Research Topic

Climate Change Impact on Large Scale Circulation and Associated Hydroclimate Extremes

About this Research Topic

Global precipitation patterns and the availability of surface and groundwater are changing as a result of anthropogenic climate change. Global precipitation patterns are affected by variations in large-scale circulation like the narrowing of the tropical rain belts, the expansion of the Hadley Circulation edges and its consequent impact on the position of the extratropical storm tracks, or changes in the monsoon systems. The increase in available water vapor as a response to global warming led to an intensification of extreme precipitation events, a reduction of the frequency of non-extreme precipitation events, and often a simultaneous increase in both floods and droughts.

Arid to semi-arid and humid regions are projected to experience the largest changes in precipitation, with more intense drought and flooding events, with widespread impacts associated to a relative rapid population growth, as well as increasing levels of socioeconomic disparity. Monsoon regions concentrate a large fraction of the world’s population, with agriculture relying on the timing and amount of rainfall, which is typically characterized by a high interannual variation. Understanding and predicting these long-term changes to the hydrologic cycle are vital, especially for water-scarce regions.

This Research Topic will focus on the global water cycle and its role in climate dynamics in response to climate warming, especially on climate extremes over critical regions such as arid and semi-arid regions, as well as precipitation measurements and modelling required to understand the long-term changes to the water cycle. We invite you to submit your research findings related to the following topics:

• Precipitation extremes associated to mesoscale convective systems, extratropical and tropical cyclones.
• Changes in large scale circulation patterns (monsoons, tropical belt, teleconnections) associated with characteristics of hydroclimatic extremes.
• Detection and attribution of climate extremes in arid to semi-arid regions.
• Exploration and advancement of our understanding of changes in the quantity and quality of water resources in response to a changing climate, through observation, numerical modelling and Machine Learning approaches.
• Impact of land use/land cover changes on the frequency of hydroclimatic extremes (floods, landslides, droughts).
• Improved regional water management in response to hydroclimatic extremes.


Keywords: water resources, water cycle, hydrological extremes, global warming, water loss, Hadley Circulation, hydrologic cycle, Machine Learning


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Global precipitation patterns and the availability of surface and groundwater are changing as a result of anthropogenic climate change. Global precipitation patterns are affected by variations in large-scale circulation like the narrowing of the tropical rain belts, the expansion of the Hadley Circulation edges and its consequent impact on the position of the extratropical storm tracks, or changes in the monsoon systems. The increase in available water vapor as a response to global warming led to an intensification of extreme precipitation events, a reduction of the frequency of non-extreme precipitation events, and often a simultaneous increase in both floods and droughts.

Arid to semi-arid and humid regions are projected to experience the largest changes in precipitation, with more intense drought and flooding events, with widespread impacts associated to a relative rapid population growth, as well as increasing levels of socioeconomic disparity. Monsoon regions concentrate a large fraction of the world’s population, with agriculture relying on the timing and amount of rainfall, which is typically characterized by a high interannual variation. Understanding and predicting these long-term changes to the hydrologic cycle are vital, especially for water-scarce regions.

This Research Topic will focus on the global water cycle and its role in climate dynamics in response to climate warming, especially on climate extremes over critical regions such as arid and semi-arid regions, as well as precipitation measurements and modelling required to understand the long-term changes to the water cycle. We invite you to submit your research findings related to the following topics:

• Precipitation extremes associated to mesoscale convective systems, extratropical and tropical cyclones.
• Changes in large scale circulation patterns (monsoons, tropical belt, teleconnections) associated with characteristics of hydroclimatic extremes.
• Detection and attribution of climate extremes in arid to semi-arid regions.
• Exploration and advancement of our understanding of changes in the quantity and quality of water resources in response to a changing climate, through observation, numerical modelling and Machine Learning approaches.
• Impact of land use/land cover changes on the frequency of hydroclimatic extremes (floods, landslides, droughts).
• Improved regional water management in response to hydroclimatic extremes.


Keywords: water resources, water cycle, hydrological extremes, global warming, water loss, Hadley Circulation, hydrologic cycle, Machine Learning


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

01 February 2021 Manuscript
26 February 2021 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

01 February 2021 Manuscript
26 February 2021 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..