriate aerobic exercise might be helpful to the treatment and prognosis of patients with osteosarcoma. All in all, these data suggested that aerobic exercise could affect osteosarcoma by regulating CDCA4 expression which provided a whole new perspective for the study of osteosarcoma.

To sum up, comprehensive bioinformatics analysis provides a simple and flexible method. Through a comprehensive analysis of the GSE74194 database, we have identified key genes related to aerobic exercise. CDCA4 expression was lower in aerobic exercise group than in anaerobic exercise group. Based on the analysis of the TCGA-SARC database, the upregulation of CDCA4 expression was associated with poor prognosis in patients with SARC. We conducted a series of experiments in the study to explore the exact role of CDCA4 in osteosarcoma progression. Our data showed that CDCA4 was elevated in osteosarcoma tissues and cell lines and affected cell proliferation, migration, and invasion. All in all, our research may provide a new perspective for the study of osteogenic sarcoma, indicating aerobic exercise can help improve the treatment of patients with osteogenic sarcoma.
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Prostate cancer (PCa) is one of the most common types of tumors among males worldwide. However, the roles of long noncoding RNAs (lncRNAs) in PCa remain unclear. This study shows that lncRNA FAM83H-AS1 is upregulated in prostate adenocarcinoma, bladder urothelial carcinoma, and kidney renal papillary cell carcinoma samples. Androgen receptor (AR) signaling plays the most important role in PCa tumorigenesis and development. In this study, the results validate that AR signaling is involved in upregulating FAM83H-AS1 expression in PCa cells. Loss-of-function assays demonstrate that FAM83H-AS1 acts as an oncogene in PCa by modulating cell proliferation, cell cycle, and migration. Bioinformatics analysis demonstrates that FAM83H-AS1 is remarkably related to the regulation of the cell cycle and DNA replication through affecting multiple regulators related to these pathways, such as CCNE2. Mechanically, we found that FAM83H-AS1 plays its roles through sponging miR-15a to promote CCNE2 expression. These findings indicate that FAM83H-AS1 is a novel diagnostic and therapeutic marker for PCa.
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Introduction

As one of the most common kinds of tumors (1), the mechanism related to the tumorigenesis and development of prostate cancer (PCa) remains unclear. Most recently, long noncoding RNAs (lncRNAs) were revealed to have a key role in PCa by affecting cell proliferation, metastasis, apoptosis, autophagy, and chemoresistance (2, 3). Mechanically, lncRNAs could regulate multiple PCa-related oncogenes and tumor suppressors (2–6). For example, lncRNA HOTAIR promotes castration-resistant PCa progression through enhancing the transcriptional activity of androgen receptors (ARs) (6). The lncRNA ARLNC1 promotes PCa proliferation through enhancing AR signaling via RNA–RNA interaction (2). SChLAP1 promotes PCa migration and invasion through suppressing SWI/SNF chromatin-modifying complex (3). Exploring the molecular functions of lncRNAs may help us to understand the pathogenesis of PCa.

FAM83H-AS1 is an lncRNA related to cancer progression regulation (7–11). FAM83H-AS1 is reported to be overexpressed in hepatocellular carcinoma (7), colon cancer (8), lung cancer (9), gastric cancer (10), and bladder cancer (11). FAM83H-AS1 is reported to be an oncogene through affecting cell proliferation, migration, radioresistance, and proliferation in cancers (12, 13). For example, FAM83H-AS1 is upregulated and correlated to poor prognosis of glioma (12). Knockdown of this lncRNA induced glioma cell cycle arrest and apoptosis via epigenetically regulating CDKN1A (p21) (12). In ovarian cancer, Dou et al. find that FAM83H-AS1 promotes tumor radioresistance and progression via HuR protein (13). However, the clinical importance and functions of FAM83H-AS1 in prostate cancer are still unknown.

In this study, we performed multi-institutional analysis to identify differently expressed lncRNAs in PCa by using TCGA and GEO data sets. FAM83H-AS1 is reported to be overexpressed in PCa. Bioinformatics analysis and experimental methods were both applied to investigate the roles of FAM83H-AS1 in PCa. Our findings strongly indicate that FAM83H-AS1 is related to PCa progression and is a multifunctional and promising biomarker



Material and Methods


Public Data Set Analysis

The differently expressed mRNAs and lncRNAs in urinary cancers were downloaded from GEPIA data sets. The GSE513217 data set was used to confirm the upregulation of FAM83H-AS1 in PCa. A public ChIP-seq data set GSE55062 was used to confirm that FAM83H-AS1 is a direct target of AR.

The online software STRING (https://string-db.org/cgi/input?sessionId=bqhwhSS4047Q&input_page_show_search=on) was used to construct the protein–protein interaction (PPI) network.



Tissue Collection

Eight normal prostate tissues and 20 PCa samples were acquired from Tongji Hospital between January 2001 and December 2013, and this was approved by the ethics committee of Tongji University. Written informed consent was acquired from all participants.



Cell Culture, Androgen Treatment, and Transfection

All cells were purchased from the ATCC and cultured in an RPMI1640 medium with 10% FBS (GIBCO) at 37°C with 5% CO2.

siRNAs were obtained from GenePharma (GenePharma) and transfected into PCa cells using a RNAiMAX reagent (Invitrogen). The siRNAs are listed in Table S1. All of these assays were conducted according to the supplier’s instructions. The sequences of siRNAs were as follows: si#FAM83H-AS1-1: 5′-CCGGTGGCCTCTTGTTATT-3′, si#FAM83H-AS1-2: 5′- CCTCTTGTTATTGACCCTT-3′, and si-AR: 5′- CCGAGGAGCUUUCCAGAAU-3′.



qRT-PCR Analysis

RNA was isolated using Trizol reagent (Sangon Inc.). Reverse transcription was applied using a PrimeScript™ RT reagent kit (Takara). qRT-PCR was conducted with SYBR green PCR Master Mix (TOYOBO) with the ABI 7500 system. Primers are listed in Table S1. Relative levels of genes were determined using the 2-ΔΔCt method. All of these assays were conducted based on the supplier’s instructions.



Chromatin Immunoprecipitation (ChIP) Assay

ChIP was conducted according to a previous report (14).



Cell Proliferation Assay

CCK-8 (Dojindo) was applied to detect cell proliferation with or without transfection, and 2000 transfected cells were cultured in 96-well plates and detected each day with a microplate reader (Bio-Tek) based on the supplier’s instructions.



Cell Cycle Assay

Transfected cells were fixed in 0.03% triton X-100 at room temperature for 5 min and were stained with propidium oxide with a FACScalibur flow cytometer (BD) and analyzed with ModFit software (Verity Software House) following the supplier’s instructions.



Transwell Assay

For this, 2×105 cells in 100 µL FBS-free medium were transferred to the top chamber of 8-μm culture inserts (Corning) coated with or without 50 µg matrigel matrix dilution (BD, Bedford, MA, USA). Twenty percent FBS-DMEM was added to the lower chamber of the culture inserts. After 24 h, these inserts were treated with methanol for 10 min and stained by DAPI for 10 min. A Leica DMI4000B microscope (Leica Microsystems, Heidelberg, Germany) was utilized for counting migrated and invaded cells in three random fields (×20).



Western Blotting Analysis

Western blotting was conducted according to a previous report (15) using antibodies against CCNE2 (ab226972, Abcam) and GAPDH (ab9485, Abcam).



Dual-Luciferase Reporter Assay

Relative luciferase activity was determined with the Dual‐Luciferase® Reporter Assay System based on supplier’s instructions (Promega).



Statistical Analysis

All results are shown as mean ± SEM. By using GraphPad Prism software, we determined the statistical analyses using T-test. A p < 0.05 was considered statistical significance.




Results


Screening of Differently Expressed lncRNAs in Urinary Cancers

Bladder, kidney, and prostate cancers are the most common cancers in the urinary system. To determine the mechanisms involved in regulating tumor development, we screened differently expressed lncRNAs in these cancers. A total of 687 dysregulated lncRNAs in prostate adenocarcinoma (PRAD), 546 dysregulated lncRNAs in bladder urothelial carcinoma (BLAC), and 368 dysregulated lncRNAs in kidney renal papillary cell carcinoma (KIRP) were identified by using GEPIA (16) data sets (Figure 1A).




Figure 1 | FAM83H-AS1 was dysregulated in PCa, bladder cancer, and kidney cancer. (A) Screening of differently expressed lncRNAs in PRAD, BLAC, and kidney cancer. (B–D) FAM83H-AS1 was enhanced in PRAD (B), BLAC (C), and KIRP (D) by analyzing GEPIA databases. (E) FAM83H-AS1 was enhanced in PRAD by analyzing the GSE5132 database. (F) qRT-PCR analysis of FAM83H-AS1 expressions in 20 PCa samples and 8 normal tissues. (G) qRT-PCR analysis of FAM83H-AS1 expressions in cell lines. *p < 0.05, **p < 0.01; ***p < 0.001.



By integrating the analysis of these lncRNAs, 24 lncRNAs were found to be differently expressed in PRAD, BLAC, and KIRP, indicating that they play regulatory roles in the progression of these cancers (Figure 1A). Among these genes, the present study focused on the novel lncRNA FAM83H-AS1, which is related to the development of multiple human cancers and whose functions in prostate cancer remained largely unknown.



FAM83H-AS1 Is Upregulated in PCa

As presented in Figure 1, the results reveal that FAM83H-AS1 is upregulated in PRAD (Figure 1B) and BLAC (Figure 1C). We also analyzed the expression level of FAM83H-AS1 in kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), and KIRP. Our results show that FAM83H-AS1 is upregulated in KIRP; however, it is downregulated in KIRC and KICH samples compared to normal samples. Furthermore, the GEO data set GSE5132 (17) was used to validate the upregulation of FAM83H-AS1 in PCa. The result demonstrates that this lncRNA is indeed upregulated in PCa compared to normal prostate tissues (Figure 1E).

To validate the expression profile of FAM83H-AS1 in public data sets, we detected FAM83H-AS1 levels in PCa samples. The expression of FAM83H-AS1 in 20 PCa was higher than that in 8 normal prostate tissues, suggesting the potential important role of FAM83H-AS1 in PCa (Figure 1F). We detected the expression of this lncRNA in PCa-related cell lines with RT-PCR. The results indicate that FAM83H-AS1 is upregulated in PCa cell lines compared to normal prostate WPMY-1 cells (Figure 1G).



FAM83H-AS1 Is a Direct Target of AR

AR has a key role in PCa by regulating downstream proteins, lncRNAs, and miRNAs. By conducting coexpression analysis of AR in PCa using a TCGA data set, we identified 2987 potential AR-regulating genes with absolute Pearson correlation coefficient ≥ 0.3, including 254 lncRNAs and 2733 mRNAs. Very interestingly, we observed that FAM83H-AS1 was significantly positively correlated to the expression levels of AR (p < 0.001, R = 0.39) (Figure 2A). To further validate these results, we analyzed public ChIP-seq data sets involved in AR, including GSE55062 (18, 19). As shown in Figure 2, we found AR peaks in FAM83H-AS1 loci significantly increased after DHT treatment compared to the control group by analyzing GSE55062 (Figure 2B).




Figure 2 | FAM83H-AS1 is direct target of AR. (A) Co-expression analysis indicates the significantly positively correlation between FAM83H-AS1 and AR levels inPCa. (B) AR peaks in FAM83H-AS1 loci significantly increased after DHT treatment compared with the control group by analyzing GSE55062. (C) FAM83H-AS1 expression was detected withqRT-PCR after DHT treatment in LNCaP cells. (D, E) qRT-PCR analysis showed FAM83H-AS1 was significantly induced under DHT treatment in a dose-dependentmanner. (F, G) qRT-PCR analysis was used to detect FAM83H-AS1 expression after knockdown of AR in PCa cells. (H) ChIP-PCR assay revealed AR was recruitedto the AREs of FAM83H-AS1 in LNCaP cells after DHT treatment for 4 h. *p < 0.05, **p < 0.01, ***p < 0.001.



We next detected the expression of FAM83H-AS1 in LNCaP cells after treating with DHT. We found that, in LNCaP cells, FAM83H-AS1 upregulation increased after DHT treatment (Figure 2C). Then, a dose-dependent DHT stimulation assay indicated that FAM83H-AS1 was significantly induced in both LNCaP and LNCaP-AI cells (Figures 2D, E). Moreover, we revealed that AR knockdown remarkably decreased FAM83H-AS1 levels in LNCaP and LNCaP-AI cells (Figures 2F, G). Finally, ChIP-PCR assay revealed that AR was remarkably enriched in the AREs of FAM83H-AS1 after treating with DHT for 4 h compared with control (Figure 2H). The potential androgen response elements (AREs) around FAM83H-AS1 transcription start sites were predicted according to the Genomatix database. Collectively, these findings show AR directly regulates FAM83H-AS1.



Function Enrichment of FAM83H-AS1

We performed function enrichment analysis to reveal the potential roles of FAM83H-AS1 using its coexpressing genes according to Guttman et al’s report (18). By using the GEPIA database (http://gepia.cancer-pku.cn/), the top 200 genes were selected as the potential targets of FAM83H-AS1 in PCa.

Go analysis revealed that FAM83H-AS1 was enriched in mitotic cytokinesis, mitotic metaphase plate congression, microtubule-based movement, double-strand break repair, transcription, cell cycle, cytokinesis, telomere capping, and DNA replication, demonstrating that FAM83H-AS1 may play a crucial role in promoting PCa proliferation (Figure 3A). The PPI network was further used to reveal the interaction among 200 genes (Figure 3B).




Figure 3 | Functional enrichment of FAM83H-AS1. (A) The PPI network analysis of FAM83H-AS1 co-expressing genes in PCa. (B) Bioinformatics analysis of FAM83H-AS1 in PCa using the DAVID system.





Knockdown of FAM83H-AS1 Suppressed PCa Cell Proliferation and Migration

We first determined the subcellular location of LINC00304 in LNCaP and DU-145 cells and showed that LINC00304 was located in cytoplasm (Figure 4A). Next, we used siRNAs to evaluate the roles of FAM83H-AS1 in PCa. The knockdown efficiency is shown in Figure 4 (Figures 4B–D). Then, the CCK-8 assay was employed, and the results show FAM83H-AS1 knockdown significantly inhibited the proliferation rate in LNCaP (Figure 4E), PC-3 (Figure 4F), and DU145 (Figure 4G). In addition, a flow cytometry assay showed knockdown of FAM83H-AS1 contributed to the increase of cells in the G1 phase and the decreased of cells in S phase in LNCaP (Figure 4H, Figure S1A) and DU145 (Figure 4I, Figure S1B) cells. These findings indicate that FAM83H-AS1 has a similar role in both AR-positive and AR-negative PCa cells.




Figure 4 | Silencing of FAM83H-AS1 suppressed PCa cell proliferation. (A) FAM83H-AS1 was located in cytoplasm. (B–D) The silencing efficiency of FAM83H-AS1 in LNCaP (B), PC-3 (C) and DU145 (D) were detected using qRT-PCR analysis. (E–G) FAM83H-AS1 knockdown suppressed the viability rate compared to control group in LNCaP (E), PC-3 (F), and DU145 (G). (H, I) Flow cytometry assay showed the percentage of G1 phase and S phase after knockdown of FAM83H-AS1 in LNCaP (G, H) and DU145 (I, J) cells. *p < 0.05; ***p < 0.001.



Moreover, a transwell assay showed silencing of FAM83H-AS1 suppressed PC-3 (Figures 5A, B) and DU145 cell migration (Figures 5C, D).




Figure 5 | Silencing of FAM83H-AS1 suppressed cell metastasis of PCa cells. (A, B) Transwell assay revealed silence of FAM83H-AS1 significantly inhibited the ability of cell migration in PC-3 cells. (C, D) Transwell assay revealed silence of FAM83H-AS1 significantly inhibited the ability of cell migration in DU145 cells. *p < 0.05, **p < 0.01, ***p < 0.001.





FAM83H-AS1 Enhanced CCNE2 Expression via miR-15a

Co-expression analysis indicates that FAM83H-AS1 was significantly correlated to CCNE2 expression in PCa. Moreover, bioinformatics analysis indicates that FAM83H-AS1 has a potential effect on the miR-15a/CCNE2 axis. miR-15a has been demonstrated to suppress the progression of multiple cancers, including PCa. CCNE2 is involved in regulating the cancer cycle, apoptosis, and metastasis.

Then, we detected FAM83H-AS1 expression after overexpressing miR-15a in PCa cells. As present in Figure 8, we find the RNA levels of FAM83H-AS1 were suppressed after transfecting miR-15a in PC-3 (Figure 6A) and DU145 (Figure 6B) cells. After cotransfecting FAM83H-AS1 wild-type or mutant luciferase reporter plasmids with miR-15a in PCa cells, we found the relative luciferase activity of the FAM83H-AS1 wild-type reporter (Figures 6C, D), not FAM83H-AS1 mutant reporter (Figures 6E, F), was suppressed after overexpressing miR-15a in both PC-3 and DU145.




Figure 6 | FAM83H-AS1 sponged miR-15a in PCa cells. (A, B) qRT-PCR analysis was used to detect FAM83H-AS1 expression after overexpression of miR-15a in PC-3 (A) and DU145 (B). (C, D) miR-15a mimic reduced the luciferase activity of the FAM83H-AS1 luciferase reporter vector in PC-3 (C) and DU145 (D). (E, F) miR-15a mimic did not affect the luciferase activity of the FAM83H-AS1 mutant luciferase reporter vector in PC-3 (E) and DU145 (F). *p < 0.05. nsn not significant.



Next, we detected whether FAM83H-AS1 modulates CCNE2 via miR-15a. We found that miR-15a suppressed the luciferase activity of CCNE2 wild type, but not mutant CCNE2 (Figures 7A–D). Moreover, miR-15a decreased the RNA and protein levels of CCNE2 in PCa cells (Figures 7E–G). In addition, our results report that silencing of FAM83H-AS1 suppressed CCNE2 expression in PC-3 and DU145 cells (Figures 7H–J).




Figure 7 | FAM83H-AS1 upregulated CCNE2 via miR-15a in PCa. (A, B) An miR-15a mimic suppressed the luciferase activity of the CCNE2 vector in PC-3 (A) and DU145 (B). (C, D) An miR-15a mimic did not affect the luciferase activity of the CCNE2 mutant vector in PC-3 (C) and DU145 (D). (E, F) qRT-PCR analysis was used to detect CCNE2 expression after overexpression of miR-15a in PC-3 (E) and DU145 (F). (G, H) qRT-PCR analysis was applied to detect CCNE2 expression after knockdown of FAM83H-AS1 in PC-3 (G) and DU145 (H). *p < 0.05, **p < 0.01.





FAM83H-AS1 Enhanced PCa Cell Proliferation and Migration Through CCNE2

To test whether FAM83H-AS1 promoted the progression of PCa though CCNE2, we conducted recuse experiments and found cotransfection of siFAM83H-AS1 and CCNE2 promoted PCa cell proliferation and migration compared to transfection of siFAM83H-AS1 (Figures 8A–D).




Figure 8 | FAM83H-AS1 enhanced PCa progression via CCNE2. (A, B) CCNE2 rescued the proliferation suppression after knockdown of FAM83H-AS1 in both PC-3 (A) and DU145 (B) cells. (C, D) Overexpression of CCNE2 rescued the migration suppression after knockdown of FAM83H-AS1 in both PC-3 (A) and DU145 (B) cells. (E) The results show that CCNE2 was overexpressed in PCa samples compared to normal prostate tissues. (F) The results show that FAMB3H-AS1 significantly correlated to CCNE2 in PCa samples using GEPIA database. *p < 0.05; ***p < 0.001.



Finally, we analyzed the expression levels of CCNE2 in PCa. The results show that CCNE2 was overexpressed in PCa samples compared to normal prostate tissues (Figure 8E). We also analyzed the associations between CCNE2 and FAMB3H-AS1. The results show FAMB3H-AS1 significantly correlates to CCNE2 in PCa samples using GEPIA database (Figure 8F).




Discussion

In this study, we identified that a novel lncRNA, FAM83H-AS1, plays a crucial role in PCa. We show that FAM83H-AS1 is overexpressed in PRAD, BLAC, and KIRP samples. Moreover, the results validate that AR signaling is involved in upregulating FAM83H-AS1 expression in PCa cells. Loss-of-function assays demonstrate that FAM83H-AS1 has a oncogenetic role in PCa by modulating cell proliferation, apoptosis, and migration. Mechanically, we found that FAM83H-AS1 played its roles though sponging miR-15a to promote CCNE2 expression. These findings showed FAM83H-AS1 is a potential diagnostic and therapeutic marker for PCa. Very interestingly, an independent study demonstrates that FAM83H-AS1 was involved in regulating tumorigenesis in bladder cancer, supporting that FAM83H-AS1 is a key regulator in urinary cancers. LncRNAs have a key role in PCa progression. For example, CCAT1 interacts with miR-28-5p to promote PCa cell proliferation (20). PAX5-induced FOXP4-AS1 sponged miR-3184-5p to induce PCa growth (21). HORAS5 is related to castration-resistant PCa through modulating AR signaling (22). The present study focuses on exploring the functions of a novel lncRNA FAM83H-AS1 in PCa. FAM83H-AS1 is widely reported as an oncogene in multiple cancer types (7, 10, 12, 23). This lncRNA could affect cancer cell growth and metastasis in cancer cells. This study shows that FAM83H-AS1 is an AR-regulating lncRNA. Co-expression analysis reveals that FAM83H-AS1 significantly correlates to the expression of AR. An RT-PCR assay shows that FAM83H-AS1 expression was induced after DHT treatment. A ChIP-PCR assay and ChIP-seq show that AR protein is recruited to the AREs of FAM83H-AS1 after DHT treatment compared with the control. These findings show AR directly regulates FAM83H-AS1. FAM83H-AS1 knockdown reduces PCa cell proliferation but promotes cell cycle arrest and apoptosis. Distant metastases remain a challenge in the treatment of PCa. Therefore, we focus on exploring the effects of FAM83H-AS1 on PCa metastasis. This study demonstrates that FAM83H-AS1 silencing suppresses PC-3 and DU145 migration.

Over the past decades, CeRNA regulation of lncRNAs is demonstrated to be a key mechanism driving cancer progression. For example, ABHD11-AS1 modulates papillary thyroid cancer progression by acting as a CeRNA to affect miR-199a-5p activity (24). TTN-AS1 enhances the metastasis of lung cancer via regulating the miR-142-5p/CDK5 axis (25). In this study, we conducted functional enrichment analysis of FAM83H-AS1 in PCa. We show that FAM83H-AS1 is related to the regulation of cell cycle and DNA replication, which is consistent with the above findings. ceRNA network analysis was subsequently conducted and revealed that FAM83H-AS1 may play its role in PCa through the miR-15a/CCNE2 axis. Further validation demonstrates that overexpression of miR-15a remarkably suppressed CCNE2 and FAM83H-AS1 expression. The luciferase reporter assay further shows CCNE2 and FAM83H-AS1 are direct targets of miR-15a. Of note, the rescue assay showed that FAM83H-AS1 promoted cell proliferation and migration of PCa through sponging miR-15a to promote CCNE2 expression in PCa.

miR-15a works as a tumor-suppressive miRNA in gastric cancer (26–28), lung cancer (29, 30), liver cancer (31), and PCa (32, 33). In PCa, the miR-15a/miR-16 cluster was found to suppress tumor invasion by suppressing the TGF-β signaling pathway to inhibit growth through CCND1 and WNT3A (32). In addition, miR-15 and miR-16 are also found to be downregulated in fibroblasts surrounding the prostate tumors. The suppression of miR-15 and miR-16 in fibroblasts enhanced expression of Fgf-2 and Fgfr1 to promote PCa proliferation and migration. Moreover, miR-15a is reported to be reduced in PCa tissues and plasma samples, suggesting it could be a potential biomarker for PCa (34). CCNE2 is a key regulator of cell cycle (35). A recent study shows that CCNE2 is also involved in regulating cancer apoptosis and migration (35, 36). In NSCLC cells, CCNE2 enhances tumor proliferation, invasion, and migration (35). In pancreatic ductal adenocarcinoma, Yang et al. reports that CCNE2 could rescue tigecycline-suppressed cell metastasis.

Several limitations are also included in this study. First, no functional explorations of FAM83H-AS1 in kidney cancer and bladder cancer were performed in this study. In a future study, we will perform more loss- and gain-of-function assays in kidney cancers. Second, the further confirmation of our findings using in vivo assays should strengthen the functional importance of FAM83H-AS1.

In conclusion, we, for the first time, reveal a novel AR-regulated lncRNA FAM83H-AS1 promotes PCa progression via the miR-15a/CCNE2 axis, suggesting that lnc-FAM83H-AS1 may be a potential biomarker for PCa.
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Cancer immunotherapy, as a novel treatment against cancer metastasis and recurrence, has brought a significantly promising and effective therapy for cancer treatments. At present, programmed death 1 (PD-1) and programmed cell death-Ligand 1 (PD-L1) treatment for lung cancer is primarily recognized as an immune checkpoint inhibitor (ICI) to play an anti-tumor effect; however, it remains uncertain regarding of its efficacy though. Thereafter, tumor mutation burden (TMB) was recognized as a high-potential to be a predictive marker for the immune therapy, but it is invasive and costly. Therefore, discovering more immune-related biomarkers that have a guiding role in immunotherapy is a crucial step in the development of immunotherapy. In our study, we proposed a deep convolutional neural network (CNN)-based framework, DeepLRHE, which can efficiently analyze immunological stained pathological images of lung cancer tissues, as well as to identify and explore pathogenesis which can be used for immunological treatment in clinical field. In this study, we used 180 whole slice images (WSIs) of lung cancer downloaded from TCGA which was model training and validation. After two cross-validation used for this model, we compared with the area under the curve (AUC) of multiple mutant genes, TP53 had highest AUC, which reached 0.87, and EGFR, DNMT3A, PBRM1, STK11 also reached ranged from 0.71 to 0.84. The study results showed that the deep learning can used to assist health professionals for target-therapy as well as immunotherapies, therefore to improve the disease prognosis.
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INTRODUCTION

Lung cancer is currently one of the most common malignant tumors and the main cause of death in the world. The Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries showed that the incidence and mortality of lung cancer in my country are 11.6 and 18.4%, respectively, and both ranked first in the world (Bray et al., 2018). By 2020, The American Cancer Society reported that approximately 228,820 lung cancer cases will be diagnosed in the United States and 135,720 people would die from the disease (American Cancer Society, 2020). Currently, surgical treatment such as lobotomy and chemotherapy still remain the first or optimal treatment plan for patients with lung cancer. However, those types of treatments are invasive and have intolerable complications which decrease the quality of life for patients. Therefore, it is very important for health professionals to develop a novel strategy to improve treatment outcomes and improve patient survival time.

In recent years, the emergence of immunotherapy has brought new hope for the cure of tumors. Immunotherapy can restore the balance of the immune system by blocking immune checkpoints, so that T cells can enhance or restore anti-tumor effects, therefore, patients do not have to destroy their own cells with normal cells together. The mechanism of immunotherapy is that cancer growth and spread are not only dependent on tumor cells alone, but also affected by the integrating with the body’s immune system. The immunotherapy for malignant tumor is to stimulate patients’ own immune system to recognize the specific membrane molecules or gene mutation of malignant cells with gene mutation, thereby to induce the tumor cell apoptosis and remove from the body. As immunotherapy has been introduced in clinical field for years, the 5 years survival rate of advanced lung cancer has been improved from less than 5 to 16%, significantly. Therefore, immunotherapy has been a potential candidate for the cancer treatment in the clinical field.

Immunotherapy of lung cancer has been previously failed to introduce on the clinical practice, since it is lack of sufficient load of mutated tumor antigen, suppressed antigen presenting cells (APC) traffic from the tumor, as well lack of the specific biomarker signal for delivering CD4 T cells. Tumor can escape by losing cell antigen or the antigen-presenting molecule MHC class I. PD-L1 is a membrane ligand in lung cancer which is expressed on tumor cells in approximately 50% of lung cancers, and its expression may contribute to poor prognosis by suppressing T-cell function and promoting tumor cell to escape from the body immune response. After binging to cells APCs presenting at tumor cells, the body activates immune response, by activin CD4 T helper cells, CD8 cytotoxic T, and to eliminate or apoptosis of tumor cells (Lesterhuis et al., 2011).

Recently, immunotherapy for lung cancer has sufficiently aroused people’s interest in checkpoint inhibitors, especially PD-1/PD-L1 immune checkpoint inhibitors (ICI). ICI works by regulating the integration of T cells and APC or tumor cells to help suppress the immune response. Compared with empirical therapy, it is more effective in treating patients with complications (Jonathan et al., 2019). To date, most immunological therapy is using antibody to PD/PD-L1, the efficacy depends on the type of tumor, side effect and clinical stage of tumors. FDA approved application PD-1/PD-L1 treatment in advanced squamous and non-squamous. In fact, the PD-1 checkpoint blockade is associated with smoking status, DNA repaired pathway and higher non-synonymous mutation burden, overall, it works better for any types of tumors in advanced stage (Zhang et al., 2018; Wang et al., 2019).

In the era of precision medicine, machine learning has promoted the rapid development of computer-aided diagnosis, and it significantly improved the accuracy and efficiency of doctors in diagnosing patients (Zou et al., 2018; Zou and Ma, 2020). In the lung cancer research, The School of Medicine at New York University used deep learning methods to train hematoxylin-eosin (H&E) slices of lung cancer, and then identified the biomarker genes using for the immunological therapy (Coudray et al., 2018). Immune biomarkers could provide valuable prediction and disease prognoses the process of immunotherapy (Gulley et al., 2017). In addition, Agajanian et al. (2019) used random forests, gradient boosted tree classifiers and deep convolutional neural networks to predict driver gene mutation in the genome data set. In the study, they conducted twice cross-validation, and the results further prove the ability of CNN to extract advanced features.

In order to better understanding the mechanism of the body response to the surrounding microenvironment, it is critical for early evaluation and development of surveillance program by using potential effective biomarkers. In this study, we proposed a novel immunotherapy model based on CNN to predict mutant genes for immunotherapy by analyzing histopathological images of lung cancer stained with H&E images. The predicted biomarkers would play an important role for clinical professionals with designing personalized treatment plans.



MATERIALS AND METHODS


Data Preparation

In this study, we downloaded H&E tissue images of lung cancer from TCGA1. The downloaded H&E images were converted to the SVS format, professional pathologists identified the tumor region and boundary. They discarded the furry and blurred background, the unqualified images as well as the background containing many macrovesicles, inflammatory cells and micro-fibrils and other inferencing factors to ensure the relatively clear images for training (Wang D. et al., 2016).

The cBioportal website2 is an open platform for interactive exploration of multi-dimensional cancer genomics data, which greatly facilitates the processing and analysis of data by researchers (Cerami et al., 2012). We used cBioportal website to analyze immune-related biomarkers, including TP53, EGFR, STK11, polE, polD1, PBRM1, DNMT3A, and KRAS. Furthermore, we marked the relevant biomarkers of H&E images as 1, otherwise mark them as 0. We reviewed and counted the clinical data of patients in the International Cancer Genome Collaboration Group (ICGC).



DeepLRHE Framework

In this study, the DeepLRHE framework was proposed on the basis of CNN, which can process H&E pathological slice images of lung cancer, as shown in Figure 1. It included four steps: annotate the tumor region in the image; standardize the color images; classify the samples; and identify the potential biomarkers in images.


[image: image]

FIGURE 1. H&E tissue slices were processed and predicted immune-related biomarkers. (A) The WSI data from TCGA. (B) The selection and segmentation of the tumor area of images. (C) The denoising of the background influencing factors (i), the normalization of image color (ii). (D) The model training. (E) The heat maps.


The downloaded WSI was screened and the tumor area was depicted as shown in Figure 1B. Since the information contained in the complete tumor region is rich and complex, in order to facilitate training, a non-overlapping 512 × 512 window was used to segment images, while the small tiles containing tumor irrelevant features or unqualified images were discarded, the remaining were prepared for the subsequent processing. In addition, Python software and Gaussian mixture model was used to denoise and normalize the color of small tiles to ensure the quality of model training. The process is shown in Figure 1C. Then, input small blocks with immune-related biomarkers into the CNN+ResNet model with residual blocks for training and classification, as shown in Figure 1D. Finally, collect the results of all small tiles after induction and classification to extract a complete probability heat map.



Image Preprocessing

We used H&E stained images of 180 WSIs with lung cancer downloaded from TCGA. H&E stained images were widely used for tumor diagnosis (Dalton et al., 2000; Le et al., 2012). Therefore, in order to be able to accurately predict the potential biomarkers on the images, an experienced pathologist would annotate the relatively accurate boundaries of the tumor region. The boundaries were shown as the blue dashed line in Figure 1B. In order to facilitate CNN training with images, a 512 × 512 window was used to scan and segment WSI, and small tiles with a background area greater than 75% are discarded.



Denoising and Color Normalization

Background noise such as blank or flurry areas in the H&E slices may cause unclear image features and false positives results, which would significantly influence on model training. In order to address this problem, we used the OpenCV package in Python to remove image noise on H&E slices. We calculated the noise ratio threshold, which is the ratio of the area of the blank and blurred areas in the H&E images to the total area. According to this threshold, the false positive H&E slices were discarded, while retaining the images without background noises. OpenCV also performed edge expansion (filling), smoothing filtering and segmentation processing on H&E images, as shown in Figure 1C. Finally, all the processed image data is randomly divided into training set and validation set at a ratio of 1:1 to prepare for subsequent model training.

In addition, hematoxylin and eosin staining the nucleus and cytoplasm of the slices, might cause the color difference between each H&E slice, thereby to influence the model certain point during training (Bejnordi et al., 2016). In order to standardize the color of image slices without eliminating useful features, the Deep Convolutional Gaussian Mixture Model (DCGMM) was used to identify the color information of the nucleus, cytoplasm, and image background in the input H&E tissue image, and convert them into reference images the color (Zanjani et al., 2018). This method would not transform or change the original features in the image. The DCGMM model is a probability distribution model formed after the linear superposition of N-dimensional Gaussian mixture on the basis of the probabilistic Gaussian mixture model (GMM). Its specific form is as follows:

[image: image]

Where the weight coefficient of the Gaussian mixture model of data x is Wn, which needs to satisfy the condition [image: image] (Bishop, 2006).

E is a normal distribution, mean Vn and covariance matrix Cn are its independent variables, then it satisfies the following formula for random variable xK:

[image: image]

Where [image: image] is the inverse matrix of Cn, and the subsets of xK are uncorrelated.

When Wn is a priori condition, the generation probability of the n -th model of xK is:

[image: image]

Input image data x, the total pixel value of sub-model xk(k = 1,2,3⋯) is E, according to formula (1), the (natural) log likelihood function can be obtained as:

[image: image]

Given CMM, the DCGMM model can be optimized by maximizing the log-likelihood function (formula 4) through the parameter (Wn,Vn,Cn).

This color normalization method is chosen in unsupervised neural network. Unsupervised neural networks are the evolution of more detailed and tighter neural networks obtained from supervised learning. It pays more attention to the coordination between the internal units of the network. This shows that the use of the DCGMM model does not require any assumptions about the content of H&E images or data labels from the outside world, and the connection weight can be adjusted by itself (Sheng-chun and Lin-Xiang, 2006; Wei et al., 2016).

As shown in Figure 2, the original pictures of the H&E slice are in A. After applying DCGMM model, all the nuclei, cytoplasm, and patch backgrounds in picture A were classified into one type of pixel, so that images in B are obtained. This process would not discard the original feature of the pre-processed image.
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FIGURE 2. Color normalization. (A) H&E slice original images. (B) Color normalized images.




Convolutional Neural Network

Convolutional Neural Network (CNN) is a multilayer neural network, which mainly includes input layer, convolutional layer, pooling layer and fully connected layer. It is considered to be the first choice for deep learning on the area of tumor diagnosis. The complete data processing was explained as followings: WSI enters the input layer, sequentially enters to the multiple convolution layers, and output from the merge layer, as shown in Figure 3. The activation function is commonly a RELU layer, and then followed by the pooling layer which is mainly to extract features for dimensional reduction through excitation layer (LeCun et al., 1998). The pathological or atypical features can be extracted and quantified through the CNN model. Furthermore, CNN could also discard the background noise and impurities from the pathological images, complete the segmentation and classification for the tumor region (Weinstein et al., 2009; Xu et al., 2014; Ertosun and Rubin, 2015). Therefore, CNN plays an irreplaceable role in processing pathological images, which is served as a convenient tool for the health professionals to make diagnosis and design individualized treatment (Song et al., 2015).


[image: image]

FIGURE 3. CNN training flowchart.


In order to accurately identify biomarkers of immunotherapy in lung cancer, the H&E images must be classified and trained. The preprocessed images with potential biomarkers were output as the input layer of the deep convolutional neural network, and then the feature extraction was performed through the convolutional layer composed of 32 n×n convolution kernels. In the excitation layer, we choose ReLU as the activation function, which could increase the sparsity of the network to solve the over-fitting problem, then the images passed through the pooling layer to extract features (Shang et al., 2016). The input data to the next hidden layer until the features in the image were completely extracted, and finally classified in the fully connected layer and as well as the output layer.



Residual Network

Generally, neural networks can obtain better functions, but affected by the depth of the network layer. However, as the network continues to deepen, the convergence of the network would deteriorate due to the issue of vanishing gradient, and the accuracy and performance of the network will decrease. With improved convergence but not degraded network, we introduced the ResNet block.

As a fairly deep network, ResNet has applied in image feature classification, lesion segmentation, cell segmentation etc. (Russakovsky et al., 2015; Shin et al., 2016; Wang C.W. et al., 2016). This method introduced ResNet on the basis of CNN. At this time, a fast connection was formed between various layers in the network, and they can accelerate the connection between different layers, as shown in Figure 4. The two layers are treated with shortcut connections as residual blocks (RB), and then the input vector of the considered layer is set to x, while the output vector is set to c. ResNet is equivalent to a special form of shortcut connection with the identity mapping. The activation function used in the network is the nonlinear function ReLu. The linear function is LC+A, from this we get C[1+2]= σ(B[W + 2] + C[1]) between layers, where B[W + 2] = W[1 + 2] * C[1 + 1] + A[1 + 1], when W[1 + 2] and A[1 + 1] = 0 are establishedit is easy to see that C[1 + 2] = σ(C[I]), when C[1] ≥ 0, C[1 + 2] = σ(C[1]) is true. At this point, the identity mapping was established. In addition, we added BN technique to residual network, because the BN can make the landscape of the entire loss function smoother, therefore to optimize the predictability and stability of the network. The addition of Resnet and BN techniques allowed our model to deepen the network level and training speed, while improving the classification accuracy, general ability, and expressive effect of the network (He et al., 2015; Shen et al., 2017; Santurkar et al., 2018).
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FIGURE 4. ResNet flowchart.




Adjustment of Hyperparameters

In order to optimize the performance of the model, we need to adjust the hyperparameters which had a variety of combinations. We choose to adjust the hyperparameters of the model under twofold cross-validation and take its optimal value. The data was further divided into a training set and a validation set. The model was trained with the training set, while the validation set was used to verify the performance of the model. Subsequently, we defined a grid of four dimensions and the possible range of each dimension. During the training process, the validation set and the network model would generate a mapping in time, and each mapping contained a hyperparameter, which indicated that the validation set can be adjusted by parameters of the model. These hyperparameters included the number of cores of the filter core, the number of layers, the batch size and the loss function of the convolutional neural network.

There were many types of hyperparameters and manual adjustment were required. Therefore, a simple test was required to determine the parameter adjustment range. Because the learning rate was difficult to be determined when the regularization term was introduced, the appropriate learning rate threshold was obtained afterward. The coefficient of regular term was recorded as 0, and a small number of samples can be obtained according to this threshold. We can obtain the approximate range of the hyper-parameters by adjusting the hyper-parameters in this step. In a wide range, we adjusted the learning rate and the regularization term coefficients to obtain the refinement, so as to obtain the optimal parameter values.



RESULTS


Clinical Diagnosis Information

We downloaded 180 lung cancer WSIs from the TCGA database. We counted clinical variables associated with lung cancer incidence in Table 1, thereby to eliminate possible bias for influencing the biomarkers for immunotherapy. Among them, adenocarcinoma tends occur at older age, however, age of occurring of squamous cell carcinoma tends to no difference, the overall death is relatively younger, which indicated the lung cancer occurs in middle-aged and elderly people and the mortality rate is very high, especially in male.


TABLE 1. Clinical characteristics of the patients in this study.

[image: Table 1]


Data Preprocessing

The 180 images of lung cancer H&E sample data were downloaded from TCGA were all converted to SVS format, and the tumor area was annotated by a professional pathologist. In order to facilitate data training, each image was divided into small tiles of 512 × 512 size, as shown in Figure 1B. The blank areas and small areas with a background greater than 75% discarded, and small tiles with high image quality are selected for subsequent application, including imaging with uniform cytoplasm and nucleus staining, no background noise and less interference factors. We set the ratio of blank and blurred areas over the total area in the H&E image as a threshold, and used Open CV to process images with a threshold less than 75%. In the end, we left 1,800 qualified small tiles, and then used the DCGMM model to normalize the colors of these small tiles. The process and results were shown in Figure 5. After our image data was processed by the DCGMM model, the color was standardized, and the image features still remained in the original slice.
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FIGURE 5. Color normalization model of tissue slice image. (I) Original slice image; (II) Reference image selected by professional pathologists. (III) Color standardized slice image after model processing.




Performance Evaluation

By using twofold cross-validation, we divide the pre-processed 1,800 samples into a test set and a validation set, and then the samples were classified and trained by the CNN + ResNet model. After training, the probability heat map of the H&E image with potential biomarkers in lung cancer immunotherapy were obtained, and then the average probability of each biomarker on the H&E image and their AUC value were obtained. Among them, TP53 obtained the highest AUC value, reaching 87%. The AUC value of EGFR also reached 84%, and the AUC values of DNMT3A, PBRM1, and STK11 were between 71 and 78%.



Evaluation of Immunotherapy Biomarkers

As shown in Figure 6, taking the false positive rate (FPR) as the X axis and the true positive rate (TPR) as the Y axis, the ROC curves of these 5 biomarkers are drawn based on the AUC value.


[image: image]

FIGURE 6. Gene ROC curve.


Our results have reached a very high accuracy. Among them, the AUC value of TP53 is 87%, which is the highest AUC value among our predicted biomarkers. TP53 mutations occur in about 50% of NSCLC, mainly targeting lung epithelial cells (Bodner et al., 1992). A large number of studies have shown that its mutation is closely related to the occurrence and treatment of lung cancer (Mogi and Kuwano, 2011). TP53 is an important tumor suppressor gene encoded the p53 protein, it could regulate cell proliferation, growth and repairing DNA damage. When TP53 gene is mutated, cell division and replication and proliferation, leading to tumor initiation.

The AUC value of epidermal growth factor receptor (EGFR) is slightly lower than that of TP53, which is 84%. It occurs mostly in female patients and non-smokers (Lai et al., 2013). EGFR is a large transmembrane glycoprotein, which can regulate the physiological processes of cell growth, proliferation and differentiation by combining with epidermal growth factor (EGF) in its extracellular domain. The overexpression, amplification and mutation activation of EGFR can induce cancer. In lung cancer, most of the mutations of EGFR are caused by the rearrangement and amplification of the EGFR gene or the selective splicing of mRNA (Cheng et al., 2012; Cheng and Eble, 2013).

The AUCs of DNMT3A, PBRM1, and STK11 are shown in Figure 6, which are 78.1%, 75.3%, and 71.6%, respectively. We described their physiological function as followings.

DNMT3A mutation is actually the main cause of blood system cancer, but recent studies have also proved its effect in lung cancer (Yuejing et al., 2014). DNA methyltransferase 3A (DNMT3A) is responsible for the methylation of human genes. DNMT3A gene mutation would result in the inactivation of tumor suppressor genes, and the damaged DNA cannot be restored in time, resulting in normal cell abnormalities. This process is closely related to the occurrence and development of tumors.

STK11 gene and the serine threonine kinase encoded by it are tumor suppressors, which regulate cell metabolism and growth through phosphorylation of adenosine monophosphate activated protein kinase (AMPK) and 12 AMPK-related kinases (Shackelford and Shaw, 2009). In animal studies of lung adenocarcinoma, it has been found that the inactivation or mutation of STK11 will be related to the change of the tumor microenvironment and the decrease of cytotoxic CD8+ cell infiltration, which will lead to the separation of the tumor from the body’s immune monitoring.

PBRM1 and STK11 are often regarded as negative markers because of their low expression rate, but in fact there is still a correlation between them and immunotherapy (Skoulidis et al., 2018).



Heat Map Generation

In order to extract the heat map, we generated a probability map from the tumor region, then scanned the image with a 512 × 512 window, and obtained the result in this window through the CNN model, as shown in Figure 7. We applied the window result to the pixels and average the sum of all pixels in each window. High pixels indicated that the possibility of biomarkers on the image is high with the color in the heat map show as red, otherwise it was blue. Combined with AUC analysis, our model had a relatively good effect in predicting immune-related biomarkers by using H&E lung cancer slices.
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FIGURE 7. Heat map generation. (A) Probability image of H&E slice after training. (B) A 512 × 512 size non-overlapping window for scanning slice images. (C) The relationship between the average value of pixels and the color change of the heat map. (D) Generate a heat map.




DISCUSSION

With the continuous development of artificial intelligence in the medical field, deep learning as an important method has been able to effectively identify and analyze disease images. In our study, five immune biomarkers TP53, EGFR, DNMT3A, PBRM1, and STK11 were identified from the H&E slice images of lung cancer. The AUC value is shown in Figure 6. Patients with TP53 mutation relatively not response to target therapy. Studies have confirmed that when patients with non-small cell lung adenocarcinoma have TP53 gene mutations, also accompanied by an increased PD-L1 expression, which often indicates those patients are more likely sensitive to PD-1/PD-L1 therapy (Dong et al., 2017). From the perspective of the biological mechanism, TP53 deletion can cause an increase immunogenicity of tumor, further increasing in cytotoxicity of T lymphocytes (CD8+ T cell). Several recent clinical trials found that TP53 mutation can predict (PFS) of progression-free survival (Hellmann et al., 2018; Assoun et al., 2019). Combining those biological mechanism, our studies confirmed that TP53 could be a potential biomarker with for lung cancer immunotherapy.

EGFR gene mutations are mostly caused by the deletion of L858R and exogenous factor 19, which will change the specific mutations of EGFR protein. It has been confirmed that patients with EGFR mutant primarily benefit with from targeted therapy with tyrosine kinase inhibitors (TKI) (Recondo et al., 2018; Yang et al., 2019). Studies have showed that the use of ICI as an adjuvant therapy in patients with drug-resistant, non-small cell lung cancer after EGFR-TKI treatment, it can make the patients increase patients’ survivals (Wu et al., 2017; Garassino et al., 2020). Moreover, when EGFR21 exon combined with L858R mutation and EGFR20 exon were treated with ICI, they all response rate (International Association for the Study of Lung Cancer, 2017). Therefore, this provides the possibility for the application of immunotherapy in some EGFR mutations.

Mutations in the DNMT3A gene will result in the inactivation of tumor suppressor genes, dysfunction in repairing DNA, resulting in abnormal function of cell. DNMT3A has been proven to be a risk factor for rectal cancer, blood cancer and ovarian cancer etc. A recent study on the side effects of immunotherapy found that EGFR and DNMT3A are associated with Hyper-progressors (Champiat et al., 2017; Kato et al., 2017). The reason may be inactivation of Janus kinase 1 (JAK1), which leads to the decrease of PD-L1 expression, thereby tumor cells lack the sensitivity to PD-1 antibody treatment, resulting in inherent drug resistance. It may also be β-2 It is caused by a truncated mutation in the gene encoding macroglobulin (B2M), but this reason is just a guess, and the real reason has yet to be confirmed.

STK11 is the main driving gene for the primary resistance of PD-1 inhibitors, and its deletion will promote the resistance of PD-1/PD-L1 inhibitors (Papillon-Cavanagh et al., 2020). The results also highly indicate the possibility of STK11 gene mutation as a prognostic indicator of anti-PD-1/PD-L1 therapy in lung adenocarcinoma.

PBRM1 is a promising biomarker for kidney cancer. When CcRCC was treated by ICI, found that patients with PBRM1 mutation are more sensitive to PD-1 antibody (Braun et al., 2019). However, lung cancer patients with mutant PBRM1 benefit less from treatment-related survival. As shown in Figure 6, although the AUC level is not high, it still has the potential to become a negative biomarker.

Immunotherapy is a relatively new concept in cancer treatment, since it advantages in less tolerated, high efficacy, it has quickly become a research hotspot. At present, there are no precise biomarkers for immunotherapy that can exert efficacy, and the role of each biomarker in the process of immunotherapy still needs clinical research. According to reports, numbers of clinical trial studies have shown that the use of immunotherapy in combination therapy has more advantages (Blumenthal et al., (2018); Jotte et al., 2020).

This study, we conduct deep learning CNN model, the model performance is relatively good by two-cross-validation. Therefore, it has important significance of immunotherapy in clinical practice. However, our study still has some limitation, there are still some images that contain features that are not easily recognized by the training model, which makes it difficult to classify, more due to the limited training data and the diversity of lung carcinogenic factors, there are some mutation samples in certain genes cause data unbalance. Moreover, we did not set an independent set to verify the model, these factors have a certain impact on the accuracy of our results.
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Atherosclerosis is the leading cause of heart disease and stroke, and one of the leading causes of death and disability worldwide. The phenotypic transformation of vascular smooth muscle cells (VSMCs) plays an important role in the pathological process of atherosclerosis. The present study aimed to identify differently expressed mRNAs in atherosclerosis by analyzing GSE6088 database. Our results revealed there were totally 467 increased and 490 decreased differential expressed genes (DEGs) in atherosclerosis. Bioinformatics analysis demonstrated that the DEGs substantially existed in pathways, including Glyoxylate and dicarboxylate metabolism, Tyrosine metabolism, Tryptophan metabolism, Beta-Alanine metabolism, Fatty acid biosynthesis and Starch and sucrose metabolism. Next, we constructed a protein-protein interaction (PPI) network to identify hub genes in atherosclerosis. Also, we identified CDK6 as a key regulator of atherosclerosis. In this study, we found that CDK6 knockdown suppressed HASMC and HUASMC cell proliferation. Circular RNA (CircRNA) is a non-coding RNA which is reported to have an unusual influence on tumorigenesis process and other aspects in the last few years. Previous studies showed circRNAs could act as miRNAs sponging in multiple biological processes. Bioinformatics prediction and luciferase analysis showed that CDK6 were targeted and regulated by circHIPK3/miR-637. Moreover, silencing circHIPK3 could also significantly induce the arrest and apoptosis of cell cycle. In conclusion, this study discovered the important regulatory role of circHIPK3 in the proliferation and apoptosis of VSMCs by influencing the miR-637/CDK6 axis.
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BACKGROUND

Atherosclerosis is a very common chronic progressive inflammatory disease which results in many cardiovascular ailments, such as coronary heart disease, cerebral infarction and so on (Lahoz and Mostaza, 2007). Atherosclerosis usually refers to the stenosis or obstruction of the vascular lumen due to the formation of atherosclerotic plaque on the coronary artery wall, and then causes local insufficient blood supply and increased lumen pressure (Pasterkamp et al., 1995; Falk, 2006). Sustained insufficient blood supply and overpressure can lead to multiple organ involvements and failures (Landow and Andersen, 1994; White, 1996). The formation of atheromatous is related to endothelial, vascular smooth muscle cells (VSMCs), foam cell and cytokines (Falk, 2006). Chronic inflammation has a significant role in atherosclerosis (Shishehbor and Bhatt, 2004). However, human endothelial cells and VSMCs can produce these proinflammatory mediators in the progression and development of atherosclerosis. Atherosclerosis occurs after endothelial cell damage by a variety of stimuli including hypertension, dyslipidemia and etc. After the initial injury, different types of cells such as inflammatory cells, platelets and endothelial cells itself release mediators (cytokines and growth factors) causing multiple effects. These mediators will promote the transition of VSMCs from a quiescent contraction state to an active synthetic state, promote the proliferation and migration of VSMCs (Libby et al., 1997; Schachter, 1997). VSMCs exist in different phenotypes under different conditions. Physiologically, the primary VSMCs phenotype is the quiescent contractile state also termed as differentiated VSMCs which performing contractile function to regulate blood vessel diameter (vasoconstriction and vasodilation) and blood flow. Besides, VSMCs can transform from differentiated phenotype to dedifferentiated phenotype in response to various stimuli. The dedifferentiation phenotype is the active synthetic VSCMs which are characterized by increased proliferation/migration ability and decreased contractility (Owens, 1995). During the development of pathogenic vascular remodeling such as arteriosclerosis, VSMCs with dedifferentiation phenotype cause intimal vascular lesions. Therefore, the phenotype transformation of VSMC has an important impact on the formation of atheromatous plaques (Rudijanto, 2007).

Abnormal proliferation of VSMCs plays a key role in the pathogenesis of cardiovascular diseases, such as atherosclerosis and coronary heart disease (Davis-Dusenbery et al., 2011). In order to better understand the etiology of atherosclerosis well, it is necessary to explore the mechanism VSMCs in atherosclerosis. Some cytokines, such as leptin, have been reported to stimulate the proliferation and migration of VSMCs, which is crucial in restenosis (Bodary et al., 2007). Previous studies have shown that uncontrolled cell proliferation may be caused by the imbalance of cell cycle-related proteins such as cyclins and cyclin-dependent kinases (CDKs). CDK6 is a member of the CDKs family, which mainly mediates the regulation of cell cycle progression (Grossel and Hinds, 2006). CDK6 gene has been reported to be overexpressed in a variety of human cancer, such as lymphoid malignancies and gastric cancer (Nebenfuehr et al., 2020).

MicroRNA (miRNA) is a non-coding RNA with a length of approximately 20 nucleotides which are involved in a variety of biological processes, including cell proliferation and apoptosis. Many studies have confirmed that miRNAs play a vital role in the behavior of VSMCs during the process of atherosclerosis. For example, miR-499a-3p and miR-135b-5p can enhance VSMCs proliferation in atherosclerosis through targeting MEF2C (Xu et al., 2015). MiR-126 can alleviate endothelial cell injury through PI3K/Akt/mTOR signaling pathway (Tang and Yang, 2018). MiR-637 has been reported to play a role in a variety of human diseases especially in cancer. For instance, miR-637 suppresses the proliferation and invasion of hepatoma cells by down-regulating AKT1 (Du and Wang, 2019) and inhibits melanoma progression through PTEN/AKT signaling pathway (Zhang et al., 2018). However, few reports have studied the specific role and regulatory mechanisms of miR-637 in atherosclerosis.

Increasing numbers of circular RNAs (circRNAs) have been discovered in eukaryotes because RNA-Seq technology becomes easier and cheaper, with the invention of new sequencing technology (Salzman et al., 2012). CircRNAs are non-coding and closed single-stranded RNA transcripts. However, the circRNAs are once thought to be by-products or a splicing error of the transcriptome because of the limitations of previous sequencing technology (Chen and Yang, 2015). In recent years, researches on circRNAs have become a hotspot due to its specific ring structure. Additional evidence suggests that circRNAs play many important roles in various biological processes. For example, Chen et al. (2017) revealed that CircRNA_100290 exerted regulatory functions in oral squamous cell carcinomas (OSCCs) via control miR-29b/CDK6 axis signaling pathway. Abdelmohsen et al. (2017) revealed that circPABPN1 bound extensively to HuR, which was a common RNA-binding protein, prevented HuR from binding to PABPN1 mRNA and reduced the expression of PABPN1 gene in human cervical carcinoma cells. Besides, some circRNAs play roles as protein scaffolds. Du et al. (2017) found that circFoxo3 promoted MDM2-induced p53 degradation because it had binding sites for MDM2 and p53 in mice. However, knowledge of the role of circRNA in human VSMCs, especially circHIPK3, still needs to be investigated in the future.

This investigation aimed to illustrate the role and mechanism of circHIPK3 in human vascular smooth muscle (HVSMC) cells. We found that circHIPK3 was up-regulation in HVSMC by qRT-PCR. Knockdown of circHIPK3 inhibited the proliferation of VSMCs (HASMC and HUASMC) through CCK-8 assay. We showed that knockdown of circHIPK3 promoted the arrest and apoptosis of cell cycle in VSMCs. These findings imply the possibility of circHIPK3 regulation for growth of VSMCs.



MATERIALS AND METHODS


Microarray Analysis

The gene expression information of GSE6088 was acquired from NCBI GEO1. The original data were treated by interactive web tool GEO2R2 employing the limma R packages from the Bioconductor project. Differentially expressed genes (DEGs) with P < 0.01 were considered as statistically significant and the cutoff criterion.



Gene ontology and KEGG Pathway Enrichment Analysis

Gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted by an online gene function classification tool called DAVID3, which aimed to find the potential genes at the functional level. The cutoff criterion was P < 0.05.



PPI Network and Module Analysis

DEG-encoded proteins and protein-protein interaction (PPI) network were developed using STRING database4. Confidence score was considered significant if it was over 0.4. Cytoscape software (Version 3.6.0) (The Cytoscape Consortium, New York, NY, United States) was applied to visualize the PPI network.



Cell Culture and Transfection

In our experimental system, we employed VSMCs (HASMC, HUASMC) which were obtained from ATCC or preserved in our laboratory, when necessary RPMI-1640 medium (BI, Israel) with 10% fetal bovine serum (Life Technologies, United States) was used to culture the cells in a 37°C incubator with 5% CO2.

The siRNA against the spliced junction site of circHIPK3 was collected from Gene-Pharma (China), and lipofectamine 2000 (Invitrogen, United States) was used for transfection according to the manufacturer’s instructions. MiR-637 mimic and inhibitor (GenePharma, China) were used.



RNA Extraction and qRT-PCR Analysis

Trizol (Takara, Dalian, China) was employed to extract total RNA. We used individual primer directly to flank the head-to-tail splice site. SYBR Green Real-time qPCR was employed for the amplification of cDNA on StepOne Real-Time PCR System (Applied Biosystems) by using SYBR Green PCR kit (TaKaRa). 2–ΔΔCT method was used to analyze the expression of genes.



Cell Proliferation Assays

Cell Counting Kit-8 (CCK-8) (Beyotime, Shanghai, China) was used to detect cell proliferation. We seeded the transfected cells at a concentration of 1500 cells/well in 96-well plates. At 0, 24, 48, 72, and 96 h respectively, the cell proliferation rates were calculated according to the supplier’s protocol.



Cell Apoptosis Assays

For the apoptosis assays, VSMCs cells after transfection were added PI and Annexin V under dark conditions and placed on ice for 5min. Flow cytometry on a FACSCalibur Flow Cytometer (BD Biosciences) was conducted to analyze the treated VSMCs cells.



Luciferase Reporter Assay

Then, wild type and mutant circHIPK3 and CDK6-3′UTR fragments including miR-637 binding sites were reconstituted into the pGL4.10 plasmids (Promega, United States) and subsequently co-transfected by miR-637 mimics or mimics-NC into VSMCs cells with Lipofectamine 2000 transfection reagent. Luciferase activity tests (Promega) were applied according to the manufacturer’s protocols.



Statistical Analysis

GraphPad Prism 6 was used to analyze the data and all the data were presented as mean ± standard deviation. One-way ANOVA or t-test was employed to determine the significant differences between various groups. Log-rank test and Cox regression were performed to analyze Kaplan–Meier curve. P < 0.05 was reflected to have statistical significance.



RESULTS


Determination of DEGs in Atherosclerosis

To determine and analyze DEGs, NCBI GEO was applied to acquire GSE6088. Based on the P < 0.01 cutoff criterion, we filtrated 3361 DEGs in atherosclerosis samples compared with normal samples. A total of 1,672 upregulated DEGs and 1689 downregulated DEGs were obtained from GSE6088 (Figure 1). Top 10 upregulated DEGs were RGS13, PDE1A, RNF17, ARPP21, UTS2, LINC00486, C7orf57, LOC102546226, AL832163, and OSM. Top 10 downregulated DEGs were GJC1, C10orf107, CALB1, KIR2DL1, SCN7A, KIR3DS1, DPY19L2P3, THBS1, FAM221B, and CYP2U1.
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FIGURE 1. Heat map and cluster dendrogram of DEGs. To determine and analyze the DEGs, NCBI GEO was applied to acquire GSE6088. A total of 3,361 DEGs were at a significant level in atherosclerosis samples compared with normal samples (P < 0.01). Red represents increased genes, and blue decreased genes.




Gene Ontology Analysis and Signaling Pathway Enrichment of DEGs in Atherosclerosis

To analyze the GO and pathway enrichment, we uploaded all the DEGs to the DAVID online tools. Molecular function analysis showed these DEGs were involved in regulating retinal dehydrogenase activity (GO:0001758), tRNA (cytosine) methyltransferase activity (GO:0016427), oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor (GO:0016620), fatty acid synthase activity (GO:0004312), 4 iron, 4 sulfur cluster binding (GO:0051539), intramolecular oxidoreductase activity, transposing C=C bonds (GO:0016863), nucleotide diphosphatase activity (GO:0004551), arylsulfatase activity (GO:0004065), carbohydrate kinase activity (GO:0019200), and glycine binding (GO:0016594) (Figure 2A).


[image: image]

FIGURE 2. Gene ontology and signaling pathway enrichment of DEGs. (A) Molecular function analysis of DEGs. (B) Cellular component analysis of DEGs. (C) Biological process analysis of DEGs. (D) KEGG pathways analysis of DEGs.


Cellular component analysis showed these DEGs were involved in regulating mitochondrion (GO:0005739), mitochondrial matrix (GO:0005759), mitochondrial inner membrane (GO:0005743), nuclear exosome (RNase complex) (GO:0000176), peroxisome (GO:0005777), microbody (GO:0042579), peroxisomal matrix (GO:0005782), microbody lumen (GO:0031907), lysosomal membrane (GO:0005765), and peroxisomal part (GO:0044439) (Figure 2B).

Biological process analysis revealed these DEGs were involved in regulating alpha-amino acid metabolic process (GO:1901605), glucan biosynthetic process (GO:0009250), glycogen biosynthetic process (GO:0005978), mitochondrion organization (GO:0007005), organic cyclic compound biosynthetic process (GO:1901362), NADH metabolic process (GO:0006734), lipoprotein catabolic process (GO:0042159), NADP metabolic process (GO:0006739), aromatic amino acid family catabolic process (GO:0009074), and molybdopterin cofactor biosynthetic process (GO:0032324) (Figure 2C).

Kyoto encyclopedia of genes and genomes pathways analysis demonstrated that DEGs were involved in modulating a series of pathways, including Glyoxylate and dicarboxylate metabolism, Tyrosine metabolism, Tryptophan metabolism, Beta-Alanine metabolism, Fatty acid biosynthesis, Starch and sucrose metabolism (Figure 2D).



Protein-Protein Interaction Network of DEGs in Atherosclerosis

The STRING database was consulted to anatomize the PPI networks, thus to prove the functional connectivity of the DEGs. We analyzed 2654 DEGs using STRING database, and employed Cytoscape software to build networks on the basis of DEGs. As shown in Figure 3, the PPI network contained 261 nodes and 1084 edges, which demonstrated proteins and interactions.


[image: image]

FIGURE 3. Protein-protein interaction network of DEGs. The highest stringent minimum required interaction score of 0.09 by STRING database was used to construct PPI network including 261 nodes and 1,084 edges.


Among these nodes, we identified a series of key nodes in this network, including CDC42, RHOA, CDK6, TLR4, DLG4, ADCY5, NRXN1, CYBB, TYROBP, and CYR61(Degree top 10). The present study focuses on CDK6, which is a key regulator of cell cycle and plays a crucial role in cell proliferation regulation.



Suppression of CDK6 Inhibited Cell Proliferation of VSMCs

Using the GSE6088 database, the results showed CDK6 expression in atherosclerosis was induced by 1.44-fold compared to normal samples (Figures 4A–C). Aimed at exploring the roles of CDK6 in VSMCs, we detected the impacts of CDK6 knockdown on cell proliferation. HASMC and HUASMC cells were transfected with si-CDK6 and si-NC for 2 days. Then, the levels of CDK6 were detected. As presented in Figures 4D,F, we observed CDK6 was remarkably down-regulated after knockdown of CDK6 in HASMC and HUASMC cells. We used CCK-8 kit to detect the effect of CDK6 on cell proliferation, and the results indicated the cell proliferation rate in CDK6 knockdown cells was reduced compared with normal groups (Figures 4E,G).
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FIGURE 4. CDK6 is highly expressed in atherosclerosis samples and inhibition of CDK6 reduces cell proliferation in vitro. (A–C) An online data (GSE6088) was analyzed, and CDK6 expression in atherosclerosis was induced by 1.44-fold compared to normal samples (224851_at, 224847_at, and 243000_at). (D,F) RT-PCR analysis of CDK6 mRNA expression levels in HASMC and HUASMC after transfecting with si-CDK6. (E,G) Suppression of CDK6 inhibited cell proliferation of VSMCs in HASMC and HUASMC cell. *P < 0.05.




CDK6 Was a Target of miR-637

Next, we used TargetScan website5 to predict the potential miRNAs regulating CDK6 expression, which was used to explore the upstream regulators of CDK6. The analysis showed a potential target of miR-637 was CDK6. A further luciferase reporter assay demonstrated the direct interaction between miR-637 and CDK6 (Figures 5A,B). The fluorescence signaling in HASMC and HUASMC cells transfected with CDK6 3′-UTR-wt were reduced after overexpression of miR-637. However, the co-transfection of CDK6 3′-UTR-mut and miR-637 did not contribute to the decrease of fluorescence signaling. Then, it was found that both RNA and protein expression of CDK6 were inhibited after overexpression of miR-637 in VSMCs (Figures 5C,D).
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FIGURE 5. CDK6 was a target of miR-637. (A,B) Luciferase assay detects the direct binding of miR-637 on the 3′-UTR of CDK6. (C) RT-PCR analysis of CDK6 expression levels in HASMC and HUASMC after overexpression of miR-637. (D) Western blot analysis of CDK6 protein levels after overexpression of miR-637. *P < 0.05.




MiR-637/CDK6 Was Regulated by circHIPK3 in VSMCs

Previous studies demonstrated that circRNAs played as miRNA sponges to affect miRNAs’ activities and targets’ expression. Thus, this study applied miRNA target prediction (circBase and StarBase v2.0) to investigate the potential circRNAs that targeting miR-637. We found that circHIPK3 was a potential target of miR-637. As shown in Figure 6A, we used RNase R to treat isolated circHIPK3 to determine the circular structure of this circRNA. The results revealed the circHIPK3 was more tolerant to RNase R treatment than liner HIPK3 RNA. Subcellular location detection showed that circHIPK3 was mainly located in cytoplasm (Figure 6B). Using siRNAs mediated knockdown, we observed circHIPK3 was remarkably down-regulated after knockdown of circHIPK3 in HASMC and HUASMC cells (Figures 6C,D).
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FIGURE 6. The isolated circHIPK3 is circular structure that is located in the cytoplasm. (A) Treated the isolated circHIPK3 with RNase R, circHIPK3 is more resistant to RNase R than linear HIPK3 RNA. (B) Subcellular location detection showed that circHIPK3 was mainly located in cytoplasm. (C,D) RT-PCR analysis of circHIPK3 expression levels in HASMC and HUASMC after transfecting with si-circHIPK3. *P < 0.05.


To verify miR-637 was targeted by circHIPK3, we firstly applied a luciferase assay by co-transfecting miR-637 and luciferase reporters into VSMCs. The findings showed that the luciferase activity of circHIPK3-WT was significantly reduced compared to control group and circHIPK3-mutant group (Figures 7A,B). Moreover, it was observed that silencing of circHIPK3 up-regulated miR-637 expression (Figure 7C).
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FIGURE 7. MiR-637/CDK6 was regulated by circHIPK3. (A,B) Luciferase assay detects miR-637 was targeted by circHIPK3 in HASMC and HUASMC cells. (C) RT-PCR analysis of miR-637 expression levels in HASMC and HUASMC after transfecting with si-circHIPK3. (D) RT-PCR analysis of CDK6 expression levels in HASMC and HUASMC after transfecting with si-circHIPK3. *P < 0.05, **P < 0.01.


To confirm the effect of circHIPK3 on CDK6, CDK6 expression in HASMC and HUASMC cells transfected with sicircHIPK3 were detected using RT-PCR. CDK6 levels decreased after knockdown of circHIPK3 in VSMCs compared with the control group (Figure 7D). These data revealed that circHIPK3 and CDK6 interacted with miR-637 in VSMCs.



Suppression of circHIPK3 Inhibited Cell Proliferation of VSMCs

We used CCK-8 kit to detect the effect of circHIPK3 on cell proliferation, and the results indicated the cell proliferation rate in circHIPK3 knockdown cells were reduced compared to normal groups (Figures 8A,B). Based on flow cytometry analysis, it was found that knockdown of circHIPK3 considerably induced the apoptosis of HASMC and HUASMC cell when compared with the control group (Figures 8C,D). These findings suggested circHIPK3 could enhance cell proliferation ability and suppress cell apoptosis in VSMCs.
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FIGURE 8. Suppression of circHIPK3 inhibited cell proliferation of VSMCs. (A,B) Suppression of circHIPK3 inhibited cell proliferation of VSMCs in HASMC and HUASMC cell. (C,D) Flow cytometry analysis of cell apoptosis in HASMC and HUASMC after transfecting with si-circHIPK3. *P < 0.05.




DISCUSSION

The mechanisms regulating atherosclerosis remain largely unclear. The present study aimed to identify differently expressed mRNAs in atherosclerosis by analyzing GSE6088 database. Our results revealed there were totally 467 increased DEGs and 490 decreased DEGs in atherosclerosis. Bioinformatics analysis showed The DEGs were mainly involved in modulating a series of pathways, including Glyoxylate and dicarboxylate metabolism, Tyrosine metabolism, Tryptophan metabolism, Beta-Alanine metabolism, Fatty acid biosynthesis, Starch and sucrose metabolism. Next, we constructed a PPI network to identify hub genes in atherosclerosis. Also, we identified CDK6 as a key regulator of atherosclerosis. The CDK6 kinase was correlated with cyclins D1, D2, and D3 and played a role in growth factor stimulation and cell cycle progression (Kozar and Sicinski, 2005). In this study, we found that CDK6 knockdown suppressed HASMC and HUASMC cell proliferation.

MiRNAs are an important class of cellular regulators in post-transcriptional gene regulation. However, miRNAs always interact with other regulatory factors to regulate cell metabolism by regulating downstream target genes, such as lncRNA and circRNA (Militello et al., 2016; Jin et al., 2018). Generally, overexpressed circRNAs inhibit the activity of miRNAs as sponge of miRNAs adsorbing it. Therefore, circRNA regulates the translation of downstream target genes by affecting the expression of miRNA, thus affecting the progress of the disease (Qu et al., 2015; Rong et al., 2017). To analyze the mechanism of circHIPK3 in VSMCs in modulating cell proliferation, cycle and apoptosis, we predicted and validated the target miRNA by bioinformatics and luciferase reporting experiments. It has been found that miR-637 was a target of circHIPK3 in VSMCs. It has been reported that miR-637 inhibited the human mesenchymal stem cells growth. MiR-637 was up-regulated during adipocyte differentiation and suppressed during osteoblast differentiation (Zhang et al., 2011). As a tumor suppressor gene, miR-637 plays a significant regulatory role in thyroid papillomatous carcinoma (Yuan et al., 2018), cervical cancer, glioma, cholangiocarcinoma, colorectal cancer and some other tumors (Li et al., 2018; Huang et al., 2019). In mechanism, we conducted luciferase reporting assay and found that the downstream target gene of miR-637 was CDK6.

Accumulating evidence suggests that circRNA is a broad and powerful regulator in cell progression. The role of circRNA in the atherosclerosis has gradually been recognized with the increasing number of sncRNA research. For instance, Holdt et al. (2016) reported that the presence of circANRIL could decrease atherosclerosis by inducing apoptosis, and suppress of proliferation. Shen et al. (2019) found that the expression of circRNA-0044073 was up-regulated and promoted the cell growth in atherosclerosis blood cells. CircRNAs play pivotal regulating roles for cell growth, cell cycle and apoptosis. For instance, circRNA BCRC4 has been found lower expression in bladder cancer tissues than in normal cases. However, over-expression of circBCRC4 induced apoptosis and suppressed BC viability via enhancing miR-101 and inhibiting the expression of EZH2 in vitro (Li et al., 2017). Moreover, it has been proved that hsa_circ_0001564 sponges miR-29c-3p to promote cell growth, stimulates cell cycle entry and inhibits cell apoptosis in osteosarcoma (Song and Li, 2018). Wang et al. confirmed a circRNA associated with the apoptosis of OSCC cells by constructing an apoptotic model and comparing with different expression profile. The experimental results showed that the silencing of circDOCK1 led to the increase of apoptosis by sponge miR-196a-5p in OSCC (Wang et al., 2018). In the present study, we knocked down circHIPK3 by transfecting si-circHIPK3 in VSMCs. The activity of VSMCs was detected by CCK-8, cell cycle and cell apoptosis assays. The study showed that down-regulation of circHIPK3 significantly influenced the progression of VSMCs, which implied that circHIPK3 played an important role in the tumorigenesis of VSMCs.

Atherosclerosis is the leading cause of death and disability in the developed countries. Although we are increasingly familiar with the disease, some fundamental characteristics and pathogenesis of the disease are still poorly understood. Our current study for the first time demonstrated a signaling axis circHIPK3/miR-637/CDK6 that might be responsible for the atherosclerotic progression. Specifically, circHIPK3 sponged miR-637 to reduce its expression in VSMCs and low-expression of miR-637 was supposed to lead to the increased CDK6 expression. And upregulated CDK6 was strongly involved in the enhanced proliferation of VSMCs, thereby accelerating the development of atherosclerotic. Our findings can contribute to understand the etiology of atherosclerosis well and provide a solid evidence base for future research.

Our research has certain limitations and needs to be improved in future study. First, we screed out DEGs according to GSE6088 database, the other significantly DEGs except CDK6 may also have important regulatory effects on atherosclerosis, and needs to be further studied. In addition, the depth of mechanism research is not sufficient, we only performed bioinformatic assay and in vitro functional experiments revealing the signaling axis circHIPK3/miR-637/CDK6 in atherosclerosis. Thus, in the follow-up research, we will further do in vivo assay to verify the mechanism of action of circHIPK3/miR-637/CDK6 axis.

Taken together, in this study, our results showed that CDK6 knockdown suppressed VSMCs cell proliferation. Further research found that circHIPK3s could act as a sponge of miR-637 and indirectly regulate the expression of CDK6 gene. The further study showed circHIPK3 could maintain cell cycle progression, reduce apoptosis and promote cell proliferation in smooth muscle cells. Therefore, circHIPK3 had a potential influence on atherosclerosis development. Our investigations revealed that CDK6 played a meaningful role in the progression of VSMCs, which could be regulated by the circHIPK3/miR-637 axis.
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Malignant melanoma represents a sort of neoplasm deriving from melanocytes or cells developing from melanocytes. The balance of energy and energy-associated body composition and body mass index could be altered by exercise, thereby directly affecting the microenvironment of neoplasm. However, few studies have examined the mechanism of genes induced by exercise and the pathways involved in melanoma. This study used three separate datasets to perform comprehensive bioinformatics analysis and then screened the probable genes and pathways in the process of exercise-promoted melanoma. In total, 1,627 differentially expressed genes (DEGs) induced by exercise were recognized. All selected genes were largely enriched in NF-kappa B, Chemokine signaling pathways, and the immune response after gene set enrichment analysis. The protein-protein interaction network was applied to excavate DEGs and identified the most relevant and pivotal genes. The top 6 hub genes (Itgb2, Wdfy4, Itgam, Cybb, Mmp2, and Parp14) were identified, and importantly, 5 hub genes (Itgb2, Wdfy4, Itgam, Cybb, and Parp14) were related to weak disease-free survival and overall survival (OS). In conclusion, our findings demonstrate the prognostic value of exercise-induced genes and uncovered the pathways of these genes in melanoma, implying that these genes might act as prognostic biomarkers for melanoma.

Keywords: malignant melanoma, exercise, integrated bioinformatics analysis, Disease-free survival, prognosis


INTRODUCTION

Melanoma is an aggressive melanocytes-caused carcinoma (Precazzini et al., 2020). It can either locally invade surrounding tissues or metastasize throughout the overall body (Moser and Grossman, 2018). Because of the high mortality of melanoma, it is a major serious skin carcinoma, and also one of the fastest-growing malignant neoplasms in terms of incidence (Leiter et al., 2014). Proliferative melanoma (Magro et al., 2006), polypoid melanoma (Manci et al., 1981), primary skin melanoma (Maize, 1983), verrucous malignant melanoma (Steiner et al., 1988), pigment epithelioid melanoma (de Oliveira et al., 2020), mucosal melanoma (Postow et al., 2012), follicular melanoma (Hantschke et al., 2004), and non-melanoma cell differentiated melanoma (Madan and Lear, 2010) are the most problematic types of melanomas. Local resection is a conventional and basic clinical treatment strategy, but the prognosis is extremely poor (Foulds et al., 1987; Damato, 1993). Melanoma is not sensitive to chemotherapy since the efficacy of chemotherapy is relatively lower (Lee et al., 1995). Combined treatment performs better and exerts some certain significance on overcoming melanoma (O’Day et al., 2002). Gene therapy has been used in clinical practice (Heller and Heller, 2010), but it is non-directional, and the efficiency of gene transfer is refractory (Nakamura et al., 2002). Melanoma vaccine is a control method rather than a treatment method, and has demonstrated some limitations in the treatment of melanoma (Bystryn et al., 1992; Zhou et al., 1999). As for the prognosis, in the histopathological criteria, the thickness of tumor, mitosis rate and ulcers are considered to be the most important prognostic indicators (Azzola et al., 2003). At present, the incidence of melanoma in China is very low because of insufficient awareness of its severity (Wu Y. et al., 2020). It is therefore greatly important to accurately assess the progress of melanoma, and it is urgent to develop phase identification of molecular biomarkers for high-risk melanoma.

Regular exercise can decrease the risk of carcinoma and disease recurrence (Courneya, 2003). Studies have demonstrated findings on the potential role of exercise in the reduction of hypoxia and tumor immunity (Zhang et al., 2019). Some research indicates that exercise could ameliorate the physical function of carcinoma patients in terms of fatigue and life quality (Conn et al., 2006). Energy balance displays are essential in the prognosis of metastatic melanoma (Harvie et al., 2005). Additionally, exercise can directly affect the microenvironment of a tumor (Zhang et al., 2019). Numerous studies have shown that exercise could alter the tumor microenvironment and carcinoma-associated events, thus improving the structure and function of blood vessels (Zielinski et al., 2004). A poorly functioning vascular system can give rise to hypoxia of neoplasm, which conversely strengthens the invasiveness and stimulates metastasis of a tumor (Subarsky and Hill, 2003; Finger and Giaccia, 2010). Hypoxia is one of the key inducers in facilitating the transformation of melanocytes into tumor cells. When the transformation occurs, the rapid growth of melanocytes in the developing melanoma will heighten the oxygen demand and promote the generation of hypoxia, thus resulting in the angiogenesis driven by hypoxia-inducible factor-1α and the progress of dysfunctional tumor vasculature (Bedogni and Powell, 2009).

Recently, multi-center genomics, such as transcriptomics, proteomics, and high-throughput sequencing, have been widely used in various fields of life sciences. Many carcinoma-associated genes have been identified through comprehensive bioinformatics analysis, including breast cancer (Khan et al., 2020), lung adenocarcinoma (Selvaraj et al., 2018), and Diamond-Blackfan anemia (Khan et al., 2018), laying the foundations for the study of human tumors. In colorectal carcinoma, 31 hub node genes and their pathways have been identified through comprehensive bioinformatics analysis (Xu et al., 2004; Liang et al., 2016). These candidate genes and pathways can become therapeutic targets for colorectal cancer. In papillary thyroid carcinoma, new clinically relevant genes of papillary thyroid carcinoma are identified by analyzing four original microarray data sets (Liang and Sun, 2018). The comprehensive analysis of high-throughput omics data and clinical databases provides us with a good opportunity to discover new targets for cancer.

In this study, we introduced an integrated bioinformatics analysis as an effective method to evaluate the exercise-induced key genes associated with malignant melanoma. In the biological process (BP) group, the response of cells to immunity was revealed by Gene Ontology (GO) analysis. Pathway enrichment analysis data demonstrated NF-kappa B and Chemokine signaling pathways were two main enrichments. The top 6 hub genes Itgb2, Wdfy4, Itgam, Cybb, Mmp2, and Parp14 were screened and identified after protein-protein interaction (PPI) network analysis. These findings develop an understanding of the role of genes affected by exercise and provide a new method for analyzing the mechanism of other variable host factors on carcinomas.



MATERIALS AND METHODS


Databases

The GSE62628 database1 was used to acquire microarray data including 10 datasets. The GSE62628 database was released on July 21, 2016. The database contains the gene expression profiles of two groups of exercise and non-exercise mouse melanoma tumor tissues. We identified five exercise group gene expression profiles, including GSM1530453 Exercise 300, GSM1530454 Exercise 301, GSM1530455 Exercise 306, GSM1530456 Exercise 309, and GSM1530457 Exercise 310. The five non-exercise gene expression profiles include GSM1530458 non-Exercise 326, GSM1530459 non-Exercise 327, GSM1530460 non-Exercise 329, GSM1530461 non-Exercise 330, and GSM1530462 non-Exercise 331. Malignant melanoma before or after voluntary exercise was included in the integrated analysis. The clinical meaning and function of the exercise-induced genes associated with melanoma were explored by The Cancer Genome Atlas (TCGA, https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) database. The association between hub exercise-related gene expression and survival time in melanoma were analyzed by Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/) database. The hub exercise-related gene expression in melanoma samples and normal samples was also analyzed accordingly.



To Identify the DEGs

Limma R package (Nagy et al., 2018) was applied to analyze the differentially expressed genes (DEGs). The cutoff standard was defined as | logFC| > 1 and adjusted P value < 0.05. Finally, the GEO2R website2 (Wu H. et al., 2020) was applied to analyze the DEGs.



GO and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analysis

The molecular function (MF), BP, and cellular component (CC) were used in the GO analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) was applied to understand the function of genes or proteins. The GO and KEGG pathway enrichment analysis of DEGs was completed by the DAVID database (Dennis et al., 2003). The cut-off standard for both GO analysis and KEGG pathway enrichment analysis was adjusted P-value < 0.05.



Construction of PPI Network and Analysis of Modular

A PPI network was constructed to validate the DEGs and also compare the interactions between or among these DEGs. We used the STRING database (Szklarczyk et al., 2017) and Cytoscape software (version 3.7.2; Wu X. et al., 2020) to visualize the PPI network. The obvious hub gene modules in the PPI network were screened by the Molecular Complex Detection (MCODE) plug-in in Cytoscape. The selection standards comprised: degree cutoff (number of connections with other nodes) ≥2; node score cutoff (the most influential parameter for cluster size) ≥2; and K-core (This parameter filtered out clusters that did not contain a maximally inter-connected sub-cluster of at least k degrees).



Statistical Analysis

R software (version 3.4.2) was applied to analyze the derived data. The OS was evaluated by the Kaplan–Meier method. The log-rank test was applied to analyze the survival difference. P < 0.05 means significant statistic difference.



RESULTS


GSE62628 Database Analysis

Even though it is well known that voluntary exercise could decrease both risk of carcinoma and the disease recurrence rate, the mechanisms regarding the protection provided by exercise are not yet clear. The present study analyzed the whole genome expression change of malignant melanoma before or after voluntary exercise. Finally, 1,285 genes with increased expression and 342 genes with decreased expression were screened and identified after voluntary exercise. Figure 1 displays the heatmap of the DEGs.
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FIGURE 1. The heatmap analysis of GSE62628.


The present study analyzed the whole genome expression change of malignant melanoma before or after voluntary exercise, including 10 data sets (GSM1530454, GSM1530453, GSM1530455, GSM1530457, GSM1530456, GSM1530460, GSM1530459, GSM1530462, GSM1530461, and GSM1530458). We identified 1,285 up-regulated genes and 342 down-regulated genes after voluntary exercise. Red indicates that the DEG is up-regulated, blue indicates that the DEG is down-regulated, and white indicates that it is not expressed in one of the samples.



GO Analysis of Exercise-Related Genes in Melanoma

Gene ontology analysis was conducted to analyze the features of these DEGs (Figure 2A). Our analysis showed exercise related genes in melanoma were related to the modulation of self-defense response and defense to an exterior organism, immune response, immune system process, and response to a foreign stimulus.
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FIGURE 2. GO and KEGG pathway enrichment analysis. (A) GO analysis of all DEGs. The chart lists the richest Go terms of BP. (B) KEGG pathway analysis of all DEGs. The figure shows the most abundant KEGG pathway.




Signaling Pathway Enrichment Analysis

Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was conducted to examine the mechanism of exercise-related genes in melanoma (Figure 2B). The data revealed that the identified DEGs were mainly enriched in pathways, like NF-kappa B, chemokine signaling, complement and coagulation cascades, cytokine-cytokine receptor interaction, hematopoietic cell lineage, leishmaniasis, malaria, cytotoxicity mediated by natural killer cell, osteoclast differentiation, and staphylococcus aureus infection.

The X-axis represents P-value; the Y-axis represents the GO-BP term or enriched pathway; color represents the P-value. The size of the dot represents the gene count.



PPI Network Analysis of Pivotal Genes Amid DEGs

We performed an analysis of the PPI network utilizing the STRING database to reveal the interaction among these exercise-related genes in melanoma (Figure 3). 92 DEGs comprising 92 nodes and 78 edges were screened after PPI network analysis. We verified 6 genes including Itgb2, Wdfy4, Itgam, Cybb, Mmp2, and Parp14 as hub genes with degrees > 5.
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FIGURE 3. The protein-protein interaction (PPI) of DEGs exported from STRING is visualized using Cytoscape software.


Protein-protein interaction network consisting of 92 nodes and 78 edges, and 6 genes were identified as hub genes with degrees >5, including Itgb2, Wdfy4, Itgam, Cybb, Mmp2, and Parp14. The node represents the gene; the edge represents the interaction between the two proteins.



Exercise-Related Hub Genes Were Probably Dysregulated in Melanoma

To further explore the possible functional roles of exercise in melanoma, we also analyzed expression in melanoma and normal samples using the TCGA database. Figure 4A showed that decreased expression of Wdfy4 was demonstrated in stages 1–4 of melanoma samples but not normal samples. However, Wdfy4 was not differently expressed amid different stages of melanoma. Parp14 was reduced from stage 1 to stage 4 of melanoma samples compared to normal samples, and negatively correlated to the advanced stages of melanoma (Figure 4B). CYBB was decreased in stages 1–4 of melanoma samples compared to normal samples and ablated in stage 2 and stage 4 melanoma samples compared to that in stage 1 of melanoma samples (Figure 4C). Itgb2 was reduced in stage 1–4 of melanoma samples compared to that in normal samples and down-regulated in stage 2 and stage 3 of melanoma samples compared to that in stage 1 of melanoma samples (Figure 4D). Itgam was down-regulated in stage 1–4 of melanoma samples compared to that in normal samples and down-regulated in stage 2 of melanoma samples compared to that in stage 1 of melanoma samples (Figure 4E). However, our data revealed that MMP2 was up-regulated in stages 1–4 of melanoma samples compared to that in normal samples (Figure 4F). Nevertheless, MMP2 was not differentially expressed among different stages of melanoma. In addition, based on the GSE62628 database, we also analyzed the expression levels of the 6 hub genes before and after voluntary exercise. As shown in Figure 5, compared with non-exercise samples, the expression of Wdfy4, Parp1, CYBB, Itgb2, and Itgam in exercise samples increased. However, our data revealed that compared with non-exercise samples, MMP2 was down-regulated in exercise samples (Figure 5F).
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FIGURE 4. Expression of hub genes in different melanoma stages in the TCGA database. (A) The TCGA database was used to analyze the expression of WDFY4 in melanoma and normal samples. (B) The TCGA database was used to analyze the expression of PARP14 in melanoma and normal samples. (C) The TCGA database was used to analyze the expression of CYBB in melanoma and normal samples. (D) The TCGA database was used to analyze the expression of ITGB2 in melanoma and normal samples. (E) The TCGA database was used to analyze the expression of ITGAM in melanoma and normal samples. (F) The TCGA database was used to analyze the expression of MMP2 in melanoma and normal samples.
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FIGURE 5. Expression of hub genes was analyzed in the GSE62628 database. (A) The GSE62628 database was used to analyze the expression of WDFY4 in exercise and non-exercise samples. (B) The GSE62628 database was used to analyze the expression of PARP14 in exercise and non-exercise samples. (C) The GSE62628 database was used to analyze the expression of CYBB in exercise and non-exercise samples. (D) The GSE62628 database was used to analyze the expression of ITGB2 in exercise and non-exercise samples. (E) The GSE62628 database was used to analyze the expression of ITGAM in exercise and non-exercise samples. (F) The GSE62628 database was used to analyze the expression of MMP2 in exercise and non-exercise samples.




Exercise-Related Hub Genes Were Correlated to the Survival Time in Melanoma

The GEPIA database was applied to analyze the links between exercise-related hub gene expression and survival time in melanoma. As shown in Figure 6, melanoma patients with high expressions of Wdfy4, Parp14, Cybb, Itgb2, and Itgam were found to be associated with the longer OS time in melanoma. However, the dysregulation of MMP2 was not correlated to melanoma. The DFS time analysis revealed that there was a similar trend that high expressions of Wdfy4, Parp14, Cybb, Itgb2, and Itgam were correlated to longer DFS time in melanoma (Figure 7).


[image: image]

FIGURE 6. Overall survival (OS) analysis of hub genes in melanoma patients in GEPIA database. (A) OS of melanoma patients with the WDFY4 high expression level group (purple) and low expression level group (orange). (B) OS of melanoma patients with the PARP14 high expression level group (purple) and low expression level group (orange). (C) OS of melanoma patients with the CYBB high expression level group (purple) and low expression level group (orange). (D) OS of melanoma patients with the ITGB2 high expression level group (purple) and low expression level group (orange). (E) OS of melanoma patients with the ITGAM high expression level group (purple) and low expression level group (orange). (F) OS of melanoma patients with the MMP2 high expression level group (purple) and low expression level group (orange).



[image: image]

FIGURE 7. Disease-free survival (DFS) analysis of hub genes in melanoma patients in GEPIA database. (A) DFS of melanoma patients with the WDFY4 high expression level group (purple) and low expression level group (orange). (B) DFS of melanoma patients with the PARP14 high expression level group (purple) and low expression level group (orange). (C) DFS of melanoma patients with the CYBB high expression level group (purple) and low expression level group (orange). (D) DFS of melanoma patients with the ITGB2 high expression level group (purple) and low expression level group (orange). (E) DFS of melanoma patients with the ITGAM high expression level group (purple) and low expression level group (orange). (F) DFS of melanoma patients with the MMP2 high expression level group (purple) and low expression level group (orange).




DISCUSSION

Melanoma data from most countries indicate that the incidence of this condition is increasing rapidly (Leiter et al., 2014). Pathogenic events in melanoma can be triggered by molecular mechanisms (such as point mutations, deletions, and translocations) or epigenetic mechanisms (such as microRNA expression and promoter methylation), thus resulting in the activation of oncogenes or the inactivation of neoplasm suppressor genes (Hussein et al., 2003; Lee et al., 2014). Studies have shown that the methylation of the RASSF1A promoter is closely related to susceptibility to melanoma (Guo et al., 2019). The variant copies of the GGC repeat sequence in the NPAS2 clock gene likely led to the tumorigenesis of melanoma (Franzoni et al., 2017). It has also been found that microRNA can control gene expression after transcription, thereby regulating various cell signaling pathways in the tumorigenesis and development of melanoma (Philippidou et al., 2010). Several reports have revealed that the change of function for tumor non-infiltrating lymphocytes caused by exercise can slow down the progression of melanoma, indicating that the routine practice of moderate-intensity exercise may be an effective potential treatment strategy (Dos Santos et al., 2019). It is worth noting that research also found that physical activity and melanoma seemed to have a positive correlation, which might be caused by risk factors related to ultraviolet radiation (Young, 2009).

In the current study, a total of 1,627 DEGs were verified between the voluntary exercise-related melanoma samples and control samples, including 1,285 genes with increased expression and 342 genes with decreased expression. It was found that these DEGs were enriched for NF-kappa B and Chemokine signaling pathways and immune response. NF-κB is increasingly recognized as a vital participant in many steps of carcinoma initiation and development. Similarly, the role of NF-κB was also shown in colon carcinoma, stomach carcinoma, and liver carcinoma (Grivennikov and Karin, 2010). Studies have shown that NF-κB is one of the main factors that controlled the resistance of pre-tumor and malignant cells to apoptosis-based tumor monitoring and regulated tumor angiogenesis and invasion (Wang et al., 2009).

Previous studies have shown that multiple genes in melanoma cells, such as Wnt5a, MELK, and PTX3, can trigger the NFκB signaling pathway, thereby migrating and invading melanoma (Janostiak et al., 2017; Barbero et al., 2019; Rathore et al., 2019). Chemokines were considered to be an important multifunctional cytokine in modulating the proliferation, invasion, and migration of neoplasm in an autocrine or paracrine manner. Additionally, chemokines were reported to mediate the tumorigenesis and development of numerous carcinomas, comprising breast carcinoma, prostate carcinoma, lung carcinoma, colorectal carcinoma, and melanoma (Lazennec and Richmond, 2010). Endogenous Wnt5a in cells exert an immunomodulatory effect on melanoma by secreting chemokines (Barbero et al., 2019). Chemokines were shown to essentially display in the development of melanoma. The growth and progress of carcinoma were demonstrated to be related to immunosuppression. Cancer cells were liable to motivate specific immune checkpoint pathways with corresponding immunosuppressive functions. Melanoma is a complex malignant tumor with diverse genomes (Lin et al., 2008). New genes and signal pathways involved in the pathogenesis are constantly being discovered. Immune checkpoint inhibitors have greatly changed the treatment options for melanoma. In recent years, research on the mechanism of immune regulation in melanoma has led to the development of many successful and innovative pharmaceutical preparations (Azijli et al., 2014).

The PPI network analysis revealed that 6 hub genes, comprising Itgb2, Wdfy4, Itgam, Cybb, Mmp2, and Parp14, might be key candidate genes related to the pathogenesis of melanoma. Itgb2 has been identified as a key oncogene in many human cancers, such as clear cell renal cell carcinoma, high-grade serous ovarian cancer, and lung adenocarcinoma. It was found that high expression of Itgb2 in triple-negative breast carcinoma exerted effects on the prognosis of patients. Wdfy4 regulates B cells through atypical autophagy and is genetically related to the susceptibility of systemic lupus erythematosus (SLE) of various races (Yuan et al., 2018). It has been clinically found to be significantly associated with Wdfy4 and patients with myopathy dermatomyositis (Kochi et al., 2018). Studies have shown that TGAM is not a general autoimmune gene, it is a risk factor for SLE, and is genetically related to a variety of autoimmune diseases. CYBB, and the NADPH oxidase gene, show gender-specific differential expression in multiple sclerosis (Cardamone et al., 2018). About 70% of patients with chronic granulomatous disease (CGD) have a mutation in the CYBB gene on the X chromosome (Eguchi et al., 2018). MMP2 is involved in the development of extracapillary proliferative diseases (Phillips et al., 2017). PARP14 can promote pancreatic cancer (PC) cell proliferation, anti-apoptosis, and GEM resistance, highlighting its potential role as a therapeutic target for PC (Yao et al., 2019). PARP14 was shown to be a newly produced drug target for carcinomas (such as diffuse large B-cell lymphoma, multiple myeloma, prostate carcinoma, and hepatocellular carcinoma) and allergic inflammation (Qin et al., 2019). These studies show that these hub genes are highly related to the progression of carcinoma and autoimmunity. In the present study, we found that Wdfy4, Parp14, Cyb, Itgb2, and Itgam were related to the prognosis of patients. Our data also revealed that the expression of the hub genes and the tumor stages of melanoma patients correlated, indicating these hub genes were promising biomarkers and targets for the diagnosis of melanoma patients and treatment. However, further experiments toward the parts of these genes need to be validated.

Based on the TCGA database, we found that Wdfy4, CYBB, Itgb2, and Itgam were down-regulated and MMP2 was up-regulated in melanoma samples compared with normal samples. Based on the GSE62628 database, we found that compared with non-exercise samples, Wdfy4, Parp1, CYBB, Itgb2, and Itgam were up-regulated and MMP2 down-regulated in the exercise samples.

Previous studies have shown that exercise is related to cancer recurrence and a significant reduction in mortality, and exercise intervention is beneficial to cancer patients. Our results showed that exercise inhibited high-expressed genes in melanoma, while it promoted low-expressed genes. Exercise might inhibit the progression of melanoma by inhibiting the expression of proto-oncogene and promoting the expression of tumor suppressor genes. In future research, we will analyze the expression level of the hub gene and its prognostic value in clinical samples. We will conduct more experiments in the future that explore knockdown and overexpression in the 5 hub genes of cell lines and mouse models, to evaluate their characteristics during the development of melanoma. In addition, the regulation mechanism of exercise on melanoma will also become the direction of our next research.

In short, comprehensive bioinformatics analysis has provided a research method by analyzing 3 databases to screen the exercise-induced key genes of melanoma and we found that several pathways have been changed. The 5 hub gene expression was related to the clinical outcome of melanoma patients. These findings indicate that the selected candidate genes along with their related pathways might serve as therapeutic targets for melanoma, and comprehensive bioinformatics analysis might be considered a new paradigm to guide the study of the interaction between lifestyle and disease. Moderate exercise is essential to improve the outcome of cancer patients, and exercise might be a promising treatment option for melanoma.
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Circular RNA is a kind of RNA with a covalently closed loop, which has a complex ability to modulate genes in the process of tumorigenesis and metastasis. Nevertheless, how circular RNA functions in gastric cancer (GC) remains unclear. The effect of circHIPK3 in vitro was studied here. Quantitative real-time PCR (qRT-PCR) was employed to found that circHIPK3 markedly increased in GC tissues and cell lines. And low expression of circHIPK3 suppressed the GC cells growing and metabolizing. Then the bioinformatics tool predicted the downstream target of circHIPK3, and it was proved by the dual-luciferase report experiment. According to the results of bioinformatics analysis and experimental data, it was clarified that circHIPK3 acted as a sponge of miR-637, releasing its direct target AKT1. The dual-luciferase assay revealed that mir-637 could bind circHIPK3 and AKT1. qRT-PCR data indicated that overexpression circHIPK3 led to the low level of miR-637 and overexpressed miR-637 would reduce AKT1 level. Finally, we demonstrated that the low expression of miR-637 or overexpression of AKT1 could attenuate the anti-proliferative effects of si-circHIPK3. These results suggest that the circHIPK3/miR-637/AKT1 regulatory pathway may be associated with the oncogene and growth of gastric cancer. In short, a new circular RNA circHIPK3 and its function are identified, and the regulatory pathway of circHIPK3/miR-637/AKT1 in the tumorigenesis and development of gastric cancer is discovered.
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Introduction


Background

According to recent reports, the number of new gastric cancer patients worldwide was over 10 million in 2018. The mortality of gastric cancer (GC) ranked the second among cancers, leading to the death of 7.83 million people in 2018 (1). Helicobacter pylori infection and dietary habits are considered as the main factors that cause gastric cancer (2). The surgery is still the most effective method for the treatment of GC. However, survival in GC patients seems to depend on the stage of the disease with GC (3). Thus, it is extremely important to make an early screening and diagnosis to enhance the effectiveness of treatment. Nowadays, it is possible to detect the disease at its earliest stage by extensive screening programs with the development of new biomarkers, like human epidermal growth factor receptor 2 (HER2) (4). The carcinoma-relevant biomarkers exist as a gradually crucial part in the screening and treatment of cancer (5).

Non-coding RNA (ncRNA), as its name suggests, does not encode a protein. Although these ncRNAs cannot encode proteins, they are indispensable to maintain complex life for an organism (6). NcRNAs are extremely abundant and diverse in different cells. Among them, the ncRNAs that perform relatively general functions are rRNA, tRNA, snRNA, and snoRNA (7). Additionally, lncRNA, circRNA, miRNA, and siRNA also belong to ncRNA as well as exerting specific functions in cellular activities (8, 9). CircRNA (circular RNA) is a part of ncRNA with a covalently closed continuous loop. However, the important role of circRNA for cellular metabolism has not been appreciated until recentness (10). CircRNAs are seen to maintain their relative stability in cells due to the special structure with closed ring (11). Recently, there have been shreds of evidence indicating that circRNAs affect the progression of some diseases by regulating gene expression. For example, Hsiao et al. revealed that circCCDC66 promoted cancer growth and metastasis via the regulation of a subset of oncogenes in colon cancer (12). Zhong et al. demonstrated that circRNA-MYLK promoted cell proliferation, migration, HUVEC tube generation, and reorganized cytoskeleton via activating VEGFA/VEGFR2 signaling pathway (13).

MicroRNAs (miRNAs) are classified as non-coding RNAs with small size. MiRNAs are rich in cells during different stages of the cell cycle. The main function of miRNA displays critically in the regulation of gene post-transcription (14, 15). The mechanism of regulation is very complex, and there is no simple one-to-one correspondence between miRNAs and target genes (16). Several studies have shown that miRNAs during the initiation and progression of cancer can be involved in the progression of regulation (17, 18). An increasing number of studies indicate that circRNA can act as miRNA sponges in the development of cancer. For example, Yang et al. revealed that circ-ITCH “sponged” miR-17 and miR-224, which up-regulated the expression of downstream target p21 and PTEN, then led to the suppression of the development in bladder cancer (19).

Competitive endogenous RNA (ceRNA) is a transcript with the same miRNA response element (MRE), which can act as a miRNA chelating molecule and compete with miRNA to regulate its target genes, thereby affecting the biological behavior of tumors. circRNAs may act as a reaction element for ceRNA to competitively bind miRNA, thereby regulating the expression level of mRNA which is a target by miRNA. Therefore, circRNA-miRNA-mRNA interaction may be an important mechanism for the initiation and development of human tumors. This hypothesis has been confirmed in previous studies. It was found in cervical cancer that circRNA hsa_circRNA_101996 activates the expression of TPX2 by inhibiting miR-8075, thereby enhancing the proliferation and invasion of cervical cancer. In breast cancer, circRNA_0025202 regulates the sensitivity of Tamoxifen and tumor progression through the regulated miR-182-5p/FOXO3a axis. Hsa_circRNA_103809 regulates cell proliferation and migration in colorectal cancer through the miR-532-3p/FOXO4 axis.

Here, our study revealed that circHIPK3 was aberrantly expressed in GC. The experimental research showed that the knockdown of circHIPK3 inhibited GC cells from proliferating, invading, and migrating in vitro. Mechanistically, the results indicated circHIPK3 increased the level of miR-637 downstream target gene AKT1 through “sponging” miR-637, which promoted GC growth. In short, we found that circHIPK3 might serve as a potential biomarker for GC. The experimental results provided new hints for cancer research and treatment.




Materials and Methods


Bioinformatics Analysis

To investigate the role of the “miRNA sponge,” Circinteractome (https://circinteractome.nia.nih.gov/) was applied to forecast the feasible miRNAs binding sites of circHIPK3 and respective miRNAs. DIANA-TarBase v8.0 software (http://diana.imis.athena-innovation.gr/DianaTools) was conducted to presume probable targets of miRNA.



Tissue Samples

Ten pairs of GC and healthy tissues of surgical patients with the clinical profile were from Changzheng Hospital, Navy Medical University, Shanghai, China. After collecting indicated specimens, we immediately put them into liquid nitrogen for snap-frozen and then kept them at −80°C for the following experiments. Our experiments were performed on the premise of the approval of the Human Research Ethics Committee of this hospital. Here, our study got the unanimous consent of all patients with signed informed documents.



Cell Culture and Transfection

Human gastric cancer cell lines (BGC-823, CRL-5822, SGC-7901, and AGS) and normal gastric epidermal cell lines (GES-1) were maintained in RPMI-1640 medium (BI, Israel) supplied with 10% FBS (BI, Israel) and 1% penicillin/streptomycin (BI, Israel) under 37°C incubator with 5% CO2. The siRNA targeting circHIPK3, miR-637 mimic and inhibitor and controls were ordered from Ribobio Biotechnology (Guangzhou, China). The coding sequence of AKT1 was inserted into the pcDNA3.1 construct to obtain an overexpression cassette of AKT1. Use Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) to transfect the relative plasmid into GC cells according to the manufacturer’s instructions. After 6 h, change to fresh medium and continue incubating for 24 h. The sequence of the siRNA for the circHIPK3 was 5′- CUACAGGUAUGGCCUCACA-3′ (si-circHIPK3). The sequence of negative control siRNA (si-NC) was 5′- UUCUCCGAACGUGUCACGUTT-3′.



Construction of Circular RNA Vector

The human coding sequence of circHIPK3 was obtained from Mras genome of SGC-7901 cells. Exon 2 sequence of Mras, 100 bp of upstream and 100 bp of downstream of adjacent sequences were involved. The final recombinant construct of pzw-circHIPK3 was confirmed by sequencing.



RNA Extraction of Nuclear and Cytoplasmic Fractions

MirVana PARIS™ Kit (AM1556; Ambion, Austin, TX, USA) was used to extract nuclear and cytoplasmic RNA referred to manufacturers described. Then 5 × 107 cells were harvested with low-speed centrifugation to discard medium, and then washed in pre-cold PBS twice, followed by exposed on ice. Then, 400 μl of cell fractionation buffer was added into the cell pellet, and kept on the ice for more than 5 min, followed by centrifuging at 4°C (500 g for 5 min) and harvesting cytoplasmic fraction. Five hundred microliters of Cell Disruption Buffer was mixed with pellets and vortexed to smash nuclei until that cell lysate became homogenized.



Extraction and Quantitation of RNA

Trizol (Invitrogen, USA) was employed to separate RNA from tissues and cells of patients. Primers for qRT-PCR (quantitative real-time PCR) were ordered from Sangon Biotech (Shanghai, China). GAPDH or U6 was regarded as a reference control. Math Processing Error method was used to assess normalized gene expression.



Cell Proliferation Assay

Cell Counting Kit-8 (CCK-8, Dojindo Chemical Laboratory, Kumamoto, Japan) was performed to assess cell proliferation. Taken briefly, 1 × 103 cells of each well were cultured in 96-well plates for each group in quadruplicate. Each well was added 10 μl of CCK-8 reagent from 1 day to 5-day post-incubation and then placed at 37°C for 1.5 h. The absorbance value of 450 nm was measured by synergy 2 (Molecular Devices, Bio-Tek, CA, USA).



Transwell Assay

GC SGC-7901 and AGS cells in 200 μl serum-free medium were ready in the upper trans-well chamber for migration assay or in the upper trans-well chamber with matrigel for invasion assay (8.0 μl pore size; BD Biosciences, Franklin Lakes, USA). Twenty hours later, the cells were fixed in formaldehyde for 10 min and stained with DAPI for 15 min.



Dual-Luciferase Assay

Then 1 × 104 of SGC-7901 cells for each well were inoculated in 96-well plates. The sponge sequence of circHIPK3, AKT1 3′-UTR comprising assumed miR-637 sponge sites, and respective site-specific mutated seed sequence were ligated into pmirGLO reporter vector (Promega, USA). Co-transfection of miR-637 mimic with expected plasmids at specified concentration referred to website (https://www.promega.com.cn/products/reporter-assays-and-transfection/reporter-vectors-and-cell-lines/pmirglo-dual-luciferase-mirna-target-expression-vector). We harvested total lysates and successively detected them for 48 h at post-transfection.



Statistical Analysis

All the representative data were indicated as mean ± SD. The differences existing in two or multiple groups were calculated by Student’s t-test. Each group was performed three independent times in triplicate. The obvious difference suggested a P value less than 0.05.




Results


Analysis of circHIPK3 Expression in GC

The differential expressions of circHIPK3 were validated in 10 pairs of GC tissues and nearby normal ones. QRT-PCR data suggested that circHIPK3 expression level was increased in GC relative to that in control normal tissues, revealing circHIPK3 might be a tumor motivator (Figure 1A). We then detected circHIPK3 levels in five gastric cell lines. Our data indicated that circHIPK3 level was increased in gastric cancer cell lines (BGC-823, CRL-5822, SGC-7901, and AGS) compared with normal gastric cell line (GES-1) (Figure 1B). Collectively, our data revealed that the shape of circHIPK3 presented a circle and an increased level of circHIPK3 was shown in GC cell lines.




Figure 1 | Circ-HIPK3 expressed higher in gastric tissues and cell lines. (A) Differential expressions of circHIPK3 in 10 pairs of GC and nearby normal tissues using qRT-PCR, **P < 0.01. (B) Differential expression level of circHIPK3 in GC cell lines and normal gastric cell lines (GES-1) using qRT-PCR, *P < 0.05, **P < 0.01.





Ablated circHIPK3 Inhibited GC Cell Viability, Migration, and Invasion

Then, siRNA was used to reduce the level of circHIPK3 in SGC-7901 and AGS and investigate its “loss of function.” One efficient siRNA targeting back-spliced sequence of circHIPK3 was chosen, and it exhibited strong inhibited effects in SGC-7901 and AGS cells (Figure 2A). We herein chose si-circHIPK3 to conduct the following experiments. CCK-8 assay suggested that decreased expression level of circHIPK3 greatly inhibited proliferation of SGC-7901 and AGS cells (Figures 2B, C). Additionally, the associated assays revealed the reduced level of circHIPK3 resulted in a decreased ability to migrate and invade (Figures 2D, E). Our data suggested that decreased expression level of circHIPK3 prevented GC cells from growing, migrating, and invading.




Figure 2 | Ablated circHIPK3 inhibited GC cell viability, migration, and invasion (A) Relative expression level of circHIPK3 in GC cells transfected with si-circHIPK3 and si-NC, *P < 0.05. (B, C) Proliferation ability of (B) SGC-7901 and (C) AGS cells transfected with si-circHIPK3 and si-NC, *P < 0.05, **P < 0.01. (D, E) Cell migration and invasion ability of (D) SGC-7901 and (E) AGS cells transfected with si-circHIPK3 and si-NC, **P < 0.01, ***P < 0.001.





CircHIPK3 Played as a Sponge of miR-637 to Induce AKT1

Recently, some researches showed that the main function of circRNA acted as miRNA sponges to target respective miRNAs, followed by regulating gene expression (20). Nucleic and cytoplasmic fraction assays were performed to verify that circHIPK3 was mainly located in cytoplasm (Figure 3A). These findings suggested that circHIPK3 may act as a miRNA sponge in GC. Here, bioinformatic analysis revealed that circHIPK3 possessed responsive elements of numerous miRNAs, including miR-637 and DIANA-TarBase v8.0 software revealed that AKT1 was a potential target of miR-637, thus we hypothesized that circHIPK3 played a role in the tumorigenesis and development of GC by regulating miR-637/AKT1 axis.




Figure 3 | CircHIPK3 acted as a miR-637 sponge in GC (A) Subcellular location of circHIPK3 in SGC-7901 cells was detected by qRT-PCR. GAPDH and U6 were used as cytoplasmic and nuclear markers, respectively. (B) Luciferase activity of circHIPK3-WT vector was significantly reduced whereas of circHIPK3-MUT vector was not change in SGC-7901 cells co-transfected with miR-637 mimic, *P < 0.05. (C) Expression level of miR-637 was downregulated after overexpressing circHIPK3 in AGS and SGC-7901 cells by qRT-PCR analysis, *P < 0.05. (D) Expression level of circHIPK3 was not change after overexpressing miR-637 in AGS and SGC-7901 cells by qRT-PCR analysis.



To further validate the circRNA-miRNA-mRNA regulatory networks, we first evaluated miRNA-binding ability to circHIPK3 by luciferase assay. Our results suggested that the interaction existing in circHIPK3 and miR-637 in SGC-7901 cells resulted in reduced luciferase activity, while no change of luciferase activity was shown in SGC-7901 cells treated with circHIPK3 mutant and miR-637 (Figure 3B). Next, we detected the regulation between circHIPK3 and miR-637 in view of interaction existed in circHIPK3 and miR-637. QRT-PCR data indicated that overexpression of circHIPK3 would inhibit miR-637 expression level (Figure 3C) whereas heightened miR-637 expression exerted no influence on circHIPK3 expression (Figure 3D), indicating that circHIPK3 would display as a regulation executor of miR-637 expression.

Subsequently, the interaction between AKT1 and miR-637 was confirmed. QRT-PCR data indicated that overexpressed miR-637 in AGS and SGC-7901 cells would significantly reduce AKT1 level (Figure 4A). The dual-luciferase assay showed that overexpressed miR-637 inhibited the luciferase activity of AKT1 wild type vector, not AKT1 mutant vector (Figure 4B).




Figure 4 | The interaction between AKT1 and miR-637 (A) Expression level of AKT1 was downregulated after the overexpression of miR-637 in AGS and SGC-7901 cells by qRT-PCR analysis. (B) Luciferase activity was significantly decreased in AKT1-wt group whereas nearly no change in AKT1-mut group after the overexpression of miR-637 in SGC-7901 cell.





CircHIPK3 Enhanced Cells Viability by Regulating miR-637/AKT1 Axis in GC

Finally, we deeply investigated the functional aspects. Proliferation was assessed using a CCK-8 kit in AGS and SGC-7901 cells transfected with si-circHIPK3 and miR-637 inhibitor or AKT1 overexpression cassette. The results revealed that promoted cell viability generated in AGS and SGC-7901 cells with low-expressed circHIPK3 was greatly ablated upon miR-637 low-expression (Figures 5A, B) or AKT1 overexpression (Figures 5C, D). To sum up, our findings demonstrsted circHIPK3-mediated promotion of GC cell proliferation and migration via regulating miR-637/AKT1 axis.




Figure 5 | Proliferation measured using CCK-8 assay in cells transfected with si-NC, si-circHIPK3 and the combination of si-circHIPK3 and miR-637 inhibitor or AKT1. The decline in proliferation brought by si-circHIPK3 has been partially offset by (A, B) miR-637 low-expression or (C, D) AKT1 over-expression in AGS and SGC-7901 cells, *P < 0.05, **P < 0.01.






Discussion

Despite 40 years since its discovery by electron microscope technique, we have not understood circRNA functions until a; breakthrough in the synthesis and sequencing technology of RNA (21, 22). As the development of molecular biology, circRNA function and mechanism has been studied extensively. Numerous studies towards the effects of circRNA on cancer development have been reported before (23). As one of the most widely occurred malignant carcinomas, GC appeared in some areas, such as East Asia and Eastern Europe (24). Several researches have reported that circRNAs exhibited a primary role in GC tumorigenesis and progression. For instance, Li et al. showed that circ-ERBB2 promoted GC cell proliferation by miR-503/CACUL1 signaling and induced cell invasion via miR-637/MMP-19 axis (25). Wu et al. demonstrated that circ-DCAF6 promoted GC cell growth and invasion upon inhibiting miR-1231 and miR-1256 level (26). Guan et al. revealed that circ-NOTCH1 strengthened GC cell viability and invasion, but decreased cell apoptosis by hindering the transcriptional activity of miR-637 (27). CircRNAs are important regulatory factors in the developmental progression of GC (28). Up to now, however, there is no report on the roles of circHIPK3 on growth of GC.

Our data revealed that circHIPK3 level increased dramatically in GC tissues and cells after normalized to that in normal ones. From this consideration, we hypothesized that circHIPK3 displayed an elementary role in GC growth. We then performed circHIPK3 knockout experiments using siRNA to elucidate the function of circHIPK3 in GC. Functionally, CCK-8 and Transwell assay both verified that downregulation of circHIPK3 expression largely suppressed GC cell proliferation, migration, and invasion in vitro. These experimental results provide initial evidence for our hypothesis.

More circRNA functions are also found by virtue of the progress of molecular biology techniques and increasing research funding. The major function of circRNA is acting as regulators in post-transcriptional regulation, such as circRNA functioning as miRNA sponges in miRNA-mRNA regulatory network (29). To verify our hypothesis and initial results, a dual-luciferase assay was performed. The results have shown circHIPK3 could be bound to miR-637, which circHIPK3 expression level exhibited a negative correlation with miR-637 expression level. Meanwhile, we found that AKT1 might be a downstream target gene of miR-637. AKT1 (one of serine threonine kinase) has been involved in the regulation of cell growth, cell cycle or apoptosis (30). Previous studies have shown that AKT1 promoted mammary epithelial tumor cell migration and invasion in vivo (31). Priolo et al. revealed that activation of AKT1 had links to accumulated aerobic glycolysis metabolites, and acted as an oncogene role in prostate cancer growth (32). In this study, mechanistically, circHIPK3 increased AKT1 via inhibiting miR-637, which boosted GC cell viability, migration and invasion. In future studies, we will collect more samples to analyze the expression of circHIPK3, miR-637 and AKT1 in clinical samples, and explore their prognostic value. We will conduct more experiments to identify the functions of circHIPK3, miR-637, and AKT1 in, cell lines and mouse models, and evaluate their characteristics in the development of GC in the following studies.

Taken together, we found that circHIPK3 was overexpressed in GC, mainly located in the cytoplasm, and promoted the proliferation, migration, and invasion of GC cells. In addition, we identified an important role of circHIPK3 in GC cells that induced cell viability, migration, and invasion by regulating miR-637/AKT1 signaling pathway. As present researches described, miR-637 expression level has been regulated by circHIPK3, and AKT1, miR-637 downstream gene, is under the control of miR-637. Our results suggested that the initiation and progression of GC were affected by circRNA-miRNA-mRNA regulatory networks mediated by circHIPK3. In short, we revealed for the first time that the circHIPK3/miR-637/AKT1 regulatory pathway may be related to the tumorigenesis and growth of gastric cancer, our research results provide a potential therapeutic target for GC.
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Background

Colorectal cancer (CRC) is regarded as one of the most common malignancies in the world. MiR-1-3p was reported to be a tumor suppressor in CRC. However, the mechanisms have not been fully elucidated.



Methods

To identify CRC-associated miRNA, microarray data set GSE30454 was downloaded from the Gene Expression Omnibus database (GEO), and miR-1-3p was screened out as a candidate. The expression of miR-1-3p was detected using quantitative real-time polymerase chain reaction (qRT-PCR) in CRC cell lines and tissues. CCK-8 assay and transwell invasion assay were performed to determine CRC cell line proliferation and invasion, respectively. The levels of YWHAZ and EMT-associated proteins were detected using western blotting.



Results

Bioinformatic analysis showed that miR-1-3p was downregulated in CRC tissues, which is verified by our experimental validation. The overexpression of miR-1-3p significantly suppressed CRC cell proliferation and invasion. Further studies showed that YWHAZ was a direct target of miR-1-3p and mediated epithelial–mesenchymal transition (EMT) modulated by miR-1-3p.



Conclusion

Our results demonstrated that miR-1-3p suppresses colorectal cancer cell proliferation and metastasis through regulating YWHAZ-mediated EMT, which may support a novel therapeutic strategy for CRC patients.
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Introduction

Colorectal cancer (CRC) is one of the most prevalent and fatal malignancies worldwide. There are over 1.8 million new CRC cases and 881,000 deaths that occurred in 2018 (1). In China, the incidence of CRC has been gradually increasing in recent years (2). Despite the growing body of treatments for CRC, the overall survival of patients with CRC is still far from satisfactory. Hence, identifying more molecules in CRC progression to support specific targeted drugs is important and urgent.

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules of 20–22 nucleotides, which can directly bind to the 3′-untranslated region (3′-UTR) of target gene mRNAs to inhibit their translation (3). Increasing studies have reported that patients with tumor exist in a variety of disorders and abnormal expression of miRNAs. It is demonstrated that the dysregulated expression of several miRNAs, such as miR-124 (4), miR-625 (5) and miR-133a (6) contributes to the development and progression of CRC. Besides the miRNAs mentioned above, miR-1-3p (previously named miR-1) is identified as a tumor suppressor in various analyses of microRNA expression profiling (7–14). Recently, it is demonstrated that miR-1-3p could inhibit metastasis of CRC by restraining epithelial–mesenchymal transition (EMT) (15), but the underlying mechanisms still have not been fully elucidated.

In our study, the expression of miR-1-3p was detected in human CRC tissues and cell lines. Gain- or loss-of-function assays showed that miR-1-3p suppresses the development and progression of CRC. Furthermore, we found that an EMT-associated protein, YWHAZ, was a target of miR-1-3p. MiR-1-3p played its suppressive function in CRC through reversing YWHAZ-derived EMT.



Materials and Methods


Microarray Data

The miRNA profiling (GSE30454), containing 65 CRC samples and nine normal colonic mucosa samples, was downloaded from the GEO database for identifying the differentially expressed miRNAs (DEMs). The miRNA profiling, GSE38389 (68 tumors and 70 normal mucosa), GSE10259 (58 tumors and eight normal mucosa), GSE41655 (92 tumors and 15 normal mucosa) and GSE35982 (eight colorectal cancer tissues and their corresponding adjacent normal tissues), were also downloaded as test database.



Identification of DEMs

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/), a free online tool for identifying the DEMs from GEO database (16), was applied to detect the DEMs between CRC samples and normal colonic mucosa samples. Adjust P-value <0.01, combined with |log2FC| ≥1 was set as the thresholds for identifying DEMs.



Patients and Specimens

A total of 20 patients with CRC in the Sichuan Provincial People’s Hospital were selected, and CRC tissues and adjacent normal tissues were obtained through surgery. All the patients did not receive preoperative chemotherapy. This study was approved by the Ethics Committee of the Sichuan Provincial People’s Hospital and all patients’ written informed consents were obtained.



Cell Culture and miRNA Transfection

Human CRC cell lines (HT29, HCT116, SW480) were selected as test cells. All cells (American Type Culture Collection, ATCC) were cultured in RPMI 1640 (Hyclone) supplemented with 10% fetal bovine serum (FBS) (Gibco, Invitrogen) at a humidity of 5% CO2 at 37°C.

MiRNAs and expression plasmids were transfected into cells by Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s instructions. The miR-1-3p mimic (HmiR0426), a non-specific miR control (HmiR0426-MR04), anti-miR-1-3p (miR-1-3p inhibitor, HmiR-AN0044), and a non-specific anti-miR control (CmiR-AN0001-AM01) were all purchased from FulenGen (Guangzhou, China).



RNA Isolation and qRT-PCR

Total RNA was extracted using Trizol reagent (Invitrogen) and reverse transcribed for quantification using an NCode miRNA First-Strand cDNA Synthesis kit (Invitrogen). mRNA level of YWHAZ was measured as previously described (17). qRT-PCR was carried out using an SYBR Green PCR master mix (Applied Biosystems) on an ABI 7500HT system. The 2−ΔΔCt method was used to measure the relative expression of miR-1-3p and YWHAZ. Each PCR amplification was performed in triplicate to verify the results. GAPDH was used as an internal reference of mRNA, U6 was used as an internal reference of miRNA. The primers for miR-1-3p (HmiRQP0044) and U6 (HmiRQP9001) were purchased from FulenGen (Guangzhou, China). The other primers for the target genes in the study are listed below.

YWHAZ: forward: 5′-ACTTTTGGTACATTGTGGCTTCAA-3′; reverse: 5′-CCGCCAGGACAAACCAGTAT-3′;

GAPDH: forward: 5′-TGCTTCAGGGTTTCATCCAG-3′; reverse: 5′- GACACTCGCTCAGCTTCTTG3-3′.



CCK-8 Assay

Cells (5 × 103) were seeded in 96-well plates in 100 μl medium. After treatment, cell viability was measured using the Cell Counting Kit-8 (CCK-8) kit (Beyotime) according to the manufacturer’s instructions. The extent of proliferation was evaluated every 24 h for 6 days.



Transwell Invasion Assays

The invasive capacity of cells was performed using transwell precoated with matrigel (BD Biosciences). After incubation for 24 h, the cells that did not invade through the pores were carefully wiped away using a cotton-tipped swab, and the invaded cells were fixed with 4% paraformaldehyde, and then stained with Giemsa solution. Ultimately, five fields were randomly selected to count the cell number under an inverted microscope (Olympus).



Prediction of Targets and Luciferase Reporter Assay

ENCORI (http://starbase.sysu.edu.cn/index.php) (18) and miRTarBase (http://mirtarbase.cuhk.edu.cn/php/index.php) (19) are online software programs that were used for miRNA target prediction.

The wild-type (wt) 3′-untranslated region (3′-UTR) fragment of YWHAZ that can bind to miR-1-3p or the mutant 3′-UTR fragments were synthesize by Sangon, China. Then, the segments were cloned into pMIRREPORT (Ambion) with firefly luciferase. Cells treated with control, miR-1-3p mimics, or miR-1-3p inhibitors were co-transfected with wild-type or mutants of YWHAZ 3′-UTR luciferase reporters together with Renilla plasmid. The dual-luciferase reporter assay system (Promega) was used to measure the luciferase activity in CRC cells after transfection for 48 h.



Western Blot Analysis

Protein from cells was extracted using RIPA lysis buffer (Beyotime) with freshly added PMSF (Beyotime). The protein concentration was quantified using the Bradford method. All the antibodies used in our study were bought from Santa Cruz Biotechnology (Santa Cruz).



Statistical Analysis

Data were analyzed using SPSS version 13.0 software. The Student t-test and the one-way ANOVA test were carried out for qRT-PCR and CCK-8 analyses. The correlation between miR-1-3p and YWHAZ was determined using the Spearman rank correlation test. A P value <0.05 was considered significant.




Results


MiR-1-3p Was Downregulated in CRC Tissues and Cell Lines

To identify the DEMs of miRNA array GSE30454 downloaded from GEO, we conducted a differential expression analysis using GEO2R. The results showed that a total of 149 DEGs were identified, including 105 downregulated and 44 upregulated DEMs (Figure 1A). The top five downregulated and upregulated DEMs were listed in Table 1. Since the top one downregulated DEM, miR-129-5p, was well studied in CRC (20, 21), miR-1-3p was selected for the further study. To verify the expression of miR-1-3p in CRC, four miRNA expression profiling, GSE38389, GSE10259, GSE41655 and GSE35982 were downloaded and analyzed. It was demonstrated that miR-1-3p was significantly downregulated in CRC (Figures 1B–E). Additionally, the expression of miR-1-3p in CRC cell lines and our collected CRC tissue samples were also detected. As shown in Figures 1F, G, miR-1-3p was downregulated in HCT116, SW480, HT29 and CRC tissues, compared to the normal control NCM460.




Figure 1 | MiR-1-3p was downregulated in CRC tissues and cell lines. (A) Volcano plot of the DEMs (adjust P-value <0.01 and |logFC| ≥1 were set as the cut-off criteria). (B–E) The expression of miR-1-3p from the GEO database GSE38389, GSE10259, GSE41655 and GSE35982. (F) The expression of miR-1-3p in three CRC cell lines (HCT116, SW480, HT29) was compared with that in control. (G) The expression of miR-1-3p in tumor tissues was compared with the normal control.




Table 1 | Top 10 DEMs between CRC tissues and normal colonic mucosa samples from the miRNA profiling GSE30454.



These results prompt us to investigate the potential role of miR-1-3p in CRC suppression.



MiR-1-3p Suppressed CRC Cell Proliferation and Invasion

To explore the biological function of miR-1-3p in CRC, gain- and loss-of-function assays were performed.

Firstly, we transfected miR-1-3p mimic into HCT116 and SW480 cells to investigate the role of miR-1-3p, respectively. The CCK-8 assays results showed that miR-1-3p could remarkably inhibit the proliferative ability of HCT116 and SW480 cells (Figure 2A). In addition, a transwell invasion assay was employed to measure the effects of miR-1-3p on CRC invasion. The results demonstrated that upregulation of miR-1-3p significantly decreased the cell number of invaded HCT116 and SW480 (Figure 2B).




Figure 2 | MiR-1-3p suppressed CRC cell proliferation and invasion. (A) The effect of miR-1-3p on cell proliferation was evaluated by CCK-8 assay after miR-1-3p transfection of HCT116 and SW480 cells. (B) Data of transwell assay for HCT116 and SW480 cells. The cells were counted under a microscope in five randomly selected fields. (C) The effect of anti-miR-1-3p on cell proliferation was evaluated by CCK-8 assay after anti-miR-1-3p transfection of HCT116 and SW480 cells. (D) Data of transwell assay for HCT116 and SW480 cells. The cells were counted under a microscope in five randomly selected fields. *P < 0.05, **P < 0.01.



Furthermore, we also transfected anti-miR-1-3p into HCT116 and SW480 cells to decrease the expression of miR-1-3p. On the contrary with the above results, we found that the proliferation activity of HCT116 and SW480 cells in the anti-miR-1-3p group were significantly higher than those in the control group (Figure 2C). Transwell invasion assays showed that downregulated miR-1-3p expression significantly increased the cell invasion capabilities of CRC cells compared to the control group (Figure 2D).

These findings demonstrated the role of miR-1-3p in inhibiting aggressive phenotype of CRC cells.



Prediction and Validation of YWHAZ as a Direct Target of miR-1-3p

It is acknowledged that miRNA exerts its function via regulating the expression of its target gene. To predict the potential targets of miR-1-3p, publicly available algorithms (ENCORI and miRtarbase) were used in our study. By ENCORI, 58 potential target genes were predicted with the screening criteria of programNum ≥6 and pan-Cancer ≥5. Meanwhile, 79 potential target genes were predicted by miRtarbase with high confidence. 12 overlapping potential target genes were screened out and listed in Figure 3A. Among these genes, YWHAZ, a central hub protein for EMT, was selected for further experimental verification. On the contrary with the expression of miR-1-3p in CRC, we found that YWHAZ were upregulated in CRC tissues compared to adjacent normal tissues (Figure 3B). Furthermore, the expression levels of YWHAZ and miR-1-3p exhibited a significant inverse correlation in 10 CRC samples (r = −0.8271, P = 0.0022, Figure 3C). These results supported our hypothesis that YWHAZ was a target gene of miR-1-3p.




Figure 3 | Prediction and validation of YWHAZ as a direct target of miR-1-3p. (A) Venn diagram of the overlapping target genes using the Starbase and miRtarbase databases. The 12 overlapping target genes were listed. (B) The expression of YWHAZ in our collected CRC tissues and adjacent normal tissues. (C) The expression of miR-1-3p and YWHAZ mRNA was detected in CRC tissues by qRT-PCR analysis. A statistically significant inverse correlation between miR-1-3p and YWHAZ mRNA was observed in CRC specimens. (D) Diagram of YWHAZ 3′UTR containing 1 putative conserved target sites for miR-1-3p, which were identified using the Starbase and miRtarbase databases. (E) Results of luciferase reporter assays in HCT116 and SW480 cells, with co-transfection of wt or mt 3′UTR and miR mimic and inhibitor, as indicated. (F) The protein expression of YWHAZ in HCT116 and SW480 cells transfected with miR-1-3p.



The predicted site in YWHAZ 3′-UTR that can be bound by miR-1-3p is illustrated in Figure 3D. We consequently explored whether YWHAZ was a direct target of miR-1-3p in CRC cells. The luciferase reporter assay showed that miR-1-3p mimic significantly inhibited the luciferase activity in HCT116 and SW480 cells with wt-YWHAZ-3′ UTR vector, but not in mutant YWHAZ-3′ UTR (Figure 3E). We also analyzed the expression of YWHAZ in GSE29760, which was an expression profiling in HCT116 cells transfected with miR-1-3p precursor molecule. We found that the expression of YWHAZ was decreased in miR-1-3p-transfected HCT116 cells (Table S1). Moreover, transfected miR-1-3p mimic resulted in significant reduction of YWHAZ protein (Figure 3F).

These results indicated that YWHAZ was a direct target gene of miR-1-3p.



MiR-1-3p Modulated EMT in an YWHAZ-Dependent Way

EMT is a critical process during tumor metastasis by which epithelial cells lose their cell–cell adhesion and obtain mesenchymal features (22). Combining the results above and the previously report of YWHAZ involved in EMT, we hypothesized that miR-1-3p modulated EMT in CRC cells through regulating the expression of YWHAZ. To assess this hypothesis, YWHAZ expression vector was transfected into miR-1-3p-overexpressing HCT116 cells. The expression of YWHAZ and known molecular markers of EMT (N-cadherin, E-cadherin, β-catenin) was examined by western blotting. The results showed that miR-1-3p decreased the expression of YWHAZ with the downregulated expression of N-cadherin, β-catenin and upregulated expression of E-cadherin, which was neutralized by the overexpression of YWHAZ (Figure 4A). And then overexpression of YWHAZ reduced the inhibition of proliferation and invasion ability by miR-1-3p in HCT116 cells (Figures 4B, C).




Figure 4 | MiR-1-3p modulated EMT in an YWHAZ-dependent way. (A) Western blotting of EMT markers and YWHAZ were performed to determine whether miR-1-3p mediated EMT in a YWHAZ-dependent way. (B) The effect of miR-1-3p and YWHAZ on cell proliferation was evaluated by CCK-8. (C) Results of transwell assay, which was carried out to evaluate the effect of cell invasion after transfection are shown. *P < 0.05, **P < 0.01.



These results together indicate that miR-1-3p modulates EMT in an YWHAZ-dependent way.




Discussion

Colorectal cancer (CRC) is a high heterogeneous and fatal malignancy in the world. Despite major advances in diagnostics and treatment, the complex pathogenesis of CRC has no satisfying therapies and prognosis (14). Therefore, in-depth exploration of the pathogenesis of CRC will be crucial for seeking and developing a promising therapeutic target to improve the survival of patients with this tumor.

Currently, miRNAs have been regarded as popular tumor molecular markers which possess a variety of biological functions. MiR-1-3p was first reported to involve in cardiac morphogenesis and cell cycle (23). Previous research on the epigenetics of CRC showed that miR-1-3p was silenced in association with CGI methylation in HCT116 cells, suggesting its role of tumor suppressor (8). With in-depth study, the tumor suppressor role of miR−1-3p has been proven (24, 25). However, the mechanism of miR-1-3p in the development of CRC has not clarified. Public data and our data demonstrated that the expression of miR-1-3p was decreased in CRC tissue and cell lines with increased malignant behavior of CRC. Functional experiments demonstrated that CRC cell lines with the miR-1-3p mimic showed lower cell proliferation and invasion capacity.

To explore the underlying mechanism of tumor suppression by miR-1-3p, YWHAZ was identified as a direct target gene of miR-1-3p in CRC cell lines. The trend of YWHAZ mRNA was contrary to miR-1-3p, indicating that the biological effect of miR-1-3p may be mediated by inhibiting the YWHAZ-involved pathway. YWHAZ (also named 14-3-3ζ) is reported to be a central hub protein in tumor progression (26). The oncogene function of YWHAZ has been well recognized in multiple types of cancers by participating in cell growth, cell cycle, apoptosis, migration, and invasion (17, 27). It is observed that the expression of YWHAZ is increased in 46 colorectal cancer (CRC) tissues (28). Additionally, YWHAZ silencing significantly decreased colony formation in CRC cells, suggesting its role in conferring malignant phenotype via extracellular vesicles (29). A recent study demonstrated that YWHAZ modulates EMT in CRC by interacting with thyroid hormone receptor interactor 13 (TRIP13) (30). So, we hypothesize that miR-1-3p plays its suppressive role in CRC by inhibiting YWHAZ-mediated EMT. As expected, we found that overexpression of YWHAZ neutralized the downregulation effect of EMT caused by miR-1-3p, supporting our previous hypothesis that miR-1-3p suppresses CRC cell proliferation and metastasis by inhibiting YWHAZ-mediated EMT. In follow-up studies, we will further verify the results of the study in vivo through animal model tests.



Conclusion

Our comprehensive research indicates that miR-1-3p was significantly downregulated in CRC tissues and cell lines, and YWHAZ is a direct target gene of miR-1-3p. MiR-1-3p can bind to the 3′URT of YWHAZ mRNA, thereby inhibiting YWHAZ-mediated EMT. These findings indicate a novel mechanism of tumor suppression by miR-1-3p, supporting a novel therapeutic strategy for CRC patients.
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Ketamine Inhibits Ovarian Cancer Cell Growth by Regulating the lncRNA-PVT1/EZH2/p57 Axis
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Ketamine is widely used for cancer pain treatment in clinic, and has been shown to inhibit various tumor cells growth. However, the effect of ketamine on ovarian cancer cells growth and the downstream molecules has not been defined. In the present study, we found that ketamine significantly inhibited the proliferation and survival of six ovarian cancer cell lines. Moreover, ketamine induced ovarian cancer cell cycle arrest, apoptosis, and inhibited colony formation capacity. Since lncRNAs have been identified as key regulators of cancer development, we performed bioinformatics analysis of a GEO dataset and found fourteen significantly altered lncRNAs in ovarian cancer patients. We then investigated the effect of ketamine on these lncRNAs, and found that ketamine regulated the expression of lncRNA PVT1. Mechanistically, ketamine regulated P300-mediated H3K27 acetylation activation in the promoter of PVT1. Our RNA immunoprecipitation experiment indicated that PVT1 bound histone methyltransferase enhancer of zeste homolog 2 (EZH2), and regulated the expression of target gene, including p57, and consequently altered ovarian cancer cell biology. Our study revealed that ketamine could be a potential therapeutic strategy for ovarian cancer patients.
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INTRODUCTION

Ovarian cancer (OC) is the most lethal gynecologic malignancy in women (Doubeni et al., 2016; Trabert et al., 2020). There are approximately 22,240 new cases and estimated 14,070 deaths in the U.S.A. in 2018 (Reid et al., 2017; Torre et al., 2018). Because of non-specific symptoms in the early stage and the lack of effective screening methods, more than 70% of patients with ovarian cancer are in an advanced stage (FIGO stage III or IV) when diagnosed. Currently, standard treatment for ovarian cancer is surgery and chemotherapy. There are many potential new treatment options based on the modifications of standard approaches and the addition of a new biological drugs emerging from recent clinical trials (Matulonis et al., 2016). However, biological drugs and new therapeutic approaches were not shown to cure ovarian cancer, recurrence and chemotherapy resistance still cannot be ignored (Matulonis et al., 2016; Moore et al., 2018). Therefore, new therapeutic approaches are still in need.

Long non-coding RNAs (lncRNAs) are a group of RNAs that classified as ≥200 nucleotide long RNAs, and are involved in diverse molecular genetics and cellular processes, including cell proliferation, embryonic development and tumorigenesis via regulating gene expression (Wang and Chang, 2011). Recently, more and more lncRNAs are demonstrated to be dysregulated in cancer and involved in a wide range of cancer biological steps (Bartonicek et al., 2016; Evans et al., 2016; Tang et al., 2017). In ovarian cancer, studies have shown that the dysregulation of lncRNAs is frequently observed, and play a critical role in OC cell proliferation, apoptosis, cell cycle arrest, migration, invasion, and drug-resistance (Wang et al., 2019).

Ketamine, an NMDA (N-methyl-d-aspartate) receptor antagonist, was first approved as an anesthetic for clinical use in 1970, and is now widely used as an anesthetic, analgesic, or sedative in various clinical settings (Persson, 2013). Ketamine is often used in cancer pain treatment in patients with opiate-resistant pain because of its pronounced analgesia even in subnarcotic doses (Bredlau et al., 2013). Nevertheless, previous studies have shown that ketamine can induce dose-dependent neurotoxicity, including neuronal apoptosis and cell death in neurons and neural stem progenitor cells (Bai et al., 2013; Wang et al., 2014). Furthermore, it has been reported that ketamine regulates the proliferation and survival of several cancers, including hepatocellular carcinoma, pancreatic cancer and lung adenocarcinoma (Malsy et al., 2015; Yamaguchi et al., 2013; Zhou et al., 2018). However, the effect of ketamine on ovarian cancer cells growth and the downstream molecules remains largely unknown.

In this study, we used several pharmacologic and biochemical assays to identify the possible effect and mechanism of ketamine on OC cells. We found that ketamine inhibited OC cell growth by targeting the lncRNA-PVT1. Thus, ketamine can be considered as a possible candidate molecule for cancer therapy.



MATERIALS AND METHODS


Cell Lines and Reagents

The human ovarian cancer cell lines OVCAR-3, SKOV3, A2780, 3AO, COC1, OV-90, and human ovarian surface epithelial cells (HOSEpiC) were purchased from Type Culture Collection of Chinese Academy of Sciences (Shanghai, China). OVCAR-3, SKOV3, A2780, and COC1 cells were maintained in RPMI1640 medium (Corning, United States) supplemented with 10% fetal bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc.), 100 U/ml penicillin and 100 μg/ml streptomycin (Thermo Fisher Scientific, Inc.) and cells were cultured at 37°C with 5% CO2. 3AO and OV-90 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Corning, United States) supplemented with 10% fetal bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc.), 100 U/ml penicillin and 100 μg/ml streptomycin (Thermo Fisher Scientific, Inc.). HOSEpiC cells were maintained in ovarian epithelial cell medium (ScienCell, United States).

Ketamine was supplied by Sigma-Aldrich (United States) and dissolved in DMSO.



Ovarian Cancer Patient Data Mining

The whole data of ovarian cancer patients were downloaded from the GEO dataset (GSE38666)1 (Lili et al., 2013). Data mining is implemented in the R programing language. Data were normalized by z-score in different samples. Heatmap was generated using clustering method and was used to reveal the differentially expressed ovarian cancer related lncRNAs when comparing that in normal tissues or ovarian cancer tissues.



Cell Proliferation, Survival, and Colony Formation Assay

Cell proliferation was assessed using Sulforhodamine B (SRB) assay. Briefly, OC cells were seeded in 96-well (3,000 cells per well) and treated with indicated reagents. The cell proliferation was measured by SRB assay after 3 days treatment (Vichai and Kirtikara, 2006). Cell survival was assessed using trypan blue staining, in which dead cells were blue stained, and counted manually using hemocytometer.

For the colony formation assay, OC cells (1,500 cells/well) were seeded in 6-well plate and maintained in medium for 10–14 days. Subsequently, the colonies were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet, and the number of clones was counted using an inverted microscope.



Quantitative Real-Time PCR (QRT-PCR)

Total RNA from OC cells was isolated using RNA isolation kit (Qiagen, United States) according to the manufacturer’s protocol. iScriptTM Reverse Transcription Super mix kit (Bio-Rad, United States) was used for cDNA synthesis, and the samples were analyzed using SYBR Green Master Mix on a real-time PCR system (Bio-Rad). GAPDH was utilized as an endogenous calibrator control. The primer sequences used were as follows: PVT1, forward 5′-TGAGAACTGTCCTTACGTGACC-3′, Reverse 5′-AGAGCACCAAGACTGGCTCT-3′; MALAT1, forward 5′-AGAGCACCAAGACTGGCTCTGTAAC-3′, Reverse 5′-GAACAGAAGGAAGAGCCAAG-3′; LINC00092, forward 5′-CCTATGATTTGGCCTCTGGA-3′, reverse 5′-GAGAGCA GCGTTCAGGAAAC-3′; PTAR, forward 5′-ACAGATGTAAAC CAACCAGA-3′, reverse 5′-ATGCTACTGGAGACTTTAGG-3′; SnaR, forward 5′-TGGAGCCATTGTGGCTCCGGCC-3′, reverse 5′-CCCATGTGGACCAGGTTGGCCT-3′; Meg3, forward 5′-CTGCCCATCTACACCTCACG-3′, reverse 5′-CTC TCCGCCGTCTGCGCTAGGGGCT-3′; ZFAS1, forward 5′-ACG TGCAGACATCTACAACCT-3′, reverse 5′-TACTTCCAACAC CCGCAT-3′; UCA1, forward 5′-CTCTCCTATCTCCCTTCAC TGA-3′, reverse 5′-CTTTGGGTTGAGGTTCCTGT-3′; MIR4697HG, forward 5′-GAAGTGTGTGTGCAGGCTTG-3′, reverse 5′-GGAAAAGGCTCTGTCGTGGA-3′; TUG1, forward 5′-TAGCAGTTCCCCAATCCTTG-3′, reverse 5′-CACAAATTC CCATCATTCC-3′; DNM3OS, forward 5′-GGTCCTAAATTCA TTGCCAGTTC-3′, reverse 5′-ACTCAAGGGCTGTGATTT CC-3′; EWSAT1, forward 5′-GTGTCTGGCAAGGAACAC TA-3′, reverse 5′-GGTGGAGAAGAGGGACAAT-3′; HOTAIR, forward 5′-GGCAAATGTCAGAGGGTTCT-3′, reverse 5′-TT CTTAAATTGGGCTGGGTC-3′; GAS5, forward 5′-TGGTTCT GCTCCTGGTAACG-3′, reverse 5′-AGGATAACAGGTCTGC CTGC-3′; and GAPDH, forward 5′-CACCCACTCCTCCACC TTTG-3′ and reverse 5′-CCACCACCCTGTTGCTGTAG-3′. The 2-ΔΔCq method was used to calculate the relative expression levels.



Western Blotting

Cells were lysed by radioimmunoprecipitation buffer, and 20 μg cellular protein extracts were separated in SDS-PAGE gel and was then transferred to nitrocellulose membranes (Millipore, United States). Membrane was blocked with 5% non-fat milk and incubated with antibodies against cytocrome C (1: 1,000, Abcam Biotechnology, United States), VDAC (1: 1,000, Thermo Scientific, United States), PARP1 (1: 1,000, Cell Signaling Technology, United States), or Actin (1: 5,000, Santa Cruz Biotechnology, United States) overnight at 4°. Then, the membranes were incubated with secondary antibody and the proteins were visualized using Super Signal West Pico Chemiluminescent Substrate (Thermo Scientific).



Caspase-3/7 Activity Assay

Caspase-3/7 activity was assessed by using Apo-ONETM Homogeneous Caspase-3/7 Assay (Promega Corporation, United States) according to the manufacturer’s instruction.



Cell Cycle Analysis

After treated with vehicle or indicated ketamine, the OC cells were harvested by trypsinization, fixed with 70% ethanol, and then retained at −20°C overnight. After washed with PBS three times, cells were resuspended in propidium iodide (PI) solution that contains RNase (100 μg/mL), and incubated in dark at room temperature for 30 min followed by a flow cytometer study.



Transit Transfection

P300 siRNA was purchased from Sigma Aldrich (United States). Lipofectamine RNAiMAX (Invitrogen, United States) was used for transfection according to the instruction.



Chromatin Immunoprecipitation (ChIP) Assay

SimpleChIP® Enzymatic Chromatin IP Kit (Cell Signaling Technologies, United States) was used for ChIP assays according to manufacturer’s instructions; antibodies against H3K27ac (Cell Signaling Technology, United States), P300 (Cell Signaling Technology, United States) and EZH2 (Cell Signaling Technology, United States) were used for immunoprecipitation. Immunoprecipitated DNA was analyzed by QRT-PCR using the following primers: PVT1 promoter fragment 1: F: 5′-GCA GGAGAATCGCTTGAAC-3′ and R: 5′-ACAGATGTAAGAG CTGCCC-3′; fragment 2: F: 5′-GAACAAGATAACCACA TCCCAC-3′ and R: 5′-TTTCCAGAAGCCGAGTTGC-3′; fragment 3: F: 5′-TCTGGCCCTCCTATTTCAC-3′ and R: 5′-TTTCCCTGAGCCCTCTTAC-3′; fragment 4: F: 5′-CAGA GCCTACCCTCCGCT-3′ and R: 5′-CGGGGCTGGCGGGTT-3′; fragment 5: F: 5′-TCCTCCCCAATCTAAGTGCC-3′ and R: 5′-GCCAGTCACTTTCCCGTTTC-3′. P57 promoter primer: F: 5′-GGTGTCTAGGTGCTCCAGGT-3′ and R: 5′-GCACTCTCCAGGAGGACACA-3′.



RNA Immunoprecipitation Assay

RNA immunoprecipitation (RIP) was conducted by using RNA Binding Protein Immunoprecipitation Kit (Millipore, United States) following the manufacturer’s instructions. Antibodies against EZH2 and IgG (control) (Cell Signaling Technology, United States) were used for immunoprecipitation. Immunoprecipitated RNAs were then determined by QRT-PCR analysis.



Statistical Analysis

Data were presented as mean ± SD from three independent experiments. P-value was determined using Two-tailed Student’s t-test and ANOVA test. The results were illustrated with GraphPad 7. P < 0.05 was deemed to indicate statistical significance.



RESULTS


Ketamine Inhibited OC Cells Growth

o investigate the inhibitory effect of ketamine on OC cells growth, six OC cell lines (OVCAR-3, SKOV3, A2780, 3AO, COC1, OV90) were treated with indicated concentration of ketamine. As shown in Figures 1A–D, ketamine treatment significantly inhibited OC cells proliferation and survival in dose- and time-dependent manner. We next evaluated the effect of ketamine on normal human ovarian surface epithelial cells (HOSEpiC). No obviously inhibitory effect was observed after ketamine treatment (Supplementary Figure S1).


[image: image]

FIGURE 1. Ketamine inhibited OC cells growth. (A,B) Six OC cell lines were treated with indicated concentration of ketamine for 72 h, cell proliferation and survival were assessed by Sulforhodamine B (SRB) assay (A) and trypan blue staining (B) *P < 0.05, **P < 0.01, ***P < 0.001. (C,D) OCVAR-3 and SKOV3 cells were treated with 10 μM ketamine for indicated time. Then, cells were analyzed for proliferation (C) and survival (D). *P < 0.05, **P < 0.01, ***P < 0.001.




Ketamine Regulated Cell Cycle Arrest, Cell Apoptosis, and Colony Formation Capacity in OCVAR-3 and SKOV3 Cells

The inhibitory effect of ketamine was further investigated in terms of possible mechanisms and cell cycle. As shown in Figure 2A, flow cytometry results indicated that ketamine treatment caused a distinct increase in the cells arrested at G2-M phase in OCVAR-3 and SKOV3 cells. In addition, the activity of caspase3/7 was higher after ketamine treatment (Figure 2B). The ketamine treatment also elevated the disassociation of cytochrome C from mitochondria and PARP 1 cleavage in both cell lines (Figures 2C,D). Furthermore, colony formation assay results showed that the colony formation capacity of OCVAR-3 and SKOV3 cells decreased after ketamine treatment (Figure 2E). These data indicated that ketamine elevated cell cycle arrest and cell apoptosis, but decreased colony formation capacity in OCVAR-3 and SKOV3 cells.
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FIGURE 2. Ketamine regulated cell cycle arrest, cell apoptosis and colony formation capacity in OCVAR-3 and SKOV3 cells. (A) OCVAR-3 and SKOV3 cells were treated with ketamine and subsequently analyzed by PI staining to determine cell cycle phase distribution. (B) OCVAR-3 and SKOV3 cells were treated with ketamine, and the relative caspase-3/7 activity was measured using Apo-One homogenous caspase-3/7 assay **P < 0.01, ***P < 0.001. (C) The protein level of cytochrome c and VDAC in cytosol and mitochondria was analyzed by western blotting after treated with ketamine. (D) The protein level of cleaved PARP1 was analyzed by Western blotting after treated with ketamine. (E) OCVAR-3 and SKOV3 cells were performed colony formation assay after incubated with indicated concentration of ketamine. *P < 0.05, ***P < 0.001.




LncRNAs Were Dysregulated in Ovarian Cancer Patients

ncRNAs have been reported to play important role in controlling ovarian cancer cell proliferation and survival (Wang et al., 2019). To investigate the differential lncRNA expression in ovarian cancer patients, we did bioinformatics analysis of a GEO dataset (GSE38666). The expression level of lncRNAs that have been reported to relate to ovarian cancer was compared between ovarian cancer and normal tissues, and demonstrated using heatmap and volcano plot as shown in Figure 3A and Supplementary Figure S2. Fourteen lncRNAs (PVT1, LINC00092, PTAF, SnaR, Meg3, MALAT1, ZFAS1, UCA1, MIR4697HG, TUG1, GAS5, DNM3OS, HOTAIR, and EWSAT1) were found significantly dysregulated, including several lncRNAs that has been shown to play important role in other tumors, such as PVT1, MALAT1, TUG1, GAS5, and HOTAIR (Figure 3B; Wang et al., 2019).
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FIGURE 3. Expression of lncRNAs in ovarian cancer patients. (A) Heatmap represented the differential expression of lncRNAs in tumor and normal tissues in ovarian cancer patients. Data were normalized by z-score in different samples. (B) The expression of fourteen lncRNAs in tumor and normal tissues *P < 0.05, **P < 0.01, ***P < 0.001.




Ketamine Regulated lncRNA PVT1 Expression via P300 in OCVAR-3 and SKOV3 Cells

To further confirm the results from bioinformatics analysis, we evaluated the expression level of nine lncRNAs (PVT1, SnaR, Meg3, HOTAIR, MIR4697HG, TUG1, DNM3OS, UCA1, and EWSAT1), which showed more obvious differences in expression based on Figure 3B, in ovarian cancer cell lines. Compared with parental lines, lncRNAs PVT1, SnaR, Meg3, HOTAIR, and TUG1 were significantly overexpressed in OCVAR-3 and SKOV3 cells (Figure 4A), which is consistent with previous report (Wang et al., 2019). Interestingly, ketamine significantly decreased the expression level of lncRNA PVT1, but had no effect on other lncRNAs in OCVAR-3 and SKOV3 cells (Figures 4B,C). Results in Figures 4D,E further confirmed that ketamine regulated the expression of lncRNA PVT1 in a time-dependent manner.
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FIGURE 4. Ketamine regulated lncRNA PVT1 expression in OCVAR-3 and SKOV3 cells. (A) The expression level of lncRNAs PVT1, SnaR, Meg3, HOTAIR, MIR4697HG, TUG1, DNM3OS, UCA1, and EWSAT1 were analyzed by QRT-PCR in OCVAR-3 and SKOV3 and parental cells *P < 0.05, **P < 0.01, ***P < 0.001. (B,C) The expression level of lncRNAs PVT1, SnaR, Meg3, HOTAIR, and TUG1 were analyzed by QRT-PCR after treated with ketamine in OCVAR-3 (B) and SKOV3 cells (C) ***P < 0.001. (D,E) OCVAR-3 (D) and SKOV3 (E) cells were treated with 10 μM ketamine for indicated time, the expression level of lncRNAs PVT1 was analyzed by QRT-PCR *P < 0.05, **P < 0.01, ***P < 0.001.


To explore the mechanism of PVT1 overexpression in OC, we first analyzed the modification in the promoter of PVT1. Abundant H3K27 acetylation (H3K27ac) signals were found in the promoter region of PVT1, which suggested that PVT1 might be regulated by histone acetylation (Figure 5A). To confirm that, we performed chromatin-immunoprecipitation assay (ChIP) using H3K27ac antibody and primers covering 5 regions within∼1kb promoter region (Figures 5B,C). The results demonstrated that H3K27ac marks are highly enriched at the PVT1 promoter regions 3–5, and this enrichment was significantly decreased after treatment with ketamine (Figure 5C). H3K27ac is known to be catalyzed by the P300/CBP complex (Raisner et al., 2018). We then treated the OCVAR-3 with P300 specific siRNA, and the results showed that H3K27ac marks and PVT1 expression was significantly decreased (Figure 5D). Consistent with these findings, P300 was recruited to PVT1 promoter regions 3–5, and this recruitment was significantly decreased after ketamine treatment (Figure 5E). These data indicated that ketamine regulated lncRNA PVT1 expression via P300 mediated histone acetylation.


[image: image]

FIGURE 5. Ketamine regulated P300 mediated PVT1 transcription. (A) Visualization of H3K27ac enrichment of 7 cell lines around TSS of PVT1. (B) Primers were designed to cover 5 regions within∼1 kb promoter region of PVT1. (C) OCVAR-3 cells were treated with 10 μM ketamine for 48 h and ChIP assay was performed to detect enrichment of H3K27 acetyl marks on PVT1 promoter ***P < 0.001. (D) OCVAR-3 cells were incubated with P300 siRNA for 72 h, protein level of P300 and H3K27ac, and PVT1 level were analyzed by western blotting and QRT-PCR, **P < 0.01. (E) OCVAR-3 cells were treated with 10 μM ketamine for 48 h and ChIP assay was performed to detect the recruitment of P300 on PVT1 promoter.




Ketamine Regulated p57 Expression via EZH2 in OCVAR-3 and SKOV3 Cells

Enhancer of zeste homolog 2 (EZH2), a subunit of the polycomb repressive complex 2, was reported to contribute to the deregulation of OC cell growth. In addition, PVT1 was shown to bind EZH2 and improve its stability in hepatocellular carcinoma (Guo et al., 2018). We next examine the association of PVT1 and EZH2 in OC cell by performing RIP assay. As shown in Figure 6A, PVT1 bound EZH2 in OCVAR-3 and SKOV3 cells, and this interaction was significantly decreased after ketamine treatment. More importantly, the recruitment of EZH2 to the target gene-p57 promoter region was significantly inhibited by ketamine, and consequently, the expression level of p57 was significantly increased in OCVAR-3 and SKOV3 cells (Figures 6B,C).
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FIGURE 6. Ketamine regulated p57 expression via EZH2 in OCVAR-3 and SKOV3 cells. (A) OCVAR-3 and SKOV3 cells were treated with 10 μM ketamine for 48 h and the interaction between PVT1 and EZH2 was analyzed by RNA immunoprecipitation assay. (B) OCVAR-3 and SKOV3 cells were treated indicated concentration of ketamine for 48 h, the recruitment of EZH2 on p57 promoter was analyzed by ChIP assay **P < 0.01, ***P < 0.001. (C) OCVAR-3 and SKOV3 cells were treated indicated concentration of ketamine for 72 h, the mRNA level of p57 was analyzed by QRT-PCR **P < 0.01, ***P < 0.001.




DISCUSSION

NMDA receptors are chiefly found within the central nervous system in normal tissues and are involved in synaptic plasticity and memory function. However, NMDA receptors are often found expressed in cancer cells, including glioma, oral squamous cell carcinoma, prostate cancer, osteosarcoma and gastric cancer (Aronica et al., 2001; Choi et al., 2004; Abdul and Hoosein, 2005; Kalariti et al., 2005; Liu et al., 2007). Given administration of glutamate antagonists inhibits the growth of cancer cells derived from brain, thyroid, colon, breast and lung tumors, NMDA receptors are considered to play important role in cancer cell growth (Rzeski et al., 2001; Stepulak et al., 2005). Ketamine is one of the most common NMDA receptor antagonists and often used for cancer pain treatment in clinic. Inhibitory effect of ketamine on cell growth has been reported in various cancers, including hepatocellular carcinoma, pancreatic cancer, lung adenocarcinoma and colorectal cancer (Yamaguchi et al., 2013; Malsy et al., 2015; Zhou et al., 2018; Duan et al., 2019). Although knowledge of the detailed mechanisms is limited, FOXO/TXNIP pathway, CD69 and VEGF were believed involved. As NMDA receptors are found expressed in human ovarian cancer tissues and human ovarian cancer cell lines (North et al., 2015), we assumed that ketamine might regulate the growth of ovarian cancer cells. In this study, we found that ketamine had significant anti-proliferative effect against ovarian cancer cells (Figure 1). The inhibitory effect caused by ketamine may result from induction of apoptosis and arrest of cell cycle at G2-M (Figure 2).

To understand the mechanisms of action of ketamine, we analyzed the expression level of long non-coding RNAs (lncRNAs). LncRNAs are considered as new and valuable molecules that are involved in tumorigenesis. Several lncRNAs have been reported to regulate OC cell growth, including PVT1, MALAT1, TUG1, HOTAIR, and GAS5 (Ozes et al., 2016; Hosseini et al., 2017; Martini et al., 2017; Long et al., 2019; Gu et al., 2020). In order to find out which lncRNA might be ketamin related, we performed bioinformatics analysis of a GEO dataset obtained from OC patients. Fourteen lncRNAs were dysregulated in OC patients, and five of them were significantly increased in OC cell lines (Figure 3). We then evaluated the expression of these lncRNAs after ketamine treatment. Among these lncRNAs, only lncRNA PVT1 was significantly decreased after ketamine treatment in OC cells (Figure 4). Although lncRNA PVT1 was reported up-regulated in OC cells in several studies, none of them investigated the mechanism of dysregulation. Here, we analyzed the modification, specifically histone acetylation, in the PVT1 promoter by using UCSC genome bioinformatics site. Abundant H3K27ac signals are found near the transcription starting site (TSS) in the promoter of PVT1. Our ChIP assay confirmed that H3K27ac marks are highly enriched at the PVT1 promoter regions 3-5, which is closer to TSS. Interestingly, the treatment of ketamine significantly decreased the enrichment of H3K27ac marks in the promoter of PVT1. Since H3K27ac is widely known to be catalyzed by the P300/CBP complex, we then wonder whether ketamine could regulate P300 function. Our results indicated that the recruitment of P300 to the PVT1 promoter was significantly inhibited by ketamine treatment (Figure 5).

In order to further investigate the functional role of ketamine in OC, we sought to find out the binding partner of PVT1. EZH2, a member of polycomb repressive complex 2 (PRC2), is commonly involved in transcriptional repression in cancer cells. In ovarian cancer, EZH2 upregulation has been widely established. The overexpression of EZH2 promotes cell proliferation and invasion, inhibits apoptosis and enhances angiogenesis in epithelial ovarian cancers (Li et al., 2010;To understand Lu et al., 2010). PVT1 was reported to bind EZH2 and improve the EZH2 protein stability in hepatocellular carcinoma (Guo et al., 2018). In consistent with this report, our RIP results confirmed the interaction between PVT1 and EZH2, and this interaction was significantly inhibited by ketamine treatment. One important mechanism by which EZH2 promotes OC cell growth is by regulating p57, a cyclin dependent kinase inhibitor that regulates tumor cell transcription, differentiation, apoptosis, and migration (Guo et al., 2010, 2011). Not surprisingly, ketamine treatment decreased the recruitment of EZH2 to the promoter of p57, and the expression level of p57 was significantly increased (Figure 6).

In summary, all of our results suggest that ketamine significantly inhibited the proliferation and survival of ovarian cancer cells. Mechanistically, ketamine inhibited lncRNA PVT1 expression, the recruitment of EZH2 to p57 promoter, and subsequently increased the tumor suppressor gene-p57 expression. These results suggest a rational and novel treatment strategy for ovarian cancer patients.
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N6-methyladenosine (m6A) is the most common post-transcriptional modification of RNA in eukaryotes, which has been demonstrated to play important roles in various cancers. YTHDF1 acts as a crucial m6A “reader” and regulates the fate of m6A modified mRNA. However, its role in cervical cancer remains unknown. In this study, we showed that YTHDF1 was highly expressed in cervical cancer, and was closely associated with the poor prognosis of cervical cancer patients. YTHDF1 knockdown suppressed the growth, migration and invasion, and induced apoptosis of cervical cancer cells. Moreover, YTHDF1 knockdown inhibited tumorigenesis of cervical cancer cells in vivo. Through combined on-line data analysis of RIP-seq, meRIP-seq and Ribo-seq upon YTHDF1 knockdown, RANBP2 was identified as the key target of YTHDF1 in cervical cancer cells. YTHDF1 regulated RANBP2 translation in an m6A-dependent manner without effect on its mRNA expression. RANBP2 potentiated the growth, migration and invasion of cervical cancer cells. Our study demonstrated the oncogenic role of YTHDF1 in cervical cancer by regulating RANBP2 expression and YTHDF1 represents a potential target for cervical cancer therapy.
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Introduction

Cervical cancer (CC) is one of the most common malignant tumors among female patients, which mortality rate ranks fourth in the world (1). Contrary to developed countries, the incidence and death rate of cervical cancer in China are increasing year by year, which seriously threatens women’s health and life (2). Although HPV vaccine is conducive to reducing the morbidity and mortality of cervical cancer, the prognosis of patients with advanced cervical cancer remains poor (3). Therefore, finding new potential targets is required for cervical cancer treatment.

N6-methyladenosine (m6A) is the most common post-transcriptional modification of RNA in eukaryotes (4). By regulating gene splicing (5), RNA stability (6), RNA editing (7) and mRNA translation (8), it extends the role of m6A regulation to almost all important biological processes (9), including animal development (10) and various human diseases (11). Increasing studies have shown that the m6A regulators including m6A “writers”, “erasers” and “readers” are dysregulated in multiple cancers and play an important role in tumor cell proliferation, differentiation arrest, survival, tumorigenesis and metastasis (12). For example, METTL3 is highly expressed in acute myeloid leukemia (AML) cells. METTL3 not only activates the oncogene c-MYC by enhancing the m6A modification of SP1 (13), it also promotes the translation of BCL2 and PTEN mRNA through the up-regulation of their m6A modification (14), which ultimately leads to the development of AML. The increase of YTHDF2 expression also promotes the proliferation of leukemia cells (15). YTHDC2 enhances mRNA translation and up-regulates the expression of metastasis-related proteins such as HIF1A, thereby inducing colon cancer metastasis (16). In breast cancer, FTO promotes cancer cell proliferation and metastasis through negative regulation of BNIP3 mRNA, and the high level of FTO is associated with the poor prognosis (17). Therefore, research on m6A will help to find new targets for the treatment of malignant tumors. YTHDF1 acts as a crucial m6A “reader” and regulates m6A modified mRNA translation (18, 19). Recently, YTHDF1 has been reported to be associated with the occurrence and development of several cancers. YTHDF1 promotes the epithelial-mesenchymal transition (EMT) of liver cancer cells by regulating the translation of Snail mRNA (20). In ovarian cancer, YTHDF1 promotes cancer progression by enhancing EIF3C translation (21). YTHDF1 is up-regulated in human colon cancer tissues, which predicts the poor prognosis of colon cancer patients (22).

In this study, we show that YTHDF1 is highly expressed in cervical cancer, and is closely associated with the poor prognosis of cervical cancer patients. YTHDF1 is indispensable for the proliferation and metastasis of cervical cancer cells. Combined with on-line data analysis, RANBP2 is identified as the key target of YTHDF1 in cervical cancer cells. Together, our study demonstrates the oncogenic role of YTHDF1 in cervical cancer by regulating the expression of RANBP2.



Materials and Methods


Tumor Samples

Cervical squamous cell carcinoma and normal cervical tissue specimens were from patients undergoing surgery in Daping Hospital of the Army Military Medical University from 2020-03-01 to 2020-05-30. All these specimens were pathologically verified, all subjects were informed consent, and the institutional review board of Daping Hospital of the Army Military Medical University approved the study (AMUWEC20190196).



Gene Expression and Survival Analysis in Cervical Cancer Datasets

Expression data were downloaded from the Oncomine (https://www.oncomine.org/), cBioPortal (http://www.cbioportal.org/), and GEO datasets (www.ncbi.nlm.nih.gov/geo). Data was processed by GraphPad Prism 7 and processed data is in supplementary material.



Cell Culture

HEK293T, Hela and Siha cells were purchased from National Infrastructure of Cell Line Resource (Beijing, China) and long-term stored in liquid nitrogen. HEK293T and Hela cells were cultured in DMEM (GIBCO, USA) and Siha cells were cultured in MEM (GIBCO, USA) medium. The medium was supplemented with 10% fetal bovine serum (FBS; GIBCO, USA), penicillin (100 U/ml; GIBCO, USA) and streptomycin (200 g/ml; GIBCO, USA). All the cells were maintained at 37°C in 5% CO2 cell culture incubator.



Plasmids

Synthesized the complementary nucleotide sequence of shRNAs targeting YTHDF1 or RANBP2, and clone into PLKO.1 vector (#10878, Addgene) after respectively annealing. The related sequences of shRNAs were shown in Supplementary Table. YTHDF1-wt (YTHDF1-FLAG) and YTHDF1-mut (K395A, Y397A) expression plasmids were cloned into pCMV6 vector (OriGene, USA), and were transfected into cervical cancer cells with a lentivirus-mediated method.



Lentiviral Infection

Plasmids and lentiviral vectors were transfected into HEK293T cells with packaging vectors psPAX2 (#12260, Addgene) and pMD2.G (#12259, Addgene) using lipofectamine LTX (Invitrogen, USA). Infectious lentivirus particles were harvested at 48 hours after transfection.



RNA Isolation and RT-qPCR

Total RNA was extracted from cervical cancer cells using Trizol (Sigma, USA) according to the manufacturer’s instruction. RNA was reversely transcribed to cDNA by using All-in-One cDNA Synthesis SuperMix (Bimake). qPCR assays were performed in QuantStudioDx instrument (Life Technologies) following the manufacturer manufacturer following ChamQ Universal SYBR qPCR Master Mix (Vazyme). All samples were normalized to GAPDH. Primers used in RT-qPCR were listed in Supplementary Table.



Western Blot

Hela and Siha cells were collected and lysed with cell lysis buffer for western blot and IP (Beyotime, China) supplemented with protease inhibitor cocktail (APExBIO, USA) to harvest proteins. Cells were lysed on ice for 30 min, and the lysate was obtained by centrifugation at 12,000 rpm for 15 min. Proteins were fractionated by SDS-PAGE, and then transferred onto 0.45 μM PVDF membranes. The PVDF membranes were blocked with 5% nonfat milk in TBS/Tween-20, and blotted with specific antibodies at 4°C overnight. The antibodies used for western blot are as follows: YTHDF1 (ProteinTech, 1:1000), RANBP2 (ProteinTech, 1:1000), GAPDH (ZSGB-BIO, 1:2000), Flag-tag (MBL, 1:5000). After washed with TBS/Tween-20, the PVDF membranes were incubated with fluorescent secondary antibody (LI-COR, IRDye 680RD Goat anti-Rabbit and IRDye 800CW Goat anti-Mouse, 1:10000). ODYSSEY Clx Two-color infrared laser imaging system (LI-COR, USA) was used to visualize the bands.



Immunohistochemistry

Conventional paraffin sections were deparaffinized and dehydrated. After antigen retrieved, citric acid buffer (ZSGB-BIO, ZLI-9064, pH 6.0) was used to inactivate endogenous peroxidase (ZSGB-BIO, PV-9001). The slices were washed three times with PBS, and blocked with goat serum (ZSGB-BIO, ZLI-9021) at 37°C for 30 min. Rabbit anti-YTHDF1 antibody (ProteinTech, 1:100) or anti-RANBP2 antibody (ProteinTech, 1:100) was added to the slices and incubated overnight at 4°C. Next day, Goat anti-rabbit IgG (ZSGB-BIO, PV-9001) was added to the slices and incubated at 37°C for 40 min. DAB reagent (ZSGB-BIO, ZLI-9018) was used to develop color. The sections were stained with hematoxylin, decolorized with hydrochloric acid and ethanol, dehydrated and then mounted. The comprehensive score was calculated independently by two professional pathologists.



Cell Growth and Proliferation Assays

The cells were seeded in 96-well (1000 Hela cells or 2000 Siha cells each well) plates for the cell viability test. CCK-8 reagent (DOJINDO, Japan) was added into the plate and incubated at 37°C for 2 hours. The cell absorbance at 450 nm and 630 nm wavelengths was measured by using the microplate reader (BioTek, USA) at 0 hour, 24 hours, 48 hours, 72 hours and 96 hours. All experiments were performed in triplicate.

For the colony formation assay, Hela cells were plated with 1,000 cells per well, and Siha cells were plated with 2,000 cells per well, and the medium was changed every 4 days. Hela and Siha cells were cultured for 7 days and 10 days, respectively, fixed with 4% paraformaldehyde, then stained with 0.1% crystal violet (Sigma-Aldrich, USA) for 1 hour. The number of colonies containing more than 50 cells was counted.



Apoptosis Assay

5 × 105 Hela or Siha cells were starved for 24 hours, trypsinized (without EDTA), and then stained with Annexin V/PI Apoptosis Kit (DOJINDO, Japan). The stained cells were subjected to flow cytometry. BD Accuri C6 flow cytometer (BD Biosciences, USA) was used to analyze apoptosis and all gates were drawn based on fluorescence minus one (FMO).



Transwell Migration and Invasion Assays

Millicell Hanging Cell Culture 24 well PET 8 μm 48/pk (Millipore, Germany) was used for migration and invasion assays. For migration analysis, 6 × 104 Hela or 8× 104 Siha cells were diluted with 0.2 ml serum-free medium and inoculated in the upper room. 0.6 ml culture media with 20% FBS was added in the lower chamber, then incubated at 37°C for 24 hours. Transwell chambers were fixed with 4% paraformaldehyde for 30 min, and then stained with 0.1% crystal violet (Sigma-Aldrich, USA). For invasion assays, 50 μl of serum-free medium containing 10% Matrigel (Sigma-Aldrich, USA) was added in the upper chamber in advance, and then inoculated cells after it solidified.



Animal

The animal studies were approved by the Institutional Animal Care and Use Committee of Daping Hospital affiliated to Army military Medical University, and carried out according to institutional guidelines. Hela cells infected with shRNAs or empty vector were collected and resuspended in DMEM without FBS. Balb/c female nude mice at 4-6 weeks old were injected with 4 × 106 cells subcutaneously on the back. The female nude mice were sacrificed at 23 days and the tumor weight was measured.



RNA Immunoprecipitation (RIP)

2 × 107 Hela or 3 × 107 Siha cells were collected in a prepared IP lysis buffer (HEPES 20 mM, 150 mM NaCl, 10 mM KCl, 5 mM EDTA, 5 mM MgCl2, 0.5% NP40, 10% glycerol). After incubation for 30 min at 4°C, the lysate was harvested by centrifugation at 12 000 rpm for 10 min. The supernatant lysate was incubated overnight at 4°C with 3 μg antibody. Dynabeads Protein A beads (Invitrogen, USA) were added into the lysate and incubated at 4°C for 4 hours. After washed for three times, the co-precipitated RNA was extracted with Trizol (Sigma, USA) reagent. RNA isolation and RT-qPCR were performed as described previously.



Methylated RNA Immunoprecipitation (meRIP) and RT-qPCR

3 × 107 Hela or 4 × 107 Siha cells were prepared for RNA extraction. Total RNAs were extracted by using Trizol (Sigma, USA). mRNA was extracted by using PolyATtract® Systems IV (Promega, USA) kit. The co-precipitated RNA was obtained according to the standard protocol of the Magna MeRIP m6A Kit (Merck Millipore, Germany). Briefly, 50 μl protein A/G beads were incubated with 2.5 μg anti-m6A antibody for 30 min at room temperature. Then 5 μg fragmented mRNA was incubated with anti-m6A antibody coated protein A/G beads at 4°C overnight immunoprecitation. After washes, RNA isolation and RT-qPCR were performed as described previously.



Statistical Analysis

Statistical computations were performed using GraphPad Prism 7. A t-test was performed to compare the differences between the two groups. The growth rates difference was determined by ANOVA with repeated measures analysis of variances. The correlation between YTHDF1 expression and DNA methylation, and the correlation between YTHDF1 and RANBP2 expression in cervical cancer were analyzed by Spearman rank correlation analysis. The results were considered statistically significant when P < 0.05.




Results


YTHDF1 Is Highly Expressed in Cervical Cancer

To examine the role of m6A regulators in cervical cancer, cBioPortal database (http://www.cbioportal.org/) was used to analyze the expression level of m6A regulators in cervical cancer. Results showed that the expression of several m6A regulators was changed in cervical cancer, among which YTHDF1 expression was increased most significantly (Figure 1A). Intriguingly, the DNA copy number of YTHDF1 did not change substantially (Figure 1B). We investigated the DNA methylation at the YTHDF1 promoter and found that DNA methylation was negatively correlated with YTHDF1 expression in cervical cancer (Figure 1C). Thus the high expression of YTHDF1 in cervical cancer may be partially due to DNA hypomethylation. By analyzing the two GEO datasets (GSE63514 and GSE52904) (Figures 1D, E) and the Biewenga Cervix dataset of the Oncomine database (Figure 1F), we found that YTHDF1 was highly expressed in cervical cancer compared to normal cervical epithelial cells. Moreover, we performed Kaplan-Meier survival analysis and found that cervical cancer patients with high expression of YTHDF1 had the poor recurrence-free survival (RFS) (Figure 1G). In order to further confirm the expression of YTHDF1 in cervical cancer, immunohistochemistry (IHC) assay was used to detect the expression of YTHDF1 protein in 10 pairs of cervical cancer and normal cervical epithelial tissues. Results showed that the expression level of YTHDF1 in cervical cancer was higher than that in normal cervical epithelium (Figures 1H, I). Taken together, these data demonstrated that the m6A reader YTHDF1 is highly expressed in cervical cancer and is related to the poor prognosis of cervical cancer patients.




Figure 1 | YTHDF1 is highly expressed in cervical cancer. (A, B) Gene expression and gene mutation rates of m6A-associated genes in cervical cancer according to cBioPortal dataset (TCGA PanCancer Atlas). (C) Correlation analysis between gene expression and DNA methylation beta value. (D, E) Relative RNA levels of YTHDF1 in cervical cancer and normal cervical epithelium in GEO datasets (GSE52904 and GSE63541). (F) Relative RNA levels of YTHDF1 in cervical cancer and cervix uteri in Oncomine datasets (Biewenga Cervix). (G) Kaplan-Meier analysis of RFS based on YTHDF1 expression according to KM plotter (n=68). (H) Representative immunohistochemical images of YTHDF1 expression in cervical cancer tissues and cervical epithelium tissues. Scale bar, 100 μm. (I) The quantitative analysis of YTHDF1 expression in cervical cancer tissues and cervical epithelium tissues assessed by immunohistochemistry. Data are shown as means ± S.D. **P < 0.01, ***P < 0.001, NS, not significant.





YTHDF1 Regulates the Proliferation, Apoptosis, Migration, and Invasion of Cervical Cancer Cells

To explore the function of YTHDF1 in cervical cancer, two shRNAs (shYTHDF1-1, shYTHDF1-2) were constructed and lentivirus was prepared to knock down YTHDF1. Western blot analysis and RT-qPCR results showed that YTHDF1 was effectively knocked down in both cervical cancer cells (Figures 2A, B). Colony formation assays displayed that YTHDF1 knockdown decreased the colony formation ability of cervical cancer cells (Figure 2C). CCK-8 assays demonstrated that knocking down YTHDF1 substantially inhibited the proliferation of cervical cancer cells (Figure 2D). We also found that YTHDF1 knockdown induced apoptosis of cervical cancer cells (Figures 2E, F). In addition, transwell assays revealed that the migration and invasion of cervical cancer cells were significantly suppressed upon YTHDF1 depletion (Figures 2G, H). These results suggested that YTHDF1 promoted the proliferation, migration and invasion of cervical cancer cells, whereas inhibited apoptosis.




Figure 2 | YTHDF1 regulates the proliferation, apoptosis, migration and invasion of cervical cancer cells in vitro. (A, B) YTHDF1 knockdown was confirmed in Hela and Siha cells by western blot and RT-qPCR. (C) Colony formation assays were performed using YTHDF1 knockdown cells and control. (D) Cell growth of cervical cancer cells upon YTHDF1 knockdown was detected by CCK-8 assay. (E) Apoptosis of cervical cancer cells upon YTHDF1 knockdown was detected by Annexin V/PI staining. (F) The quantitative analysis of apoptotic cells shown in (E). (G, H) Transwell assays detecting migration and invasion of YTHDF1 knockdown cells as well as control cells. Scale bar, 200 μm. Data are shown as means ± S.D. **P < 0.01, ***P < 0.001.





YTHDF1 Deficiency Inhibits Tumorigenesis of Cervical Cancer Cells In Vivo

In order to investigate the role of YTHDF1 in tumorigenesis in vivo, we conducted subcutaneous tumor formation experiments in nude mice. HeLa cells with YTHDF1 knockdown and control group were injected subcutaneously into nude mice, and tumor growth was monitored. Mice were sacrificed and tumors were isolated at 23 days post-injection (Figure 3A). As shown in the Figure 3B, the tumor volume of the YTHDF1 knockdown group was smaller than that of the control group. By recording the tumor growth curve and the weight at the time of sacrifice, we found that the average volume and weight of the tumors in the YTHDF1 knockdown group were markedly reduced compared with the control group (Figures 3C, D). These results demonstrated that YTHDF1 had a cancer-promoting effect in vivo.




Figure 3 | YTHDF1 deficiency inhibits tumorigenesis of cervical cancer cells in vivo. (A, B) Images of nude mice (A) and the isolated xenograft tumors (B) after sacrifice showed that the effect of YTHDF1 inhibition on the xenograft tumor growth of cervical cancer cells. (C) Tumor weight in each group was measured. (D) Tumor growth curves in nude mice were measured. Data are shown as means ± S.D. *P < 0.05, **P < 0.01.





Identification of Candidate Target Genes of YTHDF1 in Cervical Cancer

To explore the underlying mechanisms of YTHDF1 in cervical cancer, we analyzed online meRIP-seq data (GSE46705), PAR-CLIP and RIP-seq data (GSE63591) to identify the targets of YTHDF1 in cervical cancer cells. According to Wang et al., YTHDF1 regulates gene expression by promoting RNA translation efficiency (8). Thus we also analyzed the ribosome sequencing (Ribo-seq) data in Hela cells upon YTHDF1 knockdown. Through overlapping the results of meRIP-seq, PAR-CLIP-seq, RIP-seq, and Ribo-seq, 303 genes were identified as the candidate targets of YTHDF1 (Figure 4A). After gene ontology (GO) analysis, these genes were related to GTPase activity regulation pathway significantly (Figure 4B). Thus, we ranked the genes involved in GTPase activity regulation pathway with down-regulated translation after YTHDF1 knockdown (Figure 4C) and selected the top 10 candidate genes for further study. We performed meRIP-PCR and RIP-PCR in Hela cells, and the results showed that all of these 10 candidate genes were subjected to m6A modification, and YTHDF1 could also bind to these transcripts (Figures 4D, E).




Figure 4 | Identification of candidate targets of YTHDF1 in cervical cancer. (A) Overlapping analysis of genes from the results of meRIP-seq, PAR-CLIP/RIP-seq and Ribo-seq. (B) Gene ontology (GO) analysis of 303 genes. (C) Genes in GTPase activity regulation pathway. (D) RIP-PCR assays detecting the interactions between YTHDF1 and mRNAs of 10 candidate genes in Hela cells. IgG was used as an internal control. GAPDH was used as the negative control in western blot assays. (E) meRIP-PCR assays detecting the RNA m6A modification of 10 candidates in Hela cells. Data are shown as means ± S.D. **P < 0.01, ***P < 0.001.





YTHDF1 Regulates RANBP2 Expression in Cervical Cancer

Among the 10 candidate targets of YTHDF1, RANBP2 was reported to be implicated in malignant progression of various cancers (23–25). Thus we detected the expression of RANBP2 upon YTHDF1 knockdown by western blot and found that YTHDF1 inhibition significantly reduced the protein expression of RANBP2 in both Hela and Siha cells (Figure 5A). RT-qPCR analysis showed that YTHDF1 knockdown did not affect the RNA level of RANBP2 (Figure 5B). Results of RIP-PCR and meRIP-PCR in Siha cells also revealed that YTHDF1 interacted with RANBP2 mRNA and m6A modification occurred on RANBP2 mRNA (Figures 5C, D). To further investigate whether YTHDF1 regulated RANBP2 expression in an m6A-dependent manner, wide-type YTHDF1 (YTHDF1-wt) and m6A binding domain mutated YTHDF1 (YTHDF-mut) (Figure 5E) were ectopically expressed in Hela cells followed by RIP-PCR by using the antibody specific to FLAG. The results showed that mutation of m6A binding domain in YTHDF1 could substantially decrease the interaction between YTHDF1 and RANBP2 (Figure 5F). These results suggested that YTHDF1 regulates RANBP2 expression in an m6A-dependent manner.




Figure 5 | RANBP2 is the key target of YTHDF1 in cervical cancer. (A) Western blot detecting the protein level of RANBP2 in Hela and Siha cells upon YTHDF1 knockdown. (B) RT-qPCR detecting relative RNA level of RANBP2 in Hela and Siha upon YTHDF1 knockdown. (C) RIP-PCR assays detecting the interactions between YTHDF1 and RANBP2 mRNA in Siha cells. IgG was used as an internal control. GAPDH was used as the negative control in western blot assays. (D) meRIP-PCR assays detecting the m6A modification of RANBP2 mRNA in Siha cells. (E) Schematic of wild-type (YTHDF1-wt) and mutant (YTHDF1-mut) YTHDF1 constructs. (F) RIP-derived RNA and protein of wild-type (YTHDF1-wt) group and mutant (YTHDF1-mut) group in Hela cells were measured by RT-qPCR and western blot after immunoprecipitation by using the antibody specific to Flag, respectively. GAPDH was used as the negative control in western blot assays. Data are shown as means ± S.D. **P < 0.01, ***P < 0.001.





RANBP2 Plays an Oncogenic Role in Cervical Cancer Cells

To further examine the role of RANBP2 in cervical cancer cells, we designed two shRNAs targeting RANBP2. Western bot showed that RANBP2 was knocked down in both Hela and Siha cells (Figure 6A). CCK-8 assays showed that the proliferation of Hela and Siha cervical cancer cells was inhibited after RANBP2 knockdown (Figure 6B). Colony formation assays showed that knocking down RANBP2 markedly inhibited the colony formation ability of Hela and Siha cells (Figure 6C). Moreover, the results of transwell assays displayed that the migration and invasion abilities were significantly repressed upon RANBP2 knockdown in both Hela and Siha cells (Figures 6D, E). Furthermore, the colony formation ability and proliferation of YTHDF1-overexpressing Hela and Siha cells were significantly increased, whereas knockdown of RANBP2 could compromise the effect of YTHDF1 overexpression on cervical cancer cells (Figures 7A, B). Similarly, RANBP2 knockdown markedly suppressed migration and invasion of YTHDF1-overexpressing Hela and Siha cells (Figures 7C, D). In addition, IHC results revealed that RANBP2 expression was higher in cervical cancer tissues compared to normal tissues (Figures 8A, B). The correlation analysis suggested that there was a positive correlation between the protein expression of RANBP2 and YTHDF1 in cervical cancer (Figures 8C, D). Collectively, these results suggested that YTHDF1-m6A-RANBP2 axis plays a significant role in cervical cancer.




Figure 6 | RANBP2 plays an oncogenic role in cervical cancer cells. (A) Detection of RANBP2 knockdown in Hela and Siha cell lines by western blot. (B) The effect of RANBP2 knockdown on cell growth was determined by CCK-8 assays. (C) Colony formation assays were performed in RANBP2 knockdown and control cells. (D, E) Migration and invasion assays of Hela and Siha cells upon RANBP2 knockdown. Scale bar, 200 μm. Data are shown as means ± S.D. **P < 0.01, ***P < 0.001.






Figure 7 | Knockdown of RANBP2 suppressed the proliferation, migration and invasion of YTHDF1-overexpressing Hela and Siha cells. (A) Colony formation assays were performed in YTHDF1-overexpressing Hela and Siha cells infected with the RANBP2 shRNA or controls. (B) The proliferation ability of YTHDF1-overexpressing Hela and Siha cells upon RANBP2 knockdown was assessed by CCK-8 assays. (C, D) Migration and invasion YTHDF1-overexpressing Hela (C) and Siha (D) cells upon RANBP2 knockdown was detected by transwell assays. Scale bar, 200 μm. *P < 0.05,**P < 0.01, ***P < 0.001.






Figure 8 | The expression of RANBP2 is positively correlated with YTHDF1 in cervical cancer. (A) Representative immunohistochemical images of RANBP2 protein expression in cervical cancer tissues and cervical epithelium tissues. Scale bar, 100 μm. (B) The quantitative analysis of RANBP2 expression in cervical cancer tissues and cervical epithelium tissues assessed by immunohistochemistry. (C) Spearman’s correlation analysis of RANBP2 and YTHDF1 expression in cervical cancer tissues. (D) Representative immunohistochemical images of YTHDF1 and RANBP2 in the cervical cancer tissues. Scale bar, 100 μm. Data are shown as means ± S.D. *P < 0.05.






Discussion

Among female patients, cervical cancer ranks fourth in the world in terms of morbidity and mortality, and the fatality rate in developing countries is even higher. GLOBOCAN estimates that there were 570,000 women suffering from cervical cancer worldwide in 2018, and it caused about 311,000 deaths, of which about 85% of patients were from developing countries (1). Although immunotherapy has achieved a series of impressive results in the treatment of tumors, the effect of current treatment for advanced cervical cancer is not obvious (26). Therefore, it is urgent to explore the pathogenesis of cervical cancer and identify new targets for diagnosis and treatment. m6A modification is the most extensive internal modification of mRNA in eukaryotes and affects almost every aspect of RNA metabolism (27, 28). The reversibility of m6A is mainly achieved by the regulation of the methyltransferase (“writers”) and the demethylase (“erasers”). With the development of enzymology, the methyltransferases including METTL3, METL14, WTAP, etc (29, 30), and demethylases including FTO and ALKBH5, etc (31, 32) have been discovered. The m6A modification controls the fate of the modified RNA by interacting with different binding proteins (“readers”). The m6A binding protein is mainly a family of proteins containing the YTH domain, primarily including YTHDF1, YTHDF2, YTHDF3 (6, 8, 33) in the cytoplasm and YTHDC1 in the nucleus (34). It has been reported that m6A is closely related to various cancers (35). Compared with normal tissues, higher expression of METTL3 was found in human lung cancer and colon adenocarcinoma tissues (5, 14). METTL14 is highly expressed in acute myeloid leukemia cells and exerts its oncogenic role (36). FTO is highly expressed in acute myeloid leukemia, which could enhance the occurrence of leukemia, and inhibit the transretinoic acid-mediated differentiation of leukemia cells (37).

In cervical cancer, high-risk subtypes of the HPV are the cause in most cases (38). It has been reported that HPVs generated circRNAs encompassing the E7 oncogene (circE7), which was subjected to m6A modification, and promoted the proliferation of tumor cells (39). METTL3 promoted the stability of H2K through m6A modification, thereby promoting Warburg effect and the proliferation of cervical cancer cells (40). Here, we found that YTHDF1 is up-regulated in cervical cancer tissues and predicts the poor clinical outcomes. Through in vitro experiments we found that YTHDF1 depletion substantially inhibited the proliferation, migration and invasion of cervical cancer cells and promoted apoptosis. The subcutaneous tumor formation assays in nude mice also showed that YTHDF1 could promote the tumorigenesis of cervical cancer cells. These results suggest that YTHDF1 has an important tumor-promoting effect in cervical cancer. Therefore, m6A modification may play an important role in cervical cancer progression. Though hypomethylation of YTHDF1 promoter contributed to its high expression in cervical cancer, whether HPV infection regulates the expression of YTHDF1 or other m6A regulator requires more investigations and dissecting the relationship between HPV and m6A modification might be conducive to understanding the mechanisms underlying HPV-induced cervical cancer progression.

RANBP2 (RAN-binding protein 2), the largest nucleoporin in nuclear pore complexes (NPC) and the binding protein of RAN GTPase, is involved in mitosis and macromolecule transport (41). Ran GTPase regulates the ability of nuclear transport factors to bind and release cargo (42). The combination of RANBP2 and RanGTPase-activating protein (RanGAP1) promotes RAN GTPase-mediated nuclear export and nuclear import (43, 44). In Hela cells, absence of RANBP2 causes various mitotic abnormalities (45). In this study, YTHDF1 mediates the up-regulation of RANBP2 in an m6A-dependent manner in cervical cancer. The RANBP2-mediated RAN GTPase regulation has been implicated in the initiation and progression of several cancers. In liver cancer, SIRT1-mediated RANBP2 activation promotes progression of liver cancer (24). LIN28B cooperates with RANBP2 to promote RAN expression and activity of RAN GTPase, thereby driving the oncogenesis of neuroblastoma (25). In our study, RANBP2 promoted the growth, migration and invasion of cervical cancer cells. RANBP2 expression up-regulated by YTHDF1 might enhance the activity of RAN GTPase activity and aggravate the progress of cervical cancer, which might need more investigations in further study. Therefore, YTHDF1 might be a potential target for cervical cancer treatment.



Conclusions

In conclusion, our study showed that the m6A “reader” YTHDF1 promotes the proliferation, migration and invasion of cervical cancer cells, and we also identified RANBP2 as the direct target of YTHDF1. YTHDF1 regulated RANBP2 translation in an m6A-dependent manner, which plays an important role in cervical cancer. YTHDF1 might represent a potential target for cervical cancer therapy.
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Molecular profiling of extracellular vesicles (EVs) offers novel opportunities for diagnostic applications, but the current major obstacle for clinical translation is the lack of efficient, robust, and reproducible isolation methods. To bridge that gap, we developed a microfluidic, non-contact, and low-input volume compatible acoustic trapping technology for EV isolation that enabled downstream small RNA sequencing. In the current study, we have further automated the acoustic microfluidics-based EV enrichment technique that enables us to serially process 32 clinical samples per run. We utilized the system to enrich EVs from urine collected as the first morning void from 207 men referred to 10-core prostate biopsy performed the same day. Using automated acoustic trapping, we successfully enriched EVs from 199/207 samples (96%). After RNA extraction, size selection, and library preparation, a total of 173/199 samples (87%) provided sufficient materials for next-generation sequencing that generated an average of 2 × 106 reads per sample mapping to the human reference genome. The predominant RNA species identified were fragments of long RNAs such as protein coding and retained introns, whereas small RNAs such as microRNAs (miRNA) accounted for less than 1% of the reads suggesting that partially degraded long RNAs out-competed miRNAs during sequencing. We found that the expression of six miRNAs was significantly different (Padj < 0.05) in EVs isolated from patients found to have high grade prostate cancer [ISUP 2005 Grade Group (GG) 4 or higher] compared to those with GG3 or lower, including those with no evidence of prostate cancer at biopsy. These included miR-23b-3p, miR-27a-3p, and miR-27b-3p showing higher expression in patients with GG4 or high grade prostate cancer, whereas miR-1-3p, miR-10a-5p, and miR-423-3p had lower expression in the GG4 PCa cases. Cross referencing our differentially expressed miRNAs to two large prostate cancer datasets revealed that the putative tumor suppressors miR-1, miR-23b, and miR-27a are consistently deregulated in prostate cancer. Taken together, this is the first time that our automated microfluidic EV enrichment technique has been found to be capable of enriching EVs on a large scale from 900 μl of urine for small RNA sequencing in a robust and disease discriminatory manner.
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Introduction

Extracellular vesicles (EVs) are 50–1,000 nm membrane-encapsulated particles that are secreted by outward budding or fusion of the multi-vesicular endosome with the plasma membrane. EVs contain various types of biomolecules, e.g. protein, lipids, and nucleic acids, that reflect the cell of origin and can be found in all biological fluids including blood, cerebral-spinal fluid, semen, urine, saliva, and breast milk (1). In pathological conditions like cancer, EVs have been shown to facilitate disease progression. Due to their reported disease-specific content and accessibility, EVs have been proposed as a potential new, non-invasive source of biomarkers during routine liquid biopsy (2). However, critical requirements for the introduction of EVs as a routine clinical diagnostic entity include the development of EV isolation and analytical methods manifesting efficient, robust, reproducible, high-throughput performance, and ease of use. Currently, ultracentrifugation with or without cushion gradient remains the standard isolation technique. However, the use of ultracentrifugation in a clinical setting is hampered by the labor, volume, and time requirement. There are a number of commercial and published methods for EV enrichment such as size-exclusion separation (qEV), polymer precipitation (Exoquick), membrane filtration, affinity-based purification, and microfluidics based separation, but many are not suitable for clinical translation due to long incubation time (Exoquick) or cost (immuno-affinity based purification) (3, 4). The number of automated EV isolation methods remains few (qEV, membrane filtration, iDEP), has yet to be tested on large scale, or is not low sample-volume compatible (3, 5–8). We have developed a non-contact and automated enrichment technology termed “acoustic trapping” that operates on the principle that particles in suspension will interact when exposed to ultrasound in a manner that results in their aggregation and retention against fluid flow (9). We have previously shown that the acoustic trapping technology can enrich EVs of all sizes from biological samples such as plasma or urine using a half-wavelength acoustic resonator setup (10, 11). In addition, we have utilized an optimized pipeline to interrogate miRNA expression from urinary EVs by next-generation sequencing (12).

The notion of overdiagnosis and overtreatment of prostate cancer (PCa) is gaining recognition, as indolent forms that never impact longevity or quality of life are found to increase with age (13). Hence, a major challenge is the selective detection and management of lethal forms of PCa at very early and curable stages. A supplemental biomarker that can stratify patient with likely aggressive PCa is urgently needed as current criteria to determine who should receive surveillance are imprecise leading to delay in treatment of aggressive PCa requiring immediate intervention and overtreatment of men who do not benefit from curative treatment. In that regard, urinary EVs have shown early promise as a non-invasive source of biomarkers. The contribution of EVs released into the urethra from the prostate gland via the prostatic duct is supported by the presence of prostate specific markers such as TMPRSS2:ERG fusion and PCA3 in urinary EVs (14, 15). In-addition, miRNA obtained from urinary EVs of men with PCa have demonstrated prognostic performance (16, 17). Aiming to reduce overdiagnosis and overtreatment, we leveraged our previous EV isolation work based on access to urine samples with clinical and histopathologic data from a well-annotated prostate biopsy cohort to identify miRNA biomarkers from urinary EVs that can stratify patients likely to have high grade PCa from those harboring low grade PCa.



Materials and Methods


Patient Cohort

The patient cohort consists of first void morning urine from 207 men who, on the same day, were subjected to transrectal ultrasound-guided biopsy of the prostate due to suspicion of PCa. All patients were previously biopsy (Bx) naïve; the majority had ≥10 Bx cores where samples from 60 patients showed no histopathologic evidence of cancer in any of the needles, and 147 were PCa-positive Bx, i.e. PCa present in at least one needle. Forty-six of the PCa-positive samples had Gleason score greater than or equal to eight (ISUP Grade Group [GG] four or higher). Prior to the same day appointment for biopsy, patients collected urine at home in a 50 ml Falcon tube with a Stabilur™ tablet. The urine was centrifuged at 500 × g for 5 min with the supernatant being transferred to a new tube and cryopreserved at −80°C at the Department of Urology, Aarhus University Hospital, Denmark and later shipped on dry ice to Lund University, Sweden. Cohort data are summarized in Table 1 and Supplemental Table 1 with additional details documented in Fredsoe et al. as cohort 4 (18). Upon arrival and prior to processing, sample order was randomized to minimize processing bias. In addition, the investigators were blinded to the clinical and histopathological status of all patient samples until next generation sequencing had been completed.


Table 1 | Patient characteristics showing median age, serum PSA, pre-biopsy digital rectal examination (DRE) status, clinical stage, Gleason grade from biopsy and number of positive needles stratified as biopsy-positive (Bx-positive) versus Bx-negative groups or as Gleason grade ≥ 4 versus Gleason grade ≤ 3.





Sample Processing and EV Enrichment

Urine samples of 1 ml were processed as illustrated in Figure 1A. Briefly, undiluted cryopreserved urine was equilibrated to room temperature and centrifuged at 2,000 × g for 10 min to remove cells and cellular debris prior to acoustic enrichment. Next, patient samples were split into two 450 µl fractions and aliquoted into a 96-well plate for EV isolation by acoustic trapping. A script containing the operating parameters such as ultrasonic frequency (4.2 Mhz), peak-to-peak voltage (10 Vpp), flow rate (15 μl/min), total volume acquisition (900 μl total trapped in two equal fractions), and sample location was used to automate the AcouTrap system (AcouSort AB, Sweden). Next, the ultrasonic transducer was powered to trap 12 µm seed particles followed by washing to remove excess particles (Figure 1B). Urinary EV enrichment was performed on the trapped seed particles cluster followed by washing and elution in 60 µl of PBS. After trapping, two processed fractions from the same sample were pooled and stored at −80°C until RNA isolation. Additional samples were split and loaded onto new wells of the 96-well plate such that acoustic trap can continuously process the added urine samples until the capacity of the 96-well plate, 32 samples, is reached. To ensure the performance of the AcouTrap, quality control was performed daily by trapping 290 nm polystyrene beads (Bangs Laboratory). A performance of 10% trapping efficiency or above was accepted.




Figure 1 | Urinary extracellular vesicle (EV) isolation and processing workflow. (A) Schematic of workflow beginning with urine sample randomization, automated EV isolation by AcouTrap, RNA isolation, small RNA library preparation and finally sequencing. (B) Illustration of acoustic trapping steps. From left to right, ultrasonic transducer coupled to microfluidic channel where sample flows. Seed particles (12 μm) that will serve as anchors for vesicles are trapped. Next, samples containing vesicles are aspirated through the seed cluster where EV enrichment occurs. After sample aspiration, seed cluster with enriched EVs is washed with PBS and lastly dispensed into designated well.





RNA Isolation and Library Preparation

Enriched EVs were thawed on ice and treated with 10 μg/ml of RNase A at 37°C to remove free circulating RNA. As a positive control for the RNase activity treatment, total RNA isolated from PC3 cell line was also treated in parallel with RNase A. Next, total RNA was isolated using single cell RNA isolation kit (Norgen) per manufacturer’s protocol with β-mercaptoethanol added during the lysis step. RNA eluted from the column was transferred immediately for small library preparation using NEXTFlex library preparation kit (Perkin-Elmer, USA) using a minor modification of the manufacturer’s protocol. Briefly, 10.5 µl of eluent from each sample was ligated with the 3′adapter overnight at 16°C. Excess adapters were removed and inactivated followed by 5′adapter ligation, cDNA synthesis, and 28 cycles of PCR amplification. Libraries were cleaned and size-selected (approximately 140–160 bp) by BluePippin system using 3% agarose gel cartridge (Sage Science, USA). We used the Qubit DNA HS assay (Thermo Scientific, USA) and Bioanalyzer DNA HS chip (Agilent, USA) to quantify cDNA concentration and size, respectively. cDNA libraries were pooled and sequenced on the NextSeq 550 system (Illumina, USA) using five high-output 500/550 flow cell single-end, 75 bp reads.



Data Processing and Analysis

Sequencing results were de-multiplexed using bcl2fastq (version v2.20.0.422). The 3′adapter was trimmed and sequences less than 15 nt in length were removed using cutadapt per NEXTFlex manufacturer’s instruction. Additional filtering and mapping were performed using ExceRpt, a previously reported pipeline (10). Briefly, low-quality, low-complexity reads and contaminants were removed. The remaining reads were mapped to human reference genome (hg38) with one-mismatch using STAR alignment software yielding small RNA counts not including those mapped to rRNAs. Differential expression analysis was performed using DESeq2 on samples grouped into Gleason high (GG4 and GG5) compared to Gleason low (Bx-negative and GG1–GG3) with batch effect accounted for. Differentially expressed genes are filtered based on the criteria of log2 fold change of less than −1 or greater than 1 and an adjusted P-value of less than 0.05 (see Supplemental Method for Rscript) (19). All downstream data analysis was performed using R statistical environment version 3.4.3 and RStudio version 1.2.5001.




Results


Patient Characteristics and Sample Collection

The patient cohort consisted of urine samples from 60 men with ≥GG4 and 147 men with ≤GG3 or biopsy-negative (collective denoted as ≤GG3) (Table 1). The median age of the ≥GG4 and ≤GG3 were 68.8 (Interquartile range, IQR: 64.3–72.9 years) and 64.8 years (IQR 58.7–69.2 years), respectively, at the time of biopsy, and the median serum PSA levels were 9.1 (IQR 6.1–18.6 ng/ml) and 7.0 ng/ml (IQR 5.3–10.6 ng/ml), respectively. Comparison of the two group’s age and serum PSA level showed significant difference by non-parametric Mann–Whitney (P = 0.004 and P = 0.004, respectively).



EV Enrichment, RNA Isolation, and Library Preparation

Prior to EV enrichment from urine samples, trapping assessment was performed on the AcouTrap using 290 nm polystyrene beads to ensure proper function (Figure 2A). Over the period of operation, the trapping efficiencies were 19.7 ± 6% (mean ± s.d.) with a coefficient of variation of ~30%. Analysis of the trapping variations revealed that it is a result of using three different acoustic trapping units throughout the experiment (data not shown). Overall, a total of 199 out of the 207 samples (96%) were successfully enriched by the acoustic trap. Eight samples (six Bx-positive and two Bx-negative) failed due to the presence of air bubbles in the resonant cavity or seed cluster washout during trapping. Statistical testing revealed that trapping failures were homogeneously distributed between samples with ≥GG4 and ≤GG3 (P > 0.05, Wilcoxon Signed-Rank Test). Library preparation from total RNA resulted in a total of 173 (87%) of the 199 samples with quantifiable cDNA by Bioanalyzer (Figure 2B). The resulting 173 samples consisted of 46 patients with ≥GG4 PCa and 127 patients with ≤GG3 PCa as well as Bx-negative samples. The median age of patients with ≥GG4 and ≤GG3 was 68.8 (IQR 64.5–73.1 years) and 66.3 years (IQR 60.8–70.5 years) and the PSA levels were 11.3 ng/ml (IQR 6.8–28.6 ng/ml) and 7.7 ng/ml (IQR 5.9–14 ng/ml), respectively. Non-parametric analysis by Mann–Whitey revealed significant difference in age and PSA level between patients with ≥GG4 and ≤GG3 (P = 0.014 and P = 0.006, respectively).




Figure 2 | Extracellular vesicle isolation and library preparation. (A) Quality control performed daily on the AcouTrap with 290nm polystyrene beads illustrating the stability of the instrument. The trapping efficiency’s mean and standard deviation were 19.7 ± 6% with C.V. of 31%. (B) Histogram of small RNA library concentration between sizes of 140–160 nt as quantified by Bioanlyzer. The median concentration of the samples is 11 nM and an interquartile range of 29 nM. (C) cDNA library profile after sample pooling and size selection. Fluorescent peak around 151 nt corresponding to inserts of approximately 20 nt in length flanked by 5′ and 3′adapters. The final concentrations of the pools, noted as FC1–FC5, are 0.52, 0.56, 0.21, 0.23, and 0.6 nM between 140 and 160 nt.



The first-quartile, median, and third-quartile concentrations of the prepared sample within 140–160 nt (corresponding to approximately 10–30 nt inserts) were 11, 21, and 40 nM, respectively, with an interquartile range of 29 nM. Pooling of the libraries into five aliquots followed by size selection resulted in peaks ranging from 149 to 152 bp for the five aliquots (Figure 2C). The peak sizes corresponded to inserts of 19–22 nt in length. The final concentrations of the pools (FC1–FC5) were 0.52, 0.56, 0.21, 0.23, and 0.6 nM in the size range of 140–160 nt.



Sequencing Results

The sequencing of the 173 samples in five high-output flow cells resulted in a total of 1.5 × 109 reads with 301 to 398 × 106 passing clusters per cell, and 7.7 × 106, 7.1 × 106, 8.0 × 106, 7.0 to 8.4 × 106 median reads for each flow cell (Figure 3A). To determine if differences existed in the distribution of reads (before alignment) between ≥GG4 groups and ≤GG3, we compared the two by Mann–Whitney non-parametric analysis and found that they were not significantly different (Figure 3B). The number of mappable reads ranged between 9 × 104 and 2 × 107. Analysis of the mapped RNA species revealed that the average length of the reads across samples was 21 nt in length (Figure 4A), which was expected as the libraries were size selected for inserts ~10–30 nt long. Contrary to our expectations, we found that a total of 80% of the mapped reads were derived from long RNAs such as protein coding, retained intron, processed transcript, lincRNA, antisense, and nonsense-mediated decay (Figure 4B and Supplemental Table 2), whereas on average, 4 × 103 reads per sample were mapped to miRNAs. The seven most abundant miRNAs found were let-7f-5p, let-7b-5p, miR-30d-5p, let-7a-5p, miR-375, miR-92a-3p, and miR-21-5p (Supplemental Table 3). The data have been deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and are accessible through GEO (Data Availability Statement). To determine if the miRNA expressions in our dataset reflect the underlying clinical parameters, we performed unsupervised hierarchical clustering, but the samples did not cluster into discernible groups (Figure 5). In order to ascertain the validity of the miRNA expression profile derived from urinary EVs, we analyzed our results to the miRNA expression reported by Cheng et al. by significant correlation by linear regression (P < 0.05, Supplemental Figure 2).




Figure 3 | Sequencing results. (A) Sequencing with five high-output flow cells yielded a total of 301 × 106, 352 × 106, 398 × 106, 388 × 106, and 371 × 106 clusters passed filtering. The median reads of the five flow cells range from 7 × 06 to 8 × 106. (B) The read distribution between sample groups with Gleason grade ≥4 (green) and ≤3 (orange) is not statistically different by Mann–Whitney non-parametric analysis (P > 0.05).






Figure 4 | Aligned reads. (A) The average length of the mapped reads across sample are 21 nt in length. (B) The RNA species mapped to the human genome showed predominantly protein coding (green), tRNAs (purple), retained intron (pink), processed transcript (blue), and nonsense-mediated decay RNAs (red).






Figure 5 | Unsupervised clustering of miRNAs expression revealed no discernible patterns between clinical parameters and miRNAs.



To better address the question of whether miRNA expression can be used to stratify patients with high risk tumor, we performed differential expression (DE) analysis comparing miRNA profiles from patients with high (≥GG4, n = 46) vs. low GG and Bx-negative samples (≤GG3 and Bx-negative, n = 127). The results yielded a total of 14 significantly deregulated miRNAs after adjustment for false discovery rate (Padj < 0.05) (Figure 6 and Table 2). However, inspection of the normalized counts of miR-183, -100, -205, -223, -615, -29a, -99b, and -4433a revealed that their differential expression is likely due to a limited number of samples containing detectable reads that artificially inflated their aggregate expression in the ≥GG4 group. Thus, their presence in our differential expression analysis could be type 1 statistical error caused by the low number of reads in our samples and should be interpreted with caution. By contrast, the expression of miR-23b-3p, miR-27a-3p, miR-27b-3p, miR-1-3p, miR-10a-5p, and miR-423-3p contained detected reads in sufficient samples. In addition, we have compared the urinary EVs’ miRNA expression profile of Bx-positive and Bx-negative patients but did not observe any differentially expressed miRNAs.




Figure 6 | Boxplot showing differentially expressed miRNAs between two groups, Gleason grade 4 (≥GG4: high) and ≤GG3 with Bx-negative (low).




Table 2 | Table of differentially expressed miRNA comparing Gleason score ≥8 to the Gleason score ≤7 and Bx-negatives adjusted for batch effect.



In order to explore the possibility that our differentially expressed miRNAs are also deregulated in clinical primary PCa, we analyzed the expression level of our six curated miRNAs from above in the TCGA prostate dataset (prad, n = 497). We found that four out of the six miRNAs are significantly deregulated by Wilcoxon test (P < 0.05) with miR-10a and miR-27a enriched while miR-1 and miR-23b are down-regulated in the ≥GG4 group (Figure 7). In a similar manner, we investigated our six miRNAs in the Taylor et al. dataset, which contains normal, primary, and metastatic PCa samples (n = 141) (20). Our analysis revealed that five of the six miRNAs are deregulated with miR-423 enriched in the metastatic samples while miR-1, -23b, -27a, and -27b are significantly down-regulated in the PCa and metastatic samples by Kruskal–Wallis test (P < 0.05) (Figure 8). Next, we examined the concordance between the miRNA expression in both public datasets and found that miR-1 and miR-23b are consistently down-regulated in high grade PCa, i.e. high GG or in PCa and metastatic samples, while miR-27a is enriched in the ≥GG4 group but down-regulated in the PCa and metastatic samples. Since miR-1 is co-transcribed with miR-133a and miR-133b, we hypothesize that miR-133a and miR-133b would also be down-regulated along with miR-1. Indeed, miR-133a and miR-133b expressions are lower in high risk PCa compared to low risk PCa (Supplemental Figure 1). Interestingly, we found that miR-23b is down-regulated in tissue samples from TCGA and Taylor dataset but are up-regulated in our urine analysis, whereas miR-1 is consistently down-regulated in all three analyses.




Figure 7 | Expression of the differentially expressed microRNAs found in our analysis in the TCGA dataset grouped by Gleason grade 4 (GG4 or greater: high) versus GG3 or lower and Bx-negative (low) n = 497.






Figure 8 | Expression of the differentially expressed microRNAs found in our analysis in the Taylor et al. dataset grouped by normal, prostate cancer (PCa) and metastatic samples (Mets), n = 141.






Discussion

The past decade has unraveled a role of EVs as key players in disease progression. Thus, translation of EV content for diagnostic purposes could provide additional information for clinical management of diseases including PCa. To that end, we have shown that acoustic trapping can be scaled up for high throughput isolation of urinary EVs from patients with or suspected of PCa. We have demonstrated that our automated acoustofluidic EV isolation system, the AcouTrap, is a robust EV isolation method with less than five percent failure rates out of 207 samples. The two main mode of failures were due to bubble formation and seed cluster washout. These problems could be remediated by ensuring that temperature of the samples was sufficiently equilibrated in order to prevent bubble formation and increasing the number of fractions trapped per sample in order to reduce seed cluster washout.

At this time, it is difficult to compare the performance of our automated EV enrichment method to the published PCa EV biomarker studies that relied on hydrostatic filtration dialysis (21), differential ultracentrifugation (22, 23), or chemical precipitation (24) for enriching urinary EVs due to the dearth of information regarding their success rates and processing time. With our current instrument setup, the processing time of each sample was under 2 h with little manual labor other than dispensing the samples onto and recovering the eluent off of a 96-well plate. It is expected that with improvements to the design of the instrumentation such as the dimension of the acoustic resonator, it is possible to achieve even lower processing time thus enabling translation of EVs as a future clinical diagnostic entity. To our knowledge, this is the first time an automatic microfluidic EV isolation technique was utilized to enrich urinary EVs from clinical samples on this scale.

Harnessing urinary EVs for biomarkers could enable convenient and non-invasive approach to discriminate patients with high risk PCa. Currently, the Gleason grade is one of the best prognostic indictors for PCa risk based on the cellular differentiation pattern of PCa from biopsied materials. Studies have shown that Gleason grade group provides significant predictive power for 5-year biochemical recurrence (BCR), i.e. rising PSA after radical prostatectomy, with increasing Gleason grade group positively correlating with BCR recurrence (25, 26). Therefore, we dichotomized our patient cohort into ≥GG4 and ≤GG3 or high and low risk groups in order to determine if miRNAs from urinary EVs can differentiate the patients with high likelihood of BCR. Towards that end, we performed small RNA-sequencing on 173 urinary EV samples in order to identify potential biomarkers that can stratify patients with high or low GG. To our surprise, a large percentage of the mapped reads corresponded to protein coding RNA, lincRNA, and nonsense-mediated decay that are normally hundreds to thousands of base-pair in length. Their large representation in our reads suggested that they have been degraded during either collection or later freezing and thawing (27, 28). As a result, the degraded RNA fragments out-competed the miRNAs during cluster formation in the sequencing flow cell, thereby reducing the number of miRNA reads. In comparison, our previous work performing acoustic trapping on fresh urine samples treated with DTT showed that miRNA composed greater than 10% of the reads, which is in agreement with work by Cheng et al. (12, 29). Nevertheless, we benchmarked our minor portion of miRNAs against published miRNAs from urinary EVs from healthy subjects and found that 5 of our 12 most abundant miRNAs, miR-30a, -10a, -10b, -26a, and let-7b, overlapped with the 12 most abundant urinary EV miRNA detected in the study from Cheng et al. (29). The results provided confidence that the minor portion of miRNAs is indeed representative of miRNAs derived from urinary EVs. Therefore, we began our exploratory analysis of the miRNA data by unsupervised hierarchical clustering. The result did not conform to any appreciable order to the pathological parameters of the patients. The result is likely due to the low number of miRNA reads such that the underlying relationship between pathological characteristics and miRNAs cannot be easily resolved. However, differential expression analysis of the miRNA profiles, adjusting for batch effect, revealed a number of significantly deregulated miRNAs between samples with high and low GG. Our analysis of each differentially expressed miRNA in the cohort revealed that eight miRNAs likely arise as a result of false positive, driven by low number of reads in a limited number of samples while six are robust and not affected by any similar flaws. Published literature revealed that four of the six curated miRNAs, miR-1, miR-23b, miR-27a, and miR-27b, function as putative tumor suppressors that modulate proliferation and epithelial–mesenchymal transition in prostate and bladder cancer (30–36). The result portrays a mechanism that is consistent with literature in which tumor suppressor miRNAs are down-regulated during PCa progression (37). Interestingly, our finding that miR-23b and miR-27a are both up-regulated in urinary EVs derived from high grade PCa are contradictory to the tissue expression observed in the TCGA and Taylor datasets. The conflicting expression between tissue specimens and urinary EVs opens the possibility that sequestration of miRNAs into EVs, a previously reported mechanism, could be responsible for reducing cellular tumor suppressor concentration (38, 39) in a manner analogous to ABC transporter drug efflux pumps. Separately, our analysis detected that miR-1 is down-regulated in urinary EVs from high GG samples. The significance of miR-1 repression can be observed in high grade PCa tissue from the TCGA and Taylor datasets as well as the prognostic potential of miR-1 for PCa recurrence after prostatectomy (40). Interestingly, in contrast to miR-23b or miR-27a, miR-1 is down-regulated in urinary EVs as well as tissue samples, the aggregate of which suggests that sequestration into EVs may not be the mechanism for reducing cellular concentration. We further observed that miR-133, a family of miRNA co-transcribed with miR-1, are also down-regulated in the TCGA dataset.

One limitation of our study is that the high and low risk PCa patient groups are significantly different with respect to PSA concentration and age. As PSA concentration and age are known to correlate with high grade PCa, the finding is unsurprising but should be interpreted with caution as the differentially expressed miRNAs could be a reflection of changes in age and not the underlying pathological condition.

Together, our results suggest that putative tumor suppressor miRNAs from urinary EVs could be harnessed as diagnostic biomarkers to stratify between high and low risk PCa. Importantly, to the best of our knowledge, this is the first time that the deregulation of putative tumor suppressor miR-1 has been detected in urinary EVs. Our study potentially offers additional biomarkers for PCa stratification though additional patient cohorts with higher sample integrity will be needed to validate the finding.



Conclusion

The automated acoustic EV trapping technique, in conjunction with the previously optimized RNA sequencing pipeline, can be used to detect RNA markers in urinary EVs from 900 μl of patient samples in an efficient and robust manner revealing a number of putative tumor suppressor miRNA deregulations.
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It is reported that microRNAs (miRNA) have paramount functions in many cellular biological processes, development, metabolism, differentiation, survival, proliferation, and apoptosis included, some of which are involved in metastasis of tumors, such as melanoma. Here, three metastasis-associated miRNAs, miR-18a-5p (upregulated), miR-155-5p (downregulated), and miR-93-5p (upregulated), were identified from a total of 63 different expression miRNAs (DEMs) in metastatic melanoma compared with primary melanoma. We predicted 262 target genes of miR-18a-5p, 904 miR-155-5p target genes, and 1220 miR-93-5p target genes. They participated in pathways concerning melanoma, such as TNF signaling pathway, pathways in cancer, FoxO signaling pathway, cell cycle, Hippo signaling pathway, and TGF-beta signaling pathway. We identified the top 10 hub nodes whose degrees were higher for each survival-associated miRNA as hub genes through constructing the PPI network. Using the selected miRNA and the hub genes, we constructed the miRNA-hub gene network, and PTEN and CCND1 were found to be regulated by all three miRNAs. Of note, miR-155-5p was obviously downregulated in metastatic melanoma tissues, and miR-18a-5p and miR-93-5p were obviously regulated positively in metastatic melanoma tissues. In validating experiments, miR-155-5p's overexpression inhibited miR-18a-5p's and miR-93-5p's expression, which could all significantly reduce SK-MEL-28 cells' invasive ability. Finally, miR-93-5p and its potential target gene UBC were selected for further validation. We found that miR-93-5p's inhibition could reduce SK-MEL-28 cell's invasive ability through upregulated the expression of UBC, and the anti-invasive effect was reserved by downregulation of UBC. The results show that the selected three metastasis-associated miRNAs participate in the process of melanoma metastasis via regulating their target genes, providing a potential molecular mechanism for this disease.

Keywords: miRNA, miR-18a-5p, miR-155-5p, MiR-93-5p, melanoma, metastasis


INTRODUCTION

As the neoplasm of the cells, melanoma starts in skin cells called melanocytes (McComiskey et al., 2015). Environmental factors, for example, ultraviolet light exposure, are considered as the main cause of melanoma (Kanavy and Gerstenblith, 2011). This tumor is predominant in the skin or adjacent to the skin and spread throughout the body (Bakkal et al., 2015), with a dramatically increased global incidence over the past few decades (Azoury and Lange, 2014). Moreover, there are still no satisfactory treatments for patients with advanced melanoma because of its complex pathogenesis. Like other types of malignant tumors, the main cause of melanoma-related deaths is metastasis (Shaikh et al., 2016). Thus, the pathogenesis and inhibition of metastasis have become a focal point of melanoma.

Recently, microarray technology has been widely used in investigating gene alterations in metastasis, tumorigenesis, drug resistance, and cancer recurrence, as well as to identify biomarkers for tumor diagnosis, prognosis, and therapy (Hu et al., 2010; Chien et al., 2015; Tabaries et al., 2015). With the next-generation sequencing technology's experimental application, Gene Expression Omnibus (GEO) collects data exponentially and gradually plays an important role in bioinformatics analysis (Barrett et al., 2013). Increasing reliable and functional miRNAs, as reported, have a vital influence on melanoma initiation, progression, and recurrence (Lou et al., 2018). DNA chip-based sequencing technology analyzes TP53 germline mutations in pediatric tumor patients, and simultaneously analyzes all coding exons of TP53 (Harris and McCormick, 2010). The entire sequencing process and data analysis are carried out within 24 h. Tissue microarray (TMA) has been successfully used in the immunohistochemical study of cervical adenocarcinoma (Tawfik El-Mansi and Williams, 2006). The expression of osteoblast-specific factor 2 in the prostate cancer-related stroma was analyzed by laser capture microdissection of clinical specimens from prostate cancer patients by whole genome expression microarray technology (Wu et al., 2005).

In our study, we selected three metastasis-associated miRNAs from miRNA expression microarray GSE24996. Data mining, network analysis, and experimental validation were applied, and the analytical and experimental results showed potential molecular mechanisms on metastatic melanoma.



MATERIALS AND METHODS


Data Collection

From Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) (Li et al., 2016), we obtained the miRNA expression profile GSE24996 on the basis of the platform of GPL6955 (Agilent-016436 Human miRNA Microarray 1.0). Eight metastatic melanoma samples were screened out and analyzed. We retrieved 15 primary melanoma samples as control.



Screening for DEMs

For the analysis of DEMs, we first normalized the miRNA expression data through making use of the normalizeBetweenArray function from R package LIMMA (Smyth et al., 2005). Before and after normalizing the data, we showed them in Supplementary Figure 1. Then, the normalized data were used to analyze DEMs through making use of the Limma software package in R software (www.bioconductor.org/packages/release/bioc/html/limma.html) (Kerr, 2003). We set the cut-off value as P < 0.05 and |fold change (FC)|>2 for DEM analysis (Li et al., 2016).



Survival Data From OncoLnc Website

The prognostic values of identified DEMs in metastatic melanoma were obtained on OncoLnc website, which linked TCGA survival data to the expression levels of miRNA, mRNA, or lncRNA(http://www.oncolnc.org/). We thought Log-rank P < 0.05 had statistical significance. We selected the survival-associated miRNAs for further study.



Predicting Target Genes

Through making use of miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/php/index.php), we predicted latent targeted genes of the selected miRNAs. The tool is a microRNA-target interactions database that is experimentally validated (Chou et al., 2018).



Analysis of GO and Pathway

As a major initiative about bioinformatics, Gene ontology (GO: www.geneontology.org) (Ashburner et al., 2000) encompasses the largest variety of annotations under three headings: cellular component (CC), biological processes (BP), and molecular function (MF). The Kyoto Encyclopedia of Genes and Genomes (www.genome.ad.jp/KEGG) (Kanehisa and Goto, 2000) pathway enrichment analysis was applied aiming at investigating the signaling pathways in relation to the unique DEGs. We performed the analysis of GO and KEGG pathway by making use of the Database for Annotation Visualization and Integrated Discovery (DAVID: www.david.ncifcrf.gov/) aiming at identifying the biological significance of DEGs (Huang et al., 2007). We considered P < 0.05 as statistical significance.



Construction of PPI Network and miRNA-Gene Network

We first mapped three groups of predicted genes to the Search Tool for the Retrieval of Interacting Genes (STRING) (www.cytoscape.org) (Shannon et al., 2003) to assess functional associations among them, respectively. Next, we analyzed the degree of connectivity in the PPI networks through making use of NetworkAnalyzer module in Cytoscape software and the top 10 higher degree nodes were used as hub genes to construct the miRNA-hub gene network.



Human Melanoma Samples and Cell Line

We gained 15 metastatic melanoma samples as well as 18 human primary melanoma samples from the Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine. After resection, we froze all specimens in nitrogen, which was liquid at once, and preserved them at −80°C until use. We kept human melanoma cell line SK-MEL-28 (Cat. No. HTB-72, ATCC) in our lab and grew them in 5% CO2 in DMEM (Gibco BRL) to which 10% (v/v) FBS (Hyclone) served as a supplement, and we keep the temperature at 37°C.



Cell Transfection

We transfected the miR-155-5p mimics (HmiR0358-MR04), miR-18a-5p (HmiR-AN0255-AM01) inhibitor, miR-93-5p inhibitor (HmiR-AN0837-AM01), control (CmiR0001-MR04, CmiR-AN0001-AM01) (bought from Fulengen, Guangzhou, China), and si-UBC (bought from Genepharma, Shanghai, China) into SK-MEL-28 cell lines through making use of Lipofectamine™ 2000 on the basis of the instruction of the manufacturer. The sequences were as follows: siUBC-1, 5′-AGAACGUCAAAGCAAAGAU-3′; siUBC-2, 5′-AGAAUGUCAAGGCAAAGAU-3′; siNC, 5′-UUCUCCGAACGUGUCACGUTT-3′.



Quantitative-PCR (qPCR) and Extraction of RNA

Through introducing RNAiso Plus reagent (Takara Biotechnology Co., Ltd, Dalian), we extracted total RNA from SK-MEL-28 cells and clinical samples. The expression level of miRNA was detected using GeneCopoeia All-in-One™ miRNA qRT-PCR Detection Kit (Cat Nos. AOMD-Q020 or AOMD-Q050) bought from Fulengen Co. Ltd (Guangzhou, China). The primer catalogs were HmiRQP0221 for miR-155-5p, HmiRQP0255 for miR-18a-5p, and HmiRQP0837 for miR-93-5p. Serving as the internal control (HmiRQP9001), the U6 small nuclear RNA was applied. Primers used were as follows: UBC forward (divergent), 5′-GTGTCTAAGTTTCCCCTTTTAAGG-3′ and reverse (divergent), 5′-TTGGGAATGCAACAACTTTATTG-3′; GAPDH forward (divergent), 5′-AGGTCCACCACTGACACGTT-3′; and reverse (divergent), 5′-GCCTCAAGATCATCAGCAAT-3′. Making use of the 2−ΔΔCT method, we aimed at determining fold change in each sample's RNA level in comparison with the sample for reference.



Transwell Assay

In 24-well transwell chambers (Corning, USA), we conducted the cell invasion experiment. We suspended 1 × 105 transfected cells in 0.2 ml serum-free medium. We added them to the inserts, which were previously coated with Matrigel (BD Bioscience, USA) on the upper surface. Then, we added 0.6 ml medium with 20% FBS to the lower compartment. Forty-eight hours later, after incubation at 37°C, we carefully removed the cells on the membrane's upper surface through making use of a cotton bud. Then we successively fixed cells on the lower surface through making use of 100% methanol and stained them through making use of 0.1% crystal violet. We randomly selected 5 ocular fields of 200 × magnification of each insert. Under a light microscope (Olympus, Japan), we enumerated them.



Dual Luciferase Assay

The dual luciferase assay used Liofectamine 2,000 to co-transfect UBC 3′-UTR-wt/mut reporter plasmid and miR-93-5p mimic or NC into SK-MEL-28 cells. For 24 h, we used FLUOstar Omega to measure firefly fluorescence Reninase and renin luciferase activity, and renin luciferase activity as a reference. Dual-Lucy Assay Kit (Cat Nos. D0010) was purchased from Beijing Solabo Technology Co., Ltd.



Western Blot Analysis

We collected 2 groups of SK-MEL-28 cells (miR-93-5p mimic and control). The total protein was extracted by conventional methods, and the protein concentration was determined by the BCA method. After boiled denaturation, we took the same amount of protein-like behavior, SDS-PAGE, pass the membrane, room temperature 5%, milk block, add antibody UBC (Abcam), and incubated overnight. After 30 min of rewarming, TBST was rinsed four times (10 min/time), horseradish peroxidase-labeled two anti-incubated for 1.5 h, and TBST was washed with ECL chemiluminescence method and Quantity One 4.6.2 software for image analysis. β-actin is the reference for this experiment.



Statistical Analysis

We showed the results as mean ± SD. Through making use of the unpaired Student's t-test, we estimated differences between groups. We considered a two-tailed value of P < 0.05 as statistical significance.




RESULTS


Identification of Survival-Associated DEMs and Their Target Genes

Aiming at identifying DEMs between samples of metastatic melanoma and samples of primary melanoma, we analyzed the differential expression through making use of limma software package. In total, we identified 63 DEMs that were significantly differentially expressed in metastatic melanoma tissues in comparison with primary melanoma tissues, consisting of 50 upregulated and 13 downregulated miRNAs (Supplementary Table 1). To screen out the survival-associated miRNA, all the 63 DEMs were analyzed on OncoLnc website. Finally, we picked out miR-18a-5p (upregulated), miR-155-5p (downregulated), and miR-93-5p (upregulated) as survival-associated miRNAs (Figure 1).


[image: Figure 1]
FIGURE 1. Kaplan–Meier survival curve of selected miRNA in melanoma. (A) for miR-155-5p; (B) for miR-18a-5p; (C) for miR-93-5p.


We predicted 904 miR-155-5p target genes, 262 miR-18a-5p target genes, and 1220 miR-93-5p target genes (Supplementary Table 2).



GO Function and KEGG Pathway Analysis

We analyzed three kinds of GO functional annotation on the three groups of predicted genes, cellular component (CC), molecular function (MF), and biological process (BP) included. The GO BP analysis results demonstrated that miR-155-5p target genes were obviously abundant in cell-cell adhesion, transcription regulated positively/negatively from RNA polymerase II promoter, an apoptotic process regulated negatively, and so on (Figure 2A). The GO CC analysis indicated that miR-155-5p target genes were abundant in membrane, nucleus, nucleoplasm, and cytosol (Figure 2B). The GO MF analysis results indicated that miR-155-5p target genes were obviously abundant in protein binding, cadherin binding participating in protein kinase binding, and cell-cell adhesion (Figure 2C). We showed the GO analysis results of miR-93-5p and miR-18a-5p in Figures 2D–I and the detailed results were presented in Supplementary Table 3.


[image: Figure 2]
FIGURE 2. The analysis of GO functions and KEGG pathway for three survival-associated miRNAs target genes. (A,D,G) The top 10 enriched biological processes of miR-155-5p, miR-18a-5p, and miR-93-5p; (B,E,H) The top 10 enriched cellular components of miR-155-5p, miR-18a-5p, and miR-93-5p; (C,F,I) The top 10 enriched molecular function of miR-155-5p, miR-18a-5p, and miR-93-5p. (J–L) KEGG pathway analysis for miR-155-5p, miR-18a-5p, and miR-93-5p. The black lines stand for gene count and the red lines stand for–log10 (P-value).


Aiming at further analyzing the enriched pathways of the three groups of target genes, KEGG pathway enrichment analysis was subsequently conducted (Supplementary Table 4). For miR-155-5p (Figure 2J), the enriched KEGG pathways included colorectal cancer, Hepatitis B, pathways in cancer, and so on. Cell cycle, FoxO signaling pathway, and colorectal cancer, and so on were included in the enriched KEGG pathways for miR-18a-5p (Figure 2K). Hepatitis B, HTLV-I infection, pathways in cancer, and so on were included in the enriched KEGG pathways for miR-93-5p (Figure 2L). Interestingly, FoxO signaling pathway was highlighted in our analysis. As we know, FoxO signaling pathway widely participated in cell autophagy, apoptosis, and proliferation. Whether FoxO signaling pathway participates in melanoma metastasis needs further study.



Constructing and Analyzing PPI Network and miRNA-Hub Gene Network

We performed the PPI network analysis of three groups of target genes through utilizing the STRING database. We picked out the top 10 hub genes on the basis of the node degree (Table 1). For miR-155-5p, the hub genes were AKT1, EGFR, MYC, CTNNB1, JUN, IL6, PTEN, CCND1, STAT3, and CASP3. For miR-18a-5p, the hub genes were TP53, UBC, CCND1, PTEN, CDC20, ESR1, CCT6A, ATM, SMAD2, and SMAD4. For miR-93-5p, the hub genes were RPS27A, UBC, MYC, GAPDH, HSPA8, MAPK1, PTEN, JUN, CCND1, and POLR2A. The highest node degrees were demonstrated by AKT1, TP53, and UBC among the above genes, which, respectively, were 172, 56, as well as 177. As results showed, AKT1, UBC, and TP53 may serve as pivotal targets in correlation with melanoma metastasis.


Table 1. Hub genes identified in the PPI interaction.

[image: Table 1]

Then, we finished constructing the miRNA-hub gene network by utilizing Cytoscape software. Through miR-18a-5p, MYC and JUN were regulated and miR-93-5p, UBC was regulated through miR-18a-5p and miR-93-5p, PTEN and CCND1 were regulated through the three selected miRNAs, which were all shown in Figure 3. As results showed, PTEN and CCND1 might serve as key targets in correlation with melanoma metastasis.


[image: Figure 3]
FIGURE 3. The regulative network between three selected miRNAs and hub genes.




Aberrant Expression and in vitro Effects of miR-155-5p, miR-18a-5p, and miR-93-5p

Following our miRNA expression profile analysis, miR-155-5p's, miR-93-5p's, and miR-18a-5p's expression at 18 PM and 15 MM samples were verified. We presented the results in Figures 4A–C that demonstrated that miR-155-5p expression was obviously downregulated, miR-18a-5p and miR-93-5p expression were obviously regulated positively in MM samples in comparison with PM samples, which verified the analysis results in miRNA expression microarray.


[image: Figure 4]
FIGURE 4. The expression and prognostic functions of miR-155-5p, miR-18a-5p, and miR-93-5p in melanoma metastasis. (A–C) miR-155-5p's, miR-18a-5p's, and miR-93-5p's expression in metastatic melanoma tissues (n = 15) and primary tissues (n = 18). (D) Validation of miR-155-5p expression, miR-18a-5p expression, and miR-93-5p expression in transfected SK-MEL-28 cells. (E) Validation of UBC expression in transfected SK-MEL-28 cells. (F) SK-MEL-28 transfected with miR-155-5p, miR-18a-5p inhibitor, or miR-93-5p inhibitor invaded less vs. control cancer cells. ***P < 0.001, **P < 0.01, *P < 0.05. PM, primary melanoma; MM, metastatic melanoma.


Next, we transfected miR-155-5p expression plasmid, miR-18a-5p inhibitor plasmid, and miR-93-5p inhibitor plasmid into melanoma cell line SK-MEL-28, respectively. RT-qPCR results exhibited miR-155-5p's overexpression in SK-MEL-28 and miR-93-5p and miR-18a-5p's downregulation in SK-MEL-28 (Figure 4D). In addition, RT-qPCR results showed that in SK-MEL-28 transfected with si-UBC, the expression level of UBC was reduced (Figure 4E). Then, we employed a transwell invasion assay aiming at measuring the effects of miR-155-5p, miR-18a-5p, and miR-93-5p on melanoma invasion. The results shown in Figure 4F indicated that miR-155-5p's upregulation of miR-93-5p's and miR-18a-5p's downregulation could, respectively, suppress SK-MEL-28 cell invasion. All of the above data proved that miR-155-5p, miR-18a-5p, and miR-93-5p were key regulators of melanoma metastasis. Targeting miR-155-5p, miR-18a-5p, and miR-93-5p to regulate the invasion of melanoma cells may represent novel approaches in treating melanoma patients.



Inhibition of miR-93-5p Could Reduce SK-MEL-28 Cells Invasive Ability Through UBC

According to the results of previous studies, there is no related report of miR-93-5p in melanoma. To validate the results of comprehensive analysis, we picked out miR-93-5p and its potential target gene UBC for further study. Using the expression data of melanoma from ENCORI (http://starbase.sysu.edu.cn/), it was found that miR-93-5p expression was obviously in inverse correlation with UBC in 449 melanoma patients (Figure 5A). The predicted site in UBC 3′-UTR that can be bound by miR-93-5p is illustrated in Figure 5B. We consequently explored whether UBC served as miR-93-5p's direct target in SK-MEL-28 cells. The luciferase reporter experiment indicated that miR-93-5p mimic obviously inhibited the luciferase activity in SK-MEL-28 cells with wt-UBC-3′UTR vector, but not in mutant UBC-3′ UTR (Figure 5C). Moreover, transfected miR-93-5p mimic gave rise to an obvious reduction of UBC protein (Figure 5D). To verify whether the reduction of SK-MEL-28 cells' invasive ability by inhibiting miR-93-5p was dependent on UBC, siRNA targeting UBC was transfected into miR-93-5p-upregulating SK-MEL-28 cells. The results showed that the anti-invasive effect by miR-93-5p's downregulation was reduced when the expression of UBC was decreased by its siRNA (Figure 5E).


[image: Figure 5]
FIGURE 5. Inhibition of miR-93-5p could reduce SK-MEL-28 cells' invasive ability through UBC. (A) The miR-93-5p and UBC expression data of 449 melanoma patients from ENCORI. We observed the inverse correlation with statistical significance between miR-93-5p and UBC mRNA. (B) Diagram of UBC 3'UTR including 1 putative conserved target sites for miR-93-5p, recognized through making use of the TargetScan database. (C) Results of luciferase reporter experiments in SK-MEL-28 cells, with co-transfection of wt or mt 3'UTR and miR mimic, as shown. (D) The protein expression of UBC in SK-MEL-28 cells transfected with miR-93-5p. (E) SK-MEL-28 transfected with miR-93-5p inhibitor invaded less vs. control cancer cells, and the anti-invasive effect by miR-93-5p inhibitor was reduced when the expression of UBC was decreased by its siRNA. **P < 0.01 miR-93-5p inhibitor vs. control, ##P < 0.01 miR-93-5p inhibitor vs. miR-93-5p inhibitor+siUBC.





DISCUSSION

Poor outcome of melanoma mainly results from metastasis. Until now, the mechanism of melanoma metastasis remained unclear. Through previous studies and reports, it was found that most primary melanomas can be cured by local resection (Damato, 2012), but metastatic melanomas have historically had a poor prognosis, with a median survival time of 9 months and a long-term survival rate of 10% (Hall et al., 2000). Metastatic melanoma accounts for approximately 80% of skin cancer-related deaths (Aladowicz et al., 2013). The more understanding of the pathogenesis of metastasis, the better we can develop drugs and treat this disease. Increasing evidence has shown that miRNA expression profiling analysis is a useful tool to study cancer progression and metastasis. Abundant miRNAs took part in numerous pivotal cellular pathways in relation to the progression of cancer, which we have recognized to be expressed aberrantly in melanoma.

Up to now, we have done the research on miRNA associated with metastasis for melanoma by miRNA expression profiling, whose values are relatively limited (Figure 6). As for the research, we gathered melanoma's miRNA expression profiling dataset and systemically analyzed them, aiming at retrieving miRNAs associated with metastasis. A total of 63 DEMs were identified, many of which were known to be involved in melanoma. For example, melanoma cell-secreted exosomal miR-155-5p, which was selected as a survival-associated miRNA, could induce a proangiogenic switch of fibroblasts associated with cancer through improving proangiogenic factors' expression in recipient fibroblasts via SOCS1/JAK2/STAT3 signaling pathway (Zhou et al., 2018). MiR-141-3p, which was regulated negatively in our study, showed the inhibitory effects on melanoma cells' anchorage-independent growth ability, their potential of invasion, and expression of an embryonic-like, multipotent, aggressive cancer phenotype. Further data suggested that vasculogenic mimicry was regulated by miR-141-3p through phosphatidyl inositol-3-kinase (PI3K) (Verrando et al., 2016) and extracellular signal-regulated kinase 1/2 (ERK1/2). MiR-330-3p inhibited melanoma proliferation by targeting TRX2 (Yao et al., 2018). miR-198, regulated by hsa_circ_0025039, inhibited cell growth, glucose metabolism, and invasion in malignant melanoma via targeting CDK4 (Bian et al., 2018).


[image: Figure 6]
FIGURE 6. A schematic illustration of the metastasis-associated microRNAs in melanoma.


Furthermore, the building of the PPI network was finished on the basis of the predicted genes. Additionally, we made use of analyses of GO and KEGG pathway enrichment aiming at further interpreting their functions about biology. Then, we identified the top 10 hub nodes whose degrees were higher for each miRNA as hub genes. AKT1, TP53, and UBC had the highest node degrees among these genes. Through miRNA-hub gene network construction, it was found that PTEN and CCND1 were regulated by all three miRNAs. The results indicated that AKT1, TP53, UBC, PTEN, and CCND1 may be pivotal targets in correlation with melanoma metastasis. Previous studies suggested that AKT1 promoted the development of melanoma metastases (Cho et al., 2015), and its melanoma-derived mutation, AKT1E17K, activated focal adhesion kinase and promoted melanoma brain metastasis (Kircher et al., 2019). In addition, p53, encoding by TP53 gene, was reported as a therapeutic target of melanoma (Wu et al., 2018). The other three key genes, UBC, PTEN, and CCND1, were also well studied in melanoma (Roh et al., 2016; Donigan et al., 2017; Uguen et al., 2017; Mu and Sun, 2018; Zhang et al., 2018; Zhu et al., 2018; Chen et al., 2019; Giles et al., 2019). Overall, systematically analyzing miRNA profiling took a step in the investigation of the mechanisms that underlay melanoma's metastasis.

In future studies, we will collect more clinical samples to explore the prognostic value of miR-18a-5p, miR-155-5p, and miR-93-5p in melanoma. In addition, we will further study the mechanism of miR-93-5p/UBC in vivo.

To sum up, through analyzing the miRNA expression profile from an open database, many biological miRNAs were identified, which may participate in melanoma's metastasis. This work verified the function of miR-155-5p, miR-18a-5p, and miR-93-5p in melanoma metastasis, providing additional insights into the complex process of this disease. Meanwhile, we identified miR-93-5p as a pro-invasion miRNA by regulating the expression of UBC in melanoma for the first time. Our research found that miR-18a-5p, miR-155-5p, and miR-93-5p play a key role in the mechanism of melanoma metastasis, and proved that miR-93-5p/UBC is a potential effective target for melanoma.
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Lung cancer is a kind of cancer with high morbidity and mortality which is associated with various gene mutations. Individualized targeted-drug therapy has become the optimized treatment of lung cancer, especially benefit for patients who are not qualified for lung lobectomy. It is crucial to accurately identify mutant genes within tumor region from stained pathological slice. Therefore, we mainly focus on identifying mutant gene of lung cancer by analyzing the pathological images. In this study, we have proposed a method by identifying gene mutations in lung cancer with histopathological stained image and deep learning to predict target-drug therapy, referred to as DeepIMLH. The DeepIMLH algorithm first downloaded 180 hematoxylin-eosin staining (H&E) images of lung cancer from the Cancer Gene Atlas (TCGA). Then deep convolution Gaussian mixture model (DCGMM) was used to perform color normalization. Convolutional neural network (CNN) and residual network (Res-Net) were used to identifying mutated gene from H&E stained imaging and achieved good accuracy. It demonstrated that our method can be used to choose targeted-drug therapy which might be applied to clinical practice. More studies should be conducted though.
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Introduction

Lung cancer has the highest morbidity and mortality worldwide, and it became the main cause of death in China, especially for males (1). According to different biological factors and clinical presentations, lung cancer could be further divided into two sub-types: small cell lung cancer and non-small cell lung cancer (2). Non-small cell lung cancer takes up nearly 80 to 85% of all lung cancers, and small cell lung cancer takes up only 15 to 20% (3). Small cell lung cancer is a kind of invasive and malignant neuroendocrine tumor however sensitive to chemotherapy and radiation therapy. Therefore, the therapy of small cell lung cancer is relatively effective and with good prognosis (4). However, most lung cancers are non-small cell cancers, which contains lung squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD), and large cell carcinoma, which are significantly less sensitive to chemotherapy and radiotherapy compared to small cell lung cancer (5, 6). Patients with squamous cell carcinoma do not well response to anti-tumor drugs therapy because of intolerable toxic complications (7, 8). However, there are genetic abnormalities carried by patients with adenocarcinoma who respond well to targeted-drug therapy (9, 10), such as those carry EGFR mutations or ALK rearrangements (11). Studies have shown that the prognosis of patients is strongly associated with certain histopathological features (12, 13). The efficacy of targeted-drug therapy depends on the stage of cancer by pathological diagnosis, therefore it might enhance the patients’ quality of life and prognosis by identifying gene mutations (14, 15).

Although many techniques are approved to have significant advantages on diagnostic imaging, visual inspection of histological stained slice is still considered as “gold method” for tumor diagnosis. But, the diagnostic accuracy and treatment plan generally on the basis of the results of biopsy study. It requires well-experienced pathologists who can confidently identify the changes of cell morphology and corresponding tumor stage of lung cancer by visual inspection of pathological images (16, 17). Currently, the pathologists can determine the histological stage of tumor by looking at stained slice under microscope. However, the pathological report might be subject to individual bias and staining technique (18).Therefore, cancer diagnosis usually requires several pathologists to evaluate the same stained slice in order to increase accuracy of diagnosis which is time consuming and costly. Furthermore, poorly differentiated tumors or those in advanced stage also brings challenges to make a reliable diagnosis, thereby, computer aided assessment is recommended for diagnosis and designing therapy plan.

Deep learning means have been used in the medical field for lots of years (19), which can save time and receive reliable diagnosis, especially in image assessment. In oncology field, it has already gained approval for better efficiency, accuracy, and consistency diagnosis (20). Compared to experienced pathologist, it has advantage of identifying tumor region by image segmentation, sub-type classification, as well as predicting the disease prognosis (21). Pegah Khosravi et al. established an independent frame according to Convolutional Neural Networks (CNN), to classify the histopathological slices from different types of cancer, and gain good results (22). Jakob Nikolas Kather et al. reported that deep residual learning can predict microsatellite instability directly from hematoxylin-eosin staining slice (23). Moreover, the study conducted by Zizhao Zhang et al. came up with a new artificial intelligence-driven of histological staining slice diagnostic approach which solved the problem of interpretable diagnosis (24). Nicolas Coudray et al. downloaded full-slice images from the cancer genome atlas, they annotate tumor region on one slice, and remaining slices were divided into training set or validation set. The data from training set was trained by deep convolutional neural network (inceptionv3) and finally automatically and accurately classified data into lung adenocarcinoma, lung squamous cell carcinoma, or normal lung tissue (3). Those studies demonstrated that deep learning methods can achieve relatively good results in analyzing the pathological images of patients.

Currently, there are different types of cancer therapy, which range from the traditional radio-logical and broad spectrum chemotherapy, to targeted-drug therapy. “Target therapy” is to apply advanced technology to accurately deliver drugs to the tumor region in order to specifically eliminate malignant cells without damaging normal tissue cells. The basis of “target therapy” is aiming to design an individualized treatment plan targeting to specific malignant cells by applying current knowledge of cancer biology and pathogenesis at the cellular and molecular levels. Therefore, it is necessary to develop novel machine learning methods for diagnosis and design treatment plan which might increase the efficiency, accuracy, and consistency of diagnosis.

This paper aimed to predict the mutated genes which are potential candidates for targeted-drug therapy by developing a novel algorithm according to convolutional neural network for lung cancer. In this study, we used hematoxylin-eosin (H&E) stained pathological slice of lung cancer which were downloaded from the TCGA, thereby, deep convolution Gaussian mixture model DCGMM was used to perform color normalization. Convolutional neural network (CNN) and residual network (Res-Net) were employed for training data. The average probability of the bio-markers of lung cancer was received through the model, with the highest accuracy rate of the MET which was reached 86.3%. It provided an approach to develop effective targeted therapy on basis of mutant genes of lung cancer, however, it need further studies to evaluate the effectiveness and reliability of designed model before applying to clinical practice.



Materials and Study Framework


Data Set Preparation

We downloaded H&E histopathology images of lung cancer from the Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/repository/) as our data set. Then we used cBioportal (http://www.cbioportal.org/index.do) to download H&E image SNP data, Cancer Genomics Portal provides a visualization tool for analyzing of cancer gene data. cBioPort was used to perform molecular and cytological studies for genetic, epigenetic, gene expression, and proteomics research. The clinical data of H&E image lung cancer patients were downloaded from the International Cancer Genome Collaborative Group (ICGC) (https://dcc.icgc.org/).

We used the python package OpenSlide to analyze the histopathological images as SVS format. The experienced pathologists examined the H&E stained image and identified the abnormal or suspected area which may have diagnostic significance. They also discarded low-quality slices which have blurred background or contained other tissues around, such as inflammatory cells, micro-vessels, microfibers and lymphoid, etc. Then cBioPortal was performed to identified potential mutant genes associated with lung cancer as bio-markers, such as AKT1, ALK, BRAF, FGFR1, FGFR2, HRAS, KRAS, MET, etc. Moreover, we labeled the H&E stained slice with the potential lung bio-markers as 1, otherwise, labeled as 0.



Study Framework

This study applied previously designed framework, as show in Figure 1 [Study flow chart (a) Download images from The Cancer Genome Atlas database; (b) identify tumor areas; (c) color normalization; (d) bio-marker recognition; (e) heat map], which is DeepIMLH to annotate the tumor region of lung cancer on H&E stained slices, thereby to identify mutated genes as the potential bio-markers for targeted-drug therapy of lung cancer. As shown below, this study included five steps. Firstly, 180 hematoxylin and eosin (H&E) stained whole slice images (WSI) of lung cancer were downloaded TCGA; secondly, the experienced pathologists annotated the tumor area on the H&E stained slices and WSI were further divided into tiles of 512*512 pixels window; thirdly, the performance analysis of image model is usually compromised to subjective bias due to many factors such staining technology and processing procedure, the quality of biopsy sample, etc. In order to prevent the potential bias, Gaussian mixture model was used for color normalization of H&E stained slices. Thereby, all the images were through subsequent model training. Fourthly, WSI contained mutant bio-markers of targeted therapy was annotated and further input for training by a new convolutional neural network (CNN) model combined with residual blocks. Finally, the trained tiles were classified and summarized to full slices for extraction of heat maps.




Figure 1 | Study flow chart (A) Download images from The Cancer Genome Atlas database; (B) identify tumor areas; (C) color normalization; (D) biomarker recognition; (E) heat map.





Identify Tumor Areas

In order to identify the tumor area, experienced pathologists firstly annotated 180 H&E stained whole slide images (WSI) of lung cancers which were downloaded from the TCGA, as show in Figure 2A (Download images from TCGA). The experienced pathologist can annotate the boundary of tumor area, such as abnormal cell nuclei, cell shape under the microscope. The area surrounded by the blue-yellow circle in the Figure 2B (Professional pathologist annotated tumor region) was the boundary of tumor area. Before the CNN model training, the full slide image was divided into small pieces of the same size with a 512*512 pixel window, which was shown in Figure 2C (Segmented WSI with 512*512 sliding window). Downloaded WSI always have some background noise, since they came from different biopsy samples and have different background. In order to reduce significant interference in subsequent training, we remove the background noise, blank or large fuzzy areas. Python’s OpenCV was used to calculate the ratio of the area of blurred background of the tile over the total area of slice. The threshold was set in order to remove samples which is less than the threshold. It was shown as Figure 2D (Block noise reduction processing). Python’s OpenCV software package was also used to segment H&E stained slices. Finally, it was integrated into the new data-set and split into a training set and a verification set according to a 1:1 ratio.




Figure 2 | Tumor region recognition model (A) Full slice image downloaded from TCGA; (B) Professional pathologist annotated tumor region; (C) Segmented WSI with 512 * 512 sliding window; (D) Block noise reduction processing.





Color Normalization

H&E staining is a commonly used staining technique which are widely used in the tumor diagnosis and staging. However, this method might subject to inconsistent color fixing due to specimen preparation standard, staining technique, H&E reagents, the thickness of section, etc. The color difference of image is one of the most important factors in the training process of the CNN. Therefore, unsupervised deep convolution Gaussian mixture model (DCGMM) was applied to standardize the color of H&E stained slices.

In order to evaluate the efficiency of trained by DCGMM, these images should have consistent colors and unchanged features such as morphology, pixels, and structure after training, as show in Figure 3 [Color normalization model of H&E stained image; the image was normalized by DCGMM, (a) Original images, (b) Color normalized images]. Color standardization is primarily based on the Gaussian distributed to average the original image, which can be converted to white and color. Figure 3 was a frame diagram of color normalization of H&E stained slices. The upper three images in Figure 3 were the original images without color normalization, the lower three pictures were those after color normalized. Comparing the original images with the target images, we can indicate the model only normalize the color of the image without changing in the size, pixels, and position of these images. Moreover, the model is unsupervised, it does not require any assumptions of the data or any label.




Figure 3 | Color normalization model of H&E stained image. The image was normalized by the depth convolution Gaussian mixture model (DCGMM), (A) Original images, (B) Color normalized images.





Bio-Marker Recognition

In order to identify the bio-markers of lung cancer H&E stains, we used Tensorflow 2.0.0 software package to train the convolutional neural network model. The convolutional neural network can use back propagation to adjust the parameters of the convolutional neural network, extract the features of the image, and classify the images according to the extracted features. This is an effective gradient descent algorithm that can automatically update the weights during training.

We first input the processed lung cancer H&E stain slides and bio-markers to the input layer of the deep convolutional neural network, and then output them to the convolutional layer to extract image features. The convolutional layer is composed of 32 n*n convolution kernels. Secondly, enter the excitation layer containing the ReLu excitation function, and then enter the next hidden layers until all the features of the H&E stained slice are extracted. In order to improve the generalization ability of the network and accelerate the training of higher learning rates, we add a batch normalization layer to the convolutional neural network. However, this will increase the depth of the convolutional neural network, and cause the problem of gradient disappearance, which will slow down network training speed and classification accuracy. So we introduced a residual network with jump connections to solve the above problems. In addition, the optimization function and loss function used in the convolutional neural network are “adam” and “sparse categorical cross entropy” respectively. The output in here are slides with characteristics of different lung cancer bio-markers for targeted therapy.



Heat Map

In order to generate the heat map, we firstly scanned the whole slide images with 512*512 slicing windows of lung cancer bio-markers. Then the results of each slides were obtained through the CNN + Res-Net model by applying pixels of sliding windows. Moreover all the values of passed pixels were summed and calculate their average as bio-marker probability of targeted therapy for lung cancer. We used probability visualization to convert the probability of targeted therapeutic markers of pixels in to color values. The probability value was mapped in the range of (0, 1) to RGB color from pure blue color (0, 0, 255) to pure red color (255, 0, 0) linearly. Therefore the red color in the heat map indicated the higher the probability of bio-marker appearance, the blue color indicated lower the probability of bio-markers appearance. A WSI has multiple tiles, and each tile can predict corresponding result probability by the model. We integrate the results of all tiles through the fusion algorithm to obtain the final probability result of the corresponding WSI. Define the average probability of the first n windows as the recognition score. Predict the occurrence probability of lung cancer bio-markers by setting critical thresholds. Among them, those higher than the threshold are considered positive, otherwise they are considered negative. We use the highest value as a hyper-parameter and determined by cross-validation. The hyper-parameters of model were determined by providing hyper-parameter dictionary with using the Grid-Search-CV class in scikit-learn. The resulting heat map is shown in Figure 4 (Heatmap of the tumor region applied in the CNN model by using TCGA dataset. The above image is the original image, the under image is the heat map). The up picture of Figure 4 was the original H&E staining slice, and the under picture was the corresponding heat map.




Figure 4 | Heatmap of the tumor region applied in the CNN model by using TCGA dataset. The above image is the original image, the under image is the heat map.






Results

In order to calculate the average probability of different bio-markers from lung cancer H&E full slices, we firstly downloaded 180 lung cancer H&E stained whole slide images from TCGA. The clinical characteristics of the patients were shown in Table 1. The experienced pathologists annotated the tumor area of H&E stained slices, segmented and noise reduction. Then we selected 1800 512*512 small blocks with good quality. Thereby 1,800 small pieces were randomly divided into two sets which were training set and verification set. Finally, we obtained the heat-maps of different bio-markers of lung cancer H&E full slices and the AUC (area under ROC curve) values by 2-fold cross-validation were by DeepLRHE model. The process was shown in Figure 1.


Table 1 | Clinical Characteristics of the Study Patients.



Table 1 showed clinical information of patients whose H&E stained slices we downloaded from TCGA. The total patients number is 180, with 55% are female and 45% are men. The mean age was 68-year-old, and 42% of the patients were diagnosed as lung cancer at year over 70-year-old. Moreover, 13% of patient survived less 1 year with known cases. Among the 180 patients, 8% were diagnosed as lung adenocarcinoma, and 42% were lung squamous cell carcinoma.


Performance Evaluation

By using the DeepIMLH model, we can get the average probability of different bio-markers from 180 lung cancer H&E stained slice. Table 2 showed the accuracy of five frequently mutated genes which were predictable by the DeepIMLH model. The ALK, BRAF, and KRAS mutations might not been conceived due to imbalance of negative and positive samples. As shown in Table 2, the highest accuracy rate was MET with reached 86.3%, followed by FGFR1 83.2%, FGFR2 82.1%, HRAS 78.7%, the lowest was AKT1 of 72.3%.


Table 2 | Accuracy of lung cancer biomarkers.





ROC Curve of Bio-Markers

The AUC value of the lung cancer bio-markers in this study was the average probability of each bio-marker on the lung cancer H&E stained full slice image. The ROC curve of each bio-marker was shown in Figure 5 (ROC curve with 512*512 image blocks by two times cross-validation, sub figures of A–D was the ROC curve of mutated gene MET, FGFR1, FGFR2, HRAS respectively). The ROC chart was drawn with the false positive rate (FPR) as the X-axis and the true positive rate (TPR) as Y-axis. The area under the ROC curve was the AUC value. Only the ROC curves of MET, FGFR1, FGFR2, and HRAS bio-marker were shown here because of higher accuracy. Those markers may have effects on predicting the sensitivity to targeted therapy and disease prognosis. Targeted therapy has been rationally designed to suppress specific mutations and gain more effective clinical treatment.




Figure 5 | ROC curve with 512*512 image blocks by 2 times cross-validation, sub figures of (A–D) was the ROC curve of mutated gene MET, FGFR1, FGFR2, HRAS respectively.



As shown in Figure 5A, the AUC value of MET was reaching to 86%. The MET is proto-oncogene, by binding with its ligand hepatocyte growth factor (HGF) signaling pathway, it mediates wound healing and hepatic cell regeneration, and plays a critical role in the process of embryonic development. However, the non-regulated MET signaling pathway can cause abnormal cell proliferation, apoptosis, migration, even have potential for oncogenesis, malignancies. In non-small cell lung cancer, some of patients present MET mutation, including MET protein over expression, MET mutation or rearrangement, which lead to non-regulated downstream signaling pathway (25). Patients with MET mutation might not respond to therapy combining various targets or standard therapy with MET inhibitor. MET inhibitors have been went through clinical trials, the clinical data was promising now, which showed that MET mutation is a potential bio-marker to predict the response to target-drug therapy, as well as prediction of disease prognosis (26). Moreover, large clinical trial still ongoing to evaluate the predictive role in lung cancer therapy. In recent years, there have been endless researches on MET inhibitors. Among them, Volitinib, Tepotinib, and Capmatinib (also known as INC280) are the three drugs with relatively large research data (27).

As shown in Figures 5B, C, the AUC values of FGFR1 and FGFR2 were 83 and 82%, respectively. The fibroblast growth factor receptors (FGFRs) play a critical role in tumor genesis, cell proliferation, angiogenesis, cell migration, apoptosis, and survival. Early studies showed that inhibition of FGFRs can decrease cell proliferation and induce cell apoptosis in both in vitro and in vivo models with FGFR mutations, moreover, other studies also chose FGFRs as target for anticancer medical therapy. For an example, multiple kinase FGFR/vascular endothelial growth factor receptor (VEGR) inhibitor gained the promising results in breast cancer with FGFR/FGFR3 amplification (28). Moreover, early clinical trials also demonstrated that choice FGFR inhibitors may conquer the drug toxicity. To be specific, FGFR1, an oncogenic receptor tyrosine kinase (RTK), plays fundamental roles in the process of cancer prognosis. Under normal physiological condition, FGFR1 signaling pathway is triggered by many growth factors, leading to receptor dimerization and transphosphorylation, thereby, activated FGFR1 pathway leads to the down-streaming pathway including RAS/MAPK which is critical pathway in almost cancer development. FGFR1 is frequently amplified in lung cancer and is a latent curative target in many solid tumor as well. Clinical application of FGFR combined with FGF target remains unclear. FGFR inhibitors primarily target the cytoplasmic kinase domain, they also might target the extracellular ligand binding domain (29). Patients with FGFR mutation is potential a candidate for clinical trial for FGFR inhibitors. Clinical studies have shown the primary reason for the resistance of FGFR inhibitors may cause by bypass signal activation. The pharmacological or genetic mutation of FGFR induced autophagy; the mechanism remains unknown, which may involve both inhibition of ERK/MAPK pathway and decline.

As shown in Figure 5D, the AUC value of HRAS is 79%. The HRAS gene is an oncogene and a member of the RAS oncogene family, which also includes two other genes: KRAS and NRAS. The RAS gene codes for small membrane bound proteins and hydrolyze GTP and participates in the cascade of protein kinase, transmits signal to neclei (30). Activation of RAS gene family might convert those protogenesis to drive cancer development. These genes play important role in cell proliferation, differentiation, and apoptosis. Mutated RAS coded proteins are the key drivers in many cancers and the distribution of RAS mutation varies between the difference of somatic tumors. Studies have shown that if the RAS gene is mutated, Atradigen is one of the proven effective RAS inhibitor drugs in the world.

As shown in Table 2, the accuracy of AKT1 was 72%. The AKT1 gene encodes a serine/threonine protein kinase, which can be activated by extra cellular signals through a phosphatidylinositol 3-kinase (PI3K) (31). Currently, three members of the AKT family are found, naming AKT1/PKB α and AKT2/PKB β and AKT3/PKB γ respectively. AKT1 is a core factor in PI3K/AKT signaling pathway, and PI3Ks can specifically cause the three hydroxyl groups of phosphatidylinositol (PI). The production of second messenger inositol such as PIP3, PIP3 can promote AKT transferring to the cell membrane and can be activated by PDK1/PDK2. The activated AKT relocates in the cytoplasm, nucleus, or other organelles of the cell, large number of substrate proteins would be phosphorylated. Thereby, AKT signaling pathway can regulate multiple cell functions, however, the abnormally activated AKT signaling can cause tumorigenesis. For AKT1 gene mutations, everolimus and other mTOR inhibitors that have been on the market have good efficacy (32).




Discussion

With the in-depth understanding of tumor molecular biology, targeted therapy has become one of the most popular treatment options for lung cancer. Some studies have showed the impact of targeted therapy in small cell lung cancer, including single drug or combined chemotherapy (33), such as anti-angiogenic drugs (such as bevacizumab, sunitinib), histone deacetylase inhibitors, as well as target-induced cell apoptosis drugs. The precise medicine currently is a hotspot of study area for patients with non-small cell lung cancer. The key of targeted therapy is to accurately analyze the pathological images. This analysis tool primarily depends on the clearly identifying pathological area by experienced pathologists. The visual inspection is time-consuming and subject to individual bias. Therefore, computer-aided diagnostic systems have developed rapidly for this clinical field, especially in the clinical application of multiple layer neural networks under deep learning. Deep learning networks can convert structured information, amid it can automatically identify and extract relevant features. However, there were also some challenges, such as important feature loss, over fitting, hyper-parameter adjustment, and other problems, which may affect the subsequent diagnosis and treatment design. Therefore, the application of deep neural networks on pathological images diagnosis has always been controversial.

Our study has some limitations. Firstly, TGCA database only includes cases in United States, which might result in ethnicity difference. Since the smokers are significantly higher in China than United States, therefore, the occurrence of lung cancer might cause by other influencing factors in addition of gene mutations. Moreover, the insufficient number of H&E-stained whole slide images we downloaded led to the imbalance of negative and positive samples which may affect the probability of some bio-markers. Moreover, non-specific features of H&E images, such as blood vessels, poorly stained areas, lung tissue necrosis areas, and overlapping blurred areas have been removed in our model, however, the blood vessels also indicate early metastasis, and staining technique may cause sample imbalance. Finally, our model did not include an independent verification subset to evaluate our model, which may have certain effects on our results.



Methods


Deep Convolution Gaussian Mixture Model

The deep convolution Gaussian mixture model (DCGMM) is an unsupervised clustering algorithm which is based on the Gaussian mixture algorithm combined with a deep convolution network. The Gaussian mixture algorithm means a probability distribution algorithm with the below form:

 

Here, αk is the weight coefficient of each Gaussian distribution function, also known as the mixing coefficient, must satisfy 0≤ αk ≤1 and  ; ϕ(y|θk) is the density of Gaussian distribution, and  .   is Kth sub-model.

Gaussian Mixture Model (GMM) is widely used in many cases, moreover the expectation maximization (EM) algorithm is an effective method to learn the parameters in GMM. GMM is divided into two steps similar to K-means:

Step E: Estimate the probability which is generated by each sub-model. For each data xi, the probability generated by the k-th sub-model (that is, the responsiveness of the sub-model k to the appearance data xi) is

 

Step M: Based on the maximum likelihood estimation.

 



Where  and πk can also be estimated as Nk/N.

From formula (1), the natural log-likelihood function could be represented as

 

Here M is the total count of pixels in the input picture (Y = {y1, y2,…, yM}). Given GMM, the goal is finding targeted parameters (θk, Σk, αk). A common approach is using an EM algorithm to iteratively evaluate responsibilities [formula (3)] and re-estimate the parameters.

Some recent studies have made some new developments on traditional GMM. GMM can be applied to auto encoder neural networks for low-dimensional representations (34), or stacks of multiple GMM layers can be constructed on top of each other in a hierarchical architecture (35). Therefore, deep convolutional Gaussian mixture model (DCGMM) combines the parameters of the CNN with the parameters of the GMM to optimize the model.

The Deep Convolutional Gaussian Mixture Model (DCGMM) combines the Gaussian Mixture Model (GMM) into the color allocation of the image through the high image representation ability of the Convolutional Neural Network (CNN) to perform the color normalization of the image. We use convolutional neural networks to estimate the liability coefficient. Then the parameters of DCGMM are optimized by gradient descent method and log-likelihood function (Equation 5). In fact, DCGMM first replaces the E step in the EM algorithm with a convolutional neural network, and then uses the existing responsibility parameter estimation to estimate the θ and Σ of the multivariate Gaussian distribution like the M step in the EM algorithm. Finally, the training of DCGMM is mainly carried out through gradient descent method and back propagation.



Convolutional Neural Networks

Previous studies have shown that Convolutional Neural Networks (CNN) is the leading deep learning method for tumor diagnosis. The earliest application of neural network was a multilayer perceptron (MLP) with multiple levels of conversion. The traditional neural network contains input layer, hidden layers, and the output layer, and if it includes multiple hidden layers, it is known as a “deep neural network” (36). A complete convolutional neural network basically includes five components: input layer, convolutional layer, pooling layer, fully connected layer, and output layer, as seen in Figure 6 (convolutional neural network structure, A complete convolutional neural network basically includes five components: input layer, convolutional layer, pooling layer, fully connected layer, and output layer). Firstly, the data came from input layer, then it was further input into convolutional layer which was the kernel content of the entire neural network especially in the sequential process. Generally, the convolution of node matrix from previous layer of the neural network is converted into node matrix on next layer of the neural network, and the depth of the node matrix is increased to achieve a deeper expression. The convolution layer generally has an excitation function to help express complex features through rectified linear unit (ReLu). The crucial function of the pooling layer is the extract features for dimensional reduction through ReLu excitation layer. The pooling sample layer does not change the depth of the feature matrix, but it can reduce the size of the matrix and simplify the constitution of the neural network. The fully connected layer is located after multiple convolution pooling processes to achieve the final classification result. The output layer is used to receive the probability distribution of the results. The training of convolutional neural network primarily contains forward propagation and back propagation. Among the training course, the parameters can be constantly changed in order to obtain greatest simulation effect. With increasing the deep of the exploration of convolutional neural networks, a series of optimized and improved structural models have emerged, such as fully convolutional neural networks, deep convolutional neural networks, etc. Deep convolutional neural network is a valid and steady mean for the image processing (37). In order to maintain the optimal pixels, shape, and other characteristics attribution of image, the deep convolutional neural network improves the network constitution through the local features and local perceptions, shared weights, spatial or temporal pool sampling (38).




Figure 6 | Convolutional neural network structure, A complete convolutional neural network basically includes five components: input layer, convolutional layer, pooling layer, fully connected layer and output layer.



Since the significance of the neural network studying process is to study the data allocation, once the apportion of training data is inconsistent to the test data, the generalization capacity of the network will sharply decrease. In addition, once the apportion of each heap of training data is inconsistent, the network must study to fit the inconsistent allocations in each iteration, that will significantly decrease the training rate of the network. Once the neural network starts training, the parameters will be changed. In addition to the input layer, the input data allocation of every layer of the subsequent network has been changed. During the training process, the updated of the training parameters from the former layer will cause the changes of input data in the latter layer. Although stochastic gradient descent (SGD) is simple and effective for training deep networks, it requires human settings and wastes time to adjust parameters for instance learning rate, weight attenuation coefficient, parameter initialization, dropout ratio, etc. (39). Moreover, the input of every layer is influenced by the parameters of all former layers, causing the layer ceaselessly adjust the novel allocation, which is, the distribution of internal nodes in the deep network during the training process (Internal Covariate Shift). If the allocation of training data keeps changing during the training process, it will slow down the training efficiency, and network will be deeper as well. Thereby, Batch Normalization (BN) layer in the convolutional neural network is recommended to improve the generalization capacity and expedite training process when data distribution of middle layer changes during the training process (40). By using normalization as part of the model architecture, normalization is performed for each training batch, which is, with inputting at each layer of the network, a normalization process is performed before entering the next layer of the network. The BN algorithm independently normalizes each scalar feature, which is, the mean is 0 and the variance is 1. The formula is as follows:

 

Where, E[xk] is supposed to the mean value of every batch of training data neurons xk, and the denominator is the standard deviation of the activation level of every batch of data neurons xk.

If only each input of the layer is normalized, it may change the representation of layers. Therefore, in order to maintain the identity transformation, we used transformation reconstruction and introduced the learn-able parameters γ and β, thereby:

 

When   the data was restored back.

Therefore, we added a batch normalization (BN) layer to the CNN model, which would greatly increase the training rate and accuracy of the convolutional neural network.



Residual Net

Adding batch normalization will grow the depth of the convolutional neural network. The depth of the deep learning has significant influence on the final classification and recognition. Therefore, the traditional idea is that with increased depth the network, the performance is better. But in fact, when the stacking of conventional networks (plain network) is deeper, the effect is worse. One of the reasons is that the network is deeper, it is more likely to cause the gradients disappear and gradients explode. However, the shallow network cannot significantly improve the recognition effect of the network, therefore, we introduced Res-Net to solve this problem (41). By adding shortcut connections, the residual network becomes easier to be optimized. Several layers of networks including the shortcut connection is called a residual block which is exhibited in Figure 7.




Figure 7 | Residual block.



As seen in Figure 7 (Residual block), x represented as the input, and M(x) represented as the output of the residual block before the activation function of the second layer, i.e. M(x) = W2/µ (W1 * x), where W1 and W2 respectively mean the weight of the first layer and the second layer, µ means the ReLu activation function. The output of final residual block was µ(M(x) + x).

As there is no shortcut link, the residual block is a common 2 layer network. The network in the residual block can be the fully connected layer or the convolutional layer. Suppose that the output of the second layer network precedes the activation function is N(x). If the output of layer 1 is the input x in the layer 2 network, then for the network no shortcut link, it should be updated to N(x) = x. For the network no shortcut link, which is the residual block, if we want the output to be x, only need to optimize M(x) = N(x)-x to 0. The optimization of the latter is much easier compare to the preceding formula. The residual network is composed of much residual blocks. For an assumption, a big neural network with an input of X and an output activation value of B[l]. If we add two more layers to initial network, the ultimate output result will be B[l + 2]. The two layers could become a residual module. The ReLU activation function is used throughout the network, and any activation values are bigger than or equal to 0. For big networks, whether the residual block is jointed to the middle or the end of the neural network will not influence the property of the network, and these residual blocks are relatively easy to learn the identity function. Moreover, they could increase the learning efficiency. As the activation function of the neuron, Relu defines the nonlinear output of the neuron after linear transformation wTx + b. Namely, for the input vector x from the foregone layer of the neural network into the neuron, the neuron applying the linear adjustment activation function will output max (0, wTx + b) to the rear layer of neurons or as the output of the entire neural network (depends on the site of the current neuron in the network institution).

Figure 8 (Residual neural network flow chart, showed two-layer residual neural network. The activation is performed on the L layer to obtain B[l+ 2]) showed two-layer residual neural network. The activation is performed on the L layer to obtain B[l+ 1], and the activation was performed to gain B[L + 2]. And B[l + 2] = µ (D[l + 2] + C[l]), where D[l + 2] = E[l + 2] * B[l + 1] + C[l + 2], B[l + 1] = µ (D [l + 1]), D[l + 1] = E[l + 1] * B[l] + C[l + 1]. If E[l + 2] = 0 and C[l + 1] = 0, then we can get that B[l + 2] = µ (B[L]). When B[l]> = 0, B[l + 2] = B[l]. It is equivalent to establishing a linear relationship between B[l] and B[l + 2] when E and C are 0. Moreover, it is equivalent to directly copying the feature information of the B[l] layer to the B[l + 2] layer without affecting the network performance as well. For the residual network, as the network is deeper, the training error becomes smaller. This way could attain deeper layers of the network, which assists work out gradient disappearance and gradient explosion, allowing us to train deeper networks while ensuring good performance. In fact, the residual network consists of several shallow networks and does not fundamentally figure out the issue of gradient disappearance, instead to avoid the gradient disappearance. Since it composed of several shallow networks, the shallow network will not have the problem of disappearing gradients during the training process, but it can accelerate the convergence rate of the network.




Figure 8 | Residual neural network flow chart, showed two-layer residual neural network. The activation is performed on the L layer to obtain B[l+ 2].





The Receiver Operating Characteristics

There are many ways to calculate the property of the model. Generally, the performance of the model is measured by the accuracy, recall, accuracy and F1 score, and the curve (AUC) under the receiver operating characteristics (ROC). This study used precision measurement receiver operating characteristics (ROC) to estimate the performance of the CNN model. The ROC curve was drawn via plotting the true positive rate (TPR) and false positive rate (FPR) under kinds of threshold putting, which is, the bight generated with FPR as the x axis and TPR as the y axis. The true positive rate (TPR) is also called sensitivity, that is the ratio of all actual positive samples that are exactly recognized as positive. Its expression is the same as expression of recall rate. The false positive rate (FPR) is also called specificity, which is the ratio of negative samples that are falsely identified as positive in actual negative samples. The strict mathematical definition is as follows:

 

 

Here, true positive (TP) is the count of samples that are forecast as positive and actually are positive, false positive (FP) is the count of samples that are forecast as positive and actually are negative. True negative (TN) is the count of samples that are forecast to be negative and really negative. False negative (FN) is the count of samples that are forecast to be negative and really is positive.

From the definition of FPR and TPR, it indicates the near the drawn ROC curve is to the upper left, the result is better. From a geometric angle of observe, with the bigger the region under the ROC curve, it indicates better model. Therefore, we used the area under the ROC curve, which is, AUC (Area Under Curve) value to measure performance of the model (42).



Cross-validation

In order to conduct the reliable) and stable of CNN model, we used 2-fold cross-validation to increase the accuracy of the CNN algorithm by adjusting the hyper-parameters of the algorithm to gain the best scores. We split the data into two subsets, and one set was used as the training set to train data by CNN algorithm, and the other was used as a test set to predict the trained algorithm, thereby to find the error of the sample prediction, and summarize their squares afterwards. The above process was performed repeatedly until all samples were exactly predicted.

The hyper-parameters were adjusted which primarily included the number of filter cores, sample size, number of layers, and loss function of the CNN algorithm. For the adjustment of hyper-parameters, we firstly determined the activated function as Relu according to its mechanism, and determined the type of loss function and weight initialization afterward, and encoded method of the “output layer.” Secondly, according to the “broad strategy,” a simple structure was previously constructed to determine the number of “hidden layers” in the neural network and the number of neurons in each “hidden layer.” Thereby for the remaining hyper-parameters, we randomly selected a possible value, in order to adjust the learning rate without considering the regular terms in the loss function to reach a relatively appropriate threshold for the learning rate, then selected half of the threshold as the initial value. Then determine the size of the small batch of samples through experiments. Use the determined learning rate and verification data to select appropriate regularization parameters, and then return to re-optimize the learning rate. The overall observation of these experiments can determine learning rounds.
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Tobacco smoking is an established risk factor for squamous cell carcinoma (SCC). We obtained smoking-related SCC, including cervical SCC (CSCC), esophageal SCC (ESCC), head and neck SCC (HNSC), and lung SCC (LUSC), from The Cancer Genome Atlas (TCGA) database to investigate the association between smoking status (reformed and current smoking) and prognosis. We found that reformed smokers had a better prognosis than current smokers in CSCC (p = 0.003), HNSC (p = 0.019), and LUSC (p < 0.01) cohorts. Then, we selected LUSC cohorts as the training cohort and other SCC cohorts as the test cohorts. Function analysis revealed that homologous recombination (HR) was the most significant pathway involved in smoking-induced LUSC. Moreover, the effect of cross-talk between the smoking status and HR deficiency (HRD) on the prognosis was further evaluated, revealing that quitting smoking with high HRD scores could significantly improve patients’ prognosis (p < 0.01). To improve prognosis prediction and more effectively screen suitable populations for platinum drugs and poly-ADP-ribose polymerase (PARP) inhibitors, we constructed a risk score model using smoking- and HRD-related genes in LUSC. The risk score model had high power for predicting 2-, 3-, and 5-year survival (p < 0.01, AUC = 0.67, 0.66, and 0.66). In addition, the risk scores were an independent risk factor for LUSC (HR = 2.34, 95%CI = 1.70–3.23). The practical nomogram was also built using the risk score, smoking status, and other clinical information with a good c-index (0.72, 95%CI = 0.70–0.74). Finally, we used other TCGA SCC cohorts to confirm the reliability and validity of the risk score model (p < 0.01 and AUC > 0.6 at 2, 3, and 5 years in CSCC and HNSC cohorts). In conclusion, the present study suggested that smoking cessation should be a part of smoking-related SCC treatment, and also provided a risk score model to predict prognosis and improve the effectiveness of screening the platinum/PARP population.
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INTRODUCTION

Squamous cell carcinomas (SCCs) originate from the epithelial tissues of the aerodigestive or genitourinary tracts. They often occur in the head and neck SCC (HNSC), esophageal SCC (ESCC), lung SCC (LUSC), and cervical SCC (CSCC), sharing common histological features and some risk factors. Among risk factors, tobacco smoking is an established risk factor for SCC, which can alter biological carcinogenesis pathways to promote cancer progression (Schuller, 2019; Sabbula and Anjum, 2020). Cigarette smoke contains many carcinogens that can cause genomic alteration and break immunologic homeostasis (Li et al., 2018). Many studies have reported that smoking cessation can eliminate the physiological driving force of cancer development and improve the prognosis of SCC patients (Dobson Amato et al., 2015; Yavorski and Blanck, 2016; Yang et al., 2020). However, the underlying mechanism of smoking-induced SCC remains unclear in smoking-related SCC.

Homologous recombination repair (HRR) is an important repair method for DNA double strand damage (Mackenroth and Alani, 2020). Cancer cells with homologous recombination deficiency (HRD) are sensitive to platinum drugs and poly-ADP-ribose polymerase (PARP) inhibitors. At present, BRCA1/2 mutation is the most comprehensive HRD biomarker (Hoppe et al., 2018). However, Turner and Ashworth proposed the concept of “BRCAness” to describe HRD without BRCA mutation but with a phenotype similar to BRCA mutation (Turner et al., 2004; Lord and Ashworth, 2016). Therefore, better biomarkers should be identified to screen a more effective platinum/PARP population. HRD scores, which are comprehensively calculated based on loss of heterozygosis (LOH), telomeric-allelic imbalance (TAI), and large-scale state transitions (LST), are considered as biomarkers of genomic instability with mutation (Takaya et al., 2020), which were applied in drug efficacy and tumor susceptibility evaluation (do Canto et al., 2019; Min et al., 2020).

In the present, we not only estimated the association between smoking cessation and smoking-related SCC prognosis but also investigated its potential mechanism. Importantly, we constructed a risk score model combining smoking and HRD, which could effectively screen suitable populations and improve prognostic prediction, especially for smoking-related SCC.



MATERIALS AND METHODS


Patients and Datasets

The data we used were from the public database. Level 3 data of gene expression profiles of LUSC, CSCC, ESCC, and HNSC patients were taken from the GDC Data Portal1. Clinical information, including age, gender, stage, tumor status, and survival outcome, were downloaded. The smoking exposure information of each patient was also obtained from The Cancer Genome Atlas (TCGA) database. The HRD scores were obtained from the TCGA Pan-Cancer dataset2. All data were extracted from TCGA, an open database, and followed the guidelines. Therefore, there was no requirement for ethics approval.



Smoking-Related Genes or HRD-Related Genes

Smoking-related genes or HRD-related genes were obtained using the “limma” package in R software. Then, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis were performed using the “clusterProfiler” package in R.



Construction of Risk Score Model in LUSC

Univariable Cox regression analysis was first used to identify survival genes. Then, multivariate Cox regression analysis was again employed to select candidates for building the risk score model. The corresponding coefficients from multivariate Cox analysis were used to calculate risk scores: [image: image].

Based on the risk scores, the patients were divided into the high-score group and low-score group. To estimate the prognostic ability of the risk score model, Kaplan-Meier (K-M) survival analysis and survival receiver operating characteristic (survival-ROC) curves were, respectively, applied.



The Association Between Risk Scores and Prognosis in LUSC

Univariable and multivariable cox analyses were performed to evaluate the association between risk scores and prognosis. Then, a prognostic nomogram was applied as a quantitative tool to accurately predict each patient’s prognosis using risk scores and clinical information. Calibration curves were also plotted to evaluate the accuracy of the nomogram.



Validation of the Risk Score Model in Other SCC Cohorts

We calculated the risk score in CSCC, ESCC, and HNSC cohorts from the TCGA database based on the same formula. Then, K-M curves and survival-ROC curves were used to estimate the prognostic power and confirm the applicability and reliability of the risk score model in SCC cohorts.



Validation of the Risk Score Model Using SCC Cohorts From the GEO Database

In addition to the TCGA database, we also used other independent SCC cohorts from the GEO database to verify the risk score model, including the CSCC cohort (GSE44001), ESCC cohort (GSE53625), HNSC cohort (GSE65858), and LUSC cohort (GSE73403). We calculated the risk score of each patient using the same formula. Then, K-M curves and survival-ROC curves were also performed to confirm the prognostic power.



Statistical Analysis

All data were expressed as mean ± SD (standard deviation). The K-M curves, univariable and multivariable cox analysis were performed using the “survival” package. Survival-ROC curves were applied with “timeROC” the package. The optimal cut-off values of risk scores were evaluated using the “survminer” package. The nomogram and calibration curves were plotted using the “rms” package. The analyses described above were conducted in R software 3.5 and Microsoft Excel 2016.



RESULTS


Smoking Cessation and Homologous Recombination

We selected smoking-related SCC patients for further study. A total of 95 CSCC patients (53 current smokers and 42 reformed smokers), 50 ESCC patients (26 current smokers and 24 reformed smokers), 393 HNSC patients (178 current smokers and 215 reformed smokers), and 471 LUSC patients (133 current smokers and 338 reformed smokers) were included in the study. As shown in Figure 1, patients who quit smoking had a longer survival time than those who kept smoking in CSCC (p = 0.003), HNSC (p = 0.019), and LUSC (p < 0.001). Among them, the number of LUSC patients was the largest and the results of survival analysis were the most significant. Therefore, we selected LUSC patients as the training cohort and other SCC cohorts as test cohorts for further study.


[image: image]

FIGURE 1. Smoking cessation could improve prognosis in SCC. (A) CSCC. (B) ESCC. (C) HNSC. (D) LUSC.


To understand the potential mechanism of the benefits of smoking cessation, we obtained smoking-related genes between current smokers and reformed smokers in LUSC patients (Figure 2A). Then, function analysis was performed. KEGG analysis found that homologous recombination (HR) was the most significant pathway in smoking-related LUSC (Figure 3A). GO analysis also found that HR-related GO terms, including double-strand break repair via HR, HR, regulation of double-strand break repair via HR, and negative regulation of double-strand break repair via HR, were significantly enriched (Figure 3B and Supplementary Table 1). Moreover, LUSC patients with higher HRD scores had better survival outcomes than those with lower HRD scores (Figure 3C, p = 0.043). We further investigated the effect of cross-talk between the smoking status and HR on the prognosis. LUSC patients were stratified in the combination of the smoking status and HRD scores, including current smoking and high HRD scores, current smoking and low HRD scores, reformed smoking and high HRD scores, and reformed smoking and low HRD scores. The survival analysis revealed that quitting smoking with high HRD scores could significantly improve LUSC patients’ prognosis (P < 0.01, Figure 3D).
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FIGURE 2. The construction of risk score model in LUSC. (A) The volcano plot of smoking-related genes. (B) The volcano plot of HRD-related genes. (C) K-M analysis of risk score model. (D) Survival ROC of risk score model.
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FIGURE 3. The association among smoking cessation, HRD, and prognosis in LUSC. (A) The KEGG analysis. (B) The GO analysis. (C) K-M analysis of high and low HRD scores. (D) The effect of cross-talk between the smoking status and homologous recombination on the prognosis.




Construction of Risk Score Model Using the LUSC Cohort

We also subsequently identified the HRD-related genes between high- and low-HRD score patients (Figure 2B). There were 1218 same genes after taking an intersection for smoking-genes and HRD-genes (Supplementary Figure 1). Afterward, based on the univariate and multivariate Cox regression analysis (Supplementary Tables 2, 3), five eligible genes, including MAFK, LMBRD1, MESDC1, KLHL15, and E2F4, were selected to build a risk score model. Then, we divided the patients into high-risk and low-risk score groups and found that patients with high-risk scores had a worse outcome than those with low-risk scores (p < 0.01, Figure 2C). The survival ROC also indicated that the risk score model had good predicting power at 2, 3, and 5 years (AUC = 0.67, 0.67, and 0.66, Figure 2D).



The Association Between Risk Scores and Prognosis of LUSC

In univariate Cox regression analysis, one risk score could increase the risk of death by 2.72 times (95% CI = 1.99–3.73, Figure 4A) for LUSC patients. A similar, significant increase in death risk was also observed by multivariate Cox analysis (hazard rate, HR = 2.34, 95%CI = 1.70–3.23, Figure 4B), indicating that the risk score model could serve as an independent prognostic indicator. We also provided a prognostic nomogram to predict each patient’s survival of 2, 3, and 5 years, whose calibration curve also suggested its good prediction (c-index = 0.72, 95%CI = 0.71–0.74) (Figures 4C,D).
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FIGURE 4. The association between risk scores and prognosis of LUSC. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. (C) Calibration curve of nomogram. (D) Construction of nomogram.




Validation of the Risk Score Model in SCC Cohorts

We also analyzed the expression level of these five genes in other SCC cohorts and found that most of them were also related to smoking cessation (Supplementary Table 4). Importantly, we estimated the prognostic value of the risk score model in SCC cohorts. K-M and survival-ROC analysis showed that high-score patients had higher hazard rates than low-score patients in CSCC (p < 0.01, AUC = 0.60, 0.62, and 0.73 at 2, 3, and 5 years, Figures 5A,B), in HNSC (p < 0.01, AUC = 0.62, 0.60, and 0.61 at 2, 3, and 5 years, Figures 5E,F). There was no statistical significance in ESCC patients, but low-score patients tended to live longer than high-score patients (p = 0.12, AUC = 0.63 and 0.61 at 2 and 3 years, Figures 5C,D).
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FIGURE 5. Validation of the risk score model in TCGA SCC cohorts. (A,B) CSCC. (C,D) ESCC. (E,F) HNSC.




Validation of the Risk Score Model Using SCC Cohorts From the GEO Database

In addition to the TCGA database, we also use other independent SCC cohorts from the GEO database to verify the risk score model. K-M and survival-ROC analysis showed that high-score patients had higher hazard rates than low-score patients in CSCC (p = 0.01, AUC = 0.62, 0.58, and 0.52 at 2, 3, and 5 years, Figures 6A,B), in HNSC (p = 0.03, AUC = 0.52, 0.53, and 0.58 at 2, 3, and 5 years, Figures 6E,F), and in LUSC (p = 0.02, AUC = 0.61, 0.56, and 0.57 at 2, 3, and 5 years, Figures 6G,H). However, there was no statistical significance in ESCC patients (p = 0.86, AUC = 0.59, 0.54, and 0.59 at 2, 3, and 5 years, Figures 6C,D).
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FIGURE 6. Validation of the risk score model using SCC cohorts from the GEO database. (A,B) CSCC. (C,D) ESCC. (E,F) HNSC. (G,H) LUSC.




DISCUSSION

Tobacco smoking has been confirmed to be a critical risk factor for SCC development, and smoking cessation can increase overall survival after diagnosis (Dobson Amato et al., 2015; Yavorski and Blanck, 2016). To further understand the benefits of quitting smoking for patients’ prognosis, we selected smoking-related SCC patients from the TCGA database.

By plotting K-M curves, we found that current smokers had a worse prognosis than reformed smokers in most SCC cohorts, which was consistent with other studies (Li et al., 2020; Yang et al., 2020). Then, we found smoking-related genes and performed function analysis in LUSC, pointing out that HR was an important pathway of smoking to aggravate cancer. It is known that DNA double-strand breaks induced by cigarette smoke can be repaired mainly through HR repair (Helleday, 2003; Albino et al., 2004). Many genes involved in HR repair are significantly associated with smoking to influence the risk of lung cancer (Ryk et al., 2006; Nogueira et al., 2010). Hammouz et al. (2020) also constructed a gene co-expression network and found that smoking significantly affected HR to induce lung adenocarcinoma. In addition, many scholars have used HRD scores in cancer studies. Takaya et al. (2020) analyzed the association between HRD score and high-grade serous ovarian carcinoma and suggested that patients could be classified into different prognostic subtypes for personalized treatment. Kraya et al. (2019) investigated the molecular features of BRCA1/2 alterations in breast cancer patients and found that HRD scores and hormone receptor subtypes could predict the immunogenicity of BRCA1/2 breast cancer, and provided the basis for formulating the best immunotherapy strategy. In the present study, we also found that high HRD scores could increase survival time, suggesting that the cross-talk between smoking cessation and high HRD scores might help treatment and improve overall survival.

After the univariate and multivariate Cox regression analysis, the risk score model was established using five smoking- and HRD-related genes in the LUSC cohort, including LMBRD1, MAFK, MESDC1, KLHL15, and E2F4. LMBR1 domain containing 1 (LMBRD1) encodes a lysosomal membrane protein that may be involved in the transport and metabolism of cobalamin. Mutations of LMBRD1 are also associated with vitamin B12 metabolism disorder (Fettelschoss et al., 2017). MAF bZIP transcription factor K (MAFK), an important transcription factor of the MAF family, is associated with epithelial–mesenchymal transition and malignant progression in different cancers (Wang et al., 2015; Okita et al., 2017). Mesoderm development candidate 1 (MESDC1), also known as TLNRD1, is confirmed as an oncogenic function in bladder cancer and hepatocellular carcinoma (Tatarano et al., 2012; Wu et al., 2017). The kelch-like family member 15 (KLHL15) can encode a member of the kelch-like family of proteins and is involved in protein ubiquitination and cytoskeletal organization (Ferretti et al., 2016; Zhou et al., 2019), but few studies focus on cancers. E2F transcription factor 4 (E2F4), a member of the E2F family of transcription factors, plays an important role in inhibiting proliferation-associated genes, and its gene mutation and increased expression are related to different cancers (Gong et al., 2020; Zhuang et al., 2020). In the future, these genes should be deeply investigated roles in SCC. Afterward, we performed K-M and survival-ROC analysis to estimate the predictive value of the risk score model, suggesting that the model was a predictor with good sensitivity and specificity in LUSC patients.

To better predict the prognosis of each patient, we constructed a nomogram integrating risk scores, smoking status, and clinical information. As a practical tool to improve predictive accuracy, these methods have been applied in many studies on different cancers (Sun et al., 2020; Yang et al., 2020). The nomogram with different aspects of markers, including risk scores, smoking status, age, gender, and tumor stage, had high clinical application value, which might be a promising way to change clinical management (Birkhahn et al., 2007).

Lastly, we validated the risk score model in other SCC cohorts from TCGA and GEO databases, indicating that the application of risk scores could be extrapolated to CSCC and HNSC patients.

The present study is of great significance in theory and application. First, we demonstrated that keeping smoking after diagnosis could increase the risk of SCC death, suggesting that smoking cessation should be a part of cancer treatment. Second, the risk score model was constructed using smoking- and HRD-related genes, which could make up for the deficiency of HRD based on BRCA (Turner et al., 2004; Lord and Ashworth, 2016), more effective in screening the population suitable for targeted therapy. In the future, we should further verify the application of the risk score model in different SCC cohorts, especially in Asian or Chinese populations.



CONCLUSION

The present study provided comprehensive insights into the association among smoking status, HRD, and prognosis in SCC. Moreover, a risk score model integrating smoking and HRD was constructed to serve as the potential predictive biomarker and add effectiveness in screening the suitable population for targeted therapy.
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Background

We investigated the prognostic effects and their patterns of immune infiltration of hippo pathway core genes in lung squamous cell carcinoma, in order to find some clues for underlying mechanisms of LUSC tumorigenesis and help developing new therapeutic methods.



Methods

The mutational data, transcriptome data and corresponding clinical medical information of LUSC patients were extracted from The Cancer Genome Atlas (TCGA) database. Differential expression genes (DEGs) and Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were explored. Survival analysis for the hippo core genes and the prognostic model were performed. Immune infiltration was estimated by CIBERSORT algorithm and some immune checkpoints-related genes were further investigated.



Results

Overall, 551 LUSC samples were included in our study, consisting of 502 LUSC tumor samples and 49 adjacent normal samples, respectively. There were 1910 up-regulated DEGs and 2253 down-regulated DEGs were finally identified. The top five mutational hippo pathway core genes were LATS1 (4%), WWC1 (2%), TAOK1 (2%), TAOK3 (2%), and TAOK2 (2%), respectively. the mutation of LATS2 was highly associated with co-mutational NF2 (P <0.05) and TAOK1 (P <0.05). In survival analyses, we found only WWC1 (log-rank p = 0.046, HR = 1.32, 95% CI = 1–1.73) and LATS2 (log-rank p = 0.013, HR = 1.41, 95%CI = 1.08–1.86) had significant prognostic roles. After getting the three subgroups according to the subtyping results, we demonstrated that T cell gamma delta (p = 5.78e-6), B cell memory (p = 4.61e-4) and T cell CD4+ memory resting (p = 2.65e-5) had significant differences among the three groups. SIGLEC15 (P <0.01) and CD274 (P <0.05) also had statistical differences among the three subgroups.



Conclusions

Our study verified the prognostic roles of WWC1 and LATS2 in LUSC patients. Immune checkpoints-related genes SIGLEC15 and CD274 had statistical differences among the three subgroups, which may provide new perceptions on the molecular mechanisms in LUSC and maybe helpful for precisely selecting specific LUSC patients with potential immunotherapy benefits.





Keywords: the Hippo pathway, WWC1, LATS2, SIGLEC15, CD274, lung squamous cell carcinoma



Introduction

Lung cancer remains the first lethiferous neoplasm all around the world (1–6). The outcomes of patients diagnosed with lung squamous cell carcinoma (LUSC) are significant poorer than those with lung adenocarcinoma (LUAD) (7, 8). Although the number of newly emerging LUSC patients is far less than that of LUAD patients, LUSC still poses threat to human health, given the huge population base (9). Besides, unlike LUAD, there has limited effective treatment for LUSC (10). Therefore, it is urgent to find and develop novel approaches for the treatment of LUSC.

The process of tumorigenesis, development and metastasis of lung cancer associates with dysregulation of many signaling pathways (11). Of the signaling pathways, the Hippo signaling pathway, considered as an evolutionarily conserved pathway, regulates cell differentiation and organ development via controlling the courses of cell proliferation and apoptosis (12). The core components of the Hippo signaling pathway are verified as a kinase cascade, which act directly on the primary downstream effectors, the yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) by phosphorylation, and thereby suppressing transcription process of downstream targeted genes (13). Recently, it has been proved that the dysregulation of the Hippo signaling pathway lead to tumorigenesis, development and metastasis of diverse tumors, including lung adenocarcinoma (14), breast cancer (15), hepatocellular carcinoma (16), gastric cancer (17) and so on. However, fewer studies focus on the effects of the Hippo signaling pathway on LUSC. Besides, Wang et al. (18) highlighted the significance of Hippo signaling, including 18 core genes, in LUSC through comprehensive molecular features. Therefore, it is important to further explore the underlining mechanisms of hippo pathway core genes in oncogenesis and progression of LUSC.

In recent years, cancer immunotherapy has been confirmed and regarded as a vitally important treatment alternative for cancer patients (19). With the clinical success of immune checkpoint blockade and chimeric antigen receptor T (CAR-T) cell therapies, a turning point has been reached in the field of cancer immunotherapy (20). Given the low targeted-effective-mutation frequency in LUSC, targeted therapy is not effective enough for LUSC patients while cancer immunotherapy provides improved treatment options for LUSC patients. In this study, we investigated the prognostic effects and their patterns of immune infiltration of hippo pathway core genes in lung squamous cell carcinoma, in order to find some clues for underlying mechanisms of LUSC tumorigenesis and help developing new therapeutic methods.



Materials and Methods


Data Acquisition

The mutational data, RNA-seq transcriptome data and corresponding clinical medical information of LUSC patients were extracted from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). Overall, 551 LUSC samples were included in our study, consisting of 502 LUSC tumor samples and 49 adjacent normal samples, respectively.



Selecting Differential Expression Genes (DEGs) and Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) Analyses

The differential expression of mRNAs was obtained by “Limma” package. An adjusted-P value was used for reducing the false positive rate. We defined DEGs as adjusted-P value less than 0.05 and the absolute value of log(Fold Change) more than 1. Then, the DEGs’ corresponding GO and KEGG pathways were further analyzed using “ClusterProfiler” package for acquiring the potential targets and enriched pathways (21–23).



Mutational Analysis

There are 18 hippo pathway core genes were identified, including NF2, WWC1, TAOK1-2, TAOK3, FRMD6, SAV1, STK-4, MOB1A/B, LATS1-2, YAP1, TAZ, and TEAD1-4 (18). The somatic mutations of 18 hippo pathway core genes, co-occurrence patterns (by Fisher’s exact test), oncogenic pathways in LUSC patients were identified and visualized by maftools package.



Correlation Analysis

Spearman’s correlation analysis was utilized for describing the correlation between quantitative variables without a normal distribution. Multi-gene correlation analysis were performed and visualized by heatmap. P <0.05 was defined having statistical significance.



Survival Analysis and the Development of Prognostic Model

All the mRNA expressions of 18 hippo pathway core genes were calculated and patients were separated by the median expression level of each gene (high expressed group and low express group). The Kaplan–Meier (KM) survival analyses were used to compare the survival difference between low and high expressed groups based on each hippo pathway core gene group, with log-rank test. Then, the univariate and multivariate Cox analyses were performed to predict the prognostic significance for overall survival (OS). After obtaining prognostic hippo pathway core genes in multivariate Cox analysis, all the prognostic genes and relevant clinical characteristics were included for the nomogram modeling, with 1, 2, 3, 5 survival prediction scores. Then, the calibration curves for each year were also drawn.

R package “ConsensusClusterPlus” was used for consistency analysis and the maximum number of clusters is 6. Besides, four fifth of the total sample is drawn 100 times, clusterAlg = “hc,” innerLinkage = “ward.D2.” Clustering heatmaps were then drawn by R package “pheatmap.” The gene expression heatmap retains genes with SD > 0.1. If the number of input genes is more than 1000, it will extract the top 25% genes after sorting the SD.



Analysis of Immune Infiltration and Immune Checkpoints-Related Gene Expression

We estimated immune infiltration by The “Cell type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT)” algorithm, which provides an estimation of the abundances of member cell types in a mixed cell population (24). The visualization of the results were realized by “ggplot2” and “pheatmap” packages in R software. We selected some immune checkpoints-related genes for analysis, containing CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, and SIGLEC15. And the expression of the eight genes in different LUSC groups were studied.




Results

Overall, 551 LUSC samples were included in our study, consisting of 502 LUSC tumor samples and 49 adjacent normal samples, respectively. There were 1910 up-regulated DEGs and 2253down-regulated DEGs were finally identified. The volcano plot (Figure 1A) and heatmap (Figure 1B) of DEGs were constructed. The GO and KEGG analyses were further used for up-regulated and down-regulated DEGs, respectively. The top three KEGG pathways in up-regulated DEGs were human papillomavirus infection, cell cycle and RNA transport, respectively. While the top three KEGG pathways in down-regulated DEGs were cytokine–cytokine receptor interaction, cell adhesion molecules (CAMs) and phagosome, respectively. In GO analyses, the top three GO pathways in up-regulated DEGs were skin development, nuclear division and organelle fission, respectively. While the top three GO pathways in down-regulated DEGs were neutrophil degranulation, neutrophil activation involved in immune response and second-messenger-mediated signaling, respectively (Figure 1C).




Figure 1 | Differentially expressed genes (DEGs) in patients with lung squamous cell carcinoma (LUSC). (A) DEGs between tumor and normal tissues; (B) heatmap for DEGs in all the LUSC samples; (C) the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses for up- and down-regulated DEGs, respectively.



In mutational analyses, 97 (19.72%) patients contained the mutational hippo pathway core genes in 492 LUSC patients. The top five mutational hippo pathway core genes were LATS1 (4%), WWC1 (2%), TAOK1 (2%), TAOK3 (2%) and TAOK2 (2%), respectively (Figure 2A). The co-occurrence patterns of the 18 hippo pathway core genes were then analyzed and we found the mutation of LATS2 was highly associated with co-mutational NF2 (P <0.05) and TAOK1 (P <0.05) (Figure 2B). Moreover, the oncogenic pathways were enriched (Figure 2C) and we further displayed the hippo pathway in oncogenic pathways (Figure 2D).




Figure 2 | Mutation patterns of LUSC patients. (A) Oncoplot displays the mutational patterns of 18 hippo core genes in 97 LUSC patients; (B) the co-expression patterns of 18 hippo core genes in LUSC patients; (C) the enriched oncogenic pathways; (D) the hippo pathway in enriched oncogenic pathways.



Most of the 18 hippo pathway core genes had positive correlations while four pairs had negative correlations in LUSC samples (Figure 3). Then, the survival analyses were performed, we found only WWC1 (log-rank p = 0.046, HR = 1.32, 95%CI = 1–1.73) (Figure 4A) and LATS2 (log-rank p = 0.013, HR = 1.41, 95%CI = 1.08–1.86) had significant prognostic roles in TCGA database (Figure 4B). Afterward, WWC1, LATS2, and related clinical factors were all included in Cox analyses. In univariate Cox proportional hazards regression, WWC1, LATS2, pT stage and pTNM stage were all significant independent prognostic factors for overall survival (OS). We built a nomogram for LUSC patients, with the c index as 0.644 (p <0.001, 95%CI = 0.569–0.719) (Figure 5).




Figure 3 | Correlation analysis among 18 hippo core genes in LUSC patients.






Figure 4 | Survival curves according to the expression of (A) WWC1; (B) LATS2.






Figure 5 | The identification of prognostic factor for OS and the development of nomogram. (A) Univariate Cox analysis; (B) multivariate Cox analysis; (C) nomogram for OS in LUSC patients; (D) the calibration curves for each year.



In subtyping analyses, we selected k = 3 as the cutoff value to develop subtyping groups (Figure 6). After getting the three subgroups according to the subtyping results, the immune infiltration of the three groups were compared by CIBERSORT algorithm. We demonstrated that T cell gamma delta (p = 5.78e-6), B cell memory (p = 4.61e-4) and T cell CD4+ memory resting (p = 2.65e-5) had significant differences among the three groups (Figure 7A). Besides, the proportions of 22 types of immune cells were shown for each LUSC patient by a histogram (Figure 7B). At last, we explored the expressed differences based on 8 immune checkpoints-related genes, which indicated that SIGLEC15 (P <0.01) and CD274 (P <0.05) had statistical differences among the three subgroups (Figure 8).




Figure 6 | Identification of consensus clusters according to the expression similarity of hippo core genes. (A) Cumulative distribution function (CDF)(k = 2–6); (B) Relative change in area under CDF curve (k = 2–6); (C) the matrix of consensus clustering (k = 3); (D) heatmap of m6A-related gene expression in different subgroups, red represents high expression while blue represents low expression.






Figure 7 | Immune infiltration estimated by CIBERSORT algorithm. (A) Immune cell score heat map; (B) the proportions of 22 types of immune cells were shown for each LUSC patient by a histogram. *p < 0.05, **p < 0.01, ***p < 0.001.






Figure 8 | The expression distributions of 8 immune checkpoints-related genes in LUSC subgroups. *p < 0.05, **p < 0.01.





Discussion

Although many novel biomarkers and prognostic models for lung cancer have been validated and applied, there still have limited effective treatment strategy for lung squamous cell carcinoma (10, 25–27). In this study, we explored the 18 hippo pathway core genes in LUSC cohort and demonstrated WWC1 and LATS2 had significant prognostic roles and a nomogram has been developed based on the above two genes and relevant clinical factors. After subtyping, there has significant differences in the immune infiltration among the three subgroups and CD274 and SIGLEC15 may acted as potential immunotherapeutic targets for high-risk LUSC patients.

In survival analyses, WWC1 (log-rank p = 0.046, HR = 1.32, 95%CI = 1–1.73) and LATS2 (log-rank p = 0.013, HR = 1.41, 95%CI = 1.08–1.86) had significant prognostic roles. WWC1, WW and C2 domain containing 1 (also named KIBRA), binds with NF2 and helps NF2 to regulate LATS1/2 in vitro (28). Besides, WWC1 has been proved to have vital role in various cancers. Knight et al. (29) identified WWC1 as a primary factor leading to the effects of 5q loss on the processes of growth and metastasis in triple-negative breast cancer (TNBC). Moleirinho et al. (30) demonstrated that WWC1 deficiency showed epithelial-to-mesenchymal transition (EMT) features, with decreased phosphorylation of YAP and LATS. In addition, they also found low WWC1 expression was associated with poor outcomes in primary breast cancer. In our study, the high expression of WWC1 displayed a worse prognosis when compared with those with low WWC1 expression in LUSC patients. LATS2, large tumor suppressor kinase 2, phosphorylates and inactivates YAP/TAZ (31). In non-small cell lung cancer (NSCLC) cells, the expression and transcription of LATS2 was suppressed by long non-coding RNA AGAP2-AS1, thereby inhibited NSCLC development and progression (32). Similar results was obtained by another research, 73 NSCLC and 22 normal tissues were collected and immunohistochemistry was used for further analysis. They found LATS2 acted as an independent prognostic factor for NSCLC patients and the higher expressed group had significant better survival (33). However, in this study, we found an opposite result, that is patients with high LATS2 expression had worse OS. The reasons would be the following: (1) the objects of the above two researches were all NSCLCs, but in our study, only LUSC cohort was enrolled. LUAD accounted for the majority of NSCLC and the high expression of LATS2 acted as a protective factor for OS in LUAD patients (log-rank p = 3.9e-9, HR = 0.47, 95%CI = 0.36–0.6. Data obtained by K-M plotter and it was not shown). The effects of LATS2 in LUAD may neutralize that in LUSC when the whole NSCLC patients were included; (2) a great heterogeneity is existed in lung cancer, especially in advanced-stage lung cancer, which may cause some bias.

After getting the three subgroups according to the subtyping results, the immune infiltration of the three groups were compared by CIBERSORT algorithm. We demonstrated that T cell gamma delta (p = 5.78e-6), B cell memory (p = 4.61e-4) and T cell CD4+ memory resting (p = 2.65e-5) had significant differences among the three groups. The above results meant the three subgroups divided by 18 hippo pathway core genes had good ability to distinguish patients with different immune status. Furthermore, it would be helpful for precise selection of LUSC patients who need immunotherapy. We also explored the expressed differences based on 8 immune checkpoints-related genes, which indicated that SIGLEC15 (P <0.01) and CD274 (P <0.05) had statistical differences among the three subgroups. CD274 (ligand programmed death-ligand 1, PD-L1) can negatively modulate T-cell antitumor activity via binding to the PD-1 receptor on the T cells (34). Therefore, anti-PD-1 therapy has an extensive use in almost all types of cancer. It has been verified that PD-L1 expression was associated with T-cell infiltration (35). In our study, we found a synchronous significant differences in PD-L1 expression and T-cell infiltration among the three subtypes, which was similar to previous studies. Overexpression of PD-L1 in tumor microenvironment is the main immune evasion mechanism in some cancer patients. SIGLEC15, acted as an immune suppressor, inhibits antigen-specific T cell responses in vitro and in vivo and its expression was mutually exclusive to PD-L1, which means SIGLEC15 could be a promising target in patients with noneffective PD-L1 therapy (36).

There are still some limitations in this study. First, although the data of LUSC patients were extracted from TCGA, the number of patients is still limited; second, all the patients were from Western populations and the molecular features of Eastern populations are still unknown. Third, there is no validation by our own LUSC cohort.

In conclusions, our study verified the prognostic roles of WWC1 and LATS2 in LUSC patients. After subtyping by hippo core genes, T cell gamma delta, B cell memory and T cell CD4+ memory resting had significant differences among the three subgroups. Immune checkpoints-related genes SIGLEC15 and CD274 had statistical differences among the three subgroups, which may provide new perceptions on the molecular mechanisms in LUSC and maybe helpful for precisely selecting specific LUSC patients with potential immunotherapy benefits.
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It is reported that ginsenosides have a significant anti-tumor effect on a variety of tumors. However, the role and mechanism of Rh7 in non-small cell lung cancer (NSCLC) are unclear. In this study, we aimed to study the anti-tumor effect of Rh7 on the proliferation and progression of NSCLC. Bioinformatics analysis showed that ILF3-AS1 was regulated by ginsenoside Rh7 in NSCLC. Down-regulation of ILF3-AS1 could significantly inhibit the proliferation, metastasis and invasion of NSCLC. In addition, ILF3-AS1 negatively controlled miR-212, which in turn targeted SMAD1 expression, thereby regulating NSCLC cell viability and apoptosis. Our results indicate that ILF3-AS1 can be used as a diagnostic and therapeutic target for non-small cell lung cancer. It is discovered for the first time that ginsenoside Rh7 inhibits the expression of ILF3-AS1 and exerts antitumor effects.
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Introduction

Non-small cell lung cancer (NSCLC) is one of the malignant tumors with the highest mortality rate worldwide (1). Platinum-based dual-drug combination chemotherapy or molecular targeted drugs for specific populations are the most common first-line treatment options for NSCLC patients, however, most patients with NSCLC will suffer the relapse within 1 year (2). Thus, identifying novel drugs for the treatment of NSCLC remains to be an urgent clinical need.

Ginsenosides have been reported to have significant anti-tumor effects on a variety of tumors including liver cancer, lung cancer, and gastric cancer (3). Ginsenoside can significantly inhibit tumor cell proliferation, invasion and metastasis, and reduce angiogenesis (4). For example, ginsenoside Rh2 monomer can inhibit the proliferation of cancer cells, induce tumor cell apoptosis, reverse the abnormal differentiation of tumor cells and suppress tumor metastasis (5, 6). Ginsenoside Rh1 affects the occurrence and development of liver cancer and malignant glioma and can inhibit tumor migration and invasion (7, 8). Ginsenoside monomer Rg5 can induce apoptosis in a variety of cancer cells, Rg5 extracted from black ginseng has been proven to promote apoptosis in human breast cells. A series of in vitro experiments confirm that ginsenoside Rg5 also has an inhibitory effect on the proliferation of esophageal cancer cells (9, 10). Exploring the functional roles of ginsenosides can provide novel clues for the identification of novel therapeutic methods for human cancers, including NSCLC.

Long non-coding RNA (lncRNA) is a class of RNA molecules longer than 200 nts, and it does not encode proteins (11). A large number of studies have shown that lncRNAs play an important regulatory role in human diseases, including cancers (12, 13). LncRNAs are found to be differentially expressed in a variety of tumors, including NSCLC (14). LncRNAs can specifically regulate the expression of downstream genes and participate in the regulation of tumorigenesis and progression, through regulating tumor cell proliferation, adhesion, migration, invasion, epithelial-mesenchymal transition and drug resistance (15). In NSCLC, a few studies have revealed the important regulatory role of lncRNAs in tumors (16–19). It has been found in NSCLC that high expression of lncRNA DLEU2 is associated with a shorter overall survival period, which can induce cell proliferation, invasion, migration and apoptosis (20). The expression of lncRNA GIAT4RA is significantly reduced in lung cancer tissues, and it inhibits the growth, colony formation, migration and invasion, EMT transformation, tumor globules and tumor growth of non-small cell lung cancer cells in vivo (21). Related reports indicate that in many diseases, lncRNAs can be used as a competitive endogenous RNA (ceRNA) to regulate gene expression by sponging miRNAs. LINC81507 acts as a miR-199b-5p sponge to regulate the CAV1/STAT3 pathway, thereby inhibiting the occurrence and development of NSCLC (22). WGCNA is a powerful tool to understand the underlying mechanisms of human diseases. Long non-coding RNA (lncRNA) is a class of RNA molecules longer than 200 nts (23), which has been reported to play an important regulatory role in human tumors (24–26). Very interestingly, WGCNA has been widely used to understand the role of lncRNAs in human cancers. For example, Giuliet et al. used the WGCNA method to identify lncRNAs in pancreatic cancer and found that 11 lncRNAs were key regulators of pancreatic cancer (27).

In this study, we screened key novel ginsenosides that could extend a tumor-suppressive effect on NSCLC proliferation and progression, and we identified ginsenoside Rh7 could suppress NSCLC proliferation, migration and invasion. Bioinformatics analysis indicated ILF3-AS1 was regulated by ginsenoside Rh7 in NSCLC. Knockdown of ILF3-AS1 significantly affected NSCLC cell proliferation, migration, and invasion of NSCLC. Therefore, we provided a novel candidate drug and a putative new therapeutic target of it for NSCLC.



Methods and Materials


Materials and Reagents

Human NSCLC cell lines A549 and H1299 were obtained from American-type culture collection (ATCC, Manassas, VA, U.S.A.). CCK8 was obtained from Dojindo Laboratories (Kumamoto, Japan). Anti-SMAD1 (EP565Y) was purchased from Abcam.



Cell Line Culture

Human NSCLC cell lines A549 and H1299 were cultured in DMEM with 10% FBS (BI, Israel) and 1% penicillin-streptomycin (BI, Israel). Keep the temperature at 37°C. The medium is updated 1-2 times a week.



Cell Treatment

Ginsenosides Rc, Rh1, Rh3 and Rh7 were purchased from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China), dissolved in dimethyl sulfoxide (DMSO), and then diluted to a concentration range of 0-100μM. The cells were treated in ginsenoside for 24 hours.

Shanghai Gene Pharmaceutical Co., Ltd. (Shanghai, China) synthesized ILF3-AS1 and SMAD1 short interfering RNAs (siRNAs). A549 and H1299 cells were seeded into 6-well plates and transfected with siRNA or control siRNA (Genepharma Company, Shanghai, China) using Lipofectamine® 2000 DNA transfection reagent (Invitrogen, Oregon, USA). The siRNA sequences were: si-ILF3-AS1-1, 5’-GTTCCTCTAAGTAATCGCCATGCGTTCT-3’, si-ILF3-AS1-2, 5’-UUUGUCCUUACAAGCGUGGTT-3’, si-SMAD1, 5’-CAGGACUUUGUGUACAGUUAA-3’, si-NC, 5’-UUCUCCGAACGUGUCACGUTT-3’.



Transwell Migration and Invasion Assays

We used the transwell chamber (Corning, NY, USA) to conduct the assays of cell migration and invasion. The transwell chamber was coated with the matrigel mix (BD Biosciences, San Jose, CA, USA) for invasion assay, and it could also be conducted for migration assay with Matrigel mix coat.

A549 and H1299 cells at the logarithmic phase were digested and diluted to 1×105/ml with the invasion medium of IMDM + 0.1% BSA without serum. About 100 µl cells were added on top of the transwell membrane in the upper chamber, and 600 µl of IMDM + 10% FBS + the related drugs were added to the lower chamber in a 24-well plate. After the drug treatment for 48 h, we used cotton swabs to scrape the cells settled on the upper surfaces of the transwell chambers and fixed the cells settled on the lower surfaces. The remaining cells were stained by DAPI. Next, we observed the number of cells in the transwell chambers under a fluorescent inverted microscope and took a photo later.



Quantitative Real-Time PCR

TRIzol reagent (15596026, Invitrogen, Shanghai, China) was used to extract the total RNA samples from each tumor tissue, according to the manufacture’s introduction. 1 μg of total RNA was taken to reverse-transcribed cDNA using a MiRcute miRNA First-strand cDNA synthesis kit (Tiangen Biotech, Beijing, China) for miRNA, while the Primer-Script TM one-step real-time PCR reagent kit (Takara, Shiga, Japan) was used for the reverse transcription of lncRNAs and mRNAs, according to the manufacturer’s protocol. The relative quantitation of mRNA expression levels was measured using the SYBR Green I real-time PCR kit (CoWin Bioscience Co., Beijing, China). The sequences of all the primers were as follows: lncRNA ILF3-AS1: forward 5′-TAAACCCCACTGTCTTCC-3′, reverse 5′-TTCCTTGCTCTTCTTGCTC-3′; GAPDH (353bp), forward 5′-GGGAGCCAAAAGGGTCATCATCTC-3′; reverse 5′-CCATGCCAGTGAGCTTCCCGTTC-3′. In order to normalize the gene expression levels in each tumor tissue sample, the gene of GAPDH was used as an endogenous control for lncRNAs and mRNAs, whereas U6 was used as an internal reference for miRNAs. The changes in the mRNA expression in all the groups were calculated by the method of 2−ΔΔCt (28).



Cell Cycle Assays

The cells were harvested and washed with phosphate-buffered saline. The pellet was then resuspended, fixed in 70% pre-incubated methanol, and stored at 4°C overnight. The cells were washed again with PBS, and then a staining solution (propidium iodide) was added. Before flow cytometry analysis, the final mixture was incubated in the dark for 30 minutes. The experiment was performed three times and repeated three times. For cell cycle assay, G1, S and G2 peaks were detected from the propidium iodide-stained A549 and H1299 cells by flow cytometry (BD FACS Canto II, BD Bioscience, NJ, USA) and analyzed using the Modfit software.



Dual-Luciferase Reporter Assay

The ILF3-AS1 (or SMAD1 3’UTR) was inserted into the full-length sequence psiCHECK2 basic configuration. We used Lipofectamine 3000 (Invitrogen, Cat# L3000-015), 0.5 µg reporter gene construct and 50 nm siRNA (or miRNA mimic) were transfected per well. After 12 hours of transfection, the transfection medium was replaced with a complete medium. After 48 hours of culture, the cells were lysed with passive lysis buffer (Promega, Cat# E1910), and the expression of the reporter gene was detected using the dual-luciferase reporter gene detection system (Promega, Cat# E1910). All transfection experiments were performed in 3 replicates.



RNA Sequence

RNA-sequence (RNA-seq) was performed using BGI’s Illumina HiSeq 2500. We sent the Rh7-treated NSCLC cells to BGI Shanghai, got Generate-mat data in FASTQ, and aligned RNA-seq reads with human reference sequences. TopHat2 v2.0.14.27 STAR v2.5.2a28 for gene annotation (UCSC hg19) was used to calculate FPKM value. Bioinformatics analysis of ginsenoside Rh7 target in NSCLC applied DAVID system. The RNA-seq results were visualized using the Integrated Genome Viewer (IGV) tool of the Broad Institute.



Statistical Analysis

The values presented in the study were represented as mean ± S.D. One-way ANOVA test followed by Dunett’s t-test was used as a calculated statistical method with SPSS19.0 statistical software. *, P < 0.05, **, P < 0.01 and ***, P < 0.001 were regarded as statistically significant.




Results


Screening of Ginsenosides That Played Tumor-Suppressive Roles in NSCLC

To identify ginsenosides’ regulatory role in NSCLC, we treated H1299 cells with 100 μM Rh7, Rh1, Rh3, and Rc. CCK-8 assay was performed to detect their effects on cell proliferation. As shown in Figure 1A, 100μM Rh7 could significantly inhibit H1299 proliferation. The H1299 cell growth treated with 100μM Rh7 was reduced by 83% compared with the control group.




Figure 1 | Effects of different ginsenosides on the proliferation ability of NSCLC cells. (A) The effect of different ginsenosides on the proliferation of H1299 cells determined by CCK-8 assay. (B) The effect of different ginsenosides on the cell cycle progress of H1299. (C) Statistical analysis of the decrease number in G0/G1 and S phase. *P < 0.05, **P < 0.01.



Also, we investigated ginsenosides’ effect on the cell cycle in NSCLC cells. Cell cycle assay showed that Rh7 could significantly induce cell cycle arrest in H1299. However, Rh1, Rh3, and Rc had no significant effect on the H1299 cell cycle. H1299 in G0/G1 phase treated with 100 μM Rh7 increased by 30.8%, and H1299 in the S phase decreased by 29.8% compared with the control group (Figures 1B, C).



Ginsenoside Rh7 Suppressed NSCLC Cell Proliferation, Migration and Invasion

To further validate the above findings and clarify the biological functions of ginsenoside Rh7, we used 0μM, 1μM, 5μM, 10μM, 50μM, 100μM Rh7 to treat A549 and H1299. The measured results were consistent with the results in the previous section. With increased Rh7 treatment concentration, the survival rate of A549 and H1299 showed an overall dose-dependent decrease. The half lethal dose of Rh7 for A549 was 22.5 μM (Figure 2A), and H1299 was 25.5μM (Figure 2B). Therefore, we chose to treat A549 and H1299 with 25μM Rh7.




Figure 2 | Effects of different concentrations of Rh7 on the survival rate of A549 and H1299 cells. (A, B) Effect of Rh7 on the survival rate of A549 and H1299 cells in the dose-dependent pattern. (C, D) Effect of Rh7 on the survival rate of A549 and H1299 cells in the time-dependent pattern.*P < 0.05, **P < 0.01.



Next, Rh7 effects on cell proliferation were examined in a time-dependent manner. A549 and H1299 were treated with 25 μM Rh7 for five days. As shown in Figure 2, Rh7 treatment significantly inhibited the growth rate of A549 and H1299. The growth rate of Rh7 treated A549 was reduced by 72% compared with the DMSO treatment group at day 4 (Figure 2C), and H1299 was reduced by 75% (Figure 2D).

The effect of Rh7 on the migration ability of NSCLC cells was determined by transwell analysis. As shown in Figure 3, ginsenosides Rh7 could significantly inhibit NSCLC cell migratory ability. Compared with the control group, the migration number of Rh7-treated A549 decreased by 73.5% (Figures 3A, B), and H1299 decreased by 20.2% (Figures 3C, D). Very interestingly, we also found that Rh7 could significantly suppress the invasion of A549 (Figures 3E, F) and H1299 (Figures 3G, H).




Figure 3 | Rh7 treatment inhibits the migration and invasion ability of A549 and H1299 cells. (A, B) 25 μM Rh7 treatment inhibited the migration ability of the A549 cell line, and (C, D) 25 μM Rh7 treatment inhibited the migration ability of the H1299 cell line. (E, F) 25 μM Rh7 treatment inhibited the invasive ability of A549 cell line. (G, H) 25 μM Rh7 treatment inhibited the invasive ability of H1299 cell line. *P < 0.05, **P < 0.01, ***P < 0.001.





Ginsenoside Rh7 Induced a Repertoire of Differentially Expressed Genes

Functional assays showed that ginsenoside Rh7 could significantly inhibit the proliferation and cell cycle progression of NSCLC, however, the underlying mechanism remained to be unclear. Therefore, we detected the whole-genome gene expression profile after Rh7 treatment in NSCLC cells using RNA-seq technology. A total of 177 genes were found to be differentially expressed after Rh7 treatment in H1299 cells (Figure 4A). 87 genes were significantly up-regulated after Rh7 treatment, and 90 genes were down-regulated.




Figure 4 | Bioinformatics analysis of the Rh7 regulated genes in NSCLC. (A) Heatmap diagram of the differentially expressed genes in H1299 cells is stimulated by ginsenoside Rh7. The abscissa represents genes and the ordinate represents sample names; red represents up-regulated expression and blue represents down-regulated expression; genes and samples are clustered separately. (B) GO analysis of differentially altered genes in H1299 cells stimulated by ginsenoside Rh7. (C) 496 clustering results. (D) The trend of scale independence when soft threshold is 1 to 20. (E) The trend of average connectivity when soft threshold is 1 to 20.



Next, we conducted the bioinformatics analysis of ginsenoside Rh7 targets in NSCLC using DAVID system. As shown in Figure 4B, Rh7-regulated genes were significantly involved in regulating multiple pathways, including cell development process, cell differentiation, central nervous system development, inorganic ion homeostasis, ion homeostasis, cation homeostasis, metal ion homeostasis, embryonic morphogenesis and bivalent inorganic cation homeostasis.



WGCNA (Weighted Correlation Network Analysis) Analysis Uncovered Ginsenoside Rh7-Downstream Regulatory Genes

Gene weight co-expression analysis was conducted to further explore the mechanism of downstream regulatory genes of Rh7 in NSCLC. We constructed a gene-weighted co-expression network for Rh7 downstream regulatory genes using TCGA LUAD database. Hierarchical-clustering 576 tumor samples results were shown in Supplementary Figure 1A. No obvious abnormal values were found.

The fitting degree of the weighted co-expression network and the scale-free network obtained by using the WGCNA function pickSoftThreshold to detect an integer of 1-20 as a soft threshold was shown in Figures 4D, E. We chose the minimum soft threshold 4 whose scale-free network fit was higher than 0.9. Corresponding to Supplementary Figure 1B, we could see that the average degree of the weighted co-expression network at this time was also very low, which further proved that β=4 was suitable for the gene co-expression network built. When the minimum soft threshold was set to 4, the connectivity k of the constructed network also conformed to the Poisson distribution, that was the points with small connectivity account for the majority, while the points with large connectivity were rare, and there was no scale-free topology distribution (29). The combined degree R^2 also reached an optimal value of 0.89 (As shown in Supplementary Figure 1C).

After obtaining the soft threshold, we calculated TOM and performed hierarchical clustering to obtain the hierarchical clustering results of 496 Rh7 downstream regulatory genes (Figure 4C). A total of 3 gene modules were clustered, (blue module, turquoise module, grey module). Of the 496 genes, 262 genes were not classified into any one category, so they were regarded as a grey module separately. The remaining 234 genes were divided into 2 types of gene modules. Gene module 1 contained 178 genes and gene module 2 contained 56 genes.

Through the WGCNA clustering method, we obtained three gene modules (Supplementary Figure 1D). Although one of them was an obsolete module, its stability also affected the stability of the overall result, so the stability of the gene module needed to be further evaluated. First, clustering and correlation analysis were performed on the first principal component trend of each gene module, and the results were shown in Supplementary Figure 1E. From the clustering results, the clustering distance between the blue module and the turquoise module was very long, and the correlation of the first principal component was also low, only 0.12. This indicates that the trends of the two modules are almost uncorrelated. This also proves the stability of our WGCNA clustering results.

The overall module stability has been proven, then we should also evaluate whether the gene change trend in each module is consistent. As shown in Supplementary Figure 1F, the two-dimensional distribution of gene connectivity and gene significance in the blue and turquoise modules were also relatively stable, and the fitting trends within the two were different. The comparison between the correlation of the soft threshold conversion and the ordinary Pearson correlation without conversion also showed that although the correlation of the weight change after the soft threshold conversion was adjusted, the overall was more optimized. There were also different trends in the overall gene distribution, and the gene distribution in the turquoise module was wider. This shows that the clustering results are stable, and genes with different trends are clustered into different modules. Genes within the same module are more related and cluster more closely.

We also found an interesting phenomenon. Our results showed that non-coding RNAs might be widely involved in the regulation of downstream regulatory genes of Rh7. There were 4 lncRNAs (NCF1C, C7orf13, ILF3-AS1 (LOC147727), SNORA25, SNHG9) and 1 snoRNA (SNORA25) in the blue module; there were 2 lncRNAs (TP53TG1, RPPH1) and SNORA62 in the turquoise module. These lncRNAs will be the focus of our further investigation.



Ginsenoside Rh7 Regulated the Expression of lncRNAs at the Core of the Network

Furthermore, we constructed a lncRNA-mRNA co-expression network in NSCLC by calculating the Pearson correlation coefficient of lncRNA-mRNA pairs in the two gene modules based on the WCGNA analysis. As presented in Figure 5A, the blue module-related network included 5 lncRNAs and 103 DEG, and the turquoise module-related network included 3 lncRNAs and 50 DEG (Figure 5B). Among these lncRNAs, we identified ILF3-AS1 as one of the key regulators in this network because it connected with 59 different nodes.




Figure 5 | Co-expression network diagram of lncRNA-mRNA in the gene module. (A) Co-expression network diagram in the blue module, where green dots represent mRNA and yellow dots represent lncRNA. (B) Co-expression network diagram in Turquoise module, where green dots represent mRNA and yellow dots represent lncRNA. The size of a point depends on the connectivity of that point. The higher the connectivity, the larger the point.



In order to validate the effect of Rh7 on the key lncRNAs expression in the network, qRT-PCR assay was conducted for A549 and H1299 cells after Rh7 treatment. It was worth noting that the expression of ILF3-AS1 showed the most significant change after treatment with Rh7. ILF3-AS1 expression decreased by 66% in A549 cells (Figure 6A), and by 73.3% in H1299 cells (Figure 6B), after treated with Rh7.




Figure 6 | Knocking down of ILF3-AS1 reduced the growth rate of A549 and H1299 cells. (A, B) A549 and H1299 cell lines were treated with Rh7 to detect NCF1C, C7orf13, LOC147727, SNORA25, SNHG9, TP53TG1, RPPH1 and SNORA62 gene expression levels. (C, F) RT-PCR was used to detect ILF3-AS1 levels in non-small cell lung cancer cell lines A549 (C) and H1299 (E). (D, F) Knockdown of ILF3-AS1 significantly suppressed cell proliferation in non-small cell lung cancer cell lines A549 (D) and H1299 (F). (G, H) Knockdown of ILF3-AS1 could significantly block the cell cycle progression of H1299. *P < 0.05, **P < 0.01.





Knockdown of ILF3-AS1 Significantly Inhibited NSCLC Cell Proliferation, Migration and Invasion

To investigate the functional roles of ILF3-AS1 in NSCLC, we designed two siRNAs (si-ILF3-AS1-1 and si-ILF3-AS1-2) to target ILF3-AS1. After transfection, ILF3-AS1 level was significantly reduced in both A549 (Figure 6C) and H1299 cells (Figure 6E).

Next, we investigated the biological functions of ILF3-AS1 in NSCLC. We found knockdown ILF3-AS1 significantly inhibited the growth rate of A549 (Figure 6D) and H1299 cells (Figure 6F). The A549 cell growth was reduced by 53% and 60% after transfection with siRNA-1 and siRNA-2 respectively, and H1299 was reduced by 56% and 58.2%.

In this study, we also detected ILF3-AS1 effect on the cell cycle of A549 and H1299. The results showed that knockdown ILF3-AS1 significantly blocked the cell cycle of H1299. The cells in the G0/G1 phase of the ILF3-AS1 knockdown group significantly increased in number, while the proportion of cells in the S phase and G2/M phase decreased compared with the control group in the lung cancer cell line (Figures 6G, H).

The effect of ILF3-AS1 on the migration and invasion capacity of NSCLC cells was next determined. After knocking down ILF3-AS1 in A549 and H1299, compared with the control group, the cell migration (Figures 7A–D) and invasion (Figures 7E–H) was significantly reduced.




Figure 7 | Knockdown of ILF3-AS1 inhibited the migration and invasion capacity of A549 and H1299 cell lines. (A, B) Knockdown of ILF3-AS1 inhibited the migration ability of A549 cell lines. (C, D) Knockdown of ILF3-AS1 inhibited the migration ability of H1299 cell lines. (E, F) Knockdown of ILF3-AS1 inhibited the invasion ability of A549 cell lines. (G, H) Knockdown of ILF3-AS1 inhibited the invasion ability of H1299 cell lines. *P < 0.05, **P < 0.01, ***P < 0.001.





Construction of ILF3-AS1 Mediated Competing Endogenous RNA (ceRNA) Networks in NSCLC

The results of the co-expression network analysis showed that ILF3-AS1 could significantly regulate 59 potential mRNAs. Next, we used the DIANA-lncBase (https://bigd.big.ac.cn/databasecommons/database/id/336) and TARGETSCAN database (http://www.targetscan.org/vert_72/) to predict ILF3-AS1 targeting miRNAs and revealed 5 miRNAs that potentially binded to ILF3-AS1, including hsa-miR-320d, hsa-miR-7-5p, hsa-miR-212-3p, hsa-miR-4725-5p and hsa-miR-504-5p. We constructed a ceRNA network that mediated the regulation of ILF3-AS1 on downstream targets in NSCLC using the Starbase database. As shown in Supplementary Figure 2, a total of 5 miRNAs, 59 mRNAs and ILF3-AS1 were included in this network.

In order to verify the ILF3-AS1 effect on its potential ceRNA targets, we used TargetscanHuman to predict the potential target genes of miR212 and prioritize the predicted targets. Besides, we found that knockdown ILF3-AS1 resulted in a significant decrease in SMAD1 gene level in NSCLC cells (Figures 8A, B). Therefore, SMAD1 was selected as the main target of miR212 for further study. SMAD1 protein was involved in the regulation of the TGF-β signaling pathway, which was reported to be abnormally expressed and involved in regulating cancer metastasis of multiple cancers, including NSCLC.




Figure 8 | ILF3-AS1 and SMAD1 are both target genes of miR-212. (A, B) RT-PCR was used to detect SMAD1 levels in non-small cell lung cancer cell lines A549 (A) and H1299 (B) after knockdown of ILF3-AS1. (C, D) RT-PCR was used to detect SMAD1 levels in non-small cell lung cancer cell lines A549 (C) and H1299 (D) after overexpression of miR-212. (E, F) RT-PCR was used to detect ILF3-AS1 levels in non-small cell lung cancer cell lines A549 (C) and H1299 (D) after overexpression of miR-212. (G) Schematic diagram of the binding sequence of miR-212 and ILF3-AS1, miR-212 and SMAD 1-3’UTR predicted by online website. (H, I) miR-212 significantly inhibited intracellular luciferase activity of ILF3-AS1 (compared to miR-NC). (J, K) miR-212 significantly inhibited intracellular luciferase activity of SMAD1 (compared to miR-NC). (L, M) miR-212 did not inhibit intracellular luciferase activity of ILF3-AS1-mut (compared to miR-NC). (N, O) miR-212 did not inhibit intracellular luciferase activity of SMAD1-mut (compared to miR-NC). *P < 0.05, **P < 0.01.





ILF3-AS1 and SMAD1 Were Both Target Genes of miR-212

Next, we verified whether SMAD1 and ILF3-AS1 were targets of miR-212. First, we found miR-212 overexpresion could significantly inhibit the levels of SMAD1 (Figures 8C, D) and ILF3-AS1 (Figures 8E, F). Subsequently, we used the TargetScan and miRDB databases to find the complementary pairing sequence of miR-212 to SMAD1-3’UTR and ILF3-AS1 (Figure 8G). Dual-luciferase reporter assay was further applied to validate the interaction between miR-212 and SMAD1-3’UTR or ILF3-AS1. We found that miR-212 remarkably inhibited the luciferase activity of ILF3-AS1-wt (Figures 8H, I) and SAMD1-wt (Figures 8J, K) plasmid, but not ILF3-AS1-mut (Figures 8L, M) and SAMD1-mut (Figures 8N, O) plasmid.



Highly Expressed SMAD1 and ILF3-AS1 Were Significantly Positively Related to the Shorter Survival Time of Patients With NSCLC

To investigate the prognostic value of SMAD1, ILF3-AS1, and miR-212 for NSCLC patients, we analyzed TCGA dataset. ILF3-AS1 levels (Figure 9A) and SMAD1 (Figure 9B) in NSCLC samples were significantly higher than those in normal samples, but miR-212 (Figure 9C) was significantly lower in NSCLC than in normal tissues.




Figure 9 | Highly expressed SMAD1 and ILF3-AS1 were significantly positively related to the shorter survival time of patients with non-small cell lung cancer. Compared with normal tissues, SMAD1 (A) and ILF3-AS1 (B) were significantly higher expressed in LUAD and LUSC, while miR-212 (C) was significantly lower expressed in LUAD and LUSC. In NSCLC, the higher expression of SMAD1 (D) and ILF3-AS1 (E) showed a significant positive correlation with shorter patient survival time, while miR-212 expression had no significant correlation with patient survival time. (F). The high expression of SMAD1 (G) and ILF3-AS1 (H) in LUAD showed a significant positive correlation with shorter patient survival time, while miR-212 (I) expression had no significant correlation with patient survival time. ***P < 0.001.



Next, we used the TCGA database to analyze the association of SMAD1, ILF3-AS1 and miR-212 expressions with the overall survival of NSCLC. We found that higher expression of ILF3-AS1 (Figures 9D, G) or SMAD1 (Figures 9E, H) was significantly correlated with shorter overall survival time for both NSCLC and LUAD patients (Figures 9F, I). However, we did not find a significant prognostic value of miR-212 expression for NSCLC and LUAD patients.

In conclusion, this study for the first time showed Ginsenoside Rh7 can suppress the expression of ILF3-AS1, which could competitively bind with miR-212, thus leading to the down-regulation of SMAD1 and suppression of NSCLC progression (Figure 10).




Figure 10 | Diagram of the mechanism of ginsenoside Rh7 targeting the ILF3-AS1/miR212/SAMD1 axis in NSCLC.






Discussion

Ginsenosides have been reported to have important anti-tumor roles in a variety of tumors including liver cancer, lung cancer, and gastric cancer (30). Ginsenoside Rhs is revealed to inhibit the metastasis and proliferation of cancer cells (31, 32). For example, Rh1 could significantly inhibit the metastatic ability of liver cancer and gliomas (33). In gliomas, Rh1 can inhibit the invasion and migration of U87MG cells by inhibiting the activity of ERK, JNK and p38 pathways (34). Rh3 is reported to down-regulate the expression of cell cycle regulators, cyclin E and Cdk2, thereby blocking the G1 phase of the cell cycle to suppress cell proliferation (35, 36). Of note, the molecular functions of Rh7 in cancer cells remain unclear. In this study, we found that Rh7 could significantly inhibit the proliferative and metastatic potentials of NSCLC. Among the 5 different Ginsenosides, we found that 100 μM Rh7 could significantly inhibit the proliferation of cells and block the progress of the cell cycle. Further study revealed that Rh7 could also significantly suppress cell migration and invasion. Thus, our results for the first time showed that Rh7 might serve as a potential anti-tumor and anti-metastasis drug for NSCLC.

In this study, we further explored Rh7 downstream regulatory genes in NSCLC. We constructed a gene-weighted co-expression network for Rh7 downstream regulatory genes based on TCGA LUAD dataset and identified two gene modules that played an important regulatory role in lung cancer. Interestingly, our results showed that lncRNAs, such as NCF1C, C7orf13, ILF3-AS1 (LOC147727) and SNORA62, played a crucial role in the regulation of downstream regulatory genes of Rh7.

In many cases, lncRNAs are the main regulators of gene expression and can play a key role in various biological functions and disease processes, including cancer. The lncRNA ILF3-AS1 is overexpressed in a variety of human cancers (37, 38). For example, it is revealed that ILF3-AS1 together with 14 lncRNAs predicts the survival of patients with cervical cancer (39). Bioinformatics analysis reveals that ILF3-AS1 is involved in the regulation of colon cancer proliferation, angiogenesis and cell death (40). In melanoma, lncRNA ILF3-AS1 is up-regulated in tumor tissues and is associated with poor patient prognosis (41). Our study for the first time shows that knockdown of ILF3-AS1 can significantly inhibit the proliferation, migration and invasion of NSCLC cells.

Recently, several reports have shown that ginsenosides can regulate lncRNAs to play an important role in anti-cancer activity. For example, in breast cancer cells, Ginsenoside Rh2 can inhibit the expression of C3orf67-AS1 through promoter methylation and exert an anti-proliferative effect (42). Ginsenoside Rg3 inhibits the migration and invasion of colorectal cancer cells by inhibiting the expression of lncRNA CCAT1, and promotes their apoptosis (43). In this study, we initially explored the regulatory mechanism of Rh7 on lung cancer cells. It was discovered for the first time that ginsenoside Rh7 could regulate cell proliferation, migration and invasion by inhibiting ILF3-AS1 expression in NSCLC cells. ILF3-AS1 should be the pharmatheutical target of ginsenoside Rh7. We found that Rh7 treatment could significantly suppress the expression of ILF3-AS1 in NSCLC cells.

MiRNA is a type of ncRNA with a length of about 22 nts. Mature miRNAs can regulate target mRNAs by binding to miRNA response elements (MREs) on the 3′-untranslated region (3-UTR) of the target mRNAs (44). CeRNA hypothesis points out that mRNA, pseudogene, circular RNA (circRNA), lncRNAs can act as ceRNA to regulate each other’s expression by completely binding to MREs (45). The present study shows that ILF3-AS1 is localized in the cytoplasm of NSCLC, suggesting that it may function as an endogenous competitive RNA. Interestingly, studies in osteosarcoma have shown that ILF3-AS1 can competitively bind miR-212 to promote the SOX5 axis, and thus enhancing the proliferation, migration and invasion of osteosarcoma cells (37). In this study, we constructed a ceRNA network and found ILF3-AS1 could affect SMAD1 expression through miR-212 in NSCLC. Knockdown of ILF3-AS1 or overexpression of miR-212 could significantly inhibit SMAD1 gene expression. And we found that miR-212 could significantly inhibit the luciferase activity of the wild-type SMAD1-3’UTR-reporter plasmid and the ILF3-AS1-reporter plasmid, but did not affect that of the mutant ones. These results demonstrated that SMAD1 and ILF3-AS1 were targets for miR-212.

Related reports indicate that miR-212 is a tumor suppressor, which is found in cervical cancer, pituitary tumors, bladder cancer and NSCLC. In NSCLC, Incoronato et al. found that miR-212 negatively regulated the expression of the apoptotic protein PED/PEA-15 (46). Smad protein is considered to be a major regulator of TGF-β and BMP signaling pathways, which can regulate cell growth and differentiation (47). In colorectal cancer, Smad1 promotes tumor cell migration by inducing Snail expression but has no significant effect on Twist1 expression (48). Therefore, there may be a miR-212-Smad1 axis in cancer. Ginsenoside Rh7 can regulate the expression of ILF3-AS1, ILF3-AS1 competitively binds with miR-212 in turn, and the miR-212-Smad1 axis could be enhanced by ginsenoside Rh7, thus ginsenoside Rh7 could significantly inhibit the proliferation, migration and invasion of NSCLC cells (Figure 10).

This study has limitations. It is necessary to further explore the expression levels of ILF3-AS1, miR-212 and SMAD1 in clinical samples. In future studies, we will collect more clinical samples to explore the correlation between the expression of ILF3-AS1, miR-212 and SMAD1 and clinical parameters (including gender, age, and clinical stage). In subsequent studies, we will use a variety of assay methods, such as RNA immunoprecipitation and RNA pull-down assays, to further verify the direct or indirect interaction of ILF3-AS1, miR-212 and SMAD1 in NSCLC.

In summary, our results for the first time show that ginsenoside Rh7 can significantly inhibit the proliferation and metastatic potentials of NSCLC cells ILF3-AS1/miR-212/SMAD1 axis. Bioinformatics studies have shown that Rh7 is widely involved in the regulation of ion homeostasis, monocarboxylic acid transport, neuroactive ligand-receptor interaction pathways, and cAMP signaling pathways. Furthermore, a co-expression network analysis shows that the long non-coding RNA ILF3-AS1 is widely involved in the regulation of ginsenoside Rh7 downstream networks. These results show that ILF3-AS1 can be used as a diagnostic and therapeutic target for NSCLC. Ginsenoside Rh7 inhibits the expression of ILF3-AS1 and exerts anti-tumor effects.
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Supplementary Figure 1 | WGCNA analysis of ginsenoside Rh7-downstream regulatory genes (A) 576 clustering results. (B) Histogram distribution of simulated network connectivity. (C) The fitness trend simulation of the network. (D) Cluster analysis between gene modules. (E) Principal component analysis and correlation analysis between gene modules. (F) The comparison between weight correlation and Pearson correlation after soft threshold processing. The abscissa represents the weight correlation and the ordinate represents the Pearson correlation.

Supplementary Figure 2 | This PPI contained 5 miRNAs, 59 mRNAs and ILF3-AS1.
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Recent studies have identified pleiotropic roles of methyltransferase-like 3 (METTL3) in tumor progression. However, the roles of METTL3 in esophageal squamous cell carcinoma (ESCC) are still unclear. Here, we investigated the function and mechanism of METTL3 in ESCC tumorigenesis. We reported that higher METTL3 expression was found in ESCC tissues and was markedly associated with depth of invasion and poor prognosis. Loss- and gain-of function studies showed that METTL3 promoted the migration and invasion of ESCC cells in vitro. Integrated methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq) analysis first demonstrated that glutaminase 2 (GLS2) was regulated by METTL3 via m6A modification. Our findings identified METTL3/GLS2 signaling as a potential therapeutic target in antimetastatic strategies against ESCC.
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Introduction

Esophageal cancer is one of the most common malignant tumors worldwide, and it is the third most common cancer in China (1, 2). For all stages combined, the 5-year relative survival rate for esophageal cancer is 20%, (localized 47%, regional 25%, distant 5%) (1). Metastasis is a major cause of death in esophageal cancer patients. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of esophageal cancer in China (3). Metastasis is found in over 60% of newly diagnosed cases, which is one of the principal reasons why the overall 5-year survival rate of esophageal cancer is <15% (4). Hence, identification of novel functional genes that contribute to metastasis and clarification of the underlying molecular mechanisms are essential for the development of effective therapeutic strategies.

Epigenetics has increasingly been recognized for its role in tumor formation and progression (5–8). Traditionally, epigenetics includes DNA methylation, histone modification, nucleosome repositioning and post-transcriptional gene regulation by miRNAs (5–9). Dysregulation of epigenetic modifying genes profoundly contributes to human diseases and has been frequently reported in multiple types of cancer (10–12), including ESCC (13, 14). Similarly, RNAs also carry hundreds of various sites for distinct post-transcriptional modifications, generating a new field known as “epitranscriptomics” (15). Among numerous RNA modifications, N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotic cells (16, 17). Accumulating evidence suggests that m6A RNA methylation strongly impacts RNA metabolism and is involved in the pathogenesis of many kinds of diseases, including cancers (18–21). Similar to DNA methylation, m6A modification is reversible and catalyzed by corresponding enzymes, namely, “writers,” “erasers,” and “readers”. M6A writers, erasers and readers are proteins that can add, remove, or recognize m6A on mRNAs, respectively (22–24). Addition of m6A is catalyzed by a methyltransferase complex (MTC) composed of several proteins (25). Methyltransferase-like protein 3 (METTL3) is an S-adenosyl methionine (SAM)-binding protein; METTL3 is the most important component of the m6A MTC and is highly conserved in eukaryotes from yeast to humans (26). Dysregulation of METTL3 expression has been reported in colorectal cancer (27, 28), pancreatic cancer (18) and gastric cancer (19, 29). Several recent reports suggest that METTL3 promotes cancer cell metastasis (19, 27–30). METTL3 regulates colorectal cancer metastasis by enhancing the mRNA stability of SOX2, HK2 and SLC2A1 (GLUT1) through an m6A-IGF2BP2/3-dependent mechanism (27, 28). METTL3 promotes mRNA methylation, enhances the stability of HDGF and ZMYM1 and promotes gastric cancer metastasis (19, 29). METTL3 has been shown to induce epithelial-mesenchymal transition (EMT), the early event of metastasis by YTHDF1 mediating m6A-increased translation of Snail mRNA (30). The expression of METTL3 was shown to be significantly increased in ESCC tissues (31). However, the functional roles and the underlying mechanisms of METTL3 in ESCC remain largely unknown.

Glutamine (Gln) is the most abundant amino acid in human plasma (32). Many cancers exhibit a notable preference for Gln in respiration (33). Humans have two genes encoding glutaminase enzymes, glutaminase 1 (GLS1) and GLS2. GLS1 has been shown to be associated with Gln addiction in tumors and has oncogenic properties (34–36), whereas the function of GLS2 in cancer is less well defined and appears to be context dependent (37–45). GLS2 has been reported as a tumor suppressor in some types of cancer (37, 43–45). GLS2 repressed cell migration, invasion and metastasis of in hepatocellular carcinoma (37) and induced growth inhibition in glioma cell lines (45). However, increased expression of GLS2 promoted metastasis and increased mortality risk in breast cancer (41).

Here, we show that the expression of METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in ESCC. Clinically, elevated METTL3 levels were predictive of poor prognosis. Functionally, we found that METTL3 promoted the migration and invasion of ESCC cells in vitro. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in ESCC cells for the first time and identified GLS2 as a downstream target of METTL3. Accordingly, GLS2 knockdown decreased the cell migration and invasion. In conclusion, we identified METTL3/GLS2 signaling as a potential therapeutic target in antimetastatic strategies against ESCC.



Materials and Methods


Patients and Tissue Specimens

ESCC tissue microarray (TMA) slides were purchased from Shanghai Outdo Biotech Co., Ltd., and were collected between 2009 and 2015. The ESCC TMA slide (HEsoS180Su07) contains 101 tumor tissues and 53 adjacent normal tissues. All samples were confirmed by pathological examination according to the American Joint Committee on Cancer (AJCC) Cancer Staging Manual (8th edition). The clinical characteristics of all patients are listed in Table S1. Written informed consent for the biological studies was obtained from the patients or their guardians. All experiments were approved by the Ethics Committee of The First Affiliated Hospital of Guangdong Pharmaceutical University.



Immunohistochemistry (IHC)

IHC staining was performed as described previously (46). Briefly, TMAs were treated with xylene and 100% ethanol, followed by decreasing concentrations of ethanol. After antigen retrieval, TMAs were blocked and stained with anti-METTL3 antibody (1:500, Abcam, USA), followed by incubation with secondary antibody and standard avidin biotinylated peroxidase complex. Hematoxylin was used for counterstaining, and images were obtained with an Image acquisition system (Olympus, Japan). The total METTL3 immunostaining score was calculated as the sum of the score for the proportion of positively stained tumor cells (PP) and the score for staining intensity (SI). PP was scored with a four-point scale: 0 (< 5%), 1 (5–25%), 2 (25–50%), 3 (50%-75%), and 4 (>75%), and SI was scored on a scale of 0 to 3 (0, negative staining; 1, weak staining; 2, moderate staining; and 3, strong staining). The final staining score was calculated by multiplying the SI and PP scores, resulting in a score value ranging from 0 to 12. The median value of the total staining score was 4; thus, a score of 0-4 was defined as low expression, and a score of 4-12 was defined as high expression.



Cell Culture and Transfection

The human esophageal epithelial cell line HEEC and the ESCC cell lines TE1, TE13, Eca109 and EC-1 were obtained from the Beina Chuanglian Biotechnology Research Institute (Beijing, China). All cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and antibiotics (100 μg/mL penicillin and 100 μg/mL streptomycin) at 37°C in a humidified incubator with 5% CO2.



Lentiviral Packaging and Cell Transduction

METTL3 knockdown or overexpression lentiviruses were obtained from Shanghai GeneChem Co., Ltd, China. For overexpression, cDNA was amplified by PCR and subcloned into the GV341 vector according to the manufacturer’s instructions. For stable silencing, shRNA lentiviruses (sh-METTL3 with target sequence GCCTTAACATTGCCCACTGAT) were constructed using GV248 vectors. TE13 and TE1 cells were plated in 24-well dishes at 20-30% confluence and infected with METTL3 overexpression lentivirus (LV-METTL3), negative control (LV-NC), METTL3 knockdown lentivirus (sh-METTL3), or a scramble control (sh-NC). Pools of stable transduced cells were generated by selection using puromycin (1 μg/ml) for 2 weeks. METTL3 and GLS2 siRNAs were ordered from RiboBio Co., Ltd, China (METTL3 with target sequence CAAGTATGTTCACTATGAA; GLS2_1 with target sequence CGGCTATTATCTCAAGGAA; GLS2_2 with target sequence GGTCAATGCTGGTGCCATT). Transfection was achieved by using Lipofectamine 3000 (Invitrogen) following the manufacturer’s protocols. After transfection, the expression of GLS2 was validated by qRT-PCR analysis and Western blots.



RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from cells by using RNAiso Plus (TaKaRa, Japan) according to the manufacturer’s protocol. cDNA was synthesized using a TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix kit (Transgen, China) and qRT-PCR for mRNA was performed using an UltraSYBR Mixture kit (ComWin Biotech, China). The relative gene expression of mRNAs was calculated by using the 2-ΔΔCt method. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as the endogenous standard control for mRNA detection. Each sample was assayed in triplicate, and data were analyzed by comparing Ct values. All PCR primers were purchased from Igebiotech (Guangzhou, China). All primers used in this study are as follows: METTL3_F TTGTCTCCAACCTTCCGTAGT and METTL3_R: CCAGATCAGAGAGGTGGTGTAG; GLS2_F: CTGCACTAAAGGCCACTGGA and GLS2_R: TCTTTCGGAATGCCTGGGTC; GAPDH_F: AGCCTCAAGATCATCAGC and GAPDH_R: GAGTCCTTCCACGATACC.



Western Blotting (WB) Analysis

Total cellular proteins were lysed by RIPA buffer containing protease inhibitors (Beyotime, China). Protein extracts were harvested and quantified by bicinchoninic acid analysis (Beyotime, China). Protein extracts were separated by 10% SDS-PAGE and transferred onto polyvinylidene fluoride (PVDF) membranes (Bio-Rad, USA). After incubation with primary antibodies, the membranes were then incubated with peroxidase (HRP)-conjugated secondary antibody (1:3000, Beyotime, China). After washing, signals were detected using a chemiluminescence system (Sagecreation, China). Anti-METTL3 (1:1000 dilution, Abcam, Cambridge, UK), anti-GLS2 (1:1000, Sigma-Aldrich, St-Louis, MO, USA), anti-β-actin (1:1000, Cell Signaling Technology, USA) and anti-GAPDH (1:1000 dilution, Cell Signaling Technology, USA) antibodies were used.



Wound Healing Assay

TE13 cells (6.5×104) or TE1 cells (4.5×104) were seeded in each well of a Culture-Insert 2 Well (ibidi, Germany), which was placed in a 24-well plate. After incubation for 24 h, a scratch was made after removing the Culture-Insert 2 Well by using sterile tweezers. The plate was washed gently twice and cultured in DMEM supplemented with 1% FBS at 37°C with 5% CO2. The results of cell migration were recorded at 0, 6 and 9 h by a microscope. Each assay was repeated three times.



Cell Migration Assay

Cell migration assays were carried out by transwell chamber assays (Corning, US). TE13 cells (1×105) or TE1 cells (5×104) were seeded in the upper chamber in serum-free medium, and the lower side was filled with DMEM containing 10% FBS. After incubation at 37°C in 5% CO2 for a suitable time (TE13 cells: 27 h, TE1 cells: 12 h), the upper chambers were fixed with 4% paraformaldehyde for 15 minutes, stained with 0.1% crystal violet and photographed using a microscope. All studies were repeated at least three times in triplicate.



Cell Invasion Assay

Transwell chambers precoated with Matrigel (Corning, US) were used to perform the invasion assay. A total of 1×105 TE13 cells or 5×104 TE1 cells were seeded in the upper chamber in serum-free medium, and the lower side was filled with DMEM containing 10% FBS. After incubation at 37°C in 5% CO2 for a suitable time (TE13 cells: 30 h, TE1 cells: 15 h), the upper chambers were fixed with 4% paraformaldehyde for 15 minutes, stained with 0.1% crystal violet and photographed using a microscope. All studies were repeated at least three times in triplicate.



Methylated RNA Immunoprecipitation Sequencing (MeRIP-Seq)

Total RNA from the transfected TE13 cells was extracted using RNAiso Plus (TaKaRa, Japan) following the manufacturer’s procedure. The total RNA quality and quantity were analyzed by a Bioanalyzer 2100 and RNA 6000 Nano LabChip Kit (Agilent, CA, USA) with RIN number >7.0. Approximately 200 µg of total RNA was subjected to isolation of poly (A) mRNA with poly-T oligo-attached magnetic beads (Invitrogen). Following purification, the poly(A) mRNA fractions are fragmented into ~100-nt-long oligonucleotides using divalent cations under elevated temperature. Then, the cleaved RNA fragments were incubated for 2 h at 4°C with m6A-specific antibody (No. 202003, Synaptic Systems, Germany) in IP buffer (50 mM Tris-HCl, 750 mM NaCl and 0.5% Igepal CA-630) supplemented with BSA (0.5 μg μl−1). The mixture was then incubated with protein-A beads and eluted with elution buffer (1 × IP buffer and 6.7 mM m6A). Eluted RNA was precipitated by 75% ethanol. Eluted m6A-containing fragments (IP) and untreated input control fragments were converted to the final cDNA library in accordance with strand-specific library preparation by the dUTP method. The average insert size for the paired-end libraries was ~100 ± 50 bp. Then, we performed the paired-end 2×150 bp sequencing on an Illumina NovaSeq™ 6000 platform at LC-Bio Biotech, Ltd., (Hangzhou, China) following the vendor’s recommended protocol.



RNA-Binding Protein Immunoprecipitation (RIP) Assay

RNA immunoprecipitation was performed using the Magna RIP RNA-Binding Protein Immunoprecipitation Kit (Millipore) following the manufacturer’s protocol. Briefly, after formaldehyde -crosslinking (0.3% for 10 min), 2 × 107 TE13 cells were lysed in RIP lysis buffer. Magnetic Bead Protein A/G was incubated with 5 μg of an anti-METTL3 rabbit antibody (ab195352, Abcam) or normal rabbit IgG for 1 hour at room temperature. Then, the coated beads were incubated with prepared cell lysates overnight at 4°C. Then, the RNA was extracted and resuspended in 10 μL of RNase-free water. The RNAs were analyzed by qRT-PCR.



Statistical Analysis

The statistical analysis was performed using SPSS 18.0 software (SPSS, IBM, Chicago, IL, USA). The data are expressed as the mean ± SD, and statistical significance was determined with Student’s t test. Statistical comparisons between groups were performed using Student’s paired t test. P values less than 0.05 were considered statistically significant. The association between METTL3 staining and clinicopathologic parameters was evaluated with the chi-square test. The cumulative survival time was calculated utilizing the Kaplan-Meier method and analyzed with the log-rank test. Univariate and multivariate analyses were performed based on the Cox proportional hazards regression model.




Results


METTL3 Is Highly Expressed in ESCC

To investigate the clinical significance of METTL3 expression in ESCC, we used IHC to examine METTL3 expression in 101 tumor tissues and 53 adjacent normal tissues. METTL3 staining was localized in the nucleus of cells (Figures 1A, B). As shown in Figure 1A, adjacent normal squamous epithelia had only a few scattered cells with high METTL3 expression in the basal layer. In contrast, strong METTL3 staining was observed in ESCC tumor tissues. Representative photos of ESCC cells with different METTL3 expression intensities were shown in Figure 1B. The IHC results showed that METTL3 expression was significantly higher in 71.7% (38/53) of the ESCC tissues than in the adjacent normal tissues (Figure 1C). We further examined METTL3 expression in four human ESCC cell lines (Eca109, TE1, TE13 and EC-1) and a normal esophageal epithelial cell line (HEEC). We also found that METTL3 expression was higher in the ESCC cell lines than in the HEEC cell line (Figures S1A, B). Moreover, METTL3 expression was found to be significantly upregulated in other types of cancer, such as hepatocellular carcinoma (HCC) and cholangiocarcinoma (Figure S1C).




Figure 1 | Upregulation of METTL3 expression in ESCC tissues is strongly associated with poor prognosis. (A) Representative immunostaining of METTL3 in sections from esophageal tumors and adjacent normal tissues. Photomicrographs obtained at × 200 magnification. (B) Representative METTL3 expression in ESCC with negative, weak, moderate and high staining. (C) The IHC score of METTL3 in ESCC tissues was higher than that of adjacent normal tissues. Statistical significance was determined by a two-tailed, paired Student’s t test. (D) METTL3 expression was significantly associated with depth of invasion. Statistical significance was determined using a two-tailed, unpaired Student’s t test. (E) Kaplan–Meier analysis of overall survival according to low and high METTL3 protein expression in 93 ESCC patients. (**P < 0.01, ***P < 0.001).





The Expression of METTL3 Was Correlated With the Depth of Invasion and Poor Prognosis

We further investigated the relationship of METTL3 expression with the clinicopathological features. The median expression value of METTL3 was used as a cut-off point to separate the patients into high and low expression groups. As shown in Table 1, METTL3 expression was significantly associated with depth of invasion (P = 0.007). There was no significant association between METTL3 expression and age (P = 0.373), sex (P = 0.352), lymph node metastasis (P = 0.927) or TNM stage (P = 0.850). METTL3 was significantly upregulated in ESCC with more advanced T grades (Figure 1D; P < 0.0001). Kaplan–Meier analysis showed that high levels of METTL3 expression were correlated with poor overall survival in ESCC (Figure 1E). Univariate analysis showed that overall survival was correlated with METTL3 expression (Table 2). Further, multivariate Cox regression analysis revealed that METTL3 expression was an independent prognostic factor for poor survival (Table 3). Additionally, by using Gene Expression Profiling Interactive Analysis (GEPIA) we found that high expression of METTL3 was correlated with poor survival in patients with HCC (Figure S1D).


Table 1 | Correlation between METTL3 expression and clinicopathologic features of ESCC patients (n = 101).




Table 2 | Overall survival of ESCC patients: univariate analysis.




Table 3 | Overall survival of ESCC patients: multivariate analysis.





Silencing METTL3 Expression Inhibits the Migration and Invasion of ESCC Cells

METTL3 expression was found to be upregulated in lung cancer, breast cancer, liver cancer and glioblastoma (47–50) and associated with metastasis in lung cancer (47) and oral squamous cell carcinoma (51). To explore the role of METTL3 in ESCC, we used pLenti-shMETTL3 and siRNA to knockdown endogenous METTL3 expression in ESCC cells. Our results showed that METTL3 shRNA and siRNA transfection significantly reduced the expression of METTL3 in ESCC cell lines (Figures 2A, B and S2A). Cell migration was determined by transwell migration and wound healing assays. We found that downregulation of METTL3 expression inhibited the migration of TE13 and TE1 cells (Figures 2C; S2B). Wound healing assays showed that downregulation of METTL3 expression led to a decrease in cell wound healing in TE13 and TE1 cells (Figure 2D). Transwell invasion assays were conducted to measure cell invasion in ESCC cells after METTL3 knockdown. The results shown that downregulation of METTL3 expression substantially suppressed the invasion of ESCC cells (Figures 2E and S2C). This finding suggested that METTL3 knockdown could effectively inhibit the migration and invasion of ESCC cells.




Figure 2 | Downregulation of METTL3 expression inhibits the migration and invasion of ESCC cell lines. (A) qRT-PCR analysis of the expression of METTL3 in ESCC cells infected with pLenti-shMETTL3 or pLenti-vector. (B) Western blot analyses of the expression of METTL3 extracts from ESCC cells infected with pLenti-shMETTL3 or pLenti-vector. (C) Transwell migration assays were used to estimate the effects of downregulation of METTL3 on ESCC cell migration. (D) Wound healing assays were used to detect cell migration in ESCC cells after METTL3 shRNA transfection. (E) Transwell invasion assays were used to estimate the effects of downregulation of METTL3 expression on ESCC cell invasion. (The quantitative data are presented in the histograms and were assessed with a two-tailed unpaired Student’s t test. Data are presented as the mean ± SD. **P < 0.01, ***P < 0.001).





Overexpression of METTL3 Promotes Cell Migration and Invasion

To detect the effect of METTL3 on ESCC, we then transfected ESCC cells with METTL3 lentiviral vectors. The expression of METTL3 was increased, as shown by qRT-PCR and Western blots (Figures 3A, B and S3A). Transwell migration assays showed that METTL3 overexpression substantially increased the migration of ESCC cells (Figures 3C and S3B). Wound healing assays showed that METTL3 overexpression substantially accelerated wound closure in TE13 cells (Figure 3D). In addition, transwell invasion assays showed that the number of invading cells was significantly higher in the METTL3-overexpressing cells than in the control cells (Figure 3E). Our findings indicated that METTL3 overexpression increased cell migration and invasion in ESCC cells.




Figure 3 | Overexpression of METTL3 promotes cell migration and invasion. (A) qRT-PCR analysis of the expression of METTL3 in ESCC cells infected with pLenti-METTL3 or pLenti-vector. (B) Western blot analyses of the expression of METTL3 extracts from ESCC cells infected with pLenti-METTL3 or pLenti-vector. (C) Transwell migration assays revealed that overexpression of METTL3 increased the migration of TE13 and TE1 cells. (D) Cell migration was assessed in wound healing assays. (E) Transwell invasion assays revealed that overexpression of METTL3 increased the invasion of TE13 and TE1 cells. (The quantitative data are presented in the histograms and were assessed with a two-tailed unpaired Student’s t test. Data are presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001).





MeRIP-Seq Analysis Reveals the m6A Profiles in ESCC Cells

To investigate the downstream target mRNAs of METTL3, we performed m6A-RNA immunoprecipitation sequencing (MeRIP-Seq) to compare the global profiling of m6A target genes between the control and METTL3 stable knockdown cells. The MeRIP-Seq results showed that a proportion of m6A peak distributions displayed m6A peaks in the 3’ untranslated region (UTR), 5’ UTR, exons and coding sequences (CDSs) (Figure 4A). In total, 1111 and 802 m6A peaks presented significant decrease and increase, respectively, in the METTL3 knockdown cells relative to the control cells (|log2(FC)| ≥0.5, P<0.05; Supplementary Material). Since METTL3 mediates m6A modification, the 1111 decreased peaks are theoretically anticipated to include genuine targets of METTL3. Therefore, the association between these peaks and differentially expressed genes was identified by RNA-seq. A total of 132 genes were differentially expressed by at least 2-fold in the METTL3 knockdown cells (Figure 4B). Pathway analysis showed the potential pathway for ESCC (Figure 4C). Gene Ontology (GO) analysis showed the target mechanisms for ESCC (Figure 4D). We then integrated the RNA-Seq analysis with the MeRIP-Seq analysis. Filtering the 1111 decreased m6A peaks (harbored by 983 genes) within the 132 differentially expressed genes resulted in the identification of 32 peaks harbored by 26 genes (5 of them were downregulated), suggesting that knockdown of METTL3 expression might reduce the m6A levels of these 26 gene transcripts and thus result in the altered expression of these transcripts (Figures 4E, F and Table S2).




Figure 4 | MeRIP-Seq analysis unveils the m6A profiles in the ESCC cells. (A) Proportion of m6A peak distribution in the 5’UTR, start codon, 3’UTR, first exon or other exon region across the entire set of mRNA transcripts. (B) The volcano plot for RNA-Seq analysis showed the differential expression of transcripts, including upregulated and downregulated transcripts. (C) Pathway analysis showed the potential pathway for ESCC. (D) Gene Ontology analysis showed the target mechanisms for ESCC. (E, F) The shared genes between MeRIP-Seq and RNA-seq.





GLS2 as a Downstream Target of METTL3

METTL3 could enhance target transcripts stability in a YTHDF1/IGF2BP2-mediated m6A-dependent manner (27, 30, 51, 52); therefore, we focused on the candidate genes with downregulated expression. Among these 5 genes with downregulated expression, m6A peaks in the UTRs of GLS2 showed a significant decrease in the METTL3 knockdown cells, and its expression demonstrated a significant shift after METLL3 knockdown (Figure 5A, Table S3). Next, RIP-qRT-PCR demonstrated strong binding of METTL3 with GLS2 in TE13 cells (Figure 5B). We also found that GLS2 expression was higher in ESCC cell lines than in HEEC cells (Figure S4), and GLS2 expression was strongly correlated with METTL3 expression (Figure 5C). Subsequently, we measured the RNA and protein expression of GLS2 upon silencing of METTL3. METTL3 knockdown resulted in significant downregulation of GLS2 expression at the RNA and protein levels (Figures 5D; S2A). Conversely, METTL3 overexpression upregulated GLS2 expression at the RNA and protein levels (Figure 5E). To investigate the biological role of GLS2 in ESCC cell migration and invasion, we knocked down GLS2 in TE13 cells by transfection of siRNA. Our results showed that siRNA transfection significantly reduced the expression of GLS2 at the RNA and protein levels in ESCC cells (Figures 6A, B). Transwell migration assays showed that knockdown of GLS2 expression significantly repressed cell migration compared to that of the control groups (Figure 6C). Transwell invasion assays were conducted to measure cell invasion in ESCC cells after GLS2 siRNA transfection. As shown in Figure 6D, downregulation of GLS2 notably suppressed the invasion of ESCC cells. To better understand roles of GLS2 in the METTL3-mediated cell migration and invasion, we knocked down GLS2 in TE13 cells with stable METTL3 overexpression. Transwell assays showed that downregulation of GLS2 attenuated METTL3-mediated migration and invasion (Figures 6E–G). These results strongly suggested that METTL3 promoted the ESCC migration and invasion, at least partially, in a GLS2-dependent manner. Overall, these findings indicated that GLS2 is a downstream target of METTL3.




Figure 5 | GLS2 as a downstream target of METTL3. (A) m6A peaks were decreased in 3’UTRs of GLS2 genes in the METTL3 knockdown cells. (B) RIP-qRT-PCR showing the binding of METTL3 to GLS2. (C) TCGA database illustrated the correlation between GLS2 and METTL3 expression. (D) GLS2 expression in TE13 and TE1 cells with stable METTL3 knockdown by using qRT-PCR and Western blots. (E) qRT-PCR and Western blot analysis of GLS2 expression in TE13 and TE1 cells with stable METTL3 overexpression. Data are presented as the mean ± SD. *P < 0.05, ***P < 0.001.






Figure 6 | METTL3 promoted ESCC cells migration and invasion in a GLS2-dependent manner. (A) qRT-PCR analysis of GLS2 expression in TE13 cells with transient GLS2 knockdown. (B) Western blot analysis of GLS2 expression in TE13 cells with transient GLS2 knockdown. (C) Transwell migration assays were used to estimate the effects of GLS2 downregulation on TE13 cells migration. (D) Transwell invasion assays were used to estimate the effects of downregulation of GLS2 on TE13 cells invasion. (E, F) Transwell assays were used to detect the effects of downregulation of GLS2 on METTL3-overexpression cells migration and invasion. A total of 8×104 cells were seeded in the upper chamber in serum-free medium for a suitable time (migration: 24 h, invasion: 35 h), then the migrated cells were fixed and stained. (G) Western blot analysis of METTL3 and GLS2 expression. Data are presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001.






Discussion

Accumulating evidence suggests that m6A RNA methylation substantially impacts RNA metabolism and is involved in the pathogenesis of many kinds of diseases, including cancer (53). However, the regulation of m6A modification in ESCC is still unclear. METTL3, a major catalytic enzyme in the m6A methyltransferase system, is dysregulated and plays a dual role (oncogene or tumor suppressor) in different human cancers (48, 49, 54, 55). METTL3 is implicated in many aspects of tumor progression, including tumorigenesis, proliferation, invasion, migration, cell cycle, differentiation, and viability (48, 49, 55).

In our research, we found that METTL3 expression was significantly upregulated in the ESCC tissue and cell lines. In addition, this ectopic overexpression was correlated with poor prognosis. These findings are consistent with the results from the work by Xia et al. (31). In vitro cellular experiments, and gain- and loss-of function assays, demonstrated that METTL3 could promote ESCC migration and invasion, indicating that METTL3 might act as an oncogene in ESCC tumorigenesis.

METTL3 could generate RNA methylation on the N6 nitrogen of adenosine. Because m6A modification relies on reader proteins to exert its biological functions, RNA transcripts might be sorted into different groups based on their readers. For example, METTL3 has been shown to promote Snail mRNA translation in a YTHDF1 mediated m6A-dependent manner (30). In HCC, METTL3 interacts with SOCS2 and induces the m6A on SOCS2 mRNA, thus repressing SOCS2 expression through a YTHDF2-dependent mechanism (49). In colorectal cancer, METTL3 can add m6A on the CDS regions of SOX2 transcripts to prevent SOX2 mRNA degradation via IGF2BP2 (27). METTL3 stabilizes HK2 and SLC2A1 expression through an m6A-IGF2BP2/3-dependent mechanism (28).

To investigate the mechanism of METTL3 in ESCC metastasis, we used MeRIP-Seq and RNA-Seq to identify the targets of METTL3. MeRIP-seq showed that the m6A peaks were significantly enriched in the region surrounding the stop codon, including the CDS and 3’UTR. We integrated the RNA-Seq analysis with the MeRIP-Seq analysis and identified 26 candidate genes. The expression levels of five of the 26 candidate genes (PTPRZ1, GLS2, HIST2H4A, FTO, HIST1H2BJ) were significantly downregulated after METLL3 knockdown, suggesting that METTL3-mediated m6A modification might regulate the transcription of these five genes. Then, we used a RIP assay to assess the direct interaction between GLS2 and METTL3, and the results demonstrated strong binding of METTL3 with GLS2 in TE13 cells. In functional cellular experiments, we found that METTL3 knockdown or overexpression strongly regulated GLS2 expression. Moreover, downregulation of GLS2 attenuated METTL3-mediated migration and invasion. Overall, these findings indicated that GLS2 is a downstream target of METTL3.

The glutaminase isoenzymes GLS1 and GLS2 are key enzymes for glutamine metabolism. Efforts to target glutamine catabolism for cancer therapy have focused on inhibiting GLS1, which is highly expressed and oncosupportive in diverse malignancies (56). The importance of GLS2 in tumorigenesis is still unclear. GLS2 has been described as a tumor suppressor factor in HCC (37, 43, 44, 57) and glioblastoma (45). However, GLS2 has been reported as an oncogene in breast cancer (40, 41) and cervical cancer (58). In breast cancer, GLS2 was linked to enhanced in vitro cell migration and invasion and in vivo lung metastasis (41). Marilia et al. reported that GLS2 can enhance the EMT markers vimentin and actin stress fibers in breast cancer cells, and ERK inhibition affected the proliferation and migration induced by GLS2, indicating that GLS2 can regulate migration and invasion through the ERK-ZEB1-vimentin axis. We report here that downregulation of GLS2 expression suppressed the migration and invasion of ESCC cells, indicating that GLS2 might act as an oncogene in ESCC.

In conclusion, our findings confirmed the oncogenic role of METTL3 in ESCC. We herein identified GLS2 as a downstream target of METTL3. Our findings uncover METTL3/GLS2 signaling as a potential therapeutic target in antimetastatic strategies against ESCC.
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Background: Esophageal cancer (EC) is a common malignant tumor. MicroRNAs (miRNAs) play a key role in the occurrence and metastasis and are closely related to the prognosis of EC. Therefore, it will provide a powerful tool to predict the overall survival (OS) of EC patients based on miRNAs expression in EC tissues and blood samples.

Methods: Five independent databases, TCGA, GSE106817, GSE113486, GSE122497, and GSE112264, were used to construct nine-miRna signature and nomograms for prognosis. The bioinformatics analysis was used to predict the enrichment pathways of targets.

Results: A total of 132 overexpressed miRNAs and 23 suppressed miRNAs showed significant differential expression in both EC serum and tissue samples compared with normal samples. We also showed that nine miRNAs were related to the prognosis of EC. Higher levels of miR-15a-5p, miR-92a-3p, miR-92a-1-5p, miR-590-5p, miR-324-5p, miR-25-3p, miR-181b-5p, miR-421, and miR-93-5p were correlated to the shorter survival time in patients with EC. In addition, we constructed a risk prediction model based on the levels of nine differentially expressed miRNAs (DEMs) and found that the OS time of EC patients with high-risk score was shorter than that of EC patients with low-risk score. Furthermore, our results showed that the risk prediction scores of EC samples were higher than those of normal samples. Finally, the area under the curve (AUC) was used to analyze the risk characteristics of EC and normal controls. By calculating the AUC and the calibration curve, the RNA signature showed a good performance. Bioinformatics analysis showed that nine DEMs were associated with several crucial signaling, including p53, FoxO, PI3K-Akt, HIF-1, and TORC1 signaling. Finally, 14 messenger RNAs (mRNAs) were identified as hub targets of nine miRNAs, including BTRC, SIAH1, RNF138, CDC27, NEDD4L, MKRN1, RLIM, FBXO11, RNF34, MYLIP, FBXW7, RNF4, UBE3C, and RNF111. TCGA dataset validation showed that these hub targets were significantly differently expressed in EC tissues compared with normal samples.

Conclusion: We have constructed maps and nomograms of nine-miRna risk signals associated with EC prognosis. Bioinformatics analysis revealed that nine DEMs were associated with several crucial signaling, including p53, FoxO, PI3K-Akt, HIF-1, and TORC1 signaling, in EC. We think that this study will provide clinicians with an effective decision-making tool.
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INTRODUCTION

Esophageal cancer (EC) is one of the most common cancers (Heitmiller, 2001; Eslick, 2009; Gu et al., 2020b). Traditionally, EC is divided into squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) (Holmes and Vaughan, 2007). A total of 88% of EC are ESCCs (Holmes and Vaughan, 2007). Survival rates were low for both histologic types due to that most patients were diagnosed at a late stage. The 5-year survival rate worldwide is 15–25% (Uhlenhopp et al., 2020). According to previous reports, only one of the eight ECs has been identified in the early stages (Asombang et al., 2019). Most of the ECs are diagnosed after dysphagia, local tumor, and other symptoms (Ginex et al., 2013). Therefore, it is urgent to find early diagnostic markers for EC. Simulated staining endoscopy and magnifying endoscopy are the main methods for the early diagnosis of EC (Hoffman et al., 2017). However, it is worth noting that there is still a lack of effective cancer markers for the early diagnosis of EC. Of note, messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA) levels have also been found to correlate with tumor progression in ECs. For example, angiopoietin-like protein 2 is used as a new biomarker for EC (Ide et al., 2015). Improving the rate of early cancer screening is an effective method to reduce the mortality of EC.

MicroRNAs are composed of 18–25 nucleotides that regulate gene expression in many cancers (Ling et al., 2013). Some of these miRNAs are crucial for cancer progression and potentially related to diagnosis, assessment of therapeutic response, and prognostic prediction (Bertoli et al., 2015). According to previous reports, miRNAs play a crucial role in tumor cell growth and differentiation by modulating the expression of oncogenes or tumor suppressors (Frixa et al., 2015). Over the past decade, the potential functions of miRNAs as tumor markers have attracted considerable attention due to that miRNAs in tissues can distinguish cancer patients from healthy controls. Identification of miRNAs in individual body fluids opens new perspectives for non-invasive diagnosis, prognostic judgment, and prognosis prediction (Cortez et al., 2011). The role of circulating miRNAs (c-miRNAs) in tumorigenesis has attracted considerable attention, and the expression of multiple c-miRNAs had been reported to be differently expressed in many cancers, including but not limited to hepatocellular, prostate, and breast cancers (Cui et al., 2019). c-miRNAs can be detected in almost every cell type under various conditions, such as secretion, apoptosis, inflammation, and so on (Cui et al., 2019). In addition, the clinical importance of c-miRNAs in EC has been confirmed. For example, Shen et al. determined that the serum expression of miR-16-5p is correlated to ESCC (Reis et al., 2020). El Kirill et al. found that serum levels of miR-199a-3p are down-regulated in EC samples. Gu et al. (2018) found that serum miR-331-3p can predict the recurrence of EAC. However, there is no comprehensive analysis of the different expressions of c-miRNA in ECs.

In this study, we identified patients with differentially expressed miRNAs (DEMs) in EC serum. We also explored whether miRNAs are associated with the overall survival (OS) in patients with EC. Small RNA-based markers of DEMs and a new miRNA-based model were developed to predict the outcome in EC. This study provides a new biomarker for the early prognosis and treatment of EC.



MATERIALS AND METHODS


Data Source and Preprocessing

Four datasets including GSE113486 (Usuba et al., 2019), GSE106817 (Yokoi et al., 2018), GSE122497 (Sudo et al., 2019), and GSE112264 (Urabe et al., 2019) were downloaded from GEO database and analyzed with the edgeR software package (Robinson et al., 2010). GSE106817 included serum miRNA profiles of 4,046 samples, which consist of 2,759 non-cancer controls, 88 EC samples, and 1,199 other solid cancer samples. GSE113486 included serum miRNA profiles of 972 samples, which consist of 100 non-cancer controls, 40 EC samples, and 832 other solid cancer samples. GSE122497 included serum miRNA profiles of 5,531 samples, which consist of 4,964 non-cancer controls and 567 EC samples. GSE112264 included serum miRNA profiles of 1,591 samples, which consist of 41 non-cancer controls, 50 EC samples, and 1,500 other solid cancer samples.



Construction of Risk Scoring Formula

Lasso-CPHR analysis using the glmnet package of the R software was performed (Engebretsen and Bohlin, 2019). MiRNAs with | log2FC| ≥ 0 and a P-value < 0.01 were identified as significant DEMs in EC. The risk score was determined based on the regression coefficient of the miRNA level. The Risk Scoring Formula was calculated as Risk score = the sum of the coefficients × miRNA level using OncomiR database1.



Evaluation of miRNA Characteristic

Kaplan–Meier survival analysis was applied to compare the OS between the high- and low-risk groups (Gu et al., 2020a). Survival ROC package was used to estimate the sensitivity and specificity of RNA signature based on the area under the curve (AUC) values.



Functional Enrichment Analysis

Five databases, Starbase (Yang et al., 2011; Li et al., 2014), RNA22 (Loher and Rigoutsos, 2012), targetscan (Gu et al., 2020d), miRANda (Wang et al., 2014), and PicTAR (Krek et al., 2005), were applied to predict the targets of miRNAs. The GO and KEGG analyses were conducted using the David software (Shi et al., 2018; Gu et al., 2020c).



RESULTS


Identification of DEMs in the Serum Samples of EC Patients

In order to identify DEMs in the serum samples of EC, we analyzed four datasets including GSE113486, GSE106817, GSE122497, and GSE112264, which included 71 EC samples and 13 normal samples, 1,215 EC samples and 3,254 normal samples, 257 EC samples and 325 normal samples, and 2,576 EC samples and 2,654 normal samples, respectively. A total of 1,370, 1,326, 1,330, and 1,333 up-regulated miRNAs were identified in GSE113486 (Figure 1A), GSE106817 (Figure 1B), GSE122497 (Figure 1C), and GSE112264 (Figure 1D) databases, respectively. Meanwhile, 272, 262, 255, and 246 down-regulated miRNAs were identified in GSE113486 (Figure 1A), GSE106817 (Figure 1B), GSE122497 (Figure 1C), and GSE112264 (Figure 1D) databases, respectively. The expression levels of DEMs in these databases were visually displayed using a heatmap and volcano plot.
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FIGURE 1. Identification of DEMs associated with EC. (A–E) The heatmap showed the DEMs in EC using GSE113486 (A), GSE106817 (B), GSE122497 (C), GSE112264 (D), and TCGA (E) databases, respectively.




Identification of DEMs in the Tissue Samples of EC Patients

In order to identify DEMs in the tissue samples of EC patients, we analyzed TCGA, which included 365 EC samples and 13 normal samples (Figure 1E). As shown in Figure 2, a total of 132 induced miRNAs (Figure 2A) and 23 suppressed miRNAs (Figure 2B) were observed in EC compared with normal tissues.
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FIGURE 2. Venn map analysis of DEMs in Esophageal cancer. The common up-regulated (A) and down-regulated (B) miRNAs in EC using GSE113486, GSE106817, GSE122497, GSE112264, and TCGA databases, respectively.


By combining these results, we finally identified 63 common up-regulated miRNAs (including miR-221-5p, miR-15a-5p, miR-92a-3p, miR-92a-1-5p, miR-222-3p, miR-24-1-5p, miR-24-3p, and miR-3613-5p) and two common down-regulated miRNAs (miR-135a-3p and miR-139-3p) in serum and tissue samples of EC compared with normal tissues.



Identification of Survival Related to DEMs in EC

In order to identify survival related to DEMs in EC, we analyzed the correlation between 65 DEMs’ expression and OS time in EC using TCGA database. Our results showed that nine miRNAs were related to the prognosis of EC. Higher levels of miR-15a-5p (Figure 3A), miR-92a-3p (Figure 3B), miR-92a-1-5p (Figure 3C), miR-590-5p (Figure 3D), miR-324-5p (Figure 3E), miR-25-3p (Figure 3F), miR-181b-5p (Figure 3G), miR-421 (Figure 3H), and miR-93-5p (Figure 3I) were correlated to the shorter survival time in patients with EC. Very interestingly, we found that these miRNAs were significantly overexpressed in EC samples compared with normal tissues, suggesting that these miRNAs may serve as oncogenic miRNAs in EC (Figures 1A–E).
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FIGURE 3. Identification of survival related DEMs in EC. Higher expression levels of miR-15a-5p (A), miR-92a-3p (B), miR-92a-1-5p (C), miR-590-5p (D), miR-324-5p (E), miR-25-3p (F), miR-181b-5p (G), miR-421 (H), and miR-93-5p (I) were correlated to the shorter survival time in patients with EC.




Construction of a Risk Signature

Then, nine DEMs were used to develop a risk signature: Risk score = 1.811∗EmiR-15a-5p + 0.970∗EmiR-92a-3p + 1.122∗EmiR-92a-1-5p + 1.546∗EmiR-590-5p + 1.942∗EmiR-324-5p + 0.548∗EmiR-25-3p + 1.425∗EmiR-181b-5p + 2.565∗EmiR-421 + 0.889∗EmiR-93-5p (Figure 4). We observed that the EC with high-risk score value had shorter OS time than that with low-risk score value (P-value = 0.006368) (Figure 4).
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FIGURE 4. Construction of a risk signature. Nine DEMs were used to develop a risk signature: Risk score = 1.811*EmiR-15a-5p + 0.970*EmiR-92a-3p + 1.122*EmiR-92a-1-5p + 1.546*EmiR-590-5p + 1.942*EmiR-324-5p + 0.548*EmiR-25-3p + 1.425*EmiR-181b-5p + 2.565*EmiR-421 + 0.889*EmiR-93-5p.




Estimation of the Reliability of the Risk Signature

To further confirm the reliability of the risk signature in EC, we analyzed the risk signature score between normal samples and EC samples in these databases, including TCGA, GSE106817, GSE113486, GSE122497, and GSE112264. Our results showed that the risk signature score in EC was higher than that in normal samples in TCGA (Figure 5A), GSE106817 (Figure 5B), GSE113486 (Figure 5C), GSE122497 (Figure 5D), and GSE112264 (Figure 5E) databases.
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FIGURE 5. Risk signature score in EC samples was higher than that in normal samples. (A–E) The risk signature score in EC samples was higher than that in normal samples in TCGA (A), GSE106817 (B), GSE113486 (C), GSE122497 (D), and GSE112264 (E) databases.


In addition, the AUC analysis of the risk signature for distinguishing EC from normal samples was analyzed. In TCGA (Figure 6A), GSE106817 (Figure 6B), GSE113486 (Figure 6C), GSE122497 (Figure 6D), and GSE112264 (Figure 6E) cohorts, the receiver operating characteristic (ROC) curve analyses for the risk signature were 0.8844, 0.897, 0.9013, 0.888, and 0.9444, respectively, indicating considerable accuracy.
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FIGURE 6. The AUC analysis of the risk signature for distinguishing EC from normal samples was analyzed. (A–E) ROC curve analyses for the risk signature were 0.8844, 0.897, 0.9013, 0.888, and 0.9444 by analyzing TCGA (A), GSE106817 (B), GSE113486 (C), GSE122497 (D), and GSE112264 (E) cohorts, respectively.




Bioinformatics Analysis of DEMs

We used five databases to predict the roles of nine DEMs and detected 14,973 target genes, 546 of which were overlapped (Figure 7A). Therefore, these overlapping genes that may be regulated by nine DEMs were analyzed by GO and KEGG enrichment. We observed that nine DEMs are associated with p53 signaling, FoxO signaling, PI3K-Akt signaling, cell cycle, prolactin signaling, focal adhesion, miRNAs in cancer, and HIF-1 signaling (Figure 7B). GO analysis showed that nine DEMs were related to regulate protein polyubiquitination, transcription, cell cycle, DNA damage stimulus, intracellular signal transduction, response to reactive oxygen species, neuron apoptotic process, protein ubiquitination, cell cycle, phosphatidylinositol-3-phosphate biosynthetic process, mesenchymal cell proliferation, cellular response to leptin stimulus, and TORC1 signaling (Figure 7C).
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FIGURE 7. Bioinformatics analysis of DEMs. (A) Venn map analysis of potential targets of nine DEMs by using five online databases, Starbase, RNA22, targetscan, miRANda, and PicTAR databases. (B) GO analysis of DEMs in EC. (C) KEGG enrichment analyses of DEMs in EC.




Identification and Validation of Hub Targets of Nine miRNAs in EC

We next performed protein–protein interaction network analysis to identify hub targets of nine miRNAs. A total of 284 nodes and 785 edges were included in this network (Figure 8A). Fourteen mRNAs were identified as hub targets, including BTRC, SIAH1, RNF138, CDC27, NEDD4L, MKRN1, RLIM, FBXO11, RNF34, MYLIP, FBXW7, RNF4, UBE3C, and RNF111 (Figure 8B). We also analyzed the correlation between these mRNAs and clinical parameters in EC using TCGA database. Our results showed that RNF34 (Figure 8C), MYLIP (Figure 8D), FBXW7 (Figure 8E), RNF4 (Figure 8F), UBE3C (Figure 8G), RNF111 (Figure 8H), SIAH1 (Figure 8I), RNF138 (Figure 8J), CDC27 (Figure 8K), MKRN1 (Figure 8L), RLIM (Figure 8M), FBXO11 (Figure 8N), and BTRC (Figure 8O) were significantly up-regulated; however, NEDD4L (Figure 8P) was remarkably suppressed in EC tissues compared with normal samples.
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FIGURE 8. Identification and validation of hub targets of nine miRNAs in EC. (A) Protein–protein interaction network analysis to identify hub targets of nine miRNAs. (B) Ten mRNAs were identified as hub targets, including BTRC, SIAH1, RNF138, CDC27, NEDD4L, MKRN1, RLIM, FBXO11, RNF34, MYLIP, FBXW7, RNF4, UBE3C, and RNF111. (C–P) RNF34 (C), MYLIP (D), FBXW7 (E), RNF4 (F), UBE3C (G), RNF111 (H), SIAH1 (I), RNF138 (J), CDC27 (K), MKRN1 (L), RLIM (M), FBXO11 (N), BTRC (O), and NEDD4L (P) were remarkably suppressed in EC tissues compared with normal samples.




DISCUSSION

Many reports have shown that miRNAs are related to many pathological processes of EC (Sharma and Sharma, 2015), but there are no miRNAs that can predict the OS in EC patients. Moreover, the results of previous studies were obtained based on limited sample counts and limited datasets. In this study, we used five independent databases, including TCGA, GSE106817, GSE113486, GSE122497, and GSE112264, to identify DEMs in EC. More than 12,500 samples were included in this study. Furthermore, we analyzed miRNA expression levels between normal and EC samples to systematically determine the correlation between miRNA and clinical characteristics and prognosis, as well as OS time. We finally identified 63 common up-regulated miRNAs (such as miR-221-5p, miR-15a-5p, miR-92a-3p, miR-92a-1-5p, miR-222-3p, Has-miR-24-1-5p, miR-24-3p, and miR-3613-5p) and two common down-regulated miRNAs (miR-135a-3p and miR-139-3p) in serum and tumor tissues in EC patients compared with normal tissues. Further analysis showed that nine miRNAs were related to the prognosis of EC. Higher levels of miR-15a-5p, miR-92a-3p, miR-92a-1-5p, miR-590-5p, miR-324-5p, miR-25-3p, miR-181b-5p, miR-421, and miR-93-5p were correlated to the shorter survival time in patients with EC.

Over the past decade, “liquid biopsies” have shown potential to be novel biomarkers for cancer prognosis (Schlange and Pantel, 2016; Marrugo-Ramirez et al., 2018). Circulating tumor cells (CTCs)/DNA (ctDNA), cell-free miRNA (cfmiRna), tumor-induced platelets, and extracellular vesicles are relatively new blood-based biomarkers that can be used in biomarkers development (Lowes et al., 2016). These biomarkers have been shown to have the capacities to detect solid tumors and to provide prognostic and predictive information about the disease in multiple cancer types. In the present study, we observe that miR-15a-5p, miR-92a-3p, min-92a-1-5p, has-miR-590-5p, miR-181b-5p, Hsa-miR-421, and miR-93-5p were related to shorter OS in EC. In addition, we constructed a risk prediction model based on the expression levels of miR-15a-5p, miR-92a-3p, miR-92a-1-5p, miR-590-5p, miR-324-5p, miR-25-3p, miR-181b-5p, miR-421, and miR-93-5p and found that the OS time of EC patients with high-risk score is shorter than that of EC patients with low-risk score. Furthermore, our results showed that in TCGA, GSE106817, GSE113486, GSE122497, and GSE112264, the risk prediction scores of EC samples were higher than those of normal samples. Finally, AUC was used to analyze the risk characteristics of EC and normal controls. The AUC values of EC and normal subjects were 0.8844, 0.897, 0.9013, 0.888, and 0.9444, respectively, and suggested that this miRNA signature is a new biomarker for the prediction and diagnosis of EC.

Remarkably, several members of this RNA signature have been shown to be key regulators of human cancer. For example, miR-25 is reported to be a crucial regulator of cancers and non-cancer diseases (Caiazza and Mallardo, 2016). In tumors, miR-25 is a well-described oncogenic miRNA in a variety of cancers (Caiazza and Mallardo, 2016), including brain, lung, breast, ovarian, esophageal, stomach, colorectal, and liver cancers. Many miR-25-targeted mRNAs had been revealed to modulate cell growth, migration, oxidative stress, inflammation, and other biological processes (Caiazza and Mallardo, 2016). A previous study reported that miR-25 was a new marker for the diagnosis and monitoring of ESCC by analyzing plasma miRNA (Jia et al., 2017). MiR-25 overexpression is associated with lymph node metastasis. MiR-25 promotes metastasis of ESCC by targeting Fbxw7 and E-cadherin signaling pathways (Hua et al., 2017). miR-25-3p targeted Pten through PI3K/Akt pathway to regulate EC migration, invasion, and apoptosis (Zhang et al., 2020). MiR-93-5p and miR-324-5p are also reported to be an oncogene in many cancers, such as non-small-cell lung carcinoma, hepatocellular carcinoma, prostate cancer, and cervical cancer (Wu et al., 2014; Xiang et al., 2017; Yang et al., 2019; Vila-Navarro et al., 2020). In the esophagus, the importance and clinical significance of miR-93-5p are also illustrated. For example, exogenous miR-93-5p promotes EC cell proliferation and communication by targeting Pten. MiR-324-5p may promote the progression of thyroid, oropharyngeal, pancreatic, and lung cancer cells, polarized M2 macrophages in colon cancer, and modulated the microenvironment in thyroid cancer (Wan et al., 2020). However, the functions of miR-324-5p in EC remain unclear.

It is interesting that these miRNAs were related to regulate protein polyubiquitination, transcription, cell cycle, DNA damage stimulus, cell cycle, phosphatidylinositol-3-phosphate biosynthetic process, and mesenchymal cell proliferation by using bioinformatics analysis. Of note, in this study, we identified that nine DEMs are associated with several crucial signaling, including p53, FoxO, PI3K-Akt, HIF-1, and TORC1 signaling. These signaling had crucial roles in cancer cells. For example, PI3K/AKT pathway was activated in EC samples (Javadinia et al., 2018). Using specific inhibitors targeting this pathway significantly inhibited cell proliferation, enhancing apoptosis in EC cells (Shi et al., 2019). HIF-1, a transcription factor, plays a major role in the regulation of angiogenesis, glucose transport, and erythropoiesis. Previous studies showed that HIF-1α expression was higher in EC samples and significantly related to lower recurrence-free survival. Finally, 14 mRNAs were identified as hub targets of nine miRNAs, including BTRC, SIAH1, RNF138, CDC27, NEDD4L, MKRN1, RLIM, FBXO11, RNF34, MYLIP, FBXW7, RNF4, UBE3C, and RNF111. TCGA dataset validation showed that these hub targets were significantly differently expressed in EC tissues compared with normal samples. These studies, together with our findings, further demonstrate the potential functional importance of these miRNAs in endothelial cells.



CONCLUSION

In this study, we used five independent databases to analyze miRNA levels and clinical stages in EC. We have constructed maps and nomograms of nine-miRna risk signals associated with EC prognosis. Bioinformatics analysis revealed that nine DEMs are associated with several crucial signaling, including p53, FoxO, PI3K-Akt, HIF-1, and TORC1 signaling, in EC. We think that this study will provide clinicians with an effective decision-making tool.
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Avasimibe is a bioavailable acetyl-CoA acetyltransferase (ACAT) inhibitor and shows a good antitumor effect in various human solid tumors, but its therapeutic value in cholangiocarcinoma (CCA) and underlying mechanisms are largely unknown. In the study, we proved that avasimibe retard cell proliferation and tumor growth of CCAs and identified FoxM1/AKR1C1 axis as the potential novel targets of avasimibe. Aldo-keto reductase 1 family member C1 (AKR1C1) is gradually increased along with the disease progression and highly expressed in human CCAs. From survival analysis, AKR1C1 could be a vital predictor of tumor recurrence and prognostic factor. Enforced Forkhead box protein M1 (FoxM1) expression results in the upregulation of AKR1C1, whereas silencing FoxM1 do the opposite. FoxM1 directly binds to promoter of AKR1C1 and triggers its transcription, while FoxM1-binding site mutation decreases AKR1C1 promoter activity. Moreover, over-expressing exogenous FoxM1 reverses the growth retardation of CCA cells induced by avasimibe administration, while silencing AKR1C1 in FoxM1-overexpressing again retard cell growth. Furthermore, FoxM1 expression significantly correlates with the AKR1C1 expression in human CCA specimens. Our study demonstrates a novel positive regulatory between FoxM1 and AKR1C1 contributing cell growth and tumor progression of CCA and avasimibe may be an alternative therapeutic option for CCA by targeting this FoxM1/AKR1C1 signaling pathway.
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Introduction

Cholangiocarcinoma (CCA) is an aggressive cancer in bile ducts with a high frequency of recurrence and an extremely poor prognosis. In the past decade, the morbidity and mortality of CCA were on the rise worldwide (1–3). Numerous risk factors induce CCA, including primary sclerosing cholangitis, parasitic infections and choledochal cysts (4). Surgical resection is still the mainstay of potentially curative for CCA patients diagnosed at early-stage disease. For patients with advanced-stage or unresectable CCA, the effectiveness of systemic therapies is limited, and the median overall survival is less than one year (5). Recent progress in molecular genetics provide one avenue to develop pharmacological inhibitors of pathologic mutations. However, whether patients with advanced CCA could obtain a benefit from genetic profiling and classifications underlying CCA tumorigenesis, as well as screening more effective therapeutic strategies, including conventional chemotherapy, radiotherapy, targeted therapies, and immunotherapy remain largely unclarified.

Avasimibe, a bioavailable acetyl-CoA acetyltransferase (ACAT) inhibitor, has long been regarded as a promising antihyperlipidemic and antiathero-sclerotic drugs (6, 7). Avasimibe can directly reduce atherosclerotic activity, cholesterol level, macrophage infiltration, and the expression and activity of matrix metalloproteinase (7). Recently, increasing evidences showed antitumor effects of avasimibe on a variety of human solid tumors, including melanoma, hepatocellular carcinoma, and osteosarcoma (8–10). These reports demonstrate that avasimibe markedly inhibited tumor growth in vivo by targeting the downstream targets, such as Sterol O-Acyltransferase 1 (SOAT1) (8) and Acetyl-CoA Acetyltransferase 1 (ACAT-1) (11). To deepen the understanding of Avasimibe, our group focused on the discovery of new targets of Avasimibe. Forkhead Box M1 (FoxM1) is a member of Forkhead transcription factors family, working as an oncogene in human malignant tumors (12). Aldo-keto reductase 1 family member C1 (AKR1C1) has been well-known to be involved in carcinogen metabolism. AKR1C1 expression is related to development and metastasis of many types of cancer (13–16). Our recent study suggested that AKR1C1 is a novel target of FoxM1 and FoxM1/AKR1C1 signaling is inhibited by avasimibe at osteosarcoma (9). However, whether avasimibe has the same therapeutic effectiveness on cholangiocarcinoma is unknown. Moreover, the mechanism underlying avasimibe-inhibited tumorigenesis is remains poorly understood.

We aim to assess the antitumor effect of avasimibe on cholangiocarcinoma and to explore its potential mechanism. Our results showed the inhibitory effect of avasimibe on CCA in vivo and in vitro and demonstrated that avasimibe targets FoxM1/AKR1C1 signaling, an essential pathway in tumorigenesis and cancer progression. Our finding may promote the clinical application of avasimibe in the treatment for CCA.



Materials and Methods


Cell Culture

CCA cell lines RBE and QBC939 were preserved in our lab. CCA cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, and 1% glutaMAX (Invitrogen). Recombinant avasimibe was purchased from Selleck (S2187) for in vitro study and Shanghai super LAN chemical technology center for in vivo study with the final treatment concentration of 30 mg/kg.



Tissues of Patients

Human hilar cholangiocarcinoma tissue microarray preserved in our lab (17) and 49 patients with no preoperative chemotherapy or radiation therapy were enrolled in this study. Of the 49 patients, 35 (71.4%) are male patients and 14 patients (28.6%) are female. Of these patients, 20 (40.8%) had TNM stage I/II tumors, and 29 (59.2%) had TNM stage III/IV tumors. All patients had clinical follow-up, with a median follow-up of 23 months (1-59 months). The institutional review boards of Eastern Hepatobiliary Hospital approved the use of the tissues and clinical information in this study.



Animal Models

Abdominal cavity tumor xenograft model was used to evaluate the therapeutic effect of Awasimibe. QBC939 cells (1×106) were trypsinized and resuspended in PBS. Then, cells were injected into 6-week-old Balb/c nude mice (n=13). After one week implantation, mice were divided into control group (n=6) and an avasimibe-treated group (n=7). The avaximide treatment group was given avaximide by gavage for 21 days. All animals were sacrificed on the 22nd day and the tumor weight was determined. All experiments were based on the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Animal Ethics Committee of the Second Military Medical University.



cDNA Array

RBE cells were treated with 20 µM avasimibe. After 24 and 48 hours, cells were collected and extracted total mRNA for cDNA microarray analysis. The Affymetrix human genome U219 array was used to analyze the differential gene expression. Gene cluster analysis was used to determine the genes and pathways with the most significant changes (9).



Plasmids and Transfections

Human AKR1C1 were cloned into pCDH-Flag vectors. The pGIPZ shNT was generated with the control oligonucleotide 5’-GCTTCTAACACCGGAGGTCTT-3’. pGIPZ AKR1C1 shRNA was generated with 5’ - AGAAAGGAAAGACAATAATTT-3’ oligonucleotide. The pcDNA3.1-FoxM1 and FoxM1-shRNA plasmids were gifts from Prof. Sunyun Huang (MD Anderson Cancer Center, Houston, TX, USA) (18). PCR-amplified AKR1C1 promoter sequence (WT), FoxM1-binding motifs 1 deletion mutant (Mut1), FoxM1-binding motifs 2 deletion mutant (Mut2), FoxM1-binding motifs 1 deletion mutant (Mut3), FoxM1-binding motifs 1 deletion mutant (Mut4) and FoxM1-binding motifs 1 deletion mutant (Mut5) were cloned into pGL3-promoter vectors.

Cells were seeded and then transfected with the indicated plasmids using Polyjet In Vitro DNA transfection Reagent (SignaGen) according to the manufacturer’s instructions.



Cell Proliferation

CCA cells were plated in 96-well plates (1×104/well) and then treated with avasimibe at concentrations of 0 μM, 10 μM, and 20 μM. For stably transfected CCA cells with shAKR1C1, 5000 CCA cells per well were seeded in 96-well plates. At the indicated times, the cell viability was measured by a CCK8 assay (Dojindo). These experiments were performed in triplicate.



Immunohistochemistry

4 μm-thick paraffin-embedded sections of CCA samples and tumors in mice were prepared and processed for immunohistochemistry. FoxM1 (sc-500, Santa Cruz Biotechnology), PCNA (sc-500, Maixin-Bio, Fuzhou, China), and AKR1C1 (PB1091, Boster Biological Technology, Wuhan, China) antibodies were used for IHC analysis. A streptavidin-biotin kit (#KIT-9720; Maixin-Bio) was used to visualize antibody binding to the tissues. Two individuals (G. Y. and Y. C.) independently evaluated all these samples. The final results generated using a semiquantitative scoring system as previously described (17, 19). Briefly, the mean percentage of tumor cells positive for indicated marker(s) was calculated in five areas of a given sample at a magnification of × 400 and scored from 0 to 1 (0-100%). The intensity of immunostaining was scored as 0 for negative, 1 for weak, 2 for moderate, and 3 for strong. Theoretically, a weighted score was generated for each case, ranging from 0 (0% of cells stained) to 300 (100% of cells stained at 3+ intensity). The cutoff points were based on the scores: negative, 0; weak, <75; moderate, 76–150; and strong, >151. We defined the score <75 as low expression and ≥75 as high expression. Their correlations determined by Pearson’s correlation test.



Quantitative Real-Time PCR

Total RNA was extracted with Trizol reagent (Life technologies). cDNA was reversed by a ReverTra Ace qPCR RT Master Mix Kit (Toyobo) qRT-PCR was performed by Bio-Rad PCR Thermal Cyclers. Data were normalized to β-actin for each experiment. The following primer pairs were used for quantitative real-time PCR: AKR1C1, 5’-TATGCGCCTGCAGAGGTTC-3’ (forward) and 5’-TCAATATGGCGGAAGCCAGC-3’(reverse); FoxM1, 5’- GGAGCAGCGACAGGTTAAGG-3’ (forward) and 5’-TCAATATGGCGGAAGCCAGC-3’(reverse); β-actin, 5’-CATGTACGTTGCTATCCAGGC-3’ (forward) and 5’-CTCCTTAATGTCACGCACGAT-3’ (reverse).



Luciferase Reporter Assay

AKR1C1 promoter reporter plasmids (- 500bp), mutant PDGF-A promoter reporter plasmids (by deleting FoxM1-binding site, respectively), Renilla luciferase (pRL-TK) vector plasmid, were transfected. After 48 hours, cells were harvested and tested with the Dual-Glo luciferase reporter assay system (Promega). All experiments were performed in triplicate times.



Chromatin Immunoprecipitation (ChIP) Assay

ChIP assays were performed through SimpleChIP Enzymatic Chromatin IP kit (Cell Signaling Technology) according to its manufacturer’s instructions. The purified DNA fragments were subjected to semiquantitative PCR analysis using site-specific primers: h-AKR1C1-CHIP-1-F: 5’-CCAAAGTCCAAAAGCTGTTAATAAGAAATCTTC-3’; h-AKR1C1-CHIP-1-R: 5’-TGCATTACTTTTTTCATCAGCAAATTTATTGTTCC-3’; h-AKR1C1-CHIP-2-F: 5’-GAGGTTTCTGTATTCTTATGTAAAGTCACAATTTGT-3’; h-AKR1C1-CHIP-2-R: 5’-TGCATCCAGTTCAACCGTTTCTTAC-3’.



Western Blotting

All treated and untreated cells were lysed with RIPA and resolved in SDS-PAGE and transferred to PVDF membranes (Bio-Rad Laboratories, Hercules, CA, USA). The membranes were probed with antibodies, and then detected with an enhanced chemiluminescence (ECL) kit (Santa Cruz, CA, USA).



Statistics

All analyses were performed using SPSS and GraphPad Prism (version 5.0) software. Categorical data were analyzed using χ2 tests. Differences between groups were determined using a two-tailed Student’s t-test. For survival rate analysis, the Kaplan-Meier method was used to estimate survival rates, and the log-rank and Wilcoxon rank sum tests were performed to assess survival differences between groups. A p value less than 0.05 was considered statistically significant.




Results


Avasimibe Administration Inhibited Cell Proliferation and Tumor Growth

It was demonstrated that administration of avasimibe inhibited the CAA cell proliferation in dose-dependent and time-dependent manners in vitro (Figure 1A). In vivo assay demonstrated that avasimibe administration resulted in a remarkable reduction of tumor volume and tumor weight of QBC 939 cells (Figure 1B).




Figure 1 | The inhibitory effect of avasimibe treatment on cell proliferation and tumor growth of cholangiocarcinoma. (A) RBE and QBC939 cells were treated with avasimibe at indicated concentrations (0μM, 10μM, and 20μM) and cell proliferation was measured by CCK8 assay at 24h, 48h, and 72h. ****P < 0.0001. (B) QBC939 cells (1×106 per mouse) were injected into the abdominal cavity of 6-week-old female Balb/c nude mice. Mice were given avasimibe (n=7) or regular water (n=6) by oral gavage for 21 days. The tumor volume and tumor weight were examined at 22 days. CCK8, Cell Counting Kit-8.





Avasimibe Inhibits the Expression of AKR1C1 and Cell Division

Given the importance of avasimibe in inhibiting cell proliferation and tumor progression, cDNA array was carried out to assess the transcriptional effects of avasimibe in RBE cells in a time-dependent manner. By comparing the gene expression patterns after avasimibe treatment to that at base line, a total of 5,966 genes were significantly altered at 24 hours, while 11,055 genes were altered at 48 hours (Figure S1A). Gene ontology analysis demonstrated that the majority of the most valuable clusters were associated with cell proliferation (Figures S1B, C), and the potentially significant candidate genes were shown in Figure 2A. Among these genes, AKR1C1 was one remarkably decreased gene along with the administration of avasimibe, which was validated by both RT-PCR and immunoblotting assays (Figure 2B). Further immunohistochemical analysis showed that avasimibe treatment reduced the expression of AKR1C1 and PCNA, another target of avasimibe revealed by cDNA array, in the xenograft samples (Figure 2C).




Figure 2 | cDNA array analysis identified AKR1C1 as a potential target of avasimibe. (A) RBE cells were treated with avasimibe at the concentration of 20 µM for 24 and 48 hours and subjected to cDNA array analysis. Cluster of changed genes in cell proliferation was presented. (B) The level of AKR1C1 mRNA and protein was detected by RT-PCR and western blotting in RBE cells when treated with avasimibe (20µM) for 48 hours. (C)The expression of AKR1C1 and PCNA was detected by IHC on the resected xenografts. IHC, ×200. *P < 0.05, **P < 0.01. ‘long scores of AKR1C1’ means AKR1C1 staining score. IHC, immunohistochemistry.





The Oncogenic Role of AKR1C1 in Human Cholangiocarcinoma

AKR1C1 was weakly or absently observed in the cytoplasm of normal bile duct cells, but dramatically increased in tumor cells (Figure 3A). Overall, AKR1C1 was overexpressed in 69.4% (34/49) cases, and the high expression of AKR1C1 is related to regional lymph node metastasis and nerve invasion (Table 1). The prognosis of patients with AKR1C1 positive tumors were significantly lower than that of patients without AKR1C1 expression. (15 mon vs 38 mon, P=0.014) (Figure 3B1). In the multivariate analysis, T stage and N stage were independent predictive factors (Table 2). As for the overall survival duration, T stage, regional lymph node metastasis, positive margin, and AKR1C1 expression were significant prognostic factors. Patients with AKR1C1-positive tumors had a significantly poor outcome than those without AKR1C1 expression (13 mon vs 50 mon, P<0.001) (Figure 3B2). In the multivariate Cox model, T stage expression was an independent prognostic factor (Table 3).




Figure 3 | The oncogenic role of AKR1C1 in cholangiocarcinoma. (A) Representative images of negative staining of AKR1C1 in noncancerous tissues (N) and high expression of AKR1C1 in CCA (T). IHC,×200 for small pictures and×40 for large pictures. *P < 0.05. (B) Patients with AKR1C1 expression had a shorter time to recurrence (B1) and a worse overall survival (B2) than those without AKR1C1 expression. (C, D) QBC939 (C) and RBE (D) cells were transfected with AKR1C1-shRNA for 48 hours and the level of AKR1C1 mRNA was detected by RT-PCR. CCK8 assay was used to measure the cell viability of both cell lines. **P < 0.01, ****P < 0.0001. (E) QBC939 and RBE cells were treated with avasimibe with or without exogenous AKR1C1 plasmid for 48 hours and CCK8 was used to detect the changes of cell viability. IHC, immunohistochemistry; CCK8, Cell Counting Kit-8; Vec, vector.




Table 1 | Correlation between AKR1C1 expression and clinicopathological factors.




Table 2 | Univariate and multivariate analysis of time to progression in 49 patients with hilar cholangiocarcinoma according to clinicopathologic factors and AKR1C1 overexpression.




Table 3 | Univariate and multivariate analysis of overall survival in 49 patients with hilar cholangiocarcinoma according to clinicopathological factors and AKR1C1 overexpression.



We next examined the function of AKR1C1 in CCA cells by silencing AKR1C1 in vitro. As expected, knockdown of AKR1C1 resulted in significant inhibition of cell proliferation of CCA cells (Figures 3C, D). Moreover, enforced expression of AKR1C1 could rescue the inhibitory effect of avasimibe on CCA cells (Figure 3E).



Avasimibe Inhibits AKR1C1 Expression Through FoxM1

Gene ontology analysis demonstrated that FoxM1, a transcription factor, was decreased by avasimibe treatment (Figure 4A). This result was also validated by both RT-PCR and western blotting assays (Figure 4B). To investigate the relationship between FoxM1 and AKR1C1, we firstly detected the expression level of FoxM1 and AKR1C1 mRNA in established stably FoxM1 or shFoxM1-transfected CCA cells. Silencing FoxM1 in RBE cells led to decreased expression of endogenous AKR1C1 (Figure 4C), while overexpression of FoxM1 resulted in an increase in endogenous AKR1C1 expression (Figure 4D). These results indicated that FoxM1 is partially responsible for the induction of AKR1C1 expression.




Figure 4 | AKR1C1 is regulated by FoxM1 in cholangiocarcinoma. (A) RBE cells were treated with avasimibe (20 µM) for 24 and 48 hours and subjected to cDNA array analysis. Cluster of changed genes in regulation of transcription was presented. (B) The level of FoxM1 mRNA and protein was detected by RT-PCR and western blotting in RBE cells when treated with avasimibe (20µM) for 48 hours. (C) RBE cells were transfected with FoxM1-shRNA for 48 hours and the levels of FoxM1 and AKR1C1 mRNA and proteins were detected by RT-PCR and western blotting. (D) RBE cells were transfected with FoxM1 plasmid for 48 hours and the levels of FoxM1 and AKR1C1 mRNA and proteins were detected by RT-PCR and western blotting. *P < 0.05, ****P < 0.0001.





FoxM1 Directly Regulates the Promoter Activity of AKR1C1

We further aimed to investigate whether FoxM1 could bind to AKR1C1 promoter region to regulate is expression. We scanned ~500bp promoter regions of the AKR1C1 gene containing the FoxM1 binding consensus sequence. Five FoxM1 putative binding sites (-780 to -774 bp and-948 to -942 bp) were found in the promoter region (Figure 5A). Next, we cloned DNA sequence containing the five potential FoxM1 binding sites and constructed a PGL3-AKR1C1 promoter plasmid. When we cotransfected PGL3-AKR1C1 promoter with pcDNA3.1-FoxM1B or pcDNA3.1 in RBE cells, the activity of PGL3-AKR1C1-promoter was upregulated in FoxM1B-transfected cells (Figure 5B). Meanwhile, knockdown of FoxM1 in RBE cells inhibited the activity of PGL3-AKR1C1-promoter (Figure 5B). To further confirm this result, we mutated the FoxM1 DNA binding sites and found that the activity of PGL3-ADAM17-mutated promoter was decreased (Figure 5C). The second FoxM1 DNA binding site was the most important site responsible for FoxM1-AKR1C1 interaction. Moreover, ChIP assays using antibodies specific against either FoxM1 or IgG (control) showed that FoxM1 is directly bound to the endogenous AKR1C1 promoter region on both sites compared with IgG control (Figure 5D). Together, these data indicated that AKR1C1 is a direct transcriptional target of FoxM1.




Figure 5 | AKR1C1 is a direct transcriptional target of FoxM1. (A) Diagram shows the sequence and position of five putative FoxM1-binding elements in the AKR1C1 promoter. TSS, transcriptional start site; WT, wild type; Mut, mutant type. (B) Left panel, RBE cells were cotransfected with the AKR1C1 promoter reporter, pRL-TK, and pcDNA3.1-FoxM1 or pcDNA 3.1; right panel, RBE cells were cotransfected with the AKR1C1 promoter reporter, pRL-TK, and FoxM1-shRNA or shcontrol (50 nM). 36 hours after transfection, the cells were collected, and the relative AKR1C1 promoter activities were measured. The assay was repeated three times independently. ***P < 0.001. (C) Reporter plasmids harboring the wild-type AKR1C1 promoter or the corresponding mutant promoter in the FoxM1-binding sites were transfected into RBE cells, and the relative promoter activities were measured as above. (D) The chromatin immunoprecipitation (ChIP) assay results show the in vivo binding of FoxM1 to the AKR1C1 promoter. QBC939 cell lysis was immunoprecipitated using an anti-FoxM1 antibody or immunoglobulin G The resulting samples were subjected to RT-PCR using the site-specific primers.





Avasimibe Targets FoxM1-AKR1C1 Signaling in CCA

To investigate whether FoxM1 could regulate the effects of avasimibe on cholangiocarcinoma cells proliferation, we overexpressed FoxM1 in RBE cells and QBC9393 cells before avasimibe treatment, and we found FoxM1 overexpression could counteract the effects of avasimibe on cholangiocarcinoma cells proliferation (Figures 6A, B). Nevertheless, if we knockdown AKR1C1 at the same time, the effects of FoxM1 will be neutralized (Figures 6A, B).




Figure 6 | Avasimibe inhibits cholangiocarcinoma cells proliferation via targeting AKR1C1 and FoxM1. (A, B) RBE cells (A) and QBC939 cells (B) were treated with avasimibe or DMSO, then transfected with FoxM1 or control vector, along with the transfection with AKR1C1 shRNA or shNT. 48 h after transfection, cell viability was analyzed by CCK8 assay. Data are from three independent assays. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Left panel, the expression of FoxM1 and AKR1C1 was detected by IHC on the resected xenografts. IHC, ×400. Right panel, diagram showing the different expression of FoxM1 and AKR1C1 in these samples when treated with avasimibe. (D) The representative images of FoxM1 and AKR1C1 expressions and their correlations determined by Spearman’s correlation test. r, Spearman correlation coefficient; IHC, ×40 or ×200.



In consistent with the above study, IHC showed that FoxM1 and AKR1C1 were highly expressed in xenografts in nude mice compared with those treated with avasimibe (Figure 6C). We further detected the levels of both FoxM1 and AKR1C1 in human CCA samples. The expression profile of FoxM1 was consistent with the trend of AKR1C1 expression. FoxM1 was expressed in 33 samples, while AKR1C1 was expressed in 69.39% samples (49). FoxM1 overexpression correlated with AKR1C1 overexpression (Figure 6D).




Discussion

In the present study, we demonstrate strong evidence supporting the potential therapeutic role of avasimibe in treating hilar cholangiocarcinoma. We proved that avasimibe alone inhibited cell viability and tumor growth of human CCA cells by targeting the FoxM1/AKR1C1 signaling pathway. Specifically, FoxM1 regulates AKR1C1 expression by directly binding to its promoter. AKR1C1 was a promising predictor for tumor recurrence and overall survival and correlated significantly with FoxM1 expression in CCAs. The FoxM1/AKR1C1 pathway might be a key mechanism for human CCAs tumorigenesis and a potential therapeutic target for avasimibe.

Avasimibe potentiated the antitumor effect of an anti-PD-1 antibody (10) and blocked cholesterol esterification leading to apoptosis and suppression of proliferation of several cancer cells (20). However, whether avasimibe can prevent the progression of CCA is unclear. Here, we proved for the first time that avasimibe can inhibit the proliferation of CCA cells in vitro and tumor growth in vivo, indicating its potential application in therapeutic strategies. Avasimibe was originally designed as an ACAT inhibitor (CI-1011) (21) and ACAT is an intracellular membrane-bound enzyme involved in cellular cholesterol homeostasis. Upregulated expression of ACAT has been observed in many types of cancer, making cholesterol metabolism as a potential target for cancer treatment (22), including ACAT1 and ACAT2 (23). Our cDNA array analysis showed that ACAT2, not ACAT1, was downregulated in CCA cells after the administration of avasimibe. These results are inconsistent with previous reports (8, 10) suggesting that the anti-tumor effect of avasimibe must have more complicated mechanisms. In consistent with our previous research in osteosarcoma (9), avasimibe has a direct killing effect on bile duct cancer cells revealed by gene cluster analysis and altered genes related to cell proliferation, including CDK1, CDK6, cyclin B1, FoxM1, and, especially, Ki67 and PCNA, two essential biomarkers representing the ability of cell proliferation. Taken together, avasimibe will be an efficient therapy in the treatment of CCA.

Although designed to target cholesterol metabolism, avasimibe was found to block various members of AKR1 family in human steroid metabolism (24), including AKR1B1, AKR1B10, and AKR1C1. Aldo-keto reductases are well known as metabolic enzymes of carbonyls, but recent data indicates that multiple embers in AKR families are involved in the development of various human solid tumors (25). For example, dysregulated expression of AKR1B10 in hepatocellular Carcinoma (26), breast cancer (27), and colorectal cancer (28) make AKR1B10 inhibitors as potential drugs for cancer treatment (29). AKR1C1, another member of the AKR1 family, has been well-known to be involved in carcinogen metabolism. AKR1C1 expression is related to development and metastasis of many types of cancer (13–16). In present study, we validated that AKR1C1 was an effective target of avasimibe and expression of AKR1C1 was closely correlated with the metastatic potential of CCA. Moreover, in consistent with previous studies (9, 16), AKR1C1 expression in carcinoma cells correlated positively with DFS and OS of CCA. Targeting AKR1C1 either by avasimibe or by AKR1C1-shRNA significantly repressed the proliferation of CCA cells. Taken together, AKR1C1 is involved in the development and progression of CCA, making it a potential new anti-cancer target.

The critical roles of catalytic-dependent and catalytic-independent function of AKR1C1 in regulating biological events have been well-summarized (30). AKR1C1 degrades Progesterone to its metabolite 20α-DHP, influencing progesterone metabolism associated with breast cancer (31). AKR1C1 directly activates STAT3 by facilitating its phosphorylation (13). However, the detailed information of transcriptional activation of AKR1C1 is not well-studied. Our previous study showed that FoxM1 was decreased by avasimibe treatment and was a potential activator of AKR1C1 (9). However, the mechanisms underlying FoxM1 activating AKR1C1 are largely unknown. Here, we not only confirmed that the administration reduced AKR1C1 expression, but also showed that FoxM1 could positively regulate AKR1C1 expression in CCA cells. Further study demonstrates that AKR1C1 is a directly transcriptionally regulated by FoxM1 in CCA. Therefore, this study disclosed a novel mechanism for AKR1C1 activation in the progression of CCA.

The inhibitory effect of avasimibe on FoxM1/AKR1C1 signaling pathway is irrefutable evident. The question is whether avasimibe directly targets either FoxM1 or AKR1C1, or whether it firstly acts on FoxM1 and then inactivates AKR1C1, leading to retarded growth of CCA cells. In present study, we showed that over-expressing exogenous FoxM1 reversed the growth retardation of CCA cells induced by avasimibe administration. Meanwhile, silencing AKR1C1 in FoxM1-overexpressing again retarded cell growth when administrated with avasimibe. Thus, we proved that decreased expression of AKR1C1 induced by avasimibe was partially through decreased expression of FoxM1 targeted by avasimibe.

In summary, our findings showed the great importance of FoxM1/AKR1C1 signaling pathway in human cholangiocarcinoma. Meanwhile, the FoxM1/AKR1C1 axis in human cancers was the potential target of avasimibe which successfully retarded cell proliferation and tumor growth of CCA. Therefore, our findings suggest that avasimibe can be used in cholangiocarcinoma treatment.



Data Availability Statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.



Ethics Statement

The studies involving human participants were reviewed and approved by The Institutional Review Boards of Eastern Hepatobiliary Hospital. The patients/participants provided their written informed consent to participate in this study. The animal study was reviewed and approved by the Animal Ethics Committee of the Second Military Medical University.



Author Contributions

Conception/Design: JQ, YH, and GY. Collection and/or assembly of data: YG, DX, HL, and YP. Data analysis and interpretation: HL, JX, JQ, and XL. Manuscriptwriting: YH and GY. Final approval of manuscript: JQ, YH, and GY. Funding support: GY and DX. All authors contributed to the article and approved the submitted version.



Funding

This work was supported by National Natural Science Foundation of China (81972721), Medical Science Research Foundation of People’s Liberation Army (14ZD16) and Research project of Xuzhou Medical University (2018kj15).



Acknowledgments

We thank Dr. Ying Chen at Changhai Hospital for her help in evaluating IHC results and Wenlong Yu for his assistance in providing CCA specimens.



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.677678/full#supplementary-material

Supplementary Figure 1 | (A) RBE cells were treated with avasimibe for 24 and 48 hours and subjected to cDNA array analysis. Intersection of genes between 24/0 and 48/0 hour. (B) Significant GO terms retrieved by clusters of genes involved in the union of A. (D) Significant GO terms retrieved by clusters of genes involved in the intersection of A. GO, gene ontology.



Abbreviations

CCA, Cholangiocarcinoma; IHC, Immunohistochemistry; AKR, Aldo-keto reductase.



References

1. Bergquist, A, and von Seth, E. Epidemiology of Cholangiocarcinoma. Best Pract Res Clin Gastroenterol (2015) 29(2):221–32. doi: 10.1016/j.bpg.2015.02.003

2. Razumilava, N, and Gores, GJ. Cholangiocarcinoma. Lancet (2014) 383(9935):2168–79. doi: 10.1016/S0140-6736(13)61903-0

3. Saha, SK, Zhu, AX, Fuchs, CS, and Brooks, GA. Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise. Oncol (2016) 21(5):594–9. doi: 10.1634/theoncologist.2015-0446

4. Shaib, Y, and El-Serag, HB. The Epidemiology of Cholangiocarcinoma. Semin Liver Dis (2004) 24(2):115–25. doi: 10.1055/s-2004-828889

5. Rizvi, S, Khan, SA, Hallemeier, CL, Kelley, RK, and Gores, GJ. Cholangiocarcinoma - Evolving Concepts and Therapeutic Strategies. Nat Rev Clin Oncol (2018) 15(2):95–111. doi: 10.1038/nrclinonc.2017.157

6. Giovannoni, MP, Piaz, VD, Vergelli, C, and Barlocco, D. Selective ACAT Inhibitors as Promising Antihyperlipidemic, Antiathero-Sclerotic and anti-Alzheimer Drugs. Mini Rev Med Chem (2003) 3(6):576–84. doi: 10.2174/1389557033487890

7. Llaverias, G, Laguna, JC, and Alegret, M. Pharmacology of the ACAT Inhibitor Avasimibe (CI-1011). Cardiovasc Drug Rev (2003) 21(1):33–50. doi: 10.1111/j.1527-3466.2003.tb00104.x

8. Jiang, Y, Sun, A, Zhao, Y, Ying, W, Sun, H, Yang, X, et al. Proteomics Identifies New Therapeutic Targets of Early-Stage Hepatocellular Carcinoma. Nature (2019) 567(7747):257–61. doi: 10.1038/s41586-019-0987-8

9. Wang, L, Liu, Y, and Yu, G. Avasimibe Inhibits Tumor Growth by Targeting FoxM1-AKR1C1 in Osteosarcoma. Onco Targets Ther (2019) 12:815–23. doi: 10.2147/OTT.S165647

10. Yang, W, Bai, Y, Xiong, Y, Zhang, J, Chen, S, Zheng, X, et al. Potentiating the Antitumour Response of CD8(+) T Cells by Modulating Cholesterol Metabolism. Nature (2016) 531(7596):651–5. doi: 10.1038/nature17412

11. Bi, M, Qiao, X, Zhang, H, Wu, H, Gao, Z, Zhou, H, et al. Effect of Inhibiting ACAT-1 Expression on the Growth and Metastasis of Lewis Lung Carcinoma. Oncol Lett (2019) 18(2):1548–56. doi: 10.3892/ol.2019.10427

12. Gartel, AL. A New Target for Proteasome Inhibitors: Foxm1. Expert Opin Inv Drug (2010) 19(2):235–42. doi: 10.1517/13543780903563364

13. Zhu, H, Chang, LL, Yan, FJ, Hu, Y, Zeng, CM, Zhou, TY, et al. Akr1c1 Activates STAT3 to Promote the Metastasis of Non-Small Cell Lung Cancer. Theranostics (2018) 8(3):676–92. doi: 10.7150/thno.21463

14. Tian, H, Li, X, Jiang, W, Lv, C, Sun, W, Huang, C, et al. High Expression of AKR1C1 is Associated With Proliferation and Migration of Small-Cell Lung Cancer Cells. Lung Cancer (Auckl) (2016) 7:53–61. doi: 10.2147/LCTT.S90694

15. Matsumoto, R, Tsuda, M, Yoshida, K, Tanino, M, Kimura, T, Nishihara, H, et al. Aldo-Keto Reductase 1C1 Induced by Interleukin-1beta Mediates the Invasive Potential and Drug Resistance of Metastatic Bladder Cancer Cells. Sci Rep (2016) 6:34625. doi: 10.1038/srep34625

16. Wenners, A, Hartmann, F, Jochens, A, Roemer, AM, Alkatout, I, Klapper, W, et al. Stromal Markers AKR1C1 and AKR1C2 are Prognostic Factors in Primary Human Breast Cancer. Int J Clin Oncol (2016) 21(3):548–56. doi: 10.1007/s10147-015-0924-2

17. Yu, G, Yu, W, Jin, G, Xu, D, Chen, Y, Xia, T, et al. PKM2 Regulates Neural Invasion of and Predicts Poor Prognosis for Human Hilar Cholangiocarcinoma. Mol Cancer (2015) 14(1):193. doi: 10.1186/s12943-015-0462-6

18. Yu, G, Zhou, A, Xue, J, Huang, C, Zhang, X, Kang, SH, et al. FoxM1 Promotes Breast Tumorigenesis by Activating PDGF-A and Forming a Positive Feedback Loop With the PDGF/AKT Signaling Pathway. Oncotarget (2015) 6(13):11281–94. doi: 10.18632/oncotarget.3596

19. Song, Z, Liu, W, Xiao, Y, Zhang, M, Luo, Y, Yuan, W, et al. Prr11 Is a Prognostic Marker and Potential Oncogene in Patients With Gastric Cancer. PloS One (2015) 10(8):e0128943. doi: 10.1371/journal.pone.0128943

20. Lee, SS, Li, J, Tai, JN, Ratliff, TL, Park, K, and Cheng, JX. Avasimibe Encapsulated in Human Serum Albumin Blocks Cholesterol Esterification for Selective Cancer Treatment. ACS Nano (2015) 9(3):2420–32. doi: 10.1021/nn504025a

21. Nicolosi, RJ, Wilson, TA, and Krause, BR. The ACAT Inhibitor, CI-1011 is Effective in the Prevention and Regression of Aortic Fatty Streak Area in Hamsters. Atherosclerosis (1998) 137(1):77–85. doi: 10.1016/S0021-9150(97)00279-7

22. Zabielska, J, Sledzinski, T, and Stelmanska, E. Acyl-Coenzyme A: Cholesterol Acyltransferase Inhibition in Cancer Treatment. Anticancer Res (2019) 39(7):3385–94. doi: 10.21873/anticanres.13482

23. Rogers, MA, Liu, J, Song, BL, Li, BL, Chang, CC, and Chang, TY. Acyl-CoA:cholesterol Acyltransferases (Acats/Soats): Enzymes With Multiple Sterols as Substrates and as Activators. J Steroid Biochem Mol Biol (2015) 151:102–7. doi: 10.1016/j.jsbmb.2014.09.008

24. Rizner, TL, and Penning, TM. Role of Aldo-Keto Reductase Family 1 (AKR1) Enzymes in Human Steroid Metabolism. Steroids (2014) 79:49–63. doi: 10.1016/j.steroids.2013.10.012

25. Jin, J, Krishack, PA, and Cao, D. Role of Aldo-Keto Reductases in Development of Prostate and Breast Cancer. Front Biosci (2006) 11:2767–73. doi: 10.2741/2006

26. DiStefano, JK, and Davis, B. Diagnostic and Prognostic Potential of AKR1B10 in Human Hepatocellular Carcinoma. Cancers (Basel) (2019) 11(4). doi: 10.3390/cancers11040486

27. Reddy, KA, Kumar, PU, Srinivasulu, M, Triveni, B, Sharada, K, Ismail, A, et al. Overexpression and Enhanced Specific Activity of Aldoketo Reductases (AKR1B1 & AKR1B10) in Human Breast Cancers. Breast (2017) 31:137–43. doi: 10.1016/j.breast.2016.11.003

28. Taskoparan, B, Seza, EG, Demirkol, S, Tuncer, S, Stefek, M, Gure, AO, et al. Opposing Roles of the Aldo-Keto Reductases AKR1B1 and AKR1B10 in Colorectal Cancer. Cell Oncol (Dordr) (2017) 40(6):563–78. doi: 10.1007/s13402-017-0351-7

29. Huang, L, He, R, Luo, W, Zhu, YS, Li, J, Tan, T, et al. Aldo-Keto Reductase Family 1 Member B10 Inhibitors: Potential Drugs for Cancer Treatment. Recent Pat Anticancer Drug Discovery (2016) 11(2):184–96. doi: 10.2174/1574892811888160304113346

30. Zeng, CM, Chang, LL, Ying, MD, Cao, J, He, QJ, Zhu, H, et al. Aldo-Keto Reductase Akr1c1-Akr1c4: Functions, Regulation, and Intervention for Anti-cancer Therapy. Front Pharmacol (2017) 8:119. doi: 10.3389/fphar.2017.00119

31. Lewis, MJ, Wiebe, JP, and Heathcote, JG. Expression of Progesterone Metabolizing Enzyme Genes (AKR1C1, AKR1C2, Akr1c3, SRD5A1, SRD5A2) is Altered in Human Breast Carcinoma. BMC Cancer (2004) 4:27. doi: 10.1186/1471-2407-4-27



Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Gao, Xu, Li, Xu, Pan, Liao, Qian, Hu and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 03 June 2021
doi: 10.3389/fgene.2021.650554





[image: image]

Exploration of the Role of m6 A RNA Methylation Regulators in Malignant Progression and Clinical Prognosis of Ovarian Cancer

Qinglv Wei†, Dan Yang†, Xiaoyi Liu, Hongyan Zhao, Yu Yang, Jing Xu, Tao Liu* and Ping Yi*

Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China

Edited by:
Tianbao Li, Geneis (Beijing) Co., Ltd., China

Reviewed by:
Zhang Shaowu, Northwestern Polytechnical University, China
Dongqiang Zeng, Southern Medical University, China

*Correspondence: Tao Liu, anti1988@163.com; Ping Yi, yiping@cqmu.edu.cn

†These authors have contributed equally to this work

Specialty section: This article was submitted to RNA, a section of the journal Frontiers in Genetics

Received: 07 January 2021
Accepted: 06 April 2021
Published: 03 June 2021

Citation: Wei Q, Yang D, Liu X, Zhao H, Yang Y, Xu J, Liu T and Yi P (2021) Exploration of the Role of m6 A RNA Methylation Regulators in Malignant Progression and Clinical Prognosis of Ovarian Cancer. Front. Genet. 12:650554. doi: 10.3389/fgene.2021.650554

Ovarian cancer is the most deadly gynecologic malignancy worldwide and it is warranted to dissect the critical gene regulatory network in ovarian cancer. N6-methyladenosine (m6A) RNA methylation, as the most prevalent RNA modification, is orchestrated by the m6A RNA methylation regulators and has been implicated in malignant progression of various cancers. In this study, we investigated the genetic landscape and expression profile of the m6A RNA methylation regulators in ovarian cancer and found that several m6A RNA methylation regulators were frequently amplified and up-regulated in ovarian cancer. Utilizing consensus cluster analysis, we stratified ovarian cancer samples into four clusters with distinct m6A methylation patterns and patients in these subgroups displayed the different clinical outcomes. Moreover, multivariate Cox proportional hazard model was used to screen the key m6A regulators associated with the prognosis of ovarian cancer and the last absolute shrinkage and selection operator (LASSO) Cox regression was used to construct the gene signature for prognosis prediction. The survival analysis exhibited the risk-gene signature could be used as independent prognostic markers for ovarian cancer. In conclusion, m6A RNA methylation regulators are associated with the malignant progression of ovarian cancer and could be a potential in prognostic prediction for ovarian cancer.
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INTRODUCTION

Ovarian cancer is a gynecologic malignancy with the most deaths worldwide (Narod, 2016). Nearly 90% of all ovarian cancer is epithelial ovarian cancer, which contributes to 70% of ovarian cancer deaths (Jayson et al., 2014). Despite large efforts toward better prognosis of ovarian cancer patients, the 5-year overall survival rate is lower than 40% because of the high relapse rate and drug resistance (Doherty et al., 2017; Reid et al., 2017). Thus, ovarian cancer remains a threat to women and enhancing understanding of underlying mechanisms and identification of critical gene regulatory network in ovarian cancer progression are conducive to prediction and developing new therapies for ovarian cancer.

m6A RNA methylation is the most abundant RNA epigenetic modification in mammals (Roundtree et al., 2017). m6A RNA methylation is a reversible and dynamic process mediated by methylation transferases and demethylation transferases (Jia et al., 2011; Zheng et al., 2013; Liu et al., 2014). To date, the complex including methyltransferase-like 3/14 (METTL3/14), and Wilms’ tumor 1-associating protein (WTAP) was identified as the core m6A methylation transferases and acts as m6A methylation “writers” (Schöller et al., 2018). Other factors including Vir like m6A methyltransferase associated (VIRMA, also named as KIAA1429), RNA binding motif protein 15/15B (RBM15/15B), and zinc finger CCCH domain-containing protein 13 (ZC3H13) were also demonstrated to be involved in m6A methylation deposition (Schwartz et al., 2014; Meyer and Jaffrey, 2017; Wen et al., 2018). Regarding demethylation transferases, obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5) act as m6A methylation “erasers” and could decrease the m6A modification in RNA (Jia et al., 2011; Zheng et al., 2013). Besides m6A methylation “writers” and “erasers,” a group of RNA binding proteins were found to specifically recognize m6A modified RNAs and decide the fate of RNA through regulating RNA splicing, turnover, export and translation (Haussmann et al., 2016; Patil et al., 2018; Zhao et al., 2018). m6A methylation “readers” are consisted of YTH domain family YTHDF1-3, YTHDC1-2, insulin-like growth factor 2 mRNA-binding proteins IGF2BP1-3, heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1), heterogeneous nuclear ribonucleoprotein C (HNRNPC) and embryonic lethal abnormal vision Drosophila like 1 (ELAVL1) (Wang et al., 2014, 2015; Wojtas et al., 2017; Sun et al., 2019). m6A RNA methylation is an important RNA epigenetic regulation mode and leads to a complex gene regulatory network through the posttranscriptional control. Recent studies revealed that dysregulation of m6A RNA methylation has been significantly implicated in various diseases especially in development of cancers (Geula et al., 2015; Yoon et al., 2017; Chen et al., 2019; Esteve-Puig et al., 2020). For example, endometrial cancer is associated with a reduced level of m6A mRNA methylation because of decreased expression of METTL3 and METTL14 and reduced m6A methylation promotes the proliferation of endometrial cancer cell (Liu et al., 2018). METTL3 has been also reported to inhibit myeloid differentiation of normal hematopoietic and leukemia cells (Vu et al., 2017). On the contrary, METTL3 was up-regulated in human hepatocellular carcinoma and lung cancer (Chen et al., 2018; Choe et al., 2018). METTL3 directed m6A modification of tumor suppressor gene SOCS2 and silenced its expression depending on YTHDF2-mediated degradation pathway, which promoted the progression of hepatocellular cancer (Chen et al., 2018). In lung cancer, METTL3 enhanced circularization and translation of m6A modified mRNAs, and thus promoted oncogenesis (Choe et al., 2018). FTO was revealed as the first RNA m6A demethylase which is highly expressed in several AML subtypes (Barbieri et al., 2017). FTO plays an oncogenic role through facilitating cell proliferation and leukemogenesis, and inhibiting all-trans-retinoic acid-mediated differentiation of leukemia cells. R-2HG, a specific small molecule inhibitor of FTO, displays anti-leukemia activity by suppressing FTO/m6A/MYC signaling (Su et al., 2018). In our previous study, we found that the m6A “reader” YTHDF1 aggravated ovarian cancer progression by enhancing EIF3C translation in an m6A-dependent manner (Liu et al., 2020). However, the role of m6A RNA methylation-mediated gene regulatory network in diagnosis and treatment of ovarian cancer is largely unexplored.

In this study, we examined the genetic variations and gene expression of m6A RNA methylation regulators. We found several m6A RNA methylation regulators were amplified and up-regulated in ovarian cancer. We also identified the hub genes by protein interaction analysis and a signature gene for prognostic predication of ovarian cancer. Moreover, we classified the ovarian cancer patients into four subgroups with distinct overall survivals based on the expression of 20 m6A RNA methylation regulators. Our study demonstrated that m6A RNA methylation regulators have an important value in prognostic prediction for ovarian cancer.



MATERIALS AND METHODS


m6A Regulators

According to the mRNA expression detected by the Cancer Genome Atlas (TCGA) database, 20 m6A regulators including 7 “writers” (KIAA1429, METTL3, METTL14, RBM15, RBM15B, WTAP, ZC3H13), 2 “erasers” (ALKBH5, FTO) and 11 “readers” (YTHDC1-2, YTHDF1-3, IGF2BP1-3, HNRNPA2B1, HNRNPC, ELAVL1) were analyzed in this study.



m6A Regulators Mutation and Copy Number Variation Analysis

The workflow of our study was shown in Supplementary Figure 1. DNA mutation and copy number variation data were downloaded from the Genomic Data Commons (GDC)1. The R bioconductor package maftools was used for somatic mutation investigation of the m6A regulators (Mayakonda et al., 2018). The Pan cancer project of TCGA-OV was used in our study.



Microarray Datasets and Differentially Expressed Genes Analysis

Gene Expression Omnibus (Choe et al., 2018) database was selected to study the differential expression of 20 m6A regulators between normal tissues and tumor tissues. Datasets containing 4 normal samples with expression of all the 20 m6A regulators were selected in this study. 4 normalized matrix files (GSE27651, GSE52037, GSE54388, and GSE66957) were selected and downloaded from GEO. Batch effects were corrected by sva package (Leek and Storey, 2008) and differential expression was calculated by limma package (Ritchie et al., 2015).



Interaction Between 20 m6A Regulators

Protein-Proterin interaction was constructed using the STRING 11.0b website2. The RNA expression correlation among the m6A regulators was conducted by R package corrplot. RNA expression data (FPKM) was downloaded from GDC.



Clustering Analysis of 20 m6A Regulators

ConsensusClusterPlus package (Wilkerson and Hayes, 2010) was used to classify the TCGA patients to identify distinct m6A phenotype based on the expression of 20 m6A regulators and 1,000 times repetitions were conducted to make sure our classification is stable.



Tumor Microenvironment Cell Infiltration Estimate

The TCGA ovarian cancer immune cell type information predicted by deconvolution algorithm was downloaded from the CIBERSORT website3. ESTIMATE was conducted by estimate package to quantify the overall stromal cells, immune cells, and tumor purity of individual TCGA patients. To further qualify the relative levels of different activated or naïve immune cell types infiltration among the distinct m6A clusters, the enrichment score of 23 immune cell types which reported in pancancer (Charoentong et al., 2017) were calculated by ssGSEA (single-sample gene-set enrichment analysis) algorithm from gsva package (Hänzelmann et al., 2013).



Cluster Function Annotation

First of all, R package GSVA was used to study the KEGG pathway enrichment among different m6A clusters. Secondly, functional annotation of each m6A clusters was performed by R package ClusterProfiler (Yu et al., 2012) among the top 500 expressed genes. Thirdly, differential gene expression analysis was conducted using limma package between each cluster and the rest patients, and then used overexpressed analysis by ClusterProfiler package to identify the individual cluster.



Survival Analysis

Overall survival analysis was conducted using the integrated microarray datasets4 through Kaplan-Meier method. Survival and survminer packages (Scrucca et al., 2007) were used to establish the univariate Cox proportional hazards model and overall survival plot. Genes with the p < 0.1 were selected to lasso regression. Receiver operating characteristic curve (ROC) and area under curve (AUC) were calculated by R package survivalROC (Heagetry and Zheng, 2005). Patients with survival information were randomly divided into two subgroups (75% in training group and 25% in test group) by createDataPartition function from caret package. Four gene risk signature and their corresponding coefficient were determined in the training group by glmnet function. Risk score was calculated for each patient using prediction function. The best cutoff value for our model was selected as follow: true positive (TP) and false positive (FP) of every patient in training group was calculated through survivalROC function, Risk score of the patients with the minimum value of the formula (TP-1)2 + FP2 was determined as the best cutoff value. This cutoff value was used in training group, test group and external validation set to divide the sample into high-risk group and low-risk group. R package forestplot and survminer were used for visualized the Cox results and survival curves, respectively.



Statistical Analysis

Co-occurrence of CNV and mRNA expression correlation among different m6A regulators were calculated by Spearman correlation analyses by corrplot package. Kruskal-Wallis test was employed to compare gene expression among different samples. R 4.0.3 was used for all the statistical analysis in this study. p < 0.05 is the significance threshold for all the data.



RESULTS


Landscape of Genetic Variation and Expression Patterns of m6A Regulators in Ovarian Cancer

We first analyzed the mutation status and copy number variation of 20 m6A regulator genes including m6A “writers,” “erasers” and “readers” in TCGA ovarian cancer database. These genes displayed different copy number variations in ovarian cancer but low frequency of mutations occurred in all these genes (Figure 1A). IGF2BP2, KIAA1429 and YTHDF1 genes were highly amplified with amplification frequencies of 18%, 7% and 6%, respectively. HNRNPC, YTHDC2 and ZC3H13 genes were depleted in ovarian cancer (Figure 1B). Moreover, we analyzed the co-occurrence of DNA mutation and amplification among the m6A regulators respectively. Co-occurrence of DNA mutation is rarely and only 5 of 8 pair of genes significantly co-exist in the same patients (Figure 1C). DNA copy number variation is rather pervasive and all the co-exist copy number variation are positive related (Figure 1D). Additionally, we selected four GSE datasets to examine the expression of m6A-related genes and found that these genes were usually up-regulated in ovarian cancer compared to normal tissues (Figures 1E,F).
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FIGURE 1. Genetic variation and expression of m6A regulators in ovarian cancer. (A) The mutation frequency of m6A regulators in ovarian cancer available at TCGA database by using maftools package. (B) Copy number variations of m6A regulators in ovarian cancer available at TCGA database by using cBioPortal (http://cbioportal.org). (C) The mutation co-occurrence and exclusion analysis for m6A regulators. (D) The copy number variation co-occurrence and exclusion analysis for m6A regulators. (E) The mRNA expression alterations of m6A regulators in four independent GEO microarray datasets. (F) The mRNA expression of m6A regulators in GSE27651 cohort. HOSE, human ovarian surface epithelium, OVC, ovarian cancer. *P < 0.05, **P < 0.01, ***P < 0.001.




Interaction and Correlation Analysis Between m6A RNA Methylation Regulators

To understand the mutual interaction of 20 m6A RNA methylation regulators, a protein-protein interaction (PPI) network using Cytoscape was constructed based on the STRING 11.0b database. As shown in Figure 2A, the 20 m6A RNA methylation regulators displayed the complex interactions. The writers including METTL14 and WATP interacted with each other and were the hub genes. Moreover, the correlation analysis was conducted to analyze the correlation among these regulators in ovarian cancer. Part of the different m6A RNA methylation regulators showed weakly to moderately positive correlation (Figure 2B). Among 20 m6A RNA methylation regulators, YTHDF2 was positively correlated with all of the m6A RNA methylation regulators except YTHDC2 (Figure 2B). We also found that tumors with a high expression of writer genes (METTL14, RBM5B, RBM15, and KIAA1429) co-expressed with a high expression of “eraser” genes FTO and ALKBH5, whereas a high expression of writer gene WTAP had no correlation with the expression of FTO and ALKBH5 (Figures 2C-I). Considering the high amplification frequency of KIAA1429, we analyzed the differential expression of “eraser” genes in tumors with the distinct copy number variations. We found that both of “eraser” genes were down-regulated in KIAA1429-amplified tumors compared to wide-type tumors (Figure 2J). These results demonstrated that m6A RNA methylation regulators formed a complex regulatory network which contributed to the dynamics of m6A RNA methylation in ovarian cancer.
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FIGURE 2. The interaction and correlation analysis between m6A regulators in ovarian cancer. (A) Protein-Protein Interactions among the 20 m6A RNA methylation regulators using STRING 11.b. (B) Spearman correlation analysis of 20 m6A RNA methylation regulators in TCGA cohorts using R. (C-I) Correlation analysis between the expression of “erasers” (FTO and ALKBH5) and “writers” (KIAA1429, METTL14, RBM15, RBM15B, METTL3, ZC3H13, and WTAP). Median expression value was used to divide the patients into high and low expression groups. (J) Difference in the gene expression of “erasers” between KIAA1420-amplified and wild types.




Consensus Clustering of m6A RNA Methylation Regulators Identified Four Clusters of Ovarian Cancer With Distinct Clinical Outcomes

To examine the clinical relevance of m6A RNA methylation regulators in ovarian cancer, the ConsensusClusterPlus tool was used to separately cluster the TCGA ovarian cancer samples into subgroups according to the gene expression patterns of m6A RNA methylation regulators. Four distinct modification patterns (cluster 1-4) were identified using unsupervised clustering while k = 4 (Figures 3A-C). Significant differences were found among these four subgroups regarding tumor grade and FIGO stage (Figure 3D). Furthermore, prognostic analysis for the four main m6A modification patterns in Figure 3E revealed that cluster 1 (C1) and cluster 3 (C3) had a better overall survival compared to cluster 2 (C2) and cluster 4 (C4).
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FIGURE 3. Differential clinicopathological features and overall survival of ovarian cancer in four clusters with distinct m6A RNA methylation regulator features. (A) Consensus clustering cumulative distribution function (CDF) for k = 2-10. (B) Relative changes in the area under the CDF curve at k = 2-10. (C) Consensus clustering matrix for k = 4. (D) Heatmap with the clinical and pathological characterizations for clusters according to m6A RNA methylation regulator consensus clustering. (E) Kaplan-Meier overall survival curves of the four clusters.




Evaluation of TME Cell Infiltration in Distinct m6A Modification Patterns

Then we evaluated the landscape of TME cells in 4 subgroups with distinct m6A modification patterns. As shown in Figures 4A,B, we found 23 TME cells presented different changes in infiltration among subgroups. For most immune cells, the relative quantity of immune cells in the C2 group and the C4 group was significantly higher than that in the C1 group and C3 group (Figure 4B). The correlation between the m6A RNA methylation regulators and 23 immune cells was analyzed. We found that the expression levels of most m6A RNA methylation regulators were highly related to the abundances of multiple immune cells (Figure 4C). Unexpectedly, activated B cells, eosinophil cells and natural killer cells were significantly enriched in the C2 subgroup, but patients in the C2 group did not present an advantaged prognosis (Figure 4B). Consistently, we used ESTIMATE algorithm to evaluate the immune activity in distinct m6A modification subgroups and found that the C2 or C4 subgroups exhibited a higher immune score than the C3 subgroup (Figure 4D). Stroma surrounding tumor cell nests was demonstrated to contribute to the immune excluded phenotype of tumors and thus the stroma activity of m6A modification subgroups was evaluated (Chen and Mellman, 2017). Figure 4E showed that the stroma activity in the C2 or C4 subgroups was also higher than that in the C3 subgroup.
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FIGURE 4. TME cell infiltration characteristics in distinct m6A modification patterns. (A) The abundance of each TME infiltrating cell type in four m6A modification patterns. The TME infiltrating cell types were defined by ssGSEA methods. The upper and lower ends of the boxes represented interquartile range of values. Kruskal-Wallis test was used to calculate the significance between poor prognosis groups and good prognosis groups. *P < 0.01, **P < 0.001. (B) The component differences of immune cells among the four m6A modification patterns analyzed by CIBERSORT. (C) The correlation between each m6A regulator mRNA levels and each TME infiltration cell type ssGSEA scores using spearman analyses. Red color means positive correlated and blue color means negative correlated. *P < 0.05, **P < 0.01, ***P < 0.001. (D,E) Differences of immuneScore and stromaScore in four subgroups by ESTIMATE. *P < 0.05, **P < 0.01.




Characteristics of Transcriptome Traits in Clustering Subgroups

To further explore the transcriptomic characterization of these m6A modification phenotypes, the top 500 expressed genes in each cluster were collected for gene ontology (GO) enrichment analysis using R ClusterProfiler packages. Consistent with the TME immune cell infiltration patterns, all the four m6A clusters top 500 expressed genes enriched in immune associated pathways (Figures 5A,B and Supplementary Figure 2A), which demonstrated that m6A modification is implicated in ovarian cancer TME. We also determined phenotype-related differential expression genes (DEGs) in different m6A clusters and performed GO enrichment analysis. The results showed that cell proliferation associated genes were enriched in Cluster 1 (Figure 5C). And both the canonical and non-canonical Wnt pathways were up-regulated in Cluster 2 (Figure 5D). For Cluster 3, genes involved in DNA repair pathways including homologous recombination and mismatch repair were significant up-regulated (Figure 5E). And energy metabolism pathways such as oxidative phosphorylation and aerobic respiration were highly expressed in Cluster 4 (Figure 5F). Then GSVA was conducted to investigate the potential KEGG pathways mediated by m6A regulators. We compared each m6A cluster with the other clusters and determined 168 phenotype-associated KEGG pathways with the threshold of p < 0.05. As expected, DNA repair pathways were enriched in Cluster 1, and pathways associated with energy metabolism exhibited remarkably high expression in m6A Cluster 4 (Supplementary Figure 2B).
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FIGURE 5. Transcriptome traits in distinct m6A modification patterns. (A) GO terms enrichment using the top 500 expressed genes in each m6A modification patterns. (B) GO terms enrichment using the upregulated genes from each cluster compared to the rest cases. (C–F) Circos plot exhibits the essential cancer associated GO term clusters of the four m6A modification patterns with the differential expressed genes (fold change >1.5 and p value <0.05). Genes with good prognosis in high grade serous ovarian cancer are highlighted by red color, and the green for good prognosis genes. Each square represents the fold change of genes between each m6A modification patterns and the rest cases. Brown color for upregulated genes and green color for downregulated genes. (G–J) Overall survival curves of representative genes enriched in each m6A modification patterns.


To identify target genes regulated by m6A regulators, we visualized the typical pathways of the four m6A modification phenotype clusters. Of 38 DEGs expressed in Cluster 1 specifically, 20 genes were markedly associated with ovarian cancer overall survival, including 17 up-regulated genes with poor prognosis and 3 down-regulated genes with good prognosis (Figure 5G and Supplementary Figure 2C). All the 35 DEGs within the Wnt pathway were up-regulated and out of 16 (45.71%) genes were oncogenes in ovarian cancer (Figure 5H and Supplementary Figure 2D). In Cluster 3, 32 homologous recombination repair associated genes were up-regulated, of which 16 genes predicted poor prognosis in ovarian cancer (Figure 5I and Supplementary Figure 2E). Among the 72 aerobic respiration related DGEs in Cluster 4, there were 33 (45.83%) genes highly associated with ovarian cancer survival (Figure 5J and Supplementary Figure 2F). All these results demonstrated that the m6A regulators were implicated in the prognosis of ovarian cancer, and more importantly, different pathways were activated to regulate tumor progression in different m6A modification phenotype clusters with distinct prognosis states.



Construction and Validation of a Risk Signature With Four Selected m6A Methylation Regulators

We next investigated the prognostic value of m6A RNA methylation regulators in ovarian cancer. A univariate Cox regression analysis was performed in training set concerning the expression levels of m6A RNA methylation regulators to identify the regulators associated with overall survival in TCGA ovarian cancer cohort. We found that 3 out of 20 regulators were significantly associated with overall survival, among which KIAA1429 and IGF2BP2 belonged to risky genes with HR > 1 while HNRNPA2B1 was the only protective gene with HR < 1 (Figure 6A). To more precisely predict the prognosis of ovarian cancer with m6A RNA methylation regulators, we applied the LASSO Cox regression algorithm to develop a risk signature in the training set. According to the minimum criteria, the survival risk score model was established as follow: risk score = −0.0158 ELAVL1 −0.00763 HNRNPA2B1 + 0.12218 IGF2BP1 + 0.0687 KIAA1429 (Figures 6B,C). The ROC curves displayed that prognosis prediction using the risk signature had an area under the ROC curve (AUC) value of 0.662 (1 year), 0.598 (3 years) and 0.602 (5 years) in training set (Figure 6D). To detect the prognostic role of the four-gene risk signature, we divided the ovarian cancer patients in both training set and test set into low-risk and high-risk group based on the lasso cutoff risk score calculated above and compared the overall survival of patients in different subgroups. Results indicated patients in high-risk group exhibited a worse overall survival than low-risk patients in both sets (Figures 6E,F). The distributions of four-gene signature-based risk scores as well as its corresponding expression profiles were shown in Figures 6G,H. Collectively, these results demonstrated that this risk signature could identify high-risk ovarian cancer patients with poor prognosis. Moreover, we confirm the prognostic role of the four-gene risk signature in an independent ovarian cancer dataset in UCSC database (Supplementary Figure 3). Collectively, our results demonstrated that the m6A regulators contributed to the progression and prognosis of ovarian cancer.
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FIGURE 6. Construction and evaluation of prognostic risk signature with four m6A RNA methylation regulators in ovarian cancer cohorts. (A) Univariate Cox regression analysis results show the p values and hazard ratios (Liu et al.) with confidence intervals (CI) of the 14 differentially expressed m6A RNA methylation regulatory genes. (B,C) LASSO Cox regression analysis results show the identification of the 4 prognostic risk signature genes, and the risk score model is: risk score = 0.12218 × IGF2BP1 + 0.0687 × KIAA1429 - 0.0158 × ELAVL1 - 0.00763 × HNRNPA2B1. (D) The ROC curve for evaluating the prediction efficiency of the prognostic signature. (E,F) The survival analysis of training set and test set. Both two set were divided by the cutoff value according risk score calculated by LASSO multivariate Cox model. (G,H) The distributions of prognostic signature-based risk scores and its corresponding expression profiles in the training set and test set. The red dots represent high-risk patients and green dots represent low-risk patients.




DISCUSSIOIN

Recent studies have demonstrated that m6A RNA methylation was implicated in tumorigenesis of various cancers (Esteve-Puig et al., 2020). Previously we explored the role of the specific m6A regulator YTHDF1 in ovarian cancer progression and found that YTHDF1 as the m6A “reader” could promote protein synthesis in an m6A -dependent manner, indicating that m6A RNA methylation might have a key value of prognostic prediction for ovarian cancer patients (Liu et al., 2020). In this study, we analyzed genetic variations and gene expression of the 20 m6A methylation regulators in TCGA ovarian cancer cohort as well as GSE ovarian cancer datasets. These m6A RNA methylation regulators exhibited the low frequency of mutations but the high frequency of copy number variation, which is consistent with previous notion that high grade serous ovarian cancer is driven by genomic copy number changes rather than point mutations (Cancer Genome Atlas Research Network, 2011). Despite that TP53 was highly mutated in ovarian cancer according to genomic analysis, few genes other than TP53 are mutated at a high level. Extensive copy number change in more than half of ovarian cancer contributed to tumorigenesis of ovarian cancer (Cancer Genome Atlas Research Network, 2011). In our study, we found that multiple m6A RNA methylation regulator genes were amplified in ovarian cancer. Especially, the m6A “reader” IGF2BP2 gene was predominantly amplified with a frequency of 18% in ovarian cancer and the high amplification rate of IGF2BP2 was also reported in other cancers. IGF2BP2 was involved in the development of various cancers including colorectal carcinoma, liver cancer and cervical cancer through recognizing m6A modified RNAs and regulating RNA stability and translation. Further investigations are warranted to confirm the role of IGF2BP2-mediated fate regulation of m6A modified RNA in ovarian cancer. Besides gene amplification of multiple m6A RNA methylation regulators in ovarian cancer, most of the m6A RNA methylation regulators exhibited upregulation at the RNA level in ovarian cancer such as METTL3, KIAA1429, HNRNPC, ZC3H13 as well as IGF2BP2, suggesting the critical unexplored functions of m6A RNA methylation in ovarian cancer.

Notably, the m6A writers METTL3, KIAA1429, METTL14, and WTAP constructed the hub genes in m6A RNA methylation regulator interaction network according to PPI in ovarian cancer. Though acting as m6A writers, these m6A RNA methylation regulators exerted distinct effects on the progression of different cancers. For instance, METTL3 initiated m6A mRNA methylation to promote drug resistance and metastasis of non-small-cell lung cancer by enhancing the translation and activity of YAP (Jin et al., 2019). On the contrary, reduced METTL3 expression followed by reductions in m6A methylation increased AKT activity and thus promoted the proliferation and tumorigenesis of endometrial cancer (Liu et al., 2018). Upregulation of METTL14 induced PERP elevation and promoted the growth and metastasis of pancreatic cancer (Wang et al., 2020). However, METTL14 mediated the N6-methyladenosine modification of SOX4 mRNA and suppressed the metastasis of colorectal cancer (Chen et al., 2020). In terms of WTAP, it acted as an oncogene in hepatocellular carcinoma and high-grade serous ovarian carcinoma (Yu et al., 2019). KIAA1429 contributed to the progression of liver cancer and breast cancer (Lan et al., 2019; Qian et al., 2019). These studies suggest that regulatory network formed by m6A RNA methylation is complex and depends on cellular contexts. Thus we constructed an m6A RNA methylation regulators-based signature for predicting the prognosis of ovarian cancer. According to the four- m6A RNA methylation regulator signature, the ovarian cancer patients in both training set and test set could be stratified into high-risk group and low-risk group, and patients in high-risk group had a worse prognosis than that in low-risk group, suggesting its good performance for prognostic prediction. The signature genes included IGF2BP1, KIAA1429, HNRNPA2B1, and ELAVL1, among which HNRNPA2B1 acts as a protective gene. Although our previous study demonstrated that loss of HNRNPA2B1 inhibited the growth and metastasis of ovarian cancer, this oncogenic role of HNRNPA2B1 is likely independent of m6A RNA methylation (Yang et al., 2020).

By an unsupervised clustering based on 20 m6A RNA methylation regulators, patents in TCGA ovarian cancer cohort were divided into four clusters and different clusters showed the distinct m6A RNA methylation patterns and overall survival. Intriguingly, we found higher TME immune cell infiltration as well as higher stroma score in clusters with worse prognostic patients, suggesting that immune cells might be retained in the stroma and were suppressive in these clusters of ovarian cancer patients as the previous study reported (Chen and Mellman, 2017). Subsequently, GSVA enrichment analysis was conducted to comprehensively understand the characterization in clusters with different m6A RNA methylation patterns. The results showed that each cluster enriched distinct patterns of key genes and regulatory pathways.

In conclusion, our study explored genetic variation and the prognostic value of m6A RNA methylation regulators in ovarian cancer, and a four-gene signature was found to predict the prognosis of ovarian cancer. We also demonstrated the key regulatory pathways associated with m6A RNA methylation and more investigation might be required to decode the precise role of specific m6A RNA methylation regulators as well as their related genes or regulatory pathways.



DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.



ETHICS STATEMENT

In accordance with the local legislation and institutional requirements, ethical review and approval was not required for the study on human participants.



AUTHOR CONTRIBUTIONS

PY and TL designed the research study. QW, DY, XL, HZ, YY, and JX analyzed the data. QW, DY, and XL wrote the manuscript and interpreted the data. All authors read and approved the final manuscript.



FUNDING

This work was sponsored by the Natural Science Foundation of Chongqing, China (cstc2018jcyjAX0576 and cstc2020jcyj-msxmX0344), the Postdoctoral Science Foundation of Chongqing, China (cstc2019jcyj-bshX0129), the National Natural Science Foundation of China (81902668), and the Social Undertakings and People’s Livelihood Security Innovation of Science and Technology Special Project of Chongqing Yubei District Science and Technology Bureau, China (KY19036).



ACKNOWLEDGMENTS

The authors acknowledge contributions from TCGA databases.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.650554/full#supplementary-material


FOOTNOTES

1https://portal.gdc.cancer.gov

2https://string-db.org

3http://cibersort.stanford.edu/

4http://kmplot.com/analysis/index.php?p=background


REFERENCES

Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millán-Zambrano, G., Robson, S. C., et al. (2017). Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature 552, 126–131. doi: 10.1038/nature24678

Cancer Genome Atlas Research Network (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615. doi: 10.1038/nature10166

Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D., et al. (2017). Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262. doi: 10.1016/j.celrep.2016.12.019

Chen, D. S., and Mellman, I. (2017). Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330. doi: 10.1038/nature21349

Chen, M., Wei, L., Law, C. T., Tsang, F. H., Shen, J., Cheng, C. L., et al. (2018). RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67, 2254–2270. doi: 10.1002/hep.29683

Chen, X., Xu, M., Xu, X., Zeng, K., Liu, X., Pan, B., et al. (2020). METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol. Cancer 19:106. doi: 10.1186/s12943-020-01220-7

Chen, X., Yu, C., Guo, M., Zheng, X., Ali, S., Huang, H., et al. (2019). Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem. Neurosci. 10, 2355–2363. doi: 10.1021/acschemneuro.8b00657

Choe, J., Lin, S., Zhang, W., Liu, Q., Wang, L., Ramirez-Moya, J., et al. (2018). mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561, 556–560. doi: 10.1038/s41586-018-0538-8

Doherty, J. A., Peres, L. C., Wang, C., Way, G. P., Greene, C. S., and Schildkraut, J. M. (2017). Challenges and opportunities in studying the epidemiology of ovarian cancer subtypes. Curr. Epidemiol. Rep. 4, 211–220. doi: 10.1007/s40471-017-0115-y

Esteve-Puig, R., Bueno-Costa, A., and Esteller, M. (2020). Writers, readers and erasers of RNA modifications in cancer. Cancer Lett. 474, 127–137. doi: 10.1016/j.canlet.2020.01.021

Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A. A., Kol, N., Salmon-Divon, M., et al. (2015). Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006. doi: 10.1126/science.1261417

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. doi: 10.1186/1471-2105-14-7

Haussmann, I. U., Bodi, Z., Sanchez-Moran, E., Mongan, N. P., Archer, N., Fray, R. G., et al. (2016). m(6)A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 540, 301–304. doi: 10.1038/nature20577

Heagetry, P. J., and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics 61, 92–105. doi: 10.1111/j.0006-341X.2005.030814.x

Jayson, G. C., Kohn, E. C., Kitchener, H. C., and Ledermann, J. A. (2014). Ovarian cancer. Lancet 384, 1376–1388. doi: 10.1016/s0140-6736(13)62146-7

Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887. doi: 10.1038/nchembio.687

Jin, D., Guo, J., Wu, Y., Du, J., Yang, L., Wang, X., et al. (2019). m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J. Hematol. Oncol. 12:135. doi: 10.1186/s13045-019-0830-6

Lan, T., Li, H., Zhang, D., Xu, L., Liu, H., Hao, X., et al. (2019). KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol. Cancer 18:186. doi: 10.1186/s12943-019-1106-z

Leek, J. T., and Storey, J. D. (2008). A general framework for multiple testing dependence. Proc. Natl. Acad. Sci. U. S. A. 105, 18718–18723. doi: 10.1073/pnas.0808709105

Liu, J., Eckert, M. A., Harada, B. T., Liu, S. M., Lu, Z., Yu, K., et al. (2018). m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat. Cell Biol. 20, 1074–1083. doi: 10.1038/s41556-018-0174-4

Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., et al. (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95. doi: 10.1038/nchembio.1432

Liu, T., Wei, Q., Jin, J., Luo, Q., Liu, Y., Yang, Y., et al. (2020). The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 48, 3816–3831. doi: 10.1093/nar/gkaa048

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018). Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28, 1747–1756. doi: 10.1101/gr.239244.118.

Meyer, K. D., and Jaffrey, S. R. (2017). Rethinking m(6)A Readers. Writers, and Erasers. Annu. Rev. Cell Dev. Biol. 33, 319–342. doi: 10.1146/annurev-cellbio-100616-060758

Narod, S. (2016). Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol. 13, 255–261. doi: 10.1038/nrclinonc.2015.224

Patil, D. P., Pickering, B. F., and Jaffrey, S. R. (2018). Reading m(6)A in the transcriptome: m(6)A-Binding proteins. Trends Cell Biol. 28, 113–127. doi: 10.1016/j.tcb.2017.10.001

Qian, J. Y., Gao, J., Sun, X., Cao, M. D., Shi, L., Xia, T. S., et al. (2019). KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene 38, 6123–6141. doi: 10.1038/s41388-019-0861-z

Reid, B. M., Permuth, J. B., and Sellers, T. A. (2017). Epidemiology of ovarian cancer: a review. Cancer Biol. Med. 14, 9–32. doi: 10.20892/j.issn.2095-3941.2016.0084

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Roundtree, I. A., Evans, M. E., Pan, T., and He, C. (2017). Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200. doi: 10.1016/j.cell.2017.05.045

Schöller, E., Weichmann, F., Treiber, T., Ringle, S., Treiber, N., Flatley, A., et al. (2018). Interactions, localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. Rna 24, 499–512. doi: 10.1261/rna.064063.117

Schwartz, S., Mumbach, M. R., Jovanovic, M., Wang, T., Maciag, K., Bushkin, G. G., et al. (2014). Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8, 284–296. doi: 10.1016/j.celrep.2014.05.048

Scrucca, L., Santucci, A., and Aversa, F. (2007). Competting risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant. 40, 381–387. doi: 10.1038/sj.bmt.1705727

Su, R., Dong, L., Li, C., Nachtergaele, S., Wunderlich, M., Qing, Y., et al. (2018). R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA Signaling. Cell 172, 90.e23–105.e23. doi: 10.1016/j.cell.2017.11.031

Sun, T., Wu, R., and Ming, L. (2019). The role of m6A RNA methylation in cancer. Biomed. Pharmacother. 112:108613. doi: 10.1016/j.biopha.2019.108613

Vu, L. P., Pickering, B. F., Cheng, Y., Zaccara, S., Nguyen, D., Minuesa, G., et al. (2017). The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23, 1369–1376. doi: 10.1038/nm.4416

Wang, M., Liu, J., Zhao, Y., He, R., Xu, X., Guo, X., et al. (2020). Upregulation of METTL14 mediates the elevation of PERP mRNA N(6) adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol. Cancer 19:130. doi: 10.1186/s12943-020-01249-8

Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., Han, D., et al. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120. doi: 10.1038/nature12730

Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., Han, D., Ma, H., et al. (2015). N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 161, 1388–1399. doi: 10.1016/j.cell.2015.05.014

Wen, J., Lv, R., Ma, H., Shen, H., He, C., Wang, J., et al. (2018). zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69, 1028.e6–1038.e6. doi: 10.1016/j.molcel.2018.02.015

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinfomatics 26, 1572–1573. doi: 10.1093/bioinformatics/btq170

Wojtas, M. N., Pandey, R. R., Mendel, M., Homolka, D., Sachidanandam, R., and Pillai, R. S. (2017). Regulation of m(6)A Transcripts by the 3′→5′ RNA Helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol. Cell 68, 374.e12–387.e12. doi: 10.1016/j.molcel.2017.09.021

Yang, Y., Wei, Q., Tang, Y., Yuanyuan, W., Luo, Q., Zhao, H., et al. (2020). Loss of hnRNPA2B1 inhibits malignant capability and promotes apoptosis via down-regulating Lin28B expression in ovarian cancer. Cancer Lett. 475, 43–52. doi: 10.1016/j.canlet.2020.01.029

Yoon, K. J., Ringeling, F. R., Vissers, C., Jacob, F., Pokrass, M., Jimenez-Cyrus, D., et al. (2017). Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell 171, 877.e17–889.e17. doi: 10.1016/j.cell.2017.09.003

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287. doi: 10.1089/omi.2011.0118.

Yu, H. L., Ma, X. D., Tong, J. F., Li, J. Q., Guan, X. J., and Yang, J. H. (2019). WTAP is a prognostic marker of high-grade serous ovarian cancer and regulates the progression of ovarian cancer cells. Onco Targets Ther. 12, 6191–6201. doi: 10.2147/ott.S205730

Zhao, B. S., Roundtree, I. A., and He, C. (2018). Publisher correction: post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 19:808. doi: 10.1038/s41580-018-0075-1

Zheng, G., Dahl, J. A., Niu, Y., Fedorcsak, P., Huang, C. M., Li, C. J., et al. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29. doi: 10.1016/j.molcel.2012.10.015


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wei, Yang, Liu, Zhao, Yang, Xu, Liu and Yi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.










	 
	ORIGINAL RESEARCH
published: 08 June 2021
doi: 10.3389/fgene.2021.674653





[image: image]

Long Non-coding RNA FIRRE Acts as a miR-520a-3p Sponge to Promote Gallbladder Cancer Progression via Mediating YOD1 Expression
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Objectives: The role of lncRNAs in gallbladder cancer (GBC) remains poorly understood. In this study, we explored the function of functional intergenic repeating RNA element (FIRRE) in GBC.

Materials and Methods: Whole transcriptome resequencing was performed in three pairs of GBC tissues and adjacent non-tumor tissues. lncRNA FIRRE expression was verified by real-time PCR. The function of FIRRE in GBC was evaluated by experiments in vitro and in vivo. The mechanism of FIRRE was investigated via fluorescent in situ hybridization, RNA pull-down, dual luciferase reporter assays, and RNA immunoprecipitation.

Results: FIRRE level was dramatically increased in GBC tissues compared to that in the adjacent non-tumor tissues. High expression of FIRRE was closely related to clinical stage and poor prognosis in GBC patients. Moreover, FIRRE remarkably enhanced proliferation and migration, and inhibited apoptosis of GBC cells. Mechanistically, FIRRE modulated YOD1 expression by sponging miR-520a-3p, thus contributing to the development of GBC.

Conclusion: Our data revealed that FIRRE might act as a novel mediator in GBC progression by sponging miR-520a-3p and regulating YOD1. FIRRE might be regarded as a potential diagnostic marker or target for GBC treatment.

Keywords: lncRNA FIRRE, gallbladder cancer, cell proliferation, miR-520a-3p, YOD1


INTRODUCTION

Gallbladder cancer (GBC) is the most common malignancy in the biliary tract (Krell and Wei, 2019; Gu et al., 2020b). Lack of effective early diagnosis is one of the major causes of its poor prognosis. In the past few decades, despite improvements in exploratory surgical excision combined with chemotherapy or targeted therapy, the 5-year survival rate for operable locally advanced or node-positive gallbladder neoplasm is still unsatisfactory (Takada et al., 2002; Mayo et al., 2010; Witjes et al., 2012; Primrose et al., 2019). With the high speed development of cancer biology and gene sequencing technology, the molecular mechanisms of pathogenesis have been widely studied for GBC in recent years (Kanthan et al., 2015). Therefore, it is essential to identify clinically relevant biomarkers for diagnosis and treatment in GBC.

Long non-coding RNAs (lncRNAs) are a class of RNAs that are longer than 200 nucleotides in length, and they do not have the ability to encode proteins or peptides generally (Mercer et al., 2009). lncRNAs display various molecular functions through four mechanisms: signals, decoys, guides, and scaffolds (Wang and Chang, 2011). Emerging evidence demonstrated that dysregulated lncRNAs play vital roles in the development of tumors, including cell proliferation, migration, epithelial-to-mesenchymal transition (EMT), cell death, and chemoradiotherapy resistance (Chen et al., 2017; Peng et al., 2017, 2018; Liu et al., 2018; Xu et al., 2018). To date, a number of lncRNAs have been implicated in GBC. For example, lncRNA PVT1 could upregulate HK2 expression by sponging miR-143 to promote GBC progression (Chen et al., 2019). Our previous study revealed that the lncRNA MEG3 inhibits proliferation and invasion of GBC via increasing the ubiquitination of EZH2 (Jin et al., 2018). Therefore, it is urgent to identify novel tumor-associated lncRNAs and investigate their biological roles in order to discover novel approaches for early diagnosis and therapy of GBC.

In our present study, we revealed that an lncRNA, functional intergenic repeating RNA element, or FIRRE, acted as a cancer promoter of GBC. FIRRE was highly expressed and was closely related to poor prognosis in patients with GBC. Further function and mechanism studies showed that the lncRNA FIRRE enhanced cell proliferative and migratory capacity, and inhibited cell apoptosis via sponging miR-520a-3p to release microRNA for the target gene YOD1. Furthermore, we found that YOD1 executed its function of promoting GBC cell proliferation and migration, and inhibiting apoptosis. In summary, our studies revealed the FIRRE might provide feasible strategies for diagnosis and therapy against GBC.



MATERIALS AND METHODS


Patient Tissue Samples and Whole-Genome Sequencing Analysis

A total of 60 GBC and 20 para-carcinoma tissue samples (including 20 pairs of samples) were collected from GBC patients who received surgery at Xinhua Hospital (Shanghai Jiao Tong University School of Medicine, Shanghai, China) and Eastern Hepatobiliary Surgery Hospital and Institute (Second Military Medical University, Shanghai, China) from 2013 to 2018. Three pairs of GBC and para-carcinoma tissues were subjected for whole-genome sequencing. All samples were stored in liquid nitrogen before RNA isolation (Shi et al., 2018a,b). The patients ranged in age from 49 to 84 years, with an average age of 68 years. All patients did not undergo any local or systemic therapy before the operation, and were staged based on the TNM classification system from the American Joint Committee on Cancer. Complete clinical and pathological data were obtained for all patients except for 11 who were lost to follow-up. Follow-ups after surgery were performed according to patient survival time until November 30, 2018. The clinical data of the patients are displayed in Supplementary Table 1. This study was supported by the Human Ethics Committee of Xinhua Hospital. All patients gave written informed consent.



Cell Culture

In the present study, five human cell lines of GBC, including NOZ, GBC-SD, EHGB-1, SGC-996, and OCUG-1 were used. Moreover, a human intrahepatic bile duct epithelial cell line H69 was used. GBC-SD and OCUG-1 were obtained from the cell bank of the Chinese Academy of Sciences (Shanghai, China). NOZ cells were obtained from the Health Science Research Resources Bank (Osaka, Japan). EH-GB1 and SGC-996 cell lines were kindly supplied by the Eastern Hepatobiliary Surgery Hospital and Institute of the Second Military Medical University. The NOZ cell line was cultured in Williams’ medium E (Genom, China) containing 10% fetal bovine serum (FBS, Gibco, United States), and the remaining four GBC cell lines and H69 were cultured in DMEM high glucose medium (Gibco, United States) with 10% FBS. All cells were incubated at 37°C, 5% CO2 (Gu et al., 2020a).



Real-Time PCR

Total RNA was isolated from tissues and cells by TRIzol reagent (Invitrogen, United States) according to the manufacturer’s protocol. RNA was reverse transcripted into cDNA using a Primer-Script One Step RTPCR kit (Takara, China). Real-time PCR was conducted with a SYBR Premix Dimming Eraser Kit (Takara, China). The primers were synthesized at the Shanghai Sanyuan Biotechnology Co., Ltd.; these are shown in Table 1. Results were standardized by the expression of β-actin. All experiments were repeated three times. The relative expression of all genes was analyzed using the 2–ΔΔCt method.



TABLE 1. Information of the qRT-PCR primer.


[image: Table 1]



RNA Interference

Small interfering RNA (siRNA) and negative control (NC) sequences were synthesized via GenePharma (Shanghai, China). NC and siRNA fragments were transitorily transfected into cells using Lipofectamine 2000 (Invitrogen). After transfection, cells were incubated for 48 h. The siRNA sequences are shown in Supplementary Table 1. Real-time PCR was run to determine the knockdown efficiency.



Cell Proliferation Assays

The proliferative potential of GBC cells was evaluated via Cell Counting Kit-8 (Takara, Dalian, China) and the Cell-LightTM EdU DNA Cell Proliferation Kit (Ribobio, Guangzhou, China). In brief, cells transfected with si-FIRRE, si-YOD1, si-NC, miRNA mimic, or miRNA inhibitor were plated in 96-well plates (1 × 103 cells/well). After 24, 48, 72, and 96 h, the absorbance at 450 nm was determined. GBC cells were fixed using 4% paraformaldehyde for 30 min, and stained by Hoechst 33342 (Beyotime, Shanghai, China) for 20 min. The stained cells were observed by a fluorescence microscope (Leica, Wetzlar, Germany). All the assays were repeated three times.



Cell Cycle and Apoptosis Assays

After transfection by siRNA or si-NC and incubation for 48 h, cells were collected for cell cycle and apoptosis assays. In brief, for the cell cycle assay, cells were fixed for 16 h at 4°C, using pre-cooled 70% ethanol, and propidium iodide (PI) was used to stain the fixed cells. To measure cell apoptosis, we used an FITC-Annexin V Apoptosis Detection Kit (BD Biosciences), performed following the product instructions. Cell cycle and apoptosis data were detected via flow cytometry (Becton Dickinson FACSCalibur, NY, United States). All experiments were repeated three times.



Wound Healing and Transwell Assays

After transfection for 24 h, the GBC cells were plated in a 6-well plate. When the cells covered approximately 70%, cells were scraped into the middle of the well using a 200-μL pipette tip. After 24 h of cell culture by serum-free medium, the wound widths of three independent wounds per group were checked. For the migration assay, a 24 transwell plate (Corning, United States) was used. The upper chamber was plated with 2 × 105 transfected cells, which were cultured by serum-free medium. The lower chamber was added with 500 μL of 10% FBS-containing medium. After 24 h of culture, cells that migrated into the bottom chamber were subject to fixation and staining, using 4% paraformaldehyde and 0.1% crystal violet, respectively. The stained cells were observed under a microscope (Leica, Wetzlar, Germany). Data were analyzed by five randomly selected fields for each sample.



Western Blotting

The total protein was isolated by RIPA buffer (Beyotime, Shanghai, China). The concentrations of proteins were detected via a BCA kit (Applygen Technologies Inc., China). Proteins were separated on a 10% SDS-PAGE gel, and transferred to a PVDF membrane. After blocking via 5% skimmed milk powder, the membranes were probed with primary antibodies, including anti-YOD1, CDK4, CyclinD1, Bax, Bcl-2, Caspase- 3 (1: 1000; Cell Signaling Tech., Beverly, MA, United States), and anti-β-actin (1: 5000, Cell Signaling Tech.), at 4°C overnight. Then, secondary antibodies (1: 5000, Cell Signaling Tech.) were used to incubate the membranes at 20°C for 2 h. Protein bands were visualized by the enhanced chemiluminescence (Millipore, Billerica, MA, United States).



Xenograft Mouse Model

This study was supported via the Animal Care and Use Committee of Xinhua Hospital. Stably expressing si-NC or si-FIRRE GBC cells (1 × 106) were subcutaneously injected into the left sides of the flanking region of 3-week-old male nude mice, with five mice in each group. The volume of the tumor was determined (0.5 × length × width 2) and the tumor weight was monitored weekly. Four weeks later, the mice were sacrificed and the tumor tissues were collected.



RNA Pull-Down Assay

Biotin-labeled probes for FIRRE and control were synthesized in Geneseed Biotech (Shanghai, China). After lysis, GBC-SD cell lysate was incubated using a FIRRE or control probe. Then the cell lysate was added with streptavidin-coated magnetic beads, which can bind to the biotin, thus pulling down the RNA complex. After removing the beads, the RNA was isolated from the product using TRIzol (Takara, Dalian, China). The enrichments of FIRRE and miR-520a-3p were evaluated via real-time PCR.



Immunohistochemistry

The tumor tissues were subjected to fixing and embedding by 4% paraformaldehyde and paraffin, respectively. Followed by antigen retrieval and blocking, 3-μm tissue sections were probed by YOD1 antibodies (CST, United States) at 4°C overnight. After incubating by secondary antibodies (Beyotime, Shanghai, China) for 30 min, the sections were stained using diaminobenzidine. Each visual field was evaluated blindly under the light microscope by two pathologists.



RNA Immunoprecipitation (RIP) Assay

The RIP assay was conducted by an EZ-Magna RIPTM RNA-binding protein immunoprecipitation kit (Millipore, Billerica, MA, United States), following the procedure specification. In brief, a cell sample was lysed by the complete RIP lysis buffer (Millipore), which was supplemented with RNase and protease inhibitors. On the other hand, magnetic beads were pretreated with the specific antibodies. Especially, for the negative group, magnetic beads were added with anti-mouse IgG (Cell Signaling Tech.), and the experimental group was added with anti-AGO2 (Millipore). Then, the prepared magnetic beads were added with 100 μl of cell lysate to incubate the antibodies. The RNA was isolated from the immunoprecipitation product and evaluated by real-time PCR.



Dual-Luciferase Reporter Assay

The whole length sequence of FIRRE and the 3′UTR sequence of YOD1, as well as their mutant sequences which mutate at the miR-520a-3p binding site, were synthesized, and cloned to the psiCHECK2 vectors (Promega, Madison, WI, United States). These wild-type and mutant-type vectors were named FIRRE-WT, FIRRE-Mut, YOD1 3′UTR-WT, and YOD1 3′UTR-Mut, respectively. The success of vector construction was verified via sequencing. The relative luciferase activities in each group were determined using a Dual-Luciferase Assay Kit (Promega, Madison, WI, United States), following the product specification.



Statistical Analysis

The data were analyzed by SPSS 20.0 (SPSS, Chicago, IL, United States). Results were displayed as mean ± standard deviation (Pan et al., 2017; Sun et al., 2017). At least three biological replicates were performed for each group of experiments. Comparisons between two groups were analyzed by Student’s t-test. Kaplan–Meier survival analysis and log-rank test was used to analyze overall survival (OS) (Gu et al., 2017, 2018; Chen et al., 2020). It was considered significantly different when P < 0.05 (Gu et al., 2016).



RESULTS


FIRRE Is Upregulated in GBC, and Its High Level Indicates Poor Prognosis in GBC Patients

In order to understand the expression profiles of lncRNA in GBC, we applied whole-genome sequencing to obtain lncRNA expression profiles in three pairs of GBC and adjacent non-tumor tissue samples, and found that lncRNA FIRRE was abnormally elevated (Figure 1A). Subsequently, through the analysis of large samples by qRT-PCR, we further verified that FIRRE was significantly upregulated in GBC tissues compared to that in the adjacent non-cancer tissues (Figures 1B,C). Additionally, in order to find out the correlations between FIRRE level and clinical characteristics, 46 GBC samples were divided into two groups based on the FIRRE expressed median, including the low FIRRE group (n = 22) and the high FIRRE group (n = 24). Further statistical analysis revealed FIRRE overexpression was positively related to TNM stage. However, FIRRE level showed no significant relationship with age, gender, tumor size, histological grade, lymph node metastasis, and adjacent organ invasion (Supplementary Table 1). Interestingly, patients with highly expressed FIRRE showed a shorter survival time compared to those with lowly expressed FIRRE (Figure 1D). Using univariate survival analysis, we found tumor size, lymph node metastasis, high FIRRE level, and TNM stage were the factors influencing the prognosis of GBC patients. Multivariate analysis illustrated that the high level of FIRRE, as well as tumor size, were independent predictors that affected the prognosis of patients with GBC (Supplementary Table 1).
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FIGURE 1. Relative expression of FIRRE in GBC tissues, cells, and its clinical significance. (A) The cluster heat map showed the differentially expressed lncRNAs in GBC tissues and adjacent non-tumor tissues. The top 10 upregulated lncRNAs were listed. (B) Relative expression of FIRRE in GBC tissues (n = 60) and non-tumor tissues (n = 20) was examined by qRT-PCR assays. (C) FIRRE expression levels in GBC tissues and paired neighboring non-tumor tissues (n = 20). (D) Kaplan–Meier analysis of overall survival according to FIRRE expression levels. (E) Relative expression of FIRRE in GBC cell lines and human biliary epithelium cell line H69. (F) Relative expression of FIRRE in GBC-SD cells and SGC-996 cells transfected with siRNAs. *p < 0.05, **p < 0.01, ***p < 0.001.




FIRRE Facilitates GBC Cell Malignancy In vitro

We confirmed the FIRRE level in five human GBC cells (NOZ, GBC-SD, SGC-996, EH-GB1, OCUG-1) and a human normal biliary epithelial cell (H69) via real-time PCR. As expected, the expression of FIRRE was significantly upregulated in the GBC cells compared to the H69 cells (Figure 1E). To investigate the role of FIRRE, two siRNA fragments of FIRRE were transfected into GBC-SD and SGC-996, in which FIRRE was relatively highly expressed. Of the two siRNA fragments, si-FIRRE-1 showed a higher interference effect on GBC cells (Figure 1F). Therefore, si-FIRRE-1 was used for the subsequent studies. Subsequently, a CCK-8 assay was applied to evaluate the function of FIRRE in GBC cell growth. Results revealed FIRRE silencing remarkably suppressed the cell proliferative ability of GBC-SD and SGC-996 (Figure 2A). Consistently, the EdU assay showed FIRRE knockdown dramatically reduced the percentage of cells that were EdU positive (Figure 2B). Moreover, transwell and cell wound healing experiments were performed to determine the role of FIRRE in the migratory potential of GBC cell lines. We found that the migratory potential was markedly suppressed in FIRRE-downregulated GBC cells (Figures 2C,D). Subsequently, the action of FIRRE in the cell cycle and apoptosis was investigated in GBC cells. Flow cytometry analysis illuminated that si-FIRRE-1 significantly inhibited the cell apoptosis of GBC compared to si-NC (Figure 2E). With FIRRE silencing, GBC-SD and SGC-996 cells in the G0-G1 phase were significantly increased, while the cells in the S phase were decreased (Figure 2F), indicating that interference of FIRRE led to GBC cell arresting in the G1 phase. Additionally, the expression of proteins associated with the cell cycle and apoptosis was determined by western blotting. We found that when FIRRE was knocked down, the cycle-related protein of CDK4 and CyclinD1 as well as anti-apoptotic protein Bcl-2 were decreased in GBC cells (Figure 3A), while the proteins associated with pro-apoptosis, including Bax and cleaved caspase-3, were increased (Figure 3B). This evidence implied that FIRRE enhanced the development of GBC cells in vitro.
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FIGURE 2. Effect of FIRRE on GBC cells proliferation, migration, cell cycle, and apoptosis in vitro. (A) The proliferation ability of GBC-SD cells and SGC-996 cells transfected with si-FIRRE-1 were determined by CCK-8 assays. (B) EdU assays were conducted in GBC cells after transfection with si-FIRRE-1 (magnification, ×100). Scale bar, 100 μm. (C) Cell migration was assessed in GBC cells in which FIRRE was inhibited. Scale bar = 100 μm. (D) The migration ability of transfected GBC-SD and SGC-996 cells by cell wound healing assays. (E) Apoptosis rate was analyzed by flow cytometry after downregulation of FIRRE. (F) Flow cytometric analyses were performed to determine the cell cycle progression in si-FIRRE-1-transfected GBC-SD cells and SGC-996 cells. *p < 0.05, **p < 0.01, ***p < 0.001.



[image: image]

FIGURE 3. Effect of FIRRE on the proteins related to cell cycle and apoptosis, and xenograft tumor growth in vivo. (A) The expression levels of cell cycle-related proteins CyclinD1 and CDK4 were determined by western blot assays transfected with si-FIRRE-1 in GBC-SD and SGC-996 cells. (B) The expression levels of apoptosis-related proteins Bcl-2, Bax, and Cleaved caspase-3 in transfected GBC-SD cells and SGC-996 cells. (C) Representative example of nude mice at 4 weeks post-injection with subcutaneous xenografts of GBC-SD cells transfected with si-FIRRE-1 (five mice per group). Quantitative analysis of xenografted tumor volumes and weights. (D) HE staining of tumor tissues transfected with si-NC or si-FIRRE-1. (E) The YOD1 protein levels of xenograft tumors from si-NC or si-FIRRE-1 groups was determined by immunohistochemical staining. *p < 0.05, ∗∗p < 0.01.




FIRRE Facilitates GBC Tumorigenesis in vivo

To investigate the role of FIRRE in tumorigenesis in vivo, GBC-SD cells were transfected with si-NC or si-FIRRE, and then injected subcutaneously into nude mice. We found FIRRE deficiency significantly decreased the tumor sizes and weights, compared to the si-NC group (Figure 3C). In addition, HE staining of the tissue section found that knockdown of FIRRE exhibited a weak heterogeneity of the nucleus in the tumors compared to si-NC (Figure 3D). Finally, immunohistochemical staining found that downregulation of FIRRE could attenuate the protein level of YOD1 in xenograft tumor tissues (Figure 3E). Together, our data indicated that FIRRE might act as an oncogene in GBC.



FIRRE Acts as the Sponge of miR-195-5p

To clarify the regulatory mechanisms of FIRRE, first of all, target genes of FIRRE were predicted using the miRanda and RNAhybrid databases. We found FIRRE had a miR-520a-3p binding site, and the binding score of miR-520a-3p was higher than other miRNAs. To investigate the interactions between FIRRE and miR-520a-3p, we performed dual-luciferase reporter assays, via establishing two vectors that carry the WT or Mut FIRRE 3′-UTR sequences (Figure 4A). We observed that miR-520a-3p dramatically inhibited the luciferase activity of wild-type FIRRE. By contrast, inhibition was negative in the cells co-transfected with the Mut FIRRE 3′-UTR (Figure 4G), indicating that miR-520a-3p might inhibit the activity of FIRRE by directly binding FIRRE. Proverbially, miRNAs mediate the silencing of target genes via combining with Argonaute2 (AGO2), which is a core member in RNA-induced silencing complex (RISC). Therefore, to further better understand the interaction between FIRRE and miR-520a-3p, we performed RNA immunoprecipitation (RIP) assays using an AGO2 antibody in GBC-SD cells. Results revealed that AGO2 significantly enriched AGO2, FIRRE, and miR-520a-3p, compared to IgG (Figure 4C). As expected, we found that a high level of miR-520a-3p remarkably increased the amount of FIRRE pulled down by AGO2 (Figure 4D). To further verify the binding of FIRRE and miR-520a-3p, we performed an RNA pull-down assay with specific biotin-labeled FIRRE probes. Similarly, the expression of FIRRE and miR-520-3p was significantly increased in the FIRRE probe group compared to the control probe group (Figures 4E,F). Moreover, silencing of FIRRE observably elevated the levels of miR-520a-3p in GBC-SD and SGC-996 cells (Figure 4B). Together, these results suggest that FIRRE might function as an RNA sponge to suppress miR-520a-3p in GBC.
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FIGURE 4. FIRRE functions as a sponge for miR-520a-3p. (A) The miR-520a-3p binding site on FIRRE predicted by miRanda and RNAhybrid. (B) The relative expression of miR-520a-3p was detected by qRT-PCR after transfection with si-FIRRE-1 in GBC-SD cells and SGC-996 cells. (C,D) RNA pull-down was executed in GBC-SD cells, followed by qRT-PCR to detect the enrichment of FIRRE and miR-520a-3p. (E,F) Anti-AGO2 RIP was executed in GBC-SD cells after transfection with miR-NC and miR-520a-3p mimic, followed by western blot and qRT-PCR to detect AGO2 protein, FIRRE, and miR-520a-3p, respectively. (G) The relative luciferase activities were detected in 293 T cells after transfection with FIRRE-WT or FIRRE-Mut and miR-NC and miR-520a-3p mimic, respectively. **p < 0.01, ***p < 0.001.




FIRRE Effects GBC Cell Proliferation, Migration, and Apoptosis Through miR-520a-3p

To further investigate the involvement of miR-520a-3p in the FIRRE-mediated tumor regulation process, we performed rescue experiments by miR-520a-3p mimics. Both CCK-8 and EdU experiments showed that silencing of FIRRE inhibited GBC cell proliferation, while miR-520a-3p mimics remarkably abrogated this effect (Figures 5A,B). Then, a transwell assay was performed to observe the migration affected by co-transfection with si-FIRRE-1 and miR-520a-3p mimics. The results indicated that the migration abilities were markedly promoted by miR-520a-3p mimics of the si-FIRRE group (Figure 5C). Furthermore, cell apoptosis was more reduced by co-transfection with si-FIRRE-1 and miR-520a-3p mimics than the si-FIRRE-1 group (Figure 5D). Together, our data indicate that FIRRE might contribute to the development of GBC by sponging miR-520a-3p.
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FIGURE 5. The proliferation, migration, and apoptosis in GBC cells co-transfected with si-FIRRE-1 and miR-520a-3p mimics. (A) The proliferation ability of GBC-SD cells and SGC-996 cells co-transfected with si-FIRRE-1 and miR-520a-3p mimics determined by CCK-8 assays. (B) The cell proliferation was determined by EdU assays. (C) The migration ability was examined after transfection with si-FIRRE-1 and miR-520a-3p mimics by transwell assays. (D) The apoptosis of co-transfected GBC-SD cells and SGC-996 cells. **p < 0.01, ***p < 0.001.




YOD1 Is Targeted by miR-520a-3p and Mediated by FIRRE

Using TargetScan (Gu et al., 2020c), we found that YOD1 and FIRRE had a common binding site in the miR-195-5p sequence. To verify the binding action of YOD1 and miR-520a-3p, we performed dual-luciferase reporter assays. As expected, miR-520a-3p remarkably inhibited the luciferase activity of wild-type YOD1, but had no effect on the mutant-type YOD1 (Figures 6A,B). Additionally, miR-520a-3p mimics remarkably suppressed the protein levels of YOD1, whereas the miR-520a-3p inhibitor remarkably increased the protein expression of YOD1 in GBC-SD and SGC-996 cells (Figure 6C). To validate whether FIRRE could regulate the expression of YOD1 in GBC cells, we found that knockdown of FIRRE markedly decreased the mRNA expression and protein level of YOD1 (Figures 6D,E). Collectively, the above evidence suggests that FIRRE mediates YOD1 via acting as a miR-520a-3p sponge in GBC.
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FIGURE 6. YOD1 is directly targeted by miR-520a-3p and indirectly regulated by FIRRE. (A) The 3′-UTR of YOD1 mRNA contains wild-type or mutant miR-30a-5p-binding sequences. (B) The relative luciferase activities were detected in 293 T cells after transfected with YOD1 3′UTR-WT or YOD1 3′UTR-Mut and miR-NC and miR-520a-3p, respectively. (C) Relative mRNA and protein levels of YOD1 were detected in GBC cells after transfection with miR-NC, miR-520-3p, inh-NC, and inh-520a-3p using qRT-PCR and western blot, respectively. (D,E) Relative expression levels of YOD1 was detected by qRT-PCR and western blot in cells transfected with si-NC or si-FIRRE-1. **P < 0.01, ***P < 0.001.




YOD1 Regulates GBC Cell Proliferation, Migration, and Apoptosis

To investigate the function of YOD1 in the multiplication capacity of GBC cells, we carried out CCK-8 and EdU experiments. Interestingly, FIRRE or/and YOD1 knockdown significantly attenuated GBC cells proliferation (Figures 7A,D). Similarly, FIRRE or/and YOD1 downregulation decreased the migration ability in GBC-SD and SGC-996 cells (Figure 7B). To study the role of YOD1 in cell apoptosis, we also carried out flow cytometry assays. As expected, we observed that YOD1 induced the apoptosis of GBC cells (Figure 7C). Together, our results show that FIRRE might modulate YOD1 by serving as a sponge of miR-520a-3p, resulting in the occurrence and development of GBC (Figure 7E).
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FIGURE 7. The proliferation, migration, and apoptosis in GBC cells co-transfected with si-FIRRE-1 and si-YOD1. (A,D) The proliferation ability of GBC-SD cells and SGC-996 cells co-transfected with si-FIRRE-1 and si-YOD1 were determined by CCK-8 and EdU assays. (B) The migration ability was examined by transwell assays. (C) The apoptosis of co-transfected GBC-SD cells and SGC-996 cells was analyzed by flow cytometric analyses. (E) Schematic diagram of how FIRRE promotes GBC tumorigenesis and progression. *p < 0.05, **p < 0.01, ***p < 0.001.




DISCUSSION

Emerging evidence has revealed that lncRNAs play vital roles in the occurrence and development of various diseases, especially the malignant development of a tumor (Chi et al., 2019). Although alterations of multiple lncRNAs during the development of GBC have been widely investigated (Wang et al., 2016; Cai et al., 2017), the functions and regulatory mechanisms of numerous GBC-related lncRNAs are still largely unknown.

Here, we applied whole-genome sequencing to obtain lncRNA expression profiles in three pairs of GBC and adjacent tissue samples, and observed that lncRNA FIRRE was abnormally elevated. Subsequently, we further verified that it was dramatically increased in GBC tissues and cell lines, and was significantly related to lymph node metastasis, pathological typing, clinical stage, and overall survival. In addition, functional experiments in vivo and in vitro revealed that silencing of lncRNA FIRRE dramatically reduced the proliferation and migration capacity of GBC cells, while increasing apoptosis. The full name of FIRRE is functional intergenic repeating RNA element, which is a newly identified lncRNA and localizes on the X chromosome. Previous research shows that lncRNA FIRRE anchors the inactive X chromosome via sustaining H3K27me3 methylation (Yang et al., 2015). Recent research demonstrated that FIRRE modulates nuclear architecture across chromosomes and interacts with the nuclear matrix factor hnRNPU (Hacisuleyman et al., 2014). lncRNA FIRRE enhances cell proliferation and inhibits cell apoptosis of DLBCL by inducing the Wnt/b-catenin signaling pathway (Shi et al., 2019).

The ceRNA mechanism is one of the approaches that lncRNA is involved in cell regulation which was first proposed by Salmena et al. (2011). In this hypothesis, any RNA molecule with a microRNA response element (MRE) site can release miRNAs with similar MRE from acting on downstream target molecules (Salmena et al., 2011). For example, LINC00152 positively modulates HIF-1a by binding miR-138 to promote metastasis and EMT in gallbladder cancer (Cai et al., 2017). lncRNA MT1JP can regulate the development of gastric cancer via modulating FBXW7 levels through serving as a ceRNA and competitively binding to miR-92a-3p to Zhang et al. (2018). In the present study, bioinformatics analysis revealed that FIRRE contains miR-520a-3p MRE. Furthermore, we confirmed that FIRRE can directly interact with it and verified this by dual-luciferase report, AGO2-RIP, and RNA pull-down analysis. Similarly, previous evidence also showed that miR-520a-3p has different degrees of change in different tumor tissues (Liu et al., 2016; Li et al., 2017; Bi et al., 2019). Bioinformatics analysis, WB experiments, and dual-luciferase report analysis confirmed that YOD was targeted and regulated by miR-520a-3p.

YOD1 is a highly conserved deubiquitinating enzyme belonging to the ovarian tumor (otubain) family, whereas its role and molecular mechanism remain unclear in mammalian cells (Ernst et al., 2009). A previous study showed that high expression of YOD1 can promote cell migration via triggering the TGF-β3 pathway, thus playing a vital role in lip and palate formation. Moreover, mutation of YOD1 can lead to abnormal TGF-β3 signaling, which inhibits the cell migration in NSCLP (Ju et al., 2018). YOD1 is involved in the modulation of endoplasmic reticulum (ER)-related degeneration pathways (Rumpf and Jentsch, 2006). In fact, YOD1 has been revealed to play important roles in the endoplasmic reticulum stress response triggered via the mis-localization of unfolded proteins in mammalian cells (Ernst et al., 2009; Claessen et al., 2010; Bernardi et al., 2013; Sasset et al., 2015). Emerging evidence showed that YOD1 functions as an important modulator of the inflammatory cytokine interleukin-1 via directly binding to TRAF6 (Schimmack et al., 2017). YOD1 reduces the aggregation of MAVS by the de-ubiquitination of K63, thereby inhibiting the body’s innate immune response (Liu et al., 2019). In this study, we demonstrated that FIRRE knockdown led to a correspondingly reduced YOD1 protein level, which in turn led to a reduction in the growth of GBC. However, which YOD1 pathway or signaling pathway influences the development of GBC needs further study. Previous studies have confirmed that YOD1 is a key modulator for the hippo signaling pathway. YOD1 clears the itching ubiquitin, enhances its stability, and induces LATS deterioration and YAP/TAZ activity. At the same time, the induced expression of YOD1 in the liver enhanced liver cell proliferation and caused liver hypertrophy in a YAP/TAZ activity-dependent manner (Kim and Jho, 2017; Kim et al., 2017).

There are some limitations in our study. First, the number of samples is still limited and needs further validation; second, the samples used for whole transcriptome resequencing are also limited and more bioinformatics methods should be performed to predict the ceRNA network.



CONCLUSION

This study reported for the first time that lncRNA FIRRE was upregulated in GBC tissues and cells, and its high level might be a factor in the poor prognosis of GBC patients. In addition, FIRRE regulates YOD1 by sponging miR-520a-3p to promote cell proliferation and migration, and inhibit apoptosis of GBC. Our findings suggest that FIRRE may be helpful for lncRNA-guided GBC diagnosis and treatment.
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Background: Secondary infertility remains a major complication of endometrial fibrosis in women. The use of exosomes from adipose-derived mesenchymal stem cells (ADSCs) has shown promising results for the treatment of endometrial fibrosis. However, the mechanisms of action of ADSC-exosome (ADSC-Exo) therapy remain unclear.

Materials and Methods: An endometrial fibrosis model was established in mice treated with alcohol and endometrial epithelial cells (ESCs) treated with TGF-β1. ADSCs were isolated from Sprague Dawley (SD) rats, and exosomes were isolated from ADSCs using ExoQuick reagent. Exosomes were identified by transmission electron microscopy (TEM), NanoSight, and Western blot analysis. The expression level of lncRNA-MIAT was detected by qPCR analysis. Western blot analysis was carried out to determine the protein levels of fibrosis markers (TGFβR1, α-SMA, and CK19). A dual-luciferase reporter gene assay was used to verify the relationship between target genes. The endometrial tissues of the endometrial fibrosis model were stained with HE and Masson’s trichrome.

Results: ADSCs and ADSC-Exos were successfully isolated, and the expression level of lncRNA-MIAT was significantly down-regulated in endometrial tissue and the TGF-β1-induced ESC injury model, whereas ADSC-Exos increased the expression of lncRNA-MIAT in the TGF-β1-induced ESC model. Functionally, ADSC-Exo treatment repressed endometrial fibrosis in vivo and in vitro by decreasing the expression of hepatic fibrosis markers (α-SMA and TGFβR1) and increasing the expression of CK19. Moreover, miR-150-5p expression was repressed by lncRNA-MIAT in the TGF-β1-induced ESC injury model. The miR-150-5p mimic promoted TGF-β1-induced ESC fibrosis.

Conclusion: ADSC-Exos mediate lncRNA-MIAT alleviation of endometrial fibrosis by regulating miR-150-5p, which suggests that lncRNA-MIAT from ADSC-Exos may be a viable treatment for endometrial fibrosis.

Keywords: endometrial fibrosis, ADSC, ADSC-exosomes, LncRNA-MIAT, miR-150-5p


INTRODUCTION

Endometrial fibrosis is a catastrophic condition that causes secondary infertility, which is related to lower implantation and pregnancy rates. Excessive uterine curettage, endometrial tuberculosis, and other factors can lead to endometrial fibrosis. Various strategies have been suggested to treat endometrial fibrosis, such as immunotherapy and endometrial stimulation by biopsy, but none have been validated to date (Hooker et al., 2016). However, the treatment strategy for endometrial fibrosis remains to be investigated.

Clinical studies have confirmed that stem cell therapy is a promising therapeutic approach for tissue damage (Ding et al., 2014; Duncan and Valenzuela, 2017; Azizi et al., 2018; Cao et al., 2018; Zhu et al., 2019; Han H. S. et al., 2020). Stem cell therapy has many limits due to low cell survival. In recent years, a number of studies have confirmed that stem cell exocrine signaling plays a significant role in tissue repair, including skin wound healing (Pan and Johnstone, 1983), myocardial injury repair (Johnstone, 2006), nerve injury repair (Phinney and Pittenger, 2017), bone and cartilage regeneration (Pu et al., 2017), and repair after liver (Waters et al., 2018) and kidney injury (Farinazzo et al., 2015). Some studies have reported that ADSC exosomes regulate the process of endometrial fibrosis. The molecular mechanism of ADSC-Exos is not well studied and is the focus of intensive research on secondary infertility (Koh et al., 2016; Eirin et al., 2017; Ashmwe et al., 2018).

Recently, the biological function of exocrine long noncoding RNAs (lncRNAs) has attracted much attention (Gupta et al., 2013; Di Pietro, 2016; Lugea and Waldron, 2017; Whiteside, 2017; Wan et al., 2018). LncRNAs have been shown to play critical roles in the regulation of biological processes, including cellular apoptosis, gene regulation, and cancer development (Kooijmans et al., 2012; Ferguson and Nguyen, 2016; Barile and Vassalli, 2017; Eirin et al., 2017; Shahabipour et al., 2017; Han et al., 2019). LncRNAs have also been shown to improve various diseases. However, there is little research on the role of lncRNAs from ADSC-Exos in endometrial fibrosis. miRNAs are noncoding single-stranded small RNAs with a length of approximately 22 nucleotides (Rarani et al., 2018; Guo et al., 2021). miRNAs participate in essential functions in various biological regulatory pathways including cell apoptosis, differentiation, and proliferation (Kanekura et al., 2016; Klinge, 2018). In recent years, more and more studies have shown that lncRNAs can exert their biological functions by regulating the expression of miRNAs, thus affecting the occurrence and development of uterine diseases (Ghafouri-Fard et al., 2020; Thankachan et al., 2021). Several studies have demonstrated that lncRNAs may be involved in the formation of competitive endogenous RNA (ceRNA) regulatory networks, and there may be a negative correlation between lncRNA and miRNA (Vallone et al., 2018).

In the present study, we found that lncRNA-MIAT from ADSC-Exos plays a crucial role in endometrial fibrosis progression. Additionally, the therapeutic effects of artificial lncRNA-MIAT were confirmed in both in vitro and in vivo models. It was speculated that lncRNA-MIAT possibly accelerated the progression of endometrial cancer by impeding miR-150-5p expression. Thus, activation of lncRNA-MIAT could emerge as a novel therapy for endometrial fibrosis.



MATERIALS AND METHODS


Adipose-Derived Stem Cell Isolation and Culture

A SD rat was sterilized after routine anesthesia. The groin adipose tissue was cut into a paste, the blood was removed by washing with PBS, 0.075% collagenase digestion was used to remove the matrix, normal saline was used to stop collagenase digestion, and, after centrifugation, the supernatant and undigested fat were removed. The cells were resuspended in DMEM supplemented with 10% FBS, centrifuged, washed, and counted under a microscope. A total of 104 cells/ml were plated in a culture dish, and cultured in a 5% CO2 incubator at a constant temperature. The first change of medium took place 4 h later. After 3 days, the cells were digested and passaged after reaching 80% confluency.



ADSC-Exosomes Preparation

Ten milliliters of culture supernatant was collected by a high-speed cryopreservation centrifuge at 4°C for 15 min. Impurities were removed from the supernatant, the supernatant was transferred to another sterilized 15 mL centrifuge tube, and 2 mL of ExoQuick reagent (EXOQ10TC) was added to the tube. The tube was mixed upside down and then incubated overnight in a refrigerator at 4°C. Then, the mixture was centrifuged at 4°C at 30000 g for 30 min. White or beige precipitation at the bottom of the centrifuge tube was visible, and the supernatant was transferred to another tube for later experiments. Then, 100 μL PBS or sterile water was added after heavy suspension precipitation and the samples were stored in the refrigerator at −80°C.



ADSC-Exosomes Characterization

A kit from SBI was used to extract the exocrine from the supernatant, and four samples were resuspended in 100 μL PBS. One part of each sample was mixed with 2.5% glutaraldehyde to fix the exocrine and was then homogenized. The samples were dehydrated with 1% nitrous oxide treatment, and the exosome size and morphology were observed by transmission electron microscopy (TEM). Ten microliters of the other part of each sample was adsorbed onto a mica sheet, and the mica sheet was dried and fixed in a desiccator and then washed with PBS. After nitrogen drying, the exocrine on the mica sheet was scanned using a 5500 series (atomic force microscopy, AFM) atomic force microscope mode. One microlitre of exocrine suspension was diluted 1000 times in 1 mL PBS, the liquid was injected into the instrument tank with a needle, and Nanosight LM10 nanotracking technology was used to measure the exosome particle size and concentration of exocrine. Western blot analysis of protein in the exosomes (CD63) was conducted, and the following primary antibody was used: CD63 (1:1000, Proteintech).



Culture of Endometrial Epithelial Cells (ESCs) and TGF-β1 Treatment

The inner membrane tissue was shredded, digested with trypsin-EDTA, and filtered through a mesh screen. The epithelial and interstitial cells were separated by a 400 mesh (38 μm pore size) screen filter. The filtrate was collected and centrifuged (10 cm, 1000 r/min, for 10 min), the supernatant was centrifuged, and the backwash solution mainly contained the inner membrane epithelial cell mass. The precipitated epithelial cell mass was collected and inoculated with culture medium (plus two antibodies). After heavy resuspension, the cells were counted and placed in a 37°C incubator at 5% CO2 with humidity. After 24 h, the culture medium was changed.

ESCs were treated with 10 μg/L TGF-β1 (Sigma-Aldrich, United States) in DMEM supplemented with 1% FBS for 48 h.



Quantitative Real Time-PCR (qPCR)

Total RNA was extracted from cell lines using TRIzol reagent (Invitrogen). Five hundred nanograms of RNA from each sample was reverse transcribed using a SuperScript RT kit (Invitrogen, Carlsbad, CA, United States). qPCR was performed on an Applied Biosystems 7300 Real-time PCR system (Applied Biosystems, CA) using SYBR Premix Ex TaqTM (Takara, Japan). β-actin or U6 were used as internal references. The relative expression of target genes was calculated using the 2 −ΔΔCt method. All primers employed were the following: MIAT (sense): CAGCCTCAAACCCAGGGC; MIAT (antisense): CGCAGGACTGTTGTGCCA; β-actin (sense): AGGTCATCACTATTGGCAACGA; β-actin (antisense): CCAAGAAGGAAGGCTGGAAAA.



Establishment of Endometrial Injury Model

The Institutional Ethics Committee of Tongji Hospital, affiliated with the Tongji University, approved the animal experiment protocol. Mature and unmated female mice were selected, aged 8–10 weeks and weighing 22–25 g, and housed at a constant temperature (22°C). Five days before surgery, each mouse was subcutaneously injected with progesterone (3 mg/kg), and vaginal pictures were observed daily to synchronize the oestrus cycle of all mice. An endometrial fibrosis model was established in mice by perfusing 95% ethanol into the right side of the uterus. The mice were divided into five groups. In the sham group, the uterine horn was sutured only after longitudinal incision without alcohol injury to the endometrium. Mice in the model group were not treated after endometrial injury. Mice in the exosomes group received an injection of exosomes (5 μg/mouse) into the damaged uterine cavity. In the miR-150 group, miR-150-5p agomir (5 nmol/mouse) were injected into the damaged area of endometrial tissue.



Functional Identification of Pregnancy

Endometrial-injury mice were treated as described in the above groups and were paired with male mice in cages (male and female ratio 5:2) to evaluate the relationship between endometrial injury and pregnancy rate.



Endometrial Morphology in Each Group

All mice were sacrificed by intraperitoneal injection with overdose of chloral hydrate. Uterine tissues were harvested, immersed in 4% paraformaldehyde, embedded in paraffin, cut into 4 μm sections, stained with haematoxylin/eosin (H&E) and Masson and then examined under a microscope (Olympus, Japan).



Western Blot Analysis

Total protein was extracted for 30 min with 50 mL radioimmunoprecipitation assay buffer containing 0.5 mL protease inhibitors. Total protein concentrations were quantified by the bicinchoninic acid protein assay. Primary antibodies against CK19 (1:1000; A19040, ABclonal, United States), TGFβR1 (1:1000; ab31013, Abcam, United States) and α-SMA (1:1000; ab7817, Abcam, United States) were used for the analysis. Chemiluminescence measurements and semiquantitative values were obtained by a ChemiDocXRS+Imaging system and Image Gauge V3.12. Protein levels were quantified relative to β-actin.



Dual-Luciferase Reporter Gene Assay

Predicted binding sequences of lncRNA-MIAT to miR-150-5p and wild-type and mutated full sequences were cloned into the pGL3 vector and named pGL3-lncRNA-MIAT-wild-type (WT) and pGL3-lncRNA-MIAT mutant (MUT), respectively. HEK-293T cells were co-transfected with wild-type or mutant sequences and miR-150-5p mimics/NC for 48 h. the luciferase activity was performed using a dual-luciferase reporter assay system (Promega, United States).



Statistical Analysis

Each experiment was performed independently at least three times. Data are expressed as means ± standard deviation (SD). Student’s t-test was used to compare the difference between two groups. All analyses were run using the SPSS 15.0 statistical package (SPSS Inc., Chicago, IL, United States).



RESULTS


Isolation and Characterization of ADSC-Exosomes

To investigate the effect of ADSC-derived exosomes on endometrial injury, we first identified isolated exosomes. The characterization of ADSC exosomes is shown in Figure 1. Western blot analysis demonstrated that the exosomal marker protein CD63 was present in the ADSC-exosomes (Figure 1A), and TEM analysis showed that exosomes purified from the ADSCs were round, membrane-bound vesicles (Figure 1B). NanoSight LM10 analysis estimated that ADSC-exosomes were between 30 nm and 150 nm in size (Figure 1C). AFM5500 analysis revealed an ADSC-exosome length of 60 nm (Figure 1D). The above results all proved that the substances we extracted could be identified as exosomes.


[image: image]

FIGURE 1. Characterization of ADSC-exosomes. (A) Western blot analysis of CD63 expression in ADSC exosomes. (B) TEM analysis of exosomes secreted by ADSCs. Scale bar = 200 nm. (C,D) The particle size of the exosomes secreted by ADSCs was measured by NanoSight LM10 and AFM5500. ADSC, adipose-derived mesenchymal stem cells; TEM, transmission electron microscopy.




LncRNA-MIAT in ADSC-Exos Alleviates Endometrial Fibrosis

To explore the relationship between healthy controls and patients with endometrial injury, we isolated cells and extracted RNA for sequencing. Simultaneously, the correlation between molecules, inflammatory injury, and fibrosis was further investigated. Through our analysis, we identified 6 differentially expressed long-chain noncoding genes, among which lncRNA-MIAT showed the greatest difference (Figure 2A). Then, the expression of lncRNA-MIAT was quantified using qPCR analysis, and its expression level in TGF-β1-induced-ESC-injury cells was lower than that in ESC controls, which was consistent with our sequencing results (Figure 2B). Previous studies on ADSC-Exos have shown that ADSC-Exos can be used to repair various tissue injuries (Koh et al., 2016; Pu et al., 2017); Thus, we investigated the effect of ADSC-Exos on endometrial injury repair. TGF-β1 was used to construct the ESC injury model in vitro. ADSC-Exos were co-cultured with endometrial epithelial injury cells, and the expression of lncRNA-MIAT was quantified by qPCR analysis. As shown in Figure 2C, ADSC-Exos resulted in increased expression of lncRNA-MIAT in TGF-β1-induced ESCs. Fibrosis markers (TGFβR1, α-SMA, and CK19) were detected by Western blot analysis to investigate the effect of ADSC-Exos on the fibrosis of endometrial epithelial cells. As shown in Figure 2D, the protein expression levels of TGFβR1 and α-SMA were significantly down-regulated, and CK19 expression was up-regulated in the co-culture of ADSC-Exos and TGF-β1-induced ESCs. These results confirmed that ADSC-Exos could mediate lncRNA-MIAT to alleviate fibrosis following endometrial injury.
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FIGURE 2. LncRNA-MIAT in ADSC-Exos alleviates endometrial fibrosis. (A) Thermal map analysis of the top differentially expressed lncRNAs in endometrial samples from patients with endometrial injury. (B) qPCR analysis of the lncRNA-MIAT expression level in TGF-β1-induced ESC injury. (C) qPCR analysis of the lncRNA-MIAT expression level in TGF-β1-induced ESC injury cocultured with or without ADSC-Exos. (D) Western blot analysis of CK19, TGFβR1, and α-SMA protein expression in TGF-β1-induced ESC injury co-cultured with or without ADSC-Exos. Data are presented as the mean ± SD (n = 3). Two-tailed unpaired Student’s t-test, *P < 0.05; ***P < 0.001; ****P < 0.0001. ADSC-Exos, adipose-derived mesenchymal stem cells-exosome; qPCR, real time quantitative PCR; TGF-β1, transforming growth factor-β1; ESC, endometrial epithelial cells; CK19, cytokeratin 19; TGFβR1, homo sapiens transforming growth factor beta receptor 1; α-SMA, alpha smooth muscle Actin. SD, standard deviation.




LncRNA-MIAT in ADSC-Exos Alleviates Endometrial Fibrosis by Targeting miR-150 in vitro

Many studies have demonstrated that lncRNAs could play a role in endometrial injury repair by adsorbing miRNAs (Tay et al., 2014; Chen et al., 2018). The starBase v3.0 database was used to predict the potential miRNA binding sites in lncRNA-MIAT. To verify the direct binding of miR-150-5p to lncRNA-MIAT, pGL3-lncRNA-MIAT and pGL3-lncRNA-MIAT-Mut were constructed and co-transfected with miR-150-5p into TGF-β1-induced ESCs (Figure 3A). Figure 3B shows that the pGL3-lncRNA-MIAT-WT luciferase activity was markedly decreased following co-transfection with miR-150-5p than with co-transfection with miR-NC, whereas miR-150-5p did not repress the luciferase activity of pGL3-lncRNA-MIAT-Mut. The effects of lncRNA-MIAT and miR-150-5p on regulating endometrial injury and fibrosis in vitro were then assessed. Figure 3C shows that miR-150-5p overexpression in the co-culture of ADSC-Exos and TGF-β1-induced ESCs significantly up-regulated the expression levels of TGFβR1 and α-SMA, whereas it down-regulated the expression of CK19. These results suggested that lncRNA-MIAT in ADSC-Exos could alleviate endometrial fibrosis by targeting miR-150.
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FIGURE 3. LncRNA-MIAT in ADSC-Exos alleviates endometrial fibrosis by targeting miR-150. (A) Schematic representation of the miR-150 site in lncRNA-MIAT-3’UTR. (B) Luciferase activity was assayed in TGF-β1-induced ESC injury co-transfected with miR-150 and luciferase reporters containing lncRNA-MIAT-3’UTR. (C) Western blot analysis of CK19, TGFβR1, and α-SMA protein expression in TGF-β1-induced ESC injury co-cultured with or without ADSC-Exos in the absence or presence of miR-150 mimic. Data are presented as the mean ± SD (n = 3). Two-tailed unpaired Student’s t-test, **P < 0.01; ****P < 0.0001. ADSC-Exos, adipose-derived mesenchymal stem cells-exosome; TGF-β1, transforming growth factor-β1; ESC, endometrial epithelial cells; CK19, cytokeratin 19; TGFβR1, Homo sapiens transforming growth factor beta receptor 1; α-SMA, alpha smooth muscle actin. SD, standard deviation.




LncRNA-MIAT in ADSC-Exos Alleviates Mouse Endometrial Fibrosis by Targeting miR-150

To evaluate the effects of ADSC-Exos on lncRNA-MIAT associated with endometrial injury, we decided to verify this hypothesis in vivo. A mouse endometrial fibrosis model was established using alcohol-induced fibrosis. Compared with the control group, H&E staining showed that the epithelial cells were disordered, the interstitial hyperaemia, endometrial thickness was significantly thinner, and the degree of injury was significantly increased in the model group. Compared with the model group, the endometrial condition after ADSC-Exo treatment was significantly improved in the exosome group, but the endometrial injury was aggravated after miR-150-5p mimic treatment (magnification, ×20, Figure 4A). Meanwhile, Masson’s trichome staining showed that ADSC-Exo inhibited alcohol-induced fibrosis in the uterus, whereas the degree of uterine fibrosis was further aggravated by treatment with the miR-150-5p mimic (magnification, ×20, Figure 4B). In accordance with the in vitro results, the overexpression of miR-150-5p significantly up-regulated the expression of TGFβR1 and α-SMA and down-regulated the expression of CK19 in ADSC-Exo-treated endometrial-injury tissues (Figures 4C,D). Moreover, whether ADSC-Exos can improve the pregnancy rate was analyzed. As shown in Figure 4E, mice in the ADSC-Exo group exhibited an increased pregnancy rate (50%), and further treatment with the miR-150-5p mimic reduced the pregnancy rate.
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FIGURE 4. LncRNA-MIAT in ADSC-Exos alleviates mouse endometrial fibrosis by targeting miR-150. (A) The number of glands and levels of fibrosis were detected by H&E staining of the endometrial tissue from mouse endometrial fibrosis models (magnification, ×20). (B) The number of glands and levels of fibrosis were detected by Masson staining of the endometrial tissue from mouse endometrial fibrosis models (magnification, ×20). (C) The pregnancy rate was measured in each group of mouse endometrial fibrosis models. (D,E) Western blot analysis of CK19, TGFβR1 and α-SMA protein expression in the endometrial tissue of mouse endometrial fibrosis models. Data are presented as the mean ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001. H&E, hematoxylin-eosin; ADSC-Exos, adipose-derived mesenchymal stem cells-exosome; CK19, cytokeratin 19; TGFβR1, homo sapiens transforming growth factor beta receptor 1; α-SMA, alpha smooth muscle actin. SD, standard deviation.




DISCUSSION

In this study, the effect and mechanism of ADSC- derived exosomes on endometrial fibrosis were further investigated. The current data verified that (1) lncRNA-MIAT in ADSC-Exos alleviates endometrial fibrosis; (2) lncRNA-MIAT in ADSC-Exos alleviates endometrial fibrosis by targeting miR-150 in vitro; and (3) lncRNA-MIAT in ADSC-Exos alleviates endometrial fibrosis in mice by targeting miR-150. These results indicate the important role of the ADSC-Exo-lncRNA-MIAT/miR-150-5p axis in regulating endometrial fibrosis and may provide a therapeutic opportunity for patients with endometrial fibrosis.

The pathological manifestation of endometrial fibrosis is the attachment of endometrial glandular epithelium and interstitial fibrous tissue, resulting in a sharp decrease or even complete loss of normal endometrial tissue (Guo, 2020). Therefore, in this study, TGFβR1, α-SMA, and CK19 were used to measure endometrial fibrosis (Li et al., 2016; Salma et al., 2016; Zhu et al., 2017; Yao et al., 2019). Endometrium fibrosis can directly lead to abnormal menstruation, amenorrhea, infertility, seriously affect the patient’s family happiness. So far, there is a lack of good endometrial repair methods in clinic. Therefore, this study aims to explore a new clinical treatment method.

ADSCs have significant effects on the repair of premature ovarian failure (Xie et al., 2017), repair of myocardial injury (Lee et al., 2020), repair of nerve injury (Sadie-Van Gijsen, 2019), regeneration of bone and cartilage (Tiscornia et al., 2006), liver (Liu and Chen, 2018), and kidney (Zuk et al., 2002) after injury. Our previous studies also found that ADSCs transplantation can improve the repair of endometrial injury (Shao et al., 2019). Exosomes are nanoscale vesicles, approximately 30–100 nm in diameter, released into the extracellular environment in the form of exocytosis after fusion of intracellular Multivesicular Bodies (MVBs) with the cell membrane (Xie and Zeng, 2020). Compared with other vectors, exosomes may be a promising therapeutic strategy due to their lower immunogenicity, non-cytotoxicity, and non-mutagenicity to receptors. Therefore, we examined the anti-fibrosis properties of ADSC-EXOS in endometrial injury. The results showed that after ADSC-EXOS treatment of TGF-β1-induced ESCs, the protein expression levels of TGFβR1 and α-SMA were significantly down-regulated, and CK19 expression was up-regulated in the co-culture of ADSC-EXOS and TGF-β1-induced ESCs. However, the molecular mechanism of the anti-fibrosis effect of ADSC-Exos in endometrial fibrosis has not been fully elucidated.

Exosomal metastatic lncRNAs can regulate the proliferation, migration, invasion and apoptosis of tumor cells, and may be used as biomarkers for tumor-related diagnosis and prognosis (Han S. et al., 2020). LncRNA-MIAT was initially discovered as a tumor-associated lncRNA and was reported to regulate splicing and epigenetic control of gene expression. In this study, we found that lncRNA-MIAT was low expressed in endometrial fibrosis tissues and TGF-β1-induced-ESC-injury cells. However, lncRNA-MIAT was highly expressed in ADSC-EXOS, suggesting that lncRNA may play an important role in the process of endometrial fibrosis. Recent studies have shown that lncRNA plays a regulatory role in a variety of fibrosis, including diabetic nephrotic fibrosis, cardiac fibrosis, myocardial fibrosis induced by atrial fibrillation, renal fibrosis, etc. The protein expression levels of TGFβR1 and α-SMA were significantly down-regulated, and CK19 expression was up-regulated in the co-culture of ADSC-Exos and TGF-β1-induced ESCs. These results confirmed that ADSC-Exos could mediate lncRNA-MIAT to alleviate fibrosis following endometrial injury.

In recent years, more and more studies have shown that lncRNAs can exert their biological functions by regulating the expression of miRNAs, thus affecting the occurrence and development of uterine diseases (Ghafouri-Fard et al., 2020; Thankachan et al., 2021). Therefore, the Starbase v3.0 database was used to predict the potential miRNA binding sites in lncRNA-MIAT. The direct binding of miR-150-5p with lncRNA-MIAT was further verified by dual luciferase gene reporter assay. The effects of lncRNA-MIAT and miR-150-5p on regulating endometrial injury and fibrosis in vitro and in vivo were then assessed. The results suggested that lncRNA-MIAT in ADSC-Exos could alleviate endometrial fibrosis by targeting miR-150.

At present, our research still has some limitations. In the current study, whether lncRNA-MIAT can alleviate fibrosis after endometrial injury remains to be explored. We will conduct further experiments on overexpression or knockout of lncRNA-MIAT.

In summary, our study revealed that lncRNA-MIAT in ADSC-Exos improves endometrial fibrosis by regulating miR-150-5p. This study aimed to offer new insight into the importance of lncRNA-MIAT in ADSC-Exo therapy, and we suggest that the manipulation of lncRNA-MIAT expression may be a promising strategy for the treatment of endometrial fibrosis.
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Previous studies reported that pyruvate dehydrogenase kinase 4 (PDK4) is closely related to diabetes, heart disease, and carcinomas. Nevertheless, the role of PDK4 in gastric cancer (GC) occurrence and development is yet poorly understood. Our experiments were taken to evaluate PDK4’s function in GC. The Cancer Genome Atlas tumor genome map database was employed to validate the levels of PDK family in different grades and stages of GC. The survival ratio of PDK families in GC was detected by the Kaplan–Meier plotter database. The links existing in the expression of PDK family and the level of tumor-infiltrating immune cells were investigated by tumor immunity assessment resource (TIMER). PDK4-associated signal pathways in GC were analyzed by the Kyoto Encyclopedia of Genes and Genomes pathway analysis. PDK4 mRNA level in the GC cells was measured by qRT-PCR. Cell counting kit-8 and Transwell assays were separately carried out to evaluate PDK4-induced influence on GC cell proliferation, migration, and invasion. Our data suggested that GC cells highly expressed PDK4, and PDK4 expression presented a significant relation with the staging, grade, and survival rate of GC. PDK4 expression presented a positive correlation with the types of different infiltrating immune cells, comprising B cells, CD4+ T cells, and dendritic cells. Meanwhile, PDK4 expression exhibited a strong association with macrophages. Survival analysis revealed that the expression of PDK4 displayed a relationship with the prognosis of patients. Therefore, PDK4 was liable to be a biomarker for prognosis. Our results further displayed that PDK4 might modulate the glycolysis level in GC cells, and its expression was associated with GC cell proliferation, migration, and invasion. These data may provide insights into designing a new treatment strategy for GC.
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INTRODUCTION

Gastric cancer (GC) deriving from the gastric mucosa is one of the deadliest occurring malignancies which threaten patients’ life worldwide (Gu et al., 2020a). As the third largest inducer of global carcinoma deaths, GC has brought a huge burden on public health (Graham, 2015; Ishaq and Nunn, 2015). The metastasis of GC is the main reason affecting the patients (Van Cutsem et al., 2016), and the development of carcinoma is closely related to the energy supply. Tumor cells primarily acquired energy by glycolysis, which resulted in a great quantity of lactic acid and a small amount ATP, distinguishing from oxidative phosphorylation occurring in the mitochondria of normal cells (Zheng, 2012). Later, the phenomenon of neoplasm uptake energy was defined as Warburg effect, usually arising in numerous tissues of the neoplasm and promoting tumor cell proliferation, invasion, and metastasis (Pelicano et al., 2006; Chen et al., 2007). Several reports have displayed that the Warburg effect, along with its dependence on tumor cells, relied on the intracellular and extracellular environment (Spencer and Stanton, 2019; Yang and Li, 2019). The levels of lactic acid, glycolytic enzymes, and hypoxia-inducible factor-1 are closely related to tumor proliferation and metastasis (Zhong et al., 1999; Lincet and Icard, 2015). What is more, glycolysis could give rise to lactic acid, and the accumulation of lactic acid would generate an acidic microenvironment instead. Under acidic conditions, the extracellular matrix was extremely unstable, and thus this boosted cancer cell metastasis (Dhup et al., 2012). Therefore, targeting the metabolism of cancer cells was a feasible root to ameliorate and unearth new anti-cancer strategies.

The change in aerobic glycolysis is a recognized feature of energy metabolism in cancer cells and is called the Warburg effect. Increased glycolysis is the main energy source for cancer cells to use this metabolic pathway to produce ATP. The glycolytic pathway is regarded as the target of cancer treatment. Cancer cells maintain a high rate of glycolysis. Pyruvate dehydrogenase kinase (PDK) contributes to this phenomenon, which is conducive to apoptosis resistance and cell transformation. Pyruvate dehydrogenase (PDH) was the key executor in facilitating pyruvate entering the tricarboxylic acid cycle. The activity of PDH could be inhibited by PDK, which was responsible for the conversion from mitochondrial oxidation to cytoplasmic glycolysis (Sutendra and Michelakis, 2013). Dichloroacetate (DCA) was an inhibitor of PDK and could alter the metabolism in the opposite direction (Michelakis et al., 2008). DCA could induce apoptosis but hinder tumor growth and decrease the level of HIF1A controlling the response of hypoxia (Sutendra et al., 2013). PDK1, PDK2, PDK3, and PDK4 are four human kinases of the PDK family (Cesi et al., 2017). PDK4 was reported to display an inhibition of pyruvate oxidation and intervene the change from glucose metabolism to fatty acid metabolism (Liu et al., 2017; Pettersen et al., 2019). Previously, some reports revealed that PDK4 have shown a close association with diabetes, heart disease, and carcinomas (Holness et al., 2002; Furuyama et al., 2003). Moreover, PDK4 was also decreased in multiple carcinomas as previously described, such as prostate carcinoma, breast carcinoma, lung carcinoma, and liver carcinoma (Grassian et al., 2011; Mengual et al., 2014; Sun et al., 2014; Choiniere et al., 2017). Besides this, PDK4 could contribute to the inhibition of cell proliferation and induction of apoptosis in lung and breast carcinoma (Grassian et al., 2011; Li et al., 2017). Additionally, the absence of PDK4 could motivate the EMT program and facilitate ovarian carcinoma cell migration and invasion (Sun S. et al., 2017). Nevertheless, the function of PDK4 in GC was yet elusive.

Here the correlation between PDK family and clinicopathological characteristics and prognosis was analyzed by sequencing data sets. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and The Cancer Genome Atlas (TCGA) data revealed the possible molecular functions of PDK4. Besides that, the association existing in PDK4 expression and tumor-infiltrating immune cells was evaluated. We decreased PDK4 expression in GC cells and then validated the impacts on glycolysis. Moreover, our data revealed that an increase in the expression of PDK4 was displayed in GC, and a high level of PDK4 would lead to a lower rate of overall survival (OS) and a higher rate of recurrence. The inhibited PDK4 greatly reduced GC cell proliferation, migration, and invasion.



MATERIALS AND METHODS


Public Database

We collected mRNA expression profiles from TCGA GC cohort1 and downloaded clinical information from the TCGA data portal (Gu et al., 2021b). The expression level of the PDK family in GC was determined by utilizing the tumor immunity assessment resource (TIMER)2 and the TCGA databases.



Analysis of PDK Family and Clinicopathological Characteristic

The clinicopathological data of GC patients was downloaded from TCGA. We selected GC tissue samples with clinical pathological data, including classification, staging, and depth of invasion, for further analysis. The association existing in PDK family expression levels and clinicopathological value was analyzed by chi-square test.



Analysis of OS

The Gene Expression Profile Interactive Analysis (GEPIA)3 was employed to analyze the data from TCGA database and the expression of genotype in tissues (Gu et al., 2020b). Kaplan–Meier plotter online database4 could validate the impact of each gene on the survival rate of GC patients. GEPIA and Kaplan–Meier plotter online databases were both taken to evaluate the prognostic value of PDK4 in patients with GC. The inspection probe number used by PKD4 was 205960_at. The P-value of log-rank and hazard ratio with 95% confidence intervals were measured.



GO Annotation and KEGG Pathway Enrichment Analyses

For exploring PDK4’s function, we employed Enrichr database5 for Gene Ontology (GO) annotation and KEGG pathway enrichment analysis. Significant statistical difference is indicated as P < 0.05 (Zhang et al., 2020; Gu et al., 2021a).



Cell Culture

Normal human gastric epithelium cell line (GES-1) and human GC cells (SGC-7901, MGC−803, HGC 27, and AGS) were acquired from the Cell Bank of Institute of Biochemistry and Cell Biology at the Chinese Academy of Sciences (Shanghai, China). They were maintained in Dulbecco’s modified Eagle’s containing 10% fetal bovine serum (FBS) and 1% P/S (Gibco, United States) under 37°C humidified incubator with 5% CO2.



RNA Extraction and Quantitative Reverse Transcription PCR

Overall, the RNA of cells was isolated by TRIzol. The extracted RNA was reversely transcribed into cDNA by cDNA synthesis kit (TaKaRa, Japan). Primers designed by Primer 5.0 software were synthesized by Invitrogen. PCR was carried out by utilizing SYBR GREEN on an ABI 7300 plus real-time system. The 2–ΔΔCt method was taken to normalize the PDK4 mRNA expression levels in GC cells and control. The RNA primers were as follows: PDK4, 5′-GGAGCATTTCTCGCGCTACA-3′ (forward), 5′-ACAGGCAATTCTTGTCGCAAA-3′ (reverse); GAPDH, 5′-CTGGGCTACACTGAGCACC-3′ (forward), 5′-AAGTGGTCGTTGAGGGCAATG-3′ (reverse). GAPDH was used as a reference.



Transient Transfection

SiRNA (si-PDK4) (100 nM, GenePharma, China) was introduced into AGS cells to silence PDK4, and si-NC was selected as the negative control (NC) for si-PDK4.

Lipofectamine 2000 kit (Invitrogen, Carlsbad, United States) was used for cell transfer. At 48 h after transfection, different transfected cells were obtained for the next experiment. The sequence of the siRNA is as follows: si-PDK41: CGCCAACATTCTGAAGGAAATTGAT; si-NC: UUCUCCGAACGUGUCACGUTT.



Cell Proliferation Assay

CCK-8 kit (Dojindo, Japan) was employed to determine the ability of cell proliferation in GC cells. The indicated number of GC cells was plated in a 96-well plate and then subjected to different treatments at the indicated time. The OD value of 450 nm was detected after incubation with CCK-8 solution on Fluoroskan Ascent Fluorometer (Thermo Fisher Scientific, Finland).



Transwell Assays

Cell migration and invasion were measured using transwell chamber (8-μm pore size; Corning Co., Corning, United States) without/with Matrigel (Becton Dickinson, New York, United States). At 48 h after transfection, cells in 200 μl of medium, in the absence of serum, were added into the upper chambers. Then, 600 μl of medium containing 10% FBS was added into the lower chambers. At 24 h post-incubation, a cotton-tipped swab was applied to remove the cells staying in the lower chamber. All the cells removed were fixed by methanol for 10 min and stained with DAPI for 30 min at room temperature and protected from light. The number of cells was calculated under an inverted phase-contrast microscope (Olympus, Tokyo, Japan) (Kunig et al., 2020).



Statistical Analysis

All derived data were shown as the mean ± SEM from three separate experiments in triplicate. GraphPad Prism 5 software (GraphPad Software, Inc.) was carried out to perform data analysis. Student’s t-test was conducted to perform comparisons between the two groups. A comparison amid three groups was evaluated by one-way ANOVA (Shi et al., 2020), subsequently subjecting to Kaplan–Meier method with log-rank test to test the survival curves (Sun Y. et al., 2017; Gu et al., 2018). Significant statistical difference is indicated as P < 0.05 (Chen et al., 2020, 2021).



RESULTS


PDK Family and Clinicopathological Parameters

The links between the expression of PDK family and clinicopathological parameters, including the grade and the stage of tumor, were analyzed on the basis of the clinical and pathological data of STAD patients. No significant statistical relationship existed between PDK1, PDK2, and PDK3 expression and tumor grade (P = 0.257, P = 0.395, P = 0.544, Figures 1A–C). Importantly, PDK4 expression exhibited a large association with the grade of tumor (P = 0.0064, Figure 1D). In grade 3, the expression level of PDK4 was the highest. Similarly, no significant relationship was shown between PDK1 and PDK3 expression and tumor stage (P = 0.761, P = 0.175, Figures 2A,C). PDK2 and PDK4 expression had shown a great correlation with tumor stage (P = 0.00289, P = 0.00431, Figures 2B,D). Interestingly, the expression of PDK2 was highest in stage 1, while the expression of PDK4 was lowest in stage 1.
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FIGURE 1. PDK4 expression exhibited a significant correlation with neoplasm grade of STAD. (A–D) Analysis of the relationship between tumor grade and PDK1, PDK2, PDK3, and PDK4 expression in STAD patients on the basis of The Cancer Genome Atlas database.
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FIGURE 2. PDK2 and PDK4 expression was greatly associated with the tumor stage of STAD. (A–D) The Cancer Genome Atlas cohort was employed to evaluate the links between PDK1, PDK2, PDK3, and PDK4 expression and the tumor stage of STAD.




Identification of Prognosis of PDK Family

Kaplan–Meier analysis was used to identify the prognosis parameter of PDK1, PDK2, PDK3, and PDK4. Our data revealed that PDK1, PDK2, and PDK3 expression had no significant relationship with the STAD patients’ survival rate (Figures 3A–C). Interestingly, the PDK4 expression was evidently related with survival rate (Figure 3D). Further data revealed that a lower survival rate was demonstrated in STAD patients with a high expression of PDK4. According to the survival analysis, the higher the expression of PDK4, the higher the probability of a poorly prognostic status.
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FIGURE 3. A high expression of PDK4 indicated a lower survival rate. (A–D) Kaplan–Meier analysis of the association between PDK1, PDK2, PDK3, and PDK4 expression and the survival rate of STAD patients.




PDK4 Significantly Correlated With Tumor-Infiltrating Immune Cells in GC

The hidden links between PDK1, PDK2, PDK3, and PDK4 expression and tumor-infiltrating immune cells in GC were assessed by the TIMER database. The data suggested that PDK4 expression had positive links with different infiltrating immune cells level, comprising B cells (r = 0.294, P = 8.14e–09), CD4+ T cells (r = 0.419, P = 5.86e–17), and dendritic cells (r = 0.142, P = 6.12e–03) and exhibited a strong correlation with macrophages (r = 0.474, P = 4.13e–22) (Figure 4A). At the same time, our results showed that PDK1 (Figure 4B), PDK2 (Figure 4C), and PDK3 (Figure 4D) were not significantly related to immune cells. Collectively, our data suggested that PDK4, along with the co-expressed genes, probably participated in immune response in the microenvironment of tumor via exerting an effect on immune cells, especially macrophages.
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FIGURE 4. PDK4 was significantly associated with tumor-infiltrating immune cells in gastric cancer (GC). Obvious association of the PDK family with the level of tumor immune filtration in GC. PDK4 (A), PDK1 (B), PDK2 (C), and PDK3 (D).




PDK4 Was an Adverse Factor for GC Prognosis

The prognostic parameter of PDK4 in GC was analyzed by utilizing GEPIA data and the Kaplan–Meier plotter database accompanied by GEO data. The results showed that, compared with gastric cancer patients with low PDK4 expression, the OS of gastric cancer patients with high PDK4 expression had a significantly lower first progression survival and post-progression survival (P = 0.00036, P = 0.014, P = 5.8e-05 (Figures 5A–C). Compared with patients with gastric cancer and low PDK4 expression, patients with stage 1, 2, and 3 gastric cancer with high PDK4 expression had a significantly lower OS (P = 0.012, P = 0.0018, P = 0.00053, P = 0.21; Figures 5D–G). Compared with patients with gastric cancer with low PDK4 expression, patients with stage N0 gastric cancer with high PDK4 expression had a significantly lower OS (Figure 5H, P = 0.0059). Compared with patients with gastric cancer with low PDK4 expression, the OS of N1 + N2 + N3 gastric cancer patients with high PDK4 expression was significantly lower (P = 1.1e-05, Figure 5I). In summary, we infer that the high expression of PDK4 is related to the poor prognosis of gastric cancer.
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FIGURE 5. PDK4 was significantly related to the survival of gastric cancer (GC) patients. Kaplan–Meier plotter was used to analyze the relationship between the expression level of PDK4 and the overall survival. (A) First progression, (B) post-progression survival, (C) post-progression survival, (D) overall survival (stage 1), (E) overall survival (stage 2), (F) overall survival (stage 3), (G) overall survival (stage 4), (H) overall survival (stage N0), and (I) overall survival (stages N1 + N2 + N3) of gastric cancer patients.




Functional Analysis of PDK4

KEGG analysis showed that cGMP-PKG signaling pathway, cell cycle, DNA replication, dilated cardiomyopathy, extracellular membrane–receptor interaction, adrenergic signaling in cardiomyocytes, circadian entrainment, vascular smooth muscle contraction, calcium signaling pathway, and progesterone-mediated oocyte maturation were the most important pathways (Figure 6A). GO analysis data revealed that PDK4 primarily took part in the positive modulation of DNA replication (GO:0006260), nervous system development (GO:0007399), DNA-dependent DNA replication (GO:0006261), regulation of heart contraction (GO:0008016), muscle contraction (GO:0006936), regulation of cardiac conduction (G0:1903779), membrane depolarization during cardiac muscle cell action potential (GO:0086012), mitotic spindle organization (GO:0007052), cAMP-mediated signaling (GO:0019933), and muscle organ development (GO:0007517) (Figure 6B).
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FIGURE 6. Bioinformatics analysis for PDK4. (A) Kyoto Encyclopedia of Genes and Genomes analysis of enriched pathways of PDK4. (B) Gene Ontology analysis of PDK4. The X-axis indicated gene count; the Y-axis meant enriched pathway or GO term. The color represents the P-value.




Highly Expressed PDK4 mRNA Was Observed in GC Cell

In order to verify whether the expression of PDK4 in GC cell lines was also upregulated, we also conducted qRT-PCR to measure and compare the PDK4 level in several GC cell lines and human normal gastric cell lines. Our data suggested that PDK4 was significantly upregulated in the following GC cell lines compared to normal cell lines: SGC-7901, MGC-823, HGC 27, and AGS (P < 0.05, Figure 7A). Our data was in line with the results of the database, that is, the expression of PDK4 in GC was upregulated. In addition, we found that relative to the si-NC-transfected group, the PDK4 expression level in the si-PDK4-transfected AGS cells was reduced (P < 0.05, Figure 7B).
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FIGURE 7. Upregulated PDK4 was shown in gastric cancer (GC) cells, and the si-PDK4 knockdown efficiency was high. (A) qRT-PCR analysis of PDK4 expression in four GC cell lines and normal cell lines. (B) qRT-PCR analysis of PDK4 expression in si-PDK4-transfected AGS cells. *P < 0.05, **P < 0.01.




PDK4 Expression Exerted an Effect on GC Cell Proliferation, Invasion, and Migration

The CCK-8 analysis data revealed that silencing the PDK4 expression contributed to inhibited GC cell proliferation. Relative to the si-NC-treated group, the si-PDK4-transfected AGS cells showed reduced proliferation ability (P < 0.05, Figure 8A). In order to further study the correlation between the low PDK4 expression and the invasion and migration of GC cells, we conducted Transwell assay. Our data suggested that the cell number of invasion (P < 0.05, Figure 8B) and migration (P < 0.05, Figure 8C) in the si-PDK4-transfected AGS cells was fewer than that in the si-NC-transfected group.
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FIGURE 8. siRNA-mediated silencing of PDK4 expression inhibits the proliferation, invasion, and migration of STAD cells. (A–C) Assessment of the capability of cell proliferation, cell invasion, and cell migration in si-PDK4-transfected AGS cells. *P < 0.05.




DISCUSSION

Currently, GC has become a global issue concerning human health. The study of GC never stops. PDK4 was reported to act as an essential mediator of cell metabolism and to display importance in the development of tumorigenesis and metastasis. Many potential targets in cancers were developed and studied (Gu and Chen, 2020; Bao et al., 2021). Previous reports had revealed that upregulating PDK4 could affect numerous carcinomas, such as lung carcinoma, breast carcinoma, ovarian carcinoma, and colon carcinoma (Yang et al., 2019). Overexpression of PDK4 also brought about drug resistance, survival, and metastasis (Wang et al., 2019). A new study suggested that PDK4 plays an oncogene role in GC, consistent with our research. Here our results implied that the highly expressed PDK4 mRNA was observed in the cell lines of GC, suggesting that PDK4 might promote GC proliferation. In addition, we validated the association between the expression of PDK4 and clinicopathological characteristics, including the prognosis and survival rate of patients, by analyzing the clinical samples of GC. The data indicated that PDK4 might be regarded as a newly generated indicator for GC patients’ prognosis. TCGA data-based pathway enrichment and gene correlation analysis revealed that GC cells might enrich PDK4 via glycolysis-related pathways.

It is known that changes in energy metabolism functions importantly in carcinoma progression. The capability of accelerating the uptake and the oxidation of glucose is characteristic of most malignant neoplasms. Most cancer cells prefer glycolysis rather than mitochondrial oxidative phosphorylation (OXPHOS). Glycolysis is the primary energy supply pathway for the rapid proliferation of tumor cells, allowing them to adapt to the hypoxic environment and further raise their malignant potential (Chen et al., 2007; Zheng, 2012). In humans, PDK has four isoforms (1–4). According to reports, SPRY4-IT1 promotes the survival of colorectal cancer cells by regulating PDK1-mediated glycolysis. PDK2-enhanced glycolysis promotes fibroblast proliferation in thyroid-associated ophthalmopathy. In the study of chemoresistance in gastric cancer, PDK3 is highly expressed to promote glycolysis in chemoresistant cancer cells. PDK4 was shown to facilitate the glycolysis of aerobic and cell proliferation of neoplasms (Yu et al., 2017). Studies have shown that m6A regulates the glycolysis of cancer cells through PDK4 (Li et al., 2020). We assumed that it may result from the fact that PDK4 reduced the content of acetyl CoA, a precursor of the synthesis of fatty acid and the production of energy. Nevertheless, tumor cells were engaged in a sole metabolic reprogramming, which was identified as the Warburg effect (Chen et al., 2007). Thus, the content of acetyl CoA was not essential. Therefore, PDK4 acts as a balancer between glycolysis and oxidative phosphorylation. Nevertheless, the particular mechanism relating to PDK4 in carcinoma still needed to be explored. PDK4 acts as an important gene relating to glucose metabolism and participates in the control of glucose metabolism and mitochondrial respiration (Guda et al., 2018). Therefore, we want to know whether PDK4 affects the proliferation and invasion of GC via modulating glycolysis. Our research shows that, on the basis of TCGA data for pathway enrichment and gene correlation analysis, PDK4 is usually reduced in the clinical samples of GC. GC may enrich PDK4 through glycolysis-related pathways, thereby affecting the progression of GC. Additionally, the function of PDK4, which was involved in glycolysis, was identified through gene set enrichment analysis.

Most studies focused on PDK1, PDK2, or PDK3. Zhang et al. (2006) found that the most frequently occurring isoforms of PDK were PDK2 and PDK4. However, PDK4 was not widely validated in its transformation. For exploring the functions and prognostic implication of PDK4 in GC, we conducted conclusive experiments. To evaluate the role of PDK4 in tumorigenesis, we ablated PDK4 expression by siRNAs in human GC cells. Our data indicated that a high expression of PDK4 brought about a short OS rate of patients with GC. Knockdown of PDK4 attenuated the ability of GC cell proliferation, invasion, and metastasis in vitro. Additionally, due to the increased expression in gastric cancer, PDK4 was a probable target for the treatment of GC.

This study has some limitations. First, it is necessary to verify the regulation of PDK4 glycolysis in GC cells. Second, the protein expression level of PDK4 needs to be tested internally in GC clinical samples. In future studies, we will collect more GC clinical samples to detect the protein expression level of PDK4 and its prognostic value. We also plan to further explore the in vivo function of PDK4 in animal models.

Taken together, not only is PDK4 associated with the glycolysis and proliferation of neoplasm but also it exerted an effect on the development and prognosis of neoplasm. Our data displayed that overexpressing PDK4 in GC exhibited an association with clinicopathological parameters and poor prognostic status. Highly expressed PDK4 presented an intimate relation with the level of infiltrating immune cells. Our findings demonstrated that PDK4 was a biomarker for GC prognosis and a promising target in the therapy of GC.
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Drug repositioning is a new way of applying the existing therapeutics to new disease indications. Due to the exorbitant cost and high failure rate in developing new drugs, the continued use of existing drugs for treatment, especially anti-tumor drugs, has become a widespread practice. With the assistance of high-throughput sequencing techniques, many efficient methods have been proposed and applied in drug repositioning and individualized tumor treatment. Current computational methods for repositioning drugs and chemical compounds can be divided into four categories: (i) feature-based methods, (ii) matrix decomposition-based methods, (iii) network-based methods, and (iv) reverse transcriptome-based methods. In this article, we comprehensively review the widely used methods in the above four categories. Finally, we summarize the advantages and disadvantages of these methods and indicate future directions for more sensitive computational drug repositioning methods and individualized tumor treatment, which are critical for further experimental validation.
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Introduction

Drug repositioning is a new way of applying existing therapeutics to new disease indications. Compared with traditional new drug development methods, the advantage of drug repositioning is that it can reduce the time and cost of drug development, and the drug composition has been proven to be safe in human body, so phase I clinical trials can be skipped (1, 2).

The failure probability of new drugs in the development process is about 90% (3), which leads to high drug development costs. In addition, repurposed drugs can save most of the cost of early research and significantly reduce the transition from laboratory research to clinical treatment. According to a research report released by Deloitte & Touche in 2016, according to the tracking results of 12 large pharmaceutical companies for 6 years, the return on investment of R&D giants dropped from 10.1% in 2010 to 3.7% in 2016. It was also calculated that the average cost of developing a new drug has increased from less than 1.2 billion US dollars to 1.54 billion US dollars, and it takes 14 years to launch a new drug (4). Nosengo concluded that it currently takes more than 10 years to bring a drug to the market, and the average research cost is between $2 billion to $3 billion. Although the number of approved drugs for development remains the same or decreases over time, the cost of research continues to increase. In contrast, some studies suggest that repositioning a known drug costs an average of $300 million, and it takes about six to seven years (5). New solutions are needed to solve the above-mentioned problems in the development of new drugs, including drug repositioning.

Drug repositioning refers to the matching and identification of existing drugs and new indications, and trying to apply newly discovered drugs to the treatment of diseases other than expected diseases (6). In addition, drug repositioning has promoted the development of cancer research (7). Researchers are committed to finding potential drug molecules that can block the exchange of information between cancer cells, and prevent cancer cells from receiving information that promotes their growth and proliferation. At present, in silico and activity-based methods are mainly used to determine the feasibility of drug repositioning. In silico methods for drug repositioning are affected by drug-to-disease relationships, or the gene expression response of cell lines after treatment. Combining multiple information levels, the relationship network between target and drug can be identified by means of bioinformatics tools and public databases (8, 9). Due to decades of accumulation of structural information between proteins and pharmacophores, the method has gradually become successful. Compared with in silico drug repositioning, computerized drug repositioning has become a promising technology with fast speed and low cost (10).

Since the outbreak of Corona Virus Disease 2019 (COVID-19), it spreads rapidly all over the world. There is an urgent need for effective drugs to treat and alleviate the deterioration of this novel Coronavirus (11, 12). Since the development of a new drug is time-consuming and costly, drug reposition is a feasible way to meet this need (13, 14). The treatment of COVID-19 relied on the experience of clinicians (15, 16). So far, some drugs have been proved effective in relieving and improving the symptoms of novel coronavirus pneumonia (17–22). The drugs against the Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV), such as Lopinavir/ritonavir, have been proved to inhibit many viruses (22, 23). As a nucleoside drug and RNA polymerase (RdRp) inhibitor, remandsivir can inhibit SARS-CoV-2 RdRp, subgenomic mRNA and subviral genomic RNA to block the synthesis of negative chain RNA, thus inhibiting virus replication and antiviral effect (24–26).

In this review, we present the recent progress on in silico methods for repositioning drugs and chemical compounds. In particular, we focus on feature-based methods, matrix decomposition–based methods, network-based methods, and reverse transcriptome–based methods. We review the in silico popular methods in the four categories separately.



Feature-Based Methods

In silico methods of drug compounds and repositioning drugs aims to identify the relationship network between target and drug, which is achieved through bioinformatics tools and public databases. Therefore, it needs to ensure high-resolution structural information, including drugs targets, gene expression profiles, or disease/phenotype information, which usually produce high-dimensional feature datasets. For instance, the Cancer Cell Line Encyclopedia study (27) contains more than 50000 features, representing the mRNA expression and mutational status of thousands of genes. However, the number of available features is significantly greater than the number of training samples. The use of high-dimensional features can lead to overfitting of the model, in fact, only a few features play a key role in the final prediction of drug sensitivity.

Therefore, a feature-based methods are proposed: (1) can prevent over-fitting and improve model performance; (2) can provide a more cost-effective and faster model; (3) can clearly grasp the basic process of generating data. In Figure 1A, we visualize the process of the feature-based method. These are important for understanding the relationships between data in the chemical, clinical domains, and biological fields. Therefore, the research of feature-based drugs sensitivity prediction and individualized treatment methods are very necessary. Table 1 summarizes the feature-based methods used in a large number of studies.




Figure 1 | Methods of drug repositioning. (A) Feature-based methods, (B) matrix decomposition–based methods, (C) network-based methods, (D) reverse transcriptome change–based methods.




Table 1 | Feature-based methods.




Feature Extraction and Feature Selection

The purpose of feature extraction is to project features into new low-dimensional feature space. The features after dimension reduction are usually a combination of the original features, with the aim of discovering more representative information through the new feature sets. A common example of feature extraction technique is principal component analysis (PCA) (28, 29), which maximizes the variance of each component projection, thereby mapping the original input data to an orthogonal coordinate system.

Feature selection aims to select a small part of the input features without losing the information contained in the original features. Our commonly used feature selection methods include: filter, wrapper and embedded methods.

Filter methods are usually classified according to general features, such as looking at the correlation between individual features or independence and output response. For the prediction of drug sensitivity, our commonly used filtering feature selection methods include: (1) The correlation coefficients between genomic features and output responses (30, 52); (2) ReliefF (31, 32) is general and successful attribute estimators. They are able to detect conditional dependencies between attributes, and provide a unified view of attribute estimation in regression and classification. They have the advantages of low computation cost, robust model and noise tolerant, but cannot distinguish redundant features; and (3) Minimum redundancy maximum relevance (mRMR) (33–35), which reduces the redundancy between features and considers a high degree of statistical dependence and output the response. The advantage of filter methods lies in the low computational cost, which usually leads to the problem of bias, which makes it impossible to determine the multivariate feature relationship.

The quality of the selected features in the wrapper methods is affected by the prediction accuracy of the learning algorithm. The wrapper methods usually use high model accuracy to capture features, but the disadvantage of wrapper methods is that they overfit the data. Some commonly used wrapper feature selection methods in drug sensitivity prediction include: (1) Sequential floating forward search (SFFS) (36, 37), where in the forward iteration process, the most representative one will select features from the remaining features. If the removed feature has an impact on the improvement of the objective function, it is provided in the floating part; and (2) Recursive feature elimination (38), which is applicable to all feature models, first sorts the features and eliminates the last feature in turn.

The embedded methods select relevant features through the specific structure of the model, which requires the learning process and feature selection to be interrelated. we usually use embedded methods include: Regularization, which penalizes the norm of feature weights, such as ridge regression (39, 40) penalizing the L-2 norm, LASSO (41, 42, 53) penalize the L-1 norm, and elastic network regularization (43) penalizes the mixture of L-1/2 norm.

In practice, A hybrid methods that combines the most optimal properties of filters and wrappers is usually used. First, the dimension of feature space is reduced by filter methods, and multiple feature subsets can be obtained (44). Then, a wrapper is used to select the optimal feature subset. Several better feature selection methods have been proposed, such as: feature selection based on fuzzy random forest (45), hybrid genetic algorithms (46), hybrid ant colony optimization (47), or hybrid gravity search algorithms (48).

When using hybrid methods, prior knowledge of biological is usually included in the feature section in the process of predicting drug sensitivity. An example is path-based elastic net regularization (49), which incorporates path knowledge in data-driven feature selection. Feature selection based on biological pathways can select the most important features with minimally redundancy, and combine gene expression data with signaling and regulatory pathways (50) or use the activation state of signaling pathways as features (51).




Matrix Decomposition-Based Methods

Previously molecular synthesis experiments for drug targets were expensive and time-consuming. Therefore, research on drug repositioning requires effective calculation methods, which have proven to be a viable strategy in the field of in silico drug discovery. The basic requirement of calculating drug repositioning is to accurately predict the drug and target (DTIs) interaction. Therefore, researchers have proposed some potential methods for predicting DTI in recent years (Table 2).


Table 2 | Matrix decomposition-based methods.



We usually use binary labeling matrix Y to represent drug-target interactions (Figure 1). If the drug and the target are in an interaction relationship, it is represented by element 1; If it is not an interactive relationship, it is represented by 0. The difficulty of predicting DTI lies in whether the known elements in y can accurately predict the labels of unknown elements. To solve these problems, assuming similar drugs tend to similar targets, the similarity between drugs and targets can be used to predict DTI, and vice versa.

Liu et al. proposed a neighborhood regularized logic matrix factorization (NRLMF) method (54). This method uses logical matrix decomposition to simulate the interaction probability of each drug target. We further improve the prediction accuracy by neighborhood regularization. The NRLMF model is the most advanced algorithm and has achieved good results on the basis of five 10-fold cross-validation tests. However, The NRLMF model also has some shortcomings, that is, the drug target interaction information is not considered when the model is established. In response to the above problems, Hao et al. proposed a dual-network integrated logic matrix factorization (DNILMF) (55) and integrated drug target profile information into the model. Based on the NRLMF model, Ban et al. used Gaussian process mutual information to accelerate model parameter search (56). Compared with the previous grid search methods, the method based on Gaussian process mutual information saves about 8.94 times of calculation time. When the area under the curve (AUC) is used for evaluation, the prediction accuracy of the two methods is almost the same.

Bolgár et al. proposed an extended Bayesian matrix factorization method (57), which was combined with a new missing not at random (MNAR) data sub-model. Bolgár et al. later proposed variational Bayesian multiple kernel logistic matrix factorization (VB-MK-LMF) (58), which combines multiple kernel learning, weighted observations and graph Laplacian regularization, and it has explicit modeling probability advantage. Gonen proposed a new Bayesian formula that combines matrix factorization and dimensionality reduction (59). This method uses the chemical similarity of drug components and the genomic similarity of target proteins to predict DTI network. Based on Bayesian personalized ranking (BPR) matrix factorization, Peska et al. proposed a method to predict DTIs (60). They extended BPR by including target deviations, developed a technique for analyzing new drugs, and adjusted the content to take into account the structural similarity between the drug and the target.

Cobanoglu et al. used probabilistic matrix factorization (PMF) to analyze large interaction networks (61). They clustered DrugBank drugs based on PMF latent variables. Cobanoglu et al. later built an online tool for evaluating DTIs (62). They use the PMF method and DrugBank v3, and use the GraphLab collaborative filtering toolkit to train potential variable models.

Zheng et al. proposed a method of multiple similarities collaborative matrix factorization (MSCMF) (63). This method allows the collaborative prediction of DTIs through two low-rank matrices and detects similarities that are important for predicting DTIs. Wang et al. proposed a method to replace the regular term of the drug pathway association matrix (L1 norm) with L2-1 norm (64). Compared with the previous iPad method, this method solves the problem of excessively scattered sparsity, and can obtain more optimized performance by identifying effective drug pathway associations.

Ezzat et al. proposed two matrix factorization methods that use graph regularization and consist of two steps (65). First, convert the binary value in the drug-target matrix Y into an interaction likelihood value. Then use matrix factorization to predict DTI. In cross-validation, it is found that the performance of this method is better than the other three other state-of-the-art methods in most cases. They found that their method reasonably predicted missed interactions with “new drugs” and “new target” simulated cases.

Peng et al. proposed a unified model framework (34), which integrates non-negative matrix factorization, low-rank representation, neighbor interaction profile and sparse representation classification. Dai et al. proposed a matrix factorization model (66), which integrates drugs, diseases and genes with feature vectors of the same dimension. Experiments showed that the integration of genomic space is indeed effective.



Network-Based Methods

In the past decade, network-based approaches (Figure 1) have been commonly used to predict drug sensitivity (1, 67). We have summarized some network-based methods in Table 3. Due to the increase in drug development costs and the decrease in the number of newly approved drugs, it is necessary to determine the new value of existing drugs. Some network-based methods help design unique drug target combinations and combined drugs therapies (68), and improve the treatment of specific patients through powerful channels (69).


Table 3 | Network-based methods.



Some researchers have proposed that the relationship between drug application, disease treatment, and genes should be studied (70). Some studies analyzed disease diagnosis, treatment, and drug discovery from the perspective of biological systems and network structure frameworks (71–73). With the development of high-throughput sequencing technology, it is possible to reconstruct cell network and biomolecules. From the cellular level, the reconstructed network will become a hierarchical structure (74). Guney et al. introduced a drug-disease proximity measure that quantifies the interaction between disease and drug targets (84).

Additionally, network-based proximity can help us determine the therapeutic effects of drugs and predict novel drug-disease associations. Kotlyar et al. summarized how drugs disrupt the network, and previous network-based drug effects characterizations included direct binding to partners (75). Drugs can also affect the transcriptome of cells, and networks have been used for the first time to characterize genes differentially regulated by drugs. Cheng et al. constructed a bipartite graph based on the network inference method to predict the interaction between drug and target (76). Chen et al. constructed a general heterogeneous network (77), which was composed of drug and protein, and considered drug-drug chemical similarity, protein-protein sequence similarity and drug-target interaction (78).

The mining potential of drug-disease associations has been consistently used to accelerate the drug repositioning by pharmaceutical companies. Cheng proposed an inference method based on drug-target bipartite network (76), which can be used to predict new targets of known drugs, and described the importance of developing computational methods for predicting potential DTIs. Then, Chen proposed two inference methods, ProbS and HeatS (78), which can predict drug-disease interactions based on the measurement of basic network topology. Methods probs and heats are two methods based on recommendation techniques (79, 80). In order to find the correlation between known drugs and diseases, they solve the above problem by mining the data of drug-disease bipartite network properties. Then, Wang proposed a heterogeneous network model (81). This method uses existing omics data to relocate drugs, diseases and drug targets. This three-layered heterogeneous network model for drug repositioning captured the interrelationships among diseases, drugs, and targets, with the purpose of novel drug usage prediction. Chen et al. provided a principled method to transfer knowledge from these two domains and improve prediction performance for these two tasks (82), With the help of the relationship between drug target disease, this method urges us to consider drug relocation and drug target prediction in drug discovery.

Some researchers have attempted to reposition drugs by targeting network modules through some unique cases, such as a Parkinson’s disease case study. Yue constructed a framework of targeted therapy (83), which combines genome-wide association data with gene co-expression modules of PD disease tissues representing brain regions, and aims to study dysfunctional pathways or processes.



Reverse Transcriptome Change-Based Methods

Reverse transcriptome change-based methods (Figure 1) are methods based on the gene expression profiles induced by drugs. These methods consider the relationship between drugs, genes, and disease. The publicly accessible gene expression profiles currently include Connectivity Map (CMap, http://www.broadinstitute.org/cmap), National Cancer Institute 60 human tumor cell line anticancer drug discovery project (NCI-60 http://dtp.nci.nih.gov/), Library of Integrated Cellular Signatures (LINCS http://www.lincsproject.org/), and Cancer Cell Line Encyclopedia (CCLE http://www.broadinstitute.org/ccle) (2, 52).

It is helpful to facilitate repositioning drugs and chemical compounds with relevant databases. Examples are Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), The Cancer Genome Atlas (TCGA, http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp), Gene Expression Database (GXD, http://www.informatics.jax.org/expression.shtml), ArrayExpress (http://www.ebi.ac.uk/arrayexpress), et al. The huge amount of publicly available transcriptome data is enabling the repositioning of drugs and chemical compounds based on the gene expression profiles. We summarize the articles based on the above database in Table 4.


Table 4 | Reverse transcriptome change–based methods.



Lamb et al. established CMAP database (85), which contains more than 6100 gene expression profiles induced by more than 1300 compounds in four cell lines. The main working idea is to enter a query in the CMap database, using the genome of the drug as a reference. Drug candidates with a positive correlation score (the highest is close to 1) may be considered to be related to the reference drug between downstream regulatory and clinical drug response, while drug candidates with a negative correlation score (the lowest is close to -1) may eventually be considered It is considered that there is no potential correlation or antagonism with the reference drug.

Based on the correlation between drugs and genetic characteristics, we can discover some new drugs indications, and assume that drugs with similar characteristics may have similar therapeutic effects (85). Iskar et al. developed a strict filtering and state-of-the-art normalization pipeline for CMap gene expression (86), and it significantly overcomes cross-batch non-biological experimental variation. Hieronymus et al. proposed a chemical genomic method based on gene expression analysis (87), which can be used to discover and predict compounds with cancer phenotypes, for example, for compounds with gedunin and celastrol activity HSP90 inhibitors are classified. Epoxy anthraquinone derivatives have been found to be a novel DNA topoisomerase inhibitor for the treatment of neuroblastoma and other cancers (88). The alkaloid thaspine from the croton cortex has been shown to play a role in the overexpression of drug efflux transporters in cells, and induce apoptosis of multicellular spheroids cells. It can be used as a dual topoisomerase inhibitor (89).

The molecular mechanism of the traditional Chinese medicinal formula Si-Wu-Tang was discovered through connection maps and gene expression microarray (90). Studies have found that SWT, as an activator and phytoestrogen of Nrf2, it can be used as a non-toxic chemopreventive agent, Through CMap mining and microarray gene expression profiling, the new mechanism of action of traditional Chinese medicine can be verified and discovered. K562 cells exposed to sodium valproate were verified by CMAP database, and it was found that valproate acid could provide certain therapeutic potential in the treatment of leukemia (91). As a combination of approved drugs and failed drugs, repoDB database(http://apps.chiragjpgroup.org/repoDB/) provides researchers with a simplified hypothesis to prove that all novel predictions are false (92).

In the past, anticancer drugs were screened by transplantable animal tumors. In the late 1980s, NCI-60 cell line dataset was developed by the US National Cancer Institute (NCI), aiming at drug discovery in vitro (93). The NCI-60 data set involves nine human cancers with a total of 60 cell lines, including: ovarian cancer, prostate cancer, lung cancer, leukemia, colon cancer, breast cancer, etc. The US National Cancer Institute proposed a comparative algorithm to find new compounds with similar mechanisms, or possible mechanisms of action of related compounds (94). The similarity search method of bioactivity map can calculate the similarity between drugs according to the bioactivity map of drugs, and relocate the known drugs according to the similarity (95).

Reverse-phase protein lysate microarray is a method for accurately measuring protein expression levels in NCI-60 cell line. This method has a large number of spots and aims to find a type of molecular with high protein/mRNA correlation (96). In February 2016, NCI-60 was no longer supported because NCI decided to use a patient-derived xenograft (PDX) model instead. Since then, some research institutions and drug companies have begun to build their own model PDX library. EurOPDX composed by 16 European institutions jointly consists of 1500 PDX models, The Jackson Laboratory has 450 PDX models, and the drug screening tool released by Novartis uses 1000 PDX models.

The Library of Integrated Network-based Cellular Signatures (LINCS) program was developed by the US National Institutes of Health to increase understanding of normal and diseased cellular states and how to alter them. Researchers at the LINCS transcription center have released a new version of Connectivity Map, which involves 42000 human cells and more than 1.3 million gene expression profiles. This data set is based on L1000 analysis and aims to reduce the cost of gene expression analysis (97).

In order to analyze the effects of different small molecule drugs on six different breast cancer cell lines, the researchers proposed a method to obtain survival measurements and cell growth. Studies have shown that the survival and growth of certain types of breast cancer cells are affected by drugs, and the existence of differences helps to understand the response of breast cancer patients during treatment (98). Studies have shown that the effects of drugs that can reverse the expression of cancer-related genes are beneficial to the treatment of some cancer models (etc. breast, liver, and colon cancer.) (99). They concluded that the four compounds showed high enough potency to reverse gene expression in liver cancer, and used a system-based method to confirm that the four compounds were effective against the discovered liver cancer cell lines.

It is found that the information obtained by different measurement methods under different drug doses has corresponding uniqueness (100), which is conducive to further exploration of drug effects. When researchers examine the variability of drug effects, they need to consider many factors to expand the way they think about drug activity. The conclusion shows that in the comparison of drug reactions, in addition to the drug effect and price, many factors should be considered, such as clinical concentration near and above the IC50.

The Cancer Cell Line Encyclopedia (CCLE) project is an effort to conduct a detailed genetic characterization of a large panel of human cancer cell lines (27). CCLE provides public access analysis and visualization of DNA copy number, mRNA expression, mutation data, and other items for approximately 1000 cancer cell lines, as well as the pharmacological profiles of 24 anti-cancer drugs in 50% of cell lines. Barretina et al. developed the research tools for predicting the genetic variation of cancer drug sensitivity and evaluated their systematic analysis methods. They also applied the prediction model method to the cancer genetic subsets that challenge the current treatment methods.



Discussions

We reviewed the four popular in silico methods for drug repositioning based on feature, matrix factorization, network, and reverse transcriptome change. Through the analysis of the four methods, we found that each method has its advantages and limitations and more optimal performance can usually be obtained by combining different methods and strategies.

Despite the creation of some excellent drug repositioning models and methods, the development of robust and satisfactory models is still an indispensable process. One of the main problems is the difficulty in developing functional theoretical models or methods, which is challenging because the construction of such models or methods to simulate biological behavior will have a certain degree of complexity. Due to changes in the conditions and environments that exist during different experiments, the gene expression profile may be difficult to define, which results in data discrepancies in gene expression characteristics. In addition, when genes are used as drug targets, gene expression is not always significant, resulting in inaccurate data. Because of these problems, it is difficult for models or methods to identify potential drug target interactions when following chemical structures or molecular mechanisms.

Another major problem associated with the drug repositioning model is the lack of reliable gold standard datasets. In the process of model building, one scheme is to combine the divided training, validation, and test set with k-fold cross validation and then use the popular evaluation index to evaluate the performance. Another scheme is to establish unique gold standard datasets and then use the evaluation indicators to evaluate the model or method proposed to finally avoid the occurrence of over-fitted problems.

Although there are many challenges in the research of drug repositioning, the integration of multi-source information related to drugs and their side effects, interactions of drugs and diseases, and interactions of drugs and drugs is essential to improve the performance of the drug repositioning domain model. There is still a lack of treatment plans corresponding to the large number of existing diseases, which has inspired more scientific researchers and medical workers to carry out research.
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Background

Non-small cell lung cancer (NSCLC) is one of the most prevalent causes of cancer-related death worldwide. Recently, there are many important medical advancements on NSCLC, such as therapies based on tyrosine kinase inhibitors and immune checkpoint inhibitors. Most of these therapies require tumor molecular testing for selecting patients who would benefit most from them. As invasive biopsy is highly risky, NSCLC molecular testing based on liquid biopsy has received more and more attention recently.



Objective

We aimed to introduce liquid biopsy and its potential clinical applications in NSCLC patients, including cancer diagnosis, treatment plan prioritization, minimal residual disease detection, and dynamic monitoring on the response to cancer treatment.



Method

We reviewed recent studies on circulating tumor DNA (ctDNA) testing, which is a minimally invasive approach to identify the presence of tumor-related mutations. In addition, we evaluated potential clinical applications of ctDNA as blood biomarkers for advanced NSCLC patients.



Results

Most studies have indicated that ctDNA testing is critical in diagnosing NSCLC, predicting clinical outcomes, monitoring response to targeted therapies and immunotherapies, and detecting cancer recurrence. Moreover, the changes of ctDNA levels are associated with tumor mutation burden and cancer progression.



Conclusion

The ctDNA testing is promising in guiding the therapies on NSCLC patients.





Keywords: non-small cell lung cancer, circulating tumor DNA, molecular testing, liquid biopsy, immunotherapies, therapeutic response



Introduction

Liquid biopsy refers most often to the analysis of tumor-derived materials, including circulating tumor cell (CTC), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), exosome, and tumor-educated platelet (TEP) from blood plasma (Figure 1). CTCs are released from tumor tissue; ctDNA is secreted from apoptotic or necrotic tumor cells; and exosomes are membrane-bound vesicles released from tumor cells. Until now, ctDNA is the only circulating biomarker approved for selecting patients with targeted therapy, whereas other liquid biopsy sources, such as CTCs, RNA, exosomes, and TEP, are still at clinical research phase. Therefore, this review will focus on the interpretation of ctDNA testing and its potential clinical applications.




Figure 1 | Overview of liquid biopsy. Blood is sampled from patients, which contains ctDNA, CTC, RNA, exosome, and tumor-educated platelets. CtDNA is extracted from blood plasma and gene variation can be analyzed by next generation sequencing involving a few steps, including DNA extraction, DNA library preparation, sequencing, sequence alignment, mutation annotation, and so on.



As reported by Mandel and Metais for the first time in 1948, circulating cell-free DNA (cfDNA) refers to double-stranded DNA fragments in liquid biopsy with lengths close to or lower than 200 base pair (bp) (1). CfDNA is present at low levels in the plasma of healthy persons, but at high levels in those of cancer patients (2, 3). CfDNA of tumor origin is referred to as ctDNA. Recent studies have confirmed that the fraction of ctDNA in total cfDNA greatly varied in cancer patients. Patients with early stage tumors present lower fractions of ctDNA than those in the advanced stage (4–6). Although the concentration of ctDNA has been suggested to predict the outcomes of patients with non-small cell lung cancer (NSCLC), the criterion for appropriate cutoffs is unavailable in clinical utility (7). However, even in the same cancer type, substantial variability has been observed indifferent patients (4, 8, 9). Mutational analysis of ctDNA has already been proven to be promising in early cancer detection and cancer recurrence evaluation (10–15).

In the last decade, important advancements have been achieved in NSCLC (16, 17). For example, small molecule tyrosine kinase inhibitors (TKIs) were proven to be effective for patients with advanced lung adenocarcinoma who harbor somatic mutation of epidermal growth factor receptor (EGFR), as well as the rearrangement of echinoderm microtubule-associated protein-like 4 (EML4) with anaplastic lymphoma (ALK) (18–22). More recently, immune checkpoint inhibitors (ICI) therapies have shown significant benefit in the treatment of patients with NSCLC (16, 23). Besides programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1), tumor mutation burden (TMB) is a promising biomarker in predicting the outcomes of NSCLC patients with immunotherapy (24–27). Therefore, the accurate information of a cancer patient’s genetic status is critical in guiding personalized medication. Although tissue biopsy remains the gold standard for molecular testing of cancers, it presents some disadvantages in clinical situations. First, tumor biopsy is highly risky because of its invasive nature and is dangerous for extremely serious patients. Second, tumor biopsy is inappropriate in a few occasions like cancer early detection and recurrence surveillance, where multiple testing at different time points is necessary. Finally, tumor biopsy can only examine one tissue at a time and usually cannot reflect the mutational landscape of the whole body (28–31).

CtDNA testing provides a powerful and effective alternative method to tissue biopsy for cancer diagnosis, treatment, and prognosis. In the past 5 years, a high concordance has been confirmed between plasma and tissue samples, further encouraging the exploration of ctDNA in clinical applications (30, 32–34). Some studies have suggested that ctDNA levels can be used to monitor the response of patients to local and systemic therapies (35–37). Additionally, ctDNA testing can effectively predict responses to targeted therapies in multiple tumor types (4, 38–41). Despite the important achievements in ctDNA, there is no systematic review comprehensively introducing recent development in clinical applications of ctNDA as a biomarker in NSCLC, to our best knowledge.

In this review, we aim to describe the potential clinical application of ctDNA testing, from aiding cancer diagnosis to guiding patients’ treatment and detection of minimal residual disease, and to monitoring the response to cancer treatment in a dynamic way (Figure 2). Finally, a few promising approaches are highlighted, which may become available in a wide range of clinical applications in the future.




Figure 2 | Potential clinical applications of ctDNA testing in NSCLC patients. CtDNA testing in early tumors detection are under development, which may identify patients with cancers at early stage when they are more likely to be curable. CtDNA testing in minimal residual disease detection after surgery can provide the evidence of tumor relapse, which may offer an opportunity for early intervention for patients according to risk of recurrence. For companion diagnosis, ctDNA testing is available to identify many somatic alterations, which can provide a guide for treatment decisions for patients with targeted therapies. Analysis of cfDNA has been used to monitor the response to targeted or immunotherapy, which can provide a molecular basis to guide the subsequent therapy choice.





Approaches Of CtDNA Testing

Since cfDNA is derived from various cells and rapidly cleared in the circulation system, it usually presents in body fluid in a short time and with a limited level. Hence, it is critical to optimize experimental techniques for cfDNA (ctDNA) isolation and analysis. For cfDNA isolation, the anticoagulant EDTA can stabilize cfDNA and prevent the contamination with germline DNA released from normal blood cells. However, blood samples have to be processed by methods like leukocyte fixation within 6 h after collection. Leukocyte fixation allows for easy shipping and centralized processing, which can stabilize cfDNA and normal blood cells for two days (42). A recent study reported that specialized cfDNA collection tube with the stabilization reagent provides even higher flexibility for sample processing, i.e., up to 14 days without affecting cfDNA detection (43).

The fraction of ctDNA in total cfDNA can vary greatly form less than 0.1% to more than 90% (4). Several high-sensitivity approaches are available to analyze ctDNA even at low levels (Table 1), including peptide nucleic acids (PNA)-based methods (44), quantitative polymerase chain reaction (qPCR) and droplet digital PCR (ddPCR), beads emulsion amplification and magnetics (BEAMing) (45). However, those methods are not adequate to analyze multiple genes through a high-throughput screening. Several targeted next-generation sequencings (NGS) have been developed for ctDNA testing, including tagged amplicon-based sequencing (TAm-Seq) (46), cancer personalized profiling by deep sequencing (CAPP-Seq) (36), the targeted error correction sequencing (TEC-Seq) (47). TAm-Seq includes two steps of amplification. The first step of amplification is performed to capture the starting molecules present in the template by all primers, then, the second step of amplification is followed with a limited couple of primers in the access array. This approach is only detected in single-nucleotide variants (SNV), insertion, or deletions (indels) (46). CAPP-Seq is a capture-based NGS ctDNA detection method, the defined mutated regions are hybridized by the biotinylated probes. Several types of somatic mutations could be detected by CAPP-Seq, including SNV, indels, copy number alterations (CNAs), and rearrangements (36). TEC-Seq is based on targeted capture of multiple regions of the genome and deep sequencing of DNA fragments, which allow sensitive and specific detection of low abundance sequence alterations (47). Whole-exome sequencing or whole-genome sequencing with deep depth can provide a more comprehensive profiling of ctDNA (12, 48). However, because of the high costs and large volume of blood per patient, the application of these approaches to patients with advanced lung cancer is limited.


Table 1 | A summary of methods for detection of genetic alterations in cfDNA and their performances.





CtDNA Testing For Companion Diagnosis

Tumor molecular testing has become a fundamental practice to guide the selection of therapy in cancer medicine. Tissue biopsy remains the gold standard for patients with lung cancer diagnosis. However, invasive biopsy can be high risk, and patients would prefer liquid biopsy. This makes ctDNA testing an attractive tool, which could replace tissue biopsy in some specific situations. Although previous studies revealed a low concordance between the somatic variations detected from plasma and those detected from tissue samples (49, 50). For example, Torga and Pienta observed big differences in somatic mutations called from two different commercial ctDNA testing assays and those from tissue samples in 40 patients with metastatic prostate cancer (51). However, these studies may have bias. For example, tumor samples were collected at baseline time, whereas plasma samples were collected during the therapy. In addition, the enrolled patients had received therapy, which might lead to the alteration of mutation profiles. As a result, the discordance might be caused at least in partial by inappropriate experimental designs.

In the past years, a few larger and more carefully enrolled studies have indicated a relative high concordance between plasma and tissue samples obtained simultaneously, encouraging the clinical usage of ctDNA testing (30, 32–34). Recently, Roche’s Cobas plasma EGFR mutation test v2 was approved as the first ctDNA-testing tool by the Food and Drug Administration (FDA), which paved the way of liquid biopsy in clinical applications. Cobas plasma EGFR mutation test v2 can identify multiple mutations in exons 18, 19, 20, and 21 of EGFR in NSCLC patients, including exon 19 deletion, and L858R, G719X, S768I, L861Q, and T790M substitution. Among those, exon 19 deletion and L858R mutation are related to the increase of sensitivity to tyrosine kinase inhibitors (52). However, T790M mutation is often resistant to tyrosine kinase inhibitors, such as erlotinib, gefitinib, and afatinib, whereas it responds to osimertinib (29, 53). Hence, the test can guide the usage of tyrosine kinase inhibitors in treating NSCLC patients (54).

In addition to checking EGFR mutational status, ctDNA testing can also be used to detect mutations in other genes, such as BRAF mutations and ALK rearrangements. It has been indicated that NSCLC patients harboring BRAF mutations have clinical benefits from targeted therapies (55). ctDNA testing has been indicated to be effective in identifying both ALK point mutations and fusions in lung cancer patients, who will most likely to respond to crizotinib and other ALK tyrosine kinase inhibitors (11, 56). To display comprehensive mutation profiles in patients with NSCLC, large gene panels were developed to identify oncogenes and tumor suppressor genes via ctDNA testing (10, 36). A recent prospective study demonstrated genetic variations in eight genes, including BRAF, EGFR, and ERBB2 mutations, ALK, RET, and ROS1 rearrangements, MET amplifications and exon 14 skipping, were recommended as biomarkers via the Guardant360 test based on eight 70-gene NGS panels in metastatic NSCLC (10). These genetic variations were detected with a high concordance rate between ctDNA testing and tissue genotyping, which even reached more than 98% when only the FDA-approved markers (i.e., ALK, BRAF, EGFR, and ROS1) were considered (10). Hence, these approaches can provide a guide for treatment decisions of patients with NSCLC with lots of targeted therapies available or in progress.



CtDNA Testing For Detecting Minimal Residue Disease

Currently, there is a clinical challenge to determine which patients have a minimal residue disease after surgical resection, which may result in recurrence. However, adjuvant chemo-radiation therapy is not routinely used for cancer patients because of its toxic nature. Nowadays, serial computed tomography (CT) and positron emission tomography combined CT (PET/CT) imaging are used for surveilling advanced NSCLC patients after surgery or chemo-radiation therapy. However, identification of disease recurrence is always delayed by CT imaging because of the uncertain recurrent location and small size of tumor. Hence, liquid biopsy might provide an aid to predict the risk of disease recurrence.

The sensitivity of ctDNA testing relies upon the level of tumor DNA released into blood and collecting samples at optimal time. Several liquid biopsy approaches have been developed to identify low level of ctDNA even less than 0.01% of total cfDNA (37, 57). Indeed, the recent studies have demonstrated that ctDNA testing has an ability to detect minimal residue disease and tumor relapse after surgery therapy in several cancer types, including lung cancer (35, 58, 59). Interestingly, several key studies have shown that ctDNA testing can detect resistance mutations or disease progression prior to CT imaging (35, 60, 61).

The recent prospective study of the West Japan Oncology Group 8114LTR (WJOG8114LTR) evaluated the clinical significance of monitoring ctDNA in 57 patients with advanced lung adenocarcinoma harboring EGFR mutations during afatinib treatment. They indicated that a remarkable long progress-free survival (PFS) was observed in patients with undetectable EGFR mutations, whereas a short PFS was observed in patients with positive EGFR mutations (62). Similarly, another study has provided an evidence of ctDNA testing monitoring disease progression of patients with advanced NSCLC during treatment with erlotinib, and EGFR T790M mutation was detected by ctDNA testing earlier than clinically evident disease (60). Hence, ctDNA testing can monitor recurrence and save time for patients to receive available intervention and may prevent tumor cells spread and proliferation.



CtDNA Testing For Therapeutic Response

For monitoring therapeutic response, a repeat or serial molecular testing is required after one or more lines of therapy. Patients would prefer minimally invasive ctDNA testing if it can provide an effective power to predict the treatment, other than repeat invasive tumor biopsies because of their high risks. CtDNA was released into blood can be triggered by tumor cell death. Hence, dynamic changes of ctDNA concentrations may predict the response to the treatment. Indeed, previous studies have indicated that ctDNA levels are associated with disease situation in patients with NSCLC patients during therapy. The decreasing ctDNA levels are related with response to therapy, whereas the increasing ctDNA levels are related with progressive disease (7, 35–37, 60). A complete response could be expected from undetectable levels of ctDNA after serial testing. Therefore, ctDNA testing may provide an aid to guide chemotherapy decision or dose-based radiation therapy.

Circulating tumor DNA testing has also been confirmed to be able to detect targetable mutations that are involved in driving acquired resistance to therapy (12, 38, 39). One of the earliest studies has illustrated the development of resistance to cancer therapy using a serial ctDNA testing. In particular, the authors demonstrated that the emergence of EGFR T790M gatekeeper mutation was detected by ctDNA testing in patients with NSCLC after gefitinib treatment. This finding supported the hypothesis of selective pressure resulted from therapy. Several studies have made efforts to identify the presence of EGFR T790M by ctDNA testing in NSCLC patients might benefit from osimertinib, a third-generation EGFR inhibitor (29, 53). Interestingly, acquired EGFR C797S mutation was identified by ctDNA testing from 15 patients with NSCLC harboring EGFR T790M mutation undergoing osimertinib treatment, illustrating a novel acquired resistance mechanism to this EGFR inhibitor (63). Remarkably, EGFR T790M and other EGFR mutations can be identified by Roche’s Cobas plasma EGFR mutation test v2 which has been approved by FDA as an aid to guide decisions of specific EGFR inhibitors (54). It paves the way to utilize the approach of liquid biopsy to monitor targeted therapy, whereas it is a limitation to track other genetic alterations besides of EGFR mutation. Therefore, a comprehensive ctDNA analysis is required for the identification of genetic alterations to guide in the response to targeted therapies.

Indeed, several studies revealed the EGFR-independent mechanism of primary or acquired resistance to treatments of EGFR inhibitors, a bypass signaling pathway activated by the occurrence of gene variations mutation, such as mutations in BRAF, KRAS, PIK3CA, and amplification of MET (64–70). In particularly, the last update of the phase III AURA3 trial (no. NCT02151981) showed that emergence of MET amplification is detected by ctDNA testing in advanced NSCLC patients with EGFR T790M mutation during osimertinib treatment, which indicated that MET amplification is one of resistance mechanisms to this treatment. To overcome resistance, several case reports observed the therapeutic efficacy of MET inhibitor combined with EGFR inhibitor in patients with lung cancer appearing MET amplification detected by ctDNA testing after resistance to EGFR inhibitor (71–73). Moreover, a key clinical trial investigated the combination of capmatinib with gefitinib applied in patients with NSCLC, acquiring MET amplification after failure of EGFR inhibitor therapy (74).

In addition to EGFR mutations, ctDNA testing was also used for monitoring response or resistance to ALK inhibitors therapy in patients with lung cancer via identification of appearance of ALK variations, including ALK point mutations and rearrangements (11, 56). For example, the recent study identified novel ALK point mutations by ctDNA testing at the progression line after advanced ALK-positive NSCLC patients resistant to crizotinib treatment, revealed the resistance mechanisms on disease progression (56).



CtDNA Testing For Immunotherapy

Besides small molecule tyrosine kinase inhibitors therapy, immune checkpoint inhibitor (ICI) therapies have shown significant benefit in the treatment of different tumor types including NSCLC (16). However, only a subtype of NSCLC patients could benefit from ICI immunotherapies. In addition to PD-1 and PD-L1 biomarkers, tumor mutational burden (TMB) is a promising biomarker to predict clinical outcomes of NSCLC patients to ICI immunotherapies (24–26), and was approved by the FDA in 2020. Tissue biopsy remains the gold standard for molecular testing, whereas it is a clinical challenge to obtain adequate tumor tissue from advanced NSCLC patients by invasion biopsy. Thus, it needs to explore minimally invasive approach to aid in distinguishing patients who can benefit from ICI immunotherapies.

Nowadays, the concordance of blood TMB (bTMB) with tissue TMB (tTMB) has been confirmed by the whole-exon sequencing (WES) (75, 76). However, it is a challenge to apply WES approach in clinical routine, mainly because of the high gDNA inputs and high costs. Therefore, the feasibility of blood TMB analyzed by targeted NGS panels needs to be assessed. In a preliminary study, the authors used targeted NGS panels to assess the concordance of blood TMB (bTMB) with tissue TMB (tTMB) in the enrolled 97 patients, whereas the obtained correlation was unsatisfying due to the low concordance between bTMB and tTMB (77). A possible reason is the lack of standard method for TMB assessment in this study. For example, the Foundation-One panel was used for tissue TMB analysis, while the Guardant360 was used for blood TMB analysis. The different sequencing panels resulted in different coverage of genomic regions. Moreover, the mutation types used for TMB calculation were different in the studies. Furthermore, the cutoff of TMB values were varied to classify these patients. Therefore, the standard sequencing panels used for comparing bTMB and tTMB should be considered carefully in future studies.

Remarkably, the very recent studies evaluated the concordance of bTMB with tTMB in advanced NSCLC patients and revealed that bTMB estimated by ctDNA testing is feasible to predict the clinical outcomes of ICI immunotherapy (78, 79). For example, Wang et al. optimized gene panel size and established 150 genes panel to estimate the bTMB value with response to ICI immunotherapies. The authors showed a high bTMB value of ≥ 6, which is related to long progression-free survival, suggesting that bTMB may be a promising biomarker to predict clinical benefit for advanced NSCLC patients to anti-PD-1 and anti-PD-L1 therapies (78). These studies provided the strong evidences to support bTMB determined by the targeted NGS panels. However, it still improves the sensitivity of ctDNA testing and develops a robust targeted NGS panels, and more clinical trials are required to confirm the abilities of bTMBas, a biomarker in liquid biopsy in the prediction of the clinical benefit of NSCLC patients from ICI immunotherapies.

Typically, a very recent study showed a set of neoantigens genes detected by personalized ctDNA testing, which can monitor the clinical response to ICI immunotherapies for advanced NSCLC patients (80). It is known that mutated neoantigens are the key targets of tumor-specific T-cells undergoing ICI immunotherapies. Therefore, the study focused on neoantigens-coding mutations detected by ctDNA testing during ICI immunotherapies. The authors showed the neoantigen-related mutations detected in nine of ten patients after ICI immunotherapies, but undetectable only in one patient, and suggested that activation of tumor-specific T cells might contribute to the response to ICI immunotherapies (80). However, it needs to validate the feasibility of personalized ctDNA testing with a large cohort in future studies to maximize the clinical outcomes of NSCLC patients in ICI immunotherapies.



Conclusions

In conclusion, ctDNA testing is going to become a powerful approach applied in the clinical management of NSCLC patients at diagnosis, dynamic monitoring drug treatment or disease progression. However, it is still a great challenge because of the very low level of ctDNA released in the blood. In this regard, several ultra-sensitive and specific approaches were developed to detect somatic alterations by NGS-based ctDNA testing (36, 47, 81). In addition, several studies have shown tumor-derived DNA detected in other body fluids (82–84). Indeed, tumor-derived DNA from pleural effusion in patients with lung cancer was detected with high levels, suggesting that pleural effusion testing is an alternative and feasible method for mutations identification (82). However, more clinical trials are required for verifying these findings and for providing the standard operation procedure. Moreover, ctDNA testing has attracted great attention in early tumor detection of several common cancer types (57, 85–87), although it is still a long way to apply ctDNA testing in the clinical routine.
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Background: Bladder cancer (BC) is the most common tumor of the urinary system. Non-muscle-invasive bladder cancer (NMIBC) has a high recurrence rate after surgery, and patients with muscle-invasive bladder cancer (MIBC) have poor quality of life after radical surgery. Understanding the molecular mechanism of bladder cancer is helpful for providing a more appropriate treatment approach. Annexins are calcium-binding proteins and play an important role in different tumor cells. However, the role of the annexin family in bladder cancer has not been studied in detail.

Methods: ONCOMINE, UALCAN, TIMER2.0, Kaplan-Meier Plotter, cBioPortal, and WebGestalt were utilized in this study.

Results: ANXA2, ANXA3, ANXA4, ANXA8, and ANXA9 were significantly increased in bladder tumor tissues, while ANXA6, ANXA7, and ANXA11 were significantly decreased. ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, and ANXA9 had prognostic value in bladder cancer. In addition, specific annexins were specifically expressed in different subtypes of MIBC and were related to the histological morphology of bladder tumors. ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, and ANXA8 were highly expressed in basal-subtype MIBC, while ANXA4, ANXA9, ANXA10, and ANXA11 were mainly expressed in luminal-subtype MIBC. Finally, we analyzed the possible mechanisms of ANXAs in different subtypes of bladder cancer through GO and KEGG analyses and the correlation between ANXAs and immune infiltration in the tumor microenvironment.

Conclusion: Taken together, our results indicate that annexins might play important roles in BC and have the potential to be used as markers for subtype classification.
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INTRODUCTION

Bladder cancer (BC) is the most common genetic disease of the urinary system, and studies have shown that the progression of disease is related to the accumulation of multiple genetic and epigenetic mutations (Kim et al., 2010). The genes TP53, Rb1, and FGFR3 have been verified to be closely related to the prognosis of bladder cancer (Grossman et al., 1998; van Rhijn et al., 2001). According to the American Joint Committee on Cancer TNM Oncology Staging System, bladder cancer can be divided into non-muscle-invasive bladder cancer (NMIBC pTa-pT1) and muscle-invasive bladder cancer (MIBC ≥ pT2). MIBC presents with rapid progression, metastasis, and poor prognosis, and approximately 30% of newly diagnosed bladder cancers present muscle-infiltration (Chou et al., 2016). The treatment of NMIBC and MIBC is different. Transurethral resection of the bladder tumor (TurBT) combined with intravesical instillation of chemotherapy drugs is the main treatment for NMIBC. However, for MIBC patients, radical cystectomy and systemic chemotherapy, which have a serious impact on quality of life, are required. In addition, 50% of patients may develop tumor progression and distant metastasis (van Lingen et al., 2013; Chou et al., 2016). In recent years, immunotherapies, such as immune checkpoint inhibitors, have shown long-term durable responses and tolerable safety profiles in several clinical trials. However, approximately 70–80% of patients may be unresponsive to immune checkpoint inhibition (Kim and Seo, 2018). Therefore, understanding the molecular mechanism of bladder cancer and identifying effective biomarkers and potential therapeutic targets are of great significance for the treatment and diagnosis of BC.

Annexins are a superfamily of secreted proteins that exist in the cytoplasm and attach to the phospholipid membranes of cells and are currently classified into five classes (groups A–E). Group A is present in vertebrates, and 13 group A members (annexin A1–A13) are present in human organs (Iglesias et al., 2002). ANXA1 was the first to be studied, and studies have shown that ANXA1 is involved in the regulation of inflammation and can affect T cell proliferation (Han et al., 2020). In addition, ANXA1 is highly expressed in different cancers, such as hepatocellular carcinoma, lung cancer, and colorectal cancer (Lecona et al., 2008; Biaoxue et al., 2012; Suo et al., 2012). In contrast, its expression is decreased in cervical cancer and prostate cancer (Patton et al., 2005; Moghanibashi et al., 2012). Studies in urinary system cancer have shown that renal cancer patients with low expression of ANXA1 have a better prognosis, and Yu’s study showed that high expression of ANXA1 was associated with recurrence of bladder cancer (Yu et al., 2014; Yamanoi et al., 2019). In addition, ANXA2 is also a protein that has been studied extensively, and studies have shown that ANXA2 is highly expressed in urothelial carcinoma and is associated with prognosis (Zhang et al., 2014; Wang et al., 2015). We used TCGA data to find that in addition to ANXA1 and ANXA2, other ANXA family proteins (ANXA3, ANXA5, ANXA6, and ANXA9, which have not been studied) are also closely related to the prognosis of bladder cancer. Therefore, we analyzed the mRNA and protein expression of different annexins in bladder cancer and their correlation with the histological morphology and clinical stage of bladder cancer. Furthermore, we performed enrichment analysis of 25 genes related to each ANXA protein to clarify its potential functions. Since annexins regulate inflammation, we also analyzed the relationship between the expression of ANXA family members and immune cell infiltration. This study shows that ANXA family proteins are closely related to the development of the bladder cancer and have high prognostic value that will be beneficial to the diagnosis and treatment of bladder cancer.



MATERIALS AND METHODS


mRNA Expression Level of ANXA Family Proteins

UALCAN1 and Oncomine2 were used to analyze the expression of ANXA mRNA. The mRNA expression in tumor tissues and normal tissues was analyzed by UALCAN, and the mRNA expression difference between MIBC and NMIBC was verified with three datasets from Oncomine.



Protein Expression Level of ANXA Family Proteins

Protein expression levels in different tumors can be presented intuitively with immunohistochemistry data through the HPA platform3. In this study, we compared the expression levels of ANXA family proteins in normal tissues and in tissues from bladder cancers of different grades. Protein expression were quantified using a visual grading system based on the extent of staining (percentage of positive tumor cells graded on scale from 0 to 3: 0, none; 1, <25%; 2, 25–75%; 3, >75%) and the intensity of staining (graded on a scale of 0–3: 0, none; 1, weak staining; 2, moderate staining; and 3, strong staining). The combination of extent (E) and intensity (I) of staining was obtained by the product of EI (Maréchal et al., 2009). Extent and intensity information of staining could be obtained on the HPA. Three sections of each type of sample (normal, low grade BC, and high grade BC) were selected randomly and the mean value was used for statistical analysis.



Correlation Between the Expression Levels of ANXA Family Proteins and Clinicopathological Features

In this study, we used UALCAN to analyze the correlation between ANXA mRNA expression and clinical parameters of bladder cancer patients, including individual tumor stage and molecular subtype. The significance of the differences is marked in the figure.



Survival Analysis

Kaplan-Meier Plotter4 provides survival data from patients with 21 different cancer types. In this article, we evaluated the relationship between different ANXA mRNA expression levels and overall survival time. According to the mRNA expression level, patients were divided into high expression and low expression groups based on the appropriate cutoff value determined by the Kaplan-Meier plotter platform. The results reflect the prognostic utility of different ANXA proteins. A P-value less than 0.05 was considered to indicate a statistical difference.



Correlation Analysis of ANXA Expression and Characteristic Subtype Gene Expression in Bladder Cancer

Timer 2.05 was used to analyze the correlation between the expression of membrane actin and the expression of luminal subtype characteristic genes (FOXA1, GATA3, and KRT20) as well as basal subtype-related genes (KRT5, KRT6, and KRT14).



GO and KEGG Analyses of ANXA-Related Genes

We analyzed 25 positively co-expressed genes of each ANXA protein using cBioPortal6. According to different groups, online GO and KEGG analyses were performed using WebGestalt7.



Correlation Analysis of ANXA Expression and Immune Cell Infiltration

Timer 2.0 also provides a platform to perform a correlation analysis between the expression of a single gene and the infiltration of immune cells. Therefore, we analyzed the relationship between the expression of each ANXA protein and the infiltration of six major immune cells in bladder cancer.



Statistical Analysis

Data are shown as means ± standard deviation (SD). All statistical analyses were carried out using SPSS (version 23, IBM; Armonk, NY, United States). Differences between groups were analyzed using the two-tailed Student’s t-test, one-way ANOVA. Statistical significance was set at P < 0.05.



RESULTS


mRNA Expression of ANXA Family Members in Patients With BC

We used the TCGA database to analyze the mRNA expression of ANXA1–11 and ANXA13 in bladder cancer tissues and normal tissues. As shown in Figure 1, the expression levels of ANXA2, ANXA3, ANXA4, ANXA8, and ANXA9 were significantly increased in tumor tissues compared with normal tissues. Conversely, the expression levels of ANXA6, ANXA7, and ANXA11 were significantly reduced in tumor tissues. In addition, ANXA1, ANXA5, ANXA10, and ANXA13 showed no significant difference between the two groups. We also compared the expression of different ANXA mRNAs between NMIBC and MIBC (Supplementary Table 1). As seen in Supplementary Table 1, we selected three datasets from the Oncomine database from the studies of Sanchez-Carbayo, Dyrskjot, and Lee, and the datasets included 157, 60, and 256 bladder cancer samples, respectively (Accession numbers of dataset and reasons for selection were provided in Supplementary Table 3). The Sanchez-Carbayo dataset showed that the mRNA expression levels of ANXA1, ANXA3, ANXA5, ANXA6, ANXA7, and ANXA8 in MIBC were significantly higher than those in NMIBC, while the mRNA expression levels of ANXA9, ANXA10, ANXA11, and ANXA13 were significantly lower in MIBC than in NMIBC. In Dyrskjot’s dataset, the expression levels of ANXA1, ANXA2, ANXA3, ANXA5, and ANXA6 were the same in MIBC, while the expression levels of ANXA13 were decreased, and the other expression levels were not significantly changed. Finally, in Lee’s dataset, the expression of ANXA1, ANXA2, ANXA3, ANXA5, and ANXA8 was significantly increased in MIBC patients, while the expression of ANXA10 and ANXA11 was decreased in MIBC patients. It should be noted that there were no expression data for ANXA9 in Lee’s dataset.
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FIGURE 1. mRNA expressions of different ANXA family members in bladder cancer (TCGA database) (A–L). (*p < 0.05; **p < 0.01; ***p < 0.001).




Protein Expression of Different ANXA Family Members in Bladder Cancer

Immunohistochemistry can reflect the expression of proteins in tissues. We used HPA to investigate differences in the expression of ANXA protein members between normal tissues and low-grade and high-grade bladder cancers. The staining degree could be divided into low medium and high. The results of staining degree were provided by HPA, which was based on the results of staining intensity and quantity. Representative sections were shown in Figure 2 to show the expression trend of ANXA proteins. As it shown, ANXA1 was more strongly stained in high-grade bladder cancer than in low-grade bladder cancer. Similar expression differences were observed in ANXA3 and ANXA5. The expression of ANXA7 was decreased in tumor tissues compared with normal tissues and was not detected in high-grade bladder cancer. Similarly, the expression of ANXA9–11 and ANXA13 in high-grade bladder cancer was lower than that in low-grade bladder cancer. The expression data of ANXA8 were not found in HPA. The quantitative analysis results were shown in Supplementary Tables 4, 5, results indicated that protein expression level of ANXA9 and ANXA11 was significantly decreased in bladder tumor tissues compared with normal tissues (P = 0.049; P = 0.0014), and the expression level of ANXA1 and ANXA3 in high grade BC were significantly increased than those in low grade bladder cancer (P = 0.0075; P = 0.008).
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FIGURE 2. Representative immunohistochemistry images of different ANXA family members in normal bladder tissues, low grade BC tissues and high grade BC tissues (HPS database) (A–K).




Prognostic Value of ANXA Protein mRNA Expression

The Kaplan-Meier Plotter platform used TCGA data to analyze the prognosis of different genes. As shown in Figure 3, BC patients with higher mRNA expression of ANXA1 (HR = 1.97, logrank P = 7.3e-06), ANXA2 (HR = 1.82, logrank P = 1.4e-04), ANXA3 (HR = 1.38, logrank P = 0.037), ANXA5 (HR = 1.75, logrank P = 1.7e-04), ANXA6 (HR = 1.65, logrank P = 1.6e-03), and ANXA7 (HR = 1.42, logrank P = 0.029) had shorter OS. Conversely, patients with higher expression of ANXA9 (HR = 0.69, logrank P = 0.023) had a longer overall survival. In addition, there was no significant correlation between the mRNA expression level of ANXA4 (HR = 0.75, logrank P = 0.062), ANXA8 (HR = 0.81, logrank P = 0.15), ANXA10 (HR = 0.75, logrank P = 0.13), ANXA11 (HR = 1.15, logrank P = 0.36), or ANXA4 (HR = 1.24, logrank P = 0.16) and overall survival.
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FIGURE 3. OS of mRNA expression of ANXA family members in BC patients. Survival curves comparing the high and low expression of ANXA family members in BC patients in Kaplan-Meier Plotter (A–L).




Correlation Between the mRNA Expression of Different ANXA Members and the Bladder Cancer Stage of Patients

Next, we again used the UALCAN database to explore the relationship between ANXA protein expression and bladder cancer tumor stage. As shown in the Figure 4, the expression levels of ANXA2, ANXA5, and ANXA6 were positively correlated with stage, and the mRNA expression level increased with increasing stage. However, the expression levels of ANXA7, ANXA10, and ANXA11 were higher in early-stage patients. The expression levels of ANXA10 in stage T2 patients were significantly higher than those in stage T3–4 patients, while ANXA7 and ANXA11 were mainly expressed in stage T1 patients.


[image: image]

FIGURE 4. Correlation between the mRNA expression of different ANXA members and the bladder cancer stage of patients in UALCAN database. The mRNA expression of ANXA family members in normal individuals or in BC patients in stages 1, 2, 3 or 4 (A–L). (*p < 0.05; **p < 0.01; ***p < 0.001).




Expression of ANXA Members in Different Subtypes of Bladder Cancer

In a TCGA study from 2017, MIBC bladder cancer was divided into five subtypes: luminal-papillary, luminal, luminal-infiltrated, basal-squamous, and neuronal (Robertson et al., 2017). In the UALCAN platform, samples are from the TCGA database and can be classified based on molecular subtypes. As shown in Figure 5, the expression of ANXA1–3 was significantly higher in basal-squamous-subtype bladder cancer than in other subtypes and had obvious specificity. ANXA5 was mainly expressed in basal-squamous and neuronal types of bladder cancer. Compared with that in normal tissues, the expression of ANXA6 was significantly reduced in five subtypes of MIBC, without obvious subtype specificity. In Figure 5H, the expression of ANXA8 in neuronal subtypes was significantly reduced. However, ANXA9–11 and ANXA13 were mainly expressed in luminal subtypes, with ANXA10 having the highest and most specific expression in luminal-papillary types. In addition, the mRNA expression of ANXA members in histological subtypes were shown in Figure 6, and the results show that ANXA1, ANXA2, ANXA5, ANXA6, and ANXA8 were significantly expressed in non-papillary bladder cancer, while ANXA9, ANXA10, and ANXA11 were mainly expressed in papillary bladder cancer, of which ANXA10 was significant.
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FIGURE 5. Correlation between the mRNA expression of different ANXA members and molecular subtypes of MIBC patients in UALCAN database. The mRNA expression of ANXA family members in normal individuals or in MIBC patients in five subtypes (A–L). (*p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 6. Correlation between the mRNA expression of different ANXA members and histological subtypes of MIBC patients in UALCAN database. The mRNA expression of ANXA family members in normal individuals or in MIBC patients in two histological subtypes (A–L). (*p < 0.05; **p < 0.01; ***p < 0.001).




Correlation Between ANXA and Subtype Gene Expression

To further analyze the expression of ANXA family proteins in different MIBC molecular subtypes, we studied the correlation between the expression of ANXA proteins and specific genes of different subtypes. According to TCGA classification and A Kamoun et al.’s study, urothelial differentiation markers such as FOXA1, GATA3, and KRT20 are highly expressed in luminal-subtype bladder cancer, while FOXA1 and GATA3 are not expressed but KRT5, KRT6, and KRT14 are expressed in basal-subtype bladder cancer. As shown in the Figure 7, the expression levels of ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA8, and ANXA13 were significantly positively correlated with the expression of basal type-specific genes and negatively correlated with the expression of luminal type-specific genes. However, the expression of ANXA4, ANXA9, ANXA10, and ANXA11 showed the opposite patterns. We found that ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA8, ANXA13, ANXA4, ANXA9, ANXA10, and ANXA11 may have obvious heterogeneity in expression in bladder tumors. The expression of ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA8, and ANXA13 was closely related to basal-subtype bladder cancer, while the expression of ANXA4, ANXA9, ANXA10, and ANXA11 was closely related to luminal-subtype BC.
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FIGURE 7. Correlation between ANXA and subtype gene expression. ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA8, and ANXA13 were significantly positively correlated with the expression of basal type-specific genes and negatively correlated with the expression of luminal type-specific genes. The expression of ANXA4, ANXA9, ANXA10, and ANXA11 showed the opposite patterns.




GO and KEGG Enrichment Analyses of ANXA Family Members

Based on the above results, ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA8, and ANXA13 were identified as potential genes related to basal-subtype bladder cancer (ANXA-B), and ANXA4, ANXA9, ANXA10, and ANXA11 were defined as luminal-subtype bladder cancer-related genes (ANXA-L). On this basis, we further explored the potential mechanisms of ANXA-B and ANXA-L in bladder cancer. The 25 most significantly positively correlated genes of each ANXA member were analyzed using the cBioPortal platform. WebGestalt was then used to perform GO and KEGG analyses of 200 co-expressed genes of ANXA-B and 100 co-expressed genes of ANXA-L to explore upregulated pathways of the ANXA proteins in the two subtypes of bladder cancer (Figure 8 and Supplementary Table 2). In the GO analysis, we selected 20 of the most significant biological process, cellular component, and molecular function GO terms. Regarding BP terms, there was significant enrichment of adhesion regulation genes, such as the genes in GO:0045785, GO: 0030155 (regulation of cell adhesion), GO: 0007155 (cell adhesion), and GO: 0022610 (biological adhesion). Processes related to injury healing (GO:0061041, regulation of response to wounding; GO:0042060, wound healing; and GO:0009611, response to wounding) and membrane raft assembly (GO:0001765, membrane raft assembly; and GO:0031579, membrane raft organization) were also significantly regulated by ANXA-B. Regarding CC terms, ANXA-B related co-expressed genes were mainly found to play a role in cell matrix and cell connection functions: GO:0062023 (collagen-containing extracellular matrix), GO:0031012 (extracellular matrix), GO:0005912 (adherens junction), GO:0005925 (focal adhesion), GO:0005924 (cell-substrate adherens junction), GO:0070161 (anchoring junction), GO:0030055 (cell-substrate junction), GO:0009986 (cell surface), and GO:0030054 (cell junction). Regarding MF terms, the dark blue bar represents FDR ≤ 0.05. Related functions mainly involved cell adhesion and cytoskeleton structure: GO:0098641 (cadherin binding involved in cell-cell adhesion), GO:0098632 (cell-cell adhesion mediator activity), GO:0098631 (cell adhesion mediator activity), GO:0005200 (structural constituent of cytoskeleton), GO:0050839 (cell adhesion molecule binding), GO:0045296 (cadherin binding), GO:0003779 (actin binding), GO:0005198 (structural molecule activity), GO:0008092 (cytoskeletal protein binding), and GO:0042802 (identical protein binding). In the KEGG analysis, ANXA-B-related genes were mainly expressed in the HSA04512 (ECM-receptor interaction) and HSA04510 (focal adhesion) pathways, and the P and FDR values were both <0.05. We also analyzed the possible role of ANXA-L (ANXA4, ANXA9, ANXA10, and ANXA11) in the regulation of luminal bladder cancer. Regarding BP terms, the immune regulation of T cells was enriched (GO:0033084, regulation of immature T cell effects in thymus; GO:0033080, immature T cell effects in thymus; GO:0033083, regulation of immature T cell effects; GO:0033079, immature T cell effects and cellular morphogenesis involved in differentiation; GO:0000904, cell morphogenesis; GO:0032989, cellular morphogenesis and component morphogenesis). Regarding CC terms, related genes were mainly involved in the maintenance of plasma membrane structure and function: GO:0009925 (basal plasma membrane), GO:0016328 (lateral plasma membrane), GO:0016324 (apical plasma membrane), GO:0016323 (basolateral plasma membrane), GO:0098590 (activity and the components of plasma membrane), GO:0005887 (integral component of plasma membrane), GO:0044432 (endoplasmic reticulum part), GO:0005789 (endoplasmic reticulum membrane), and GO:0098827 (endoplasmic reticulum subcompartment). Regarding MF terms, ANXA-L were found to perform binding functions and signal transduction: binding to transcription factors (GO:0043425, bHLH transcription factor binding); binding to fatty acids (GO:0005504, fatty acid binding); binding to monocarboxylic acid (GO:0033293, monocarboxylic acid binding); binding to cadherin (GO:0045296, cadherin binding); binding to Ras GTPase (GO:0017016, Ras GTPase binding); binding to small GTPase (GO:0031267, small GTPase binding); binding to cell adhesion molecules (GO:009864, cadherin binding involved in cell-cell adhesion); binding to transcription factors (GO:0050839, cell adhesion molecule binding); and binding to signal receptors (GO:0005102, signaling receptor binding). Ultimately, only the HSA04530 pathway (involving tight junctions) P and FDR values were both <0.05 in the KEGG analysis.
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FIGURE 8. Function enrichment of ANXA family members in BC. (A–D) GO and KEGG pathway analysis in ANXA-B. (E–H) GO and KEGG pathway analysis in ANXA-L.




Correlation Analysis Between ANXA Members and Immune Cell Infiltration

Finally, we analyzed the relationship between ANXA family member expression and the infiltration of immune cells in bladder cancer (Figure 9). The TIMER2.0 platform can be used to perform an analysis of the correlation between gene expression and the degree of infiltration of six major immune cells in the tumor microenvironment. ANXA1–3 and ANXA5–7 were significantly positively correlated with the infiltration of five kinds of immune cells (macrophages, myeloid dendritic cells, neutrophils, CD4+ T cells, and CD8+ T cells). ANXA8 had similar characteristics except that it was negatively correlated with macrophages. On the other hand, ANXA9 and ANXA10 showed opposite results and significantly negative correlations with 4 types of immune cells (myeloid dendritic cells, neutrophils, CD4+ T cells, and CD8+ T cells).
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FIGURE 9. Association of mRNA expression of ANXA family members with immune infiltration level in BC. (*p < 0.05; **p < 0.01).




DISCUSSION

Since bladder cancer is the most common disease of the urinary system, understanding the biological mechanism of bladder cancer is crucial for urological research. In this article, we first studied the expression of different ANXA family members in bladder tumor and normal tissues, and the results showed that the mRNA of ANXA2, ANXA3, ANXA4, ANXA8, and ANXA9 were significantly increased in tumors, while the mRNA of ANXA6, ANXA7, and ANXA11 were significantly decreased in tumor tissues. Furthermore, we analyzed the expression of annexin proteins in NMIBC and MIBC. As shown in Supplementary Table 1, ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, and ANXA8 were mainly highly expressed in MIBC, while ANXA9, ANXA10, and ANXA11 were significantly higher in the NMIBC group. Considering that MIBC and NMIBC have considerable differences in biological traits, these results suggest that ANXA proteins may be involved in phenotypic maintenance and functional regulation in different types of bladder cancer. Annexins are calcium-binding proteins with a phospholipid-binding domain that play an important role in the regulation of intercellular inflammation, cell signaling, and cell proliferation and differentiation (Smith and Moss, 1994; Han et al., 2020). Previous studies have shown that ANXA family proteins can regulate cancer and can be used as prognostic markers (Patton et al., 2005; Lecona et al., 2008; Biaoxue et al., 2012; Moghanibashi et al., 2012; Suo et al., 2012; Yu et al., 2014; Yamanoi et al., 2019). In our study, after analyzing the expression of ANXA proteins in bladder cancer, we further explored their expression levels in different molecular subtypes of MIBC for the first time. Most importantly, we found that annexins were closely related to tumor phenotype and histological morphology in bladder cancer. Compared with that in papillary bladder tumors, the protein expression of ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, ANXA8, and ANXA13 was especially increased in non-papillary bladder tumors. In addition, ANXA9, ANXA10, and ANXA11 were highly expressed in papillary bladder cancer, and ANXA10 showed the most significant differences. These results suggest that different annexins may play a crucial role in regulating the differentiation of tumors and have potential value as biomarkers and therapeutic targets. In Bizzarro’s study (Belvedere et al., 2014), knockdown of the expression of ANXA1 inhibited the differentiation of myoblasts to myocytes. In Wang’s study, ANXA1 was found to be highly expressed in normal cervical squamous tissue, and its expression was significantly reduced as the tissue morphology changed with the progression of cervical tumors (Wang et al., 2008). Another study by Liu reported that only ANXA10 of the ANXA family proteins was highly expressed in papillary thyroid carcinoma and was related to papillary thyroid carcinoma differentiation and progression (Liu et al., 2021). Interestingly, we found that bladder cancer with high expression of ANXA1 also showed a squamous pattern, while bladder cancer with high expression of ANXA10 showed a papillary pattern.

Non-muscle-invasive bladder cancer generally shows papillary characteristics, while the histological phenotypes of MIBC are more diverse. The University of North Carolina (UNC), MD Anderson Cancer Center, and TCGA have all conducted their own studies on MIBC subtype identification. The UNC team proposed that bladder cancer is similar to breast cancer and used unsupervised consensus clustering to divide samples into “basal” and “luminal” categories. Similarly, in the studies of MD Anderson Cancer Center and TCGA in 2014, MIBC was mainly divided into these two categories (Choi et al., 2014; Damrauer et al., 2014). Based on research performed in 2014, TCGA updated the molecular subtypes of MIBC in 2017, and the luminal subtype was subdivided into luminal-papillary, luminal, and luminal-infiltrated subtypes, and the basal subtype was divided into basal-squamous and neuronal subtypes. The general characteristics of the luminal subtype shows positivity for FOXA1, GATA3, and KRT20, while the basal subtype lacks FOXA1 and GATA3 expression and is positive for KRT5, KRT6, and KRT14 (Robertson et al., 2017). In our study, TCGA was used to analyze the correlation between ANXA family proteins and characteristic luminal or basal subtype genes. The results showed that the expression of ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, ANXA8, and ANXA13 was negatively correlated with the expression of FOXA1, GATA3, and KRT20 and positively correlated with the expression of KRT5, KRT6, and KRT11, while the expression of ANXA4, ANXA9, ANXA10, and ANXA11 showed the opposite patterns. The results suggest that ANXA-B (ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, ANXA8, and ANXA13) and ANXA-L (ANXA4, ANXA9, ANXA10, and ANXA11) may be involved in the functional regulation of these characteristic genes. In Wang’s study, ANXA2 was found to directly bind to STAT3, enhance its transcriptional activity and promote EGF-induced EMT (Wang et al., 2015). Similarly, EGF receptors and STAT3 are overexpressed in basal-squamous bladder tumors, accompanied by high expression of ANXA2. Whether ANXA2 plays the same role in bladder tumors needs further study.

In bladder cancer, NMIBC includes the Ta, T1, and CIS stages, while T2–T4 bladder cancer is characterized by invasion into the muscle layer, also known as MIBC. In this study, we also analyzed the correlation between ANXA expression and the clinical stage of bladder cancer. The results showed that the expression levels of ANXA2, ANXA5, and ANXA6 were significantly positively correlated with clinical stage. In the analysis of overall survival, patients with high expression of ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, and ANXA7 had poor prognosis, while those with high expression of ANXA9 had longer overall survival. In view of the above results, ANXA2, ANXA5, and ANXA6 have utility for the categorization of pathological stage and prediction of overall survival in bladder cancer and can reflect the progression and prognosis of bladder cancer. In Yuan’s study on gastric cancer, the survival rate of patients with positive expression of annexin A7 was lower than that of patients with negative expression (Yuan et al., 2019). In addition, ANXA1 is able to promote cell migration, invasion, and angiogenesis and participate in pancreatic cancer progression (Pessolano et al., 2018). The same ANXA may have the opposite prognostic effect in different cancers. Patients with colorectal cancer with high ANXA9 expression had statistically relatively worse prognosis (Miyoshi et al., 2014). However, in our study, patients with higher ANXA9 expression were more likely to show luminal-subtype bladder cancer and have a better prognosis.

In further analysis of the function of ANXA genes, we found that the functions of ANXA-B (ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, ANXA8, and ANXA13) co-expressed genes were mainly related to cell adhesion, damage repair, cytoskeleton composition and extracellular matrix interactions. On the other hand, the enriched functions of ANXA-L (ANXA4, ANXA9, ANXA10, and ANXA11) were mainly related to the regulation of immature T cells, cellular morphogenesis, binding transduction, plasma membrane function and tight junctions. Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression, and targeting annexin A2 could effectively inhibit tumor cell adhesion, migration and in vivo grafting (Staquicini et al., 2017). In addition, studies have demonstrated the function of ANXA2 in regulating the adhesion of hematopoietic stem cells to osteoblasts and bone marrow endothelial cells and the adhesion of prostate cancer cells to endothelial cells (Jung et al., 2007; Shiozawa et al., 2008). ANXA repair functions also play an important role in tumor renewal and growth. In breast cancer, studies have proven that ANXA2, ANXA4, ANXA5, ANXA6, and ANXA7 are required for repair in breast cancer cells, indicating that a network of annexins participate in the plasma membrane repair response (Sønder et al., 2019). In Hannah L’s study, ANXA1 was able to protect against DNA damage and promote modulation of cell adhesion and motility, indicating its potential role in cancer initiation and progression in breast carcinoma (Swa et al., 2012). ANXA proteins also determine the morphogenesis of cells. Through an adherens junction-mediated pathway upstream of Akt, endothelial morphogenesis could be regulated by ANXA2 (Su et al., 2010). Mechanistic studies of human mammary cells and mammary glands of mice showed that ANXA8 upregulation is caused by genetic mutations affecting RARA functions and affects postnatal developmental processes such as myelopoiesis and mammary gland morphogenesis (Rossetti and Sacchi, 2020). Annexins also exhibit anti-inflammatory and proinflammatory effects in a variety of inflammatory experimental models. For example, ANXA1 can regulate the ERK/MAPK signaling pathway, which affects the activity, proliferation, and differentiation of T cells and exerts corresponding anti-inflammatory effects. ANXA1 can also be phosphorylated by PKC, resulting in the induction of proinflammatory cytokines (Shao et al., 2019). In Qiu’s study, an elevated ANXA2 level resulted in the upregulation of the proportion of Treg cells and promoted tumor immune escape (Qiu et al., 2020). Annexin A1 is a key functional player in tumor development, linking the various components in the tumor stroma by its actions in endothelial cells and immune cells (Yi, 2012). In our analysis of the relationship between ANXA expression and immune cell infiltration, we found high infiltration of myeloid dendritic cells, neutrophils, CD4+ T cells and CD8+ T cells when ANXA-B (1, 2, 3, 5, 6, 7, 8, and 13) was overexpressed. The expression levels of ANXA9 and ANXA10 were significantly negatively correlated with the degree of infiltration of the above immune cells, suggesting that patients with BC with high expression of ANXA-B may be more suitable for immunotherapy.



CONCLUSION

In this study, we analyzed the expression characteristics and prognostic utility of ANXA family proteins in bladder cancer for the first time. In addition, we also determined the expression characteristics of ANXA family members in different subtypes of MIBC. The results suggest that differences in the expression of ANXA family members are closely related to the histological morphology of bladder cancer. It should be noted that ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, ANXA8, and ANXA13 are mainly expressed in basal-subtype MIBC, while ANXA4, ANXA9, ANXA10, and ANXA11 are mainly expressed in luminal-subtype MIBC. These findings provide more markers for subtype identification and are conducive to further mechanistic research. It’s important to point out that our data only indicate the correlation between ANXA family proteins and BC. Further experiments are needed to verify the protein expression level in tissues and its functional role in BC. In summary, ANXA family proteins can serve as potential markers for the identification and prognostication of bladder cancer.
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The relationship between m6A-related lncRNAs and prognosis in hepatocellular carcinoma (HCC) is not yet clear. We used Lasso regression to establish a prognostic signature based on m6A-related lncRNAs using a training set from TCGA, and then verified the signature efficacy in a test set. Fluorescence quantitative real-time PCR (qPCR), Survival analysis, clinical risk difference analysis, immune-related analysis, and drug-sensitivity analysis were conducted. The results revealed that 1,651 lncRNAs were differentially expressed in HCC tissues, among which, 163 were m6A-related. Univariate analysis showed that 87 lncRNAs were associated with the overall survival. Six differential m6A-related lncRNAs were validated and selected via Lasso regression to construct a prognostic signature which demonstrated a satisfactory predictive efficacy. In the clinically relevant pathologic stage, histologic grade, and T stage, the risk scores obtained based on this signature showed a statistically significant difference. The high- and low-risk groups exhibited a difference in the tumor immune infiltrating cells, immune checkpoint gene expression, and sensitivity to chemotherapy. In summary, the prognostic signature based on the m6A-related lncRNAs can effectively predict the prognosis of patients and might provide a new vista for the chemotherapy and immunotherapy of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the seventh most common form of cancer and the second most frequent cause of cancer-related mortality in the world. Its incidence is on the rise, posing a serious threat to human health (1). At present, there are multiple ways to treat HCC, such as partial hepatectomy, liver transplantation, radiofrequency ablation, hepatic artery embolization chemotherapy, and targeted therapy and immunotherapy. However, the efficacy of these therapies is limited by the high recurrence rates and high metastasis rates of HCC (2). Notably, the 5-year survival rate of HCC is only 18.4% in some developed countries although clinical technologies have advanced in recent years (3), and much lower in less developed countries because of access barriers to diagnosis and treatment. Due to the complex molecular mechanism of HCC and the heterogeneity of cancer cells, we urgently need a new and accurate method to better predict prognoses and develop personalized treatment plans.

N6-methyladenosine (m6A) is the most widespread form of post-transcriptional modification. The modified sequence is conservative and enriched near the termination codon, 3’untranslated region (UTR), and long introns and exons. The m6A modification can affect the expression of target genes, thereby impacting on the corresponding cellular processes and functions. Notably, m6A participates in almost all the steps of RNA metabolism, including mRNA translation, degradation, splicing, transport, and spatial folding. m6A-related enzymes can be divided into three types: writer, eraser, and reader, that play different roles in different tumors (4). For example, METTL14 suppresses the metastasis of HCC by modulating primary miR-126 processing (5). WTAP modifies ETS1 through m6A and then promotes the progression of HCC through the HUR1-ETS1-p21/p27 axis; WTAP can thus be used as an independent prognostic predictor of HCC (6).

Long noncoding RNA (lncRNA) is more than 200 nucleotides in length and does not encode any protein; it mainly plays a regulatory role. lncRNA dysregulation is involved in the pathological process of a variety of cancers, including cell growth and proliferation, drug resistance, and metastasis. For instance, the expression of lncRNA HULC is closely related to the tumor size and overall survival from HCC. It can act as a driver to prompt HCC proliferation, migration, and invasion via modulating the phosphorylation of YB-1 (7). In addition, lncRNAs such as MALAT1, HOTAIR, and H19 regulate the malignant biological behavior of HCC through ceRNA competition, regulating key oncogene transcription or other molecular mechanisms (8). Some specific lncRNAs, like lncRNA WRAP53, exist differently in the body fluids of HCC patients, which may serve as an independent prognostic indicator to predict the relapse of HCC (9).

The purpose of this study is to explore the differences in m6A-related lncRNAs of HCC and establish an effective prognostic signature. This signature is then used to stratify the HCC patients via risk scores. A signature-related prognostic analysis, immune infiltration analysis, immune checkpoint genes correlation, IC50 prediction of antitumor agents, enrichment analysis, and clinical correlation analysis are then carried out to verify the efficacy of the signature.



Materials and Methods


Data Source

The mRNA-sequencing data of HCC were obtained from the TCGA database portal (https://portal.gdc.cancer.gov/), which included 365 HCC samples and 50 adjacent samples. Clinical data for each patient were also obtained from TCGA. Inclusion criteria was a (1) histological HCC confirmation and (2) simultaneous available information on the mRNA expression profile data and prognosis. These 415 samples were used for differential gene analysis and m6A correlation analysis, and 365 HCC samples with clinical information were used when constructing the signature. We randomly selected 182 HCC cases as the training set, and the remaining cases as the test set.



Differential Gene Analysis

We performed differential gene analysis between the tumor and control, and the gene differential expression was calculated using the “edgeR” package in R (10). We extracted all lncRNAs based on the gene type in the annotation file and conducted a differential analysis. The cut-off value for differential genes was the log fold change ∣logFC∣ ≥ 1, p-value < 0.05. All differential lncRNAs were selected for subsequent analysis.



Correlation Analysis Between Differential lncRNAs and Key m6A-Related Genes

We obtained the list of the key m6A-related genes from a previous study (11). We conducted Pearson correlation analysis between the differential lncRNAs and m6A-related genes using the “psych” package in R. The screening criteria were correlation |R| > 0.5 and p-value < 0.05. The screened lncRNAs were further used for building the signature.



Prognostic Signature Construction and Validation

We performed univariate Cox analysis to screen out lncRNAs related to the overall survival (OS) and included them in the Lasso regression. We used the “glmnet” package in R to build a Lasso regression to select genes included in the signature based on the training set and used COX regression to construct the signature and calculated the risk value corresponding to each sample (12). The cases were divided into high-risk and low-risk groups based on the median of the risk value. We constructed a time-longitudinal ROC curve based on different endpoints. We plotted a nomogram of the signature by using the “rms” package in R. Decision curve analysis (DCA) is used to calculate the clinical benefit of each model compared to all or none strategies (13). To assess the prognostic capacity of the six lncRNAs signature, DCA was conducted by using the “rmda” package in R.



Fluorescence Quantitative Real-Time PCR and Cell Lines

MIHA (Human normal liver cell), LX-2 (Human normal stellate cell), and four human HCC cell lines, including huh7, HepG2, Li-7, and PLCPRF5, were all purchased from ATCC, and were cultured in DMEM (Gibco) supplements with 10% fetal bovine serum (Hyclone), 100 U/ml of penicillin (Gibco), and 0.1 mg/ml of streptomycin (Gibco) at 37°C in a humidified atmosphere of 95% O2, 5% CO2.

Total RNA was isolated using the TRIpure Reagent (RP1001, Bioteke). Reverse transcription was performed on 1 mg of RNA at 60°C for 35 min using a BeyoRT II M-MLV (D7160L, Beyotime). After reverse transcription, the cDNAs were used for semi-quantitative PCR by using 2×Taq PCR MasterMix (PC1150, Solarbio) and SYBR Green (SY1020, Solarbio). Amplification was carried out as recommended by the manufacturer in the qPCR instrument (Exicycler 96, BIONEER): 25 µl of reaction mixture contained 12.5 µl of SYBR Green mastermix, the appropriate primer concentration, and 1 µl of cDNA. The amplification program included the initial denaturation step at 95°C for 10 min, 40 cycles of denaturation at 95°C for 10 s, and annealing and extension at 60°C for 1 min. Fluorescence was measured at the end of each extension step. After amplification, melting curves were acquired and used to determine the specificity of the PCR products. 2 -△△CT method was used in data process.

The sets of specific primers as follows:

	AC012313.8: 5’-CACCTGGAATCGGAAGT-3’

	      5’-GGGAATGTGGCAGAAAG-3’;

	AC092171.2: 5’-TGAGATACGGCGAGACCC-3’

	      5’-GGACCGCTGTGCTGATGT-3’;

	AL353708.1: 5’-TGTCGTCCAAATAAGTCG-3’

	     5’-GTTAAAGCAAAGCCAATAC-3’;

	KDM4A_AS1: 5’-ACATCTCATCTCGCCCTCC-3’

	     5’-GTCTCCAGTTTGGTCCTCC-3’;

	LINC01138: 5’-AATAGCGGCTGCTTCTTT-3’

	     5’-TGGTCTGCATGGGATAGG-3’;

	TMCC1_AS1: 5’-ATAAGGGAGGCAGAACGAGA-3’

	     5’-GTCACAGGCCAGACTACCAG-3’;

	β-actin: 5’-GGCACCCAGCACAATGAA-3’;

	     5’-TAGAAGCATTTGCGGTGG-3’.





Survival Analysis and Signature-Related Analysis

We used the “survival” package in R to perform a survival analysis and verified the conclusions in the test set. Only in the survival analysis, we divided the data into the training set and test set. In the rest of the various analysis related to signatures, our research object is the overall cases. To evaluate the correlation between the risk scores and clinical characteristics, we also compared the differences in the risk scores between the TNM stages, pathological stages, and histological grades, respectively. We conducted univariate and multivariate analysis to verify the independent predictive ability of the signature. We analyzed the differences in immune infiltration and immune checkpoint genes expression between the high- and low- risk groups, and we analyzed the correlation between each lncRNA in the signature and immune checkpoint genes. We chose LESCtin and PD-L1 as the research objects because these two genes are expressed on the tumor cell membrane, which will facilitate future experimental verification. The tumor immune dysfunction and exclusion (TIDE) value was calculated by online database (http://tide.dfci.harvard.edu/) (14), cancer type was set as “other”, previous immunotherapy was set as “none”. We made signature-related drug-sensitivity predictions using the “pRRophetic” package in R (15).



Gene Set Enrichment Analysis

GSEA determines whether an a priori defined set of genes has statistically significant differences in expression under two different biological conditions (16). The GSEA was performed on the differential genes between the high-risk group and low-risk group by the GSEA software from Broad Institute (http://software.broadinstitute.org/gsea/downloads.jsp). A p-value < 0.05 was set as the cut-off criterion, and two databases had been used: GO and KEGG. The number of gene set permutations was 1,000 for each analysis.



Statistical Methods

In the analysis of differences, we used Student’s t test to compare the means between the two groups and one-way ANOVA analysis to compare the means between multiple groups. We used Pearson correlation analysis to screen m6A-related lncRNAs and analysis the correlation between lncRNAs and immune checkpoint genes. In the process of constructing the signature, we used Lasso regression and COX proportional-hazards model. In the process of evaluating the signature, we used Kaplan–Meier survival analysis and log-rank test.




Results


Identification of Differential m6A-Related lncRNAs

The procedure of this study is presented in Figure 1, and the clinical features of the patients included in the training and test sets are shown in Table 1. After the difference analysis, a total of 1,334 upregulated lncRNAs and 317 downregulated lncRNAs were identified. The representative results can be seen in Table 2. A heatmap of the top 20 differentially expressed lncRNAs is shown in Figure 2A. A volcano plot of differential expressed lncRNAs is shown in Figure 2B. We collected a total of 23 m6A-related key genes and conducted correlation analysis with differentially expressed lncRNAs. We screened out 163 positive m6A-related lncRNAs, the top 10 lncRNAs are shown in Table 3.




Figure 1 | Technical roadmap in this study.




Table 1 | Clinical characteristics of the included HCC patients from TCGA-HCC.




Table 2 | The differentially expressed genes (Top 5).






Figure 2 | Differentially expressed lncRNAs between HCC cases and control cases. (A) Hierarchical clustering of the differentially expressed lncRNAs. The blue bar represents the cancer cases, and red bar represents the control cases. (B) Volcano map of the differentially expressed lncRNAs. Red dots represent the upregulated lncRNAs and blue dots represent the downregulated lncRNAs.




Table 3 | m6A related lncRNAs (Top 10).





Prognostic Signature Construction and Validation

We performed univariate Cox regression on the abovementioned m6A-related differential lncRNAs, and selected prognosis-related lncRNAs via Lasso regression to construct a prognostic signature by Cox regression. A total of six lncRNAs were included in the signature (Figures 3A, B). The signature is as follows:

	




Figure 3 | Lasso regression signature construction and validation. (A) Determination of the penalty value based on the lowest point of the lasso regression curve. (B) The lncRNAs that make up the signature were included according to whether the penalty values intersected each curve, and the regression coefficients were calculated. (C) Univariate cox regression analysis of the lncRNAs in the signature revealed that each lncRNA in the signature was associated with prognosis. (D) The calculation of the prediction accuracy of the signature at different time nodes using the ROC curve. (E) AC012313.8, AC092171.2, AL353708.1, KDM4A-AS1, LINC01138, and TMCC1-AS1 are significantly expressed higher in HCC cells than normal liver cells. **p < 0.01, ***p < 0.001.



The univariate Cox regression results of the lncRNAs in the signature are shown in Figure 3C. Each lncRNA in the signature is significantly related to a shorter overall survival of HCC patients. To verify the signature, we constructed the ROC curve with 1, 3, 9, and 10 years as the prediction endpoints (Figure 3D). The highest area under curve (AUC) is 0.646 and the lowest AUC is 0.625.

These six lncRNAs in the signature are more highly expressed in liver cancer cells than normal liver cells and hepatic stellate cell (Figure 3E).



Prognostic Value of the Signature

According to the risk grouping information, combined with the overall survival (OS), we conducted Kaplan–Meier (KM) survival analysis in the training set and test set, see Figures 4A, B, respectively. The survival analysis after merging the two sets is presented in Figure 4C. The results show that people in the high-risk group have a worse prognosis. In addition, we took 1 year as the end of the prediction time and plotted the corresponding ROC curve for each set. The signature shows a modest predictive ability: AUC = 0.634. As the risk increases, the number of deaths of HCC patients or the number of recurrences increases (Figures 4D–F). DCA shows that the signature has a certain application value (Figure 4H). We added the pathological stage and TNM stage based on the DCA result to the nomogram, in order to achieve a better predictive performance (Figure 4G).




Figure 4 | This prognostic signature predicts differences in prognosis between the high- and low-risk groups. (A) The survival curves of the high- and low-risk groups in the training set and the corresponding 1-year ROC curves. (B) The survival curves of the high- and low-risk groups in the testing set and the corresponding 1-year ROC curves. (C) The survival curves of the high- and low-risk groups in the total cases and the corresponding 1-year ROC curves. (D) Risk score distribution of patients in the high- and low-risk groups. (E) Distribution of the overall survival status among HCC patients with an increased risk score. (F) Distribution of recurrence patients among HCC patients with an increased risk score. (G) Nomogram predicting the OS for HCC patients. The short black line and the blue fiddle box represent the data distribution. Genes refers to the risk value calculated by the signature. The red dots indicate the example. The red line represents the confidence interval of OS of the example. (H) DCA curve shows the signature has clinical value, but it is not better than the T stage and pathologic stage. ***p < 0.001, means the risk score of the lncRNAs is an independent indicator.





Independent Prognostic Analysis, Signature-Related Clinical Analysis, and GSEA Analysis

Univariate Cox regression shows that the pathologic stage, T stage, M stage, and risk status are all related to the OS of HCC patients (Figure 5A). Multivariate Cox regression shows that only the risk status is significantly related to the prognosis (Figure 5B). The results show that the m6A-related lncRNA signature can be used as an independent prognostic predictor. We used the signature to score the patients, and we divided them according to the pathologic stage, histologic grade, and TNM stage. The risk differences were then compared. The results show that the risk scores between M0 stage and M1 stage, and N0 stage and N1 stage, does not have a significant difference, the risk scores of the T2 and T3 stages are generally higher than those of the T1 stage, and the risk score of pathological stage II patients is higher than those of pathological stage I. As the histologic grade increases, the risk score also increases significantly. These results are visualized in Figures 5C–E.




Figure 5 | The signature has an independent predictive power and is closely related to the clinical parameters. (A) Univariate COX regression analysis shows that the pathologic stage, T stage, M stage, and risk status are all related to the overall survival. (B) Multivariate COX regression analysis shows that only the risk status obtained from the signature can be used as an independent prognostic factor. (C) Risk scores of patients in the T-stage differ by stage. (D) Risk scores of patients in the histologic-grade differ by grade. (E) Risk scores of patients in the pathologic-stage differ by stage. (F) GSEA results: the TGF-β signaling pathway, HIF-1 signaling pathway, PD-L1/PD1 checkpoint pathway are enriched in the high-risk group, drug catabolic process is enriched in the low-risk group.



According to the GSEA enrichment analysis, the TGF-β signaling pathway, HIF-1 signaling pathway, PD-L1/PD1 checkpoint pathway are enriched in the high-risk group, and drug catabolic process is enriched in the low-risk group (Figure 5F). In addition, representative results are presented in Supplementary Data 1.



Risk-Related Immune Infiltration Analysis and Risk-Related Immune Checkpoint Gene Expression Analysis

To explore the risk-related immune infiltration, we used CIBERSORT to score each sample (Figure 6A). Memory B cells, naive B cells, M1 macrophages, and CD4+ memory resting T cells have significantly higher scores in the low-risk group; T cells follicular helper, T cells regulatory Tregs, and M0 macrophages have significantly higher scores in the high-risk group (Figure 6B). In addition, we explored the differences in the expression of immune checkpoint genes in the high- and low-risk groups (Figures 6C, D). LSECtin is significantly higher in the low-risk group, suggesting that immunotherapy may be more effective in that group. But there was no significant difference in the PD-L1 expression between the groups. As for the correlation between each lncRNA in the signature and the above two immune checkpoint genes, only AC012313.8, TMCC1_AS1 are weakly correlated with PD-L1, and the others are insignificant. The lncRNAs in the signature are all negatively correlated with LSECtin (Figure 6E). The TIDE score was significantly higher in the low-risk group, indicating that patients in the low-risk group may get more clinical benefit from immunotherapy (Figure 6F).




Figure 6 | Differences in immune infiltration and immune checkpoint gene expression in the high- and low-risk groups. (A) Heat map of immune infiltration in the high- and low-risk groups. (B) Box plot of immune infiltration in the high- and low-risk groups. (C) Differential LSECtin expression in the high- and low-risk groups. (D) Differential PD-L1 expression in the high- and low-risk groups. (E) The correlation between each lncRNA in the signature and immune checkpoint genes. (F) The low-risk group has a higher TIDE score.





Risk-Related Drug-Sensitivity Prediction

Mining the Cancer Genomic Project (CGP) database led to a total of 62 HCC-related drugs being obtained. We analyzed the IC50 of these drugs for cases in the high-and low-risk groups (Figure 7A). Among the drugs with differential sensitivity, we selected some representative and commonly used clinical drugs for display, like doxorubicin and docetaxel which may be more effective in the high-risk group as well as Axitinib and Gefitinib which may be more effective in the low-risk group (Figures 7B–E).




Figure 7 | Prediction of the differences in HCC chemotherapy drug sensitivity in the high- and low-risk groups. (A) Heat map and clustering analysis of IC50 prediction of HCC chemotherapeutic agents in the high- and low-risk groups. (B) Differences in doxorubicin sensitivity in the high- and low-risk groups. (C) Differences in docetaxel sensitivity in the high- and low-risk groups. (D) Differences in Gefitinib sensitivity in the high- and low-risk groups. (E) Differences in Axitinib sensitivity in the high- and low-risk groups.






Discussion

The prognosis of HCC remains unfavorable. m6A modification and numerous lncRNAs are closely related to the occurrence and development of HCC. Prior research has established effective signatures (17, 18), but, hitherto, no study has sought to construct a prognostic signature of m6A-related lncRNAs. Therefore, we integrated these two perspectives, exploring the predictive value of m6A modification-related lncRNAs in the prognosis of HCC. Given that m6A-related genes play an important role in the occurrence and development of HCC, we believe that the m6A-related lncRNAs are more likely to affect the prognosis of HCC and can form a more meaningful signature, so in our signature, only the m6A-related lncRNAs are retained for subsequent analysis.

In this study, we used the TCGA data to analyze the differences in lncRNA expression. There are 87 m6A-related prognostic lncRNAs that were included in the Lasso regression and a novel prognostic signature of six m6A-related lncRNAs was created. The six lncRNAs are AC012313.8, AC092171.2, AL353708.1, KDM4A-AS1, LINC01138, and TMCC1-AS1, and we verified that these six lncRNAs are highly expressed in HCC cell lines by qPCR. Among them, KDM4A-AS1 was included in the prognostic signature of HCC in another study (19). LINC01138 was reported to be an oncogenic driver that accelerates HCC cell proliferation, tumorigenicity, invasion, and metastasis, via interacting with arginine methyltransferase 5 to prevent its ubiquitin/proteasome-dependent degradation. LINC01138 itself can be modified and recognized by the m6A enzyme to maintain some oncogenes transcriptional stability (20). In addition, another study showed that LINC01138 could promote the lipid desaturation and cell proliferation of clear cell renal cell carcinoma via increasing arginine methylation and maintaining oncoprotein stability, which in turn affects patient prognosis (21). TMCC1-AS1 is included in several prognostic signatures of HCC as an autophagy-related lncRNA and its expression value is negatively correlated with the prognosis of HCC patients (22). After scoring each sample using the signature, the samples were grouped into high- and low-risk groups, and the prognostic differences between the groups were compared and verified in the validation set. We found that patients in the low-risk group had significantly longer survival times and better prognosis, and the ROC curve proves that the signature behaves satisfactorily in terms of predictive performance in the short term and the long term. Our signature has a higher efficacy and more function, like immunotherapy guidance, than some previously reported prognostic indicators (23, 24).

We found that as the histological grade increases, the risk score becomes higher, and the prognosis of the patient becomes worse, the relationship between histological grade and HCC prognosis is also consistent with previous reports (25). In the risk comparison of the M stage and N stage, the sample size of the M1 and N1 stages is too small, each stage group has only four cases, so the nonsignificant difference cannot form an effective conclusion. Similarly, in the T1 stage in the T staging and the IV stage in the pathological staging, there is a similar problem of an insufficient sample size. However, we clearly find that the risk scores of patients in T2 and subsequent stages are higher than those of patients in T1; tumor size is unequivocally related to the prognosis of HCC (26). Furthermore, the risk scores of patients in the pathologic stage II and subsequent stages are higher than those of patients in the pathologic stage I; the higher the pathologic stage, the worse the prognosis of HCC (27). Therefore, the differences in the risk scores between each T stage and between each pathological stage are partly objective and credible. Next, we incorporated the clinical factors and risk scores into univariate analysis and multivariate analysis, and found that only the risk status is significantly correlated with the overall survival. This indicated that our signature can independently predict the prognosis of HCC, and is not affected by confounding clinical factors. We performed functional enrichment and pathway enrichment analyses of the differential genes between the high- and low-risk groups, the differential gene enrichment of TGF-β, HIF-1, and PD-L1/PD1 checkpoint pathways in the two groups may give a biological explanation for the differences in the survival and clinical characteristics between the two groups.

Immune infiltration is closely related to the prognosis of patients with HCC (28). To highlight the research characteristics of this study and the immune relevance of the signature, the relationships between the risk score and tumor immune cell infiltration were investigated. We found that memory B cells, naive B cells, M1 macrophages, and CD4+ memory resting T cells were significantly increased in the low-risk group. It has previously been reported that these cells were increased in HCC tissues, and memory B cells, naive B cells, and M1 macrophages were associated with a superior survival (29). T cells follicular helper, T cells regulatory Tregs, and M0 macrophages were significantly increased in the high-risk group according to our results. Another study concluded that T cells follicular helper and M0 macrophages were unfavorable prognostic markers (30), which is corroborated herein. As is known, Tregs form an important part of the tumor immunosuppressive microenvironment. The number of local Tregs infiltrations is closely related to the progression of HCC, the more Tregs, the worse the prognosis (31). Therefore, we can conclude that our signature can appropriately distinguish partial types of immune infiltration cells in HCC and could potentially be leveraged to inform the development of immune cell-related therapies. Notably, LSECtin is found to be significantly higher in the low-risk group, which may indicate that patients in this group will respond better to immune checkpoint inhibitors. Although some studies have shown that the high expression of PD-L1 promotes tumor cells epithelial-mesenchymal transition and metastasis, leading to a poor prognosis (32), a meta-analysis showed that PD-L1 expression does not affect the prognosis (33), therefore, there is no difference in the expression of PD-L1 between the high- and low-risk groups, and it does not mean that the PD-1 immunotherapy have the same efficacy in the two groups. Based on the IC50 difference of various liver cancer-related drugs in the high- and low-risk groups, we can conclude that the signature we constructed can also be used to predict the sensitivity of chemotherapy drugs, and it could have a role to play in terms of guiding clinical chemotherapy.

This paper has some potential weaknesses that should be addressed. First, this study was mainly based on public databases, and the AUC of the signature is relatively less satisfied, this signature should be further optimized to improve its prediction accuracy and treatment efficiency, such as combine the signature with the TNM stage or another verified signature. Second, the physical and pathological functions of the six m6A-related lncRNAs in HCC require further exploration through a series of experiments. Third, validation of the efficacy of this signature was only undertaken at the data set level, and, in the future, it should also be performed on a large clinical scale. Despite the above shortcomings, our signature can effectively distinguish the prognosis of high- and low-risk patients and give positive suggestions on the clinical treatment. It reveals the research potential of the m6A modification and related lncRNAs in HCC to a certain extent.



Conclusion

Our study identified a prognostic signature based on six m6A-related lncRNAs to predict the overall survival of patients with HCC. The risk scores were confirmed to be closely associated with the progression and immune infiltration of HCC. The IC50 of chemotherapy drugs can be predicted based on the signature, so the signature has some potential clinical significance. The prognostic signature could reliably predict the prognosis in HCC and may facilitate the development of individualized immune treatment plans.
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N6-methyladenosine (m6A) is one of the most prevalent RNA modifications in mRNA and non-coding RNA. In this study, we identified 10 upregulated m6A regulators at both mRNA and protein levels, and 2,479 m6A-related lncRNAs. Moreover, the m6A-related long noncoding RNAs (lncRNAs) could clearly stratify the colon adenocarcinoma (COAD) samples into three subtypes. The subtype 2 had nearly 40% of samples with microsatellite instability (MSI), significantly higher than the two other subtypes. In accordance with this finding, the inflammatory response-related pathways were highly activated in this subtype. The subtype-3 had a shorter overall survival and a higher proportion of patients with advanced stage than subtypes 1 and 2 (p-value < 0.05). Pathway analysis suggested that the energy metabolism-related pathways might be aberrantly activated in subtype 3. In addition, we observed that most of the m6A readers and m6A-related lncRNAs were upregulated in subtype 3, suggesting that the m6A readers and the m6A-related lncRNAs might be associated with metabolic reprogramming and unfavorable outcome in COAD. Among the m6A-related lncRNAs in subtype 3, four were predicted as prognostically relevant. Functional inference suggested that CTD-3184A7.4, RP11-458F8.4, and RP11-108L7.15 were positively correlated with the energy metabolism-related pathways, further suggesting that these lncRNAs might be involved in energy metabolism-related pathways. In summary, we conducted a systematic data analysis to identify the key m6A regulators and m6A-related lncRNAs, and evaluated their clinical and functional importance in COAD, which may provide important evidences for further m6A-related researches.
Keywords: N6-methylAdenosine (m6A), colon adenocarcinoma, long noncoding RNAs, metabolic reprogramming, m6A-related lncRNAs
INTRODUCTION
Non-coding RNAs longer than 200 nucleotides are defined as lncRNAs, and they are transcribed from intergenic regions, or from any part of both sense or antisense DNA strand of protein coding genes (Panni et al., 2020). As an important member of the family of non-coding RNAs, lncRNAs are not translated into proteins, but they regulate gene expressions at both transcriptional and post-transcriptional levels (Dykes and Emanueli, 2017). Due to their diverse nature, functions of lncRNAs are different. They are capable of binding to proteins, directly targeting mRNA for degradation, harboring intronic miRNAs and possibly regulating gene expression through competing endogenous RNA (ceRNA) networks (Dykes and Emanueli, 2017). Of note, lncRNAs seem to play important roles in tumor progression and metastasis, as they are associated with critical cancer-related cell signaling pathways, including the p53, NF-κB, PI3K/AKT and Notch pathways (Peng et al., 2017).
N6-methyladenosine (m6A, methylation of the adenine base at the nitrogen 6 position) is one of the most prevalent chemical modifications on RNAs, especially on messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) (Lence et al., 2019; Wen et al., 2020). During such modification, there are methyltransferase and demethylases complexes serving as “writers” and “erasers”, which install or remove m6A so as to dynamically regulate RNA modification levels (Yang et al., 2018a; Shi et al., 2019). Also, specific binding proteins are referred to as m6A “readers”, which recognize and bind their target RNA (Yang et al., 2018b; He et al., 2019; Liu et al., 2020). Recently, emerging evidence has suggested that m6A participates in cancer pathogenesis and progression. One example is the up-regulation of YTHDF1, a m6A reader, which could lead to unfavorable prognoses in ovarian cancer via augmenting the modification of EIF3C and facilitating tumorigenesis (Liu et al., 2020).
Associations between lncRNAs and the m6A modification in tumorigenesis has become a heated research field with advances in MeRIP-seq method. lncRNAs can be m6A-modified, which may directly alter their structures, stability, subcellular distribution, and affect their interaction with other molecules (He et al., 2020). It is found that m6A modification in GAS5, a tumor suppresser, would lead to GAS5 degradation via binding to m6A reader YTHDF3 in colorectal cancer (CRC), which further results in the decreased expression of YAP (Ni et al., 2019). YAP is known to promote the proliferation, invasion, and metastasis of COAD (Li et al., 2020). Meanwhile, dysregulated lncRNA expression would exert oncogenic effects via influencing m6A modification in certain mRNAs. According to a previous study, a 71-amino acid peptide encoded by lncRNA LINC00266-1 could interact with m6A reader IGF2BP1 to strengthen m6A recognition, which leads to increased expression of c-Myc and thus promotes tumorigenesis in colorectal cancer (Zhu et al., 2020). Moreover, m6A was also observed to promote the expression of RP11, which regulated Siah1-Fbxo45/Zeb1 stability in the development of CRC (Wu et al., 2019). In addition, m6A-related lncRNA signature could serve as novel biomarkers for predicting prognosis and immune response in COAD (Zhang et al., 2021). Therefore, it is urgent to systematically identify the key m6A regulators and m6A-related lncRNAs in COAD from the high-throughput data, explore the potential regulatory mechanisms that linked m6A regulators and lncRNAs, and to infer the roles of the m6A-related lncRNAs in the tumorigenesis and progression of COAD.
MATERIALS AND METHODS
Data Collection
The gene expression data from the Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Network, 2012) and the protein expression data from Clinical Proteomic Tumor Analysis Consortium (CPTAC) (Vasaikar et al., 2019) were downloaded from TCGA data portal (https://portal.gdc.cancer.gov/) and LinkedOmics (http://linkedomics.org), respectively. The expression levels of genes and proteins data were pre-normalized into the form of log2 (1 + Fragment Per Kilo-Million (FPKM)) and log2 intensity.
Differential Expression Analysis
Prior to differential expression analysis, the genes with low abundance were excluded if their expression were below one FPKM in more than 85% of the total number of samples. The differential expression analysis was conducted using R limma method (Ritchie et al., 2015). The student t test and log2 fold change (FC) were applied to measure the differences. The genes with an adjusted p-value < 0.05 and a log2(FC) > 0.5 were considered as differentially expressed genes/proteins.
Consensus Clustering
The consensus clustering algorithm was applied to determine the cancer subtypes using NMF method in R CancerSubtypes package (Xu et al., 2017). The optimal clustering number was determined according to the delta area plot.
Prediction of the Interaction Between N6-Methyladenosine Proteins and Long Noncoding RNAs
The pairwise correlation between lncRNAs and m6A proteins were conducted using Spearman’s correlation analysis. Moreover, the physical interactions between the lncRNAs and m6A proteins were predicted by LncADeep (Yang et al., 2018b).
Pathway Enrichment Analysis
Two pathway enrichment methods were used for the data analysis, as they used different statistical testing approaches to analyze different types of data. The first is overrepresentation enrichment analysis (ORA), which used a given gene set as input, and identified Reactome pathways enriched by this gene set, while such gene sets consisted of significantly upregulated genes across the subtypes. The second is the gene set enrichment analysis (GSEA), which used all genes sorted by the statistics of interest in descending order, such as the correlation coefficient, and identified a gene subset significantly enriched in the head or tail of the ordered genes, along with significantly enriched pathways in this gene subset. These two analyses were implemented in R clusterProfiler package (Yu et al., 2012). The pathway activities were estimated by single-sample enrichment analysis (ssGSEA), which were implemented in R GSVA package (Hänzelmann et al., 2013).
Survival Analysis
The Cox proportional hazard regression model was employed in the survival analysis. The response variable is the survival time and status, and the predictive variables were the identified subtypes and expression levels of certain genes (high vs low, as compared to the median of gene expression). The survival analysis and visualization were implemented in R survival (https://cran.r-project.org/web/packages/survival/index.html) and survminer (https://cran.r-project.org/web/packages/survminer/index.html) packages.
Statistical Tests
The two-sample or pairwise mean comparison was conducted using the Mann-Whitney test. The two-sample or pairwise proportion comparison was conducted using Pearson’s chi-squared test. The p-value < 0.05, 0.01, and 0.001 were represented by the symbols ∗, ∗∗, and ∗∗∗.
RESULTS
The Expression Patterns of N6-Methyladenosine Regulators and Long Noncoding RNAs in Colon Adenocarcinoma
To explore the expression patterns of m6A regulators and lncRNAs in COAD, we collected the gene expression data from Cancer Genome Atlas (TCGA) and protein expression data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Moreover, we also collected a total of 23 m6A regulators from a previous study (Shen et al., 2021), including 8 writers (METTL3, METTL14, METTL16, RBM15, RBM15B, WTAP, KIAA1429, and ZC3H13), 3 erasers (ALKBH5, ALKBH3, and FTO) and 12 readers (YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2, IGF2BP3, HNRNPA2B1, HNRNPC, RBMX, and EIF3A) (Supplementary Data S1). Specifically, we identified that 10 m6A regulators including 3 writers (KIAA1429, ZC3H13, and RBM15) and 7 readers (YTHDF3, IGF2BP2, HNRNPA2B1, HNRNPC, RBMX, YTHDF1, and IGF2BP3) were upregulated in COAD samples at both mRNA and protein levels (Figures 1A,B, adjusted p-value < 0.05), as compared with the adjacent normal tissues. Moreover, we also identified 4060 differentially expressed lncRNAs (3,233 upregulated and 827 downregulated) (Supplementary Data S1). The correlation analysis between the DE-lncRNAs and DE-m6A regulators revealed 2,479 m6A-related lncRNAs (Spearman’s correlation >0.3 or < −0.3, Supplementary Data S1).
[image: Figure 1]FIGURE 1 | The differentially expressed m6A regulators in COAD. The ten m6A regulators were upregulated in COAD at both mRNA (A) and protein (B) levels. The expression levels were scaled at −3 to 3.
Identification of Colon Adenocarcinoma Subtypes by the N6-Methyladenosine-Related Long Noncoding RNAs
As tumor samples often exhibited high heterogeneity, we then investigated whether tumor samples could be divided into multiple subtypes based on those m6A-related lncRNAs. The consensus clustering analysis was conducted on the m6A-related gene expression data, which divided the tumor samples into 2–10 clusters, respectively. The delta area plot indicated that the optimal cluster number was 4, as cluster stability decreased significantly thereafter (Figure 2A). The correlation analysis across the tumor samples revealed that inter-cluster similarity was significantly lower, while the intra-cluster similarity was high. (Figure 2B). Notably, the COAD samples could be divided into four subtypes, each with 11, 200, 154, and 83 samples, respectively. Notably, the subtype 0 contained a small fraction of samples, all of which were formalin-fixed and paraffin-embedded (FFPE). Considering that the FFPE samples had different histological characteristics from the fresh samples, we excluded the subtype 0 in further analysis. Collectively, the m6A-related lncRNAs could clearly stratify the COAD samples into three subtypes.
[image: Figure 2]FIGURE 2 | The consensus clustering of the COAD patients by m6A-related lncRNAs. (A) The delta areas at cluster numbers from 2 to 10. (B) The sample-wise correlation matrix visualized in the heatmap.
Clinical Characteristics of N6-Methyladenosine-Long Noncoding RNAs-Related Subtypes
With the m6A-lncRNA-related subtypes, we examined its association with the clinical characteristics of COAD patients. Particularly, the subtype-3 had the shortest overall survival when compared with the subtypes 1 and 2 (Figure 3A, log-rank test, p-value < 0.05). Consistently, the subtype-3 had a higher proportion of patients with advanced stage than the other two subtypes (Figure 3B). Moreover, we also found that nearly 40% of samples from the subtype 2 were with microsatellite instability (MSI), and such proportion was significantly higher than that observed in the two other subtypes (Figure 3C). In addition, other clinical factors such as patient age, KRAS mutation, perineural invasion, and lymphatic invasion were not significantly correlated to this subtyping results (Figures 3D–G). These results indicated that the m6A-lncRNA-related subtypes were prognostically relevant.
[image: Figure 3]FIGURE 3 | The association of subtypes with the clinical characteristics. (A) The differences of overall survival among the three subtypes. The pairwise comparison between the three subtypes identified the differences of (B) COAD proportions with advanced stages (TNM stages III and IV), (C) proportion of samples with microsatellite instability (MSI), (D) age, (E) KRAS mutation frequency, (F) percentage of perineural invasion, and (G) percentage of lymphatic invasion.
Functional Characterization of N6-Methyladenosine-Long Noncoding RNAs-Related Subtypes
To further characterize the functionalities of the m6A-lncRNA-related subtypes, we conducted differential expression analysis and gene set enrichment analysis (GSEA) to identify subtype-specific genes and pathways. Specifically, we identified 4, 210, and 240 genes that were specifically upregulated in subtypes 1, 2, and 3, respectively. It should be noted that those genes were expressed higher in a specified subtype when compared with the other two subtypes Considering that there were few upregulated genes in subtype 1, we also identified 516 genes simultaneously upregulated in subtypes 1 and 3 when compared with subgroup 2. As shown in Figure 4A, those genes exhibited significantly different expression patterns across the subtypes.
[image: Figure 4]FIGURE 4 | Differentially expressed genes and pathways among the subtypes. (A) The gene expression profiles of the differentially expressed genes (DEGs) among the subtypes. The colors on the top represent the subtypes. The red and blue colors in the heatmap indicate high and low expression, respectively. (B) The signaling pathways enriched by the DEGs. The x-labels such as subtype 2, subtype 1 & 3, and subtype 3 represent the pathways enriched by the DEGs upregulated in subtypes 2, both 1 and 3, and 3, respectively. (C) The representative genes differentially expressed in the subtypes.
The GSEA revealed that the genes upregulated in subtypes 1 and 3 were primarily enriched in NOTCH-related signaling pathways, while those specifically upregulated in subtype 3 were involved in energy metabolism such as oxidative phosphorylation, the citric acid (TCA) cycle and respiratory electron transport, respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins (Figure 4B). Notably, the subtype 2 was characterized by the inflammatory response-related pathways like interleukin-4 and interleukin-13 signaling, signaling by interleukins, interleukin-10 signaling, and neutrophil degranulation (Figure 4B). Accordingly, the components involved in NOTCH signaling pathways, such as NOTCH1 and NCOR2, inflammatory factors like IL18, IL1RN, IL1R2 and IFNGR1, and energy metabolism-related genes, such as D2HGDH, ATP6V1C2, RBL1 and LPIN3, were specifically upregulated in the corresponding subtypes (Figure 4C). These results indicated that the m6A-lncRNA-related subtypes had significantly different gene expression patterns and dysfunctional pathways.
The Subtype-specific N6-Methyladenosine Regulators and Long Noncoding RNAs
As the m6A regulators were upregulated in COAD, we then investigated whether these genes were upregulated in any specific subtype. Among the ten m6A regulators upregulated in COAD, 8 genes including one writer (RBM15) and 7 readers (YTHDF3, IGF2BP2, HNRNPA2B1, HNRNPC, RBMX, YTHDF1, and IGF2BP3), were specifically upregulated in subtype 3 (Figure 5A, adjusted p-value < 0.05). Moreover, we also identified 21 m6A-related lncRNAs as subtype 3 specific, indicating that the m6A readers were closely associated with the biological characteristics of subtype 3 (Figure 5B, adjusted p-value < 0.05). More importantly, among the 21 m6A-related lncRNAs in subtype 3, four lncRNAs including CTD-3184A7.4, RP11-458F8.4, ANKRD10-IT1, and RP11-108L7.15 were found to be associated with poor prognosis (Figure 6), suggesting that the m6A regulators and the related lncRNAs were prognostically relevant. In addition, to test whether the m6A proteins could potentially regulate lncRNAs through RNA methylation, we predicted the physical interaction between the lncRNAs and m6a proteins using a deep learning method, LncADeep (Yang et al., 2018b). Notably, RP11-108L7.15 was predicted to interact with HNRNPA2B1 and RBMX, while CTD-3184A7.4 and RP11-458F8.4 might be regulated by YTHDF1 (Table 1), suggesting that the m6A proteins might act as the upstream regulators of the lncRNAs.
[image: Figure 5]FIGURE 5 | The differential expression levels of m6A regulators and the related lncRNAs among the subtypes. (A) The expression levels of m6A regulators in the three subtypes. (B) The number of differentially expressed lncRNAs in the three subtypes.
[image: Figure 6]FIGURE 6 | The prognostic values of the four m6A-related lncRNAs. The Kaplan-Meier curves for the samples with high and low expression of (A) CTD-3184A7.4, (B) RP11-458F8.4, (C) ANKRD10-IT1, and (D) RP11-108L7.15.
TABLE 1 | The interaction between lncRNAs and m6A proteins by lncADeep.
[image: Table 1]Functional Inference of the Four Prognostically Relevant N6-Methyladenosine-Related Long Noncoding RNAs
As the biological functions of the lncRNAs were usually unknown, to shed light on how the four prognostically relevant lncRNAs promoted the tumor progression, we conducted correlation analysis and GSEA. As the four lncRNAs were specifically upregulated in subtype 3, and this subtype was characterized by abnormal activity of energy metabolism, the GSEA further revealed that three out of these lncRNAs, including CTD-3184A7.4, RP11-458F8.4, and RP11-108L7.15 were positively correlated with the energy metabolism-related pathways such as oxidative phosphorylation, respiratory electron transport, the citric acid (TCA) cycle and respiratory electron transport (Figures 7A–C). In contrast, ANKRD10-IT1 was predicted to be involved in G alpha (12/13) signaling events and Rho GTPase cycle (Figure 7D).
[image: Figure 7]FIGURE 7 | The pathways related to the four m6A-related lncRNAs. The pathways enriched by the positively correlated genes with (A) CTD-3184A7.4, (B) RP11-458F8.4, (C) ANKRD10-IT1, and (D) RP11-108L7.15. The vertical lines under the lines represent the genes involved in the pathways. The left and right vertical lines indicated the positively and negatively correlated genes with the lncRNAs.
Moreover, to further reveal the expression pattern of genes enriched in these pathways, we estimated the activities of these pathways based on the gene expression data using single-sample gene set enrichment analysis (ssGSEA). The survival analysis revealed that enhanced activities of these pathways were associated with shorter survival time (Figure 8), suggesting that high expression of the lncRNAs associated with these pathways might result in poor prognosis. Taken together, these results suggested that the four prognostically relevant m6A-related lncRNAs might participate in energy metabolism-related pathways, G alpha (12/13) signaling, or Rho GTPase cycle, thereby resulting in unfavorable outcomes.
[image: Figure 8]FIGURE 8 | The estimated activities of the lncRNA-related pathways. (A–E) The survival curves for the COAD patients with high and low activities of lncRNA-related pathways.
DISCUSSION
N6-methyladenosine (m6A) is one of the most prevalent RNA modifications in mRNAs and non-coding RNAs that regulates splicing, translation, stability of protein-coding RNAs, and epigenetic effects of certain non-coding RNA (He et al., 2019). However, the functional effects of m6A-related lncRNAs in colon adenocarcinoma (COAD) has not been fully appreciated.
In this study, we identified 10 m6A regulators that were upregulated in COAD samples at both mRNA and protein levels, and 4,060 differentially expressed lncRNAs in COAD. The correlation analysis between the DE-lncRNAs and DE-m6A regulators identified 2,479 m6A-related lncRNAs (Spearman’s correlation >0.3 or < −0.3). As the lncRNAs were associated with cancer subtypes (Cedro-Tanda et al., 2020; Arnes et al., 2019), the m6A-related lncRNAs could also clearly stratify the COAD samples into three subtypes. We found that nearly 40% of samples in the subtype 2 had microsatellite instability (MSI), which was significantly higher than in the two other subtypes. In accordance with this finding, the inflammatory response-related pathways were highly activated in this subtype. It is well known that high inflammation is closely associated with more neo-antigens due to MSI (Lin et al., 2020). Moreover, the comparative analysis of the clinical characteristics between the subtypes revealed that subtype-3 had a shorter overall survival and a higher proportion of patients with advanced stage than subtypes 1 and 2 (p-value < 0.05). The pathway analysis suggested that the energy metabolism-related pathways might be aberrantly activated in this subtype. Notably, D-2hydroxyglutarate dehydrogenase (D2HGDH), which was upregulated in subtype 3, was observed to drive progression to colorectal cancer during colitis (Han et al., 2018). Accumulating evidence has demonstrated that RNA modification exerts extensive effects on the cancer metabolic network (Han et al., 2020). Consistently, we observed that most of the m6A readers (YTHDF3, IGF2BP2, HNRNPA2B1, HNRNPC, RBMX, YTHDF1, and IGF2BP3) and 21 m6A-related lncRNAs were upregulated in subtype 3, suggesting that the m6A readers and the m6A-related lncRNAs might be associated with metabolic reprogramming and unfavorable outcomes in COAD. The m6A readers have been reported to have prognostic values in colorectal cancer (Ji et al., 2020; Liu et al., 2019). Among those m6A-related lncRNAs in subtype 3, four were predicted as prognostically relevant. Functional inference of these lncRNAs suggested that CTD-3184A7.4, RP11-458F8.4, and RP11-108L7.15 were positively correlated with the energy metabolism-related pathways such as oxidative phosphorylation, respiratory electron transport, the citric acid (TCA) cycle and respiratory electron transport, further suggesting that these lncRNAs might be involved in energy metabolism-related pathways. The RNA-protein interaction prediction revealed that RP11-108L7.15 might interact with HNRNPA2B1 and RBMX, while CTD-3184A7.4 and RP11-458F8.4 might be regulated by YTHDF1 (Table 1), suggesting that the m6A proteins might act as the upstream regulators of the lncRNAs. Remarkably, CTD-3184A7.4, also termed as MHENCR, and RP11-108L7.15 have been reported to promote melanoma progression via PI3K-Akt signaling (Chen et al., 2017), and cell proliferation, migration and invasion in glioblastoma (Shi et al., 2017), further suggesting that these lncRNAs might play functional roles in COAD progression. Meanwhile, the m6A proteins have been widely reported to regulate lncRNAs via RNA methylation in several cancers (Dai et al., 2018; Zhang et al., 2019; Guo et al., 2020).
In addition, the present study has some limitations such as the lack of experimental validation for the key regulators and clinical validation for the association between those regulators and clinical characteristics. Moreover, the regulatory relationship between the lncRNA and m6A regulator is difficult to be inferred by the correlation analysis solely, and more experimental data is urgently needed to demonstrate their upstream and downstream mechanisms. In summary, we conducted a systematic data analysis to identify the key m6A regulators and m6A-related lncRNAs, and evaluated their clinical and functional importance in COAD, which may provide important evidences for further m6A-related researches.
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Liver cancer is the fifth most common malignant tumor in terms of incidence and the third leading cause of cancer-related mortality globally. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Although great progress has been made in surgical techniques, hepatic artery chemoembolization, molecular targeting and immunotherapy, the prognosis of liver cancer patients remains very poor. N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells and regulates various stages of the RNA life cycle. Many studies have reported that the abnormal expression of m6A-related regulators in HCC represent diagnostic and prognostic markers and potential therapeutic targets. In this review, firstly, we introduce the latest research on m6A-related regulators in detail. Next, we summarize the mechanism of each regulator in the pathogenesis and progression of HCC. Finally, we summarize the potential diagnostic, prognostic and therapeutic value of the regulators currently reported in HCC.
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Introduction

Liver cancer is the fifth most common malignant tumor in terms of incidence and the third leading cause of cancer-related mortality globally (1). Among all primary liver cancers, hepatocellular carcinoma (HCC) is the most common, accounting for about 75–85% (1). Risk factors for liver cancer include viral infection (hepatitis B and C), fatty liver, heavy drinking, smoking, obesity, diabetes and aflatoxin contamination of food (2). Most patients are not candidates for curative treatments (such as surgical resection or liver transplantation) at diagnosis because of the extent or distribution of the tumor, underlying liver function, or medical comorbidities (3). The tyrosine multikinase inhibitors sorafenib and regorafenib were the first drugs approved as first- and second-line treatments, respectively, for advanced liver cancer. Although regorafenib can improve the survival rate (from 7.8 to 10.6 months) among patients whose tumors have progressed during sorafenib treatment, the side effects include impairment of liver function and performance status (PS) (4, 5). Worse still, the response rate among HCC patients to nivolumab, a programmed cell death protein-1 (PD-1) immune checkpoint inhibitor, is ≤20% (6). Thus, there is an urgent need for earlier diagnosis and new effective therapies.

Among the more than 170 types of RNA modification, m6A is the most abundant internal RNA modification in eukaryotic cells and it is related to almost every step of RNA metabolism (7). The modification is involved in all events in the entire life cycle of RNA molecules, including splicing, transportation, degradation, stability and translation (8). Consensus motif analyses revealed that m6A modification sites, known as DRACH motifs (R = G or A; H = A, C, or U; A is converted to m6A), in the transcriptome are not randomly distributed. Instead, they occur in coding sequences (CDS), 3’-untranslated regions (3’-UTRs) and the regions around stop codons (9, 10). RNA m6A modification is dynamically and reversibly regulated by methyltransferases (“writers”) and demethylases (“erasers”). These modifications are recognized by a group of binding proteins (“readers”) that recognize specific m6A-modified positions and subsequently regulate RNA functions (11).

The functions of m6A modification in mammals include the regulation of tissue development, circadian rhythm, DNA damage response, sex determination, T cell homeostasis and tumorigenesis (12, 13). There is a mounting number of studies showing that m6A dysregulation is critical in a variety of human cancers, including HCC (14–19). Furthermore, several m6A-related regulators have shown clinical value as biomarkers or therapeutic targets in HCC (20–24). Researches shown that m6A modification related to the etiology of HCC, including viral hepatitis and non- alcoholic fatty liver disease (NAFLD) (25).

Here, we summarized the physiological functions of m6A-related regulators and the potential role of m6A modification in HCC.



Regulators of m6A Modification

The m6A-related regulators, comprising writers, erasers and readers, cooperatively maintain the dynamic and reversible balance of m6A methylation (12). Summaries of the functions of m6A-related regulators in RNA metabolism are shown in Figure 1 and Table 1.




Figure 1 | Functions of m6A-related regulators in RNA metabolism. m6A is catalyzed by writers and removed by erasers. METTL3, METTL14, WTAP, KIAA1429, RBM15/15B, ZC3H13, CBLL1, METTL5, ZCCHC4 and METTL16 are writers. ALKBH5, ALKBH3 and FTO are erasers. YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, hnRNPC/G, hnRNPA2B1, FMRP, eIF3, IGF2BPs, SND1 and PRRC2A are readers. Different readers binding to m6A sites can produce different biological effects.




Table 1 | Functions of m6A related regulators in RNA metabolism.




Writers

Writers, including methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14) and Wilm’s tumor 1-associated protein (WTAP), are the major components of the methyltransferase complex (MTC) in the nucleus, which is responsible for the m6A methylation process (11). METTL3 is the core catalytic enzyme for transferring methyl groups to N6 positions, while METTL14 is vital for structural stabilization of the METTL3–METTL14 complex and is involved in RNA substrate recognition (26). However, a few studies have shown that METTL3 can also act as an m6A cytoplasmic reader. METTL3 associates with ribosomes or directly and promotes the translation of certain mRNAs, including Epidermal growth factor receptor (EGFR) and the Hippo pathway effector Transcriptional co-activator with PDZ-binding motif (TAZ), independently of its methyltransferase activity or downstream m6A reader proteins (27). It does this by recruiting eukaryotic translation initiation factor 3 subunit H (eIF3h) to the translation initiation complex, thus promoting cancer cell growth, survival and invasion (28). As a regulatory subunit, WTAP ensures METTL3–METTL14 localization to the nuclear speckle and promotes catalytic activity. Additionally, WTAP may regulate MTC recruitment to mRNA targets (29).

Other identified writers include KIAA1429 (also known as Vir-like m6A methyltransferase-associated [VIRMA]), RNA-binding motif protein 15 and 15B (RBM15 and RMB15B), zinc finger CCCH domain-containing protein 13 (ZC3H13) and Cbl proto-oncogene-like 1 (CBLL1; also known as HAKAI). KIAA1429 preferentially mediates mRNA methylation in 3′-UTRs and near stop codons and is associated with alternative polyadenylation (30). RMB15 and RMB15B, two other WTAP interactors, can recruit the MTC to specific sites, thus mediating m6A methylation of the long non-coding RNA (lncRNA) X-inactive-specific transcript (XIST) (31). ZC3H13 and CBLL1, in concert with additional cofactors, help to regulate nuclear m6A methylation (32). Furthermore, methyltransferase-like 16 (METTL16) was proposed to act as an independent mRNA methyltransferase in 2017 (33). It induces m6A modification in the 3’-UTR of mRNAs and at A43 in the U6 small nuclear RNA (snRNA), regulating tumorigenesis by targeting pre-mRNAs and non-coding RNAs (ncRNAs) (33, 34). Recently, it has been reported that methyltransferase-like 5 (METTL5) and zinc finger CCCH domain- containing protein 4 (ZCCHC4) are responsible for modifying 18S rRNA (35)and 28S rRNA (36), respectively. METTL5 is stabilized by transfer RNA (tRNA) methyltransferase 112 (TRMT112) (35). In addition, phosphorylated CTD- interacting factor 1 (PCIF1) mediates the N6, 2’-O-dimethyladenosine (m6Am) modification, an evolutionarily conserved mRNA modification (37). This involves catalyzing m6A methylation of 2-O-methylated adenines at the 5’ ends of mRNA (38). Furthermore, methyltransferase-like 4 (METTL4) has been identified as a novel internal m6Am methyltransferase that targets U2 snRNA, which regulates pre-mRNA splicing (39).



Erasers

It was not until 2011 that scientists discovered that m6A modification could be reversed by RNA demethylases (also known as m6A erasers), which drew the attention of the broader academic community (40). These RNA demethylases include fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5). ALKBH5 catalyzes the direct removal of m6A modifications, while FTO can sequentially oxidize m6A to N6-hydroxymethyladenosine (hm6A) and N6-formyladenosine (f6A), which are moderately stable and can later be hydrolyzed to adenine (40, 41). In addition, recent studies have shown that AlkB homolog 3 (ALKBH3) may serve as a novel demethylase that reverses m6A modifications (42). m6A-modified mammalian tRNA has been identified as a novel ALKBH3 substrate, highlighting a novel role for ALKBH3 in tumor progression via RNA demethylation and subsequent promotion of protein synthesis (43).



Readers

M6A readers recognize and bind to m6A sites, altering the destinies of their target RNAs. They can also influence mRNA by destabilizing its structure, which can affect the binding of diverse RNA-binding proteins. Pull-down assays using a methylated probe and quantitative protein mass spectrometry assays have identified multiple m6A-binding proteins. The functions of m6A modification, which include regulating RNA splicing, export, degradation, stability and translation, are mainly exerted via the recruitment of these m6A readers. There are three classes of these proteins.

The class I m6A readers are YTH domain-containing proteins (YTH domain- containing family protein 1/2/3 [YTHDF1/2/3] and YTH domain-containing1/2 [YTHDC1/2]). YTHDF2 was the first identified and is the most studied m6A reader. Nuclear YTHDF2 binds to m6A sites in the 5’-UTR, prevents demethylation by FTO and thereby promotes cap-independent translation during the heat shock response (45). Cytoplasmic YTHDF2 promotes degradation of its target mRNAs partly by recruiting the CCR4-NOT deadenylase complex (46). Independently, YTHDF1 binding promotes the translation of m6A-modified mRNAs by recruiting the eukaryotic initiation factor 3 (eIF3) translation initiation complex (44). YTHDF3, in synergy with YTHDF1, facilitates translation and it also affects YTHDF2-mediated mRNA decay (47). All three YTHDF proteins function cooperatively in fundamental biological pathways (72). Moreover, nuclear YTHDC1 has been reported to regulate mRNA splicing, expedite mRNA export (48) and accelerate the decay of certain mRNAs (49). Additionally, this protein preferentially recognizes m6A residues in the lncRNA XIST and is required for XIST-mediated transcriptional silencing (31). Furthermore, YTHDC2 can be both nuclear and cytosolic (50–52). It was found to interact with RNA helicase to positively regulate translation elongation in an m6A-dependent manner (50). Additionally, YTHDC2 can mediate mRNA degradation by recruiting the 5′–3′ exoribonuclease XRN1 (51).

The class II m6A readers are three heterogeneous nuclear ribonucleoproteins (hnRNPs): hnRNPC, hnRNPG and hnRNPA2B1. These proteins can remodel the local RNA structure in an m6A-dependent manner and, consequently, modulate nearby RNA–protein interactions, in a mechanism known as an “m6A-switch”. hnRNPC regulates pre-mRNA processing and alternative splicing (53), modulating the alternative splicing of nearby exons (54). In contrast, hnRNPA2B1 is a nuclear reader that recognizes primary (pri)-miRNA m6A modifications and subsequently stimulates miRNA processing and alternative splicing (55, 56).

The class III m6A readers are insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs), including IGF2BP1-3. These proteins are a distinct family of cytoplasmic m6A readers. They recognize the GG(m6A)C consensus sequence via their K homology (KH) domains and enhance the stability and translation of their target mRNAs under normal and stress conditions (57). These proteins function by recruiting RNA stabilizers, such as Hu antigen R (HuR), which is an indirect m6A effector with a preference for less m6A-modified transcripts, in order to maintain mRNA stability (58–60). Specifically, by promoting the expression of serum response factor (SRF) in an m6A-dependent manner via impairing the miRNA-dependent decay of the SRF mRNA, IGF2BP1 promotes SRF-dependent transcription in cancer, thereby enhancing tumor cell growth and invasion. At the post-transcriptional level, IGF2BP1 maintains the expression of multiple SRF target genes, including PDZ and LIM domain 7 (PDLIM7) and forkhead box K1 (FOXK1), which further enhances tumor cell growth and invasion (61). IGF2BP2 regulates the m6A-modified lncRNA DANCR to promote cancer stemness-like properties and cancer pathogenesis (62). Lastly, IGF2BP3 regulates RNA stability, RNA degradation, RNA localization and miRNA biogenesis, but the exact molecular processes underlying these functions have only begun to be elucidated (60, 63). Furthermore, several novel m6A readers have been identified, including fragile X mental retardation protein (FMRP), leucine-rich pentatricopeptide-repeat containing (LRPPRC), the eIF3 complex, staphylococcal nuclease domain-containing protein 1 (SND1), proline rich coiled-coil 2A (PRRC2A), and ribosomes. FMRP contains three KH domains and one arginine–glycine–glycine (RGG) domain and has been shown to prefer m6A-containing RNA, repressing target mRNA translation and maintaining target mRNA stability, likely by interacting with YTHDF1 and YTHDF2 (64, 65). LRPPRC is indispensable for maintaining the pool of non-translated transcripts and for regulation of mitochondrial translation (66, 67). The eIF3 complex is sufficient to recruit the 43S complex to initiate translation in the absence of the cap-binding factor eIF4E (68) and eIF3h also interacts with cytoplasmic METTL3 to bring about enhanced cap-dependent translation, the formation of densely packed polyribosomes and oncogenic transformation (28). SND1 is reported to be an m6A reader that stabilizes open reading frame 50 (ORF50) RNA and is essential for Kaposi’s sarcoma associated herpesvirus (KSHV) replication (69). PRRC2A plays an important role in oligodendrocyte specification by stabilizing m6A-modified oligodendrocyte lineage transcription factor 2 (Olig2) mRNA (70). Lastly, ribosomes may also act as m6A readers. Single-molecule ribosome translocation experiments have shown that an mRNA molecule containing a single-base m6A modification can change the translation dynamics by ribosomes in Escherichia coli (e.g., acting as a barrier to translation elongation) (71). However, the effects of this mechanism on the stability and/or translation of m6A-modified mRNA need to be further investigated.

In summary, the intricate interactions between m6A modifications and RNA-binding proteins can regulate mRNA expression at multiple levels. Further investigation of these proteins and their dynamic roles in cancer biology is necessary to deepen our understanding of RNA methylation. The findings may provide novel insights into the mechanisms of cancer pathogenesis and potential therapeutic strategies.




Implications of m6A Modification in HCC

Owing to advances in RNA sequencing, a growing number of studies have shown that m6A modification plays an important role in human cancer progression. Genes encoding m6A-related regulators can act as oncogenes or tumor suppressor genes. The expression of these regulators can be affected by various factors, such as tumor heterogeneity, the presence of hypoxic microenvironments and post-translational modifications, which affect their function in cancer. The specific roles of m6A-related regulators in HCC are summarized in Figure 2 and Table 2.




Figure 2 | Deregulation of m6A related regulators in human HCC.




Table 2 | Roles of m6A-related regulators in HCC.





Writers and HCC

As the most important component of the m6A MTC, the role of METTL3 in HCC has been widely reported. METTL3 is upregulated in HCC and high METTL3 expression is associated with poor HCC prognosis. It can promote the growth, migration and invasion of cancer cells both in vitro and in vivo, serving as an oncogene through various mechanisms (19, 20, 73, 74). First, Chen et al. reported that METTL3 facilitates HCC tumorigenicity, growth and lung metastasis in vivo in an m6A-YTHDF2-dependent manner by promoting the degradation of suppressor of cytokine signaling 2 (SOCS2) mRNA (19). Second, Lin et al. found that METTL3 regulates cancer cell epithelial–mesenchymal transition (EMT) by upregulating Snail (a key transcription factor in EMT) through the m6A-YTHDF1 pathway (73). Third, Zuo et al. showed that METTL3 enhances the expression and stability of LINC00958, which targets miR-3619-5p in order to upregulate hepatoma-derived growth factor (HDGF), thereby facilitating HCC lipogenesis and progression (75). Fourth, Chen et al. demonstrated that METTL3 overexpression markedly reduces RAD52 motif 1 (RDM1) mRNA expression via m6A modification; RDM1 knockdown increases HCC cell proliferation, colony formation and the cell population at the G2/M phase, as RDM1 serves as a tumor suppressor in HCC (76). Fifth, Lin et al. reported that METTL3 is involved in the regulation of glycolysis in HCC via regulating mTORC1 activity (104). Sixth, Qiao et al. found that METTL3 promotes vasculogenic mimicry in HCC via the Hippo pathway by facilitating the translation of Yes-associated protein 1 (YAP1) mRNA (74). Seventh, Xu et al. demonstrated that METTL3 can be SUMOylated by the small ubiquitin-like modifier SUMO and subsequently controls Snail mRNA homeostasis in an m6A methyltransferase activity-dependent manner, thus promoting HCC progression (77). Moreover, METTL3 is significantly downregulated in human sorafenib-resistant HCC. Depletion of METTL3 in mouse xenograft models increases sorafenib resistance in HCC by decreasing the stability of FOXO3 mRNA (without METTL3 depletion, METTL3 causes m6A modification of FOXO3 mRNA, increasing its stability via a YTHDF1-dependent mechanism) (105).

Similarly, WTAP is highly expressed in HCC tissue and is an independent predictor of survival in HCC patients (78, 106). WTAP suppresses ETS proto-oncogene 1 (ETS1) in an m6A-HuR-dependent manner, which upregulates the cell cycle regulators p21 and p27 to promote the G2/M phase in HCC cells, thus increasing proliferation (78). KIAA1429 is elevated in HCC and high KIAA1429 expression is associated with poor HCC prognosis (79, 80). It promotes HCC cell migration and invasion by altering the m6A modification of inhibitor of DNA binding 2 (ID2) and GATA binding protein 3 (GATA3) mRNA (79, 80). Relatedly, circ_KIAA1429 (hsa_ circ_0084922) was upregulated in HCC cells and tissues. Circ_KIAA1429, which maintains zinc finger E-box binding homeobox 1 (ZEB1) expression via an m6A-YTHDF3-ZEB1 mechanism in HCC, can facilitate HCC cell migration, invasion and EMT (93). Furthermore, RBM15B was also reported to be dramatically upregulated in human HCC (19).

Unlike other m6A methyltransferases, METTL14 was downregulated in HCC, and low METTL14 protein expression is associated with shorter overall survival (OS) and recurrence-free survival (17, 92, 107). Ma et al. (17) reported that METTL14 suppressed HCC invasion and metastasis by interacting with the micro-processor protein DiGeorge syndrome key region gene 8 (DGCR8) and positively promoting primary miR-126 maturation in an m6A-dependent manner. Likewise, Liu et al. (108) and Li et al. (109) analyzed data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and found that METTL14 was significantly downregulated in HCC. METTL14 may inhibit HCC progression by altering the m6A modification of cysteine sulfonic acid deacidiase (CSAD), glutamic-oxaloacetic transaminase 2 (GOT2) and SOCS2 (109). In contrast, Chen et al. (19) reported that METTL14 was unchanged in HCC in their study, but METTL14 knockdown significantly suppressed Huh-7 cell proliferation, migration and colony formation (19).

Given the paradoxical expression patterns and roles of METTL14 in prior studies of HCC, Zhang et al. (110) analyzed paired HCC and normal samples in multiple microarray datasets. Unexpectedly, their results indicated that METTL14 may have a variety of roles as opposed to only being a tumor suppressor or promoter in hepatocarcinogenesis. They ascribed the contradictory findings regarding the METTL14 expression pattern and role in HCC samples compared to normal samples to the heterogeneity of HCC cell lines and clinical samples, the versatility of the METTL3-METTL14 heterocomplex, and m6A-independent effects of METTL14. Additionally, METTL16 is a newly identified RNA methyltransferase that operates independently of the MTC. Wang et al. (111) carried out a bioinformatics analysis using TCGA data and reported that METTL16 was downregulated in HCC and that low METTL16 expression was associated with poor OS and disease-free survival. Another new m6A methyltransferase, ZCCHC4, was overexpressed in HCC, and ZCCHC4 knockout eliminated m6A modification of 28S rRNA, inhibited HepG2 cell proliferation and reduced the tumor size in a xenograft mouse model (81).

In summary, these results reveal that m6A writers, including those in the MTC, regulate HCC progression. Except for METTL16 and METTL14, the m6A writers are upregulated in liver cancer tissues and act as oncogenes. Further investigations are required to resolve the contradictions.



Erasers and HCC

The expression and role of FTO in liver cancer is controversial. Li et al. (82) reported that upregulated FTO was associated with poor HCC prognosis and demonstrated that FTO can induce HCC tumorigenesis by regulating pyruvate kinase M2 (PKM2) in an m6A modification-dependent manner. However, in addition to its oncogenic function, FTO also suppresses HCC progression. Ma et al. (17) and Hou et al. (92) reported that FTO was downregulated in liver cancer tissues. More specifically, Ma et al. (17) observed that METTL14 and FTO were downregulated in cancer tissues compared to adjacent tissues and there was a correlation between them. Although both proteins are expressed in the nucleus, there is little interaction; METTL14 silencing or overexpression had no significant effect on FTO expression. Despite this, Ma et al. suggested that the eventual FTO downregulation in liver cancer with reduced METTL14 expression may involve a compensatory feedback mechanism. Later, Liu et al. (83) reported that FTO is negatively regulated by the deacetylase SIRT1 via RANBP2-mediated SUMOylation; its downregulation reduces the expression of its target gene guanine nucleotide-binding protein G(O) subunit alpha (GNAO1), thereby promoting the progression of liver cancer. Moreover, a subsequent study revealed that FTO might target Cul4a mRNA to downregulate CUL4A protein, thereby presumably blocking HCC cell cycle progression and proliferation (84).

ALKBH5, another m6A demethylase, was downregulated in HCC, and decreased ALKBH5 expression was an independent prognostic factor associated with poor survival in HCC patients (85). ALKBH5-mediated m6A demethylation suppresses proliferation and invasion by suppressing IGF2BP1-mediated LY6/PLAUR domain-containing 1 (LYPD1) RNA stability (85). Additionally, Liu et al. (112) reported that ALKBH5 inhibits autophagy in sorafenib-treated HCC cells and can be inhibited by an important circRNA known as cIARS (hsa_circ_0008367). Moreover, recent research has identified another m6A demethylase, ALKBH3 (43). Wang et al. (86) reported that ALKBH3 was overexpressed in HCC and high ALKBH3 expression in HCC tissues decreased OS and disease-free survival in HCC patients. ALKBH3 knockdown inhibited human HCC cell proliferation in vitro and xenograft tumor formation in vivo, presumably through p21/p27-mediated cell cycle arrest at the G1 phase (86).

In summary, these results suggest that m6A erasers are involved in regulating HCC progression, but some of the conclusions are contradictory, suggesting a complex role of m6A modification in HCC.



Readers and HCC

Like writers and erasers, multiple m6A readers have also been implicated in liver cancer. Many studies have reported upregulation of YTHDF1 in liver cancer tissues and its overexpression is associated with poor HCC prognosis. It promotes HCC cell proliferation and metastasis both in vitro and in vivo (21, 88, 113–115). Regarding the underlying mechanism, Ding et al. (87) found that high expression of G-protein alpha-subunit (GNAS) promotes lipopolysaccharide-induced HCC cell growth and invasion by interacting with signal transducer and activator of transcription 3 (STAT3) in an m6A-YTHDF1-dependent manner. Additionally, Lin et al. (73) reported that YTHDF1 mediates m6A-induced translation of Snail mRNA, which triggers polysome-mediated translation and regulates EMT in cancer cells. Bian et al. (21) identified YTHDF1 as an HCC oncogene that facilitates EMT and AKT/GSK3β/β-catenin signaling. Liu et al. (88) revealed that YTHDF1 can act as an oncogene by mediating the m6A-dependent acceleration of the translation of FZD5 mRNA, which is involved in the WNT/β-catenin pathway. Nevertheless, there are conflicting opinions on YTHDF1 expression in liver cancer tissues, as Hou et al. (92) assessed YTHDF1 mRNA levels in 51 paired HCC and paracancerous tissues by qRT-PCR and found no significant difference between the two tissue types. Furthermore, the role of YTHDF2 in liver cancer is controversial. Yang et al. (89) found that miR-145 modulates m6A levels by targeting the 3’-UTR of YTHDF2 mRNA in HCC cells. As miR-145 is frequently downregulated in HCC and targets YTHDF2, upregulated YTHDF2 in HCC appears to be closely related to the malignancy of HCC. Additionally, Zhang et al. (90) reported that YTHDF2 was a predictor of poor HCC prognosis and it promotes the liver cancer stem cell phenotype and metastasis by upregulating octamer-binding transcription factor-4 (OCT4) in an m6A-dependent manner. Nevertheless, YTHDF2 may also act as a tumor suppressor, as Zhong et al. (91) and Hou et al. (92) reported that it was downregulated by hypoxia in HCC. The former study found that YTHDF2 directly binds to the m6A modification site of EGFR mRNA 3’-UTR to promote mRNA degradation, thereby suppressing HCC cell proliferation and tumor growth (91). The latter study found that YTHDF2 was downregulated in HCC by hypoxia-inducible factor (HIF)-2α, which reduced the degradation of m6A-containing interleukin 11 (IL11) and serpin family E member 2 (SERPINE2) mRNAs, leading to inflammation-mediated malignancy and disruption of vascular normalization (92). Moreover, another YTH domain protein, YTHDF3, is upregulated in HCC and increases ZEB1 mRNA stability in an m6A-dependent manner (93). ZEB1 is the downstream target of circ_KIAA1429 and its upregulation leads to HCC metastasis. In summary, these contradictory functions may be related to the tumor heterogeneity and/or the small sample sizes used.

The roles of the three hnRNPs, which are class II m6A readers, in liver cancer have rarely been studied. However, trichostatin A-induced lncRNA-uc002mbe.2 directly bound to hnRNPA2B1 and promoted its degradation. This hnRNPA2B1 downregulation contributed to AKT deactivation and p21 upregulation, resulting in liver cancer cell apoptosis and the inhibition of proliferation in vitro and in vivo (116).

Regarding class III m6A readers, IGF2BPs are highly expressed in HCC, playing oncogenic roles in HepG2 cells by enhancing MYC mRNA stability and post-transcriptionally upregulating target gene expression (59). Consistently, IGF2BP1 upregulates SRF in an m6A-dependent manner by decreasing the miRNA-mediated decay of SRF mRNA, which subsequently leads to increased PDLIM7 and FOXK1 translation. This results in tumor cell growth and invasion, leading to a poor OS in liver cancer patients (61). Gong et al. (117) reported that inhibition of fatty acid synthase (FASN) decreases IGF2BP1 expression, along with HIF-1α activity, thereby suppressing HCC cell migration and invasion. Moreover, He et al. (118) demonstrated that IGF2BP1 interacts with glioma-associated oncogene homologue 1 (GLI1) mRNA, which is involved in HCC progression; the liver-specific lncRNA LINC01093 disrupts this interaction. The above studies suggest that IGF2BP1 upregulation plays an oncogenic role. However, it has also been reported that IGF2BP1 downregulation can promote tumor progression (94, 119). Geis et al. (94) identified and verified IGFBP1 as a target gene of the transcription factor HIF-2α, and silencing of IGF2BP1 significantly enhanced the potential of HepG2 cells to induce lymphangiogenesis. In addition, Nielson et al. (119) reported that hepatitis B virus (HBV) suppresses IGF2BP1 secretion to facilitate pro-survival and anti-apoptotic insulin-like growth factor (IGF)-1 activity. Adding recombinant IGF2BP1 reversed the anti-apoptotic effect in HepG2 cells.

Regarding IGF2BP2, it was upregulated in HCC patients compared to healthy controls, and IGF2BP2 expression was positively associated with decreased tumor differentiation and increased size, metastasis and portal vein infiltration in HCC (95). Moreover, exogenous IGF2BP2 promoted the integrin β1/FAK/Erk/Elk1/EGR1 pathway, which stimulated HCC cell proliferation (95). Furthermore, Liu et al. (96) showed that HBV X protein (HBx) in HepG2 cells downregulated miR-216b and thereby upregulated IGF2BP2, which activated the downstream insulin-like growth factor 2 (IGF-2), PI3K/AKT and MAPK/ERK signaling pathways, thus promoting cell proliferation and invasion. Regarding IGF2BP3, it has been reported to be a downstream oncogenic effector of LIN28B, whose overexpression drives liver tumorigenesis in murine models (97). In contrast, Wang et al. (98) reported that sanguinarine can upregulate IGF2BP3 in Hep3B cells and thereby promote apoptosis. Similarly, it was shown that IGFBP3 can inhibit HCC cell proliferation by suppressing transcription of early growth response protein 1 (EGR1) and its target genes basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) (99).

Increasing numbers of new m6A readers are being identified. In eukaryotes, the eIF3 complex, composed of 13 subunits from eIF3a to eIF3m, is the largest and most complex translation initiation factor. eIFs play major roles in the initiation step of protein translation (100). M6A modifications in the 5′-UTR of transcripts can directly recruit eIF3, contributing to the assembly of translation initiation complexes on eIF3-specialized mRNAs (68). Golob-Schwarzl et al. (120) reported that various eIF3 subunits were significantly increased in chronic HBV-associated HCC. Recently, eIF3a has been recognized as a proto-oncogene, which is overexpressed in HCC and linked to HCC tumorigenesis (100, 101, 121). Heo et al. (121) reported that eIF3a is significantly upregulated in HCC tissue compared to normal tissue in mice and patients and combined detection of anti-eIF3a autoantibody and alpha-fetoprotein (AFP) in patient sera improved the accuracy of HCC diagnosis. Additionally, Miao et al. (100) found that eIF3a regulates cellular glycolysis by increasing HIF-1α protein expression via internal ribosomal entry site (IRES)-dependent translation and eIF3a predicts poor HCC prognosis. Moreover, Chen et al. (101) demonstrated that eIF3a had an oncogenic role and was upregulated and negatively correlated with miR-875-5p expression in HCC tissues; eIF3a knockdown inhibited HCC cell proliferation, motility and EMT. Similarly, Yue et al. (122) revealed that eIF3b was upregulated in liver cancer tissues and it had promising prognostic value, as high eIF3b expression was generally associated with shorter OS and relapse-free survival. Lastly, eIF3c has also been reported to be an oncogene in liver cancer. Li et al. (123) found that eIF3c was upregulated during HCC progression and associated with poor survival in TCGA datasets. Lee et al. (124) also reported that the expression of eIF3c in HCC cells significantly increased extracellular exosome secretion and these eIF3c-enhanced exosomes were oncogenic and potentiated tumor angiogenesis.

FMRP also plays an oncogenic role in HCC. Recently, Zhu et al. (102) reported that FMRP increases cellular stemness in HCC via its target gene Cell division cycle and apoptosis regulator 1 (CCAR1), which assists in Wnt/β-catenin pathway activation. Additionally, SND1, a subunit of the RNA-induced silencing complex (RISC), has been implicated as an oncogene in HCC (103, 125, 126). First, SND1 can regulate cellular cholesterol distribution and homeostasis in HCC cells (126) and promote tumor-initiating cell (TIC) formation via the Akt and NF-κB signaling pathways in Alb/SND1 mice (125). Second, Cui et al. (103) analyzed Human Protein Atlas (HPA) and TCGA data and found that SND1 was significantly upregulated in liver cancer patients. SND1 is an anti-apoptotic factor in HCC cells and positively regulates lncRNA UCA1 expression via the transcriptional activator MYB (103). LRPPRC, a novel regulator of m6A modification, was revealed has prognostic value in HCC patients. High levels of LRPPRC are beneficial to the OS, but the precise molecular mechanisms remain elusive (127).

To sum up, m6A modification can affect the fate of mRNAs by recruiting m6A readers. The various m6A readers have different effects on HCC. However, the roles of YTHDF2, IGF2BP1 and IGF2BP3 in HCC are controversial and more studies are needed to further explore these factors.




Clinical Applications of m6A Modification in HCC

As RNA methylation plays an extensive regulatory role in HCC, RNA methylation profiling has the potential to be used as a clinical tool. The diagnosis and prognostic value of m6A-related regulators has been reported in several studies. METTL3 and YTHDF1 are both overexpressed in HCC in several studies. As METTL3/YTHDF1 overexpression is associated with poor HCC prognosis, they may be prognostic markers and therapeutic targets (19–21). Additionally, KIAA1429 was considerably upregulated in HCC tissues, and high KIAA1429 expression was associated with poor HCC prognosis (79). Another study found that eIF3b was highly expressed in liver cancer tissues and had promising diagnostic and prognostic value (122).

In addition to having diagnostic and prognostic value, m6A modification and m6A-related regulators may also be useful for developing treatments. Recently, progress has been made regarding experimental therapies targeting m6A-related mechanisms. The natural product rhein was the first identified FTO inhibitor; it exerts good inhibitory activity against FTO and increases m6A modification levels (128). However, it is not a selective FTO inhibitor, as it can also bind to a different part of the active site in AlkB than it binds to in FTO (129). Later, R-2-hydroxyglutarate (R-2HG) (130) and meclofenamic acid (MA) (131) were identified as FTO inhibitors and confirmed to inhibit tumor cell growth and induce apoptosis. Lu et al. (132) reported that curcumin can affect METTL3, METTL14, ALKBH5, FTO and YTHDF2 expression and subsequently increase m6A modification, thereby inhibiting lipopolysaccharide-induced liver injury and lipid metabolism disorders in piglets. Hou et al. (92) demonstrated that YTHDF2 downregulation in HCC is regulated by HIF-2α, and an HIF-2α antagonist (PT2385) can upregulate YTHDF2 in vitro (without changing its cytosolic distribution) and repress liver cancer. Furthermore, to treat HCC, Zuo et al. (75) developed novel PEGylated poly (lactic-co-glycolic acid) nanoparticles (PLGA-PEG NPs) loaded with si-LINC00958 targeting LINC00958, which is otherwise upregulated and stabilized by METTL3-mediated m6A modification, which promotes HCC progression. The PLGA-PEG NPs exhibited controllable drug release, excellent cellular uptake and precise tumor-targeting capacity. Moreover, tumor growth was significantly inhibited and the OS was remarkably prolonged in HCC-bearing mice injected with the PLGA-PEG NPs. Additionally, the pathological and blood test results indicated that there were no significant adverse effects in the mice. Lastly, Wang et al. (98) reported that sanguinarine can upregulate IGF2BP3 and thereby promote Hep3B cell apoptosis and inhibit proliferation, invasion and migration.

These studies suggest that HCC-related changes in the expression of m6A-related regulators may allow them to be used as HCC biomarkers and therapeutic targets. However, more studies are needed to determine the value of m6A-related regulators in early HCC diagnosis and the prediction of HCC prognosis and to assess their potential as therapeutic targets.



Conclusions and Perspectives

In summary, increasing attention has been paid to the roles of m6A modification and dysregulated m6A-related regulators in HCC. In this review, we focused on the function of m6A RNA modification in HCC. Some of the studies discussed have reported contrasting results on the expression patterns or functions of the various m6A-related regulators. For example, most of the proteins that comprise the MTC are upregulated and promote HCC progression; however, METTL14 is decreased and can suppress liver cancer cell metastasis. Interestingly, an m6A-associated regulator can perform multiple biological functions via various target genes in HCC. The roles of FTO, YTHDF2, IGF2BP1 and IGF2BP3 in liver cancer are controversial. Some studies have reported that they are highly expressed in tumor tissues and are oncogenes (61, 82, 89, 90, 97). However, other studies have reported that they are downregulated in tumor tissues and serve as tumor suppressor genes (83, 84, 91, 92, 94, 98). The contradictory results may be related to cancer heterogeneity, cell background, the targeting specificity of the m6A-related regulators and small sample sizes. In addition, some researchers have explored targeted HCC therapies related to m6A modification. For example, the HIF-2α antagonist PT2385 can upregulate YTHDF2, thus inhibiting liver cancer, while si-LINC00958-loaded PLGA-PEG NPs exhibited controllable release, excellent cellular drug uptake and precise tumor-targeting capacity in HCC. However, few studies have focused on such targeted cancer therapies.

In the future, we intend to conduct the following research (1): screen for gene expression that can be used for early diagnosis and prognosis using a large sample of liver cancer cases (2), elucidate the mechanisms underlying the conflicting effects of different/the same m6A-related regulators in liver cancer and (3) develop specific inhibitors of m6A-related regulators for treating liver cancer. It is exciting that the recent development of m6A sequencing and editing tools will greatly facilitate m6A research at the single-nucleotide level, thus advancing the field.
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Background

Ferroptosis is a newly generated regulatory cell death promoted by the accumulated lipid-based reactive oxygen species (ROS). Solute carrier family 7 member 11 (SLC7A11), the cystine/glutamate antiporter, is known as a ferroptosis executor that exhibits a positive correlation with carcinoma progression because of antioxidant function. Nonetheless, it is yet unclear on the understanding of ferroptosis regulation in lung cancer.



Methods

Database, qRT-PCR, Western-blot (WB), and immunohistochemistry were utilized to determine SLC7A11 expression and function, as well as gene iron related to necrosis in clinical tissue specimens and cells; a ferroptosis inducer, inhibitors, and SLC7A11 lentivirus were used to confirm SLC7A11’s biological activity in cell viability, oxidative stress, lipid peroxidation, and iron ion enrichment in non-small cell lung cancer (NSCLC) in different cells; lentivirus was used to infect lung adenocarcinoma cell lines to acquire miR-27a-3p overexpression and knockdown cell lines, and to detect SLC7A11 level through qRT-PCR and WB. The influence of upregulated/downregulated miR-27a-3p on ferroptosis and other related biological characteristics of lung adenocarcinoma cell lines was detected.



Results

Upregulated SLC7A11 was shown in NSCLC patients and cells, and increased SLC7A11 had a relation to the poorly prognostic status of NSCLC patients. Besides, a novel miRNA, miR-27a-3p, was an essential modulator of ferroptosis via directly targeting SLC7A11 in NSCLC cells. Overexpressing miR-27a-3p led to SLC7A11 suppression via directly binding to its 3’-UTR, followed by the reduction of erastin-caused ferroptosis. In contrast, inhibited miR-27a-3p resulted in an increase in NSCLC cells’ sensitivity to erastin. Of importance, the accumulated lipid ROS and cell death of iron peptide mediated by anti-miR-27a-3p can be eliminated by impeding the glutamylation process. Our literature collectively uncovered that miR-27a-3p modulated ferroptosis by targeting SLC7A11 in NSCLC cells, illustrating the important role of miRNA in ferroptosis.



Conclusion

MiR-27a-3p modulates ferroptosis via targeting SLC7A11 in NSCLC cells, implying the significant role of miR-27a-3p/SLC7A11 in ferroptosis.





Keywords: miR-27a-3p, SLC7A11, ferroptosis, non-small cell lung cancer, MDA progress



Introduction

It was reported that lung cancer (LC) was still the leading inducer of carcinoma-associated mortality around the world. The widely occurred type of LC was non-small cell lung cancer (NSCLC), accounting for 85% of all the LC cases. The survival time of LC after diagnosis is 3 months to 1 year, decided by stages I–IV (1). Advances in treating LC, consisting of better surgical resection, radiotherapy, and chemotherapy, along with molecular and targeted therapies, performed well in improving LC patients’ survival rate (2). Nonetheless, early detection, strong therapeutic options for controlling neoplasm development, and methods for predicting the survival status and/or the response after treatment were the present challenges with regard to clinicians. Patients with LC often experienced the recurrence and metastasis of neoplasm, contributing to disappointing overall survival (OS) (3). The results of the multivariate analysis revealed that gender, age, TNM comprehensive stage, and maximum tumor diameter were independent factors affecting the prognosis of patients with NSCLC after radical resection (4). The younger the age of diagnosis, the earlier the TNM comprehensive stage, and the smaller the maximum diameter of the tumor, the better the prognosis of the patients. Therefore, a preferable understanding of the pathogenesis, molecular alterations, and new therapies of LC is helpful to detect LC at an early stage, explore efficacious treatment strategies against neoplasm pathology and development, and forecast therapeutic response and patients’ survival.

Cell death functions importantly in many situations, i.e., holding homeostasis in disease development and prevention (5). In addition to apoptosis, a new programmable form of cell death, ferroptosis, has also recently attracted people’s attention. Ferroptosis is presently recognized as regulated cell death, with the characteristics of the accumulated lipid peroxidation products and deadly reactive oxygen species (ROS) from iron metabolism, and is thought to be different from other kinds of cell death in genetics, biochemistry, and morphology (6, 7). It is characterized by glutathione peroxidase 4 (GPX4) inactivation, which causes the accumulation of iron-dependent lipid peroxides in cells, leading to cell death (8, 9). Another key executor involved in the ferroptosis pathway is the cystine/glutamate transporter (SLC7A11, SLC3A2), maintaining the uptake of cystine and the excretion of glutamate. The depletion of glutathione activates ferroptosis (10, 11). The SLC7A11 functions to import cystine for glutathione biosynthesis and antioxidant defense and is overexpressed in multiple human cancers. As a critical modulator of intracellular redox balance, targeting SLC7A11 is considered a promising therapeutic opportunity for cancer treatment. Growing researches has shown that ferroptosis is related to several human diseases, comprising neurodegenerative diseases, ischemic reperfusion injuries, and renal degeneration (12). Additionally, many carcinoma cells are sensitive to ferroptosis inducers, while little is known about LC. What is more, erastin, a ferroptosis inducer, can ameliorate the effectiveness of chemotherapy drugs, such as temozolomide, cisplatin, cytarabine, and adriamycin (13). Herein, to induce and enhance ferroptosis was a prospective carcinoma tactic. Nevertheless, it seems to be drug or cell type-specific regarding these molecules players’ role in ferroptosis. Therefore, ferroptosis’s regulatory mechanism in the development of LC is yet unclear.

MicroRNAs (miRNAs or miRs) with a length of approximately 25 nt, belonging to small noncoding RNAs, icroRNAs (miRNAs or miRs), modulate gene expression via binding to the 3’UTR of target mRNA. A given miRNA can simultaneously inhibit the expression of multiple target genes based on sequence homology and thereby has significant influence on gene networks and cellular signaling pathways (14). Tianzhi Huang et al. found that microRNA-93 regulates tumorigenicity and therapy response of glioblastoma by targeting the expression and/or activity of key autophagy regulators (15). Therefore, miRNA exhibits importance in regulating protein expression after translation. As previously described, miRNAs participated in the occurrence, progression, and control of LC (16). To date, there is not yet any microRNA that directly regulates ferroptosis in lung cancer. In our context, we attempt to clarify the role of SLC7A11 in NSCLC and unearth the hidden mechanism. Our data indicated that SLC7A11 was dramatically raised in NSCLC patients and cell lines, implying that it was an indicator of poor prognostic status. We, for the first time, demonstrate that ferroptosis mediates the regulation of NSCLC development via targeting the miR-27a-3p/SLC7A11 pathway, revealing that, therefore, miR-27a-3p/SLC7A11 was an encouraging treatment biomarker and target for patients with NSCLC.



Materials and Methods


Microarray Data

GSE27262, GSE102287, GSE116959, GSE118370, and GSE19945 were acquired from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) on the basis of the platform of the Affymetrix Human Genome U133 Plus 2.0 Array, Affymetrix Human Genome U133 Plus 2.0 Array, Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381, Affymetrix Human Genome U133 Plus 2.0 Array, and Agilent Human 0.6K miRNA Microarray G4471A, respectively.



DEG Identification

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r), as a free website toolset, was utilized to compare gene expression data of multiple groups and to identify the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) between the samples of neoplasm and normal control. A p-value <0.05 meant that there was a significant difference.



KEGG Pathway Analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was applied to identify molecular interaction and relation networks through the Database for Annotation Visualization and Integrated Discovery (DAVID; http://david.ncifcrf.gov/). A p-value <0.05 meant that there was a significant statistical difference. The cutoff criteria were considered as a false discovery rate (FDR) <0.01 and gene count >2.



Tissue Collection and Ethics Statement

A total of 90 NSCLC tissues and paired adjacent normal ones were taken from patients undergoing primary surgery at the Department of Thoracic Surgery in Huashan Hospital, Fudan University, between February 2016 and July 2020. Referring to the classification tumor node metastasis (TNM) and the standard of the World Health Organization (WHO), all tissue samples were staged and graded by an experienced pathologist. All samples that were immersed in RNA Later stabilization solution (Qiagen, Germany) were maintained in liquid nitrogen and preserved at -80°C. Patients were not subjected to any treatment against carcinoma prior to surgical resection. Our research was approved by the institutional ethics committee of Huashan Hospital of Fudan University, and the participants signed a written informed consent form.



Cell Culture and Transfection

Human NSCLC cell lines were ordered from the National Collection of Authenticated Cell cultures, and Beas-2B cell lines were obtained from MingZhou bio company. NSCLC cell lines were maintained in DMEM (Gibco, USA) with 10% FBS (HyClone, USA) and 1% Penicillin/Streptomycin (Life Technologies, UK) under a 37°C incubator with 5% CO2. Beas-2B cells were maintained in LHC-9 medium with 0.5 ng/ml EGF, 500 ng/ml hydrocortisone.

A549 cells were transfected with shRNAs (sh-Scrambled and two shRNAs specifics for SLC7A11) and miRNAs (miRNA mimics and controls) by Lipofectamine 3000 (Invitrogen, USA) as manufacturers described. Puromycin (2 µg/ml, Sigma-Aldrich, USA) was added into cells for subsequent screening until stabilization. SLC7A11 cDNA was ligated into lentiviral construct (GenePharma) for subsequent studies.



qRT-PCR

TRIzol (1 ml, Invitrogen) was employed to harvest the whole RNA, followed by reverse transcription with the use of a First Strand cDNA Synthesis Kit (Thermo Scientific, USA) as manufacturers instructed. qRT-PCR was taken to quantify the RNA level using a SYBR Premix ExTaq Reverse Transcription PCR kit (Takaka, China). GAPDH was utilized as a normalized control. All primers were listed in Supplementary Table 1.



Cell Viability Assay

Cell Counting Kit (CCK-8) (Yesen, China) was employed to detect the cell viability in triplicate for 3 consecutive days at 450 nm by a microplate reader (Thermo Scientific, USA).



Flow Cytometry

Fluorescence activated cell sorting (FACS) was employed to analyze cell proliferation at post-transfection. A total of 1×104/well were incubated with Annexin V-FITC and propidium iodide (Yeasen, China) for 10 min at 4°C in the dark. Subsequently, the cells were rinsed with buffer two times and resuspended by 500 μl of buffer for flow cytometry analysis.



Intracellular ROS Analysis

Dihydroethidium (DHE, Merck KGaA) was used to stain ROS, followed by flow cytometry detection as previously described (17). In short, cells were digested and risned and then mixed with 1.25 μM DHE for 30 min at 37°C in the dark. Fluorescence at 610 nm was measured on a FACS Calibur™.



Iron Assay

The iron analysis kit (Abcam) was employed to measure the intracellular ferrous (Fe2+) level as manual depicted. Taken briefly, we collected samples, washed by precold PBS and homogenized in precold five volumes of iron analysis buffer. We harvested the supernatant and added an iron-reducing agent into every allocation, followed by incubation for 30 min. Each mixture was incubated with iron probes and incubated for 60 min. Subsequently, the OD (optical density) value of 593 nm was measured by a colorimetric microplate reader.



Western Blot

Whole protein was harvested in samples by lysis buffer (Beyotime, China). Proteins (25 µg) with the corresponding volume of loading buffer were boiled in water bath for 10 min. SDS-PAGE gel was used to resolve the proteins and then transferred onto PVDF membranes (Millipore, USA). Primary and secondary antibodies were incubated as indicated. xCT/SLC7A11 (CST,12691), GPX4 (CST, 52455), and GAPDH (CST, 5174) were used in this study.



Immunohistochemical

The rehydrated sections were retrieved by citrate buffer for 3 min at 100°C and incubated with primary antibodies at 4°C overnight. On the following day, second antibody (goat anti-rabbit IgG) was incubated with them at RT for 30 min. The washed sections were stained with diaminobenzidine and captured under a microscope. The images were analyzed by Image Pro Plus software (Media Cybernetics, USA).



Luciferase Assay

We utilized TargetSan (http://www.targetscan.org/vert72), miRanda (http://www.microrna.org/microrna/home.do), microT (http://www.microrna.gr/microT), PITA (http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html), miRmap (http://mirmap.ezlab.org), and PicTar (http://www.pictar.org/) databases to predict the upstream gene of SLC7A11. miR-27a-3p was chosen. The 3’UTR region with the miR-27a-3p binding site was cloned into pGL3-basic luciferase construct (Promega, USA). Cotransfection of luc-SLC7A11-wt/luc-SLC7A11-mut with miR-27a-3p mimic/NC mimic into A549 cells was performed by Lipofectamine 3000 (Invitrogen). At 48 h post-transfection, luciferase activity was measured by a Dual-Luciferase Reporter Assay System (Promega) as manufacturers instructed. Renilla luciferase was regarded as normalized control.



Data Analysis

The represented data were shown as the mean ± SEM from three separate experiments in triplicate. Statistical significance was determined by the unpaired Student’s t test, *p < 0.05.




Results


SLC7A11 Is Obviously Upregulated in NSCLC Cell

First, we performed bioinformatic interrogation of GEO datasets. In total, 876, 1,292, 846, and 1,438 DEGs were obtained from GSE27262, GSE102287, GSE116959, and GSE118370, respectively. A total of 180 genes were screened out in all four datasets (Figure 1A). Furthermore, KEGG pathway analysis showed seven identified pathways including ferroptosis with four DEGs, SLC7A11, CP, GCLM, and STEAP3 (Figure 1B). To verify the expression trends of SLC7A11, CP, GCLM, and STEAP3 in NSCLC, TCGA-LAUD data were obtained and reanalyzed. We found that all the four DEGs were indeed upregulated in NSCLC (Figure 1C). Recent studies revealed that SLC7A11 overexpression promotes tumor growth partly through suppressing ferroptosis. As the upstream and key gene in the ferroptosis pathway, SLC7A11 was selected for further study.




Figure 1 | SLC7A11 expression in NSCLC tissues and its clinical significance. (A) Bioinformatic interrogation of Gene Expression Omnibus (GEO) datasets. (B) The cellular processes that were positively correlated with NSCLC according to KEGG analysis. (C) Expression level of SLC7A11, CP, GCLM, and STEAP3 in the TCGA-LAUD database. (D) The SLC7A11 protein levels in NSCLC patients were analyzed by immunohistochemistry. (E) Kaplan–Meier overall survival (OS) curves according to SLC7A11 expression levels.



A total of 90 NSCLC patients were classified into two groups in the light of the median value to assess in-depth the association of SLC7A11 expression with clinicopathological traits. First, IHC array was conducted to determine the SLC7A11 level in patients with NSCLC, and the result showed that its levels significantly increased in NSCLC patients’ tissues (Figure 1D). Our data revealed that SLC7A11 expression had an association with tumor size (chi-square test, P = 0.009), smoking history (chi-square test, P = 0.010), lymph node metastasis (chi-square test, P = 0.009), and TNM stage (chi-square test, P = 0.013) (Table 1). Nonetheless, no obvious correlation was observed between the SLC7A11 level and age, gender, differentiation, and primary location (chi-square test, P > 0.05; Table 1). Collectively, our results indicated that SLC7A11 may function essentially in the progression of NSCLC. In addition, the Kaplan–Meier method analysis revealed that the overall survival (OS) rate in the highly expressed SLC7A11 group was largely lower than that in the lowly expressed SLC7A11 group (Figure 1E).


Table 1 | Multiple variables cox proportional hazards analysis in 90 NSCLC patients.





SLC7A11 Induces Ferroptosis in NSCLC Cells

Next, we identified SLC7A11 mRNA and protein expression in NSCLC cells. SLC7A11 was higher in NSCLC cells than in normal control (Figures 2A, B). Next, we analyzed erastin activity in A549 and Calu-3 cells. Both erastin (IC50 (A549) = 5.56 μM; IC50 (Calu-3) =2.72 μM) could induce cell death in A549 and Calu-3 cells, which could be reversed after treatment of ferrostatin-1 (ferroptosis inhibitor) (Figure 2C and Supplementary Figure S1). We used A549 cells for further analysis. Images showed erastin induced A549 cells around, swelled, and rescued by ferrostatin-1 (Figure 2D). GPX-4 is a ferroptosis maker, which protects cells against membrane lipid peroxidation. Notably, SLC7A11 expression increased and GPX-4 significantly attenuated during ferroptosis process (Figure 2E). Considering oxidative stress, lipid peroxidation, and iron accumulation were major signaling processes in generating ferroptosis, we focused on these three indicators. First, we found that erastin led to ROS accumulation in both A549 and Calu-3 cells and rescued by ferrostatin-1. Similarly, the H2O2 induced ROS could not be inhibited by ferrostatin-1, which confirmed that the oxidative stress happened during ferroptosis (Supplememntary Figure S2). Considering malondialdehyde (MDA) is one of primary lipid peroxidation end products, we investigated whether MDA was gathered in NSCLC cells. Figure 2F illustrated that the MDA level was raised by erastin with dosage increasing. Besides, ferrous iron (Fe2+) is another important factor leading to ferroptosis (Figure 2G). We also found the intracellular iron concentrations were increased depending on the ferroptosis progress.




Figure 2 | The lung cancer cells with high expression of SLC7A11 could induce ferroptosis. (A) and (B) SLC7A11 expression level in different NSCLC cells. (C) CCK8 assay was used to detect cell survival levels of A549 induced by erastin and erastin plus ferrostatin-1 at different concentrations. (D) Images analysis of A549 cells after erastin and erastin plus ferrostatin-1 treatment. (E) Expression levels of SLC7A11 and GPX-4 after erastin and erastin plus ferrostatin-1 treatment. A549 cells with treatment of multiple concentrations of erastin for 24 h were subjected to analysis. [There was significant difference between con and Erastin (***P < 0.001). There was significant difference between Erastin and Erastin+Fer-1 (###P < 0.001)]. The lipid formation levels (F) and intracellular Fe2+ accumulation levels (G) on A549 and Calu-3 cells during the erastin induced ferroptosis progress. **P < 0.01 and ***P < 0.001.





Silencing SLC7A11 Inhibits NSCLC Cell Proliferation and Lipid Peroxidation

Next, SLC7A11 was ablated n by SLC7A11 shRNAs in two NSCLC cell lines to investigate SLC7A11’s role (Supplementary Figure S3). Silencing SLC7A11 facilitated A549 cell viability compared with the control group (Figure 3A). Consistently, MDA accumulation assay demonstrated that the reduction of SLC7A11 resulted in the decrease in ROS and MDA accumulation under the stimulation of erastin in A549 cells (Figures 3B, C). Thus, we further uncovered the impacts of ablated SLC7A11 on Fe2+ levels. The intracellular Fe2+levels were reduced in A549 cells upon erastin treatment (Figure 3D). The same results were also illustrated in Calu-3 cells (Figures 3E–H). Collectively, our results suggested that SLC7A11 exhibited a key role in ferroptosis.




Figure 3 | SLC7A11 modulates ferroptosis induced by erastin in NSCLC cells. (A) Determination of the viability in SLC7A11 knockdown A549 cells with erastin (5 µM) treatment for 24 h. The intercellular ROS (B), MDA (C), and Fe2+ levels (D) were significantly suppressed abrogated on SLC7A11 knockdown cells. (E) Cell viability of SLC7A11 knockdown Calu-3 cells with erastin (5 µM) treatment for 24 h. The intercellular ROS (F), MDA (G), and Fe2+ levels (H) were significantly suppressed abrogated on SLC7A11 knockdown cells. **P < 0.01 and ***P < 0.001.





miR-27a-3p Directly Targeted SLC7A11

We explored in-depth the mechanism of SLC7A11 in ferroptosis. The miRNAs targeting SLC7A11 were predicted using TargetSan, miRanda, microT, PITA, miRmap, and PicTar (Figure 4A). A total of five overlapping miRNAs were screened out including miR-1297, miR-26a-5p, miR-26b-5p, miR-27a-3p, and miR-27b-3p. We further detected these miRNAs’ expression in the GSE19945 dataset, and the results showed that miR-26a-5p, miR-26b-5p, and miR-27a-3p were downregulated in NSCLC (Figures 4B, C). Among the three miRNAs, miR-27a-3p expression was remarkably decreased in cancer tissues and A549 cells (Figure 4D). The association of SLC7A11 mRNA expression with miR-27a-3p was further investigated. Pearson correlation analysis showed that SLC7A11 mRNA expression displayed a greatly negative correlation with miR-27a-3p (r = 0.797, P < 0.001) (Figure 4E). SLC7A11 mRNA expression was significantly upregulated, and ablating miR-27a-3p gave rise to increasing SLC7A11 mRNA level in miR-27a-3p mimic-transfected NSCLC cells (Figure 4F). Luciferase reporter assay was carried out to verify the relation of SLC7A11 with miR-27a-3p, and the data revealed that decreased luciferase activity was observed in A549 cells with cotransfection of miR-27a-3p and WT-SLC7A11-3’UTR rather than the control group, suggesting that SLC7A11 was a target of miR-27a-3p (Figures 4G, H).




Figure 4 | miR-27a-3p is the regulator of SLC7A11 protein. (A) Predicted the miRNAs targeting SLC7A11 using TargetSan, miRanda, microT, PITA, miRmap, and PicTar databases. (B) Volcano plot indicating the downregulated and upregulated microRNA in NSCLC tissues. (C) Three overlapping miRNAs were screened out including miR-26a-5p, miR-26b-5p, and miR-27a-3p. (D) Measurement of miR-27a-3p expression in the tissues and cell lines of NSCLC. (E) The correlation of SLC7A11 with miR-27a-3p. (F) Determination of the SLC7A11 expression level in miR-27a-3p mimic and anti-miR-27a-3p treated A549 cells, respectively. (G) Prediction of miR-27a-3p’s e binding sites in SLC7A11. (H) Detection of luciferase activity of A549 cells with cotransfection of SLC7A11 (WT) or SLC7A11 (MUT) and miR-27a-3p or anti-miR-27a-3p. **P < 0.01 and ***P < 0.001.





miR-27a-3p Regulates Erastin Induced Ferroptosis in NSCLC Cells

CCK-8 cell viability assay was employed to analyze cell death after erastin treatment. Cell viability was reduced after downregulating miR-27a-3p in comparison with control (Figure 5A), suggesting that miR-27a-3p negatively modulated ferroptosis. To unearth miR-27a-3p’s role in ferroptosis, miR-27a-3p mimic was transfected into cells, and the data illustrated that upregulating miR-27a-3p contributed to the promotion of cell viability (Figure 5B). Similarly, we also assessed miR-27a-3p’s role in regulating MDA accumulation in NSCLC cells. The data indicated that the elevated MDA after erastin treatment was largely reversed upon overexpressing miR-27a-3p (Figure 5C). In addition, after erastin treatment, the overexpressed miR-27a-3p decreased Fe2+ levels in A549 and Calu-3 cells (Figure 5E). And the inhibition in endogenous miR-27a-3p caused by the antagonist led to the increase in MDA accumulation and intracellular Fe2+ levels in A549 and Calu-3 cells (Figures 5D, F). Of interest, miR-27a-3p exerted more significant effect on lipid peroxidation relative to iron accumulation (**p<0.01 vs *p<0.05), indicating that miR-27a-3p mediated the inhibition of ferroptosis majorly by regulating lipid peroxidation in NSCLC cells. Schematic of the working details of miR-27a-3p/SLC7A11 in NSCLC was shown in Figure 6.




Figure 5 | miR-27a-3p regulates erastin induced ferroptosis in NSCLC cells. The influence of miR-27a-3p on erastin induced ferroptosis on A549 and Calu-3 cells. Cell viability (A, B), MDA level (C, D), Fe2+ accumulation (E, F) were determined after miR-27a-3p mimic and anti-miR-27a-3p transfection. *P < 0.05 and ***P < 0.001.






Figure 6 | Schematic of the working details of miR-27a-3p/SLC7A11 in NSCLC.






Discussion

NSCLC, the most common type of lung cancer, is further classified into adenocarcinoma (AC), squamous cell carcinoma (SCC), and large-cell carcinoma (LCC). As the pathogenesis process of NSCLC is very complex, the understanding of the progression of NSCLC is still limited. In recent years, extensive studies have revealed that miRNAs are important regulators in NSCLC progression. The abnormal expression of miRNAs can be used as a prognostic indicator for the treatment target of NSCLC.

Ferroptosis is a sort of programmed cell death, which is non-apoptotic and reported as regulated cell death in an iron and ROS-dependent form (13). The morphological characteristics of ferroptotic cells contained mitochondrial structure changes, along with nuclear noncontraction and plasma membrane rupture (18), usually generated by inhibited system xc- (i.e., erastin) (19). System xc- is the cystine/glutamate antiporter, which is responsible for importing extracellular cystine in exchange for intracellular glutamate (20). The cystine/glutamate antiporter xCT (SLC7A11) is a primary constituent of system xc- (21). The starvation of intracellular cystine brought about the exhaustion of the glutathione (GSH) level and consequent inactivation of GSH peroxidase 4 (GPX4) function (22, 23). The reduction of lipid hydroperoxides to lipid alcohols was executed by GPX4 (24). A high level of lipid ROS was triggered in the absence of GPX4 activity (25). Additionally, excessive iron also produced ferroptotic cell death by engendering ROS via the Fenton reaction (26, 27). As the key component of system xc-, SLC7A11 can mediate neutral amino acid uptake, such as Gln. The intracellular Gln pool is vital for continuous activation of mammalian target of rapamycin complex 1 (mTORC1) signaling, which mainly modulated cell growth, apoptosis, and autophagy. In erastin-triggered ferroptosis, the importation and metabolism of Gln brought in the generation of lipid ROS and the promotion of cell death. Accumulating evidence demonstrated that SLC7A11 played importantly in the progression and the survival of different carcinoma cell types, including breast, glioma, and lymphoma (28–30). Dixon et al. found that SLC7A11, a subunit that inhibits amino acid transporter, can accelerate erastin-induced cell death, while overexpression of SLC7A11 can inhibit erastin-induced cell death (19). Cystine uptake regulated by SLC7A11 is a rate-limiting step for biosynthesis of glutathione in organisms (31). Here we described the functional significance of SLC7A11 overexpression in NSCLC. SLC7A11 was overexpressed in the tissues of NSCLC, and its overexpression had a correlation with poorly prognostic status in NSCLC patients. Studies were showing that overexpressing SLC7A11 induced ferroptosis in NSCLC cells, and silencing SLC7A11 inhibited NSCLC cell proliferation and lipid peroxidation in vitro.

Pioneering works have found that SLC7A11 expression is regulated by various stimuli such as oxygen (32) and electrophilic agents (33). Later, emerging studies reveal that under various cellular stresses in a host of cancers, SLC7A11 is mostly adaptively upregulated to mitigate intracellular ROS and replenish GSH, thereby antagonizing cell death and resisting anticancer therapies. From the perspective of post-transcriptional modification, accumulating evidence demonstrates that SLC7A11 mRNA is derepressed by decreased miR-26b in human breast cancer and miR-375 in oral squamous cell carcinoma (34–36). And bioinformatic analysis predicted that SLC7A11 is targeted by different miRNAs, including has-mir-373 and has-mir-372 (37), miR-374b-5p and miR-26b-5p (38), and miRNA-126-3p/5p (39), but whether and how these miRNAs regulate SLC7A11 are not clear. In the present study, we predicted the candidate target genes for miR-27a-3p using TargetSan, miRanda, microT, PITA, miRmap, and PicTar platform. Our current data suggested that SLC7A11 was a potential target of miR-27a-3p. Further data revealed that rescued miR-27a-3p made NSCLC cells sensitive to erastin-induced ferroptosis, which greatly inhibited NSCLC cells ability in vitro. Collectively, miR-27a-3p, the firstly identified miRNA, mediated the cross-modulation amid apoptosis, autophagy, and ferroptosis. To sum up, we recapitulated that the reduced miR-27a-3p promoted ferroptosis mediated by SLC7A11, offering a split-new target for NSCLC’s diagnosis and treatment. There are some disadvantages in this study; the in vivo experiments are required to confirm the function of the miR-27a-3p in NSCLC. We will try our best to make up for the above deficiencies in our future work and research.



Conclusions

We found that SLC7A11 was dramatically raised in NSCLC patients and cell lines, and SLC7A11 expression associated with prognosis in patients with NSCLC. Furthermore, our research shows that ferroptosis mediates the regulation of NSCLC development via targeting the miR-27a-3p/SLC7A11 pathway. These observations suggested that SLC7A11 is one target of miR-27a-3p, and the reduction of miR-27a-3p promoted ferroptosis mediated by SLC7A11 in NSCLC, offering a split-new direction for NSCLC’s diagnosis and treatment.
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Supplementary Figure 1 | CCK8 assay detection of cell survival levels of Calu-3 induced by Erastin and Erastin plus ferrostatin-1 at different concentrations. *P < 0.05, **P < 0.01, and ***P < 0.001.

Supplementary Figure 2 | ROS expression levels of A549 cells treated with indicated compounds. *P < 0.05, **P < 0.01, and ***P < 0.001.

Supplementary Figure 3 | SLC7A11 expression levels in SLC7A11 knockdown A549 and Calu-3 cells. sh-NC or sh-SLC7A11 (sh-SLC7A11 1# and sh-SLC7A11 2#) were separately transfected into A549 and Calu-3 cells and SLC7A11 expression levels were measured using qPCR (A, B). *P < 0.05, **P < 0.01, and ***P < 0.001.
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CircPVT1 (hsa_circ_0001821) is a cancer-related circular RNA (circRNA) that originated from a genomic locus on chromosome 8q24. This locus has been previously found to encode the oncogenic long non-coding RNA PVT1. Expression of this circRNA has been found to be upregulated in diverse neoplastic conditions. CircPVT1 acts as a sponge for miR-125a, miR-125b, miR-124-3p, miR-30a-5p, miR-205-5p, miR‐423‐5p, miR‐526b, miR-137, miR-145-5p, miR-497, miR-30d/e, miR-455-5p, miR-29a-3p, miR-204-5p, miR-149, miR-106a-5p, miR-377, miR-3666, miR-203, and miR-199a-5p. Moreover, it can regulate the activities of PI3K/AKT, Wnt5a/Ror2, E2F2, and HIF-1α. Upregulation of circPVT1 has been correlated with decreased survival of patients with different cancer types. In the current review, we explain the oncogenic impact of circPVT1 in different tissues based on evidence from in vitro, in vivo, and clinical investigations.
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Introduction

Circular RNAs (circRNAs) are single-stranded covalently enclosed uninterrupted loops with no free end or polyadenylated tail (1). These transcripts are prevalent in human transcriptome since approximately 20% of active genes have the potential to produce circRNAs (1, 2). In fact, circRNAs are a group of long non-coding RNAs (lncRNAs). Compared with linear ncRNA, circRNAs have more stability, since their circular structure protects them from degradation by the majority of RNA decay mechanisms (3, 4).

Being mainly produced by back-splicing, circRNAs consist of exonic and/or intronic regions. Back-splicing is a non-canonical alternative RNA splicing process that is facilitated by the spliceosomes and contribution of a number of cis- or trans-acting factors (5). Biogenesis of circRNA is under control of numerous cis- and trans-acting factors (6). The splice sites, enhancers, and silencers, particularly element adjacent to the junction sites, including the inverted Alu repeat segments are examples of the cis-regulatory factors (7). Spliceosome elements, RNA helicases, and RNA-binding proteins are among trans-regulatory factors in regulation of circRNA biogenesis (8).

CircRNAs have functional roles in the regulation of gene expression through competitively binding and sponging miRNAs. This action of circRNAs leads to the stabilization of miRNA targets (5). This mode of action of circRNAs is well assessed. In fact, a number of circRNAs have numerous binding sites for single or numerous miRNAs (5). In addition, a number of circRNAs can sponge proteins and block their activity (9). Some circRNAs can bind to numerous proteins and keep them together. These circRNAs serve as a scaffold to enable interactions of these proteins (5). Thus, in addition to sponging miRNAs, they regulate gene expression via interacting with several proteins. There is also evidence that certain circRNAs can produce proteins (10).

Three major categories of circRNA have been identified: exonic circRNAs, circular intronic RNAs, and exon–intron circRNAs (11). Exonic circRNAs mostly serve as miRNA sponges. Thus, they increase expression of miRNA targets through adsorption of miRNAs. However, intron-containing circRNAs (including both circular intronic RNAs and exon–intron circRNAs) are mainly located in the nucleus where they modulate transcription of certain genes (12, 13).

CircRNAs partake in the regulation of all principal hallmarks of malignancy and are considered as promising markers for diagnosis and prediction of course of cancer (5).

CircPVT1 (hsa_circ_0001821) is an example of a cancer-related circRNA that originated from a genomic locus on chromosome 8q24 (14). This locus has been previously found to encode the oncogenic lncRNA PVT1. The CircInteractome Database (https://circinteractome.nia.nih.gov/index.html) has listed 26 isoforms for circPVT1 (15). The spliced length of these isoforms ranges from 113 to more than 11,000 nucleotides, with the most frequent isoform being 410 nucleotide long. CircPVT1 is produced by back-splicing and encompasses the entire length of exon 2 of PVT1 (16). On the other hand, some of the identified 26 isoforms of lncRNA PVT1 do not have exon 2 (17). These alternatively spliced variants have 5′ cap and polyadenylated tail at 3′ end (18).

Expression of circPVT1 has been assessed by different methods. Current methods usually use simple statistical methods or differential expression analysis strategies developed for linear RNAs. As the majority of circRNAs have very low levels of expression, RNase R treatment is typically used for enrichment of circRNAs. When RiboMinus/RNase R-treated RNA-seq libraries are used, alterations in enrichment coefficient in the RNase R treatment phase might lead to bias in estimation of circRNA expression (19).

A high-throughput RNA sequencing experiment for comparison of circRNA signature in proliferating versus senescent human fibroblasts has identified circPVT1 as a downregulated transcript in senescent fibroblasts. Further experiments have indicated that downregulation of circPVT1 expression in proliferating fibroblasts induces their senescence, as being evident by upregulation of senescence-related β-galactosidase level, upregulation of CDKN1A/P21 and TP53, and decrease in proliferation rate. These effects are most probably mediated through modulation of let-7 levels and consequent alteration in levels of let-7-regulated transcripts, including IGF2BP1, KRAS, and HMGA2 (16).

Among different cancer types, circPVT1 has been primarily identified as an upregulated circRNA in gastric cancer specimens compared with corresponding normal tissues (14). Subsequently, overexpression of this circRNA has been verified in other types of malignancies. In this review, we explain the oncogenic roles of circPVT1 in different tissues based on evidence from in vitro, in vivo, and clinical investigation.



In Vitro Studies

CircPVT1 has been found to increase proliferation of gastric cancer cell through serving as a molecular sponge for miR-125 family members (14). Moreover, expression of circPVT1 has been higher in paclitaxel-resistant gastric cancer cells. CircPVT1 silencing has improved sensitivity of gastric cancer cells through modulating miR-124-3p levels. Since ZEB1 is a direct target of miR-124-3p, circPVT1 enhances expression of ZEB1 through sequestering this miRNA (20). Exosomal levels of circPVT1 have also been higher in cisplatin-resistant gastric cancer cells parallel with downregulation of miR-30a-5p. CircPVT1 silencing has suppressed cisplatin resistance of gastric cancer cells through inducing apoptosis and reducing invasion or autophagy. Functionally, circPVT1 modulates expression of YAP1 through influencing expression of miR-30a-5p (21).

In breast cancer cells, upregulation of circPVT1 has been accompanied with underexpression of miR-29a-3p. Suppression of circPVT1 or upregulation of miR-29a-3p could block proliferation, invasiveness, and migratory potential of breast cancer cells while promoting their apoptosis. Mechanistically, circPVT1 binds with miR-29a-3p to release AGR2 from its inhibitory effect. AGR2 has been found to increase expression of HIF-1α and then accelerated malignant features of breast cancer cells (22). CircPVT1 has also been shown to promote invasiveness and epithelial–mesenchymal transition (EMT) of neoplastic breast cells through sequestering miR-204-5p (23).

Expression of circPVT1 has also been upregulated in human epithelial ovarian cancer cells. In both SKOV3 and CAOV3 cells, suppression of circPVT1 has decreased cell proliferation and enhanced cell apoptosis. CircPVT1 has been found to negatively regulate miR-149 (24).

CircPVT1 has been demonstrated to be upregulated in osteosarcoma cells parallel with upregulation of c-FLIP and downregulation of miR-205-5p. CircPVT1 silencing has suppressed proliferation, migration, and invasiveness of osteosarcoma cells through inhibiting EMT. This circRNA sponges miR-205-5p and increases expression of c-FLIP (25). Another study in osteosarcoma has revealed downregulation of miR-423-5p while upregulation of Wnt5a/Ror2 and circPVT1. MiR-423-5p has a role in inhibition of glycolysis and suppression of cell proliferation, migration, and invasiveness through influencing expressions of Wnt5a and Ror2. CircPVT1-mediated silencing of miR-423-5p leads to activation of Wnt5a/Ror2 signaling (26). CircPVT1 also enhances metastasis of osteosarcoma through modulation of miR‐526b/FOXC2 axis (27).

In addition, circPVT1 affects response of osteosarcoma cells to chemotherapeutic medications since its silencing has decreased chemoresistance of osteosarcoma cells to doxorubicin and cisplatin through reducing levels of ABCB1 (28). CircPVT1 also participates in doxorubicin resistance of these cells through miR-137–TRIAP1 axis (29).

CircPVT1 contributes in the malignant behaviors of lung cancer via different routes. It induces chemoresistance via modulation of the miR-145-5p/ABCC1 signals (30). In addition, it enhances proliferation and invasion of lung cancer cells via sequestering miR-125b and enhancing E2F2 signals (31). CircPVT1 also serves as a sponge for miR-497 to increase levels of Bcl-2 lung cancer cells (32).

In oral squamous cell carcinoma, circPVT1 has been found to sponge miR-125b and miR-106a-5p to release STAT3 and HK2 from their inhibitory effects (33, 34). In acute lymphoblastic leukemia, the oncogenic role of circPVT1 is mediated through upregulation of Bcl-2 and c-Myc (35).

In hepatocellular carcinoma, circPVT1 regulates proliferation as well as apoptotic and glycolytic processes through modulation of miR-377/TRIM23 axis (36). Moreover, it regulates cell growth via modulation of expression of miR-3666 and Sirtuin 7 (37). MiR-203/HOXD3 is another molecular axis being regulated by circPVT1 in hepatocellular carcinoma (38).

Finally, miR-199a-5p and miR‐145‐5p have been identified as targets of circPVT1 in glioblastoma (39) and clear cell renal cell carcinoma (40), respectively.

Figure 1 shows the oncogenic roles of circPVT1 in different cancer types.




Figure 1 | Oncogenic roles of circPVT1 in different cancer types are mainly exerted through sponging miRNAs.



Table 1 shows the impact of circPVT1 in carcinogenesis based on in vitro studies.


Table 1 | Impact of circPVT1 carcinogenesis based on cell line studies.





Animal Studies

Animal studies have shown the role of circPVT1 suppression on enhancement of cisplatin sensitivity of gastric cancer through miR-30a-5p/YAP1 axis (21). Moreover, circPVT1 silencing could increase drug sensitivity in osteosarcoma models (29). Other studies have consistently pointed to the fact that circPVT1 silencing decreases the ability of malignant cells in induction of palpable tumors in animal models. Almost all of these studies have used BALB/c mice as the recipient of cancer cells (Table 2).


Table 2 | Impact of circPVT1 carcinogenesis based on animal studies.





Human Studies

CircPVT1 levels have been found to be upregulated in gastric cancer tissues as a result of amplification of its genomic locus. Expression of circPVT1 could be regarded as an independent prognostic marker for prediction of overall and disease-free survival of patients with this type of cancer (14). Serum exosomal levels of circPVT1 have been higher in cisplatin-resistant gastric cancer patients, indicating a role for this circRNA in predicting response to cisplatin (21). CircPVT1 has also been found to be upregulated in both osteosarcoma tissues and serum samples of these patients in correlation with poor prognosis of osteosarcoma patients. Moreover, circPVT1 performance as a diagnostic marker for osteosarcoma has been superior to alkaline phosphatase (28). Another study in osteosarcoma patients has shown upregulation of circPVT1 in osteosarcoma tissues compared with normal tissues. Moreover, expression of circPVT1 has been considerably elevated in the chemoresistant patients compared with the chemosensitive ones (29). While the association between overexpression of circPVT1 and lymph node metastasis has been verified in gastric cancer (14) and colorectal cancer (48), Kong et al. reported no correlation between expression levels of circPVT1 and lymph node metastasis in gastric cancer (49). Moreover, they reported downregulation of circPVT1 in gastric cancer (49). Other studies in diverse types of cancers have verified overexpression of circPVT1 in neoplastic tissues versus non-neoplastic tissues adjacent to the tumors (Table 3). Upregulation of circPVT1 has been correlated with tumor size in non-small cell lung cancer (32) and hepatocellular carcinoma (38). However, this correlation has not been verified in osteosarcoma (27).


Table 3 | Impact of circPVT1 carcinogenesis based on human studies.



In lung cancer, expression levels of circPVT1 could differentiate tumor samples from neighboring non-cancerous tissues with diagnostic power of 0.803. More importantly, serum levels of circPVT1 could diagnose patients from healthy subjects with diagnostic value of 0.794 (31). The diagnostic value of circPVT1 has also been assessed in oral squamous cell carcinoma tissue specimens through depicting receiver operating characteristic (ROC) curves. The area under this curve has been measured as 0.787 with sensitivity and specificity values of 68.6% and 86.0%, respectively (33) (Table 4).


Table 4 | Diagnostic value of circPVT1 in cancers.





Discussion

CircPVT1 is transcribed from a locus that is closely associated with cancer. The lncRNA transcribed from this region has been regarded as a cancer-related transcript (51). Most recently, this circRNA has been acknowledged as an oncogenic transcript. CircPVT1 acts as a sponge for miR-125a, miR-125b, miR-124-3p, miR-30a-5p, miR-205-5p, miR‐423‐5p, miR‐526b, miR-137, miR-145-5p, miR-497, miR-30d/e, miR-455-5p, miR-29a-3p, miR-204-5p, miR-149, miR-106a-5p, miR-377, miR-3666, miR-203, and miR-199a-5p. Moreover, it can regulate activity of PI3K/AKT, Wnt5a/Ror2, E2F2, and HIF-1α. Thus, the sponging role of circPVT1 is the most appreciated function of this circRNA.

The therapeutic potential of circPVT1 has been deduced from altered response of cancer cell lines as well as primary neoplasms to different drugs depending on the expression levels of this circRNA (52). Moreover, independent studies in animal models of gastric cancer, osteosarcoma, lung cancer, medullary thyroid cancer, breast cancer, oral squamous cell carcinoma, hepatocellular carcinoma, and renal cell carcinoma have verified the oncogenic roles of circPVT1. These studies have also shown the effectiveness of circPVT1 silencing in reduction of tumor burden, suggesting novel treatment modalities for further examinations in clinical settings.

Upregulation of circPVT1 has been associated with decreased survival of patients with diverse cancer types, demonstrating the role of this circRNA as a prognostic marker. Two recent meta-analyses have indicated the importance of circPVT1 levels in prediction of malignant behavior of different types of neoplasms (53, 54). Further proofs for participation of circPVT1 in the carcinogenesis have come from the observed association between its levels in tumors and clinical data including TNM stage, tumor size, and lymph node positivity. CircPVT1 has also been suggested as a diagnostic marker in lung cancer as well as oral squamous cell carcinoma. The discovery of presence of circPVT1 in the cancer-derived exosomes not only highlights the biomarker role of this circRNA but also unravels a less-studied route of promotion of malignant behavior in tumor tissues by this circRNA.

Although expression of circPVT1 has been assessed by different methods, based on the poor reproducibility of assessment of circRNA expression levels (55), precise identification and quantification of circPVT1 expression are crucial.

Cumulatively, circPVT1 is implicated in response of cancer patients to chemotherapeutic agents such as cisplatin, doxorubicin, and paclitaxel. Thus, circPVT1 silencing is a putative modality for improvement of chemotherapy response in patients.
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Tissue Number Minimum Maximum Median Mean NumMen NumWomen Proportion

Adipose_subcutaneous 350 21 70 55 52 219 131 1.672
Adipose_visceral_(omentur) 227 21 70 54 52 145 8 1.768
Adrenal_gland 145 21 70 51 51 81 64 1.266
Artery_aorta 224 21 69 54 51 138 86 1.605
Artery_coronary 133 21 69 54 52 7 56 1.375
Artery_tibial 332 20 70 53 51 213 119 1.79
Brain_amygdala 72 20 70 60 58 50 22 2273
Brain_anterior_cingulate_cortex_(BA24) 84 20 70 60 58 61 23 2652
Brain_caudate_(basal_ganglia) 117 20 70 60 58 8 32 2656
Brain_cerebellar_hemisphere 105 20 70 59 56 74 31 2387
Brain_cerebellum 125 20 70 59 57 84 a1 2049
Brain_cortex 114 20 70 59 57 7 37 2.081
Brain_frontal_cortex_(BA9) 108 23 70 60 58 7 31 2.484
Brain_hippocampus 9 20 70 60 57 65 29 2241
Brain_hypothalamus 9% 20 70 60 58 7 25 284
Brain_nucleus_accumbens._ 113 20 70 60 57 79 34 2324
(basal_ganglia)

Brain_putamen_(basal_ganglia) o7 20 70 59 57 69 28 2.464
Brain_spinal_cord_(cervical_c-1) 7 22 70 59 57 43 28 1536
Breast_mammary_tissue 214 21 70 53 51 124 20 1.378
Cells_EBV- 118 21 70 50 48 75 43 1.744
transformed_lymphocytes

Cells_transformed._fibroblasts 284 21 70 535 51 181 108 1.757
Colon_sigmoid 149 21 70 56 54 88 61 1.443
Colon_transverse 196 21 70 50 48 115 81 1.42
Esophagus_gastroesophageal_junction 153 21 70 53 51 94 59 1.503
Esophagus_mucosa 286 21 70 52.5 50 179 107 1673
Esophagus_muscularis 247 21 70 50 49 157 ) 1.744
Heart_atrial_appendage 194 20 70 55 54 126 68 1.853
Heart_eft_ventricle 218 20 70 53 51 142 76 1.868
Liver 119 21 69 55 54 78 a1 1.902
Lung 320 21 70 54 52 213 107 1.991
Muscle_skeletal 430 20 70 54.5 52 274 156 1.756
nerve_tibial 304 20 70 54 52 199 105 1.895
Ovary o7 21 69 51 50 o7 NA NA
Pancreas 171 21 70 51 50 102 69 1.478
Pituitary 103 20 70 59 57 74 29 2562
Prostate 106 21 70 50.6 49 106 NA NA
Skin_not_sun_exposed_(suprapubic) 250 20 70 55 53 164 86 1.907
Skin_sun_exposed._(lower_leg) 357 21 70 55 52 226 131 1.725
Small_intestine_terminal_ileum 8 21 70 495 48 51 37 1.378
Spleen 104 21 68 50 48 60 a4 1.364
Stomach 193 21 70 51 48 11 8 1.354
Testis 172 21 70 52 50 172 NA NA
Thyroid 323 20 70 55 53 211 12 1.884
Uterus 83 21 69 50 48 8 NA NA
Vagina 9% 21 69 51 50 9% NA NA

Whole_blood 393 20 70 54 52 249 144 1.729





OPS/images/fgene-11-01025/fgene-11-01025-t002.jpg
Adipose_subcutaneous
Adipose_visceral_(omenturm)
Adrenal_gland

Artery_aorta

Artery_coronary

Artery_tibial

Brain_amygdala
Brain_anterior_cingulate_cortex_(BA24)
Brain_caudate_(basal_ganglia)
Brain_cerebellar_hemisphere
Brain_cerebellum

Brain_cortex
Brain_frontal_cortex_(BA9)
Brain_hippocampus
Brain_hypothalamus
Brain_nucleus_accumbens_
(basal_gangiia)
Brain_putamen_(basal_ganglia)
Brain_spinal_cord_(cervical_c-1)
Breast_mammary_tissue
Cells_EBV-
transformed_lymphooytes
Cells_transformed_fibroblasts
Colon_sigmoid
Colon_transverse
Esophagus_gastroesophageal_junction
Esophagus_mucosa
Esophagus_muscularis
Heart_atrial_appendage
Heart_left_ventricle

Liver

Lung

Muscle_skeletal

Nerve_tibial

Ovary

Pancreas

Pituitary

Prostate
Skin_not_sun_exposed_(suprapubic)
Skin_sun_exposed_(lower_leg)
Small_intestine_terminal_ileum
Spleen

Stomach

Testis

Thyroid

Uterus

Vagina

Whole_blood

50

7.76
8.49
7.82
6.84
828
7.44
7.1
6.3
6.64
723
713
7.45
2
8.04
6.91
722

T2
6.9
10.38
8.86

10.38
9.42
9.58
8.94
8.49
7.78
8.66
9.4
7.49
871
8.45
6.81
6.09
5.85
5.53
8.86
9.04
7.73
7.57
6.83
97
65
791
6.64
8.55
10.67

100

735
835
73
6.68
8.02
6.41
6.52
5.89
6.62
753
8.73
6.98
7.39
8.08
7.08
6.56

7.09
6.86
10
8.18

9.91
8.96
937
9

837
7.65
8.57
9.15
6.76
8.46
7.83
6.54
6.14
597
5.11
8.91
8.58
7.35
7.07
6.16
86
6.03
7.56
6.86
8.42
106

7.28
8.02
6.97
6.43
7.32
6.09
.31

6.5
6.26
7.46
621
7.47
6.56
8.21
6.91
6.15

6.3
5.26
95
7.56

9.14
88
9.04
8.91
8.28
7.81
7.55
95
6.13
8.59
7.43
6.19
5.89
5.63
457
8.68
8.24
M
554
6.22
801
5.81
6.91
7.59
8.06
10.68

747
7.86
6.06
6.14

5.99
5.62
5.82
5.61
752
5.82
6.57
6.25
6.77
6.59
6.53

5.56
6.32
9.06
6.29

9.26
89
8.83
8.61
795
7.69
7.44
9.15
5.92
8.13
7.28
5.88
5.78
6.15
4.23
8.04
8
6.79
4.24
5.18
7.38
55
6.77
7.67
7.29
10.53

Validation RMSE

600

697
7.69
5.66
5.93
5.89
5.79
5.1
5.68
5.46
6.97
551
6.87
5.97
6.73
6.6
5.98

5.16
5.12
8.77
6.04

8.83
8.36
86
8.44
7.85
7.06
747
9.02
6.03
B
7.4
6.05
5.81
53
38
7.45
7.49
6.74
4.16
477
7.01
541
6.51
791
7.03
10.58

800

7.03
7.78
5.46
5.98
6.12
5.88
527
6
5.63
6.9
525
6.81
59
6.87
6.43
551

5.19
491
7.98
5.68

8.74
8256
8.6
8.35
7.58
6.91
712
8.91
5.69
77
752
6.22
5.46
4.93
3.98
7.4
735
6.8
4.03
452
6.82
531
6.54
7.76
6.66
10.48

1,600

697
7.67
5.25
577
578
571
5.23
6.16
5.07
6.52
501
5.81
59
6.9
6.29
573

5565
4.83
6.86
5.64

8.26
8.36
8.42
7.56
7.56
6.556
6.65
8.06
5.48
7.69
7.37
5.96
5.39
4.27
3.92
6.88
7.24
6.52
4.16
471
6.15
4.83
6.22
753
6.94
10.19

3,200

7.05
795
5.38
5.76
5.84
5.81
5.41
6.32
4.65
6.09
4.69
5.92
5.32
6.41
6.19
5.33

552
5
6.28
5.87

7.76
714
837
718
7.69
6.04
593
725
5.77
6.92
6.96
5.71
522
451
41
6.87
6.19
6.25
4.59
5.1
62
4.92
6.39
724
6.64
10.03

6,400

7.2

7.6
553

5.9
6.06
6.07
5.39
6.51
4.65
6.14
4.63
5.67
5.34
554
6.59
5.43

58
551
6.4
6.78

7.74
75
7.98
6.86
7.58
6.38
5.96
6.87
6.08
12
6.86
5.74
541
5.06
455
6.57
6.24
6.11
5.49
5.3
6.71
4.95
6.1
723
6.99
10.08

In this table the age-prediction model established with 46 tissues using the top 50, 100, 200, 400, 600, 800, 1,600, 3,200, and 6,400 genes with the highest age-related degree,
respectively. Validation RMSE of 46 single tissues by 10-fold CV.
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Gene symbol Coefficient Tissue Gene symbol Coefficient Tissue

Intercept 49.1

RF00019 ~0.5534609 Pituitary HMGN2P46 ~0.265154 Pituitary
RASSF8 0.43450456 Pituitary APLY -0.262319 Pituitary
ALOX158 0.42384809 Pituitary AC079922.1 ~0.2613869 Pituitary
IGSF1 -0.3815586 Pituitary CYP3AS 0.25593725 Pituitary
MAOA 0.3779751 Pituitary MIR3186 —0.248713 Pituitary
PIGP -0.3643882 Pituitary FA2H ~0.2478653 Pituitary
AC138904.1 -0.3590232 Pituitary LzTs1 ~0.2453074 Pituitary
ITGA10 0.34749327 Pituitary FKBPS -0.2403517 Pituitary
CYP51ATP2 ~0.3468059 Pituitary HTNG 0.28757784 Pituitary
FABPG 0.33526575 Pituitary VNN3 023713188 Pituitary
AC007938.1 -0.3287363 Pituitary MMP11 —0.2370928 Pituitary
LINCO1315 -0.3252791 Pituitary PADI2 023575174 Pituitary
AL596325.2 0.32297086 Pituitary NANOGNBP3 0.23556292 Pituitary
LINC00662 0.3151238 Muscle ST6GALNACS —0.2348075 Pituitary
CATSPERB 0.31335041 Pituitary or —0.2308648 Pituitary
MUCt 0.31188538 Pititary KCNMB2-AS1 022053261 Pituitary
NBEAP3 0.20659649 Pituitary DaX1 ~0.2276446 Pituitary
SNAI3 -0.2043786 Pituitary GSTM4 022188874 Pituitary
HISTIHIC 0.20287356 Pituitary AC021016.1 0.22063205 Pituitary
LINC02232 0.28356117 Pituitary FER1L4 02180329 Pituitary
S100A1 0.28252535 Pituitary LY6GSB 021750613 Pituitary
KMO 0.27801131 Pituitary 787816 ~0.2170829 Pituitary
HLA-DOB 0.27540573 Pituitary FCF1P1 —02147114 Pituitary
AC124947.1 0.26677666 Pituitary GHRNAT 021457823 Pituitary
KCNK4 -0.2667203 Pituitary MGATS —02125122 Pituitary

In this Table the coefficient of the pituitary and muscle combination mode in Table 3. Here, we list the top 50 genes in the model. Coefficient indicates the weight of the gene in the
age-prediction model.
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In this table a double age-predicting model composed of pituitery and muscle, adipose,
brain, skin, and whole blood; 600 is the most age-related gene in pituitary and 50, 100,
200, and 400 are the most age-related gene in other five tissues. Validation RISE of

ituitary and five tissue models by 10-fold CV.
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etal.
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TEC-Seq <0.01%

CAPP-Seq 0.01% SNVs, indels, CNVs and fusions

Whole Exome sequencing 5-10%

Whole Genome sequencing 1-10%
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60

Lamb et al. v Establish CMap database (85)
Iskar et al. V Developed a pipeline for strict fitering and state-of-the-art normalization for gene expression in CMap (86)
Hieronymus v Regulators for predicting cancer phenotypes based on chemical genomics (87)
et al.

Gheeya et al. v Prediction of the mechanism of action of unknown drugs based on CMap database (88)
Fayad et al. v Analysis of MCF-7 gene expression in breast cancer cells based on CMap database (89)
Wen et al. v Detection of gene expression changes caused by traditional Chinese medicine ingredients based on CMAP (90)

database

Zhang et al. v Prediction of molecular mechanism of VPA against CML based on CMAP database 91)
Brown et al. v A standard database for drug repositioning (repoDB) (92)
Shoemaker v Review the development and use of the NCI-60 (93)
Zaharevitz v Explain and demonstrate an example of using COMPARE on the web page (94)
et al.

Cheng et al. v Use the NCI-60 data set to identify new targets for drugs and bioactive compounds on a larger scale (95)
Nishizuka v Proteomic profiing of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays (96)
et al.

Subramanian v Designed a method for cheap and large-scale gene expression analysis (L1000 assay) 97)
et al.

Niepel et al. V Developed a method for cell growth and survival measurements (98)
Chen et al. v Predicted four highly effective compounds capable of reversing liver cancer gene expression, and confirmed that ~ (99)

all four compounds are effective against five liver cancer cell lines

Fallahi- V Multi-parameter methods involving analysis (100)
Sichani et al.

Barretina v Created a research tool for predicting genetic variation in cancer drug sensitivity 27)

et al.
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Zhang A.
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Guney et al.

Kotlyar et al.
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Chen et al.
Chen et al.
Zhou et al.
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Description

A new system calculation tool called DrugComboRanker prioritizes synergistic drug combinations and reveals its mechanism of action
Drug sensitivity prediction based on high-throughput sequencing data and signal network

KEGG Mapper tool introduction

Alternative techniques and tools for analyzing biomolecular networks

Discuss current research problems and solutions in protein-protein interaction networks

A multi-level network model integrating drugs, diseases and genes for disease diagnosis, treatment and drug discovery

A novel algorithm to find mutated subnetworks (HotNet2) is used

A metric for quantifying interactions between drugs, targets, and diseases

Use networks to characterize genes that are differentially regulated by drugs and find the differences between the genes regulated by drugs and
drug targets

A inference method based on topological similarity of drug target bipartite network

A network method based on restart random walk

A method based on basic network topology measure is used to predict the direct association between drugs and diseases
A weighting method is used that can be directly applied in extracting hidden network information

Hybrid algorithm based on heat-spreading

A computing framework based on heterogeneous network model

A principled method to improve the prediction performance of two tasks

Reorientation of PD drugs with systemic pharmacology framework
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factorization matrix matrix
factorization factorization

Liu et al. v Neighborhood regularized logic matrix factorization (NRLMF) (54)
Hao et al. v Dual network integrated logistic matrix factorization (55)
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Tumor type Samples Distinguish between Area under the  Sensitivity Specificity References

curve (%) (%)
Lung cancer 68 pairs of NSCLC tissues and ANCTs NSCLC tissues vs. ANCTs 0.803 82.5 67.5 31)
serum of 45 NSCLC patients and 45 NSCLC patients vs. healthy 0.794 711 80.0
healthy controls controls
104 pairs of LUSC tissues LUSC tissues vs. normal 0.774 97.1 51 (44)
tissues
110 pairs of LUSC serum LUSC serum vs. normal 0.789 91.3 60.6
tissues
Oral squamous cell carcinoma 50 OSCC tissues and ANCTs OSCC tissues vs. ANCTs 0.787 68.6 86.0 (33)

(OsCQ)

ANCTs, adjacent non-cancerous tissues; NSCLC, non-small cell lung cancer; LUSC, lung squamous cell carcinoma.
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Tumor type

Acute
lymphoblastic
leukemia (ALL)

Breast cancer
(BC)

Cutaneous
squamous cell
carcinoma
(CSCO)
Esophageal
cancer

Gastric cancer
(GC)

Glioblastoma
Hepatocellular
carcinoma
(HCC)

Lung cancer

Medullary
thyroid cancer
(MTC)

Oral squamous
cell carcinoma
(0SCC)

Osteosarcoma

Renal cell
carcinoma
(RCC)

Samples

20 BM samples from AML
patients, and 48 BM samples
from ALL patients, and 40
controls

40 BC tissues and ANCTs

99 BC tissues and ANCTs
30 pairs of CSCC tumor
tissues and ANCTs

20 esophageal cancer patients
and 20 healthy volunteers

20 tumor tissues and ANCTs
20 pairs of GC tissues and
normal tissues

187 pairs of GC tissues and
ANCTs

30 PTX-sensitive patients and
30 PTX-resistant patients

30 GC tissues

25 GBM tissues and ANCTs
26 pairs of HCC tissues and
ANCTs
45 pairs of HCC tissues and
ANCTs
70 pairs of HCC tissues and
ANCTs

104 LAD tissues and

corresponding ANCTs
96 NSCLC patients and 96

healthy controls

68 pairs of NSCLC tissues and
ANCTs

Serum of 45 NSCLC patients
and 45 healthy controls

90 pairs of NSCLC tissues and
ANCTs

8 LUSC tissues and 9 healthy
lung samples

104 pairs of LUSC tissues and
110 pairs of serum samples
28 MTC tissues and ANCTs

50 OSCC tissues and ANCTs

30 pairs of OSCC tissues and
ANCTs

80 pairs of malignant tissues
and ANCTs

25 pairs of malignant tissues
and corresponding ANCTs
36 pairs of malignant tissues
and ANCTs

48 pairs of malignant tissues
and ANCTs

52 tumor patients and 45
normal samples

7 ccRCC tissues and ANCTs
(GSE108735)

90 ccRCC tissues and ANCTs

Expression

(tumor vs. normal) analysis (impact of

Higher in ALL but
not AML

High

High
High

No significant
difference

High

High

High

Higher in PTX-
resistant GC tissues
than PTX-sensitive

tissues
High

High
High

High

High

High

High

High
High
High
High
High

High

High
High

High

High
High
High
High
High

High

Kaplan-Meier

circPVT1 upregu-
lation)

NR

Poor survival and
low median survival
time

Worse OS

NR

NR

NR
NR

Longer OS and DFS

NR

NR

NR
NR

NR

NR

Shorter 0S
Lower OS and
chemotherapy-
resistant

NR

NR

Shorter OS

NR

Worse OS

Lower OS

NR
NR

Shorter OS

NR

Lower OS
Shorter OS
NR

NR

NR

Prognostic factors based
onunivariate/multivariate
Cox regression analyses

NR

NR

NR
NR

NR

NR
NR

CircPVT1 expression, tumor
size, and TNM stage (for

OS and DFS)
NR

NR

NR
NR

NR

NR

CircPVT1 expression

CircPVT1 expression and
TNM stage

NR
NR
NR
NR
CircPVT1 expression (OS)

NR

NR
NR

NR

NR
NR
NR
NR
NR

NR

Association of circPVT1
expression with
clinicopathologic
characteristics

Age (in ALL)

Lymph node positivity and
tumor size

advanced TNM stage
NR

NR

NR
NR

Low circPVT1 expression
associated with late T stage
and positive neural invasion
NR

Tumor-node-metastasis
grade, lymph node
metastasis, tumor size,
DDP resistance

NR

NR

NR

Overall survival, lymph node
metastasis, and TNM
stages

N stage and chemotherapy
insensitivity

Negatively correlated

with differentiation or
p-TNM stage

Distant metastasis

NR
Tumor size and TNM stage
NR

TNM stage, lymph node
metastasis, and tumor size
NR

Tumor size and tumor,
node, and metastasis

Advanced Enneking stage,
metastasis, and
chemoresistance

NR

NR

Advanced clinical stage,
distant metastasis
Chemoresistance

NR

T stage, N stage, and
M stage

Reference

(85)

(42)

(14)

(20)

@1

(25)
(46)
@7)
(9)

(40)

PTX, paciitaxel; DDP, cisplatin; ANCTSs, adjacent non-cancerous tissues; OS, overall survival; MVI, microvascular invasion; DFS, disease-free survival; TNM, tumor-node-metastasis; LAD,
lung adenocarcinoma; NSCLC, non-small cell lung cancer; BM, bone marrow; AML, acute myelogenous leukemia; NR, not reported; GBM, glioblastoma; LUSC, lung squamous cell
carcinoma: ccRCC, clear cell renal cell carcinoma.
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Tumor type Animal models Results Reference
Breast cancer Male BALB/c nude mice 1 ¢ircPVT1: 1 tumor growth (22)
Male athymic BALB/c nude mice A circPVT1: | tumor weight, | tumor growth (23)
Gastric cancer Male BALB/c nude mice A circPVT1: | tumor size, | tumor weight, 1 PTX sensitivity (20)
BALB/c nude mice A circPVT1: | tumor volume, | tumor weight (21)
Hepatocellular carcinoma BALB/c nude mice A circPVT1: | tumor volume, | tumor weight (36)
Male athymic BALB/c mice 1 circPVT1: 1 tumor volume, 1 tumor growth (38)
Lung cancer Male BALB/c nude mice 1 ¢ircPVT1: 1 tumor growth 31)
Male athymic BALB/c nude mice A circPVT1: | tumor weight, | tumor growth (43)
Nude mice A circPVT1: | tumor volume (44)
Medullary thyroid cancer Nude mice A circPVT1: | tumor volume, | tumor growth (45)
Oral squamous cell carcinoma BALB/c nude mice A circPVT1: | tumor volume, | tumor weight (34)
Osteosarcoma Nude mice A circPVT1: | tumor volume, | tumor weight, | metastasis (46)
Male BALB/c nude mice A circPVT1: | tumor volume, | tumor weight, 1 drug sensitivity (29)
Renal cancer Male BALB/c nude mice 1 circPVT1: 1 tumor volume, 1 tumor weight, 1 metastasis (40)

A, knock-down or deletion; PTX, paclitaxel.
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Tumor type

Acute lymphoblastic
leukemia
Breast cancer

Cutaneous
squamous cell
carcinoma
Epithelial ovarian
cancer

Esophageal cancer

Gastric cancer (GC)

Glioblastoma

Hepatocellular
carcinoma

Lung cancer

Medullary thyroid
cancer

Oral squamous cell
carcinoma

Osteosarcoma (OS)

Renal cell carcinoma

Targets/regulators and
signaling pathways

c-Myg, Bel-2

MiR-29a-8p, AGR2-
HIF-10 Pathway

MiR-204-5p

Not reported

MiR-149

MiR-4663, Pax-4, Pax-6,
PPARo, PPAR-y
MiR-125a, miR-125b,
E2F2

MiR-124-3p, ZEB1

MiR-30a-5p, YAP1

MiR-199a-5p, VAP1, PIBK/
AKT pathways

MiR-377, TRIM23
MiR-3666, SIRT7

MiR-203, HOXD3

MiR-145-5p, ABCC1
MiR-125b, E2F2 signaling
pathway, c-Fos

MiR-497, Bal-2

MiR-30d/e, CCNF
MiR-455-5p, CXCL12

MiR-125b, STAT3
MiR-106a-5p, HK2

ABCB1
MiR-205-5p, c-FLIP

MiR-423-5p, Wnt5a/Ror2
pathway

MiR-526b, FOXC2
MiR-137, TRIAP1
MiR-145-5p, TBX15

Cell line

GES-1, Nalm-6 B-ALL, LO2,
BEL-7402, Hep3B, HepG2
MDA-MB-231, MCF7

MDA-MB-231, MDA-MB-468,
MCF-7, MCF-10A

HaCat, A431, SCL-1, and SCL-12

CAQVS, SKOV3, OVCARS, SNU119

EC109, CaES-17, TE-1, TE-10, HEEC,
HepG2, MKN45, SW60, A549

MGC-803, AGS, HEK-293T

MKN-45, HGC-27, MGC-803, and

AGS, GES-1
GES-1, HGC-27, AGS

Us39, U251

THLE-2, SNU-387, Huh7

HL-7702, SKHEP-1, SMMC-7721,

HepG2, MHCC97H, 293T

Huh7, Sk-hep1, SMMC-7721,

HepG2, L-02
PAEC, PC9, A549

A549, H292, SPC-A1, H1299, H1650,

H1975, SK-MES-1, HBE
H1299, H1650, A549, PC9,
SK-MES-1, 16HBE

A549, H520, H226, SKMES-1, H1270

TT, MZ-CRC-1, NThyy-ori 3.1

SCC-9, CAL-27, HOK

HNOK, SCC15, SCC9, CAL-27, SCC4

Saos-2, KHOS, U208, MG63

Saos-2, MGB3, U20S, SW1353,

hFOB 1.19

MG-63, Saos-2, HOS, and U20S,

hFOB 1.19

hFOB 1.19, MG-63, U20S, HOS, 143B
hFOB 1.19, KHOS, U20S, 293T
ACHN, 786-0, Caki-1, HK-2, 293T

Function

A circPVT1: | proliferation, 1 apoptosis

A circPVT1: | proliferation, | migration, | invasion, 1
apoptosis

1 circPVT1: 1 proliferation, 1 migration, 1 invasion |
apoptosis

A circPVT1: | proliferation, | migration, | invasion, | EMT
process, 1 apoptosis

A circPVT1: | migration, | invasion

A circPVT1: | proliferation, 1 apoptosis
A circPVT1: | proliferation
1 circPVT1: 1 invasion

A circPVT1: | proliferation

A circPVT1: 1 PTX sensitivity

A circPVT1: | DDP resistance, | invasion, | autophagy, 1
apoptosis
A circPVT1: | proliferation, | migration, | EMT process, 1
apoptosis

A circPVT1: | proliferation, | glycolysis, 1 apoptosis
A circPVT1: | proliferation, | colony formation, 1 apoptosis

A circPVT1: | proliferation, | migration
A circPVT1: 1 cisplatin and pemetrexed sensitivity
A circPVT1: | proliferation, | invasion

A circPVT1: | proliferation, 1 apoptosis

A circPVT1: | proliferation,
A circPVT1: | proliferation, | migration, | invasion

A circPVT1: | proliferation

A circPVT1: | viability, | migration, | invasion, | glycolytic
metabolism, 1 apoptosis

A circPVT1: | doxorubicin and cisplatin resistance

A circPVT1: | proliferation, | migration, | invasion, | EMT
process

A circPVT1: | proliferation, | migration, | invasion, |
glycolysis

A circPVT1: | migration, | invasion

A circPVT1: 1 DXR Sensitivity

A circPVT1: | proliferation, | migration, | invasion, 1 G1
phase arrest, no significant difference in apoptosis

Reference

39)

(@2

(24)

(42)

A, knock-down or deletion; PTX, paclitaxel: DXR, doxorubicin; DDP, cisplatin.
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Correlation between SLC7A11 expression and clinicopathological parameters of NSCLC

Clinicopathological parameters N of cases (n=90) Relative expression of SLC7A11
Low High P-value

Age (years) 0.753
<65 38 17 21

>65 52 25 27

Gender 0.887
male 50 23 27

female 40 19 21

Differentiation 0.337
well, moderate 25 12 13

poor 65 24 M
Tumor size 0.009
<4cm M 34 i

>4cm 49 28 21

Primary location 0.846
left lung 42 20 20

right lung 48 23 25

Smoking history 0.010
ever or now 36 12 24

never 54 33 21

Lymph node metastasis 0.009
positive 47 21 26

negative 43 31 12

TMN stage 0.013
| 33 25 8

] 57 28 29
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Factors HR 95% CI

Gender 0.398 0.178-0.888
pN 1.789 1.062-3.015
METTL3 1.919 1.134-3.247

HR. hazard ratio: Cl. confidence interval.
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0.024
0.029
0.015
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Factors HR 95% CI P value
Gender 0.310 0.092-1.049 0.060
Age 1.972 0.745-5.223 0172
pT 1.503 0.490-4.605 0.476
pN 2.134 0.837-5.440 0.112
TNM stage 2.134 0.837-5.440 0.112
METTL3 2.718 1.048-7.047 0.040*

*P < 0.05: HR, hazard ratio; Cl, confidence interval.
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Factors Number of cases METTL3 expression P value

Low High

Age 0.427
<65 50 25 (45.5%) 25 (54.3%)

265 51 30 (54.5%) 21 (45.7%)

Gender 0.429
Female 84 44 (80.0%) 40 (87.0%)

Male 17 11 (20.0%) 6(13.0%)

pT 0.008
T14T2 22 17 (34.7%) 5(11.1%)

T3+T4 72 32 (63.5%) 40 (88.9%)

pN 1
NO 51 28 (50.9%) 23 (50.0%)

N+ 50 27 (49.1%) 23 (50.0%)

TNM stage 1
I+1l 49 26 (53.1%) 23 (51.1%)

i 45 23 (46.9%) 22 (48.9%)
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