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Editorial on the Research Topic

Brain-Computer Interfaces for Non-clinical (Home, Sports, Art, Entertainment, Education,

Well-Being) Applications

INTRODUCTION

In this decade Brain-Computer Interface (BCI) technology has entered mainstream human-
computer interaction (HCI) research for non-clinical applications. BCI has become part of
multimodal interaction research as an additional interaction modality for a user of a technological
system. BCI has also become part of research in which neurophysiological data provides a
system with information about a user’s affective and mental state, making it possible to adapt
system, task, and interaction to a particular user, online (Fairclough, 2022). Currently, there is
a market for inexpensive electroencephalographic (EEG) devices and software kits that capture
voluntarily and involuntarily evoked brain activity and allow this activity to be translated into
control and communication commands for environments and devices. Moreover, research on the
use of deep networks for BCI applications has increased recently and promises to increase the
accuracy of BCI systems (Craik et al., 2019). Overall, the availability of low cost non-invasive
neurotechnology poses some ethical and regulatory challenges at the intersection of medical and
consumer neurotechnologies.

Although EEG-based BCIs are limited in robustness and bandwidth, they are still, by far, the
most accessible type of BCI to explore its potential use in domains such as games, entertainment,
education, and art. While much of BCI research in clinics is increasingly relying on invasive
recordings, such methods are most likely decades away from non-medical applications.

HCI researchers interest in BCI is increasing because the technology industry is expanding into
application areas where efficiency is not the main goal of concern. Domestic or public space use of
information and communication technology raise awareness of the importance of affect, comfort,
family, community, or playfulness, rather than efficiency. Therefore, in addition to non-clinical
BCI applications that require efficiency and precision, this Research Topic also addresses the use of
BCI for various types of domestic, entertainment, educational, sports, and well-being applications.
These applications can relate to an individual user as well as to multiple cooperating or competing
users. We also see a renewed interest of artists to make use of such devices to design interactive
art installations that know about the brain activity of an individual user or the collective brain
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activity of a group of users, for example, an audience (Contreras-
Vidal et al., 2019). Hence, this Research Topic also addresses how
BCI technology influences artistic creation and practice, and the
use of BCI technology to manipulate and control sound, video,
and virtual and augmented reality (VR/AR).

CONTRIBUTIONS

This Research Topic is composed of 11 accepted papers: seven
dedicated to original research, a perspective, a mini review
and two opinion pieces, and are dedicated to various themes
and perspectives. These contributions address the multi-faceted
nature of non-clinical BCIs, ranging from ethical ramifications
of these neurotechnologies, applications to the arts, education,
communication, wellbeing, and sports to the readiness of BCI
deployment for gaming.

A first original research paper by Xie et al. focuses on the
use of EEG-BCI technology as an objective evaluation method.
The authors suggest using EEG and machine learning in order to
assess car sound quality and show relationships between sound
intensity and EEG energy.

Guillermo Bernal, Sean Montgomery and Pattie Maes discuss
the future of BCI systems and how they may have an
impact on productivity and efficiency, and/or augment the
human experience by enhancing expressivity, understanding and
empathy Bernal et al.. Artists and do-it-yoursef-ers (DIYers) are
provided as examples of BCI users that deploy such systems
beyond the intendedİ use (for additional discussion, the reader
is referred to Paek et al., 2020). Current challenges on data and
code: sharing, transparency (e.g., preprocessed data and closed-
source algorithms typically used by commercial systems), lack of
interpretability and explainability (e.g., black box systems), and
security are recognized as barriers to democratizing BCI systems.
Their manuscript concludes with a discussion of the impact of
closed loop BCI systems for generative content and augmented
cognition when coupled with VR/AR systems.

Currently, the P300 component of the event-related potential
(ERP) certainly is one of themost reliable EEG patterns to be used
to control a so-called reactive BCI. P300-BCIs are also relevant
for fast stimulus recognition as both the amplitude and latency of
this EEG component are linked to cognitive processes potentially
triggered by those stimuli. In their original research paper, Sutaj
et al. design and evaluate a novel P300-based real-time image
ranking BCI. Their work demonstrates the relevance of BCIs for
stimulus sorting and brings insights on the influence of stimulus-
related cognitive processes on the associated EEG patterns.

Emotional reactions monitoring and classification is an
important part of many real life applications involving
physiological and affective computing technologies. Li et al.
describe their open-source software toolbox MindLink-Eumpy
that aims at recognizing emotions by integrating EEG and facial
expression information. Besides online experiment conducted,
the offline validation was done using DEAP (Koelstra et al.,
2011) and MAHNOB-HCI (Soleymani et al., 2011) datasets. As
expected, the results show that multimodal methods outperform
single-modal methods in both offline and online experiments.

With the expansion of the BCI field comes the development of
numerous applications.While they could be relevant and re-used,
both for research purposes and out-of-the-lab applications (e.g.,
entertainment, rehabilitation, etc.), those applications most often
remain confidential. Efforts to provide these application open-
source, as in Woo et al., will be most valuable for the community.

Recently, functional near-infrared spectroscopy (fNIRS) has
been for brain studies outside the lab or indoor conditions
involving user physical activity like walking, as it is more robust
to movement artifacts than EEG-based imaging. The study by
de With et al. focused on fear of heights in VR exposure therapy
(VRET) settings using head-mounted display. It focused on the
question to what extent fNIRS can differentiate users with and
without anxiety disorders. Two experimental groups involved
controls and pre-screened individuals with fear of heights (based
on Acrophobia Questionnaire). While results showed limited
statistical significance, the experimental group showed stronger
reactions to fear inducing stimuli. The study demonstrates
ecological validity of combining fNIRSmeasurements and VRET,
encouraging further work on BCI-based therapy applications.

Another fNIRS study by Slutter et al. addresses phenomenon
of choking under pressure in soccer players just seconds before
the actual penalty kick on the football field. Results showed
that when experienced players were feeling anxious, their left
temporal cortex activation increased. While the work was
methodologically challenging (e.g., 59% of the collected data has
been removed due to artifacts), it demonstrates an important
trend of moving out-of-the-lab to get ecologically valid brain
imaging results. In should be also noted, that due the study design
and the sports topic, this work received highmedia coverage, with
journalists often overinterpreting the original results.

Scott and Raftery’s perspective contribution addresses the
potential impact of integrating brain-computer interfaces (BCI)
and creative art therapy approaches to promote rehabilitative
and therapeutic interactions while increasing patient engagement
Scott and Raftery. The authors rightly argue that the application
of BCI systems informed by creative expression—as a new form
of digital health tool—may be extended to promote emotional
and physiological healing and recovery. However, it remains
to be seen how artistic/creative BCIs can be personalized and
prescribed for health and well-being for use individually or in
social contexts (see recent collection of works on BCI for artistic
expression in Nijholt, 2019).

In their mini-review, Joan Belo, Maureen Clerc and Daniele
Schn discuss emergent applications of passive BCIs and EEG-
based auditory attention detection (AAD) in education and art
Belo et al.. Of interest is the proposed use of an AAD module,
which monitors the source and location of the user’s attended
auditory sources, to guide BCI control, for example, of external
sound generating instruments.

Affective brain-computer music interface technology is used
for mood enhancement by providing users with suggestions for
the music they like and modulating the users affective states.
In an opinion piece by Hildt, social and ethical aspects of the
technology are discussed with a focus on the role of the brain and
considerations about responsibility for controlling one’s affective
state, neural profiling, and privacy-related aspects.
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In the second opinion paper, Cattan discusses the readiness of
BCI game interfaces for the general public. The paper has critical
reflections on the common limitations discussed in the literature,
such as low transfer rate, cost and encumberment of materials,
and the lack of game design and graphics compared with video
games available on the market. In his opinion, there should be
more focus on qualitative aspects of the interaction with BCI
games, where BCI should be limited to aspects that cannot be
achieved by traditional inputs.

CONCLUSIONS

The picture emerging from the contributions to this Research
Topic, with its wide range and different approaches, is one
that highlights the emergent challenges and opportunities for
non-clinical BCI systems and their potential impact on society.
Clearly, this is an area of research that is gaining considerable
attention and that is expected to reach the public sooner than
clinical BCI systems, which require careful evaluation of risks and
benefits to the end users, and approval by regulatory agencies.
The reader is cautioned that deployment or modifications of
non-clinical BCI systems by end-users may lead to unintended
consequences that are currently poorly understood. This is
particularly critical for closed-loop or neurofeedback systems

that may alter or adapt cognitive-emotional states in healthy
individuals or in person with mental or cognitive disabilities, or
brain injury. Clearly more research is needed on the ethical and
thrust-worthy application of BCI systems outside the clinic.
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MindLink-Eumpy: An Open-Source
Python Toolbox for Multimodal
Emotion Recognition
Ruixin Li1†, Yan Liang1†, Xiaojian Liu1, Bingbing Wang1, Wenxin Huang1, Zhaoxin Cai1,
Yaoguang Ye1, Lina Qiu1 and Jiahui Pan1,2*
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Emotion recognition plays an important role in intelligent human–computer interaction,
but the related research still faces the problems of low accuracy and subject
dependence. In this paper, an open-source software toolbox called MindLink-Eumpy is
developed to recognize emotions by integrating electroencephalogram (EEG) and facial
expression information. MindLink-Eumpy first applies a series of tools to automatically
obtain physiological data from subjects and then analyzes the obtained facial expression
data and EEG data, respectively, and finally fuses the two different signals at a decision
level. In the detection of facial expressions, the algorithm used by MindLink-Eumpy is
a multitask convolutional neural network (CNN) based on transfer learning technique.
In the detection of EEG, MindLink-Eumpy provides two algorithms, including a subject-
dependent model based on support vector machine (SVM) and a subject-independent
model based on long short-term memory network (LSTM). In the decision-level fusion,
weight enumerator and AdaBoost technique are applied to combine the predictions of
SVM and CNN. We conducted two offline experiments on the Database for Emotion
Analysis Using Physiological Signals (DEAP) dataset and the Multimodal Database
for Affect Recognition and Implicit Tagging (MAHNOB-HCI) dataset, respectively, and
conducted an online experiment on 15 healthy subjects. The results show that
multimodal methods outperform single-modal methods in both offline and online
experiments. In the subject-dependent condition, the multimodal method achieved an
accuracy of 71.00% in the valence dimension and an accuracy of 72.14% in the arousal
dimension. In the subject-independent condition, the LSTM-based method achieved an
accuracy of 78.56% in the valence dimension and an accuracy of 77.22% in the arousal
dimension. The feasibility and efficiency of MindLink-Eumpy for emotion recognition is
thus demonstrated.

Keywords: multimodal emotion recognition, multitask convolutional neural network (CNN), support vector
machine (SVM), subject-independent method, long short-term memory network (LSTM)

INTRODUCTION

Emotions are biological states associated with the nervous system (Damasio, 1998), and its changes
are related to subjective feelings and objective behavioral responses. Emotion recognition plays an
essential role in human–computer interaction. It is an emerging interdisciplinary research field that
covers various methods and techniques in artificial intelligence (AI), natural language processing
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(NLP), and cognition and social sciences (Poria et al., 2017).
Although the studies on emotion recognition have made great
improvements in recent years, there are still limitations such as
low accuracy and subject dependence. Thus, there is an urgent
need for an innovative toolbox with effective methods to enlarge
the dataset and improve the accuracy of emotion recognition.

Previous studies (Davidson et al., 1990) exerted the
Approach/Withdrawal index as an emotional indicator of
the relationship between emotion, approach, and withdrawal.
Gianluca et al. (Di Flumeri et al., 2017) demonstrated the
reliability of this index of pleasantness. Afterward, some scholars
found that algorithms based on transfer learning, fusion of
multimodal information, or subject-independent methods can
improve the performance of emotion recognition. For example,
Nguyen et al. (2018) proposed a novel transfer learning approach
based on PathNet and conduct various experiments on the
Surrey Audio-Visual Expressed Emotion (SAVEE) dataset and
the eNTERFACE dataset and found that this approach could
improve the performance of emotion recognition. Sebe et al.
(2005) conducted a survey and pointed out that multimodal
emotion recognition (such as the combination of facial
information, voice, and physiological signals) achieved higher
accuracy than traditional single-modal emotion recognition.
Furthermore, Georgieva et al. (2015) compared six unsupervised
machine learning methods and performed experiments for
intersubject models and intrasubject models. The results
showed that event-related potential (ERP) clustering (especially
the Fuzzy C-means clustering) algorithm was a promising
approach that can extract statistical underlying correlations of
brain activity among subjects to decode the human emotional
state. However, all the above studies did not combine the
electroencephalogram (EEG) modality using deep learning
technology in subject-independent emotion recognition.

Furthermore, the influence of emotion is manifested in a
variety of levels and modalities. On the one hand, peripheral
signals (such as facial expressions, verbal speech, and body
language) are related to the somatic nervous system and
can reflect changes in emotion states. On the other hand,
many studies often assessed the power spectra of EEG in
different frequency bands to examine their relationship with
emotional states. For example, literature (Alsolamy and Fattouh,
2016; Guzel Aydin et al., 2016; Jiang et al., 2019) reported
several spectral changes and brain regions related to emotional
responses, such as the changes of theta (θ: 4–7 Hz) power in the
right parietal lobe, the asymmetry of alpha (α: 8–13 Hz) power
in the anterior area of the brain, the asymmetry of beta (β: 14–
30 Hz) power in the parietal region, and the changes of gamma
(γ: 31–50 Hz) power in the right parietal regions. Most of the
previous studies have used peripheral signals or brain signals
alone to identify emotions, and little attention has been paid to
the fusion between the brain and peripheral signals.

To overcome the abovementioned difficulties in emotion
recognition, we proposed an open-source free toolbox named
MindLink-Eumpy. MindLink-Eumpy mainly focuses on the
recognition of continuous movie-induced emotions rather than
discrete emotions (Yan den Broek, 2013) (the basic discrete
emotions include happiness, sadness, surprise, fear, anger, and

disgust) and provides a series of tools for physiological data
processing. MindLink-Eumpy applies vector models to classify
emotions because they can quantify emotions better than
circumplex models (a concept of discrete emotions) (Posner
et al., 2005). Furthermore, MindLink-Eumpy adopts a valence–
arousal model (Lang et al., 1997) (continuous emotion) and
self-assessment manikins (SAMs) (Bradley and Lang, 1994) to
evaluate emotion. The scores of valence and arousal dimensions
are both between 1 and 9 (all scores are integers). The
valence reflects the level of pleasure, and arousal reflects
the level of intensity. High scores represent high levels of
pleasure or intensity.

MindLink-Eumpy provides a series of continuous emotion
recognition methods based on facial expressions and EEG
signals. Specifically, as a toolbox designed for scientific research,
MindLink-Eumpy is suitable not only for emotion recognition
based on the public databases Database for Emotion Analysis
Using Physiological Signals (DEAP) (Koelstra et al., 2012)
and MAHNOB-HCI (Soleymani et al., 2012) but also for
emotion recognition based on self-created databases. To acquire
physiological data and create our own database, MindLink-
Eumpy provides recorders (programs for device control,
especially programs for collecting data) to collect EEG signals
and facial images. Moreover, MindLink-Eumpy implements an
event-related potential (ERP) (Sur and Sinha, 2009) paradigm
in a Web-based framework to induce the subject’s emotions
through video clips. In the detection of facial expression,
MindLink-Eumpy uses multitask convolutional neural networks
(CNNs) (Lawrence et al., 1997) based on transfer learning
techniques to overcome the common problem of lack of
data and achieve higher accuracy. MindLink-Eumpy offers
two methods in the detection of EEG. One is a subject-
dependent model based on support vector machine (SVM)
(Cortes and Vapnik, 1995), which is able to achieve high
accuracy when the validation data and the training data are
homogeneous. The other one is a subject-independent model
based on long short-term memory network (LSTM) (Hochreiter
and Schmidhuber, 1997; Koelstra et al., 2012), which is used
to reduce the effects caused by the individual variations and
non-stationarity of EEG signals. The latter method yields more
stable performance when the validation data and training
data are heterogeneous. Moreover, to improve the accuracy of
emotion recognition for homogeneous data, MindLink-Eumpy
proposes two decision-level fusion methods for multimodal
emotion recognition tasks, namely, weight enumerator and
adaptive boosting (AdaBoost) technique (Das et al., 2015), to
fuse the decision-level information of SVM and CNN. For
the heterogeneous data, the subject-independent method we
used is the EEG-based LSTM model. Our experimental results
show that when the validation data and training data are
homogeneous, the highest average accuracy achieved by the
multimodal subject-dependent models in the arousal and valence
dimensions were 72.14% and 71.00%, respectively. However,
when the validation data and training data are heterogeneous,
the highest average accuracy achieved by the EEG-based subject-
independent model in the arousal and valence dimensions were
77.22% and 78.56%, respectively.

Frontiers in Human Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 6214938

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-621493 February 15, 2021 Time: 18:39 # 3

Li et al. MindLink-Eumpy

This paper introduces an open-source Python toolbox for
multimodal emotion recognition, MindLink-Eumpy, including
its structure, related algorithms, and functions. The Introduction
section of this paper covers the background and significance
of this work. The Related Work section introduces the related
works on emotion recognition and some related toolboxes. The
MindLink-Eumpy: Architecture, Modules, and Features section
presents MindLink-Eumpy and describes its structure, methods,
and functions in detail. The Methods for Emotion Recognition
section describes the continuous emotion recognition methods
used in MindLink-Eumpy in detail and proposes multimodal
subject-dependent methods and EEG-based subject-independent
methods. The Experiments and Results section demonstrates
the innovations and effectiveness of MindLink-Eumpy. The
Discussion and Conclusion section summarizes the advantages
and limitations of MindLink-Eumpy compared with other state-
of-the-art methods, as well as its potential applications and
areas of future work.

RELATED WORK

In this section, we briefly review some related work on
emotion recognition. This section includes three subsections:
(i) related studies on emotion recognition, (ii) software-related
emotion recognition, and (iii) comparison of related software
with MindLink-Eumpy.

Related Research on Emotion
Recognition
It is well known that emotion recognition techniques have yielded
considerable improvements in the past few years, and here
come some articles that inspired us during our study. To begin
with, transfer learning technique has the potential to tackle the
difficulties of small datasets in emotion recognition area. Facial
expression recognition needs plenty of facial images but it is hard
to recruit enough subjects. To deal with this problem, Prakash
et al. (2019) proposed an automatic facial emotion recognition
method using CNNs with a transfer learning approach. This
approach was demonstrated to be effective with an average
accuracy over 98% in their experiments. Furthermore, we tried
to combine facial expression and EEG because the performance
of multimodal emotion recognition methods is superior to that of
single-modal methods, which has been demonstrated long before.
As an example, in a research in 2008: Kessous et al. (Castellano
et al., 2008) integrated information from facial expressions, body
movements, gestures, and speech and found that the multimodal
approach improved accuracy by more than 10% compared to the
most successful single-modal system. Finally, we tried to improve
subject independence of EEG-based methods because MindLink-
Eumpy attaches more importance to human neuroscience. The
subject-independent emotion recognition based on EEG signals
is the current research hotspot. Under this circumstance, Alhagry
et al. (2017) proposed an end-to-end LSTM-recurrent neural
network (RNN) to analyze emotion from raw EEG signals, in
which they achieved average accuracy rates of 85.65%, 85.45%,
and 87.99% in classification for the arousal, valence, and fondness

dimensions, respectively. Therefore, we theoretically chose LSTM
as the first subject-independent method of MindLink-Eumpy.

Software Toolboxes Related to Emotion
Recognition
This subsection briefly introduces three software toolboxes for
emotion recognition that are currently used in both scientific
research and industrial applications.

Computer Expression Recognition Toolbox (CERT)
The Computer Expression Recognition Toolbox (CERT)
(Littlewort et al., 2011) is an open-source free software tool for
fully automatic real-time facial expression recognition. It can
automatically code the intensity of 19 different facial actions
from the Facial Action Unit Coding System (FACS) and six
different prototypical facial expressions. Moreover, this tool can
estimate the positions of 10 facial features and the 3D orientation
(yaw, pitch, and roll) of the head. Previous experiments have
demonstrated that CERT can achieve an accuracy of nearly
80% when applied to a spontaneous facial expression dataset
(Littlewort et al., 2011).

MixedEmotions
The MixedEmotions toolbox (Buitelaar et al., 2018) contains
text, audio, and video processing functions aimed at emotion
recognition and provides a plug-and-play and ready-to-use set
of emotion recognition modules. The current version is mainly
applied to three real-world cases: emotion-driven smart TV
use (emotion-based recommendation), brand reputation analysis
(monitoring the reputation of a brand from tweets and YouTube
videos), and call center monitoring (monitoring the emotions of
customers in a help desk setting).

Toolbox for Emotional Feature Extraction From
Physiological Signals (TEAP)
The Toolbox for Emotional Feature Extraction from
Physiological Signals (TEAP) (Soleymani et al., 2017) is an
open-source MATLAB toolbox that can process and calculate
emotion-related features from multiple physiological signals,
including EEG, galvanic skin response (GSR), electromyogram
(EMG), skin temperature, respiration pattern, and blood
volume pulse information. The toolbox has been tested on the
MAHNOB-HCI and DEAP databases and has shown promising
performance (Soleymani et al., 2017).

Comparison With MindLink-Eumpy
This subsection compares the differences between software
toolboxes for emotion recognition and describes the advantages
of MindLink-Eumpy. Table 1 lists the programming languages
and functions of the above toolboxes.

MindLink-Eumpy is an open-source Python toolbox with
modular tools and frameworks for different functions. The
main functions are (i) providing a framework for online ERP
experiments, (ii) reading real-time data from devices during
online experiments and practical usage scenario, (iii) processing
multimodal data including facial images and EEG signals, (iv)
providing model training interfaces and datasets storage medium
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TABLE 1 | Comparison of different toolboxes related with emotion recognition.

Toolbox Name Programming Language Main Features

CERT (Littlewort et al., 2011) Python - Fully automatic facial expression recognition in real time
- Automatically encodes the intensity of 19 different facial actions from FACS and

estimates the positions of facial features and the 3D orientation of the head

MixedEmotions (Buitelaar et al., 2018) Python - Provides a plug-and-play and ready-to-use set of emotion recognition modules
- Provides a unified solution for large-scale emotion analysis on heterogeneous,

multimodal, text, speech, video, and social media data streams

TEAP (Soleymani et al., 2017) MATLAB, Octave - Imports, processes, and visualizes physiological signals
- Processes and calculates emotionally relevant features

MindLink-Eumpy Python - Two approaches of facial expression and EEG for emotion recognition
- Two decision-level fusion methods for fusion of sub-classifiers in different modalities to

improve accuracy
- Reads, processes, visualizes multimodal real-time data (facial images and EEG signals)

and stores data into a folder system
- Subject-independent emotion recognition approach based on LSTM in EEG modality

CERT, Computer expression recognition toolbox; FACS, Facial action unit coding system.

(here we call it a database), and (v) real-time emotion recognition
and data visualization.

By combining decision-level information of facial expressions
and EEG, MindLink-Eumpy has obtained a promising accuracy
of emotion recognition. Moreover, MindLink-Eumpy provides
an LSTM model based on EEG for subject-independent emotion
recognition. The abovementioned toolboxes represent the
state-of-the-art software in emotion recognition area. While
most of the toolboxes provide tools for data processing or
methods for emotion recognition, seldom do they focus
on the scientific research on human neuroscience and
practical applications. MindLink-Eumpy provides tools for
EEG collection, preprocessing, and display so as to reflect
emotions straightforward. To enhance stability in practical
application, MindLink-Eumpy provides tools for facial images,
including functions of images processing based on OpenCV and
a CNN model for emotion recognition.

MINDLINK-EUMPY: ARCHITECTURE,
MODULES, AND FEATURES

This section gives an overview about MindLink-Eumpy,
including (i) the architecture of MindLink-Eumpy shown in
Figure 1, (ii) the modules in MindLink-Eumpy, and (iii) the
features of MindLink-Eumpy. In real-time running, fusion tools
are used in the step of fused scores.

Architecture of MindLink-Eumpy
MindLink-Eumpy can be mainly separated into two parts:
database creation (online experiment paradigm) and real-time
detection framework. In the modules of database creation,
MindLink-Eumpy provides a series of tools for data streaming
and decoding from devices (brain–computer interfaces and
cameras). During the online experiment, data from the subject
will be stored into a folder system (here, we call it a database
or a data storage medium). In real-time detection framework,
MindLink-Eumpy provides visualization function for EEG, facial
images, and analyses of emotion.

Specifically, MindLink-Eumpy utilizes existing Python open-
source libraries such as Numpy (van der Walt et al., 2011),
scikit-learn, TensorFlow, Keras (Pedregosa et al., 2011), Flask,
Pandas, and others. In the database module, we adopted two
public emotion databases, i.e., DEAP and MAHNOB-HCI, and
created our own database to evaluate the performance of the
proposed methods. Emotions are elicited by video clips from
commercial films. In the experimental paradigm module, videos
in the database are applied to elicit emotion, during which
MindLink-Eumpy can use the readers (an EEG reader in the EEG
toolbox and a facial image reader in the facial images toolbox) to
read and save physiological data. The details of the experiments
and evaluation are presented in the Experiments and Results
section. In the algorithm modules, we integrated all methods into
three packages: facial images tools, EEG tools, and fusion tools.
In addition to data processing methods, MindLink-Eumpy also
provides emotion classification methods, including the multitask
CNN method in the facial image toolbox, the SVM and an LSTM
in the EEG toolbox, and two methods in the fusion toolbox for
decision-level fusion. More details of these methods are shown in
Methods for Emotion Recognition section.

Modules of MindLink-Eumpy
Database Creation
To address the lack of data problem, we designed a data collection
framework to acquire and store facial images and EEG signals.
By this module, MindLink-Eumpy can help conduct online
experiments and obtain subjects’ data more simply. New methods
can be validated more effectively in public databases and our
own database. One disadvantage about public databases is that
subjects’ emotion and related feedback may differ from culture,
gender, and other uncontrollable factors. Therefore, our research
lacks data from subjects similar to actual users of MindLink-
Eumpy. The function of database creation aims at eliminating
the problem of low accuracy of practical application caused by
domain differences of data.

Device invocations
Physiological data streams are first recorded by hardware such as
EEG acquisition equipment (e.g., Emotiv EPOC+ headset in this
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FIGURE 1 | Architecture of MindLink-Eumpy.

study) and optical camera. Then, the hardware sends data streams
to the back end of MindLink-Eumpy. This kind of process is
called data streaming, and we designed programs called readers
to conduct the data streaming process. MindLink-Eumpy has two
readers (an EEG reader and a facial image reader) to obtain EEG
signals and facial images. The EEG reader invokes the driver of
the Emotiv EPOC+ headset suitable for MindLink-Eumpy and
uses the interfaces of the corresponding software development kit
(SDK) to obtain EEG data and store it in the computer memory.
The main process of facial image reading is the same as the
reading process of EEG signals, but the facial image reader uses
the OpenCV library to start the camera and obtain digital images
stored in the computer memory.

Data storage
MindLink-Eumpy provides a prototype storage medium for
data relating to emotions. In the computer memory, MindLink-
Eumpy establishes a queue for temporary data storage. By
controlling the size of this queue, MindLink-Eumpy is able to
synchronize the frequency of data refreshing by devices and
the Python-Flask back end to prevent data explosion. However,
in external memory, from the perspective of the file format,
raw EEG signals are required to be stored in (∗.fif) files, but
power spectral density (PSD) data (Ng et al., 2019) of the EEG
signals are stored as matrices in (∗.npy) files through the Numpy
library. For facial images, MindLink-Eumpy uses OpenCV to
save temporary images as videos in (∗.mp4) files. Ground-truth
labels and the personal information of subjects are saved in
(∗.csv) files through the Pandas library. We can access databases
with a string of the subject’s information (reported before an
experimental trial starts).

Real-Time Detection Framework
We designed a real-time detection framework to widen the scope
of application of MindLink-Eumpy. Based on data readers, the
Python-Flask back end, and web technology, this framework
applies the E-Charts technique to visualize real-time data.

Electroencephalogram detection
In EEG detection, MindLink-Eumpy first modifies the real-time
EEG data temporarily stored in the computer memory into a
specific format and sends to the front end. Then, the EEG data
are displayed on a web page with a visually appealing style. The
lower panel of Figure 2 shows the EEG signals of five channels
(AF3, AF4, T7, T8, and Pz) in a two-dimensional coordinate
system, and the upper panel shows the mapping of PSD data
(theta, alpha, beta, and gamma) on brain patterns to reflect the
effects of valence and arousal levels in different brain regions. In
graphical user interface (GUI), different colors represent different
brain regions, and the brightness of the color represents the value
of the PSD. Specifically, yellow represents the region where AF3
and AF4 are located, red represents the region where T7 and T8
are located, and purple represents the area where Pz is located.
In this study, five channels (AF3, AF4, T7, T8, and Pz) were
selected for the default display. Users can also manually select
other channels based on their equipment. Furthermore, PSD is
the most commonly used feature in emotion recognition (Park
et al., 2013). Thus, in the current version of MindLink-Eumpy,
we only provide the function of PSD pattern.

Facial expression detection
In real-time facial image detection, MindLink-Eumpy first uses
the Viola–Jones face detector (Viola and Jones, 2001) to detect
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FIGURE 2 | Visualization for power spectral density (PSD) and electroencephalogram (EEG).

the face of the subject. Then, facial features are identified by the
multitask CNN. Figure 3 shows the calculation results of three
layers in the CNN during a forward pass on a web page. For
the first and second convolutional layers, the low-level features
such as edges and light are displayed. For the final convolutional
layer, the high-level features such as the eyes and mouth of a
user are displayed.

Emotion visualization
Figure 4 shows the main screen of the MindLink-Eumpy’s
GUI, which provides visualization functions for EEG data, facial
images, continuous emotions (valence–arousal emotion model),
and discrete emotions. Continuous emotions can be obtained by
fusion methods that combine the predictions of the SVM and
CNN in decision level. In this study, the K-nearest neighbors
(KNN) was used to transform the continuous emotions to 16
discrete emotions, including pride, elation, joy, satisfaction, relief,
hope, interest, surprise, sadness, fear, shame, guilt, envy, disgust,
contempt, and anger. Specifically, 16 samples with ground-
truth labels in the dataset were first set, and then 16 categories
were classified according to Euclidean distance. This function is
designed to intuitively display emotions in GUI for users. The
intensity of emotions is plotted on a radar map (emotion wheel).
In MindLink-Eumpy, both continuous and discrete emotions are
sent from the back end to the front end and are displayed in
real time. Visual emotion data are displayed in the upper right
of the screen. We can click a white button in the middle of
the screen to switch interfaces between continuous emotion and
discrete emotion.

Features of MindLink-Eumpy
Herein, we summarize the features of our toolbox. Notably,
the toolbox is characterized by simple data acquisition and
storage, high accuracy based on multimodal emotion recognition,
low algorithmic complexity, and subject independence. We
have established a framework for academic experiments, and
MindLink-Eumpy provides tools for data streaming, processing,
and storage. Moreover, MindLink-Eumpy provides machine
learning algorithms and deep learning techniques with promising
performance based on both accuracy and algorithm complexity.
These accurate methods are based on multimodal emotion
recognition, and subject independence is achieved with single-
modal EEG data. Furthermore, users can save and access
collected data and models that have been trained to customize
databases and methods. In short, our toolbox incorporates
database, experimental paradigm, and software tools, which allow
developers to easily extend model functionality and optimize
usability in collaborative development.

METHODS FOR EMOTION
RECOGNITION

Workflows of the Emotion Recognition
Methods
This section describes the multimodal emotion recognition
methods of subject dependence, which are provided in the
algorithm modules of MindLink-Eumpy, as shown in Figure 5.
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FIGURE 3 | Visualization of facial detection and feature identification by a convolutional neural network (CNN).

In the facial image tools submodule, the baseline CNN was
pre-trained with a large open-source database, and the CNN
modified with a database generated by the authors was a well-
trained multitask model. Next, in the EEG tools submodule, the
features of data were extracted with a feature extractor and were
fed to the SVM and LSTM network. Finally, in the fusion tools
submodule, the weight enumerator and AdaBoost method were
applied to combine the predictions of the SVM (EEG modality)
and CNN (facial expression modality) in decision level. It is
worth mentioning that the combination of the SVM and CNN
is subject dependent. Therefore, in the experiments, we trained
one particular model for each subject separately.

Facial Expression Detection
Architecture of Multitask Convolutional Neural
Network
We used a kind of transfer learning technique with a public
database and our database to train the multitask CNN model for
feature extraction and emotion classification. To obtain a well-
trained multitask CNN, first, we pre-trained the CNN using a
large regular database FER-2013 with image-level annotations
(Goodfellow et al., 2015). Second, we froze all the parameters
of the baseline CNN (the first three convolutional layers) and
conducted a stochastic gradient descent (SGD) training (fine-
tuning) by using a specific small database, while setting the
learning rate to 0.0001.

In real-time detection, the images extracted from a video
were input into the well-trained multitask CNN, so that we
obtained multiple sets of valence and arousal scores. The highest
scores were chosen to be the final valence and arousal scores. In
addition, we resampled the videos to 4 Hz and used OpenCV
to obtain grayscale images (640 × 480 PNG). Then, the Viola–
Jones face detector was used to find the facial position in
the image frame.

The size of the input images was 48 × 48 × 1 (grayscale
images). A dropout layer with a deactivation rate of 0.5 was
applied between the output and the dense layer to partially
mitigate overfitting. The first, second, and third layers were
convolution layers, and the fourth layer was a fully connected
layer. The first layer has 32 convolution kernels with a size
of 3 × 3 × 1. We used padding for the first convolutional
layer. Padding is the addition of null pixels to increase the
size of an image. Null pixels here refer to pixels with a value
of 0. We used Keras to implement padding and CNN. Here,
we have a 48 × 48 × 1 image and a 3 × 3 × 1 filter. With
padding, the size of the first input image could be enlarged
to 50 × 50 × 1, and the output of the convolutional layer
(the second layer) could be 48 × 48 × 1, which preserves the
same size as the original input image. The second layer had 32
convolution kernels with a size of 3 × 3 × 32. The third layer
had 64 convolution kernels with a size of 3 × 3 × 32. The fourth
layer was fully connected to 64 neurons. The final output layer
had output valence and arousal scores for given emotion states.
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FIGURE 4 | Visualizations for continuous emotion and discrete emotion. (A) Graphical user interface (GUI) for continuous emotion. (B) GUI for discrete emotion.

FIGURE 5 | Workflow of the subject-dependent approach in MindLink-Eumpy.

All convolutional layers and fully connected layers included a
rectified linear unit (ReLU) as the activation function. Finally, the
multitask CNN included two fully connected layers for separating
valence and arousal scores. Figure 6 shows the architecture of
the multitask CNN.

Emotion Computing Based on Facial Expression
The first branch of the fully connected layer was used to
calculate the valence scores, and the second branch was used to
calculate the arousal scores. The output scores were sent to a

sigmoid function to minimize the cross-entropy loss. Equation
(1) represents the loss functionLn .

Ln = −

m∑
i=1

(
1− yni log ŷni

)
log

(
1− ŷni

)
(1)

In equation (1), n represents the branch of the fully connected
layer (when n is 1, Ln is the loss function of the valence
branch; and when n is 2, Ln is the loss function of the arousal
branch), ynirepresents the ground-truth labels for the ith sample,
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FIGURE 6 | Multitask convolutional neural network. “DO” represents the dropout layer.

ŷni represents the sigmoid outputs for the ith sample, and m
represents the size of the training sample.

Finally, we minimized the linear combination of L1 and
L2. Equation (2) represents the linear combination of the loss
functions.

L =
2∑

i=1

αiLi (2)

In equation (2), αirepresents linear weights. Notably, if any of αi
is set to 0, the model returns to a single-task CNN model.

After emotion regression calculations, we classified emotions
based on equation (3).

rface =
{high Sface≥0.5

low Sface<0.5 (3)

In equation (3), rfacerepresents the classification results of the
valence or arousal dimension associated with a facial expression,
and Sface represents the scores of regression calculations. Thus, the
valence and arousal dimension scores are dichotomized at high
and low levels, and there are a total of four emotion categories:
high valence and high arousal, high valence and low arousal, low
valence and high arousal, low valence and low arousal.

Electroencephalogram-Based Emotion
Recognition
This subsection describes the emotion recognition methods in
MindLink-Eumpy based on EEG signals. Here, we introduce the
workflow of EEG-based emotion recognition. First, we used the
Emotiv EPOC+ headset to record online EEG signals. Then, the
multitaper method with fast Fourier transform (FFT) (Thomson,
1982) was used to extract the PSD features of the EEG signals.

Finally, all the features were input into the SVM or LSTM for
emotion recognition.

Electroencephalogram Data Processing and Feature
Extraction
Previous studies (Alsolamy and Fattouh, 2016; Guzel Aydin et al.,
2016; Jiang et al., 2019) have demonstrated that the PSDs of theta,
alpha, beta, and gamma in the frontal, temporal, and occipital
regions of the brain are highly related to human emotion. In
this study, the features of EEG were extracted and selected
based on these findings. In order to reduce the occurrence of
artifacts, we first issued proper instructions to the subjects and
repeatedly instructed the subjects to avoid blinking or moving
their bodies during the experiment. Then, the filtering and
multitaper (Thomson, 1982) techniques were used to remove the
artifacts and keep the related neurological phenomenon intact in
data processing.

It is worth noting that, in this study, we proposed two
different EEG processing approaches for the online analysis and
the offline analysis. Specifically, in the online analysis, we first
remove artifacts through the function provided by the software
development kit (SDK) of the Emotiv EPOC+ headset. Then,
we used FFT to calculate PSDs, which is also provided by
this equipment. It should be stressed that our EEG recording
equipment Emotiv EPOC+ headset is designed for emotion
recognition, and it can capture the EEG data from the following
14 channels located in the frontal, temporal, and occipital lobes:
AF3, F3, F7, FC5, T7, P7, O1, AF4, F4, F8, FC6, T8, P8, and
O2. However, in the offline analysis, the EEG data were bandpass
filtered on five frequency bands (theta, slow alpha, alpha, beta,
and gamma) from 4 to 45 Hz by finite impulse response (FIR)
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filters, and then the corresponding PSDs were obtained by FFT
(overlap: 50%, time window: 1 s). In order to improve the
accuracy in offline analysis of public databases, we selected 14
channels different from the online analysis: Fp1, T7, CP1, Oz,
Fp2, F8, FC6, FC2, Cz, C4, T8, CP6, CP2, PO4. Finally, the PSDs
of 14 channels and three symmetric pairs of channels (“T7–T8,”
“Fp1–Fp2,” and “CP1–CP2”) were used as the EEG features.

Subject-Dependent Method Based on Support Vector
Machine
After reading EEG signals from the above electrodes, five PSD
features were extracted: theta (4 Hz < f < 8 Hz), slow alpha
(8 Hz < f < 10 Hz), alpha (10 Hz < f < 12 Hz), beta
(12 Hz < f < 30 Hz), and gamma (30 Hz < f < 45 Hz)
features. The total number of EEG features was 70 (14× 5 = 70).
MindLink-Eumpy uses SVM-RFE (recursive feature elimination)
to select optimal features by iteratively calculating feature weights
of the linear SVM classifier and subsequently removing the 10%
features with the lowest weights. Then, we split the selected
features with 10-fold inner cross-validation for the training set
(Duan et al., 2005). Following the facial expression modality
tasks, we classified emotion according to equation (4).

rEEG =
{high SEEG≥0.5

low SEEG <0.5 (4)

In equation (4), rEEGrepresents the classification result for
the valence or arousal dimension in the EEG modality.
SEEGrepresents the scores of the regression calculations in
the EEG modality.

Subject-Independent Method Based on Long
Short-Term Memory
In this paper, we proposed an EEG-based subject-independent
emotion recognition method based on LSTM. MindLink-Eumpy
provides a well-trained model for this method. To implement
this method, we constructed the features of the time sequence
and performed regression calculations based on the LSTM.
Since we applied supervised learning techniques to train the
model, the data of the subjects in the experiment are all
labeled and have the same distribution, resulting in the high
accuracy of the experimental results. However, most of the
subject-independent methods applied semi-supervised learning
techniques or transfer learning techniques (Rodrigues et al., 2019;
Li et al., 2020). This means that due to the domain differences
between different subjects, the data in the model evaluation
process cannot be labeled and its data distribution is different
from the data in the model training process, which leads to a
degradation in performance.

Here, we used the wavelet transform algorithm described
above to extract features. Additionally, we regarded data every
10 s as a set of samples and sampled the data with an overlap
rate of 50%. In the offline experiments using the MAHNOB-
HCI database, 85 features were sampled per second. We picked
14 channels from the MAHNOB-HCI database and three
symmetrical channel pairs of EEG data. For each channel, five
PSD features are extracted from raw EEG data. Thus, the number
of EEG features is (14 + 3) × 5 = 85. Each 10-s sample was

used to construct a matrix with the size of 10 × 85, of which
the first dimension is 10 and the second is 85. In this way, we
avoided temporarily saving features in a one-dimensional vector
unsuitable for the LSTM model.

The LSTM consisted of two LSTM layers, a fully connected
layer and an output layer. The first LSTM layer contained 10
LSTM cells, each with 128 neurons. The second LSTM layer also
contained 10 LSTM cells, but each cell had 64 neurons. The
fully connected layer had 54 neurons, and the final output layer
had two neurons that output the valence and arousal scores.
Each of the abovementioned layers used a dropout rate of 0.5,
which adopted the ReLU activation function and required data
normalization. The mean square error was used as the loss metric
for this LSTM network.

Fusion Methods
By recording EEG signals and facial images through hardware
devices (Emotiv EPOC+ headset and optical computer camera),
MindLink-Eumpy toolbox reads and saves multimodal data and
combines the predictions of the SVM (EEG modality) and
CNN (facial expression modality) in decision level to improve
the accuracy of emotion recognition. This subsection describes
two decision-level fusion methods: the weight enumerator and
AdaBoost method.

Weight Enumerator
We designed an enumerator to traverse weights in steps of 0.01
and find the optimal weights for the linear combination of two
sub-classifiers. Equation (5) defines the linear combination.

Senum = σSface + (1− σ) SEEG (5)

In equation (5), σ ranges from 0 to 1, which represents the
importance degree of the facial expression classifier; Sfaceand
SEEG represent the prediction scores of the facial expression
classifier and EEG-based classifier, respectively. The value of σ

that achieves the highest accuracy is selected as the optimal
weight for linear combination. Equation (6) defines the combined
emotion classification relations.

renum =
{high Senum≥0.5

low Senum <0.5 (6)

MindLink-Eumpy separately applies this fusion method in
both the valence and arousal dimensions to classify emotion
into four states.

AdaBoost
The second fusion method we used is the AdaBoost technique,
which is to obtain the best parameters of ωj(j=1,2,....,n) for sub-
classifiers. Equations (7) and (8) show the core mathematical
formulas of AdaBoost.

Sboost =
1(

1+ exp
(
−
∑n

j=1 wjsj

)) (7)

rboost =

{
high S

boost
≥0.5

low Sboost <0.5 (8)
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In equation (7) and the below equations (9), (10), (11), (12),
and (13), n represents the number of sub-classifiers, sj ∈
{−1, 1}(j=1,2,...,n) designates the outputs of thejth sub-classifier
for theith sample, and Sboost represents the scores of fused emotion
regression, which are calculated by the AdaBoost algorithm. For
example, in this study, s1represents an EEG-based sub-classifier
and s2 represents a facial expression sub-classifier. In equation (8),
rboostrepresents the fused emotion classification result.

The main process of AdaBoost is as follows. First, the training
weights are initialized, as shown in equation (9):

αi =
1
m

(9)

αiin equation (9) represents the weight of the ith sample, and
m in equations (9) and (13) represents the size of the training
sample. Each time AdaBoost updates sub-classifiers during model
training, the sample data should be multiplied by the weights
updated in the previous sub-classifier step. Equation (10) shows
the mathematical formula for the error rateεj .

εj =

M∑
i=1

tiαi (10)

In equation (10), tiis calculated from equation (11), and yi in
equation (11) denotes the ith ground-truth label.

ti =
{0

1
s(xi)j=yi
s(xi)j 6=yi

(11)

Then, we calculate the weights of the sub-classifier using equation
(12).

wj =
1
2

ln
(

1− εj

εj

)
(12)

Next, we update weights for the next sub-classifier based on
equation (13),

αj+1,i =


αj,i exp(−wj)∑m

i=1 αj,i exp(−wj)
s(xi)j=yi

αj,i exp(wj)∑m
i=1 αj,i exp(wj)

s(xi)j 6=yi

(13)

where j represents the jth sub-classifier, α represents the weight of
the ith sample for the jth sub-classifier, and s(x)j represents outputs
of the jth sub-classifiers for the ith sample.

MindLink-Eumpy also separately applies this fusion method
in both the valence and arousal dimensions to classify emotion
into two states (low or high state in each dimension).

EXPERIMENTS AND RESULTS

This section describes the experiments performed to evaluate
MindLink-Eumpy. Three experiments were conducted in this
study, including two offline experiments and one online
experiment. In the offline experiments, for each database, subjects
were selected according to the falling criteria: (i) the subject’s data
contain both EEG and facial images; (ii) the subject’s ground-
truth labels contain two states, including low and high in both
valence and arousal dimensions.

Offline Analysis
Experiments for the Subject-Dependent Methods
In this experiment, we used the DEAP database and the
MAHNOB-HCI database to demonstrate the effectiveness of
the subject-dependent methods based on multimodal emotion
recognition. We chose 10 subjects in the DEAP database and 14
subjects in the MAHNOB-HCI database, then for each database,
we randomly selected 20 trials of data of each subject as the
training datasets, and the remaining 20 trials were used as the
test datasets. Figure 7 and Table 2 show the offline experimental
results (average values and accuracy thresholds) for the subject-
dependent models in the DEAP database; and Figure 8 and
Table 3 show the results in the MAHNOB-HCI database. The
experimental results show that the first fusion method, the
weight enumerator, achieved the highest accuracy in both the
valence (in the DEAP database and the MAHNOB-HCI database)
and arousal dimensions (in the MAHNOB-HCI database). The
second fusion method, AdaBoost, also had a promising average
accuracy, but the overall performance was lower than that of
the weight enumerator, which was probably because of the less
number of sub-classifiers (only has two modalities including
facial expression and EEG signals). In addition, among the
single-modal methods (that is, when there is only facial emotion
recognition or EEG-based emotion recognition), the SVM in the
valence dimension and CNN in the arousal dimension displayed
promising accuracy. However, single-modal emotion recognition
method was still less stable than the multimodal method. In this
experiment, we observed that most subjects used the multimodal
method to obtain higher accuracy, especially subjects 4 and 5 in
the valence dimension in the MAHNOB-HCI and subjects 13 and
14 in the arousal dimension in the MAHNOB-HCI.

Furthermore, we conducted a normality test for these
four methods (the SVM, CNN, weight enumerator, and
AdaBoost methods). The data samples were considered normally
distributed when the result was below 0.05; otherwise, we
conducted another paired t-test procedure. During the t-test
procedure, we considered that when the p value was lower than
0.05, the difference was statistically significant. The experiments
were conducted based on the DEAP database and MAHNOB-
HCI database. For the DEAP database, in the valence dimension,
there was not only a significant difference (p < 0.01) between
the enumerator-based fusion results (weight enumerator) and the
EEG-based results but also a significant difference (p = 0.016)
between the AdaBoost fusion results and the EEG-based results,
but no significant difference was observed in the arousal
dimension. For the MAHNOB-HCI database, no significant
difference was observed in the valence dimension; but in the
arousal dimension, there was a significant difference (p = 0.045)
between the AdaBoost fusion results and the EEG-based results.

Experiments for the Subject-Independent Methods
In the experiment for subject-independent methods, we used the
EEG dataset collected from 30 subjects in the MAHNOB-HCI
database to train and evaluate the LSTM model. We conducted
the experiment by the following steps: Data from subject 1 to
subject 20 were selected as the training set. After model training,
we conducted an evaluation test using all data from subject
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FIGURE 7 | Accuracy for each subject in both the arousal and valence dimensions in the Database for Emotion Analysis Using Physiological Signals (DEAP)
database. The X-axis of each subfigure represents the subject ID, and the Y-axis represents the accuracy (%). (A) Accuracy (%) for each subject in the arousal
dimension in the DEAP database. (B) Accuracy (%) for each subject in the valence dimension in the DEAP database.

TABLE 2 | Average accuracy (%) of subject-dependent models based on the DEAP database.

Target Facial expression EEG Enumerator fusion AdaBoost fusion

Valence 70.75 ± 7.67 52.50 ± 11.29 71.00 ± 7.00 70.25 ± 8.25

Arousal 60.50 ± 10.83 56.00 ± 12.46 58.75 ± 12.26 59.00 ± 10.74

DEAP, Database for Emotion Analysis Using Physiological Signals; EEG, electroencephalogram.

21 to subject 23. The experimental results show that the well-
trained LSTM model achieved an accuracy of 78.56% and a
recall rate of 68.18% in the valence dimension. Meanwhile, it
achieved an accuracy of 77.22% and a recall rate of 69.28% in
the arousal dimension. All the experimental results are shown
in Table 4, including the training losses (Loss), validation loss,
accuracy, recall rate, and root mean square error (RMSE).
Table 4 shows that values of training losses for the valence and
arousal dimensions were 3.16 and 2.17, respectively, and the
validation losses were 3.35 and 3.30, respectively. Furthermore,
the recall rates for the valence and arousal dimensions were
68.18% and 69.28%, respectively, and the RMSEs were 1.83 and
1.82, respectively.

Online Experiment
In the online experiment, we used the Emotiv EPOC+ headset
and optical computer camera to record EEG data and facial
images. Fifteen healthy subjects participated in the experiment,

including eight males and seven females. The ages of the subjects
ranged from 17 to 21 years old (mean = 20.27, SD = 1.24).
Before the experiment, 40 videos for emotion elicitation were
selected from YouTube. We manually divided these videos into
two groups for calibration and evaluation experiments. The video
clips ranged in duration from 70.52 to 195.12 s (mean = 143.04,
SD = 33.50). During the experiments, we calibrated the position
of the headset and the camera and ensured that the subjects were
in a comfortable environment. Then, subjects were instructed
to watch emotion-eliciting video clips and stay focused, remain
calm, and avoid blinking or moving during the viewing process.
After the end of each experimental trail, the subjects reported
their emotion status in the valence and arousal dimensions
through a questionnaire.

In the calibration process, we conducted experiments for data
collection and ground-truth label calibration. We performed 20
trials for each subject. For the convenience of extracting data
from specific subjects, each subject was required to provide
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FIGURE 8 | Accuracy for each subject in both the arousal and valence dimensions in the MAHNOB-HCI database. The X-axis of each subfigure represents the
subject ID, and the Y-axis represents the accuracy (%). (A) Accuracy (%) for each subject in the arousal dimension in the MAHNOB-HCI database. (B) Accuracy (%)
for each subject in the valence dimension in the MAHNOB-HCI database.

TABLE 3 | Average accuracy (%) of subject-dependent models based on the MAHNOB-HCI database.

Target Facial expression EEG Enumerator fusion AdaBoost fusion

Valence 69.64 ± 14.07 64.75 ± 8.05 70.04 ± 12.81 66.11 ± 10.04

Arousal 69.64 ± 16.95 58.36 ± 15.86 72.14 ± 16.77 71.79 ± 16.97

EEG, electroencephalogram.

personal information before the start of the first experimental
trial so that MindLink-Eumpy toolbox could associate the
information of each subject with the corresponding physiological
data and ground-truth labels, such as name, age, and gender. At
the beginning of each trial, a 10-s countdown appeared in the
center of the computer screen to attract the subject’s attention.
After the countdown, a video was presented in the screen to elicit
the subject’s emotion. MindLink-Eumpy recorded four facial
images and 10 groups of EEG signals per second and then saved
the data in the database. At the end of each trial, each subject was
required to assign SAM scale values for the valence and arousal
scores. After clicking the “submit” button, the next trial started,
and a 10-s countdown appeared again between the adjacent trials.
Figure 9 presents the workflow of one trial for data collection in
the online experiment.

In the evaluation experiments, a similar experimental trial
process was used to evaluate the models. We used different videos
to elicit the subject’s emotion. In each trial, we used four methods
(the SVM, CNN, weight enumerator, and AdaBoost methods)
to detect emotion. We calculated accuracy by comparing the
predicted emotions and ground-truth labels.

Figure 10 and Table 5 show the online experimental results
(average values and thresholds of accuracy) for models of subject
dependence. Notably, the multimodal methods achieved higher
accuracy than the single-modal methods, except that the accuracy
of the EEG-based SVM in the arousal dimension was higher than
that of the enumerated fusion method.

We also conducted a paired t-test for the online experiments.
According to the experimental results, significant differences
were observed both in valence and arousal dimensions between
the AdaBoost fusion results and the facial expression results,
where p = 0.014 in the valence dimension and p = 0.049 in the
arousal dimension.

DISCUSSION AND CONCLUSION

Summary
This paper proposes MindLink-Eumpy, which is an open-source
Python toolbox for multimodal emotion recognition. MindLink-
Eumpy includes a series of tools for data collection, multimodal
data processing, machine learning methods, and deep learning
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TABLE 4 | Experimental results of the subject-independent model on MAHNOB-HCI.

Dimension Loss Validation loss Accuracy Recall rate RMSE

Valence 3.16 3.35 78.56% 68.18% 1.83

Arousal 2.17 3.30 77.22% 69.28% 1.82

RMSE, Root mean square error.

methods. Our aim of developing MindLink-Eumpy is to provide
an extensible software framework for research and application in
the field of emotion recognition.

First, MindLink-Eumpy implements an event-related
paradigm that uses videos to elicit subject’s emotion. To record
facial images and EEG information for subjects, MindLink-
Eumpy implements tools to invoke computer cameras and
headsets. Most importantly, MindLink-Eumpy implements a
series of methods to overcome traditional difficulties in the
field of emotion recognition: (i) two fusion methods are applied
to combine SVM (EEG modality) and CNN (facial images)
results to improve the accuracy of emotion recognition; (ii)
a multitask CNN (facial images) based on transfer learning
is used to overcome the overfitting phenomenon caused by
lacking of image data; and (iii) LSTM based on EEG is used
to implement a subject-independent emotion recognition
technique. Finally, all the above methods have been tested and
demonstrated to be effective. In particular, in experiments for
the subject-independent methods, although the performance
deteriorates when training data and validation data were
completely heterogeneous, an acceptable accuracy was still
maintained. Thus, this method has promising stability. Although
MindLink-Eumpy is still in its infancy, it has the potential to
become a benchmark toolbox in industrial and lab applications
in the emotion recognition area.

Analysis of the Advantages of
MindLink-Eumpy
Advantages of MindLink-Eumpy mainly consist of three points:
(i) a promising accuracy and subject independence for emotion
recognition, (ii) a better robustness and scalability for software,
(iii) a framework for online experimental paradigm and
data storage medium.

Specifically, in this study, we proposed two approaches
including facial expression and EEG for multimodal emotion
recognition, each of which corresponds to a sub-classifier. Facial
expression recognition approach is more accurate, but users may
camouflage expressions in the real usage scenario, so an EEG
emotion recognition approach is in use to fill the gap between
the error associated with facial expressions and the Bayesian error
in ground-truth emotion labels. To fuse multimodal information,
we proposed two methods, weight enumerator and Adaboost,
to improve the emotion recognition accuracy. Furthermore, we
proposed another approach for subject-independent emotion
recognition (based on LSTM in EEG modality) to make it
suitable for more users. The subject-independent approach is
independent of SVM and CNN approaches. Meanwhile, although
feature-level fusion is more accurate theoretically, it is difficult to
fuse spatial features (such as facial images) with temporal features
(such as EEG information). Therefore, we applied decision-level

fusion methods to ensure a better robustness mentioned above,
which means that MindLink-Eumpy is able to keep running
steadily even if there occurs errors in one equipment (such
as camera, brain–computer interfaces, or other devices to be
added). It is easier to add different modality information for
multimodal emotion recognition using the methods of decision-
level fusion in MindLink-Eumpy. Furthermore, MindLink-
Eumpy provides a framework for online experiments. During the
online experiments, MindLink-Eumpy stores physiological data
into a folder system for future scientific research.

Although the performance was improved by information
fusion, the superiority of the multimodal fusion over the single-
modal approach did not show strong statistical significance
in our results (e.g., when an independent two-sample t-test
was performed on the accuracy distribution, the p values in
Tables 2, 3 are not always less than 0.05). In many emotion
experiments [e.g., Alsolamy and Fattouh (2016)], it can be
found that high volatility is associated with facial expressions
because subjects can trick the machine by imitating certain
facial expressions. For this problem, the gap between the
error related to facial expressions and the Bayesian errors
of true emotion detection generally can be filled by adding
information sources (e.g., EEG) (Li et al., 2019). For the
experiments on DEAP and MAHNOB-HCI databases, the
subjects were asked to behave normally rather than mimic
certain facial expressions, which may be the main reason
that we could not find strong statistical evidence indicating
significant improvement after fusion. Furthermore, there are only
10 subjects in the DEAP and 14 subjects in the MAHNOB-
HCI that meet our experimental requirements. The limited
sample size may be another reason why the results are not
statistically significant.

Comparison With Other Methods in the
Literature
The main functions of MindLink-Eumpy comprise data
collection and storage, data preprocessing, feature extraction
and visualization, and emotion recognition. This toolbox
is integrated with our methods for multimodal emotion
recognition. Moreover, it is able to facilitate scientific
research on multimodal emotion recognition. Compared
with other studies, MindLink-Eumpy complements the existing
research in some ways.

From the perspective of multimodal emotion recognition
methods, it is important to achieve a promising accuracy and
make models subject independent. MindLink-Eumpy combines
facial expression and EEG for a promising accuracy and provides
an LSTM model based on EEG for subject independence. Li
et al. (2019) combined EEG and facial expression data to
optimize emotion recognition algorithms. Three types of movie

Frontiers in Human Neuroscience | www.frontiersin.org 14 February 2021 | Volume 15 | Article 62149320

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-621493 February 15, 2021 Time: 18:39 # 15

Li et al. MindLink-Eumpy

FIGURE 9 | Workflow for one subject in the online experiment.

FIGURE 10 | Accuracy (%) of each subject in both the arousal and valence dimensions in the online experiment. The X-axis of each subfigure represents the subject
ID, and the Y-axis represents the accuracy (%). (A) Accuracy (%) of each subject in the arousal dimension in the online experiment. (B) Accuracy (%) of each subject
in the valence dimension in the online experiment.

clips (positive, neutral, and negative) were utilized for emotion
data collection, and LSTM was utilized for decision-level fusion
and capturing temporal dynamics of emotion, which yield a
concordance correlation coefficient (CCC) of 0.625± 0.029.

Under the circumstance that we divide emotions into two
classifications in both valence and arousal dimension (four
categories in total), MindLink-Eumpy is demonstrated to be
more accurate and subject independent in emotion recognition.
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TABLE 5 | Average (%) accuracy of the subject-dependent models for online databases.

Target Facial expression EEG Enumerate fusion AdaBoost fusion

Valence 63.27 ± 12.68 66.44 ± 11.39 65.12 ± 11.78 66.27 ± 12.23

Arousal 69.50 ± 17.96 65.00 ± 21.53 68.50 ± 18.28 63.50 ± 19.47

EEG, electroencephalogram.

In a binary classification of valence and arousal dimensions,
our experimental results demonstrated that MindLink-Eumpy
has a promising performance in both offline analysis and
real-time detection. For instance of experiments on MAHNOB-
HCI database, the average accuracy of 68.50% was achieved in
arousal dimension in the study of Koelstra and Patras (2013),
while in our study, it reached 72.14%. Taking the DEAP database
as an example, the study of He et al. (2017) achieved an average
accuracy of 70.90% in valence dimension, while the average
of accuracy in our study reached 72.14%. Chen et al. (2017)
combined EEG information, peripheral physiological signals,
and facial video to obtain promising accuracy (77.57% for four
emotion classifications). This study obtained higher accuracy
and subject independence than the work of Buitelaar et al.
(1999). However, it lacked facial expression modality and needed
wearable equipment to acquire all of the physiological signals,
which means that it is stringent to apply their method in practice.

Furthermore, from the perspective of data and software, not
only research on emotion recognition needs more physiological
data storage medium, feature extractors, and experimental
framework, but practical application scenario needs functions
of data streaming and real-time visualization. MindLink-Eumpy
provides a folder system for data storage and integrates a
series of tools for preprocessing and feature extraction of facial
images and EEG signals. Besides, MindLink-Eumpy is suitable
for devices including brain–computer interfaces and cameras for
real-time data acquisition and visualization. Buitelaar et al. (2018)
proposed a toolbox named MixedEmotion that provided audio
processing, text processing, and video processing for multimodal
emotion analysis. MixedEmotion is well developed and practical
application oriented, but it lacks physiological information for
intuitive feedback. It mainly focuses on enterprise application but
does not contribute to scientific research on human neuroscience.
Soleymani et al. (2017) proposed a toolbox named TEAP for
the signal processing of EEG, GSR, EMG, skin temperature,
respiration pattern, and blood volume pulse information, which
expanded the application scope of multimodal emotion analysis.
The authors of Soleymani et al. (2017) had tried to replicate
some methods of other articles and demonstrate the effectiveness
of feature extraction function of TEAP. But they had not
proposed their original methods for emotion recognition.
Generally speaking, MindLink-Eumpy provides a framework for
scientific research and application with our original approaches
for subject-independent emotion recognition. Compared with
other works, MindLink-Eumpy promotes research in the area of
emotion recognition.

Compared with a subject-dependent approach, LSTM-based
achieved higher accuracies. Here are two reasons for this
situation. First, the inherent difference between SVM and LSTM
may be one of the reasons for the performance difference between

them. A previous study (Nath et al., 2020) compared the different
performances of LSTM in subject-dependent and subject-
independent experiments. Their results in subject-independent
recognition showed that the average accuracy rates of valence and
arousal dimensions were 70.31% and 69.53%, respectively. The
experimental results are basically consistent with our conclusion
that the LSTM-based method achieved an accuracy of 78.56% in
the valence dimension and an accuracy of 77.22% in the arousal
dimension for the subject-independent recognition. Second, the
outliers of data also hinder the high performance of subject-
dependent methods. In this study, although we paid much
attention to data preprocessing, we still found some strange but
not dirty data different from normal ones. For example, the PSD
values of some trails of certain subjects remain low. It is hard to
filter all these outliers of data for SVM. Therefore, in the case of
the subject dependence, a well-trained SVM model may pay too
much attention to outliers, thereby reducing the imitation effect
of the model. For the case of the subject independence, abundant
data enable the LSTM model to focus on the universality of
features of all subjects rather than outliers, thereby eliminating
the effects caused by relatively few outliers. In the future, we will
try to analyze the abnormal data and remove outliers.

Potential Applications
MindLink-Eumpy could provide a potential software benchmark
for emotion recognition in industry applications. Thus, there
are various potential applications based on the technologies
and frameworks of MindLink-Eumpy. In the medical field,
emotion recognition plays an important role in the treatment of
children with autism (Buitelaar et al., 1999), hearing-impaired
children (Gu et al., 2019), patients with depression (Punkanen
et al., 2011), etc., In the field of intelligent driving, research
has focused on the behaviors of drivers affected by emotions
(Roidl et al., 2014). Extreme emotions might lead to improper
operations or even traffic accidents, thereby endangering drivers
and passengers. Emotion recognition technologies can also be
applied for supervisory care, including baby care, intensive care,
Alzheimer’s care, etc., Overall, MindLink-Eumpy has promising
application prospects.

Limitations
As a software toolbox, MindLink-Eumpy has limitations. First,
MindLink-Eumpy only provides tools for EEG information and
facial images. Other widely used physiological data, such as eye
movement signals and electrocardiograph (ECG) information,
are not currently compatible with MindLink-Eumpy. In addition,
although multimodal emotion recognition methods outperform
single-modal methods and the average accuracy of multimodal
methods is high, the results of our experiments did not display
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strong statistical significance. In the experiments, as described by
the Hawthorne effect, subjects may tend to display biased facial
expressions due to their awareness of being observed. Moreover,
it is challenging to record a large EEG dataset because of the
volatility of conductive media in brain-computer interface (BCI)
and the lack of subjects.

Future Work
In the future, we will attempt to add new data modalities
to improve multimodal emotion recognition and implement
new tools suitable for different hardware devices. In single-
modal EEG-based emotion recognition, we will implement
semi-supervised machine learning algorithms for cross-subject
detection. Furthermore, we will try to use eye movement signal
to measure domain differences among subjects and implement
methods for the feature-level fusion of eye movement signals and
EEG information.
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INTRODUCTION

The use of brain–computer interfaces (BCIs) based on electroencephalography (EEG) in video
games has been widely investigated. Research in adaptive training, single-trial classification
(Congedo, 2013; Barachant and Congedo, 2014) and the creation of affordable EEG acquisition
devices (Vos et al., 2014; Yohanandan et al., 2018) has paved the way for the development of a
ubiquitous BCI technology. For example, Congedo (2013) developed “Brain Invaders,” a BCI game
inspired by the famous vintage game Space Invaders (Taito, Tokyo, Japan) and based on the so-
called visual P300—an electromagnetic potential produced by the brain about 300ms after a visual
stimulation. Brain Invaders uses an adaptive algorithm that allows the player to plug the material
and play without the need for calibration (Barachant and Congedo, 2014), while still achieving
a high accuracy rate (Barachant et al., 2012). The game also demonstrates a good understanding
of game design by naturally incorporating visual stimulations in the virtual environment. In this
respect, Kaplan et al. (2013), Cattan et al. (2018b), and Rashid et al. (2020) provided a set of
guidelines to adapt game implementation for BCI games, such as the use of turn-based games
with a slow gameplay. Although Brain Invaders use a research-grade amplifier, the feasibility of
using a low-cost EEG acquisition system for BCI has been demonstrated by Vos et al. (2014) and
Yohanandan et al. (2018). These affordable headsets are comparable with research-grade amplifiers.
In addition, Lotte et al. (2008) and Debener et al. (2012) demonstrated promising results when
BCIs were used out of the lab for BCIs based on visual stimulation and movement imagination.
The feasibility of using BCIs outside the lab has also been demonstrated in different context and
at events. For instance, in the BCI game developed by Mentalista (Paris, France) for the 2016
European Football Championship, two players were asked to score against each other by moving a
ball toward the opposite player’s cage by concentrating1.

Although a positive step forwards, these achievements have led to the false opinion that BCIs are
ready for entertainment – a belief that is supported by enthusiastic visions claiming, for example,
that brains will be connected to the internet through USB2. This opinion is rather qualified in the
scientific community, which reported that BCIs suffer from (1) a low transfer rate, (2) a lack of
market-ready, affordable, and user-friendly research-grade EEG acquisition devices, and (3) a gap
between the game design and graphics of video games available on the market vs. in laboratories.
Priorities of these limitations for video game development are discussed in the literature (Nijholt
et al., 2009; Ferreira et al., 2013;Marshall et al., 2013; van de Laar et al., 2013; Ahn et al., 2014; Cattan
et al., 2018b; Kerous et al., 2018; Vasiljevic and Miranda, 2019; Pierce et al., 2020), and in general
preponderance of quantitative over qualitative aspects is criticized (Nijholt et al., 2009; Vasiljevic
and Miranda, 2019). This article supports the claim that BCIs are not ready for general public use,
based on other aspects than performance. Limitations are further detailed in section Limitations
of BCI Games of the present study, and the obstacles to public use are analyzed. The conclusion is
presented in section Discussion and Conclusion.

1https://mentalista.fr/foot
2https://www.thequint.com/explainers/what-is-neuralink-and-how-does-it-work-explained
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LIMITATIONS OF BCI GAMES

Low Transfer Rate
The transfer rate (in bits per second) is a computed measure
for communication devices that reflects the speed and accuracy
of a device. This measure is derived from information theory
and was adapted for BCIs (Wolpaw and Wolpaw, 2012) to
compare different implementations. Following the development
of Riemannian Geometry during the last decade (e.g., Barachant
et al., 2012), the transfer rate of BCIs has considerably increased
to reach, for example in the case of a P300-based BCI, a 90%
accuracy within a couple of seconds (Cattan et al., 2018b). For
comparison, the Guinness World Records reports a record of
stenotype writing of around 360 words per minutes with 97%
accuracy3. In practice, this means that BCIs are unusable in
traditional inputs, such as in keyboards or mice. Another concern
is that the algorithm complexity [in terms of mathematics and
set-up (e.g., Cattan et al., 2018a; Andreev et al., 2019)] behind
BCIs might be an obstacle for game developers. This is true for
VR games especially, as the VR market is mostly represented by
small, independent companies with limited resources4,5.

Cost and Encumberment of Materials
Until the early 2000s, research-grade amplifiers were medical
and were made of expensive materials and could mostly only
be afforded by institutions or consortia (e.g., g.USBAmp, g.tec,
Schiedlberg, Austria). Emotiv (San Francisco, US) was among
the first manufacturers to release a commercial EEG cap for
individual customers in 2009. However, low-cost versions of
the Emotiv headsets omit a proper electrode location for P300-
based BCIs, while research-grade versions still practice dissuasive
pricing. Similar concerns apply to most customer-grade EEGs
(Ahn et al., 2014; Vasiljevic and Miranda, 2019). That is, cheap
materials only include a few and unmovable channels which
are inappropriate for BCI based on visual stimulation, whereas
medical-grade EEG caps are expensive. In 2013, OpenBCI (New
York, US) finished a successful fundraising campaign, with
the aim of providing a high-quality EEG acquisition system
for <1,000 euros. Nevertheless, concerns were raised about
the usability of the technology, such as its association with
unstable wireless communication, non-standardized sampling
rate and use of gel electrodes (e.g., Chabance et al., 2019). Some
researchers (e.g., Yohanandan et al., 2018) demonstrated that
similar performance could be obtained with an in-house, and
thus cheaper, EEG headset. A Huffington Post (New York, US)
publication presented an EEG headset that was ergonomic (i.e.,
with dry electrodes and wireless) for <500 euros6,7. However,
such headsets are not available for public use, in the sense that,

3https://www.guinnessworldrecords.com/world-records/fastest-realtime-court-

reporter-(stenotype-writing)/
4https://www.vrfocus.com/2020/05/why-now-is-the-time-for-aaa-studios-to-

consider-vr/
5https://labusinessjournal.com/news/2015/jun/17/independent-virtual-reality-

studios-benefit-early-/
6https://www.youtube.com/watch?v=GgKEOlcX9R8
7http://alexandre.barachant.org/eeg.io/

even though some are open-source, developers cannot build
them in practice.

Another consideration is that any development is material-
dependant, as all are based on different hardware, drivers and
protocols (e.g., Ahn et al., 2014; Pierce et al., 2020). Despite
the lack of standards, commercial brands such as Emotiv (San
Francisco, the US) or NeuroSky (San Rose, the US) have
developed plugins for game development. For instance, Rosca
and Leba (2019) developed a pool game by integrating the Emotiv
SDK with Unity 3D (San Francisco, the US), a notorious game
engine. A review of existing BCI software can be found in Pierce
et al. (2020). That said, the lack of middleware supported by
a large and independent community creates maintenance and
portability issues, as long as plugins are constructor-dependent
or rely on the willingness of a research team.

Lack of Game Design and Graphics
Graphics and game design are a key concern and expectation
for games on the market, from AAA to indie games. This
is why video game studios hire developers as well as graphic
designers, art work designers, concept artists and game designers.
However, graphics and game design have been underestimated
in the development of BCI games in laboratories. For instance,
the number of frames per second (FPS) is a major concern for
stimulation-based BCI, as they require the exact onset of the
stimulation with a precision of around ±2ms (Andreev et al.,
2016). Indeed, if the tagging of such stimulation on the ongoing
EEG does not happen all the time in the same frame in which
the stimulation is displayed, a jitter is observable, which varies
as an inverse function of the frame rate. For example, an FPS
of around 50Hz will output a frame every 20ms and generate a
jitter of a similar amplitude in the worst cases. This is particularly
true for VR games where low FPS can result in a higher jitter
(Cattan et al., 2018a). However, to our knowledge, the impact of
graphical quality in FPS resulting in jitters is poorly understood
in the context of BCI entertainment.

Ahn et al. (2014) conducted an opinion survey on the
importance of BCI games elements. One aspect of this study
was to outline the difference of perspective between developers
and researcher communities regarding BCI development. For
example, easiness of playing was one of the most important
elements for 58% of the developers but only 19% of the
researchers. However, the importance of graphics was minimized
in the study when it should be a major concern for video games.
In fact, the authors reported a developer opinion (later confirmed
by the opinion survey for the two communities) that aesthetic is
rather not considered as one of the most important factors for
BCI games. However, we believe this only means that graphics
are a basic requirement for video games. In Schell (2014), a pillar
reference for game design, the author said about one of his work
experiences in virtual reality:

“We had to make things look beautiful. [. . . ]. We used high-end

graphics hardware and rich textures and models [. . . ].”

In general, laboratory BCI games demonstrate good design, being
turn-based and having slow gameplay—in this aspect following
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the guidelines stated by the scientific community (e.g., Nijholt
et al., 2009; Marshall et al., 2013). For example, Lotte et al.
(2008) and Andreev et al. (2016) presented the BCI game Use
the force!, which consisted of lifting up a vessel with motor
imagery. Meanwhile, in the game Alphawow (van de Laar et al.,
2013), the avatar’s character changes its behavior according to
the player’s state of relaxation. These two games consider the
low-transfer rate of the BCI by mapping it to a feature that is
expected to fail from time to time (it can be agreed that using the
mind to move objects is difficult to realize) and to not compete
with traditional inputs (a keyboard cannot determine a person’s
relaxation state). Nevertheless, the use of BCI was restricted to
a unique aspect of these games. On one hand, if this aspect is
a side aspect (e.g., Alphawow), the use of BCI is not valuable
because of its cost. On the other hand, if this aspect is the
main aspect of the game, it means that the player’s ability to
finish the game depends on an unreliable input and thus leads
to frustration. A subjective study on the use of BCI for gaming
(Cattan et al., 2019) also reported a lack of feedback for error
quantification from participants. This couples with the fact that
around 20% of the users are not proficient using a typical BCI.
In fact, BCI illiteracy is an issue which is also well-established
in the existing literature (e.g., Nijholt et al., 2009; Allison and
Neuper, 2010; Marshall et al., 2013; Vasiljevic and Miranda,
2019), although the idea that physiological traits are responsible
for BCI illiteracy is controverted (Thompson, 2019; Riquelme-
Ros et al., 2020). These limitations impact replay and the difficulty
of games, as players who do not succeed in a BCI task will become
stuck in the game without knowing how to improve. In fact,
except for a proof of concept or a contest, such as the game
created byMentalista (Paris, France), these games are not suitable
for public.

DISCUSSION AND CONCLUSION

This section discusses BCI limitations and explains why
overcoming these limitations to develop a ubiquitous
BCI game is challenging. These difficulties include a
plateau in performance compared with mechanical inputs,
technical and algorithmic complexity behind BCI, a lack of
middleware for BCI development and an underestimation
of graphics and design complexity compared with games in
the market.

Transfer rate is the most common limitation discussed in
the literature. For example, Rashid et al. (2020) has argued
that “most BCI games demonstrate very low accuracy and
speed as compared to conventional interfaces, suggesting that
there are issues that must be addressed to facilitate the
acceptance of BCI games.” According to Cattan et al. (2018b)
and Rashid et al. (2020), this is particularly true for games
requiring movements, such as VR games, as muscular artifacts
interfere with the detection of brain signals. In this regard,
the complexity of signal detection and classification is, to
our belief, a key obstacle to creating effective BCIs for use
in games.

From our perspective, recent developments in non-metric
(e.g., Quemy, 2019) or quantum classification (Grant et al.,
2018; Havenstein et al., 2019) might lead to significant
improvements in BCI acceptance and performance. Indeed, non-
metric classification reduces the need for data pre-processing
and engineering, while quantum classification takes advantage
of quantum physics to improve the speed and accuracy of
classification. The emerging field of quantum machine learning
has become increasingly mature thanks to the availability
of open-source toolkits (e.g., Abraham et al., 2019) and
cloud-based quantum machines (such as the IBM quantum
experience by IBM, Armonk, US). Havenstein et al. (2019)
showed the advantages of using a quantum vs. classical support
vector machine for multi-class classification. Further interesting
developments are expected in this field in the next decade.

Nevertheless, in our opinion, the impact of a low-transfer rate
on BCI games is overestimated. In practice, if BCIs are considered
an interesting yet dispensable device for video games, this is
mostly due to design issues because BCIs are either used as an
ancillary feature of games (despite requiring expensive materials)
or as a means of competing with traditional inputs (e.g.,
keyboards and mice) to achieve the same task faster and with less
concentration. In other words, BCIs in games should be limited
to a set of aspects that cannot be achieved by traditional inputs,
but at the same time should create sufficient value to justify the
cost and encumberment of the material. However, despite some
of the positive features previously enumerated (e.g., the use of
BCIs for naturally imprecise behavior), a complete game concept
that can be sold for concrete video game entertainment is lacking.
Further, design reflection for BCI games is still in its infancy and
is close to the prototypal-use cases created in the early 2000s
(e.g., Bayliss and Ballard, 2000). Similar concerns were broached
in recent studies, such as Vasiljevic and Miranda (2019) which
reported that only a few studies focused on qualitative aspects of
the interaction with BCI games.

In short, developers should above all be concerned with game
design and game portability. In practice, BCI games cannot
be downloaded and run independently of the EEG acquisition
system, which is an impediment for both researchers and game
developers. In this respect, the work achieved by platforms such
as OpenVibe (Renard et al., 2010) or open-source initiatives
that rely on a standard protocol, such as Lab Streaming Layer
(Stenner et al., 2015), should be emphasized (see text footnote
7). Nevertheless, there is no support for developers (at any level,
technologic, mathematical, usability) to integrate BCI in concrete
game production. To our knowledge, practical obstacles such
as compilation and integration of LSL DLL into game engines,
along with the lack of command-line support or synchronization
solutions between OpenVibe acquisition server and recreational
applications, are rarely mentioned in the existing literature.
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Accessibility, adaptability, and transparency of Brain-Computer Interface (BCI) tools

and the data they collect will likely impact how we collectively navigate a new digital

age. This discussion reviews some of the diverse and transdisciplinary applications of

BCI technology and draws speculative inferences about the ways in which BCI tools,

combined with machine learning (ML) algorithms may shape the future. BCIs come

with substantial ethical and risk considerations, and it is argued that open source

principles may help us navigate complex dilemmas by encouraging experimentation

and making developments public as we build safeguards into this new paradigm.

Bringing open-source principles of adaptability and transparency to BCI tools can help

democratize the technology, permitting more voices to contribute to the conversation

of what a BCI-driven future should look like. Open-source BCI tools and access to raw

data, in contrast to black-box algorithms and limited access to summary data, are critical

facets enabling artists, DIYers, researchers and other domain experts to participate in the

conversation about how to study and augment human consciousness. Looking forward

to a future in which augmented and virtual reality become integral parts of daily life,

BCIs will likely play an increasingly important role in creating closed-loop feedback for

generative content. Brain-computer interfaces are uniquely situated to provide artificial

intelligence (AI) algorithms the necessary data for determining the decoding and timing

of content delivery. The extent to which these algorithms are open-source may be critical

to examine them for integrity, implicit bias, and conflicts of interest.

Keywords: augmentation, art, closed-loop systems, virtual realities, open-source, brain computer interface

INTRODUCTION

Brain-computer interfaces (BCIs) are poised to transform the nature of human consciousness in
the 21st century. In this context, we adopt the operational definition of being conscious as having
an experience – the subjective phenomena “what it’s like” to see an image, hear a sound, conceive a
thought, or be aware of an emotion (Sandberg et al., 2010; Faivre et al., 2015; Koch et al., 2016). We
speculate based on prior research that closed-loop systems with a combination of stimuli (mixed
reality), sensing (BCI) and predictive algorithms (AI and its subsets machine learning and deep
learning) will increasingly be capable to alter the subjective experience in a manner that is tightly
coupled with changes in emotion regulation (Lorenzetti et al., 2018; Montana et al., 2020), and
cognitive augmentations such as attention improvements (Wang et al., 2019), episodic memory
enhancement (Burke et al., 2015). These transformations may not only make humanity more
productive and efficient, but also potentially more expressive, understanding, and empathetic.
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We can begin by classifying BCIs into three main groups:
(1) invasive approach (Wolpaw et al., 2000), (2) partially
invasive approach, and (3) non-invasive approach. An invasive
approach requires electrodes to be physically implanted into
the brain’s gray matter by neurosurgery, making it possible
to measure local field potentials. A partially invasive approach
(e.g., electrocorticography—ECoG) is applied to the inside of
the skull yet outside the gray matter. A non-invasive approach
(e.g., electroencephalography—EEG and functional Magnetic
Resonance Imaging—fMRI) is the most frequently used signal
capturing method. This system is placed outside of the skull on
the scalp and records the brain activities inside of the skull and
on the surface of the brain membranes. Both EEG and fMRI
give different perspectives and enable us to “look” inside the
brain (Kropotov, 2010). It is worth noting that invasive and
partially invasive approaches are prone to scar tissue, are difficult
to operate, and expensive. Although EEG signals can be prone to
noise and signal distortion, they are easily measured and have a
good temporal resolution. This and the fact that fMRI devices are
expensive and cumbersome to operatemake EEG themost widely
used method for recording brain activity in BCI systems. EEG-
based devices directly measure electrical potentials produced by
the brain’s neural synaptic activities.

While the use of EEG was originally limited to medical
imaging research labs, more compact and affordable EEG systems
have opened up opportunities for other applications to be
explored. In this paper, we discuss some of the ways that
these new technologies have been applied in areas ranging
from the arts, self-improvement and rehabilitation to gaming
and augmented reality. While consumer electronics devices
have increased the accessibility to BCI technologies, we also
discuss some of the ways in which these same devices limit
their adaptability beyond pre-defined use-cases as well as the
transparency of the data and algorithms. For the context of
this discussion, we use BCI technology to describe devices that
measure a broad array of biometric signals, not only directly
from the central nervous system (CNS), but also from the
peripheral nervous system (PNS). Because changes in cognitive
and emotional states engage sympathetic and parasympathetic
responses of the PNS, changes in heart rate, electrodermal
activity, and other biometric signals can provide a detailed
window into brain activity (Picard, 1995).

Our discussion briefly reviews the evolution of BCI devices
with examples of how they have been applied outside of
traditional research settings. Within a transdisciplinary context,
including neuroscience, computer science, health, philosophy,
art, and a rapidly developing technology landscape, we review
specific ways in which limitations to the adaptability and
transparency of BCI technology can have implications for
applications both within and outside research contexts. We
examine how applying open-source principles may help to
democratize the technology and overcome some of these
limitations, both for traditional research as well as alternative
uses. Looking forward to a future in which BCIs are likely
to become increasingly integrated into our everyday lives,
we believe that it will be important to involve more voices
from across traditional disciplinary divides contributing to the

conversation about what our future should look like and how BCI
devices and data should contribute to our lives. From public BCI
art to hackathons and K-12 education, it will likely be critical to
be asking more questions, new types of questions from different
perspectives, and starting at a younger age, to ensure that BCI
technology will serve society at large.

As BCIs move beyond siloed research labs toward new
and more diverse use cases, the accessibility, adaptability, and
transparency of BCI tools and data will significantly impact how
we collectively navigate this new digital age. Technology and the
self are becoming increasingly coupled, allowing us to learn faster,
create new ways to express ourselves and share information like
never before. The extent to which these technologies are open
and accessible for more people to engage with them and examine
their integrity may shape the nature of our consciousness and the
future of humanity.

CHANGE IN PERSPECTIVE

Artists and do-it-yourself-ers (DIYers) have been exploring novel
BCI applications since before BCI was an acronym. Artists and
DIYers often adopt new technologies to modify their original
condition and purpose beyond the “intended” use. Going back 60
years, artists proposed novel experiments such as the sonification
of alpha waves to excavate untapped musical imaginations or
subconscious musicality. There was especially a great interest by
composers in the use of feedback, both acoustic and electronic,
as a fundamental musical process. In 1965, physicist Edmond
Dewan and composer Alvin Lucier collaborated on Music for
the Solo Performer, shown in Figure 1. This piece is generally
considered to be the first musical work to use brain waves and
directly translate them into musical sound. Lucier’s work remains
a pioneering and important piece of 20th-century music, as well
as one of the touchstones of early “live” electronic music. Classic
feedback pieces such as David Behrman’s WaveTrain (Behrman,
1998), Max Neuhaus’ Public Supply (Max, 1977), and Terry
Riley’s tape delay feedback (Sitsky, 2002) were also created in this
new wave of exploration. These early artists were often found

FIGURE 1 | Physicist Edmond Dewan and composer Alvin Lucier collaborated

on music for the solo performer.
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building BCIs and synthesizers from scratch using basic electrical
components (resistors, capacitors, amplifiers, etc.), which gave
them a very high degree of flexibility to create and adapt their
circuits to do strange and wonderful things but also posed a high
barrier of entry to create and use the technology.

The explosion of consumer electronics during the 80 and
90’s resulted in substantial moves in the BCI space in the
late 2000’s and early 2010’s. NeuroSky, Emotiv, and Zeo Sleep
Coach among others developed consumer EEG devices and
BodyMedia, Polar, Fitbit and other devices measured signals
from the autonomic nervous system (Nijboer et al., 2011).
This increase in accessibility of BCI technologies has enjoyed
a commensurate blossoming of BCI-driven art. Emotiv’s EPOC
headset has been utilized in a number of artistic contexts
including measuring the Magic of Mutual Gaze (Abramovic
et al., 2014), a durational performance art piece by Marina
Abramovic that utilized the Emotiv EPOC to visualize and neuro-
contextualize the synchrony of two people engaged in mutual
gaze (as shown in Figure 2). Noor: A Brain Opera (Pearlman,
2016) turned brainwave data into an immersive audio-visual
experience in which the internal state of the performers drives
the operatic performance. Vessels (Leslie, 2020) is a brain-body
performance piece that combines flute improvisation with live,
sonified brain and body data from a Muse headband. Polar
handheld devices similarly became the springboard for a number
of artworks including Pulse Spiral (Lozano-Hemmer, 2008) and
Emergence, as shown in Figure 3 (Montgomery et al., 2011),
measuring viewer’s heartbeats to reflect on the nature of their
internal state and the human-computer interface.

While this consumer electronics explosion made BCI
technology more accessible, the resulting devices (including the
combination of hardware, firmware, and required software) often
place limits on the adaptability and extensibility of the device.
In many cases raw data is made completely inaccessible or is
only offered at high price points, tending to confine the resulting
artistic applications into more pre-defined use-cases.

Around the same time as the advent of consumer-grade
BCI devices, the DIY maker movement began to take root
in the 2000’s, in part to break down the dichotomy between
accessibility and flexibility/extensibility. One of the movement’s
cornerstones was born when a group of Italian postgraduate
students and a lecturer at the Interaction Design Institute in
Ivrea created the first version of what would go on to become
the Arduino project (Banzi et al., 2015). The OpenEEG project
(Griffith, 2006) quickly became an early go-to open-source
circuit for everything from academic tutorials and clothing
that lights up with brain activity to increase the expressiveness
of the wearer (Montgomery, 2010) to adaptive drone piloting
(Ossmann et al., 2014), but the volume-pricing of consumer
electronics quickly became an attractive opportunity for artists
and DIYers alike (Montgomery and Laefsky, 2011) to find
“alternative uses” for the devices. Hacking of theMattel MindFlex
(How to Hack Toy EEGs | Frontier Nerds, 2010) to extract
derivative EEG power-band data and of the Zeo Sleep Coach to
extract raw EEG data (Dan, 2011) enabled a multiplicity of art
installations such as Telephone Rewired, using rhythmic visual
and audio patterns to alter endogenous brain oscillations and
create an immersive aesthetic experience and altered subjective
state (Produce Consume Robot and LoVid, 2013) and Teletron
by the band Apples in Stereo, an instrument which allows the
user to play an analog synth completely through brain activity
(Schneider, 2010). These projects leveraged the wearability of
consumer-grade EEG devices to break down barriers between
artistic expression and scientific research.

In the 2010’s, Pulse Sensor, OpenBCI, EmotiBit, and other
fully open-source products with full data access further broke
down the barriers to accessibility and extensibility that gave
artists and creative technologists as well as researchers and
educators access to high-quality BCI platforms beyond the
confines of specific intended uses (Hoffman and Bast, 2017;
Montgomery, 2018a; Gupta et al., 2020; Masui et al., 2020; Vujic
et al., 2020). Ever since, developers have been fascinated with

FIGURE 2 | Measuring the magic of mutual gaze & the artist is present. Left: Measuring the magic of mutual gaze at the garage museum for contemporary art,

Moscow in 2011. Photograph by Maxim Lubimov © Garage center for contemporary culture. Video: www.youtube.com/watch?v=Ut9oPo8sLJw&t=73s Right:

Marina Abramović, the artist is present, performance, 3 months, the museum of modern art, New York, NY (2010), photography by Marco Anelli. Courtesy of the

Marina Abramović Archives.
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FIGURE 3 | Emergence installation at open house gallery, New York City (left) and digital memories triggered by successive heartbeats and uploaded to Flickr (right).

Left image by Sean Montgomery. Right images by Emergence courtesy of Sean Montgomery. Web: http://produceconsumerobot.com/emergence/; Leonardo

Electronic Almanac Vol 18 No 5 p 6–9.

the possibility of enhancing the gaming experience via BCIs
(Lécuyer et al., 2008). Games tailored to the user’s affective state—
immersion, flow, frustration, surprise, etc.—like the famous
World of Warcraft, allow an avatar’s appearance to reflect the
gamer’s cognitive state instead of being controlled through
keyboarding (Nijholt et al., 2009). It is not unrealistic to believe
that the first mass application of non-medical BCIs will be in
the gaming and entertainment field. Standalone examples already
have a market, and extensions to console games are likely to
follow soon (Nijboer et al., 2011). Other projects like Emotional
Beasts allowed the exploration of the user’s self-expression in
VR space by transforming the appearance of the avatar in an
artistic way based on the user’s affective state, thereby pulling
the avatar design away from the uncanny valley problem and
making it more expressive and more relatable (Bernal and Maes,
2017). Through the use of VR headsets that have been altered
to accommodate physiological sensors (Bernal et al., 2018),
the system collects and integrates physiological data to enable
the perception of human affect. Bernal et al. showed how the
PhysioHMD system can be used to help develop personalized
phobia treatment by creating a closed loop experience. The
images (insect sprites) spawned through the particle system can
be modified (speed, size, the rate of spawn, movement) in the
Unity inspector to increase or decrease the arousal level of
the user.

As we look forward to the 2020’s and beyond, it’s reasonable to
expect that BCI technology will become a greater part of everyday

life for humanity and that these technologies may integrate
with and potentially change aspects of human cognition. The
extent to which artists and makers are enabled to be a part
of the conversation about what this future should look like
and where there are potential dystopian hazards, may play a
pivotal role in shaping that future (Flisfeder, 2018; Montgomery,
2018b). The level of engagement and dialog will depend on
the accessibility made possible through volume production
of consumer electronics, the adaptability and flexibility made
possible through open-source technology, and granular access to
raw data that allows for going beyond pre-baked intended uses
to ask new questions about brains, computers and the interfaces
that increasingly connect them.

MY DATA, THEIR DATA?

Looking Behind the Curtain
As availability of consumer-grade BCI and biometric
technologies has grown, the application of these technologies
in research, serious games, and rehabilitation has surged
(View Research, 2019). Instead of costing tens of thousands of
U.S. dollars and requiring participants to wear saline-soaked
headgear entangled with dozens of wires, it is now possible
to get meaningful BCI data from devices costing < US$1,000
in wireless and relatively easy to wear form factors, as shown
in Figure 4. The result has vastly opened up possibilities for
more people around the world to ask more and new types of
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FIGURE 4 | Consumer-grade BCI devices substantially improved the comfort

and wearability, permitting devices to be used in new contexts and new types

of questions to be asked. Top left, a standard wet EEG system, earlier systems

were very susceptible to movement artifacts. Top right, a wireless headset by

Emotiv, still uses wet electrodes but the setup is much quicker and wearability

much improved compared to earlier systems. Bottom left, ECG setup found in

most clinics, the setups commonly use 10 sticky electrodes to monitor cardiac

activity. Bottom right, today’s wrist-worn smartwatches can report user’s ECG

from the press of a button.

questions. For rehabilitation, that means it is easier to bring
devices into people’s homes or care facilities, allowing for many
more people to be served and for exploring new treatments
and methodologies (Sung et al., 2012). Bringing consumer BCI
technologies into the workplace has led to rapid development
ranging from serious games, to flight simulators and warehouse
safety training (Marshall et al., 2013; Huang et al., 2020) and
research labs can now ask new questions about the neuroscience
of interpersonal and classroom dynamics (Dikker et al., 2017,
2019a).

With these benefits of consumer-grade BCI devices, however,
has also come a challenge of transparency. Most of the consumer-
electronics world, including BCI devices, lives and dies by a
closed-source ethos. While patents can serve as a mechanism to
maintain transparency as well as a competitive advantage, it is
often difficult or impossible to patent BCI circuits and algorithms
because they are either not sufficiently novel or can be modified
slightly to avoid infringement claims, and yet, omitting specific
details (e.g., filter frequencies and other signal conditioning) can
bothmake it harder for others to simply rip off the product as well
as limit the ways the end-user can utilize and interpret the data.
The patent system is also rather slow and somewhat overrun, so
in a fast-moving technology landscape the competitive advantage
of a patent might be somewhat irrelevant by the time a patent is
actually granted. In addition to limiting access to raw data and
only providing end-users with summary statistics, a competitive

advantage is commonly maintained by creating a moat of closed-
source trade-secrets and datasets that prevent competitors from
moving into the space. On the other hand, essential to the world
of science is the principle of reproducibility, and in a number
of areas the scientific method and the closed-source veil stand
on different sides of the table propelling the stalwart march of
human knowledge (McNutt, 2014; Höller et al., 2017).

One way closed-source/closed-data ecosystems limit research
is in the scope of questions that are possible to ask. For example,
when examining EEG data, if only power-band statistics (alpha,
beta, gamma, etc.) are made available (as for example is the
case for the standard Emotiv license), much of the information
about synchrony in the brain is lost. Specifically, it is impossible
to investigate whether two regions of the brain are exhibiting
coherence or phase-locking with one another. There is wide
consensus among neuroscientists (Uhlhaas et al., 2009) that
synchrony is important in determining the efficacy of neuronal
communication, plasticity, and learning, and possibly even for
governing aspects of consciousness (Buzsaki, 2006). For example,
the phase-locking of EEG oscillations has been shown to increase
between different regions of the medial-temporal lobe during
successful memory formation (Miltner et al., 1999; Fries, 2015)
suggesting an important role in memory encoding or selective
attention (Fries, 2015). Similarly, increased coherence has been
associated with memory retrieval (Kaplan et al., 2014; Meyer
et al., 2015) and binding together of multi-modal representations
spanning different areas of the brain (Gray et al., 1989; Llinás
et al., 1998; Engel et al., 2001). In the context of this research,
it is likely that timing and synchrony in the brain are important
for some of the most interesting cognitive functions—memory
encoding and retrieval, associative learning, attention, and likely
others. However, when EEG data is reduced to power-band
statistics, the phase relationships and cycle-by-cycle timing
information is inherently lost. In doing so, it is possible that
some of the most important information about the operation
of the brain and how it relates to cognition may be lost in
an irreversible way. Similarly, as we increasingly apply machine
learning to EEG data, if only power-band data or other potentially
impoverished derivative metrics are used as inputs, this may
fundamentally limit the effectiveness of the resulting machine
learning models. In some cases the resulting models may lack
statistical power to make reliable predictions and in other cases
the models may overfit the power-band data and be unable to
adequately generalize and replicate the results in other contexts.
As the field of neuroscience continues working to understand
what the most important parameters of brain function are that
derive cognitive processes, having access to the raw EEG data will
likely be critical to unlock the true potential of this technology.

Further limitations can come when deriving metrics from
data preprocessed with closed-source algorithms. For example,
using heart rate (HR) data from common wrist-worn devices
(e.g., FitBit or Apple Watch) to calculate pulse rate variability
(PRV) can be substantially problematic. Similar to heart
rate variability (HRV), PRV is a metric that is particularly
dialed into the sympathetic/parasympathetic axis of the
autonomic nervous system (Berntson et al., 1997). By looking
at the relationship between fast and slow changes in HR it
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is possible to mathematically relate heart rate changes to
levels of epinephrine governing sympathetic “fight or flight”
responses and levels of acetylcholine governing parasympathetic
“rest and digest” responses (Appelhans and Luecken, 2006).
However, PRV calculations require long periods (typically 10+
min) of clean data, to accurately estimate the low frequency
(LF) and high frequency (HF) components used to assess
the sympathetic/parasympathetic ratio. While measuring
photoplethysmography (PPG) from the wrist is convenient, one
of the limitations is that it can be subject to substantial movement
artifacts depending on a host of factors (Biswas et al., 2019).
To deal with movement-related noise, consumer-grade devices

typically employ heavy-handed smoothing and interpolation
in order to give consumers a “best guess” HR value even when
the signal quality is low. While this interpolation can improve
the HR estimation and the consumer experience overall, as is
illustrated in Figure 5, the resulting PPG estimation can be very
substantially distorted (Morelli et al., 2018). Without access to
the original raw PPG data, researchers are simply stuck with
the HR estimates coming off the device with no path by which
to improve the HR detection as new algorithms are developed,
for example, based on recent research using a sensor fusion
approach combining PPG and accelerometer data (Kos et al.,
2017; Biswas et al., 2019). In contrast, open-source products

FIGURE 5 | Illustrative example of heart rate variability derivation and how smoothing heart rate data can lead to variability detecting changes in the

sympathetic/parasympathetic nervous system. Figure plots are based on data presented in Electrophysiology (1996). (A) shows the raw tachogram fluctuations in

heart rate during supine rest and (C) shows the derivative power spectral density (PSD) of the supine rest heart rate data to calculate the VLF, LF, and HF frequency

bands that can be used to assess autonomic nervous system balance. (B,D) show the raw heart rate tachogram and derived PSD plot after a 90 degree head-up tilt

physiological perturbation that increases the sympathetic nervous system response. Smoothing or interpolation algorithms acting on the raw rest tachogram data can

potentially generate tachogram data similar to the tilt condition in (B), leading to a spurious shift in the observed LF/HF ratio. In the context of wearable consumer

devices with potential data gaps and heavy-handed closed-source smoothing/interpolation algorithms, it is thereby possible to misinterpret smoothed or interpolated

data as a shift in the sympathetic/parasympathetic nervous system responding, even when no such shift has occurred.
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like OpenBCI (Murphy and Russomanno, 2013), Pulse Sensor
(WorldFamousElectronicst, 2011) and EmotiBit (https://www.
emotibit.com/, Montgomery 2020) provide access to the raw
data as well as the electrical specifications and source code to
understand the data collection and derivatives.

Worse than the data distortion itself is that the algorithms
performing the interpolation on consumer-grade devices are
closed-source and it is often unclear when data is being
interpolated and when it is faithfully reflecting the physiological
activity of the wearer. As a result, it can be very difficult to assess
when the data distortion may be leading to interpretations that
are overstated, understated, or even opposite of the truth in any
given experimental paradigm. Potentially even more problematic
for the use in scientific contexts is that the algorithms deriving
biometrics can change without notice any time the company
chooses to push new code onto the device, phone or remote
servers. These quickly evolving algorithms are especially difficult
to reveal and protected with patents, and algorithm changes
with different firmware and software releases are thus always a
potential caveat when a result fails to replicate from one study
to the next or even if an effect shows up, disappears, or changes
in the midst of a single study (Shcherbina et al., 2017). When
it comes to developing new therapeutic approaches, training
protocols and serious game applications, these kinds of errors
can have real-world consequences that can potentially affect
people’s lives.

When technological tools are developed out in the open,
anyone can verify if a vendor is actively pursuing accurate
validation metrics, appropriately managing security and privacy,
or handling issues in a timely and professional manner. The
ability to examine the process followed and the source code
developed makes it so that anyone can perform an independent
audit. This is true not only for the code itself, but also themethods
and testing processes used in the development and the history of
changes. The transparency of open-source tools and the access to
raw data is similarly important for BCI applications in research
as it is for gaming, therapy, and rehabilitation. As state-of-the-art
technology endeavors to make sense of signals from the body, it is
often critical to understand important details of how the data was
collected, conditioned, and transformed into derivative metrics.
Particularly as derivative metrics become building blocks and
inputs for downstream analysis andmachine learning algorithms,
transparency becomes essential for the ability to replicate and
understand results and unlock the mysterious inner workings of
the human brain.

Looking Into the Black Box
Stepping forward from simple derivative metrics, the recent wave
of machine learning commonly utilizes deep neural network
models, which often behave like black boxes because the
relationship between the input and output can be difficult to
ascertain.Whenwe look into the number of journal articles about
ML in neuroscience, we find that its adoption has continuously
grown over the last 30 years (Figure 6). This rise occurred
because Neuroscience has experienced a revolution in the volume
of data and datasets that researchers are able to gather from a
large number of neurons that researchers can record from, and

the size of the datasets is rising rapidly. Researchers increasingly
need machine learning methods to wrangle this data and try to
gain insight into it. Deep learning, a subset from ML, has given
researchers methods for relating high-dimensional neural data to
high-dimensional behavior. In addition to their ability to model
complex, intelligent behaviors, Deep neural networks (DNNs)
excel at predicting neural responses to novel sensory stimuli with
accuracy beyond any other currently available model type. DNNs
can have millions of parameters required to capture the domain
knowledge needed for successful task performance regression
models. These parameters are not meant to capture what
features of neural activity relate to what features of behaviors,
but rather what features of neural activity display information
about the behavior or sensory stimuli. If these models aren’t
made transparent so that BCI experts can interpret the model’s
decisions based on key model features, it can be challenging
to predict the reliability and transferability to new contexts.
Current state-of-the-art performance in multi-class EEG ranges
from detection of epilepsy (Acharya et al., 2018), to cognitive-
workload recognition (Almogbel et al., 2018), to bullying incident
identification within an immersive environment (Baltatzis et al.,
2017). However, relatively little work in the field of AI or BCI
has been done to analyze the interpretability of such models.
We define interpretability as the degree to which humans can
consistently predict the model’s decision (Kim et al., 2016).

It is in this context that the concepts of explain ability and
interpretability have taken on new urgency. They will likely
only become more important moving forward as discussions
around artificial intelligence, data privacy, and ethics continue.
The open-source community’s recent efforts to support methods
and applications that can lead to better trust in AI systems
are already producing results. Two open-source methods are
available to the public and kept on GitHub to decompose a
neural network’s output prediction on specific inputs. LIME
(Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017) are
two projects providing novel techniques that explain a classifier’s
predictions in an interpretable and reliable manner, by learning
an interpretable model locally around the prediction. These
techniques produce “visual explanations” for decisions from
a large class of Convolution Neural Network-based models,
making them more transparent and accessible to a human
expert by comparing the amount and degree of overlap between
identified inputs.

Leveraging the open-source community can help improve
trust by ensuring that any BCI-AI effort meets safe and
transparent regulations. The community can include domain
experts and set routine checks to the codebase. Beyond
transparency into the code alone, as our artificial neural network
(ANN) models continue to increase in complexity, having tools
and transparency to visualize and understand key relationships
of the models will be important in understanding when the
data and decisions can be trusted and used in research and
real-life applications. A closed approach to sophisticated BCI
systems can lead to inadequate feature design choices that are not
relevant to the current needs of the community and society. Such
features can be harmful to the system; for example, if a medical
system’s patient diagnostic function has poor accuracy due to lack
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FIGURE 6 | Here we plot the proportion of neuroscience papers that have used machine learning over the last three decades. That is, we calculate the number of

papers involving both neuroscience and machine learning, normalized by the total number of neuroscience papers. Neuroscience papers were identified using a

search for “EEG + fMRI” on semantic scholar. Papers involving neuroscience and machine learning were identified with a search for “machine learning” and “EEG +

fMRI” on semantic scholar.

of testing, then this will mean more human intervention and,
ultimately, less trust.

NEW REALITIES AND AUGMENTED

COGNITION

Closed Loops
Looking forward to a future in which augmented and virtual
reality become an integral part of daily life, BCIs will likely play
an increasingly important role in creating closed-loop feedback
for generative content. As one physical reality transforms into
a multiplicity of mixed realities, brain-computer interfaces will
be uniquely situated to provide necessary feature selections to
determine the decoding and timing of content delivery.

A closed-loop system that monitors the user’s reactions to
the content of a virtual environment enables the generation
of personalized virtual reality experiences. Demonstrations like
those shown by Bernal et al. in Figure 7 use arousal levels to
provide real-time, reliable information about the user’s reception
of the content and can help the system adapt the content
seamlessly (Bernal et al., 2018). In a 360 video demo player
scene, they used gaze data and Skin Conductance Response
(SCR) data to increase the user’s arousal levels by modulating
a shader’s occlusion superimposed on the 360 scene in order
to create the fear of the unknown. Figure 8 shows how the
demo takes standard footage from people in a basement and
creates a pulsating shadow effect, and therefore a more dramatic
360 captured video, similar to those seen in horror movies.
To direct the user’s focus to the people within the video, a
surface shader is modulated dynamically to occlude areas that
are not of interest to the user; locations informed by the
point of regard (POR) data from the gaze tracking system. The

detected SCR peak values are used to pulse the occlusion shader
with modulation.

Sourina et al. proposed a real-time approach for feature
extraction in EEG-enabled applications for serious games,
emotional avatars, music therapy, musicians, and storytelling
where the emotional states of the users are mapped onto avatars.
The Haptek Activex control provides functions and commands
to change the six facial expressions of 3D avatars including
fear, frustration, sadness, happiness, pleasant, and satisfaction.
In the application, emotions of the user are recognized from
EEG and visualized in real-time on the user’s avatar with
the Haptek system. For the music therapy application, the
music selection and duration is adjusted based on the current
emotional state of the user wearing the BCI, as identified by the
system (Sourina et al., 2011).

These types of scenarios don’t come without consequences if
proper guidelines are not being followed. Recently a BCI start-
up has been under scrutiny over tests on Chinese schoolchildren
after the Wall Street Journal released a video stating that teachers
at that school know exactly when students are and are not paying
attention (Wall Street Journal, 2019). In the video, children
are shown wearing an EEG headband during class with an
LED located on the forehead region that changes color based
on the children’s attention levels. At the time there were no
privacy laws regulating this type of collaboration between private
schools and companies. Even though the start-up reports that
all parties involved had given consent about taking part in the
test, concerns about whether the data was adequately secured or
potential future implications for the children led to the ban of
this device’s use in the classroom and the creation of a new law
(Chinese Primary School Halts Trial of Device That Monitors
Pupils Brainwaves, 2019; Primary School in China Suspends Use
of BrainCo Brainwave Tracking Headband, 2019).
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FIGURE 7 | An example of a closed-loop setup used in a lab setting. Physiological signals are recorded using a set of electrodes positioned over the visual cortex

while stimuli are displayed on a VR headset. Currently, the system supports deep learning model inference for high-level cognitive states.

FIGURE 8 | A 360 video scene is manipulated by the user’s gaze data and skin conductance response data to increase the users’ arousal levels. These arousal levels

create darker flashing moments making it more dramatic, similar to those seen in horror movies. To direct the user’s focus to the people within the video, the system

modulates a surface shader dynamically that occludes locations informed by the gaze tracking system’s data as areas that are not of interest to the user.

New Realities
The importance of open-source transparency will likely
expand substantially as AIs increasingly become BCI-driven

coprocessors for the human mind. Whether algorithms are
designed to help homeostatically regulate stress, or to monitor
engagement and optimize learning or improve safety, these
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reality-selection algorithms will likely be critical to examine for
integrity, implicit bias, and conflicts of interest. As AIs take
on an adjunct homunculus role, their ability to make sense of
BCI data and be creatively applied to novel applications will
depend on the adaptability, extensibility, and transparency
of the BCI tools on which they are built. All this comes
with great possibilities to fundamentally transform human
consciousness in addition to extreme risks and concerns,
and open source may be one of the key factors that helps us
navigate this conversation as we build safeguards into this
new paradigm.

The issues surrounding algorithm integrity and examples
of ways in which open-source code can mitigate those issues
can be drawn from the cyber-security sector. For example,
WannaCry ransomware targeted a vulnerability in the closed-
sourceWindows operating system (Petrenko et al., 2018) that had
existed for over a decade and only came to worldwide attention
after the WannaCry crypto-worm infected ∼300,000 computers
worldwide, including the U.K.’s National Health Service which
cost the organization nearly £100M in canceled appointments
and cleanup. In contrast, the Heartbleed security bug in the
open-source OpenSSL cryptography library was discovered and
fixed in just over 2 years. While it can be hard to compare any
two vulnerabilities, data has suggested that open-source defects
are found and fixed more rapidly than closed-source projects
(Paulson et al., 2004). The integrity and security of cognition
augmenting and reality-selection algorithms is very likely to
present a host of cyber-attack opportunities for anything from
lone-wolf hackers hawking their wares, to state actors creating
individually targeted propaganda. The ability for open-source
public review of algorithm integrity may be a way to catch these
vulnerabilities in a timely manner.

Implicit bias has been documented in machine learning AI
algorithms that govern everything from filtering job applicants
to home loan approval (O’neil, 2016; Buolamwini and Gebru,
2018). The implicit bias embodied in the algorithms andmachine
learning models often ends up reflecting and reinforcing the
racial and gender inequities present in our society. As we
diversify a multiplicity of virtual and mixed realities, both the
risk to exacerbate and the opportunity to mitigate implicit bias
will be great. For example, Mel Slater and his students have
demonstrated that the embodiment of light-skinned participants
in a dark-skinned virtual body significantly reduces implicit racial
bias against dark-skinned people, in contrast to embodiment
in light-skinned or purple-skinned avatars, or ones with no
virtual body at all (Peck et al., 2013). Virtual Reality presents
a persuasive tool for potentially placing people into a different
body stereotype, particularly race or gender, by modifying the
form of their body image. This is accomplished by a setup that is
referred to as ’virtual embodiment’. The participants wear a broad
field-of-view head-mounted display and when they look down
toward themselves in the VR, they see a programmed virtual body
(VB) substituting their own real body. They also see this body
when looking at their (geometrically accurate) reflection in a
virtual mirror. These kinds of virtual reality experiences have the
potential to increase empathy and understanding. We speculate
based on prior research that as BCIs combined with machine

learning become increasingly capable to detect biometric patterns
associated with complex cognition such as implicit bias and
empathy (Hasler et al., 2017; Levsen and Bartholow, 2018; Luo
et al., 2018; Katsumi et al., 2020; Patané et al., 2020), feedback
loops between BCIs and virtual reality content will be positioned
to either diminish or amplify these internal states. Open-source
algorithms and models that can be audited may be an important
tool to ensure implicit bias is mitigated and empathy is enhanced
as we multiply reality.

Koutsouleris et al. (2020), reported that AI algorithms were
able to predict whether people would have a psychotic episode
using a combination of clinical, brain imaging, and genetic data.
The positive potential of algorithms that could help to intervene
or otherwise divert a catastrophic life event for millions of people
worldwide cannot be overstated. Looking at an example with less
devastating, but potentially broader impact, research has shown
that struggles of obesity are driven, in part, by food stimuli that
hijack the decision making centers in the brain to create an
overwhelming compulsion to eat (Stice et al., 2009; Cobb et al.,
2015; Mejova et al., 2015). To short circuit this stimulus-response
behavior we can easily imagine how a closed-loop Augmented
Reality system that occludes specific food stimuli, like donuts,
could be a great aid to those in the process of rebuilding their
relationship with food, as shown in Figure 9. And yet this
technology also presents a clear risk for mistakes and conflicts
of interest to have dire consequences. The landscape of BCI-
driven reality selection is rife with both utopian and dystopian
possibilities. Relapse into addiction, for example, is known to
be triggered by specific associative stimuli like a cigarette or a
lighter (Shiffman, 2005; Leventhal et al., 2008) and very likely
to exhibit greater susceptibility under certain neurological states
(Potvin et al., 2015; Witteman et al., 2015). It is easy to imagine
a utopian world with reduced substance abuse rates simply by
detecting susceptible states and using augmented reality to block
trigger stimuli thereby enabling people to be productive members
of society. On the contrary, it is equally easy to imagine the
dystopian world that might follow if Purdue Pharma [maker
of the highly addictive opiate, OxyContin, that drove opiate
addiction rates to all-time highs in the United States, (Knisely
et al., 2008)] were generating BCI-driven targeted advertising
into our reality feeds. We speculate that possible futures of BCI-
driven reality selection range from greater safety, health, wellness,
rates of learning, and creativity to security risks, manipulated
addiction, misinformation, and brainwashing. Transparencymay
be a critical principle to help unlock the utopian and steer clear
of the most dystopian visions of our future.

CLOSING TOPICS

As we have discussed in this paper, BCIs are moving beyond
siloed research labs to explore new use-cases ranging from
the arts and rehabilitation to gaming and augmented reality.
The accessibility, adaptability, and transparency of BCI tools
and data will significantly impact how we collectively navigate
this new digital age. It is essential that we build technologies
that are not only affordable, but that also can be used for
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FIGURE 9 | Diagram showing close-loop scenario where stimuli are removed from user perception. The trigger layer shows a stimulus that the user intends to avoid.

The recognition layer is computed on the user’s device and masks the stimuli to be blocked. The blocked stimuli layer is what the user perceives when a trigger

stimulus is shown.

diverse applications while delivering transparency of the data and
algorithms employed. Open-source principles would enable BCI
technologies to be explored from different perspectives and for
novel applications with confidence that the data is relevant and
accurately reflecting underlying physiological changes. Enabling
BCI technologies to be used in the broadest possible range of
applications will ensure that more voices can understand, utilize,
and validate the integrity of these signals as we shape a BCI-
augmented future.

Both art and technology aim to reshape the world we exist
in, re-envisioning what we perceive as real and understanding
nature’s own limits. For decades, industry has been inspiring
new technologies (3D printing, e-paper, satellites) and presenting
critical reflections like Black Mirror’s “The Entire History of
You” that gives us mental frameworks to rethink our relationship
with technology. As we move into a future that increasingly
merges technology with humanity, the artist’s role must be one
of an active partner in preparing the direction of research and
facilitating synergy between science and technology of science
and technology as a vital means for understanding the world.

We speculate that Augmented cognition driven by BCI
technology may be poised to transform humanity at a level on
par with or exceeding that of the written word. The possibilities
to learn faster through dynamic material that is individually
tuned to each person’s psychophysiology, develop strategies for
enhanced creativity and even perhaps bootstrap our biology into
new forms of distributed or collective consciousness, may have
profound implications for the ability of humanity to understand
the universe and its place therein. And yet, much as with
any powerful tool, part and parcel with the potential benefits
come potential risks. Whether it is the possibility for a future
in which we can create reality filters based on physiological
responses or read the cataloged memories of alleged criminals
(Flisfeder, 2018), there are very real risks as we look forward into
a world powered by BCI-driven augmented cognition. Despite
these risks, the benefits are too profound and the advantages

too immediate to imagine a reverse course. If someone can save
themselves or a family member from addiction or a psychotic
break (Koutsouleris et al., 2020), or if a driver or pilot can be safer
(Healey and Picard, 2005; Zepf et al., 2019), or if a day-trader
can be the smartest person in the room, the unrelenting force of
progress will likely overpower any attempts to outright halt it.
Instead, we may consider building a future based on open-source
principles including adaptability, extensibility, and transparency
so as to democratize the conversation with different perspectives,
deliver the openness needed to conduct replicable science, and
understand the algorithms and models that will play increasingly
important roles in creating our realities and world views.

Setting up the technical as well as ethical and societal
norms of a BCI-driven future will require a diversity of
transdisciplinary perspectives. Sitting at the nexus of biology,
electrical engineering, and computer science, BCIs are
transdisciplinary by their nature, and they also present an
opportunity to bring perspectives ranging from psychology,
health, and physical education to history, philosophy, and the
arts. Bringing together a diversity of ideas and viewpoints can
help ensure that this transformative technology is set up to
serve not only the most privileged members of society, but
also enable individual ingenuity to go beyond preconceived
use-cases to solve issues that transcend physical, economic,
and cultural boundaries. Even more than the sum of siloed
individual perspectives, creating transdisciplinary conversations
that explore the intersections between different points of view
can multiply the information and ideas to imagine our future
realities (Nijholt et al., 2018; Dikker et al., 2019b). Those
conversations might become more common and start at a
younger age, by bringing BCIs into K-12 project-based curricula
and into hackathons that promote diverse teams including
artists and philosophers as well as engineers and scientists. By
building BCI tools that are adaptable and transparent as well
as accessible, the resulting applications and conversations can
go beyond preconceived use-cases to explore the widest scope
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of possibilities that BCIs may unlock for the future. Greater
openness may require some reframing of the solution space
in the context of principles including those of adaptability,
extensibility and transparency. Developing BCI tools that are
adaptable and extensible can democratize the development of
new ideas and applications to imagine beyond the board-room
developed use-cases. Cultivating more transparency, with greater
access to raw data, source code, and visibility into black-box
models can facilitate creating replicable scientific knowledge, and
a trust that future realities will be secure and serve the interests
of all.
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The ability to discriminate and attend one specific sound source in a complex auditory

environment is a fundamental skill for efficient communication. Indeed, it allows us to

follow a family conversation or discuss with a friend in a bar. This ability is challenged

in hearing-impaired individuals and more precisely in those with a cochlear implant

(CI). Indeed, due to the limited spectral resolution of the implant, auditory perception

remains quite poor in a noisy environment or in presence of simultaneous auditory

sources. Recent methodological advances allow now to detect, on the basis of neural

signals, which auditory stream within a set of multiple concurrent streams an individual

is attending to. This approach, called EEG-based auditory attention detection (AAD), is

based on fundamental research findings demonstrating that, in a multi speech scenario,

cortical tracking of the envelope of the attended speech is enhanced compared to the

unattended speech. Following these findings, other studies showed that it is possible to

use EEG/MEG (Electroencephalography/Magnetoencephalography) to explore auditory

attention during speech listening in a Cocktail-party-like scenario. Overall, these findings

make it possible to conceive next-generation hearing aids combining customary

technology and AAD. Importantly, AAD has also a great potential in the context of

passive BCI, in the educational context as well as in the context of interactive music

performances. In this mini review, we firstly present the different approaches of AAD and

the main limitations of the global concept. We then expose its potential applications in

the world of non-clinical passive BCI.

Keywords: AAD, EEG, auditory attention, passive BCI, education, art

INTRODUCTION

The ability to discriminate and attend one specific sound source in a complex auditory environment
is of utmost importance in the animal world both in terms of avoiding dangers and finding mates.
In humans, this ability goes well-beyond survival and reproduction since it is a fundamental skill for
efficient communication. Indeed, it allows us to follow a family conversation or discuss with a friend
in a bar. In music, this ability is challenged by the simultaneous layering of several instruments
playing together, requiring sound source segregation to fully appreciate the ensemble. This ability
is also challenged in hearing-impaired individuals and more precisely in those with a cochlear
implant (CI). Indeed, due to the limited spectral resolution of the implant, auditory perception
remains quite poor in a noisy environment or in presence of simultaneous auditory sources. Thus,
being able to enhance the relevant/attended source would facilitate source separation in individuals
with CI. However, monitoring the attended auditory source is not easy, as this changes in time.
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Recent methodological advances allow now to detect, on the
basis of neural signals, which auditory stream within a set of
multiple concurrent streams an individual is attending to. This
approach, called EEG-based auditory attention detection (AAD),
is based on fundamental research findings demonstrating that,
in a multi speech scenario, cortical tracking of the envelope of
the attended speech is enhanced compared to the unattended
speech (Mesgarani et al., 2009; Ding and Simon, 2012; Mesgarani
and Chang, 2012; Pasley et al., 2012; Zion Golumbic et al.,
2013). Following these findings, other studies showed that it is
possible to use EEG/MEG to explore auditory attention during
speech listening in a Cocktail-party-like scenario (Ding and
Simon, 2012; O’Sullivan et al., 2015; Akram et al., 2016). This
field of research has grown rapidly and several new methods
and techniques were developed in the last years to improve the
first attempts.

Overall, these findings make it possible to conceive next-
generation hearing aids combining customary technology and
AAD. Importantly, AAD has also a great potential in the context
of passive BCI, in the educational context as well as in the context
of interactive music performances.

In this mini review, we firstly present the different approaches
of AAD and the main limitations of the global concept. We
then expose its potential applications in the world of non-clinical
passive BCI.

The main rationale behind this mini-review is to bridge
the EEG-based AAD and Passive BCI communities and to
provide insights about how the emerging synergy will develop.
While previous reviews have been published on technical
aspects of AAD, this mini-review attempts to briefly present
EEG-based AAD in a broader perspective and to guide the
reader to the most relevant sources. The methodology used
to find and include papers in the current mini-review was as
follows. The search was carried on using both Pubmed and
Google Scholar. Keywords included machine learning, decoding,
encoding, auditory attention, EEG, and speech. Pubmed gave 88
results and Scholar 8,460 results. These results were then filtered
with the following exclusion criteria: articles about engineering
techniques that are not directly in relation with EEG-based AAD
methodology, articles with methods that were not applied to
M/EEG data, articles that were not published in a peer-review
journal, articles that were cited <1 time. This reduced the
number of included articles to 20 (see Table 1).

EEG-BASED AUDITORY ATTENTION
DETECTION METHODS

There are many different AAD methods based on EEG
measures. Identifying the attended speaker using cortical activity
measurement is possible because the amplitude envelope of the
speech stream (a crucial feature for speech comprehension) is
represented in the theta and gamma oscillatory activity in the
human auditory cortex (Nourski et al., 2009; Giraud and Poeppel,
2012; Kubanek et al., 2013). Attending a source thus results in
greater coupling between the envelope of the source and the
envelope of neural activity in these bands.

The vast majority of the studies that explored EEG-based AAD
performances used two concurrent spatially separated talkers but
some of them have explored the impact of speaker number and
their location in auditory scene (Schäfer et al., 2018), background
noise (Das et al., 2018), reverberation (Fuglsang et al., 2017),
number of EEG electrodes (Mirkovic et al., 2015; Bleichner
et al., 2016), or even their location (Fiedler et al., 2017) on the
performance of AAD algorithms.

One can distinguish two main categories of approaches
to detect auditory attention: linear and non-linear models
(see Geirnaert et al., 2020 for a comprehensive review of
AAD Algorithms).

Linear Models
In the community of linear models, two main “philosophies” are
in competition (see Alickovic et al., 2019 for a complete review
on linear models): forward, or encoding (encoding because these
models are a description of how the system encodes information),
and backward, or decoding, models.

The objective of the forward strategy is to predict the
neural response in the neural data (i.e., EEG channels) from
the representation of the audio signal via a temporal response
function (i.e., an encoder) that describes the linear relationship
between a set of neural data and an audio stimulus at certain time
points (Crosse et al., 2016). In the simplest case (i.e., one audio
signal) a unique representation of the audio signal is created. This
representation can be the amplitude envelope (O’Sullivan et al.,
2015), the spectrogram of speech signal (O’Sullivan et al., 2017),
or the Mel spectrogram for a music signal (Cantisani et al., 2019).
Depending on the type of the chosen representation the analysis
can be either univariate (an amplitude envelope is a univariate
stimulus feature) or multivariate (a spectrogram is a multivariate
stimulus feature). Although it is possible to use multivariate TRF
with the forward approach, this strategy is, by nature, univariate
(Crosse et al., 2016). Afterward, the audio representation is
convolved with an unknown channel-specific TRF. To estimate
the TRF (i.e., fit the model parameters), an error minimization is
performed between the neural response and the one predicted by
the convolution (e.g., Mean-Squared Error) using assumptions
about noise distribution (Holdgraf et al., 2017). Once the model’s
parameters have been estimated, the model is validated on new
data. These new data could be from the same dataset used to
estimate the parameters (leave-n-out procedure) or from data
recorded separately. The validation step is crucial because, to
be interpretable, the model should be compatible with new data
and make accurate predictions (generalization ability). Finally,
the rationale of the forward strategy, in auditory research, is to
predict neural data on the basis of the sound’s features.

Backward models work similarly but by predicting the
auditory representation based on neural data (Alickovic et al.,
2019). A pre-trained neural linear decoder is applied to the
neural data to reconstruct the chosen representation (this is
the reason why this type of approach is sometimes called
“stimulus reconstruction”). The reconstructed representation is
compared to the original representations. A high similarity
(correlation) indicates a good performance of the model. Two
other approaches can also be mentioned: Canonical Correlation
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TABLE 1 | Table describing main important characteristics of AAD reviewed articles.

Article Data Method Subject Audio features AV model goodness AV classification

accuracy

Decision

window

Akram et al., 2016 MEG Non-linear (SSM) 11 Amp Env – 74% (Not sure) 60 s (Not

sure)

Bleichner et al., 2016 EEG (+

cEEGrid)

ERP classification 20 – – 70% (EEG)−66%

(cEEGrid)

–

Cantisani et al., 2019 EEG Linear (SR) 8 Amp Env (AE),

Magnitude Spec

(MAG), Mel Spec (MEL)

r = 0.054 (AE), r =

0.215 (MAG), r =

0.119 (MEL)

F1 score = 51 (AE), 72

(MAG), 73 (MEL)

24 s

Ciccarelli et al., 2019 EEG Linear (SR) and

Non-linear (DNN)

11 Amp Env – 66% (Linear), 81%

(Non-linear)

10 s

Das et al., 2018 EEG Linear (SR) 28 Amp Env r = ∼0.06 (Speaker

separation = 10◦,

SNR = −7.1dB)–r =

∼0.14 (Speaker

separation = 180◦,

SNR = −1.1 dB)

[Attended speaker]

97% (Speaker

separation = 180◦,

SNR = −1.1 dB)−59%

(Speaker separation =

10◦, SNR = −7.1 dB)

30 s

de Cheveigné et al.,

2018

EEG Linear (CCA) 8 Amp Env r = ∼0.3 ∼95–∼75% (Best CC

pairs)

60–10 s

de Taillez et al., 2017 EEG Non-linear (NN) 20 Amp Env – 97.6–67.8% 60–2 s

Vandecapelle et al.,

2020

EEG Non-linear (CNN:D,

CNN:S+D, CCN:S)

16 Amp Env – 87% (CNN:S+D), 78%

(CNN:D), 70.5%

(CNN:S) [subject

specific]

10 s

Ding and Simon, 2012 MEG Linear (SR) 20 Amp Env r = ∼0.2 – –

Fiedler et al., 2017 EEG (+ in-

Ear-EEG)

Linear (forward) 7 Amp Env r = 0.04 70% 60 s

Fuglsang et al., 2017 EEG Linear (SR) 26 Amp Env r = ∼0.07 87.1% 40–50 s

Mesgarani and Chang,

2012

ECoG Linear (SR) 3 Amp Env r = ∼0.60 93.0% NC

Miran et al., 2018a,b EEG and

MEG

Linear (SSM) 3

(EEG)−9

(MEG)

Amp Env – 70% (MEG data), 80%

(EEG data)

1.5 s

Mirkovic et al., 2015 EEG Linear (SR) 12 Amp Env – 88.02% –

O’Sullivan et al., 2015 EEG Linear (SR) 40 Amp Env r = 0.054

(Subject-specific

decoder)

89% [Subject-specific] 60 s

O’Sullivan et al., 2017 ECoG Non-linear (DNN) 6 Spec r = ∼0.4 (Attended

speaker)

>70% (3 Subjects) 15 s

Pasley et al., 2012 ECoG Linear (SR) and

Non-linear ()

15 Spec r = 0.2–0.3 – –

Schäfer et al., 2018 EEG Linear (SR) 10 Amp Env – 61.1% 30 s

Vandecapelle et al.,

2020

EEG Non-linear (CNN) 16 Pre-processed EEG

signal

– 85.1–80.8% [Subject

specific]

10–1 s

Zion Golumbic et al.,

2013

ECoG Linear (SR) 6 Amp Env r = ∼0.15 – –

Articles are sorted by alphabetical order. The method row indicates the type of model used in the article. Amp Env, Amplitude Envelope; Spec, spectrogram; AV, Average; SR, Stimulus

Reconstruction; SSM, State-Space Model; DNN, Deep Neural Network; CNN, Convolutional Neural Network; CCA, Canonical Correlation Analysis; s, second.

Analysis (CCA) and Bayesian state-space modeling. Canonical
Correlation Analysis is a hybrid model that combines a decoding
and an encoding model. This approach, developed by de
Cheveigné et al. (2018), aims to minimize the irrelevant variance
in both neural data and stimulus by a linear transformation.
Concerning Bayesian state-space modeling (Miran et al., 2018b),
it is composed of three modules: a dynamic encoder/decoder
estimation module, an attention marker extraction module, and

a real-time state-space estimator module (see Miran et al.,
2018a for a complete description of the model) and this
approach was developed in the purpose of real-time decoding of
auditory attention.

As mentioned before, in the context of AAD, linear models
are generally used with two (or more) concurrent speech streams
in order to determine which stream the listener is attending
to. In this case, a representation of each auditory source is
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created (e.g., speaker 1 and speaker 2). Once the model has
been fitted, no matter which approach was chosen, a two-
class classifier is used to decide which of the two streams the
participant was focused on. To do so, the classifier compares
the correlation coefficients between the model output and
the original model input representations (e.g., the correlation
between the reconstructed envelope and the original audio
signals envelopes in backward strategy) over a certain portion of
data (decision time windows). The highest correlation indicates
which stream the participant was attending to. The length of the
decision time window is a crucial parameter because correlation-
based measures need a certain amount of information to perform
well. However, short decision time windows (<2 s of data) are of
interest in BCI for real-time classification.

Generally, AAD performances are assessed with two accuracy
metrics: regression accuracy and classification accuracy (Wong
et al., 2018). Regression accuracy evaluates the goodness of fit of
the model and it is expressed in terms of correlation coefficient
(Pearson’s correlation, often ranging 0.1–0.2) between the output
of themodel and the real value (e.g., speech envelope is correlated
with reconstructed envelope for backwardmodels). Classification
accuracy, on the other hand, evaluates the ability of the classifier
to correctly identify the attended stream for a given decision time
window and it is generally expressed in terms of percentage of
good classification. Classification accuracy is generally high for
long decision time windows (around 85% for 60 s of data) but
drops drastically for shorter decision time windows no matter
which approach is used.

Recently, Wong et al. (2018) showed that decoding models
outperform encodingmodels in terms of classification accuracies.
One of the best classification results obtained so far was 85%
with 20-s decision time windows, with the CCA (Geirnaert et al.,
2020).

Non-linear Models
Similarly to linear models, several non-linear model architectures
are in competition. But non-linear models are still overlooked
because they are more complex to implement and interpret.
Nevertheless, they were used by a few studies to explore
AAD. Vandecapelle et al. (2020) used two convolutional neural
networks to determine the attended speaker in a multi-speaker
scene by using the direction of the locus of auditory attention.
Their method allows them to decode auditory attention with
very short decision time windows and with a good classification
accuracy (around 80% for 2 s of data). In another study the
authors used a fully-connected neural network to reconstruct
the speech envelope and estimate the attended speaker (de
Taillez et al., 2017). The classification accuracy obtained with this
method appears to be similar to the performance obtained in
Vandecapelle et al. (2020) even though the comparison between
studies is not straightforward due to differences in experimental
and model parameters or accuracy measures (Ciccarelli et al.,
2019). However, non-linear models outperform linear models
in terms of decision time window/performance ratio. One other
potential advantage of this type of model is that it seems more
realistic insofar as it may capture the neuronal non-linearity
underlying speech perception (O’Sullivan et al., 2015, Mirkovic
et al., 2015, de Taillez et al., 2017).

Limitations of Linear and Non-linear
Models
Linear and non-linear models yet suffer from several limitations
with respect to AAD. The major problem of linear models lies
in the fact that their classification accuracy is strongly influenced
by the duration of the decision window. Long windows yield
good classification (>80%) while short ones (e.g., 2 s) yield much
poorer performance (∼60%). This is due to the fact that (1)
short decision windows contain less information (Vandecapelle
et al., 2020), (2) EEG signals contain a mixture of several
physiological and neural processes. Thus, correlations between
predicted and actual data are rather weak (between 0.05 and
0.2) and short decision time windows are particularly sensitive
to noise (Geirnaert et al., 2020). Moreover, a huge amount of data
is needed to fit the model properly. Therefore, these models are
difficult to use in real time situations where the selection of the
attended speaker must be performed as fast as possible.

For non-linear models, the principal issue is the risk of
overfitting, in particular with small datasets (Vandecapelle et al.,
2020). Moreover, comparing performances of several non-linear
models on different datasets pointed to a low reproducibility of
these algorithms (Geirnaert et al., 2020). Besides fitting issues
and physiological noise (and non-relevant neural signal), another
source of performance variability resides in inter-individual
differences at the cognitive level, such as for instance in working
memory (WM) (Ciccarelli et al., 2019), attentional control,
cognitive inhibition, but also motivation.

FUTURES PLAUSIBLE APPLICATIONS FOR
AUDITORY ATTENTION DETECTION
METHODS

Plausible Applications for AAD-Passive
Brain Computer Interfaces Systems
Classical active Brain Computer Interfaces (aBCI) exploit the
user’s voluntary brain activity to control applications or devices.
Several years ago, a new category of BCI, named passive Brain
Computer Interfaces (pBCI), emerged. Unlike aBCI, pBCI use
involuntary brain activity (e.g., cognitive state) to implicitly
modify human-machine interactions (Zander and Kothe, 2011;
Clerc et al., 2016). passive Brain Computer Interfaces are
generally used to monitor attention, fatigue, or workload in
real life situations such as driving situations (Haufe et al.,
2014) or air traffic control (Aricò et al., 2016) but they can
also be used in less operational contexts. For example, pBCI
can be used to provide translation of unknown read words
(Hyrskykari, 2006) or to display information on the screen
when the user needs it (Jacob, 1990). passive Brain Computer
Interfaces also have applications in the field of virtual reality
and video gaming (Lécuyer et al., 2008; George and Lécuyer,
2010).

Auditory attention detection algorithms could be coupled
with passive BCI to extend the usefulness of such methods to
more concrete applications. In the next section, we will describe
some possible future applications for AAD-pBCI systems.
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FIGURE 1 | Schematic representation of a sustained attention enhancement AAD-pBCI system based on a serious game. While the user is concentrating on a

specific auditory source among several others, brain activity is recorded, and preprocessed in real time. Based on this recorded EEG data, the attended auditory

source is continuously tracked by the AAD device. The pBCI device collects the AAD performances continuously (i.e., regression accuracy), estimates if a certain

threshold has been exceeded, adapts, in real-time, the game parameters (e.g., instructions, auditory scene complexity), and gives feedback to the user.

AAD-pBCI in Education
Since a few years, studies that explore the relationship between
children’s attention abilities and screen access have shown
that precocious screen access may go along with attentional
problems (Christakis et al., 2004; Ponti et al., 2017; Tamana
et al., 2019, but see Kostyrka-Allchorne et al., 2017 for
a systematic review on the relationship between television
exposure and children’s cognition). AAD-pBCI systems could
be used to improve children’s attention ability. Such an attempt
was made by Cho et al. (2002) who developed an attention
enhancement system for ADHD children using EEG biofeedback
and a virtual classroom environment. They showed that it
is possible to use pBCI to enhance attention in children
with ADHD in a school context. An advantage of real-
time AAD applications is that they may allow monitoring
children’s attention. Moreover, they could be of use in serious
game applications aiming at enhancing sustained auditory
attention (see for instance Figure 1). Importantly, one can
hypothesize that, because sustained attention in a complex
auditory scene requires segregation and integration abilities but

also inhibition and WM, these functions may also benefit from
such applications.

Such a tool could also benefit musicians who must be able
to sustain attention for long periods of time (Bergman Nutley
et al., 2014). Interestingly, for musicians, this approach could also
enhance the ability to share auditory attention across multiple
sources, since this is of great importance in ensemble music
making. As for the Sustained Attention Enhancement AAD-pBCI
System mentioned above, a Divided Attention Enhancement
AAD-pBCI System could also take the form of a musical serious
game wherein the player has to learn to switch the focus of
attention from one source to another and to share attention
across multiple sources.

AAD-pBCI in Art
In the field of art, several attempts have been made to bridge
EEG and BCI since the 1970s (Vidal, 1973; Rosenboom, 1977;
Williams and Miranda, 2018). More recently, works have been
done to develop systems to control an instrument (Arslan et al.,
2006) or to generate melodies with brain signals (Wu et al., 2010;
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FIGURE 2 | Schematic representation of a real-time sound modulation AAD-pBCI system. Based on the real-time EEG data recording, the attended auditory source

is continuously tracked by the AAD device. The pBCI device analyses in real-time the user’s intentions (e.g., moving the attended source from the upper left

loudspeaker to the bottom left one), translates it into commands and sends it to an external device that will modify the loudspeaker’s parameters accordingly.
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Miranda et al., 2011) to name a few. In this sense, there is a place
for AAD-pBCI systems to create new kinds of art performances
in which brain activity induced by auditory attention could be
used to modulate different sound sources (see Figure 2). This
could be of particular interest in an immersive listening structure
composed of multiple loudspeakers (Pascal, 2020). Such a device
would allow the user to select a specific sound source and modify
its loudness, spatial location, or motion. In such a setup, the AAD
module monitors in real-time the attended source and provides
information about the source of interest to the pBCImodule. This
second module is responsible for analyzing the intentions of the
user, translating them into command, and controlling an external
device. To do so, the pBCI module classifies among several
classes of neural activity induced by different cognitive processes
(e.g., imaging a movement of the attended source). Once the
user’s intention has been detected, the pBCI module translates
it into commands that correspond to a particular parameter’s
modification (e.g., moving the attended source from the upper
central loudspeaker to the bottom central one) and sends them to
an external device.

Application in Neuro-Steered Hearing Aids
The first reason why AAD has been investigated is to enhance
hearing aids and more specifically, CI. Cochlear implant are
electronic devices that allow deaf people to partly regain
audition by converting audio signals to electrical signals directly
stimulating the auditory nerve. While they perform well when
the user is facing a unique speaker (or in quiet environment),
in presence of multiple speakers performance drops dramatically
because all speakers are amplified indistinctly (e.g., Zeng et al.,
2008).

The solution to bypass this limitation is to inform hearing aids
of the user’s attentional focus. In fact, if the hearing aid was able to
“know” which audio source the user is attending to, then it should
be able to selectively enhance it. Therefore, combining AAD
algorithms and hearing aids technologies, should lead to next-
generation hearing aids allowing good performances in complex
(or noisy) auditory environments (see for example: Das et al.,
2016, 2020; Van Eyndhoven et al., 2017; Cantisani et al., 2020;
Geirnaert et al., 2020).

Other Plausible Applications for AAD-Passive BCI

Systems
One can think about other futuristic applications for AAD,
in several distinct domains. For instance, in the entertainment

field. It is, for example, possible to develop “auditory games” in
which players, equipped with light AAD-pBCI systems, confront
each other in musical battles using their auditory attention. In
addition to being fun, this kind of game could be interesting
to develop cognitive abilities that underlie auditory sustained
attention (WM, executive control, etc.) even if it is not its main
purpose. Furthermore, such a game could be adapted to a solo or
a multiplayer environment.

AAD-pBCI systems could also find applications in the field
of domotics. Indeed, a wearable AAD-pBCI system could be
useful, in situations where ambient noise is varying constantly
(e.g., in a living room), to monitor and adapt in real-time the
loudness of the attended sound source (TV, hifi system, home
phone, etc.).

CONCLUSION

Overall, AAD, by providing real-time cues of the auditory
attentional state of an individual, opens new avenues to
several applications. After a first stage of fundamental research
to understand the links between auditory attention and
neural signals, we are now in a second stage of applied
research optimizing algorithms in terms of both classification
performance and speed. In the next few years, when real-time
decoding limitations will be overcome and wearable wireless
systems will be developed, AAD could find applications in many
domains such as education, art, health, or even domotics and
online games.
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At vital moments in professional soccer matches, penalties were often missed.

Psychological factors, such as anxiety and pressure, are among the critical causes of

the mistakes, commonly known as choking under pressure. Nevertheless, the factors

have not been fully explored. In this study, we used functional near-infrared spectroscopy

(fNIRS) to investigate the influence of the brain on this process. An in-situ study was

set-up (N= 22), in which each participant took 15 penalties under three different pressure

conditions: without a goalkeeper, with an amiable goalkeeper, and with a competitive

goalkeeper. Both experienced and inexperienced soccer players were recruited, and

the brain activation was compared across groups. Besides, fNIRS activation was

compared between sessions that participants felt anxious against sessions without

anxiety report, and between penalty-scoring and -missing sessions. The results show

that the task-relevant brain region, the motor cortex, was more activated when players

were not experiencing performance anxiety. The activation of task-irrelevant areas was

shown to be related to players experiencing anxiety and missing penalties, especially the

prefrontal cortex (PFC). More particularly, an overall higher activation of the PFC and an

increase of PFC lateral asymmetry were related to anxious players and missed penalties,

which can be caused by players’ worries about the consequences of scoring or missing

the penalty kicks. When experienced players were feeling anxious, their left temporal

cortex activation increased, which could be an indication that experienced overthink the

situation and neglect their automated skills. Besides, the left temporal cortex activation

is higher when inexperienced players succeeded to score a penalty. Overall, the results

of this study are in line with the neural efficiency theory and demonstrate the feasibility

and ecological validity to detect neurological clues relevant to anxiety and performance

from fNIRS recordings in the field.

Keywords: fNIRS, football, soccer, sports, penalty kick, choking, mental pressure, neural efficiency

1. INTRODUCTION

Penalty kicks are highly important in soccer. Penalties are common and have a big influence on
the outcome of a match. By taking the large amounts of money and number of fans into account,
the importance of penalty kicks increases even more. In other words, missing a penalty in a crucial
match can cause thousands of fans to be disappointed and the corresponding club to miss out on
millions of euros. Many technical skills have an influence on the quality of the penalty kick (see
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Memmert et al., 2013 for review). Apart from technical skill,
psychological factors seem to have a clear influence on the
outcome of a penalty kick as well. It was found that only
psychological factors had a large negative influence on the
outcome of the penalty, where skill and fatigue did not (Jordet
et al., 2007).

Many studies on the causes of missed penalties have
convincingly shown that the kicker’s anxiety and the mental
pressure under which the kicker are the most common
psychological factors. While resistance to mental pressure
depends on player personality (Lin et al., 2017), the pressure often
leads to distress, which is a negative factor adversely influencing
the quality of the penalty kick and thereby hindering scoring,
rather than eustress that is positive and gives a feeling of arousal
and thereby enhancing chance of scoring (Le Fevre et al., 2003).
The degraded performance under pressure and anxiety is often
referred to as choking, which is prevailing in the critical moments
of the soccer big matches (Chiappori et al., 2002; Arrondel
et al., 2019). Anxiety, as a result of choking under pressure, was
found to be related to bad direction of penalty taking (Wilson
et al., 2009), and this adverse effect is also present in other
sports domain, such as weightlifting (Genakos and Pagliero,
2011), golf (Hickman and Metz, 2015), chess (González-Díaz
and Palacios-Huerta, 2016), basketball (Fryer et al., 2018), and
tennis (Cohen-Zada et al., 2017).

Choking under pressure is generally explained by self-focusing
theory or distraction theory. The self-focus theory posits that
anxiety or pressure increases the level of self-consciousness,
resulting in more consciously monitoring or controlling skill
execution, and choking as a result (Baumeister, 1984; Hill et al.,
2010; Roberts et al., 2017). This means that excessive pressure
leads to the undermining of automatism and therefore there is
overwhelmed attention toward the execution of the skill. On the
other hand, the distraction-theory posits that anxiety or pressure
occupies the working memory, causing a shift from task-relevant
cues to task-irrelevant cues (Sarason, 1988; Hill et al., 2010;
Gröpel and Mesagno, 2017; Roberts et al., 2017). Unlike the self-
focus theory, little attention is paid toward the execution of the
skill, where the distractions can be either internal (e.g.„ worries)
or external (e.g., distracting fans), which can be explained by the
circles of attention (Eberspächer et al., 1990). The two theory
are relevant to the neural efficiency theory, positing that expert
athletes show more efficient brain activity than non-athletes,
meaning that task-relevant activities are increased and task-
irrelevant activities are decreased. A task-irrelevant activity, such
as planning and worries about thinking about consequences of
missing penalties, can be a distracting factor suppressing task-
relevant activities, such as motor controlling. These two theories
of choking can be connected via the fear circuit model (Hatfield
and Kerick, 2007), which involves the prefrontal cortex (PFC),
basal ganglia, thalamus, premotor cortex, motor cortex, limbic
system, anterior cingulate cortex, left temporal cortex, and the
corticospinal tract.

Many human neuroimaging studies have provided neural
evidence of choking in the brain above and beyond behavioral
analysis. First, increased PFC activation will act as a distraction
in the brain leading to choking. The study of Korb (2010)

suggested that an increase in PFC activation is associated with
being distracted from a physical task and with being stressed,
although the opposite trend was observed in the study of Al-
shargie et al. (2016) in a different task. Second, a decrease in
PFC lateral asymmetry will lead to choking (Hatfield and Kerick,
2007), where the improved performance was found associated
with higher left compared to right PFC activation (Silveira
et al., 2019). Third, the neural efficiency theory suggests that
optimal performance can be achieved by activating task-relevant
brain areas. This means an increase in motor cortex activity
is associated with being less likely to choke when performing
a sport-related exercise, and supportive evidence was reported
in a study of Wolf et al. (2014) in expert table tennis players.
Forth, intensive connectivity between dorsolateral PFC (DLPFC)
and the motor cortex was found necessary for maintaining the
level of performance in motor-related tasks, thus preventing
choking (Yoon et al., 2006; Clapp et al., 2009; Lee and Grafton,
2015). Last, a heightened left temporal cortex activation was
found associated with choking in experts (Wolf et al., 2015)
due to self-instruction, suppressed automated skill, disturbing
thoughts, similar to the phenomenon found in novice players.
This is supported by the reported lower activation in this
brain region of experts in shooting sports (Haufler et al., 2000,
2002; Allen et al., 2004; Kerick et al., 2004) due to lower
cognitive demands.

Despite the neurological evidence of choking under pressure,
the study of this phenomenon in the field is limited. In particular,
there can be a huge difference between controlled-laboratory-
setting choking, in which simple sensorimotor tasks [such as
feet tapping, treadmill walking, and smartphone-based touch
game (Udina et al., 2020)] are performed, and the real-life
naturalistic-setting choking, where a wide range of external
factors involve. A possible reason for the lack of choking
study in the field is the susceptibility to movement artifacts
of neuroimaging techniques. Recently, functional near-infrared
spectroscopy (fNIRS) has been often used in in situ studies of
brain activity due to its compelling robustness to movement
artifacts, which has been proven in the study of Carius et al.
(2020). In that study, brain activity was reliably measured
during bouldering—a special form of climbing without a rope
where complex whole-body movements are involved, and it was
demonstrated that fNIRS is capable of measuring sensorimotor
activity during the execution of heavy and irregular movements.
As bouldering involves more strenuous movements than kicking
a ball, it should be possible to measure brain activity in the soccer
domain as well, which has not been fully explored yet. To our
best knowledge, there has been only one fNIRS study in penalty
kick of soccer, which compared the brain activity of experienced
and inexperienced goalkeepers who were instructed to watch
pre-recorded videos of penalty kicks from the perspective of
goalkeepers (Kuriyama et al., 2015). However, an actual physical
movement was not involved and choking was not focused. On
the other hand, effects of pressure on poorer performance have
been demonstrated in a previous work (Ito et al., 2011), but its
working-memory task did not include physical activity. To date,
the feasibility to capture choking effect in the field using fNIRS is
still unclear.
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In this study, we aimed to explore brain activity during the real
situation of penalty kicking using fNIRS. Crucially, we sought
to examine the left temporal cortex, motor cortex, PFC, and
functional connectivity betweenDLPFC andmotor cortex during
choking to characterize brain activity that involves anxiety and
impacts performance. The findings of this study can have an
implication on a wider range of tasks beyond the soccer/sports
domain, such as in surgery, wheremotor performance under high
mental pressure involves. This study provides insights on why
people fail to perform under pressure and possibly paves a way
toward tailored intervention to prevent choking by utilizing a
closed-loop brain-computer interface.

The present study also aimed to investigate the correlation
between the level of expertise and the capability to deal with
pressure. It was evidenced that the brain activity of sports
professionals differ by level of expertise (Kuriyama et al., 2015;
Wolf et al., 2015), where experts show more efficient brain
activity or activate the correct areas of the brain for a certain
activity when performing a skill. Under mental pressure, we
predicted that experience in sports might also influence the way
to cope with anxiety, leading to different patterns in brain activity
between experts and novices during choking.

In general, previous works leave open the critical question
of to what extent brain activity associated with choking under
pressure in a penalty kick situation can be reflected by in-
the-field fNIRS measurement. While theories of choking under
pressure are under development, we focused more on the anxiety
and pressure (Yu, 2015), which are the associated psychological
factors that can be explicitly measured and strongly induced
using established methods in sports psychology. Specifically, we
formulated our research questions as follows:

RQ1: Performance—What is the difference in brain activity
between performing success (scoring) and failure (missing)
when taking a penalty kick?
RQ2: Performing under pressure—What brain activity is
associated with performing under pressure during a penalty
kick situation?
RQ3: Experienced and Inexperienced players—What is the
general difference in brain activity between experienced and
inexperienced soccer players when taking a penalty kick?
RQ4: Anxiety and Experienced players—What brain activity
is associated with experienced soccer players that experience
(performance) anxiety when taking a penalty kick?
RQ5: Anxiety and Inexperienced players—What brain
activity is associated with inexperienced soccer players that
experience (performance) anxiety when taking a penalty kick?

2. MATERIALS AND METHODS

2.1. Participants
In total, 22 participants (10 females; age average: 22.9 years,
standard deviation: 2.00 years) were recruited to participate in
the experiment. Among these, ten participants were experienced
soccer players who were in the first team of vv Drienerlo—the
soccer association of the University of Twente—and trained and
played matches regularly. On the other hand, 12 inexperienced

participants who were also recruited never played or had limited
experience in soccer. The short form of Edinburgh Handedness
Inventory (Veale, 2013) was used to confirm that all participants
were right-footed and right-handed, with an average Laterality
Quotient of 77.27. The Sport Competition Anxiety Test (SCAT),
consisting of 15 items in the range of 10–30, was used to indicate
the level of performance anxiety of the participants (Martens,
1977; Martens et al., 1990; Wood, 2017a) before the experiment;
the results indicate that eight, 11, and three of participants were
classified into the group with low (score <17), medium (score 17–
24), and high (score >24) performance anxiety, respectively, with
the grand average score of 18.3. All participants provided written
informed consent to participate in the study.

2.2. Tasks and Procedure
The experiment has been approved by the ethics committee of the
EEMCS faculty of the University of Twente (reference number:
RP 2020-118). During the experiment, the participants were
instructed to perform a penalty kicking task for three rounds,
each of which consisted of five penalties (trials). While pressure
induction level differs by round, the same rules applied for each
penalty (trial); before the penalty can be taken, the player had to
wait for the referee to blow the whistle. The goalkeeper had to stay
on the goal line until the ball was struck. However, the goalkeeper
was allowed to move horizontally on the goal line. The player was
not allowed to pause (fully stand still) during the run-up but was
allowed to slow down in order to trick the goalkeeper.

The experiment consisted of three rounds and the aim was to
increase the pressure per round. In the first round, the lowest
amount of pressure should be induced and in the last round,
the highest pressure should be induced. The specifics of each
round were set-up in cooperation with a sports psychologist of
the NOC*NSF (the Dutch overarching sports organization), who
interacts directly with sports professionals. Based on the advice
and expertise of the sports psychologist, three rounds were set-up
as follows:

1. No goalkeeper: during the first round, no goalkeeper was
present. The player was shooting at an empty goal and was
informed that as it was a practice round to familiarize the
player with the experimental protocol. Therefore, low pressure
was expected from this round.

2. Amiable goalkeeper: during the second round, a goalkeeper
was present but was not allowed to distract the player, who was
informed that it was a friendly competition between the player
and the goalkeeper and that this round aimed to see how well
the player could perform against a goalkeeper. Neither the
goalkeeper nor the researcher was allowed to respond to the
performance of the player. By introducing a non-interacting
goalkeeper, the aim was to introduce the competitive element,
without raising the pressure too much.

3. Competitive goalkeeper: during the last round, we aimed to
maximize the mental pressure of the player. A goalkeeper
was present and allowed to distract the player, who was
informed that it was a competition in which only the best
performing experienced and inexperienced players could win
two 50-euro giftcards, assessed by the number of goals
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scored and the quality of penalty taking. To imitate a real-
life professional penalty shoot-out, the player was instructed
to start from the halfway line (about 40–50 m from the
goal), walk with the ball toward the penalty spot, and place
the ball on the right spot. This would prolong the time
of being anxious, in which the researcher also tried to
involve in pressure induction by providing unrealistically
good statistics of previous participants or the confronting
goalkeeper. Besides, the goalkeeper also tried to intimidate the
player by awaiting the player at the penalty spot to which the
player was approaching from the halfway line, wasting time
(by drinking water or retying their shoelaces), talking to the
player when he/she tried to concentrate, repeatedly calling
the player by the first name, stretching arms, jumping, and
telling the player that he/she already knew the direction of the
upcoming shooting. The aim of these actions of the goalkeeper
and researcher was to shift the attention of the players from
their task (Eberspächer et al., 1990).

When the participants had finished the SCAT questionnaire,
the fNIRS headset was attached to the participants. Whilst the
researcher was verifying the quality of each channel, the structure
of the experiment was explained to the participants. An overview
of the experimental protocol is depicted in Figure 2. For every
round, a resting period of 30 s was recorded first. During
this period, the participants were instructed to refrain from
moving and speaking but to keep their eyes open and to look
in one certain direction, preferably where they could see as little
distracting external stimuli as possible.

An explanation of the round followed. It was chosen to
explain the details of each round after the resting period to
ensure that the participants were not thinking/worrying about
the upcoming round during the resting period. After the round
was explained, the participants were briefly interviewed by asking
how confident they were and how many goals they thought they
would score. The interview is expected to help assess how anxious
the players were. After placing the ball on the penalty spot
and preparing for the run-up, the participants were instructed
to wait for 5 s, until the researcher indicated that they could
kick the ball. The researcher was tracking the time by using the
built-in stopwatch of the OxySoft software (used for the fNIRS
measurement). Using this software, markers were placed during
the experiment to indicate the start and end of each 5-s waiting
period. These 5-s periods were used for the data analysis, as
the player was standing still, minimizing the chances of motion
artifacts. The participants were also instructed to minimize body
movement during this period. This 5-s waiting period was
included before every kick. When all five penalties were taken,
the participants were asked to fill out a small questionnaire.
This questionnaire included two questions in a five-point Likert
scale, regarding the satisfaction with the performance and the
level of motivation during that round. Furthermore, the Sport
Anxiety Scale (SAS) (Smith et al., 1990, 2006; Wood, 2017b),
consisting of 21 questions in a four-point Likert scale, was
included to determine the level of anxiety/pressure during the
round. The results of this questionnaire were used to determine
whether a player was anxious or not. The next round started

when the participants finished filling the questionnaire of the
previous round. The fNIRS headset was equipped until all three
rounds were completed. After the experiment was finished, the
participants were debriefed and a structural post-interview on the
experience concluded the experiment.

Whilst conducting the experiments, themajority of conditions
were kept constant. An artificial soccer pitch was used to
ensure the quality of the pitch was constant across experiments.
Furthermore, all participants were right-handed/footed and of
similar age. Every participant faced a goalkeeper of the same
gender and all goalkeepers were of similar skill level, as they all
played in the first team of vv Drienerlo. For all experiments,
the same ball was used, namely, a Derbystar size 5, which is
typically used in professional soccer matches. The air pressure of
the ball was between 0.7 and 0.9 bar, following the professional
soccer guidelines. As the experiment was conducted outdoor,
there were also a few conditions that were variable, such as
weather, temperatures which varied between 12 and 31◦C, and
wind force which varied from level 0 (calm) to 4 (moderate
breeze) on the Beaufort scale. During three experiments, there
was fog. The experiments were conducted before regular
training sessions of the football club and scheduled between
4 and 8 p.m. (Central European summer time), meaning that
some experiments were conducted after sunset. During these
experiments, the light poles of the soccer pitch were lit. The
lights were either off or on throughout the experiment, and we
ensured that there was no case that the lights were switched
on/off during the experiment. Therefore, ambient light was
assumed consistent.

2.3. Data Acquisition
For fNIRS measurements, the Artinis Brite 24 was used to record
oxygenated hemoglobin (O2Hb) and deoxygenated hemoglobin
(HHb) in each channel at a sampling rate of 10 Hz. O2Hb
is the form of hemoglobin with the oxygen bound, whereas
HHb does not have this bound to oxygen. The Brite 24 is
a portable and wireless device that allows flexibility in fNIRS
optode placement with a total of 10 transmitter optodes and 8
receiver optodes. Numerous templates are available to arrange
these optodes. OxySoft, which is proprietary software developed
by Artinis, was used to record and transform fNIRS signals,
which were then analyzed in Python. A maximum distance of
30 mm was used between each pair of optodes and a differential
pathlength factor of 6 was used for all participants. During
the experiment, fNIRS data were obtained from the left PFC,
right PFC, left temporal cortex, motor cortex, left DLPFC, and
right DLPFC, as these regions were found relevant to choking
under pressure in the literature (see section 1). In order to
measure all of these areas, The standard “4 × 4 + 2” template
of Artinis was used1 where the corresponding optode placement
can be found in Figure 1. Four channels were used to record
each region of the left PFC, right PFC, left temporal cortex,

1Artinis Medical Systems Product Catalog 2018: https://www.artinis.com/

downloads.
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FIGURE 1 | The layout of all fNIRS channels on the scalp. The yellow circles represent transmitter optodes and the blue circles represent receiver optodes. A channel

is lying between each transmitter-receiver pair. Channels 1–4 correspond to the motor cortex, channels 5–8 correspond to the right PFC, channels 9–12 correspond

to the left PFC, and channels 13–16 correspond to the left temporal cortex. Channels 17 and 18 correspond to the right and left DLPFC, respectively. Certain

electroencephalogram’s electrode positions, in accordance with 10–20 international system, are included for references.

FIGURE 2 | The experimental setting: (A) pictures of the experiment from the front (top), back (middle), and side (bottom) angle; (B) experimental protocol; (C)

placement of the equipment. The laptop close to the chair was used by the participants to fill in the questionnaires. The GoPro camera that was closest to the goal

was aiming at the player and the other camera was aiming at the goal.
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and motor cortex. Two channels were used to cover left and
right DLPFC.

One HERO7 GoPro2 camera was used to record the penalty
kicking, such that the placement and power of the shot could
be determined. The power of the shot was defined by the time it
took for the ball to reach the goal. This was manually timed using
a stopwatch and was expected to provide insights on kicking
performance. Another GoPro camera was used to record videos
of the player. We specially investigated the duration for which
players looked at the goalkeeper by comparing between rounds. A
longer fixation at the goalkeeper can indicate that the goalkeeper
is a distracting factor (Wilson et al., 2009; Wood and Wilson,
2010; Furley et al., 2017). For consistency reasons, only the
fixations during the 5-s waiting period were used. The videos of
both cameras were recorded at 60 frames/s and had an image
quality of 1080p.

In Figure 2, an overview of the set-up of the experiment is
shown. The participant filled in the questionnaires on a laptop
and the researcher was monitoring the fNIRS signals on a
separate laptop. A Sena UD100 Bluetooth adapter3 was used,
which allowed the measurements up to a distance of 300 m. This
means that the laptops could be placed at a safe distance from the
goal. Furthermore, two GoPro’s were used to record the player
and the goal.

2.4. Data Analysis
2.4.1. Signal Pre-processing
The acquired fNIRS signals were first preprocessed by applying a
fifth-order Butterworth bandpass filter between 0.02 and 0.5 Hz
to get rid of physiological noises and drift in optical data (Kamran
et al., 2018). The motion correction method Temporal Derivative
Distribution Repair (Fishburn et al., 2019) was used to reduce
the impact of motion artifacts on the signals. This novel artifact
correction method shows superior performance compared to
other correctionmethods, such as Targeted Principle Component
Analysis (tPCA) (Yücel et al., 2014), correlation-based signal
improvement (CBSI) (Cui et al., 2010), Movement Artifact
Reduction Algorithm (MARA) (Scholkmann et al., 2010), and
wavelet based methods (Molavi and Dumont, 2012; Chiarelli
et al., 2015) (see Jahani et al., 2018 for a review on traditional
artifact correction methods). Furthermore, TDDR method
requires no parameter tuning and only minimal assumptions
need to be made on the fNIRS data, while other methods
assume normal distribution on fNIRS data (Cui et al., 2010) or
require extensive parameter supplies from users (Scholkmann
et al., 2010; Yücel et al., 2014) or suffer from baseline shift of
signals (Molavi and Dumont, 2012; Chiarelli et al., 2015). The
TDDRmethod was applied for each channel separately, using the
following protocol. Given that xt represents a datapoint of the
fNIRS channel for a certain timepoint (t), the temporal derivative,
yt , of the channel was first computed by subtracting the data of
the previous timepoint from the current datapoint: yt = xt−xt−1.

2https://gopro.com/en/th/shop/hero7-black/tech-specs?pid=CHDHX-701-

master
3https://store.netgate.com/Parani-SENA-Bluetooth-Adapter-UD100-G03-

P1350.aspx

Then, A vector of observation weight (w) was initialized: wt = 1,
and the weighted mean of the fluctuations (µ) was estimated by:

µ =
1

∑

(w)

∑

(wtyt) (1)

Afterwards the absolute residuals (rt) of the estimated mean were
computed using: rt = |yt − µ|. An estimate of the standard
deviation (σ ) of these residuals was computed. This was done
by multiplying the median absolute residual by the appropriate
constant for the normal distribution: σ = 1.4826 ∗ median(r).
For each observation the scaled deviation (dt) was computed.
This was done by using the standard deviation of the residuals
and the tuning constant that achieves 95% efficiency on normally
distributed data:

dt =
rt

4.685σ
(2)

Tukey’s biweight function was used to computed new
observation weights:

wt =

{

(1− d2t )
2 if dt < 1

0 otherwise
(3)

The steps from Equations (1) to (3) were repeated until µ

converged. This was considered the case when the differences
between the currentµ and the previousµwas smaller than 10−50.
If this criterion was not satisfied after 1,000 loops (where one
loop is one repetition of Equations 1–3), the process was stopped.
On average 98.75 loops were needed in this process. After µ

was converged, the resulting robust weights were applied to the
centered temporal derivative (subtracting the mean), in order to
produce the corrected derivative (y’t): y

’
t = wt(yt−µ). At last, the

corrected temporal derivative was integrated in order to obtain
the corrected signal (x’t):

x’t =

N
∑

i=1

(y’t) (4)

After the motion artifacts are corrected, the channels were
baselined. At the beginning of every round, a 30-s resting period
was recorded to serve as a baseline. The average of the last 15
s of the resting period was used to subtract from all datapoints
of the signal. The baselining process was done for each channel
separately. Two channels, namely channels 4 and 11 (related to
the motor cortex and the left PFC, respectively), were removed
due to their ultra-low fNIRS activities possibly caused by bad
optode connections.

Despite applying motion artifact correction, it is still possible
that artifact effect still remained in the form of unreliable
fNIRS waveforms. In normal situations where artifact is absent,
the direction of concentration changes of the chromophores
oxygenated hemoglobin (O2Hb signal) is opposite to that of
deoxygenated hemoglobin (HHb signal), and therefore negative
correlation of O2Hb and HHb can be expected. Nevertheless,
motion artifacts in the signals can lead to concurrent change
of both signals in the same direction, leading to more positive
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correlation. To measure the extent to which the fNIRS signals
were affected by motion artifacts, we therefore calculated the
correlation coefficient between both signals per trial and channel.
It was suggested in the literature that large head movements can
already increase the correlation coefficient to 0.1 (Cui et al., 2010)
and jumping artifact can enhance the coefficient to 0.4 (Lee et al.,
2018). As the movement during the experiment is comparable to
jumping, we opted to use a higher threshold and the validity of
the threshold has been confirmed by our empirical study on the
threshold effect. Therefore, data for certain channels of certain
trials were removed if the correlation coefficient between the
O2Hb signal and the HHb signal was larger than a threshold of
ρ = 0.4. The noisy data removal was done at individual trial-
channel level, i.e., only noisy channel data was removed per trial
rather than discarding the whole trial data. Consequently, ∼41%
of the all trial-channel data remained.

2.4.2. Feature Extraction
Afterwards, we extracted features from the cleaned fNIRS signals
in valid trials and channels.

1. Motor cortex activation; three mean features were obtained
from three remained channels (channels 1, 2, and 3) related
to this cortex.

2. Left temporal cortex activation; four mean features were
obtained from three remained channels (channels 13, 14, 15,
and 16) related to this cortex.

3. Averaged PFC activation; as there was no channel lying
exactly in the middle between right and left hemispheres, we
calculated a feature to represent PFC activation by averaging
fNIRS signal from one representative channel in the left
hemisphere and one from the right hemisphere. After bad-
channel removal, there were three channels relevant to the left
PFC (channels 9, 10, and 12) and four channels relevant to the
right PFC (channels 5, 6, 7, and 8), generating 12 possible left-
right combinations. We derived all 12 mean features from all
channel-pairs as the features.

4. PFC asymmetry; similar to the averaged PFC feature, we
calculated hemispheric asymmetry from all 12 combinations
of left and right PFC channels by subtracting a left PFC
channel from a right PFC channel and then calculated the
mean of the result as a feature (Hatfield and Kerick, 2007;
Silveira et al., 2019). Therefore, a positive value corresponds
to a higher right PFC activation relative to left PFC activation,
on average.

5. Connectivity between DLPFC andmotor cortex; we calculated
the connectivity index by following the method of Nguyen
et al. (2018). First, Pearson correlation coefficients (ρ) between
two fNIRS channels were calculated per trial by:

ρx,y =
cov(X,Y)

σXσY
, (5)

where X and Y denote channel data, σX and σY refer to
the standard deviation of channel X and Y , respectively,
and cov(X,Y) refers to the covariance between the two
channels. In order to convert the sampling distribution of the
Pearson correlation coefficients into the normal distribution,

the obtained ρ values were transformed to z values using the
Fischer z-transformation:

z =
1

2
ln(

1+ ρ

1− ρ
). (6)

The connectivity index was computed for all combinations
of motor cortex channels (channels 1, 2, and 3) and DLPFC
channels (channels 17 and 18). The number of significant
connections was then determined by counting the number
of connections that had an absolute z-value greater than our
pre-defined threshold of 0.6, which is corresponding to a
correlation of ρ ≈ 0.54 andmotivated by the results of Nguyen
et al. (2018). Apart from the feature derived from counting
the number of significant connections, we also calculated the
mean of absolute z-values of all corresponding connections as
another feature.

Negative feature values correspond to the lower feature values
during the task 5-s waiting time before task execution compared
to feature values during the resting period, and positive values
mean vice versa. Outliers, which were defined as the values that
deviated from the corresponding means across all participants
for more than three standard deviations, were then removed in
each feature.

2.4.3. Statistical Analysis
In order to test the hypotheses with the obtained features,
permutation statistical tests were used, as they made no
assumption on the distribution of data. A total of 100,000
permutations were used, suggesting that the smallest possible
p-value is 10−5. The analysis was performed on the extracted
features under three different studies, each of which compared
two different conditions, that help answer our research questions.
The hypotheses were made by following previous findings in
the literature.

1. Experienced vs. Inexperienced players; it was hypothesized
that motor cortex activation (three channels) is higher (Wolf
et al., 2014) and left temporal cortex activation (four channels)
is lower (Hatfield et al., 1982; Haufler et al., 2000; Wolf
et al., 2015) in experienced players compared to inexperienced
players. In total, seven statistical tests were made for the
hypotheses in these two features.

2. Anxious vs. Non-Anxious players; it was hypothesized that
motor cortex activation (three channels) is lower (Lee and
Grafton, 2015), while the averaged PFC activation (12
channel-pairs) (Korb, 2010; Schweizer et al., 2013; Nosrati
et al., 2016), PFC asymmetry (12 channel-pairs) (Hatfield
and Kerick, 2007), and the connection between DLPFC and
motor cortex (two indices) (Yoon et al., 2006; Clapp et al.,
2009; Lee and Grafton, 2015) are higher in anxious players
compared to non-anxious players. As the left temporal cortex
was found related to the suppression of automated skills,
which are possessed only by an experienced player, different
hypotheses were made for experienced and inexperienced
players. It was hypothesized that experienced players have
higher left temporal cortex activation (four channels) when
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being anxious compared to non-anxious experienced players
as the automatic skill suppression does not function properly
when being anxious (Zhu et al., 2011; Wolf et al., 2015).
In contrast, the opposite hypotheses were made for the
inexperienced players. In total, 3 + 12 + 12 + 2 + 4 + 4 = 37
statistical tests were made in this study of anxiety.

3. Scored vs. Missed penalties; the number of statistical tests
was identical to the study of anxiety. In particular, it was
hypothesized that motor cortex activation (three channels)
is higher (Lee and Grafton, 2015), while the averaged PFC
activation (12 channel-pairs) (Korb, 2010; Schweizer et al.,
2013; Nosrati et al., 2016) and PFC asymmetry (12 channel-
pairs) (Meyer et al., 2015; Silveira et al., 2019) are lower,
and the connection between DLPFC and motor cortex (two
indices) are higher (Yoon et al., 2006; Clapp et al., 2009; Lee
and Grafton, 2015) when scoring the penalties, compared to
whenmissing penalties. Again, the analysis of the left temporal
cortex was done separately by experienced and inexperienced
players; experienced players were hypothesized to exhibit
lower left temporal cortex activation (four channels) when
scoring (Wolf et al., 2015), and the opposite hypotheses were
made for inexperienced players.

The total 7 + 37 + 37 = 81 statistical tests are also summarized
in Table 2 that enumerates all features and all studies in this
research. A multiple-testing correction was done using a false
discovery rate (FDR) test as correction procedure (Singh and
Dan, 2006), with significance threshold Q = 0.05 and the number
of statistical tests m = 81. It is noteworthy that the connectivity
analysis between DLPFC andmotor cortex was done only on data
from the last round of the penalty kick, which should involve the
highest level of pressure, as the connectivity indices were found
to be related to choking under pressure.

2.4.4. Classifying Brain Data
In order to assess how well fNIRS data can be used to distinguish
the different levels of experience, anxiety, and success in penalty
shooting, classification was done separately in each study. In each
classification, a single type of feature, except connectivity indices,
was used in order to allow an investigation on which feature is
the most powerful for distinguishing two classes. In addition to
the mean feature as used in the statistical analysis in the previous
section, we also calculated the standard deviation, the minimum
value, and the maximum value as additional features for each
trial. Support Vector Machines (SVMs) with linear kernels were
trained and tested on the feature data, where 80% of total data
were randomly selected as training data and the rest 20% were
used as test data. The classification was implemented using scikit-
learn4 package of Python and evaluated by the accuracy and area
under the receiver operating curve (ROC) between true-positive
rate and false-positive rate. As random shuffling involved with
training and testing, the classification was performed five times
and the grand average and standard deviation of the accuracy
were reported.

4https://scikit-learn.org/stable/

3. RESULTS

3.1. Behavioral Results
Table 1 shows the performance of the players as the percentage
of scored penalties in each round, duration for which the players
were looking at the goalkeeper, and ratings of satisfaction and
motivation to score at the end of each round. Wilcoxon’s Rank
Sum statistical tests with Bonferroni correction were performed
on the comparison between experienced and inexperience
players. In addition, Kruskal Wallis one-way analysis of variance
with Bonferroni correction was used to compare performances
and scores between round 1, 2, and 3. The performance
scores indicate that inexperienced players performed the worst
in the last round, whereas experienced players had a similar
performance in the second and the last round. Overall,
experienced players performed better than inexperienced players.
The exception is the first round, as experienced players scored
less in this round. Inexperienced players took considerably
more risks in the later rounds. Figure 3 shows the placement
(shot-accuracy) of each penalty, demonstrating that during
the last round more penalties were shot over or wide by
inexperienced players. On average, inexperienced players shot
their penalties higher and wider per round. Interestingly, this
is not the case for experienced players. Although they also
shot their penalties higher on average, the horizontal placement
did not change between the rounds. Furthermore, the shot
power for both experienced and inexperienced players increased
in the later rounds. A significantly poorer performance from
inexperienced players was notable when comparing between
the second and the last rounds (see Table 1). For experienced
players, this decrease in performance was not apparent. In
fact, they performed slightly better in the last round as
compared to the second round although the difference was
not significant.

Inexperienced players looked significantly longer at the
goalkeeper during the last round, but this is not the case
for experienced players that looked slightly shorter during the
last round. The goalkeeper was a larger distracting factor for
inexperienced players in the last round. The aim was to distract
the player in the last round and this tactic seems to have
been successful for inexperienced players. Again, this does not
seem the case for experienced players, as they fixated for a
shorter period at the goalkeeper during the last round. This
can be explained by the fact that experienced players are
more familiar with these distracting methods of a goalkeeper
and therefore know how to keep their concentration under
these circumstances.

After each round was explained, the players were briefly asked
how confident they were and how many goals they thought they
would score. We observed that players were less confident in
the last round, as the expectation on the number of goals to be
scored became lower in the later rounds, especially among the
inexperienced group.

Also, the results of the SAS questionnaire show that the
pressure was highest in the last round (see Table 1). Apart from
the total anxiety score that is reported in the table, we also
found that its compositing worry score and somatic anxiety score
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TABLE 1 | Behavioral results showing the percentage of the penalties that were scored for both experienced (Exp) and inexperienced (Inexp) players in each round, the

averaged duration (out of the 5-s waiting period) that the players were looking at the goalkeeper, the average and standard deviation of the reported SAS scores

enumerated by total (T), worry (T), disruption (D), and somatic (S) scores, satisfaction ratings and motivation ratings at the end of each round; * indicates significant

difference between Exp and Inexp at p < 0.01 (corrected by Bonferroni correction); a, b, and c indicate significant differences at p < 0.05 (corrected by Bonferroni

correction) between rounds 1–2, 1–3, and 2–3, respectively.

Round
Scored penalties (%) Keeper-looking duration(s) SAS

Satisfaction Motivation
Non-Exp Exp Non-Exp Exp T W D S

R1 98.3ab 88.0ab – – 29.86 ± 8.03 11.09 ± 3.94 6.91 ± 1.80 11.86 ± 4.37 3.45 3.59b

R2 25.0*a 60.0*a 1.71c 2.82 32.09 ± 8.33 12.86 ± 3.91 6.50 ± 1.50 12.73 ± 4.60 3.45 4.27

R3 18.3*b 62.0*b 3.41c 2.41 34.32 ± 9.30 13.91 ± 5.06 6.91 ± 1.72 13.50 ± 4.75 2.82 4.59b

FIGURE 3 | Overview of the placement of penalty-kick execution for experienced and inexperienced players in each round. Red dots represent missed penalties and

green dots represent scored penalties.

were lowest in the first round and highest in the last round.
The concentration disruption score did not change between the
rounds. For 12 out of the 22 participants, the total anxiety score
increased per round. During the first round, six participants were
considered to be at least somewhat anxious. This is determined by
satisfying one of four following conditions; total score was above
or equal to 42; worry score was above or equal to 14; disruption
score was above or equal to 10; somatic score was above or equal
to 18. During the second round, this number increased to nine
participants, and during the last round, this number increased
to twelve participants. In total, during 27 rounds (equivalent
to 135 trials) out of the entire 66 rounds (namely 330 trials),
the players reported to be at least somewhat anxious, which
corresponds to 40.9% of the trials. Anxious players also missed
more penalties (around 58%) than non-anxious players (around
31%). Furthermore, Table 1 shows that the motivation rating was
higher in the second round and significantly greater in the last
round. Meanwhile, the satisfaction rating was lowest in the last
round. As anxious players performed worse (more misses), it
can be assumed that the results of the SAS questionnaire are
trustworthy. Anxious players were more likely to miss (Wilson
et al., 2009).

Figure 4 shows correlation coefficients between each
behavioral resultant score considering all players, only
experienced players, and only inexperienced players.
Correlations were computed by Spearman’s rank correlation
method where significant results at p <0.05 (corrected by
Bonferroni correction) are surrounded by red borders. Apart
from trivial correlation within SAS scores, it can be observed
that percentage of goal scoring is negatively correlated with SAS
total and SAS worry scores when taking scores from all players
into account. This indicates that anxiety can adversely affect
performance in general. Considering experienced players, the
scoring percentage is correlated with satisfaction but negatively
correlated with SAS worry scores. It suggests that successful
performance can strongly lead to satisfaction with the penalty
kick in this group, while anxiety can hinder the performance.
In contrast, SAS worry scores in inexperienced players are
correlated with motivation. It can be inferred that willingness to
score can enhance worrisome in novice players or vice versa.

However, fNIRS data of one participant were discarded from
the subsequent analysis due to technical failure in the recording.
Statistical analysis and classification were done on the data from
the remaining 21 participants.
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FIGURE 4 | Correlation coefficients between each behavioral resultant scores in all players, experienced players, and inexperienced players. Significant correlations at

p < 0.05 (corrected by Bonferroni correction) are with red borders.

FIGURE 5 | Averaged features across all trials from all participants where the difference between two conditions in a specific study, regarding experience, anxiety, and

success/failure, are significant at p < 0.05 (uncorrected). Features are shown in the variation over a 5-s waiting period. Note that the studies of anxiety and

success/failure in the left temporal cortex were done separately by groups of experience [experienced (Exp) and inexperienced (Inexp) players]. Results that remain

statistically significant at p < 0.05 after FDR correction are with a gray background.

3.2. Statistical Analysis
As O2Hb concentration is directly related to the activation of a
brain area, we only focus on O2Hb concentration contrast with
the 15-s baseline period preceding each round and discard HHb
data from our analysis. Figure 5 shows all testings where the
feature values for the two conditions differ at the significance
level p <0.05 in a particular study. Tests that remained
providing significant results with p <0.05 after FDR correction
were labeled with a gray background. A blank cell means no
significant results were found in the test. The mean and standard
deviation of the mean values for each test were summarized in
Table 2.

The trials of all rounds were included for the comparison
between experienced and inexperienced players but significant
results were not found. Regarding anxiety, the results in Figure 5

show that in the motor cortex, the difference between anxious
and non-anxious players was the largest for channel 1, where the
cortex was clearly less activated for anxious players. The averaged
PFC activation was greatly higher in channel-pairs 5–9, 7–9,
and 8–9 in anxious players. Whilst being anxious, a right PFC
activation was found higher compared to left PFC activation as
evidenced by more PFC asymmetry in channel-pairs 6–12 and 8–
12. For the left temporal cortex, experienced and inexperienced
players were analyzed separately, as the hypotheses suggest that
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there could be a difference between the two. Anxious experienced
players showed a clear higher activation in channel 15 compared
to those who were not anxious, while no significant results
were found from inexperienced players. Similarly, DLPFC-motor
cortex connectivity analysis on the last-round data did not
indicate any significant difference between anxious and non-
anxious players.

The contrast between a successful performance (scoring)
and a failed performance (missing) can be reflected mostly
by the PFC asymmetry, especially in channel-pairs 5–10 and
7–10 (see Figure 5). Again, for the left temporal cortex, the
analyses for experienced and inexperienced players were analyzed
separately. The results suggest that inexperienced players showed
an increased left temporal cortex activation when scoring.
Similarly, DLPFC-motor cortex connectivity analysis in the last-
round penalty kick (with highest pressure) did not indicate any
significant difference between scoring and missing.

3.3. Classifier Results
Table 3 shows the classification results in each study using
different features. The best result was obtained by using the
motor cortex feature to distinguish between experienced and
inexperienced players, achieving 66.7% of accuracy and 0.6806
area under ROC. In general, anxiety and non-anxiety were
classified most correctly by motor cortex data. The informative
feature to classify scored penalties against missed penalties is the
averaged PFC activation feature based on accuracy and the left
temporal cortex feature based on area under ROC.

Considering the supposed chance-level of 50%, all
classification results were above the chance level but with a
small margin. This led us to the analysis of data distribution
and its impacts on the classification performance. Specifically,
principal component analysis (PCA) was applied to some
features in each classification, i.e., motor cortex data for
experienced vs. inexperienced players classification, averaged
PFC for anxious vs. non-anxious players classification, and
PFC asymmetry for scored vs. missed penalties classification.
Then, we visualized the distribution of data that were projected
into the first and second principal components (PCs) as
shown in Figure 6. Apparently, datapoints of both classes
were clustered together, instead of nicely spreading into
different locations in dimensional space. Therefore, it is difficult
for a linear classifier to achieve high performance in the
classification task.

4. DISCUSSION

In the present study, we demonstrated the feasibility to explore
brain activity in the field prior to executing a penalty kick,
which is a strenuous physical activity that has been challenging
neuroimaging research (Carius et al., 2020). Our results show
neurological evidence in fNIRS signals that are related to the
level of experience in soccer, anxiety before task execution, and
scoring success/failure.

4.1. Success in Pressure Induction
The poorer scoring performance in the second and last rounds,
over-bar, and wider shots for missed penalties over round, and
the increment of shot powers per round can be observed from
the results. These all indicate that the players took more risks in
the last round. This can be the indication that the pressure was
successfully induced. Especially, inexperienced players seem to
have experienced a higher level of pressure. Theremust have been
other factors involved in this phenomenon. In the last round,
the players were namely competing for a prize and in order to
win this prize, they had to not only score the most goals but also
to create the best-quality goals. We speculated that the incentive
could have influenced them to take more risks in the last round,
e.g., by trying to shoot the ball in the top corner.

Significantly poorer performance from inexperienced players
could be an indication of heightened mental pressure. It could
also be explained by the fact that the players had already taken
five penalties against the goalkeeper. Based on these five penalties,
the goalkeeper could potentially already know what the shooting
technique and favorite corner of the player would be. In contrast,
the comparable performance of experienced players between the
second and the last round can be observed. Some experienced
players verbally reported that they needed a certain eustress in
order to well perform, which could be an explanation of the slight
increase in performance.

At the end of the experiments, the players were also asked
how much pressure they experienced in each round and the
majority indicated that they experienced the most pressure
in the last round. Overall, it can be concluded that pressure
was successfully induced as reflected by most indicators. The
distribution between anxious and non-anxious players is also
nicely balanced (41–59%).

4.2. Results in Line With Neural Efficiency
Theory
Focusing on anxiety analysis, it is implied that our results are
mostly in line with the neural efficiency theory. When being
anxious, the motor cortex (task-relevant area) was activated
significantly less in one channel. The activation of task-irrelevant
areas of the brain was more common when being anxious. This
was most prominently observable in the PFC, as a significant
increase in averaged PFC activation in three channel-pairs was
related to being more anxious. These results are in line with
the previous works (Korb, 2010; Schweizer et al., 2013; Nosrati
et al., 2016) that reported the association between overactivation
of PFC and choking under pressure. According to Korb (2010),
this overactivation would cause a distraction, decreasing one’s
focus on the task. The results of the present study agree with
such theory, as an increase in PFC activation was paired with
a decrease in motor cortex activation when being anxious. The
long-term thinking element of the PFC could be the source of
this distraction, as players might think about the consequences
of missing or scoring the penalty (Korb, 2010). Besides this
increase in averaged PFC activation, the anxiety level of the
player was also notable in the difference between left and right
PFC activation. For two channel-pairs, the right PFC was more
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TABLE 2 | Statistics [mean and standard deviation (Std)] and results from the statistical test (p-values) comparing features from two conditions in a specific study

regarding experience, anxiety, and success/failure.

Studies Features
Channels Participants Null hypothesis

of tests

Condition (1) Condition (2)
p-Value

Chan1 Chan2 All Exp
In-

exp
Mean Std Mean Std

Experienced (1)

vs.

Inexperienced (2)

MC 1 • (1) >(2) 0.129 0.095 −0.617 0.114 0.071

MC 2 • (1) >(2) 0.067 0.101 0.166 0.054 0.621

MC 3 • (1) >(2) −0.442 0.045 0.577 0.083 0.997

LTC 13 • (1) <(2) −0.162 0.035 −0.102 0.006 0.429

LTC 14 • (1) <(2) 0.296 0.056 0.633 0.101 0.190

LTC 15 • (1) <(2) −0.268 0.026 0.029 0.028 0.053

LTC 16 • (1) <(2) 0.208 0.041 0.116 0.033 0.626

Anxious (1)

vs.

Non-Anxious (2)

MC 1 • (1) <(2) −0.911 0.093 0.173 0.078 0.015

MC 2 • (1) <(2) −0.126 0.116 0.283 0.038 0.103

MC 3 • (1) <(2) 0.171 0.094 −0.002 0.036 0.675

LTC 13 • (1) >(2) −0.037 0.023 −0.223 0.045 0.294

LTC 14 • (1) >(2) 0.086 0.126 0.341 0.042 0.642

LTC 15 • (1) >(2) 0.194 0.039 −0.348 0.024 0.046

LTC 16 • (1) >(2) 0.266 0.070 0.193 0.034 0.444

LTC 13 • (1) <(2) −0.173 0.024 0.007 0.043 0.372

LTC 14 • (1) <(2) 0.610 0.133 0.665 0.098 0.465

LTC 15 • (1) <(2) −0.044 0.027 0.211 0.051 0.211

LTC 16 • (1) <(2) −0.045 0.071 0.483 0.146 0.138

Asym 5 9 • (1) >(2) 0.009 0.030 0.597 0.041 0.958

Asym 5 10 • (1) >(2) 0.503 0.059 0.168 0.025 0.182

Asym 5 12 • (1) >(2) 0.393 0.020 0.024 0.050 0.143

Asym 6 9 • (1) >(2) 0.387 0.035 0.051 0.039 0.239

Asym 6 10 • (1) >(2) 0.265 0.072 0.058 0.029 0.344

Asym 6 12 • (1) >(2) 0.941 0.041 −0.387 0.037 0.010

Asym 7 9 • (1) >(2) −0.066 0.051 −0.231 0.028 0.374

Asym 7 10 • (1) >(2) 0.135 0.079 −0.281 0.023 0.121

Asym 7 12 • (1) >(2) 0.073 0.078 −0.186 0.021 0.246

Asym 8 9 • (1) >(2) −0.266 0.018 0.052 0.010 0.877

Asym 8 10 • (1) >(2) 0.108 0.057 0.103 0.044 0.503

Asym 8 12 • (1) >(2) 0.848 0.026 −0.307 0.008 0.016

Avg-PFC 5 9 • (1) >(2) −0.005 0.015 −0.299 0.020 0.041

Avg-PFC 5 10 • (1) >(2) −0.252 0.029 −0.084 0.012 0.817

Avg-PFC 5 12 • (1) >(2) −0.197 0.010 −0.012 0.025 0.857

Avg-PFC 6 9 • (1) >(2) −0.083 0.054 −0.033 0.015 0.576

Avg-PFC 6 10 • (1) >(2) −0.256 0.077 −0.234 0.042 0.519

Avg-PFC 6 12 • (1) >(2) −0.451 0.058 −0.164 0.058 0.797

Avg-PFC 7 9 • (1) >(2) −0.042 0.016 −0.468 0.021 0.048

Avg-PFC 7 10 • (1) >(2) −0.255 0.054 −0.232 0.023 0.531

Avg-PFC 7 12 • (1) >(2) −0.679 0.040 −0.294 0.018 0.927

Avg-PFC 8 9 • (1) >(2) 0.101 0.059 −0.410 0.034 0.011*

Avg-PFC 8 10 • (1) >(2) −0.162 0.038 −0.483 0.047 0.062

Avg-PFC 8 12 • (1) >(2) −0.357 0.015 −0.238 0.027 0.728

#Con – – • (1) >(2) 0.544 0.287 0.487 0.288 0.255

z-val – – • (1) >(2) 0.935 0.607 0.811 0.430 0.217

MC 1 • (1) >(2) −0.197 0.062 −0.462 0.116 0.308

MC 2 • (1) >(2) 0.254 0.093 −0.126 0.043 0.122

MC 3 • (1) >(2) 0.125 0.047 −0.005 0.101 0.374

LTC 13 • (1) <(2) 0.007 0.039 −0.510 0.034 0.937

(Continued)
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TABLE 2 | Continued

Studies Features
Channels Participants Null hypothesis

of tests

Condition (1) Condition (2)
p-Value

Chan1 Chan2 All Exp
In-

exp
Mean Std Mean Std

Scored (1)

vs.

Missed (2)

LTC 14 • (1) <(2) 0.599 0.068 −0.418 0.041 0.989

LTC 15 • (1) <(2) −0.379 0.025 −0.021 0.033 0.074

LTC 16 • (1) <(2) 0.425 0.063 −0.388 0.045 0.970

LTC 13 • (1) >(2) −0.605 0.037 0.315 0.036 0.957

LTC 14 • (1) >(2) 1.634 0.108 −0.035 0.196 0.001*

LTC 15 • (1) >(2) 0.068 0.077 0.007 0.011 0.416

LTC 16 • (1) >(2) 0.288 0.218 −0.004 0.157 0.260

Asym 5 9 • (1) <(2) 0.189 0.019 0.466 0.032 0.209

Asym 5 10 • (1) <(2) −0.023 0.026 0.582 0.035 0.039

Asym 5 12 • (1) <(2) 0.142 0.045 0.178 0.025 0.461

Asym 6 9 • (1) <(2) 0.007 0.030 0.506 0.047 0.152

Asym 6 10 • (1) <(2) −0.048 0.012 0.416 0.067 0.178

Asym 6 12 • (1) <(2) 0.255 0.035 0.042 0.075 0.631

Asym 7 9 • (1) <(2) −0.403 0.015 0.148 0.032 0.136

Asym 7 10 • (1) <(2) −0.616 0.020 0.488 0.041 0.0003*

Asym 7 12 • (1) <(2) −0.043 0.037 −0.203 0.046 0.661

Asym 8 9 • (1) <(2) −0.111 0.012 −0.047 0.015 0.407

Asym 8 10 • (1) <(2) 0.003 0.021 0.214 0.062 0.292

Asym 8 12 • (1) <(2) −0.148 0.048 0.532 0.053 0.112

Avg-PFC 5 9 • (1) <(2) −0.094 0.010 −0.233 0.016 0.790

Avg-PFC 5 10 • (1) <(2) 0.011 0.013 −0.291 0.018 0.962

Avg-PFC 5 12 • (1) <(2) −0.071 0.023 −0.089 0.013 0.541

Avg-PFC 6 9 • (1) <(2) 0.172 0.035 −0.449 0.108 0.991

Avg-PFC 6 10 • (1) <(2) −0.085 0.038 −0.479 0.022 0.856

Avg-PFC 6 12 • (1) <(2) −0.218 0.043 −0.475 0.089 0.748

Avg-PFC 7 9 • (1) <(2) −0.233 0.040 −0.333 0.030 0.649

Avg-PFC 7 10 • (1) <(2) −0.190 0.025 −0.305 0.021 0.669

Avg-PFC 7 12 • (1) <(2) −0.393 0.016 −0.481 0.027 0.631

Avg-PFC 8 9 • (1) <(2) −0.186 0.027 −0.205 0.015 0.534

Avg-PFC 8 10 • (1) <(2) −0.375 0.020 −0.346 0.031 0.443

Avg-PFC 8 12 • (1) <(2) −0.343 0.014 −0.200 0.040 0.232

#Con – – • (1) <(2) 0.668 0.330 0.505 0.298 0.052

z-val – – • (1) <(2) 1.061 0.635 0.831 0.472 0.098

Features were extracted from channels related to the motor cortex (MC) and the left temporal cortex (LTC), from channel-pairs demonstrating PFC asymmetry (Asym) and averaged PFC

(Avg-PFC), and from DLPFC-MC connectivity showing the averaged number of significant connections (♯Con) and averaged z-scored connectivity index (z-val). Note that the studies of

anxiety and success/failure in LTC were done separately by groups of experience (experienced (Exp) and inexperienced (Inexp) players). Results that are statistically significant at p <

0.05 (uncorrected) are in bold, and those that are significant after FDR correction are marked with asterisks.

activated compared to the left PFC for anxious players; this is in
line with the previous findings (Hatfield and Kerick, 2007; Meyer
et al., 2015; Silveira et al., 2019) that imbalanced PFC activation
(caused by a stronger right PFC activation) leads to choking
under pressure. For experienced players, increased activation of
the left temporal cortex was linked with being anxious; this is in
line with previous evidence (Zhu et al., 2010; Wolf et al., 2015)
that the left temporal cortex’s relationship to self-instruction and
self-reflecting can cause a distraction for experienced players.
Experienced players should trust on their automated skills and
therefore do need to suppress self-instruction and self-reflection
processes, which are essential skills in the early stages of learning

a motor skill (Wolf et al., 2015). By activating the left temporal
cortex more, experienced players neglect their automated skills
and start to overthink the situation. This increase can be seen as a
distracting factor.

An increase in left temporal cortex activation was expected
to be related to neglecting automated skills and therefore to
poorer performance (i.e., missing penalties) among experienced
players. For inexperienced players, the opposite trend was
expected and indeed observed in one channel in our results.
For PFC asymmetry, however, the results were greatly in line
with the literature (Hatfield and Kerick, 2007; Meyer et al., 2015;
Silveira et al., 2019). For channel-pairs 5–10 and 7–10, the right
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TABLE 3 | Mean accuracy, standard deviation (in brackets), and area under the

ROC (in italic style) of SVM-based classification from five runs using a different

type of features.

Features Exp/Inexp Anx/Non-Anx Scored/Missed

Motor cortex 66.7% (±5.1) 61.5% (±10.3) 50.8% (±4.2)

0.6806 0.6048 0.4618

Left temporal cortex 62.4% (±7.8) 58.8% (±9.1) 56.8% (±5.6)

0.6202 0.5302 0.5458

Averaged PFC 54.6% (±7.8) 60.5% (±9.0)

0.4980 0.4916

PFC asymmetry 59.2% (±3.6) 59.5% (±3.9)

0.5094 0.4988

The classification was performed per study; namely experienced (Exp) vs. inexperienced

(Inexp) players; anxious (Anx) vs. non-anxious (Non-Anx) players; and scored vs. missed

penalties.

PFC was more activated, as compared to the left PFC, when
missing a penalty.

It is noteworthy that when using an FDR-correction, with
Q = 0.05 and m = 81, 3 out of the 10 significant results remain
significant. The FDR correction is more often applied to channel-
wise fNIRS analyses, similar to this study (Singh and Dan, 2006).
These FDR-corrected results imply that most of the significant
results could be a coincidence. The only significant results that
remain after the correction are: the left PFC is more activated
than the right PFC when scoring a penalty, anxious players show
a higher averaged PFC activation, and inexperienced players
show an increased left temporal cortex activation when scoring
a penalty. Although most results are not significant after FDR-
correction, these results are still in line with previous findings in
the literature. Therefore, although no direct conclusions can be
drawn for the results of this study alone, the results can still be
seen as a support of the theory in the literature.

4.3. Limitations of the Study
The greatest challenge of this study is similar to other in
situ studies—motion artifacts, despite the fact that the fNIRS
technology is less susceptible to motions artifacts and electrical
noise. Although the participants were instructed to minimize
their movement during the 5-s waiting period before whistle
signal to start executing the kick, the intensive eagerness to
perform the task led to undesirable tiny movements in certain
participants, resulting in the loss of 60% of total data. A solution
would be to prolong the waiting period to 10 s, which might
help decrease the probability of motion artifacts in the signal.
Also, prolonging the waiting period would enable an alternative
baselining method to utilize the early period of the trial as a
baseline and allow the comparison with baselining by 30-s resting
period in the current study.

Within the current study, scoring a penalty was seen as a
successful performance, and missing a penalty is considered
as a failed performance. However, this may not be the best
measurement to use for this comparison. Scoring a penalty does
not necessarily indicate that the penalty was taken well. For
example, the goalkeeper can make a mistake, meaning that a

badly taken penalty can still be a goal. In contrast, missing a
penalty does not necessarily mean that a penalty was taken badly,
as a goalkeeper can still save a penalty by correctly guessing the
direction. It would therefore be recommended to, instead, look
at the quality of the penalty. This can be done by, for example,
looking at the shot-placement and shot-power.

Although mental pressure was successfully induced during
this experiment, the levels of pressure were not the same as
in professional soccer matches. The level of pressure during an
important (professional) soccer match was not met and therefore
it is uncertain if the pressure was sufficiently high to induce
choking. A way to increase the level of pressure during an
experiment is to recruit more spectators to witness penalty kicks.

4.4. Recommendations for Future Work
Future research should consider adding more trials per condition
and prolonging the duration of each trial. This would allow
performing reliable statistical analyses and calculating heart rate
variability, which can be captured from the embedded cardiac
cycles in the fNIRS signals and was found to be a useful measure
to detect stress and choking (Taelman et al., 2009). However, this
has to be compromised with potential fatigue, whichwas reported
by the participants as minimal because the task execution in
this experiment lasted for about 25 min on average (std = 2.32
min). Besides, longer trials would enable the application of the
sliding window technique, which was found to improve accuracy
in detecting a mental state (mind-wandering) (Liu et al., 2020).
Repeating the experiment with similar protocol to this study can
also allow the comparison of classification methods.

The statistical analyses of the fNIRS data and the classification
performances are merely based on the mean of O2Hb features.
However, it is known from previous fNIRS studies investigating
mental states that alternative features, such as amplitude,
slope, standard deviation, kurtosis, skewness, and signal peaks
can provide insights and be used as discriminative features
for classifying mental states. It is anticipated that alternative
features, such as the maximum signal value, the time to
peak, and the signal slope have the potential to improve the
classification results.

Other factors that can influence mental states and affect the
results are also worth investigation in future works, such as
the interaction between penalty takers and goalkeepers, weather
condition, comfortability of the fNIRS headset, amateur vs.
professional players, the noise-sensitivity of the methods (Veale,
2013; Molavi et al., 2014), and the inter-subject variability in
pressure induction.

It is noteworthy that the goal of this study is not to
find the best classification model but to examine to what
extent a simple linear classifier with minimal parameter tuning
can classify different levels of experience, anxiety, success in
penalty shooting. In our case, SVMs with linear kernels were
employed and achieved 66.7% of accuracy and 0.6806 area
under ROC at maximum of classification task. Future works can
further improve the performance of classification by applying
sophisticated algorithms, therefore the results in this study can
only serve as a baseline. As we encourage other researchers to test
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FIGURE 6 | Data distribution projected to first and second principal components for classifying: (A) experienced vs. inexperienced players using motor cortex data;

(B) anxious vs. non-anxious players using averaged PFC data; (C) scored vs. missed penalties using the PFC asymmetry data.

other classification paradigms, we made the physiological data
publicly available.

We believe that neurofeedback regarding neural efficiency can
have implications not limited to the soccer domain but also in
other professions and tasks where physical performance under
pressure is essential.

5. CONCLUSION

In the present study, a penalty-kick experiment in the field was
set-up, where pressure was successfully induced. Our results
provide supportive evidence for the neural efficiency theory
where the correct regions of the brain should be activated to
successfully perform motor tasks under mental pressure. We
demonstrated that brain activity associated with choking under
pressure in a penalty kick situation can be reflected by in-the-field
fNIRS measurement.

The results help answer our defined research questions.
Regarding RQ1 that focused on performance, we related our
findings with neural efficiency theory, demonstrating that the
task-irrelevant PFC was related to missing penalties. This
PFC activation showed itself in a higher right PFC activation
compared to left PFC activation. The activation of the PFC
can infer a distraction. This distraction is potentially caused
by the long-term thinking ability of the PFC, as players might
concern about the consequences of scoring or missing the
penalty. However, we expected that connectivity between the
motor cortex and the DLPFC during the last round of task
execution (when mental pressure was highest) should provide
insights on performing under high pressure, but no significant
results were found. We therefore cannot answer this question.
Similarly, we did not find significant difference in brain activity
between experienced and inexperienced soccer players when
taking a penalty kick to answer our RQ3.

We found that experienced players showed a higher left
temporal cortex activation when being anxious, answering our
RQ4 that focuses on anxious experienced players. As the left
temporal cortex is related to self-instruction and self-reflection,
this increased left temporal cortex activation indicates that
experienced players overthink the situation and neglect their
automated skills.

Focusing on our RQ5 related to anxious inexperienced
players, no significant results were found. However, when
discarding level of expertise, we found that the averaged
PFC activation was also related to players with anxiety.
Similarly, an increased right PFC activation, as compared to
left PFC activation, was shown to be related to anxious players,
irrespective of the level of expertise. Also, the motor cortex tends
to have lower activation when being anxious regardless of the
experience group.
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Brain–computer interfaces (BCIs) establish communication between a human brain and a
computer or external devices by translating the electroencephalography (EEG) signal into
computer commands. After stimulating a sensory organ, a positive deflection of the EEG
signal between 250 and 700ms can be measured. This signal component of the event-
related potential (ERP) is called “P300.”Numerous studies have provided evidence that the
P300 amplitude and latency are linked to sensory perception, engagement, and cognition.
Combining the advances in technology, classification methods, and signal processing, we
developed a novel image ranking system called the Unicorn Blondy Check. In this study,
the application was tested on 21 subjects using three different visual oddball paradigms.
Two consisted of female faces and gray-scale images, while the third test paradigm
consisted of familiar and unfamiliar faces. The images were displayed for a duration of
150 ms in a randomized order. The system was trained using 50 trials and tested with 30
trials. The EEG data were acquired using the Unicorn Hybrid Black eight-channel BCI
system. These synchronized recordings were analyzed, and the achieved classification
accuracies were calculated. The EEG signal was averaged over all participants and for
every paradigm separately. Analysis of the EEG data revealed a significant shift in the P300
latency dependent on the paradigm and decreased amplitude for a lower target to non-
target ratio. The image ranking application achieved a mean accuracy of 100 and 95.5%
for ranking female faces above gray-scale images with ratios of 1:11 and 5:11,
respectively. In the case of four familiar faces to 24 unfamiliar faces, 86.4% was
reached. The obtained results illustrate this novel system’s functionality due to
accuracies above chance levels for all subjects.

Keywords: BCI, EEG, P300, neuromarketing, image-ranking, VEP, cognition, familiarity

1 INTRODUCTION

Brain–computer interfaces (BCIs) establish communication between a human brain and a computer
or external devices. The BCI translates information of electrophysiological signals measured from the
scalp via electroencephalography (EEG) or directly from the cortex using electrocorticography into
computer commands (Wolpaw et al., 2002). EEG-based BCIs provide an inexpensive,
straightforward, and noninvasive method for studying neural activities. Therefore, they are
widely used in research environments and commercial applications. Principles on which BCIs
rely are motor-imagery, slow waves, steady-state visual evoked potentials (VEPs), and evoked
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potentials (Schomer and Silva, 2010; Nicolas-Alonso and Gomez-
Gil, 2012). Pfurtscheller (2001) was one of the first to show a
correlation between the EEG signal and imagining body
movement called event-related synchronization and
desynchronization.

In recent years, there has been growing interest in studying
cognitive neuroscience with the help of EEG-based BCIs. A
robust methodology to study cognitive processing is event-
related potentials (ERPs) (Woodman, 2010). When exposed to
specific events or stimuli, brain structures generate these ERPs.
The type of evoked potential depends on the presented stimulus.
Whether auditory, olfactory, or visual evoked potentials, they all
result in the corresponding ERP (Sato et al., 1996). VEPs, a
subcategory of ERPs, find widespread use in BCIs, where they
enable information exchange without physical inputs (Nicolas-
Alonso and Gomez-Gil, 2012; Zhang et al., 2012). While visual
stimuli are mainly used, auditory and tactile stimuli have also
been useful in BCI applications (Gao et al., 2014; Lugo et al.,
2014).

Specific components within the ERP, called cognitive negative
variation and P300, were first discovered by Walter et al. (1964).
P300, in this context, represents the positive deflection of the
ERPs amplitude about 250–700 ms after a novel stimulus
compared to the previous stimuli is presented (Donchin and
Smith, 1970; Rugg and Coles, 1995). Numerous studies have
provided evidence that P300 is linked to sensory perception,
engagement, and cognition (Woodman, 2010; Chen et al., 2020).
These discoveries have made P300 an essential parameter in
neuroscience. Aiming to leverage the P300 component, the
standard paradigm used in P300-based BCIs is the “oddball”
paradigm (Luck, 2014). The paradigm relies on the fact that an
unexpected stimulus triggers a higher P300 amplitude than a
reference stimulus. On the other hand, results from several
studies have suggested that unexpected or rare stimuli always
produce a P300 (Groppe et al., 2011), (Chen et al., 2020). Also, it
has been observed that a lower probability of a target stimulus
results in a higher P300 amplitude (Polich et al., 1996), (Duncan-
Johnson and Donchin, 1977).

Farwell and Donchin (1988) proposed the first P300-based
BCI. A six-by-six matrix composed of letters representing
different commands was presented to the subjects. Then the
columns and rows of the matrix were flashed rapidly in a random
order, and the subjects were asked to focus on the desired letter
and count the number of flashes. Only flashes of rows and
columns containing the desired letter evoke P300 potentials.
Commonly used in BCI research for this kind of application is
the term P300-speller. Besides the row/column speller mentioned
above, single-character spellers have also been investigated. The
basic idea with single-character spellers is that a lower probability
of the target occurring triggers a higher P300 response. However,
no higher P300 amplitude or more reliable control of single-
character spellers compared to spellers could be confirmed in
prior studies (Guger et al., 2009).

Several feature extraction and classification procedures have
been investigated to enhance the performance of P300-based
BCIs (Krusienski et al., 2008). Methods such as linear
discriminant analysis (Guger et al., 2009), stepwise linear

discriminant analysis (Sellers and Donchin, 2006), support
vector machines (Thulasidas et al., 2006), and matched
filtering (Serby et al., 2005) have been utilized in P300-based
BCIs. The field is maturing with the adoption of new machine
learning algorithms that reduce the amount of training data
required to achieve sufficient classification accuracy, such as
the time-variant Linear discriminant analysis proposed by
Gruenwald et al. (2019). Complementing these advances,
researchers have also focused on improving P300-based BCIs’
slow communication rates (Martens et al., 2009; Takano et al.,
2009; Mugler et al., 2010).

Relevant to the application of P300-based BCIs in the
nonclinical area are studies that hint at the P300 latency and
shape change due to the cognitive processes associated with the
stimulus processing. Specifically, it is suggested that the latency is
related to the time it takes the person to process the oddball
stimulus and that the P300 component of the ERP might be
linked to sensory perception, engagement, and cognition
(McCarthy and Donchin, 1981; Magliero et al., 1984; Rugg
and Coles, 1996; Comerchero and Polich, 1999; Polich, 2007).
Although a large body of research exists, suggesting the P300
shape, amplitude, and latency correlate with the underlying
stimuli, only a few applications have adopted this groundwork
for commercial and clinical use. Mainly spelling systems such as
the intendiX system (Guger et al., 2016) or the mindBEAGLE BCI
for patients with disorders of consciousness (Guger et al., 2017)
are currently available.

Leveraging the previously mentioned research and advances,
g.tec neurotechnology GmbH has developed the Unicorn Blondy
Check. This application is presented in this study and aims to
advance neuromarketing and enable new VEP research findings.
Based on synchronizing the EEG samples with the image
presentation, the system uses the P300 response to assign a
score value to the displayed images and ranks the images
according to that score value.

This study aims to present and validate a working EEG-based
image ranking software. For this purpose, we investigated
whether features extracted from a live EEG recording can be
used to select and rank images with an accuracy above chance
level. Subsequently, the application can be applied as a ranking
system to reduce the time for sorting/labeling/selecting numerous
images and for further research on the connection between the
EEG and cognition.

2 MATERIALS AND METHODS

2.1 Apparatus
The EEG signal was recorded using the Unicorn Hybrid Black
system (g.tec neurotechnology GmbH, 2020; Accessed: 2021-27-
01). The biosignal amplifier was connected to a personal
computer using the integrated Bluetooth interface. The
apparatus provides a 24-Bit conversion with a sampling rate of
250 Hz. Eight channels are recorded on the following positions:
{Fz,C3,Cz,C4, Pz, PO7,Oz, PO8}
� {CH1,CH2,CH3,CH4,CH5,CH6,CH7,CH8}. The channel
positions are visualized in Figure 1. Ground and reference are
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placed on the mastoids of the subject using the disposable sticker-
based surface electrodes. The data are recorded and stored using
the Unicorn Blondy Check application (g.tec neurotechnology
GmbH, 2021; Accessed: 2021-27-01).

2.2 Paradigm Design
For the image ranking experiment, different random patterns of
images need to be generated to train and test the image ranking
system. These patterns are referred to as paradigms P1, P2, P3,
and P4. They are essentially oddball paradigms. To create these
paradigms, the application’s paradigm editor is used. The oddball
in P1 and P2 is a colored picture of a female face compared to
gray-scale images, while the oddball in P3 and P4 is a familiar face
compared to unfamiliar faces. P1 has one target and 11 non-
targets, P2 has four targets and 11 non-targets, P3 has four targets
and 24 non-targets, and P4 has one target and 11 non-targets. The
four different paradigms are summarized in Table 1, while the
images used for each paradigm are depicted in Figure 2. The
pictures of the familiar faces are unique for each subject. Thus
they are replaced by placeholders-icons in Figures 2C,D. The
ratio of 1:11 for target to non-target stimuli for the system’s
calibration was chosen in accordance with P300-based speller
systems (Guger et al., 2009). To test the system, paradigms with 1:
11 as well as lower ratios of 4:11 and 4:24 were generated. These
lower ratios were chosen to investigate if the decreases in

P300-amplitude due to lower ratios as suggested by Duncan-
Johnson and Donchin (1977) could lead to a decrease in Ranking
performance. Regarding the choice of images, faces were chosen
because recent work has shown that faces can improve P300 BCI
performance (Guger et al., 2016).

2.3 Participants and Procedure
Twenty-one subjects (9 males, 12 females), aged between 22 and
78 (mean age � 35, standard deviation � 14), took part in the
study. All participants provided informed consent and were
recruited through word-of-mouth. The study was approved by
the responsible ethical committee (Ethikkommission des Landes
Oberösterreich; Number D-35-16). The tests were conducted in
multiple locations, mainly the home of the participants or g.tec
company grounds. Special care was taken that the environment
was as quiet as possible to keep the distraction to a minimum.

Participants were asked to sit in front of the computer screen.
The system was placed on the subject’s head. Then, the EEG-cap
was connected to the application via Bluetooth. The signal-
quality was checked using the built-in signal quality feature.
The contact impedance (electrode-scalp) was lowered by
injecting electrode gel to improve the signal quality. The gel
was applied to each of the eight electrodes of the EEG-cap. After
this step, the signal quality evaluated by the system was within
limits set by the system. The steps described above were done for

FIGURE 1 | (A) Unicorn Hybrid Black system, (B) the electrode positions of the system. Ground and reference are fixed on the mastoids using disposable sticker-
based surface electrodes and not visible in the graphic.

TABLE 1 | Composition of the four different paradigms used for the image ranking experiment.

Paradigm name Target count Non-target count Target image Non-target image

P1 1 11 Female face Gray-scale
P2 5 11 Female face Gray-scale
P3 4 24 Familiar face Unfamiliar face
P4 1 11 Familiar face Unfamiliar face
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every subject. Finally, the different test paradigms (Figure 2)
were loaded. The EEG was recorded throughout the entire
measurement. After completing the training, the test

paradigms were loaded. The measurement procedure can be
segmented into two parts, with each having training and a test
phase, as described below.

2.3.1 Part One
During the first part of the measurement, the system was trained
using P1 (one female face and 11 gray-scale images) as a training
paradigm (Figure 2). The training consisted of 50 trials resulting
in 50 target stimuli and 550 non-target stimuli, which amounted
to a training time of 90 s. After completing the training, the
system was tested using the paradigms P1, P2, and P3. Each test
consisted of 10 trials and was performed three times resulting in
30 test trials for each paradigm. The measuring sequence of part
one can be seen in Table 2.

2.3.2 Part Two
During the second part of the measurement, P4 (one familiar
face, 11 unfamiliar faces) was loaded for the training paradigm
(see Figure 2). Analogous to part one, the training consisted
of 50 trials resulting in 50 target and 550 non-target
stimuli, which amounted to a training time of 90 s. The
trained system was tested using the paradigms P1, P2, and
P3 analogously to part one. Each test consisted of 10 trials and

FIGURE 2 | Image sets used for the oddball paradigms: (A) Paradigm 1 “P1″ containing one female face (target class) and 11 gray-scale images (non-target class),
(B) Paradigm 2 “P2″ containing five female faces (target class) and 11 gray-scale images (non-target class), (C) Paradigm 4 “P4″ containing one familiar face (target
class) and 11 unfamiliar faces (non-target class), (D) Paradigm 3 “P3″ containing four familiar faces (target class) and 24 unfamiliar faces (non-target class). The pictures
of the familiar faces are different for each subject. Thus they are replaced by placeholders-icons in (C) and (D).

TABLE 2 |Measurement structure. In part one, the application was trained on the
VEP produced by a female face and gray-scale images (P1). In part two,
familiar faces and unfamiliar faces (P4) were used for training. P1, P2, and P3 were
used for testing. Each image was displayed 150 ms, with the next immediately
following the previous. The training paradigm was presented 50 times, and
each test paradigm 30 times.

Mode Paradigm Trials Presentation
Time (ms)

Number of
Images

Duration [s]

Measurement part one

Training P1 50 150 12 90
Test 1 P1 30 150 12 54
Test 2 P2 30 150 16 72
Test 3 P3 30 150 28 126

Measurement part two

Training P4 50 150 12 90
Test 1 P1 30 150 12 54
Test 2 P2 30 150 16 72
Test 3 P3 30 150 28 126
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was performed three times resulting in 30 test trials for each
paradigm. The measuring sequence of part two can be seen in
Table 2.

2.3.3 Stimulus Presentation Parameters
Each image was shown for a duration of 150 ms immediately
followed by the next in the trial. No dark screen was displayed
between the pictures, as shown in Figure 3. One trial consisted of
12 pictures for P1 and P4, 16 for P2, and 28 for P3, as summarized
in Table 1. The application randomizes the order of the images
during the trial. The training phase consisted of 50 and the testing
phase consisted of 30 trials.

2.4 Data Processing and Classification
The EEG signals are acquired sample-wise from the Unicorn
Hybrid Black system via the Bluetooth connection. The
application then synchronizes the EEG samples with the image
presentation. To reduce the mains line interference (50 Hz EU/
60 Hz United States) the EEG samples are digitally filtered using a
second-order 50 Hz Butterworth Notch filter followed by a
second-order 60 Hz Butterworth Notch filter. Finally, a
second-order Butterworth bandpass filter with a band ranging
from 0.5 to 30 Hz is applied to improve the signal-to-noise ratio.
After the single samples are filtered, 1,500 ms-epochs are created
using 100 ms before and 1,400 ms after the stimulus onset. For
feature extraction, each epoch is baseline corrected using the
100 ms before the stimulus. The epoch is downsampled by a
factor of 1:12 and moving average filtered using a window size of
3. The mentioned procedure results in a feature with a length of
248 (31 samples * 8 channels). Eye blinks are not corrected/
removed and there was no artifact rejection algorithm used.

2.5 Ranking
The target and non-target features recorded during the
training phase are used to fit a time-variant linear
discriminant analysis model. Cai et al. (2013) have already
proven that a linear regression in the LDA subspace is
mathematically equivalent to a low-rank linear regression.
Based on this knowledge, the features generated by
subsequent images during the ranking are projected into
the LDA subspace and the resulting distance (score value)
is used to rank the new images.

2.6 Data Evaluation
2.6.1 Electroencephalography Study
The system provides the user with the possibility of recording the
stimulus synchronized EEG data during the experiment. The
EEG recordings were averaged over the 30 trials and the 21
participants to visualize the recorded visual evoked potentials
measured during the experiment. This averaging was done for
every paradigm using the MATLAB R2020a software.
Additionally, the P300 latency and amplitude were marked by
means of maxima detection on the averaged waveforms for each
paradigm. This results in one P300 amplitude and latency per
electrode and paradigm. The amplitude and latency differences
are examined for significance using a paired sample t-test.

2.6.2 Ranking Accuracy
The system produces score values for every displayed image.
These values were compared to evaluate the image ranking
performance. If the target class image had a higher score value
than the non-target class’s images, the result was determined to be
a successful ranking. The values for every image were averaged
and compared again for each trial. This evaluation was done for
1 – 30 trials and further averaged over every subject (n � 21).
Based on this information, a ranking accuracy could be estimated.
This accuracy corresponds to the true positive rate described as
the ratio between correct classifications and the total number of
classifications.

3 RESULTS

3.1 Electroencephalography Study
Figures 4, 5 depict the calculated difference between target and
non-target stimuli averaged over 21 participants. Figure 4A
illustrates the visual evoked potential produced by paradigm
P1. Figure 4B shows the visual evoked potential produced by
paradigm P2. Figure 5A corresponds to the Visual evoked
potential produced by paradigm P3. Figure 5B illustrates the
visual evoked potential produced by paradigm P4. The latency
(ms) and the amplitude (μV) of the P300 are marked for each
electrode position within the individual graphs. Table 3 lists the
latency and amplitude derived from Figures 4, 5 for all four
paradigms and all eight electrode positions.

Paradigms with female faces and gray-scale images produce
the following mean P300 latencies: For P1, the latency is
233 ms (Fz-Pz) and 222 ms (PO7-PO8). For P2, it is 232 ms
(Fz-Pz) and 226 ms (PO7-PO8). Changing the paradigm to

FIGURE 3 | Schematic overview of the stimuli presentation with an
example response averaged over the training trials of one subject with regard
to electrode placement. The evoked potential is drawn in red for the target
stimulus and blue for the non-target stimulus.
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familiar and unfamiliar faces, the latency increases to 340 ms
(Fz-Pz) and 356 ms (PO7-PO8) for P4 and 314 ms (Fz-Pz)
and 307 ms (PO7-PO8) for P3. These values can be seen in
Table 3.

The P300 amplitude evoked by paradigms with different target
to non-target ratios decreases from 5.13μV (Fz-Pz) and 2.16μV
(PO7-PO8) for P1 (ratio � 1:11) to 3.97μV (Fz-Pz) and 0.54μV
(PO7-PO8) for P2 (ratio � 5:11). Similarly, the amplitude
decreases from 3.70μV (Fz-Pz) and 2.65μV (PO7-PO8) for P4
(ratio � 1:11) to 2.86μV (Fz-Pz) and 1.86μV (PO7-PO8) for P3
(ratio � 4:24). These values can be seen in Table 3.

3.2 Image Ranking Performance
In this section, the accuracy results for the first and second parts
of the experiment are presented. For part one, the application was
trained on the EEG features produced by one female face (target)
and 11 gray-scale images (non-targets). For part two, the system

was trained on the EEG features produced by one familiar face
(target) and 11 unfamiliar faces (non-targets). The training
consisted of 50 trials. Paradigms P1, P2, and P3 were used for
testing with 30 test trials each. Figure 6A depicts the accuracy for
part one averaged over all subjects. Analogously Figure 6B shows
the accuracy for part two averaged over all participants. Figures
6C,D depict the median accuracy as well as the range between the
25th and 75th percentiles (shaded area) for parts one and two
respectively over all participants.

The results shown in Figures 6A,B are summarized in Table 4
by additional averaging over all trials. The achieved accuracy after
30 trials is listed in the columnmarked with “Final” and represents
the ranking accuracy at 30 trials. For part one of themeasurements,
the application reached an online accuracy of 100, 95.5, and 14.8%
for P1, P2, and P3, respectively. When switching the training
paradigms the achieved accuracy changes to 38.6, 34.6, and 86.4%
for P1, P2, and P3 in part two of the measurements.

FIGURE 4 | The calculated difference between target and non-target stimuli averaged over 21 subjects (A) and (B) depicts the visual evoked potential produced by
paradigms P1 and P2, respectively. These two paradigms had female faces as targets and gray-scale images as non-targets. The black dotted line marks the stimulus
presentation. The P300 latency and amplitude are noted in the brackets [(ms), (μV )].
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4 DISCUSSION

The main objective of this study was to evaluate and present a
novel visual evoked potential-based image ranking BCI. In the

first step, the recorded EEG signals are discussed. Second, the
achieved accuracy will be addressed.

4.1 Electroencephalography Study
The P300 peak (averaged over all participants and trials) is visible
in Figures 4, 5 for all paradigms (P1, P2, P3, P4) at the electrode
positions {Fz,C3,Cz,C4, Pz, PO7,Oz, PO8}.

4.1.1 P300 and Task Complexity
When comparing the average target P300 response time of
female/gray-scale (P1, P2) to familiar/unfamiliar faces (P3, P4)
paradigms, a significant (p < 0.001) increase in the mean P300
latency can be seen at all electrode positions, visible in Figures 4,
5 and listed in Table 3. The delay could be caused by the task
complexity associated with difficult stimulus discrimination, as
Polich (2007) suggested. This complexity might be the case when
distinguishing familiar from unfamiliar faces. In contrast,
distinguishing a colored female face image from a gray-scale
photo provides less of a challenge. Examining the average
amplitude differences at the electrode positions Fz, C3, Cz, C4,
and Pz analogously to the response times, a decrease for P4-P1
and P3-P2 is visible in Figures 4, 5. Only the comparison between
P4-P1 should be considered, as both paradigms have an equal target

FIGURE 5 | The calculated difference between target and non-target stimuli averaged over 21 subjects (A) and (B) depicts the visual evoked potential produced by
paradigms P4 and P3, respectively. These two paradigms had familiar faces as targets and unfamiliar faces as non-targets. The black dotted line marks the stimulus
presentation. The P300 latency and amplitude are noted in the brackets [(ms), (μV )].

TABLE 3 | P300 latency (ms) and amplitude (μV ) taken from Figures 4,5 is listed
for every paradigm (P1, P2, P3, and P4) and all electrode positions averaged
for all subjects. The average of Fz, C3, Cz, C4, Pz, and PO7, Oz, PO8 is calculated
separately and listed.

Electrode Female face/Gray-
scale

Familiar/unfamiliar
faces

Position P1 P2 P4 P3

Fz 236 (5.61) 232 (4.69) 339 (3.72) 320 (3.02)
C3 232 (4.98) 232 (3.93) 339 (3.29) 312 (2.62)
Cz 232 (5.52) 232 (4.51) 339 (4.00) 316 (3.02)
C4 232 (4.87) 232 (3.64) 339 (3.56) 324 (2.63)
Pz 232 (4.68) 232 (3.09) 343 (3.94) 297 (3.03)
PO7 225 (2.89) 229 (1.32) 370 (2.19) 293 (1.84)
Oz 229 (1.42) 229 (0.24) 351 (3.19) 339 (2.05)
PO8 213 (2.17) 221 (0.07) 347 (2.56) 290 (1.69)
[Fz,C3,Cz,C4,Pz]Avg 233 (5.13) 232 (3.97) 340 (3.70) 314 (2.86)
[PO7,Oz,PO8]Avg 222 (2.16) 226 (0.54) 356 (2.65) 307 (1.86)
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to non-target ratios of (1:11), while P2 and P3 have a ratio of (5:11)
and (4:24), respectively. This argument is based on the fact that the
P300 amplitude induced by an oddball paradigm depends on the
oddball stimulus’s rarity as described by (Luck, 2014), (Wolpaw,
2012), and (Duncan-Johnson and Donchin, 1977). The slightly
higher amplitude of P1, compared to P4, could be caused by the
stronger contrast between the target and non-target images.
Consequently, the more pronounced difference could magnify the
resulting P300 response, even though they have the same target to
non-target ratio.

4.1.2 P300 and Target to Non-Target Ratio
As early as 1977, Duncan-Johnson and Donchin (1977) observed
that the P300 amplitude correlates with the associated oddball a
priori probability. Simply put, the less likely the oddball (target)
stimulus is to occur, the higher the P300 amplitude. This observation

is also visible in the measurement data. A significant (p < 0.001)
decrease in amplitude is visible for the ratios of 1:11(P1) and 5:11
(P2) listed in Table 3. Analogously, a reduction in the P300
amplitude for 1:11(P4) and 4:24 (P3) is also visible.

To sum up section 4.1.2 and section 4.1.1, the P300 amplitude is
highly dependent on the oddball frequency for any given paradigm.
In contrast, the P300 latency and waveform shape are dependent on
the task complexity of the specific paradigm class.

4.2 Classification Accuracy
The mean and median accuracy for the first and second parts of
the measurement listed in Table 4 does not represent the
achieved accuracy for 30 consecutive trials but rather the
averaged accuracy for 1 to 30 trials. The achieved average
accuracy for 30 trials is also listed in Table 4 in the “Final”
accuracy columns. The EEG data were processed and classified

FIGURE 6 | Accuracy results for 1 to 30 test trials and paradigms P1, P2, and P3 for 21 subjects. Measurement setup part one (A), (C) (Training paradigm P1) and
part two (B), (D) (Training paradigm P4). On the left side (A) and (B) depict the average accuracy. On the right side (C) and (D) depict the median accuracy with the
shaded area representing the 25th (Q1) and 75th (Q3) percentiles.

TABLE 4 | Ranking performance accuracy results, taken from Figure 6 (A) for part one and Figure 6 (B) for part two. The mean is an average of 1–30 test trials. The median
is calculated of trials 1 to 30, and the final accuracy value is the achieved accuracy after 30 trials. Additionally, the accuracy difference between the two measurement
parts is listed and is calculated by subtracting the respective accuracy value of part one (training with P1) from part two (training with P4).

ACC [%] Figure 6A ACC [%] Figure 6B ACC [%] difference

Test Final Mean Median Final Mean Median Final Mean Median

P1 100 97.8 100 38.6 36.4 37.3 − 61.4 − 61.4 − 62.7
P2 95.5 86.9 93.3 34.6 37.3 28.9 − 60.9 − 49.6 − 64.6
P3 14.8 12.9 13.5 86.4 72.0 78.7 + 71.6 +59.1 +65.2
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online. No cross-validation was performed as the randomization
constituted by cross-validation would lead to an over-optimistic
accuracy estimation, as Wolpaw (2012) suggested. The
combination of these two aspects led to a realistic accuracy
assessment, as listed in Table 4. The final average accuracy
after 30 trials combined with the mean and median can serve
the purpose for a relative comparison between the test paradigms
and, more importantly, between different training paradigms’
effects on the ranking performance. The average and median
achieved online accuracy for a specific test trial count for all
subjects is visible in Figure 6. The average rather than the median
accuracy was discussed further, since the average is strongly
affected by subjects where the application performed worse.
Therefore, the average provides a more practical estimation.

4.3 Measurement for Part One
Figure 6A shows that an average accuracy of 100% for test
paradigm P1 was reached after seven trials. Mean accuracy of
100% translates to the target images being ranked on top for all
subjects after seven trials. The mean accuracy for test paradigm P2
never reached 100%. However, a satisfactory accuracy of 90% was
eventually achieved at 10 test trials and increased to over 95% for 20-
30 test trials. In paradigm P2, all five female face pictures must be
ranked on top to be considered successful. This condition makes the
estimate of accuracy even more conservative. An accuracy of 95.5%
means that the application ranked all five female face pictures on top
for more than 95.5% of the time for all subjects after 30 trials. The
reason why even at 30 test trials, the accuracy for P2 never reached
100% could be that the training was performed on P1, and the target
visual evoked potentials produced by P1 and P2 slightly differ in
amplitude, as discussed in section 4.1. The visual evoked potential
produced by P3 not only varies in amplitude but also significantly in
latency and waveform, as discussed in section 4.1. This difference in
waveform shape and amplitude could explain why the mean
accuracy for test paradigm P3 never reached a good value with
only 14.8% at 30 trials.

4.4 Measurement for Part Two
Using one familiar face and 11 unfamiliar faces (P4) as a training
paradigm in the second part of the measurement results in an
accuracy change for all test paradigms as expected when
considering the EEG study results. The accuracy of test
paradigms P1 and P2 decreased by 61.4 and 60.9%,
respectively. The achieved accuracy at 30 test trials are
depicted in Figure 6B and listed in Table 4. They are 38.6
and 34.6% for P1 and P2. The mean and median accuracy
estimation for 1–30 trials from Table 4 shows a decrease by
61.4 and 62.7% for the ranking of test paradigm P1. Similarly, the
mean and median accuracy estimation for test paradigm P2
decreased by 49.6 and 64.6%, respectively.

Confirming expectations that training the application on a
paradigm consisting of a familiar face and unfamiliar faces, the
achieved accuracy after 30 trials increases by 71.6–86.4% for
paradigm P3. Similarly, the mean and median test accuracy for 1
to 30 trials for paradigm P3 increased by 59.1 and 65.2%. This is
visible in Figure 6B and is listed in Table 4. To rephrase these
results into a ranking performance, this means that all four

familiar faces are ranked on top of the 24 unfamiliar faces by
the application 86.4% of the time.

For paradigms P3 and P4, the subjects had to provide pictures of
familiar faces, but these were not always of equivalent quality/brightness
to the stock images. The quality variation could be why the accuracy in
part two of themeasurement for test paradigmP3wasnot as high as the
accuracy for P2 in part one. The quality of the images could be a
significant factor due to the short presentation time of 150ms.

In summary, it is plausible to state that the choice in training
paradigm and the ratio of targets to non-targets for training and
test paradigms are essential for the system’s performance. These
choices change the resulting classification accuracy significantly.
For example, training the application on P1 (female face/gray-
scale) will not yield satisfactory ranking performance for test
paradigm P3 (familiar/unfamiliar faces). Conversely, training the
system on P4 (familiar/unfamiliar faces) will lead to a
significantly better ranking performance for similar paradigms
P3 (familiar/unfamiliar faces) but decrease the ranking
performance for P1 and P2 (female face/gray-scale).

5 CONCLUSION AND FUTURE WORK

This study focused on evaluating and presenting the image ranking
software Unicorn Blondy Check. The software is based on the P300
component of the visually evoked potential. The evaluationwas done
by testing different visual paradigms and training the system to
detect such differences. By studying the EEG recordings, it was
possible to notice the differences in the visually evoked potential for
each paradigm. These observed differences meet the expectations
suggested by previous research (Donchin and Smith, 1970;
McCarthy and Donchin, 1981; Magliero et al., 1984; Comerchero
and Polich, 1999; Polich, 2007). Depending on the paradigmused for
training, average accuracy of 100% for P1, 95.5% for P2, and 86.4%
for P3 were achieved. Selecting the inappropriate training paradigm
resulted in decreased ranking performance as expected from the
EEG study findings.

Our results showcase the software’s image ranking capabilities.
Even complex tasks such as ranking photos of familiar faces
higher than unfamiliar faces yielded satisfactory results.
Nevertheless, several open questions worth investigating in
future research remain, which will improve the system’s
performance. In future work, we plan to address the following:

• To change the stimulus presentation parameters
(presentation-time, inter-stimuli-time, presentation order).

• To try different paradigms to investigate what is possible to
classify (e.g., classifying affection, determining advertisements
with the highest impact, or finding concealed information
using paradigms containing crime-related images).

• To measure the accuracy of dry EEG acquisition.

The application areas of such a system are numerous. For
researchers, this system can provide an easy-to-use tool for
further investigation of the visual evoked potentials. It
provides not only classification capabilities but also logs
stimulus-synchronized EEG data. The build-in paradigm
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editor enables rapid testing. In neuromarketing, this system can
supplement the existing methods for determining
advertisement’s impact. With it, one can directly compare the
brain’s responses to successful and unsuccessful advertising. The
software can be used to check whether the image ranking
presented in this study also works with paradigms that do not
contain faces, for example, different shoe models and dishes or
holiday destinations. However, to do this, one must construct
calibration paradigms containing images of objects that the test
person prefers in comparison with the others. Then sets of
unknown images can be examined for preferences or lack of
preferences. Researchers in the area of polygraphy and concealed
information testing could also benefit from such an easy-to-use
system. Finally, it can be a great hands-on learning tool for the
everyday person and students interested in BCI as it is more
affordable than other EEG systems on the market.
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Brain-computer interfaces (BCIs) allow users to control a computer or other device with their
brain activity. While BCI technology has been developed and used primarily in medical contexts,
a broad spectrum of non-clinical applications is on the horizon, including fields like concentration
management, sleep improvement, music, and painting (Gürkök and Nijholt, 2013; Coates McCall
and Wexler, 2020; Saha et al., 2021).

Some BCI applications directly translate brain activity to music performance, offering ways for
people with physical disabilities as well as for artists to express their emotions throughmusic (Eaton
et al., 2015; Daly et al., 2016; Deuel et al., 2017; Williams and Miranda, 2018).

The focus of this article is on affective BCIs that allow to identify and influence a person’s
affective states. In addition to providing users with suggestions for the music they like, some
affective brain computer music interface (aBCMI) applications aim at modulating the affective
states of their users (Daly et al., 2016, 2020; Williams and Miranda, 2018; Ehrlich et al., 2019):
Based on determining how listeners respond to certain types of music, music that influences their
emotional states can be chosen. These affective BCIs detect correlates of a user’s current affective
state and attempt to modulate it by generating or selecting music that, for example, serves to
increase happiness or reduce stress levels.

While the future development of this type of technology is largely unclear, for future non-
clinical aBCMI home applications to be of interest to a broad spectrum of potential users, the
technology not only has to prove attractive to a wide audience but also must be ethically sound.
Against the background of recent developments in direct-to-consumer (DTC) devices, in what
follows, I will discuss driving forces behind aBCMI technology development and social and ethical
aspects of the technology, focusing on the perceived role of the brain, mood enhancement, and
privacy-related aspects.

DIRECT-TO-CONSUMER DEVICES—RECENT DEVELOPMENTS

Based on research studies carried out with aBCMIs in complex research environments, several
steps have been taken toward developing DTC home applications of aBCMI technology. For
example, Kalaganis et al. (2016) developed a consumer BCI that serves to evaluate music in popular
on-demand streaming services.

Among the existing wearable devices is the Mico system, a concept model developed in
2013 which allows individualized music choice1. Mico is short for “Music inspiration from your
subconsciousness,” it consists of headphones and an app for iPhone. According to the developers’
homepage, the sensor in the headphone detects brainwaves; the mico app then analyzes the input
and matches it to the closest “neural pattern” in the database to identify the user’s “neural group.”
Based on this categorization, the system selects and plays music from a music database in line with
the user’s status.

1https://neurowear.com/mico/
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The wearable EEG headset developed by Imec seeks to
measure and influence the emotions of the person wearing the
headset: According to the company2, the system can learn the
musical preferences of the users, compose, and play back music
in real time that is in line with their preferences, and influence
their emotions to achieve the desired emotional state.

The portable and wearable EEG device called CrownTM

developed by Neurosity is advertised as being able to boost
productivity3. According to the company’s homepage, the system
detects brainwaves and plays music from Spotify that helps users
to focus. The increase in productivity brought about by the
device seems to be quite small, however (Koetsier, 2021, cf.
video interview).

While these are interesting developments, no DTC devices
display research-grade results. It is currently unclear whether
any of these devices can fulfill what they promise (see
Coates McCall and Wexler, 2020). In view of this, it will be
important that manufacturers and companies avoid exaggerated
claims about the devices’ presumed capabilities, not only for
reasons of decency in selling the product but also to avoid
users generating inadequate beliefs about their affective states.
Unrealistic consumer expectations may result in a hype followed
by disappointment (van Lente et al., 2013).

THE ROLE OF THE BRAIN

The aBCMI technology promises to provide an individualized
music experience, based on the users’ brain data. This
individualized approach seeks to allow for easier access to music
in line with an individual’s preferences and needs. As advertised,
the mico DTC device “frees the user from having to select songs
and artists and allows users to encounter new music just by
wearing the device4.”

While this certainly alleviates the users from the burden
of complex choices, it also narrows down individual decision-
making. Instead of individual choice, users listen to what
the technology suggests. While a user is free to accept or
reject the choice made by the system, the system clearly
influences the music someone listens to, be it through
the music database provided or through the headset and
data processing.

Generally speaking, aBCMI use raises awareness of the role
of the brain and the relevance of brain-related data. Brain
data serves to specify user affective states, categorize users into
user types, and define the beginning and end points of affect-
modulating interventions.

As Duncan Williams and Eduardo Miranda write in the
context of music therapy (Williams and Miranda, 2018, p. 201):

“The theoretical advantage of this approach over conventional

music therapy approaches is that the BCMI is able to directly

monitor the users’ emotional state via physiological indices of

emotion, which have the potential to bemore robust and objective

2https://www.imec-int.com/en/articles/imec-and-holst-centre-introduce-eeg-

headset-for-emotion-detection
3https://neurosity.co/
4https://neurowear.com/mico/

measures of emotion than user reports or even the expertise of the

music therapist.”

Accordingly, at least with research grade aBCMIs in the context
of music therapy, the technology is expected to provide a more
direct, more reliable measure of emotion than subjective reports,
be it user self-assessments or reports by third persons.

It is worth mentioning that this position touches on tricky
longstanding philosophical questions on the epistemic authority
of claims about sensations (Baier, 1962): Who or what can be
more reliable—a technology that depends on brain recordings or
a person’s first-person perspective that is based on introspection?

Instead of characterizing a person as being in a certain mood
or liking certain music by watching their overt behavior or
relying on their introspective reports, with this technology-based
approach it is brainwaves that help to find out about a person’s
emotions, whatmusic they like, and how their mood is influenced
by music. By focusing not on a person and their behavior but on
brain-related data, the role of the brain is stressed.

While it may be argued that this is just the mechanism
upon which aBCMIs rely, when talking or writing about
aBCMIs, it is important to avoid neuro-realist interpretations
that consider brain activation patterns as the ultimate proof that
a phenomenon is real and objective, as well as neuro-essentialist
interpretations that see the brain as the self-defining essence of a
person (see Racine et al., 2010; Reiner, 2011).

Phrases like “Mico-Music inspiration from your
subconsciousness” or “This EEG headset can tell what music
your brain likes” (Shankland, 2018), or the characterization of
BCI-based music experiments as bringing “a new meaning to
‘straight off the dome”’ (Chung, 2017), all consider the brain to
be the central actor, a substitute for the person.

MOOD ENHANCEMENT AND BRAIN

AUGMENTATION

Even though the headsets of DTC devices resemble traditional
headsets, and aBCMI-mediated music consumption shares
considerable similarities with other forms of music consumption
and automated playlist selection technologies, there is a
significant difference in that aBCMIs aim at positively influencing
affective states.

While the term enhancement—and the distinction between
treatments and enhancements—has been used as a boundary
concept to characterize interventions as outside the realm of
medicine (Frankford, 1998; Juengst, 1998), in more general
terms, enhancements are procedures to augment a person’s
physical or mental capabilities (Lebedev et al., 2018; Coates
McCall and Wexler, 2020).

A number of enhancement approaches based on
pharmaceuticals or neurotechnology including BCIs have
been described in recent years (Zehr, 2015; Cinel et al., 2019).
Non-clinical aBCMI home applications that seek to make
healthy users feel happier or more relaxed can be considered
mood enhancement technologies, devices that aim at helping
users to get focused and increase their productivity can be seen
in the context of cognitive enhancement.
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Whereas pharmacological mood enhancers such as Prozac
or other selective serotonin reuptake inhibitors (SSRI) are
prescription drugs used for purposes other than originally
intended and bear the clear risk of negative systemic side effects
(Schermer, 2015), the situation is different for aBCMIs. It is
enhancement purposes that current DTC devices are developed
for. The aBCMI technology is based on the individual user’s
brain data, and consists of an individualized approach which in
principle could allow each user to navigate very fine grained affect
modulations. While negative effects of the technology cannot be
excluded, an EEG-based headset can be disconnected easily at
any time.

Whereas positive effects of DTC aBCMI devices have not
been proven yet, on the one hand, it may be argued that the
technology seeks to enable authenticity and increase autonomy in
that it allows users to maintain, influence, or attain their desired
affective states. On the other hand, outsourcing the responsibility
for regulating and controlling one’s affective states can be seen
as essentially inauthentic and as limiting one’s capabilities and
autonomy in that it increases dependence on technology (see
Steinert and Friedrich, 2020).

PRIVACY AND DATA PROTECTION

In general, issues related to privacy play an important role
whenever brain-related data is being collected and stored. In
the context of neurotechnologies, several authors have stressed
security and privacy risks and argued toward a right to mental
privacy and a right to mental integrity (Ienca and Andorno, 2017;
Ienca et al., 2018; Lavazza, 2018).

There are a number of privacy aspects to consider around
aBCMIs, even though it seems questionable whether current
aBCMIs can reveal any detailed information on a person’s
thoughts or preferences (Coates McCall and Wexler, 2020). In
aBCMIs, each EEG recording gives some indication of a person’s
affective state at a certain point in time. Over a longer period,

this will add up to a relatively detailed profile of a user’s affective
states. Data protection and privacy require that the individual
user be in control of what is recorded, how the recordings are
stored, and what is revealed and shared by the system about data
analysis and classification results.

While the future of DTC aBCMIs is uncertain, with
wearable, smartphone-compatible devices, privacy issues can
be expected to become even more central. In general, brain-
related data processed and stored on a smartphone connected
to the internet is susceptible to being the subject of a
multitude of data collection and sharing pathways. This
could potentially include future individualized nudging or
neuromarketing approaches (Ienca et al., 2018; Steinert and
Friedrich, 2020).

Data protection measures (such as encryption of brain
activity) will have to be established in order to prevent
unauthorized access, sharing and use of brain-related data
(Hernandez, 2016; Koetsier, 2021).

CONCLUSION

Despite these first steps toward developing non-clinical aBCMI
home applications, the future of direct-to-consumer aBCMI
technology is uncertain. A broad spectrum of challenges will have
to be addressed, including electrode development and placement,
user comfort, validity, reliability, privacy, and costs. To be
attractive, the technology will have to provide some clear benefits
to its users, be it regarding human performance, well-being, or
leisure activities. At the same time, it will be important to avoid
brain-centric interpretations and overreliance on technologically
mediated affect management.
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Brain–computer interfaces can provide a new communication channel and control

functions to people with restricted movements. Recent studies have indicated the

effectiveness of brain–computer interface (BCI) applications. Various types of applications

have been introduced so far in this field, but the number of those available to the public

is still insufficient. Thus, there is a need to expand the usability and accessibility of BCI

applications. In this study, we introduce a BCI application for users to experience a

virtual world tour. This software was built on three open-source environments and is

publicly available through the GitHub repository. For a usability test, 10 healthy subjects

participated in an electroencephalography (EEG) experiment and evaluated the system

through a questionnaire. As a result, all the participants successfully played the BCI

application with 96.6% accuracy with 20 blinks from two sessions and gave opinions

on its usability (e.g., controllability, completeness, comfort, and enjoyment) through the

questionnaire. We believe that this open-source BCI world tour system can be used in

both research and entertainment settings and hopefully contribute to open science in the

BCI field.

Keywords: P300, brain–computer interface, open-source application, serious game, usability

INTRODUCTION

Brain–computer interfaces are a form of technology that enables direct communication between
humans and a computer through brain oscillation. Since it can improve the quality of life for
disabled patients by providing a new communication channel, it has been given much attention
and subsequently advanced over the last 40 years (Schmidt, 1980; Georgopoulos et al., 1986; Farwell
and Donchin, 1988;Wolpaw et al., 2000; Curran and Stokes, 2003; Lotte et al., 2007; Nicolas-Alonso
and Gomez-Gil, 2012; Hamedi et al., 2016; Abiri et al., 2019).

The P300 BCI is a paradigm popularly used in brain–computer interface (BCI) development
(Fazel-Rezai et al., 2012). This paradigm uses the P300 component, which is a positive response
raised about 300 msec after the presentation of an odd stimulus. Indeed, numerous studies have
shown the feasibility of utilizing the P300 BCI with patients (e.g., patients with amyotrophic lateral
sclerosis, ALS) and healthy subjects to communicate. For example, the P300 speller has been used
as a tool to measure the performance of the P300 BCI system to see if the system can be used
by ALS patients (Nijboer et al., 2008; Guy et al., 2018), to unveil the cognitive characteristics
(e.g., temporal differences in visual stimulus processing compared with healthy people) of patients
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(Riccio et al., 2018), or to confirm the efficacy of the system
to many people (Guger et al., 2009). The P300 speller, a
brainwave-based typewriter that uses the P300 BCI paradigm,
usually consists of rows and columns with alphabetic/numeric
characters and detects the intended character of the user based
on the elicited P300 component by flashing rows/columns
(Farwell and Donchin, 1988; Won et al., 2019). This system has
several advantages. First, it shows a relatively high and stable
performance (or information transfer rate), especially compared
with motor imagery BCI (Guger et al., 2009; Cho et al., 2017;
Won et al., 2019). The MI paradigm showed large variation
in performances across subjects and users (Lee et al., 2019).
Second, it provides an intuitive user interface (UI); what a
user sees is what should be spelled. Third, it is designed for
a communication purpose that meets the needs of patients
(especially locked-in patients). Because of these advantages,
the P300 speller has become a standard BCI application and
has been used in investigating various research topics such
as performance improvement (e.g., classification accuracy or
information transfer rate) (Fazel-Rezai et al., 2012), the low-
performance phenomenon called “BCI-illiteracy” (Carabalona,
2017; Won et al., 2019), calibration-less BCI (Lee et al., 2020),
patient study (Guy et al., 2018; Velasco-Álvarez et al., 2019),
and UI/UX in BCIs such as stimulation type (Guan et al., 2004),
clustering of several characters (Fazel-Rezai and Abhari, 2009),
3D cubes (Qu et al., 2018), and facial based cues (Jin et al.,
2012). Indeed, researchers have made great achievements and
advancements with the P300 BCI speller. Moreover, considering
that commercialized P300 BCI speller systems are in the market,
it seems that the BCI application is already in the daily lives
of people.

However, there are still issues to be considered for executing
practical BCI applications. While BCI is often used with the
disabled, the number of accessible applications is limited.
Moreover, usability on the user side is sometimes overlooked
in the research and development of BCIs. Usability is related
to the ease and convenience of a given system to help the
user achieve the desired goal and is also associated with an
index of satisfaction (ISO 9241-11, 1998). Often, the available
resources provided limit the user to a specific domain (Donchin
et al., 2000). For example, the P300 speller is used as the
standard for measuring the performance of the P300 BCI
algorithm and signal-processing techniques. No matter how
algorithms and signal processing techniques are developed,
the end goal is for the application to effectively work for a
specific purpose to meet the needs of users. Since the P300
speller is designed for typing characters, not playing games
or surfing the internet, it is necessary to expand the available
domain by developing new applications while simultaneously
conducting research on suitable algorithms and signal processing
techniques. Therefore, attention should also be paid to increasing
the types of BCI applications and listening to the feedback of
users while making great efforts to improve the performance
of the BCI system (Ahn et al., 2014). Considering the limited
mobility of potential BCI users, expanding the areas from
communication to entertainment, hobbies, and daily work-
related tasks is important.

Fortunately, recent studies have introduced various types of
applications to the BCI field (see Table 1). Traditional targets
(e.g., wheelchair and computer cursor) are often used for controls
in research, but new BCI innovations are being researched, such
as the exoskeleton (Frolov et al., 2017; Wang et al., 2018a), drone
(Wang et al., 2018b), web browser (Zickler et al., 2011; Yu et al.,
2012; Saboor et al., 2018), emailing (Zickler et al., 2011), and
cleaning robot (Shao et al., 2020). In addition, the BCI field has
produced more games, such as the traditional Tetris (Wang et al.,
2019), action (Coyle et al., 2015) and games that stimulate rowing
(Vourvopoulos et al., 2016), cart control (Wong et al., 2015),
attention training (Rohani and Puthusserypady, 2015), as well
as drawing (Botrel et al., 2015). In addition to the emergence
of several applications, methods have been proposed to enhance
usability and accessibility that should be considered for the
development of BCIs for patients in terms of user-centered design
(UCD) (Kübler et al., 2020).

Although the future of BCI looks very bright, an important
complication hinders its progression. Over decades, applications
of various themes have appeared, but these applications have not
become widely accessible. To be exact, most BCI applications
published in the literature are often closed (not shared) and
documentations, such as user or developer manuals, are rarely
created and provided. Thus, generally, these applications are not
usable to other researchers.

From the point-of-view of the BCI researcher, this trend
is fully understood, because application development is
enormously expensive. In particular, the development of the
P300 BCI application requires an extensive investment of time
and effort for three main reasons. First, because it must operate
online, the performance of the module responsible for data
measurement and signal processing must be optimized for
speed and accuracy. This is a common issue related to online
application development. Second, because how well the P300
component is detected on the system determines the effectiveness
of the application, it is necessary to search optimal parameters
for stimulation (e.g., target-to-target interval, inter-stimulus
interval, physical property, the distance between stimuli, and
appropriate luminance of the stimulus for avoiding afterimage)
under a given system design and apply it to the module in charge
of the graphical user interface. Third, optimal bi-directional
communication should be implemented to minimize the
stimulus time lag and overall system delay that occur, as each
module exchanges marker information. Because of costs, it is
natural for a developer to accumulate results by conducting
several studies using just his own application. However, when
all developers do this, such large cost creates a high barrier
for nonexperts, and the subsequent delay in research progress,
consequently, may serve as a serious bottleneck that hinders the
development of the BCI field. Therefore, just as developing the
BCI application with new contents is important, sharing it with
the research community is also crucial to expanding the field.
We expect that diversifying application types will increase the
efficiency of BCI research and ultimately contribute to leading
the advancement of BCI.

So far, the obstacles that hinder the development of the current
BCI have been mentioned, and methods to solve them have been
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TABLE 1 | BCI application contents, paradigm, and platform.

Application contents Article Paradigm Platform

Wheelchair control Taher et al., 2015 EEG, Eye tracking Emotive EPOC SDK, OpenViBE

Yu et al., 2017 MI, P300 BCI 2000

Bastos-Filho et al., 2018 SSVEP C

Exoskeleton control Frolov et al., 2017 MI Matlab

Wang et al., 2018a SSVEP -

Post-stroke rehabilitation using VR Aamer et al., 2019 MI Python, Unity 3D

Cursor control Ma et al., 2017 MI, mVEP -

Drone control Wang et al., 2018b SSVEP Unreal Engine4, C++, Matlab

Web browser control Zickler et al., 2011 P300 BCI 2000

Yu et al., 2012 P300 Windows 32bit Platform Development Kit, Neuroscan

Saboor et al., 2018 SSVEP Microsoft VS C++

Emailing Zickler et al., 2011 P300 BCI 2000

Cleaning robot Shao et al., 2020 SSVEP Matlab psychology toolbox, Bluetooth

Spelling Lin et al., 2016 SSVEP, EMG MATLAB

Stawicki et al., 2017 SSVEP, Eye tracking EyeTribe, Microsoft VS C++

IoT Coogan and He, 2018 MI Unity, BCI2000

Drawing game Botrel et al., 2015 P300 BCI 2000

Action game Coyle et al., 2015 MI MATLAB Simulink

Cart control game Wong et al., 2015 SSVEP Microsoft VC++ 2010, DirectX SDK

Motion tracking game Park et al., 2016 Neurofeedback Unity 3D, Microsoft Kinect

Rowing game Vourvopoulos et al., 2016 MI Open ViBE, Unity, RehabNet Control Panel

Spatial navigation Chen et al., 2017 SSVEP Matlab

Tetris game Wang et al., 2019 MI, SSVEP Android SDK

VR: attention training Rohani and Puthusserypady, 2015 P300 Microsoft Kinect, Unity 3D

Ali and Puthusserypady, 2015 SSVEP Unity, Adobe Photoshop, Autodesk 3DS Max

Mercado et al., 2019 Neurofeedback Unity, OpenViBE

VR: BCI system McMahon and Schukat, 2018 MI OpenViBE

MI, Motor imagery; SSVEP, steady state visual evoked potential; EMG, electromyogram; SDK, software development kit; VR, virtual reality.

suggested. Now is the time to take action on this. The aim of
this study is not to propose a novel signal-processing algorithm
or provide a consumer-grade application but instead introduce
an open-source-based BCI application that can be easily reused
and customized by BCI researchers at minimal costs (saving time,

no need for platform charge). In this study, we developed a BCI

world tour system (WTS) where a user can choose a touristic

destination (country or city) and watch a movie that essentially
takes them on a visual tour of the destination.

The P300 speller is appropriate for communication, but

sometimes entertainment application is overlooked. Considering
the limited mobility of the end users, providing various

applications, such as entertainment, is important. Especially, it is

unimaginable for them to travel in their limited circumstances.

With this motivation, we chose virtual travel as the theme,

which could help the end user to acquire travel experiences on
their own, and contribute to enhance their self-efficacy, which
is important for improving the quality of life (Bandura, 2010).
Thus, we believe that the developed system could be meaningful
for some end users (e.g., in the locked-in state) and also useful for
other researchers. This application was built on three open source
codes, and all the codes and detailed user manual are available in

the Github repository (BCILab, 2020). Thus, anyone can access
and use the application for their own purpose for free.

The following sections are organized as follows: In “Materials
AndMethods” section, we explain the development environment
and scenario of the WTS as well as the experiment methods.
The results from the questionnaire survey and performance from
the online experiment are presented in “Results” section. Finally,
further issues, such as the limitation of WTS, will be discussed in
“Discussion” section.

MATERIALS AND METHODS

Application Development
Open Source Used
WTS operates through the interaction of three open source
codes, which give us a competitive edge in terms of portability,
scalability, online performance, and UI quality. They are
OpenViBE, Python, and Unity 3D. Detailed information is
as follows.

• OpenViBE for overall integration and scalability: an open-
source software platform specialized for integrating various
components of the BCI (Renard et al., 2010), OpenViBE
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enables real-time acquisition, preprocessing, classification,
and visualization of brain waves. The scenarios can be
designed using function boxes, allowing users to design
experiments more intuitively. Through this, portability was
obtained in the process of collecting and processing the
EEG signal and synchronizing it with the target application.
Furthermore, OpenViBE is compatible with various EEG
devices; thus, a device can be easily changed with minimal
cost. However, there is also limitation. OpenViBE supports
only Window or Linux operating systems; thus, it is hard to
implement a BCI application running onmobile environment.

• Python for signal processing: a Python scripting box provided
by OpenViBE was used in this system. In addition, scikit-
learn, a state-of-the-art machine learning algorithms package,
was used for signal processing and classification analysis
(Pedregosa et al., 2011).

• Unity 3D for application: a game engine (https://unity3d.
com) widely used in 3D game development, architectural
visualizations, and real-time 3D animations. Under the
integrated development and execution environment,
developers can easily develop and debug applications. Since it
supports multiple platforms, the application can be extended
to various versions (Android, iOS, and personal computer).

Game Scenario and Contents
We wanted to give an indirect travel experience and provide
control to the user. Thus, we designed the WTS to have options
for the user to choose through the BCI and to provide an
interesting content (e.g., video). In this sense, the WTS provides
the names of countries or cities on the screen. For the purpose of
the study, the destinations were chosen manually. However, the
WTS is customizable, and the cities and contents can be changed
by the developer or researchers for their own purpose.

Each step is limited to six commands to be the most
suitable for human–computer interaction (HCI). Since cities are
dependent on a specific continent, the system was designed
with a region-based approach, so that users can more intuitively
select the city they want. Therefore, we used a hybrid of the
region-based paradigm and the single display paradigm that we
mentioned earlier. Thirty-six target touristic places are selected
and categorized into six continents, as shown inTable 2. The user
interface was designed to have two steps. The first is choosing
a continent and the second step is place selection, which is
initiated right after the first step. To provide the information
of the chosen place, we used short video clips available through
the internet. The detailed list of videos is available in the WTS
GitHub repository.

BCI Paradigm and Parameters
The WTS follows the conventional visual-evoked P300 BCI
paradigm where target and non-target stimuli flicker in a
randomized order (Squires et al., 1975; Katayama and Polich,
1996; Tarkka and Stokic, 1998; Strüber and Polich, 2002; Polich,
2007), while the BCI system processes the real-time EEG signal
and detects the intended target.

A clearer P300 component is beneficial for maximum BCI
performance, so it is necessary to set the optimal environment

for this, namely the strength of the stimulus (e.g., brightness in
the visual stimulus) and the time between the stimuli as well
as the UI of the system to which the stimulus is given. In each
step of the developed application, there are six stimuli—one
target and five nontargets. This total is far smaller than the 36
in the conventional 6-by-6 P300 BCI speller, making the target-
to-target interval (TTI) too short. This can be advantageous
from a practical point of view by allowing the user to make
quick selections. In addition, by adjusting the distance between
adjacent commands, it is possible to classify targets in a shorter
time, solving the problem of adjacencies being wrongfully
detected as targets. However, reduction in average TTI may
also lead to a smaller P300 amplitude (Fitzgerald and Picton,
1984; Polich, 1990; Gonsalvez and Polich, 2002) and may hinder
the formation of prominent features of target epochs. This
consequently causes degradation of performance in the BCI.
Since the aim of this study is also to show the feasibility of the
developed system, we simply used 20 for the number of blinks
per stimulus to gain upper bound classification performance.
Although the number of blinks in the WTS is greater than that
of the P300 speller (normally 15 or fewer), the selection time
for each step takes the same time as typing a character with the
P300 speller. The inter-stimulus interval (ISI) is set to 187.5ms
(stimulus interval: 125ms + blink time: 62.5ms), which is the
same as that of the conventional P300 Speller. However, the time
for each selection is too long, making the system impractical.
Thus, we performed offline analysis to obtain the optimal blink
number, which we discuss in “Results” section.

TCP/IP Communication
For communication between OpenViBE to Unity 3D, TCP/IP
was employed. OpenViBE provides a communication method
called “TCP Tagging” that is reliable and gives the minimum
overheads to the application (Foy, 2016). The WTS uses this
protocol to send and receive messages between the OpenViBE
and Unity 3D applications. We implemented the TCP/IP client
code of Unity3d as concisely as possible to enable faster andmore
stable communication.

Application Evaluation
To evaluate the developed application, we conducted an EEG
experiment with healthy participants. The BCI performance,
EEG data, and opinions of users were collected for further
analysis. This section describes the details of the experimental
design and analysis procedure.

Participants
Ten healthy subjects participated in this experiment. Seven
participants were female, and the average age of all the
participants was 23.2 ± 1.72 years. The study was approved by
the Public Institutional Bioethics Committee designated by the
MOHW (P01-201812-11-004), and all the participants signed the
consent form and were given information on the experiment and
their rights before the experiment began.
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TABLE 2 | Continents and touristic places used in the WTS.

Continents Touristic places

Europe Paris London Rome Barcelona Iceland Firenze

Asia Seoul Dubai Hongkong India Tokyo Shanghai

North America Vancouver New York Las Vegas Los Angeles Chicago Alaska

Oceania Sydney Melbourne Fiji New Zealand Papua New Guinea Vanuatu

South America Barbados Easter Island Patagonia Cusco Rio de Janeiro Buenos Aires

Africa Egypt Cape Town Johannesburg Nairobi Pretoria East Ethiopia

FIGURE 1 | Experimental procedure.

Experiment
Each experiment took about 50min and consisted of a
training session for generating the classifier and two subsequent
online sessions where the subjects played the application with
given targets. The subjects sat in front of a 27-inch LED
monitor and were asked to follow the instructions. Each
session started with a resting state recording block. This block
consisted of open and closed eye conditions, each lasting
1min. Both were conducted with relaxed bodies, and in the
open eye condition, the subject was instructed to stare at the
fixation cross on the screen. The training session consisted of
presenting the subject with six buttons labeled with numbers
1–6, and each button was sequentially targeted and randomly
flashed 30 times. This produced 180 target and 900 nontarget
epochs. Based on the collected EEG signals, the classifier
was constructed.

In the two subsequent online sessions, the subject played the
application. The goal was to choose the instructed continent and
touristic destination in order to watch its corresponding 10-s
video. Each session consisted of six trials, and each trial started
with the subject choosing first the target continent and then the
target destination. The target continents and touristic places were
randomly selected and provided to the subject as an instruction
on the top of the screen. The only difference from the training
session is that each button flashed 20 times. Once the place
was selected, the video clip was played, and the next trial was
initiated at the end of the video. Over two online sessions, the
subject watched 12 movies of 12 touristic destinations, and this
procedure produced 480 target and 2,400 nontarget epochs. The
procedure of the experiment is further described in Figure 1. In
both the training and online sessions, each subject was asked to
look at the target stimulus and count the number of blinks. In
addition, all sounds were muted, since unexpected or annoying
sounds may distract the overall experiment.

Questionnaire
Pre- and post-experimental questionnaires were given to the
subjects to evaluate the practical issues of the WTS from the
perspective of the user. Questionnaire items were implemented
in a Unity 3D environment to help each subject complete it easily
and comfortably, and the results of the questionnaire were saved
in an electronic text file for data analysis.

Since the aim of this evaluation is to collect the user feedback
on how they accept this application, we designed naïve question
items, which give us information about each part of the system.
Thus, we did not construct any hypothesis. Basically, we referred
to two published articles (Cho et al., 2017; Lee et al., 2019), and
question items were organized according to a study (Cho et al.,
2017) that collected BCI data from 52 subjects. Some items were
adopted from the study, and we also added specific questions
about the experience of the user with the application (e.g., Follow,
Control, Enjoyment, and Completeness in Table 3). The items in
each questionnaire are described below.

The pre-experiment questionnaire included questions focused
on general information (e.g., history of neurological/mental
disease, hours elapsed since smoking/drinking, hours slept the
previous night), previous experience in a BCI experiment, and
self-assessed scores of depression, mood, and expectation of the
application in a 5-point Likert scale.

The question items in the post-experiment questionnaire
were designed to assess application usability and gather
opinions of the subjects. These questions ask the subjects to
evaluate instructions of the experiment, controllability of the
application, adequacy of playing time, and appropriateness of
the surrounding environment. Finally, questions concerning the
overall completeness of the WTS and enjoyment of the subject
were asked to measure satisfaction. Additional details about the
question-and-answer format of the pre/post questionnaires are
listed in Table 3.
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TABLE 3 | Items of pre/post questionnaires.

Questionnaires Question items Answer format

Pre • Have you had brain or mental disease? Yes or No

• Have you ever participated in BCI

experiment or game?

Yes or No

• Write hours you slept the previous night. 1–24

• Write hours elapsed since you

had alcohol.

1–24, 0 if did not

• Write hours elapsed since you had

a cigarette.

1–24, 0 if did not

• Evaluate your depression

level. (Depression)

1–5 (Depressed)

• Evaluate your mood level. (Mood) 1–5 (Excited)

• Evaluate your expectation to BCI

WTS. (Expectation)

1–5 (Interested)

Post • Evaluate your mood level. (Mood) 1–5 (Excited)

• Evaluate how well you followed the

instruction. (Follow)

1–5 (Well)

• Evaluate the controllability to operate the

WTS. (Control)

1–5 (Easy)

• Evaluate the playing time. (Length) 1–5 (Long)

• Evaluate the comfort of

surroundings. (Comfort)

1–5 (Comfortable)

• Evaluate the completeness of the

WTS. (Completeness)

1–5 (High)

• Evaluate how much you enjoyed the

WTS. (Enjoyment)

1–5 (Enjoyed)

Data Acquisition and Processing
For EEG acquisition, we used the Biosemi Active Two
system (with 32 channels, 2,048Hz sampling rate). During the
experiment, these 32 electrodes were attached to the scalp of the
subject according to the international standard 10–20 System
(Jasper, 1958), and the brain signals were recorded from 32
locations (FP1, AF3, F7, F3, FC1, FC5, FC6, FC2, F4, F8, AF4,
FP2, Fz, C3, CP1, CP5, CP6, CP2, C4, Cz, P7, P3, Pz, PO3, PO4,
P4, P8, T7, T8, O1, Oz, and O2).

All EEG data acquired during the training session were used to
construct a classifier that was used in the two subsequent online
sessions. The procedure of the signal processing is presented in
Figure 2.

First, the raw EEG was down-sampled from 2,048 to 512Hz
and re-referenced by the common average reference. This signal
was spectrally (0.5–10Hz) and temporally filtered (200–600ms
based on cue onset) to extract the only interesting section of
the signal. Then, baseline correction and down-sampling to
128Hz were performed. The amplitudes of each epoch over all
32 channels were converted into a long feature vector and the
significant features were determined through the stepwise feature
selection with the ordinary least square method (p < 0.05). In
the training session, the selected amplitude features were used to
train a linear classifier. In the online sessions, the same process
was followed to produce a long-feature vector consisting of
selected amplitudes overall time and channels. Then, this feature
vector was fed into the constructed classifier in the training

session. The classifier output for each blink has a hard label of 0
(nontarget) or 1 (target). All the outputs from the classifier across
the blinks were summed per button, and a selection (place) with
the highest value was chosen as a target. In this procedure, no
artefact detection or rejection was performed; thus, all the epochs
were used in the following analysis.

Analysis
Each subject played 24 selections (six continents and six place
selections in each session) during the two online sessions.
We counted the number of selections that were correctly
classified through EEG and used the percentage value obtained
by dividing the number of total selections as a final online
performance. In each selection process, there were six stimuli
and 20 epochs per stimulus, resulting in a total of 120 epochs
(target: 20, nontarget: 100). The number of epochs per stimulus
is tremendously important for the system response time. Thus,
we also investigated accuracy by decreasing the different number
of epochs (or blinks of each stimulus) per selection. To calculate
the simulated accuracy, we first set N as the number of epochs
that were used in the classification. Then N number of epochs
were randomly selected from all the epochs in each selection
and evaluated for target versus nontarget classification. This
process was repeated 10 times and consequently yielded 10
accuracy estimates over the selection problems. Finally, the
offline accuracy for N was calculated by averaging the 10
estimates. We calculated the offline accuracy with different Ns,
which were 1, 5, 10, 15, and 20.

RESULTS

BCI World Tour System
All of the source codes and documents for the WTS can be
found in the Github repository (BCILab, 2020). In addition,
the repository includes the user manual of the application, so
that any developer or researcher can easily modify and play the
WTS for research or entertainment purposes. In the following
section, we describe the developed application using state and
system diagrams.

Figure 3 describes a state diagram of the developed
application. The system starts with the initial state and the
username is input. Then, the resting and training scenes are
started. Once the training mode is completed, then the user can
play through the play (online) mode. In the online mode, the
map is positioned in the background, and the stimuli indicating
the continents and touristic places are overlaid. To provide the
new travel experience to the user, the background scene was
designed to have touristic images (e.g., sky, airplane, world map,
and tourist sites). However, during selection, the background
changes to the same dark blue screen used in the training session.

The application viewed from the side of the developer is
as follows: in the online mode, the user looks at the target
stimulus to choose a continent while all the six stimuli randomly
blink. Whenever a stimulus blinks, this moment is marked
and transmitted to the Python module in OpenViBE. When
the blinking period is done, the pre-trained stepwise linear
discriminant analysis (SWLDA) algorithm from the training
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FIGURE 2 | Procedure of the signal processing.

FIGURE 3 | The WTS state diagram.

mode classifies the given EEG signal and determines the
continent. Based on the predicted continent, Unity 3D switches
from the continental scene to the corresponding destination
scene. Subsequently, the scene presents the new map of the
chosen continent and the stimuli of six locations (country or
city). Once a target place is determined by the same procedure
used in continent selection, the corresponding video is played.
The system diagram of the WTS is shown in Figure 4.

The WTS has the following features. First, it works with
various EEG devices, because OpenViBE supports many different
EEG devices. Second, customized algorithms can be used.
OpenViBE provides a box “Python Scripting” that allows it to
execute Python code (Bonnet, 2012). The box is used to process
data entering, preprocessing, and leaving OpenViBE. This means
that any algorithm implemented in Python can be reused in the

WTS. Although SWLDA was used in this study for evaluation,
developers can implement their own algorithm in Python script
and use it for the main signal-processing code in the WTS.
The sample code for signal processing is provided in the WTS
repository. Third, video clips can be updated. Since the video
source is independently managed, it can be replaced by longer,
shorter, or even different multimedia sources. By updating the
video sources, playing may provide different experiences.

Experimental Results
None of the subjects had a neurological or mental disease, and
three of them (S1, S5, S6) have previous experiences with the
P300 experiment. The mean sleeping time was 5.15 h per night.
None of the subjects smoked a cigarette, and only a subject (S4)
consumed alcohol 10 h before the experiment. In the following
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FIGURE 4 | The WTS system diagram.

TABLE 4 | Questionnaire results.

Question items S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean(std)

Pre Depression (1–5 Depressed) 2 3 3 4 3 3 1 1 2 1 2.3 ± 1.00

Mood (1–5 Excited) 3 3 3 3 3 3 3 3 3 3 3.0 ± 0.00

Expectation (1–5 Interested) 4 5 5 4 3 4 5 5 5 3 4.3 ± 0.78

Post Mood (1–5 Excited) 3 2 3 1 2 2 3 3 3 3 2.5 ± 0.67

Follow (1–5 Well) 5 3 4 5 5 3 5 3 5 4 4.2 ± 0.87

Control (1–5 Easy) 5 5 3 5 5 5 5 3 5 5 4.6 ± 0.80

Length (1–5 Long) 3 4 3 4 3 3 4 3 3 4 3.4 ± 0.49

Comfort (1–5 Comfortable) 5 5 3 5 5 5 5 3 5 3 4.4 ± 0.92

Completeness (1–5 Complete) 2 4 2 5 1 3 5 3 4 2 3.1 ± 1.30

Enjoyment (1–5 Enjoyed) 3 4 1 4 2 3 4 4 3 2 3.0 ± 1.00

Note that a score of 3 means “Neutral.”

section, the results from the questionnaire survey and online
session are presented.

Questionnaire Results
The results of the questionnaires that were answered during
the experiment are shown in Table 4. The subjects answered
with an average score of 4.3 ± 0.78 (Expectation) for the pre-
experimental question about the expectation of the WTS and an
average score of 3 ± 1 (Enjoyment) for the post-experimental
question about whether it was fun. The mood of the subjects
before the experiment was close to neutral, showing an average
score of 3, while it decreased to 2.5 ± 0.67 after the experiment.
The subjects responded with average scores of 4.2 ± 0.87 for
Follow and 4.6 ± 0.8 for Control, 3.1 ± 1.3 for Completeness,
and 4.4± 0.92 for Comfort. When asked about the overall length
of the application, they answered with an average score of 3.4 ±
0.49, which is slightly higher than 3 (Neutral). For more details,
please refer to the discussion section.

Results From Online Experiment
Ten subjects successfully participated in one training and two
online sessions. As we have mentioned previously, the EEG
signals acquired during the training session were first analyzed,
and then the classifier was constructed. Figure 5A is the picture
of a representative subject in a prior pilot experiment. Figure 5B

shows the target and nontarget ERP signals at the Cz channel
averaged over epochs. Along with the Pz channel, the Cz channel
is known for dominant occurrence of P3a (Johnson Jr, 1993).
P3a is a subcomponent of P300 that occurs in the perceptual
process when the P300 component is divided into perceptual
and cognitive processes (Polich, 2007). To ensure that there is
a significant difference between target and nontarget amplitudes
in training data, the permutation test was performed (parametric
two-sided t-test, alpha 0.05, 10,000 iterations) and false discovery
rate (FDR) correction was performed (family-wise error rate =
0.05) for multiple testing correction (Benjamini and Yekutieli,
2005). As shown, significant clusters appeared in the ERP of all
subjects except one (S8).

In the online sessions, the accuracy of each session was
calculated. The subjects achieved a 95.8% average in the first
session and 98.3% in the second session. The overall average
accuracy was 96.6%. All subjects successfully played online
sessions and eight subjects achieved 100%. The detailed accuracy
for each subject is summarized in Table 5.

Offline Analysis
We conducted two offline analyses to check the significant
channels and the influence of the number of blinks on BCI
performance. The number of selected features during the
training session varied across the subjects. Thus, to examine the
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FIGURE 5 | (A) Pictures of training and online sessions from one representative subject in prior pilot experiment. (B) Averaged ERP signals at the Cz channel in the

training session. Each plot shows the mean and standard error of the signal. In addition, positive and negative areas showing significant difference between target and

nontarget epochs are shown at the bottom of each figure.

significant channels, we simply counted the number of selected
features per channel. This procedure provides a histogram per
subject. By summing up the histograms across all the subjects, we
could obtain the result representing the degree of contribution
to classification per channel. Figure 6 represents the summed
counts across all the subjects. As a result, an increasing tendency
from frontal to occipital areas is observed. When checking the
midline channels, this tendency becomes clearer (Fz < Cz < Pz
< Oz), which means that parieto-occipital channels are the main
contributor in ERP classification.

An offline analysis was conducted to see if a smaller number
of blinks per stimulus also work with reasonable accuracy. We
checked the classification accuracy and information transfer rate
(ITR) by changing the number of blinks from 1 to 20 (maximum).

The result is shown in Table 6. It was revealed that the accuracy
increases with a higher number of blinks, averaging 48.87, 76.5,
89.95, 93.7, and 96.66% for N = 1, 5, 10, 15, and 20, respectively.
These increases were significant (p < 0.05, by Wilcoxon signed-
rank test), but ITR peaks at N = 5 and the statistical test revealed
that there is a significant difference (p < 0.05) between every pair
except for N = 5 and N = 10 (p > 0.05).

DISCUSSION

In this study, we introduced an open-source BCI application,
which uses the P300 BCI control paradigm. Through experiment
and survey, we demonstrated the reasonable performance of
this system and provided the opinion of the user. However,
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TABLE 5 | Classification results from two online sessions.

Selection S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 O O O O O O O O X O O O O O O O O O O O

2 O O O O O O O O O O O O O O O O O O O O

3 O O O O O O O O X O O O O O O O O O O X

4 O O O O O O O O O O O O O O O O O O O O

5 O O O O O O O O O O O O O O O O O O O X

6 O O O O O O O O O O O O O O O O O O O O

7 O O O O O O O O O O O O O O O O O O O O

8 O O O O O O O O O X O O O O O O O O O O

9 O O O O O O O O X O O O O O O O O O O O

10 O O O O O O O O X O O O O O O O O O O O

11 O O O O O O O O O O O O O O O O O O O O

12 O O O O O O O O O O O O O O O O O O X O

Accuracy 100 100 100 100 100 100 100 100 66 91 100 100 100 100 100 100 100 100 91 83

ITR 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09 1.71 3.82 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09 3.82 3.01

Correctness is marked with O (correct) or X (incorrect) in each selection. Overall accuracies (%) and the corresponding ITR (bit/min) are presented in the last row.

FIGURE 6 | Channel significance. The number of selected features per channel was summed across subjects. The channels are presented from frontal to occipital

lobe for better visibility. The midline channels (Fz, Cz, Pz, and Oz) are marked with blue bar.

there are issues to discuss and limitations to the current version
of the WTS. In the following subsection, we discuss several
points observed in the results about the survey and online/offline
analysis. Also, we present the potential limitations of this WTS
and suggest future directions.

Questionnaire Study
Most BCI studies focus on system performance (e.g.,
classification accuracy), while the subjective opinion of BCI
application is overlooked. However, because subjects are
the potential users of BCI applications, their opinions are

valuable to evaluate the overall usability of a BCI application
and further improving the system. Some studies have used
questionnaires to learn how users feel about BCI systems
(Allison, 2009; Guger et al., 2009; Fazel-Rezai et al., 2012; Ahn
et al., 2014, 2018). In this study, we also used questionnaires
to collect personal information of subjects, system usability,
and mood/enjoyment of users. Depending on the goal of
the evaluation, the question items may vary, but we think
that some general question items may be still useful in
evaluating BCI applications. We suggest the following:
(1) personal information (e.g., age, sex, BCI experience,
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TABLE 6 | Accuracy results across a different number of blinks.

Number of blinks (Response

time : ISI + system delay)

Accuracy/ITR

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean (std)

1 (6.62 s) Acc. 49.16 50 42.50 66.25 36.25 50.00 52.50 69.58 41.66 30.83 48.87 ± 11.50

ITR 3.66 3.84 2.41 7.97 1.45 3.84 4.39 8.99 2.27 0.79 3.96 ± 2.65

5 (11.37 s) Acc. 83.75 70.83 71.66 93.75 52.08 83.75 86.25 95.85 81.25 45.83 76.50 ± 15.76

ITR 8.27 5.47 5.63 11.10 2.50 8.27 8.91 11.82 7.67 1.75 7.32 ± 3.32

10 (17.75 s) Acc. 95.00 89.16 88.33 100 69.58 98.33 99.16 99.16 90.41 70.41 89.95 ± 10.80

ITR 7.38 6.21 6.06 8.74 3.35 8.19 8.44 8.44 6.44 3.45 6.67±1.98

15 (23.87 s) Acc. 99.58 95 95 100 73.75 98.33 100 100 98.33 77.08 93.70 ± 9.30

ITR 6.37 5.49 5.49 6.50 2.88 6.09 6.50 6.50 6.09 3.21 5.51 ± 1.36

20 (30.5 s) Acc. 100 100 100 100 79.16 100 100 100 100 87.50 96.66 ± 6.92

ITR 5.09 5.09 5.09 5.09 2.68 5.09 5.09 5.09 5.09 3.44 4.68 ± 0.87

Accuracy (and ITR) is presented over different number of blinks (N = 1–20) per subject.

Mean and standard deviation (std) are presented in the last column.

disease history, and sleep hours); (2) system side (e.g.,
controllability, response time, overall completeness, UI/UX,
and instruction); and (3) user side (e.g., mood, enjoyment,
fear, difficulty, familiarity, expectation, and satisfaction).
Perhaps, there may be more items, but we believe that
considering these three categories together will help to better
understand the opinions of users and ultimately further improve
BCI applications.

Opinions of the subjects were obtained through the
questionnaire items, and we can conclude the following based
on the scores: Expectation is high, while Completeness and
Enjoyment were not. As mentioned earlier, usability also includes
helping a given system achieve the goals that users crave,
so to optimize the usability of the system, it must contain
what the user wants to achieve. The high expectation score
supports that the WTS satisfies this condition. Thus, the
WTS may need to be improved in UI/UX rather than system
performance to increase user satisfaction. For example, the city
video playback time was limited to 10 s for a smooth and
short experiment and the content may not be satisfying to
users. Therefore, it is necessary to improve the UI, video clips,
button selection speed, etc. so that it can be more familiar
to users.

Next, because Control and online accuracy are higher than
Follow, it can be assumed that the WTS is effectively using
the BCI system to reflect the intention of the user. Since the
P300 epoch shown in Figure 5 formed through the preprocessing
process preserves the positive and negative components shown
in the previous study (Polich, 2007), we think it has cleared
the doubt of readers about the high system accuracy. Finally,
for the question concerning the length of playing time, most
of the subjects were not satisfied, sharing that they found the
response time to be too long and somewhat boring. Therefore,
offline analysis was performed to reduce the number of blinks;
and in the next version, the reduced number of blinks can
be used to shorten the system response time. However, the
approach of the survey may be limited, since it was designed
to measure simple opinion. Thus, some points might be missed.

We think that the feedback of users is valuable information to
update a BCI system. Also, certain guidelines for system design
(Jeunet et al., 2018) or training protocol (Mladenović, 2021)
would be considered from the initial phase of developing a new
BCI application.

Improving Response Time
In the experiment, we used 20 blinks per stimulus, which led
to a long response time—about 30.5 s for a selection. An offline
analysis was performed to obtain a reasonable number of blinks.
Ideally, the number should be small enough to shorten the
response time but also yield good performance for use in a BCI.
In Table 6, the average classification accuracy close to 90% is
obtained at N = 10, and it yields 17.75 s for the response time for
a selection in the WTS. On the other hand, ITR is relatively high
at N = 5 and N = 10. Statistical test revealed that the two cases
are not significantly different in ITR, but accuracy is statistically
higher inN = 10 than inN = 5. Interestingly, six subjects already
exceeded 90% at N = 10, and two subjects were close to 90%.
Considering these results, we may choose N = 10, since it shows
a relatively good ITR and high classification accuracy that is
around 90%. Then, we can reduce the response time of the WTS
by almost half. A more flexible approach rather than fixing the
number of flashes can be used as introduced in Thomas et al.
(2014) to efficiently running BCI with the aim of shortening the
response time, or other control paradigms, such as steady state
visual evoked potential (SSVEP), can be used for faster response
time. However, visual fatigue should be considered before using
it. SSVEP may cause more eye (or other modality) fatigue than
the P300 because of persistent stimulation (Cao et al., 2014).

Improving Performance
There is another thing to note about the offline analysis results:
The number of required blinks for good BCI performance
seemed to vary across subjects. This may be related to the
variation of ERP peaks across subjects (Won et al., 2019). In
various studies, performance variation is one of the issues to be
resolved (Guger et al., 2003, 2009, 2012; Ahn et al., 2013, 2018;
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Ahn and Jun, 2015; Cho et al., 2015), so an in-depth analysis
of this observation should be done to understand it in more
detail. As noted in Data Acquisition and Processing section, no
artefact rejection was performed in the system; thus, we believe
that introducing a better machine learning technique or artefact
rejection may help to improve the performance while decreasing
the number of blinks for shorter response time and reduce the
performance gap between subjects (Xiao et al., 2019).

User Adaptation
Table 5 presents the online accuracy of each session.
Interestingly, a subject (S5) showed very different accuracies of
66% in the first and 91% in the second session. Since the SWLDA
algorithm used in the WTS is not adaptively updated during
online sessions, we interpret that the subject might adapt to the
WTS. In other words, this result suggests that some users need
time to get used to playing a certain BCI. However, the number
of subjects who show this tendency and the required length
should be investigated with more cases and UX issues in the
BCI application. Furthermore, the standardized experimental
protocols may be helpful for understanding or minimizing the
performance variability among participants (Mladenović, 2021).

Limitations and Future Study
Although we demonstrated the applicability of the WTS, there
are still limitations from a practical viewpoint. First, the number
of commands that can be selected for each step is limited.
Although there are only six continents, each continent has
numerous cities. Therefore, we can increase the number of cities
to choose from for each step. Since this system is open-source,
it will be possible to increase commands for cities. However, as
mentioned in Materials and Methods section, as the number of
commands increases, the distance between adjacent commands
becomes shorter, and an error in which they are misclassified as
targets may occur. There are several studies that can help increase
the number of commands (up to 100) while decreasing their size,
so it is worth considering in future research (Xu et al., 2018,
2020).

Second, in the current version, the interaction between a user
and the system is somewhat limited. There is no “move-back”
or “pause” command. This means users should wait until the
end of a selected video being played. In this sense, the system
may be considered as not dynamical. Currently, the WTS is open
to the public, thus touristic videos/names or command buttons
can be changed for the purpose of the study by updating video
files or source codes. However, the limitation of the interaction
process in the current version should be considered before the
actual use of the system and ultimately updated to provide better
user-friendly UI/UX in the future.

Third, as a typical BCI application, the WTS also requires
training time for generating a classifier to be used in the online
session. However, this is one of the major obstacles hindering
the progress of BCI applications. To be a more practical
application, the training mode should be minimized or removed.
Numerous studies are underway in the field to construct this
general classifier (Kindermans et al., 2014a,b; Verhoeven et al.,
2017; Eldeib et al., 2018; Lee et al., 2020). Usually, however, a
general classifier requires a significant number of data samples,

which can be achieved through transfer learning using data
from one domain for another. Also, more complex machine
learning algorithms (such as random forest, convolutional
neural network, ensemble classifier) may be beneficial. In the
future, we will also collect a large sample and investigate
various models with the aim of achieving a calibration-less
BCI application.

Fourth, the experiment was aimed at testing the system as a
whole and performed with healthy subjects. We believe that the
collected user feedback could be used in updating the system
and this is also important. However, the system should be tested
with the potential target group (e.g., patients) to understand the
practical issues. This is beyond the scope of the present study, and
we will consider this issue in future work. In addition, the current
questionnaire was designed to simply confirm the opinion on
the application using limited objective indicators. Thus, the
result is somewhat limited in a sense like comparing with
other BCI applications. A more systematic standard approach
should be considered for system evaluation in the future (Lund,
2001).

Another limitation is that we only tested theWTS with a high-
quality research purpose EEG device. However, considering that
the BCI application should be easy enough for a naïve user to
play with minimal knowledge and effort, the WTS should also
be evaluated with devices with consumer-grade (cheap, easy, and
possibly lesser channels) devices or dry electrodes.

CONCLUSIONS

We pointed out problems in the current BCI field and drew a
big picture that may help the field to move forward. Also, we
introduced a world tour system that is an open-source-based BCI
application. The applicability of the WTS has been proven with
an online experiment and questionnaire survey. All the codes and
user manual for the WTS can be found in the GitHub repository.
Thus, researchers and developers can easily use it for their own
purposes because it comes with minimum costs (saving time, no
need for platform charge). We hope that the arguments and the
application will contribute to the BCI field, and ultimately, make
many practical BCI applications emerge.
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The research shows that subjective feelings of people, such as emotions and fatigue, can

be objectively reflected by electroencephalography (EEG) physiological signals Thus, an

evaluation method based on EEG, which is used to explore auditory brain cognition laws,

is introduced in this study. The brain cognition laws are summarized by analyzing the

EEG power topographic map under the stimulation of three kinds of automobile sound,

namely, quality of comfort, powerfulness, and acceleration. Then, the EEG features of the

subjects are classified through a machine learning algorithm, by which the recognition of

diversified automobile sound is realized. In addition, the Kalman smoothing and minimal

redundancy maximal relevance (mRMR) algorithm is used to improve the recognition

accuracy. The results show that there are differences in the neural characteristics of

diversified automobile sound quality, with a positive correlation between EEG energy and

sound intensity. Furthermore, by using the Kalman smoothing and mRMR algorithm,

recognition accuracy is improved, and the amount of calculation is reduced. The novel

idea and method to explore the cognitive laws of automobile sound quality from the field

of brain-computer interface technology are provided in this study.

Keywords: automobile sound quality, EEG, brain cognition laws, Kalman smoothing, mRMR

INTRODUCTION

Methods that are applied to evaluate automobile sound quality mainly rely on the psychological
feelings of people and cannot guarantee the universality of evaluation results (Tan and Tan,
2012). Methods of ranking, semantic differentiation (Guo et al., 2017), grade score, pairing
comparison (Parizet, 2002; Ellermeier et al., 2004) are commonly used for subjective evaluation.
However, when the sound qualities with similar semantics (such as “comfort,” “powerfulness,” and
“acceleration”) are designed under the dominance of sound forward design, and the traditional
subjective evaluation methods are difficult to reflect the true feelings of the evaluator. In addition
to inherent physical parameter characteristics of sounds, the evaluation of an evaluator for the
sound is also related to their cognition, experience, and emotional state (Genuit, 2004). Therefore,
it is necessary to introduce a new automobile sound quality evaluation method for evaluating the
diversified automobile sound.

Related Works
In recent years, with the research on physiological signals in emotional computing, it has become
possible to use physiological signals to evaluate automobile sound. EEG signals with high time and
spatial resolution are widely used (Lin et al., 2010; Bhatti et al., 2016; Geethanjali et al., 2018).
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The analysis of EEG signals is challenging, and the analysis
of EEG signals in the field of emotion recognition relies on data
pre-processing, feature extraction (Tsang et al., 2010; Kai et al.,
2016; Poikonen et al., 2016), and feature classification. Feature
extraction is crucial to ensure recognition performance. Only by
selecting EEG features closely related to the purpose of research
can effectively meet the performance of recognition (Nishimura
and Mitsukura, 2013; Sheykhivand et al., 2020). Some studies
indicated that rhythm characteristic of EEG can reflect human
brain activities, which are δ (1–4Hz), θ (4–8Hz), α (8–12Hz),
β (12–30Hz), and γ (>30Hz) (Knyazev, 2012; Zheng and Lu,
2015). Chen et al. (2021) proposed an EEG physiological acoustic
index to evaluate subjective annoyance by comparing EEG
rhythm characteristics and the change in the trend of subjective

FIGURE 1 | Flow chart for the new evaluation method of car sound quality based on brain signals.

annoyance index data. Li et al. (2014) used white noise and pure
tone as stimulus sources to study the relationship between EEG
characteristic signals and subjective annoyance, and it is found
that the average power of θ waves has two peaks in each brain
area during steady stimulation. Ali et al. (2013) studied EEG
signals under different sound pressure levels and stimulation
intervals, and the study found that the θ wave voltage increased
significantly because of high sound pressure level stimulation. Di
and Wu (2015) showed that the average α wave power in the left
frontal lobe was significantly lower than that in the right frontal
lobe under the stimulation of pleasant sounds.

In the study of automotive sound quality and EEG signals,
Lee and Lee (2014) introduced a new method to study human
sound perception by means of EEGs, where EEG analysis and
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measurement were performed to demonstrate human cerebral
response to car acceleration sounds and concluded that the
α-wave power could serve as an objective evaluation index
of automobile acceleration sounds. Lee et al. (2013) selected
the α-wave to calculate the correlation between subjective
evaluations of passenger car sounds and their results indicate
that the intensity of the correlation between the cerebral α-
wave and subjective evaluations can be determined based on
the size of the correlation. Nishimura and Mitsukura (2013)
put forward a group method of data handling (GMDH) to
analyze the sound quality of EERs utilizing neural networks.
Compared with the result efficiency of the principal component
analysis (PCA), the GMDH neural network resulted in a higher
recognition of the target sound quality. The above studies showed
that the distinct physiological response of the human brain to
sound stimuli authentically exists.

Contribution
It is difficult to distinguish automobile sounds with similar
semantics by means of traditional subjective evaluations. In
contrast to the application of EEG signals for emotion
recognition, the study of automobile sound quality based on
EEG is in infancy, the relationship between EEG feature signals
and automobile sound quality is still unclear, and there is less
relevant literature. However, there are related research studies on
actively playing music based on EEG to improve the subjective
emotions of people (Bajaj and Pachori, 2015; Kalaganis et al.,
2016). Therefore, a method for mapping EEGs and diversified
sound quality for decoding automobile sounds is proposed to
reveal the feasibility of using EEG signals as a method of
automobile sound quality evaluation, which can avoid language
description. The study on decoding automobile sound types can
lay the foundation of neuroscience for realizing active playback
of automobile sounds based on EEGs in the future.

The auditory brain cognition laws refer to the rhythmic
activities of the brain under the stimulation of the automobile
sound. At present, there are no unified standards for the
selection of EEG features, and it requires relevant guidance in
selecting EEG features. Thus, changing the law of EEG under
the stimulation of automobile sound is studied here, so as to
guide the selection of EEG features. By defining three subjective
evaluation indices of automobile sound quality (namely, comfort,
powerfulness, and acceleration), sounds that matched with the
three subjective evaluation indices are collected, The EEGs
of the subjects are measured under the stimulation of three
automobile sounds, respectively, in a suitable temperature and
quiet environment, and the analysis of EEG data contribute
to explore the cognition laws of the brain. The differential
asymmetry (DASM) and rational asymmetry (RASM) features
of subjects are extracted based on cognition laws, and use
classification models to identify differences in automobile sound.
The flow chart is shown in Figure 1.

Study Outline
The layout of this study is as follows: the design of the
experiment is introduced in section Experiment Design. Section
Methodology systematically describes the analysis methods of

TABLE 1 | Details of the sound clips used in the EEG experiment.

No. Labels Sound sample sources #Samples

1 Comfort obtain the acceleration sound in

the car under the WOT of Audi

Q5, Audi A8, and FAW Toyota

Prada by test

3

2 Powerfulness obtain the acceleration sound in

the car under the WOT of Lexus

nx, Alfa Romeo by test; Gets the

acceleration audio of Maserati

president’s car by video website

or car game software

3

3 Acceleration Get comfort car acceleration

game simulation audio by video

website and car game software

3

TABLE 2 | Characteristic distribution of evaluators.

Category Constituent Quantity Percentage

Gender Male 27 70%

Female 12 30%

Occupation Teacher 5 13%

Automotive engineer 24 61%

Postgraduate 10 26%

Age 20–29 years 26 67%

30–39 years 5 13%

40 years or more 8 20%

Driving experience Yes 30 77%

No 9 23%

brain signal feature extraction, selection, and classifier. The
results of data analysis are shown in section Experiment Result,
including the cognitive laws of the brain under three types of
automobile sounds, the use of classification models to compare
the recognition accuracy differences of different features, and the
optimization of model accuracy using the Kalman smoothing
andmRMR algorithm. Section Discussion discusses the results of
Section Experiment Result and describes the research significance
of this study. Section Conclusions shows the summary and
prospects of this study.

EXPERIMENT DESIGN

The three types of automobile acceleration sounds are selected
(namely, comfort, powerfulness, and acceleration) as inducing
materials for EEG tests. These sounds that cause strong subjective
and physiological changes in the subjects are mainly obtained
by means of vehicle measurements, online research (such as
collect acceleration sound samples of high-end automobile on
website sites or from car game software), etc. Table 1 lists the
three types of automobile sounds used in the experiment. It is
of significance to emphasize that these automobile sounds are
divided into three parts, namely, comfort, powerfulness, and
acceleration, by 39 engineers with experience in sound quality
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analysis, and the characteristic distribution of the 39 evaluators
is shown in Table 2. The aim of this study is to identify three
types of automobile sounds based on EEG signals. Assuming that
comfort is−1, powerfulness is 0, and acceleration is 1 here, these
data labels make sense when training a classifier.

Based on the experimental design and selection of subjects by
Zheng and Lu (2015), a total of 15 healthy subjects are recruited,
who are different from the 39 engineers. All the subjects included
11 males and four females (aged: 22.4 ± 2.53 years) who are
professors or graduate students from the Wuhan University
of Technology. They all have experience in automobile sound
quality evaluation and ensure their optimal mental health.

Before the experiment started, the test operation procedures
and specifications were relayed to all the subjects in advance, and
they were instructed to properly wear high-fidelity headphones
and press buttons combined with the interface prompts. Making
sure that the subjects concentrate on listening to sounds and
avoid obvious limb movements during the experiment is of great
importance. A 64-channel AgCl electrode cap is used to collect
EEG at a sampling rate of 1,000Hz. The EEG lead distribution
and electrode cap test are shown in Figure 2.

The three automobile sounds in each type are played
randomly, and each sound is played 27 times repeatedly.
There is a 5 s start prompt before each sound is played, and
10 s rest feedback after playing. A questionnaire format that
the computer interface will pop up the type selection item
during the 10 s rest feedback period is used, and the subjects
judge which type the sound belongs to (namely, comfort,
powerfulness, or acceleration). The playback process is shown
in Figure 3.

METHODOLOGY

Feature Extraction
Combining the effective features in the field of emotion
recognition, the power spectral density (PSD) (Thammasan
et al., 2016), Hjorth (Jorth, 1970), and differential entropy (DE)
(García-Martínez et al., 2016) are extracted as the basic EEG
features in this study.

The Welch algorithm is used to set a 1-s long rectangular
window with an overlap rate of 50% and obtain the PSD
corresponding to different frequency bands. The Hjorth
parameters, such as activity, mobility, and complexity (Vidaurre
et al., 2009; Kaboli et al., 2015) are defined as

Activity = var(X(t)) (1)

Mobility =

√

var( dX(t)
dt

)

var(X(t))
(2)

Complexity =
Mobility( dX(t)

dt
)

Mobility(X(t))
(3)

where var denotes the variance of the calculated X(t) signal.

The DE that satisfies the Gaussian distribution is defined as
(García-Martínez et al., 2016).

H(X) =

∫

∞

−∞

1
√

2πσ 2
exp

(x− µ)2

2σ 2
log

1
√

2πσ 2

exp
(x− µ)2

2σ 2
dx =

1

2
log 2πeσ 2 (4)

where X means a continuous source, Gaussian distribution
satisfies N(µ, σ 2), and π and e are a constant.

There are also several pieces of evidence that asymmetry
features can well represent the cognitive laws of the human brain
(Zheng et al., 2017). In this study, the DASM and RASM of 26
pairs of asymmetric electrodes are calculated, and there are six
type features, which are expressed as

DASM_PSD = PSD(Xleft)− PSD(Xright) (5)

DASM_Hjorth = Hjorth(Xleft)−Hjorth(Xright) (6)

DASM_DE = DE(Xleft)− DE(Xright) (7)

and

RASM_PSD = PSD(Xleft)/PSD(Xright) (8)

RASM_Hjorth = Hjorth(Xleft)/Hjorth(Xright) (9)

RASM_DE = DE(Xleft)/DE(Xright) (10)

The frequency is divided into five segments based on the EEG
rhythm, as shown in Figure 4. The dimensions of DASM_PSD,
DASM_Hjorth, DASM_DE, RASM_PSD, RASM_Hjorth,
and RASM_DE are 130 (26 electrodes∗5 rhythms), 390 (26
electrodes∗ 5∗ 3 rhythms), 130 (26 electrodes∗ 5 rhythms), 130
(26 electrodes∗ 5 rhythms), 390 (27 electrodes∗ 5 ∗3 rhythms),
and 130 (27 electrodes∗5 rhythms), respectively.

Feature Selection
Herein, the Kalman smoothing algorithm is used to filter out EEG
components that are not associated with sounds. The purpose
of Kalman smoothing is to calculate the smoothed value of the
system stateXk at moment k after obtaining all observations up to
time T (Cheng Y and, 2018), smoothing formula is expressed as

p(Xk|y1 :T) = N(Xk|m
8
k, P

8
k) (11)

where T > k, y1 :T denotes all observations in the 1∼T time
period and N(X|µ, σ ) denotes the random variable X satisfying
a Gaussian distribution with mean µ and variance σ . T times
forward recursion is completed from the initial time 1 to the
time T, and then perform T times backward recursion from
the time T to complete the Kalman smoothing process. The
forward recursion process is Kalman filtering, and the state
estimatemT and covariance matrix PT at the last time T obtained
by the forward recursion are the initial state estimate m8

T and
covariance matrix P8T of the backward recursion process, namely,
mT =m8

T , PT = P8T .
In addition, the most common problem that is “curse of

dimensionality” for pattern recognitions leads to the rapid
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FIGURE 2 | EEG test setup: (A) distribution of EEG leads for 62 channels and (B) electrode cap test.

FIGURE 3 | The protocol used in the experiment for sound quality evaluation.

FIGURE 4 | Distribution map of EEG rhythm frequency band.

increase in computation with the increase in feature dimensions
(Zheng et al., 2017). It is necessary to select EEG features after
smoothing the EEG data with the target of avoiding feature
redundancy, and the principal component analysis (PCA) and
minimal redundancy maximal relevance (mRMR) algorithm are
compared in this study.

The original domain information cannot be preserved by
means of the PCA (Nakanishi et al., 2011). Hence, the mRMR
algorithm is introduced to select a feature subset from EEG
data here. The mRMR algorithm finds a set of features in the
original feature set that is strongly correlated with the final output
result (Max-Relevance), but the smallest correlation between the
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FIGURE 5 | Classification flowchart of SVM.

features (Min-Redundancy) (Peng et al., 2005). “Max-Relevance”
and “Min-Redundancy” are defined as

maxD(S, c),D =
1

|S|

∑

xi∈S

I(xi; c) (12)

minR(S),R =
1

|S|2

∑

xi ,xi∈S

I(xi, xj) (13)

Combining “Max-Relevance” D with “Min-Redundancy” R,
we define 8(D,R) as

max8(D,R),8 = D− R (14)

The approximate optimal solution can be obtained by the
incremental search method, and the feature is selected
by maximizing 8(D,R).

Classifier
The reasonable design of the classifier affects the final result
(Ackermann et al., 2016; Jenke et al., 2017; Hernández et al.,
2018), and the linear discriminant analysis (LDA) and support
vector machine (SVM) are the most common and effective
classifiers. Thus, the performance differences between the LDA
and SVMmodels are compared in this study.

The common basic idea of LDA classification assumes that
every type of sample data can conform to the Gauss distribution.
While a new sample arrives, it can be projected to bring their
projected sample features into Gauss distribution probability
density function, and then calculate its category corresponding
to the peak probability.

The core idea of SVM is to find an optimal hyperplane to
achieve the classification effect, and the corresponding decision
function is

f (x)= sgn(

m
∑

i=1

αiyiK(xi, x)+ b) (15)

where xi represents the characteristics of the i-th sample, yi
represents the category of the i-th sample, and αi the b are the
calculation parameters in the SVM optimization process. The

mostly used kernel function for EEG signals is the radial basis
function (RBF), and the formula is as follows:

K(xi, x)=e
−
‖x−xi‖

2

2α2 (16)

A “one-to-one” method was used to solve the problems of multi-
classification, in which n types of training data are combined in
pairs to construct n (n-1)/2 SVM. In this study, the recognition
of three types of automobile sound quality is transformed
into three two-classification problems. The two important SVM
parameters [namely, penalty coefficient (C) and gamma] are
tuned by simulation to obtain the optimal SVMmodel. The three
sets of decision function judgment values are output, and the
category with the largest judgment value is the output category
of sound, namely, majority voting (Ang et al., 2012). The entire
classification process is shown in Figure 5.

EXPERIMENT RESULT

Since the signal-to-noise ratio of EEGs is low, the original data
that contain a large number of external interference noises and
artifacts are necessarily preprocessed; thus, pure EEG data are
extracted with the EEGLAB toolbox, mainly including EEGs
(0.1–100Hz) are captured by means of a band-pass filter, the
interference band of 50Hz is eliminated by a notch filter, the
sampling rate is reset to 200Hz, the artifacts are removed by
the method of Independent Component Correlation Algorithm
(ICA) and so on.

The data set input to the classification model is N∗26, where
26 refers to the number of channel pairs, and N is the number of
samples. There are a total of 27∗9∗5 = 1,215 samples (duration:
1 s) for each subject. After removal of some abnormal data, the
number of EEG samples stimulated may be <1,215.

Cognitive Laws Induced by Automobile
Sound
The EEG power topographic map shows the spatial distribution
of power of five frequency rhythms, thereby turning complex
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FIGURE 6 | Power topographic maps for the three types of car sounds in five rhythms.

TABLE 3 | The mean accuracy rates (%) of LDA and SVM classifiers for different features obtained from separate and total frequency bands.

Feature Classifier Delta Theta Alpha Beta Gamma Total

DASM_PSD LDA 50.63 40.03 44.34 65.17 66.17 75.01

SVM 59.48 40.68 44.37 66.33 68.27 74.83

DASM_DE LDA 47.56 46.78 49.33 69.71 83.74 84.83

SVM 54.98 52.28 52.98 73.35 87.43 86.26

DASM_ Hjorth LDA 46.83 45.30 51.19 74.05 84.24 81.47

SVM 49.58 46.45 51.10 75.39 86.08 81.02

RASM_PSD LDA 42.71 37.59 40.97 62.70 62.89 68.50

SVM 49.02 39.11 41.78 63.79 64.27 69.11

RASM_DE LDA 45.58 44.18 47.93 69.76 82.75 83.67

SVM 51.79 48.94 51.50 73.14 87.60 85.49

RASM_ Hjorth LDA 40.10 42.28 48.04 72.45 85.00 80.63

SVM 44.19 43.91 49.34 74.83 86.85 81.92

Bold values = highest and lowest accuracy.
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brain function changes into easy-to-follow graphs. The power
topographic maps of five frequency rhythms (δ, θ, α, β, and γ)
of the 15 subjects are drawled, as shown in Figure 6.

First, the spectrum power of the five bands under these two
kinds of sound stimulation is higher than that of comfort from
the perspective of a sense of powerfulness and acceleration. Based
on the stimulation of powerful automobile sounds, the energy
of the δ rhythm is mainly concentrated in the top and occipital
areas of the bottom-right, and the energy is also more prominent
in the frontal area of the upper left corner. The θ rhythm is
similar to the delta rhythm but lower than δ. The energy of the
α rhythm is mainly concentrated in the top area of the lower
left and the frontal area of the upper left, and the β rhythm is
mainly concentrated in the frontal area of the upper left, and the
γ rhythm is symmetrically distributed around the frontal area.

Under the stimulation of acceleration automobile sounds,
the δ rhythm energy of the entire brain is more prominent.
The energy of θ and α rhythm is symmetrical in the left
and right frontal regions, but the energy of θ in the central
region is obvious. The energy of α in the left lower occipital

region is prominent. The energy distribution of the β and
γ rhythms shows a symmetrical distribution in the left and
right frontal areas. As for the comfort sounds, the energy
of the five frequency rhythms is obvious in the upper left
frontal area.

In general, there are clear differences in the frequency
band characteristics of EEG rhythm under different quality of
sound stimulation.

Feature Selection
The frequency band energy of the symmetric electrode has
a significant difference under the stimulations of diversified
automobile sound quality; thus, the symmetrical EEG features
are used as input of classifiers in this study. The LDA and
SVM are used as classifiers to recognize the three types of
automobile sounds, a 5-fold cross-validation scheme is adopted,
and the accuracy of the classifier as an evaluation index of
classifier performance.

Table 3 shows the mean accuracy of LDA and SVM for
symmetrical EEG features (namely, DASM_PSD, DASM_Hjorth,

FIGURE 7 | The results of identifying the two types of automobile sounds (namely, powerfulness and acceleration) using SVM with DSAM_DE as the feature and the

test subjects in form of a questionnaire.

TABLE 4 | The accuracies (%) of unsmoothing and Kalman smoothing method with RASM_PSD features of 120 dimensions as inputs and SVM as a classifier from the

total frequency bands.

State Delta (%) Theta (%) Alpha (%) Beta (%) Gamma (%) Total (%)

Unsmoothing 49.02 39.11 41.78 63.79 64.27 69.11

Smooth 68.8 60.12 62.1 84.33 85.67 90.36

Difference 19.78 21.01 20.32 20.54 21.4 21.25
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FIGURE 8 | The average accuracies of SVM using RASM_ Hjorth obtained from total frequency bands base on PCA and mRMR for subject 12.

DASM_DE, RASM_PSD, RASM_Hjorth, and RASM_DE)
obtained from the five rhythms (δ, θ, α, β, and γ) and the total
frequency bands. The LDA average accuracies (%) are 75.01,
84.83, 81.47, 68.50, 83.67, and 80.63 for the six features from
the total frequency bands, respectively. For SVM, the average
accuracies (%) are 74.83, 86.26, 81.02, 69.11, 85.49, and 81.92.
In the total frequency band, the optimal and worst accuracies
(%) of the LDA classifier are 86.26 and 69.11, respectively, and
for the SVM classifier 84.83 and 68.50, respectively. In the total
frequency band, the best and worst accuracy results appear in
DASM_DE and RASM_PSD, respectively.

Further, from the classification results of the five rhythms, the
LDA classifier has the lowest accuracy with 40.1% in δ rhythms
with RASM_Hjorth as the feature. The accuracy up to 87.6% of
the SVM classifier is the highest in the γ rhythms with RASM_DE
as the feature.

The method of one-factor analysis of variance is used to study
the statistical significance of the data, where the results of DE
and Hjorth are better than those of PSD, and the difference in
classifier performance between LDA and SVM is not apparent (p
> 0.05). There is a significant difference in classification accuracy
(p < 0.05) in diverse rhythms, and the accuracies of β and γ

bands are significantly better than those of the three rhythms.
The classification accuracy of δ, θ, and α is not totally different
(p= 0.04462).

The powerfulness and acceleration are semantically similar.
It is difficult to distinguish the difference based on subjective
feelings during the experiment, which is susceptible to lead
to confusion. Figure 7 revealed that the semantic similarity

recognition effect of automobile sound based on EEG signals is
better than that of subjective questionnaire recognition method.
Figure 7 shows the results of identifying the two types of
automobile sounds (namely, powerfulness and acceleration)
using SVM with DSAM_DE as the feature and the test
subjects in form of a questionnaire. It is obvious that
the accuracy of the questionnaire is lower than machine
learning recognition, and the average accuracy of SVM
is about 11% higher than the questionnaire. It is worth
explaining that the subjective recognition rate of the two other
pairwise comparisons (comfort vs. powerfulness and comfort
vs. acceleration) is both high, and the average accuracy rate is
about 90%, which makes it difficult to reflect the advantages of
EEG recognition.

Optimization of Classifier Accuracy
Firstly, the Kalman smoothing algorithm introduced in section
Feature Selection is used here to remove noise that is not
related to the desired signal, and the RASM_PSD features of
120 dimensions as inputs, SVM as a classifier. Second, the PCA
and mRMR are compared with RASM_Hjorth features of 360
dimensions as inputs and SVM as a classifier.

Table 4 compares the accuracy of the algorithm using
Kalman smoothing and without any smoothing algorithm
in different rhythms. The accuracy (%) of the unsmoothing
method and the Kalman smoothing method in five rhythms
is 49.02/68.8, 39.11/60.12, 41.78/62.1, 63.79/84.33, 64.27/85.67,
and 69.11/90.36. It is obvious that the accuracy of the
Kalman smoothing algorithm method is significantly better than
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unsmoothing (p < 0.05), and the accuracy of the Kalman
smoothing method is improved by 19.78% in δ rhythms and
21.4% in γ rhythms. The above results showed that feature
smoothing can effectively improve the recognition accuracy.

Figure 8 compares the impact of dimension reduction using
PCA and MRMR algorithms on model precision performance,
in which the dimension of the model is reduced from 350 to
50 dimensions with 50 intervals. It is clear that the usage of
the PCA algorithm, which can reduce the dimensionality, does
not significantly improve the accuracy. The accuracy rate drops
from 64.8 to 49.8% when the dimensionality reduced to 50,
and it reaches 62.5% at 250 dimension, which is lower than the
original 360 dimension of 1.7%. However, the mRMR algorithm
can not only reduce the dimensionality, but also improve the
accuracy of the classifier, the accuracy using themRMR algorithm
reached the local maximum (72.00%) at 50 dimension, which
is 7.2% higher than the original 360 dimension. Moreover, the
accuracy improved significantly when the dimension is 50, 100,
and 150, and the dimensionality reduction is not obvious when
the dimension is >150.

DISCUSSION

This study demonstrates the feasibility of EEG-based recognition
of the diversified sound quality of the automobile. Several
important issues are explored.

Some studies showed that the brain waves in a certain
rhythm band are indeed aroused (Lee et al., 2013; Lee and Lee,
2014) under the stimulation of automobile sounds. As shown in
Figure 6, there are frequency band differences in brain cognition
under the stimulation of different sounds, which is specifically
reflected in positive the correlation between EEG energy and
sound energy intensity. The recognition of automobile sound
quality is improved based on frequency band characteristics,
which can well reflect the laws of brain cognition. Some literature
has proved that the frontal area is closely related to human brain
cognition (Saxe, 2006; Shamay-Tsoory and Aharon-Peretz, 2007),
and there is a large proportion of energy in the frontal area under
musical stimulation (Sammler et al., 2010; Di and Wu, 2015).
Therefore, the results shown in Figure 6 of this study provide
further evidence that the cognition laws in the frontal portion of
the human brain can indeed be aroused by automobile, so as to
guide the selection of EEG features.

The DASM has better classification accuracy than RASM,
which is consistent with the conclusion of the literature
(Lin et al., 2010). Among the three basic features (PSD,
Hjorth, DE), DE has the best classification performance,
and it is most suitable for the recognition of automobile
sounds. Although the classification accuracy of DASM_DE
and DASM_Hjorth is close, the dimension of DASM_DE
is 1/3 of DASM_Hjorth. Among the five rhythms, the
classification accuracy of the β and γ rhythms is better than
the other three rhythms, which proves that the correlation
between different sound quality and different rhythms of
brain waves is also different. The classification accuracy of

the SVM model is slightly better than LDA, but SVM has
the advantages of a small number of training sets, fast
training speed, and high accuracy. The best accuracy of
motion classification (82.29% ± 3.06%) is obtained by SVM,
as demonstrated in the literature in both Lin et al. (2010)
and Hadjidimitriou and Hadjileontiadis (2012), which are both
similar to our study.

The comfortable sound is light and natural, and the sound
pressure level is small. On the contrary, the other pairs are
powerful, booming, and exciting, and the topographic map
corresponding to the comfort as shown in Figure 6 differs
significantly from the other two types. For experienced
automotive engineers, it is easy to distinguish the sound
characteristic difference between comfort and powerfulness (or
acceleration), but it is difficult to distinguish the difference
between the powerfulness and acceleration sounds. In
Figure 7, compared with recognizing sounds based on
subjective feelings, using the classification model has higher
recognition accuracy based on EEG characteristics. The
literature (Nakanishi et al., 2011) verified the difference
of EEG between three kinds of acoustic quality by using
PCA and FDA in a similar way to this study. In which, the
result proved that they can obtain the information that they
cannot obtain from questionnaires by EEG. It is possible
that the change of subjective emotion is provoked by the
stimulation of the automobile sounds. However, it is not yet
clear which emotion it is related to and it is the next step in
the research.

As discussed in section Feature Selection, the Kalman
smoothing algorithm can effectively improve the recognition
accuracy and confirm that feature smoothing plays an
important role in EEG-based recognition. In Figure 8, it is
obvious that the mRMR algorithm is an effective method
to optimize the accuracy of recognition, which retains the
original information, such as electrode channels and frequency
bands, while reducing the complexity of calculations. In the
literature (Zheng et al., 2017), the mRMR algorithm was
also used to achieve dimensionality reduction for improving
recognition accuracy of emotion, which improves the accuracy
by 14.41%.

The main contributions of this study to sound quality
recognition from EEG can be summarized as follows: (1) an
EEG signal acquisition test paradigm is designed based on
automobile sounds, which provide experimental guidance for
studying the correlation between automobile sounds and EEG
signals; (2) it was systematically described the processing process
of EEG data from three aspects: feature extraction, feature
selection, and pattern recognition and proves that the selection
of EEG features, the smoothing and dimensionality reduction
of data, and the reasonable design of classifier are crucial for
the recognition of sounds; (3) this study confirms that the
neural characteristics of the three types of automobile sounds
do exist, and the SVM can effectively identify the three types
of automobile sounds through the input of the DASM_DE
of γ rhythm; and (4) this research takes the brain–computer
interface technology as the breakthrough point and introduces
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the physiological features of EEG to recognize the automobile
sound quality innovatively.

CONCLUSIONS

The objective of this research is to investigate the laws of
brain cognition under the stimulation of diverse automobile
sounds and propose an effective method to identify diversified
automobile sounds. The results show that the frequency band
features can well reflect the laws of brain cognition, which can
effectively realize the recognition of automobile sound quality by
constructing asymmetric EEG feature indices and using machine
learning models. The DASM_DE of the γ rhythm is used as
the input, and the accuracy of automobile sounds reached up
to 86.26% by SVM. Also, it proves that the Kalman smoothing
and mRMR algorithm can not only improve the recognition
accuracy but also reduce the amount of model calculation. In
summary, this study proposes a new method of automobile
sound quality recognition from the field of brain–computer
interface technology.

Future study will include further evaluation of the specific
relationship between EEG signals and the inherent characteristics
of automobile sounds, proposed indices that can quantify
automobile sound quality, and the usage of deep learning
algorithms that automatically extract the potential features
of EEGs.
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Brain-Computer Interfaces and
Creative Expression: Interface
Considerations for Rehabilitative and
Therapeutic Interactions
Stephanie M. Scott* and Chris Raftery

Department of Journalism and Media Communications, Colorado State University, Fort Collins, CO, United States

By translating brain signals into new kinds of outputs, Brain-Computer Interface (BCI)
systems hold tremendous potential as both transformative rehabilitation and
communication tools. BCIs can be considered a unique technology, in that they are
able to provide a direct link between the brain and the external environment. By affording
users with opportunities for communication and self-expression, BCI systems serve as a
bridge between abled-bodied and disabled users, in turn reducing existing barriers
between these groups. This perspective piece explores the complex shifting
relationship between neuroadaptive systems and humans by foregrounding personal
experience and embodied interaction as concepts through which to evaluate digital
environments cultivated through the design of BCI interfaces. To underscore the
importance of fostering human-centered experiences through technologically mediated
interactions, this work offers a conceptual framework through which the rehabilitative and
therapeutic possibilities of BCI user-system engagement could be furthered. By inviting
somatic analysis towards the design of BCI interfaces and incorporating tenets of creative
arts therapies practices into hybrid navigation paradigms for self-expressive applications,
this work highlights the need for examining individual technological interactions as sites
with meaning-making potentiality, as well as those conceived through unique exchanges
based on user-specific needs for communication. Designing BCI interfaces in ways that
afford users with increased options for navigation, as well as with the ability to share
subjective and collective experiences, helps to redefine existing boundaries of digital and
physical user-system interactions and encourages the reimagining of these systems as
novel digital health tools for recovery.

Keywords: brain-computer interface, multimodal communication, digital creative therapy, social technology, hybrid
interfaces

INTRODUCTION

As the field of Brain–Computer Interface (BCI) technology continues to progress rapidly, it is
anticipated to serve a vital role in future rehabilitation interventions for individuals experiencing
neurological and/or movement disorders. Although there are various considerations for improving
the accuracy and reliability of BCI systems, modern advancements within the field concern the
potential of developing a system that allows immediate feedback for cognitive rehabilitation, as well
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as a suitable hybrid BCI for enabling creativity (Tan and Nijholt,
2010; Nishimura et al., 2010; Bamdad et al., 2015; Botrel et al.,
2015; Ku€bler and Botrel, 2019; Nijholt, 2019). Recent research
suggests that hybrid BCIs may improve overall BCI performance
through combing different features of brain signals, which can
include the use of two BCI navigational paradigms (for example:
SSVEP and imaginedmovement), or through integrating BCI and
another system (for example, an eye-tracker) (Bamdad et al.,
2015; Todd et al., 2012). Hybrid BCIs can either simultaneously
process input or operate these systems sequentially and may offer
an application that can improve overall performance and enhance
user experience (Todd et al., 2012).

Despite the potential for BCI systems to serve as both
rehabilitation and communication tools, art and creative
expression are often overlooked in assistive technology (AT)
development (Huggins et al., 2019). Exploring BCI and
neurofeedback development through introspective approaches
highlights how novel integrative applications may provide
opportunities to improve well-being resources for less-explored
populations of users and underscores the importance of the user
(Rapoport et al., 2008; Zickler et al., 2013; Ku€bler et al., 2013;
Kübler et al., 2015; Morone et al., 2015; Daly and Huggins, 2015).
Adapting technologies to enable digital creativity by combining
professional art and music therapy practices with technical
components of a responsive closed biofeedback loop may
contribute to meaningful and self-expressive processes. As
such, it is important to consider how applying digital forms of
creative participation in BCI-enabled spaces via the use of
internal and external feedback (both visual and auditory) can
shape meaning, enhance experience, and support wellbeing for
users. Utilizing theoretical tenets of communication and creative
arts therapies disciplines to help guide development of these
systems as innovative digital health tools, we invite consideration
of the communities of practice that envelop social and
technological uses of these technologies. In applying hybrid
forms of navigation to further increase successful user-system
literacy rates as well as encourage neuroplasticity regeneration,
this work suggests that integrating multifaceted design
perspectives into the design of BCI interfaces will support
opportunities for more inclusive and diverse interactions.

TECHNOLOGICAL CONSIDERATIONS FOR
HYBRID INTERFACES

Advances in neuroadaptive technologies, specifically BCIs, have the
potential to become a “major tool for people with disabilities to
control locomotion and communicate with surrounding
environment and, consequently, improve the quality of life for
many affected persons” (Bamdad et al., 2015, p. 355).
Electroencephalography, (i.e., electrical field recording at the
scalp) has the most potential for clinical application, as it is
relatively simple compared to other options, and is cost effective
(Bamdad et al., 2015). However, several aspects of this technology
will need improvements to assist efforts to uncover new patterns of
brain activity underlying artistic creation. (Rapoport et al., 2008; Tan
and Nijholt, 2010; Bamdad et al., 2015; Huggins et al., 2019). By

affording users equal opportunities to engage in creative activities for
expression, these systems can serve as a bridge between abled-bodied
and disabled users and help to reduce existing barriers between these
groups (Todd et al., 2012; Kübler and Botrel, 2019).

Orndorff-Plunkett et al. (2017) suggest that experimental
exploration of neuronal activity can benefit social
neuroscience, arguing that processes such as neuro- and bio-
feedback enable individuals to sense and interact with their own
brain activity, from which causal conclusions in relation to
individual behaviors, thoughts, perceptions, and experiences
can be drawn (Orndorff-Plunkett et al., 2017). The notion of
giving free and open choice of mental commands is notable since,
on average, participants performed best with mental commands
within a sensory modality they found more interesting and that
corresponded to previous experience (Friedrich et al., 2012;
Dhindsa et al., 2017a; Dhindsa et al., 2017b). More specifically,
BCIs designed for artistic or creative applications, or BCIs that
allow mental commands involving abstract visual or auditory
imagery, may need to consider the artistic background of the user
during training (Dhindsa et al., 2017b).

When incorporated into existing art-based BCI programs,
designs focused on user-centered experience such as open-
ended BCIs (Dhindsa et al., 2017a; Dhindsa et al., 2017b) and
hybrid BCIs (Müller-Putz et al., 2015) have demonstrated the
ability to uncover new patterns of brain activity underlying
artistic creation and/or creative expression, further
highlighting how applying insights from multiple disciplines
can help identify gaps in interface design that reduce BCI
usability (Kübler et al., 2013; Kübler et al., 2015; Müller-Putz
et al., 2015; Cruz-Garza et al., 2019; Scott et al., 2019).
Additionally, integrating neurofeedback applications within BCI
offers clinical benefits to users through novel interventions
grounded in psychological and neurosciences practices. The
potential for BCI devices to facilitate general populations through
neuro- and bio-feedback systems known as neurotherapeutic
interventions “may give individuals a more active role in their
own health care, utilize a holistic approach to body, mind, and
spirit, are non-invasive, and elicit the body’s own healing response”
while also possessing the ability to inform social neuroscience and
clinical communities” (King, 2016; Orndorff-Plunkett et al., 2017, p.
14; Scott and Gehrke, 2019; Scott et al., 2019).

CREATIVE APPROACHES TO INTERFACE
AFFORDANCES

Acknowledging the reciprocal relationships between art, science
and technology provides an opportunity to examine existing BCI
interfaces from alternative perspectives, prompting additional
research on how to improve, enhance, supplement, and allow
BCI technologies to provide opportunities for creative expression
and therapeutic care. (Wolpaw et al., 2002; Wolpaw andWolpaw,
2012; Brunner et al., 2015). Expanding existing creative forms of
expression for BCI systems in the form of digitally adapted
creative arts therapies practices may provide different user
groups the ability to communicate that which might otherwise
go unexplored or un-interpreted, as it offers a medium for
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conveying subconscious emotions through new forms of self-
expression within a therapeutic relationship (Stewart, 2004;
Angheluta and Lee, 2011; Ehresman, 2014; King, 2018).

Research has demonstrated that integrating artistic practices into
rehabilitative treatments through which patients are able to create or
co-create art themselves improves patient-physician communication,
facilitates patient thinking, and improve clinical outcomes (Sonke,
2016). Additionally, creative arts therapies have been shown to
positively impact various psychological and physiological outcomes
through the interactive processes of action and experiential-based
training (King and Pascuzzi, 2018; de Witte et al., 2021). Initial
creative arts therapy practices have been redefined through various
interdisciplinary and collaborative efforts to maintain a focus on
enhancing and humanizing the healthcare environment (Sonke,
2016). More recently, research on clinical and evidence based
creative expression in the form of creative arts therapies, which
includes art and music therapies, has demonstrated the potential
for better understanding of specific health conditions while offering a
safe and cost-effective intervention as an adjunct to traditional
medical management (King et al., 2019; Scott et al., 2019; de Witte
et al., 2021; King and Parada, 2021).

Exploring the connection between the brain and expression
through feedback loops that initiate interactive processes, whether
generated through bio-signals using a BCI system or via creative
processes, requires an individual to become aware of information
and learn how to use it in ways that enable communication.
Furthermore, co-integrating both types of feedback loops within
technological system designed to serve a therapeutic purpose may
reveal a third type of loop that assumes a top-down approach; one
which affords individuals the ability to rehabilitate the brain through
guided feedback by using artistic and musical therapy as expression
planes. This has the potential to help those who struggle with
traditional learning practices to better communicate their
experiences and promote their own processes of healing and
recovery (Kaimal, 2019; King and Kaimal, 2019).

THEORETICAL PERSPECTIVES TOWARDS
HUMAN-TECHNOLOGY RELATIONSHIPS

Acknowledging the relationships and interactions that develop via
system engagement as unique exchanges between the human and
nonhuman components highlights how technological artefacts
influence the processes and production of scientific practices and
knowledge. The process of recognizing material, social, and natural
things invite analytical strategies that can assumemore collective and
habitable spaces for construing knowledge, as scientific discovery is
bound by the material objects and things that compromise the
scientific processes of experimentation and observation (Latour,
2009). By engaging an empirically open ethnomethodology that
dissolves the boundaries between things that are considered “social”
from those that are deemed “natural,” Latour (2009) suggests this
process of relocation and re-embodiment of science through
organized “networks of actants” and allows access towards
conceptualizing how the environment is assembled. In-depth
analyses of user-system interactions from these combined
perspectives presents the added opportunity of engaging

ethnographic methodologies, as well as interpretive and semiotic
frameworks towards understanding user-system relationships as
meaningful structures that are created and understood within
cultural contexts (Geertz, 1973).

Engaging a postphenomenological approach towards
articulating modes of knowledge as “embodied and situated”
with mediated human-technological interactions enables
analytical inquiry into the ways in which BCI engagement
influences experience, shapes expression and impacts
communication processes (Rosenberger and VerBeek, 2015, p.
1). Embodied relations through a mediated technology
“simultaneously magnify or amplify and reduce or place aside
what is experienced,” shaping user perception and translation
through “non-neutral” device characteristics (Idhe, 1990, p. 76;
Rosenberger and VerBeek, 2015), implying that the ways in which
knowledge and experience are construed through BCI user-
system engagement is of moral and ethical importance.

A deeper understanding of why this philosophical lens is
important comes from recognizing how this perspective integrates
tenets from two separate yet complementary paradigmatic
frameworks-critical and constructivist (Rosenberger and VerBeek,
2015, p. 9). From a critical standpoint, it encourages dialogue
between an investigator and subjects, and acknowledges findings
as value-mediated while emphasizing that “researcher-researched
relationships” should be built on mutual respect between equals.
In this, BCI researchers, engineers, designers, etc., should not be
objectively distanced from the users that are contributing to their
research objectives, and BCIs should be developed in way that lends
agency and equal voice to users. From a constructivist viewpoint, it
recognizes that knowledge is built through user constructions and
reconstructions, as well as through engagement and active
participation to stimulate changes. This concept reinforces
cooperation between a researcher and a user, weighing the power
structure of what is possible through device affordances is of
consequence (Lincoln and Guba, 1989; Guba and Lincoln, 1994,
p. 230; Nisbet and Scheufele, 2009). As these paradigms maintain
similar epistemological assumptions, this approach allows for both
analytical critique and inquiry towards the multifaceted components
of BCI systems, recognizing these devices as a composite product of
technological affordances, mediated interactions with the technology,
and the communication that occurs between the user and the system,
as well as with researcher (Scott et al., 2019).

EMBODIED DISCOURSE OF SOCIALLY
INTERACTIVE SPACES

Situating our conceptual sense of realities as grounded through
metaphor and language illustrates the ways in which the design of
BCI interfaces can guide new interpretations for user-system
interactions (Lakoff and Johnson, 2003). By using the framework
of distributed cognition as a lens through which to unite the concept
of technologically-mediated social aspects of communication
enabled by BCI systems with the broader mind-body processes,
researchers can account for the ways in which understanding,
knowledge, and perceptions are integrally situated within the
articles, tools and people within our surrounding environments.
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Acknowledging BCI interactions as embodied symbolic spaces
through which both internal and external representations work
together to specify the distributed representational space offers
insight towards how these processes negotiate intrinsic (user) and
environmental (technology) structural affordances in order to
share information and build knowledge. Interactions cultivated
through system engagement allows relationships to form and
offers sites of meaning that can co-create knowledge potentials
between “an individual mind and an external artifact and between
individual minds” (Zhang and Patel, 2006, p. 333). This view
invites further inclusive and perceptual consideration by offering
a perspective that extends essentialist and normative assumptions
towards use and development of these systems (Zhang and
Norman 1994; Salomon, 1997; Sutton, 2006).

Assuming a translational method, otherwise referred to as
“multimodal communicative competence” to analyze interactions
between a user and a technology, allows researchers to
understand the mediation effects on the communication
processes (Royce, 2002, p. 192). Through considering the type
of language used and the semiotic resources deployed, as well as
various intrinsic and extrinsic structural affordances of the given
medium, research can explore how meaning manifests within the
bi-directional relationships fostered by BCI user-system
interactions. Using an architectural model of physical spaces
through three functions of analysis (experiential, interpersonal
and textual), O’Halloran (2004) describes how a systemic-
functional approach, or a “social semiotic” approach to
interactions that occur between a user and a technology, can
offer a way to build knowledge and enhance meaning (p. 27), and
further inform “somatechnological” conceptualizations of these
tools as user-specific sites for embodied communicative
exchanges (Eco, 1976; Rosenberger and VerBeek, 2015, p. 21).

MEDIATION OF EXPERIENCE THROUGH
TECHNOLOGY-ENABLED
COMMUNICATION TOOLS
As the social means of communicating become increasingly
intertwined with practices within medical industries, we find
ourselves relying more on these technologies to both educate
and assess our own personal health and manage our personal
relationships, as a key component of technological
implementation rests on the ability to effectively demonstrate
how emerging innovation may function within the larger context
of a technologically dependent society (Tarhini et al., 2015).
Technological development is often accompanied by a process
that involves modifying and altering emerging technologies in
ways that improve functional considerations, measures of
efficiency, ease of use, technical properties of a new device or
system; however, these changes can introduce intermediary shifts
that can occur surrounding existing practices and uses for a given
technology. This adjustment occurs in part, because of
technological characteristics that have changed, but also due to
evolving user needs (Webster, 2002; Schulz, 2004; Cox and
Depoe, 2015). The dynamic relationship between new and

existing technologies is translational, in that the future impact
of a technology is largely determined by its perceived use value as
well as how it is received amongst professional and general
communities.

BCIs are communication technologies as well as social
technologies which require in-depth social, cultural, and
technical analysis of the characteristics of the tools themselves,
as well as the behavior that surrounds device use. Research
analyzing BCI systems as social-communicative mediums
emphasizes the potentiality of these to improve modes of
agency and expression for users. However, additional
consideration should be given to ethical and moral issues that
can arise when technical changes are made to corresponding
mediated environments. When specific technical constraints
reinforced by digital architectures are placed upon the
communication processes, it may lead to dependency and
heteronomy amongst users (Dijck, 2013). This suggests that
interface architecture plays a role in identity formation
through the process of social interaction, and as such, efforts
to examine the relationship between a specific environment
and self-expression as it relates to BCI systems should not
be conceived with a “one-size-fits-all” approach (Lowery
and DeFleur, 1983; Postmes et al., 2005; Nisbet and Scheufele,
2009).

CONCLUSION

By its nature, BCI is a multidisciplinary field. Assuming an
epistemological approach towards exploring the intersection of
how these sophisticated technologies mediate communication,
enable cognitively embodied interactions, and afford users the
ability to share subjective and collective experiences can
encourage novel conceptual understandings as to how new
boundaries of digital and physical user-system interactions can
explored and further applied (Scott et al., 2019; Hackett, 2008).
With a focus on developing ways to contribute to therapeutic
care, the goal of this work is to support the integration of creative
art therapies into technological affordances of hybrid BCI
systems, as this type of intervention could provide more
engaging and expressive forms of treatment options to
different populations, improve existing treatment options and
access to care, and offer therapists a new treatment modality. By
developing BCIs in a way that serves as a digital health
intervention; one that engages brain activity and real-time
interaction with therapeutic activities, it offers an application
that combines creative expression with traditional neurofeedback
practices to provide an alternative tool to improve emotional and
physiological healing and recovery.
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Detecting Fear of Heights Response to
a Virtual Reality Environment Using
Functional Near-Infrared
Spectroscopy
Luciënne A. de With, Nattapong Thammasan* and Mannes Poel

Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, Netherlands

To enable virtual reality exposure therapy (VRET) that treats anxiety disorders by gradually
exposing the patient to fear using virtual reality (VR), it is important to monitor the patient’s
fear levels during the exposure. Despite the evidence of a fear circuit in the brain as reflected
by functional near-infrared spectroscopy (fNIRS), themeasurement of fear response in highly
immersive VR using fNIRS is limited, especially in combination with a head-mounted display
(HMD). In particular, it is unclear to what extent fNIRS can differentiate users with andwithout
anxiety disorders and detect fear response in a highly ecological setting using anHMD. In this
study, we investigated fNIRS signals captured from participants with and without a fear of
height response. To examine the extent to which fNIRS signals of both groups differ, we
conducted an experiment during which participants with moderate fear of heights and
participants without it were exposed to VR scenarios involving heights and no heights. The
between-group statistical analysis shows that the fNIRS data of the control group and the
experimental group are significantly different only in the channel located close to right
frontotemporal lobe, where the grand average oxygenated hemoglobin Δ[HbO] contrast
signal of the experimental group exceeds that of the control group. The within-group
statistical analysis shows significant differences between the grand average Δ[HbO] contrast
values during fear responses and those during no-fear responses, where the Δ[HbO]
contrast values of the fear responses were significantly higher than those of the no-fear
responses in the channels located towards the frontal part of the prefrontal cortex. Also, the
channel located close to frontocentral lobe was found to show significant difference for the
grand average deoxygenated hemoglobin contrast signals. Support vector machine-based
classifier could detect fear responses at an accuracy up to 70% and 74% in subject-
dependent and subject-independent classifications, respectively. The results demonstrate
that cortical hemodynamic responses of a control group and an experimental group are
different to a considerable extent, exhibiting the feasibility and ecological validity of the
combination of VR-HMD and fNIRS to elicit and detect fear responses. This research thus
paves a way toward the a brain-computer interface to effectively manipulate and
control VRET.

Keywords: virtual reality exposure therapy, fNIRS, head-mounted display, fear of heights, classification,
brain–computer interface
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1 INTRODUCTION

Exposure therapy is a form of therapy that treats anxiety disorders
by gradually and repeatedly exposing the client to his/her fear
(Brinkman et al., 2009) in the absence of harm. This can activate
the fear extinction process and was proven to be an effective
intervention (Hofmann, 2008). Recently, virtual reality (VR) has
been introduced to exposure therapy by the evidence that realistic
virtual circumstances can have a significant influence on a
person’s mental state (Riva et al., 2007; Martens et al., 2019),
which can pave a way to a successful exposure therapy. Among a
vast variety of VR hardware, head-mounted display (HMD) has
been shown to be effective in improving the sense of presence in a
virtual environment (VE), which is the key element of effective
application of VR in the mental health domain (Jerdan et al.,
2018). Realistic immersive VEs enable researchers to ecologically
perform experiments and invent therapy methods, leading to
effective and highly ecologically valid virtual reality exposure
therapy (VRET) systems (Martens et al., 2019). HMD-based VR
enables an immersive VRET that makes the exposure therapy
more controlled, safer, and in some cases also less expensive than
traditional exposure therapy (Teo et al., 2016; Boeldt et al., 2019;
Bălan et al., 2020). Furthermore, the exposure protocol can be
completely standardized when using VRET, which increases the
therapist’s control over the stimuli and the duration of the
exposure, as opposed to traditional in vivo exposure (Rizzo
et al., 2013). Despite the higher level of control that VRET
offers to the therapist, it is still a common practice that the
therapist monitors the fear responses of the client (Brinkman
et al., 2009). One important reason to do this is to ensure that the
gradual exposure to the fear-eliciting stimuli do not overwhelm
the client. Excessive exposure to situations that induce fear can,
for example, cause panic attacks for the client and might therefore
worsen the anxiety instead of treating it (Boeldt et al., 2019).

However, monitoring a person’s fear responses while using VR
has been a big challenge. The traditional option of tracking facial
expressions becomes difficult when the user is wearing a VR-
HMD. Subjective ratings suffer from the difficulty in verbalizing
current mental state indication (Hill and Bohil, 2016) and
memory bias (Rodríguez et al., 2015). Neuroimaging
techniques have been recently proposed to objectively and
unobtrusively measure fear response during virtual fear
exposure but are limited to the use of electroencephalogram
(EEG) (Hu et al., 2018; Peterson et al., 2018; Bălan et al.,
2020). However, the disadvantages of EEG include
susceptibility to motion artifacts and electrical signal
interference which can be anticipated when a user interacts
with VR technology. On the other hand, functional near-
infrared spectroscopy (fNIRS) offers a recording of cortical
activity in a natural mobility setting with higher spatial
resolution than EEG, less susceptibility to motion artifacts and
electrical noises, portability, and lightweight characteristic. These
advantages substantiate the great potential for the combination of
VR-HMD and fNIRS, which has been recently demonstrated in a
bisection task (Seraglia et al., 2011), the assessment of prospective
memory (Dong et al., 2017; Dong et al., 2018), the processing of
racial stereotypes (Kim et al., 2019), performance monitoring

during training (Hudak et al., 2017), and a neurofeedback system
to support attention (Aksoy et al., 2019). However, the feasibility
and ecological validity of using fNIRS to measure fear response
during virtual fear exposure is still unexplored.

The neural mechanisms underpinning the fear circuit have
been widely researched. The majority of fNIRS studies on cortical
responses to fear-invoking stimuli report an increase in cortical
activations in the parietal cortex (Köchel et al., 2013; Zhang et al.,
2017) or the prefrontal cortex (PFC) (Glotzbach et al., 2011; Roos
et al., 2011; Ma et al., 2013; Landowska, 2018; Rosenbaum et al.,
2020) during fearful stimulation. PFC areas in which significant
activations were found include the left PFC (Ma et al., 2013),
dorsolateral PFC (dlPFC), anterior PFC (Landowska, 2018), left
dlPFC, and left ventrolateral PFC (vlPFC) (Rosenbaum et al.,
2020). The studies that found activations in the parietal cortex
presented subjects to fearful and neutral sounds. Decreased
chromophores deoxygenated hemoglobin (HbR) concentration
changes (Köchel et al., 2013) and higher oxygenated hemoglobin
(HbO) concentration changes (Zhang et al., 2017) were found
when subjects were listening to fearful sounds as compared to
neutral sounds. The areas with significant activations include the
(right) supramarginal gyrus and the right superior temporal
gyrus. The studies that found an increased cortical activation
in the PFC exposed their subjects to spiders (Rosenbaum et al.,
2020), fearful faces (Glotzbach et al., 2011; Roos et al., 2011), or a
fear-learning experiment based on shocks (Ma et al., 2013). A
recent fNIRS study observed decreased HbO concentration
changes in the dlPFC and anterior PFC when participants
with moderate acrophobia were exposed to a cave VE that
displayed artificial heights (Landowska et al., 2018). The effect
was intense during the first exposure session, but the learning
process on coping with fear responses affected the following
sessions. In general, the majority of fNIRS studies reported
increased HbO concentration changes in the PFC when
subjects were exposed to the fearful stimuli as compared to
the control situations and occasionally reported the
complementary decrease in HbR concentration changes
(Glotzbach et al., 2011). The increment of HbO concentration
changes is also in line with other neuroimaging studies beyond
fNIRS that found increased cortical activity in the PFC as fearful
responses (Lange et al., 2003; Nomura et al., 2004) of healthy
subjects, while the activity in the amygdala is inversely related
(Nomura et al., 2004). In contrast, patients with anxiety disorder
show decreased activity in the PFC in response to fearful stimuli
and increased activity in the amygdala (Etkin and Wager, 2007;
Shin and Liberzon, 2010; Price et al., 2011). It is thus evident that
the PFC plays an important role in mediating fear responses
(Landowska et al., 2018) and is known as a major component of
the cognitive control network (Rosenbaum et al., 2020).

Despite evidence of PFC activity due to the fear circuit as
reflected by fNIRS signals, little is known about fear responses in
highly immersive VR, especially when using HMD. The current
study investigates the possibility of inducing and detecting fear
responses in VR-HMD using fNIRS. Specifically, we are
interested in inducing and detecting a fear of heights response,
which is one of the most prevailing types of human fear which can
be reproduced in VR, alongside (Garcia-Palacios et al., 2002;
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Miloff et al., 2019; Lindner et al., 2020), fear of flying (Rothbaum
et al., 2000; Maltby et al., 2002; Rothbaum et al., 2006), fear of
driving (Wald and Taylor, 2000), and even post-traumatic stress
disorders (Rothbaum et al., 2001; Difede and Hoffman, 2002;
Gerardi et al., 2008; Rothbaum et al., 2014). Brain studies on fear
of heights using fNIRS have been done in VE (Emmelkamp et al.,
2001; Donker et al., 2018; Freeman et al., 2018; Gromer et al.,
2018), but the previous works recruited participants either with or
without fear of heights. The study in VR-HMD remains
unexplored and is the main objective in this study, where we
aimed to recruit participants both with and without fear of
heights to allow a comparison between groups. Our first
research question is as follows:

1) To what extent do the fNIRS signals captured from
participants with a fear of heights response and
participants without it differ?

To answer this question, we invited both participants with fear
of heights (experimental group) and participants without fear of
heights (control group) to participate in our experiment, during
which they were exposed to virtual height and virtual ground
conditions. It was hypothesized that the virtual heights will cause
a fear response for the experimental group but does not cause a
fear response for the control group. Furthermore, it was
hypothesized that the ground condition does not cause a fear
response for any of the groups.

In addition, we aimed to train simple machine learning
classifiers to automatically detect fear responses of the
experimental group from fNIRS signals, which has not been
done in previous works. Our second research question is as
follows:

2) To what extent can a person’s fear of heights response to a
virtual reality environment be detected by a simple machine
learning model using fNIRS data?

To answer this question, we trained and tested linear classifiers
in subject-dependent and subject-independent ways on the data
of the experimental group and evaluated the performance in
distinguishing ground-condition and height-condition data. Our
first attempt to achieve a successful classification of different
fNIRS responses to fear of heights elicited in VR-HMD would
exhibit ecological validity of combining both components,
serving as a baseline toward a practical and effective VRET in
the future improvement.

2 MATERIALS AND METHODS

2.1 Participants
Two different groups of participants were recruited and pre-
screened by the Acrophobia Questionnaire (AQ), consisting of 20
items that are rated on a seven-point Likert scale, ranging from
not anxious at all to extremely anxious (Cohen, 1977; Antony,
2001). Only participants with fear of heights who scored higher
than 35 were invited to participate as the experimental group. On

the other hand, only participants without fear of heights who
scored lower than 20 were invited to participate as the control
group (Gromer et al., 2018). Accordingly, 20 participants (nine
females, age � 26.10 ± 10.47 years) in the experimental group
reported a high AQ score (52.40 ± 11.47), and 21 other
participants (nine females, age � 22.95 ± 2.11 years) in the
control group reported a low AQ score (9.71 ± 5.89). None of
the participants suffered from anxiety disorders.

2.2 Tasks and Procedure
The study was approved by the institutional ethics committee of
University of Twente (reference number: RP 2020-76). All
procedures were in accordance with the Helsinki Declaration.
After confirming the eligibility of the participants and obtaining
written informed consent, the participants were introduced to the
Oculus Rift S 1, which is a VR-HMD with six degrees of freedom
enabling tracking of head rotations and translations (forward/
backward, left/right, up/down). Therefore, the participants were
able to look around in the VEs by simply rotating their head and
to walk around by moving their body in the physical world. The
researcher demonstrated how the VR-HMD should be adjusted
to fit the head. Hand-held controllers were given to be held during
the experiment to make the tracking of the VR-HMD more
reliable, but the participants were not allowed to use the
controllers. To familiarize the participants with the VE, the
HMD, and holding the controller, a practice round with an
example VE similar to the ground condition was included and
continued until the participant indicated satisfactory familiarity.
Then, the VR-HMD was removed, and the participants were
fitted with the fNIRS headset. The fNIRS system was calibrated,
and the signal quality was assessed visually by the researcher.
Afterwards, the participants were asked to stand in a designated
place and to fit the VR-HMD themselves. The straps of the VR-
HMD were loosened as much as possible to reduce the risk of
optode displacement. Figure 2 shows a participant wearing both
the fNIRS headset and the VR-HMD. After preparation, the
participants were asked to perform the task. The researcher
instructed the participants about the maximum level of
movement which they were allowed to perform in order to
minimize the motion artifacts in the fNIRS signal. Although
the VR-HMD provides the possibility to walk around in the VE,
the participants were instructed to refrain. Instead of moving,
they were asked to gently look around in the VE, while preventing
large head movements. Additionally, they were allowed to bend
forward slightly during the height condition but were asked to
return to the original position after bending forward.

All participants were tested under the same procedure. There
were two conditions of VEs: ground condition and height
condition. Each condition was presented alternately for five
trials, each of which lasted 30 s and was preceded with a
baseline period of 20 s, in which neither visual nor auditory
stimuli were presented and the participants were instructed to
relax and avoid active thinking. In the ground condition, the
participants were virtually standing on a sidewalk or square in

1https://www.oculus.com/rift-s/

Frontiers in Computer Science | www.frontiersin.org January 2022 | Volume 3 | Article 6525503

de With et al. Detecting Fear of Heights Response

119

https://www.oculus.com/rift-s/
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


the middle of a city in the VE, while in the height condition, the
participants were virtually standing by the rooftop of a high
building. The VEs were created using the Unity development
platform 2. See Figure 1 for examples of the scenes. Both
conditions were accompanied by city sounds, to increase the
immersiveness of the experience.

After the experiment, the participants were asked to rate
their perceived feelings of distress or fear using the Subjective
Units of Distress Scale (SUDS) (Wolpe, 1969) during ground
and height conditions on an 11-point Likert scale ranging
from 0 (no distress/anxiety) to 100 (worst distress/anxiety that
you have ever felt). The SUDS questionnaire is often used to
assess exposure settings during cognitive behavioral treatment
(Benjamin et al., 2010). Additionally, the participants were
asked to fill out 14 items of the IGroup Presence Questionnaire
(IPQ), which measures a person’s sense of presence in VR
(Schubert et al., 2001), to test if the participants felt sufficiently
present in the VEs for a fear response to emerge. After that, the
participants were asked to fill out the AQ to confirm the group

membership; median � 0.82 (Cohen, 1977) indicates adequate
test–retest reliability, suggesting that pre- and post-experiment
AQ scores should be similar. Finally, a structured interview by
the researcher was held to ask the participants if and when they
felt fearful or any other emotions during the experiment to
gather extra feedback.

2.3 fNIRS Data Acquisition
Changes in HbO and HbR concentrations were measured
using the Artinis Brite 24 3. The Brite is a wireless continuous
wave fNIRS device that can measure up to 27 channels. The
near-infrared light is emitted at two nominal wavelengths:
760 and 850 nm. Cortical hemodynamic responses were
measured at a sampling rate of 10 Hz. The optodes were
arranged to cover a large region of the PFC, including the
dlPFC, anterior PFC, and part of the vlPFC. Every
emitter–detector pair had a maximum distance of 3 cm
between the optodes. Figure 2 shows the positioning of
the optodes and channels on the scalp, with an overview

FIGURE 1 | The experimental design showing the exemplified VE scenes of the ground condition and height condition.

2https://unity.com/ 3https://www.artinis.com/brite
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of the 10–20 system as a reference. In order to prevent near-
infrared light being absorbed by hair, the researcher used a
narrow, oblong tool to move the participant’s hair to the side
when it fell between an optode and the participant’s scalp.
Signal quality was visually validated by confirming the
presence of cardiac cycles in the fNIRS signals (Hocke
et al., 2018).

2.4 Data Processing
2.4.1 fNIRS Pre-processing
The fNIRS data were recorded using the Artinis Oxysoft
software4. The raw data were converted to Δ(HbO) and

FIGURE 2 | The experimental setting; (A) a participant wearing the fNIRS headset and the VR-HMD during the experiment; (B) the positioning of the optodes
projected on the layout of the 10–20 system, showing the detectors (blue), emitters (yellow), and the channels indicated by a circle with a number in it; (C) the overview of
statistical analysis.

4https://www.artinis.com/oxysoft
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Δ(HbR) signals (Chen, 2016; Pinti et al., 2019) using the modified
Beer–Lambert law (Delpy et al., 1988; Scholkmann et al., 2014).
After that, the data were exported to Matlab using
Oxysoft2Matlab script and visually inspected. Channels with
severe motion artifacts (usually with an amplitude of 5 μM)
and channels that did not show cardiac cycles (evident by the
repetitive alternation of around 0.10 μM of the amplitude) were
excluded from further analysis. Motion correction was applied to
the remaining channels, using the Temporal Derivative
Distribution Repair procedure (Fishburn et al., 2019). After
that, the correlation coefficients of every channel’s Δ(HbO)
and Δ(HbR) signals were calculated. Channels with a positive
correlation coefficient were removed, following a previous fNIRS
study suggesting that a negative correlation can be expected when
the amount of motion artifacts in the signals is low (Cui et al.,
2010). Then, a third-order Butterworth band-pass filter (Hocke
et al., 2018; Pinti et al., 2019) with low cut-off frequency 0.01 Hz
and high cut-off frequency 0.1 Hz was applied to remove
physiological noise arising from breath cycles (∼0.2–0.3 Hz),
cardiac cycles (∼1 Hz), and Mayer waves (∼0.1 Hz) (Naseer
and Hong, 2015; Pinti et al., 2019). The filtered signals were
separated into trials and adjusted with a baseline, yielding five
ground-condition trials and five height-condition trials. The
main duration of trials was set from 0 to 30 s after the
stimulus presentation onset, covering the entire task period of
each trial. The 5-s period preceding the stimulus presentation was
used as a baseline period. For each participant and each channel,
the signals were grand averaged across trials in each condition.

2.5 Data Analysis
A between-group analysis was performed by investigating the
significant differences of fNIRS signals between the control group
and the experimental group. In order to investigate the effect of
height on participants with fear of heights, a within-group
analysis was performed on the data of ground-condition trials
and height-condition trials of merely the experimental group to
investigate significant difference of fNIRS signals in the two
conditions. Statistical testing was conducted using Matlab
2020a, and the overview of the statistical analysis performed is
illustrated in Figure 2.

2.5.1 Between-Group Analysis
To mitigate the inter-subject variability issue, we computed a
contrast between the ground-condition and the height-condition
grand average Δ[HbO] signals and Δ[HbR] signals for all
channels and all participants. The contrast was computed by
subtracting the grand average ground condition signal from the
grand average height condition signal. For all of these signals, the
mean over the window from 3 to 15 s post-stimulus onset was
computed, following the evidences that the hemodynamic
response only starts to become visible after 3 s [2.8-s lag was
found (Lachert et al., 2017)] and that the hemodynamic response
is most intense in the first 5–17 s after the stimulus onset (Khan
et al., 2020). For every channel, a permutation test with 50,000
permutations was used to test for significant differences between
the contrast signal means of the control group and the
experimental group, at the significance level α � 0.05. The

permutation test was chosen as it is a non-parametric test that
can be used on small sample sizes and makes no assumptions
about the distribution of the data.

2.5.2 Within-Group Analyses
Similar to the between-group analysis, the grand average ground
condition Δ(HbO) and Δ(HbR) signals and the grand average
height condition Δ(HbO) and Δ(HbR) signals were averaged over
the 3–15 s window. For every channel, a permutation test with
50,000 permutations was used to test for significant differences
between the ground-condition trial means and the height-
condition trial means over the 3–15 s window, at the
significance level α � 0.05.

2.5.3 Correction for Multiple Comparisons
Four statistical analyses were executed on the fNIRS data
(between/within group analysis on the Δ[HbO]/Δ[HbR] data)
per channel, yielding a total of 4 × 27 � 108 hypothesis tests from
all channels. False discovery rate correction, as suggested by
Genovese et al. (2002) for neuroimaging data, was executed on
the 108 p-values that resulted from the statistical analyses to
correct for multiple comparisons. The rate q was set to 0.05.

2.6 Classification
2.6.1 Feature Extraction
We used data from all channels that are not corrupted by
movement artifacts and hardware malfunctions (as explained
in Section 2.4.1) for classification, where the number of available
channels differs across participants. Instead of extracting features
per channel, we first calculated the averages of Δ[HbO] and
Δ[HbR] measurements over the remaining channels, yielding the
Δ[HbO] and Δ[HbR] respectively, and then extracted the
features from them in the period within 3–15 s after stimulus
onset. A 1-s sliding window was applied without overlap between
consecutive windows in order to gain more data from the signals.
Following the study of Derosière et al. (2014), the averages of
Δ[HbO] and Δ[HbR] were then computed per window to
represent the data of that 1-s window. Short histories of the
averaged Δ[HbO] and Δ[HbR] signals of every second were also
computed, such that the information arising from the changes in
the signal over time could be utilized as additional features for
classification, similar to Hu et al. (2012). For every observation,
the current observation and the observations of the x seconds
preceding the current observation were extracted (yielding a total
of x + 1 features for each chromophore (Δ[HbO] and Δ[HbR])).
In order to investigate the effect of the length of the histories, the
classifiers were trained and tested on three different histories,
similar to Hu et al. (2012): 1 s, 3 s, and 5 s. Note that the duration
of histories to look back leads to different number of features, but
the number of training and test instances are identical.

2.6.2 Subject-Dependent and Subject-Independent
Classification
Subject-dependent classifiers were trained and tested only for the
experimental group due to the clear distinction of fear responses
between height-condition trials and ground-condition trials,
labeled as fear response and no fear response, respectively. All
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1-s windowed data from the first six trials (consisting of three
ground-condition trials and three height-condition trials) were
used as training data, and the remaining windowed data from
four trials were the test data. As data were extracted from 3 to 15 s
after stimulus onset, this resulted in 12 × 6 � 72 training data
instances and 12 × 4 � 48 test data instances from each
participant. In this study, linear discriminant analysis (LDA)
and support vector machines (SVM) with linear kernel,
implemented in Matlab 2020a, were trained with the standard
hyper-parameter settings. Specifically, a linear coefficient
threshold of 0 was used with regularized LDA. Sequential
minimal optimization was applied to the linear-SVM and
without feature scaling. The performance in the modes of 1-,
3-, and 5-s history was measured by the accuracy. Similarly,
subject-independent classifiers were trained and tested with the
experimental group using leave-one-subject-out cross-validation.
It can be useful in real-life VRET settings to classify unseen data
from an unknown participant (Bălan et al., 2020). In order to
compare the subject-dependent classification with a random
classifier (50% accuracy), the 95% confidence interval is
calculated for each classifier. The lower (bl) and upper bounds
(bu) of the 95% confidence interval are based on the Wilson score
interval (Wilson, 1927) and are given by the formula

bl, bu( ) � 1

1 + z2

n

p̂ + z2

2n
( ) ± z

1 + z2

n

�������������
p̂ 1 − p̂( )

n
+ z2

4n2

√
(1)

where p̂ is the estimated performance, n is the number of test
samples, and z the value corresponding to the desired confidence
interval. In case of the 95% confidence interval, z � 1.96. The
advantage of theWilson score interval is that it is asymmetric and
has no overshoot or zero-width intervals unlike the traditional
normal approximation.

3 RESULTS

3.1 Behavioral Results
Three participants withdrew from the experiment due to motion
sickness caused by the VR-HMD. SUDS threshold at 30 was used
to distinguish the feeling of relaxation and fear, where
participants should report higher than this threshold when
feeling fear during the experimental condition. As a result, two
participants were excluded from each group due to the mismatch
between the reported SUDs score and the expected range. In
addition, the threshold of IPQ was set at 3 as the minimum for the

feeling of presence in the VR, leaving two participants, whose
scores did not surpass the threshold, out from the experimental
group. Besides, the AQ scores were used to reconfirm the group
membership after the experiment, resulting in one and two
participants removed from the control and experimental
groups, respectively. Consequently, a total of 15 participants
(nc � 15) remained to be part of the control group and 14
participants (ne � 14) were part of the experimental group.
Table 1 shows the mean scores and standard deviations of the
questionnaire results for both groups; it suggests a clear
distinction between the two groups in terms of AQ scores
(pre-experimental as well as post-experimental) and SUDS for
the height condition. The two groups scored similarly for SUDS
in ground condition and for the experienced presence in the VEs.

3.2 Statistical Analysis
3.2.1 Between-Group Analysis
Figure 3 shows the grand average Δ[HbO] traces of the
contrast between the ground condition and the height
condition for the two groups for every channel, with the
standard error given around every trace. It is apparent that
only channel 3 (p � 0.000 8) generated a significant difference
between the contrast Δ[HbO] means of both groups using
statistical testing with the false discovery rate (FDR)
correction. Meanwhile, the results from Δ[HbR] traces, as
also shown in Figure 3, suggested that there are some
channels (i.e., channels 15, 23, 24, and 27), where the
grand average trace of the control group has a different
pattern than that of the experimental group. However,
none of them are significant after the corrected statistical
testing.

3.2.2 Within-Group Analysis
Figure 4 shows the grand average Δ[HbO] traces of the ground
condition and the height condition for the experimental group,
with the standard error given around every trace. Apparently, the
difference between the two conditions can be clearly observed,
especially on the salient increase of Δ[HbO] during 3–15 s after
stimulus compared to the rather constant trace in ground
condition. FDR-corrected permutation test shows that the
distinct patterns are significantly different in channels
1 (p � 0.002 2), 2 (p � 0.002 2), 3 (p � 0.000 01), 4 (p � 0.000
3), 6 (p � 0.002 2), 11 (p � 0.001 6), 12 (p � 0.004 1), 14 (p � 0.001
6), 18 (p � 0.000 9), 20 (p � 0.000 02), 23 (p � 0.000 02),
25 (p � 0.000 1), and 26 (p � 0.002 2). In contrast, Δ[HbR]
traces, as also shown in Figure 4, are rather flat for both
conditions, whereas only the difference in channel
23 (p � 0.001 7) is significant after the corrected statistical testing.

3.3 Classification
Due to motion artifacts and hardware malfunctions, some
channels were excluded from the analyses in some
participants; i.e., features were extracted from the remaining
uncorrupted channels per participant (see Section 2.4.1). In
this study, we trained and tested the subject-independent
classifiers with the data from only of the uncorrupted Δ[HbO]
channels, as many corrupted Δ[HbR] channels were excluded for

TABLE 1 | Mean scores and standard deviations of the questionnaire results for
the control group and the experimental group.

Questionnaire Control
group mean (±SD)

Experimental
group mean (±SD)

Pre-experiment AQ 10.80 (±5.66) 56.07 (±11.20)
Post-experiment AQ 10.73 (±6.41) 50.36 (±11.85)
SUDS ground condition 3.00 (±4.55) 6.43 (±6.02)
SUDS height condition 11.53 (±8.08) 69.86 (±11.55)
IPQ presence 4.20 (±0.86) 4.21 (±0.97)
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many participants, which makes it unfeasible to train and test
classifiers on these data.

3.3.1 Subject-Dependent Classification
Table 2 shows the accuracies of the subject-dependent
classification and the 95% confidence interval, calculated
using Eq. 1. The mean accuracy computed across all
participants suggests that the SVM on the 3-s history
performs best, with a mean accuracy of 69.69% (SD 16.94).
However, the mean accuracies of the other classifiers are close to
that of the 3-s history SVM, with a maximal difference of
roughly 1.4%. Therefore, the amount of history taken into
account in the classification seems to have a minimal effect
on this metric. LDA and linear SVM achieved similar
performance with a maximum of 1.2% in accuracy difference.
From Eq. 1 one can easily deduce that if the estimated
performance is above 64.5% then the lower bound of the
95% confidence interval is higher than 50%. Recall that a
subject-dependent classifier is tested on 48 samples; hence,
n � 48. This implies that for most types of classifiers
considered, only 7 out of the 14 subject-dependent classifiers
perform significantly better than random. In order to show that
the mean of the different subject-dependent classification is
significantly higher than the mean of a random classifier for

each participant, we take a somewhat different approach. Since
the mean over all subject-dependent classification is not the
outcome of a Bernoulli experiment (it is the mean over different
Bernoulli experiments) we cannot apply the Wilson score
interval. But the mean performance of 14 subject-dependent
random classifiers is equivalent to an estimated performance of
a Bernoulli experiment with 14 × 48 trials. Since the success rate
of a random classifier is known and equal to 50%, we can
estimate the 99% confidence interval (z � 2.576) using Eq. 1 and
is given by (45%, 55%). This means that in 99% of the cases, the
observed mean of the random classification will be in this
interval.

The performance also varies considerably among the different
participants; while classification in participants 1, 2, and 9
achieved low accuracy, classification for participants 7 and 10
was almost perfect. In some participants, the accuracy also
changed by classification methods and history by an amount
of almost 15% (participant 1), while these factors had minimal
impact on the accuracy in other participants (e.g., participants 7
and 10). This led us to the analysis of data distribution and its
effect on the classification performance.

We investigated the data distribution in feature space of
representative participants: participants 2 and 9 with relatively
low classification accuracy and participant 7 with high

FIGURE 3 | Grand average Δ(HbO) and Δ(HbR) traces of the contrast between ground condition and height condition for the two groups: control group (black
traces) and experimental group (red traces for Δ(HbO) and blue traces for Δ(HbR)), with standard deviation. The gray shaded area (3–15 s post-stimulus) is the window
over which the means were taken that were used for the permutation tests. The horizontal axis represents time in seconds, ranging from 0 to 30, and the vertical axis
represents concentration change in μM, ranging from −0.4 to 0.6. The plots are corresponding to channel labels, which are arranged in accordance with the optode
layout that was used during the experiment, as presented in Figure 2. Channel numbers are labeled in every plot. The plots surrounded by the border shows the channel
where a significant difference was found between the means of the control group and the experimental group. The graphs are arranged according to the optode layout
that was used during the experiment, as presented in Figure 2.
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classification performance. Specifically, principal component
analysis (PCA) was applied to 1-s history data, and we
visualized the distribution of data projected on the first and

second principal components (PCs) to investigate if the
training and test data are identically distributed as shown in
Figure 5. Training and test data are represented in different

FIGURE 4 | Overview of the grand average Δ(HbO) and Δ(HbR) traces of the ground condition (green traces for Δ(HbO) and blue traces for Δ(HbR)) and height
condition (orange traces for Δ(HbO) and purple traces for Δ(HbR)) of the experimental group, with standard deviation. The gray shaded area is the window over which the
means were taken that were used for the permutation tests. The horizontal axis represents time in seconds, ranging from 0 to 30, and the vertical axis represents
concentration change in μM, ranging from −0.4 to 0.6. The plots are corresponding to channel labels, which are arranged in accordance with the optode layout that
was used during the experiment, as presented in Figure 2. The plots surrounded by boarders show the channels where a significant difference was found between the
means of the ground condition and the height condition for the experimental group.

TABLE 2 | Accuracies and confidence intervals [lower bound, upper bound] of the subject-dependent classification.

Participant 1s history 3s history 5s history

LDA SVM LDA SVM LDA SVM

1 41.67 (28.85,55.72) 56.25 (42.27,69.30) 41.67 (28.85,55.72) 56.25 (42.27,69.30) 54.17 (40.29,67.43) 50.00 (36.39,63.61)
2 52.08 (38.33,65.53) 54.17 (40.29,67.43) 43.75 (30.70,57.73) 52.08 (38.33,65.53) 43.75 (30.70,57.73) 52.08 (38.33,65.53)
3 58.33 (44.28,71.15) 64.58 (50.44,76.56)* 56.25 (42.27,69.30) 58.33 (44.28,71.15) 50.00 (36.39,63.61) 58.33 (44.28,71.15)
4 85.42 (72.84,92.75)* 85.42 (72.84,92.75)* 77.08 (63.46,86.69)* 83.33 (70.42,91.30)* 77.08 (63.46,86.69)* 81.25 (68.06,89.81)*
5 89.58 (77.83,95.47)* 83.33 (70.42,91.30)* 91.67 (80.45,96.71)* 83.33 (70.42,91.30)* 83.33 (70.42,91.30)* 81.25 (68.06,89.81)*
6 58.33 (44.28,71.15) 58.33 (44.28,71.15) 68.75 (54.67,80.05)* 64.58 (50.44,76.56)* 68.75 (54.67,80.05)* 68.75 (54.67,80.05)*
7 97.92 (89.11,99.63)* 100.00 (92.59,100.00)* 95.83 (86.02,98.85)* 100.00 (92.59,100.00)* 97.92 (89.11,99.63)* 100.00 (92.59,100.00)*
8 81.25 (68.06,89.81)* 81.25 (68.06,89.81)* 87.50 (75.30,94.14)* 87.50 (75.30,94.14)* 93.75 (83.16,97.85)* 93.75 (83.16,97.85)*
9 45.83 (32.57,59.71) 45.83 (32.57,59.71) 41.67 (28.85,55.72) 43.75 (30.70,57.73) 37.50 (25.22,51.64) 41.67 (28.85,55.72)
10 85.42 (72.84,92.75)* 83.33 (70.42,91.30)* 85.42 (72.84,92.75)* 89.58 (77.83,95.47)* 91.67 (80.45,96.71)* 87.50 (75.30,94.14)*
11 64.58 (50.44,76.56)* 60.42 (46.31,72.98) 64.58 (50.44,76.56)* 54.17 (40.29,67.43) 64.58 (50.44,76.56)* 50.00 (36.39,63.61)
12 75.00 (61.22,85.08)* 77.78 (64.22,87.22)* 83.33 (70.42,91.30)* 77.78 (64.22,87.22)* 83.33 (70.42,91.30)* 77.78 (64.22,87.22)*
13 62.50 (48.36,74.78) 60.42 (46.31,72.98) 62.50 (48.36,74.78) 62.50 (48.36,74.78) 56.25 (42.27,69.30) 62.50 (48.36,74.78)
14 62.50 (48.36,74.78) 58.33 (44.28,71.15) 58.33 (44.28,71.15) 62.50 (48.36,74.78) 54.17 (40.29,67.43) 56.25 (42.27,69.30)

Mean 68.60 (64.99,72.00)* 69.25 (65.66,72.62)* 68.45 (64.84,71.85)* 69.69 (66.11,73.04)* 68.30 (64.69,71.71)* 68.65 (65.04,72.04)*
(±SD) (±17.29) (±15.64) (±18.77) (±16.94) (±19.70) (±18.32)

* indicates the performance for which the lower bound of its confidence interval is larger than 50%.
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colors. The decisions made for the test data by the LDA and
linear-SVM classifiers are also depicted. It should be noted that
data distribution in feature space of 3- and 5-s history data are
generally similar to 1-s history data and therefore not shown here.
Also, it is worth mentioning that PCA is applied for visualization
purposes only and not for feature dimension reduction.

In the data of participant 2 there is a high overlap in the test
data between the distribution of the fear and non-fear classes,
making it difficult to reach decent performance. In participant 9
data, LDA and linear-SVM learned to distinguish classes along
the second PC, while the test data are clearly separable along the
first PC, thereby yielding performance around chance level. In

FIGURE 5 | Training, test data, and classification decisions from LDA and SVM of the 1-s subject-dependent classification of participants 2 (P2), 7 (P7), and 10
(P10), plotted against the first and second principle components.

TABLE 3 | Accuracies and confidence intervals [lower bound, upper bound] of the subject-independent classification).

Participant 1s history 3s history 5s history

LDA SVM LDA SVM LDA SVM

1 78.33 (70.14,84.76)* 78.33 (70.14,84.76)* 75.83 (67.45,82.61)* 75.83 (67.45,82.61)* 76.67 (68.35,83.34)* 76.67 (68.35,83.34)*
2 67.50 (58.69,75.22)* 66.67 (57.83,74.47)* 70.83 (62.15,78.22)* 70.83 (62.15,78.22)* 70.83 (62.15,78.22)* 70.83 (62.15,78.22)*
3 79.17 (71.06,85.47)* 80.00 (71.96,86.18)* 78.33 (70.14,84.76)* 78.33 (70.14,84.76)* 77.50 (69.24,84.05)* 76.67 (68.35,83.34)*
4 84.17 (76.59,89.63)* 82.50 (74.72,88.26)* 89.17 (82.35,93.56)* 89.17 (82.35,93.56)* 88.33 (81.36,92.92)* 89.17 (82.35,93.56)*
5 85.00 (77.53,90.30)* 85.00 (77.53,90.30)* 90.83 (84.32,94.80)* 90.83 (84.32,94.80)* 89.17 (82.35,93.56)* 90.83 (84.32,94.80)*
6 72.50 (63.91,79.70)* 72.50 (63.91,79.70)* 84.17 (76.59,89.63)* 81.67 (73.80,87.57)* 82.50 (74.72,88.26)* 81.67 (73.80,87.57)*
7 88.33 (81.36,92.92)* 85.83 (78.48,90.96)* 90.00 (83.33,94.19)* 86.67 (79.44,91.63)* 91.67 (85.34,95.41)* 88.33 (81.36,92.92)*
8 48.33 (39.58,57.18) 51.67 (42.82,60.42) 50.00 (41.19,58.81) 50.00 (41.19,58.81) 52.50 (43.63,61.22) 54.17 (45.26,62.82)
9 65.83 (56.97,73.71)* 65.83 (56.97,73.71)* 68.33 (59.55,75.97)* 69.17 (60.42,76.73)* 67.50 (58.69,75.22)* 68.33 (59.55,75.97)*
10 87.50 (80.40,92.28) 85.83 (78.48,90.96) 91.67 (85.34,95.41) 88.33 (81.36,92.92) 90.83 (84.32,94.80) 89.17 (82.35,93.56)
11 53.33 (44.44,62.01)* 55.83 (46.90,64.40)* 55.00 (46.08,63.61)* 55.00 (46.08,63.)]* 54.17 (45.26,62.82)* 54.17 (45.26,62.82)*
12 68.52 (59.75,76.15)* 67.59 (58.78,75.31)* 63.89 (54.99,71.93)* 65.74 (56.88,73.62)* 60.19 (51.25,68.50)* 66.67 (57.83,74.47)*
13 69.17 (60.42,76.73)* 68.33 (59.55,75.97)* 69.17 (60.42,76.73)* 68.33 (59.55,75.97)* 70.00 (61.28,77.47)* 69.17 (60.42,76.73)*
14 57.50 (48.56,65.98) 57.50 (48.56,65.98) 63.33 (54.42,71.41)* 63.33 (54.42,71.41)* 65.83 (56.97,73.71)* 66.67 (57.83,74.47)*

Mean 71.80 (69.60,73.90)* 71.67 (69.47,73.77)* 74.33 (72.19,76.36)* 73.80 (71.64,75.85)* 74.12 (71.97,76.16)* 74.46 (72.32,76.49)*
(±SD) (±12.75) (±11.60) (±13.66) (±12.84) (±13.31) (±12.34)

* indicates the performance for which the lower bound of its confidence interval is larger than 50%.
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contrast, data distribution of training and test data are rather
similar for participant 7, with a much clearer linear separability in
test data. The classification for this participant is therefore high
for of the linear classifiers.

3.3.2 Subject-independent Classification
Table 3 shows the accuracies of the subject-independent classifiers
and the 95% confidence interval, calculated using Eq. 1. For the
subject-independent classification, the 95% confidence intervals are
smaller, since these are tested on n � 120 samples. This also implies
that if the estimated performance is above 59% then the lower bound
of the 95% confidence interval is larger than 50%. This implies that
for most types of classifiers 12 out of 14 subject-independent
classifiers perform significantly better than random. In order to
compare the mean performance of the subject-independent
classification with the mean of subject-independent random
classification, we take the same approach as for the subject-
dependent classification. In this case we have 14 × 120 trails, and
the 99% confidence interval is given by (47%, 53%). Based on the
mean accuracies computed from all participants, it can be inferred
that the SVMon the 5-s history performs best, with amean accuracy
of 74.46% (SD 12.34). On the contrary, the SVM on the 1-s history
performs the worst on average, with a mean accuracy of 71.67% (SD
11.60). From the calculated 99% confidence interval (47%, 53%) for
the mean of random subject-independent classification (see Section
2.6.2), one can easily deduce that themean of the subject-dependent
classification is significantly higher (99.5% confidence) than the
mean of random subject-independent classification.

Again, the difference between the accuracies of the classifiers that
perform best and worst on average is only a few percent, indicating
that the amount of history and the classification methods have
merelyminor influence on the classification performance. Again, the
accuracies vary considerably among participants, ranging from
48.33% (participant 8) to 91.67% (participant 10), and the cause
of this variation is also investigated by data distribution in PC space.

In the data of participant 8, the training data depicted in
Figure 6 (P8) shows that the data labeled as no fear are mostly

centered around the negative values of the first PC, while fear data
were located around the positive values. However, the test data of
Figure 6 (P8) have a different pattern. Instead, the data of the
different labels are distributed over the positive and negative
values of the second PC and are quite overlapping, indicating
the difficulty to separate the test data of the different labels by a
linear decision boundary. This might explain why the classifiers,
which seemingly learned to separate classes along the first PC,
cannot perform well on the test data, yielding low accuracy. In
contrast, data distribution in test data from participant 10 [see
Figure 6 (P10)] are linearly separable in the first PC.
Specifically, data labeled as no fear are centered around the
negative values of the first PC, and the test data labeled as fear
are centered around the positive values of the first PC. The linear
classifiers were therefore successful in generalizing the learned
pattern along the first PC to the test data, achieving high
classification performance.

4 DISCUSSION

The aim of this study was to measure brain activity of participants
with and without fear of heights when exposed to fearful stimuli
presented in VR-HMD. Additionally, the study investigated the
feasibility to train a simple classifier to recognize a fear response
from fNIRS signals recorded from participants with fear of
heights. A successful combination of fNIRS measurement and
VR-HMD can prove the ecological validity of its use in VRET.

4.1 Statistical Analyses
4.1.1 Between-Group Analysis
The results from the between-group analysis of the fNIRS signals
showed that the grand average contrast Δ[HbO] signals of the
control group and the experimental group are significantly
different in channel 3. No significant differences were found
between the grand average contrast Δ[HbR] signals of the two
groups. The evidence that only one out of 27 channels shows a

FIGURE 6 | Training, test data, and classification decisions from LDA and SVM of the 1-s subject-dependent classification of participants 2 (P2) and 10 (P10),
plotted against the first and second principle components.
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significant difference between the two groups for only one
chromophore suggests that the fNIRS signals of participants
with fear of heights were not that different from those of
participants without fear of heights in general.

However, it is difficult to make a direct comparison of our result
with the literature due to the lack of including both experimental and
control groups in previous studies on this topic. Despite this, it was
discovered that Δ[HbO] measured in (some areas of) the PFC of
recruited homogeneous participants increased during fearful
conditions (Rosenbaum et al., 2020; Glotzbach et al., 2011; Zhang
et al., 2017; Köchel et al., 2013; Roos et al., 2011; Ma et al., 2013;
Landowska, 2018), which is in line with our results that the Δ[HbO]
signal of the experimental group peaks higher than that of the control
group when exposed to fearful stimuli (see Figure 3). In contrast, we
found that Δ[HbR] of both groups were quite equal, which is partly
in accordance with the evidence that the majority of similar works
did not report any change of Δ[HbR] after the exposure to fearful
stimuli (Roos et al., 2011; Ma et al., 2013; Zhang et al., 2017;
Rosenbaum et al., 2020), but there are some exceptions
(Glotzbach et al., 2011; Köchel et al., 2013; Landowska et al., 2018).

Nevertheless, it was also reported in the literature that Δ[HbO]
values over the PFC can increase when the participants were
experiencing other mental states, such as mental workload,
mental stress, affective responses, attention, deception,
preference, anticipation, suspicion, and frustration (Suzuki
et al., 2008; Ayaz et al., 2012; Kreplin and Fairclough, 2013;
Ding et al., 2014; Hirshfield et al., 20142014; Tupak et al., 2014;
Arefi Shirvan et al., 2018; Numata et al., 2019). This indicates that
increased Δ[HbO] values are not only an indication of fear
responses but can also be driven by other psychological
factors. This effect is less likely for the experimental group in
our study, as they indicated that they were feeling afraid during
the height exposure, which makes it improbable that they also
experienced other mental states, considering that fear is
presumably the most salient feeling they would perceive.

4.1.2 Within-Group Analysis
The result of the within-group analysis of the fNIRS signals shows
that the grand average Δ[HbO] values are significantly higher
during the height condition than during the ground condition.
This significant difference was observed in a total of 13 channels,
which are all located towards the frontal part of the PFC. These
results indicate that during fear responses, the Δ[HbO] values
increase significantly as compared to no-fear responses, which is
in accordance with the vast majority of previous works on fNIRS
measurements taken during fear responses (Glotzbach et al.,
2011; Roos et al., 2011; Köchel et al., 2013; Ma et al., 2013;
Zhang et al., 2017; Landowska, 2018; Rosenbaum et al., 2020).

Additionally, the results of the within-group analysis show
that the grand average Δ[HbR] values of the height condition and
the ground condition are significantly different in channel 23.
Surprisingly, the grand average Δ[HbR] signal of the height
condition is higher than that of the ground condition in this
channel. This contradicts some findings from the literature,
where decreased Δ[HbR] values are reported for fearful
conditions (Glotzbach et al., 2011; Köchel et al., 2013;

Landowska et al., 2018). It remains unclear why our results
differ from the literature.

The clear distinction of fNIRS signals due to fear exposure in
experimental group suggests the possibility to train a classifier to
automatically detect fear responses using fNIRS.

4.2 Classification
4.2.1 Subject-Dependent Classification
The subject-dependent classification results suggest that the amount
of history and the choice between the LDA or the linear-SVM
algorithm has minimal influence on the subject-dependent
classification performance. The linear classifiers do not perform
well for some participants due to the difference in data distribution
between training and test data. A possible explanation is that the fear
responses and accompanying fNIRS measurements of these
participants were not stable over time.

4.2.2 Subject-Independent Classification
Similarly, the choice of classification methods and the amount of
history to take into account do not have enormous influence on
the performance of subject-independent classifiers. While the
overall accuracy is above 71%, classification for participants 8 and
11 achieved poor performance. Our investigation on the
participants’ AQ, SUDS, and IPQ scores indicated that these
participants had a strong fear of heights, felt very anxious during
the height trials, felt relaxed during the ground trials, and felt
sufficiently present in the VEs. However, we learned from the
data distribution analysis that the fNIRS measurements of these
participants were not stable over time. This might explain the
overlap of fear and no fear fNIRS data trials in the first two PCs of
the feature space when taking all data from this participant as a
test set (in leave-one-subject-out cross-validation), while the
cause of the instability of data over time remains unclear.

It is remarkable that for most participants, the subject-
independent classification outperforms the subject-dependent
classification. While the training data from the first six trials
have a different distribution than the last four trials used as a test
set in subject-dependent classification, combining all trials might
mitigate the discrepancy between those trials, converging to more
common patterns of the other participants. This would explain
the relatively good performance of the subject-independent
classification. More research is needed to prove this hypothesis.

4.2.3 Overall Classification Performance
Overall, the average classification accuracy of the subject-
dependent classification is approximately 70%, whereas the
subject-independent classification has average accuracies
around 74%. These accuracies are statistically significantly
higher than random classification. It is noteworthy that the
goal of this study is not to find the best classification model
but to examine to what extent a simple linear classifier with
minimal parameter tuning can discriminate between fear and no-
fear responses. Future work on applying sophisticated algorithms
could improve the classification performance. It should also be
noted that our channel selection used in classification was based
solely on signal quality and not influenced by feature correlation.
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The accuracies in our study are comparable to those in
previous works attempting to classify fear from no-fear
responses in VR using physiological signals. Despite achieving
slightly higher accuracies from 76% to 89.5% compared to our
research, previous work recruited a lower number of participants
[seven participants in Handouzi et al. (20132013) using blood
volume pulse (BVP) data, eight participants in Bălan et al. (2020)
using galvanic skin response (GSR), heart rate, and EEG data].
Among similar studies that recruited a higher number of
participants, the study by Šalkevicius et al. (2019) detected
public speaking anxiety using BVP, GSR, and skin temperature
data from 30 participant and achieved 80.1% accuracy in leave-
one-subject-out cross-validation. However, this work did not
include brain signals in the study. In contrast, another study
(Hu et al., 2018) detecting fear of heights response in VR-HMD
from EEG signal achieved 88.77%, but the results were based on
10-fold cross-validation, where the generalizability to classify
unseen participant remains unknown.

In general, our classification performance has demonstrated
the feasibility to detect a fear of height response from brain signals
of a previously unseen participant as a 1-s rate (the size of our
sliding window is 1 s). As we encourage other researchers to test
other classification paradigms, the physiological data reproducing
the results in this study are publicly available.

4.3 Limitations of the Study
It is noteworthy that the fNIRS signals comprise multiple
components where some of them are potentially confounders
that are not task-related. Our method is based on contrasting
an experimental condition with a baseline condition, which can
subtract out spurious hemodynamic/oxygenation responses from
the experimental task (Tachtsidis and Scholkmann, 2016). Thus, it
should reduce hemodynamic influences from the extracerebral
layer from the fNIRS signals. Alternative approaches can be further
incorporated to remove systemic confounders.

Neither the fNIRS headset nor the VR-HMD was originally
designed for simultaneous usage of both devices. The incompatibility
caused an uncomfortable feeling for many participants. The VR-
HMD needed tightening up with a headband around the
participant’s head. This put an extra pressure on the optodes of
the fNIRS headset, which can be unpleasant for some participants,
negatively influencing the user experience of the system. Since it is
difficult to quantify the effect of the uncomfortable feeling caused by
the hardware components, it remains unknown to what extent this
affected the participants and the consequent results.

Although the fNIRS technology is less susceptible to motion
artifacts and electrical noise, it was often reported in the literature
that motion artifacts still occur (Naseer and Hong, 2015; Wilcox
and Biondi, 2015; Pinti et al., 2020). Therefore, the participants in
our study were instructed to look around very slowly in the VEs
and to limit their bodily movements, which might reduce realism
of the experience of the VEs for some participants. Still, the
motion artifacts were present in our study.

4.4 Recommendations for Future Work
Future research should consider adding more trials per condition
and prolonging the duration of each trial. More data are needed to

train sophisticated classification models. Prolonged duration
opens the possibility to include heart rate variability (HRV) as
a feature for the classifier; HRV can be captured from the
embedded cardiac cycles in the fNIRS signals and was found
to be a useful measure to detect fear (Wiederhold et al., 2002;
Peterson et al., 2018). Also, it is worthy to investigate the
difference among high-arousal-negative-valence responses,
such as mental stress, frustration, and fear; disentanglement of
such responses can potentially improve the detection of fear of
height.

In this research, we measure distress and the feeling of
presence by using established scales to allow the comparison
with previous research in fear and VRET. While SUDS has been
widely used in the context of fear exposure treatment due to its
high comprehensiveness, conciseness, and validity in
psychological studies, future works should also consider using
recently developed measures that are correlated highly with the
SUDS to confirm the validity of the measured fear by the classical
SUDS. These include the scale of anxiety (Spielberger, 1972;
Masia-Warner et al., 2003), discomfort (Kaplan et al., 1995),
disturbance (Harris et al., 2002; Kim et al., 2008), or distress
(McCullough, 2002). Similarly, although IPQ was found as the
most reliable questionnaire to measure the presence in VR
environment (Schwind et al., 2019) among classical measures
(Witmer and Singer, 1998; Slater and Steed, 2000; Usoh et al.,
2000), the alternative recent questionnaires should also be
considered (Grassini and Laumann, 2020).

The statistical analyses of the fNIRS data and the classification
performances are merely based on the mean Δ[HbO] and mean
Δ[HbR] values. However, it is known from previous fNIRS studies
investigating mental states that alternative features such as
amplitude, slope, standard deviation, kurtosis, skewness, and
signal peaks can provide insights and be used as discriminative
features for classifying mental states (Khan andHong, 2015; Zhang
et al., 2016; Aghajani et al., 2017; Parent et al., 2019). In our study,
the grand average Δ[HbO] traces revealed that the traces of the
experimental group generally rise to a peak value, whereas this
pattern is less apparent for the grand average traces of the control
group (see Figure 3). A similar observation can be made for the
grand average Δ[HbO] traces of the height condition and ground
condition of the experimental group (see Figure 4). Based on these
observations, it is anticipated that alternative features such as the
maximum signal value, the time to peak, and the signal slope have
the potential to improve the classification results or enhance the
fNIRS difference between groups.

5 CONCLUSION

The results answer our first research question by
demonstrating that there is significant difference in fNIRS
signals between participants with a fear of heights and
participants without it when exposed to fear conditions in
a VE. Specifically, the contrast between the ground-condition
and height-condition fNIRS signals in the experimental
group was larger than that in the control group, despite
limited statistical significance. The effect of the condition
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was more salient when focusing only on the experimental
group that exhibited significant differences in the grand
average Δ[HbO] values during fear responses and during
no-fear responses. The effect was dominant in the optode
area close to the frontal part of the PFC. To answer our
research question regarding to what extent a machine
learning model can be successfully trained to recognize
fear of heights response using fNIRS, we trained different
simple classifiers in a subject-dependent and subject-
independent framework and found that subject-dependent
classification encountered the issue of subjective variability.
Nevertheless, the subject-independent classification results
show the potential for usage in online fear of height detection,
and the average accuracy in classifying unseen data from a
previously unseen participant is above 74.00%. Our study
therefore confirmed the ecological validity of combining
fNIRS measurement and VR-HMD, which may pave a way
toward effective VRET.
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