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Editorial on the Research Topic

Neurodegenerative Diseases: Looking Beyond the Boundaries of the Brain

Neurobiological wisdom has long entertained the notion that the brain has functional primacy
over the body. Under this presumption, the body serves as the “machine” through which the
brain manifests its “sublime workings” in the form of overt behavior. The body, nonetheless, does
much more than only being the brain’s marionette. Indeed, it “dialogues, cares, nourishes and may
even condition” the brain so that its functional morphology stays operative throughout life until,
eventually, with increasing age, the body-brain whole irreversibly decays as death approaches.

As the saying outlines, “a healthy mind is a healthy body” and numerous instances support
this simple yet profound notion. The occurrence of reciprocal altruistic/instructive trophic
interrelationships between the body and the brain has existed for decades (Purves, 1992). Scientific
awareness about the overpowering influence the body’s inner sensing has on our conscious
cognitive abilities and behavioral manifestations has also increased greatly. Indeed, embodied
cognition and emotions are no longer denied facts (Seth and Friston, 2016; Holzer, 2017;
Nummenmaa et al., 2018).

Despite this information, many scientists still believe that the origin of neurodegenerative
processes rests within the brain itself. However, this neurocentric view is confronted by relatively
new evidence suggesting that neuronal deterioration may be ignited, and its progression fostered
by processes ongoing outside the boundaries of the brain. These include, but are not limited to,
an impaired cardiovascular system, infection, systemic inflammation, cellular senescence, altered
trophic interactions, endocrine disruption, and gut dysbiosis (Preciados et al., 2016; Castillo et al.,
2019; Limphaibool et al., 2019; Winek et al., 2022). “Neurodegenerative Diseases: Looking Beyond
the Boundaries of the Brain” is a volume that looks at brain diseases as consequences rather than as
the result of primary neurological causes.

Gut microbiota, for instance, modulate the immune system in a variety of neurological
diseases (Cryan et al., 2020; Willyard, 2021). The imbalance of its composition, distribution,
and metabolic activity may lead, as commented by Maiuolo et al., to anxiety, depression, autism
spectrum disorder, and multiple sclerosis. Studying the crosstalk between neurons, mucosal
immunity, and gut microbiota may help us improve therapeutic measures aimed at lessening these
disorders. Dumitrescu et al. evaluated the presence of biomarkers of intestinal inflammation and
barrier permeability in the peripheral circulation and stool samples obtained from Parkinson’s
disease subjects. The correlation observed supported a causal link between dysbiosis, enhanced
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inflammatory response, and the progression of
neurodegeneration. Rydbom et al. demonstrated that Tau is
capable of disrupting gut motility, microbiome composition,
and innate immune response in Drosophila. This opens
the possibility that peripheral tauopathy may alter the
availability of the antimicrobial peptides that oversee the
elimination of pathogenic microorganisms that might
promote neurodegeneration. Lastly, sirtuins, a family of
histone deacetylases, modulate genome stability, stress cellular
response, and nutrient and hormone sensing in response to
various metabolites that signal aging, obesity, and diabetes.
Chandramowlishwaran et al. revised the novel role of sirtuins on
enteric neuronal growth and survival, and propose sirtuins as
novel modulators of the gut-brain axis.

In addition to dysbiosis, viral infections are presumed to cause
neurodegeneration (Limphaibool et al., 2019; Shinjyo and Kita,
2021). With the novel SARS-CoV-2 infection, growing evidence
supports infections as an etiological path to neurodegeneration
and cerebrovascular disease (Wenzel et al., 2021; Douaud et al.,
2022). Römer reviews the epidemiological and experimental
evidence that links viruses and endogenous retroviruses to neuro-
immune degeneration.

Lifestyle and metabolic alterations during midlife are
considered important risk factors for developing Alzheimer’s
Disease (AD) (Livingston et al., 2017). Memory dysfunction
in AD patients results from the brain and peripheral glucose
resistance (Arnold et al., 2018). Wei et al. revise the multiple
pathogenic mechanisms induced by insulin resistance that are
implicated in AD and discuss the use of antidiabetic and anti-
inflammatory drugs to delay the onset of neurodegeneration.
Sim et al. offer a comprehensive overview of the potential
role of dipeptidyl peptidase-4 inhibitor and sodium-glucose
cotransporter 2 inhibitors, both used in type-2 diabetes
patients, as repurposing drugs against AD based on their
antidiabetic effects.

As already mentioned, several lifestyle factors during midlife
are important modulators of dementia onset later in life. In
particular, unhealthy dietary habits influence neurodegenerative
diseases through cellular inflammation and increased oxidation
(Tan and Norhaizan, 2019; Winiarska-Mieczan et al., 2020).
Nassir et al. provide a persuasive and plausible explanation that
supports the role of cellular-derived circulating microparticles
released after consuming unhealthy diets in promoting
thrombotic events throughout the microcirculation. When

thinking about the etiology of neurodegeneration, these
microparticles must then be considered as risk factors and
biomarkers of the brain-heart-gut axis.

The erythroid 2-related factor 2 (NRF2) forms part of
the molecular machinery that supports the body’s antioxidant
defense system. Petrillo et al. performed a family study of
Friedreich’s ataxia, the most frequent autosomal recessive
ataxia in Western societies. Although all family members were
affected by frataxin depletion, those having activation of NRF2
were asymptomatic. The authors propose that the constitutive
upregulation of NRF2 keeps the antioxidant defense above
the threshold, a circumstance that protects against progressive
oxidative damage.

The glymphatic circulation modulates neuroinflammatory
responses in neurodegenerative diseases. Natale et al.
argue that, besides waste elimination, the glymphatic
system may also function to connect the brain with the
periphery. It then facilitates communication between
the immune system and the brain, thus modulating the
brain’s immune surveillance and neuroinflammation. The
functional disruption of the glymphatic system must
then be considered when unrevealing the mechanisms
of neurodegeneration.

It becomes more and more clear that neurodegeneration
progresses silently for many years or even decades before
it becomes diagnosed. Therefore, the identification of early
clinical biomarkers is urgently needed. Zhang et al. suggest
that evaluating retinal degeneration may be a gateway to
understanding, monitoring the progression, and diagnosing
Parkinson’s disease, as visual symptoms appear early in
the disease.

Taken together, this Research Topic highlights the relevance
of studying the etiology of neurodegeneration beyond the
boundaries of the brain. Notably, this compilation of articles
describes how peripheral alterations can impact brain function
and health. Further research is needed to better understand
these paths to develop more effective and early treatment
options to stop the growing number of patients suffering from
neurodegenerative diseases.
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Neurodegeneration of the central and enteric nervous systems is a common

feature of aging and aging-related diseases, and is accelerated in individuals with

metabolic dysfunction including obesity and diabetes. The molecular mechanisms of

neurodegeneration in both the CNS and ENS are overlapping. Sirtuins are an important

family of histone deacetylases that are important for genome stability, cellular response to

stress, and nutrient and hormone sensing. They are activated by calorie restriction (CR)

and by the coenzyme, nicotinamide adenine dinucleotide (NAD+). Sirtuins, specifically

the nuclear SIRT1 and mitochondrial SIRT3, have been shown to have predominantly

neuroprotective roles in the CNSwhile the cytoplasmic sirtuin, SIRT2 is largely associated

with neurodegeneration. A systematic study of sirtuins in the ENS and their effect

on enteric neuronal growth and survival has not been conducted. Recent studies,

however, also link sirtuins with important hormones such as leptin, ghrelin, melatonin, and

serotonin which influence many important processes including satiety, mood, circadian

rhythm, and gut homeostasis. In this review, we address emerging roles of sirtuins in

modulating the metabolic challenges from aging, obesity, and diabetes that lead to

neurodegeneration in the ENS and CNS. We also highlight a novel role for sirtuins along

the microbiota-gut-brain axis in modulating neurodegeneration.

Keywords: central nervous system, enteric nervous system, gut microbiota, myenteric plexus, neuronal survival,

neurodegeneration, sirtuin (SIRT)

THE EFFECTS OF AGE, OBESITY, AND DIABETES ON
NEURODEGENERATION IN THE CNS AND ENS

Neurodegeneration in the CNS is characterized by a progressive loss of distinct groups of neurons
in specific regions of the brain, deposition of misfolded proteins in neurons, and alterations in
astrocytes (Przedborski et al., 2003; Maragakis and Rothstein, 2006) which results in cognitive
dysfunction, loss of synapses, impaired synaptic plasticity, disrupted neuronal signaling, and cell
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death. The factors that contribute to neuronal stresses in the CNS
are aging, neurodegenerative diseases (NDs), comorbidities such
as obesity and diabetes, over nutrition via high calorie intake, a
lack of physical activity, and genetic background (Popa-Wagner
et al., 2020). These stresses and changing physiological demands
from oxidative damage, protein aggregation, dietary changes,
inflammation, high metabolic demands, are counteracted by cells
to maintain cellular, protein, and metabolic homeostasis (Squier,
2001; Uttara et al., 2009). Similar to the CNS, the neurons of
the enteric nervous system (ENS) or the “brain within the gut,”
are also prone to neurodegeneration. The ENS is a subdivision
of the peripheral nervous system and functions independently
of the central nervous system (Nezami and Srinivasan, 2010).
The ENS is embedded within the walls of the intestine and
directly controls gastrointestinal functions. The neurons and glia
in the ENS are structurally organized into two interconnected
layers, the myenteric and the submucosal plexi. The myenteric
plexus, which is located between the circular and longitudinal
muscle layers, regulates gastrointestinal motility whereas the
submucosal plexus, which is located between the circular muscle
and mucosa, regulates secretory activity. In these plexuses, the
neuronal cells form groups of interconnected ganglions that
are surrounded by glia. The individual ganglia are connected
to each other and to the epithelium by neuronal projections
(Nezami and Srinivasan, 2010). The ENS, intestinal epithelium,
gut microbiota, and immune cells work in harmony together
to ensure the proper functioning of the intestine (Walsh and
Zemper, 2019). ENS-related neurodegeneration is particularly
evident in individuals with aging and neurodegenerative
disorders. Moreover, individuals with aging or NDs also
experience symptoms related to gastrointestinal dysmotility
especially chronic constipation due to loss of enteric neurons in
the myenteric plexus leading to ENS dysfunction (Poirier et al.,
2016; Rao and Gershon, 2016). Additional stresses from dietary
changes and antibiotic treatments can alter the gut microbiota
and also influence ENS function (Carabotti et al., 2015). Further
understanding of the factors leading to neurodegeneration
of the CNS and ENS is critical and can lead to new
therapeutic targets.

Aging Associated Neurodegeneration
Aging is a multifactorial process accompanied by many changes
at the cellular, tissue, and organismal level over time and has
shown to be amajor risk factor for neurodegeneration of the CNS
and the ENS (Wade and Cowen, 2004; Hou et al., 2019). Cross-
sectional, longitudinal, and quantitative magnetic resonance
imaging (MRI) and voxel-based morphometry (VMI) analyses
report reduced brain volume and brain atrophy especially in the
hippocampus and the prefrontal cortex, in conjunction with a
decline in cognitive functioning in older adults (Liu et al., 2003;
Terribilli et al., 2011; Ramanoel et al., 2018). In vitro studies in rat

Abbreviations: Ab, Antibody; CR, Calorie restriction; CNS, Central nervous

system; ENS, Enteric nervous system; GI, Gastrointestinal; HFD, High-fat diet;

KO, Knock out; NDs, Neurodegenerative diseases; NF-κB, Nuclear factor kappa B;

PGC-1α, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha;

ROS, Reactive oxygen species; Sirtuins, Silent information regulator genes: sirtuins;

SCFA, Short chain fatty acid: SCFA; T2D, Type II diabetes; WT, Wild type.

primary cortical and hippocampal neurons, cultured long term,
demonstrate irreparable DNA damage that underlies normal
aging leading to proteostasis and cell senescence (Ishikawa
and Ishikawa, 2020). This causes a loss of ability to repair
tissues, chemokine and cytokine release, low grade inflammation,
and results in age-related neurodegeneration. Population-based
studies of cognitively unimpaired aged people reported an
accumulation of abnormal protein deposits that positively
correlated with age (Elobeid et al., 2016). While age-associated
neurodegeneration is accompanied by a gradual loss of neurons,
rapid progression in behavioral and cognitive changes have
been attributed to chronic neurodegenerative diseases (ND)
such as Alzheimer’s disease (AD) and Parkinson’s disease (PD)
(Wilson et al., 2010). Along with these functional declines,
the cerebral levels of neurotransmitters such as dopamine,
acetylcholine, serotonin, and norepinephrine, and neurotrophic
factors such as brain-derived neurotrophic factor (BDNF) and
nerve growth factor (NGF) are dramatically reduced in aging
brains (Vecchio et al., 2018).

The impact of aging on the ENS is controversial. Enteric
neurons from the colon of human tissues have been shown
to decrease in the 4th year of age in both the plexuses with
a further loss of 37% of total neuron population between the
ages 20–65 (Gomes et al., 1997). Some studies have reported
a loss of 50–60% of myenteric neurons has been reported in
the aging guts and especially the colon of aging rats (Santer
and Baker, 1988; Nezami and Srinivasan, 2010) while other
studies contrasted that myenteric neuron numbers in the aging
colon remain the same albeit with functional changes (Gamage
et al., 2013). Neurotransmitters produced by myenteric neurons
and neuronal reflexes mediate late neurogenesis and regulate
intestinal motility (Cooke, 2000; Nezami and Srinivasan, 2010).
Neurons that produce the choline acetyl transferase (ChAT) and
neuronal NOS (nNOS) regulate intestinal motility by stimulating
and inhibiting intestinal smooth muscles, respectively (Porter
et al., 2002). An imbalance in the equilibrium between the nNOS-
and ChAT-producing neurons can alter the ENS architecture and
result in an altered bowel motility (Nezami and Srinivasan, 2010).
These changes presumably alter the normally well-orchestrated
crosstalk between the enteric neurons and glia. Some studies also
report a loss of choline acetyltransferase (ChAT) and no changes
in neuronal nitric oxide synthase (nNOS)- expressing myenteric
neurons (Phillips et al., 2003; Nezami and Srinivasan, 2010) while
other studies report the loss of nNOS and ChAT neurons in the
myenteric plexus of aging mice (Becker et al., 2018; Sun et al.,
2018). In rats, studies have reported a loss of submucosal neurons
in the proximal and distal colon in 12 months old animals when
compared to 3 month old animals with a greater loss occurring
in the distal colon and maximum loss occurring at 24 months
of age (Saffrey, 2013). In samples from human colon and ileum,
the myenteric ganglia had a wider area overall, with a larger
proportion of them with increased gaps within the ganglia and
this correlated with increasing age, that might contribute to gut
dysmotility seen in older individuals (Hanani et al., 2004). Factors
and pathways cumulatively associated with neurodegeneration
in the CNS and the ENS with aging (Wyss-Coray, 2016) are
diagrammatically represented in Figure 1.
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FIGURE 1 | Metabolic dysfunction in the central nervous system (CNS) and the enteric nervous system (ENS). Aging, obesity, and diabetes leads to different

molecular and physiological changes that cause neurodegeneration in the hypothalamus of the CNS and the ENS of the gut. Created with BioRender.com.

Neurodegeneration Associated With
Metabolic Disorders—Obesity and
Diabetes
Obesity and type II diabetes (T2D) have been suggested to
accelerate the physiological process of aging (Thorpe and Ferraro,
2004; Kalyani et al., 2017) and obesity is a known risk factor
for T2D development (Al-Goblan et al., 2014). In age-dependent
and age-independent studies, obesity has been shown to double
the risk for mild cognitive impairment, dementia, and AD (Qiu
et al., 2009; Hildreth et al., 2012). T2D causes brain atrophy,
reduced cerebral glucose metabolism, and insulin resistance in
the CNS, and this is also seen in AD (Arnold et al., 2018).
Accumulation of misfolded phosphorylated tau and amyloid beta
(Arnold et al., 2018) in the brain as well as the islet amyloid
polypeptide (amylin) (Raimundo et al., 2020) co-secreted with
insulin in the islet beta cells are major pathological features
observed in T2D patients who develop AD. As seen in aging,
computed tomography demonstrated structural changes in the
obese brain such as atrophy in the hippocampus and decreased

hippocampal volume (O’Brien et al., 2017). The prefrontal
cortex and the hippocampus which are crucial for learning

and memory are most vulnerable to obesity-related changes

(Bischof and Park, 2015). The hypothalamus controls metabolic
homeostasis by sensing nutrients and hormones via autonomic
and neuroendocrine signaling to integrate the signals of satiety.

Inflammation of the hypothalamus from high fat feeding induces
Inhibitor Of Nuclear Factor Kappa-B (IKKβ)/NF-kB-dependent

inflammation, changes satiety control, and increases the risk

for developing obesity (Timper and Bruning, 2017). Magnetic

resonance imaging (MRI) has shown an inverse relationship
between Body Mass Index (BMI) as well as diabetes and

brain volume, neuron viability, and gliosis in the hypothalamus
(Thomas et al., 2019). Obese individuals with higher BMI

with no cognitive defects also displayed decreased gray matter,
brain atrophy in the frontal lobe, hippocampus and thalamus
when compared to non-obese, thus demonstrating extensive
neurodegeneration (Stillman et al., 2017). Vascular defects from
obesity leading to cognitive decline include lipotoxicity, diabetes
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impaired insulin metabolism and signaling pathway or defect in
glucose transport mechanisms in the brain (Uranga and Keller,
2019). Adipose tissues including white adipose tissue (WAT) are
important for metabolism and hormones derived from WAT
such as leptin and adiponectin are involved in regulating obesity
and diabetes (Stern et al., 2016). Leptin plays a major role in
body weight regulation and reducing appetite (Ramos-Lobo and
Donato, 2017). Leptin bound to its receptor Ob-Rb has been
shown in the cortex and the hippocampus which are major
sites of neurodegeneration in aging, AD and PD (McGregor
and Harvey, 2018). Another adipokine, adiponectin has been
shown to have an opposite effect to leptin in inflammation
and insulin resistance, and the ratio of leptin to adiponectin is
considered as a marker for developing T2D and obesity (Forny-
Germano et al., 2018). High levels of circulating leptin caused
by obesity has been shown to lead to leptin resistance in the
hypothalamus and is linked to alteredmetabolism, inflammation,
and neurodegeneration in the brain (Forny-Germano et al.,
2018). Obesity and T2D also cause gastrointestinal dysmotility
and lead to enteric neuronal degeneration (Yarandi and
Srinivasan, 2014). Diabetic autonomic neuropathy has been
shown to gastrointestinal disturbances including impaired
esophageal transit, gastroparesis, and disorganized intestinal
motility with constipation and diarrhea (Verrotti et al., 2014).
Our studies in obese and overweight human subjects and in mice
fed a high fat diet have demonstrated increased pyroptosis in
nitrergic neurons, delayed colonic transit, and impaired electric
field stimulation–induced colonic relaxation responses (Ye et al.,
2020). In mouse Other studies in the ENS using mice models of
high fat diet and obesity induced diabetic neuropathy reported a
reduction in hormones such as ghrelin, cholecystokinin (CCK),
and leptin levels; and inhibitory neurons expressing nitric
oxide synthase (nNOS), vasoactive intestinal peptide (VIP),
neuropeptide Y (NPY), and galanin as well as their expression
levels (Chandrasekharan and Srinivasan, 2007; Li et al., 2011;
Voukali et al., 2011; Stenkamp-Strahm et al., 2015). The neuronal
changes characterized by the loss of important neurotransmitters
and hormones resulted in altered gastric emptying, diarrhea and
constipation that is characteristic of enteric neurodegeneration
(Stenkamp-Strahm et al., 2015). Moreover, these alterations
could be a compensatory mechanism to increase satiety and
decrease food intake to balance weight gain in diet induced obese
mice (Coll et al., 2007). A major orchestrator of pathways in
response to stresses caused by age- and metabolism-associated
neurodegeneration are the sirtuins (Duan, 2013). Factors and
pathways cumulatively associated with neurodegeneration in the
CNS and the ENS with metabolic dysfunction are summarized in
Figure 1.

FUNCTION AND DISTRIBUTION OF
SIRTUINS

Localization, Activators, and Substrates of
Sirtuins
Silent information regulator (Sirtuins) are a family of class III
histone deacetylases with a conserved catalytic domain core

TABLE 1 | Overview of sirtuin localization, activity, substrates, functions, and

activators.

Sirtuin Specific examples relevant to metabolism

Localization Sirtuins are present in all subcellular compartments and differ in

their substrate specificities (Houtkooper et al., 2012). SIRT1,

SIRT6, and SIRT7 are predominantly nuclear but also detected at

lower levels in cytosol, membrane, and the cytoskeleton. SIRT2

resides in the cytoplasm (Houtkooper et al., 2012) though it is also

found in the nucleus and the cell membrane (North and Verdin,

2007). SIRT3, SIRT4, and SIRT5 predominantly localize to the

mitochondria although they are also found in the nucleus and the

cytoplasm (Houtkooper et al., 2012).

Enzymatic

activity

SIRT1, SIRT2, SIRT3, SIRT5, and SIRT7 predominantly

deacetylate histone and non-histone proteins; SIRT4 and SIRT6

act as mono-ADP-ribosyl transferases (Canto et al., 2013).

Functions SIRT1 and SIRT3—Neuronal protection and cell survival, DNA

repair, chromatin remodeling, neuronal differentiation, apoptosis,

energy and metabolic homeostasis, mitochondrial biogenesis,

autophagy, glucose production and insulin secretion, lipid

homeostasis, anti-inflammation (Yamamoto et al., 2007; Duan,

2013; Giblin et al., 2014). SIRT2—cell cycle regulation, modulation

of microtubule deacetylation and myelination, tumorigenesis,

neurodegeneration (Yamamoto et al., 2007; Gomes et al., 2015).

SIRT4—insulin secretion, cell cycle regulation (Yamamoto et al.,

2007). SIRT5—Mitochondrial metabolism, urea cycle (Yamamoto

et al., 2007). SIRT6—glucose homeostasis, genome stability, DNA

repair, anti-inflammation (Yamamoto et al., 2007; Zhong and

Mostoslavsky, 2010). SIRT7—rDNA transcription (Wu et al., 2018).

Histone

targets

H1, H3, H4 (H1K26, H1K9, H3K9, H3K56, H3K14, H4K16) by

SIRT1; H4K16 by SIRT2; H3, H4 (H3K9, H4K16) by SIRT3; H2B,

H3 (H2BK12, H3K9, H3K56) by SIRT6; and H2A, H2B, H3

(H3K18) by SIRT7 (Jing and Lin, 2015).

Non-histone

targets

Transcriptional regulators (Martinez-Redondo and Vaquero, 2013;

Jing and Lin, 2015) related to:

• Stress - p53, Nuclear Factor kappa B (NF-κB), Forkhead Box

(FoxO), Superoxide dismutase 2 (SOD2), Poly (ADP-ribose)

polymerase (PARP), target of rapamycin (TOR) kinase (TORC2),

bcl-2-like protein 4 (Bax), leucine zippers - c-Fos and c-Jun,

Uncoupling Protein 2 (UCP2), Heat shock factor 1 (HSF1), b-

catenin, E2F Transcription Factor 1 (E2F1), Period Circadian

Regulator 2 (PER2), Circadian Locomotor Output Cycles Kaput

(CLOCK)

• Metabolism - Peroxisome proliferator-activated receptor gamma

coactivator 1-alpha (PGC-1α), Liver X receptor (LXR), Farnesoid

X receptor (FXR)

• DNA repair - Ku70, Peroxisome proliferator-activated receptor

gamma (PPARγ)

• Structural protein - α-tubulin

• Chromatin remodeling - p300, MOF

Agonists or

stimulators

Resveratrol [activated SIRT1 and reduced signs of aging without

changing the expression patterns of other sirtuins (Borra et al.,

2005)], SRT1720 (Huynh et al., 2013) and oxazolo[4,5-b] pyridines

(Bemis et al., 2009) [activated SIRT1 to treat diabetes and insulin

resistance in mice (Bemis et al., 2009)], pyrrolo[3,2-b]quinoxalines

[promoted SIRT1, SIRT2, and SIRT3-dependent anti-inflammatory

properties in vitro (Villalba and Alcain, 2012)], and honokiol

[activated SIRT3 and counteracted oxidative stress and

mitochondrial damage in AD and diabetes studies (Ramesh et al.,

2018; Zheng et al., 2018)].

of 275 amino acids (Houtkooper et al., 2012). The subcellular
localization, enzymatic activities, transcriptional substrates,
functions, and activators of sirtuins are briefly explained in
Table 1. As cooperative sensors and regulators of nutrients and
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energy metabolism in response to changes in diet and stress,
they require NAD+ for their enzymatic activity (Anderson
et al., 2017). Energy deficits by calorie restriction or cellular
stressors increase NAD+ levels and activate sirtuins (Guarente,
2013).

Distribution of Sirtuins in the CNS and the
ENS
All of the seven sirtuins are ubiquitously expressed in all human
tissues (Yamamoto et al., 2007). Mass spectrometry and semi-
quantitative studies have shown that all the sirtuins are expressed
in the human and non-human brain and small intestine
(Sidorova-Darmos et al., 2014; Jayasena et al., 2016). In the brain,
SIRT1 (110 KDa) and SIRT2 (37 KDa) are the most abundant
and widely expressed sirtuin subtypes. SIRT1 expression is
highest in the neurons of the cerebellum, hippocampus, and the
hypothalamus and lowest in the spinal cord. SIRT2 is highest in

the spinal cord and brain stem and is also highly expressed in the
cortex, frontal lobe, hippocampus, striatum, and cerebellum. The
mitochondrial sirtuins, SIRT3, SIRT4, SIRT5, are also expressed
in different regions of the brain, but at lower levels than SIRT1
and SIRT2. In the brain, SIRT6 and SIRT7 are expressed at the
lowest levels compared to other sirtuins. All the sirtuins, except
for SIRT7, are expressed at lower levels in the small intestine
than is detected in the brain. SIRT7 is the most highly expressed
sirtuin in the small intestine with 10-fold higher expression than
in the brain. Considering that subcellular localization of sirtuins
are cell type dependent, more sampling across different cell lines
and tissue types can provide information about the anatomical
contribution of the lesser abundant sirtuins. Recent studies have
shown that both SIRT1 and SIRT3 are expressed by neurons of
the ENS (Lakhan and Kirchgessner, 2011; Bubenheimer et al.,
2016). However, the role of sirtuins in ENS neurodegeneration
remains unknown.

FIGURE 2 | Sirtuins in neuroprotection and neurodegeneration. In healthy neurons, downregulation of IGF-1 and activation of SIRT1 by the availability of NAD+

induces the activation of FOXO transcription factors and the transcription of antioxidant genes in the nucleus. SIRT1 and SIRT3 activation by calorie restriction (CR) or

by resveratrol also leads to PGC-1α modulation with improved mitochondrial function and decreased oxidative stress. PGC-1α and FOXOs can be directly activated

through AMPK-dependent phosphorylation. SIRT1 or SIRT3 activation or SIRT2 inhibition can activate autophagy, leading to neuroprotection. SIRT4 and SIRT5

modulation of fatty acid oxidation and reducing oxidative stress contributes to mitochondrial homeostasis, and SIRT7 regulates nuclear encoded mitochondrial genes.

SIRT6 represses the recruitment of HIF-1α to its target gene promoter and inhibits glycolysis and increases mitochondrial respiration. During aging, obesity, and

diabetes, the reduced availability of NAD+ causes decreased AMPK, SIRT1, and SIRT3 levels which in turn decreases the stimulatory effect of PGC-1α on

mitochondrial biogenesis. Decreased SIRT1 reduces mTOR inhibition and reduces autophagy and decreases cell viability. SIRT1 can no longer suppress IGF-1,

NF-κB, or p53, acetylates and stabilizes p53, and causes inflammation and apoptosis. Low levels of SIRT4 increases glutamine reflux, dysregulates insulin sensitivity,

glucose metabolism, and fatty acid oxidation. SIRT5 and SIRT6 deficiency reduces ATP levels in the mitochondria. Moreover, low levels of SIRT6 leads to increased

HIF-1α and results in increased glucose uptake and glycolysis. On the other hand, SIRT2 (or its isoforms) accumulate with age and promote cell death by deacetylating

Foxo3a and upregulating a pro-apoptotic factor, Bim. These processes progressively lead to neuronal degeneration and cell death. Created with BioRender.com.
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ROLE OF SIRTUINS IN MODULATING
NEURODEGENERATION IN THE CNS

Role of Sirtuins in Modulating
Neurodegeneration Associated With Aging
and Neurodegenerative Diseases
Aging leads to damage of cellular organelles and accumulation
of proteins that causes an imbalance in cellular homeostasis
and accelerates neurodegeneration (Castelli et al., 2019). SIRT1
and SIRT6 levels increase and decrease respectively with
age respectively despite similarities in cellular localization
and their role in increasing lifespan (Lee et al., 2019). A
reduction in SIRT1 activity was reported in post-mortem brain
tissue of PD patients (Singh et al., 2017). SIRT1 has shown
to be universally involved in multiple pathways associated
with stress related to energy homeostasis and metabolism
through epigenetic regulation and transcriptional modulation
whereas SIRT6 is important for glucose metabolism and exerts
neuroprotection from DNA damage (Ramadori et al., 2008;
Zhong andMostoslavsky, 2010). Overexpression of brain-specific
SIRT1, ubiquitous overexpression of SIRT6, calorie restriction,
or resveratrol, extended lifespan and prevented experimental AD
amyloid neuropathology (Giblin et al., 2014). Resveratrol has
been shown to inhibit the activity of a serine/threonine kinase
called mammalian target of rapamycin (mTOR) which contrasts
with nicotinamide, a SIRT1 antagonist enhanced mTOR activity
and reduced age-induced autophagy (Ghosh et al., 2010). In
neurons comprising of non-dividing cells, SIRT1 has been shown
to foster DNA repair during double strand breaks and protect
against genomic instability caused by aging (Oberdoerffer et al.,
2008). Studies in rat brain, kidney, liver, and fat pad tissues
showed that SIRT1 induced by calorie restriction maintained
a DNA repair factor, Ku70 in a deacetylated state to sequester
Bax from the mitochondria to attenuate apoptosis, thus shifting
the balance from cell death toward cell survival (Amsel et al.,
2008). SIRT1 and in some cases, SIRT2 and the signaling
pathways of insulin and insulin-like growth factor-I (IGF-I),
bidirectionally regulate each other (Sansone et al., 2013). IGF-1 is
an important growth factor that has been shown to be important
for neurogenesis and cell survival of neurons as well as inhibition
of apoptosis during postnatal to adult stages (Nieto-Estevez et al.,
2016). IGF-1 declines with age in the brains of humans and
rodents, and treatment with IGF-1 agonists in preclinical models
of AD and PD have shown to improve neuronal survival (Nieto-
Estevez et al., 2016). Notably, SIRT1 deacetylates insulin receptor
substrate 2 (IRS-2), a substrate protein for IGF-1 and activates
Akt, an insulin receptor target of IGF (Sansone et al., 2013),
highlighting SIRT1 importance in modulating IGF-1 signaling.

Overexpression of SIRT1 and the addition of resveratrol
has shown to provide neuroprotective effects in various animal
models of AD by reducing amyloid plaque formation and
neurofibrillary tau pathology (Chen et al., 2005; Qin et al.,
2006; Kim et al., 2007; Green et al., 2008; Karuppagounder
et al., 2009; Min et al., 2010; Vingtdeux et al., 2010). SIRT1

was shown to target ADAM10, a retinoic acid receptor
β target and induce Notch receptor cleavage to promote
non-amyloidogenic processing of amyloid precursor protein
(APP), thereby promoting neurogenesis (Donmez et al., 2010).
Overexpression of SIRT1 protected SH-SY5Y neuroblastoma
cells from toxin induced cell death by down-regulating NF-
κB and cPARP-1 and reducing phospho-α-synuclein aggregates
(Singh et al., 2017). Resveratrol acting via SIRT1/PGC-1α
significantly protected dopaminergic neurons in the MPTP
mouse model of PD (Mudo et al., 2012). Interestingly in other
studies, SIRT1 failed to protect tyrosine hydroxylase (TH)-
positive dopaminergic neuronal damage induced by MPTP
(Kakefuda et al., 2009). SIRT2 inhibition was shown to
reduce Aβ production and improved cognitive performance
and microtubule assembly favoring cell survival (Biella et al.,
2016; Silva et al., 2017). SIRT3 expression was decreased
in AD patient’s cerebral cortex and its dysfunction led to
p53-mediated mitochondrial and neuronal damage in AD
(Lee et al., 2018). Patients with AD showed a reduction in
the expression of SIRT6. Increased signs of DNA damage,
cell death, and hyperphosphorylated Tau, all features of
neurodegenerative diseases, were observed in SIRT6-deficient
mice brain (Kaluski et al., 2017) indicating the importance of
SIRT6 regulation of DNA repair and maintenance of genomic
stability to keep the brain healthy (Giblin et al., 2014; Kugel
and Mostoslavsky, 2014). SIRT2 has largely been found as
detrimental in several neurodegenerative disorders (Gomes
et al., 2015). Polymorphisms in a SIRT2 intron increased
susceptibility to AD and its knockout and inhibition studies
improved outcomes in a PD model by reducing cytoskeletal
pathology and increasing autophagy (Biella et al., 2016; Guan
et al., 2016). SIRT2 inhibition may have beneficial effects for
PD by rescuing α-synuclein mediated toxicity (Outeiro et al.,
2007; de Oliveira et al., 2017). SIRT3 has been demonstrated
to protect cortical neurons from various types of stress by

increasing mitochondrial antioxidant capacity (Cheng et al.,

2016). Mice with SIRT3 deletion was shown to have reduced
neuron number, synaptic plasticity, and poor remote memory,
thereby dramatically increasing neuronal vulnerability (Kim
et al., 2011; Dai et al., 2014). SIRT3 and SIRT5 have the largest
protective effects on neurons of the nigrostriatal pathway within
the brain (Liu et al., 2015a,b). SIRT5 displays a protective role
against MPTP-induced nigrostriatal dopaminergic degeneration
by preserving mitochondrial antioxidant capacity (Liu et al.,
2015b). Resveratrol and another polyphenol quercetin in mice
models were shown to prevent motor neuron degeneration
and polyglutamine-induced cell death in striatal neurons
characteristic of motor neuron disorders such as amyotrophic
lateral sclerosis (ALS), spinal muscular atrophy (SMA), and
Huntington Disease (HD), respectively (Bhullar and Rupasinghe,
2013; Lazo-Gomez and Tapia, 2017). SIRT6 and SIRT7 were
shown to deacetylate the nucleolar protein, nucleophosmin
(NPM1) that is involved in DNA repair to regulate aging
(Wu et al., 2018).
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Role of Sirtuins in Modulating
Neurodegeneration Associated With
Obesity and Diabetes
Increased SIRT1 expression in dorsal root ganglion (DRG)
neurons was shown to rescue mice from peripheral neuropathy
induced by a high fat diet (HFD) (Chandrasekaran et al., 2019).
SIRT1 is also regulated by the hypothalamus/pituitary axis that
receives inputs related to nutrients and adiposity (Toorie and
Nillni, 2014). SIRT1 inhibition in the hypothalamus, via the
acetylation of FOXO1, increased neurons that express pro-
opiomelanocortin and agouti-related peptide. These neurons
produce satiety peptides to inhibit food intake after feeding
and increase food intake in response to fasting and CR,
respectively. This resulted in reduced feeding and body weight
gain (Dietrich et al., 2010). This established the role of SIRT1 as
an important regulator of nutrient sensing in the neural circuits
that govern central and peripheral networks. SIRT3 deletion
in the hippocampus of mice fed a high fat diet was shown
to cause oxidative stress and impaired cognition (Tyagi et al.,
2018). This was alleviated by SIRT3-mediated aerobic interval
training that upregulated the antioxidant manganese superoxide
dismutase (MnSOD) and inhibited neuronal apoptosis (Shi et al.,
2018). SIRT6 and SIRT7 have been shown to be important
for glucose production and metabolism. Studies in SIRT6
deleted mice have shown that SIRT6 deacetylates histone 3
lysine 9 (H3K9) to repress hypoxia-inducible factor, HIF-1α,
in the promoter of Glucose transporter type1 (GLUT1) and
Pyruvate Dehydrogenase Kinase, Isoenzyme 1 (PDK1) enzymes
to facilitate glucose metabolism (Zhong et al., 2010). Knockout
studies have shown that SIRT7 is an epigenetic modulator of
glucose metabolism that regulates ribosomal biogenesis and
promotes mitochondrial biogenesis via PRMT6 methylation and
connects it to glucose availability in an AMPK dependent manner
(Yan et al., 2018). These studies demonstrate the important
functions carried out by SIRT6 and SIRT7 to regulate glucose
homeostasis. The pathways relevant to neurodegeneration and
modulated by sirtuins are summarized in Figure 2.

ROLE OF SIRTUINS IN REGULATION OF
NEURODEGENERATION IN THE ENS

The ENS develops from enteric neural crest cells, a multipotent
cell population that originates in the neural tube and migrates
across the embryo to reach the developing intestine, where
it proliferates and differentiates into enteric neurons and
glia (Nagy and Goldstein, 2017). These neural progenitors
eventually differentiate into several distinct neuronal subtypes
that eventually comprise both the myenteric and submucosal
plexi (Furness, 2012). Comparative studies between the intestines
of young (3 months old) and old (>24 months) mice (n = 6)
has shown that aging reduced the number of intestinal stem cells
(ISCs) in vivo as well as the formation of intestinal organoids
from the ISCs ex vivo that gives rise to differentiated cells
of the gut (Igarashi et al., 2019). The plexuses are areas that
are vulnerable to neurodegeneration from aging and high-fat
or high sugar induced diets (Lakhan and Kirchgessner, 2011;

Stenkamp-Strahm et al., 2015; McMenamin et al., 2018). Sirtuins
are widely expressed in the gut (Figure 3, Zeisel et al., 2018)
and neurons in the murine colon show immunoreactivity to
SIRT1 where they localize to the nucleus, in the myenteric
plexus (Lakhan and Kirchgessner, 2011). A knockout of SIRT1
in the gut of mice was reported to increase gastric emptying
and intestinal contraction with suppressed villous apoptosis and
increased crypt proliferation (Wang et al., 2012). This could
indicate an altered cholinergic neuronal function. In the same
study, the genes ghrelin and Period Circadian Clock 2 Gene, Per2,
which regulate food intake and circadian rhythm respectively
(Yannielli et al., 2007; Kim et al., 2018), were also found to be
increased in the stomach and hypothalamus, implying a role
for SIRT1 in regulating GI functions controlled by the circadian
systems. Treatment of aged mice with SIRT1-dependent NAD+

precursor, nicotinamide riboside restored ISC number and its
functional defects in aged mice in vivo (Igarashi et al., 2019)
but this was blocked by SIRT1 inhibitor EX527, suggesting
a role for SIRT1 activators or precursors in maintaining the
intestine during aging. Similar to the role of astrocytes in the
CNS, enteric glia modulates the ENS by regulating motility and
secretion by sensing neuronal reflexes by virtue of its plasticity
(Gulbransen and Christofi, 2018). The glia is also important
for epithelial health, and ablation of glia in transgenic mice
has shown to cause alterations in motor and mucosal activity,
resulting in intestinal inflammation, myenteric degeneration,
hemorrhage, and necrosis (Aube et al., 2006). Obesity in the
gut is characterized by persistent low-grade inflammation with
alterations in gut motility (Hotamisligil, 2006). Experimental
data show that gut inflammation, even if mild, could lead to
persistent changes in GI nerve and smooth muscle function,
resulting in dysmotility, hypersensitivity, and dysfunction (Mawe
et al., 2009; Lakhan and Kirchgessner, 2010). Thus, the
breakdown of mucosal barrier function as observed in obesity
could cause alterations in the patterns of gut motility, abnormal
secretion, and changes in visceral sensation that contributes to
gastrointestinal symptoms. Whether the changes in GI motility
observed in many obese patients are due to inflammation-
related changes in the properties of enteric neurons is yet to
be explored. Intestinal epithelium-specific knockout of SIRT1
in aged mice induced spontaneous inflammation and tissue
damage in the colon and increased their susceptibility to colitis
(Wellman et al., 2017). Increased proinflammatory cytokines and
leukocyte infiltration, decreased colon lengths, elevated levels of
LPS, and increased expression levels of anti-microbial proteins
was observed in the SIRT1 KO mice compared to their age-
matched controls. SIRT1 induced by resveratrol administration
to rats has shown to be protective against acute intestinal
inflammation from colitis by downregulating inflammation via
NF-κB (Larrosa et al., 2009; Hofseth et al., 2010). In an
experimental model of ileitis, oral administration of resveratrol
increased the survival of resveratrol-treated mice after exposure
to T. gondii, decreased mRNA expression of pro-inflammatory
cytokine—IL-6, and increased the mRNA expression of anti-
inflammatory cytokine—IL-10 in the ileum, compared to the
control group (Bereswill et al., 2010). These studies highlight
SIRT1 as a potential target in inflammatory diseases of the
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FIGURE 3 | Expression and cellular localization of sirtuins in the neurons of the mouse CNS and the ENS. Dendrogram showing gene expression of all the seven

sirtuins in cell populations generated by single-cell RNA sequencing (scRNA-seq) in the central nervous system (CNS) neurons and the enteric neurons in the

peripheral nervous system (PNS) using data from Zeisel et al. (2018). The plots were generated using the online database, Mouse Brain Atlas http://mousebrain.org/

genesearch.html.

intestine. Studies in mice and cell cultures have shown that SIRT3
protects cortical and dopaminergic neurons from oxidative stress
by regulating mitochondrial homeostasis (Kim et al., 2011; Dai
et al., 2014; Shi et al., 2017). Unlike its protective role in the CNS,
a SIRT3 knockout in mice exposed to dinitrobenzene sulfonic
acid mode of colonic inflammation was shown to not have any
effects in counteracting oxidative stress or the susceptibility of
myenteric neurons to inflammation (Bubenheimer et al., 2016).
Further research is required to explore the role of sirtuin proteins
in enteric neurobiology during normal and inflamed states.

ROLE OF SIRTUINS AS MODULATORS OF
GUT MICROBIOTA ALONG THE
MICROBIOTA-GUT-BRAIN AXIS

The gut microbiota regulates many metabolic processes in
addition to host energy homeostasis by taking part in the
gut–brain crosstalk, a complex bidirectional communication
system. This is mediated by gut microbiota produced signaling
molecules like short-chain fatty acids (SCFAs: acetate, butyrate
and propionate), lipopolysaccharide (LPS), 5-hydroxytryptamine
(5-HT), biogenic amines (dopamine, norepinephrine), glutamate
and γ-aminobutyric acid (GABA) (Nicholson et al., 2012;
O’Mahony et al., 2015; Koh et al., 2016; Mazzoli and Pessione,
2016; Bhattarai et al., 2017; Sudo, 2019). The gut microbiota
metabolites affect brain activity either through blood circulation
or acting via vagus nerve afferent fibers, while vagal efferent
fibers regulate gut permeability and inflammation influencing
gut functions (Bonaz et al., 2018). Enteroendocrine cells
(EECs) are in direct contact with the luminal contents and
mediate the communication between gut microbiota and enteric
innervations. They produce hormones and peptides including
serotonin, ghrelin, cholecystokinin, glucagon-like peptide-1
(GLP-1), peptide YY (PYY) and pancreatic polypeptide whose
receptors are expressed in gut enteric neurons, vagal afferents,

brain stem, and hypothalamus (De Silva and Bloom, 2012;
Richards et al., 2014). EECs maintain gut homeostasis by
regulating food intake and insulin secretion (Gribble and
Reimann, 2016). SCFA stimulate the secretion of the leptin,
GLP-1, and peptide YY(3–36), and lower body weight thereby
contributing to gut-brain activation (Xiong et al., 2004; Tazoe
et al., 2008; Tolhurst et al., 2012). The gut-brain bidirectional
communication happens largely through the ENS which along
with commensal microflora and immune cells, plays an
important role in regulating intestinal epithelial barrier function
(Snoek et al., 2010). Dysbiosis, an imbalance in the gut
microbial community is linked to several metabolic diseases
such as obesity, type-2 diabetes mellitus and inflammatory bowel
diseases (Castaner et al., 2018; Zuo and Ng, 2018; Sharma and
Tripathi, 2019). It is often associated with a reduction in the
Bacteroidetes:Firmicutes ratio and increased gut permeability
(Tremaroli and Backhed, 2012; Zuo and Ng, 2018; Sharma and
Tripathi, 2019) with low-grade gut inflammation. Considerable
shifts in human gut microbiota composition have been observed
in several CNS disorders including neurodegeneration (Fung
et al., 2017). Gut dysbiosis play an important role in modulating
the gut–brain axis. An impaired gut barrier facilitate entry of
bacterial endotoxins like LPS into the blood circulation, elicit
inflammatory response, causing metabolic endotoxemia that
eventually leads to insulin resistance and weight gain (van Olden
et al., 2015). This impairment can also affect the blood brain
barrier promoting neuro-inflammation and neurodegeneration
including anxiety and depression (Liu, 2017).

Over recent years, accumulating evidence has suggested the
role of sirtuins in obesity, diabetes, and various age-related
neurodegenerative diseases by modulating gut microbiota at
times, implicating the importance of gut-brain axis connections.
Much of the studies involving sirtuins and gut microbiota have
been done using resveratrol, which activates SIRT1. Resveratrol
is thought to possess antibacterial activity against opportunistic
pathogens of the digestive tract like Escherichia coli, Salmonella
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enterica, and Enterococcus faecalis (Paulo et al., 2010), thereby
contributing to maintenance of normal gut bacterial species. The
epithelial barrier integrity and function is regulated by resveratrol
by increasing the expression of intestinal tight junction proteins
such as tight junction protein 2, occludin, and claudin 4
(Etxeberria et al., 2015; Ling et al., 2016; Wang et al., 2016).
Resveratrol up-regulated SIRT1 display anti-inflammatory role
in the gut by decreasing immune responses (Th1-type) and
preventing bacterial translocation by maintaining gut barrier
function (Bereswill et al., 2010), which is compromised in obesity
(Cani and Delzenne, 2010). Resveratrol functions by modulating
the composition of the gut microbiota (Chen et al., 2016;
Komaroff, 2017). Mice studies have suggested that resveratrol
can influence the relation between gut microbiota, diet, and
obesity (Clarke et al., 2012; Komaroff, 2017) either by changing
the expression of genes involved in central regulation of body
weight homeostasis like fasting-induced adipose factor (Fiaf)
or mTOR (Kim et al., 2010; Qiao et al., 2014; Jung et al.,
2016), or by reversing the gut microbial dysbiosis caused by a
high-fat diet by modifying the relative Bacteroidetes: Firmicutes
ratio (Qiao et al., 2014; Sung et al., 2017). A recent study has
shown that fecal microbiota transplantation from resveratrol
treated mice to HFD mice reversed weight gain and improved
gut microbiota composition and intestinal permeability (Wang
et al., 2020). SIRT1 deficiency in the intestinal epithelium as
studied with SIRT1 intestinal knock out mice, resulted in altered
gut microbial composition, increased intestinal inflammation,
and susceptibility to colitis implicating SIRT1 importance in
maintaining intestinal tissue homeostasis through modulation of
the gut microbiota (Wellman et al., 2017). In colonic biopsies
from patients with inflammatory bowel disease (IBD), SIRT1
was downregulated by TNF-α and IL-21 in the mucosa (Caruso
et al., 2014). Moreover, incubation with a SIRT1 agonist,
Cay10591 reduced the acetylation of NF-κBp65 and suppressed
the inflammatory cytokine production in the colon as seen in
IBD. It also ameliorated experimental colitis induced in mice
by reducing LPS-induced TNF-α production whereas a SIRT1
antagonist, Ex527 aggravated the same. On the contrary, another
experimental study on mice and worms with an intestinal
deletion of SIRT1 increased Paneth and goblet cell number
and upregulated anti-bacterial peptides such as lysozyme and
cryptidines resulting in a rearrangement of the gut microbiota,
thus protecting them from colitis-induced colorectal cancer (Lo
Sasso et al., 2014). The direct effects of resveratrol on SIRT1
or sirtuin activation in general is not completely conclusive
as resveratrol as well as other sirtuin activators have many
molecular targets that acts via diverse pathways on different
sirtuin isoforms, depending on the substrate sequence and the
type of acyl modification (Athar et al., 2009; Gertz et al., 2012;
Britton et al., 2015; Gomes et al., 2019). With regards to SIRT1,
resveratrol either directly binds and activates SIRT1 or increases
the intracellular pool of NAD+ via phosphorylation of AMPK by
serine-threonine liver kinase B1 (LKB1) or calcium/calmodulin
kinase kinase-β (CaMKKβ) kinases on its catalytic α-subunit, that
can be utilized by SIRT1 (Lan et al., 2017).

The aberrant microbiota to CNS pathway is thought to
result in the formation of insoluble protein aggregates within

neurons in neurodegenerative disorders (Quigley, 2017). Toxic
accumulation of misfolded and aggregated α-synuclein protein,
Lewy bodies, is seen in both CNS and ENS of Parkinson’s
disease (PD) patients (Beach et al., 2010). Gram-negative
bacteria in these patients are abundant producing LPS which
contributes to α-synuclein aggregation leading to dopaminergic
neuronal death, thereby causing motor impairments through
inflammatory pathways (Sharma and Nehru, 2015). Using mice
that overexpress αSyn, it is shown that gut microbiota promotes
motor deficits and microglia activation. αSyn aggregation results
in progression of the disease (Sampson et al., 2016). Studies
show the correlation between increased gut permeability due
to endotoxin exposure and alpha-synuclein staining in early
Parkinson’s disease (Forsyth et al., 2011). PD is frequently
associated with impaired gastric motility (Fasano et al., 2015).
Several studies have supported the hypothesis that PD may
initiate in the gut since GI dysfunctions appear many years before
motor impairments suggesting spread of α-syn pathology from
the ENS to the CNS. Alzheimer’s disease (AD) is characterized
by an accumulation of protein aggregates composed of amyloid-
β peptide (Aβ) and tau in CNS tissues impairing cognitive
function and the pathogenesis is believed to be associated with
increased permeability of the gut and blood-brain barrierinduced
by microbiota dysbiosis (Jiang C. et al., 2017). Gut bacteria can
secrete large amounts of amyloids and LPS which modulates
the signaling pathways that lead to neurodegeneration and
AD pathogenesis, as well as inflammatory response to Aβ

accumulation in CNS (Pistollato et al., 2016). Amyloid precursor
protein (APP) from which Aβ is derived, is expressed in the ENS
suggesting its role in the pathogenesis of AD (Arai et al., 1991).
Studies with transgenic mice overexpressing APP has shown
progressive accumulation of Aβwithin enteric neurons leading to
a decreased number of enteric neurons, dysmotility and intestinal
inflammation (Semar et al., 2013; Puig et al., 2015), implying that
ENS dysfunction could occur in AD.

The concept of microbiota-gut-brain axis is extensively
studied, with an emphasis being on the gut dysbiosis in the onset
and/or progression of several metabolic diseases such as obesity,
type-2 diabetes mellitus, and the most commonly studied forms
of neurodegeneration, such as AD and PD. This review examines
scientific literature addressing the possible role of sirtuins in
regulating this axis thereby targeting themselves as molecules
of importance therapeutically. Each sirtuin has different targets,
located in different subcellular locations, and might function
quite differently. Therefore, it is extremely important to develop
selective activators or inhibitors that target a specific sirtuin.
Sirtuins are known to modulate gut microbiota. It is critical for
future studies to clarify using sirtuins as interventions to correct
dysbiosis, which may provide safe and effective treatments to
slow or halt the progression of clinical disorders.

FUTURE PERSPECTIVES

This review offers a consolidated overview of sirtuins and
their important functions in modulating neurodegeneration
in the CNS and the ENS. The precise functions of sirtuins
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are still unclear, but they seem to be important players
in age- and metabolism-associated neurodegeneration.
Therefore, elucidating the molecular roles of sirtuins may
enable the development of novel strategies for intervention
in neurodegenerative diseases. Inhibition of SIRT2 while
overexpressing SIRT1 is a potential strategy that could be used
to treat certain age-related neurodegenerative diseases. The
connection between sirtuins and dietary restriction also warrants
further investigation on the precise role of sirtuins. However,
the beneficial effect of dietary restriction on aging and various
metabolic disorders is dependent on the activation of SIRT1 and
can be mimicked by resveratrol. SIRT1 via resveratrol has shown
neuroprotective effects against acute inflammation induced
by colitis and are expressed by enteric neurons suggesting
that it might help in gut motility and secretion. This could
be a promising and previously unrecognized role of enteric
sirtuins, especially SIRT1, in regulating energy homeostasis.
Moreover, activation of enteric sirtuin pathways could offer a
therapeutic approach to treating diabetes- and obesity-related
gut dysfunction as well as age-induced neurodegeneration. Using
genetically engineered reporter mice that illuminate the entire

ENS (Jiang Y. et al., 2017), the effects of sirtuins on different

neuronal subtypes can be better visualized and investigated
when compared to traditional immunohistochemistry.
Further research and identification of novel or repurposing
of previously known small molecule activators and inhibitors
of sirtuins could have a potential impact in the therapy of
neurodegenerative disorders.
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The classic concept of the absence of lymphatic vessels in the central nervous system
(CNS), suggesting the immune privilege of the brain in spite of its high metabolic
rate, was predominant until recent times. On the other hand, this idea left questioned
how cerebral interstitial fluid is cleared of waste products. It was generally thought
that clearance depends on cerebrospinal fluid (CSF). Not long ago, an anatomically
and functionally discrete paravascular space was revised to provide a pathway for
the clearance of molecules drained within the interstitial space. According to this
model, CSF enters the brain parenchyma along arterial paravascular spaces. Once
mixed with interstitial fluid and solutes in a process mediated by aquaporin-4, CSF
exits through the extracellular space along venous paravascular spaces, thus being
removed from the brain. This process includes the participation of perivascular glial
cells due to a sieving effect of their end-feet. Such draining space resembles the
peripheral lymphatic system, therefore, the term “glymphatic” (glial-lymphatic) pathway
has been coined. Specific studies focused on the potential role of the glymphatic
pathway in healthy and pathological conditions, including neurodegenerative diseases.
This mainly concerns Alzheimer’s disease (AD), as well as hemorrhagic and ischemic
neurovascular disorders; other acute degenerative processes, such as normal pressure
hydrocephalus or traumatic brain injury are involved as well. Novel morphological and
functional investigations also suggested alternative models to drain molecules through
perivascular pathways, which enriched our insight of homeostatic processes within
neural microenvironment. Under the light of these considerations, the present article
aims to discuss recent findings and concepts on nervous lymphatic drainage and blood–
brain barrier (BBB) in an attempt to understand how peripheral pathological conditions
may be detrimental to the CNS, paving the way to neurodegeneration.

Keywords: glymphatic system, lymphatic system, blood–brain barrier, neurovascular unit, neurodegenerative
diseases

INTRODUCTION: CLASSIC ANATOMICAL CONCEPTS

Apart from the general protection provided by the skull and dura mater, the brain environment
is rigidly regulated by specialized structures, including leptomeninges, modified blood vessels and
glial cells. In particular, selective capillaries, astrocyte end-feet, and pericytes represent the classic
components of the blood–brain barrier (BBB). This barrier provides the brain with nutrients,
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transports catabolites, and misfold-prone proteins out of the
brain, maintains brain homeostasis, and regulates the immune
function (Ballabh et al., 2004; Daneman and Prat, 2015; Hladky
and Barrand, 2018).

This anatomical barrier, as postulated by Stern and Gautier
(1921), regulates the molecular exchange between the blood flow
and brain parenchyma, thereby controlling homeostasis within
central nervous system (CNS). Apart from being a route of
drainage for brain interstitial fluid (ISF) to lymph nodes, these
structures provide the communication with the immune system
modulating surveillance and immune-mediated responses to the
brain. However, similar barriers also deputed to the regulation of
molecular transport and immunologic protection are described
outside the CNS. This is the case of the retina (part of the
blood–ocular barrier), placenta, testis (seminiferous tubules), and
thymus cortex. These barriers possess a well-defined anatomical
substrate, since both endothelium and epithelial cells adjacent to
capillaries exhibit special intercellular junctions (Fröhlich, 2002).

Morphological and functional findings allowed to look at
the BBB from novel perspectives. For instance, the specialized
metabolic interface of BBB can also act as a target for hormones
and may secrete active compounds (Banks, 2019). The intimate
relationship between CNS and blood vessels was deeply modified,
when at the 2001 Stroke Progress Review Group Meeting of
the National Institute of Neurological Disorders and Stroke
the concept of the neurovascular unit (NVU) was formalized
(Iadecola, 2017). Its cellular components include endothelial
cells (ECs), basement membrane, (BM), perivascular astrocytes,
neurons, pericytes, and microglia (Figure 1). As suggested by its
name, this minimal functional unit emphasizes the relationship
between CNS and blood vessels. In fact, a focally specific
activity of a given NVU may alter locally the anatomy and
physiology of the BBB, apart from controlling the amount
of cerebral blood flow within the same specific region. ECs
represent the major BBB component, being endowed with tight
and adherent junctions between adjacent cells, which prevent
paracellular diffusion of polar blood solutes while providing
structural support (Daneman and Prat, 2015; Giorgi et al.,
2020). Proteins such as occludins, claudins, and cadherins are
expressed in these junctions. Endothelial transporters ensure
mechanisms for both influx and efflux of either potentially
beneficial or harmful substances. Surrounding the epithelium,
the BM provides anchoring support to blood vessels and
surrounding cells with its extracellular matrix rich in collagen
and proteoglycan (Bell et al., 2020; Giorgi et al., 2020). Astrocytes
lie between neurons and ECs, and with their end-feet surround
blood vessels at precapillary and capillary level. Thus, astrocytes
provide structural and functional connection between blood
vessels and neurons. Neurons are particularly sensitive to
changes of blood oxygen and nutrients, then acting as metabolic
pacemakers. Apart from ion and neurotransmitter recycling,
astrocytes are involved in BBB induction and maintenance
through the release of several growth factors, regulation of
dilation and constriction of blood vessels, as well as water
balance within the interstitial space through the expression of
aquaporin-4 (AQP4) at the level of their end-feet (Daneman
and Prat, 2015; Giorgi et al., 2020). Pericytes also participate in

BBB development, structural integrity, and function through the
production and assembling of BM proteins, as well as regulation
of tight junction expression, and EC proliferation (Armulik
et al., 2010; Giorgi et al., 2020). Thanks to the presence of
contractile proteins, pericytes have also been involved in blood
flow regulation (Yamazaki and Kanekiyo, 2017; Bell et al., 2020;
Giorgi et al., 2020). Finally, microglia and phagocytes in the
extracellular matrix surrounding blood vessels play a waste-
clearing and immunological role (Giorgi et al., 2020).

The belief of an absence of conventional lymphatic vessels
in the CNS contributed to the concept that the brain, in spite
of its high metabolic rate, represents an immune privileged
region. This idea left questioned how cerebral interstitial fluid
is cleared from waste products. It was generally thought that
clearance depended on cerebrospinal fluid (CSF), acting as a
pseudo-lymphatic system. CSF is generally formed by choroid
plexuses, which are protrusions located in cerebral ventricles
consisting of a single layer of secretory epithelial cells (modified
ependymal cells) that surround a core of capillaries and
connective tissue. While epithelial cells are provided with tight
junctions, capillaries are fenestrated. Then, within the general
concept of BBB, choroid plexuses are a highly vascularized tissue
that represents a different functional interface between blood
and ventricular as well as subarachnoid spaces, constituting
the so-called blood-CSF (or liquor) barrier (Kratzer et al.,
2020). Overcoming these classic anatomical concepts, outer
brain barriers are indeed composed of at least 3 interfaces,
blood-CSF barrier across arachnoid barrier cell layer, blood-CSF
barrier across pial microvessels, and outer CSF-brain barrier
comprising glial end-feet layer/pial surface layer (Brøchner et al.,
2015). Again, both pioneering and recent evidence has been
provided pointing at extra-choroidal CSF production as well as
novel mechanisms for CSF clearance (Sato and Bering, 1967;
Milhorat, 1969; Milhorat et al., 1971; Orešković et al., 2017; Fame
and Lehtinen, 2020). The ongoing CSF production and solutes
transport from the blood to the CSF in choroid plexectomized
rhesus monkeys suggests that the choroid plexus is probably
not the sole or even the major source of CSF within the
primate ventricular system (Sato and Bering, 1967; Milhorat,
1969; Milhorat et al., 1971). Accordingly, CSF production and
absorption are constant and present everywhere in the CSF
system, and the CSF is mainly formed as a consequence of
water filtration between the capillaries and interstitial fluid
(Orešković et al., 2017).

Highly permeable capillaries are present in specific brain
regions, where a typical BBB is lacking and molecules freely
diffuse from the blood into the brain. Since these areas are
mostly placed between neural tissue and ventricle lumen,
they are known as “circumventricular organs.” At this level,
specialized ependymal cells, named tanycytes, equipped with
a differential distribution of tight junction proteins, form a
particular blood-CSF barrier. These circumventricular organs
represent specialized neuro-epithelial regions, which include
sensory (subfornical organ, area postrema, vascular organ of
lamina terminalis) and secretory structures (median eminence,
pituitary neural lobe, pineal gland). Then, these organs are
important sites for communication with the CSF, as well as
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FIGURE 1 | Glymphatic system, neurovascular unit (NVU), and the blood–brain-barrier. The glymphatic system contributes to the transport of nutrients and signaling
molecules into the brain parenchyma meanwhile promoting the clearance of proteins and interstitial waste solutes out of the brain. Subarachnoid CSF enters the
brain parenchyma via para-arterial spaces and then mixes with the interstitial fluid (ISF) and waste solutes in the parenchyma. Whether this occurs through
convective bulk flow or diffusion remains debated. The resulting CSF-ISF fluid exchange and the interstitial waste solutes enter the paravenous space through gaps
between the astrocytic end-feet to be drained either back to the CSF-dural sinus-meningeal lymphatic vessels, or to the deep cervical lymph nodes. Green arrows
and shades indicate the CSF and CSF-ISF fluid transport, while black stars indicate the interstitial waste solutes that exit the parenchyma via the paravenous efflux
pathway. The insert depicts the main components of the NVU at the level of intraparenchymal capillaries, including perivascular astrocytes with their end-feet,
neurons, microglia, pericytes, endothelial cells (ECs), and basement membrane (basal lamina). Capillary ECs are held together by tight junctions forming the
blood–brain barrier (BBB), where the different transport routes are represented, including transcellular lipophilic transport, carrier protein-mediated transport,
paracellular aqueous transport, receptor-mediated transcytosis, as well as adsorptive and cell-mediated transcytosis.

between brain and periphery by means of a rapid neuro-humoral
exchange (Kaur and Ling, 2017).

The idea of a diffuse clearing process was replaced by the
identification of anatomically and functionally discrete spaces
surrounding the blood vessels of the brain (Bacyinski et al., 2017).

These include the perivascular and paravascular spaces, where
solute transport occurs in opposite directions. In detail,
according to the perivascular model, ISF and solutes from the
brain parenchyma enter the peri-arterial space in the BM of
capillaries and within the tunica media of penetrating arteries
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(Carare et al., 2008). From the peri-arterial space, solutes (soluble
antigens but not cells) are cleared from the brain by dispersing
in CSF or draining directly into cervical lymph nodes (Weller,
2005; Carare et al., 2008; Bacyinski et al., 2017). A failure of such a
perivascular drainage is associated with β-amyloid accumulation
(Carare et al., 2008; Bakker et al., 2016). Solute clearance from
the brain parenchyma to the cervical lymphatic system through
the perivascular pathway occurs in a direction which is opposite
to that of both blood flow and paravascular pathway (Carare
et al., 2008; Weller et al., 2009; Abbott, 2013; Bakker et al., 2016;
Bacyinski et al., 2017).

The paravascular space (Virchow-Robin or Durant-Fardel
space of the classic literature) was described in terms of a pathway
for the clearance of interstitial molecules (Iliff et al., 2012). This
was documented through in vivo two-photon microscopy and
ex vivo confocal microscopy in mice, and consists of a three-
step pathway: (1) CSF enters the brain parenchyma along with
arterial paravascular (extramural) spaces; (2) CSF is mixed with
ISF and solutes in a process mediated by AQP4; and (3) CSF exits
through the extracellular space (“transparenchymal” convection)
along venous paravascular spaces to be removed from the brain.
Since this process includes the participation of perivascular glial
cells with a sieving effect of their end-feet, and it resembles
the classic peripheral lymphatic system, the group of Maiken
Nedergaard coined the term of “glymphatic” (glial-lymphatic)
pathway (Iliff et al., 2012). Thus, the glymphatic system consists
of a unidirectional fluid current flowing from the paravascular
space of penetrating arteries and arterioles to that of large caliber
parenchymal draining veins (Figure 1).

As far as the classic lymphatic system is concerned, studies of
the past decade provided the first morphological, phenotypical
and functional characterization of lymphatic vessels in the
cerebral dura mater draining to the cervical lymph nodes
(Aspelund et al., 2015; Louveau et al., 2015; Da Mesquita et al.,
2018). It is suggested that meningeal lymphatic vessels absorb
CSF from the adjacent subarachnoid space and brain ISF via
the glymphatic system, thus acting as a drainage route for CSF
while contributing to immune surveillance of the CNS (Aspelund
et al., 2015; Louveau et al., 2015; Raper et al., 2016; Da Mesquita
et al., 2018; Tamura et al., 2020). These studies also allowed
the work of Paolo Mascagni, who was the first to describe in
the 1787 a potential lymphatic system in the dura of humans
in his masterpiece “Vasorum lymphaticorum corporis humani
historia et ichnographia,” to be recognized and accepted by the
scientific community (Natale et al., 2017; Irschick et al., 2019).
This was reported by a number of additional works (Lukić et al.,
2003; Bucchieri et al., 2015; Kumar et al., 2019; Sandrone et al.,
2019; Mestre et al., 2020; Tamura et al., 2020). The presence of
lymphatic vessels was demonstrated in the dura of both humans
and non-human primates (Louveau et al., 2015; Absinta et al.,
2017; Visanji et al., 2018). In humans, these vessels were detected
at the level of the superior sagittal sinus and falx cerebri through
immune-staining for podoplanin (a marker specific for lymphatic
vessel ECs, Absinta et al., 2017; Visanji et al., 2018).

Thus, waste solutes may be ultimately cleared from the brain
by draining into different compartments, including CSF-filled
subarachnoid space and arachnoid villi, conduits along cranial

and peripheral nerves, paravascular routes, as well as meningeal
and cervical lymphatics (Iliff et al., 2012; Bedussi et al., 2015;
Tarasoff-Conway et al., 2015; Raper et al., 2016; Benveniste et al.,
2017; Ma et al., 2017). Similar to the perivascular clearance
which requires cardiac output (Carare et al., 2008), cerebral
arterial pulsation plays a pivotal role in driving glymphatic
CSF influx into and through the brain parenchyma (Iliff et al.,
2012). Thus, changes in arterial pulsatility may contribute to
the accumulation of toxic solutes, including β-amyloid, in the
aging brain (Iliff et al., 2013). Notwithstanding the importance
of this discovery, characterization of such a highly organized
CSF-ISF exchange pathway dates back to studies of the mid 80s
by Patricia Grady’s group (Rennels et al., 1985). In fact, early
evidence for a paravascular fluid circulation in the mammalian
CNS was provided by the rapid and widespread distribution of a
CSF tracer (horseradish peroxidase protein) throughout the brain
from the subarachnoid space.

Nowadays, the glymphatic model has been further confirmed
and highly praised (Jessen et al., 2015; Nistal and Mocco, 2018;
Plog and Nedergaard, 2018; Sun et al., 2018; Benveniste et al.,
2019; Kumar et al., 2019; Thomas et al., 2019; Mestre et al., 2020),
and it was recently described in humans (Ringstad et al., 2018).
The glymphatic pathway is being widely investigated comparing
healthy and pathological conditions, such as neurodegenerative
disorders, including chronic Alzheimer’s disease (AD), as well as
hemorrhagic and ischemic stroke, hydrocephalus or traumatic
brain injury. Descriptions in human disorders were backed up
by experimental modeling of the system, which was developed to
predict a potential site of therapeutic intervention (Rasmussen
et al., 2018; Jiang, 2019; Ramos et al., 2019; Kaur et al., 2020;
Reeves et al., 2020). Novel anatomical insights were provided
indicating that the midbrain, due to the consistent thickness of its
pial-glial BM, is better equipped for convective influx/glymphatic
entry of the CSF compared with other brain regions. This may
be a key for the intrathecal delivery of drugs into the brain
(Dobson et al., 2017).

Nonetheless, the glymphatic model has been also revisited,
and it represents a matter of debate. Many controversies and open
issues exist concerning the perivascular and paravascular models,
including the opposite directions of fluid flow, anatomical and
functional differences, potential driving forces, and their role
in health and disease (Bakker et al., 2016; Bacyinski et al.,
2017). Some morphological and functional studies postulated an
alternative hypothesis, which considers diffusion (not convective
bulk flow) as the main mechanism regulating CSF-ISF exchange
at the level of the NVU associated with brain capillaries, and
throughout the interstitial space (Asgari et al., 2016; Jin et al.,
2016; Smith et al., 2017; Abbott et al., 2018; Bakker et al., 2019;
Kaur et al., 2020).

This is related to another major controversial aspect of the
glymphatic hypothesis, which is centered on the role for AQP4
in CSF-ISF exchange under physiological conditions (Abbott
et al., 2018). It has been argued that diffusion, rather than
AQP4 expression, is an important regulator of paravascular
flow, since CSF tracer uptake and interstitial flow rate are
unaffected by ablation of the Aqp4 gene (Smith et al., 2017).
By using a cisternal infusion paradigm in mice similar to that
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employed by Iliff et al. (2012) and Smith et al. (2017) argued
that tracer movement in the brain parenchyma outside of the
perivascular spaces was size dependent and consistent with
diffusion as the main mechanism of transport. Both studies differ
on the anesthetics used, to which a subsequent study accessed
the correlations of different anesthetics, electroencephalogram
(EEG) power, and CSF tracer influx (Hablitz et al., 2019). Again,
arguing against a major contribution of the ISF bulk flow model,
several studies showed that most of β-amyloid removal occurs
via the BBB (Deane et al., 2004, 2008; Tarasoff-Conway et al.,
2015; Hladky and Barrand, 2018). Nonetheless, several studies
confirmed that AQP4 inhibitors or Aqp4 gene deletion slows
down or impairs both glymphatic CSF tracer influx and the
clearance of several interstitial solutes, including β-amyloid,
ApoE, tau, SOD1 oligomers, lactate, and viruses (Iliff et al., 2014;
Achariyar et al., 2016; Murlidharan et al., 2016; Lundgaard et al.,
2017; Mestre et al., 2018; Feng et al., 2020; Harrison et al., 2020;
Hirose et al., 2020).

Mice expressing normal AQP4 levels but specifically lacking
perivascular AQP4 localization also exhibit impaired CSF tracer
influx (Mestre et al., 2018). In this frame, pericytes play a
key role in regulating AQP4 polarization in astrocytes end-
feet (Gundersen et al., 2014). As support to a key role of
pericytes in glymphatic function, pericyte-deficient Pdgfbret/ret

mice feature both mispolarization of AQP4 from astrocyte end-
feet, and defective glymphatic function (Armulik et al., 2010;
Munk et al., 2019). In this same model, the development of the
vasculature is more generally altered, including capillary dilation
and impaired BBB function (Armulik et al., 2010). Several pieces
of evidence now support a scenario in which pericytes influence
the development of the glymphatic system through deposition
of laminin 211 in the vascular BM, which via dystroglycan and
dystrophin in astrocytes promotes polarization of AQP4 to its
end-feet (Lendahl et al., 2019; Zheng et al., 2020).

Considering the vascular and metabolic importance of BBB
and glymphatic system, alterations of these structures have
been implicated in the pathogenesis of several neurological
diseases. On the other hand, also in peripheral organs the human
interstitial space has been revised and a novel concept of the
space within and between cells has been proposed (Benias et al.,
2018; Kumar et al., 2019). The present article aims to discuss
recent findings in an attempt to envisage how perturbations of
the glymphatic system can take a role in favoring or accelerating
neurodegenerative processes within CNS. In particular, the
involvement of peripheral alterations, central draining and
clearing systems are considered in this intriguing relationship.

GLYMPHATIC SYSTEM AND CNS
DISORDERS

The disruption of the brain (g)lymphatic system plays a crucial
role in age-related changes of brain functions, as well as in
the pathogenesis of neurovascular, neurodegenerative, neuro-
inflammatory diseases, brain injury and tumors (Sun et al., 2018).

Several lines of evidence documented that β-amyloid and
tau exit the brain via the glymphatic system, and glymphatic

activity and CSF outflow decrease significantly in old mice
(Iliff et al., 2014; Kress et al., 2014; Jessen et al., 2015; Ma
et al., 2017). The glymphatic system removes potentially harmful
metabolites from the CNS especially during sleep (Rasmussen
et al., 2018; Hauglund et al., 2020). Accordingly, in animal
models it was observed that during natural sleep or anaesthesia
there is an enlargement of the interstitial space, which increases
convective CSF exchange with ISF, and β-amyloid clearance
rate (Xie et al., 2013). Again, obstructive sleep apnea increases
cerebral β-amyloid aggregation and it is associated with increased
prevalence of neurodegeneration, including AD (Ju et al., 2019).
This is correlated with reduced slow wave activity (SWA).
In fact, high SWA and certain types of anaesthesia support
glymphatic activity, while norepinephrine signaling in the brain
(and wakefulness, in general) has an attenuating effect (Xie et al.,
2013; Hablitz et al., 2019; Hauglund et al., 2020). Disrupting
the SWA is enough to abolish waste clearance (Ju et al., 2017),
and sleep deprivation is correlated with increased levels of
β-amyloid in the brain of both animals and humans (Kang
et al., 2009; Shokri-Kojori et al., 2018). In line with this, the
concentration of β-amyloid in CSF follows the sleep-wake cycle
in AD human subjects, providing a correlation between bad sleep
quality and β-amyloid deposition in the preclinical stage of AD
(Ju et al., 2013).

In patients with AD, a decrease in both BBB and glymphatic
function, accompanies a general dysfunction of NVU, including
astrocytic end-feet atrophy, pericyte degeneration, alteration of
endothelial tight junctions, and thickening of the basement
membrane (Yamazaki and Kanekiyo, 2017). Consequently,
CSF clearance of β-amyloid and tau tracers is reduced. This
glymphatic dysfunction may be in part related to an altered
AQP4 expression, as shown in different animal models of
traumatic brain injury, AD, and stroke. In young APP/PS1
double transgenic mice, expressing chimeric mouse/human
amyloid precursor protein (Mo/HuAPP695swe) and a mutant
form of human presenilin-1 (PS1-dE9), it was shown a reduced
glymphatic influx and clearance of β-amyloid, which worsens
with aging. More in depth, glymphatic transport appeared
suppressed in old APP/PS1mice, with β-amyloid deposits, and
glymphatic clearance was reduced prior to the presence of
β-amyloid deposits in younger APP/PS1 mice when compared to
age-matched controls. As in a vicious circle, it was also shown
that administration of wild-type mice with β-amyloid led to
significant suppression of CSF tracer influx, suggesting that AD
can cause a further reduction of glymphatic clearance (Peng et al.,
2016). In fact, cerebral amyloid angiopathy consists of increased
arterial stiffness, decreased arterial pulse, and reduction of
perivascular spaces, due to extracellular β-amyloid accumulation
(Peng et al., 2016; Plog and Nedergaard, 2018; Rasmussen et al.,
2018; Reeves et al., 2020).

In the case of haemorrhagic stroke, the impairment of the
glymphatic system is due to blood components, such as fibrin and
fibrinogen deposits, which occlude perivascular spaces. In the
ischaemic stroke there is an impaired CSF inflow and the release
of several pro-inflammatory cytokines. Contrast-enhanced
magnetic resonance imaging indicates that the glymphatic
system is affected during stroke, although to a different
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extent, depending on the specific disorder [subarachnoid or
intracerebral hemorrhage, carotid ligature, and embolic ischemic
stroke (Gaberel et al., 2014)]. Moreover, cerebral drainage
appeared affected also during multiple microinfarction, with
inhibition of AQP4 function, as demonstrated in a murine model
(Wang et al., 2017). Clearance of solutes, including tau protein,
from the interstitial space is reduced by ∼60% after traumatic
brain injury in experimental animals, with this impairment
persisting for at least 1 month (Iliff et al., 2014).

An altered glymphatic function has been advocated to
account for AD, as well as for idiopathic normal pressure
hydrocephalus. The latter condition affects up to 10% of
patients affected by dementia, who concomitantly suffer from
idiopathic normal pressure hydrocephalus, with progressive
ventriculomegaly, and the clinical triad of gait ataxia, urinary
incontinence, and dementia (Reeves et al., 2020). In this respect,
intrathecal contrast-enhanced magnetic resonance imaging has
been suggested to diagnose pre-clinical neurodegenerative
disorders (Ringstad et al., 2018).

These pathological conditions are associated with a decrease
in CSF influx to the glymphatic pathway or reduced clearance
efficacy (traumatic brain injury, ischaemic stroke) or both (aging,
AD, subarachnoid hemorrhage, idiopathic normal pressure
hydrocephalus) (Plog and Nedergaard, 2018; Rasmussen et al.,
2018). Nonetheless, it still remains difficult to establish to
what extent a primary disruption of the glymphatic system is
responsible for the onset of brain pathologies or rather it is a CNS
disease that affects this delicate drainage pathway. Even, a mutual
detrimental influence between noxious stimuli and interstitial
fluid dynamics should be considered.

GLYMPHATIC SYSTEM AND PERIPHERY:
IMPLICATIONS FOR CNS DISORDERS

Considering that a healthy human body depends on the
correct communication among various integrated systems, it
is essential to have a holistic view to better understand
and interpret its dynamics under normal and pathological
conditions. Then, the classic distinction between the CNS and
the body periphery appears now inadequate. In this regard,
another important issue to be discussed is the influence of
peripheral pathologies on the integrity of CNS paravascular
spaces, with possible negative consequences on neuronal
activities. For instance, diabetes mellitus impairs glymphatic
clearance of interstitial solutes within the hippocampus and
hypothalamus of rats, which is correlated with cognitive decline
(Jiang et al., 2017).

Again, accumulation of metabolic waste products and noxious
substances in the brain ISF may result from liver disease,
potentially contributing to neuronal dysfunction and cognitive
impairment (Hadjihambi et al., 2019). This was confirmed
in a rat model of chronic liver disease obtained through
bile duct ligation, where altered glymphatic clearance and
reduced AQP4 expression occurs in several brain regions,
including the olfactory bulb, prefrontal cortex and hippocampus.
These effects are aligned with cognitive/behavioral deficits

(Hadjihambi et al., 2019). It has been speculated that, in the
advanced phases of liver cirrhosis, glymphatic damage could
be the end-stage phenomenon of a cascade of hydrodynamic
events. These start from the onset of a vast number of artero-
venous shunts in several organs and apparatuses and culminate
into a reduction of jugular vein outflow (Gallina et al., 2019).
This may in turn induce a reduction of cerebral-venous outflow
and consequently, impairment of CSF circulation, derangement
of AQP4-based clearance, accumulation of waste molecules and
fluids, glymphatic congestion and inflammation.

A variety of general conditions can influence the efficiency
of brain clearance from waste products. For instance, not only
the level of consciousness, but also body posture (supine, prone,
or lateral positions) contributes to glymphatic drainage. An
experimental study indicates that the right lateral decubitus,
which is natural in rodents at rest, is mostly efficient
for glymphatic transport and elimination of waste products,
including β-amyloid (Lee et al., 2015). One potential explanation
for such an advantage is that the heart is positioned higher,
which may favor pumping of blood and greater venous return
to increase cardiac stroke volume; in turn, sympathetic tone is
reduced, possibly improving glymphatic influx. However, more
complex physiological adjustments to different head and body
positions (including stretch on the nerves and vessels on the
neck) are likely to be involved. Preliminary results were also
obtained in patients, where postural changes seem to affect
intracranial pressure (Andresen et al., 2016).

As previously mentioned, during sleep, the glymphatic system
is highly active in removing waste products. Sleep disturbances
are an early correlate of neurodegenerative diseases, including
AD and Parkinson’s disease (PD), where they often precede the
onset of classic symptoms. In general sleep can be regarded as
a neuroprotective factor acting through the glymphatic system
(Sundaram et al., 2019). Sleep quality is controlled by circadian
rhythms. Recent papers in rodents (Hablitz et al., 2020; Pulido
et al., 2020) and Drosophila (Artiushin et al., 2018; Zhang et al.,
2018) emphasized the circadian regulation of the glymphatic
system, lymphatic drainage and BBB permeability. For instance,
in mice, glymphatic CSF influx, and solute clearance from the
brain, do vary according to circadian rhythms independent
of arousal state (Hablitz et al., 2020). Glymphatic influx and
clearance peak during the mid-rest phase of mice, while CSF
drainage to the lymph nodes exhibits daily variation opposite
to glymphatic influx. This is matched by the perivascular
polarization of AQP4, which is highest during the rest phase.
An intricate relationship has been documented between neuronal
activity and the expression of circadian clock genes within brain
ECs, which in turn, orchestrate the activity-dependent control of
BBB efflux transport (Pulido et al., 2020).

Cervical Lymph Nodes and Brain
Drainage
The glymphatic pathway is connected to a classic lymphatic
network, associated with dural meninges covering the brain, as
well as sheaths of cranial nerves and blood vessels, or drains
via the olfactory route, then exiting through cranial foramina.
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This network ultimately drains to deep and superficial cervical
lymph nodes, then representing the next step in CNS drainage
following the glymphatic system (Ma et al., 2017; Benveniste et al.,
2019; Hershenhouse et al., 2019). In rats the uptake of Evans blue
tracer from subarachnoid space (cistern magna) was shown to
be drained into the meningeal lymphatic vessels and extracranial
lymph nodes (Maloveska et al., 2018).

During aging, meningeal lymphatic vessels exhibit decreased
vessel diameter and reduced drainage to cervical lymph nodes.
Experimental studies in mice showed that ablated or ligated
meningeal lymphatics led to an increase in β-amyloid deposition
and macrophage recruitment to plaque sites, with a reduced
extracellular clearance of altered proteins (Da Mesquita et al.,
2018). Behavioral test, including spatial learning and fear
memory, deteriorate along with impaired lymphatic function.
These data suggest that an impaired efficiency of meningeal
lymphatic vessels to drain toward peripheral lymph nodes play
a significant role in the pathological accumulation of proteins
implicated in neurodegeneration (Hershenhouse et al., 2019).
Similar findings were reported for α-synuclein accumulation,
a hallmark for a class of degenerative disorders (Zou et al.,
2019). The presence in humans of meningeal lymphatic vessels
connected with the glymphatic system arouse the hypothesis that
clearance of macromolecules implicated in neurodegenerative
proteinopathies, such as PD, might also occur through this
efflux pathway. Then, an impairment of this drainage might
result in α-synuclein accumulation, leading to neurodegeneration
(Visanji et al., 2018).

The effects of an impaired drainage of cerebral lymphatic
system in the pathogenesis of both ischemic and hemorrhagic
stroke was examined. In a model of transient middle cerebral
artery occlusion-induced stroke, the blockade of cervical
lymphatics worsened cerebral edema and infarct size. Again, an
obstruction of meningeal lymphatic vessels after a subarachnoid
hemorrhage contributed to the exacerbation of the disease (Sun
et al., 2018; Hershenhouse et al., 2019).

The bidirectional connection between the CNS and peripheral
immune system through meningeal and cervical lymphatics
is also relevant for autoimmunity. In fact, while assisting in
the drainage of CSF components, meningeal lymphatics enable
immune cells and self-antigen peptides to enter draining lymph
nodes (Louveau et al., 2018). This may foster activation of T-cells
in periphery while mounting CNS-directed adaptive immune
responses (Limanaqi et al., 2019). In fact, peripherally activated
T-cells can enter the brain parenchyma by crossing all CNS
barriers including the blood-CSF, the blood-leptomeningeal, and
the BBB (Shechter et al., 2013; Limanaqi et al., 2019). In line with
this, resection of either meningeal lymphatics or deep cervical
lymph nodes is beneficial in models of multiple sclerosis (MS),
which is characterized by abundant inflammation and infiltration
of brain-reactive immune cells throughout the CNS (Phillips
et al., 1997; Furtado et al., 2008; van Zwam et al., 2009; Louveau
et al., 2018; Hershenhouse et al., 2019).

It is intriguing that besides neuro-immune disorders such as
MS, autoimmune mechanisms may also be implicated in classic
neurodegenerative disorders such as PD. In fact, nigral dopamine
(DA) neurons possess an enhanced sensitivity to the upregulation

of major histocompatibility complex I (MHC-I) molecules
(Cebrián et al., 2014). Thus, their susceptibility in PD may be
related to cytotoxic, CD8 + T-cell-mediated death (Sulzer et al.,
2017). This is bound to α-synuclein degradation and subsequent
generation of self-antigen peptides for T-cell presentation
through neuronal MHC molecules (Cebrián et al., 2014; Sulzer
et al., 2017; Ugras et al., 2018). In fact, just like professional
antigen presenting cells, DA neurons can internalize, process and
load antigens onto MHC-I, especially during pro-inflammatory
conditions (Cebrián et al., 2014; Limanaqi et al., 2019). This
occurs following either administration of DA precursors, or
microglial activation and subsequent cytokines release. In the
presence of activated CD8 + T-cells, the cognate antigen/MHC-
I complex exposed on the plasma membrane of DA neurons
induces T-cells proliferation, and eventually, neuronal death
via Fas/Fas ligand and perforin/granzyme pathways. Thus, an
apparently paradoxical scenario configures, whereby drainage
of α-synuclein to the peripheral lymph nodes may trigger
autoimmune attack against brain DA neurons, which remains to
be confirmed.

Glymphatic System and Brain-Gut Axis
Another interesting example of interaction between CNS and
periphery is represented by the brain-gut axis. It is now well
ascertained that there is a reciprocal communication between
brain and gastrointestinal tract. At first, there is a direct transfer
of peptides and regulatory proteins across the BBB. Furthermore,
gastrointestinal hormones can alter the function of brain ECs,
which compose the BBB. Finally, these hormones can affect the
secretion from the BBB of substances involved in the regulation
of feeding and appetite, such as nitric oxide and cytokines
(Banks, 2008).

A large body of evidence shows how gastrointestinal
pathologies can affect the CNS bypassing or altering BBB
and related pathways, including the glymphatic system. In
fact, according to Braak’s hypothesis (Braak et al., 2003)
neurodegenerative diseases, in particular PD, may have a
peripheral origin. This may occur when putative pathogens
enter the mucosa of the gastrointestinal tract, inducing
misfolded/aggregated α-synuclein in specific neuron subtypes
of the enteric nervous system. These α-synuclein aggregates
may finally spread antidromically to the CNS via the vagal
preganglionic fibers, up to the dorsal motor nucleus (Natale
et al., 2008, 2010, 2011a). In other words, misfolded proteins can
propagate via peripheral nervous system (Natale et al., 2011b,
2013; O’Carroll et al., 2020).

In spite of these findings, Braak’s hypothesis is still debated.
Liddle (2018) collected several data showing that PD may
arise in the gut, whereas according to Lionnet et al. (2018)
the human autopsy evidence does not seem to support this
hypothesis. Finally, it is possible to agree on a compromise when
a specific subset of patients affected by PD can be considered
within the staging system of Braak (Rietdijk et al., 2017). In
particular, two subtypes of PD patients can be recognized: a
brain-first (top-down) type, where α-synuclein pathology initially
arises in the brain with secondary spreading to the peripheral
autonomic nervous system; and a body-first (bottom-up) type,
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where the pathology originates in the enteric or peripheral
autonomic nervous system and then spreads to the brain
(Horsager et al., 2020) (Figure 2). Supporting this hypothesis, a

novel experimental study showed that α-synuclein fibrils injected
into the duodenal and pyloric muscularis layer can spread in
the brain, first in the dorsal motor nucleus, and then in the

FIGURE 2 | Glymphatic pathway in pathological conditions: a role for the bidirectional gut-brain communication. Alterations of the glymphatic pathway may
contribute to the extracellular accumulation of waste products, including altered protein in the brain (black stars). These include alterations in the morphology and
drainage capacity of meningeal lymphatic vessels, impairment of CSF influx and efflux, along with the release of several pro-inflammatory cytokines and immune
cells. Considering the reciprocal communication which occurs between the brain and the gastrointestinal tract, gut alterations can affect the CNS, and vice-versa.
Potentially harmful solutes, including misfolded/aggregated proteins, may spread to the gut through the autonomic nervous system to induce inflammation [brain-first
(top-down) type]. In turn, gut dysbiosis, inflammation, and leakage may promote the antidromic spread of potentially harmful molecules to the CNS via the vagal
fibers or the bloodstream [body-first (bottom-up) type], bypassing and altering the glymphatic system and the BBB (left insert). These include misfolded/aggregated
proteins such as α-synuclein, microorganisms, and also pro-inflammatory cytokines and activated immune cells, such as TREM TREM cells-positive activated
macrophages. Extracellular accumulation of waste products related to an altered glymphatic drainage is exacerbated when intracellular clearing systems are
impaired (right insert). This is the case of the autophagy pathway, which grants neuronal proteostasis and survival. When autophagy is impaired, extracellular release
of undigested, potentially harmful substrates may occur via exosome release.
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locus coeruleus, and later on, in basolateral amygdala, dorsal
raphe nucleus, and substantia nigra pars compacta. Truncal
vagotomy and α-synuclein deficiency prevent the gut-to-brain
spread of synucleinopathy and associated neurodegeneration and
behavioral deficits (Kim et al., 2019).

The role of the gastrointestinal microbiota and their
metabolites in modulating brain functions and BBB integrity
has rapidly increased over the past years (Cryan et al., 2020;
Parker et al., 2020). Interestingly, in a recent work it has
been observed that, following fecal microbiota transplant from
aged into young mice, a down-regulation of proteins involved
in glucose transport across the BBB, such as SlcA1 and A3,
takes places, contributing to the dysfunctional bioenergetic
system of the aging brain (D’Amato et al., 2020). Furthermore,
in an up-to-date review, it was reported that, via the
microbiota-gut-brain axis, Triggering Receptors Expressed on
Myeloid cells (TREM)-positive activated macrophages along with
inflammatory mediators may reach the brain through blood,
glymphatic system, circumventricular organs, or the vagus nerve
(Figure 2, Natale et al., 2019). This may foster pro-inflammatory
reactions in the brain, bridging inflammatory bowel disease and
neurological disorders. Similar hypotheses have also emerged
on the correlation between gastrointestinal and neurological
symptoms of SARS-CoV-2, which may apply indeed to a variety
of microorganisms, and also “prionoid” proteins. Once the
gastrointestinal tract is invaded, the virus may transit to the
CNS through vascular and lymphatic systems, or through the
vagus nerve (Bostancıklıoğlu, 2020a,b; Limanaqi et al., 2020).
The virus can even infect leukocytes and migrate with them
into the brain, or alternatively, viral particles can be directly
transported across the BBB to the brain. Again, the virus can
invade the peripheral lymphatic vessels which are connected
with the glymphatic system, finding a route to the CNS. This
suggests that lymph vessels around the gastrointestinal tract,
the vascular system itself, or the gut-brain axis via the vagal
nerve represent potential peripheral gateways for both pathogen
neuroinvasion and prion-like spreading of potentially harmful
catabolites to the CNS. If this is the case, accumulation of
waste products in the brain would progressively foster pathology
due to impairment of (g)lymphatic drainage activity or altered
intracellular catabolite scavenge (for example, the autophagy
pathway) (Figure 2).

At the same time, perineural spaces surrounding the cranial
nerves, including the vagus, are known to provide some level
of CSF drainage to peripheral lymphatics (Ma et al., 2017).
When considering recent evidence that vagus nerve stimulation
enhances CSF tracer influx (Cheng et al., 2020), the top-down
hypothesis of neurodegeneration seems to take over. Although
a correlation between glymphatic clearance of misfolded proteins
and the vagus nerve remains to be investigated, some insights can
be provided by the recently described ocular glymphatic system.
Following up experimental data that documented retrograde
CSF inflow to the paravascular spaces in the optic nerve, it was
demonstrated that an eye-to-CSF pathway supports clearance
of waste products from the retina and vitreous (Wang et al.,
2020). This occurs in opposite direction as compared to CSF
drainage, and neural activity seems to play a role on the rate
of fluid fluxes, as light stimulation promotes fluid drainage and
β-amyloid clearance. After traversing the lamina barrier through
an ocular-cranial pressure difference mechanism, intra-axonal
Aβ is cleared via the paravenous space and subsequently drained
to lymphatic vessels. Apart from providing a potential link
between neurodegenerative and ocular diseases, these findings
open novel avenues for further experimental studies aimed
at dissecting the role of the glymphatic system as a kernel
connecting CNS and periphery.
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Friedreich’s ataxia (FRDA) is the most frequent autosomal recessive ataxia in western
countries, with a mean age of onset at 10–15 years. Patients manifest progressive
cerebellar and sensory ataxia, dysarthria, lower limb pyramidal weakness, and other
systemic manifestations. Previously, we described a family displaying two expanded
GAA alleles not only in the proband affected by late-onset FRDA but also in the two
asymptomatic family members: the mother and the younger sister. Both of them showed
a significant reduction of frataxin levels, without any disease manifestation. Here, we
analyzed if a protective mechanism might contribute to modulate the phenotype in this
family. We particularly focused on the transcription factor nuclear factor erythroid 2-
related factor 2 (NRF2), the first line of antioxidant defense in cells, and on the glutathione
(GSH) system, an index of reactive oxygen species (ROS) detoxification ability. Our
findings show a great reactivity of the GSH system to the frataxin deficiency, particularly
in the asymptomatic mother, where the genes of GSH synthesis [glutamate–cysteine
ligase (GCL)] and GSSG detoxification [GSH S-reductase (GSR)] were highly responsive.
The GSR was activated even in the asymptomatic sister and in the proband, reflecting
the need of buffering the GSSG increase. Furthermore, and contrasting the NRF2
expression documented in FRDA tissues, NRF2 was highly activated in the mother and
in the younger sister, while it was constitutively low in the proband. This suggests that,
also under frataxin depletion, the endogenous stimulation of NRF2 in asymptomatic
FRDA subjects may contribute to protect against the progressive oxidative damage,
helping to prevent the onset of neurological symptoms and highlighting an “out-brain
origin” of the disease.
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INTRODUCTION

Friedreich’s ataxia (FRDA, OMIM #229300) is the most frequent
autosomal recessive ataxia in western countries, with an
estimated prevalence of 1:80,000 among Caucasian populations
and a mean age of onset at 10–15 years (Cossée et al.,
1999; Koeppen et al., 2009). Symptoms appear between 5
and 15 years of age in FRDA, and the brain atrophy
begins early in the disease and plateaus in later stages,
indicating that the neurodegenerative profile is an early-onset
disease manifestation, with progressive mixed cerebellar and
sensory ataxia, cerebellar dysarthria, and lower limb pyramidal
weakness. However, other systemic manifestations, including
hypertrophic cardiomyopathy, diabetes mellitus, kyphoscoliosis,
pes cavus, optic atrophy, and sensory deafness can occur
(Cossée et al., 1999; Koeppen et al., 2009; Pallardó et al.,
2020). Late-onset (26–39 years) and very-late-onset (over
40 years) FRDA variants can also take place, usually presenting
with a milder phenotype and lack of systemic manifestations
(Koeppen et al., 2011). Frataxin (FXN) is a ubiquitously
expressed protein, and its deficiency results in the decrease
of mitochondrial copy number, iron accumulation, deficits of
respiratory chain complex activities, and increased sensitivity
to oxidative stress, thus affecting many different body districts
(Vaubel and Isaya, 2013; Martelli and Puccio, 2014). The
brain is the predominantly affected tissue in FRDA, but
damage to cardiac myocytes and pancreatic beta-cells has
also been evidenced (Delatycki and Corben, 2012; Loría and
Díaz-Nido, 2015; Franco et al., 2017; Koeppen et al., 2017).
Therefore, rather than a “brain disease,” FRDA can be considered
a “systemic disease,” with implications that go beyond the
brain itself.

This study moves from our previous report, where we
described a family (Figure 1A) displaying two small expanded
GAA alleles not only in the proband (II-1) affected by late-
onset FRDA (LOFA) but also in the two asymptomatic family
members: the mother (I-2) and the younger sister (II-2) (Santoro
et al., 2020). Further studies revealed that both I-2 and II-2
were actually carriers of an expanded GAA allele and of an
uncommon (GAAGGA)66−67 repeat (Santoro et al., 2020), while
the father (I-1) was a heterozygous carrier of an expanded
allele of about 206 GAA repeats. Although expression studies
showed that both the compound heterozygous carriers for
the expanded GAA and the (GAAGGA)66−67 repeat showed
a significant reduction of FXN mRNA and protein levels in
their leukocytes and fibroblasts (Santoro et al., 2020), none of
them developed any disease manifestation, supporting that this
array represents a benign variant as previously proposed by
Ohshima et al. (1999).

To go deeper and understand if a protective mechanism might
contribute to modulate the phenotype in this family, here, we
report the results of the analysis of redox gene expression profiles
in leukocytes and fibroblasts of all family members, particularly
focusing on the nuclear factor erythroid 2-related factor 2 (NRF2)
and on its glutathione (GSH)-related target genes.

Oxidative stress is a common condition in many
neurodegenerative disorders (Barnham et al., 2004), and

in FRDA, in particular, it represents one of the most
peculiar, although not completely understood, aspects of
the pathology (Lupoli et al., 2018). The GAA repeat-mediated
FXN depletion leads to mitochondrial iron accumulation in
the disease, causing reactive oxygen species (ROS) generation
and lipid peroxidation (La Rosa et al., 2020c; Turchi et al.,
2020a). As NRF2 regulates many genes directly involved in
counteracting oxidative stress and NRF2 signaling axis is
defective in FRDA (Paupe et al., 2009; Cuadrado et al., 2019;
Petrillo et al., 2019), the evaluation of NRF2 expression in
this family can help to open a window on new protective
factors potentially buffering the FRDA symptomatology.
NRF2 also modulates the cellular levels of GSH, which
previously was found impaired in FRDA patients (Piemonte
et al., 2001; Pastore et al., 2003) and whose equilibrated
ratios between GSH and its oxidized form GSSG are crucial
in maintaining the cellular redox balance (Schafer and
Buettner, 2001). Thus, we further measured the GSH and
GSSG content in family’s members, to evaluate their ROS
detoxification ability.

By this study, we ask if a differential expression of NRF2
or a dysregulated GSH homeostasis between symptomatic and
asymptomatic family’s members may represent a distinctive tract
able to confer the clinical protection.

RESULTS

The Glutathione Homeostasis Is
Dysregulated in the Family
The GSH content has been measured in blood (Figure 1B)
and in fibroblasts (Figure 1D) of FRDA family’s members
(Figure 1A). As reported in Figure 1B, the GSH balance
was dysregulated in blood, with the GSH levels surprisingly
high in the affected proband II-1, approaching the controls’
values (1,242 ± 23 vs. 1,302 ± 37 µM controls), whereas
the asymptomatic mother I-2 (539 ± 53 µM) and sister II-
2 (1,002 ± 8.2 µM) showed low GSH concentrations, as well
as father I-1 (972 ± 0.6 µM). In parallel, the GSSG, which
represents the oxidation product of GSH, was low in the proband
II-1 (3.4 ± 0.08 µM), with respect to the consistently high
GSSG levels found in the blood of the unaffected mother I-2
(13.4 ± 0.06 µM) and to the mild but significant rise in that
of the younger sister II-2 (4.04 ± 0.09 µM, vs. 2.18 ± 0.10
controls, Figure 1C). The father (I-1) showed no significant
differences with respect to the controls. This trend was confirmed
in fibroblasts (Figure 1D), with high GSH levels in II-1 (50 ± 0.88
nmol/mg prot.) and low concentrations in I-2 (25 ± 0.33
nmol/mg prot.), II-2 (36 ± 0.37 nmol/mg prot.), and I-1
(27 ± 0.35 nmol/mg prot.).

The Glutathione-Related Genes Are
Differently Expressed in the Family’s
Members
Given the different amounts of GSH and GSSG in affected
and unaffected members of the family, we asked if the
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FIGURE 1 | Glutathione homeostasis in Friedreich’s ataxia (FRDA) family’s members. (A) Family tree: father (I-1), mother (I-2), younger sister (II-2), and affected
proband (II-1) indicated by a black symbol. Reduced glutathione (GSH) (B) and oxidized GSSG (C) concentrations in the whole blood, and GSH content in
fibroblasts (D) of I-1, I-2, II-2, and proband II-1 as measured by the enzymatic re-cycling assay. Values are expressed as median ± SEM. Statistical significance was
defined as *p < 0.05, **p < 0.01, and ***p < 0.001 with respect to the controls; and #p < 0.05, ##p < 0.01, and ###p < 0.001 compared with proband II-1.

GSH-related genes, responsible for the GSH homeostasis in
cells, could be dysregulated in the family. Thus, we analyzed
the expression of glutamate–cysteine ligase (GCL), the gene
coding for the step-limiting enzyme of the GSH synthesis,
and the GSH S-reductase (GSR) gene, implicated in the
re-cycling of the GSH from its oxidized form GSSG. As
reported in Figure 2, while the GCL expression levels in I-
1, II-2, and proband II-1 were comparable with those of
the controls (Figures 2A,B), the asymptomatic mother (I-2)
showed a significant upregulation of the GCL gene, either
in leukocytes (Figure 2A) or in fibroblasts (Figure 2B),
probably as a response to the low availability of GSH
(Figures 1B,D). The expression of GSR, which reduces the
GSSG re-establishing a correct GSH/GSSG ratio, was highly
activated in I-2 and II-2, both in leukocytes (Figure 2C)
and in fibroblasts (Figure 2D), thus reflecting the need to
neutralize the GSSG overload (Figure 1). The GSR gene
was activated even in the leukocytes (Figure 2C) and in
fibroblasts of the proband II-1 (Figure 2D), who displayed
mild but nevertheless significant increase in GSSG concentration
(Figure 1). The I-1 showed no significant differences in GCL
and GSR expression neither in leukocytes (Figures 2A,C) nor
in fibroblasts (Figures 2B,D), with respect to the controls.
Overall, these findings demonstrate a strong reactivity to the FXN

deficiency of the GSH system, particularly in the I-2, where it was
greatly responsive.

Nuclear Factor Erythroid 2-Related
Factor 2 Is Activated in the
Asymptomatic Members of the Family
(I-2 and II-2)
Considering that the GSH-related genes are regulated by NRF2,
whose expression is impaired in FRDA patients and in preclinical
models of FXN deficiency (Paupe et al., 2009; D’Oria et al., 2013;
Shan et al., 2013; La Rosa et al., 2019, 2020d; Petrillo et al., 2019;
Turchi et al., 2020b), we evaluated if NRF2 might be differently
expressed in the family. Interestingly, as reported in Figure 3,
NRF2 was not induced in the fibroblasts of the proband II-1
(Figure 3B) but highly stimulated in leukocytes (Figure 3A). It is
important to note that the symptomatic proband II-1 was under
idebenone therapy at the time of blood collection, and idebenone
is a well-known NRF2 inducer (Petrillo et al., 2019).

NRF2 was also significantly activated in leukocytes
(Figure 3A) and in fibroblasts (Figure 3B) of I-2 and II-2,
while its expression in the I-1 was comparable with that of the
controls (Figures 3A,B).
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FIGURE 2 | Glutathione-related genes in Friedreich’s ataxia (FRDA) family. The expression of glutamate–cysteine ligase (GCL) and glutathione S-reductase (GSR)
was analyzed by quantitative real-time PCR (qRT-PCR), respectively, in leukocytes (A,C) and fibroblasts (B,D) of the I-1, I-2, II-2, and proband II-1. Values represent
median ± SEM. Statistical significance was defined as *p < 0.05, **p < 0.01, ***p < 0.001 with respect to the controls and ##p < 0.01 compared with proband II-1.

FIGURE 3 | Nuclear factor erythroid 2-related factor 2 (NRF2) gene expression in Friedreich’s ataxia (FRDA) family. Quantitative real-time PCR (qRT-PCR) analysis of
NRF2 transcripts in leukocytes (A) and in fibroblasts (B) of I-1, I-2, II-2, and proband II-1. Values represent median ± SEM. Statistical significance was defined as
**p < 0.01 and ***p < 0.001 with respect to the controls; and #p < 0.05, ##p < 0.01, and ###p < 0.001 compared with proband II-1.

MATERIALS AND METHODS

This study was conducted in agreement with the Declaration of
Helsinki, and its design fulfilled the guidelines of all involved
institutional ethical boards. RNA, and protein samples were
extracted from peripheral blood leukocytes or cultured fibroblasts
obtained from punch skin biopsies from all family members who
gave a written informed consent authorizing storage and use of
clinical data and biological samples for diagnostic and clinical
research purposes.

Family Description
The proband (II-1) was a 43-year-old female whose symptoms
started at the age of 35, with slowly progressive gait, balance, and

mild speech impairment. Her family history was negative
(Figure 1A). She first came to our attention at the age
of 39 years, and neurological examination documented
gaze evoked nystagmus, mild cerebellar dysarthria, gait
ataxia, limb in coordination with positive Romberg sign,
absent deep tendon reflexes, and bilateral Babinski sign;
antibodies, serum alpha-fetoprotein, vitamins B12 and E,
and lactic acid levels were all negative. Two pathological
GAA expansions of approximately 206 (GAA1) and 473
(GAA2) repeats have been documented in the proband
(Santoro et al., 2020).

The asymptomatic 36-year-old sister (II-2) displayed two
expanded alleles apparently corresponding to 146 (GAA1) and
176 (GAA2) repeats (Santoro et al., 2020). During 3 years of
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follow-up, symptoms slowly progressed in II-1, as expected;
instead, II-2 did not develop any FRDA manifestation.

Finally, the 73-year-old mother (I-2) carried two
GAA expansions of approximately 139 (GAA1) and 389
(GAA2) repeats, though detailed clinical neurological
evaluation documented the absence of symptomatology
(Santoro et al., 2020).

Blood Sample Collection
Blood samples from all family members were collected into 5%
EDTA Vacutainer tubes (Becton Dickinson, Rutherford, NY) and
fractionated as follows: 1 ml was stored at -80◦C immediately
after drawn for GSH determinations; 1 ml was destined to GSSG
measurements and stored at -80◦C, until analysis; and 5 ml of
whole blood was used for isolation of leukocytes by 10% dextran.

After 45 min at room temperature, the upper phase containing
leukocytes was centrifuged at 1,125 × g (5 min) and washed with
0.9% NaCl, until a clear pellet was obtained. Leukocytes have been
stored at −20◦C until the RNA extraction.

Cell Cultures
Skin biopsies were taken from all family members and three age-
matched controls. Fibroblasts were grown in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum, 50
units/ml of penicillin, 50 µg/ml of streptomycin, 0.4% (v/v)
amphotericin B (250 µg/ml), and 1 mM of sodium pyruvate at
37◦C in 5% CO2, as reported in Pastore et al. (2003). Fibroblasts
were grown to 70% confluence. The assays were performed in
triplicates, and cells were used at similar passage numbers.

GSH and GSSG Determination
GSH and GSSG levels have been detected using the enzymatic re-
cycling assay, as previously reported (Petrillo et al., 2019). Briefly,
samples have been de-proteinized with 5% (w/v) sulfosalycilic
acid (SSA; Sigma-Aldrich, St. Louis, MO, United States), and
the GSH content was determined after dilution of the acid-
soluble fraction in Na–phosphate buffer containing EDTA (pH
7.5). To prevent an overestimation of GSSG due to the oxidation
of thiols during sample manipulation, blood samples have been
collected in tubes prefilled with 30 mM of N-ethylmaleimide
(NEM) (Giustarini et al., 2013). GSH and GSSG concentrations
have been measured with the ThioStar R© GSH detection reagent
(Arbor Assays, Michigan, United States), using, respectively,
GSH and GSSG as standards (Sigma Chemicals, St. Louis, MO,
United States). The fluorescence has been measured using an
EnSpire R© Multimode Plate Reader (Perkin Elmer, Waltham,
MA, United States). GSH levels in fibroblasts were expressed
as nmol/mg proteins. Protein concentration was determined by
the bicinchoninic acid assay (BCA) method (Thermo Fisher
Scientific, United States).

Quantitative Real-Time PCR
Total RNA was extracted from leukocytes and fibroblasts using
TRI Reagent (Sigma-Aldrich, St. Louis, MO, United States),
according to manufacturer’s protocol. One microgram of each
RNA samples was reverse transcribed with the SuperScriptTM

First-Strand Synthesis system and random hexamers as primers
(Life Technologies, Carlsbad, CA, United States). The mRNA
of GCL, GSR, and NRF2 was measured by qRT-PCR in an
ABI PRISM 7500 Sequence Detection System (Life Technologies,
Carlsbad, CA, United States) using Power SYBR Green I dye
chemistry. Data were analyzed using the 2−11Ct method with
TATA box binding protein (TBP) as a housekeeping gene and
expressed as fold change relative to the controls. Primers used for
qRT-PCR are reported in Table 1.

Statistical Analysis
Statistical analysis was performed using the GraphPad/Prism 5.0
Software (San Diego, CA, United States). Statistically significant
differences between the controls and family’s members were
analyzed using Student’s t-test for normally distributed variables.
All data are presented as mean ± standard error. Statistical
significance was defined as ∗p < 0.05, ∗∗p < 0.001, and
∗∗∗p < 0.001 compared with the controls, and #p < 0.05,
##p < 0.01, and ###p < 0.001 compared with proband II-1.

DISCUSSION

This study moves from our previous paper focused on a peculiar
family characterized by the presence in two first-degree relatives
of the proband, affected by LOFA, of a compound heterozygosity
for an expanded (GAA) repeat and a (GAAGGA) repeat at
FXN locus; both compound heterozygotes are asymptomatic,
supporting that the (GAAGGA) repeat would be indeed a benign
variant. Yet FRDA studies (Santoro et al., 2020) showed that
FXN mRNA and protein levels were markedly reduced not only
in tissues of the proband but also in the two asymptomatic
compound heterozygotes. This led us to hypothesize that some
protective factors may mitigate detrimental effects of FXN
deficiency in both subjects; thus, we decided to assess the status
of the antioxidant response in that family.

A consequence of the FXN depletion in FRDA is the increase
of oxidative stress, and the most credited pathogenic hypothesis
is that the FXN-mediated impairment of the mitochondrial
iron–sulfur cluster (ISC)-containing enzymes (respiratory chain
complexes I–III and aconitase) contributes to the Fenton-
mediated overproduction of ROS (Armstrong et al., 2010; Gomes
and Santos, 2013; Vaubel and Isaya, 2013; Abeti et al., 2016;
Lupoli et al., 2018).

TABLE 1 | Primers used for qRT-PCR.

Human genes Sequence 5′>3′

NRF2 Fw-ACACGGTCCACAGCTCATC

Rv-TGTCAATCAAATCCATGTCCTG

GCL Fw-TTGCCTCCTGCTGTGTGATG

Rv-ATCATTGTGAGTCAACAGCTGTATGTC

GSR Fw-CACTTGCGTGAATGTTGGATG

Rv-GATTTCTATATGGGACTTGGTG

TBP Fw-CCGAAACGCCGAATATAATCC

Rv-AAATCAGTGCCGTGGTTCGT

Frontiers in Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 63881040

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-638810 February 22, 2021 Time: 12:0 # 6

Petrillo et al. Nrf2 in a FRDA Family

High susceptibility to oxidative stress has been demonstrated
in FRDA patients’ fibroblasts in early studies (Wong et al., 1999),
and ROS overload was found in yeast (Bulteau et al., 2007;
Irazusta et al., 2008), drosophila (Llorens et al., 2007; Anderson
et al., 2008; Soriano et al., 2013), and mouse (Al-Mahdawi et al.,
2006; Lupoli et al., 2018) disease models. In addition, elevated
levels of oxidative stress markers have been found in the blood
(Emond et al., 2000; Schulz et al., 2000; Bradley et al., 2004) and
cells (Cotticelli et al., 2013; Abeti et al., 2015, 2016, 2018; Petrillo
et al., 2019) of FRDA patients.

However, unlike the expected activation of the NRF2-
mediated antioxidant defense, the NRF2 signaling pathway is
defective in FRDA patients and in preclinical models of FXN
deficiency (Paupe et al., 2009; Shan et al., 2013; La Rosa et al.,
2020a,b), thus further exacerbating the susceptibility to oxidative
stress and its induced defects in the disease (Abeti et al., 2018; La
Rosa et al., 2020c,d).

In this family, we analyzed the antioxidant response in
all members, particularly focusing on the GSH metabolism
and NRF2 expression, both pathways representing the first
antioxidant defense lines in tissues. GSH is the main redox
indicator in cells, and previous studies reported decreased levels
of this molecule in the blood of FRDA patients.

NRF2 is the principal regulator of the GSH homeostasis by
upstream modulating the GSH synthesis (GCL gene) and the
GSH recycling from its oxidized form GSSG (GSR gene). All
these actions may actively contribute to counteract the oxidative
stress-mediated injury and, potentially, to slow down the onset of
symptoms in FRDA.

Our findings demonstrate that the GSH homeostasis was
dysregulated in the family (Figure 1), yet with unexpected
significantly low GSH concentration in the asymptomatic
compound heterozygous I-2 and high levels in the proband II-
1. The amount of GSSG was also consistently high in I-2, and
a moderate increase was even found in the other compound
heterozygous II-2 and in the proband II-1, likely indicating a

general activation of the GSH-mediated response. Also, the GSH-
related genes were differently expressed in the family members
(Figure 2), showing a great reactivity of the GSH system to
the FXN deficiency, particularly in the I-2, where the genes of
GSH synthesis (GCL) and of GSSG detoxification (GSR) were
highly responsive. The GSR gene was activated even in the other
compound heterozygous II-2, as well as in the proband II-1,
reflecting the need of buffering the increase in GSSG.

However, as the imbalance of GSH levels did not allow
explaining the lack of symptoms in the FXN-deficient compound
heterozygous I-2 and II-2, we focused our attention on NRF2,
the upstream regulator of GSH homeostasis, which is usually
depleted under conditions of FXN deficiency.

Contrasting the reduced NRF2 expression documented
in FRDA tissues, NRF2 was significantly activated in both
leukocytes and fibroblasts of the two asymptomatic compound
heterozygous I-2 and II-2 (Figure 3), suggesting that the
occurrence of an endogenous stimulation of this transcription
factor in these subjects might translate into protective and
preventive effects on the symptomatology.

Instead, NRF2 was downregulated in the fibroblasts of the
LOFA proband II-1, yet it was activated in her leukocytes
(Figure 3), where it might be related to the effects of the
idebenone treatment. Indeed, the proband was under idebenone
therapy at the time of blood collection, and idebenone is known
to activate NRF2 expression in FRDA patients (Petrillo et al.,
2019; La Rosa et al., 2020a).

Thus, in the LOFA proband, NRF2 is, as expected,
constitutively low in fibroblasts, whereas it is exogenously
activated in leukocytes by idebenone, but in both the
asymptomatic compound heterozygous carriers, NRF2 is
constitutively upregulated, although both of them would also
show decreased FXN expression. So we hypothesize that the
occurrence of a widespread upregulation of NRF2 expression in
such individuals might contribute to protect the most susceptible
tissues against the progressive oxidative damage and the onset of

FIGURE 4 | Hypothesis on the role of nuclear factor erythroid 2-related factor 2 (NRF2) as a protective factor antagonizing the insurgence of Friedreich’s ataxia
(FRDA) symptomatology.
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symptoms. Importantly, we suggest that the early administration
of NRF2 inducers in patients, particularly in FRDA children,
at the first onset of the disease could slow the progression of
neurological damage, thus being of great therapeutic help.

Overall, by this study, we extend the spectrum of possible
effectors responsible for the development of clinical symptoms,
thus moving the origin of the disease outside the brain. In
this regard, the family we analyzed is paradigmatic since,
although all members displayed FXN deficiency, nonetheless
some individuals appeared free of symptoms. Such as for
Parkinson’s (PD) and Alzheimer’s diseases (AD), also for FRDA,
alternative mechanisms, beyond the brain, can be hypothesized
to contribute to the pathogenesis of the disease. In particular,
our findings support the role of NRF2 as a protective factor
whose constitutive upregulation can keep the antioxidant defense
above a threshold, able to prevent the appearance of clinical
manifestations (Figure 4). Future studies will be needed to
expand the panel of NRF2 activities, in order to identify which
pathways are more involved in clinical FRDA protection. It
is important to note that NRF2 regulates the transcription of
approximately 1% of the human genome (Cuadrado et al., 2019)
and that beside maintaining the cellular redox homeostasis,
multiple cellular processes, including regulation of inflammation,
differentiation, proliferation, cell survival, protein homeostasis,
and metabolism, are among the functions influenced by its
activity (Corenblum et al., 2016; Robledinos-Antón et al., 2017;
Cuadrado et al., 2019; Dodson et al., 2019; La Rosa et al., 2019;
Turchi et al., 2020b). Two processes were recently shown to be
deeply connected to FRDA pathogenesis: (i) ferroptosis, an iron-
dependent cell death caused by impaired GSH metabolism, lipid
peroxidation, and mitochondrial failure (Cotticelli et al., 2019; La
Rosa et al., 2020d; Turchi et al., 2020b); and (ii) inflammation,
a mechanism not yet fully understood in FRDA, but potentially
involved, as demonstrated in fibroblasts of patients, where the
anti-inflammatory heme-oxygenase 1 (HO-1) gene was found to
be reduced (Petrillo et al., 2019) and in patients who showed
beneficial effects upon treatment with an NF-kB suppressor
(Lynch et al., 2019). Although it is undeniable that the NRF2
activation can ameliorate FRDA pathogenesis rescuing, at least in

part, the detrimental effects generated by these processes, deeper
and more complex regulations could be responsible for the
NRF2-mediated protection observed in asymptomatic members
of the family. Elucidating these defense mechanisms will be
crucial not only in a mitochondrial and systemic disease such
as FRDA but also in other oxidative stress-mediated disorders
characterized by an out-brain origin (i.e., PD and AD).
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Cerebral small vessel disease (CSVD) represents a spectrum of pathological processes of

various etiologies affecting the brain microcirculation that can trigger neuroinflammation

and the subsequent neurodegenerative cascade. Prevalent with aging, CSVD is

a recognized risk factor for stroke, vascular dementia, Alzheimer disease, and

Parkinson disease. Despite being the most common neurodegenerative condition with

cerebrocardiovascular axis, understanding about it remains poor. Interestingly, modifiable

risk factors such as unhealthy diet including high intake of processed food, high-fat foods,

and animal by-products are known to influence the non-neural peripheral events, such

as in the gastrointestinal tract and cardiovascular stress through cellular inflammation

and oxidation. One key outcome from such events, among others, includes the

cellular activations that lead to elevated levels of endogenous cellular-derived circulating

microparticles (MPs). MPs can be produced from various cellular origins including

leukocytes, platelets, endothelial cells, microbiota, and microglia. MPs could act as

microthrombogenic procoagulant that served as a plausible culprit for the vulnerable

end-artery microcirculation in the brain as the end-organ leading to CSVDmanifestations.

However, little attention has been paid on the potential role of MPs in the onset and

progression of CSVD spectrum. Corroboratively, the formation of MPs is known to

be influenced by diet-induced cellular stress. Thus, this review aims to appraise the
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body of evidence on the dietary-related impacts on circulating MPs from non-neural

peripheral origins that could serve as a plausible microthrombosis in CSVD manifestation

as a precursor of neurodegeneration. Here, we elaborate on the pathomechanical

features of MPs in health and disease states; relevance of dietary patterns on MP

release; preclinical studies pertaining to diet-based MPs contribution to disease; MP

level as putative surrogates for early disease biomarkers; and lastly, the potential of MPs

manipulation with diet-based approach as a novel preventive measure for CSVD in an

aging society worldwide.

Keywords: cerebral small vessel disease, diet, microparticles, neurodegeneration, microthrombosis

INTRODUCTION

An acute cerebrovascular event due to an occlusion (or ischemia)
of small blood vessels deep within the brain is a known
manifestation of small vessel disease (SVD) involving the brain
small end arteries, capillaries, venules, and arterioles (1–3). Of
all ischemic stroke events, ∼30% are represented by cerebral
SVD (CSVD) (1, 4). CSVD is a spectrum of complex and
overlapping pathophysiological mechanism of various etiologies
affecting the brain small vessel microcirculation that can trigger
neuronal inflammation and the subsequent neurodegenerative
cascade. However, it is generally viewed that CSVD represents
pathological consequences of SVD on the brain parenchyma
rather than the underlying diseases of the vessels (5). Prevalent
with aging, CSVD is recognized as risk factor for stroke,
vascular dementia, Alzheimer disease (AD), and Parkinson
disease (PD) (6, 7). Despite being arguably the most common
neurodegenerative disease (NDD) with predilection of the
cardiocerebrovascular axis, there is only limited knowledge about
CSVD underlying mechanisms.

Among the known modifiable risk factors for stroke,
dietary patterns are recognized to modulate the non-neural
peripheral events such as in the gastrointestinal tract (GIT)
(i.e., GIT dysbiosis) and cardiovascular stress through cellular
inflammations and oxidation. Moreover, diet plays a crucial
role in maintaining the physiological systems responsible for
homeostasis and hemostasis, whereby healthy dietary pattern
has been classified as diet with lower concentration of plasma
proinflammatory markers (8). Hence, certain dietary patterns
could potentially lead to undesirable alterations in such systems
as shown in the case of less or non-nutritious/unbalanced
diets (9, 10). Moreover, unhealthy dietary habits have been
reported to contribute to higher risk of developing metabolic
disease, coronary heart disease, and stroke (11) and likely to
modulate systemic peripheral events that can influence the
development and progression of NDD such as CSVD. One
key outcome from such events, among others, includes the
cellular activations that lead to elevated levels of endogenous
cellular-derived circulating microparticles (MPs). MPs can be
produced from various cellular origins including leukocytes,
platelets, endothelial cells (ECs), microbiota, and microglia.
MPs could act as microthrombogenic procoagulant that could
be detrimental to the vulnerable microcirculation, particularly

the penetrating, poorly collateralized end-arteries in the brain
parenchyma, leading to CSVD manifestations. However, little
attention has been paid on the potential role of MPs in the
onset and progression of CSVD spectrum. Corroboratively, the
formation of MPs is known to be influenced by diet-induced
cellular stress.

Thus, this review aims to appraise the body of evidence
on the dietary-related impacts on circulating MPs from non-
neural peripheral origins that could serve as a plausible
microthrombogenic role in CSVD manifestation and hence a
precursor of NDD. Here, we elaborate on the pathomechanical
features of MPs in health and disease states; relevance of
dietary patterns on MP release; preclinical studies pertaining to
diet-based MPs contribution to disease; MP level as putative
surrogates for early disease biomarkers; and lastly, the potential
of MPs manipulation with diet-based approach as a novel
preventive measure for CSVD.

MICROCIRCULATION NETWORK AND
SMALL VESSEL DISEASE

The term microcirculation used to represent the terminal
vascular branches or network of the systemic circulation that
consist mainly of (small) microvessel (diameters of <20µm)
(12). These microvessels comprised capillaries (including their
subcellular components), arterioles, and postcapillary venules
(13) (Figure 1). For example, in coronary blood supply (i.e.,
from right coronary artery, right coronary artery, and left main
coronary artery), small muscular arteries are found throughout
the myocardium that further branch into an extensive capillary
bed (intramural arteries) that embraces the cardiac myocytes
(14). In GIT, the small perforating arteries mainly originated
from celiac trunk (arteries) that supply the foregut (i.e.,
esophagus, stomach, liver, gallbladder, superior pancreas, first
and second part of duodenum), superiormesenteric artery supply
the midgut (i.e., third part of duodenum, jejunum, appendix,
cecum, ascending colon), and inferior mesenteric arteries that
supply the hindgut (i.e., descending colon, rectum, upper part
of anal canal) (15, 16). While renal microvasculature are smaller
branches that form the afferent arterioles leading to the formation
of glomerular capillaries, the distal glomerular capillaries form
the efferent arterioles, followed by the peritubular capillaries that
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supply the renal tubules (17). In the brain, ∼72% of cerebral
blood flow (cBF) is contributed by anterior circulation that
arises from the internal carotid artery (ICA) (18). cBF can be
defined as the volume of blood that flows per unit mass per
unit time in brain tissue [mLblood/(100 gtissue min)], or flow
per unit volume of brain tissue [mLblood/(100 mLtissue min)]
(19). From among the vast ICA branching network, the most
significant pathophysiologically are the anterior cerebral arteries,
middle cerebral arteries (MCAs), and anterior choroidal arteries.
The branches of these arteries mainly supply the forebrain (i.e.,
frontal, temporal, and parietal lobes), as well as subcortical region
of diencephalon and internal capsule. In addition, ∼30% of cBF
is contributed by posterior cerebral circulation that is derived
from tributaries of the vertebral and basilar arteries (13). These
branches mainly supply posterior portion of brain, i.e., occipital
lobes and posterior brainstems (see Figure 1 for the illustration
of blood supply to these major organs).

Pertaining the connection of vascular supply and drainage
between these major organs, most of these organs receive their
blood supplies locally or from the abdominal aorta (Figure 1).
For example, some parts of the large intestine receive blood
supply from the SMA (branching of the abdominal aorta) (16).
The heart, on the other hand, consists of its own coronary
vascular supply for oxygenated blood and coronary sinus
for its venous drainage (14). All in all, most organs return
deoxygenated blood either through superior or inferior vena
cava for gaseous exchange through the pulmonary circulations.
A direct connection between organs, for example, GIT–heart–
brain axis, may be observed through the venous drainage but
not through the arterial blood supply, whereby most of the
GIT (visceral organs) circulation will return to inferior vena
cava of the heart via the hepatic portal circulation (16). As
for the cerebral circulation, the venous drainage will eventually
reach the superior vena cava of the heart and, subsequently,
the pulmonary circulation for gaseous exchange. For the brain,
oxygen and nutrients from peripheral circulation are delivered
through MCAs and their fenestrated capillaries that supply deep
subcortical region (20). Hence, any initial peripheral event (from
systemic and cellular insult or activation) may affect a specific
organ through their local circulation or may even propagate via
the abdominal aorta to other specific organ locations. Similarly,
vascular drainage that eventually returns the deoxygenated
blood from other organs of the body to the superior and
inferior vena cava of the heart may also act as a “hitchhike”
passageway for the systemic or cellular insults or activation by-
products and lodged to other organs or blood vessels, including
microcirculation network.

Consequently, microcirculation network is the most crucial
compartment and terminal destination of the vascular systems,
whereby it is the pinnacle site where the red blood cells
(RBCs) in the capillaries directly transfer the oxygen to
the surrounding parenchymal cells that require oxygen for
energy metabolism (12). Apart from that, microcirculation
helps to regulate intravascular-tissular space solute exchange,
transporting all the nutrients and blood-borne hormones to
the cells and tissues and moderating the functional activities
of hemostasis and immune system (12). The vasculature

of microcirculation consists primarily of lining of the ECs.
The morphology and density of these endothelial structures
varied between organs and vessels. However, endothelial lining
generally consists of pores and fenestration that are held
together by various adherent molecules such as cadherins and
gap junctions (to carry current), hence allowing upstream
electrical communication (12). Furthermore, ECs are symbiont
with smooth muscle cells (SMCs) regulating the microvascular
blood flow through the regulation of arteriolar vasotone with
three different mechanisms, i.e., metabolic, myogenic, and
neurohumoral control. The lumen of endothelium consists of
gel-like structure (0.2–0.5µm) synthesized by ECs, known as
glycocalyx (e.g., proteoglycans, glycosaminoglycans, and plasma
protein), which help in mediating endothelium functions,
i.e., their microcirculatory functions (21, 22). Apart from
glycocalyx, various subcellular substances are also present in
the lumen of endothelium such as superoxide dismutase and
antithrombin (23).

Therefore, the integrity of microvessel endothelium and
its component is the main determinant for vascular barrier.
Endothelial dysfunction is one of the ultimate cellular events
that are responsible for hemodynamic changes seen in various
pathological conditions (22). Microcirculation network is crucial
for normal functioning of GIT, heart, and the nervous system,
with the majority (up to 80%) of oxygen supplies to these
organs is utilized for adenosine triphosphate production to aid
sodium and potassium pumps maintaining the homeostasis.
Thus, oxidative stress, hypoxia, nitro stress, and inflammatory
mediators could potentiate the sequelae that lead to various
SVD of these organs (24). Preclinical studies (including animal
models) had shown that microcirculation and endothelial
inflammation may serve as therapeutic targets to arrest
microvascular-based organ or parenchymal injury (25, 26).

Small Vessel Disease—An Overview
SVD is a term used to represent the pathological process that
damages the small end arteries, capillaries, venules, and arterioles
(2). The condition may lead to alteration of microcirculation
(i.e., blood flow or perfusion) of the affected organ. SVD is
generally observed in major organs such as the brain, retinal,
heart, and urinary system (i.e., kidney), due to fact that these
organs primarily required a desirable amount of cardiac output
for their functionality (27). However, the GIT arteries are
rarely affected to vascular disease either SVD or large vessel
disease (i.e., atherosclerosis) (28). In rare instances, especially
following myocardial infarction or atrial fibrillation, thrombus
may accumulate and cause occlusion in the artery resulted in
ischemic colitis (with an acute onset of abdominal pain and
blood in the stools) (28, 29). Moreover, the thrombus or arterial
occlusions may cause the reduction of blood flow (chronically)
in the colon that can trigger inflammation before turning
gangrenous (tissue death due to lack of blood supply) (29).

The integrity of microvascular endothelium and its
component plays a major role as a vascular barrier (i.e.,
between circulating blood and vessel wall). Therefore, SVD is
frequently associated with the endothelium dysfunction that
results in arteriolosclerosis and lipohyalinosis. In general, ECs
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FIGURE 1 | Vascular blood (arterial) supplies to the brain, heart, GIT, and kidney and differential structure between large and small vessel. Most of these organs

receives their blood supply locally or from the abdominal aorta. ACA, anterior cerebral arteries; AChA, anterior choroidal arteries; CXA, circumflex artery; ICA, internal

carotid artery; IMA, inferior mesenteric arteries; LADA, left anterior descending artery; LCCA, left common carotid artery; LGA, left gastric artery; LGOA, left

gastro-omental artery; LMCA, left main coronary artery; LPA; lenticulostriate perforating arteries; LSCA, left subclavian artery; MCA, middle cerebral artery; RCA, right

coronary artery; RRA, right renal artery; SEpA, subependymal arteries; SMA, superior mesenteric artery; TPA, thalamic perforating arteries.
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help maintain vascular barrier or health and blood flow (through
capillaries and arterioles) in several ways including limiting
the platelet or leukocyte aggregation, controlling the vascular
permeability from plasma components, and regulating the
vascular tone (30). Equally crucial for the ECs to function at their
optimum is their interaction or crosstalk with the surrounding
cells such as mural cells (i.e., pericytes and vascular SMCs), glial
cells (i.e., astrocytes), and immune cells (31).

Risk Factors and Clinical Relevance of SVD
Previous report had confirmed that hypertension (i.e., systolic
blood pressure ≥135mm Hg), sex (i.e., male), type 2 diabetes
mellitus (T2DM), smoking status, and aging (i.e., ≥70 years old)
were the main risk factors that can lead to SVD (i.e., in the
brain, retina, and heart) (32–34). Another contributing risk factor
is the metabolic syndrome including obesity (as of dietary and
lifestyle) due to accumulated fat in the abdominal location, hence
abdominal obesity. The accumulated fat mediates the synthesis of
inflammatory cytokines and causes further inflammation of GIT
vasculature (35, 36). Moreover, microvascular complication such
as increase of proinflammatory cytokines, vascular endothelial
adhesion molecules (VCAMs), and intracellular cell adhesion
molecules (ICAMs) has been associated with T2DM (37), hence
increasing the risk toward multi-organ SVD.

Apart from that, endothelial dysfunction (in specific, related
to cerebral microcirculation) has been associated with the
impact of immune system related GIT microbiota, whereby
the dietary pattern (i.e., high salt intake) potentially leads to
neurovascular dysfunction through GIT initiated T helper cell
17—the cells responsible for tissue inflammation induction
and destruction (38). Interestingly, recent evidence suggested
that higher SVD incidence is associated with an increased
systemic inflammation due to poor sleep quality (39), as well
as societal-based depression and loneliness (40–42). Besides,
individual(s) with SVD is suggested to suffer from “systemic”
condition (27). This is so as SVD is commonly associated with
nervous system disturbances such as stroke, cognitive decline,
vascular dementia, and gait dysfunction (43–46). However, SVD
possesses multiorgan and multidirectional predilection, whereby
any organs with similar vascular risks may have the effects. For
example, retinal SVD with neurodegeneration-related cognitive
decline, retinal microvascular abnormalities associated renal
failure, cardiac insufficiency, blindness, lungs, and GIT vascular-
based disorders (47–54).

CEREBRAL SMALL VESSEL DISEASE

CSVD is a spectrum of complex and overlapping
pathophysiological mechanism of various etiologies affecting the
brain microcirculation that can trigger neuronal inflammation
and the subsequent neurodegenerative cascade. However,
it is generally viewed that CSVD represents pathological
consequences of SVD on the brain parenchyma rather than
the underlying diseases of the vessels (5). Therefore, the term
cerebral small vessel disease is generally viewed as the state of
brain parenchyma injury (often progressive) that is associated
with distal leptomeningeal and intracerebral vessel pathology

that resides in poorly collateralized subcortical gray and deep
white matter. Moreover, it is mainly due to several focal or
diffuse microvasculopathological processes that affect and
cause occlusion to the small perforating cerebral capillaries (of
sizes 50–400mm), small arteries (mostly branches of MCAs),
arterioles (diameter <0.1mm), and venules that penetrate and
supply the brain cortical and subcortical region (55, 56).

There are several etiopathogenic classifications of CSVD.
However, the most well-recognized forms of CSVD are
the amyloidal CSVD [e.g., sporadic and hereditary cerebral
amyloid angiopathy (CAA)] and non-amyloidal CSVD
including age-related and vascular risk-factor–related SVD
(i.e., arteriolosclerosis and age) (56). Other less common forms
of CSVD include inherited or genetic (monogenic) CSVD that is
recognizably different from CAA [i.e., Fabry disease and cerebral
autosomal dominant arteriopathy with subcortical ischemic
strokes and leukoencephalopathy (CADASIL)], inflammatory
and immunologically mediated CSVD, venous collagenosis,
and other CSVD (i.e., non-amyloid microvessel degeneration
in AD and postradiation angiopathy) (57). Clinical diagnosis
of CSVD typically takes the form of acute lacunar infarct
and, less commonly, as intraparenchymal hemorrhage, with
neuroimaging findings such as white matter hyperintensities
(WMHs) of presumed vascular origin, cerebral microbleeds
(CMBs), cortical microinfarcts, lacunar infarcts, and recent
subcortical brain infarcts (RSBIs) and enlarged perivascular
spaces (PVS), or pathological phenomena with multifaceted
etiologies (55, 58, 59). However, the lack of standardization
and consistency in neuroimaging techniques leads to the
development of STandards for Reporting Vascular changes
on nEuroimaging (STRIVE), aiding in the imaging-based
visual identification and classification of CSVD spectrum (60)
(see Figure 2 for neuroimaging correlates of different CSVD
manifestation based on STRIVE method).

Risk Factors of CSVD Manifestation and
Their Clinical Relevance
There are several and complex known risk factors toward
development and progression of CSVD manifestation. For
example, increased imaging loads of WMHs, lacunar infarcts,
and RSBI were associated with lifetime exposure toward
cardiocerebro(micro)vascular risks such as metabolic syndrome
(i.e., hypertension, obesity, hyperlipidemia, dyslipidemia),
lifestyle (i.e., smoking, alcohol abuse), and T2DM that posed a
higher odd for acute ischemic (lacunar) strokes (62). However,
age has served as one of the most significant determinants of the
onset, proportion, and progression of all CSVD manifestations
[for instance, being prevalent with healthy aging (∼6%) in
the case of CMBs] (63). Higher risk of CMBs has been found
in individuals with symptomatic cerebrovascular disease such
as ischemic stroke and intraparenchymal hemorrhage (63).
Meanwhile, genetic factors such as NOTCH3 gene (chromosome
19) mutation as seen in CADASIL; mitochondria DNA mutation
as seen in mitochondrial encephalomyopathy, lactic acidosis,
and stroke-like syndrome (MELAS); Fabry disease; and familial
CAA increase the burden and prevalence of CSVD (64, 65).
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FIGURE 2 | Neuroimaging correlates of CSVD based on STRIVE method. (A) Recent small subcortical infarct (RSBI) on diffusion-weighted imaging (DWI) (red arrow).

Usual diameter is around 3–15mm, with hyperintense rim surrounding ovoid cavity. RSBI seen as increased T2-weighted, fluid-attenuated inverse recovery (FLAIR),

and DWI signal intensities decreased T1-weighted signal and isointense in T2*-weighted gradient recoiled echo (GRE) signal and susceptibility-weighted imaging

(SWI). RSBI is best identified through DWI with usual infarct diameter of ≤20mm. (B) Lacunar infracts on FLAIR (red arrow). Lacunar infarcts appeared as increased

hyperintensity in T2-weighted signal, decrease T1-weighted, and FLAIR signal and isointense in DWI. Usual diameter is around 3–15mm, with hyperintense rim

surrounding ovoid cavity. (C) White matter hyperintensities (WMHs) of presumed vascular origin on FLAIR (arrow). WMHS seen as increase intensity or hyperintensity

on T2-weighted imaging, T2*-weighted GRE and FLAIR (best identified), isointense on DWI, and hypointense (decrease intensity) on T1-weighted imaging. (D)

Enlarged perivascular spaces (PVS) on T1-weighted imaging (red arrow) with usual diameter of ≤2mm. PVS is seen as decrease FLAIR and T1-weighted signal

intensity, with increase T2-weighted signal. Meanwhile T2*-weighted GRE and DWI appeared isointense, and they also appeared in similar signal intensity with

cerebrospinal fluid (CSF). (E) Cerebral microbleeds (CMBs) on T2*-GRE (red arrow). CMBs are small, rounded areas of signal void with blooming, whereby they were

visualized as isointense T1- and T2-weighted signal, FLAIR, and DWI. They are best identified under T2*-weighted GRE or SWI as reduced signal intensities. Usual

diameter is around ≤10mm (mostly 2–5mm). (F) 3-T MRI representation of cortical microinfarcts (red arrow) on T1-weighted (hypointense) [images A–E, reproduced

with permission from Mustapha et al. (57), image F is adapted from Takasugi et al. (61)].

Hence, optimizing (micro)vascular risk factors for secondary
stroke prevention is undoubtedly warranted.

In addition, most of CSVD manifestation has been
demonstrated to increase the risk of vascular cognitive
impairment and dementia. For example, previous report
had shown that elderly person with hypertension who presented
with confluent periventricular and hypoperfusion-based deep
WMHs, respectively, had impaired executive function, short-
term memory loss, and reduced processing speed, although
other neurological and medical tests are normal (66). Moreover,
elevatedWMHs and CMBs were associated with gait disturbance,
i.e., reduction in gait velocity, and stride strength (67, 68), higher
urinary syndrome, or disturbance including urinary urgency,
nocturia, and incontinence (67, 69). A significantly increased risk
toward all subtypes of ischemic stroke (70) and neuropsychiatric
syndromes (e.g., depression, anxiety, parkinsonism, mood

disturbances, reduced processing speed, and sleep disturbance)
also had been linked with the presence of WMHs, CMBs, and
enlarged PVS (6, 66, 71, 72). Lacunar stroke had been reported
as the outcome of small vessel occlusion-mediated lacunar
infarcts (73). Moreover, many individuals with CSVD have
been reported to have the occurrence of silent brain infarcts, a
consequence of a lacunar stroke in a non-vulnerable brain region
with unapparent clinical symptoms. Moreover, acute RSBI may
cause secondary effects such as remote cortical thinning due
to progressive degeneration of connecting white matter tracts
(73). Alarmingly, CSVD manifestation can often be occult in
nature and produce no clinical symptom (asymptomatic), hence
referred to as “silent” brain infarcts.

Taken together, several cardiocerebrovascular risk factors
such as T2DM, metabolic syndrome (i.e., hypertension, obesity),
aging, and lifestyle (i.e., smoking and unhealthy diet) have

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 February 2021 | Volume 8 | Article 63213150

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Nassir et al. CSVD, Microparticles and Diet

been correlated with and increased the risk toward onset and
progression of CSVD. Hence, tackling these risk factors may
be beneficial in the therapeutic and preventive measures to
regulate the onset and progression of CSVD, ideally from early
or young age.

CSVD as a Spectrum of Dynamic
Microvascular Pathomechanism
Relatively small vessels/microvessels served an essential role
as part of the neurovascular unit or the blood–brain barrier
(BBB) in the central nervous system (CNS). To date, various
and intensive investigations have been carried out to study the
mechanism of interaction between cerebral parenchyma and its
surrounding microvasculature (74). However, it is well-accepted
that neurovascular unit or BBB owns the prior role in brain
health and plasticity (capacity to recover) from insults that
may initiate the pathologic cascade toward NDD. Two classical
clinicopathologic representations of CSVD have been suggested:
arteriolosclerosis or lipohyalinosis (thickening and/or damage
the wall of arterioles), and occlusion of cerebral penetrating
arteries (75). However, it is now recognized that most of the
macrostructural manifestations in CSVD are reflections of the
probable underlying of mesostructural responses such as cerebral
microcirculation flow obstruction (intrinsic or extrinsic). For
instance, the arteriolar occlusion or narrowing resulted in
ischemia as seen in small lacunar infarct in the classical CSVD
clinical spectrum.

Various physiopathologic changes (i.e., the mesostructural
responses) of CSVD not only give rise to cerebral parenchyma
damage (i.e., axonal injury, neuronal apoptosis, demyelination,
and oligodendrocyte damage), but also to neurological
symptoms, clinical signs, and multifaceted neuroimaging
findings (76). Nonetheless, the underlying pathomechanism of
CSVD remains contentious despite the growing insights from
histopathological, epidemiological, physiological, and imaging
studies. Insights on the current pathomechanism CSVD can
be viewed from molecular and cellular consequences of several
systemic dysregulations, which include coagulopathy, elevated
microthrombosis, genetic mutation, increased cellular activation,
inflammation, and oxidative stress, all of which contribute
toward the corresponding cerebral microstructural changes such
as endothelial dysfunction, altered cBF, and breakdown of BBB.
Figure 3 summarizes the current pathomechanism of CSVD
through coagulation, cell activation, endothelial dysfunction,
and inflammation. Figure 3 also emphasizes on the proposed
overlapping and multifaceted risk factors that may contribute to
the detrimental macrostructural CSVD manifestations, with a
specific highlight on the dietary patterns and MP formation as
further elaborated in this review.

Coagulation and Microthrombogenesis
In general, the coagulation process or pathway serves to maintain
hemostasis or to control bleeding, promote healing, and prevent
spontaneous bleed (77). The coagulation pathway is controlled by
certain naturally occurring inhibitory elements or anticoagulants
such as protein S, protein C, antithrombin, and tissue factor
pathway inhibitor (TFPI) that control and limit the formation

of clot to prevent propagation of thrombus/microthrombus or
further thrombosis/microthrombosis (77). Altered procoagulant
properties of such coagulation factors would stir imbalance in
the pathway, either with increased or decreased activities of
a given factor (78). Generally, the thrombogenic elements of
coagulation factors are produced from two sites: the vessel wall
[i.e., tissue factor (TF), exposed endothelium, and collagen] and
the circulating elements [i.e., platelets, platelet activating factor,
prothrombin (factor II), fibrinogen (factor I), von Willebrand
factor (vWF), and numerous clotting factors]. Certain events
such as physiological disturbance, blood abnormalities, infection,
elevated proinflammatory cytokines activities, and disturbance
in the primary hemostasis (i.e., platelet plug formation at the
insulted site of exposed ECs of the vessel wall) would result
in the imbalance of the coagulation system, hence termed as
coagulopathy (79, 80).

In microcirculation, whereby the arteriosclerosis and/or
arteriolosclerosis is the major culprit in CSVD, the platelets may
circulate in resting state. However, upon stimulation (i.e., by
ruptured arteriosclerotic plaque or embolism from larger vessel)
or activation (even at early stage of disease process), platelets
can aggregate by intraplaque components such as TF, collagen,
and vWF, or by soluble platelet agonists or vasoactive substances
[i.e., thrombin, adenosine diphosphate (ADP), serotonin, or
thromboxane A2 or B2] that promote microthrombogenesis
(81). Moreover, platelet activation and aggregation lead to
further release of thrombin, hence elevating the activation of
coagulation cascade and subsequent synthesis of stable cross-
linked fibrin clot or mesh. The formation of fibrin has been
shown to increase the coagulation activity whereby the elevated
level of alternative marker for thrombin generation such as
fibrinopeptide-A has been associated with cerebral infarction
(82). Systemic microcirculation coagulation cascade can be
activated at early disease process, and platelet activation is the
main player in microthrombi formation and its plausible effect
on pathogenesis of CSVD.

Small transmembrane glycoprotein or TF facilitates the
microthrombosis in microcirculation. In coagulation systems,
the extrinsic pathway or the TF pathway is activated once
ECs released the TF following damage to the vessel. The
TF hence activates thrombogenic element factor VII into
factor VIIa that will activate factor X into Xa, resulting in
fibrin synthesis. TFPI can interfere and inhibit this pathway.
Moreover, TFs are secluded in arteriosclerotic particulates, hence
allowing the exposure of TF in microcirculation, leading to
formation of microthrombus. Alongside TF, the exposed collagen
also facilitates the microthrombosis through glycoprotein (GP-
Ia/IIa)–mediated platelets–ECs adhesion, hence activating factor
X into Xa leading to microthrombosis and fibrinogenesis
(83). Thereby, the balance between prothrombotic factors and
endogenous fibrinolysis determines whether the microthrombus
progresses into larger thrombus, propagates, or dissolutes (84).
Another important component that activates and enhances
the contact and prothrombotic pathway, respectively, is the
cell-free DNA and histone neutrophil extracellular traps with
exposed TFs that present and propagate as part of the
intravascular thrombi, hence triggering the generation of
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FIGURE 3 | Summary of the proposed overlapping pathomechanisms of cerebral small vessel disease (CSVD) through coagulation, cell activation, endothelial

dysfunction, and inflammation. cBF, cerebral blood flow; CMBs, cerebral microbleeds; ECs, endothelial cells; eNOS, uncoupled endothelial nitric oxide; iNOS, inducible

nitric oxide synthase; MPs, microparticles; NETs, neutrophil extracellular traps; NF-κβ, nuclear factor κβ; NO, nitric oxide; Nox, nitric oxide synthase oxidase; ROS,

reactive oxygen species; RNS, reactive nitrogen species; RSBI, recent subcortical brain infarcts; PVS, periventricular spaces; WMHs, white matter hyperintensities.
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thrombin (85, 86). Collectively, platelets and/or neutrophils
activation and aggregation could give rise to generation of intra-
arterial thrombus or microthrombus and form the basis for
arteriomicrothrombotic disease such as CSVD.

In the case of CSVD, activated platelets and microthrombi
formation initiate the narrowing of the arterial wall, as well
as upregulating the proliferative arterial wall changes (87).
Meanwhile platelet aggregation possibly releases the vasoactive
substance, resulting in SMC constrictions, hence narrowing
the arterial wall (88). Moreover, microthrombi consist of
white thrombi of aggregated fibrin, and platelets have been
observed to strengthen its association with intraparenchymal
small vessel microclot or microthrombosis seen in cerebral
ischemia or infarcts (89, 90). Microthrombosis-mediated cerebral
microcirculatory dysfunction has been suggested as an outcome
of intraparenchymal small vessel dilation to compensate the
reduction in perfusion from peripheral pressure of larger arteries.
This happened as small vessels trying to optimize the dilation
process to maintain the cBF following the arterial lumen
narrowing (82).

Moreover, increasing evidences have shown that reduced
ability of small vessel to self-regulate cBF (due to aging and
the presence of chronic hypertension) is subjected to various
systemic blood pressure levels and increased arterial stiffness that
would cause an increased speed and flow pulsatility in cerebral
arteries and arterioles (91). In addition, the regulation of cBF is
also mediated by nitric oxide (NO) signaling, whereby reduced
NO is a marker for endothelial dysfunction and altered cBF (92).
Thus, these hemodynamic changes may lead to microstructural
and mesostructural changes and response, respectively, such as
endothelial damage in the BBB and alter its permeability through
an increase of the shear stress (93), which will be discussed in
the foregoing section. Hence, the BBB breakdown is thought
to be another pathogenesis feature of CSVD (93, 94), as hinted
in Figure 3.

Circulating Cell Activation and Endothelial

Dysfunction
As discussed, the cardiocerebrovascular and cardiometabolic
risk factors such as T2DM and metabolic syndrome {i.e.,
dietary patterns, hypertension, abdominal obesity, dyslipidemia
[elevated low-density lipoprotein (LDL) and triglycerides and
reduced high-density lipoprotein]} had major global impact on
development of arteriosclerosis and/or arteriolosclerosis disease,
resulting in coronary heart disease and cerebral ischemia (95).
Thereby, cellular activation and endothelial dysfunction have
been described as the major implication of these risk factors.

It is known for larger vessel circulation that LDL can dissociate
into smaller particulates or particles, hence embolizing to smaller
vessel microcirculation, which is termed LDL modification (81).
Therefore, the infiltration of these smaller particles causes
the endothelial dysfunction in large or small vessel. This
endothelial dysfunction is followed by EC activations that
elevate the subsequent release of proinflammatory cytokines
to potentiate host of leukocytes recruitment (i.e., monocyte, T
lymphocytes, and macrophages) on the endothelium that further
promotes the formation and stability of microthrombus (96).

Moreover, monocyte can differentiate into macrophages, which
aided in the mechanism of lipid uptake from the circulation.
As the endothelial dysfunction ensued, the proinflammatory
cytokines may further activate the ECs, hence increasing the
expression of adhesionmolecules such as VCAM-1, ICAM-1, and
even EC-derived MPs (EDMPs) subpopulation such as cluster
differentiation 62 (CD62E) or E-selectin. The adhesion process
eventually acts on and weakens the ECs and its barriers that line
themicrovessels lumen. These activated cells distort the functions
of EC barriers through the alteration of junctional protein of ECs
cytoskeleton or along the width of intercellular junction (81).

Apart from leukocytes, platelet activation also largely
contributes to the formation of microthrombus in
arteriosclerosis and/or arteriolosclerosis. In response to
inflammatory signal, damaged endothelium released the vWF,
hence increasing the capacity of platelet activation and binding
to vWF. Ensuing platelet activation is the releasing of platelet-
derived MPs (PDMPs) CD40, and CD62P (or P-selectin) that
bring surface adhesion molecules provoking the platelets and
activated platelets by-product aggregation with leukocytes,
hence adherence to endothelium promoting microthrombosis
and arteriosclerosis (97). Moreover, activated platelets also
elevate the synthesis of soluble vasospastic substance such as
thromboxane A2 or B2 and ADP; the synthesis is possible after
platelet binding with plasma fibrinogen. These substances elicit
the platelets and platelets–monocytes aggregations from inside
of arterioles vessel and have been used as markers for onset and
progression of arteriosclerosis and/or arteriolosclerosis (82, 98).
In addition, the ruptured arteriosclerotic plaques from larger
vessel also may embolize and contribute to the instability of the
aggregates and microthrombus and upregulate the small vessel
systemic inflammation mediated by leukocytes and platelets
(99). Aside from cellular activation, endothelial dysfunction
can be initiated through the disturbance in the function of
microvessel itself as a result of systemic or mechanical stress,
leading to microthrombosis. For example, increase in P-selectin
and NO in arteriolar endothelium has been associated with
microthrombosis (100). Preclinical study had shown that the
constriction of arteriolar lumen is due to microthrombosis
whereby the intensity of the microthrombosis determined the
level of constriction (100). Moreover, the damage in the function
of arterioles can lead to local microthrombus formation.

Therefore, circulating cell activation and endothelial
dysfunction have long been thought to be the main factors
that contribute to the pathogenesis of CSVD. Several studies
have shown elevated biomarkers of endothelial dysfunction
related to CSVD such as reduced production of NO, resulting in
arteriolar constriction (101, 102). Other knownmanifestations of
endothelial dysfunction are hypoperfusion or reduced cBF (103)
and increase BBB breakdown or permeability (104) (Figure 3).

Oxidative Stress and Inflammation
The risk factors and causes of oxidative stress and arteriosclerosis
and/or arteriolosclerosis in the pathomechanism of CSVD
are topics with active investigations. In addition, certain
health conditions, diet, and lifestyles may contribute to
the development and progression of arteriosclerotic and/or
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arteriolosclerotic CSVD such as dyslipidemia, T2DM, aging,
and unhealthy lifestyle (i.e., unhealthy diet, smoking, and
sedentary living). Moreover, several studies had shown the
association of detrimental effects of oxidative stress [i.e., through
nicotinamide adenine dinucleotide phosphate (NADPH) on the
endothelium-dependent NO signaling] toward pathogenesis of
CSVD (105, 106).

As discussed, the inflammation and oxidative stress may result
from increased inflammatory response from the endothelium
(i.e., endothelial dysfunction) and cellular activation. Hence,
oxidative stress has been associated with the pathogenesis
of CSVD as in arteriosclerosis (107). Microthrombus and/or
LDL particle aggregates on the small vessel endothelium
are susceptible to oxidative and enzymatic modifications
by reactive oxygen species (ROS) [i.e., superoxide (O2·

−),
hydrogen peroxide (H2O2), and hydroxyl radical (·OH)] and
proinflammatory cells (95). ROS also induced the imbalance
between antioxidants (i.e., EC-derived glutathione peroxidase,
catalase, and superoxide dismutase) and pro-oxidants in age-
related NDD, whereby the oxidative stress occurs due to
NADPH oxidases (Nox)-mediated pro-oxidants overproduction
and altered activity of antioxidants enzymes (108). Apart
from ROS, the reactive nitrogen species (RNS) also contribute
to cerebral vascular oxidative stress, as both ROS and
RNS are mainly synthesized by mitochondria activity and
certain pathways including NO synthase (NOS) and oxidase
enzyme [i.e., NOS oxidase (Nox), uncoupled endothelial NOS
(eNOS), cyclooxygenase (COX), lipoxygenase, xanthine oxidase,
myeloperoxidase]. However, eNOS is essential in production
of endothelium NO, hence also contributing to beneficial or
protective role in the regulation of vascular tone, unlike eNOS
dysfunction that results in the release of superoxide from
ECs (107).

Furthermore, ROS elevate the inflammatory response that
influences the progression of clots or thrombus, increase
proinflammatory cytokines [i.e., interleukins (IL-6 and IL-8),
tumor necrosis factor α (TNF-α), and monocyte chemoattractant
protein 1 (MCP-1)] and endothelial function, and increase
expression of vascular adhesion molecules (i.e., ICAM-1 and
VCAM-1) (109). Subsequently, elevated level of RNS and ROS
has been associated with oxidative stress–mediated cell migration
and proliferation, DNA damage, necrosis and apoptosis, cellular
autophagy, endothelial dysfunction, elevated level of oxidized
LDL, and endoplasmic reticulum stress (110). Following
overproduction of proinflammatory cytokines and inducible
NOS (iNOS) is the activation of transcription factors [i.e.,
nuclear factor κβ (NF-κβ) and/or nuclear factor (erythroid-
derived 2)-like 2 (Nrf2)] and signal transduction cascades
(111) that further stimulate the release of cytokines and
chemokines, hence increasing inflammation (112). However,
NO is able to inhibit the expression of NF-κβ and adhesion
molecules; hence, NO serves as crucial anti-inflammatory,
antithrombotic, antihypertensive, and antiplatelet aggregation
and important for vascular vasolidation (95). Apart from that,
NO serves as a modulatory agent for the function of EC
barriers whereby, NO modulates the activity of Rho-kinase
in cerebral microvasculature and is associated with increase

inhibition of NOS (113). Under pathological condition, reduced
NO initiates the vicious cycle of reduced NOS to increase the
Rho-kinase activation and vice versa (114). Hence, maintaining
the adequate level of NO is crucial to reduce NO by eNOS to
prevent endothelial dysfunction (i.e., elevate the EC monolayers
permeability as a response following disruptions of adherent
junction and stress fiber formation), whereas overproduction of
NO by iNOS leads to an increased expression of proinflammatory
factors (115).

Additionally, ROSmay act on the ECs inducing the disruption
of interendothelial junction, gap formation, actomyosin
contraction, and altered phosphorylation or expression of
junctional adhesion molecules (115, 116). Furthermore, released
cytokines induce inflammation of ECs through extracellular
matrix degradation followed by BBB breakdown (104). In
addition to the endothelium, there exists cross-talk among
cellular components of the BBB, such as pericytes, astrocytes,
and oligodendrocyte precursor cells (OPCs) that are implicated
in the microvascular damage as precursors for the onset and
progression of CSVD (117, 118). In relation to this, reduced
white matter integrity due to changes in oligodendrocytes has
been shown in CSVD, whereby the ECs–OPCs signaling became
compromised and altered the ECs’ ability to secrete the releasing
factor crucial for the growth and survival of OPCs that eventually
caused oligodendrocytes prone to damage (119). An increased
BBB damage and permeability further induced the degradation
of basement membrane of ECs and accumulation of extracellular
matrix components leading to stiffening of vessel wall (120).
Moreover, BBB breakdown will intensify with the accompanying
increased in the deposition of blood component such as platelets,
MPs, and fibrin. Several studies showed that changes in walls
of small vessels in the brain due to BBB breakdown lead to
ischemic events, classified as WMH, lacunar infarcts, and CMB
manifestation of CSVD (7, 93, 94) (Figure 3).

Therefore, the interactions of multiple BBB components are
likely to play a crucial role in the discovery and development of
new prevention steps and therapies for CSVD. Thus, endothelial
dysfunction, BBB breakdown, altered cBF, and impaired cerebral
autoregulation due to disturb coagulation system, cellular
activation, oxidative stress, inflammation, and microthrombosis
are thought to be the major players to the development and
progression of CSVD, although another or other potential
player(s) is still being sought. One such player is cellular-derived
circulating MPs.

MICROPARTICLES—FROM PERIPHERAL
TO CENTRAL

There has been growing recent interest in the identification and
quantification of cellular debris such as MPs as biomarkers for
their potential to inform the natural history of development and
progression of several diseases including cardiocerebrovascular
disease, GIT disease, cancer, metabolic disease, and sepsis. Flow
cytometry (FC) is the most widely method to measure MPs and
has major advantages over the other techniques in that each
MP (and its subpopulations) is quantified individually based on
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their antigen expressions (121). However, to date, there remains
lack of consensus on such standardization between centers, in
measuringMPs using FC due to complex andmultifaceted nature
of MPs. The development of standardized MPs technologies
would permit a direct comparison of results between studies
and would lead to a greater understanding of MPs in health
and diseases.

Besides FC, other MPs assays include single-particle assays
and bulk assays (Table 1). Single-particle assays include atomic
force microscopy (122) and high sensitivity microscopy (123).
These two procedures can be used for an accurate determination
of MP size and shape but cannot be used for routine
analysis of clinical samples as it can be rather costly to
run and maintain (122). In contrast, bulk assays include
immunoassays, functional assays, and hybrid assays that detect
antigens expressed onMPs (124), PS/TF dependent procoagulant
activity (125), and prothrombinase activity (126), respectively.
However, bulk assays do not provide size information or single-
particle counts (121). Other available MP analysis techniques,
although much less popular, include dynamic light scattering
(127), high-performance liquid chromatography (128), capillary
electrophoresis (129), and mass spectrometry (130). Overall, FC
has major advantages over the other techniques in that each MP
is interrogated individually and allows for the identifications and
quantification ofMP subpopulation based on antigen expressions
(as summarized in Table 1).

MPs—Definition, Formation, and
Compositions
MPs represent one of the types and classifications of
microvesicles—with an anucleated phospholipid bilayer.
Apart from MPs, other classes of microvesicles include exosome
and ectosome, which can be distinguished based on their size,
composition, and origin. For instance, exosome is considered
as the smallest microvesicles with the size ranging from 30 to
100 nm, whereas apoptotic bodies or large membrane blebs
range from more than ≤5µm in diameter (131, 132). However,
this review focuses on MPs or ectosomes that are anucleate,
small, and membrane-enclosed extracellular particles (133–136).
Ranging from 0.1 to 1µm in diameter, MPs are derived from
direct deformation of cell plasma membrane and cell membrane
phospholipid exocytic blebs that are released from the cell
surface by proteolytic breakdown of the cytoskeleton, triggered
by various mechanisms such as cellular activation, oxidative
stress, inflammation, injury, or apoptosis. In this context, factors
such as different agonists, thrombin, serine proteases, collagen,
proinflammatory cytokines, and physiological shear stress, which
are known to contribute to cellular activation, would further
promote the secretion and aggregation of MPs (135, 137–139). In
contrast, during apoptosis, the apoptosis-induced MP release is
stimulated by the caspase-mediated Rho effector protein and the
Rho-associated coiled-coil containing protein kinase 1 (ROCK
1), as well as by thrombin and TNF-α (140). Figure 4 illustrates
the general mechanism of MP formation and its mode of action,
while it also introduces the proposed possible impacts of diets
on MPs that could be linked with CSVD (as previously hinted in

Figure 3). A converging proposed plausible link between diets,
circulating MPs and CSVDmanifestation is further delineated in
Diets and Circulating MPs—Proposing the Link With CSVD.

MPs are heterogeneous and can be produced from multiple
sources (or parental cells) within blood circulation, i.e., from
platelets, erythrocytes (or RBCs), leukocytes (white blood cells),
monocytes, ECs, and SMCs (141). Also, MPs can be present in
various body fluids such as saliva, urine, bile, cerebrospinal fluid,
and synovial fluid (142). MPs are identified by the presence of
cell surface marker phosphatidylserine positive (PS+), although
PS negative (PS−) is recently recognized (143). Moreover, in
the blood circulation of healthy individuals, MPs are present in
low level, with 70–90% of MPs represented by PDMPs (144).
MPs are composed mainly of cytosol and enclosed by globose
phospholipids bilayer, whereby their cytosol may include RNAs
[i.e., non-coding small interfering ribonucleic acid, messenger
RNA (mRNA), and micro-RNA (miRNAs)] (145, 146), enzymes,
and cytoskeletal proteins of their parental cells, but are anucleate
and lack synthetic capacity. However, to date, there is no evidence
of DNA presence in MPs luminal space, although a trace of DNA
had been found in exosomes and apoptotic bodies (147).

Given that MPs carry their own parental membrane proteins
or markers, these are used to identify their cell of origin or
subpopulations. For examples, cluster differentiation 41 (CD41)
is to identify PDMPs, CD235/CD235a for RBCsderived MPs
(RDMPs), CD31/CD146 for EDMPs, and CD45 for leukocyte-
derived MPs (LDMPs) (148). Interestingly, PDMPs bring more
than 40 membrane integral protein or glycoprotein characteristic
of platelets, such as integrin β1 (CD29), αIIbβ3 (CD41), and P-
selectin (CD62P). PDMPs and EDMPs also bring proinvasive
or proinflammatory matrix metalloproteinase proteins (MMPs-
2/9). Most of these proteins serve as adhesion molecules
that stimulate the EVs internalization by these cells (144).
Meanwhile, RDMPs are the smallest (∼0.15µm) compared to
other cell-derived MPs, whereby their surface consists of residual
hemoglobin (20% from parent RBCs) (149, 150) (see Table 2

for details).
In addition, previous studies reported that MPs consisted

of identical lipid composition as plasma membrane. However,
MPs may have augmented cholesterol or specific enrichment,
sphingomyelin, or ceramide, which implies that MPs can be
produced or shed from certain region of cellular plasma
membrane, cell of origin, and/or pathophysiological properties
(149). As aforementioned, majority (if not all) of MPs expose
PS+ at their outer membrane surface; hence, PS has been used
as standard marker of MPs identification (149).

Notable Roles of MPs in Health
Recent evidence has shown that MPs extend some protective
effects in health as part of maintaining the hemostasis. Hence,
several subpopulations of MPs could also potentially play a role
in mitigating the inflammatory effects. For example, EDMPs
contain anticoagulant properties at their surface, which is
important to bring balance in hemostasis by counterbalance the
thrombosis driven by procoagulant MPs (151). Besides, an in
vitro study has shown that EDMPs are crucial for maintaining
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TABLE 1 | Profiles of multiple techniques for detection and characterization of MPs.

Technique Quantification (bulk

quantification)

Enumeration

(single-particle counting)

Origin Specificity Sizing Cost/complexity

of instrumentation

Practicability

FC ++ +++ +++ ++ + – ++

Immunoassays +++ – + + – + +++

Functional assays +++ – + + – + +++

EM – + + +++ ++ – –

DLS ++ – – – ++ + +

RICM – + + + ++ – –

AFM – ++ + ++ +++ – –

Number of “+” represents the strength of the techniques, whereas “–” represents the weakness of the techniques. AFM, atomic force microscopy; DLS, dynamic light scattering; EM,

electron microscopy; FC, flow cytometry; RICM, reflection interference contrast microscopy.

the integrity of vascular wall through the activation of vascular
repair (134).

Moreover, in coagulation system (i.e., in common pathway),
the activated protein C is able to induce the synthesis
and release of EC–protein C receptor–derived MPs, whereby
these MPs bring functional and actively bound protein C
aiding in the inhibition of factor Va/VIIIa in the common
pathway of coagulation cascade (152). Apart from that,
certain subpopulations of MPs also possess anti-inflammatory
properties; for example, monocyte-derived MPs (MDMPs) are
known to influence the activity of macrophages and monocytes
by enhancing the expression of peroxisome proliferator-activated
receptor γ (PPAR-γ) protein (153). Furthermore, LDMPs also
have been shown to possess an anti-inflammatory property,
whereby they potentially aided in the downregulation of
proinflammatory mechanism in coagulation cascade at an early
stage of inflammation (154). Besides, LDMPs are also able
to inhibit macrophages activation through the activation of
anti-inflammatory macrophage response, i.e., the inhibition of
cytokines (such as IL-8), inhibition of TNF-α, and releasing
transforming growth factor β1 (154). Interestingly, low level
of EDMPs was also found to correlate with thrombin and
anticoagulant markers in healthy individuals, raising EDMPs’
role in the inhibition of thrombosis (155).

MP Roles in Coagulation and
Microthrombosis-Linking CSVD Correlates
Much of the MPs procoagulant and prothrombotic properties
are due to their ability to bind to sub-endothelial matrix (and its
components), adhesion with soluble and non-mobile fibrinogen,
and coaggregation with platelet aided by a complex and
dependent process involving GP-IIb/IIIa (156). As mentioned,
PS presence on MPs surface acts as coagulation factors for
assembly and binding agent or proteins in coagulation cascade
that may lead to a prothrombotic state (137). PS binds
to hematopoietic-derived clotting factors through electrostatic
interactions between phosphate groups in phospholipids and
Ca2+ in γ-carboxyglutamic (GLA) domain of clotting factors
(157). Factors VII, IX, X, and prothrombin are the clotting
factors that contain GLA domain. Therefore, the recruitment of
PS bearing MPs and clotting factors aided the aggregation of

platelet and synthesis of fibrin and hence for the formation of
microthrombus (158). Furthermore, in vitro study had shown
that combined PDMPs and EDMPs at low levels can also induce
the generation of microthrombus (159). Of note, compared to
activated platelets (parent cells), PDMP surfaces possessed up
to 100 times higher procoagulant properties and higher affinity
binding sites for activated coagulation cascade (160, 161). Hence,
PDMPs would serve as a precursor for microthrombus formation
by providing catalytic surface for the prothrombinase enzyme
complex (i.e., involving factors IXa, Va, VIII, and Xa) (158).

Moreover, MPs also bring surface TF, where, for example,
MDMPs have been reported to bring active TFs that potentially
elevated the extrinsic pathway involving factors VII, VIIa, IX,
and X in coagulation cascade (162, 163). In addition, LDMPs
expressed P-selectin glycoprotein ligand 1 and platelet P-selectin
on their surfaces that lead to the aggregation of TF-bearing
leukocytes at the site of vascular or microvascular injury (164).
In addition, the formation of EDMPs has also been associated
with elevated level of endothelial dysfunction marker such as
plasminogen activator inhibitor 1 (PAI-1) and elevated the
procoagulant activity and prothrombotic state. This is so because
EDMPs contain the expression of ULvWF multimer that enabled
EDMPs to induce strong platelet aggregations (165). Therefore,
it is plausible to deduce that TF-bearing MPs play an important
part in macrothrombus and microthrombus formation. In fact,
a study had shown that tumor cell–derived MPs bearing both
PS+ and TF can be utilized as a biomarker for risk of venous
thrombosis in cancer patients (139) (Figure 4).

Thus, in relation to CSVD clinical manifestations, numerous
reports linking MP subpopulations as CSVD correlates may
well reflect the fact that PS-bearing MPs and clotting factors
aided the aggregation of platelet and synthesis of fibrin, which
lead to the plausible microthrombus involvement in CSVD
pathomechanism (see Table 3 for MPs and CSVD correlates).

MPs and Inflammation
The release of MPs into the circulation that ensued tissue
or cell inflammation can further aggravate the inflammatory
activity (181). MPs can affect microcirculation by potentiating
the production and expression of proinflammatory cytokines,
chemokines, and ICAM-1 (182) (Figure 4). In vitro study had
shown that ECs and monocytes’ interaction with PDMPs able
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FIGURE 4 | The general mechanism of MP formation, its mode of action, and the proposed possible impacts of diets on MPs that could be linked with CSVD. (A)

Active translocase transporting phosphatidylserine (PS) from outside to inside layer through adenosine triphosphate (ATP)–dependent manner. (B) Modifiable

cardiocerebrovascular risk factors (with emphasis on dietary patterns in this review) are known to induce cellular activation or other cellular stressors (e.g., increased

cytokines and from peripheral and GIT dysbiosis). (C) The activation causes an increase in intracellular cytosolic calcium release by stressed rough endoplasmic

reticulum (RER) and acquired from extracellular space. Hence, activates enzymes calpain and gelsolin that cleave cell membrane cytoskeleton. (D) The cleaved

cytoskeleton causes inactivation of translocase and hence induces phospholipid “flip-flopping.” (E) Externalization of PS produces MPs that bring their parent surface

(Continued)
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FIGURE 4 | molecules and protein antigens. (F) MP productions can trigger series of microthrombotic cascades that could be linked to the mechanism postulates on

CVSD risk predisposition/prevention that could be modulated by dietary pattern. For example, leukocyte-derived MPs (LDMPs) expressed P-selectin glycoprotein

ligand-1 (PSGL-1) and platelet P-selectin on their surfaces and hence aided the aggregation of TF-bearing leukocytes at the site of vascular or microvascular injury.

Besides, LDMPs were also able to inhibit macrophages activation and releasing transforming growth factor β1 (TGF-β1). Monocyte-derived MPs (MDMPs) are known

to influence the activity of macrophages and monocytes by enhancing the expression of peroxisome proliferator-activated receptor γ (PPAR-γ) protein. However,

MDMPs also upregulated superoxide anion production on endothelial cells (ECs) and activation of nuclear factor κβ (NF-κβ) in monocytes that enhance

microthrombosis. Most of the MPs, especially platelet-derived MPs (PDMPs) serve as precursor for microthrombus formation by providing catalytic surface for the

prothrombinase enzyme complex (i.e., involving factors IXa/Va/VIII/Xa). PDMPs elicit the de novo expression and production of inflammatory molecule or agent such

as cyclooxygenase (COX-2) and prostacyclin (PG12) that enable the monocytes-MPs-ECs aggregations through intracellular adhesion molecules (ICAM-1) to further

elevate the basement membrane (BM) degradation and formation of microclot. Once PDMPs had a close contact with neutrophil, it can bind and increase neutrophil

aggregations and elevate neutrophil phagocytic activity. This is followed by an activation of ECs or GIT dysbiosis, as they released endothelial-derived MPs (EDMPs)

and bacterial or microbiota-derived MPs that express proteases proteins such as MMP-9 and MMP-2 to enable the invasion toward vasculature through disruption of

BM. Disrupted BM enables cellular or molecules transmigration or infiltration; for example, MPs bridging through BBB, may undergo reuptake by microglia from

cerebral parenchyma. Alongside proinvasive MMP-9, EDMPs bring ultralarge von Willebrand factor (ULvWF) monomers that upregulate the platelet aggregations to

ECs and hence activate the ECs and endothelium dysfunction. Moreover, activated protein C induced the synthesis and release of ECs–protein C receptor

(EPCR)–derived MPs that bring functional and actively bound protein C to aid the inhibition of factor Va and factor VIIIa in the common pathway of coagulation

cascade leading to thrombogenesis.

TABLE 2 | Microparticles (MPs) subpopulation and their surface markers.

Parental cells MPs Surface markers/cluster differentiation (CD)

Platelets Platelet-derived microparticles (PDMPs) • CD62P or P-selectins (maker for platelet activation)

• CD154 04 CD40L (maker for platelet activation)

• CD42b (glycoprotein Ib)

• CD42a (glycoprotein IX)

• CD41/CD41a and CD63

• CD29 (integrin β1)

Endothelial cells (ECs) Endothelial-derived microparticles (EDMPs) • CD31/CD146/CD144/CD105 (maker for apoptotic-derived EDMPs)

• CD54/CD106 (markers for EC activation)

• CD62E or E-selectins and CD106 (marker for cellular inflammation)

• EDMPs markers also expressed on other cell types, such as CD146

(expressed on pericytes and tumor cells), CD54 (expressed on leukocytes),

CD105 (expressed on activated monocytes), and CD31 (expressed on

activated platelets)

Leukocytes Leukocytes-derived microparticles (LDMPs) • CD45 (mostly all LDMPs)

• CD14 (monocytes derived, MDMPs)

• CD4 (lymphocytes)

• CD15 (granulocytes)

Erythrocytes [red blood cell (RBC)] Red blood cell–derived microparticles (RDMPs) • CD47

• CD235/CD235a

CD, cluster differentiation; ECs, endothelial cells; MPs, microparticles.

to elicit the de novo expression and production of inflammatory
molecule or agent such as COX-2 and prostacyclin (PG12),
respectively (183). Another in vitro study had shown that EDMPs
upregulated E-selectin, ICAM-1, and VCAM-1 and induced the
expression and release of proinflammatory cytokines (i.e., IL-6
and IL-8) (184).

Furthermore, within the CNS, microglia are the innate
immune cells with diverse roles and functions at their quiescent
surveillance, as well as activated states (185–187). However,
the traditional classification of M1-proinflammatory/M2–anti-
inflammatory microglial phenotypes has been challenged with
the emerging evidence, indicating a wide spectrum of microglial
activation (188, 189). Microglial function and dysfunction have
been indicated in aging and NDD such as AD (188, 190), PD
(191), and stroke (192). Three types of microglia and CNS
macrophages located around cerebral small vessels have been

identified: (i) parenchymal microglia (distal to small vessels);
(ii) vessel-associated microglia, which are parenchymal microglia
proximal to cerebral vessels; and (iii) perivascular macrophages,
which are located in perivascular spaces (193). Microglial
activation was found to be associated with BBB leakages and
cognitive impairment in angiotensin II–induced hypertensive
mouse model (194), and subsequent study showed that
inhibition of microglial activation reversed short-term memory
impairment in mice (195). Distinct populations of extracellular
vesicles have been identified in activated BV2 microglial cells
in response to lipopolysaccharide challenge (196). Activated
microglia release MPs carrying IL-1β, and these microglia-
derived MPs enhanced inflammatory response by transferring
inflammatory stimuli to other microglia (197–199). A study
by Schindler et al. (200) using cultured human mononuclear
phagocytes demonstrated that microglia-derived MPs induced
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TABLE 3 | Microparticles (MPs) subpopulation, their surface markers and CSVD correlates.

Microparticles (MPs) Changes in MP level CSVD correlates

Platelet-derived

microparticles (PDMPs)

• Increase CD42+, CD61+, CD62P+, and

CD42a

• 110 patients (mean age, 71.1 ± 7.9 years) with acute-phase cerebral infarction, 34 with

small vessel occlusion (166)

Increase CD41+ and CD41+/A+ • Cerebral infarction attributable to vasospasm in 20 elderly subjects (mean age, 52.2

years), suggesting the consequences of microthrombosis (167)

• 40 middle-age subjects (mean age, 44.4 ± 12.2 years) with metabolic syndromes (168)

• Increase level of CD40L and soluble P-selectin • Silent brain infarct in subcortical white matter in 15 male healthy obese subjects and 50

male obstructive sleep apnea subjects (more prevalent) (169)

• Increase CD41+ • Middle cerebral artery occlusion in a rat model with cerebral infarction (170)

• Increase total PDMPs • In individuals with micro-embolic cerebral ischemia and associated with recent

cerebrovascular events as seen in DWI (171)

Leukocytes-derived

microparticles (LDMPs)

• Increase CD14 • Related to higher WMHs and the progression of brain atrophy in individuals (n = 534, 4

years’ follow-up) with vascular disease manifestation (172)

• Increase CD45+ and CD45+/A+ • An increased risk of arteriothrombotic stroke with individuals with obstructive sleep apnea

(173, 174)

• Cerebral infarction attributable to vasospasm in 20 elderly subjects (mean age, 52.2

years), suggesting the consequences of microthrombosis (167).

• Increase CD4+/TF+ • In individuals with cardiometabolic risk factors such as T2DM and dyslipidemia (175)

• Increase CD45+, CD14+, CD4+ and CD15+ • 76 elderly individuals with ischemic cerebrovascular diseases (176)

Endothelial-derived

microparticles (EDMPs)

• Increase CD105+/PS+, CD54+, and CD144+ • 41 elderly individuals with mild, moderate to severe ischemic stroke (177)

• Increase level of CD144+, CD31+ and CD62E • 129 elderly individuals [68 with acute ischemic stroke (mean age, 63.59 ± 13.33)] (178)

• Elevated CD31+/A+ and lower CD62E+ • 101 middle-age individuals with metabolic syndrome (with and without chronic heart

failure), suggesting the relevance to neurohumoral and inflammatory activation (133)

• Increase EDMP bearing VCAM-1 and soluble

P-selectin

• 18 individuals with subcortical and periventricular subcortical lesion (179)

Red Blood Cells-derived

microparticles (RDMPs)

• Increase CD235+ and CD235+/A+ • Cerebral infarction attributable to vasospasm in 20 elderly subjects (mean age, 52.2

years), suggesting the consequences of microthrombosis (167)

• Increase CD47*

* Least data on its association with CSVD,

compared to other MP subpopulations above

• Induced cerebral neuronal cell death in vitro (180)

CD, cluster differentiation; CSVD, cerebral small vessel disease; DWI, diffusion-weighted imaging; ECs, endothelial cells; MPs, microparticles; T2DM, type 2 diabetes mellitus; WMHs,

white matter hyperintensities.

NF-κB activation, leading to the release of proinflammatory
cytokines (200). The role of microglia-derived MPs was
further substantiated in a study investigating neuroinflammation
following brain traumatic injury whereby the MPs (identified
through P2Y12/CD45+) derived from neuroinflammation that
developed in the brain were released into the circulation and
initiated neuroinflammation in naive control animals (201).
Collectively, these findings highlighted the role of MPs and
microglia-mediated neuroinflammation in the CNS.

MPs and Cell Signaling
Alongside with procoagulant and proinflammatory abilities of
MPs, they can also serve as mediators for cell-to-cell interactions
and signal delivery between cells. As MPs bring along specific
parental membrane receptors, cytosolic proteins, and RNAs, they
can stimulate certain target cells to transform and communicate
with microcirculation in a way programmed by these contents
of MPs (202). For example, PDMPs can stimulate B cells to
synthesize specific antibodies such as immunoglobulin G (IgG)

by delivering CD154 IgG (203). In addition, PDMPs assisted
in monocytes to EC interaction through ICAM-1 that could
elevate chemotaxis of monocytoid cells (204). Furthermore, a
previous study showed that once PDMPs had a close contact with
neutrophil, they can bind and increase neutrophil aggregations
and promote neutrophil phagocytic activity (205). Likewise,
MPs can be phagocytosed by certain cancer cells (i.e., in lung
cancer), hence stimulating the cell to further proliferate, inducing
the expression of mRNA for the proinvasive MMP-9, and
upregulating the adhesion to ECs, which activated the EC and
endothelium dysfunction (206). Following the activation of ECs,
they released EDMPs that express proteases proteins such as
MMP-9 and MMP-2, leading to vessel invasion through the
disruption of basement membrane (207) (Figure 4).

The Roles of MPs in GIT–Brain Axis
As discussed, although most of the organs are anatomically
distinct, they shared a common systemic circulation and blood

Frontiers in Cardiovascular Medicine | www.frontiersin.org 15 February 2021 | Volume 8 | Article 63213159

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Nassir et al. CSVD, Microparticles and Diet

supply mainly from abdominal aorta, which relates to the brain–
heart–GIT axis. This is particularly the case given the emerging
debates on the contribution of MPs through GIT-microbiota–
derived MPs for GIT immune system and the connection with
the heart and the brain.

Certain insult in GIT microbiota (i.e., through substance
abuse or infection) has been associated with disturbed immune
response and eventually GIT dysbiosis that preceded with
metabolic and inflammatory disease (208, 209). Several studies
suggest the involvement of systemic GIT-microbiota–derived
MPs for these changes. For instance, Shen and colleagues
had shown the association of Bacteroides fragilis–derived
MPs with GIT disease (210), whereas Kang and colleagues
linked saccharibacteria or TM7 (i.e., Akkermansia muciniphila)
bacteria-derivedMPs with progression of colitis (211). Therefore,
it is plausible to deduce that microbiota-derived MPs may serve
as the link to connect between these major organs, i.e., the brain–
heart–GIT axis. Similarly, it is plausible that MPs derived from
peripheral circulation would assume similar systemic circulation
route to reach microcirculation network and hence contribute to
the pathogenesis of SVD and NDD including CSVD.

The association or crosstalk between the system in peripheral
organ, i.e., GIT microbiota and the brain, is of active
research interests (212). Several studies had also described
that circulating cells and/or microbiota-derived MPs generated
from the peripheral system that enter the systemic circulation
and assisted in crosstalk between the cerebral BBB and
inflammatory pathways as a trigger for CNS insults (201, 213–
215). However, despite the recognized role of peripheral MPs in
pathomechanism of CNS disease, the detailed mechanism ofMPs
breaching the BBB remains elusive, with some insights involving
proinvasive or proinflammatory MMP release, reorganization
of extracellular matrix, recruitment of inflammatory cells, and
regulation of epithelial barrier (216).

In addition, the interaction between the brain and the
periphery is a bidirectional communication. This is supported
by the evidence from the detection and enumeration of
brain-derived MPs in the blood that are likely to have
reached cerebral microcirculation and breached into cerebral
parenchyma following uptakes by microglial cells (217, 218).
For example, GIT or microbiota-derived MPs may bring
proinflammatory and degradative enzymes such as MMPs,
whereby this molecule enables MPs to be transmigrated into
epithelial layer, be circulated in systemic circulation, and reach
multiple organs including the brain. Moreover, the disrupted
BBB and GIT epithelial layer enhance the inflammatory cargo
deposition and cell signaling by MPs (Figure 4). This evidence
lends support on the role of MP-mediated transport or breach
through BBB as a putative insight on MP-mediated GIT-directed
NDD such as CVSD.

MPs and Related Clinical Syndrome
It is well-accepted that the elevated level of MPs in blood
circulation is reflective of their multifaceted roles; for example,
higher level of MPs was found in hypertensive patients (219),
abdominal obesity (220), myocardial infarction (221), tumor
progression and metastasis (222), atherosclerosis (223), and

cardiopulmonary bypass patients (160). Previous in vitro study
had shown that elevated T lymphocytes–derived MPs induced
arterial endothelial dysfunction (i.e., reduce expression of NOS)
in immunocompromised states (224, 225). Moreover, another
studies had shown that MPs can contribute to acute lung
injury (226) and inflammatory airway disease (227); in this case,
elevated level of MDMPs was enumerated to associate with
upregulated proinflammatory IL-8, ICAM-1, MCP-1, superoxide
anion production, and activation of NF-κβ in monocytes (153,
227). Interestingly, elevated EDMPs also had been correlated
with the severity of endothelial dysfunctions in heart disease, i.e.,
coronary artery disease and acute coronary syndromes with worst
clinical outcomes (133, 228, 229).

In the case of brain disease, MPs have been shown to
contribute to both proinflammatory and anti-inflammatory
responses in inflammation-mediated NDD including PD, AD,
amyotrophic lateral sclerosis, and dementia (230), whereby
CNS-derived MPs have been shown to circulate in peripheral
circulation and hence may play a role in cerebral immune
status by transferring peripheral proinflammatory molecules to
CNS (218, 231, 232). Recent evidence also suggested that MP-
mediated release of proinflammatory cytokines, miRNAs, and
microbial by-products is associated with the onset, progression,
and resolution of inflammation-based cerebral injury and NDD
(233–235). Therefore, these associations make circulating MPs
as pertinent and potential biomarkers of numerous disease
onset and/or progression with CNS diseases (228, 236), in
particular with microcirculation involvement as observed in
CSVD manifestations.

DIET AS RISK FACTORS FOR
MICROTHROMBOSIS AND SVD

It is well-acknowledged that healthy diet is crucial, and for it
to be appealing, such a diet must be nutritious, pleasing, and
indulging. As all foods contain variable degree of nutrients or
additives, these food elements may be beneficial or detrimental
(i.e., increase risk toward chronic disease) to our health. For
the past decades, research had focused on a single nutrient
consumption by the individual, i.e., protein, fat, carbohydrates,
fiber, and sugar. However, as humans, we do not consume a single
nutrient as such, but take food as whole. Moreover, nutrients
also are associated with one another; hence, focusing on the
effect of a single nutrient in food is rather incomplete. Thus,
to date, growing research is now focusing on multinutrient
interplay in foods and their effects on health, termed as
dietary patterns. Dietary pattern has been described as the
overall diet, type/groups of food and the nutrients therein, the
combination/variety, and the quantity/frequency with which the
food are habitually consumed (237, 238).

In addition, diet plays an important role in maintaining the
homeostasis and hemostasis systems, whereby healthy dietary
pattern has been classified as diet with lower concentrations
of plasma proinflammatory markers (8). Certain modifications
in the dietary pattern could potentially lead to alterations
in these systems, notably in individuals who consume less
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or non-nutritious or unbalanced diets, often linked to the
typical Western-type diet, i.e., meat-based with elevated level
of proinflammatory markers (9, 10). Modern lifestyles (with
physical inactivity and smoking) and unhealthy dietary patterns
are recognized modifiable risk factors for metabolic disease,
coronary heart disease, and stroke (11) and likely to trigger
systemic peripheral events that can influence the development
(from early age) to progression (in middle age and elderly) of
NDD such as CSVD. A recent systematic review has also linked
unhealthy diets with neuropsychiatric disorder such as mental
illness (239).

In the current globalization era, metabolic syndrome
(syndrome X) (i.e., abdominal obesity, hypertension, insulin
resistance, dyslipidemia, and hyperlipidemia) has become a
major global health burden as a new non-communicable disease
and a risk factor for cardiocerebrovascular disease. This scenario
continues to coexist with the social standard of living and
influences dietary pattern as a consequence from this social
pressure (240). Hence, the foregoing paragraphs will discuss on
the range of dietary patterns to date, with their likely effects on
the onset and progression of non-communicable diseases such
as CSVD.

Western Pattern Diet
The Western pattern diet (WPD) or modern dietary pattern
is classified as a high intake of processed food [i.e., processed
meat, red meats, prepackaged foods, and sugary desserts (candy
and sweets), refined grains or carbohydrates, fried foods],
conventionally raised animal products, eggs, corn (i.e., high-
fructose corn syrup), potatoes, high-fat dairy products, and high-
sugar drinks. All in all, these consumptions are classified as
high intake of saturated and omega-6 fatty acids (SFAs) (241).
Moreover, WPD is accompanied by no or low intake of omega-3
FA such as vegetables, fruits, whole grains, nut, grass-fed animal
products, fish, and seeds (242). Components in WPD diet tend
to be proinflammatory in nature, causing GIT dysbiosis (i.e.,
alteration in the diversity of GIT microbiota and reduced total
bacterial load) and disrupting epithelial barrier structure and
function in the GIT system (243).

Additionally, WPD has been widely associated with metabolic
syndrome, arteriosclerosis and/or arteriolosclerosis, and
T2DM (81, 244). Gross and colleagues reported that refined
carbohydrate (i.e., in corn syrup) is associated with T2DM
(245). Recent meta-analysis also concluded that higher intakes
of food with refined or high-glycemic carbohydrates (seen as
high-glycemic index, GI) increased the harmful effects toward
T2DM (246). The risk of myocardial infarction also increases
with high GI and high SFA by 33% (247). Moreover, highly
refined carbohydrate with reduced fiber content found in corn
starch, white rice, and white wheat flour has been associated
with 55% higher prevalence of T2DM in East Asian population
(248, 249). A higher incidence of hypertension and metabolic
syndrome has been reported among Asian Indians with higher
intakes of refined grain and increased waist circumference (250).

Furthermore, a higher intake of SFA has been associated
with an increased endogenous thrombin related to metabolic
syndrome (251). Alongside thrombin is the increment of vitamin

K–dependent factors (i.e., factors II, VII, IX, and X) and
extrinsic TF pathway in coagulation cascade with reduced TFPI,
which facilitated microthrombosis formation. Apart from that,
high intakes of red meat that is rich with heme iron also
increased oxidative stress, epithelial proliferation, and iron-
induced hypoxia signaling. Heme iron is known to increase
the formation of harmful endogenous N-nitroso compound and
heterocyclic amine content in GIT (252). Therefore, high intake
of processed or unprocessed red meat is associated with higher
incidence of vascular microthromboembolism, hence a higher
burden of T2DM, risk of metabolic syndrome, colorectal cancer,
and stroke (with an increased risk of ischemic stroke by 24%)
(253, 254).

High-Fat Diets/Low-Carbohydrate Diets
High-fat (HFD) or low-carbohydrate diet (LCD) or ketogenic
diet is a diet that is rich in fat contents such as SFA (i.e., myristic
and palmitic acids) found in animal or tropical oils. HFD also
included the low polyunsaturated FA (PUFA) such as linoleic
acids (LAs) and α-linoleic acids (ALAs) and monounsaturated
FA (MUFA) such as oleic acids (255). Dietary ALA and LA
synthesized arachidonic acids (AAs) and docosahexaenoic acids
(DHA) in the liver and brain (<1%) (256). The association
between the high SFA intake and development and progression
of vascular disease is complex because of modulatory effects
of fat in both prevention and progression of vascular disease
(81). However, habitual HFD individuals had been found to
have increased WMH load (i.e., CSVD manifestation) (257).
Furthermore, SFA triggers microglial activation to release
proinflammatory stimuli by interacting with toll-like receptor
4 (TLR-4) (258). Activated microglia release MPs (197–199),
and these microglia-derived MPs have been implicated to exert
negative impact in cognition and synaptic plasticity in HFD
mice (259).

In contrast, multiple studies had shown the beneficial effects
of diets enriched with PUFA and/or MUFA (260, 261). In
unesterified forms, AA and DHA cross the BBB through passive
transports, and upon entering the brain, they regulate the
neuroreceptor-coupled signaling and transcription that serve in
modulating the cerebral immunity as they are the mediators for
bioactive lipid (262, 263). Sun and colleagues had reported that
DHA is beneficial in stroke protection, therapy, and prevention
(264). This is due to fact that DHA aided in reducing the neuronal
and white matter loss, reducing proinflammatory cytokines,
MMP expression, and BBB damage, and regulating the activation
of microglial (264). Moreover, DHA reduced platelet aggregation
and lag time in healthy individuals (265), hence reducing the risk
of microthrombosis. High-MUFA (i.e., oleic acids) diets helped
to reduce thrombogenic factor (i.e., factor VIIa and factor VIIc)
(266), whereas increased HFD (i.e., higher SFA intake) has been
associated with an elevated level of proteobacteria species such as
Bilophila wadsworthia (GIT dysbiosis), unlike high MUFA that
reduced total bacteria in fecal content (267, 268).

Therefore, the interactions between dietary lipid (fats) with
microbiota are crucial in the regulation of metabolic changes and
systemic and peripheral inflammation. Previous studies proved
that the inflammatory pathway from GIT to the brain occurred
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following the changes in the GIT microbiota (269). This is
made possible because SFA (i.e., palmitic acids) can activate the
inflammatory response after desensitization of the GIT vagus
nerve as seen in microglia-activated TLR4 in hypothalamus
(270). In addition, in vivo and in vitro studies have shown
that elevated expression of apoptotic genes and proinflammatory
markers (i.e., TNF-α and ILs) with a reduction in brain-derived
neurotrophic factor are associated with HFD (i.e., high SFA)
(271, 272). Furthermore, Takechi and colleagues reported that
BBB damage following high-SFA diets is attributable to elevated
neuroinflammation after cerebral microvasculature leakage of
peripheral proteins (273).

As mentioned, HFD implies low carbohydrate intakes and
that LCD with high protein diets in mice model decreased the
amount and function of circulating endothelial progenitor cells
(EPCs) (274). However, if LCD (i.e., high unsaturated FA, low in
fiber, vitamins, minerals, and polyphenols) is implemented with
high PUFA andMUFA, this combination may turn out beneficial
and cardioprotective instead. A previous study reported the
reduced level of EDMPs (E-selectin), thrombomodulin, C-
reactive protein (CRP), and PDMP (P-selectin) in individuals
who practiced LCD (275), i.e., likely to reduce the risk
toward T2DM and metabolic syndrome, two major risk factors
for CSVD.

Mediterranean Diet
Mediterranean diet (MeDiet) is the type of diet that is
characterized by the intake of high portion of vegetables, fruits,
nuts, legumes (i.e., peas, lentils, beans, chickpeas, peanuts, and
soybeans), olive oils, whole grains, and aromatic spices and
moderate to high intake of marine origins (i.e., fish) and low
intake of meat and sweetened products (276). MeDiet has been
suggested as one of the healthiest and closest model diets toward
a healthy diet (11, 277). It is associated with better control
of cardiocerebrovascular risk factors such as hypertension
(improve blood pressure), glucose metabolism, arrhythmic risk,
metabolic syndrome (i.e., dyslipidemia), and GIT microbiota
(278). The protective effects of MeDiet are attributable to
its high level of PUFAs (from marine origins and plants),
MUFAs, minerals, polyphenols [a dietary antioxidants from
plants origins and beverages (i.e., green and black tea, coffee,
and red wine)], and fiber, while low in SFA and sugar. All these
components in MeDiet are associated with anti-inflammatory
effects and reduced prevalence of vascular diseases (279), with
underlying effects on modulating proatherogenic or arteriogenic
and proinflammatory gene expression such as COX-2, MCP-1,
and LDL receptor-related protein (LRP1) (280); lowering plasma
level of prothrombotic coagulation and inflammation molecules
such as ILs (i.e., IL-10, IL13, IL-18) andMMPs (i.e., MMP-9); and
decreasing the NF-κβ activation in leukocytes (281, 282).

Marine origins such as fish in MeDiet is the major source
of protein, vitamins (D, B), and long-chain omega-3 FA DHA
and eicosapentaenoic acid (EPA). Individuals who consumed
fish regularly had reduced risk of ischemic heart disease by
13% (283). In animal models, mice administered with fish oil
diet showed reduction in platelet aggregation (284), whereas
laboratory porcine fed with fish oil with PUFA showed inhibition

of the synthesis of platelets thromboxane B2, aiding in the
prevention of microthrombosis (285). Vitamins such as folic
acid, B12 and B6 had been associated with a reduced risk of
cerebrovascular disease such cerebral ischemia (286), whereas
lower vitamin B12 intake had been associated with increased
proportion of periventricular WMHs (287). Fish long-chain
omega-3 PUFA helped to protect against vascular risk factors
such as inflammation, endothelial dysfunction (with reduced
circulating markers such as VCAM-1, E-selectin, and ICAM-
1), and vascular resistance (i.e., improve flow-mediated arterial
dilation) (288). DHA and EPA consumption had been reported
to elevate PAI-1 in healthy individuals (289) and reduced the
risk of RSBI and WMHs in older adults (290), while long-
chain omega-3 PUFA supplementation in arteriothrombotic
patients reduced the activation of prothrombin and increased
TFPI (291, 292). Moreover, EPA and polyphenols helped to
reduce the endogenous thrombin alongside TFPI and vitamin
K–dependent factors (i.e., factors II, VII, IX, and X) and
platelet aggregation, hence reducing thrombogenesis (251, 265).
In addition, polyphenols helped to reduce leukocyte activation
molecules such as NF-κβ and inflammatory adhesion molecules
(293), ADP or collagen-mediated platelet aggregation and
platelets–monocytes aggregation; reduce expression of P-selectin
on platelets; and increase the release of platelet-derivedNO (294).

Moreover, nuts had been reported to protect against the risk
of hypertension (236) and T2DM (295), lowering cardiovascular
risk, but surprisingly not against stroke (236, 260, 296). Nuts
elevated the expression of TFPI in monocytes (280) and reduced
TF-bearing PDMPs (297). A recent animal study revealed that
mice with HFD supplemented with nuts (with high PUFA)
showed a reduced plasma prothrombin level and expression
of CD36 on atherosclerotic plaques in aortic region (298).
Furthermore, legume (highly soluble fiber) consumptions also
reported to reduce the risk of developing vascular disease,
i.e., improve cholesterol level, lower GI, blood pressure,
CRP, E-selectin, IL-6, TNF-α, VCAM-1, ICAM-1, and waist
circumference and prevented T2DM (299–301). Previous study
had reported that legumes possessed anti-inflammatory bioactive
components such as inulin and oligofructose and modulated
metabolic endotoxemia (302), whereas in vivo study showed
that their secondary metabolites interacted with GIT microbiota
to aid in modulating platelets hyperreactivity and potential
thrombosis through the synthesis of trymethilamine N-oxide
(303). A recent PREDIMED study had strengthened the fact
that MeDiet possessed anti-inflammatory effects with reduced
expressions of leukocyte adhesion molecules, VCAM-1, ICAM-
1, reduced plasma levels of P- and E-selectin, proinflammatory
cytokines (i.e., IL-1, IL-6, IL-8, CRP, TNF-α), MMPs, and
chemokines (i.e., MCP-1, MIP-1) (304).

Dietary Approaches to Stop Hypertension
Diet
Dietary Approaches to Stop Hypertension (DASH) diet is a
dietary pattern that encourages reduction of sodium intake
(2,300mg or 1 teaspoon per day), SFA, red and processed meat,
and sweet beverages and hence characterized as diet with high
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intake of vegetables, legumes, fruits whole grains, nuts, low-fat
dairy, fish, lean meats, and poultry (305). An increased sodium
(i.e., table salts, salt additives) intake beyond the physiological
requirement (high sodium-to-potassium ratio) has been shown
to elevate blood pressure (306), raising the risk toward vascular
disease and mortality (307). Moreover, recent systematic review
had reported that an increased intake of dietary salts may
increase the risk toward WMHs and ischemic stroke, i.e., lacunar
stroke, and CMBs (308, 309). Previous studies had shown that
DASH diet lowered the risk of developing and progression
of metabolic syndrome up to 81% (310, 311), coronary heart
disease by 20%, stroke by 29% (312), and the overall mortality
(313). Moreover, DASH diet has been associated with improved
endothelial function (314), body weight (315), inflammation
grade (305), and GIT microbiota (316).

Multiple studies had also reported that DASH diet has
high anti-inflammatory properties. In cross-sectional study
of elderly individuals (aged 50–69 years) by Phillips and
colleagues, DASH diet improved the measurement of adiposity
(i.e., reduced BMI and reduced waist circumference) and
lipoprotein and reduced proinflammatory, prothrombotic, and
proatherogenic markers (i.e., IL-6, CRP, TNF-α, PAI-1, and
leukocytes) (317). Another study showed improvements of
obesogenic inflammatory markers such as reduced CRP, IL-6,
and soluble ICAM-1 following DASH diet (318). A recent review
also supported DASH diet beneficial effects in reducing the
risk toward cancer such as breast and colorectal cancer (319).
Collectively, many of these beneficial effects of DASH diet are
attributable to its high-vegetable and high-fruit content, with
a desirable risk reduction toward systemic and cardiovascular
disease, including CSVD.

Gluten-Free Diet
Gluten (or glue in Latin) refers to a group of proteins
mainly found in grains such as barley, wheat, spelt, and rye.
Gluten added the sticky textures and consistency to the flour
once mixed with water. Glutenin and gliadin are the major
examples of gluten protein reported to cause a series of ill-
health effects especially in individuals with celiac disease (CD)
and gluten allergy or intolerance (320, 321). The consumption
of gluten-containing diet has been linked with GIT dysbiosis
and leakage and gluten-induced inflammation that can lead to
pathogenesis of neurodegeneration (230, 322). Moreover, high-
gluten diet also elevated the proinflammatory markers in young
healthy individuals (323), and there was an increased rate of
superoxide and nitrotyrosine synthesis in aortic root lesion of
mice model (324). A high-gluten diet also has been linked
with reduced expressions of anti-inflammatory and antidysbiotic
genes such as PPAR-γ (in intestine, peripheral inflammation,
and neuroinflammation) especially in individuals with CD.
This is supported by preclinical study using macaques that
shown the downregulation of PPAR-γ –mediated inflammation
in intestines, followed by GIT dysbiosis (325).

Thus, gluten-free diet (GFD) has been suggested to restore the
expression PPAR-γ gene in CD individuals. Moreover, in vitro
study has reported that GFD, i.e., the consumption of foods with
phytocannabinoids (low dose and naturally available), such as

delta-9-tetrahydrocannabinol, aided in direct activation of PPAR-
γ gene expression, hence inhibiting intestinal inflammation in
CD (326). A recent review reported that GFD is associated
with a reduced risk of endothelial dysfunction and oxidative
stress especially in CD individuals (327). Furthermore, an
animal study also revealed that mice with GFD had reduced
proinflammatory cytokines (Il-6 and TNF-α) (328). Hence,
GFD is a promising approach to prevent GIT inflammation
and dysbiosis and restores the integrity of epithelial barrier,
thus indirectly influencing the prevention strategy in reducing
risk toward other potential cardiocerebrovascular disease such
as CSVD.

Vegetarian Diets
Vegetarian diet is generally based on vegetables and fruits, and
it is classified into four different styles, such as lactovegetarian
(vegetarians with intake of dairy products but no eggs),
ovovegetarians (intake of eggs but no dairy), ovolactovegetarians
(no meat and fish, but consume both eggs and diary), and, lastly,
vegan diet (absolute absence of all kind of animal-based food
including seafood). Overall, vegetarian diet has been reported to
reduce the risk of coronary heart disease and stroke andmodulate
GIT microbiota (329, 330). Meta-analysis of previous studies had
shown the reduced risk factors that are linked to stroke, T2DM,
and cardiovascular mortality with vegetarian diets (331–333).
Moreover, a recent EPIC-Oxford study shows that vegetarian
diets reduced the risk of ischemic heart disease by 22% compared
to meat eaters, but with an elevated risk of hemorrhagic and total
stroke (283).

Among the different types of vegetarian’s diet, vegan diet has
been proven to be beneficial for cardiocerebrovascular health
(i.e., lower LDL cholesterol, triglycerides, and E-selectin) as it is
rich with vitamins (except B12), polyphenols, MUFA, and fiber.
However, a limited supply of vitamin B12 (followed by elevated
level of plasma homocysteine) in vegan diets is associated with
arterial endothelial dysfunction and elevated thickness of carotid
intima media (334). Moreover, a higher level of polyphenol such
as flavanols improved cardiovascular function (i.e., endothelial
function) and endogenous repair mechanism (i.e., increase flow-
mediated dilation, and reduced systolic blood pressure) (335),
which helped to reduce proinflammatory, leukocyte adhesion
molecules and NF-κβ, platelet aggregation, and an increase in the
release of platelet-derived NO (293, 294, 336). The level of CRP
also has been shown to decrease following vegetarian diets (i.e.,
unrefined plant foods) (337, 338) with an elevated circulating
EPCs (339).

The consumption of onion and garlic in vegetarian
diets has been reported to have antiplatelet, anticoagulant,
and antithrombotic properties as they possess sulfur-rich
element (especially in garlic) that is known to reduce platelet
function and aggregation through inhibition of COX and
lipo-oxygenase, followed by the suppression of thromboxane B2
production (340). In addition, an animal study had shown that
administration of sesame seed whole grains in mice lowered the
arterial thrombosis (341). Moreover, in vitro studies also showed
that green beans extract, tomatoes extract, strawberry extract
(dose-dependent: 0.1–1 mg/mL), garlic bolt, raw spinach, and
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blanched garlic inhibited the AA and ADP-mediated platelet
aggregation; the synthesis of platelets thromboxane B2 reduced
P-selectin and IL-1β levels (342–344) and thereby prevented
thrombogenesis. These effects are believed mainly due to the
presence of phenolic compounds (i.e., chlorogenic acid, ferulic
acid, caffeic acid, and P-coumaric acid) in such vegetables (345).
Of note, Framingham Heart Study Offspring Study reported that
nutrients such as choline (precursor for acetylcholine, PS, and
sphingomyelin) found in fruits (i.e., orange) and vegetables (i.e.,
broccoli) were associated with a lower WMHs load in relation to
CSVD manifestation (257, 346).

DIETS AND CIRCULATING
MPS—PROPOSING THE LINK WITH CSVD

For the past decades, research interests had grown on the
relationship between dietary patterns and potential vascular
disease including SVD pathomechanism such as cell activation
and prothrombotic molecules release. Hence, treatment and
management of cerebrocardiovascular disease risks such as
modulating lifestyle habits and dietary pattern have been
suggested as an important primary measure. Despite the
advancement of understanding on the effects of diets on
the release of endogenous circulating MPs toward major
cardiovascular disease (i.e., atherosclerosis, coronary heart
disease, and stroke), their relationships with the vascular integrity
of microcirculation network and, in specific, and its roles in the
pathogenesis of SVD (i.e., CSVD) require further deliberation.
To date, there is no/limited study that had reported the direct
impacts of diet-induced MP formation on NDD including AD
and PD. At best, majority of previous studies focused mainly on
the role of PDMPs and EDMPs, with scarce data available on
other MP subpopulation, as well as their involvement in diet-
basedMP release, whichmay influence the risk andmanifestation
of SVD in general.

Previous studies had evaluated the role of diet-based
circulating cell activation–derived MPs in healthy and disease
populations. For example, Zhang and colleagues found that
individuals with T2DM (major risk factor for CSVD) had a
higher level of PDMPs and MDMPs (CD11b+) compared to
healthy non-diabetic individuals who practice healthy chronic
diet (i.e., oats rich in polyphenols and low GI) as reported
with MeDiets, DASH, and vegetarian diets. Additionally, they
found that P-selectin, TF, and fibrinogen-positive PDMPs are
higher in T2DM individual without obesity (347) and likewise in
individuals who practicedWPDwith higher EDMPs and PDMPs.
Of note, WPD has higher SFA, GI, and refined carbs with low
to no omega-3 fatty acids (348). In contrast, HFD and LCD
with higher SFA lead to an increase in MDMPs, PDMPs, and
EDMPs (349). Hence, diet-based PDMP release, especially in
T2DM individuals, may contribute to microthrombosis (through
GP-Ib-IX-V receptor complex binding) and inflammation. In
such instances, PDMPs with surface P-selectin, fibrinogen, and
TF enable leukocytes–platelets adhesion, platelet aggregation,
and coagulation, respectively, in small vessel and could be
more vulnerable to an early development of arteriosclerosis

and/or arteriolosclerosis and hence plausible link to CSVD
manifestation. However, polyphenols (i.e., avenanthramide and
phenolic alkaloid) found in oats (i.e., in DASH diet and MeDiet)
possess antioxidant and anti-inflammatory properties (350),
whereby avenanthramide is known to reduce the levels of PDMPs
with specific surface markers through inhibition of platelet
activation by scavenging the free radicals (from oxidative stress
mediated activation), or as antagonist on activation receptors,
hence mimicking antiplatelet agents. A recent study by Sinegre
and colleagues indicated that epicatechin (a major subclass of
flavanols found in cocoa and fruits) supplementation typically in
vegetarian dietsmay reduce the production and release of PDMPs
(GP-Ib+) and thrombin, respectively, without any impact on TF
positive MPs which signified the effects of polyphenols on MP
release and procoagulant status (351), which could influence the
onset, progression, and even prevention of CSVD.

Moreover, individuals with high-gluten diet have been
associated with higher systemic GIT-microbiota–derived MPs
(230). However, polyphenols found in gluten-free black sorghum
extract (BSE) also had been shown to possess an antioxidant
property, which helped to reduce endothelial dysfunction,
platelet activation or aggregation, and PDMP release mediated
by oxidative stress (352, 353). Nignpense and colleagues reported
that the consumption of BSE (with concentration no <40
g/mL), such as in GFD, MeDiet, and vegetarian diets, could
reduce platelet aggregation (by 19%) and PDMPs (i.e., CD42b+)
release (by 47%). The antioxidative properties found in BSE
polyphenols enabled the inhibition of PDMPs through the
process of hydrogen peroxide (H2O2) neutralization, free radical
scavenging, and/or interruption with intracellular signaling
responsible for PDMP release (353). It seems that BSE polyphenol
is a potential candidate to attenuate the thrombogenic effect
of PDMPs. Besides, polyphenols also reduced PDMP release
through the inhibition of COX-1–mediated platelet activation
(354), hence modulating microvascular environment to improve
endothelium function. Also, as mentioned in the previous
section, as MPs can be generated after a physiological shear
stress, polyphenols (i.e., spironolactone) could modulate the
blood flow (via NO release) and endothelium relaxation to
enable the inhibition of shear stress–mediated MP release
and reduced the blood pressure. In addition, grapeseed (i.e.,
proanthocyanins) extract administration (400 mg/kg) in mice
was also shown to reduce the production of P-selectins bearing
PDMPs, proinflammatory molecules (i.e., IL-6, IL-8, and TNF-
α), and vWF and adhesion molecules, whereas it increased the
expression of CD34 on ECs and vascular endothelial growth
factor receptor 2, which resulted in the inhibition of thrombosis
(355) and thus could be protective against the onset and/or
progression of CSVD.

MeDiet has been widely studied and associated with the
improvements of endothelium structure and function of different
vasculature and vascular territories (i.e., peripheral, central, and
small/micro vessel) (277). Marín and colleagues reported that
MeDiet such as the consumption of extra virgin olive oil (EVOO)
possessed the antioxidative properties that aided the reduction
of free radical release and protected against oxidative stress,
hence mitigating the production of circulating MPs (356). A
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TABLE 4 | Summary of the role of dietary patterns, its molecular/cellular response, MP release, and risk predisposition toward CSVD.

Dietary patterns Molecular and cellular response Diet-based MP correlates Risk predisposition toward CSVD

Western Pattern Diets

• (+) SFA

• (+) GI

• (+) Refined carbs

• (–) Omega-3 fatty acid

• (+) Proinflammatory response

• (+) Oxidative stress

• (+) Thrombin

• (+) Vitamin K-dependent factors (i.e., factors

II, VII, IX, X) and extrinsic TF pathway in

coagulation cascade

• (–) TFPI

• (+) PDMPs

• (+) EDMPs

• (+) Risk T2DM

• (+) Cardiometabolic syndrome

• (+) Microthrombosis

• (+) Iron-induced hypoxia

• (+) Ischemic stroke

High fat/low carbohydrate diets

• (+) SFA

• (–) PUFA (LA and ALA)

• (–) MUFA

• (+) FVIIa/VIIc and extrinsic TF pathway in

coagulation cascade

• (+) MDMPs

• (+) PDMPs

• (+) EDMPs

• (–) EDMPs (specifically

CD31+/CD41−) in LCD

• (+) GIT Dysbiosis (i.e., inflammatory response)

• (–) BDNF

• (–) EPCs

• (+) BBB damages

• (+) WMHs

Mediterranean diets

• (+) PUFA

• (+) DHA/EPA

• (+) MUFA

• (+) Polyphenols

• (–) GI

• (+) Vitamins (folic acid, B12, B6)

• (+) Anti-inflammatory response

• (+) Antioxidant (i.e., in EVOO)

• (–) Prothrombotic coagulation

• (–) ILs/NF-κβ/MMPs/VCAM/ICAM

• (–) Vitamin K dependent factors (i.e., factors

II, VII, IX and X)

• (–) Platelet aggregation

• (–) Platelets thromboxane B2

• (–) Prothrombin

• (+) TFPI/PAI-1

• (+) NO

• (–) PDMPs

• (–) EDMPs

• (–) LDMPs

• (–) SMCs-MPs

• (–) Prothrombotic MPs

• (–) Lymphocytes MPs

• (–) Risk of metabolic syndrome

• (–) Microthrombosis

• (–) Endothelial dysfunction

• (+) Flow-mediated arterial dilation

• (–) Risk of cerebrovascular disease

• (–) Risk of ischemic heart disease

• (–) Risk of RSBI and WMHs

DASH diets

• (–) Sodium

• (–) SFA

• (+) Vegetarian diets

• (–) Proinflammatory, prothrombotic, and

proatherogenic markers

• (–) PDMPs

• (–) LDMPs

• No effects on RDMPs

and EDMPs

• (–) Risks of WMHs/CMBs/lacunar

stroke/ischemic stroke

• (–) Metabolic syndrome

• (–) BMI and waist circumference

• (+) Endothelial function

• (+) GIT microbiota

Vegetarian diets

• (+) PUFA

• (+) DHA/EPA

• (+) MUFA

• (+) Polyphenols

• (–) GI

• (+) Vitamins (folic acid, B6)

• (–) B12

• (–) LDL, triglycerides, and E-selectin

• (–) Proinflammatory cytokines

• (–) Leukocyte adhesion molecules

• (–) NF-κβ

• (–) Platelet aggregation

• (+) Platelet-derived NO

• (–) COX and lipo-oxygenase

• (+) VEGF

• (–) EDMPs

• (–) SMCs-MPs

• (–) Risk of coronary heart disease, stroke,

T2DM

• (+) GIT microbiota

• (–) Arterial thrombosis

• (+) Flow-mediated dilation

• (–) Systolic blood pressure

• (+) EPCs

• Lower vitamin B12 associated with arterial

endothelial dysfunction

• (+) Phosphorylation of eNOS by ECs

Gluten based

• (+) Gluten (glutenin/gliadin)

• GFD

• (+) Phytocannabinoids

• (+) Gluten-induced inflammation

• (–) Expression of anti-inflammatory and

antidysbiotic gene (i.e., PPAR-γ)

• (+) MMPs

• (+) Expression of PPAR-γ gene

• (–) Oxidative stress

• (–) Proinflammatory cytokines

• (+) Systemic

GIT-microbiota derived

MPs

• (–) Systemic

GIT-microbiota

derived MPs

• (+) Pathogenesis of NDD

• (+) GIT dysbiosis and leak

• (–) Risk of endothelial dysfunction

• (–) GIT inflammation and dysbiosis

(+) represents increase/elevate/higher/modulate/activate; (–) represents decrease/lower/reduce/absence. ALA, α-linoleic acids; BBB, blood brain barrier; BDNF, brain-derived

neurotrophic factor; BMI, body mass index; CD, cluster differentiation; CMBs, cerebral microbleeds; COX, cyclooxygenase; DHA, docosahexaenoic acids; ECs, endothelial cells, EDMPs,

endothelial derived microparticles; eNOS, endothelial nitric oxide synthase; EPA, eicosapentaenoic acid; EPCs, endothelial progenitor cells; EVOO, extra virgin olive oil; GI, glycemic

indexes; GIT, gastrointestinal tract; ICAM, intracellular adhesion molecules; ILs, interleukins; LA, linoleic acids; LCD, low carbohydrates diets; LDL, low density lipoprotein; LDMPs,

leukocytes derived microparticles; MDMPs, monocytes derived microparticles; MMPs, matrix metalloproteinase proteins; MPs, microparticles; MUFA, monounsaturated fatty acids;

NDD, neurodegenerative disease; NF-κβ, nuclear facto kappa β; NO, nitric oxide; PAI-1, plasminogen activator inhibitor 1; PDMPs, platelets derived microparticles; PPAR-γ, peroxisome

proliferator-activated receptor γ; PUFA, polyunsaturated fatty acids; RDMPs, red blood cell derived microparticles; SFA, saturated fatty acids; SMCs, smooth muscle cells; T2DM, type

2 diabetes mellitus; TFPI, tissue factor pathway inhibitors; VCAM, vascular endothelial adhesion molecules; VEGF, vascular growth factors; WMHs, white matter hyperintensities.
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high MUFA found in EVOO also reduced the levels of PDMPs
(CD31+/CD42b+) and EDMPs (CD31+/CD42−) (349) that
enabled the reduction of subendothelium microthrombogenicity
(measured as percentage of microvascular endothelium covered
by platelets and the modification or arterial wall, i.e., wall area
reduction and foam cell count) in animal model (357). Hence, it
is tempted to posit that, through MPs modulation, MeDiet could
be protective against the onset and/or progression of CSVD.

In contrast, Weech and colleagues reported that high-
SFA diets (i.e., WPD and HFD) elevated the levels of
PDMPs (CD31+/CD42b+) and EDMPs (CD31+/AV+ and
CD144+/CD6E+/AV+) (349). A recent preclinical study
also indicated that mice treated with HFD had a higher
level of MDMPs (CD36) (358). Hence, a higher level of
prothrombotic diet–based MPs could potentially trigger the
onset and advancement of CSVD. Interestingly, Marin and
colleagues showed that MUFA (as attainable with MeDiet,
DASH, and vegetarian diets) reduced the total count of
EDMPs (CD31+/AV+ and CD144+/CD6E+/AV+) in healthy
individuals (356), whereas Chiva-Blanch and colleagues reported
EVOO consumption in MeDiet produced a reduced level of
PDMPs (PAC-1+), SMCs-MPs (SMA-α+), and lymphocytes-
derived MPs (CD3+/CD45+) released in individuals with a
high risk of cardiovascular disease (359). Moreover, MeDiet
(i.e., nuts consumption) from asymptomatic individual with
cardiovascular risk (but no cardiovascular event) had also been
shown to have lower levels of prothrombotic PDMPs (PAC-1+,
CD61+, CD142+/CD61+ and CD62P+), EDMPs (CD146+) and
otherMP subpopulations such as LDMPs (CD63+ and CD11a+),
suggesting that nuts consumption could modulate endothelial
function via MP level regulation (297). Finally, MeDiet, i.e.,
the consumption of EVOO and nuts, facilitated the reduction
of prothrombotic MPs (CD142+/AV+), procoagulant MPs (TF
bearing) and cell activation MPs (CD11a+/AV+) (360, 361), that
could be beneficial in the setting of CSVD prevention.

In relation to HFD, Heinrich and colleagues found that HFD
elevated the production of PDMPs and EDMPs (348), whereas
LCD (≥40 g/d) lowered EDMP (specifically CD31+/CD41−)
levels (275). In contrast, the supplementation or consumption of
fish oil (rich in EPA and DHA) such as in MeDiet and vegetarian
diets reduced the EDMPs (CD31+/CD42b−) level, but not
PDMPs (CD31+/CD42b+) in low to moderate cardiovascular
risk individuals (362) with no effects on PDMPs (CD41+)
level, especially in healthy individuals (363). These differences
may be due to the fact that healthy individuals may have a
lower degree of cellular activation in their systemic circulation.
Besides, an intervention using low-calorie diet such as DASH
diet in obese individuals has been reported to reduce the
level of PDMPs (GP-Ib+) and LDMPs (CD11a+ and CD4+),
but not RDMPs or EDMPs (364) despite the fact that the
obese and overweight individuals possessed a higher baseline
level of EDMPs (CD144+/CD42a−/CD45−) (365). Moreover,
weight loss in non-diabetic individuals has been associated with
reduced PDMPs (CD41+), suggesting that weight reduction may
be independently mediating the inhibition of cell activation–
mediated MP shedding (220). Furthermore, the consumption
of cocoa flavonols (from cocoa drinks or natural cocoa),
especially with DASH, MeDiet, and vegetarian diets, has been

shown to reduce EDMPs (CD31b+/CD41− and CD144b+) and
EDMPs (CD42a/CD45−/CD144b+) in individuals with coronary
artery disease and in young asymptomatic obese individuals,
respectively (365, 366). Finally, HFD supplemented with cocoa
polyphenols (400 mg/kg per day) fed to rats showed a reduction
in platelet aggregation and an elevated release of NO and
phosphorylation of eNOS by ECs (367).

Taken together, this evidence provides persuasive and
plausible roles of MeDiet, DASH, GFD, and vegetarian diets
in the regulation MP systemic release in guarding against
microthrombi formation, whereas the formation of MPs with
procoagulant TF and proinflammatory properties following
WPD, HFD, and LCD is recognized to heighten the risk for
microthrombosis and arteriosclerosis and/or arteriolosclerosis
(368, 369) and hence risk for CSVD manifestations. Table 4
summarizes the role of dietary patterns, its corresponding
molecular and cellular responses, underlying MP release, and
putative predisposition toward CSVD.

CONCLUSION AND FUTURE
PERSPECTIVE

CSVD is a complex pathophysiologic condition that originates
from small vessel (microcirculation) insults with brain
parenchymal lesions that feature as both asymptomatic
(silent) and symptomatic neurological manifestations as we grow
older. One of the probable risk factors toward the onset and
progression of CSVD is the imbalance and undesirable dietary
patterns such as WPD and HFD. Although the impact of diets
on cerebrocardiovascular disease in general has been widely
studied, to date, studies on the effect on dietary pattern in CSVD
remain largely unexplored. Scientific evidence provides crucial
pertinent leads on diets such as vegetarians, GFD, and MeDiet
that are rich in vegetables and fruits, with moderate intake of fish
reducing the prevalence of major cerebrocardiovascular disease.
This review presents the deliberations on the plausible roles of
circulating MPs (produced by oxidative stress, inflammation,
GIT microbiota dysbiosis, and cell activation) and suggests their
role as one of the novel risk factor and cell-based biomarkers
in diseases related to the brain–heart–GIT axis, with an
emphasis on CSVD and subsequent related NDD. In particular,
the understanding of the role of diet-based MPs and their
communications with and/or via microcirculation in relation
to CSVD manifestations would stir further interests in the
current limited understanding on the natural history of CSVD,
as well as an opportunity to devise novel approaches for its
preventive and therapeutic strategies. Given that MPs can be
produced and released from numerous microvascular beds of
various organs (i.e., in CNS, heart, GIT, or kidney) and circulate
through common systemic circulation to accumulate and exert
their thrombogenic effects (i.e., prothrombotic, procoagulant,
and proinflammatory) in the small end arteries especially in
the cerebral microcirculation, this could contribute as a novel
pathomechanism of CSVD, within the background of specific
diet pattern as a modifiable precursor. A more concerted
multidisciplinary and transdisciplinary research efforts to
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integrate the various aspects to advance our understanding of
CSVD shall prove beneficial for the progressively aging society.
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Many neurodegenerative diseases are associated with chronic inflammation in the brain
and periphery giving rise to a continuous imbalance of immune processes. Next to
inflammation markers, activation of transposable elements, including long intrespersed
nuclear elements (LINE) elements and endogenous retroviruses (ERVs), has been
identified during neurodegenerative disease progression and even correlated with the
clinical severity of the disease. ERVs are remnants of viral infections in the human
genome acquired during evolution. Upon activation, they produce transcripts and the
phylogenetically youngest ones are still able to produce viral-like particles. In addition,
ERVs can bind transcription factors and modulate immune response. Being between
own and foreign, ERVs are reviewed in the context of viral infections of the central
nervous system, in aging and neurodegenerative diseases. Moreover, this review tests
the hypothesis that viral infection may be a trigger at the onset of neuroinflammation
and that ERVs sustain the inflammatory imbalance by summarizing existing data of
neurodegenerative diseases associated with viruses and/or ERVs.

Keywords: HERV, LINE, virus, neurodegeneration, neuroinflammation

INTRODUCTION

Viruses have long been linked with diseases of the nervous system. Several viruses, including human
α-herpesvirus types 1, 2, and 3 (HHV-1 and HHV-2, known as herpes simplex viruses, and HHV-
3, known as varizella zoster virus), human cytomegalovirus (CMV), human immunodeficiency
virus (HIV), Epstein–Barr virus (EBV), Ebola virus, and rabies virus are capable of reaching
the central nervous system (CNS) (Dando et al., 2014). Often, particular viral nucleic acids or
proteins are found in the brain, cerebrospinal fluid (CSF), or peripheral blood of patients with a
certain neurological disease. For example, HHV-3 and HHV-6 are present in the CSF (Mancuso
et al., 2007; Alvarez-Lafuente et al., 2008), coronaviruses in the CNS of multiple sclerosis (MS)
patients (Burks et al., 1980), and HIV and human T-cell leukemia virus-1 (HTLV-1) in the brains
of amyotrophic lateral sclerosis (ALS) patients (Verma and Berger, 2006). HHV-6A DNA and
transcripts, in turn, are increased in the brains of Alzheimer’s disease (AD) patients and closely
correlate with neuronal loss (Readhead et al., 2018). Tracing neuropathologies to viral infections
can, however, be challenging. This holds particularly true when the virus becomes “slower” or
“latent” following acute infection (Sigurdsson, 1954; Murphy and Yunis, 1976; Steiner et al., 2007;
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Kennedy and Cohrs, 2010; Shu et al., 2015; Rodriguez et al.,
2020). The tremendous research from the beginning of the HIV
pandemic has greatly enhanced evidence and understanding
of this slow action of viruses in the CNS (Garcia et al.,
1999). Important to consider also is the long-term risk from
accumulated infections during a lifetime that might lead to a
cumulative and individual risk of developing neuropathology,
such as stroke and dementia (Almeida and Lautenschlager, 2005;
Ruprecht et al., 2006; Tai et al., 2009; Sico et al., 2015).

More recent research has shown that viruses, such as HIV,
EBV, CMV, influenza, herpesviruses, and HTLV-1 can activate
viral sequences originating from retroviral infections in the
distant past of human evolution that have been incorporated
into the human genome (Nellaker et al., 2006; Toufaily et al.,
2011; Young et al., 2012; Leboyer et al., 2013; Li et al., 2014;
Kury et al., 2018). While their ability to express viral products is
mostly lost, some of these endogenous retroviruses (ERVs) have
evolved to play important roles in physiological processes, such
as placentation, early human embryogenesis, neurodevelopment,
and immune response regulation (Kammerer et al., 2011;
Wang et al., 2014, 2020; Chuong et al., 2016; Romer et al.,
2017; Xue et al., 2020). Activation of ERVs, such as by
exogenous viruses or environmental factors, can contribute
to a multitude of neurodevelopmental, neurodegenerative, and
neuroinflammatory disorders (Balestrieri et al., 2019; Gruchot
et al., 2019, 2020; Tam et al., 2019; Evans and Erwin, 2020;
Groger et al., 2021), including HIV-associated neurodegenerative
disorder (HAND), AD, MS, ALS, schizophrenia, stroke, and
neuropathogenesis of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) as well as to accelerated
neurological decline in aging.

This review highlights the interplay between endogenous
viruses and retroelements, on the one hand, and exogenous
viruses, on the other hand, and aims at revealing
underlying mechanisms in aging, and neurodegenerative
and neuroinflammatory diseases summarizing recent
advances in this field.

VIRAL INFECTION OF THE CENTRAL
NERVOUS SYSTEM

The central nervous system (CNS) is not a common target organ
for viruses. It is neither easily accessible nor as advantageous
in terms of contagiousness and successful viral transmission to
new hosts as the respiratory or gastrointestinal tract. Shielded
by the meninges, CSF, and blood brain barrier (BBB), the CNS
is immunologically unique and privileged (Louveau et al., 2015).
Although the CNS itself is armed with an array of immunological
mechanisms, including support from the periphery, it may be
considered as a sanctuary where viral replication occurs despite a
complete viral suppression in the peripheral blood. This has been
shown, for example, for the HIV (Walker et al., 2008). In addition
to viruses with neurotropism, only minor mutations may be
sufficient to create viruses that can access the CNS via various
routes (Wiley, 2020). Permeability of the BBB may be increased
by high viremia accompanied by elevated cytokine levels and also

by direct interaction with tight junction proteins (Toborek et al.,
2005; Chai et al., 2014). Viruses can infect endothelial cells of the
BBB, allowing viral replicates to be released into the CNS (Verma
et al., 2009; Fletcher et al., 2012), while infection of leukocytes
or monocytes by, for example, HIV and SARS-CoV-2, that pass
BBB physiologically, provides a “trojan-horse” mechanism to
enter the CNS (Larochelle et al., 2011; Takeshita and Ransohoff,
2012; Bostanciklioglu, 2020). Attention is currently drawn to
the CNS invasion through retrograde neuronal transport of
infected peripheral nerve afferents, as SARS-CoV-2 and other
coronaviruses are associated with CNS entry via the olfactory
pathway, a mechanism that has been also described for other viral
families such as influenza A virus, rabies virus, and herpesviruses
(van Riel et al., 2015), and other peripheral nerves, for example,
the sciatic nerve and vagus nerve (Ren and Racaniello, 1992;
Ohka et al., 1998; Guadarrama-Ortiz et al., 2020; Liu et al., 2020).
Figure 1 depicts the mechanisms of viral entry into the CNS.

Once in the CNS, acute infections present with encephalitis,
myelitis, or viral meningitis. Generally, virus-triggered immune
reaction is limited in time and ends with the virus being
combated; however, certain neurotropic viruses can continue
to elicit progressive damage on brain structure, function, and
cognition long after the clearance of virus from the peripheral
blood. In addition to this type of chronic infections, viruses
can enter a latent (dormant) phase, interrupted by occasional
full awakening of the virus. Sometimes, the same virus can
contribute to both. This is the case for the HIV (Rodriguez
et al., 2020), measles morbillivirus (Murphy and Yunis, 1976),
HHV-1 (Shu et al., 2015), and HHV-3, to name a few (Steiner
et al., 2007; Kennedy and Cohrs, 2010). The high worldwide
seroprevalence of some of these viruses, such as that of HHV-
1 and HHV-2 being around 90% (Wald and Corey, 2007),
indicates that facilitating factors must exist that ultimately decide
upon disease development. In consideration are comorbidities
such as traumas to latently infected neurons (Zhang et al.,
2013), immune-depriving conditions such as AIDS (Rodriguez
et al., 2020), leukemia (Koskenvuo et al., 2008; Lancman et al.,
2020), or stroke-induced immunodepression (Deroux et al., 2012;
Hetze et al., 2013; Romer et al., 2015; Bertrand et al., 2019),
and cumulative infectious burden (Sico et al., 2015), and also
environmental factors (Liu et al., 2013; Brutting et al., 2018;
Mueller et al., 2018; Del Re and Giorgi, 2020). The role of aging
as a facilitating factor and the interplay with ERVs are discussed
in detail below.

ENDOGENOUS RETROVIRUSES AND
RETROELEMENTS

Exogenous retroviruses from which ERVs originate, like other
retroviruses, contain single-stranded (ss) anti-sense RNA and
RNA reverse polymerase to generate double-stranded DNA
(dsDNA). With the help of the retroviral integrase, this DNA
copy may become endogenized into the host genome, essentially
when infecting gametes (germ cells) with chromosomal insertion
sites that will allow the birth of viable offspring over generations.
Over the evolution, this type of infections and endogenizations
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FIGURE 1 | Entry routes of exogenous viruses into the central nervous system (CNS). Virus can enter the CNS via (A) Peripheral nerve terminals (in this example of
the olfactory nerve) and retrograde axonal transport. (B) Infection of and damage to endothelial cells of the blood brain barrier (BBB). (C) Infection of circulating
immune cells that travel across the BBB. (D) Modulation of tight junction molecules of the BBB, increasing BBB permeability. A specific entry route can be typical for
a specific virus, however, often more than one route is used. Entry route may vary during the course of infection (e.g., BBB damage in conditions of high viremia) and
new CNS entry mechanisms can follow when the viral genome sustains mutational changes. A neurotrophic virus often infects specific cell types within the CNS.
Reaching the CNS enables the virus to circumvent the peripheral immune response. To evade also the CNS immune response, viruses may enter a dormant state
forming a viral episome or integrating into the host cell DNA.

of retroviruses have occurred multiple times (Kozak, 1985).
Gradually, ERVs become non-infectious, lose the ability to exit
the host cell, and adopt the nature of transposable elements. ERV
sequences become transpositionally inactive, mutated, degraded,
and epigenetically silenced as part of the host control in
protection of genome stability. ERV sequences take up about 8%
of the modern human genome (Gannet, 2019). ERV families that
have been less prone to be degraded by the host, such as human
ERV H (HERV-H) and HERV-K, have shaped the evolution and
complexity of innate and adaptive immune pathways (Villarreal,
2011; Chuong et al., 2016, 2017). Regulation mechanisms to
control the HERV activity, mainly via epigenetics (for example,
cytosine methylation) form the basis for proper host–HERV
interaction in controlling vital processes (Lavie et al., 2005; Turelli
et al., 2014). The Krüppel-associated box domain (KRAB)-
associated protein-1 (KAP1)-mediated silencing continues to be
the key mechanism of ERV control in adult brain (Fasching
et al., 2015). KAP1 deletion during brain development is lethal,
and heterozygous deletion of KAP1 causes behavioral changes

resembling those observed in human psychiatric conditions
associated with HERV upregulation (Jakobsson et al., 2008).

Long interspersed nuclear elements (LINEs) are a group of
non-LTR (long terminal repeat) retroelements that compose
up to 21% of the human genome (Gannet, 2019). LINE-1
elements are a major source of structural polymorphisms in
humans (Hancks and Kazazian, 2012). Higher LINE-1 activity is
characteristic to brain areas of adult neurogenesis, in particular
to the hippocampal dentate gyrus (Baillie et al., 2011; Kurnosov
et al., 2015; Bachiller et al., 2017) and to human neural
progenitor cells (Coufal et al., 2009). LINE-1 insertions often
locate at neuronal genes, and LINE-1 activity can initiate
neuronal differentiation (Muotri et al., 2005). Hippocampal
LINE-1 activity and genomic mosaicism are involved in cognitive
processes such as memory formation (Bachiller et al., 2017).

Alu family is the most common member of the short
interspersed nuclear elements (SINEs) and accounts for about
13% of the human genome (Gannet, 2019). Alu elements
are actively transposing. However, they do not encode a
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functional reverse transcriptase protein and therefore rely on the
machinery of other retroelements, especially LINEs (Wei et al.,
2001; Dewannieux et al., 2003). Alu elements are involved in
neurogenesis, brain connectome development, and in shaping
cognition networks (Mehler and Mattick, 2007; Baillie et al., 2011;
Bedrosian et al., 2016).

HERVs, LINEs, and Alus regulate gene expression networks
at multiple levels, providing a rich pool for RNA diversification
(Lev-Maor et al., 2003; Laperriere et al., 2007; Fujii, 2010; Gim
et al., 2014; Goke and Ng, 2016), functioning as promoters
and enhancers (Norris et al., 1995; Shen et al., 2011; Lee,
2012; Wu et al., 2013; Romer et al., 2017), and coordinating
3D genomic arrangements via topologically associated domains
(Dixon et al., 2012; Zhang et al., 2019). These elements contribute
significantly to defining neurobiological processes, including
neuronal mosaicism and shaping brain development (Coufal
et al., 2009; Baillie et al., 2011; Richardson et al., 2014; Bodea
et al., 2018). Alteration of these networks are associated with
neurodevelopmental, neurodegenerative, neuroinflammatory,
and autoimmune diseases. HERVs, LINE, and Alu elements are
subject to a multitude of environmental factors and xenobiotics,
which can activate normally well-controlled HERV expression,
such as hypoxia (Brutting et al., 2018), drugs (aspirin, caffeine,
and valproic acid) (Diem et al., 2012; Liu et al., 2013), and
hormones (Norris et al., 1995; Mueller et al., 2018). Also,
LINE-1 retroelement activity is sensitive to a multitude of
factors including social isolation stress, heavy metals, and anti-
inflammatory and psychoactive drugs (Del Re and Giorgi, 2020).
Together, (H)ERVs, LINE, and Alu elements regulate early
human embryogenesis, neurodevelopment, neural diversity, and
plasticity. All three are subject to a number of environmental
factors, affecting a healthy brain.

INTERPLAY BETWEEN ENDOGENOUS
AND EXOGENOUS VIRUSES

Inherent ERVs and exogenous viruses, being distant relatives,
share common mechanisms but can also be opponents. When
viruses first try to enter a cell, HERV, coming from inside
the host genome, can provide protection by blocking the
cellular receptors relevant for the exogenous retrovirus entry
(Spencer et al., 2003). ERVs can protect against exogenous
retroviral infections by receptor interference if both viruses
share the specificity of the env glycoprotein (Weiss et al.,
1985). Substantial similarity between HERV and exogenous
retrovirus, such as that between HERV-K (HML-2) gag and
HIV gag, could lead to fusion of viral proteins and production
of defective viral particles (Monde et al., 2012). In addition,
HERV antisense transcripts can interact with complementary
exogenous retrovirus transcripts to block viral replication and
generate dsRNA to be recognized as a pathogen-associated
molecular pattern (PAMP) by the host immune system (Tang
et al., 2012; Shekarian et al., 2017). Sensing PAMPs, such
as viral proteins and nucleic acids, and danger-associated
molecular patterns (DAMPs) derived from damaged cells, are
part of the innate immune response. Cytoplasmic sensors

for viral DNA include cyclic GMP-AMP synthase (cGAS),
Z-DNA-binding protein 1 (ZBP1), and TLR9 (Rigby et al.,
2014; Hayashi et al., 2015; Xia et al., 2016; Sandstrom et al.,
2017; Jiao et al., 2020). Viral RNA are sensed by TLR8 (Heil
et al., 2004), TLR3, melanoma-differentiated-associated gene 5
(MDA5), ZBP-1 (Gurtler and Bowie, 2013; Jiao et al., 2020),
and retinoic acid inducible gene I (RIG-I) (Gurtler and Bowie,
2013). Innate immune response to viral infections leads to
pro-inflammatory cytokine, chemokine, and type I interferon
(IFN) release to stimulate adaptive immune response, the
T lymphocyte-mediated cellular and B lymphocyte-mediated
humoral immunity.

Activated innate and adaptive immune system cells both
can stimulate ERV transcription (Bannert and Kurth, 2004).
Generally, immune reactions are limited in time and cleared by
the immune system. However, HERVs are continuously present
and, under certain conditions, also continuously active. Aiming
at clearing up the infection triggered by HERVs, TLR stimulation
can, via IFN release, actually activate HERVs further (Bannert
and Kurth, 2004). Dispersed at relevant immune genes, activated
HERVs and in particular the polymorphic HERV-K (HML-2)
loci, form another layer of immune response regulation (Nexo
et al., 2011). Certain HERV insertions function as IFN-inducible
enhancers, and type I IFN is one of the main innate immune
response products to viral infection (Chuong et al., 2016).
Neuroinflammation will awaken and activate HERVs in the
human brain (Johnston et al., 2001; Manghera et al., 2015, 2016).
In this feedback loop, HERV activity is upregulated by anti-viral
immune response through inflammatory mediators and also by
epigenetic dysregulation (Manghera and Douville, 2013; Hurst
and Magiorkinis, 2015, 2017), leading to chronic stimulation of
the immune system (Hurst and Magiorkinis, 2015, 2017; Grandi
and Tramontano, 2017; Mameli et al., 2017; Ramasamy et al.,
2017). Continuous ERV activation is associated with sustained
neuroinflammation and predisposes to neurodegenerative and
autoimmune diseases (Nexo et al., 2011).

Activation of ERV transcription can directly be achieved by
several exogenous viruses, such as HIV, EBV, CMV, influenza, and
herpesviruses, some of which can even induce a self-sustained
HERV activation (Nellaker et al., 2006; Young et al., 2012;
Leboyer et al., 2013; Li et al., 2014; Kury et al., 2018). Among
exogenous retroviruses, HTLV-1 Tax can increase HERV-H,
HERV-K, HERV-W, and HERV-E expression in T lymphocytes
(Toufaily et al., 2011). HIV transactivator of transcription (Tat)
protein can stimulate expression of HERV-K and HERV-W
in astrocytes and peripheral blood cells and that of HERV-W
also indirectly via TLR4 and proinflammatory cytokine (TNF-
α, NF-κB) production (Uleri et al., 2014). Using mimicry,
HIV rev, which mediates nuclear export of HIV messenger
RNA (mRNA), also mediates the nuclear export of HERV-K
mRNA, thereby promoting HERV-K translation (O’Carroll et al.,
2020). Exogenous viruses can further facilitate expression of
endogenous superantigens, linked in particular with the CNS-
affecting autoimmune diseases (Acha-Orbea, 1992). This occurs,
for example, between rabies virus and HERV-W (Lafon et al.,
1992; Perron et al., 2001; Lafon et al., 2002) and between EBV
and HERV-K18 (Sutkowski et al., 2001). In turn, ERVs may assist
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their exogenous counterparts to escape immune surveillance,
repair defects in exogenous retroviruses (Schwartzberg et al.,
1985), and facilitate chronic viral replication (Rasmussen, 1997).
Also, transcriptionally active ERVs provide a rich pool for
recombinational events with exogenous retroviruses. When a
host cell is infected by two different viruses, heterologous trans-
activation can take place where transcription of one virus is
initiated by factors produced by the other virus. When ERVs
provide envelope glycoproteins to exogenous retroviruses, these
could establish a new host cell repertoire and circumvent
immune system response (Lusso et al., 1990). A certain degree
of epitope similarity between ERV and exogenous retrovirus
can lead to a weaker immune response against this virus
(Miyazawa and Fujisawa, 1994).

Similar interplay between endogenous retroviruses and
exogenous viruses exists in the periphery and may pave way
to chronic inflammation. In fact, viruses and endogenous
retroviruses have been linked with autoimmune disease
pathology, such as systemic lupus erythematosus (Ogasawara
et al., 2000; Moon et al., 2004), rheumatoid arthritis (Herve
et al., 2002), and diabetes (Levet et al., 2017, 2019). Continued
upregulation of HERV-H and HERV-K after the clearance of
hepatitis C virus from the peripheral blood of chronic hepatitis C
patients was recently associated with higher risks for cancer and
autoimmunity in these patients (Tovo et al., 2020).

Peripheral inflammation can reach the brain via transversal
of circumventricular organs, peripheral nerves, or through pro-
inflammatory cytokine influx upon direct cytokine–endothelial
interactions, resulting in reduced BBB integrity (Toborek et al.,
2005; Chai et al., 2014). Moreover, peripheral inflammation
processes can trigger major neurological events such as stroke
via platelet aggregation, hypercoagulation, impaired endothelial
function, and thrombosis (Elkind et al., 2020; Oxley et al., 2020).

Figure 2 draws common mechanisms in the interplay of
exogenous and endogenous retroviruses leading to sustained
neuroinflammation and subsequent CNS damage.

VIRAL AND ENDOGENOUS RETROVIRAL
ASSOCIATED PATHOLOGIES

Table 1 summarizes exogenous viral and endogenous retroviral
disorders discussed in the following sections.

HIV-Associated Neurodegenerative
Disorder
HIV infection causes acquired immunodeficiency syndrome
(AIDS) affecting multiple systems in the body. One of
the complications of HIV infection is the HIV-associated
neurodegenerative disorder (HAND) (Navia et al., 1986), which
can develop into HIV-associated dementia (Nookala et al., 2017),
the most common cause of dementia in young adults (Janssen
et al., 1992) with higher prevalence among women (Duarte
et al., 2020). HIV is transported to the brain with infected
T-lymphocytes and monocytes (Wiley et al., 1986; Takahashi
et al., 1996). These long-lived cells are referred to as sources
of HIV chronic infection (Nookala et al., 2017). In the brain,

HIV infects primarily the immunocompetent cells, perivascular
macrophages, and microglia where it replicates (Watkins et al.,
1990; Albright et al., 2000). HIV persists in the CNS, causing
motor, cognitive, and behavioral deficits, which can be further
aggravated by opportunistic infections by CMV, EBV, HHV-3,
and HHV-6 (Almeida and Lautenschlager, 2005).

Neurodegeneration characteristic to HAND emanates from
chronic inflammation, sustained by activated monocytes,
macrophages and astrocytes, and neurotoxic HIV viral proteins
(Ghafouri et al., 2006; Kraft-Terry et al., 2010). These include
HIV Tat, HIV viral protein R (Vpr), and HIV env glycoprotein
gp160 cleaved product gp120. HIV viral proteins induce
neuropathology by aberrant calcium signaling, mitochondrial
damage, oxidative stress, excitotoxicity, and inflammation
(Nookala et al., 2017), collectively leading to neuronal death
(Masliah et al., 1992).

Further augmentation of neurodegeneration and
neuroinflammation in HAND comes from HIV and infection-
induced cytokines’ (IL-6, IL-1β, TNF-α, and IFN-γ) ability to
dynamically activate HERVs, such as HERV-W (Uleri et al.,
2014) and HERV-K (Bhardwaj et al., 2014; O’Carroll et al.,
2020). In particular, HIV induces HERV-K transcription and can
trigger adaptive immune response against the HERV-K capsid
protein (de Mulder et al., 2017). A distinct temporal pattern
between HIV and HERV-K activation has been observed in the
brains of HIV-infected individuals, demonstrating increased
HERV-K activation ahead of spikes in HIV replication in the
peripheral blood (Contreras-Galindo et al., 2007) and ahead
of clinical symptoms of neurocognitive impairment (Douville
and Nath, 2017). HIV-associated motor neuron disease affecting
upper and lower motor neurons is likewise escorted by increased
HERV-K expression at the onset of neurological symptoms
(Bowen et al., 2016). HIV can directly facilitate HERV-K
expression, transcript transportation to cytoplasm, and viral
particle production (O’Carroll et al., 2020) and regulate anti-
viral gene expression through activating (H)ERV promoters
(Srinivasachar Badarinarayan et al., 2020). Increased HERV-K
env expression in cortical neurons of HIV-infected individuals
has been linked with restricting HIV replication in these cells
(Bhat et al., 2014). In the long term, however, neuronal HERV-K
expression leads to neurite retraction and neuronal death
(Dembny et al., 2020), in line with HAND. The antiretroviral
therapy against HIV is effective also against HERV-K (Bowen
et al., 2016). Overall, the neuropathology induced by HIV and
HERV-K might have a certain overlap and is difficult to separate.
It might be beneficial to monitor the level of HERV-K within
the course of HAND.

Of note, incidence of HIV-associated dementia has reduced
threefold after the combination antiretroviral therapy became
available (Lawrence and Major, 2002). New medical concerns
involve premature aging-related neurocognitive disorders
(Robertson et al., 2007). HIV-associated dementia bares certain
similarities with that of Alzheimer disease (AD) (Clifford et al.,
2009). The neurons of HIV-associated dementia patients contain
diffuse Aβ plaques, similar to the early stages of AD (Ortega
and Ances, 2014), which could indicate a slower progression of
HIV-associated dementia (Fulop et al., 2019).
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FIGURE 2 | Model of the role of exogenous virus and endogenous retrovirus (ERV) in initiating neuropathologies, illustrating the entry of viruses into the body
(“house”) and the presence of ERVs, the physiological immune response on the first level and continuous imbalance on the second, thus leading to damage of the
CNS (“roof”). Infections with exogenous viruses often activate the transcription of endogenous retroviruses which are already present in the mammalian genome.
This results from disruption of the host-control over ERVs, bordering between own and foreign. Separately and together, activated exogenous viruses and ERVs
produce PAMPs, such as viral nucleic acids, viral-like particles, fused transcripts between exogenous virus, and ERV, which are sensed by PAMP sensors (TLR,
cGAS, ZBP-1, MDA5, and RIG-I). Collectively, PAMP activation alarms the immune system by initiating innate immune response involving mainly IFN signaling which
will trigger the adaptive (humoral and cellular) immunity. Viral infections are generally limited in time as they are combated by the immune system. However, the
activation of ERVs and neurotrophic viruses which remain silent yet present within the body, can lead to sustained neuroinflammation via antibodies against ERVs,
superantigen formation, demyelination, and neuronal death. In parallel, IFN-mediated innate immune response can further activate ERVs which contain IFN response
elements (such as HERV-K), thereby creating an IFN loop. Next to the danger of chronic neuroinflammation, this additionally carries mutational burden for the host,
collectively leading to the CNS damage. The probability and scope of the CNS damage is further determined by facilitating factors, including comorbidities and
environmental triggers as well as age. Abbreviations: cGAS, cyclic GMP-AMP synthase; CNS, central nervous system; ERV, endogenous retrovirus; IFN, interferon;
MDA5, melanoma differentiated associated gene 5; PAMP, pathogen-associated molecular pattern; RIG-I, retinoic acid inducible gene I; TLR, toll-like receptor;
ZBP-1, Z-DNA binding protein 1.
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TABLE 1 | Overview of disorders affecting the central nervous system (CNS) associated with an onset mediated by exogenous viruses and/or endogenous retroviruses.

Disorder Clinical CNS
symptoms

Associated
peripheral
pathology

CNS targets Associated
exogenous
viruses

Associated
endogenous
retroviruses

Mechanisms

HIV-associated
neurodegenerative
disorder (HAND)

Cognitive, motor,
and behavioral
deficits similar to
AD

AIDS Microglia,
astrocytes, and
perivascular
macrophages,
neurons (motor
and cortical)

HIV-1
(aggravation by
CMV, EBV,
HHV-3, and
HHV-6)

HERV-K
(HERV-E, HERV-T, two
ERV9 subgroups)

• Neurotoxic viral products (Tat, Vpr,
HIV-1 gp120)
• Cytokine-induced HERV expression
(IL-6, IL-1β, TNF-α, IFN-γ)
• Viral induction of antibody against
HERV-K capsid protein
• Sustained inflammation
• Increased pTau, neopterin,
neurofilament light and diffuse Aβ

plaques

Alzheimer’s
disease (AD)

Cognitive deficits
(memory loss,
learning difficulty,
impaired logical
thinking, confusion,
speech problems,
shortened attention
span)

Systemic immune
activation, and
chronic peripheral
inflammation

Microglia,
hippocampal
pyramidal neurons
lymphocytes,
neuronal, and
endothelial cells
parahippocampal,
inferior frontal and
superior temporal
gyrus

HHV-1,
HHV-6A,
HHV-6B,
HHV-7, EBV,
and CMV

HERV-K, HERV-H,
HERV-W, HERV-L,
solitary long-terminal
repeats (LTRs)

• Extension of inflammation to CNS
(immune cells entry to brain via
transversal of circumventricular
organs, vagus nerve stimulation or
pro-inflammatory cytokine influx)
• Viral RNA sensor MAVS
• Gliosis
• Viral activation of HERVs
• Higher rate of DNA damage and
higher expression of
pluripotency-related genes
• HERV fusion products (ARC viral-like
capsid protein overexpression)
• HERV-induced TLR8 activation
• Progressive neuronal death
(PARP1-driven, caspase-independent
apoptosis)
• Dense Aβ plaques, Tau neurofibrillary
tangles

Multiple sclerosis
(MS)

Progressive
physical and
cognitive
disabilities
neurobehavioural
deficits, such as
weakness, gait
unsteadiness, and
altered executive
functions

Hints for chronic
inflammation,
association with
peripheral
neuropathy

B cells, microglia,
astrocytes, and
macrophages that
orchestrate
damage to
oligodendrocytes

HHV-1, HHV-2,
HHV-3, HHV-6,
EBV, CMV, JCV

HERV-W (HERV-K,
HERV-H)

• Viral activation of HERV-W
transcription
• HERV-W env protein and syncytin
expression
• HERV-W env is a powerful
superantigen
• Syncytin induces neuroinflammation
via oxidative stress
• Stimulate anti-viral response
associated with MS pathology by
binding TLR4 and CD14
• Pro-inflammatory (anti-viral) response
involving TLR4, CD14, IL-1beta
• Increase in cellular protein oxidation,
inhibition of oligodendrocyte
maturation, myelin damage and
antagonization of remyelination

Amyotrophic lateral
sclerosis (ALS)

Fasciculation,
cramps, muscle
atrophy, and
marked limb
weakness

HERV-W env and
gag are present in
muscle biopsies
from ALS patients,
linked with
macrophage
activation and
neurogenic atrophy
of muscular tissue

HERV activity in
prefrontal, sensory,
motor, occipital
cortex

Weak
connection
with HIV-1, and
HTLV-1

HERV-K • HERV-K transcription in ALS is
stimulated by the TDP-43
• HERV-K transcription can be also
initiated by HIV-Tat protein HERV-K
env in cortical and spinal neurons
• neuronal HERV-K activation is
associated with the nuclear
translocation of interferon regulatory
factor 1 (IRF1)
• Sustained neuroinflammation with
progressive loss of cortical and spinal
motor neurons

Schizophrenia
spectrum disorders

Psychosis,
hallucinations,
delusions, apathy
and disorganized
thinking

Subclinical
inflammation

Neurons of
prefrontal cortex
and (developing)
hippocampus

HHV-2,
perinatal
influenza
infection

HERV-W, LINE-1
(HERV-K, HERV-H)

• Impairment of synaptic genes
• Upregulation of immune response
genes
• Lasting inflammatory dysregulation of
the nervous system

(Continued)
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TABLE 1 | Continued

Disorder Clinical CNS
symptoms

Associated
peripheral
pathology

CNS targets Associated
exogenous
viruses

Associated
endogenous
retroviruses

Mechanisms

Neuropathogenesis
of SARS-CoV-2

Dizziness,
headache,
encephalitis,
seizures,
intracerebral
hemorrhage, and
stroke,
neuromuscular and
autoimmune
syndromes

Acute respiratory
disease

Viral infection of
neurons and glial
cells

SARS-CoV-2 none • Interacts with stress response, vesicle
trafficking, lipid metabolism pathways,
production of reactive oxygen species,
RNA processing, RNA regulation,
ubiquitin ligases and mitochondrial
activity
• Impaired lysosomal function
combined with inhibition of
ubiquitin-proteasome system
• Protein misfolding and formation of
protein aggregates
• Expected neuroinflammation and
neurodegeneration

Aβ, amyloid β; AD, Alzheimer’s disease; AIDS, acquired immunodeficiency syndrome; ALS, amyotrophic lateral sclerosis; CD14, cluster of differentiation 14; CMV,
cytomegalovirus; EBV, Epstein-Barr virus; gp120, glycoprotein 120; HAND, HIV-associated neurodegenerative disorder; HERV, human endogenous retrovirus; HHV-1,
human alphaherpesvirus-1/herpes simplex virus-1; HHV-2, human alphaherpesvirus-2/herpes simplex virus-2; HHV-3, human alphaherpesvirus-3/varicella zoster virus;
HHV-6, human alphaherpesvirus-6; HHV-7,human alphaherpesvirus-7; HIV-1, human immunodeficiency virus-1; HTLV-1, human T-cell leukemia virus-1; IFN-γ, interferon
γ; IL, interleukin; IRF1, interferon regulatory factor 1; JCV, John Cunningham virus; LINE-1, long interspersed repetitive element 1; LTR, long-terminal repeat; MAVS,
mitochondrial antiviral-signaling protein; MS, multiple sclerosis; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; Tat transactivator of transcription; TDP-43,
trans-activation responsive TAR; DNA-binding protein 43; TLR, toll-like receptor; TNF-α, tumor necrosis factor α; Vpr, viral protein R.

Alzheimer’s Disease
Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by gradual cognitive decline. AD can start
even decades before the appearance of clinical symptoms (Taylor
et al., 2016; Fulop et al., 2018). AD is associated with systemic
immune activation and chronic peripheral inflammation
(Culibrk and Hahn, 2020). Neuropathologically, AD is
characterized by presence of Aβ plaques, Tau neurofibrillary
tangles, progressive neuronal death, neuroinflammation, and
gliosis in the brain.

Growing evidence points to the role of pathogens, such as
HHV-1, HHV-6A, HHV-7 (Lovheim et al., 2015; Readhead et al.,
2018), EBV, and CMV (Carbone et al., 2014) in developing
sporadic AD. As the worldwide seroprevalence of HHV-1
is around 90% (Wald and Corey, 2007), facilitating factors
essentially contribute to the probability of HHV-1 triggering
AD (Looker et al., 2015). HHV-1, HHV-6A, and HHV-6B viral
glycoproteins can bind β-amyloid oligomers and accelerate Aβ

plaque deposition (Eimer et al., 2018).
HERV-H, HERV-K, HERV-L, and HERV-W are

transcriptionally active in the brains of AD patients (Johnston
et al., 2001; Sun et al., 2018; Dembny et al., 2020). This activation
could be directly mediated by HHV-1, HHV-3, and HHV-6
(Ruprecht et al., 2006; Brudek et al., 2007; Tai et al., 2009), or by
heterochromatin relaxation and loss of epigenetic host control
over HERVs (Sun et al., 2018), increasing DNA damage and
expression of pluripotency-related genes (Frost et al., 2014).
Upregulation of ERV-K family member in a streptozotocin
murine model of sporadic AD was linked with upregulation
of immune response genes and downregulation of genes
involved in histone modifications and transmembrane transport
and associated with cognitive impairments in contextual fear
memory and spatial learning (Sankowski et al., 2019). HERV-K
(HML-2) transcripts containing a motif 5′-GUUGUGU-3′

contribute to neuronal death and microglial accumulation
associated with AD via TLR8 activation (Dembny et al., 2020).
ERVs can be transmitted between neurons in the brains of AD
patients, packed into an ARC viral-like capsid protein, which
is overexpressed in AD patients and is associated with Aβ

production (Wu et al., 2011).

Multiple Sclerosis
Multiple sclerosis (MS) is a neurodegenerative and
neuroinflammatory CNS disease characterized by multifocal
demyelinating lesions in the brain and spinal cord leading to
progressive physical and cognitive disabilities. Development
of MS has been associated with viral infections and activation
of HERVs (Alvarez-Lafuente et al., 2008; Kriesel et al., 2017;
Morandi et al., 2017; Gruchot et al., 2020).

Among viruses, higher transcription levels of HHV-3 and
HHV-6 have been found in the CSF of individuals suffering from
MS (Mancuso et al., 2007; Alvarez-Lafuente et al., 2008). Also,
coronaviruses have been detected in the CNS of MS patients
(Burks et al., 1980). EBV has been even suggested as a trigger
for MS that activates HERV-W, which then sustains the disease
(Mameli et al., 2012).

HERV-W is also the main HERV associated with MS
pathology. Further, the expression level of HERV-W in the brain
of MS patients correlates positively with the severity of disability
and disease progression (Sotgiu et al., 2010). HERV-W and its
env transcript and protein are upregulated in the brains (Perron
et al., 1997; Antony et al., 2004) as well as in the peripheral blood
and serum of MS patients (Garson et al., 1998; Perron et al.,
2012a). HERV-W can be activated in MS by EBV (Mameli et al.,
2012) and HHV-1 (Ruprecht et al., 2006; Marrodan et al., 2019).
HHV-1-triggered HERV-W transcription occurs in immune cells
central to the MS pathology, such as B cells, microglia, astrocytes,
and macrophages (Ruprecht et al., 2006; Marrodan et al., 2019).
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HERV-W env protein activates dendritic cells and boosts T helper
lymphocyte type-1 (Th1) immune response, acting as a PAMP.
It stimulates pro-inflammatory anti-viral response by binding
TLR4 and CD14 (Rolland et al., 2006; Saresella et al., 2009).
Upon binding the TLR4 on oligodendroglial precursor cells,
HERV-W env stimulates release of pro-inflammatory cytokines,
inducible nitric oxide synthase, and formation of nitrotyrosine
groups leading to reduction of myelin expression in MS lesions
(Kremer et al., 2013). In addition to the above, HERV-W env
is a powerful superantigen linked with demyelination in MS
(Perron et al., 2001; Rolland et al., 2005), perhaps associated with
molecular mimicry with myelin oligodendrocyte glycoprotein
(MOG) (do Olival et al., 2013; de Luca et al., 2019). Accordingly,
treatment with HERV-W env antibody can effectively rescue
myelin expression (Kremer et al., 2015).

Mechanistically, HERV-W env protein has been shown
to induce microglial polarization and closely associate with
myelinated axons in MS lesions ultimately leading to structural
damage of these axons (Kremer et al., 2019). HERV-W env,
encoded from a full-length provirus at locus 7q21.2, gives rise
to a syncytin glycoprotein (Blond et al., 2000; Mi et al., 2000),
the expression of which, similar to HERV-W env, is increased
by threefold in the brain tissue of MS patients compared
with the controls (Antony et al., 2004; van Horssen et al.,
2016). HERV-W env and syncytin expression is confined to
immunologically active cells, including cells resembling activated
glia and phagocytic macrophages at acute and chronic MS
demyelinating lesions (Antony et al., 2004; van Horssen et al.,
2016). Syncytin activation leads to a myriad of MS-associated
pathology, such as pro-inflammatory profile in astrocytes,
interleukin-1β (IL-1β) production, cellular protein oxidation,
inhibition of oligodendrocyte maturation, myelin damage, and
antagonization of remyelination up to neurobehavioral deficits
(Antony et al., 2004).

The central role of HERV-W env in MS neurodegeneration
has led to the development of a specific monoclonal antibody,
Temelimab (GNbAC1) (Curtin et al., 2012), an agent
currently being tested in clinical phase II (ClinicalTrials.gov
identifier: NCT02782858).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease, characterized by progressive loss of cortical and spinal
motor neurons. While majority of ALS cases are sporadic,
mutations in certain genes, such as trans-activation responsive
(TAR) DNA-binding protein 43 (TDP-43), have been associated
with ALS development (Yousefian-Jazi et al., 2020).

That ALS might be linked with viral infections, comes from
finding HIV and HTLV-1 presence in the brains of ALS patients
(Verma and Berger, 2006). Further, antiretroviral therapy of
HIV-infected individuals with ALS-like syndrome reverses the
symptoms related to ALS (Moulignier et al., 2001). The CSF of
ALS patients negative of HIV, contains viral reverse transcriptase
at levels seen in HIV-infected individuals (MacGowan et al.,
2007; McCormick et al., 2008). This has led to investigation
of HERVs and revealed the central role of HERV-K among
the HERVs in ALS pathogenesis. HERV-K pol, gag, and env

are all transcriptionally active in the prefrontal, sensory, motor,
and occipital cortex of ALS patients (Douville et al., 2011; Li
et al., 2015) and HERV-K env additionally in spinal neurons
of sporadic ALS patients. Higher serum IgG and IgM reactivity
toward HERV-K gag is also characteristic to ALS patients (Li
et al., 2015). HERV-K in ALS can be activated by several
mechanisms and occur from distinct cytogenic loci (at 7q36.1)
(Douville et al., 2011). These mechanisms include neuronal injury
and neuroinflammation through interferon-stimulated response
elements in the viral promoter (Gonzalez-Hernandez et al.,
2014; Manghera et al., 2016). Once activated, neuronal HERV-
K upregulation contributes to sustained neuroinflammation
through promoting nuclear translocation of IFN regulatory
factor 1 (IRF1) and NF-κB isoforms p50 and p65 (Manghera et al.,
2016). Also, TDP-43 activates HERV-K upon binding its DNA (Li
et al., 2015). HERV-K and TDP-43 expression in ALS are strongly
correlated (Douville et al., 2011). HERV-K env expression leads to
neurite retraction, beading, and neurodegeneration (Chen et al.,
2014; Li et al., 2015).

Schizophrenia Spectrum Disorders
Schizophrenia is a neuropsychiatric and neurodevelopmental
disorder characterized by episodes of psychosis, hallucinations,
and delusions. Disease typically starts in young adulthood and is
strongly affected by genetic background and environmental
factors (Owen et al., 2016). The neurobiology behind
schizophrenia is poorly understood.

The likelihood of developing schizophrenia is increased by
infections (most significantly evidenced with studies on HHV-
2) (Arias et al., 2012), subclinical inflammation (Frydecka et al.,
2018), and variation within brain-associated and immune genes
(Schizophrenia Working Group of the Psychiatric Genomics,
2014). Altered immune response and lasting inflammatory
dysregulation of the nervous system are associated with chronic
stress exposure (Pearce et al., 2019; Nettis et al., 2020).
Upregulated immune response genes induce hyperactivation of
LINE-1, which is common in schizophrenia patients (Bundo
et al., 2014). Increased retrotransposition of LINE-1 is found in
the neurons of prefrontal cortex, affecting intragenic regions and
synaptic genes (Bundo et al., 2014).

In addition to LINE-1, expression of several HERV families,
such as HERV-K, HERV-W, and HERV-H, has been shown to
be dysregulated in the brains, cerebrospinal fluid, and blood
of schizophrenia patients (Perron et al., 2012b; Li et al., 2019;
Mak et al., 2019). This could involve activation of distinct
HERV loci. For example, activated HERV-W env transcripts in
schizophrenia have been shown to differ from these activated in
bipolar disorder or MS. Combined with HERV-W copy number
differences between schizophrenia patients and healthy controls,
this might point to perinatal HERV-W activation (for instance by
infections such as influenza), potentially leading to inflammation
and subsequent neurotoxicity (Limosin et al., 2003; Perron et al.,
2008, 2012b). HERV-W env protein expression in developing
hippocampus was recently shown to alter the N-methyl-d-
aspartate receptor (NMDAR)-mediated synaptic organization
and plasticity. This was associated with defective glutamate
synapse maturation, behavioral impairments, and psychosis
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(Johansson et al., 2020). Apart from HERV-W, lower DNA
methylation levels at HERV-K sequences in peripheral blood
have been shown to be specific to early stages of schizophrenia
(Mak et al., 2019).

Neuropathogenesis of SARS-CoV-2
Highly pathogenic severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) is a single-stranded RNA virus
from the coronavirus’s family (Su et al., 2016).

SARS-CoV-2 enters host via its immunogenic spike
glycoprotein binding to ACE2 receptor on endothelial and
smooth muscle cells (Lan et al., 2020; Kaneko et al., 2021).
Resultant coronavirus disease 2019 (COVID-19) mainly presents
as an acute respiratory disease; however, also neurological
symptoms have been reported, including dizziness, headache,
encephalitis, seizures, intracerebral hemorrhage, and stroke
(Benger et al., 2020; Guadarrama-Ortiz et al., 2020; Huang
et al., 2020; Lu et al., 2020; Moriguchi et al., 2020). In addition,
neuromuscular and autoimmune complications are associated
with COVID-19. These include most frequently Guillain Barré
syndrome but also Miller Fisher syndrome, polyneuritis cranialis,
acute myelitis, oculomotor paralysis, and Bell’s palsy have been
reported (Guadarrama-Ortiz et al., 2020; Katyal et al., 2020).
SARS-CoV-2 uses the olfactory nerves and possibly the vagus
nerve to access the brain (Guadarrama-Ortiz et al., 2020; Liu
et al., 2020) where ACE2 receptor is expressed on neurons
and glial cells (Zou et al., 2020). The neuromuscular invasion
of SARS-CoV-2 likely involves retrograde axonal transfer
of the virus in trans-synaptic pathway and cytokine storm
(Katyal et al., 2020).

SARS-CoV-2 viral proteins interact with human proteins that
regulate cellular longevity and aging, and are involved in stress
response, vesicle trafficking, lipid metabolism, production of
reactive oxygen species, RNA regulation, ubiquitin ligases, and
mitochondrial activity (Gordon et al., 2020). Impaired lysosomal
function combined with inhibition of ubiquitin–proteasome
system can cause protein misfolding and protein aggregation in
affected cells, including neurons, a common mechanism of many
neurodegenerative diseases (Lippi et al., 2020).

Up to one third of COVID-19 patients develop neurological
symptoms beyond the acute stage of the disease, mainly
manifesting with chronic fatigue syndrome and myalgic
encephalomyelitis (Nath and Smith, 2021). That several
coronaviruses (CoV-OC-43, CoV-229E, and HCoV) are found
in the brains of MS patients or have been associated with
MS pathology (Burks et al., 1980; Murray et al., 1992) could
indicate MS-like demyelinating neuropathology as a possible
long-term complication of COVID-19. Further, it remains to be
investigated how SARS-CoV-2 affects the expression of HERVs,
LINE-1, and Alu elements and interacts with other viruses and
environmental factors.

AGING

Aging is a progressive deterioration of physiological functions
at the cellular, organ, and organism levels eventually leading

to senescence. Aging disrupts the balance between the nervous
and the immune system and increases risk for various
neurodegenerative and neuroinflammatory diseases (Streit et al.,
2004; Godbout et al., 2005; Valdes-Ferre et al., 2020).

Aging increases genomic instability (Lombard et al., 2005)
by gradual loss of global DNA methylation and region-specific
DNA hypermethylation (Jung and Pfeifer, 2015). Increased age-
related activation of certain retrotransposon families is found in
mice (ERVs) (Odaka, 1975) and Drosophila (LINE-like R2, LTR
element gypsy transcripts, and env glycoprotein) (Li et al., 2013).
In humans, aging causes profound de-repression of HERV-K,
Alu, and LINE-1 elements (Bollati et al., 2009; Cardelli, 2018)
with increasing chromatin openness at Alu, SVA, and LINE-
1 elements in senescent cells (De Cecco et al., 2013). This
affects most significantly evolutionarily younger elements (De
Cecco et al., 2013). Transcription levels of HERV-H, HERV-
K, and HERV-W change in distinct patterns during human
life. HERV-H is highly transcribed in childhood, while HERV-
K and also HERV-W transcription increases on reaching higher
age (Balestrieri et al., 2015; Autio et al., 2020). ERV activation
in aging Drosophila causes shorter lifespan, neurodegeneration,
and memory deficits (Li et al., 2013). Similar effects of ERV
activation on hippocampal memory and cognitive impairment
are observed in mice (Sankowski et al., 2019). Particularly, in
combination with chronic inflammation, the effect of HERV
activation in aging brain can be detrimental and contribute to
neuronal decline (Johnston et al., 2001; Sankowski et al., 2019). In
addition to HERVs, LINE-1 hypomethylation has been described
in the peripheral blood of elderly individuals (Mahmood et al.,
2020). Some of the age-related epigenetic changes, such as
those related to Alu methylation, seem to be regulated by
longevity-associated genetic factors, including genes involved
in nucleotide biosynthesis, metabolism, and signal transduction
(Gentilini et al., 2013).

Aging can determine the outcome of interplay between
endogenous and exogenous viruses. Interaction of the
endogenous murine leukemia virus with the generally
non-pathogenic murine togavirus lactate dehydrogenase-
elevating virus leads to a fatal and progressive neurological
disease in up to 100% of aged mice. This suggests convergence
of age-related, genetic, immunological, and viral factors in
the development of a neurological disease resembling ALS in
humans (Contag and Plagemann, 1989).

CONCLUDING REMARKS

This review brings together studies that have described a role
for exogenous viruses and (H)ERVs in CNS pathologies and
thereby highlights the interplay between the inherent and the
foreign. A contribution of exogenous and endogenous viruses,
separately and together, is increasingly evident in common
forms of dementia in young (HAND) and elderly population
(AD), MS, ALS, and also schizophrenia. In other neurological
complications of viral origin, such as SARS-CoV-2, it remains
to be seen if and how HERV, LINE-1, and Alu expression
may be involved. Viral CNS infections can be early triggers
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of neuroinflammation; however, if viruses are successfully
combated or entered in a latent state, a central role might
be attributed to endogenous retroviruses. ERV activation
during infections seems to be a common (physiological)
mechanism that the host may not be able to control at
some point. ERVs can become continuously activated and
sustain the inflammatory imbalance. The crosstalk with IFN
seems to play an important role here. Facilitating factors
that are associated with continuous ERV activation such
as aging, stress, and other comorbidities as well as re-
awakening of a latent virus, cumulative or opportunistic
infections, as seen in immune-deprived conditions, contribute
to the progressive neurodegeneration or delayed CNS
pathologies. We are only beginning to understand how
exogenous viruses in connection with HERVs and other
retroelements affect normal aging and development of
neurodegenerative diseases and other neuropathologies. The
central role of HERV-W in MS pathology has led to its
targeting in clinical trials. It remains to be seen, whether other
HERVs could provide key targets in other neurodegenerative

diseases, such as HERV-K in ALS, to which there is
currently no cure.
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Different bacterial families colonize most mucosal tissues in the human organism such
as the skin, mouth, vagina, respiratory, and gastrointestinal districts. In particular, the
mammalian intestine hosts a microbial community of between 1,000 and 1,500 bacterial
species, collectively called “microbiota.” Co-metabolism between the microbiota and
the host system is generated and the symbiotic relationship is mutually beneficial. The
balance that is achieved between the microbiota and the host organism is fundamental
to the organization of the immune system. Scientific studies have highlighted a direct
correlation between the intestinal microbiota and the brain, establishing the existence
of the gut microbiota–brain axis. Based on this theory, the microbiota acts on the
development, physiology, and cognitive functions of the brain, although the mechanisms
involved have not yet been fully interpreted. Similarly, a close relationship between
alteration of the intestinal microbiota and the onset of several neurological pathologies
has been highlighted. This review aims to point out current knowledge as can be found
in literature regarding the connection between intestinal dysbiosis and the onset of
particular neurological pathologies such as anxiety and depression, autism spectrum
disorder, and multiple sclerosis. These disorders have always been considered to be
a consequence of neuronal alteration, but in this review, we hypothesize that these
alterations may be non-neuronal in origin, and consider the idea that the composition of
the microbiota could be directly involved. In this direction, the following two key points
will be highlighted: (1) the direct cross-talk that comes about between neurons and
gut microbiota, and (2) the degree of impact of the microbiota on the brain. Could we
consider the microbiota a valuable target for reducing or modulating the incidence of
certain neurological diseases?

Keywords: gut microbiota, neurological disorders, gut microbiota-brain axis, enteric nervous system, anxiety and
depression, autistic spectrum disorders, multiple sclerosis

Frontiers in Neuroscience | www.frontiersin.org 1 March 2021 | Volume 15 | Article 61688394

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.616883
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.616883
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.616883&domain=pdf&date_stamp=2021-03-23
https://www.frontiersin.org/articles/10.3389/fnins.2021.616883/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-616883 March 17, 2021 Time: 16:42 # 2

Maiuolo et al. Gut Microbiota and Brain Disorders

INTRODUCTION

The mammalian intestine hosts a microbial community
of approximately 1,000–1,500 bacterial species called the
“microbiota,” destined to evolve over the course of the host’s
life and over the generations and subject to environmental
changes. It has been amply demonstrated that the composition
of the intestinal microbiota is also influenced by diet, age,
lifestyle, and the presence of inflammatory processes (Na et al.,
2017; Kim and Jazwinski, 2018), so it is accurate to say that
the composition of the microbiota differs substantially from
individual to individual. The microbial genome sequences
contain approximately 3 × 106 genes, 150 times the length of the
human genome. In addition, the commensal microorganisms
that reside in the intestine exceed human somatic cells at a ratio
of about 10:1 (Na et al., 2017). In healthy adults, the microbiota
is primarily composed of five bacterial phyla: Firmicutes (79.4%),
Bacteroidetes (16.9%), Actinobacteria (2.5%), Proteobacteria
(1%), and Verrucomicrobia (0.1%) (Davenport et al., 2014).
Normally, the gut microbiota consists of a high diversity and
abundance of microbial populations, and this condition is known
as “eubiosis.” Over the span of a lifetime, a wide range of factors,
including an incorrect diet, sleep disorders, obvious pathological
conditions, drug abuse, pharmacological therapy, and many
others, can alter diversity and abundance of the microbiota
leading to a state of “dysbiosis” (Iebba et al., 2016). The symbiotic
relationship between the gut microbiota and the host organism
has been described as mutually beneficial: the host provides
the nutrients and a suitable habitat for the microbiota, while
the gut microbiota supports the host’s intestinal development
and maturation by providing nutrients. Therefore, a state of
co-metabolism is generated between the microbiota and the
host system (Obrenovich, 2018). Over the past 15 years, it
has been highlighted how the microbiota is able to control
and influence certain segments of the physiology of the host
such as the immune system, the digestive system, and the
brain (Morrison and Preston, 2016; Rooks and Garrett, 2016;
Dinan and Cryan, 2017). For example, the microbiota plays a
vital role in the formation of the host’s immune system, and
it can be said that there is real cross-talk between these two
districts, which allows the development of the host’s tolerance
to the harmless antigens of the microbiota. Studies in germ-free
animals (GF) have shown that the lack of the gut microbiota
leads to significant deficiency in the functioning of the immune
system (Belkaid and Harrison, 2017).

Until a few years ago, it was a common opinion that a
fetus developed in a completely sterile uterine environment
and that the first intestinal colonization occurred from birth
onwards. However, recent studies have disproved this conception
and have demonstrated the presence of microorganisms in the
placenta, amniotic fluid, and umbilical cord (Aagard et al.,
2014; Pelzer et al., 2017). It has been hypothesized that the
fetus begins to colonize its own developing gastrointestinal
tract by swallowing the amniotic fluid and the bacteria it
contains in the uterus. In addition, fetal and newborn meconium
contains microorganisms (Walker et al., 2017). It is only with
childbirth, however, that infants are exposed to most of the

microorganisms responsible for intestinal colonization and the
development of the microbiota. Moreover, the type of delivery a
newborn undergoes is very important since the initial intestinal
microbiota of the baby could resemble, in terms of composition,
the microorganisms with which it came into contact during
delivery. For example, following a vaginal birth, the baby
comes into contact with the vaginal microbiota, while following
a caesarean section the child comes into contact with the
epidermal microbiota (Shao et al., 2019). It has also been shown
that babies born through natural childbirth could develop a
more varied microbiota than babies born by cesarean section
(Nagpal and Yamashiro, 2018; Jagodzinski et al., 2019). Despite
microbial exposure in utero, most of the microorganisms that
will colonize the infant’s intestine are acquired after childbirth.
The initial colonization pattern is believed to be chaotic, and
numerous studies suggest that environmental factors and diet
are responsible for major changes in composition (Savage et al.,
2018). In a child, during the first phase of intestinal colonization,
the microorganisms present are predominantly aerobic, such as
Enterobacteria, Staphylococci, and Streptococci, many of which
have a pathogenic potential. Subsequently, microorganisms
become predominantly anaerobic. The composition of the
intestinal community continues to change during the first year
of life and thereafter in response to external factors such as
diet and the use of antibiotics (Hill et al., 2017). It has been
highlighted that a significant difference in the composition of
the baby’s intestinal microbiota occurs in relation to the type
of milk he drinks, the type of weaning he undergoes, and the
different types of foods he consumes (Brahm and Valdés, 2017).
Breastfeeding (BF) is the nourishment conceived by nature for
newborns and infants, although in the last decades, it is very
frequently replaced with various milk formulations (formula-fed,
FF). In general, it is possible to say that BF has proven to be a
protective factor for many inflammatory bowel diseases as well
as for neurodevelopment, while the use of the various types of
milk formulated for children has been shown to increase the risk
of intestinal diseases, following an incorrect formation of the
intestinal microbiota (Le Doare et al., 2018). BF infants have a
more uniform intestinal microbial population than FF infants.
This aspect has very important implications for the future of
the child: in fact, the study of the intestinal microbiota of a BF
newborn could furnish fundamental information on the correct
development of the immunitary system, the immune response
and tolerance and for the tendency to develop fewer allergic,
inflammatory, and autoimmune pathologies (Vieira Borba et al.,
2018). The composition of breast milk includes proteins, fats and
carbohydrates, as well as immunoglobulins, endocannabinoids,
and indigestible polysaccharides. Some of these polysaccharides
act as real prebiotics capable of selectively stimulating the growth
of beneficial bacteria (Sayres and Visentin, 2018); most of these
are Bifidobacteria, indispensable for strengthening the protection
of the intestinal mucosa through their specific activity against
pathogens and through the increase in immunoglobulin A,
related to the modulation of the intestinal immune system.
After weaning, the composition of the intestinal microbiota still
varies in relation to the type of feeding, while after 3 years of
life, in the absence of disturbances such as long-term dietary
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changes or the repeated use of antibiotics and drugs, the bacterial
composition of the intestinal microbiota remains approximately
stable until old age. In general, over the course of life, the
Bifidobacteria decrease while the Bacteroidetes and Firmicutes
increase (Derrien et al., 2019).

Much scientific evidence has suggested that the intestinal
microbiota maintains bidirectional interaction with critical parts
of the central nervous system (CNS) as well as the immunitary
system through both direct and indirect pathways (Petra et al.,
2015; Fung et al., 2017). In addition, intestinal microbiota
dysbiosis has been closely linked to various diseases, such
as obesity, type 2 diabetes mellitus, hypertension, necrotizing
enterocolitis, and many inflammatory bowel diseases (Weiss and
Hennet, 2017; Allaire et al., 2018). Moreover, the existence of a
close correlation between the intestinal microbiota and the brain
has become increasingly evident even though the mechanisms
involved are not completely clear: the existence of a gut–brain
axis has become the main focus of neuroscience (Cryan et al.,
2019). Evidence that dysfunction of the microbiota can play
a key role in the development of certain neurological diseases
is provided by the discovery that intervention that restores
microbiota health and integrity may have a positive influence on
the course, symptoms, and clinical conditions of said diseases
(Julio-Pieper et al., 2014; Patel and DuPont, 2015; Fiorentino
et al., 2016; Boyton and Altmann, 2019; Garg et al., 2019).
This is the main reason why the intestine is called the “second
brain” (Ali et al., 2019). In this direction, it would be interesting
to consider neurological disorders and pathologies related to
neurodegeneration, not as of being of “neural origin,” but rather
as being linked to other external factors, and the health of the
intestinal microbiota could be one of these factors. In the light
of what has been stated, it is clear how important the first
phase of intestinal colonization is. A consecutive question is,
“To what degree can proper intestinal colonization affect the
possibility of developing neurological disorders?” Therefore, the
main purpose of this review is to consider the alteration of
the microbiota as a likely cause of numerous neurological and
degenerative disorders.

In the following sections we will first deepen current
knowledge on the dysfunction of the microbiota in several
cerebral diseases, and their “non-neuronal origin”; later, we
will compare these scientific data with the classical knowledge
that identifies the brain as the primary cause of some specific
disorders. Our attempt, as already mentioned, will be to shift
the direction of the interpretation of these pathologies “from
the microbiota to the brain” instead of “from the brain to the
microbiota.”

NEUROLOGICAL DISORDERS AND
MICROBIOTA: FROM THE MICROBIOTA
TO THE BRAIN

Neurological disorders are diseases of the central and peripheral
nervous system that can impair the functioning of brain, spinal
cord, cranial and peripheral nerves, autonomous nervous system,
nerve roots, and neuromuscular plaque. The causes can be

many: (a) diseases due to gene alteration; (b) degenerative
diseases characterized by the progressive loss of populations of
neurons that are selectively vulnerable; (c) diseases of blood
vessels that may cause bleeding in the brain; (d) diseases
due to problems in the development of the nervous system;
(e) disorders due to injury to the spinal cord or brain; (f)
convulsive disorders; (g) brain tumors; (h) more or less severe
infections (Dugger and Dickson, 2017; Chi et al., 2018). Up
to now, neurological disorders have always been considered to
be a specific consequence of morphological and/or functional
alterations of some neuronal segment. In this review, we will
NOT consider them as such, but rather as the result of the
alteration of the gut microbiota. Three neurological disorders
will be explored below: anxiety–depression, autistic spectrum
disorder (ASD), and multiple sclerosis. Despite the fact that these
pathological conditions have completely different characteristics,
they seem to have some points in common:

• involve the CNS;
• can present themselves in pathological form at a very early

stage in life;
• are closely related to intestinal dysbiosis.

Can we identify intestinal dysbiosis as the actual cause of
some of these neurological disorders? Could intestinal dysbiosis
be considered to be the common denominator of the three
neurological disorders that we are considering? We will try this
approach with the help of current literary knowledge.

Anxiety and Depression
Anxiety and depression are psychiatric and neurological
disorders that occur in 25% of the global population. In addition,
these two pathological states seem to be closely related: in fact,
90% of patients with anxiety disorders also develop depression
and 85% of patients with depression show significant anxiety
(Bui and Fava, 2017). The phenomena of anxiety and depression
can occur as early as childhood or adolescence, as well as at
any other time in an individual’s life. These two pathologies,
both in early and late forms, considerably differ in terms of
clinical symptoms (Groeneweg-Koolhoven et al., 2017). In recent
decades, the increase in depressive symptoms has also led to an
increase in the number of teenage deaths from suicide (Jorm
et al., 2017; Matsumoto et al., 2017; Weinberger et al., 2018;
Twenge et al., 2019). The states of anxiety and depression
are constantly associated with changes in the composition and
stability of the intestinal microbiota and this close correlation
has been studied (Dinan and Cryan, 2013; Tognini, 2017; Zhao
et al., 2018; Thomaz et al., 2019). In an important scientific
study on animal models, it was found that the transfer of the
microbiota from models with depression to that of other animals
deprived of their microbiota also determined the transfer of the
behavioral and physiological characteristics of the depression
(Kelly et al., 2016). Since it is currently widely accepted that our
intestinal microbiota is essential for brain processes (myelination,
neurogenesis, microglia activation, and psychological processes
such as mood and cognition) (Dinan and Cryan, 2016), the early
formation of a well-balanced microbiota and its maintenance
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throughout life seems to reduce the occurrence of a wide variety
of diseases, including behavioral and neuropsychiatric disorders
(Cenit et al., 2017). Childhood and adolescence are the most
dynamic and vulnerable periods in the life of an individual for
developing and achieving the composition of the microbiota and
certain events and conditions may be important contributors
including diet, drugs, stress, and infections (Borre et al., 2014;
Erny et al., 2015). Still, although the composition of the gut
microbiota may vary in adulthood as a result of the effects of
harmful or negative factors, the symbiotic link between the host
and microbiota are established early in life (Desbonnet et al.,
2015). Stress-related disorders encourage the increase of some
bacterial species (Kelly et al., 2015). A study conducted on a
group of healthy students showed that, following an extremely
stressful period, fewer species of Lactobacillus were present in
the stool. Moreover, a condition of chronic stress induced in
mice reduced Lactobacillus, Eubacterium rectale, Lachnospira,
Butyricicoccus, Sutterella, and Faecalibacteria and increased
the number of pathogenic species Clostridium, Proteobacteria,
Actinobacteria, and Enterobacteriaceae (Tian et al., 2019). An
important and well-organized experimental work revealed that
an altered composition of the intestinal microbiota induced
in mice through the use of massive doses of antibiotics in a
period corresponding to the early adolescence of the animals,
led to alterations in cognitive function and the appearance of
symptoms related to anxiety and depression (Zeraati et al., 2019).
It has been suggested that the type of diet can have positive or
negative effects on depression: in particular, human studies have
shown that an inversely proportional correlation exists between
the consumption of omega-3 polyunsaturated fatty acids and
anxiety–depression; that is, the more the assumption of omega-
3, the less anxiety–depression (Grosso et al., 2014; Oppedisano
et al., 2020). Finally, treatment with different probiotics has
been particularly effective in reducing depressive behavior in
animal models. For example, the administration of a probiotic
cocktail, composed of Lactobacillus rhamnosus and Lactobacillus
helveticus, reduced their symptoms of depression and anxiety.

Autism Spectrum Disorder
ASDs include a set of alterations in neurological development
characterized by deficits in social interaction and
communication, and repetitive and stereotyped behavior.
ASD can vary in terms of symptomatic severity, varying from
mild to very severe. The main symptoms of ASD appear as
early as the first year of life and include delays in language
development, repetitive movements, very few interests, limited
or absent eye contact, limited sharing of feelings or interests,
significant discomfort arising from a change in routine, failure
to start and maintain conversations, strong attachments to
specific objects, excessive reaction to sounds or visual cues, loss
of interest in social relationships, and difficulty in engaging
in imaginary play. To date, there is no specific treatment
for these disorders and early medical behavioral therapy has
been shown to improve but not resolve problems relating
to mental capacity, language, and social ability (Howlin and
Magiati, 2017; Lord et al., 2018). ASD is a pathology with an
unclear and multifactorial etiology, yet several causes have been

identified, which include genetic anomalies, dysregulation of the
immune system, inflammatory processes, and interaction with
environmental factors (Famitafreshi and Karimian, 2018).

ASD disorders are often associated with gastrointestinal co-
morbidities and a large proportion of patients (23–70%) also
suffer from constipation, diarrhea, abdominal pain, flatulence,
and intestinal gas (Mulle et al., 2013). They are also associated
with food restriction and eating problems (such as “selective
and picky eaters” who show aversion to specific colors, textures,
odors, or other food characteristics) (Cermak et al., 2010). The
consequences of this are reduced dietary quality, nutritional
deficiency, and altered composition of the intestinal microbiota
(Berding and Donovan, 2016). Generally, the composition of
the intestinal microbiota of autistic children shows substantial
differences: the data in the scientific literature indicate overall a
reduction of Bacteroides with a ratio (% ASD children/% control
children) equal to 0.71; a reduction of Bifidobacterium with a
ratio equal to 0.52; a reduction of Escherichia coli with a ratio
of 0.3; an increase in Faecalibacterium with a ratio of 1.32; and
an increase in Lactobacillus with a ratio of 2.17. The presence
of Clostridium remains substantially unchanged (Tomova et al.,
2015). Although it cannot be said that there are specific bacteria
compatible and associated with the onset of ASD, it is clear
that these neurological disorders are accompanied by lower
levels of beneficial bacteria and higher levels of harmful bacteria
(Iglesias-Vázquez et al., 2020). It has been hypothesized that
the increase in Faecalibacterium in ASD children is responsible
for the progression of inflammatory processes, with increased
levels of type I interferon, and the alteration of the intestinal
barrier. In addition, the reduction of Bifidobacteria, the main
producers of lactic acid capable of suppressing the growth of
pathogenic bacteria, leads to an alteration of the immunitary
system (Hashemi et al., 2017). The reduction of Bifidobacterium
also results in reduced levels of short-chain fatty acids (SCFAs),
common in ASD children.

In ASD patients, an important correlation exists between
the aforementioned active neuropeptides and disability.
Their incorrect interaction involves a series of inflammatory
disorders, autoimmune conditions, neurodegenerative and
metabolic disorders, as well as problems regarding mood,
behavior, cognitive function, autistic spectrum dysfunction,
stress, and pain (Lerner et al., 2017). A likely mechanism could
be that proteic transducers escape from the gastrointestinal
tract and enter the bloodstream exerting a systemic effect
(Mead and Ashwood, 2015).

The bacteria that make up the gut microbiota and their
metabolites could play a critical role in the pathophysiology of
ASD (Xu et al., 2019). In fact, some experiments have shown
that patients who have had their intestinal microbiota remodeled
through the administration of antibiotics or bacterial transfer
therapy in the intestine, presented with attenuated symptoms
of ASD (Kang et al., 2017). The administration of probiotics
was sufficient to vary the composition of the microbiota and
to guarantee greater control of the intestinal barrier (Doenyas,
2018). The mechanisms studied so far that correlate the intestinal
microbiota with ASD disorders are manifold and concern
the breakdown of the integrity of the intestinal barrier, the
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production of toxins, and the formation of intestinal dysbiosis
(Ding et al., 2017). Another extremely important aspect concerns
the increase in neurotoxins produced by the intestinal system
of ASD children that act distally on the brain (Yang and Chiu,
2017). It is also important to highlight the fact that the microbiota
and the metabolites formed by it are indispensable for the
maintenance of cerebral white matter and the integrity of the
blood–brain barrier (Golubeva et al., 2017).

Autoimmunity and Multiple Sclerosis
Innate immunity is the host’s first defensive line for eliminating
invading and foreign pathogens. Through this type of immunity,
in fact, critical mechanisms are activated for the rapid detection
and elimination of pathogens. This type of immunity does
not have immune memory and can only be based on specific
receptors, which have been selected during the evolutionary
process and which can only bind to the same unchanged
antigens. Conversely, adaptive immunity has evolved with the
aim of providing a vast repertoire of antigenic recognition
of self- and non-self-molecules. Adaptive immunity uses the
strictly regulated interaction between the cells presenting the
antigen and the B and T lymphocytes. These cells consequently
activate the immunological effector pathways in order to contrast
the specific pathogen. In addition, adaptive immunity has
an immunological memory capable of recognizing an antigen
that has already been encountered and destroying it (Vatner
and Janssen, 2019). Autoimmunity occurs when the immune
system loses self-tolerance and begins to counteract its own
molecules and cells. If this characteristic of immunological
imbalance persists constantly in the body, more or less
serious autoimmune diseases develop (Stetson, 2018). Multiple
sclerosis (MS) is a demyelinating autoimmune disease of the
nervous system and is characterized by chronic inflammation,
breakdown of the BBB, and infiltration of immune cells into
the CNS. The latter lead to the destruction of the myelin
sheath with axonal loss and progressive disability (Matveeva
et al., 2018; Maiuolo et al., 2019a,b). In general, it has
been shown, in fact, that in MS, the inflammatory process
involves T lymphocytes, CD4 and CD8, B lymphocytes, activated
monocytes, and astrocytes. Oxidative stress was also a key
factor in the pathogenesis of MS: in particular, macrophages
and microglia produce reactive oxygen species (ROS) and
reactive nitrogen species (RNS) and secrete pro-inflammatory
cytokines. These conditions develop neurodegeneration and
excitotoxicity (Corasaniti et al., 2007; Oppedisano et al., 2020).
It is clear, therefore, that MS is a multi-factorial pathology
and genetic, environmental, and immunological factors are
included in its etiology. Multiple sclerosis appears particularly
in young women (female:male ratio = 3:1), especially in those
women who have suffered intestinal disorders since birth (Jose
et al., 2018; Sauma and Casaccia, 2020). It has been recently
shown that an alteration of the intestinal microbiota leads to
over-stimulation of immune cells with a higher incidence of
the development of autoimmune diseases such as rheumatoid
arthritis, systemic lupus erythematosus, and MS (Brown et al.,
2019). In particular, there is increasing evidence (found in
animal models) according to which there is a relationship

between the type of intestinal microflora and the progression of
MS. According to these scientific data, autoimmune reactions
can be produced by molecular mimicry and by the excessive
production of lymphocytes (Chu et al., 2018). Compared to
healthy controls, patients with MS show a decrease in the
proportion of Faecalibacterium and Fusobacterium and an
increase in Escherichia, Shigella, Clostridium, Eubacterium rectal,
Corynebacterium, and Firmicutes (Tremlett et al., 2016a,b,c;
Tremlett and Waubant, 2017). Some metabolic by-products of
the intestinal microflora activate the transcription of the gene
foxp3, responsible for the codification of the FOXP3 protein, a
transcriptional regulator also known as scurfin; FOXP3 binds
to the promoters of the genes involved in the development and
regulation of T-cell receptors, promoting the attenuation of the
immune response (Zhang et al., 2019). These microbiota by-
products include SCFAs, responsible for activating the FOXP3
pathway and modulating the immune response. When intestinal
dysbiosis occurs, this whole regulatory process decays and
pathways that lead to autoimmunity are triggered (Khan and
Ghazanfar, 2018). In some scientific papers, it has been shown
that Bacteroidetes, present in the intestinal microbiota, produce
lipid 654, which behaves as a ligand for human and mouse
Toll-like receptor 2 (TLR2), a toll-like receptor with a role in
the immunitary system (Selmi, 2017). An important scientific
study showed that lipid 654 was present in the serum of all
the healthy subjects examined. Conversely, extremely low lipid
levels were found in MS patients, indicating, for the first time,
this lipid as a serum biomarker of MS (Farrokhi et al., 2013;
Browne et al., 2019). There are some bacteria, such as Clostridium
perfringens, which produce natural toxins that are involved in
the early stages of MS (Wagley et al., 2019). These toxins are
absorbed by the intestine, enter the bloodstream, and cause
symptoms typical of those that occur in more or less the early
stages of MS, such as blurred vision, lack of coordination, or
spastic paralysis (Tsunoda, 2017). The suspicion that these toxins
could be the potential cause of MS was already described in
the 90s, since man is not a natural host of C. perfringens, but
becomes so in the case of intestinal dysbiosis, which allows this
bacterial family to gain the upper hand (Savva et al., 2019).
The migration of these toxins to the CNS occurs precisely
as a result of their binding to the receptors present in the
vascular system and, in this way, they are conveyed to the
myelinated and non-myelinated areas of the brain (Anwar et al.,
2019). Experimental MS patients showed an exacerbation of
their intestinal balance following the administration of first- and
second-line drugs recommended for this pathology. This worsens
the picture of the already-compromised microbiota. For example,
the administration of the drug Glatiramer Acetate induces
a reduction in the “good” Bacteroidaceae, Faecalibacterium,
Lactobacillaceae, and Clostridium as compared to untreated
patients (Abdurasulova et al., 2018). BF, as already mentioned,
provides the child with a fundamental matrix of immune
information regarding the formation of his microbiota. The
data available in literature show a clear link between BF and
the reduced development of some autoimmune diseases such
as MS, diabetes, and celiac disease (Vieira Borba et al., 2018).
However, further scientific studies are needed to understand
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the mechanisms behind this link. To date, this correlation is
also supported by the discovery that in patients with MS the
administration of specific probiotics manages to increase several
bacterial taxa of the intestinal microbiota that are normally
reduced and/or absent. At the immune level, the administration
of specific probiotics induces an anti-inflammatory response
with the consequent reduction of inflammatory cells, such as
monocytes and dendritic cells (Tankou et al., 2018).

CLASSICAL KNOWLEDGE OF
ANXIETY–DEPRESSION, ASD, AND MS:
BRAIN ORIGIN OF DISEASES

Neurodegenerative diseases are characterized by progressive
dysfunction and loss of neurons, which leads to the distinct
involvement of a particular functional system. In normal
physiological conditions, the death of neuronal cells is mainly
limited to the result of aging. In fact, mature neurons have the
ability to manage and overcome different stressful conditions in
order to maintain cellular homeostasis (Kole et al., 2013; Maiuolo
et al., 2020). However, in diseases, the loss of specific neurons of
the brain is a fundamental pathological characteristic (Kovacs,
2017) and cell death is the final destiny for a neuron that has
accumulated more stressful events than it can recover from: this
condition is commonly present in neurodegenerative diseases
(Hollville et al., 2019).

For this reason, neurodegenerative diseases can be classified
according to (1) the clinical characteristics they present; (2) the
anatomical distribution of the neurodegeneration in act; and (3)
the main molecular abnormalities encountered (Chi et al., 2018).
A common element of many neurodegenerative diseases are
aberrant protein aggregates, and their location and composition
vary in different diseases (Dugger and Dickson, 2017). Loss
of neurons can be appreciated in most neurodegenerative
diseases, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease, and amyotrophic lateral sclerosis
(SLA). Until now, anxiety–depression, AD, and MS have all
been considered to be disorders, the onset of which is mainly
neurological in origin and have been addressed and treated
as such. Below, we will describe our principal knowledge of
these pathological disorders, the recommended therapies, and the
scientific limitations known so far. Anxiety and depression are
considered neuropsychiatric disorders and are found in normal
cerebral conditions—that is, in the absence of morphological
alterations—yet with reduced activity (Marwood et al., 2018).
Although the causes of anxiety–depressive disorders are not yet
known, it is believed that stress and genetic predisposition are
essential factors. In general, stress activates the adrenal glands
and leads to the overproduction of cortisol, which chronically
stimulates certain brain structures such as the hippocampus
and amygdala. This hyperstimulation reduces the volume and
functionality of these districts by favoring the onset of the
symptoms of anxiety and depression (Fiksdal et al., 2019).
Some scientific studies have reported volumetric modifications of
parts of the brain in patients suffering from anxiety–depressive
symptoms: conducted measurements through nuclear magnetic

resonance (NMR) and positron emission tomography (PET)
showed a reduction of the amygdala–hippocampus complexes
and prefrontal cortexes of these patients as compared to the
control group (Gupta et al., 2019). Following pharmacological
therapy, the morphological and functional recovery of the
aforementioned anatomical structures was found, and in
animal models, the antidepressant therapy determined the
multiplication of stem cells in the hippocampus and in the
amygdala (Ebrahimi-Ghiri et al., 2019). Nevertheless, it is
important to emphasize that pharmacological therapy does not
completely solve anxiety–depressive symptoms (Akil et al., 2018).
The anxiety-depressive syndrome is considered prodromal for
numerous neurological diseases of degenerative, inflammatory,
or vascular nature: in fact, patients suffering from “neurological
depression” may develop these diseases more frequently than the
general population. Some epidemiological studies have shown the
existence of a bi-directional relationship between neurological
disorders and depressive disease: PD, AD, and epilepsy are
often preceded by episodes of anxiety–depression (Jacobson and
Newman, 2017; Pede et al., 2017; Steffens, 2017). Therefore
anxiety–depression can be considered to be a risk factor for
neurological disorders. To date, behavioral–cognitive therapy is
the first-line treatment for depression and anxiety disorders,
although it has been shown to be ineffective in 50% of patients
(Cuijpers et al., 2014; Leuzinger-Bohleber et al., 2019), since few
patients receive high-quality therapy. In fact, most affected people
obtain non-optimal results in terms of inadequate dosages, the
appearance of side effects, and interaction with drugs taken
for other diseases. Many are not treated at all (David and
Gourion, 2016). Psychological intervention through drug therapy
is particularly recommended, and these associated therapies have
shown benefits for the treatment of both depression and anxiety
(Tolin, 2017; Marwood et al., 2018).

As has already been described, ASD is a pathology with an
unclear and multifactorial etiology: in fact, among the causes
considered to date, there are genetic abnormalities, dysregulation
of the immune system, inflammatory processes, and interaction
with environmental factors. Precisely for this reason, the
diagnosis of this disorder is particularly problematic. Neural
systems, involved in ASD, include the upper right temporal
area, amygdala, prefrontal cortex, hippocampus, and Broca
area, responsible for emotions, memory motor coordination,
phonological processing, and executive functions. It follows that
a certain vulnerability in the socio-behavioral system may be
a risk factor for ASD (Ecker et al., 2015). To date, there is
no specific treatment for these disorders and early medical
behavioral therapy has been shown to improve, but not solve,
deficits in mental capacity and linguistic and social abilities
(Howlin and Magiati, 2017; Lord et al., 2018). In addition,
support services are overburdened or insufficient (Shattuck et al.,
2012; Hollocks et al., 2019). ASD not only involves affected
patients and their families but also has an economic impact
on overall spending: in fact, there are significant direct costs
associated with ASD, which include expenses related to provision
of special education, housing, and medical care programs, and
indirect costs such as loss of productivity affecting individuals
with ASD (Buescher et al., 2014). At present, the prevailing
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practice follows a pattern of “wait and see” (whether delays
worsen the situation or allow it to resolve itself) or “wait to
fail” (identification occurs when ASD is established). It has been
shown that over 50% of children with ASD do not receive
a correct diagnosis before the sixth year of age and today
scientific knowledge is aimed at determining a more precocious
intervention (Baio et al., 2018). For most people, the obvious
symptoms of ASD will not become apparent until childhood or
later with the first problems being reported at around 32 months
of life. Differences in social communicative characteristics will
gradually emerge during the second year, so it would be difficult
to act more quickly than the known practice (Estes et al., 2015;
Sacrey et al., 2019). The North American Prodrome Longitudinal
Study (NAPLS) has considered the possibility that young patients
with ASD may develop a full-blown psychosis during their
lifetime. The results obtained showed a correlation between
ASD and psychosis in 18% of patients with ASD. However, due
to the difficulty of the study, which tends to follow enrolled
patients for a long time, there is a need to expand research
(Foss-Feig, 2019).

Multiple sclerosis, as has already been said, is an autoimmune
inflammatory disease that affects the CNS, brain, and spinal
cord, characterized by demyelination and axonal loss. Although
the etiology of MS remains unknown it is a common opinion
that the disease is caused by an immune dysregulation
triggered by genetic and environmental factors. The loss of
function of the axons classifies MS as both a progressive
and degenerative disease. Current pharmacological therapy
includes the administration of anti-inflammatory corticosteroids,
immunomodulators, or humanized monoclonal antibodies, all of
which could help to alter the course of the disease. In summary,
we can say that significant progress has been made in the area of
MS therapy, but testing should continue in order to increase the
arsenal of new therapeutic agents that can prevent or minimize
the neuronal and/or axonal degeneration that occurs. Because
of the innumerable, indefinite causes of this disease, there is a
tendency to consider it neurological in origin, since the main
symptoms lie in this seat. It would be well, however, to start to
change the classic point of view.

MICROBIOTA–BRAIN COMMUNICATION

Recent scientific literature has highlighted the close correlation
existing between the intestinal microbiota and brain development
as well as a correspondence between alteration of the intestinal
microbiota and the onset of some neurological pathologies
such as anxiety and depression (Strandwitz, 2018), PD, AD
(Sun and Shen, 2018), multiple sclerosis (Berer et al., 2017),
cerebral ischemia (Nam, 2019), and ASD (Fattorusso et al.,
2019). Based on these scientific findings, it is clear that any
form of intestinal dysbiosis is able to favor the development
of neurological diseases. For just this reason, it is fundamental
to know and understand the instruments of dialogue that exist
between the intestine and the brain. The intestine can interact
with the brain through direct communication, which includes
three main mechanisms:

• the enteric nervous system;
• the enteroendocrine cells (EECs) of the gut;
• neurotransmitters produced by the gut microbiota.

Enteric Nervous System
Functional aspects of the gastrointestinal tract such as peristaltic
movements, the transport of substances, and the local flow of
blood are all regulated by a network of neuronal ganglia known as
the enteric nervous system (ENS) (Furness, 2000; Furness et al.,
2004). It is known that the neurons of the ENS communicate
with each other using the same “language” as in the CNS (Giuffrè
et al., 2020). The ENS consists of two ganglion plexuses composed
of neurons and glia that regulate a variety of gastrointestinal
functions and are essential for life (Furness, 2006). These plexuses
are located between the layers of the gastrointestinal tract and are
characterized by about 20 subtypes of neurons that differ by the
expression of several neuropeptides (Furness, 2000; Furness et al.,
2004). The ENS shares many features with the brain, including
the production of neurotransmitters that are used for synaptic
transmission, the ultrastructural features present in neuron–glia
interaction, and transcriptional programs (Rao and Gershon,
2016; De Vadder et al., 2018). The ENS is capable of operating
independently of the brain and spinal cord, but, in healthy
subjects, it works in collaboration with them together with input
from the vagal, sympathetic, and parasympathetic systems. This
is in order to regulate many gastrointestinal functions, such as
motility. This direct cross-talk makes the ENS an important target
for the pathogenesis of many neurological disorders (Liddle,
2018), and its dysfunction is related to gastrointestinal disorders
including severe constipation, anorexia, and gastroparesis. It is
also interesting to note that these symptoms are all common
in patients with neurological conditions (Chalazonitis and Rao,
2018). The hypothalamic–pituitary–adrenal axis interacts with
intestinal epithelium cells via the vagus nerve. Some preclinical
studies have shown that the vagus nerve plays a central role in
neural communication between the microbes of the intestine and
centrally mediated behavioral effects. In particular, following a
vagotomy performed early in childhood, these subjects had a
lower risk of developing neurological disorders (Svensson et al.,
2015). Vagus nerve stimulation is a medical treatment used to
treat epilepsy and other neurological conditions and consists in
the application of appropriate electrical impulses to the nerve.
It is assumed that these electrical impulses exert antiepileptic
(Fornai et al., 2011), antidepressant (Sackeim et al., 2007), and
anti-inflammatory action by altering the nerve excitability in the
cells involved (Breit et al., 2018). A close correlation between the
ENS and the microbiota has been demonstrated by the reduced
number of enteric neurons and intestinal motility observed in
GF mice (McVey Neufeld et al., 2012). In addition important
experiments have shown an intrinsically attenuated excitability
in afferent primary neurons together with a defective intestinal
mucosa in GF mice, despite the development and continuous
influx of the ENS (Kabouridis et al., 2015). It is interesting to
note that with the administration of the conventional microbiota,
the recovery of GF mice saw the density and physiology of the
ENS in the intestine normalized (Kashyap et al., 2013). Every
microorganism can have a different effect on the ENS: some
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commensal bacteria may have a local effect interacting with the
ENS, while pathogenic bacteria benefit from the ENS by creating
an environment more suited to their growth and advantageous
for their effects (Giuffrè et al., 2020). The control exercised by
the gut microbiota takes place through the vagus nerve and the
ENS (Borre et al., 2014; Kaelberer et al., 2018): classic examples
are provided by the bacteria Lactobacillus rhamnosus, which
can modulate anxious behavior, and Bifidobacterium longum
NCC3001, which exerts anxiolytic effects. It has been shown in
mice that these effects are lost after vagotomy (Bercik et al.,
2011; Bravo et al., 2011). The microbiota supports the ENS
formed at birth and participates in its homeostasis throughout
adult life. In fact, in GF mice, it has been shown that the
ENS is highly compromised especially in those areas where
bacteria are normally found. Increasing evidence shows that
some neurodegenerative diseases such as PD can originate in the
intestine and spread to the brain by means of the vagus nerve
(Klingelhoefer and Reichmann, 2017). The possibility of a close
correlation between the dysfunction of the ENS, the microbiota,
and the diseases of the CNS has been considered, even if this
hypothesis must be further analyzed and deepened.

Enteroendocrine Cells
EECs reside within the mucosa of the gastrointestinal tract
and are electrically excitable. These cells produce more than 20
peptides/hormones in response to signals generated by nutrients,
non-nutrient chemicals, food-born toxins, and microorganisms
in the bowel lumen (Furness et al., 2013). They influence a variety
of physiological functions including digestion and absorption
of nutrients, defense responses against harmful/toxic substances,
and food aversions (Latorre et al., 2016). These secreted products
can act locally, through a paracrine mechanism that activates
other EECs, they can be released into the bloodstream, reaching
distant targets, or they can act directly on nerve endings near
the release site. It is well known that EECs possess many
characteristics similar to those of neurons: among these, it
is appropriate to remember the receptors of neurotrophins, a
family of proteins that induces the survival, development, and
function of neurons, and pre- and post-synaptic proteins (Janssen
and Depoortere, 2013). The expression of synaptic proteins
increases the possibility that the EECs will come into contact
with the nerves; there is also a neural circuit that connects the
intestinal lumen with the nervous system (Kaelberer et al., 2018).
Therefore, it can be said that the EECs represent the first level
of integration from the intestinal lumen to the brain capable
of generating appropriate functional responses. In particular,
the vagal afferent pathways transmit stimuli generated by the
EECs to the brain, representing an intermediate station in the
bidirectional communication of the brain–intestine axis (Al
Omran and Aziz, 2014). A detailed list of EECs, their location,
and secreted hormones is shown in Table 1.

Neurotransmitters Produced by the Gut
Microbiota
The intestinal microbiota is also able to synthesize many
neurotransmitters such as dopamine, serotonin, norepinephrine,

TABLE 1 | EEC subtypes, localization, and secreted hormones (taken and
modified from Grochowska et al., 2019).

Major cell types Localization Major secretory
hormones

Function

A (X-like) Pancreas Ghrelin • Appetite control

G cell Stomach,
duodenum

Gastrin • Gastrin secretion

D cell Pancreas,
stomach,
intestine

Somatostatin • Gastrointestinal
hormone release;
• Gastrointestinal
motility;
• Mucosal immunity

L cell Ileum, colon,
duodenum

Glucagon-like
Peptide-1;
Glucagon-like
Peptide-2;
Peptide YY (PYY);

• Appetite control;
• Gastrointestinal
motility;
• Energy homeostasis

K cell Stomach Gastric inhibitory
peptide (GIP)

• Insulin secretion

I cell Duodenum Cholecystokinin
(CCK);

• Appetite control;
• Gastrointestinal
motility;
• Bile acid and
digestive enzyme
release;
• Mucosal immunity

Enterochromaffin
cell

Small intestine,
colon, appendix

Serotonin (5-HT) • Appetite control;
• Gastrointestinal motor
and secretory function;
• mucosal immunity

N cell Small intestine Neurotensin • Gastrointestinal
motility;
• Mucosal immunity

M cell Peyer’s patches Motilin • Gastrointestinal
motility

S cell Small intestine,
duodenum

Secretin • Acidity;
• Body fluid
homeostasis

Enterochromaffin-
like cell

Gastric glands Histamine • Acidity;
• Mucosal immunity

and δ-amino butyric acids (GABA) that also exercise their
own effects on the brain. For example, Bifidobacterium infantis
has been shown to elevate tryptophan levels in blood plasma
and thus influence central serotonin transmission; Lactobacillus
and Bifidobacterium can produce GABA; Escherichia, Bacillus,
and Saccharomyces spp. can produce noradrenaline; Candida,
Streptococcus, Escherichia, and Enterococcus spp. can produce
serotonin; Bacillus can produce dopamine; Lactobacillus can
produce acetylcholine (Lyte, 2014). These neurotransmitters
can go through the mucous layer of the intestine and enter
the bloodstream, but they are not able to cross the blood–
brain barrier. The impact on brain function, therefore, could
be indirect by acting on the enteric nervous system (Dinan
and Cryan, 2017). SCFAs, which include butyrate, propionate,
and acetate, are essential metabolic products of gut microbial
activity and may affect the brain, energy balance, and metabolism
(Dinan et al., 2015). In addition, SCFAs have neuroactive
properties. High doses of propionate, in young rats, induced
a neuroinflammatory response and behavioral alterations while
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FIGURE 1 | Role of early colonization. In this cartoon the role of early colonization is shown. In particular, when the colonization is caratecrized by appropriate and
beneficial bacteria the health status is mantained. On the contrary, whether bad bacteria early colonize the intestinal tract we can have damages in this organ and
probably probably a predisposition to onset of some neurological diseases.

butyrate reduced the depressive behavior, exerting an effect on
the CNS (Foley et al., 2014). To date, it is known that SCFAs act
preferably as epigenetic modulators through histone deacetylases
(Stilling et al., 2014). The gut–brain axis has another signaling
pathway that involves immunity through cytokines. Cytokines,
produced in the intestine, can flow into the bloodstream and,
under altered conditions, can affect areas of the brain such as the
hypothalamus (El Aidy et al., 2014).

DISCUSSION AND CONCLUSION

This review summarizes the knowledge, to date, on the
importance of the intestinal microbiota and how the intestinal
bacterial component manages to communicate with the brain
(Quigley, 2017). In particular, the continuous cross-talk existing
between the intestine and the brain and how the intestinal
microbiota maintains constant and continuous interaction with
the nervous system is highlighted. Intestinal dysbiosis, in fact, is
directly involved in many brain disorders (Westfall et al., 2017;
Russo et al., 2018). The causes of neurodegenerative diseases
are still unknown, but it is certain that several factors including
genetics, lifestyle, and aging play key roles. For example,
healthy intestinal barrier function seems crucial for maintaining
neurological health (Di Meo et al., 2018) and studies have been
conducted to assess microbial composition in patients suffering
from neurodegenerative diseases (Mohajeri et al., 2018). The
microbiota is able to determine the severity of neurodegenerative
diseases through two mechanisms:

• immuno-mediated neurodegeneration (Chen et al., 2016;
Dombrowski et al., 2017);

• direct effect of metabolites (GABA, histamine, dopamine,
norepinephrine and serotonin) on cells of the CNS
(Corasaniti et al., 2007; Bano and Ankarcrona, 2018;
Strandwitz, 2018).

In PD, it is interesting to observe that the compromised
parts are the most caudal of both the CNS and the enteric

nervous system (Clairembault et al., 2015). For this reason,
the intestine and its effects on the CNS were investigated and
many researchers are trying to evaluate whether PD begins in
this organ; what is certainly undisputed is the role of the gut
microbiota in the pathology of PD. In humans there are data
showing that in the pathophysiology of PD, truncal vagotomy
reduces the risk of PD (Perez-Pardo et al., 2017; Lionnet et al.,
2018). Several alterations in the composition of the microbiota
have been found in patients with PD which include a reduction
in Firmicutes, Clostridium saccharolyticum, Clostridium leptum,
and Faecalibacterium. In addition, a reduction of Prevotella
occurs in the early stages of PD and could work as a biomarker
for PD (Keshavarzian et al., 2015; Hill-Burns et al., 2017; Hopfner
et al., 2017; Petrov et al., 2017). In the light of this scientific
evidence, we can state that the bacterial composition of the colon
may be predictive for PD (Li et al., 2017), although further
assessments should be conducted.

Several studies in recent years have been carried out and have
highlighted the involvement of the intestinal microbiota in the
onset and pathophysiology of AD (Hu et al., 2016; Jiang et al.,
2017). In particular, significantly decreased Clostridium leptum
and Clostridium saccharolyticum were observed in AD as well as
an increased Bacteroidetes phylum and Alistipes genus (Gerhardt
and Mohajeri, 2018). A disbiotic intestinal microbiota produces
and releases a mixture of metabolic products that increase the
production of cytokines and inflammatory mediators. These
compounds induce the amyloid aggregation present in AD by
accumulating Aβ, hyperphosphorylating the Tau protein, and
inducing chronic inflammation in the brain. In addition, during
aging, regenerative capacities are reduced, leading to an increase
in neurodegenerative processes and the clinical manifestations of
dementia (Penke et al., 2017).

Among neurological disorders, three pathological conditions
have been examined that occur very commonly in the population,
which are closely related to the alteration of the microbiota and
which can appear at early or very early times in life. These
three pathologies are anxiety and depression, autism spectrum
disorders, and multiple sclerosis, and despite having completely

Frontiers in Neuroscience | www.frontiersin.org 9 March 2021 | Volume 15 | Article 616883102

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-616883 March 17, 2021 Time: 16:42 # 10

Maiuolo et al. Gut Microbiota and Brain Disorders

different specific characteristics, they have the following points in
common:

• are diseases related to the malfunction of the nervous
system;

• are closely related to intestinal dysbiosis;
• occur in pathological form in a very early period of

life: the phenomena of anxiety and depression can occur
as early as childhood or adolescence, but also at any
time in an individual’s life. Autism spectrum disorders
develop and appear during the first year of life. Multiple
sclerosis appears particularly in young women (female:male
ratio = 3:1), especially in those women who have had
intestinal disorders since birth (Sauma and Casaccia, 2020).

This review does not intend to focus attention only on the
close gut–brain communication, which is already well-known
and studied in-depth, but intends to look at this problem from
an identical but opposite perspective, and that is: “What if these
pathologies actually had a non-neural onset?” and “Is it possible
that these pathologies develop due to an altered microbial
composition in the gut?”

If so, an evaluation of the intestinal microbial composition
would be fundamental as an early preventive tool against brain
diseases. The moment of intestinal colonization, during the very
early stages of life, could be fundamental and determinative; in
fact, if this process were to occur inadequately, an imbalance
in the composition of the microbiota would be set off, which
could persist throughout life. So, another vital question is: “How
important is the breastfeeding process?” This type of feeding
could provide the infant with an already mature and balanced
“immune culture” capable of reacting promptly to a wide variety
of external pitfalls.

In this direction, it could try to cure not the neurological
cause, but directly correct the composition of the microbiota. So,
whenever there are any dysbiosis conditions present, it would be
desirable to:

• carry out prenatal and neonatal screening to find out
the exact composition of the microbiota and in case

of alterations correct it by using specific prebiotics and
probiotics;

• repeat this screening periodically in order to identify the
onset of intestinal dysbiosis;

• start to consider these pathologies as intestinal diseases
rather than nervous diseases;

• consider the intake of substances of natural origin capable
of establishing a correct oxidative status of the organism.

Further studies and insight into this topic are needed to
change the point of view from which these issues are being
observed and studied. A conclusive and definitive evaluation is
indispensable before automatically assuming that anxiety and
depression, ASD, and MS have a strictly neural origin; the
hypothesis that intestinal dysbiosis could be the real culprit
should be investigated thoroughly. This hypothesis is represented
in Figure 1.
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Liviu Cozma1,2, Emilia Manole3,4, Mihaela Gherghiceanu3,5, Laura Cristina Ceafalan3,5 and
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Parkinson’s disease (PD) is characterized by alpha-synuclein misfolding with subsequent
intraneuronal amyloid formation and accumulation, low grade neuroinflammatory
changes, and selective neurodegeneration. Available evidence suggests that the
pathology usually begins in the gut and olfactory mucosa, spreading to the brain via
the vagus and olfactory nerves, by a prion-like mechanism. A causal relationship has
not been established, but gut dysbiosis is prevalent in PD and may lead to intestinal
inflammation and barrier dysfunction. Additionally, epidemiological data indicate a link
between inflammatory bowel diseases and PD. Calprotectin and zonulin are markers of
intestinal inflammation and barrier permeability, respectively. We evaluated their serum
and fecal levels in 22 patients with sporadic PD and 16 unmatched healthy controls.
Mean calprotectin was higher in PD, both in serum (14.26 mcg/ml ± 4.50 vs. 5.94
mcg/ml ± 3.80, p = 0.0125) and stool (164.54 mcg/g ± 54.19 vs. 56.19 mcg/g ± 35.88,
p = 0.0048). Mean zonulin was also higher in PD serum (26.69 ng/ml ± 3.55 vs. 19.43
ng/ml ± 2.56, p = 0.0046) and stool (100.19 ng/ml ± 28.25 vs. 37.3 ng/ml ± 13.26,
p = 0.0012). Calprotectin was above the upper reference limit in 19 PD serums and 6
controls (OR = 10.56, 95% CI = 2.17–51.42, p = 0.0025) and in 20 PD stool samples
and 4 controls (OR = 30, 95% CI = 4.75–189.30, p = 0.000045). Increased zonulin
was found only in the stool samples of 8 PD patients. Despite the small sample size,
our findings are robust, complementing and supporting other recently published results.
The relation between serum and fecal calprotectin and zonulin levels and sporadic PD
warrants further investigation in larger cohorts.
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INTRODUCTION

Parkinson’s disease (PD) is an incurable disorder affecting
more than 6 million people worldwide. Its incidence and
prevalence increase with age, culminating in the eighth decade
(Collaborators, 2018). Disability is related both to motor (i.e.,
parkinsonism) and non-motor symptoms (including hyposmia
and constipation), slowly progressing over the course of many
years (Postuma et al., 2015; Balestrino and Schapira, 2020).

The neuropathology of PD is defined by intraneuronal
accumulation of alpha-synuclein amyloids, namely Lewy bodies
and Lewy neurites, low grade neuroinflammation and selective
neuronal dysfunction with subsequent neurodegeneration,
involving mainly the aminergic neurocircuits (Braak et al., 2003a;
Balestrino and Schapira, 2020). The development of sporadic
PD is linked to several environmental or acquired factors that
are thought to initiate and promote the disease, especially in
genetically susceptible individuals (Hawkes et al., 2007, 2009;
Balestrino and Schapira, 2020). The upstream pathogenic events
that trigger the initial amyloid transformation of alpha-synuclein
(i.e., misfolding, self-aggregation and cross-seeding of the
conformational changes) are largely unknown. Increasing
evidence suggests that the pathology may begin in the gut and/or
the olfactory mucosa, spreading to the cortex by a prion-like
mechanism (Braak et al., 2003a,b, 2006; Halliday et al., 2006;
Hawkes et al., 2007, 2009; Masuda-Suzukake et al., 2013; Hilton
et al., 2014; Svensson et al., 2015; Rietdijk et al., 2017). Intestinal
inflammation and barrier dysfunction, as well as products of
the gut microbiota (that may cause “leaky gut” and/or local
inflammation and may trigger or enhance amyloidogenesis), are
thus considered potential key players in the etiopathogenesis of
PD (Devos et al., 2013; Houser et al., 2018; Schwiertz et al., 2018;
Becker et al., 2019; Mulak et al., 2019; Rolli-Derkinderen et al.,
2020; Romano et al., 2021).

Gut dysbiosis and inflammatory bowel disease (IBD) are
associated with increased risk of PD (Hill-Burns et al., 2017;
Minato et al., 2017; Camacho-Soto et al., 2018b; Heinzel et al.,
2019; Park et al., 2019; Pietrucci et al., 2019; Villumsen et al.,
2019; Weimers et al., 2019; Zhu et al., 2019; Baldini et al., 2020;
Nishiwaki et al., 2020; Nuzum et al., 2020; Lee et al., 2021). Recent
studies found that fecal markers of intestinal inflammation,
such as fecal calprotectin (routinely used for diagnosing and
monitoring IBD) and possibly markers of intestinal barrier
permeability, such as fecal zonulin, are elevated in people with
PD (Schwiertz et al., 2018; Mulak et al., 2019). Inflammatory
shifts of stool immune profiles comparable to those seen in IBD,
were also described in PD (Houser et al., 2018). Here we present
our preliminary results on the association between sporadic PD
and serum and fecal levels of calprotectin and zonulin. To the
best of our knowledge, this is the first study evaluating serum
calprotectin and zonulin in PD, previous studies assessing only
their fecal levels.

MATERIALS AND METHODS

We performed a case-control study investigating the serum and
fecal levels of calprotectin and zonulin in adult people with and

without PD. Participants were recruited at Colentina Clinical
Hospital (Bucharest, Romania) starting from April 2019. Study
enrollment was based on predefined inclusion and exclusion
criteria—see below. The protocol of the study was approved by
the local Ethics Committee (EMI-BPs, 3/16.04.2019). Written
informed consent, compliant with the Declaration of Helsinki
and the European General Data Protection Regulation 2016/679,
was obtained from all participants prior to study enrollment.

To be included in the sporadic PD group, patients had to
fulfill the Movement Disorder Society (MDS) Clinical Diagnostic
Criteria for either clinically established or clinically probable
PD (Postuma et al., 2015); additionally, the patients must
have had the onset of their motor symptoms after the age of
50 years, no autosomal dominant or recessive family history
of PD and no other elements indicative for monogenic PD.
The following exclusion criteria were applied: recent (less than
6 months prior to study sample collection) or concurrent
gastrointestinal or systemic conditions, including infections or
surgical interventions, or severe disability that may interfere
with the results of the tests or preclude the clinical evaluation;
antibiotic treatment within the past 3 months; and use within
the past month of other drugs or supplements that may interfere
with the results of the testing, such as steroidal or non-steroidal
anti-inflammatory drugs (NSAIDs), including daily aspirin above
100 mg, and daily use of proton pump inhibitors (PPIs). Further
exclusion criteria for the control group were the presence of
clinical motor or nonmotor markers for prodromal PD (Berg
et al., 2015; Heinzel et al., 2019) or other chronic neurological
diseases. The initial design included additional control groups
and subgroups and aimed to evaluate several other potential
markers, but because of the ongoing pandemic study enrollment
was lower than planned; considering the minute sample sizes,
these subsidiary data are not discussed.

The clinical evaluation was performed by a neurologist,
within a few days from sample collection (typically the day
before the blood sample). It included medical history, full
neurological examination and assessment of parkinsonism using
the modified Hoehn and Yahr scale (Goetz et al., 2004) and
the Unified Parkinson’s Disease Rating Scale (UPDRS) part III
(Martinez-Martin et al., 1994). Ancillary data were obtained from
medical records.

Whole blood samples were collected à jeun on vacutainer
clot activator tubes and immediately stored at 4–8◦C. Serum
was separated and removed within 24 h (typically less than
6) and either fully processed or stored at −20◦C. Participants
collected their own stool samples (5–10 g) in a sterile plastic
container, using the kits they were provided with. Stool samples
were collected no later than 3 days after the blood sample
(except for the cases of more severe constipation) and kept at
room temperature for a maximum of 6 h, then preprocessed
using commercially available preparation and extraction tubes (K
6998SAS, K 6999, Immunodiagnostik AG, Germany) and stored
at −80◦C before being fully processed (up to 8 weeks). The serum
and fecal levels of calprotectin and zonulin were determined
by enzyme-linked immunosorbent assay (ELISA). For this, we
used the commercially available IDK R© Calprotectin ELISA K 6927
(stool) and K 6935 (serum) kits and the IDK R© Zonulin ELISA
K 5600 (stool) and K 5601 (serum) kits (Immunodiagnostik

Frontiers in Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 689723109

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-689723 June 12, 2021 Time: 15:51 # 3

Dumitrescu et al. Intestinal Markers in Parkinson’s Disease

AG, Germany). All samples were processed according to the
instruction leaflets that came with the kit.

The results of calprotectin and zonulin levels are expressed
as means and standard deviations (SD). Statistical analysis
included odds ratio (OR) with 95% confidence intervals (95%
CI) and Spearman’s rank correlations coefficient (R). Statistically
significant differences were considered at p-values < 0.05. For
correlations we used IBM R© SPSS R© Statistics (subscription).

RESULTS

We fully evaluated 22 patients with sporadic PD (15 males,
7 females) and 16 unmatched healthy controls (9 males, 7
females). Another 4 patients were partially evaluated but could
not provide stool samples in due time; their data are not
included in the present analysis (see above). The demographic
and clinical characteristics of the study population are presented
in Table 1. Out of the 22 patients with sporadic PD, 12
fulfilled the MDS diagnostic criteria for clinically established
PD (Postuma et al., 2015); the other 10 had the motor
onset of PD within the past 5 years and met criteria for
clinically probable PD (Postuma et al., 2015); additionally,
they fulfilled criteria for clinically established early PD (Berg
et al., 2018). Modified Hoehn and Yahr stage ranged from
1 to 4, almost two thirds of the patients having bilateral
symptoms and balance impairment [i.e., stage 2.5 or above—
see (Goetz et al., 2004)]. Hyposmia (self-reported) was present
in 10 PD patients (45.5%). Constipation (self-reported, defined
as less than 3 bowel movements per week in the absence of
symptomatic treatment) was present in 9 PD patients (41%).
Other nonmotor symptoms and concomitant medication are
detailed in Supplementary Table 1.

The mean serum calprotectin level was significantly higher
in the PD group than in controls (14.26 mcg/ml ± 4.50, SD
10.78 vs. 5.94 mcg/ml ± 3.80, SD 7.75; p = 0.0125). Serum
calprotectin levels above the upper reference limit were found
in samples from 19 out of the 22 PD patients (86.4%) and in

6 (37.5%) out of the 16 controls (OR = 10.56, 95% CI = 2.17–
51.42, p = 0.0025). The mean fecal calprotectin level was
also significantly higher in patients with PD than in controls
(164.54 mcg/g ± 54.19, SD 129.68 vs. 56.19 mcg/g ± 35.88,
SD 73.22; p = 0.0048). Fecal calprotectin levels above the upper
reference limit (50 mcg/g) were found in samples from 20
(90.9%) out of the 22 patients and in 4 (25%) out of the
16 controls (OR = 30, 95% CI = 4.75–189.30, p = 0.000045);
levels above 100 mcg/g were found in samples from 12 (54.5%)
PD patients, levels above 150 mcg/g in samples from 8 PD
patients (36.4%), above 200 mcg/g in samples from 7 PD patients
(31.8%), and above 250 mcg/g in samples from 4 PD patients
(18.2%)—with the caveats that 3 out of the 4 patients with the
highest levels were treated with levodopa/carbidopa intestinal
gel (LGCI) and that all of the patients that were treated with
LCGI (n = 3) had fecal calprotectin levels above 250 mcg/g;
fecal calprotectin exceeded the above cut off values only in
1 (6.25%) of the control samples (exact value: 322.27 mcg/g).
Differences between the PD groups and controls remained
significant when considering 100 mcg/g as cut off for those
age 60 and older and 50 mcg/g for those below 60 (OR = 5.2,
95% CI = 1.15–23.54, p = 0.028); this trend also maintained
when using 51 mcg/g and 112 mcg/g as age-dependent cut offs
(OR = 4.33, 95% CI = 0.96–19.58, p = 0.049), as previously
done (Mulak et al., 2019). The mean serum zonulin level was
higher in the PD group than in controls (26.69 ng/ml ± 3.55,
SD 8.51 vs. 19.43 ng/ml ± 2.56, SD 5.22; p = 0.0046). No
serum zonulin levels above the upper reference limit were
found in the study population, but levels below the lower
reference limit were identified in 4 (18.2%) out of the 22 PD
samples and in 10 (62.5%) of the 16 controls (OR = 0.13,
95% CI = 0.03–0.59, p = 0.0068). The mean fecal zonulin level
was higher in the PD patient group than in controls (100.19
ng/ml ± 28.25, SD 67.61 vs. 37.30 ng/ml ± 13.26, SD 27.07;
p = 0.0012). Fecal zonulin levels above the upper reference
range limit were found in 8 (36.4%) out of the 22 samples
from PD patients and in none of the controls. Levels below
the lower reference limit were found only in 2 (12.5%) of

TABLE 1 | Demographic and clinical characteristics of the study population.

Sporadic PD cases (n = 22) Healthy controls (n = 16)

Sex 15 (68.18%) males / 7 (31.82%) females 9 (56.25%) males / 7 (43.75%) females

Age
(p = 0.0001)

Mean: 68.7 ± 3.51 years, SD 8.4 Mean: 50.5 ± 8.5 years, SD 17.4

BMI
(p = 0.446)

Mean: 26.7 kg/m2
± 1.77, SD 4.23

BMI 25–29.9 kg/m2 (overweight): 8 (36.4%)
BMI ≥ 30 kg/m2 (obese): 5 (22.7%)

Mean: 25.6 kg/m2
± 2.21, SD 4.51

BMI 25–29.9 kg/m2 (overweight): 6 (37.5%)
BMI ≥ 30 kg/m2 (obese): 3 (18.75%)

Tobacco smoking Never smokers: 19 (86.4%)
Former smokers: 2 (9.1%)
Current smokers: 1 (4.5%)

Never smokers: 13 (81.25%)
Former smokers: 0
Current smokers: 3 (18.75%)

PD diagnostic
(MDS criteria) and
motor
characteristics

Clinically established PD: 12 (55.5%)
Clinically probable PD with criteria for
Clinically established early PD: 10 (45.5%)
Modified HY stage below 2.5: 8 (36.4%)
Modified HY stage 2.5 and above: 14 (63.6%)
Mean UPDRS part III: 21.5 ± 5.81, SD 13.9
No. with motor complications: 13 (59.1%)

NA (see exclusion criteria)
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TABLE 2 | Calprotectin and zonulin levels.

Sporadic PD cases
(n = 22)

Healthy controls
(n = 16)

Significance

Serum calprotectin
(reference: <3 mcg/ml)

14.26 mcg/ml ± 4.50,
SD 10.78

5.94 mcg/ml ± 3.80,
SD 7.75

p = 0.0125

Serum calprotectin ≥3 mcg/ml 19 (86.4%) 6 (37.5%) OR = 10.56, p = 0.0025,
95% CI = 2.17–51.42

Fecal calprotectin
(reference: <50 mcg/g)

164.54 mcg/ml ± 54.19, SD
129.68

56.18 mcg/ml ± 35.88, SD
73.22

p = 0.0048

Fecal calprotectin ≥50 mcg/g 20 (90.9%) 4 (25%) OR = 30, p = 0.000045,
95% CI = 4.75–189.30

Fecal calprotectin ≥100 mcg/g 12 (54.5%) 1 (6.25%) OR = 18, p = 0.002, 95%
CI = 2.01–161.05

Fecal calprotectin ≥200 mcg/g 8 (36.4%) 1 (6.25%) OR = 8.57, p = 0.034, 95%
CI = 0.95–77.57

Fecal calprotectin ≥250 mcg/g 4 (18.2%) 1 (6.25%) OR = 3.33, p = 0.2856, 95%
CI = 0.34–33.11

Serum zonulin
(reference: 20–48 ng/ml)

26.69 ng/ml ± 3.55,
SD 8.51

19.43 ng/ml ± 2.56, SD
5.22

p = 0.0046

Serum zonulin <20 ng/ml 4 (18.2%) 10 (62.5%) OR = 0.13, p = 0.0068,
95% CI = 0.03–0.59

Fecal zonulin
(reference: 15–107 ng/ml)

100.19 ng/ml ± 28.25, SD
67.61

37.30 ng/ml ± 13.26, SD
27.07

p = 0.0012

Fecal zonulin >107 ng/ml 8 (36.4%) 0 NA

86.4%
90.9%

81.8%

36.4%37.5%

25%

37.5%

0%
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FIGURE 1 | Serum and fecal calprotectin and zonulin levels in the PD group vs. controls. *For serum and fecal calprotectin and fecal zonulin the upper reference limit
is used as cut off. Since no study participants had serum zonulin levels above the upper reference limit, but a total of 14 had levels below the lower reference limit
(see Table 2), for the purpose of this graph the lower reference limit is used as cut off.

the controls. For a summary of these results, see Table 2 and
Figure 1.

In the PD group, we found statistically significant and
potentially relevant correlations between serum calprotectin and
the modified Hoehn and Yahr stage (R = −0.528, p = 0.012).
Disease duration correlated with parkinsonism severity, assessed
with the modified Hoehn and Yahr stage (R = 0.775, p < 0.001)
and the motor UPDRS score/UPDRS part III (R = 0.645,
p = 0.001), as well as with the presence of constipation (R = 0.610,
p = 0.003). Chronic constipation correlated with the motor
UPDRS score (R = 0.423, p = 0.05) and with the daily levodopa
equivalent dose (LED) (R = 0.43, p = 0.46). Motor UPDRS

score correlated with female sex (R = 0.555, p = 0.007). Fecal
calprotectin levels above 250 mcg/g correlated with female sex
(R = 0.457, p = 0.042), LCIG treatment (R = 0.5, p = 0.018) and
high serum C reactive protein (CRP) (R = 0.677, p = 0.011), while
levels above 150 mcg/g inversely correlated with self-reported
hyposmia (R = −0.567, p = 0.006); increased fecal calprotectin
also correlated with body mass index (BMI) (R = 0.499, p = 0.018)
and obesity (R = 0.490, p = 0.02). Serum calprotectin levels had
negative correlation with the current smoker status (R = −0.463,
p = 0.03). Except for the fecal calprotectin levels above 250
mcg/g, which correlated with female sex in the PD group
(R = 0.457, p = 0.042), we found no significant correlations
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between serum and fecal calprotectin and zonulin levels or
between these and age or sex, neither in patients with PD,
nor in controls.

DISCUSSION

We evaluated the serum and fecal levels of calprotectin and
zonulin in people with sporadic PD vs. healthy controls. Despite
the small sample size, we found that increased serum and
fecal calprotectin levels (i.e., above the upper reference limit)
are significantly associated with the risk of PD (OR 10.56
and 30, respectively, p-values below 0.005, null hypothesis
outside the 95% CIs—see above). The serum zonulin levels
were not increased above the upper reference limit in our
study, but we found higher mean values in PD compared
with controls (p = 0.0046); concurrently, levels below the
reference range appear to be protective (OR = 0.13, 95%
CI = 0.03–0.59, p = 0.0068). The mean value of fecal
zonulin was higher in PD than in controls (p = 0.0012) and
values above the upper reference limit were found only in
PD (n = 8; 36.4%).

Calprotectin is a pleiotropic cytokine-like protein mainly
involved in the recruitment of inflammatory cells; it also
has bacteriostatic effects that are mediated by zinc-dependent
enzymes (Kowalski and Mulak, 2019). It is released or secreted
by activated neutrophils, monocytes and endothelial cells, its
levels raising rapidly in the presence of bacteria (Diamanti
et al., 2010; Jensen et al., 2011; Dhaliwal et al., 2015; Moein
et al., 2017; Kowalski and Mulak, 2019). Interestingly, in
some experimental settings calprotectin is protective against
intestinal injury (Aranda et al., 2018), while in others it may
promote amyloidogenesis (Kowalski and Mulak, 2019). Zonulin
functions as part of the tight junction system of the mucosal
intestinal barrier, modulating its permeability by promoting
the disassembly of zona occludens (Ohlsson et al., 2017b). Its
secretion or release is mainly triggered by bacteria, but also
by some dietary components, such as gluten, higher levels
resulting in increased intestinal barrier permeability, which is
found along inflammatory changes in people with PD and other
neurodegenerative conditions (Ohlsson et al., 2017b; Kowalski
and Mulak, 2019).

Fecal calprotectin is a well-established biomarker of intestinal
inflammation, routinely used in the diagnostic and monitoring
of IBD. However, it is not specific for IBD. Other circumstances
that may increase fecal calprotectin levels include the use of
certain drugs, especially NSAIDs and possibly PPIs, and certain
disorders, such as infectious enterocolitis, celiac disease and
colorectal cancer (Khaki-Khatibi et al., 2020). In people with
chronic diarrhea and other symptoms suggestive of IBD, fecal
calprotectin below 50 mcg/g excludes clinically relevant intestinal
inflammation, while levels above 250 mcg/g are highly specific
(Diamanti et al., 2010; Jensen et al., 2011; Dhaliwal et al.,
2015; Moein et al., 2017). Noteworthy, IBD is a risk factor for
developing PD (Berg et al., 2015; Camacho-Soto et al., 2018a;
Heinzel et al., 2019; Park et al., 2019; Villumsen et al., 2019;
Weimers et al., 2019; Zhu et al., 2019; Lee et al., 2021) and a

promising candidate risk marker for diagnosing prodromal PD
(Heinzel et al., 2019). The role of serum or plasma calprotectin
in the diagnostic and follow-up of chronic inflammation is not so
well defined (Wang and Liang, 2019).

Interestingly, most people with sporadic PD develop
gastrointestinal symptoms related to decreased transit time,
constipation preceding the motor dysfunction with more than
a decade in some cases (Postuma et al., 2015). Putatively,
these symptoms are related to PD pathology in the enteric
nervous system (Braak et al., 2006; Devos et al., 2013). Gut
dysbiosis is common in PD and can result in local inflammatory
changes and barrier dysfunction/disruption, which may increase
alpha-synuclein expression and facilitate its exposure to
amyloidogenic compounds found in the gut, thus possibly
contributing to key pathogenic events in PD; prospective
evidence is nevertheless scarce (Stolzenberg et al., 2017; Nuzum
et al., 2020; Vascellari et al., 2021). The coexistence of an
amyloidogenic gut microbiota with intestinal inflammation
(leading to local overexpression of alpha-synuclein) and altered
intestinal barrier permeability (exposing alpha-synuclein to the
amyloidogenic xenobiotics) may play a key role in triggering
the initial alpha-synuclein conformational changes in some
people with sporadic PD (Sampson et al., 2020). Disturbances
in the microbiota-gut-brain axis may also contribute to
neurodegeneration, interfering with neuronal susceptibility
to stressors and ultimately with neuronal survival (Devos
et al., 2013; Stolzenberg et al., 2017; Nuzum et al., 2020;
Vascellari et al., 2021).

In our study higher levels of calprotectin correlated with
milder parkinsonism on the modified Hoehn and Yahr scale
(p = 0.012), which would suggest that the intestinal inflammation
is higher in the earlier stages of the disease. We also found
that increased calprotectin levels (above 150 mcg/g) correlated
negatively with self-reported hyposmia (p = 0.006); this cannot be
interpreted solely based on our study, but fits with the hypothesis
of a more heterogenous development of sporadic PD (Rietdijk
et al., 2017), the initial pathogenic events being either intestinally-
centered, or olfactory-centered, or both.

The results of our study are in line with those of two
other previous studies that compared fecal calprotectin and
zonulin levels in 35 PD patients and 20 controls, and in 34 PD
patients and 28 age-matched controls, respectively (Schwiertz
et al., 2018; Mulak et al., 2019). Both studies found significant
associations between higher fecal calprotectin and PD, while
only the latter found a significant association between higher
fecal zonulin and PD. In addition to these studies, we also
evaluated serum levels of calprotectin and zonulin and found
significant associations between higher levels and PD. Although
in people with IBD, serum calprotectin correlates with the fecal
levels (Kalla et al., 2016), we found no such correlation. The
present study poses a series of limitations that mandate caution
when interpreting its results. Most important, the number of
participants in each group was lower than planned and did not
allow matching, therefore our results warrant confirmation on
larger groups that are matched for age, sex and dietary habits
(the latter being a possible confounding factor, especially in
respect to zonulin levels). Except for the highest fecal calprotectin
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levels being more common in females with PD, we found no
significant correlations between serum and fecal calprotectin
and zonulin levels and age or sex. Fecal calprotectin levels
may increase with age, one study reporting median values of
18 mcg/g in healthy adults below 60 years old and 27 mcg/g
in older individuals (Khaki-Khatibi et al., 2020). In our study,
the association between increased fecal calprotectin and PD
remained significant even when using age-dependent cut off
values. As expected based on the available literature (Sapone
et al., 2006; Khaki-Khatibi et al., 2020; Seethaler et al., 2021),
we found no significant correlation between zonulin levels
and age or sex. Dietary patterns were not assessed in our
study, however, serum zonulin levels may correlate with macro-
and micronutrient intake, including the total carbohydrate and
vitamin D, respectively (Morkl et al., 2018). Increased BMI is
another potential confounding factor, both for calprotectin and
zonulin (Mortensen et al., 2009; Ohlsson et al., 2017a; Grand
et al., 2020). In our study there were no significant differences
in BMI between the PD group and controls (p = 0.446); in
agreement with the available literature (Mortensen et al., 2009;
Grand et al., 2020), increased calprotectin levels correlated
with increased BMI and obesity in the PD group. All the PD
patients included in our study had symptomatic treatments with
dopamine agonists or levodopa-based drugs, which are possible
confounding factors. We found no correlations between these
drugs, LED, and calprotectin or zonulin levels, but this could
be related to the small sample size; notably, very high fecal
calprotectin levels correlated with LCIG (p = 0.018). Another
limitation of our study is that serum and fecal calprotectin and
zonulin levels were not confirmed on a different occasion or by
further gastroenterological evaluation within the study, meaning
that the results could reflect isolated circumstances (that were
not accounted for by the exclusion criteria) rather than a chronic
ongoing process related to PD.

Concluding, our findings suggest an association between
sporadic PD and serum and fecal markers of intestinal
inflammation and permeability. This is consistent with data from
two other small studies and underlines the importance of further
investigating the gastrointestinal tract to better understand the
pathogenic events involved in the initiation and progression
of sporadic PD. Provided future research confirms the relation
between increased calprotectin levels and PD, serum and fecal
calprotectin testing could help improve the accuracy of current
clinical diagnostic criteria.
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Alzheimer disease (AD) is a chronic neurodegenerative disease that accounts for
60–70% of dementia and is the sixth leading cause of death in the United States.
The pathogenesis of this debilitating disorder is still not completely understood.
New insights into the pathogenesis of AD are needed in order to develop novel
pharmacologic approaches. In recent years, numerous studies have shown that insulin
resistance plays a significant role in the development of AD. Over 80% of patients
with AD have type II diabetes (T2DM) or abnormal serum glucose, suggesting that the
pathogenic mechanisms of insulin resistance and AD likely overlap. Insulin resistance
increases neuroinflammation, which promotes both amyloid β-protein deposition and
aberrant tau phosphorylation. By increasing production of reactive oxygen species,
insulin resistance triggers amyloid β-protein accumulation. Oxidative stress associated
with insulin resistance also dysregulates glycogen synthase kinase 3-β (GSK-3β),
which leads to increased tau phosphorylation. Both insulin and amyloid β-protein
are metabolized by insulin degrading enzyme (IDE). Defects in this enzyme are the
basis for a strong association between T2DM and AD. This review highlights multiple
pathogenic mechanisms induced by insulin resistance that are implicated in AD. Several
pharmacologic approaches to AD associated with insulin resistance are presented.

Keywords: Alzheimer’s disease, insulin resistance, amyloid beta, tau, drug

INTRODUCTION

Alzheimer disease (AD) is a chronic degenerative brain disease characterized by memory loss,
cognitive impairment, and loss of activities of daily living (Jha et al., 2019). It is the most common
form of dementia and the sixth leading cause of death in the United States (Wilson et al., 2012;
Heron, 2013). An estimated 5.8 million Americans suffered from AD in 2020 and this number
will triple to nearly 14 million people by 2060 (Matthews et al., 2019). There are no treatments
that effectively stop or reverse AD progression, although some medications temporarily improve
symptoms (Hsu and Marshall, 2017). Notably, the United States Food and Drug Administration
(FDA) approved Aducanumab on June 7th, 2021, the first antibody for the treatment of AD which
reduces amyloid plaques. However, this drug had previously failed to gain FDA approval, because
initial analysis of clinical trial data did not show a significant improvement in patients’ mental
abilities. Phase IV trials are still required to verify its clinical benefits.
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There are two major forms of AD: the sporadic (late-onset)
form, which accounts for most cases, and the familial (early-
onset) form, which is generally associated with the inheritance
of genetic mutations (Bekris et al., 2010). While the cause of most
AD cases is poorly understood (Reitz and Mayeux, 2014), genes
encoding amyloid precursor protein (APP), presenilin 1 and
presenilin 2 account for the majority of early-onset familial AD
cases (Cheignon et al., 2018), whereas apolipoprotein E (APOE) is
the main genetic risk factor in sporadic AD, especially APOE−ε4
(Morris et al., 2014; Clark and Vissel, 2018).

The pathogenesis of AD is multifactorial (Crous-Bou et al.,
2017). Accumulating studies indicate a strong association
between type II diabetes (T2DM) and AD (Kang et al.,
2017). Neuronal insulin signaling pathways are disrupted
in both T2DM and AD and over 80% of AD patients
have T2DM or display abnormal blood glucose levels (Zhao
and Townsend, 2009). Observational studies demonstrate that
T2DM nearly doubles the risk of AD and increases the
likelihood of dementia (Leibson et al., 1997; Luchsinger
et al., 2001; Xu et al., 2009). In addition, APOE4 and
insulin resistance were found to impair cognitive function
in a study of human E4-targeted replacement mice (Johnson
et al., 2017). Multiple studies have also established that
insulin resistance leads to the progression of two main
pathological hallmarks of AD—senile plaques from extracellular
deposition of amyloid β-protein and tau-based neurofibrillary
tangles (NFT) (Ardura-Fabregat et al., 2017). Consequently,
AD may be considered a type of metabolic disease, and
the development of AD therapeutics may benefit from an
understanding of the relationship between AD and insulin
resistance (Kang et al., 2017).

INSULIN RESISTANCE AND AD

Insulin is essential for metabolic homeostasis in the peripheral
system (Tokarz et al., 2018), but has only been recognized for its
role in regulating amyloid β-protein peptides and the generation
of NFTs in the last few decades (Razay and Wilcock, 1994; Kroner,
2009). Under normal conditions, increased plasma glucose levels
lead to stimulation of pancreatic β-cells to produce insulin,
which decreases glucose levels. As blood glucose falls, counter-
regulatory hormones including epinephrine, norepinephrine and
cortisol from the adrenal glands arrest insulin-mediated glucose
disposal. Insulin is then rapidly degraded in the liver, kidney and
muscles by insulin degrading enzyme (IDE) (Watson and Craft,
2003). The pleiotropic biologic effects of insulin are mediated
via binding and activating insulin receptors (IR) (Boucher
et al., 2014), which are widely distributed in the periphery but
selectively distributed in the central nervous system (CNS),
including the cerebral cortex, hippocampus, hypothalamus and
amygdala (Havrankova et al., 1978; Bosco et al., 2011; Soto et al.,
2019). Insulin binding leads to a conformational change of the IR
resulting in phosphorylation of intracellular IR substrate (IRS)
proteins on tyrosine residues (Saini, 2010). Subsequently, IRS
activates downstream pathways including mitogen-activated
protein kinase (MAPK) and phosphatidylinositol-3-kinase

(PI3K) (Gabbouj et al., 2019), which are important for mitogenic
and metabolic functions (Plum et al., 2005).

However, in insulin resistance, cells fail to respond to
insulin causing elevated blood glucose and effects on muscle,
liver and brain (Kroner, 2009; Zhao and Townsend, 2009).
Pancreatic β-cells produce more insulin in response to high blood
glucose (hyperglycemia) resulting in hyperinsulinemia (high
blood insulin), eventually leading to T2DM (Heydemann, 2016).
Decreased levels of insulin and IR are found in the cerebrospinal
fluid (CSF) of AD patients due to long-term peripheral
hyperinsulinemia and decreased insulin transport across the
blood-brain barrier (BBB) (Craft et al., 1998; Rivera et al., 2005;
Steen et al., 2005; Gil-Bea et al., 2010; Stanley et al., 2016).

Accruing evidence shows that insulin facilitates memory and
cognition under normal conditions (Watson et al., 2009; Tokarz
et al., 2018) whereas chronic hyperinsulinemia impairs them (Lee
et al., 2016). For instance, fructose-induced insulin-resistant rat
models show impaired spatial learning in the water-maze test
(Sachdeva et al., 2019). Moreover, intranasal insulin improves
memory in humans (Benedict et al., 2008; Krug et al., 2010).
Insulin resistance may accelerate the progression of senile plaques
and NFTs via multiple mechanisms, resulting in cognitive decline,
impaired long-term potentiation (LTP) and associated metabolic
disease. A summary of the feed forward loop of insulin resistance
and AD pathogenesis is provided in Figure 1.

Neuroinflammation Induced by Insulin
Resistance in AD
The current consensus is that neuroinflammation plays a pivotal
role in AD progression (Wang W. Y. et al., 2015), which is
supported by results from APP transgenic mouse models in
which injection of lipopolysaccharide (LPS, TLR4 activator)
triggers neuroinflammation with two cellular hallmarks of AD
in the brain, amyloid β-protein deposition (Lee et al., 2008; Go
et al., 2016) and tau hyperphosphorylation (Kitazawa et al., 2005;
Lee et al., 2010). Amyloid β-protein is the product of consecutive
cleavage of APP by enzymes β-secretase (BACE) and γ-secretase.
Processing of APP yields multiple forms of the protein; the 40
and 42 amino acid residue products are the most common forms
(O’Brien and Wong, 2011). High levels of monomeric amyloid
β-protein have a propensity to aggregate into fibrils and then
plaques, resulting in neurodegeneration and induction of tau
pathology (Mouchlis et al., 2020).

Inflammation is involved in activation of microglial
cells, which are primarily responsible for amyloid β-protein
phagocytosis. Microglia are brain-resident immune cells
responsible for promoting phagocytotic clearance as well
as providing trophic support to ensure tissue repair and
cerebral homeostasis (Sarlus and Heneka, 2017). They also
play a role in higher cognitive functions, such as learning
and memory in the adult brain, and are involved in the
pathogenesis of neurodegenerative diseases like AD. In the
early stages of AD, activated microglia repair damaged tissue
and decrease amyloid β-protein accumulation. However,
chronic microglial activation induced by inflammation leads
to release of inflammatory mediators and accumulation
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FIGURE 1 | Feed forward loop of insulin resistance and Alzheimer disease. Both insulin resistance and Alzheimer disease lead to activation of nuclear factor kappa B
(NF-κB), increased cytokine secretion and increased reactive oxygen species (ROS) levels, triggering increased amyloid beta (amyloid β) and tau
hyperphosphorylation. In addition, insulin resistance lowers levels of insulin degrading enzyme (IDE), resulting in impaired amyloid β phagocytosis. Higher levels of
amyloid β, in turn, leads to decreased expression of the insulin receptor, which results in insulin resistance, creating a vicious cycle.

of danger-associated molecular patterns (DAMPs), which
limits amyloid β-protein clearance, leading to more plaque
accumulation, neuronal dysfunction and death (Clark and
Vissel, 2015; Wang W. Y. et al., 2015; Brabazon et al., 2018).
This hypothesis is supported by a longitudinal study showing
increased levels of microglial activation in both mild cognitive
impairment (MCI) and AD patients compared to controls,
but a reduction in microglial activation following an initial
peak in MCI patients (Fan et al., 2017). These data suggest
that early microglial activation leads to a protective phenotype
which can later turn into a pro-inflammatory picture due
to failure of amyloid β-protein clearance and progressive
neuronal damage.

Insulin resistance results in microglial activation and
inflammation (McCaulley and Grush, 2017) by inducing the
activation of resting (ramified) microglia and changes in
cellular morphology, surface phenotype, secretary mediators
and proliferative responses (Sarlus and Heneka, 2017). One
common molecular pathology shared by insulin resistance
and AD is increased levels of advanced glycation end products
(AGEs) (Zhao and Townsend, 2009). Binding of AGEs to

their cellular receptors (RAGE) not only upregulates glycogen
synthase kinase 3β (GSK-3β), causing tau hyperphosphorylation
(Peng et al., 2007; Li et al., 2012a,b), but also activates the
NF-κB pathway, which produces reactive oxygen species
(ROS) and pro-inflammatory cytokines [interleukin (IL)-6,
IL-1β, TNF] (Kandimalla et al., 2017). These cytokines are
observed to increase accumulation of amyloid β-protein
in AD by two mechanisms: (1) increased levels of pro-
inflammatory cytokines inhibit phagocytosis of amyloid
β-protein in AD brains thereby hindering the removal of
plaque by resident microglia; (2) TNF has been shown to
upregulate the production of amyloid β-protein via activation
of the c-Jun N-terminal kinase (JNK)-dependent MAPK
pathway, which promotes phosphorylation and cleavage
of APP (Liaoi et al., 2004; McAlpine and Tansey, 2008;
Colombo et al., 2009; Montgomery et al., 2011; Cheng
et al., 2014; Ahn et al., 2016; Decourt et al., 2017; Zhang
et al., 2019). In addition, activation of the NF-κB pathway
further increases BACE expression, resulting in increased
production of amyloid β-protein (Guglielmotto et al., 2012;
Cai et al., 2016). High levels of amyloid β-protein cause
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IR downregulation via internalization, desensitization or
direct substrate competition, which ultimately turn into
insulin resistance (Xie et al., 2002; Mullins et al., 2017).
Moreover, amyloid β-protein triggers Ca2+ influx, which
not only causes hyperphosphorylation of tau protein (Bosco
et al., 2011) via GSK-3β, but also inhibits IR tyrosine kinase
signaling. The increased levels of Ca2+ stimulate Ca2+-
dependent serine/threonine protein kinases (PKC, Akt), which
phosphorylate IRs and insulin resistance substrate (IRS) and
thus negatively regulate IRs in the brain (Zhao and Townsend,
2009). Taken together, insulin resistance, neuroinflammation
and exacerbation of amyloid β-protein and tau form a feed-
forward loop in AD pathogenesis. Imbalance induced by
any of these factors will facilitate AD progression, resulting
in neurotoxicity, neurodegeneration and induction of a
negative effect on IRs.

Oxidative Stress Induced by Insulin
Resistance in AD
Growing evidence suggests that insulin/insulin-like growth factor
(IGF) signaling is strongly associated with oxidative stress.
Brain insulin/IGF resistance may contribute to impairments
in glucose utilization and disruption of energy metabolism,
resulting in production of ROS, DNA damage and mitochondrial
dysfunction, eventually causing pro-apoptosis, pro-inflammation
and amyloid β-protein cascades (de la Monte, 2014). Imbalance
between the production of ROS and antioxidant defenses
leads to oxidative stress which not only damages cells
but also alters signaling pathways (Hurrle and Hsu, 2017).
Oxidative stress has been implicated in AD and several
studies have reported that it plays an important role in tau
hyperphosphorylation and APP-amyloid β-protein accumulation
(Huang et al., 2016).

Tau protein, a major microtubule-associated protein in
the brain, functions mainly to maintain the stability of
microtubules in neurons and other cells as well as facilitate
cell differentiation and polarization (Mouchlis et al., 2020).
According to the tau hypothesis, hyperphosphorylated tau
pairs with other strands of tau protein and then forms
NFT in neuronal cell bodies, which eventually induces
microtubule dysregulation (Iqbal et al., 2005), causing
impaired communication between neurons and even cell
death (Bosco et al., 2011; Kametani and Hasegawa, 2018).
As mentioned above, insulin resistance causes production of
ROS via the activation of the AGE/RAGE pathway, inducing
various stress sensitive signaling pathways, such as NF-κB,
JNK/SAPK, p38 MAPK, and Akt pathway in particular (Rains
and Jain, 2011). Increased oxidative stress inactivates the Akt
pathway, concomitantly to downstream activation of GSK3 and
subsequent hyperphosphorylation of tau protein (Bloch-Damti
and Bashan, 2005; Hambright et al., 2015; Zhao et al., 2017; Ciotti
et al., 2020).

Insulin resistance is also involved in APP-amyloid β-protein
accumulation. APP-amyloid β-protein toxic fibrils, in turn,
impair insulin signaling by downregulating IRs (Lee et al.,
2013). Metal ions, such as zinc and copper bind to amyloid

β-protein peptides and catalyze the production of ROS, which
causes oxidative damage affecting both amyloid β-protein peptide
and surrounding biomolecules, such as proteins and lipids
(Cheignon et al., 2018). Both tau hyperphosphorylation and
amyloid β-protein accumulation contribute to the positive
feedback mechanism that exacerbates insulin/IGF resistance
through increased oxidative stress, neurotoxicity and synaptic
dysfunction (Lee et al., 2013).

Decreased Degradation of Amyloid
β-Protein Induced by Insulin Resistance
via IDE
Insulin is inactivated by IDE, also known as insulin protease
(Manolopoulou et al., 2009; Song et al., 2018). IDE is widely
distributed in many organs including liver, pancreas, brain
and in diverse cellular compartments (Hulse et al., 2009).
Accumulating studies have expanded the list of substrates and
potential physiological roles of IDE, which includes degradation
of multiple bioactive peptides, such as glucagon, IGF-2, and
amyloid β-protein (Tang, 2016).

Amyloid β-protein forms various oligomers, leading to
fibrils that then aggregate into plaques (Chen et al., 2017),
which interrupt normal brain functions. Furthermore, soluble
oligomeric forms of amyloid β-protein are the primary toxic
species (Haass and Selkoe, 2007; Selkoe and Hardy, 2016) that
have been shown to cause synaptic damage and neuronal cell
death in both an APP knock-out mouse model and post-mortem
human brains from patients with AD (Ding et al., 2019; Rolland
et al., 2020). IDE is able to degrade both extracellular and
intracellular amyloid β-protein, which protects against formation
of these toxic oligomers. In addition, IDE functions as a
“dead-end chaperone,” preventing formation of toxic α-synuclein
aggregates which can form a stable complex with amyloid β-
protein (Sharma et al., 2015). α-synuclein is implicated in the
pathophysiology of AD because high levels of α-synuclein are
detected in the CSF of patients with MCI and AD (Twohig et al.,
2018; Twohig and Nielsen, 2019).

Because insulin and amyloid β-protein are competing
substrates for IDE, IDE defects are not only involved in the
development of AD but also the basis for a strong association
between T2DM and AD. Hyperinsulinemia may downregulate
insulin uptake across the BBB and reduce levels of insulin
in the brain because of saturation at supraphysiological levels
(Reitz and Mayeux, 2014). This may result in decreased
levels of IDE (Abdul-Hay et al., 2011; Protzek et al., 2016;
Kang et al., 2017), causing decreased degradation of amyloid
β-protein and increased deposits of amyloid β-protein (Li
et al., 2018). In addition, increased levels of IDE are detected
in post-mortem human brains from patients with moderate
stage AD (Braak 3–4) whereas significantly reduced level
of IDE are found in severe AD (Braak 5–6) (Delikkaya
et al., 2019), suggesting that IDE is affected by insulin
deficiency and insulin resistance in the early and moderate
stages of AD. The development of IDE modulators may
be a novel therapeutic approach to both T2DM and AD
(Pivovarova et al., 2016).
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TABLE 1 | Various potential treatments for Alzheimer’s disease with insulin resistance.

Drug Classification Benefits

Anti-diabetic drugs Metformin Biguanide First-line medication for T2DM; anti-inflammation; ↓ Aβ aggregation

Liraglutide GLP-1 agonist ↑ Insulin secretion; ↓ Aβ accumulation and ↓ tau hyperphosphorylation

Intranasal insulin – Crosses BBB, improves cognitive functions and memory

Anti-inflammatory drugs Tolfenamic Acid Fenamate NSAIDs Anti-inflammation via inhibition of NF-κB pathway; cognition enhancement via↓
Aβ and tau phosphorylation

Mefenamic Acid Fenamate NSAIDs Anti-inflammation via inhibition of NLRP3 inflammasome; improve Aβ-induced
learning and memory impairments

Etanercept TNF-α inhibitors Anti-inflammation; ↓ Aβ to ↓ risk of AD

Antioxidant drugs Vitamin C and E Antioxidant ↓ Neuronal loss and Aβ; ↓ oxidative stress and tau-induced neurotoxicity

Thiazolidinediones (TZDs) Rosiglitazone – ↑ Insulin sensitivity; ↓ Aβ levels; improves cognitive functions

Pioglitazone – ↑ Insulin sensitivity; ↓ Aβ levels via downregulation of APP and BACE1

POTENTIAL TREATMENTS OF INSULIN
RESISTANCE IN AD

Potential drug therapies for AD based on the association between
insulin resistance and AD are listed in Table 1.

Anti-diabetic Drugs
Metformin, a biguanide antihyperglycemic agent which is
the first-line medication for T2DM, attenuates inflammation,
reduces risk of metabolic syndrome (Li et al., 2015) and may
decrease risk of dementia and improve cognitive function.
A meta-analysis showed that metformin was beneficial to diabetes
patients with dementia or AD (Lin et al., 2018). Interestingly,
T2DM patients with long-term use of metformin have been
reported to slightly increase the risk of AD (Imfeld et al.,
2012) due to metformin-induced vitamin B12 deficiency (Aroda
et al., 2016; Campbell et al., 2018). Vitamin B12 deficiency has
been reported to increase risk of AD, although the mechanism
behind this association is uncertain (Abyad, 2002; Health Quality
Ontario., 2013).

Liraglutide, a glucagon-like peptide-1 (GLP-1) receptor
agonist, is used to treat T2DM and obesity by increasing insulin
release from the pancreas as well as decreasing excessive glucagon
release (Femminella et al., 2019). Recent studies have indicated
that liraglutide may attenuate cognitive impairment. In vitro
investigation has shown that liraglutide regulates neuronal
insulin signaling and BACE-1 activity to suppress accumulation
of amyloid β-protein and hyperphosphorylation of tau protein
(Jantrapirom et al., 2020). Also, it prevents loss of brain
insulin receptors and synapses and reverses cognitive impairment
induced by amyloid β-protein oligomers in mouse hippocampi
(Batista et al., 2018).

Intranasal insulin provides a potential pharmacological
strategy to treat AD. Although there are different routes of
administration for insulin, such as subcutaneous, intramuscular,
and oral (Henkin, 2010), intranasal insulin has the advantage
of penetrating the BBB and accessing the CNS because
of the direct neuroanatomical connections between the
olfactory nerves and the brain (de la Monte, 2013) which
are beneficial for treating neurodegenerative and psychiatric
disease (Hanson and Frey, 2008). More and more clinical

studies have shown that intranasal insulin effectively
improves cognitive function and memory (Benedict et al.,
2008; Hallschmid et al., 2008; Krug et al., 2010), although
a newly released study contradicts this finding (Craft
et al., 2020). Thus, more direct experimental and clinical
evidence are needed to investigate the safety and efficacy of
intranasal insulin.

Anti-inflammatory Drugs
In 2020, 18% of agents in Phase III trials and 15% of
agents in Phase II trials targeted inflammation to treat AD
(Cummings et al., 2020). This is because a number of
epidemiologic studies have reported that anti-inflammatory
medication lowers the risk of cognitive impairment and AD.
Although the effect of non-steroidal anti-inflammatory drugs
(NSAIDs) in AD is under debate (Wang J. et al., 2015;
Zhang et al., 2018), fenamate NSAIDS have aroused people’s
attention. These compounds selectively inhibit the NLRP3
inflammasome, which is implicated in inflammatory diseases
including AD and T2DM, via the inhibition of volume-regulated
anion channels (VRACs). The anti-inflammatory effects of
two drugs in this class, tolfenamic acid and mefenamic acid,
showed benefits in a 3 × TgAD transgenic model of AD
(Daniels et al., 2016).

TNF is a key pro-inflammatory cytokine involved in insulin
resistance, systemic inflammation and upregulation of amyloid
β-protein, which further affects tau hyperphosphorylation (Clark
and Vissel, 2015, 2016). Considering the importance of TNF in
T2DM and AD pathogenesis, are TNF inhibitors a promising
approach to treat AD or AD with T2DM? Although insufficient
data are available, TNF inhibitors have been shown to produce
cognitive improvements and lower the risk of AD in clinical
trials of infliximab and adalimumab (Shi et al., 2011; Zhou
et al., 2020). Etanercept, a specific anti-TNF biological in wide
clinical use (Clark and Vissel, 2021), has been reported to
attenuate neuroinflammation and improve cognitive function
in murine models of traumatic brain injury (Chio et al., 2010)
and Japanese encephalitis virus (Ye et al., 2014) and in clinical
studies (Chen et al., 2010). However, further investigations to
evaluate the use and specificity of these agents for dementia needs
to be conducted.
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Antioxidant Drugs
Oxidative stress is involved in the pathogenesis of both AD
and T2DM. Vitamins C and E, potent antioxidants, are believed
to lower the risk of AD and dementia (Lam et al., 2016).
This hypothesis is supported by a cohort study which showed
a significant protective effect of combined vitamin C and E
supplements on cognitive functions in elderly men (Masaki et al.,
2000). Another study with 4,740 participants also showed that
long-term use of vitamin C and E supplements in combination
helped to reduce the incidence of AD (Zandi et al., 2004). In
addition, lower plasma levels of vitamin C and E were detected
in patients with MCI compared to controls (Rinaldi et al., 2003).
However, other studies indicated that vitamins C and E did not
reduce the risk of developing AD and vitamin E supplementation
had no significant effect on the amyloidotic phenotype if the
amyloid plaques were already deposited (Feng and Wang, 2012).

Thiazolidinediones (TZDs)
The peroxisome proliferator-activated receptor-γ (PPAR- γ),
highly expressed in adipose tissue, has a pivotal role in regulating
carbohydrate, protein, and lipid metabolism and inflammatory
responses (de la Monte, 2017). Thiazolidinediones (TZDs) are
synthetic PPAR- γ agonists and potent insulin sensitizers,
approved to treat T2DM. TZDs are now considered an attractive
treatment of AD because of their potential benefit in cognitive
function and memory (Khan et al., 2019). Here, we discuss two
prototype TZDs—rosiglitazone and pioglitazone.

Rosiglitazone not only increases insulin sensitivity but also
regulates APP processing, leading to reduced plasma amyloid β-
protein levels (Pardeshi et al., 2017). Rosiglitazone upregulates
IDE levels and downregulates amyloid β-protein levels in a mixed
transgenic APPSwe/PS1 mouse model exhibiting both AD and
T2DM (Li et al., 2018). Patients with mild to moderate AD
in clinical trials were found to significantly improve cognitive
function when administrated rosiglitazone (Watson et al., 2005;
Risner et al., 2006). However, a phase III trial of rosiglitazone
showed no significant effect on cognition (Gold et al., 2010) and
rosiglitazone had no effect on the risk of dementia in T2DM
patients (Tseng, 2019).

Pioglitazone has been found to increase insulin sensitivity,
downregulate levels of hippocampal amyloid β-protein oligomer
and decrease pro-cognitive effects in insulin-resistant rats (Yin
et al., 2013; Gad et al., 2015). Furthermore, pioglitazone improved
cognitive performance in some patients with AD and T2DM
(Hanyu et al., 2009; Sato et al., 2011). However, the adverse effects

of TZDs, including edema and congestive heart failure, are major
limitations for their use in the treatment of dementia and AD
(Campbell et al., 2018).

DISCUSSION

AD is a well-known neurodegenerative disorder, which afflicts
millions of people worldwide and places a huge financial burden
on society (Jia et al., 2018). For decades, treatments targeting
amyloid β-protein based on the amyloid-cascade hypothesis and
oligomer-cascade hypothesis have failed (Morris et al., 2014,
2018; Panza et al., 2019). The FDA’s approval of the amyloid β-
antibody Aducanumab reflects a promising achievement in AD
therapy despite uncertainty about this drug’s clinical benefits and
adverse reactions. Apart from amyloid targets, in 2020, according
to the FDA registry, there were over 50 agents in clinical trials
targeting tau protein, inflammation and metabolism (Cummings
et al., 2020). Therefore, novel approaches based on recent insights
into this disease are needed.

The role of insulin in AD pathogenesis has only recently
gained attention. Insulin resistance may not be the primary
cause of AD but it definitely exacerbates AD progression
(Clark and Vissel, 2018). In this review, we summarize the
mechanisms whereby insulin resistance worsens amyloid β-
protein accumulation and tau hyperphosphorylation, including
activation of neuroinflammation, activation of oxidative stress
and downregulation of IDE. We highlight how insulin resistance
and AD form a feed-forward loop in which insulin resistance
increases the risk of AD and AD, in turn, exacerbates insulin
resistance. Targeting insulin resistance may be a breakthrough
strategy to treat AD and may avoid the pitfalls of past treatments
targeting amyloid β-protein and tau protein. This review adds
to the literature linking insulin resistance and AD by extending
insights in this area to update the list of drug candidates that
can be repurposed for AD. Further research into the mechanism
of the metabolic drivers of AD is needed to identify novel
therapeutic approaches for this devastating disease.
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Alzheimer’s disease (AD) is characterized by memory loss and cognitive decline.
Additionally, abnormal extracellular amyloid plaques accumulation and nerve damage
caused by intracellular neurofibrillary tangles, and tau protein are characteristic of
AD. Furthermore, AD is associated with oxidative stress, impaired mitochondrial
structure and function, denormalization, and inflammatory responses. Recently, besides
the amyloid β hypothesis, another hypothesis linking AD to systemic diseases has
been put forth by multiple studies as a probable cause for AD. Particularly, type
2 diabetes mellitus (T2DM) and its features, including hyperinsulinemia, and chronic
hyperglycemia with an inflammatory response, have been shown to be closely related
to AD through insulin resistance. The brain cannot synthesize or store glucose, but
it does require glucose, and the use of glucose in the brain is higher than that in
any other organ in the mammalian body. One of the therapeutic drugs for T2DM,
dipeptidyl peptidase-4 (DPP-4) inhibitor, suppresses the degradation of incretins,
glucagon-like peptides and glucose-dependent insulinotropic peptide. Sodium-glucose
cotransporter 2 (SGLT2) inhibitors, recently used in T2DM treatment, have a unique
mechanism of action via inhibition of renal glucose reabsorption, and which is different
from the mechanisms of previously used medications. This manuscript reviews the
pathophysiological relationship between the two diseases, AD and T2DM, and the
pharmacological effects of therapeutic T2DM drugs, especially DPP-4 inhibitors, and
SGLT2 inhibitors.

Keywords: insulin signaling, insulin resistance, Alzheimer’s disease, type 2 diabetes mellitus, DPP-4 inhibitor,
SGLT2 inhibitor

INTRODUCTION

Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) are two of the most common
disorders affecting older adults. AD occurs in 60–80% of the elderly population as the most
common neurocognitive disorder and type of dementia. Clinically, AD is characterized by
progressive memory loss and decreased cognitive function, leading to premature death several years
after diagnosis. The most common pathological features of AD are the abnormal accumulation
of amyloid plaques due to the aggregation of amyloid β (Aβ) peptides and neurofibrillary tangles
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(NFT) consisting of hyperphosphorylated tau protein. Recent
studies have revealed that AD is associated with extracellular
amyloid plaques, intracellular NFT, neuronal loss, and cellular
damage. It is caused by oxidative stress, abnormal mitochondrial
structure and function, inflammation, and aging (Kandimalla
et al., 2017). This injury has also been associated with conditions
related to insulin resistance, including hyperinsulinemia, chronic
hyperglycemia, inflammation, and vascular changes. It was also
confirmed that approximately 80% of AD patients are affected
by insulin resistance or T2DM (de la Monte, 2014). This allows
the mechanical relationship between T2DM and AD to be
better understood. Research results have shown that AD can be
regarded as a metabolic disorder with impaired brain glucose
uptake and energy production. Therefore, studies on the causes
of AD, based on the potential neuroprotective effects of anti-
diabetic drugs and their direct and indirect mechanisms of action,
are ongoing (Boccardi et al., 2019). In this review, we provide a
summary of the mechanisms that link AD and T2DM; thereafter,
we focus on the principal drugs of T2DM and explore their
potential as suitable candidates for the treatment of AD.

INSULIN AS A MEDIATOR OF T2DM

The worldwide incidence of diabetes, which is a chronic
metabolic disorder, is rapidly increasing. Diabetes can be
classified as types 1 and 2. T2DM, which accounts for 95% of
all cases of diabetes, is characterized by hyperinsulinemia and
insulin resistance (Taylor, 2012). Another feature of T2DM is
the formation of amyloid polypeptides, which induce pancreatic
β cell dysfunction (Marzban et al., 2003). Insulin resistance and
amyloid peptides reduce the absorption of blood glucose and
ultimately induce chronic hyperglycemia, one of the pathological
features of T2DM (Chatterjee and Mudher, 2018). Maintaining
the insulin secretory function and ameliorating insulin resistance
are important in the management of T2DM.

Insulin Signaling
Insulin is a hormone secreted by the β cells of the pancreas in
response to high glucose levels. The binding of insulin to the
insulin receptor (IR) initiates insulin signaling.

During insulin binding, IR auto-phosphorylates tyrosine
residues in the intracellular portion of the receptor and then
rapidly phosphorylates the tyrosine residues of C substrates 1 to
4 (IRS1-4; Lavan et al., 1997). IRS converts insulin via several
pathways, the most well-known of which is the phosphoinositide
3-kinase (PIK3)/protein kinase B (AKT)/mechanistic target of
rapamycin (mTOR) pathway of IRS1. When the serine residues
of IRS1 and IRS2 are phosphorylated, these get separated
from the IR, tyrosine phosphorylation of IRS is reduced,
and the downward regulation of insulin signal is inhibited
(Mothe and Van Obberghen, 1996).

In addition, insulin maintains glucose homeostasis by
suppressing glycogen synthase kinase-3 β (GSK3-β), which
regulates glucose production and glucose consumption by muscle
and adipose tissue after passing through the glucose transporter
type 4 (GLUT4; Guo, 2014; Roberts et al., 2014).

Insulin Resistance
Insulin resistance indicates a reduced function of insulin in
target tissues, such as the liver, muscles, and adipose tissue. The
ability of IRS to get activated and transmit downstream signals
is diminished in insulin-responsive tissues, leading to impaired
insulin secretion and insulin dysfunction, which are major causes
of diabetes (Leng et al., 2004; Guo, 2014).

Insulin resistance in skeletal muscle reduces glucose intake,
making it difficult to regulate muscle glycogen synthesis (Hunter
and Garvey, 1998). This is considered to occur due to the
suppression of GLUT4 gene by excessive free fatty acids. High
saturated fatty acid levels, which can suppress normal IRS1
tyrosine phosphorylation and induce insulin resistance in skeletal
muscle, show a correlation with skeletal muscle insulin activity
(Roden et al., 1996; Pan et al., 1997). Recent studies investigating
the deformation of O-linked-β-N-acetylglucosamine (OGlcNAc)
protein found that OGlcNAc transferase and β-anomalous
variants of N-acetylglucosamine [mediated by O-GlcNAcase
(OGA)] are IRS Ser/Thr residues. An important function of the
liver is to produce and store glycogen in a glucose reservoir
that is readily available to the body (Ma and Hart, 2013).
Glucose production during normal postprandial state with
glycogenolysis is sufficient to meet the energy needs of the brain
and other body tissues. However, insulin resistance results in
a systemic insulin resistance phenomenon (Beck-Nielsen et al.,
2002; Bugianesi et al., 2005) which causes the body tissues to be
deprived of glucose.

INSULIN IN THE BRAIN

Insulin receptors are expressed in all brain cells, but the
differences in expression levels vary considerably from region to
region and are most visible in the cerebral cortex, striatum, and
cerebellum. This suggests that insulin signaling is important in
the brain and plays various roles (Arnold et al., 2018). Insulin
and insulin-like growth factor (IGF) signaling mechanisms in
the brain are important for maintaining synaptic plasticity, and
function (Boucher et al., 2014). When insulin binds to an IR,
multiple tyrosine residues are auto-phosphorylated to activate
IRS1 and IRS2, which mediate downstream signaling through
PIK3. This PIK3 activates AKT and suppresses activity at serine
9 residues via GSK3-β phosphorylation, leading to glycogen
synthesis (Avila et al., 2012). The PIK/AKT pathway stimulates
excitatory and inhibitory cell membrane receptors to regulate
synaptic plasticity, enhance N-Methyl-D-aspartic acid (NMDA)
receptor-mediated long-term potentiation and neurotransmitter
activity, and is important for learning and memory. Additionally,
the PIK/AKT pathway increases cortical glucose metabolism
(Farrar et al., 2005; Bradley et al., 2012). However, in an abnormal
state, GSK3-β is overactivated and tau is phosphorylated; this
hyperphosphorylated tau gets aggregated and entangled in nerve
fibers (Avila et al., 2010). GSK3-β also acts as a mediator of
cell death, increasing the production of Aβ (Qu et al., 2014;
Meng et al., 2020).

Insulin activates the mitogen-activated protein kinase
(MAPK) pathway, leading to Ras activation and activation of
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rapidly accelerated fibrosarcoma (Raf), MAPK/ERK kinase
(MEK), and extracellular signal-regulated kinase (ERK) in the
protoplasmic membrane (Zhang et al., 2011). Although the
direct role of the MAPK pathway components that mediate AD
pathology has not yet been clarified, recent studies have reported
that ERK plays an important role in synaptogenesis, learning,
and memory function and has neuroprotective functions
(Thiels and Klann, 2001).

Epidemiological studies and neuroimaging studies of the brain
have indicated that insulin and IGF signaling pathways are
important for the preservation and maintenance of learning and
memory processes, and it can be confirmed that the function of
learning and memory is improved in AD patients with intranasal
insulin injection (Benedict et al., 2007).

AD CAUSED BY INSULIN RESISTANCE
IN THE BRAIN

Alzheimer’s disease can be classified into two clinical subtypes:
familial AD (fAD) and sporadic AD (sAD). Although the two
types of disease (fAD and sAD) exhibit similar pathological
phenotypes such as presence of plaques, tangles, synaptic damage,
and neuronal loss, the factors that induce the neurodegenerative
process are completely different. Pathological accumulation
in fAD occurs due to the presence of autosomal dominant
mutations in one of the three genes: amyloid protein precursor
(APP), presenilin-1, or presenilin-2 (Querfurth and LaFerla,
2010). However, the cause of sAD, which accounts for the
majority of AD cases, is complex and multifactorial based
on the combination of genetic factors, epigenetic factors,
and lifestyle-related factors. Moreover, most sAD patients are
elderly individuals with various comorbidities (e.g., stroke,
stress, diabetes, seizures, osteoporosis, and kidney disease)
that can significantly increase the complexity underlying the
pathogenesis of sAD (Doraiswamy et al., 2002; Magaki et al.,
2014; Aubert et al., 2015).

Many recent studies have confirmed that insulin signaling
impaired due to insulin resistance also occurs in AD (Talbot
et al., 2012). In fluorodeoxyglucose (FDG)–positron emission
tomography (PET) studies of the brains of patients with “early-
stage” AD, AD was referred to as “type 3 diabetes” because of
reduced glucose intake (de la Monte and Wands, 2008).

The important role of insulin in the peripheral system is
well known and has been widely studied, but studies on insulin
function in the central nervous system are currently underway.
Previously, it was believed that due to the size of insulin, insulin
could not pass through the brain-blood barrier (BBB), and the
brain was considered to be insulin-independent; however, some
studies have shown that IRs are expressed in the brain, and there
are several mechanisms to support the presence of insulin (Banks,
2004; Gray et al., 2014).

Recent studies have established that insulin is transported
through the BBB via carrier-mediated, saturated, and
temperature-sensitive active processes. All types of brain
cells, including neurons, have insulin signaling pathways,
and insulin regulates the concentration of neurotransmitters

such as acetylcholine, recovery, differentiation, proliferation,
regeneration, and neuronal cell death (de la Monte et al., 2003;
Goberdhan and Wilson, 2003; Russo et al., 2005).

Studies have shown that ICR mice on a long-term high-fat
diet (HFD) developed T2DM with insulin resistance in both
the body and brain, along with Alzheimer’s pathologies such as
cognitive deficits, Aβ accumulation, and hyperphosphorylated
tau. Aβ oligomers remove IRs in the protoplasmic membrane,
and insulin also affects Aβ accumulation and systemic tau
phosphorylation (Zhao et al., 2008).

The insulin-degrading enzyme (IDE) is also known to degrade
other substrates such as Aβ (Farris et al., 2003). When insulin
levels increase, IDE expression is activated, and it inhibits long-
term insulin activity. However, in an insulin-resistant state,
because IDE is used to remove insulin, senile plaques are formed
in which IDE cannot lower Aβ (Shiiki et al., 2004).

GSK3-β, which is the most widely studied tau kinase, is also
involved in Aβ production (Jeon et al., 2015). A study showed
that GSK3-β, which is a multifunctional Ser/Thr kinase affected
by tau phosphorylation and aggregation inhibition, improved
learning and memory and reduced tau phosphorylation in an
AD transgenic mouse model (Farr et al., 2016). In addition,
GSK3-β expression was suppressed in an AD-pathology mouse
model. In particular, intranasal insulin injection has been shown
to help improve memory by maintaining serum insulin and
glucose levels (Benedict et al., 2004), suggesting that insulin is a
therapeutic target for AD.

In addition to PI3K/AKT and Ras/Raf/MAPK insulin
signaling pathways, mTOR and its downstream targets that
regulate neuronal survival and nutrient sensing play roles in AD
pathogenesis; however, these roles are not well-defined. mTOR
regulates protein synthesis by phosphorylating the key substrates
of the translational machinery, namely, the eukaryotic initiation
factor 4E-binding protein and p70S6 kinase. Rapamycin inhibits
mTOR in vivo and halts cellular growth and proliferation
(Showkat et al., 2014). Also, genetic inhibition of mTOR reduces
the level of memory loss, improves cognitive function and
reduces tan and Aβ deposits (Kaeberlein and Galvan, 2019). It is
hypothesized that in an insulin-resistant state, these downstream
signaling pathways are compromised, leading to increased levels
of Aβ oligomers and hyperphosphorylated tau. These increased
levels of Aβ oligomers and hyperphosphorylated tau occur not
only due to a dysregulation of downstream kinases but also due
to an impairment of autophagic clearance that arises as a result of
an imbalance of the mTOR and autophagy pathways. Autophagic
dysfunction which is recently gaining attention feature of AD
causes the progressive accumulation of toxic proteins and
eventually leads to neuronal death (Orr and Oddo, 2013).

LINKING AD AND T2DM

Alzheimer’s disease, a degenerative brain disease, is the most
common cause of dementia, with clinical features including
gradual decline of cognitive function, amnesia, behavioral
and personality changes, and pathological features including
extracellular Aβ plaques and intracellular NFT intraneuronal
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deposition, tau protein degeneration, and severe neuronal loss
in the brain tissue (Saxena, 2010). Most AD treatments have
focused on Aβ but have failed to look at AD from various
perspectives, for example, relating AD to obesity and T2DM
(Kang et al., 2017). Considering the relationship between AD and
T2DM, it might be possible to treat AD with T2DM drugs. For
instance, Thiazolidinedlones (TZDs), such as pioglitazone and
rosiglitazone, are PPARγ agonists used as anti-diabetic drugs,
that induce a decrease in plasma free fatty acid concentration
and fasting hyperglycemia through an insulin-reducing effect.
A recent pioglitazone-related study found that it may be of
therapeutic benefit, showing a significant reduction in Aβ

and tau pathology measured in cerebral blood flow from
patients with early-stage and mild to moderate AD patients
(Pérez and Quintanilla, 2015).

According to the Mayo Clinic Alzheimer Disease Patient
Registry, 80% of patients with AD have impaired glucose
tolerance or diabetes (Janson et al., 2004). Epidemiological studies
have shown that T2DM induces cognitive impairment and that
T2DM patients are 1.5−2 times more likely to be diagnosed with
dementia than healthy individuals are (Biessels et al., 2014). There
is also evidence of cellular insulin resistance or insulin deficiency
in the brains of patients with AD, including non-diabetic patients
(Vijan, 2015).

Type 2 diabetes mellitus is a chronic metabolic disorder
that can damage blood vessels, nerves, eyes, and kidneys
and causes serious complications. Typical symptoms of T2DM
associated with insulin dysfunction, including hyperglycemia,
insulin resistance, and relative insulin deficiency, also induce the
accumulation of Aβ in the brain, contributing to AD pathogenesis
(Ramos-Rodriguez et al., 2017).

Several pathogenic mechanisms overlap the two diseases,
including dysregulation of glucose and insulin signals, increased
inflammation, Aβ deposition, mitochondrial dysfunction, and
oxidative stress (Liu et al., 2011). Insulin resistance and deficiency
are increased by abnormally creating insulin signaling through
PI3K/Akt/GSK3-β signals; GSK3-β activation is an important
component of NFT and can lead to hyperphosphorylated tau
(Zheng et al., 2015). In addition, IDE associated with insulin
signaling plays an important role in insulin and Aβ clearance,
so that impaired IDE function can cause AD and T2DM
(Ramos-Rodriguez et al., 2017). IRS1 plays an important role
in transferring insulin and IGF-1 receptor signals to signal
adapter proteins and the intracellular pathway. PI3K/AKT kinase
pathway and IRS1 dysfunction causes AD and T2DM (illustrated
in Figure 1).

AD AND T2DM DRUGS

Expressing Organs and Function of
Dipeptidyl Peptidase-4
When food is ingested, a series of hormones are secreted by
epithelial cells of the small intestine to increase insulin secretion.
When glucose is orally administered, insulin secretion from
the pancreas increases, and this phenomenon is called the
incretin effect. A typical incretin is an endogenous peptide

that is mainly synthesized and secreted by enteroendocrine
L cells into the gastrointestinal peptide hormone (GLP-1).
Physiologically, it promotes β cell proliferation, improves β cell
function, decreases β cell apoptosis, increases insulin secretion,
and regulates glucose homeostasis (Graaf et al., 2016; Keshava
et al., 2017). Glucagon-like peptide-1 receptor (GLP-1R) is widely
expressed in the hippocampus, hypothalamus, cortex, nucleus
basalis of the Meynert, choroidal plexus, and nucleus of the
solitary tract (Erreger et al., 2012; Yildirim Simsir et al., 2018).
This factor, which is overexpressed in the hippocampus of mice,
also affects neurite growth, learning, and memory (McClean
et al., 2011). In addition, GLP-1 analogs and GLP-1R agonists
administered peripherally or centrally reduce Aβ deposition,
prevent tau and NFT protein hyperphosphorylation, and have a
neuroprotective effect against rodent AD-like neurodegeneration
(Hölscher, 2018). There have also been reported to be effective
for maintaining synaptic plasticity and learning and memory
(McClean et al., 2011; Li et al., 2012; Xiong et al., 2013; McClean
and Hölscher, 2014; Candeias et al., 2015; Wang et al., 2016).

However, GLP-1 has a short duration of reaction time as it
is rapidly degraded by dipeptidyl peptidase-4 (DPP-4) present
in plasma and other body fluids, such as cerebrospinal fluid
(Gong et al., 2014).

Dipeptidyl peptidase-4 is a type 2 transmembrane
glycoprotein with various functions. Usually, the substrates
of DPP-4 are peptides with a size of 80 amino acids or less,
and there are more than 35 neuropeptides and chemokines,
including GLP-1, GLP, neuropeptide Y, peptide YY, substance P,
and stromal cell-derived factor 1, that serve as substrates for this
peptide. It is found in epithelial cells, immune cells, including T
lymphocytes, various cells, such as vascular endothelial cells, and
almost all tissues, including kidney, liver, adrenal gland, skeletal
muscle, pancreas, lung, small intestine, bone marrow, and spleen
(Chen et al., 2019).

Expressing Organs and Function of
Sodium-Glucose Cotransporter 2
Usually, 180 g of glucose per day is filtered by the kidneys
and reabsorbed in the proximal tubules. Glucose reabsorption
occurs via sodium-glucose cotransporter 2 (SGLT2) present
mainly in the kidney, which comprises SGLT2 located in front
of the proximal tubule and sodium-glucose cotransporter 1
(SGLT1) in the latter half. In a normal blood glucose level state,
SGLT2 is responsible for approximately 97% of the reabsorption
of filtered glucose, whereas and SGLT1 is responsible for
approximately 3%.

Glucose reabsorption begins with active transfer of Na+
the extracellular region by Na+/K+ ATPase in the proximal
tubule. The electrochemical force generated while moving Na+
extracellularly causes Na+ and glucose to move intracellularly via
SGLT. One Na+ and glucose molecule move together through
SGLT2, and two Na+ and glucose molecules move together
through SGLT1. When the glucose concentration increases by the
glucose transferred into the cell, glucose is reabsorbed into the
bloodstream via the glucose transporter based on the difference
in glucose concentration between the cell and epilepsy.
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FIGURE 1 | Insulin signaling in the normal condition brain and AD brain. In insulin-resistant state induced by T2DM, as insulin signaling is impaired, insulin is unable
to bind to an insulin receptor, and multiple tyrosine residues are not auto-phosphorylated to activate insulin receptor substrate 1, which mediates downstream
signaling through phosphoinositide 3-kinase. Therefore, GSK3-β is overactivated and tau is phosphorylated.

Recently, there have been increasing reports of the presence
of SGLTs in the mammalian central nervous system (Yu
et al., 2010, 2013). The receptors for SGLT1 are expressed in
CA1, CA3 (regions 1 and 3 of hippocampal cornu ammonis),
and the dentate gyrus hippocampal subfields, and SGLT2
has been reported to be expressed in the hippocampus,
cerebellum, and blood-hippocampal barrier endothelial cells
(Poppe et al., 1997; Enerson and Drewes, 2006; Shah et al., 2012;
Jurcovicova, 2014).

Pharmacological Role of DPP-4 and
SGLT2 Inhibitors
Dipeptidyl peptidase-4 inhibitors (DPP-4is) include sitagliptin,
vildagliptin, saxagliptin, linagliptin, alogliptin, and gemigliptin.
As hormones that increase insulin secretion are degraded
by DPP-4, DPP-4is can be used to suppress this hormone
degradation. In other words, the principle of DPP-4 is the
increase in insulin secretion following food intake and the period
of insulin secretion time can be improved, and blood glucose
levels can be additionally improved by suppressing glucagon
secretion without inducing hypoglycemia.

The SGLT2 inhibitors (SGLT2is) include dapagliflozin,
canagliflozin, empagliflozin, ipragliflozin, tofogliflozin,
luseogliflozin, and ertugliflozin. These inhibitors reduce
glycated hemoglobin level by 0.3–0.9% and fasting blood glucose
levels by 18–36 mg/dl, regardless of use of other drugs, and
decrease body weight as well as blood pressures due to drug
effects on glucosuria and natriuresis. In addition, since these have
an insulin-independent hypoglycemic effect, SGLT2is can reduce
the blood glucose level even in an environment where the insulin
secretory capacity is decreased. By increasing the excretion

of glucose into the urine, insulin resistance can be improved,
and by improving glucose toxicity, the function of pancreatic
β cells can be maintained. These are diabetic treatment agents
with a low risk of hypoglycemia because they facilitate the
excretion of glucose in a hyperglycemic state without affecting
insulin secretion.

Regulation of DPP-4is in the AD Brain
Glucagon-like peptide-1 signaling in the brain regulates glucose
metabolism. Inhibitors of DPP-4 improve neuronal insulin
resistance by restoring insulin-induced phosphorylation
of neuronal IR, IRS1 phosphorylation, and AKT/PKB-
Ser phosphorylation, resulting in the brain mitochondrial
dysfunction. Previous studies on diabetes-related AD rat models
have demonstrated that GLP-1 positively affects learning and
memory (Chen et al., 2012). In addition, a recent study has
shown that DPP4is can increase the levels of active GLP-1 in
the brain and improve memory behaviors in AD mice models
(D’Amico et al., 2010). These have also been shown to improve
spatial learning and memory ability and protect synaptic proteins
by increasing GLP-1 and GLP-1R expression levels in the
hippocampus and cortex of AD mice (Pipatpiboon et al., 2013).
Cognitive function was improved as a result of the administration
of DPP-4is and quercetin (3,3′,4′,5,7-pentahydroxyflavone)
found in vegetables and fruits which is one of the major groups
of polyphenols with effects on inflammation, diabetes and the
nervous system in a study (Babaei et al., 2018; Li et al., 2019),
and DPP-4is was shown to ameliorate memory impairment,
increase GLP-1 levels in the brain which acts as a neuroprotective
agent (Holst et al., 2011) and could lead to improved brain
and hippocampal mitochondrial function and reduced brain
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TABLE 1 | Research of DPP-4 inhibitors in AD models.

Drug name Drug type Studies in AD models

Dipeptidyl peptidase-4
Inhibitors

Sitagliptin
Vildagliptin
Saxagliptin
Linagliptin
Alogliptin
Gemigliptin

DPP-4 i improved spatial learning and memory ability and protected synaptic proteins by increasing GLP-1 and GLP-1R
expression levels in the hippocampus and cortex of the brain in AD mice

Cognitive function was improved as a result of administration of DPP-4 i and quercetin

DPP-4 i ameliorated memory impairment, increased GLP-1 level in the brain, significantly reduced nitrosative stress,
inflammation hallmarks, and Aβ deposits

DPP-4 i significantly protected against Aβ-induced cytotoxicity, and inhibited the activation of GSK3-β and tau
hyperphosphorylation by restoring insulin downstream signaling. DPP-4 i ameliorated Aβ-induced mitochondrial
dysfunction and intracellular ROS generation, and upregulated Sirt1 expression

DPP-4 i showed a time-dependent improvement in memory retention and AD-associated proteins such as tau
phosphorylation were decreased in the hippocampus with DPP-4 i administration

The combination of DPP-4i and memantine could reduce the expression of APP, and phosphorylated tau protein

DPP-4 i could alleviate cognitive deficits in 3xTG AD mice. It improved incretin levels in the brain and reduced Aβ, tau
phosphorylation, and neuroinflammation

MDA (Pintana et al., 2013), and significantly reduce nitrosative
stress, inflammation hallmarks, and Aβ deposits (D’Amico
et al., 2010; Kosaraju et al., 2013a, 2017). These inhibitors
showed a time-dependent improvement in memory retention
and dose-dependent attenuation of Aβ, tau phosphorylation,
and inflammatory markers, and AD-associated proteins were
decreased in the hippocampus following DPP-4is administration
(Kosaraju et al., 2013b; Ma et al., 2018). The combination of
DPP-4i and memantine could reduce the expression of APP
and phosphorylated tau protein (Khalaf et al., 2019). Inhibitors
of DPP-4 alleviated cognitive deficits in 3xTG AD mice. These
improve incretin levels in the brain and reduce Aβ deposition, tau
phosphorylation, and neuroinflammation (Thomas et al., 2008)
and can significantly protect against Aβ-induced cytotoxicity, and
inhibit the activation of GSK3-β and tau hyperphosphorylation
by restoring downstream insulin signaling. Inhibitors of DPP-
4 ameliorated Aβ-induced mitochondrial dysfunction and
intracellular reactive oxygen species (ROS) generation and
upregulated Sirt1 expression (Kosaraju et al., 2017). HFD rats
had brain mitochondrial dysfunction as shown by increased ROS
production, mitochondrial depolarization, and mitochondrial
swelling. In the mitochondria, it has been shown that increased
levels of ROS could cause the opening of the inner membrane
anion channel (IMAC), thus leading to mitochondrial membrane
depolarization (Zorov et al., 2006). The depolarization of
mitochondria could also lead to the dysfunction of mitochondria
to produce ATP synthesis (Aon et al., 2006). Furthermore,
increased ROS levels could play a role in the cognitive decline
observed in HFD rats (Table 1 for a summary, illustrated in
Figure 2).

Regulation of SGLT2is in the AD Brain
Inhibitors of SGLT2 not only improve peripheral insulin
sensitivity and reduce body weight (Xu et al., 2017) but also
improve brain mitochondrial function and insulin signaling,
and reduce cell death. Furthermore, SGLT2is prevent cognitive
decline and protect synaptic plasticity in the hippocampus
(Sa-Nguanmoo et al., 2017). Inhibitors of SGLT2 reduced
the accumulation of Aβ in the cortical region of AD-
T2DM mice (APP/PS1xdb/db mice) which is a genetically

diabetic model of T2DM and showed the same effect on
the amount of tau induced pathological cerebral atrophy
(Wiciński et al., 2020). SGLT2is-mediated mTOR inhibition,
through continuous loss of glucose in the urine, routinely
restores a reliable, overnight catabolic-fasted state in older,
inactive individuals and re-establishes the benefits associated
with circadian catabolic/anabolic metabolism (e.g., reactivation
of the endo-lysosomal pathway through inhibition of mTOR),
removal and replacement of dysfunctional organelles/proteins,
and lowering of blood pressure through mTOR-mediated
modulation of sympathetic tone. Unrestrained chronic mTOR
activation may be responsible for sustaining metabolic and
mitochondrial dysfunction in AD, driving the breakdown of

FIGURE 2 | Effects of DPP-4 inhibitor in the AD brain. During DPP-4 inhibitor
treatment, GLP-1 increases and insulin is secreted, which improves insulin
resistance and mitochondrial function in the brain. Therefore, cognitive
function and learning and memory ability are improved.
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TABLE 2 | Research of SGLT2 inhibitors in AD models.

Drug name Drug type Studies in AD models

Sodium-glucose
cotransporter 2
inhibitors

Dapagliflozin
Canagliflozin
Empagliflozin
Ipragliflozin
Tofogliflozin
Luseogliflozin
Ertugliflozin

SGLT2 i not only improved peripheral insulin sensitivity and reduced increasing of body weight, but also improved brain
mitochondrial function, insulin signaling, and reduction of cell death

SGLT2 i prevented cognitive decline and protect synaptic plasticity in the hippocampus

SGLT2 i reduced the accumulation of Aβ in the cortical region of Aβ precursor protein (APP)/PS1xdb/db mice and
showed the same effect on the amount of tau pathological cerebral atrophy

SGLT2 i restored mTOR signaling through mTOR inhibition and prevented the progression of the pathology of AD

SGLT2 i physiologically elevates blood ketone bodies such as β-hydroxybutyrate, which can modulate NLRP3
inflammasome-IL-1β signaling, and a key pathologic pathway in AD

SGLT2 i not only ameliorated albuminuria, and glomerular injury in db/db mice but also significantly prevented the
impairment of cognitive function in db/db mice, which was associated with the attenuation of cerebral oxidative stress,
and the increase in cerebral brain-derived neurotrophic factor

SGLT2 i seems to be attributed to the attenuation of oxidative stress and since BDNF, the effect of SGLT2 i treatment
promotes memory, and survival of neurons

FIGURE 3 | Effects of SGLT2 inhibitor in the AD brain. With SGLT2 inhibitor, insulin sensitivity and mTOR signaling in the brain are improved, as excess glucose from
insulin resistance is filtered out by the kidneys.

the BBB via endothelial cell dysfunction, as well as driving
the hyperphosphorylation of tau, and formation of amyloid
plaques in the brain (Mueed et al., 2018). These inhibitors
can restore mTOR signaling through mTOR inhibition and
prevent the progression of AD pathology (Esterline et al., 2020).
In addition, SGLT2is physiologically elevates blood ketone bodies
such as β-hydroxybutyrate (Kim et al., 2019), which can modulate
NLRP3 inflammasome-IL-1β signaling (Kim et al., 2020), a key
pathologic pathway in AD (Heneka et al., 2013). Decreased blood
glucose levels were seen in db/db mice after 10 weeks of treatment
with SGLT2is for T2DM. These inhibitors not only ameliorated
albuminuria and glomerular injury in db/db mice but also
significantly prevented the impairment of cognitive function,
which was associated with the attenuation of cerebral oxidative
stress and increase in cerebral brain-derived neurotrophic factor
level (Lin et al., 2014). SGLT2is treatment significantly attenuated
cerebral oxidative stress and DNA oxidative damage in db/db
mice, as shown by the reduction of cerebral superoxide and

8-OHdG, and this attenuation of cerebral oxidative stress was
associated with the reduction of cerebral NADPH oxidase
subunit. Therefore, the improvement of cognitive function by
SGLT2is seems to be attributed to the attenuation of oxidative
stress. Moreover, the effect of SGLT2is treatment on cerebral
BDNF, since BDNF, a key protein promoting memory and
survival of neurons, is significantly reduced in diabetic patients,
and diabetic animals including db/db mice and the decrease in
cerebral BDNF is shown to be associated with cognitive decline
(Lin et al., 2014; Table 2 for a summary, illustrated in Figure 3).

Clinical Evidence in Therapeutic Effects
of DPP-4i and SGLT2i on Dementia
Majority of reports regarding the effects of anti-diabetic
agents on dementia have been investigated from retrospective
studies. In 240 elderly patients with T2DM affected by mild
cognitive impairment (MCI), 2 years treatment group of DPP-4i
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significantly improve cognitive functions measured by mini-
mental state examination (MMSE), compared to the sulfonylurea
which increases endogenous release of insulin from pancreatic β

cells group (Rizzo et al., 2014). A prospective, non-randomized
study showed that sitagliptin therapy prevented from the decline
of MMSE during 6 months in old T2DM (Isik et al., 2017).
Using a health insurance claim database in Korea, DPP-4i use
demonstrated a significant 46% decrease in AD development
among elderly T2DM (Kim et al., 2018). Although there are
few data on SGLT2i, one randomized clinical trial reported no
changes in MMSE after 12-month treatment of incretins vs.
SGLT2i (Perna et al., 2018). Further larger and well-designed
clinical studies are needed to evaluate the neuroprotective effects
of DPP-4i and SGLT2i.

CONCLUSION

Recent studies have identified the key mechanisms by which
the brain becomes resistant to insulin in AD and how impaired
insulin signaling in AD is linked to memory impairment (Vieira
et al., 2018). In this review, we describe the connections between
AD and T2DM. Although the reason why many T2DM patients
develop AD is not clear, the two diseases are associated with
insulin resistance. Significant effort is required to identify the
common pathological and molecular mechanisms between AD

and T2DM, which will help better understand the onset and
development of both diseases. Therefore, novel approaches to
identify biomarkers for detecting early-stage of AD will likely
increase the efficacy of anti-diabetic agents and allow treatment
before severe neuronal dysfunction occurs in the AD brains.
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Altered Gut Microbial Load and
Immune Activation in a Drosophila
Model of Human Tauopathy
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Department of Biology, Washington and Jefferson College, Washington, PA, United States

Tau is a microtubule-associated protein that stabilizes the neuronal cytoskeleton. In
the family of neurodegenerative diseases known as tauopathies, including Alzheimer’s
disease (AD), frontotemporal dementia (FTD), and chronic traumatic encephalopathy
(CTE), abnormal tau aggregation destabilizes microtubule structure, contributing to a
cascade of cellular processes leading to neuronal cell death. The gut microbiome
has increasingly become a target of neurodegenerative disease research since gut
microbiome imbalances have been linked to protein aggregation and inflammation
through a bidirectional axis linking the gut and brain. Accordingly, the present
study examined tau-mediated changes to gut microbiome composition and immune
activation in a Drosophila melanogaster model of human mutant tauopathy. Fecal
deposit quantification and gastric emptying time courses suggested an abnormal food
distribution and reduced gut motility in tau transgenic flies compared to controls. Tau
transgenic flies also showed an increase in gut bacteria colony forming units (CFUs)
from diluted fly homogenate, indicating an increased bacterial load. Finally, we showed
that tau transgenic flies have a trend towards elevated systemic levels of antimicrobial
peptides targeting gram-negative bacteria using qPCR, suggesting an enhanced innate
immune response to bacterial insult. These data demonstrate qualifiable and quantifiable
gut microbial and innate immune responses to tauopathy. Furthermore, these results
provide a framework for future studies targeting the gut microbiome as a modifier of
neurodegenerative disease.

Keywords: tau, Drosophila, gut microbiome, motility, antimicrobial peptide (AMPs), innate immune activation,
tauopathies

INTRODUCTION

Accumulation of the microtubule-associated protein tau is the hallmark pathology of the
family of neurodegenerative diseases known as tauopathies, which includes Alzheimer’s disease
(AD), frontotemporal dementia (FTD), and chronic traumatic encephalopathy (CTE). Upon
hyperphosphorylation of tau, neurons undergo multiple changes leading to cell death, including
alterations to cytoskeletal structure and mitochondrial function (Dias-Santagata et al., 2007;
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Fulga et al., 2007; Steinhilb et al., 2007; Spillantini and Goedert,
2013; Arendt et al., 2016). Due to the incidence of tauopathies
in the population, a greater understanding of the effects
of neurotoxic tau protein could highlight critical therapeutic
pathways. Recently, the gut microbiome has become of interest
due to the connectedness of the brain and gut facilitated by the
gut-brain axis (D’Argenio and Sarnataro, 2019).

The human gut microbiome, colonized at birth, encompasses
the collective genome of approximately one-hundred trillion
microorganisms residing in the gastrointestinal (GI) tract
(Ghaisas et al., 2016). These gut microbes contribute to the
preservation of human health through various mechanisms
including the extraction and absorption of nutrients from
food, protection against pathogen overgrowth, biosynthesis
of vitamins, amino acids, and peptides, interactions with
the intestinal epithelium, and modulation of the immune
system (Hooper et al., 2012; Zhao et al., 2015). Additionally,
the microbiome is susceptible to alteration due to factors
ranging from antibiotic or probiotic exposure, diet changes,
environmental factors, trauma, or disease (Hill et al., 2014;
Pistollato et al., 2016). Consequently, the imbalance, or
disruption, of the gut microbiome has been associated with
numerous pathologies (Ghaisas et al., 2016; Ma et al., 2019). Of
particular interest is the implication of microbiome dysbiosis
on neurological disorders and neurodegenerative diseases, as
mediated by the gut-brain axis.

Using the transgenic expression of mutant human FTDP-17–
associated tau, tauR406W, in Drosophila, we showed a reduced
gut motility and subsequently increased gut bacterial load
in aged tau transgenic flies compared to controls. We also
showed an enhanced Drosophila innate immune response in
tau transgenic flies using qPCR targeting specific antimicrobial
peptide transcripts. Together, these data take advantage of the
utility of transgenic Drosophila to show the widespread, systemic
effects of tauopathy in an in vivo system. Furthermore, this work
suggests that manipulation of the gut microbiome has potential
to influence tau-mediated neurodegeneration, an important
stepping stone to therapeutic approaches.

METHODS

Drosophila Crosses
Drosophila stocks were obtained from Bloomington Stock Center
(pan-neuronal elav-GAL4) and Dr. Mel Feany at Harvard
Medical School (UAS-TauR406W), respectively. TauR406W flies
are referred to as “tau transgenic flies” for simplicity. All
control (genotype: elav-GAL4/+) and tau transgenic flies (elav-
GAL4/+;UAS-TauR406W/+) were the progeny of controlled
genetic crosses using the GAL4/UAS bipartite expression system.
Prior to testing, progeny were aged for 10 days to allow
for the development of neurodegeneration. All flies were
crossed and aged at 25◦C in an incubator programmed on
a 12 h light/dark schedule in cotton-plugged vials containing
commercially available Drosophila food (Lab Express Fly Food
M). Equal numbers of male and female flies were used for each
experiment unless otherwise noted in the methods.

Fecal Deposits and Gastric Emptying
Time Course
To examine gastrointestinal motility, fecal deposit counts were
conducted. Vials were prepared by drawing a 2 cm × 2 cm
box with a permanent marker on the outside of fly vials. The
bottom of the box was drawn at the food line to reduce potentially
confounding locomotor issues in tau transgenic flies. Each vial
contained 7 mL of heated commercial fly food (Lab Express)
mixed with 20 drops of blue food dye (Great Value brand). At 5
days post-eclosion, control and tau transgenic flies were placed
into these dyed food vials and returned to the incubator for
five more days of aging. At 10 days post-eclosion, flies were
removed from the vials and fecal deposits within the marked
boxes were quantified under a dissecting microscope. Counts
were normalized to the number of flies within each vial.

To examine a time course of gastric emptying, 10-day-
old control and tau transgenic flies were placed into separate
blue food vials prepared as described above. Following a 24-h
incubation period, flies were removed from the blue food and
placed into individually labeled vials containing standard non-
dyed Drosophila food. Flies were anesthetized at 4◦C for 5 min
prior to imaging. Based on previous work on anesthetization
approaches, it is unlikely that the cold anesthesia approach would
have preferential effects on the GI motility of control vs. tau
transgenic flies (Badre et al., 2005; MacAlpine et al., 2011; Colinet
and Renault, 2012; Bartholomew et al., 2015; MacMillan et al.,
2016). Fly abdomens were imaged using a Leica Microsystems
dissecting microscope with accompanying software and observed
for the presence or absence of blue food in the abdomen at
baseline and 2, 3, 4, 5, 6, and 7 h after the switch to standard non-
dyed food. Flies were returned to the 25◦C incubator between
imaging sessions, and this process was repeated until the blue
food was expelled from the abdomens of all control and tau
transgenic flies. For this specific experiment, only female flies
were used due to increased visibility of the abdomen.

Agar Plate Preparation
Acetobacter and Lactobacillus are the most frequently associated
genera of the Drosophila microbiome (Broderick and Lemaitre,
2012). Thus, two mediums were used to assess bacterial growth:
MRS agar, a medium selective for Lactobacilli, and nutrient
agar, a general purpose medium that cultivates a wide-range of
microbes, including Acetobacter. MRS agar plates and nutrient
agar plates were prepared using sterile techniques and poured
into separate 100 mm× 15 mm culture dishes.

16S rDNA Sequencing
Ten-day-old control and tau transgenic flies were placed into
a –20◦C freezer for rapid euthanasia for 10 min. Single flies
were dipped in 70% ethanol three times to reduce contamination
from cuticle and allowed to dry. Flies were then homogenized
individually in a sterile microcentrifuge tube containing 100 µL
of autoclaved water. The resulting homogenate solution was
pipetted onto two separate mediums, MRS and nutrient agar
plates, and incubated at 37◦C for 48 h. All plating occurred using
sterile tools and techniques.
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Following incubation, unique cultured bacterial colonies on
each plate were identified on the basis of colony morphology
and color. Representative colonies were then inoculated into
liquid broth and incubated at 37◦C for 24–36 h until sufficient
turbidity occurred. Microbial DNA was then isolated using the
Qiagen DNeasy Microbial DNA Extraction Kit according to
the manufacturer’s instructions. Microbial 16S rDNA was then
amplified through PCR reaction as described by the manufacturer
(OneTaq, New England Biolabs) using the following cycling
parameters: 5 min at 98◦C, 32 1-min cycles at 94◦C, 2 min at
55◦C, 3 min at 72◦C, 10 min at 72◦C. Primer sequences were as
follows: (Forward) 5′-GAGTTTGATYMTGGCTC-3′; (Reverse)
5′- GYTACCTTGTTACGACTT-3′.

PCR products were purified using the Qiagen PCR
Purification Kit according to the manufacturer’s instructions;
purified products were run on a 1% agarose gel and visualized
with ethidium bromide to confirm successful amplification
prior to sequencing. Purified 16S rDNA samples were then sent
to West Virginia University’s Genomic Sequencing Core for
sequencing, and the resulting sequences were identified using
NCBI BLAST and Ribosome Database Project RDP1 analysis.

Colony Forming Units Counts
Ten-day-old control and tau transgenic flies were euthanized
by rapid cold exposure. Flies were then dipped three times
in 70% ethanol solution and air dried. Individual flies were
placed into sterile microcentrifuge tubes containing 200 µL
sterile water and homogenized with disposable plastic pestles.
Fly homogenates were briefly centrifuged to pellet the fly cuticle,
which was discarded. Serial dilutions were then performed with
the supernatant fly homogenate and sterilized broth, yielding
1:10, 1:100, and 1:1,000 diluted homogenates. Diluted (100 µL)
and undiluted (50 µL) homogenates were spread onto MRS
and nutrient agar plates. All plates were then incubated at
37◦C for 48 h.

Following incubation, plates containing between 30 and 200
distinct bacterial colonies were used in the calculation of colony
forming units (CFUs) per mL of plated homogenate solution,
normalized to the dilution factor of the selected plate.

qPCR
qPCR was performed as previously described (Lohr et al., 2020).
Briefly, pooled RNA samples were isolated using four 10-day-old
flies (two per sex) homogenized in 500 µL Trizol/Qiazol (Qiagen
Cat. 73906), followed by chloroform/isopropanol extraction
and centrifugation. Pelleted RNA was then washed with 70%
ethanol, resuspended in DEPC water, and quantified using
a NanoDrop. DNase treatment was performed using DNase
I (Ambion, Life Technologies Cat. 18068-015) according to
the manufacturer’s instructions. Reverse transcription was
then conducted using an Applied Biosystems High Capacity
cDNA RT kit (Fisher Cat. 4368814) as described by the
manufacturer. The reverse transcription protocol was completed
in a thermocycler for 10 min at 25◦C, 2 h at 37◦C, 5 min
at 85◦C, and held at 4◦C. In a 96-well qPCR plate, 2 µL of

1https://rdp.cme.msu.edu/classifier/classifier.jsp

diluted cDNA (1:2 in sterile water) was added to 14 µL of
mastermix containing primer sets and 2X SYBR green mix
(Fisher Cat. 4309155). The qPCR primer sets used in this
study targeted the transcripts of the antimicrobial peptides
attacin-A (Forward 5′-CACAACTGGCGGAACTTTGG-3′;
Reverse 5′-AAACATCCTTCACTCCGGGC-3′), diptericin
(Forward 5′-TACCCACTCAATCTTCAGGGAG-3′; Reverse
5′-TGGTCCACACCTTCTGGTGA-3′), and defensin (Forward
5′-AGTTCTTCGTTCTCGTGGCTA-3′; Reverse 5′-CCACATC
GGAAACTGGCTGA-3′), the antifungal peptide drosomycin as a
negative control (Forward 5′-CTGGGACAACGAGACCTGTC-
3′; Reverse 5′-ATCCTTCGCACCAGCACTTC-3′), and
the ribosomal housekeeping gene RpL32 (Forward 5′-GA
CCATCCGCCCAGCATAC-3′; Reverse 5′-CGGCGA
CGCACTCTGTT-3′). The plate was then run on an Applied
Biosystems 7500DX qPCR machine and relative quantification
(RQ) values were calculated for each transcript.

Statistics
With the exception of the gastric emptying survival curve,
all statistical analyses were performed using two-tailed
t-tests in GraphPad Prism 5.0 software, and reported as
average ± SEM. The gastric emptying curve data were analyzed
for statistical significance using the Log-rank (Mantel-cox) test
in GraphPad Prism.

RESULTS

Following preliminary observations of distended abdomens and
abnormal food distribution in tau transgenic flies compared
to controls, a fecal deposit count was conducted to examine
gastrointestinal function and motility. Tau transgenic flies
showed significantly fewer fecal deposits per fly compared to
controls (Figure 1A). To determine whether this reduction
was due to decreased food intake or reduced gut motility
secondary to neurodegeneration, a gastric emptying time course
was conducted after feeding flies blue-dyed food. Images of fly
abdomens (Figure 1D) showed a significantly increased time to
gastric emptying for tau transgenic flies compared to controls
(Figure 1B), as supported by the prolonged presence of blue
food in the abdomens of tau transgenic flies (Figure 1C). These
data suggest that tau transgenic flies show a reduced gut motility
compared to controls. The reduced gut motility shown here is
not due to neuronal protein overexpression alone as shown by
a gastric emptying time course using elav-GAL4-driven eGFP
transgenic flies (Supplementary Figures 1A,B). We showed
no difference in gastric emptying between eGFP transgenic
and control flies. Furthermore, delayed gastric emptying does
not appear in all transgenic Drosophila neurodegeneration
models. We showed no significant changes in motility in
the SCA3 Drosophila model of spinocerebellar ataxia type 3
(SCA3; Machado-Joseph disease) (Warrick et al., 1998). However,
significant reductions in gastric motility have been shown in
alpha-synuclein transgenic models using both neuronal and glial
drivers (Olsen and Feany, 2019), suggesting that these results may
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FIGURE 1 | Neuronal tau expression reduces Drosophila gut motility. (A) Tau transgenic flies show reduced fecal deposits per fly (n = 5–7, t-test *p < 0.05). (B–D)
Tau transgenic flies demonstrate an increased time to gastric emptying (B) (n = 6, t-test *p < 0.05), supported by the prolonged presence of blue food in the
abdomen in a gastric emptying time course (C,D). Data are shown as average ± SEM.

be applicable to additional proteinopathies beyond tau-mediated
neurodegeneration.

Attempting to address the effect of this reduced gastric
motility in tau transgenic flies, we first analyzed the taxonomic
classifications of gut bacteria in control and tau transgenic
flies using 16S rDNA sequencing of morphologically distinct
bacterial colonies from plated fly homogenate. Sequencing
analysis revealed no difference in gut bacteria classification
between tau transgenic and control flies, as both genotypes
showed similar bacteria profiles containing the bacterial species
Lactobacillus brevis, Lactobacillus plantarum, and Acetobacter
pasteurianus (Supplementary Table 1).

With no observable difference in the types of bacteria
within gut homogenate of tau transgenic and control flies,
we next examined whether there was a quantitative difference
in gut bacteria between the two genotypes. To examine gut
bacteria quantity, CFU counts were performed on diluted fly
homogenates from control and tau transgenic flies plated on both
MRS and nutrient agar. Tau transgenic flies showed significantly
higher CFU counts on both MRS (Figure 2A) and nutrient agar
(Figure 2B) compared to control flies.

Due to this increased bacterial load in the guts of tau
transgenic flies, we next examined whether tau transgenic flies
also displayed an innate immune response. In response to
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FIGURE 2 | Tau transgenic flies show an increased gut bacterial load compared to controls. CFU counts of diluted tau transgenic fly homogenates were increased
on both (A) MRS agar (n = 6, t-test ****p < 0.0001) and (B) nutrient agar (n = 5, t-test **p < 0.01). Data are shown as average ± SEM.

FIGURE 3 | Tau transgenic flies show trends of enhanced innate immune activation to gram-negative bacteria. qPCR targeting the antimicrobial peptide transcripts
attacin-A (A), diptericin (B), and defensin (C). RQ values suggest a non-significant elevation in innate immune expression of attacin-A and diptericin, but there is no
trend observed in expression levels of the antimicrobial peptide transcript defensin. (n = 6, p > 0.05). Data are shown as average ± SEM.

bacterial insult, the Toll and Imd NF-kB signaling pathways of
the Drosophila innate immune system are activated, regulating
the production of antimicrobial peptides (AMPs) which target
and degrade the cell walls of bacteria, facilitating microbial death
(Hultmark, 2003; Hanson and Lemaitre, 2020). Accordingly,
expression levels of AMP transcripts are often used to monitor
innate immune activity. To measure innate immune activation
for tau transgenic flies compared to controls, we performed qPCR
on control and tau transgenic fly homogenate using specific
primers for the AMP transcripts attacin-A, diptericin, and
defensin, and the antifungal transcript drosomycin as a negative
control. Tau transgenic flies showed a trend toward increased
expression for the AMP transcripts attacin-A (Figure 3A) and
diptericin (Figure 3B), both gram-negative response AMPs,
compared to controls. No differences were seen in transcript

levels of defensin, a gram-positive response AMP (Figure 3C) or
the antifungal transcript drosomycin, as expected (Figure 4).

DISCUSSION

This study examined the effects of transgenic tau expression
on gastrointestinal function and motility, the gut microbiome,
and innate immune activation in Drosophila melanogaster. Tau
transgenic flies showed significantly reduced gastric motility
compared to controls. Widespread neurodegeneration in tau
transgenic Drosophila is well characterized (Wittmann et al.,
2001; Dias-Santagata et al., 2007; Fulga et al., 2007; Khurana
et al., 2012; Lohr et al., 2020). Thus, it is not surprising that
degeneration of neurons innervating the enteric nervous system
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FIGURE 4 | Tau transgenic flies show no significant difference in antifungal
AMP transcript levels. qPCR targeting the antifungal peptide transcript
drosomycin showed no significant difference in expression levels between tau
transgenic and control flies (n = 6, p > 0.05). Data are shown as average ±
SEM.

of the gut would also occur in this aging fly model. This
degeneration may contribute to the slowed gut motility and
subsequent systemic changes shown in this study.

It has been suggested by multiple groups that Drosophila serve
as an ideal model system for a microbial assessment due to
the ease of environmental control and relative simplicity of the
microbiota (Kenmoku et al., 2017; Trinder et al., 2017; Clark
and Walker, 2018; Selkrig et al., 2018). While the Drosophila
microbiota has 1–30 species dominated by Lactobacillus and
Acetobacter (Blum et al., 2013; Erkosar et al., 2013; Chaston et al.,
2014), it is estimated that the human GI microbiota is far more
complex, with as many as 500 different bacterial species present
(Quigley, 2013, 2017). Furthermore, both fly and human GI tracts
also have similar structural anatomy, innervation, and function
(Pitsouli et al., 2009; Apidianakis and Rahme, 2011).

Changes to gastrointestinal composition and function has
become a point of interest in many types of neurodegeneration.
Clinically, it is known that Parkinson’s disease patients
demonstrate delayed gastric emptying and reduced gut motility
(Hardoff et al., 2001), and these gastrointestinal symptoms
have been supported by deposits of alpha-synuclein within the
enteric nervous system (Beach et al., 2010; Gelpi et al., 2014).
α-Synuclein transgenic flies also show constipation as shown by a
similar assay to the one used here (Olsen and Feany, 2019). Thus,
the reduced GI motility and increased bacterial load shown in the
present study may apply to other types of degeneration. Although
digestive disorders, including irritable bowel syndrome, have
also been associated with AD and related dementias (Liao et al.,
2020), tau-mediated enteric nervous system changes remain
poorly understood in tauopathies (Chalazonitis and Rao, 2018;

Derkinderen et al., 2021). As such, the present study provides
a potential role of tau in enteric nervous system degeneration,
perhaps contributing to gastrointestinal symptoms, including
reduced gut motility. Finally, there are additional variables to
consider when interpreting the gut motility data from the current
study. It should be noted that the retention of the blue-dyed
food shown in the tau transgenic fly gut could be due to a leaky
gut barrier and not just slowed motility of the tract. While it is
also difficult to entirely eliminate potential differences in food
consumption between control and tau transgenic flies, the gastric
emptying time course suggests that tau transgenic flies eat similar
amounts of food compared to controls as shown by similar
starting levels of gastric filling.

Although 16S rDNA sequencing of gut homogenate showed
no difference in gut bacteria classification between the genotypes,
CFU counts revealed a significantly increased bacterial load in
tau transgenic flies. It is possible that this increased bacterial
quantity is due to the slowing of gastric emptying in the tau
transgenic flies. Mammalian studies have shown that alterations
to gastric motility can significantly alter proportions of bacterial
types, contributing to gut dysbiosis (Sun et al., 2019). While
the Drosophila gut has multiple differences in comparison to
the mammalian GI tract, its structure and function are similar
(Trinder et al., 2017). Thus, slowed gastric motility may be a
contributing factor to the increased bacterial load seen in the tau
transgenic flies.

Despite lacking the adaptive immunity characteristic of
vertebrates, Drosophila has proven an important model in
examining the interplay between gut microbiome homeostasis
and innate immunity (Ryu et al., 2010). AMP expression
increases in response to systemic bacterial infection as a
way to destroy pathogens (Hanson and Lemaitre, 2020). In
the current study, elevated AMP levels may be a systemic
response to the enhanced bacterial load in tau transgenic flies
(Figure 2). Furthermore, these AMPs may also be altering
the relative levels of bacteria in the fly gut. Tau transgenic
flies showed a trend toward elevated attacin-A and diptericin
levels, two AMPs responsive to gram-negative bacteria such as
Acetobacter (Imler and Bulet, 2005). This increased expression
of gram-negative AMP responders may be contributing to
the relatively low nutrient agar CFUs compared to that of
MRS agar, which grows gram-positive Lactobacillus bacteria
(Figure 2). This suggests that the elevated gram-negative
responsive AMPs may be working to reduce the gram-negative
bacterial load in tau transgenic flies, whereas less pathogenic
types of gram-positive bacteria may be less regulated. As
expected, expression levels of the antifungal peptide transcript
drosomycin were unchanged.

These results are in line with the endotoxin hypothesis
of neurodegeneration where endotoxin, a lipopolysaccharide
(LPS) in the outer layer of gram-negative bacteria, contributes
to neuronal dysfunction, particularly during infection and
inflammation (Brown, 2019). Endotoxin treatment induces
microglial activation, memory dysfunction, and neuronal
changes in rodents and has been shown to promote formation of
several neuropathologies, including aggregation of tau, amyloid
β, and alpha-synuclein (Lee et al., 2008; Gardner et al., 2016;
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Kim et al., 2016). Further adding to the gut-brain connection,
some neurodegenerative diseases consistently present altered
gut microbiomes compared to controls. For example, in
Parkinson’s disease, the gut microbiome is significantly altered
and has been associated with gram-negative endotoxin-
producing bacteria, including H. pylori (Scheperjans et al.,
2015; Shen et al., 2017). These data suggest that gram-negative
bacteria may contribute to neuronal dysfunction in some of
these disease states.

The present study is significant in that it provides
evidence for tau-mediated alterations to gut motility
and microbiome composition. Furthermore, this work
extends the links between AMP activity, innate immune
mechanisms, and tau-mediated neurodegeneration. However,
the precise manner through which AMPs may contribute
to neurodegeneration remains poorly understood (Hanson
and Lemaitre, 2020). As such, future studies should examine
neurodegeneration and microbiome composition using germ-
free Drosophila, reintroduction of specific gut bacterial
species, antimicrobial conditions, or AMP transgenic flies.
Further studies may also examine the gain or loss of
innate immune signaling activity through an analysis of
Toll and Imd receptor expression or analyze neuronal
AMP expression through reporter assays. Such routes will
undoubtedly strengthen our understanding of the interplay
between AMP activity, innate immune signaling, and
neurodegeneration.
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Parkinson’s disease (PD), the second most prevalent neurodegenerative disorder,
manifests with motor and non-motor symptoms associated with two main pathological
hallmarks, including the deterioration of dopaminergic cells and aggregation of alpha-
synuclein. Yet, PD is a neurodegenerative process whose origin is uncertain and
progression difficult to monitor and predict. Currently, a possibility is that PD may be
secondary to long lasting peripheral affectations. In this regard, it has been shown
that retinal degeneration is present in PD patients. Although it is unknown if retinal
degeneration precedes PD motor symptoms, the possibility exists since degeneration
of peripheral organs (e.g., olfaction, gut) have already been proven to antedate PD
motor symptoms. In this paper, we explore this possibility by introducing the anatomical
and functional relationship of retina and brain and providing an overview of the
physiopathological changes of retinal structure and visual function in PD. On the basis of
the current status of visual deficits in individuals with PD, we discuss the modalities and
pathological mechanism of visual function or morphological changes in the retina and
focus on the correlation between visual impairment and some representative structural
features with clinical significance. To consider retinal degeneration as a contributor to PD
origin and progress is important because PD evolution may be monitored and predicted
by retinal studies through state-of-the-art techniques of the retina. It is significant to
integrally understand the role of retinal morphological and functional changes in the
neurodegenerative process for the diagnosis and therapeutic strategies of PD.

Keywords: Parkinson’s disease, visual deficits, morphological changes, neuropathology, retinal imaging
technology

INTRODUCTION

Parkinson’s disease (PD) is a chronic and multisystemic neurodegenerative disease characterized
by a series of motor symptoms (bradykinesia, resting tremor, rigidity, and postural instability) and
non-motor neurologic phenomena (sleep disturbances, autonomic dysfunction, gastrointestinal,
urogenital problems, cognitive decline, psychiatric symptoms, sleep abnormalities, as well as visual
disturbances) (Santos Garcia et al., 2019; Xu et al., 2019). Age is a main factor of PD, and the
global impact of the disease is emerging, with its prevalence at around >2% of all persons above
65 years of age, and >4% of all persons over the age of 80 years (Gbd 2015 Neurological Disorders
Collaborator Group, 2017; Santos Garcia et al., 2019; Xu et al., 2019). Individuals suffering from PD
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are increasing and are estimated to be 12 million patients by
2050 (Ggbd 2016 Parkinson’s Disease Collaborators, 2018), and
early diagnosis and intervention of PD pathology plays a very
important role in medical health.

Elucidating the derivation of pathological changes is critical
for the early diagnosis and intervention of PD. However, the
pathological origin of PD is debated. Consistent with the
dopamine depletion and pathologic a-Syn in the nigrostriatal
pathway described in previous studies, the two pathologic
hallmarks have observed in peripheral nervous system
and various end-organs that lead to numerous non-motor
manifestation of PD including autonomic impairment (Postuma
et al., 2015), sleep dysregulation, mood disorder (Ortuno-Lizaran
et al., 2018b) dementia, and visual alterations (Ortuno-Lizaran
et al., 2018a). Increasing studies have now discussed a possibility
of PD pathology initially arising outside of the central nervous
system (CNS). Indeed, the spreading of a-Syn to the brain via
peripheral inoculation (e.g., olfaction, gut) has been amply
elucidated (Kim et al., 2019). Visual symptoms, including
glaucoma (Pavlenko et al., 2018), dry eyes (Friedman, 2004;
Tamer et al., 2005; Reddy et al., 2013), visual hallucinations
(Onofrj et al., 2006; Williams et al., 2008), and deficits in
color vision appears early in the disease in PD patients (Stenc
Bradvica et al., 2015). As shown in Table 1, PD patients suffer
from different eye disorders [Blinking (London et al., 2013;
Seiple et al., 2016), eye movement dysfunctions (Anderson and
MacAskill, 2013; Hanuska et al., 2015; MacAskill and Anderson,
2016), pupillary imbalance (Jain et al., 2011), nuclear cataract
(Lai et al., 2015; Klettner et al., 2016)]. Ophthalmological
examinations of subjects with PD also suggest a loss of color
vision problems, visual acuity impairment as well as the
deficiency of spatial contrast sensitivity (Uc et al., 2005; Bertrand
et al., 2012; Weil et al., 2016; Guo et al., 2018). The cellular
and molecular studies have demonstrated loss of dopaminergic
amacrine cells and retinal ganglion cells are partially responsible
for the reduced contrast sensitivity, impairment in visual
acuity, or electroretinographic response in individuals with PD
(Yenice et al., 2008; Esteve-Rudd et al., 2011; Koens et al., 2018;
Ortuno-Lizaran et al., 2020). On post-mortem observation of PD
patients, authors have found the loss of dopaminergic retinal cell
and the aggregation of a-Syn (Diederich et al., 2014; Ortuno-
Lizaran et al., 2018a). Interestingly, it has recently been proposed
that animal models with retinal damage due to intravitreal
injection of minimal doses of neurotoxins display symptoms of
experimental PD (Willis et al., 2014). A further example is that
the retinal exposure of welding flash is associated with increased
incidence of PD (Willis, 2005). Conversely, an immune tolerance
induced by eyes via administration of antigens into the anterior
chamber could be used as a therapeutic approach to promote
neuroprotection for neurodegenerative diseases (Farooq and
Ashour, 2013; Toscano-Tejeida et al., 2016; Pineda-Rodriguez
et al., 2017). Thus, it is reasonable to conclude that the retina
may be intimately involved with the onset and progression of PD
as a potential precipitating factor outside of the CNS.

The retina presents a unique opportunity to study the CNS.
First, it shares a common origin, structure, and physiology
with the brain in terms of nervous and microvascular systems

(Cameron et al., 2017). Over the past decades, investigators have
attempted to access the tools that leverage the accessibility of
the retina to better understand and diagnose PD. The retinal
degeneration, retinal ganglion cells (RGCs) loss, and retinal
thinning as well as visual disorders were observed in PD and
animal models. As the only portion of CNS, furthermore, the
retina is capable of reliable and precise measures of high-
resolution imaging, retinal neurons, and vascular morphology
therefore begin to be analyzed by ocular measurements from
large studies utilizing tools. For instance, using the optical
coherence tomography (OCT) imaging, some authors have
found retinal nerve fiber layer (RNFL) thinning (Garcia-Martin
et al., 2014b; Mailankody et al., 2015; Satue et al., 2017), and
lower capillary perfusion density (CPD) and capillary afflux
index in the retinal vascular morphology revealed by OCT
angiography (OCTA) and fundus imaging (Guan et al., 2013;
Robbins et al., 2021).

In this review, we systematically assess evidence in the field
of PD with a focus on the morphological changes and visual
dysfunction in the retina. We first review the anatomical and
functional relationship of the retina and the brain. Also, the
introduction and development of new and highly sensitive
ocular technology were described. Special care is taken to
discuss up-to evidences on retinal morphological alterations
and visual disorders in PD patients, with the highlight of the
correlation between several representative structural features
and visual impairment in PD patients. Finally, we emphasized
the role of some retinal morphological changes in diagnostic
and prognostic progression for visual neuropathology of the
neurodegenerative disease.

STRUCTURE AND FUNCTION OF THE
RETINA

In embryological origin, the retina is derived from the
neuroectoderm. The retina shares a common origin and similar
anatomy with brain tissue. Revisiting some of the basic
anatomy of the retina is helpful for appreciating the impact of
diseases on the retina.

Retina and optic nerve are essential parts of the neural
conduction systems, which consist of different cell types and
play a crucial role in visual imaging. As an innermost, light-
sensitive layer of sensory tissue in most vertebrates and some
mollusks, the retina possesses complex and multilayer structures
and many cells with microcircuits features and different functions
(Figure 1). Morphologically, five classes of neuronal cells play
the important role in shaping the structure of the retina,
encoding visual information and regulating vision function.
These component cells include photoreceptors (rods and cones),
horizontal cells (HCs), bipolar cells (BCs), amacrine cells (ACs),
and RGCs. In the normal condition, the light energy is converted
to membrane potential changes in rod (RC) and cone (CC)
photoreceptors in the outer retina layer (ORL). Within the
outer plexiform layer (OPL), the photoreceptors convey light
information to BCs under the modulation of HCs. Then, as
a sole output neurons of the retina, RGCs within the inner
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TABLE 1 | Visual dysfunctions and manifestation in PD patients.

Organ Mechanisms Main manifestations Morbidity References

ÀEyelid Frontal DAN dysfunction (1) Blinking:
Bradykinesia of voluntary blinking,
Abnormalities of reflex blinking,
Reduced amplitude and blink rate

Postuma et al., 2015; Gbd 2015 Neurological Disorders Collaborator Group, 2017; Ggbd 2016
Parkinson’s Disease Collaborators, 2018; Santos Garcia et al., 2019; Xu et al., 2019

(2) Apraxia of eyelid opening Ortuno-Lizaran et al., 2018b

(3) Uncomfortable sensations, red eyes 53–60% Ortuno-Lizaran et al., 2018a

(4) Muscle disorder:
eyelid retraction,
eyelid ptosis,
lepharospasm

Reddy et al., 2013; Kim et al., 2019

ÁEyebulb Extrapyramidal damage (1) Eye movement dysfunctions:
convergence insufficiency
Abnormal saccades
Smooth pursuit impairment

Friedman, 2004; Tamer et al., 2005; Onofrj et al., 2006

(2) Diplopia 10–30% Williams et al., 2008

ÂPupil Autonomic disorders Pupillary imbalance:
Reduced amplitude of contraction,
Prolonged contraction time

Guo et al., 2018

ÂLens Mitochondrial dysfunction Nuclear cataract 16–24% Uc et al., 2005; Weil et al., 2016

ÃRetina Retinopathy (1) Visual acuity 70% Bertrand et al., 2012; Ortuno-Lizaran et al., 2020

DAN dysfunction (2) Spatial contrast sensitivity Esteve-Rudd et al., 2011

a-Syn deposition (3) Color vision Esteve-Rudd et al., 2011; Willis et al., 2014

ÄOptic nerve Macular thickness Visual field defects 60–70% Willis, 2005

ÅVisual cortex Cortex impairment (1) Visuospatial deficits 30–60% Toscano-Tejeida et al., 2016; Pineda-Rodriguez et al., 2017

(2) Visual hallucination

(3) Facial expression recognition

ÆOther auxiliary
apparatus

Retina DAN dysfunction (1) Glaucoma 30–40% Uc et al., 2005; Farooq and Ashour, 2013

(2) Dry eyes 50% Cameron et al., 2017; Satue et al., 2017; Ortuno-Lizaran et al., 2018b

(3) Rapid eye movement sleep behavior Garcia-Martin et al., 2014b
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FIGURE 1 | (A) The structure of the eyeball. (B) The structure of the retina and diagram of the retinal neurons. Notably, understanding the physiologic structure and
function is critical for better exploring the relationship of visual function and morphological changes. The retina possesses complex and multilayer structures and a
large number of cells with microcircuits features and different functions. ILM, inner limiting membrane; RNFL, retina nerve fibers layer; GCL, ganglion cell layer; IPL,
inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; ORL, outer retina layer; RPE, retinal pigmented epithelium; RC,
rod cell; CC, cone cell; BC, bipolar cell; HC, horizontal cell; AC, amacrine cell; DA AC dopaminergic amacrine cell; DA IPC, dopaminergic interplexiform cell; RGC,
retinal ganglion cell.

plexiform layer (IPL) contact BC and ACs at the inner nuclear
layer (INL), projecting their axons to higher visual centers
(Archibald et al., 2009; Schmidt et al., 2011). Aside from the
above vertical and horizontal cell bodies, there are cells or related
neurotransmitters mediating visual information, including the
retinal pigment epithelium (RPE) with the capacity of visual
pigment regeneration, and Müller glial cells (MGC) involved
in neuronal metabolism, synaptic pruning, and neurotrophy
(Vecino et al., 2016). These cells mediate retinal signaling
in vertical and horizontal directions, and these are vital in
shaping color vision, spatial resolution, and vision sensitivity
(Weil et al., 2016).

Dopaminergic Neurons in the Retina
Malmfors (1963) first described the role of catecholamines in
rat retinal function and regulation, involving in the light/dark
adaptation and reshaping retinal circuitries. Subsequently,
dopaminergic neurons have been identified in human retina,
and overlap with neighboring DA cells as well as other
retinal cells (the cone-rod, horizontal cells, and ganglion cells)
(Frederick et al., 1982). In vertebrate retina, DA neurons
contact two other types of amacrine cell (AII and A17) and
interplexiform neurons (IPC) (Figure 1). The amacrine cells,
via gap junctions, receive input from BCs and pass visual
information to RGCs and the same cell types, modulating

visual processing of the flow of photoreceptors-driven visual
information. Compared with the AII amacrine cells, in scotopic
conditions, the A17 amacrine cell receives GABAergic inputs
instead of excitatory glutamatergic inputs from rod bipolar cells,
and it plays a role in converging rod signals and amplifying
the effects of low light stimulation (Hillman et al., 1995).
DA cells are stimulated to release functional dopamine as
an essential neuromodulator in photopic conditions, making
synaptic contacts between DA cells and affecting on gap junction
permeability both at the level of photoreceptors interactions
with HCs and at the level of DA cells communication
(Cameron et al., 2009; Zhang et al., 2014). In return, DA
cells alter the action potential firing rate of their own cells
and regulate DA release when receive excitatory or inhibitory
feedback information.

In addition to this excitatory and inhibitory feedback system,
the modulation of retinal DA cells conditions and dopamine
concentration has diurnal variation, with low levels at night and
higher levels during the day. From functional perspectives, some
DA cells are light-evoked, involving in regulating the light/dark
adaptation and electrophysiological communication between
retinal cells in different layers depending on the circadian rhythm
(Cohen et al., 1992). Also, some dopaminergic cells can activate
spontaneously and alter DA level in the darkness. In turn, the
DA effects on photoreceptor cells, BCs, ACs, and HCs (Popova,
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2014), reshaping photomechanical movements and survival, to
enhance flicker response of retinal rod pathway (Hampson et al.,
1992), and regulate visual stimuli of cells communication as
well as protects RNFL (Yavas et al., 2007). Knowledge of these
anatomical connections and visual progressing demonstrated
that DA is a chemical neurotransmitter in the retina, promoting
synaptic effects and visual information to regulate electrical
activity and retinomotor movements.

Ganglion Cells and Retinal Nerve Fiber
Layer
In retinal physiology, RGCs, the output neurons that project
visual information from the inner retina to the brain, extend
to the lateral geniculate nucleus (LGN) via a nerve fiber tract
complete with an oligodendrocytic myelin sheath (Henderson
et al., 2008). There are numerous subtypes of retinal cells,
such as photoreceptors, HCs, BCs, and ACs, making synaptic
contact with RGCs in the inner plexiform layer through different
communication systems, including acetylcholine, dopamine,
glutamate, glycine, and gaba-aminobutyric acid. Influenced by
light, RGCs receive photosensitive information through either
direct or indirect circuitry, and act as the final common pathway
in the flow of visual information to the optic nerve and brain
cortex (Figure 1). Sparkly, the melanopsin-containing retinal
ganglion cells (mRGCs), accounting for about 0.3–0.8% of the
total ganglion cells within the retina, represent a specialized class
of RGCs that respond to light without rod and cone information
input (Hattar et al., 2002). Some authors therefore think that
mRGCs constitute a third class of photoreceptors and are directly
photosensitive. In addition, mRGCs are also responsible for the
non-image forming pathways, mediating the circadian rhythm
and pupil constriction that are involved in mood and sleep
behaviors (Güler et al., 2008). Previous studies demonstrated
that GCL thinning is relevant to lower visual acuity, contrast
sensitivity loss, and color deficiencies.

The RNFL is the inner most layer of the retina and is
composed largely of axons of RGCs. Many studies investigated
the ganglion cells’ death is inevitably reflected on thinning
RNFL thickness, relatively presenting the number of RGCs axons
loss (Henderson et al., 2008). Recently, the OCT and OCTA
have been used in the investigation of structural changes and
measures of the vertical retinal layers in the retina in vivo. RNFL
thinning demonstrated the dopaminergic neuronal loss and
decreased axons of RGCs, effecting retinal neuronal processing
and electrophysiological function (Bodis-Wollner et al., 2014a).

Microvascular and Choroidal Structure in
the Retina
In addition to retina nervous systems, evidence has implicated
retinal small vessel plays an important role in structural and
functional changes in the retina. Based on the potential risk
the role of cerebral small vessel disease for the development
of PD plays (Guan et al., 2013), some studies demonstrated
retinal microvascular changes have been studied retinal capillary
plexus vessel density (VD) and perfusion density (PFD) as well
as structural changes in PD (London et al., 2013; Robbins et al.,

2021). Thus, structural changes in retinal microvascular are seen
as non-invasive biomarkers for the disease detection.

Considering the common embryologic and anatomic
characteristics of retinal vascular with the cerebral circulation,
microvascular changes in the retina may correlate with vascular
changes in the CNS. The retinal vasculature is a window in vivo
non-invasive assessment of microvasculature in the body
(Figure 1). In embryology, the ophthalmic artery originates
from the internal carotid artery gives off the central retinal
artery, providing nutrients and oxygen to the inner layer of the
retina. Metabolic waste and carbon dioxide from the retina are
excreted into the sinus via the central retinal vein through the
superior ocular vein. Central retinal arteries and veins form a
terminal branch retinal circulation network on the surface of the
retina. In addition, microvasculature of the retina shares similar
neurobiology and electrophysiological function with those in
CNS (Ge et al., 2021).

MORPHOLOGICAL AND FUNCTIONAL
TECHNOLOGIES IN THE RETINA

As the eye is an extension of the brain, the retina displays
similarities to the brain in anatomy, functionality, and
pathological responses to environmental insult. So, to detect
retinal morphological parameters of brain pathologies using
imaging techniques seems reasonable.

Optical coherence tomography (OCT) is a non-invasive
observational technique based on reflectance intensity of light,
providing some real-time information of the retina on structure
using infrared interferometric imaging (Figure 2). The OCT
enables an optical biopsy of retina to provide two/three-
dimensional cross-sectional images of the target tissue using
the interference of infrared radiation (Langwinska-Wosko et al.,
2016). In 1991, the first OCT image was described by David
Huang in the anterior chamber of an ex vivo bovine eye
(Huang et al., 1991). Subsequently, Fercher et al. (1993) and
Swanson et al. (1993) showed the first in vivo measurements
of human retinal structure using the non-contact and high
resolution technique in 1993. Retinal OCT imaging detects and
quantifies the structural correlates of these visual symptoms
of patients, provides histologic level information about retinal
nerve fiber layer, cells, and retinal blood vessels. With the
growth of OCT scientifically and economically, OCT assesses
the three-dimensional outer retina thickness in the higher image
pixel density and quality of OCT (Fujimoto and Swanson,
2016). For instance, spectral domain OCT (SD-OCT) uses a
wavelength of 820 nm, diminished the vitreous signal, and
improved imaging of the macular choroid (Ha Usler and
Lindner, 1998), reaching deeper structures of the retina. Swept-
source OCT (SS-OCT) reaches deeper penetration using a
wavelength of 1,020 nm. In addition, the special OCT, OCT
angiography (OCTA) imaging, allows for blood flow visualization
(Gulmez Sevim et al., 2019; Robbins et al., 2021). This is an
emerging approach for imaging retinal vessels, can visualize
microvasculature based on motion contrast from flowing blood
to assess the blood pressure, intraocular pressure, vascular
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density of the superficial capillary plexus, deep capillary plexus,
and choriocapillaris (Zhang et al., 2018). Therefore, retinal
OCT imaging not only costs lower, but provides insight into
the underlying pathophysiology in the earlier disease process,
compared to conventional neuroimaging methods, such as the
fundus color photograph, fundus fluorescein angiography, and
B-ultrasonography. These new, cost-effective, high-resolution
imaging tools enabled increases in imaging speeds and quantity,
further catering clinical need of diagnosis and therapeutics
of diseases, and increasing clinical data demonstrated the
important role of OCT in diagnostic and therapeutic applications
of many diseases. The OCT has become a new and highly
sensitive method for detecting and analyzing some classic ocular
pathologies in diseases.

Aside from the over-mentioned OsCTs, some techniques are
applied to evaluating the functional performances of retinopathy
of PD, including electroretinogram (ERG) and visual evoked
potential (VP). The ERG reflects retinal comprehensive potential
caused by a brief light stimulation recorded from the cornea.
There are flash ERG and graphic ERG based on different forms
of light stimulation (Netser et al., 2021). The flash ERG consists
of a negative A wave, a positive B wave, and the OPs waves
superimposed on the B wave. Wave A mainly reflects the
hyperpolarization activity of photoreceptors, while wave B is
generated by the electrical activity of MCs and BCs in the retina
(Takatsuna et al., 1992; Meng et al., 2012; Normando et al., 2016).
The wave OPs on the B wave are related to the electrical activity
of ACs. The VEP is generated by the electrical activity in occipital
cortex after the visual stimulation. The structural and functional
changes in the retina cause the change of waveform amplitude
and/or latency in VEP.

These techniques detect retinal nerve fiber layer (RNFL)
thickness (Inzelberg et al., 2004; Hajee et al., 2009; Kirbas
et al., 2013; Jimenez et al., 2014), central macular volumes,
morphology in foveal vision (Pilat et al., 2016; Nunes et al.,
2019), inner and outer retinal layers (Pilat et al., 2016), and
retinal pigment epithelium (Uchida et al., 2018), and also assess
retinal blood flow and vascular alterations as well as other
pathological features of retina in PD patients. The monitoring
retinal morphology and function are used for exploring hallmark
signs corresponding to pathological conditions in different
degrees and stages of PD.

PATHOLOGICAL AND MORPHOLOGICAL
CHANGES IN RETINA OF PARKINSON’S
DISEASE

The retina is a simple model of the brain in the sense that
some pathological impairment and morphological changes from
the retina may be observed or applicable to the degenerative
diseases as valuable models. In the retina of PD patients, there
were dopaminergic deficiency (Schmidt et al., 2011; Vecino et al.,
2016), misfolded a-synuclein (Weil et al., 2016), retinal ganglion
cells loss (Malmfors, 1963), thinning of retinal nerve fiber layer
(Frederick et al., 1982; Hillman et al., 1995; Cameron et al.,
2009; Zhang et al., 2014), or neuroinflammatory (Cohen et al.,

1992) at several levels of the visual pathway during pre-clinical
stages. Moreover, studies on post-mortem of PD patients found
the accumulation of misfolding α-synuclein, the main culprit of
the disease, in the retinal layers, especially the OPN of patients
with early PD (Hampson et al., 1992; Yavas et al., 2007; Popova,
2014). Furthermore, evidence has indicated microvasculature
changes as some potential biomarkers of retinal pathological
changes in subjects with PD. Compared to the control cases using
immunohistochemical staining and image analysis, Guan et al.
(2013) observed the decreased capillaries branching as well as
shortening length and enlarging diameter in capillary network in
the substantia nigra, middle frontal cortex, and other brain stem
nuclei. As van der Holst et al. (2015) described, increased risk
of Parkinsonism was observed in population with cerebral small
vessel disease. So these structural changes of the retina of PD have
been shown the association with the progression, severity, and
duration of the disease (Ma et al., 2018; Hasanov et al., 2019).

A-Synuclein Deposits
A-synuclein (a-Syn) is a neuropathological landmark, and its
abnormal accumulation can induce neuronal death, disturbance
in the dopamine mechanism, and synaptic effects (Henchcliffe
and Beal, 2008). In normal physiological state, a-Syn is encoded
by the SNCA gene, and belongs to the synuclein family that is
involved with the exocytosis and synaptic function. In retina,
a-Syn exists at the OPL, mediating membrane fusion synaptic
vesicle and neurotransmitter release, fatty acid binding, cell
signaling, and cell growth (Iwai et al., 1995; Burre et al., 2010;
Breydo et al., 2012). In contrast, because of inducing risk factors
in PD, the a-Syn protein was transformed into truncation and
multimerization from monomeric and tetrameric conformation,
then converted to insoluble oligomers and amyloid fibrils, and
eventually perturbed dynamic equilibrium of functional a-Syn
(Kahle et al., 2001; Auluck et al., 2002; Liu et al., 2005). Moreover,
aberrant aggregation of a-Synuclein has prion-like properties to
trigger the intercellular transmission a-Syn fibrils (PFFs); it is
time-dependent and changeable, implying that the propagation
of a-Syn may be the key contributor to onset and progression of
PD (Willis, 2008; Willis and Freelance, 2017; Figure 3).

Similarly, the conformational or metabolic changes of
a-Syn polymer, such as phosphorylated a-Syn and abnormal
accumulation into insoluble aggregates are cytotoxicity for
cellular and molecular metabolism (Bodis-Wollner, 2009; Stenc
Bradvica et al., 2015; MacAskill and Anderson, 2016) (Table 2).
Some previous studies revealed the relation between retinal
a-Syn aggregates and clinical and imaging manifestations of
impaired vision in PD. Bodis-Wollner et al. (2014b) reported
a-synuclein aggregations in the inner retina (GCL, IPL, and INL),
and observed the loss of full retinal thickness in the retina of
PD. These histopathological changes in retina provide a bridge
between a-synuclein inclusions and RNFL thinning detected
by OCT. In addition, based on the protein inclusions in GCL
associated with the impaired GCs function, authors speculated
a potential route of local transmission of the anormal protein
between retina and central neurons systems. Similarly, Beach
et al. (2014) has found that immunopositive phosphorylated
a-Syn, a specific molecular marker of synucleinopathy, presence
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FIGURE 2 | The brief historical timeline marking events elucidating morphological and technologies in the retina. These new, cost-effective, high-resolution imaging
tools enabled increases in imaging speeds and quantity, further catering to the clinical needs of diagnosis and therapeutics of diseases, and increasing clinical data
demonstrated the important role of OCT in diagnostic and therapeutic applications of many diseases.

in the inner retinal surface of PD individuals paralleling to
retinal thinning (GCL, IPL, and INL) has been reported with
OCT (Altintas et al., 2008; Bodis-Wollner et al., 2014b). Further,
Ortuno-Lizaran et al. (2018a) showed the p-α-syn deposits in
retinal ganglion cells or intrinsically photosensitive ganglion cells
in patients with PD. As a-Syn may spread from neuron to neuron,
the a-synuclein may rely on the long axons of the GCs to spread
from the retina and brain (Bodis-Wollner et al., 2014b). However,
there is not enough evidence to answer some pivotal questions
including whether multifocal initiation of a-Syn pathology exists
and how some a-Syn species transmit through neural connections
or non-neuronal cells.

Dopaminergic Deficiency
Considering the demonstrated implication of dopaminergic
cells in retina functions like those previously mentioned, an
impairment in the retinal dopaminergic system is linked to
visual symptoms in patients with PD. In 1988, Nguyen-Legros
(1988) described the loss of dopaminergic neurons in the
retina, and changes in the ERG, VEPs, and contrast sensitivity
were observed. Compared the retinal dopamine content in
patients who received levodopa therapy(treatment with the
DA precursor levodopa 2–15 h before death)and who had
not, Harnois and Di Paolo (1990) showed decreased DA in
the retinas of subjects with PD. Furthermore, Ortuno-Lizaran

et al. (2020) reported the dopaminergic cell degeneration and
the loss of synaptic contacts, revealing a failure in DA cells
through gap junctions that are involved in visual function.
Interestingly, it has recently been proposed that the retina plays
an important role in the regulation of the circadian system
and motor function. Some articles have reported the motor
impairment and circadian disorders in PD animal models (Willis
et al., 2014). In turn, using levodopa in the retina (Willis,
2008) and timed light therapy (Videnovic et al., 2017) [a
dopamine release stimulation (Li and Tian, 2017)] showed an
improvement of DA cells function, enhancing sleep, mood, and
anxiety, and also improved motor function. Therefore, the retinal
dopaminergic system is affected in PD and may explain the visual
deficits, motor impairment, and circadian rhythm alterations
described in patients.

With the development of ophthalmic techniques as mentioned
above, updated retinal images in patients with PD exhibit reduced
number of dopamine cells and dopamine concentration in the
retina (Bodis-Wollner et al., 1987; Bodis-Wollner, 1990; Harnois
and Di Paolo, 1990; Price et al., 1992). The measuring of the level
of dopamine released by dopaminergic neurons is also beneficial
for monitoring retinal morphological changes. Clinical data have
demonstrated that dopamine and dopamine transporter (DAT)
detected by single photon emission computerized tomography
(SPECT) or positron emission tomography (PET) promise to be
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FIGURE 3 | Diagrammatic interpretation of the formation, propagation, and
deposition of pathogenic a-synuclein. Certain risk factors effect on neurons,
and initiate some pathological mechanisms associated with the etiology of
PD, including (1) protein-clearance dysfunctions, (2) ER disruption, (3)
mitochondria dysfunction. These pathological effects promote (4) abnormal
a-Syn misfold and deposition. (5) Intercellular prion-like transmission of
pathological a-Syn. Due to the propagative mechanisms of a-Syn similar to
prions, abnormal proteins are released and transmitted via different
mechanisms:Apoptosis or necrosis,exosomes,membrane mediation,synaptic
propagation,mediator propagation, and so on. (6) The deposition of
pathogenic α-syn in Parkinson’s disease. For the definitive derivation of a-Syn,
the brain-first hypothesis and gut-first hypothesis appear to be better received
in current research. Especially, pathological a-Syn also was found in retina,
skin tissue, heart, CSF, and glandular secretions. These pathological changes
are critical for interpreting and understanding of clinical symptoms of patients
with PD. (7) The retinal degeneration in Parkinson’s disease.

objective and non-invasive markers to identify and determine
retinopathy in PD patients (Nguyen-Legros, 1988; Wojtkowski
et al., 2004; Biehlmaier et al., 2007). Also, abnormal transmitter
production and atrophy in RGCs and RNFL caused lower
dopaminergic cells to be identified using the OCT and be a
promising marker to monitor the progression of the disease
(Inzelberg et al., 2004). Thus, liked as pathological a-Syn,
dopaminergic neurons loss may be the key factors triggering
retinopathy in PD. Most experimental studies have shown that
the formation and aggregation of a-Syn may induce a time
dependent loss of DA neurons in the brain (Giordano et al., 2018).
However, the specific pathophysiological mechanism of a-Syn in
the retina and its relationship with the level of retinal dopamine
remains to be further studied.

Retinal Ganglion Cells Loss and Retinal
Nerve Fiber Layer Thinning
As previously mentioned, the ophthalmological examinations
visualize on the surface of the retina, such as the RNFL and
the retinal capillaries (attenuation, dilatation, aneurismal, and
neovascular). Though it is not certain that all retinal thinning in
PD is due to a-Syn aggregation or dopaminergic neuronal loss,
the two main pathological hallmarks may damage retina structure
(RGCs loss or RNFL thinning), interfere with signal transmission,
and hence cause visual dysfunction.

Most non-invasive study of the retina in PD patients
concentrated on the correlation of thinning RNFL detected by
OCT. Inzelberg et al. (2004) first assessed with OCT and reported
the RNFL thinning in patients with PD compared with controls.
The results showed a decrease in the thickness of inferior
quadrant RNFL near its entry to the optic nerve head (Inzelberg
et al., 2004). Since then, it has been identified that the RNFL
thickness was significantly thinner in four different quadrants,
ranging superior, temporal (Altintas et al., 2008; Moschos et al.,
2011), inferior (Inzelberg et al., 2004), and nasal (Shrier et al.,
2012) in the retina of participants with PD. Likewise, the RNFL
thickness in the macular region of PD was significantly lower
than in the control groups (Moschos et al., 2011; La Morgia et al.,
2013). Notably, the OCT quantification in macular seems to have
a higher diagnostic yield than RNFL quadrants quantification
(Polo et al., 2016). Sparkly, most studies revealed a significant
thinning of the RNFL in the IRL (Hajee et al., 2009; Cubo et al.,
2010; Albrecht et al., 2012) (constituting GCL, IPL, and INL)
and in the central 5-mm quadrant of the macula (Albrecht et al.,
2012; Garcia-Martin et al., 2014b), while no significant changes
in the ORL of the retina (Hajee et al., 2009; Cubo et al., 2010;
Adam et al., 2013).

The RNFL, as mentioned above, is formed from the axons
of the ganglion cells and constitutes the output neurons of
the retina. The thinness of the RNFL, specially GCL thinning,
largely leads to decreased ERG responses (Cuenca et al., 2005).
When comparing visual hallucination and OCT, Adam et al.
(2013) reported that visual hallucinations positively correlate
with retinal thinning in patients with PD. On the contrary,
an inverse correlation of IPL thickness with central contrast
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sensitivity was recently observed by Lee et al. (2014), and the
correlation in PD is weaker that in control groups.

Moreover, there are studies in the literature reporting a
correlation between the extent of the RNFL thinning and
duration or severity of PD. For instance, Jiménez et al.
(2014) demonstrated RNFL thickness correlation with disease
severity, and reported a strong inverse correlation between
RNFL thickness and the PD severity measured according to
the Unified Parkinson’s Disease Rating Scale (UPDRS) score.
The result suggested the decreased RNFL thickness evaluated
by OCT may be defined a simple biomarker for the clinical
duration and average of PD. Similarly, Garcia-Martin et al.
(2014a) demonstrated the more serious impairment of inner
retinal layers in the patients with long disease duration, rather
than healthy controls and PD with short disease duration.

Retinal Microvascular and Choroidal
Structural Changes
Evidence has implicated the correlation of cerebral small vessel
diseases with retinal microvascular changes detected by OCTA.
In the Atherosclerosis Risk in Communities (ARIC) Study, Wong
et al. (2001) detected that retinal microvascular abnormalities are
associated with an increased incidence of stroke. Hughes et al.
(2016) investigated associations between cerebral infarcts and
white matter lesions and abnormalities of the retinal circulation,
such as narrower arteriolar diameter, fewer arteriolar branching,
and more tortuous venules. Further, clinical data demonstrated
that these microvascular changes have been noted to have
increased incidence of PD and retinal structural and functional
alteration (Guan et al., 2013; van der Holst et al., 2015). Non-
invasive tests of retinal vascular impairment are likely to serve as
biomarkers for cerebral vascular changes in individuals with PD.

There are studies in the literature evaluating the retinal
microvessel status in individuals with PD. In a prospective
study (Kwapong et al., 2018), scholars evaluated macula
microvasculature and intraretinal layer thickness using SD-
OCT. The result demonstrated decreased microvascular density
in retina and reported a strong correlation between RNFL
thinning and the retinal microvascular abnormality. Also, Shi
and collaborators (Shi et al., 2020) characterized lower retinal
capillary density, decreased capillary perfusion density, and
fractal dimension using OCTA, suggesting the role of retinal
structural changes serving as a surrogate biomarker of cerebral
changes in PD. On post-mortem analysis of brain tissue from
patients with PD, Guan et al. (2013) also observed reduction
in capillary branching, fragmentation of capillary, shortening
vascular length, and larger diameter in the substantia nigra,
middle frontal cortex, and brain stem nuclei. Recently, a
cross-sectional study (Robbins et al., 2021) also compared
relevant retinal parameters of individuals with PD and age-
and sex-matched controls, found increased choroidal area,
increased choroidal luminal area, and decreased capillary plexus
vessel density and perfusion density in PD. Therefore, non-
invasive retinal imaging, OCT, may detect structural changes in
retinal microvascular as a novel technique for assessment and
detection of PD.

However, the mechanism of retinal microvascular changes in
PD is obscure. One may speculate that blood vessel regression
effects retinal circulation network, disturbs energy metabolism
and biochemistry functions. Retinal microvascular VD and
PFD in individuals with PD, to some extent, may reflect the
underlying blood vessel changes in neurodegenerative process of
PD (Robbins et al., 2021). Further, comparing vascular regression
and pathological features of PD in a-Syn overexpression
mouse model, Elabi et al. (2021) observed dynamic changes
in retinal microvascular morphology accompanied by a
pathological accumulation of α-syn deposit. The result suggests
the role of retinal microvascular pathology as an important
pathophysiological marker in PD (Elabi et al., 2021). Moreover,
early discoveries that the eye consists of unique surface molecules
and cytokines, and presents some immune responses similar to
those in CNS (Streilein, 2003), so retina may display similarities
of microvascular changes to the brain.

VISUAL DYSFUNCTIONS ASSOCIATED
WITH MORPHOLOGICAL CHANGES IN
RETINA

The retina, as mentioned above, consists of different neurons,
dendrites, and axons, and it is responsible for integrating
response to the visual system to the cortex. Clinically, patients
with PD often suffer from various functional disabilities in
central, peripheral, or visuoperceptual vision. Although the visual
system does not exist in isolation, we focus on the retina in this
article and discuss the visual disorders associated with retinal
dysfunction (Table 3).

Visual Acuity
Visual acuity (VA) is an ability to discriminate the details of a
stimulus. It has been demonstrated that patients with PD present
impaired VA in the prodromal phase of the disease (Jones et al.,
1992). Compared with age- and sex-matched healthy people
using the standard Snellen chart and computerized test, VA is
impaired in individuals with PD. Similarly, Han et al. (2020)
confirmed that VA in PD patients was worse than this in control
groups. Especially, they also found that the worse VA groups have
higher incidence of PD than individuals without visual disability,
reflecting the visual disorder is one of the premotor symptoms for
PD progression (Han et al., 2020).

Evidence has demonstrated a significant positive correlation
between lower visual acuity and thinning RNFL thickness (Satue
et al., 2017; Visser et al., 2020; Abd Hamid et al., 2021; Table 3).
Sparkly, the thinness in the ganglion cell-inner plexiform layer in
PD was strongly correlated with low contrast visual acuity via a
comprehensive battery of visual function tests (Murueta-Goyena
et al., 2019; Marrocco et al., 2020). Recently, Shi and his colleagues
characterized retinal capillary complexity of retina in patients
with PD, and found that lower retinal capillary and perfusion
densities and capillary complexity was negatively correlated with
VA (Shi et al., 2020).

According to the above, dopaminergic neuron cells in
retina can release dopamine and contribute to functional VA.
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TABLE 2 | Table outlining the features of native and phosphorylated a-synuclein in the retina.

Subject Retinal layers Morphometric analysis Aggregation
propensity or

toxicity

References

Native
a-synuclein

Non-PD,
PD patient

GCL, IPL, INL Soluble a-synuclein, protein
aggregates, Lewy
body/neurite

±
a Guan et al., 2013;

Mailankody et al., 2015;
Robbins et al., 2021

Phospho-
a-synuclein

PD patient GCL, IPL, NFL Protein aggregates, Lewy
body/neurite

++b Archibald et al., 2009;
Schmidt et al., 2011

Non-PD, healthy control subject; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; NFL, nerve fiber layer.
a
±: none or low aggregation propensity and toxicity.

b++: increased aggregation propensity and toxicity.

TABLE 3 | Retinal abnormalities in PD patients.

Visual abnormality Morphological changes in Retina Retinal mechanism defects References

Visual acuity RNFL thinning Postuma et al., 2015; Gbd 2015 Neurological
Disorders Collaborator Group, 2017; Ggbd 2016
Parkinson’s Disease Collaborators, 2018; Santos
Garcia et al., 2019; Xu et al., 2019

Loss RGCs Postuma et al., 2015; Gbd 2015 Neurological
Disorders Collaborator Group, 2017;
Ortuno-Lizaran et al., 2018b

Decreased microvascular density Ortuno-Lizaran et al., 2018a

Contrast sensitivity RNFL thinning ÀRetinal function in ERGs and VEPs;
Á Retinal dopaminergic system
impairment and dopamine reduction
Â Loss of synaptic contacts between
retinal neurons

Ggbd 2016 Parkinson’s Disease Collaborators,
2018

RGCs loss Ortuno-Lizaran et al., 2018b; Kim et al., 2019

Thinning of foveal neural tissues Friedman, 2004; Reddy et al., 2013

Visual hallucinations RNFL thinning Armstrong, 2017; Shi et al., 2020

Color vision Loss RGCs Ortuno-Lizaran et al., 2018b

Aggregates of misfolded a-synuclein and related retinal dopamine
depletion lead to injury to light-adapted vision and VA. Nguyen-
Legros noted that altered ERGs and VEPs are identical in
PD patients and animal models with damaged dopaminergic
retinal system (Wong et al., 1985; Olivier et al., 1986; Bodis-
Wollner and Tzelepi, 1998; Afsari et al., 2014; Bonilha et al.,
2015; Mammadova et al., 2019). In Archibald et al.’s (2011)
research, 64 with PD, 26 with PD dementia (PDD), and 32 normal
were evaluated using a series of diagnostic procedures about
function on vision, cognition, and related pathology. The study
reported the impairments in acuity in patients with PD or PDD,
and poorer visual acuity in the last stage of untreated patients
(Archibald et al., 2011). Likewise, Richard and his members beat
out the correlation between poor VA and the lack of dopamine
in the retina, but also the better acuity in PD patients receiving
drugs (Jones et al., 1992).

Contrast Sensitivity
Contrast sensitivity is a special vision function involving in
the regulation of visual resolution ratio and vision at a
variety of spatial and light-black frequencies. Patients with
diminished vision contrast sensitivity commonly are susceptible
to falls, reading problems, and dark-adapted difficulty. In the

1980s, impaired contrast sensitivity was documented in PD
patients in comparison with age-matched controls (Regan and
Neima, 1984). Since then, an increasing number of studies
have consistently offered proof for the impairment of contrast
sensitivity in patients with PD (Langheinrich et al., 2000;
Silva et al., 2005; Archibald et al., 2009; Armstrong, 2017).
Current studies reported by Polo et al. (2016), showed that
contrast sensitivity deficit is more common and severe than
other visual disorders. Additionally, the impaired contrast
sensitivity was associated with VH and cognitive impairment, as
a useful biomarker in patients with PD (Diederich et al., 1998;
Ridder et al., 2017).

Like VA, evidence revealed that the inner retinal
thinning enhances the presence of contrast sensitivity
(Pinkhardt et al., 2020), and the progressive changes in RNFL
were associated with progression of abnormal visual function
(Satue et al., 2017). Moreover, several studies demonstrated the
correlation between impaired vision and remodeled foveal pit,
showing the correlation of contrast sensitivity deficit with retinal
parafoveal thickness (Miri et al., 2016; Pinkhardt et al., 2020).

In pathological mechanisms, it has been indicated that
dopaminergic system impairment in the retina may explain and
be partially responsible for the reduced contrast sensitivity in
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patients with PD. Under physiological conditions, the contrast
sensitivity and color vision are mainly modulated through D1
and D2 receptors differentially located in the retinal structure.
When these receptors lack activation, there are the dispersion
of visual signals and alterations in color vision and contrast
sensitivity (Hajee et al., 2009). Also, dopamine reduction may
result in loss of synaptic contacts with photoreceptor cells and
mRGCs and to disturb contrast sensitivity (Hindle et al., 2013;
Kaur et al., 2015; Ortuno-Lizaran et al., 2020). Bulens et al. (1987)
reported, contrast sensitivity function of 10 patients with PD
before and after levodopa treatment. The remission of contrast
sensitivity deficit after the exogenous supplement of dopamine
demonstrated the function of the retinal transmitter on the
visual pathways. An updated study showed that dopaminergic
system impairment and dopamine reduction may be responsible
for the reduced contrast sensitivity in PD (Ortuño-Lizarán
et al., 2020). In addition, these alterations are linked to loss
of dopaminergic synaptic contacts or decline in mRGCs that
contribute to circadian rhythm and sleep.

Visual Hallucinations
Visual hallucination (VH) is a specific feature of PD compared
with other Parkinsonian disorders, accounting for 30–40%
patients with the disease (Onofrj et al., 2007). Clinically, VH
manifests various complex symptoms, including flashes of light,
visual perception deficit, and color and motion perception
impairment. Most studies in patients with VH demonstrated
the disorder was associated with cortical visual discrimination
involving in the changes at different visual pathways as well as
other neural systems and motor function (Uc et al., 2005). It can
explain why VH is also common in cognitive flaw PD patients,
and the patients with dementia have the higher prevalence of VH
than patients without dementia (Archibald et al., 2011). However,
the underlying pathophysiological mechanisms are still unclear.
Based on a hypothesis of VH titled the Charles Bonnet syndrome
(Stebbins et al., 2004), we know that retinal damage is linked to
poor signals in the brain regions, and lead to less visual cortical
activation and play a crucial role in the neuropathophysiological
function of VH in PD. Moreover, emerging studies stated that
defective visual information processing involvement has been
demonstrated in VH of PD patients, so retinal impairment
appears to be one of mechanisms of the sign (Visser et al., 2020).

To date a limited number of studies reveals that VH
appears to be associated with inner retinal thinning. Lee et al.
(2014) identified RNFL thinning among the PD subgroups,
and noted that RNFL thickness is thinnest in groups without
dementia, suggesting RNFL thinning was associated with the
occurrence of VH in PD. Similarly, a recent report confirmed
the relationship between RNFL thinning and the presence
of VH, revealing that individuals with VH had a thinner
GCL-IPL than individuals without VH (Visser et al., 2020).
It is believed that the old age, disease’s duration, motor
disorders, and other non-motor disturbances could worsen
the VH as the risk factors in PD (Fénelon et al., 2000;
Zhu et al., 2013).

Consistent with visual acuity and contrast sensitivity,
retinal pathological changes contribute to the occurrence and

development of VH. The dopaminergic system damages have
been considered as the pathological basis of VH. Dopamine
replacement therapy also supported the evidence for the effects
of dopaminergic deficiency on the VH (Onofrj et al., 2002;
O’Donnell et al., 2006). Like as the loss of DA, the LB
pathology is also associated with the occurrence and progress
of VH. Moreover, a number of studies have been proposed
to explain VH in PD, noting that reduced levels of γ-
aminobutyric acid (GABA) are associated with mechanisms of
VH (Firbank et al., 2018).

Color Vision
As is known to all, color vision is the basic function
mediated by the photoreceptor cones in the retina and
related visual cortex via some specific visual pathways. In
the early stages of PD, patients’ color vision is impaired
and deteriorates with disease duration (Price et al., 1992;
Buttner et al., 1995). In the 1990s, scholars assessed the
color vision in 35 patients with PD and 26 controls, and
reported significant abnormality of color vision in PD compared
to the healthy people (Price et al., 1992). Recent studies
showed the color detection dysfunction affected movement.
For instance, Penedo et al. (2018) reported the ability of
obstacle avoidance was impaired due to the impairment of color.
Likewise, the axial motor impairments were associated with the
changes in color discrimination (Bohnen et al., 2017), suggesting
shared pathophysiology between the alteration of color vision
and motor or mobility dysfunctions in PD. Additionally, the
disorders of visual pathways in PD patients might contribute
to the occurrence of poor color vision, such as depressive
symptoms (Li et al., 2018), idiopathic rapid eye movement
sleep behavior disorder (Postuma et al., 2009), and other
different retinal areas.

Likewise, RGCs loss and RNFL thinning may be
also causes of impaired color vision in PD (Polo
et al., 2016). In an observational cross-sectional study,
Polo et al. (2016) evaluated visual dysfunction and
its correlation with morphological changes in the
retina in participants with PD, and found color vision
was associated with most GCL thinning while not
significantly correlated between RNFL thickness and other
visual dysfunction.

As a pathological hallmark, dopaminergic deficiency in
the retina showed an association with the impairment in
color vision. In mammalian retinal layers, some dopaminergic
receptors are in charge of color vision and contrast sensitivity,
so alterations in these functions could be the result of lack
of dopaminergic systems (Hajee et al., 2009). In patients
with PD, deficiency in color vision influences retinal evoked
potentials, reflecting abnormalities in dopaminergic synaptic
activity in the retina (Bodis-Wollner et al., 1982). Silva et al.
(2005) found color visual deficits within the parvo, Konio,
and magnocellular pathways in the retina, especially the
parvocellular pathway. Meanwhile, they also found the reduction
of dopaminergic neurons around the fovea, suggesting that the
dysfunctions of these pathways are possibly related to altered
dopaminergic modulation.
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TABLE 4 | Retinal abnormalities in PD animal models.

Animal Model Morphological changes Retinal defects References

Rat Rotenone-induced Decreased number of RGCs and DACs; INL and ONL
thinning

Decreased scotopic and photopic a- and b-waves;
Increased b-wave implicit time

Tamer et al., 2005; Onofrj
et al., 2006

6-OHDA-induced Decreased DA levels – Onofrj et al., 2006

Mouse MPTP-induced Decreased number of DACs Reduced oscillatory potentials, a- and b-waves; Williams et al., 2008

Retinal a-Syn overexpression Decreased number of DACs Decrease of light-adapted ERG responses and
visual acuity

Guo et al., 2018

Prnp- A53T- SNCA Accumulation of α-synuclein, loss of photoreceptor cells Weil et al., 2016

TgM83 (A53T α-synuclein mutation) Accumulation of a-Syn and phosphorylated tau,
decreased number of photoreceptors

– Weil et al., 2016

DJ-1 knockout RPE thinning, decreased number of dopamine Increased amplitude of b-wave and ERG, Uc et al., 2005

Rabbit MPTP-induced Decreased dopamine level Decreased amplitude of b-waves and oscillatory
potentials

Bertrand et al., 2012

6-OHDA-inducd Decreased dopamine level Decreased amplitude of b-waves Ortuno-Lizaran et al., 2020

Monkey MPTP-induced Decreased number of DACs, Deteriorated postsynaptic
neurons

– Esteve-Rudd et al., 2011

MPTP-induced Decreased number of DACs, RNFL thinning Abnormal VEP and PERG responses Willis et al., 2014

6-OHDA-inducd Decreased number of DACs Abnormal PERG responses

Drosophila a-Syn over-expression – Decreased PERG responses Willis, 2005

LRRK2-G2019S Loss of photoreceptor function Decreased ERG response, loss of visual function Toscano-Tejeida et al.,
2016; Pineda-Rodriguez
et al., 2017

Frontiers
in

N
euroscience

|w
w

w
.frontiersin.org

February
2022

|Volum
e

15
|A

rticle
799526

156

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-799526 January 31, 2022 Time: 14:32 # 13

Zhang et al. Retina Disorders in Parkinson’s Disease

FUTURE PERSPECTIVES

The increasing number of research explores morphological
changes associated with retinal dysfunction in PD as summarized
in Table 4. This evidence provides insight into the mechanism
underlying visual dysfunctions and retinal changes in PD,
mirroring PD brain pathology. Thus, morphological changes
or dysfunction in the retina are regarded as a potential
approach to diagnosis and monitor Parkinson’s disease, and
the successful use of the retinal technology in clinical trials
is valid and reliable tools to explore neuropathies in the
CNS. However, molecular changes and neuropathological
mechanisms involved in retinal changes are obscure. More
studies are needed to further validate the significance of retinal
pathology and vision deficit to establish the causality of these
relationships in PD.
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