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Editorial on the Research Topic

Advances and Applications of the EEG-fMRI Technique on Epilepsies

In this special issue of Frontiers in Neurology, we compiled a collection of articles focused
on Applied Neuroimaging in Epilepsy. More specifically, this topic includes advances in the
methodological development, application, and interpretation of the EEG-fMRI technique and its
sub-fields. The main goal of this Research Topic was to collect data describing the progress of the
technique’s reliability on the localization of the epileptogenic zone. However, the articles herein
also discuss scientific advances on EEG and fMRI data techniques individually, opening new
horizons for data exploration and subsequent disease characterization. The use of EEG-fMRI for
the localization of the epileptogenic zone relies on the understanding of each modality separately
and the consequences of physical interactions intrinsic to this combination.

In this special issue, Bullock et al.’s systematic review summarizes the state of the art of EEG
artifact removal proposing a standardized pipeline from hardware positioning to the most effective
post-processing procedures for EEG data acquired during fMRI sessions. Complementary, the
review article of Sadjadi et al. discusses the clinical applications of EEG-fMRI, elucidating its validity
as a localization tool for the epileptogenic zone and the perspectives for the near future based on
ongoing methodological advances.

In a study by Pinte et al., EEG electrode positioning relevant for EEG-source localization
algorithms is explored. The MRI-compatible EEG-electrodes commonly used in EEG-fMRI
sessions present minimal effect on MRIs. They propose an additional acquisition of an ultra-short
echo-time image whereby the MR signal of the electrodes is detectable. This acquisition enables the
localization of the electrodes through an automated pipeline based on a pre-trained deep-learning
network, reaching good sensibility and accuracy. This approach has great potential for multimodal
imaging, scalp EEG, and video-EEG analyses, as well as pre- and post-operative correlations with
the surgical lacuna and EEG-fMRI data (1–3).

Piper et al. performed functional connectivity (FC) analyses of the anterior thalamic nucleus
(ATN) using fMRI derived from EEG-fMRI acquisitions, demonstrating altered connectivity in
children with refractory focal epilepsy using the EEG-informed interictal epileptiform discharges
(IED) as a temporal regressor on the fMRI processing. The effect of IED events on brain function
is a common bias in functional connectivity studies. Although IEDs are not associated with evident
clinical manifestations, studies using PET and even EEG-fMRI could demonstrate that they alter
basal hemodynamics (or rest condition), with the potential to bias analysis with the random
prevalence of epileptiform events. Currently, the effects of IEDs are not considered in most FC
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studies (4). Accounting for IED effects improves the accuracy of
connectivity studies and may offer some insight into the role of
important therapeutic targets such as the ATN (5).

The FC based on fMRI acquired with EEG is also the
subject of studies by Kassinopoulos et al., and Fu et al.. The
first evaluates the relation between heart rate variability (HRV),
a metric recently associated with refractory seizures and the
severity of the epilepsies, and large-scale FC metrics. They
describe relations between the HR and thalamic signals and
connectivities, suggesting that these associations can play a
role in the cardiac and blood pressure dysfunctions involved
in SUDEP. Fu et al. explored FC in patients with refractory
mesial temporal lobe epilepsy (MTLE) and benign epilepsy with
centrotemporal spikes (BECT) compared to healthy controls.
The findings showed different aberrations in the network-based
interactions in MTLE and BECT, accessed throughout distinct
global metrics, reinforcing that epileptic sub-syndromes should
be considered distinct network diseases (6).

Chaudhary et al., Cohen et al., Ebrahimzadeh et al., Labounek
et al., and Suarez et al. focused on the localization of the
epileptogenic zone (EZ) and its related networks. Chaudhary
et al. performed intracranial EEG during fMRI sessions
(icEEG-fMRI) in refractory focal epilepsy patients. The authors
investigate the effective reach of the hemodynamic changes
related to icEEG IEDs, finding that these events can lead to
associated BOLD changes across the whole brain. Furthermore,
the authors investigate the correspondence between the BOLD
and the topographic distributions of the IEDs, indicating that
non-focal epileptiform discharges can generate a more accurate
localization of the EZ. Cohen et al. investigate patients with
epilepsy secondary to Polymicrogyria (PMG), a malformation of
cortical development commonly associated with an intricate and
widespread pattern of structural malformation (7). The results
show that for this specific syndrome, the BOLD activations
overlap the lesions in agreement with the scalp EEG detection
in all studied cases. The choice for the hemodynamic response
function (HRF) and its time delay relative to the target event
is the subject of many EEG-fMRI studies (8, 9). Each epileptic
syndrome is characterized by a constellation of factors that lead
to specific epileptiform discharge propagation and hemodynamic
behavior. The standard general linear model (GLM) with the
canonical HRF provides robust results, but the model can benefit

from a syndrome- or subject-specific response functionmodeling
to improve the sensibility (10).

Labounek et al. performed a controlled experiment aiming
to characterize data-driven EEG-fMRI fusion models in
identifying task-related networks. They compared four EEG
power models (two spectral and two spatial-spectral) as
input on GLMs for individual EEG-fMRI fusion. The results
indicate that the variable HRFs methodology significantly
improves task-related BOLD responses throughout an entirely
data-driven methodology.

The study of Ebrahimzadeh et al. proposes new modeling
for the GLM variable of interest on EEG-fMRI analysis, finding
promising results in terms of SOZ localization. The methodology
consists of a data-driven EEG independent component selection
using a previously defined subject-specific spike template. The
regressor of interest is the select EEG component convolved with
the canonical HRF.

Finally, Suarez et al. investigated themechanisms that underlie
negative BOLD responses (NBR) using the Windkessel (balloon)
hemodynamic models. Based on four commonly discussed
mechanisms, these findings indicate that an optimized GLM that
considers the biophysical nature of the epileptic brain networks
would improve the EEG-fMRI technique in precisely defining
the SOZ. This study provides further insight into the meaning
of NBR that is often seen in the EEG-fMRI maps of patients
with epilepsy.

In conclusion, the articles in this Research Topic cover several
aspects that are sensitive to the EEG-fMRI field, addressing
each technique separately and the peculiar challenges of its
combination. Studies have shown successful SOZ localization
and indicate promising clinical applications for the method;
however, there is still space for improvements regarding new
methodological approaches and hardware development. We
understand that the field can benefit from a standardization of
acquisition and processing protocols among centers, aiming to
increase reliability and reproducibility to favor a consolidated
clinical application.
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Artifact Reduction in Simultaneous
EEG-fMRI: A Systematic Review of
Methods and Contemporary Usage

Madeleine Bullock 1,2, Graeme D. Jackson 1,2,3 and David F. Abbott 1,2,3*

1 Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia, 2 Florey

Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia, 3Department of Medicine (Austin Health), The
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Simultaneous electroencephalography-functional MRI (EEG-fMRI) is a technique that

combines temporal (largely from EEG) and spatial (largely from fMRI) indicators of brain

dynamics. It is useful for understanding neuronal activity during many different event

types, including spontaneous epileptic discharges, the activity of sleep stages, and

activity evoked by external stimuli and decision-making tasks. However, EEG recorded

during fMRI is subject to imaging, pulse, environment and motion artifact, causing noise

many times greater than the neuronal signals of interest. Therefore, artifact removal

methods are essential to ensure that artifacts are accurately removed, and EEG of interest

is retained. This paper presents a systematic review of methods for artifact reduction

in simultaneous EEG-fMRI from literature published since 1998, and an additional

systematic review of EEG-fMRI studies published since 2016. The aim of the first review

is to distill the literature into clear guidelines for use of simultaneous EEG-fMRI artifact

reduction methods, and the aim of the second review is to determine the prevalence

of artifact reduction method use in contemporary studies. We find that there are many

published artifact reduction techniques available, including hardware, model based, and

data-driven methods, but there are few studies published that adequately compare these

methods. In contrast, recent EEG-fMRI studies show overwhelming use of just one or two

artifact reduction methods based on literature published 15–20 years ago, with newer

methods rarely gaining use outside the group that developed them. Surprisingly, almost

15% of EEG-fMRI studies published since 2016 fail to adequately describe the methods

of artifact reduction utilized. We recommend minimum standards for reporting artifact

reduction techniques in simultaneous EEG-fMRI studies and suggest that more needs to

be done to make new artifact reduction techniques more accessible for the researchers

and clinicians using simultaneous EEG-fMRI.

Keywords: simultaneous EEG-fMRI, artifact, motion, ballistocardiogram, electroencephalography, BOLD

1. INTRODUCTION

Simultaneous electroencephalography (EEG) and functional MRI (fMRI) is a non-invasive imaging
method first described over 25 years ago, and early on was mostly used for characterizing seizure
location in epilepsy patients (1, 2). By combining the temporal resolution of scalp EEG with the
spatial resolution of fMRI, it is possible to gain more information about brain activity than is
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possible with either technique alone (3). While simultaneous
EEG-fMRI started out as a technique to locate epileptic activity,
it is now used much more widely in neuroscience research (4),
from studies looking at brain function in disease states such as
schizophrenia (5, 6), to those investigating brain dynamics during
behaviors such as decision making (7, 8) and sleep onset (9, 10).

A technical challenge with recording simultaneous EEG-fMRI
is that EEG recorded inside the MR environment is subject to
large sources of noise, which can obscure neuronal activity, or
induce artificial artifacts in the EEG recording (11). The four
main sources of noise in EEG recorded during fMRI are outlined
below, and some examples are shown visually in Figure 1.

• Gradient artifact (GA) is the largest source of noise in EEG-
fMRI, and is used for fMRI acquisition due to the magnetic
field gradients, which induce current in EEG electrodes up to
400 times larger than neural activity, therefore obscuring the
EEG information of interest (15).

• Motion artifact occurs when movement of the subject’s head
within the scanner creates artifacts on the EEG due to induced
current at electrodes when moved inside the magnetic field—
occurrence explained by Faraday’s law (16).

• Ballistocardiogram (BCG) artifact occurs due to the subject’s
cardio-respiratory patterns, specifically scalp pulse and
cardiac-related motion, as well as the changes in magnetic
properties of blood flow under the scalp (17).

• Environmental artifact occurring on the EEG recording is
mostly due to interference from power line noise, ventilation,
and lights in the MR room, as well as the vibration arising
from the helium cooling pump used to ensure stability of the
scanner’s magnet (18).

Given the many artifacts and their impact, methods to reduce all
artifacts are crucial to ensuring that the EEG recorded during
EEG-fMRI is an accurate representation of brain activity. The
earliest algorithm for artifact removal in EEG-fMRI was the
average artifact subtraction (AAS) method, which was adapted
to remove either BCG (19) or GA (15), and permitted the
first fully simultaneous EEG-fMRI. However, due to temporal
non-stationarities in template sampling, AAS-filtered EEG still
contains residual artifact (15). In the years since the publication
of the AAS method, many novel methods have been proposed
to improve accuracy of EEG-fMRI, and research in this area is
ongoing (20). An aim of this review is to distill the literature
from these 21 years and provide updated recommendations
about artifact reduction to those interested in practicing
EEG-fMRI.

Previous published reviews, such as a recent paper from
(20), have given a broad overview of the methods to reduce
artifact in EEG-fMRI, but have not systematically reviewed all
literature, nor given specific recommendations for researchers
not familiar with this field. Perhaps the best example of practical
recommendations is a visual article by Mullinger et al. (21),
which shows step-by-step optimization for specific EEG-fMRI
equipment. While these reviews are useful, there remains a
gap: a systematic review of artifact reduction methods in EEG
recorded during EEG-fMRI is provided to underpin a set
of clear recommendations that make it easier for researchers

to make informed decisions about reducing artifact in any
EEG-fMRI study.

We aim to:

1. Systematically review EEG-fMRI artifact reduction methods
and provide some clarity regarding a potential “gold standard”
approach;

2. Systematically review all papers published in the last 4 years
that have used EEG-fMRI to determine the artifact reduction
techniques used in contemporary practice.

The results of our review lead to guidelines for EEG-fMRI usage,
and recommendations to help ensure best practice techniques are
widely used.

2. METHODS

2.1. EEG-fMRI Artifact Reduction
Techniques
The objective of the first literature search was to identify novel
artifact reduction techniques for EEG-fMRI from literature
published since the first EEG-fMRI artifact reduction paper
appeared in 1998. This review has a specific focus on EEG-
informed fMRI, where results of EEG are used to inform the fMRI
analysis. Web of Science database was searched for papers related
to artifact reduction in EEG-fMRI, in English, from years 1998
to 2019 (January 17, 2020). Document types were categorized
into article, proceedings paper, review, data paper, early access, or
book chapter (exclusion of editorial material, meeting abstracts,
and corrections). The search terms are outlined as follows:

(TS = (((eeg OR electroencephalography) AND (“functional
mri” OR fmri OR “functional magnetic resonance imaging”))
AND (artifact OR artifact* red* OR filter* OR denois* OR
classif*))) AND LANGUAGE: (English)

The title, abstract, and, if required, methods sections of
resultant papers were then manually interrogated to include only
literature which fitted the following criteria: data from human
subjects, recorded using EEG and fMRI, where EEG and fMRI
are recorded simultaneously, i.e., EEG recorded inside the MR
environment, while fMRI scanning is occurring.

The final step was to determine which of the resultant papers
outlined novel artifact reduction techniques for the EEG data
recorded during EEG-fMRI. Artifact was defined as any source
of activity, which appears in the EEG dataset, but is not neuronal
in origin. Artifact reduction can include (1) methods to reduce
the raw recording of artifact during EEG-fMRI acquisition, and
(2) methods to filter out artifact during the post-processing of
EEG. A method was considered novel if there were no previous
publications outlining its use for reducing any artifact on EEG
data recorded during EEG-fMRI. By this definition, papers that
outline the use of an existing publishedmethod, but implemented
to reduce another type of artifact, are not considered novel.
Although this review focuses on methods that improve EEG
clarity, it is accepted that some techniques that improve EEG
quality may also impact fMRI quality, positively or negatively.
Other literature has covered the impact of the EEG system on
artifact in the fMRI recording: for most commercial EEG-fMRI
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FIGURE 1 | Visual examples of (A) gradient; and (B) ballistocardiogram (shown by arrows) and motion (circled) artifact on EEG recorded during fMRI. For (B), GA has

been removed using an adaptive average artifact subtraction (AAS) method (12). EEG channel numbers are given on the left of each figure. Channels below the ECG

(mvmt 2–4) are recordings from carbon wire motion loops for measuring motion. The horizontal axis of each figure shows time in seconds. Environmental artifact is not

seen visually in this recording, and for visual examples of environmental artifact, we refer the reader to (13, 14).

systems, artifact from EEG is considered far lower than that
generated by fMRI (11, 22–24).

2.2. Contemporary Use of Artifact
Reduction Techniques in EEG-fMRI Studies
The primary aim of the second review was to acquire information
about the setup and post-processing methods employed by
researchers for reducing artifact in contemporary EEG-fMRI
studies (2016–2019) (Aim 1). A secondary aimwas to understand
the level of diversity in recently published studies using EEG-
fMRI (Aim 2). Given these aims, there were three primary areas
of interest for the included studies: (1) Methods of EEG-fMRI

setup (pre-recording) for artifact reduction (Aim 1); (2) post-
processing (post-recording) methods for artifact reduction (Aim
1); and (3) measure of interest on EEG used to drive the EEG-
fMRI analysis (Aim 2).

The literature search covered the databases—Web of Science,
PubMed, and Scopus—and included all articles between January
1, 2016 and December 31, 2019, with the following terms: EEG-
fMRI, ERP-fMRI, EEG-BOLD, and their derivatives, including
long hand spelling, and words in alternate orders. Key search
fields were as follows: Title, Abstract, and Keywords. The
inclusion criteria for EEG-fMRI studies is fully simultaneous
EEG-fMRI in human population. The definition of simultaneous
EEG-fMRI and human population is the same as outlined in
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part 1, with EEG-fMRI studies using interleaved scanning not
considered fully simultaneous. Studies included in this review
must have a full methods section, and be either English language
publications, or have a translation readily available.

3. SEARCH RESULTS

3.1. EEG-fMRI Artifact Reduction
Techniques
The Web of Science search returned 894 articles (891 unique),
of which 457 fitted the criteria of simultaneous EEG-fMRI as
outlined in themethods, and of those, 136 described novel artifact
reduction methods (Figure 2). Many of the papers that did not
meet the criteria for simultaneous EEG-fMRI described either
only EEG or only fMRI data. Some papers described data from
bothmodalities, but these data were not simultaneously acquired.
Sixteen papers detailed imaging in animal models, without any
human imaging. When assessing whether the remaining papers
described novel artifact reduction techniques for EEG data, 273
were excluded, with the most common reasons being:

1. Applications of EEG-fMRI for answering a clinical,
neuroscience, or behavioral question, with no novel artifact
reduction technique shown;

2. Characterization of EEG artifact during EEG-fMRI, but no
method to remove it;

3. Other reasons, such as:

a. EEG-fMRI review articles;
b Methods for EEG-fMRI data fusion;
c. Methods for artifact reduction in fMRI data only;
d. Proposals of methods for improving EEG-fMRI

acquisition, but with no data validation.

The search also identified 48 papers that described comparisons
of EEG artifact reduction methods for EEG-fMRI, without
proposing any new method. While, these papers do not describe
novel methods, they were used to inform the discussion in the
following sections in order to provide an objective measure of
best practice in EEG-fMRI artifact reduction.

3.2. Contemporary Use of Artifact
Reduction Techniques in EEG-fMRI Studies
Figure 3 shows the search strategy used for finding literature
relating to artifact use in contemporary EEG-fMRI studies. The
original search returned 506 original articles, after excluding
duplicates from each of the databases. Screening of papers by
title and abstract excluded 132 papers, and full text screening of
papers excluded another 130 papers. The most common reasons
for exclusions were as follows: animal studies (n = 5), review
papers with no original data (n = 81), papers where data are not
from simultaneous EEG-fMRI (n = 121), and papers discussing
technical aspects of EEG-fMRI without original data in human
subjects (n = 49). After exclusion, the review includes 244 EEG-
fMRI papers for analysis.

4. ARTIFACT REDUCTION:
RECOMMENDATIONS AND
CONTEMPORARY USE

This section is divided into subsections based on the four main
EEG-fMRI artifact types [GA, BCG artifact, motion artifact, and
environmental artifact] and includes results from both reviews
in each section. For each artifact type, recommendations are
made for the best practice for reduction of that artifact, followed
by contemporary usage statistics to contrast best practice vs.
current practice. In the interests of space, not all 130 novel
artifact reduction techniques revealed in the literature search are
covered in detail in the following discussion. A comprehensive
list of all techniques is provided in additional tables in the
Supplementary Material..

A final subsection details the software toolboxes used to
reduce artifact in contemporary studies. Although we do not
evaluate software toolboxes in this review, understanding the
most commonly used software could help to identify the reasons
researchers are using a particular artifact reduction technique in
contemporary studies.

4.1. Gradient Artifact Reduction
GA, or imaging artifact, is the largest artifact seen on EEG
recorded during fMRI, and occurs due to the strong magnetic
field changes during fMRI scanning. GA amplitude can be over
400 times larger than the EEG of interest (15), making its removal
crucial for a successful EEG-fMRI study. Early EEG-fMRI studies
avoided GA by altering the time of scanning, so that fMRI
was acquired either in response to an EEG event such as an
epileptic spike (2), or by interleaving EEG and fMRI acquisition
(26). However, alternating fMRI and EEG acquisition cannot
be considered simultaneous, and useful neuronal information
is lost when data are acquired in this way. In order to be
simultaneous but still to avoid GA, a method known as Stepping
Stone Sampling (27) was developed, which avoids GA by altering
the fMRI pulse sequence so that EEG can be sampled during
times when GA is known to be negligible. However, Stepping
Stone Sampling has been largely superseded because newer
post-processing methods allow for equivalent or better (28)
recovery of neuronal activity from continuous scanning using
conventional fMRI pulse sequences.

4.1.1. EEG-fMRI Setup
If not avoiding GA using Stepping Stone Sampling or another
method, the EEG equipment must have sufficient dynamic
range to record both the GA and the underlying EEG to
facilitate subsequent post-processing to separate these signals.
Newer amplifiers that are wireless and can adapt amplification
depending on MR gradient sequences are in development (29)
but are not currently available. One problem with recording EEG
in the MR environment is that EEG leads can form large loops,
which increase the prominence of induced current from GA,
and may be dangerous if heating occurs (30). To reduce the size
of EEG cable loops in the MR environment and to reduce the
magnitude of GA being recorded, EEG cables should be twisted
(22, 30–32), as short as possible (32, 33), and located centrally
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FIGURE 2 | PRISMA chart (25), EEG-fMRI novel artifact reduction methods, 1998–2019.

on the EEG cap (34). Re-wiring the EEG cables based on scanner
specific artifact recordings may further reduce the amount of GA
recorded in the EEG (35). Also by optimizing the setup of EEG
equipment, positioning the subject with nasian 4 cm posterior to
isocenter (36) may reduce GA contamination of EEG.

4.1.2. Post-processing
Template methods, such as AAS can be used to remove GA, and
blind source separation (BSS) methods, as well as other filtering
methods, have been proposed as alternatives.

4.1.2.1. Template Methods
Template methods are techniques that create an estimate of
the artifact, which is removed from the noisy data, to obtain
clean EEG. GA is assumed to be repetitive and time-locked
to each repetition time (TR) during fMRI scanning, whereas
the neuronal EEG of interest is assumed to be random and
fluctuating without regard to TR. Template methods average
the signal over many TRs, leveraging the fact that the neuronal
EEG signal, which is not time locked to the TR, will average out
toward zero, leaving the GA signal, which can be subtracted from
the recording to give the cleaned EEG (37). Providing that the
assumption of GA stability and EEG fluctuation, with regard to

TR timing, throughout the recording is valid, template methods
can provide a relatively easy and reliable way to clean the EEG.

Temporal jitter of EEG and MRI scanner clocks leads to
slight differences in the calculation of templates, resulting in
residual GA contamination of EEG after artifact removal by
template methods. Therefore, to accurately sample the GA
and use template methods most effectively, MR and EEG
clocks should be synchronized (27, 38–40), preferably using
a synchronization hardware device (38). For studies where
synchronization hardware is not available, post-processing
methods, such as interpolation (41), auto-correlation (42),
time continuous cubic spline model (43), or least across
squares variance (44), can be used to realign EEG and
fMRI data. However, the use of synchronization hardware,
available with many commercial EEG-fMRI systems, remains the
optimal approach.

The template methods for GA removal described in the
literature differ from each other by the way that the template
is generated, as well as how the template is subtracted from
the recording. The earliest template method, AAS, considers
GA at each TR epoch in the temporal domain, and applies
a moving average filter (over some number of immediately
preceding TR epochs) to remove GA, leaving the cleaned EEG
data (15). Other template methods, such as template sets based
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FIGURE 3 | PRISMA chart (25), showing search strategy for recent EEG-fMRI papers, 2016–2019.

on cubic spline interpolation (45) and hierarchical clustering
(46) use templates derived from the whole recording rather than
temporally preceding, and filter data based on these clusters, or
sets, of templates.

There have been few comparisons of template methods
available in the literature. However, even in the original
paper that describes it, cubic spline interpolation did not
outperform AAS, unless additional motion parameters from an
MR compatible camera (or, it was suggested head displacement
parameters from fMRI analysis could possibly be substituted)
were also incorporated into the algorithm (45). The addition of
head displacement parameters gives an additional information
to the cubic spline model, and it is unclear if using AAS with
this additional information would have produced comparable
results. Hierarchical clustering showed improved performance
compared with a pipeline of AAS and interpolation of EEG
and MR data, but was not implemented on a dataset where
EEG and MR timing were synchronized (46). It is therefore
questionable whether hierarchical clustering could improve the
performance of AAS if adequate synchronization was employed,
and it is difficult to suggest this method without appropriate
independent validation. The literature search showed that of the
three template methods described above, only AAS has been
independently scrutinized, and many papers have built on or
suggested additional factors for its implementation.

AAS, when used for removing GA, can be prone to residual
artifact due to fluctuations inGA over the course of the recording,
such as from head motion (47), drift in EEG sampling rates (12,
38), or from contamination due to BCG artifact (48). Methods
to reduce the resultant residual artifact present after AAS include
using extra steps such as pre-processing template data (49), or
improving the template estimation by weighting templates based
on proximity (50), linear regression (51), cross-correlation (52),
or adaptive filtering (53). However, these methods that describe
extra steps for removing residual artifact with AAS are dealing
with the residual artifact from non-synchronization of clocks,
and if they compare their method with AAS, it is AAS without
synchronization (49, 51, 53). One paper [cross-correlation (52)]
considered how synchronization of EEG and MRI would affect
their method, and stated that their method would likely provide
a similar magnitude of GA reduction compared to using AAS
with synchronization. Weighting templates based on proximity
(50) was tested using synchronized EEG and MRI data, but the
protocol for MR acquisition was Stepping Stone Sampling (27),
an uncommon MRI sequence. The paper was aimed toward
retaining high-frequency signatures of EEG, rather than reducing
GA (50), and therefore, the findings of this paper will be more
relevant to those working in the field of high-frequency EEG.

The biggest issue with using AAS to remove GA is that
BCG and motion artifact affect the accurate calculation of AAS
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templates (47), with these inaccurate templates often causing
the residual artifact seen in recordings (48). In 2009, two
groups independently published methods showing that motion
information, obtained from fMRI head displacement parameters,
can be added to the calculation of AAS templates to improve GA
removal (12, 54). The addition of head displacement parameters
to AAS is particularly suited to cohorts such as children where
motion is unavoidable, and is particularly beneficial when head
displacement during the time of the scan exceeds 1 mm. The
addition of motion parameters to AAS showed an experimental
increase event-related potential (ERP) power of 10–40%, (12), as
well as a reduction in residual GA of 20–50% (54). Recently, it
has been suggested that information from hardware that directly
records head motion, rather than fMRI head motion parameters,
could also be used to improve the calculation of AAS templates
(55, 56). A discussion of direct motion hardware is given later
in section 4.2.3. Finally, a recent study capitalized on the fact
that the GA is stable, and using a model of the GA and the
principles of Faraday’s law enable us to determine which volumes
were affected by head motion, and thus adjust the AAS templates
accordingly (47).

4.1.2.2. Blind Source Separation Methods
BSS techniques are a group of data-driven methods that aim to
decompose a mixed signal (input signal) into its multiple original
sources (57). In EEG-fMRI, the noisy signal (EEG and artifact)
is the input, with output components ideally being separated into
components representing neuronal signal or sources of noise. BSS
typically uses statistical properties, such as Gaussianity, variance,
or correlation to identify these sources, even when no prior
information is given (58). As such, BSSmethods can be preferable
to template methods when information about the signal, such as
MR slice timing, is unknown.

Popular BSS methods employed to reduce GA in EEG-
fMRI studies include independent components analysis (ICA)
(59), principal components analysis (PCA) (60), canonical
correlation analysis (CCA) (61), and blind source extraction
(BSE) (62). Variations of these main methods for GA reduction
include the optimal basis set (OBS) method (63), which
uses template methods alongside PCA, independent vector
analysis (IVA) (64), which employs ICA over multiple EEG
channels, and single value decomposition (SVD) (65), a subset
of PCA.

Of the BSS methods described, ICA and OBS have been
independently compared for removal of GA from EEG-fMRI
data, with ICA showing good results in simulated data, but OBS
outperforming ICA in experimental data (66). A difficulty with
using BSS methods is the challenge of correctly choosing the
components that represent artifact and those which represent
neuronal activity, especially if no prior knowledge about the
signal is available. There is a chance that by rejecting too
many components, neuronal signal, as well as artifact, is
removed from the recording and important information is
lost (67).

4.1.2.3. Other Methods
4.1.2.3.1. Frequency Filtering. Frequency filtering uses algorithms
such as the Fourier transform (FT) to represent the EEG signal
in the frequency domain, where frequencies corresponding
to GA can be removed (26). However, given that some GA
occurs at frequencies corresponding to neural activity, frequency
filtering is not suitable for accurately reducing GA without
losing important neuronal information (26). Frequency filtering
using the FT has been suggested as an option for real-time
removal of GA, where computational speed of the algorithm
is more important than a potential loss of neuronal signal
(68). The Taylor–Fourier transform expands the FT by allowing
for fluctuations in harmonics during each temporal segment
of data, regardless of how small, (69), allowing it to capture
amplitude and phase variations that would not be possible with
the FT alone. For EEG-fMRI, the Taylor–Fourier transform
method creates a dynamic template at each individual TR,
and was shown to improve removal of residual artifact, but
was not validated against AAS or any other GA removal
technique (70).

4.1.2.3.2. Dictionary Learning. Another approach to GA
reduction, dictionary learning, is a computationally expensive
way of separating the GA and EEG, which has shown an ability
to remove GA from contaminated EEG, but has not been tested
against other commonly used GA removal methods, either in
the original paper or independently (71). Therefore, we cannot
recommend the dictionary learning model for removing GA
until further validation of the method is available.

4.1.2.4. Comparison of Methods
Few papers independently compare GA removal methods for
post-processing of EEG-fMRI data. In 2007, Grouiller et al.
(66) published a study that compared AAS, OBS, ICA, and FT
in both simulated and experimental EEG-fMRI data. Results
showed that while ICA performed well for simulated data under
30 Hz, AAS and OBS performed better in experimental data,
and FT had the poorest results. Other studies have compared
AAS and OBS only, especially in their commonly used software,
with AAS often being implemented from commercial software
Brain Vision Analyser, and OBS implemented by an open source
plug in through EEGLAB (63). Comparisons of AAS and OBS
suggest that OBS may be more adept at removing artifact (67,
72), although it has been suggested that the increase in artifact
removal seen from OBS is due to additional BCG removal
as well as GA removal, and which may have been removed
during other post-processing steps for removing BCG later
(72, 73). Overall, the methods of AAS and OBS appear similar
for cleaning of GA from EEG-fMRI, provided that adequate
synchronization of MR and EEG clocks occur. OBS may clean
additional BCG from the data during the GA cleaning step,
and therefore should conservative artifact removal be required,
AAS with synchronization may be preferred. Future studies
that independently compare some of the less known methods,
such as dictionary learning, and template methods (not AAS),
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would help to improve guidance for GA removal from EEG-
fMRI studies.

4.1.3. Recommendations for Removing Gradient

Artifact

Recommendations for Removing Gradient Artifact from

EEG-fMRI:

• EEG cable length (from cap to amplifier) as short as
possible.

• EEG cables (cap and cable bundle to amplifier) twisted to
reduce loop areas, minimizing magnetic field effects.

• EEG cable position central to the bore and patient cap.
• Patient nasian 4 cm from isocenter.
• Synchronization of EEG and MR clocks, preferably using

hardware rather than interpolation methods.
• Post-processing removal of GA with either AAS

(conservative, possible residual artifact) or OBS (rigorous,
possible loss of neuronal information).

• Additions to these algorithms (e.g., including head
motion parameters) may remove GA more accurately.

4.1.4. Contemporary Use of GA Removal Methods
The results of the review of contemporary EEG-fMRI studies
show that AAS (15) is still overwhelmingly the most widely
used technique for removing GA from EEG acquired during
fMRI studies (61%, Figure 4). The OBS method [48] is used
in only 10% of studies, while filtering, hardware and all other
methods make up only 7% of GA removal methods. Despite
there being a number of published papers outlining extensions
to the AAS method to make it more accurate (for a full list, see
the Supplementary Material), 6% of papers published between
2016 and 2019 report using an extended AAS method. In 17% of
papers, the GA removal method was either unclear (9%), or there
was no indication of GA removal at all (8%). GA removal method
was considered “unclear” if the paper mentioned removing GA
but did not state a specific method, or the paper commented
on the commercial software used to remove artifact but did not
outline method or steps taken within that software.

A surprising result from this review is that despite the many
reported benefits of synchronizing EEG and MR clocks for
later artifact removal (38, 39), less than 50% of the EEG-fMRI
papers included in this review reported using synchronization
hardware (for full data, see the Supplementary Material).
The low percentage of synchronization hardware use may be
partially due to the inadequate reporting of methods in the
literature. Regardless, the low number of papers reporting use of
synchronization is concerning given that effective GA removal
using template methods such as AAS (the most commonly used
method) relies heavily on adequate synchronization (38). We
recommend that synchronization hardware be used in all EEG-
fMRI studies so that GA can be accurately removed from EEG,
and also recommend that authors include synchronization use in
their methodology when publishing research.

FIGURE 4 | Gradient artifact removal in EEG-fMRI papers, published between

2016 and 2019 (n = 244). AAS, average artifact subtraction; OBS, optimal

basis set.

4.2. Ballistocardiogram Artifact
The BCG, pulse, or cardio-ballistic artifact, refers to
contamination of the EEG due to pulsatile motion associated
with cardiac output (65). BCG voltage has been measured at
around 50 µV, which is in the physiological range of typical
EEG signals of interest (19), and therefore is a considerable
confound that cannot easily be avoided. A technique known as
pulse triggered scanning (74) has been proposed as a way to
avoid the main source of BCG artifact, but is only practical for
task-based fMRI and requires specific technical expertise to set
up. Therefore, most studies opt to use standard fMRI sequences,
and rely on accurate recording of pulse and physiological signals
during EEG-fMRI to estimate and remove BCG artifact during
post-processing of EEG data.

4.2.1. Measurement of BCG
Monitoring physiological signals such as heart and breathing rate
can give a baseline estimate of BCG artifact and enable better
removal during post-processing of EEG. Common methods
to measure physiological signals include using an additional
electrode to measure ECG (19, 30), as well as the use of
photoplethysmography (PPG) or a respiratory band, which is
sometimes included with the MRI scanner setup (39). Choice
of measurement may depend on the post-processing methods
chosen, and the researcher needs to ensure that any additional
signals measured can be accurately synchronized with EEG and
MR timings.

4.2.2. Post-processing
From a post-processing perspective, BCG artifact removal is
arguably more difficult than GA removal because BCG varies
throughout the recording (46, 75, 76). BCG artifact differs across
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scalp electrodes, and may be contributed to by pulsation motion
of the scalp, electromagnetic effects of blood flow under the scalp
(Hall voltage), and movement related to respiration (17). BCG
can be removed with various post-processing methods including
template methods and BSS methods. Many of the methods
outlined for GA removal in the previous section (section 4.1.2)
have been adapted for BCG removal.

4.2.2.1. Template Methods
Template methods can be used to remove BCG artifact
from EEG-fMRI data in a similar way to GA methods
described in section 4.1.2. However, unlike for GA, where the
beginning of each template is defined by MR trigger events
at the beginning of each TR, the beginning of each BCG
template is usually determined based on the peaks seen during
simultaneous recording of physiological signals, such as ECG,
alongside EEG-fMRI.

BCG removal from EEG recorded inside the MR environment
was first proposed by Allen et al. (19) in 1998, using the AAS
template method with QRS complexes from ECG used to mark
the beginning of each BCG template. An issue with using AAS
method for removing BCG artifact is that it assumes that all
BCG will be of the same or similar shape, and only slowly vary
across the whole recording, whereas evidence from literature
has shown that BCG is highly variable across the recording and
has many different shapes (46, 77). Because of this problem,
adaptations of AAS for BCG removal have been proposed,
including using exponential weights for previous BCG instances
to account for the variability of BCG artifact (30), data warping
the AAS template to account for shape differences (77), as well as
additional steps such as wavelet decomposition to help remove
residual BCG artifact left by inaccurate BCG templates (78).
These methods, while shown to improve the correlation of EEG
from outside scanner with filtered inside scanner recordings
compared to AAS alone (77, 78), still do not account for all the
dynamic changes that occur in BCG between subsequent heart
beats. The dynamic time warping approach goes some way to
account for shape changes that occur between BCG instances,
but still uses previous iterations of BCG to determine the general
shape of the waveform (77).

One of the problems associated with AAS is that BCG artifact
can continue longer than a single heartbeat event, and therefore
might overlap with the next BCG event in the recording. In
fact, a study showed that when recorded at 3T, BCG artifact
that overlapped into the next BCG template accounted for
up to 30% of all recorded BCG (46). Several methods to
overcome this overlapping of BCG artifacts has been proposed:
the moving General Linear Model (mGLM) (79) and hierarchical
clustering (46). The mGLM method uses a Fourier series to
model each BCG template, and therefore does not cut off the
template at the beginning of the following heartbeat. The mGLM
model is similar to AAS in that the BCG template is updated
temporally and relies on information from previous templates in
its generation. In fact, if there is no overlapping of BCG, then
mGLM will act identically to AAS (79). Clustering algorithms,
such as hierarchical clustering (41, 46) and k-means clustering

(80), account for overlapping BCG components by dividing all
BCG instances from the entire recording into groups of similar
templates, which can then be removed. Hierarchical clustering
was tested on EEG-fMRI data from a sample of 29 healthy people
at 1.5 T, as well as 15 epilepsy patients and one healthy person at
3 T. Results showed that BCG template duration was longer for
higher magnetic field MRI (3 T) compared with 1.5 T recordings,
and that the BCG templates not only vary between subjects,
but within the recording, with clusters not ordered throughout
the recording (46). This implies that techniques such as AAS-
based methods and even mGLM may work sub-optimally, due
to relying on information from previous BCG for determining
the shape of the BCG template. By using the whole recording
and clustering all BCG instances, the hierarchical clustering
method is able to overcome the limitations of overlapping BCG
as well as the variability of BCG. When compared to AAS
and OBS, k-means clustering has showed slightly less BCG
attenuation, but better neuronal preservation, compared with
OBS—and vice versa compared with AAS—during an EEG-fMRI
visual task at 7 T (80). Therefore, it has been suggested that
clustering algorithmsmay be a good trade off for both attenuating
BCG and preserving neuronal activity, compared with AAS and
OBS (80).

Template methods for BCG removal typically require an
accurate recording of physiological signals, particularly QRS
complexes from ECG, that are used to generate BCG templates.
While the AAS method uses amplitude information to detect
the R peak of the QRS complex, other algorithms have been
described for detecting R peaks. These algorithms include a
modified Pan–Tompkins algorithm, which uses width and slope
measurements as well as amplitude to detect R peaks (81), and
k-Teager Energy Operator algorithm, which determines the total
energy of the signal in a particular frequency range to identify R
peaks (63, 78, 82, 83). Other methods for detecting R peaks have
also been suggested, such as using the amplitude of the difference
between the positive R peak and negative peak between S and T
waves to determine the location of the R peak, as well as using a
window of intervals based on expected heart rates to determine
approximate location of peaks (84). We did not find any direct
comparisons of themethods for R peak detection for BCG artifact
recorded during EEG-fMRI. The most commonly cited R peak
detector, k-Teager Energy Operator, was proposed for the specific
purpose of finding peaks for BCG that occurs during EEG-fMRI
(78), and therefore may be a better fit than older algorithms
such as Pan–Thompkins, which was initially developed with
the purpose of identifying peaks during ambulatory ECG (85).
A potential issue with using the k-Teager Energy Operator is
identifying the best value of k (the expected frequency of peaks).
The default value, which is calculated based on the sampling
rate of data, may identify too many false positive peaks (83),
so heuristic customization may be required. An incentive for
using k-Teager Energy Operator is that it can be used with other
physiological recordings of BCG, such as from electrooculogram
(EOG) electrodes attached to the side of the head, rather than
using an ECG electrode (78). In this way, motion aspects of BCG
may be better represented in EOG electrodes, without requiring
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direct motion recording from additional hardware, and without
lag between QRS complexes recorded in ECG leads and BCG
artifact seen on the head.

4.2.2.2. Blind Source Separation Methods
Blind source separation techniques, ICA, PCA, CCA, as well
as OBS, have also been applied to removing BCG artifact from
EEG-fMRI (for all methods, see Supplementary Material). BSS
techniques offer a data-driven way to remove BCG, regardless of
the variability of the BCG artifact, and without the necessity of
measuring physiological signals.

4.2.2.2.1. Principal Components Analysis. PCA was first
described alongside ICA, for BCG removal by (86). While, PCA
was shown to be capable of removing BCG and improving
the detection of epileptic spikes, it was concluded that ICA
performed better (86). Since then, research into blind source
separation methods for BCG removal in EEG-fMRI has focused
on ICA rather than PCA, unless some extension or modification
of the PCA algorithm was used.

One such algorithm that builds on PCA is the maximum noise
fraction, which uses similar processes to PCA, but differs in that
it derives two matrices—one for the signal (which is assumed
to have a degree of smoothness) and one for estimated noise
(which is assumed orthogonal to the signal). For the purpose
of separating BCG from neuronal electrical activity, the BCG is
assumed the temporally smoother “signal” and neuronal activity
the “noise.” The algorithm generates output components based
onmaximizing signal to noise ratio (SNR) between thesematrices
(87). In this way, the maximum noise fraction approach can be
considered superior to ICA or PCA, because the components
generated from the maximum noise fraction are automatically
sorted into BCG and likely neuronal activity components (87).
In a test of four subjects, with BCG removal compared between
ICA and maximum noise fraction, the maximum noise fraction
components chosen to represent BCG were more specific to
the actual BCG artifact in comparison with the independent
components from ICA (87).

Another method that builds on PCA is to precede it with
empirical mode decomposition (EMD) (88, 89). Empirical mode
decomposition first decomposes the signal into intrinsic mode
functions with various frequencies and amplitudes, and then
PCA is undertaken on each of the intrinsic mode functions (89).
The combination of EMD and PCA is more sensitive to temporal
variation that occurs in BCG, compared to application of PCA or
ICA alone (89). EMD-PCA has been tested for many different
EEG-fMRI paradigms, and has shown better removal of BCG
from ERP task EEG-fMRI compared with OBS and AAS (88–90).
In resting state EEG-fMRI, EMD-PCA removal of BCG improved
the detection of most parameters measured from the EEG and
was shown to be a useful technique when a reference signal such
as ECG is not available to estimate BCG onset (91).

4.2.2.2.2. Optimal Basis Set. The OBS method (63), section
4.1.2, uses PCA in conjunction with a template method to
remove artifact. Like AAS, OBS for BCG removal relies on
accurate generation of templates and can benefit from techniques

to precisely identify QRS complexes from physiological data.
Adaptations of OBS include real-time monitoring of EEG data
during fMRI (92) and correlation between PCA components
and ECG signal, which helps to reduce the issues with temporal
variation of BCG (93). The original OBS method used three
main principal components (PCs) to represent the BCG from a
recording. However, independent studies have shown conflicting
data, with some suggesting that altering PC number for each
individual dataset alters the outcome (73), whilst others show
that OBS is relatively stable regardless of PC number chosen
(76). A study using high-field 9.4 T MRI showed that OBS
was not successful in extracting ERPs, unless ICA, with specific
methods for choosing ICs, was used alongside it (94). Therefore,
the evidence suggests that for removing BCG artifact, OBS is
best used in conjunction with ICA, provided that IC selection is
carefully monitored.

4.2.2.2.3. Independent Components Analysis. The main
advantage of ICA, compared with template methods, is the
ability to combine spatial and temporal information about BCG,
without the need to record physiological signals, in a process
which is fully data driven (95). However, there is a risk one may
remove independent components (ICs), which relate to neuronal
activity rather than artifact. Common methods for sorting BCG
ICs include correlation (95, 96) variance (97), auto-correlation,
frequency sorting, or peak to peak measures, all of which rely on
the ECG channel as a reference [for a full overview, see review
in (76)]. More recent methods of sorting BCG ICs include using
Mutual Information algorithm (65, 98), clustering the results of
multiple ICA runs (99), using a Magnitude Squared Coherence
Function (100), and finally using a projection of QRS complexes
from ECG into the IC space, followed by k-means clustering of
all ICs (101). In addition, a variation of ICA, constrained ICA
(cICA), may improve on ICA alone by using a prior estimation of
BCG artifact to help derive ICs which are likely to closely match
the BCG artifact (102–105). A comparison study of common IC
sorting methods showed that peak to peak sorting of BCG ICs
outperformed sorting by variance measures (76). However, this
is in contrast to a second comparison study that showed that
depending on the weight given to artifact removal or neuronal
activity retention, the effectiveness of each of the IC sorting
method differed (101). In this second study, sorting ICs by
frequency showed the best overall reduction of BCG regardless
of neuronal activity loss, while sorting ICs using auto-correlation
showed the best outcomes for preserving neuronal activity and
removing BCG, tested on 7 T data (101). When taken together,
these results suggest that sorting of ICs is difficult, and may
be confounded by scanner setup, magnetic field, as well as the
study requirements that prioritize either full BCG removal, or
neuronal activity preservation.

4.2.2.2.4. Canonical Correlation Analysis. CCA is a technique
that takes two sets of basis vectors and computes linear sets of
vectors from each set (106). CCA was adapted for removing
BCG from EEG-fMRI by temporally segmenting the data
based on BCG artifact timing, followed by employing CCA
on consecutive epochs of BCG instances, to determine the
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underlying sources responsible for common signal between the
segmented epochs (106). It was argued that CCA would be
superior to ICA or PCA, as it is able to take into account temporal
(periodicity) and spatial (topography) aspects of the BCG due to
taking consecutive BCG instances into account (106). Originally
requiring manual identification of BCG artifacts on EEG (106),
later implementations of CCA used ECG and R peak detection
for determining BCG onset (107). CCA performance has been
observed to be better than AAS for some subjects, whereas for
others the performance can be quite similar to AAS (108). In
ERP studies, CCA appears to perform similarly to OBS or AAS
when trial number is high, and better when trial number is
relatively low (107). Results of these studies suggest that CCA
may be a useful post-processing technique for studies where BCG
variability within a subject is high, and recording time of the
EEG-fMRI study is short.

4.2.2.3. Other Methods
Other methods for BCG removal include techniques that filter
BCG based on some of its characteristics such as its spatial
(109), spectral (110, 111), or morphological (112, 113) features.
In addition, several papers outline the application of advanced
filters such as Kalman filtering (114, 115), for BCG removal
during EEG-fMRI. Finally, Abolghasemi and Ferdowsi (116)
used dictionary learning for removal of BCG from EEG data,
where a sparse dictionary is able to model the BCG data from
EEG-fMRI data.

Removal of BCG by its spatial characteristics (109) was shown
to be adequate compared with AAS, but only improved on AAS
in the instance when BCG effects were temporally and spatially
locked with EEG events of interest. Source Extraction (CSE),
based on the spectral components of BCG, has been shown to
be able to remove BCG from signals and result in good SNR and
visual evoked potential (VEP) recovery, in comparison to AAS
and OBS (110). Harmonic regression (111), another technique
which is based on removing the spectral features of BCG, has
shown similar or better results compared with AAS and OBS
in experimental data. Morphological BCG removal (112, 113),
which uses a Discrete Hermite Transform to model BCG shape,
was shown to be superior to AAS and comparable to ICA, in
the original paper in which it is described. Kalman filtering has
been shown to be comparable to AAS, and may be preferred for
real-time monitoring (114), but is unlikely to supersede AAS for
post-processing, due to its computational complexity. Dictionary
learning is able to model BCG well, but experimental data show
that BCG removal was not significantly improved compared to
the more common methods of AAS and OBS (116). Of all other
methods for BCG removal, spectral and morphological methods
appear to carry the most promise; however, all these approaches
have not been validated independently outside of the group that
first described them, making it difficult to recommend them
given the current evidence.

4.2.2.4. Comparisons of Post-processing Methods
The most commonly compared processes are AAS, OBS, and
ICA, and to a lesser extent, clustering and CCA methods.
Individual comparisons of OBS and AAS have shown conflicting

results, with some favoring AAS (66, 107, 117), and others
favoring OBS (28, 73), although the consensus is that it may
depend on the research question or EEG correlate of interest, as
to which method will provide the best reduction in BCG artifact,
without losing possible EEG information of interest (118). A
recent 7 T study showed that a k-means clustering algorithm
may be a good trade-off between neuronal preservation and BCG
attenuation compared with AAS and OBS (80), but no other
studies have independently compared clustering algorithms.
Considering that AAS is OBS with a PC number of 1, altering
the number of PCs chosen as BCG artifact has been a source of
investigation, with one study showing that OBS with a default
PC number of 3 provides better BCG removal compared with
AAS (76), while a later study showed no significant differences
between AAS and OBS (PC = 3), unless the PC number chosen
was optimized for each individual participant, case in which OBS
outperformed AAS (73). Research has shown that for task-based
EEG-fMRI studies involving high numbers of trials, use of AAS,
OBS, or CCA is adequate for removing BCG (107), while for
studies looking at fewer trials, or when EEG correlates are small
and difficult to detect, BSS methods such as OBS (28) or CCA
(107) may improve removal of BCG, and thus, detection of the
underlying EEG correlate. Most studies show that ICA is best
used after either AAS or OBS, because the difficulty of correctly
choosing the number of components and ensuring stability of
the algorithm means that the outcome might otherwise be more
likely to involve erroneous results for little gain in BCG removal
(76, 94, 119). Other methods, such as spatial, morphological,
wavelet, dictionary, and spectral methods for reducing BCG
have not been independently compared with OBS, AAS, or ICA
outside of the original papers that introduced them, making it
impossible to judge the quality and reliability of these methods.

4.2.3. Direct Artifact Recording
There is evidence that the biggest contributor to BCG is pulse
driven head motion, which obviously cannot be avoided during
EEG-fMRI in human subjects (17, 75, 97). Options for measuring
this physiological head motion artifact include methods to
directly measure artifact at the head, such as altering the EEG cap,
or using additional hardware connected to the cap. The benefits
of these systems is that they are able to directly record any artifact
occurring at the head, including small and large head motion, as
well asmonitoring environmental artifact such as vibration (120).
However, higher costs and technical skill is required to ensure
that any new andmodified hardware is used safely and accurately.

Alterations to the EEG cap can include isolating some
electrodes from the scalp using plastic (121–123), artificially
joining electrodes using a gel bridge (124), or altering the position
of some electrodes and bundling cables so that neuronal signals
and motion can be adequately distinguished (125). The above
options, however, result in sacrificing some electrodes for motion
detection purposes, and may not be suitable for all EEG-fMRI
setups, especially where electrode number is small or electrode
number is important for the study outcome. Another method
is to increase the number of EEG leads to provide an over-
complete set of measurements that can be subsequently analyzed
to distinguish between voltages arising from neuronal activity
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and those arising from motion of the sensors in a magnetic field
(126). Further methods for alteration of the EEG cap include
the creation of an entirely new electrode reference layer, isolated
from scalp potentials, and located either underneath the EEG cap
(127), on top of the EEG cap (128), or between EEG electrodes
(129). For researchers not wanting to alter the EEG cap itself,
additional sensors, such as extra electrodes (130), motion sensors
(131), and carbon wire loops (55, 132–134), can be used to
directly measure artifact from any sources including motion,
without requiring alterations to the EEG cap itself. Signals
obtained from direct artifact sensors can be successfully removed
from the EEG with the aid of, for example, a multi-channel least
squares fitting algorithm (55).

A study comparing the reference layer cap, wire loops, and
AAS showed that while all methods adequately reduced BCG,
using additional hardware (loops or reference cap) to filter
data acquired during periods of deliberate motion, led to lower
RMS values compared to AAS (120). This study suggested that
the reference layer cap may be preferable to wire loops, but
this was not shown definitively, as data obtained from the two
methods were measured at different time points (120). While
direct recording of artifact is preferable for all EEG-fMRI studies,
implementation of this will depend on the research group’s
preferences and technical skill level.

4.2.4. Recommendations for Removing

Ballistocardiogram Artifact

Recommendations for Reducing Ballistocardiogram

Artifact in EEG-fMRI:

• Additional hardware, such as carbon wire loops, additional
sensors, or a reference layer cap, to directly measure BCG
and motion:

• Adaptive filtering to remove BCG based on direct
recordings.

• Where additional hardware is not available, use of AAS,
OBS or CCA or clustering methods with:

• Recording of physiological signals (ECG, PPG, or
respiration).

• Precise recording and detection of QRS complexes using
k Teager Energy Operator or Pan-Tompkins algorithm.

• ICA post-processing of data to remove residual BCG if
using AAS or OBS.

4.2.5. Contemporary Use of BCG Removal Methods
The main methods used to remove BCG artifact from EEG-fMRI
studies between 2016 and 2019 consisted of AAS, OBS, ICA and
PCA, as well as hardware methods such as direct recording of
BCG by wire loops or modified EEG cap (Figure 5). Like GA
removal, the most common method of reducing BCG was AAS,
with around one-third of studies using AAS alone for removing
BCG, compared to almost two-thirds using AAS for removing
GA. Use of OBS was the second most common BCG removal
technique, with 14% of studies, a slightly higher percentage than

FIGURE 5 | Ballistocardiogram (BCG) artifact removal method in literature

using EEG-fMRI published between 2016 and 2019 (n = 244). AAS, average

artifact subtraction; OBS, optimal basis set; ICA, independent components

analysis; PCA, principle components analysis.

for GA removal (10%). ICA rivaled OBS as a popular form of
BCG removal at 13%, with a further 2% of studies using either
ICA and OBS, or ICA and another technique. Hardware (4%),
PCA (5%), and other methods (4%) were less frequently adopted.
BCG removal method was either unclear, or not stated, in 18%
of studies.

The biggest difference seen between the methods for GA and
BCG removal is the large uptake of BSS methods, particularly
ICA and to a lesser extent PCA, for BCG removal (Figure 5).
When ICA was used in conjunction with another method, total
reported use of ICA was over 15%. Our guidelines recommend
use of ICA only in conjunction with, and after, another method,
due to the likelihood of either under- or over-removal of BCG
(76, 94, 119).

BCG artifact is most commonly measured by separate ECG
channel, with around two-thirds of studies included in the review
reporting collection of ECG data (see Supplementary Material).
In comparison, only 11% of studies reported using physiological
monitoring such as a respiratory band or pulse. Nine percent of
studies used external hardware, such as modified EEG caps, wire
loops, and/or external sensors such as cameras, for measuring
artifact occurring at the head (see Supplementary Material),
yet of those, only 5% of studies reported using hardware for
removing BCG (Figure 5). These results show that easy to
implement techniques such as measuring ECG are more widely
adopted than unique measures such as physiological monitoring
and external hardware, despite the benefits of using external
hardware. The technical expertise, money, time or skill in
implementing additional artifact reduction hardware may be
beyond the capacity of many researchers using EEG-fMRI.

Incorrectly removing artifact can lead to erroneous reporting
of EEG results, incorrect mark-up of EEG events, and inaccurate
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EEG-fMRI outcomes (135). Eighteen percent of studies are
unclear or do not state the BCG reduction method used.
Considering the importance of reproducibility in science and the
need to be able to replicate studies, it is important that artifact
reduction methods are implemented and fully described in the
Methods section.

4.3. Motion Artifact
Gross head motion is that which involves potentially large,
sudden head movements as well as slow changes to head
position. Reducing gross head motion can be achieved by using
restraints such as foam padding or a vacuum cushion around
the subject’s head (86). Foam padding or vacuum cushions are
readily available with most MR systems and should be used
when available.

In subject populations where gross head motion is expected
(such as children), the use of additional monitors for motion
could be useful. During post-processing, these measurements of
head motion can be used to filter out motion artifact or exclude
periods of data if motion is considerable. Motion monitoring
can be in the form of an Optical Motion Tracking system for
whole head movement (45, 136) or indirect measurement of
motion using an MR compatible camera (137). In addition,
techniques used to directly measure BCG-related artifact (as
outlined in section 4.2.3) can also be used to filter out gross
head motion. A recent study (138) compared an Optical Motion
Tracking system (MPT) (139) and two direct artifact recording
methods: a reference layer cap (129) and isolation of electrodes
from the scalp (123). The direct artifact recording measures
both outperformed the MPT in reducing artifact during different
tasks and different types of motion (138). Therefore, hardware
to directly record artifact may be a good investment, as it is
able to reduce both BCG and gross head motion artifact with
greater accuracy than many data-driven methods (132, 136), and
it may provide more accurate artifact estimation compared with
motion detection hardware such as Optical Motion Tracking
systems (138).

For studies where the subject has their eyes open, recording
the EOG may be helpful for measuring eye movement (137).
In the literature search conducted, no papers specifically dealt
with removal techniques for EOG artifact from EEG-fMRI
datasets. There are, however, many papers that describe removal
techniques for EOG artifact from datasets recorded outside the
MRI environment [for a recent review, see (138)]. These methods
are likely also suitable for within-MRI recording, provided that
GA and BCG artifact are adequately removed in previous steps.
In theMRI scanner, the electrodes positioned near the orbits may
exhibit additional localized motion artifact due to eye movement,
as well as the concomitant EOG signal, potentially aiding in
detection of such events.

4.3.1. Recommendations for Reducing Motion

Artifact

Recommendations for Reducing Motion Artifact in EEG-

fMRI:

• Use of head restraints such as foam pads or vacuum
cushion for all studies

• Additional hardware to measure motion should be
considered:

• In eyes open studies, use of EOG electrode to measure
eye blink movement.

• In all studies, direct artifact measurements, such as EEG
cap alterations or additional sensors such as carbon fiber
loops (see section 4.2.3), are recommended as they can
deal with head motion, BCG, and residual GA. Indirect
methods such as MR-compatible camera recordings or
Optical Motion Tracking may also be useful for dealing
with motion-related artifact.

4.3.2. Contemporary Use of Motion Artifact Removal

Methods
Almost 70% of contemporary studies mentioned removal of
motion, or residual artifact that might be still present in
EEG, even after GA and BCG removal (for all data, see
Supplementary Material). Residual artifact, including motion,
was dealt with by using some form of ICA, in around one-third
of studies, while other data-driven post-processing methods for
reducing motion were used in 15 % of studies. For reducing
motion artifact exclusively, the most reported method, as seen in
23% of studies, was using head restraints such as foam pillows or
a vacuum cushion. Also popular was the technique of removing
artifact from studies by visual inspection of motion-related time
points and excluding data during post-processing, which was
reported in 16% of studies. The most common form of additional
hardware reported was MR compatible cameras or video systems
(4%), followed by motion loops and modified EEG caps (5%
combined). A small percentage of studies used an external
calibration of eye blinks to reduce artifact from eye movement
in their studies. It is also worth noting that 5 studies, or 2%,
reported that the subjects were sedated during the EEG-fMRI
study, and therefore did not record motion. However, sedation
does not remove BCG artifact or potential environmental sources
of motion (see section 4.4), so we would recommend direct
recording of headmotion artifact even when subjects are sedated.

Compared with our recommendations, less than a quarter of
studies have reported reducing motion through simple measures
such as head restraints, for example, foam padding or vacuum
cushions. Additionally, the uptake of hardware such as motion
loops or modified EEG caps for recording motion are very
limited, at only 5% of all studies. While a camera or video
monitoring system (4% of all studies) can be good for indirectly
measuring motion and therefore excluding periods of high
motion, direct motion monitoring systems allow the user to
directly record, and remove artifact directly occurring at the
head. A greater uptake of direct recording systems in the future
could allow an improvement in EEG-fMRI studies through
reduction of motion artifact.
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TABLE 1 | Examples of commonly cited toolboxes for removing artifact from EEG recorded during fMRI.

Toolbox Manufacturer Cost Web link Notes

Brain Vision Analyzer Brain Products Paid software, requires

license

https://www.brainproducts.

com/analyzer2_release.php

Standalone software for processing EEG. Typically purchased

together with BrainProducts hardware.

Netstation Magstim EGI Paid software, requires

license

https://www.egi.com/

research-division/net-

station-eeg-software

Standalone software for processing EEG. Typically purchased

together with Magstim EGI hardware.

Curry Compumedics Neuroscan Paid Software, requires

license

https://www.compumedics.

com.au/en/products/curry/

Standalone software for processing EEG. Typically purchased

together with Compumedics hardware.

EEGLAB Swartz Center for

Computational

Neuroscience, University of

California

Free and open source,

requires Matlab (see

below)

https://sccn.ucsd.edu/

eeglab

Free toolbox for MATLAB, contains many useful

EEG filtering tools, as well as additional plug

ins specific to filtering fMRI artifact from EEG.

Toolboxes include:

• FMRIB plug in (http://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/)

• BERGEN (may no longer be supported, still listed on the

EEGLAB plug-in site).

MATLAB Mathworks Paid software, requires

license

https://au.mathworks.com/

products/matlab.html

General analysis software environment. User can write their own

code for filtering the EEG, or combine custom code with the

output from EEGLAB toolbox (see above).

4.4. Environmental Artifact
While the noise from gradient, cardio-ballistic, and subject
motion are the main sources of artifact in EEG-fMRI, noise
from the MRI environment such as power line noise, lights,
and ventilation are also a problem that few studies have
addressed (18). Of all the possible environmental sources of
noise, the ventilation system and helium cooling pump have
been shown produce the most noise (33), which is thought
to be mainly due to small vibrations that induce motion, and

therefore voltage, in EEG electrodes. Environmental artifact
can be avoided by turning off electrical equipment which is

unnecessary during scanning, if possible and safe to do so

(18). Artifacts can also be reduced by altering the setup of
some equipment, specifically by reducing the vibration artifact

on EEG cabling. EEG leads and amplifiers should be isolated

from the scanner bore in order to reduce direct transfer of
vibration, and methods such as using sand or rice bags (86,

140), or a cantilever beam (141), will improve stability and

restrict the motion of the EEG cables connecting the EEG cap
and amplifiers.

For setups where the helium pump and ventilation cannot

be turned off for the duration of the study (e.g., due to
safety concerns or the length of the scan), and environmental

artifact is shown to negatively affect the quality of the EEG,
the use of direct artifact recording, or post-processing methods

for removing environmental artifact should be considered.

Template measures such as AAS have been shown to reduce

ventilation and helium cooling pump noise compared with
no intervention (142), while another study has shown that

a BSS algorithm, recursive, Segmented PCA (rsPCA), is
able to reduce MRI helium pump noise (14). Alternatively,
direct artifact recording measures, such as carbon wire loops
(section 4.2.3), have also been shown to adequately remove
helium pump artifacts, with filtering using carbon wire loops
showing less residual helium pump artifact in comparison
to AAS, OBS, or OBS-ICA artifact reduction pipelines (132).

While altering the setup of the EEG-fMRI study to reduce
vibrational artifact is relatively easy to implement, the choice
to include additional hardware or post-processing steps for
reducing MR helium pump and ventilation noise will depend
on the residual artifact seen in the individual scanner setup,
and whether it is likely to adversely affect the outcome of
the study.

4.4.1. Recommendations for Reducing Environmental

Artifact

Recommendations for Reducing Environmental Artifact in

EEG-fMRI:

• EEG leads and amplifiers should be secured along the
center of the bore using one of:

• Sand or rice bags, or
• Cantilever beam (141)

• If safe to do so, MR helium cooling pump and scanner
ventilation could be turned off for the duration of the scan.

• If environmental artifact is expected to interfere with
the EEG of interest, using carbon wire loops (55, 132)
will directly record this artifact, enabling its removal via
adaptive filtering.

• If carbon wire loops are not available, using AAS or
PCA methods during post-processing may help reduce
residual environmental artifact.

4.4.2. Contemporary Use of Environmental Artifact

Reduction Methods
In contemporary literature of EEG-fMRI studies, consideration
of environmental artifact was reported in only 22% of studies
(see Supplementary Material), with the few studies reporting
mitigation of environmental artifact using methods to reduce
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FIGURE 6 | Use of software toolboxes for filtering artifact from EEG collected

during fMRI, papers published 2016–2019 (n = 244).

EEG cable vibrations (7 %) and either: optimizing amplifier
placement, or turning off lights during the experiment (11%).
Despite literature suggesting that the helium cooling pump and
scanner ventilation systemmay affect EEG-fMRI recordings (18),
only around 5% of studies report taking steps to turn off,measure,
or reduce, the effects of these artifacts, respectively. Only one
study in the cohort reported use of a post-processingmethod (13)
for removing helium pump artifact. Although environmental
artifact may be reduced during other post-processing methods
for removal of GA and BCG, and environmental artifact may not
interfere with the EEG correlate of interest in the study, there
appears to be a lack of awareness of this potential artifact within
the wider research community.

4.5. Artifact Removal Toolboxes:
Contemporary Usage
Commercial EEG-fMRI systems may influence the choice of
artifact reduction method used in any particular study. An
overview of common toolboxes, and where to find them, is
presented inTable 1. Brain VisionAnalyser, fromBrain Products,
was the most widely used single toolbox for removal of artifact
in EEG-informed fMRI (Figure 6), with over half of studies
published using the software for at least part of the filtering.
EEGLAB, a toolbox requiring MATLAB, was the second most
used software, with over 20% of all studies reporting its use in
some part of their processing. Given that Brain Vision Analyzer
as standard employs AAS for gradient and BCG correction, and
that OBS is available as a plug in for EEGLAB (FMRIB plug
in), the results of toolbox use show a similarity between the
use of methods and their software. Given that most researchers
are time poor and may not have the technical expertise to test
different artifact reduction methods, the most commonly used
methods are the ones that are readily available and easy to access.
Therefore, it is crucial that developers of new EEG-fMRI artifact

removal algorithms consider the functionality and ease of use for
the end users of any new software or algorithms.

4.6. Overall Recommendations for Artifact
Reduction in EEG-fMRI
Figure 7 provides an overview of the recommendations for
EEG-fMRI artifact removal based on the current literature
review. These recommendations include steps that all EEG-
fMRI users should take to avoid artifacts in the recording,
as well as 3–4 questions that users can ask to make the
best possible decisions for removing artifact during post-
processing, depending on the study design and hardware
available. These recommendations represent the combination
of all recommendations from previous sections of this review
(gradient, BCG, motion, and environmental artifact).

A limitation of the current study is that there is no distinction
between the so-called “online” and “offline” artifact reduction
techniques. Online artifact reduction refers to the filtering of
artifact from EEG recording during fMRI in as close to real time
as possible, whereas offline artifact removal undertaken at the
conclusion of the data collection. For this review, it is assumed
that the EEG-fMRI study is designed in such a way that the
researcher has ample time to filter and interpret EEG (offline
artifact removal), gaining results from the study well after the
subject has left the room. However, for certain study designs,
such as neurofeedback studies (143), clean EEG is required with
as little lag time as possible, so that data are available during the
study, and therefore, online reduction is required. Several studies
have adapted common artifact reduction methods for real-time
use, including AAS (144, 145), OBS (92), and FT (68). Online
artifact reduction prioritizes computational efficiency and speed
over accuracy of the artifact reduction on EEG, and therefore,
some recommendations given in this review will not be relevant
for studies of this design.

Another aspect of the current review not yet discussed is that
the EEG measure of interest varies between different studies.
In our survey of contemporary EEG-fMRI literature, the most
popular EEG measurements were epilepsy-related EEG events,
event-related potentials, and EEG power bands (see section 6.5
in Supplementary Material for more detailed information). This
creates a question as to whether there is a need for high level
artifact removal in all studies, or whether basic removal of
artifacts may be enough to see the EEGmeasure of interest. There
is, however, always a risk that using sub-optimal artifact removal
will result in false positive EEG features being reported. Evidence
from literature shows, for example, that marking motion in EEG
as though it is an effect of interest may lead to plausible looking
networks in the subsequent fMRI analysis (135). We recommend
that EEG-fMRI users should employ the best possible EEG setup
and artifact removal possible to reduce the chances of false
positive EEG features being reported. While not all scientists will
have access to the hardware components mentioned in Figure 7,
we have endeavored to include alternative methods, so that
all users of EEG-fMRI can have the best chance of producing
accurate and reproducible results.
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FIGURE 7 | Recommendations for Removal of artifact in EEG-fMRI studies. Top: Recommendations for all EEG-fMRI setups; Bottom: Recommendations based on

hardware available and study design.

5. CONCLUSIONS

There are many published artifact removal methods for EEG-

fMRI, however, uptake of newer methods in contemporary
studies is limited. In addition, many novel methods have been
proposed that have not been adequately compared with the

currently available methods on independent datasets. Our review
provides a comprehensive overview of all artifact reduction
methods available since 1998 (see Supplementary Material),
and there is an opportunity for future studies to compare

these different methods in one comprehensive data set to
independently validate the best pipeline for artifact reduction in
EEG-fMRI.

Best practice EEG-fMRI artifact reduction relies largely on
using additional hardware to synchronize clocks, and to directly
record artifact at the head, including motion, vibration, and eye
blinks. Without monitoring from hardware during EEG-fMRI
studies, the researcher is making assumptions as to which aspects
of the recording represent artifact, and which represent plausible
neuronal activity. However, our review of the contemporary
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literature showed that reported use of synchronization hardware
cited in less than 50% of studies, and reported use of hardware to
directly measure artifact was even less frequently cited (less than
10% of studies, see Supplementary Material). Actual use may be
higher in practice, but cannot be included in these statistics due
to lack of reporting in the literature. Software used for filtering
EEG showed a preference for BrainVisionAnalyser and EEGLAB,
and it is likely that the ease of use of these packages played a
role in their wide use. Therefore, it can be hypothesized that
the lack of accessibility of direct artifact recording measures is
hampering their use in contemporary studies, despite literature
showing that their use may result in more accurate EEG-fMRI
studies (120). Compared with synchronization hardware, which
is included in some commercial EEG-fMRI setups, direct artifact
recording has not been available commercially, leaving it up to
researchers to bear the cost should they wish to directly record
artifact using hardware.

Overall, there appears to be a basic understanding in
contemporary EEG-fMRI studies about the importance of
reducing artifact, especially for gradient and BCG artifacts.
However, there was almost 15% of contemporary studies that
did not adequately report artifact reduction methods for GA
and BCG, and very few studies reported methods to avoid or
reduce motion and environmental artifacts at all. A review such
as this, and indeed reproducible science, is limited by the extent
to which researchers accurately and completely report their
methods. We would encourage authors publishing EEG-fMRI
results to fully report all measures taken to reduce artifact to help
make their research as reproducible as possible. We recommend
authors consider the recommendations from the Organization
for Human Brain Mapping’s Committee on Best Practices in
Data Analysis and Sharing (COBIDAS) for reproducible EEG
and MEG research (146). If a journal word-count limit makes
this difficult in a main manuscript, then authors should consider
including detailed methods in Supplementary Information.

This review provides recommendations for artifact reduction
in EEG-fMRI in an easy to understand way for all users

of EEG-fMRI (see Figure 7). We suggest that wider use of

hardware methods such as clock synchronization and direct
artifact recording is the easiest way to improve data accuracy
in EEG-fMRI studies, but seeing adoption of hardware methods
requires input from all EEG-fMRI stakeholders—from methods
developers, vendors, and end users.
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Simultaneous EEG-fMRI Data:
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René Labounek 1*, Zhuolin Wu 1,2, David A. Bridwell 3, Milan Brázdil 4, Jiří Jan 5 and

Igor Nestrašil 1,6*

1Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN,

United States, 2Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States, 3Mind

Research Network, Albuquerque, NM, United States, 4Central European Institute of Technology, Masaryk University, Brno,

Czechia, 5Department of Biomedical Engineering, Brno University of Technology, Brno, Czechia, 6Center for Magnetic

Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States

Various disease conditions can alter EEG event-related responses and fMRI-BOLD

signals. We hypothesized that event-related responses and their clinical alterations are

imprinted in the EEG spectral domain as event-related (spatio)spectral patterns (ERSPat).

We tested four EEG-fMRI fusion models utilizing EEG power spectra fluctuations (i.e.,

absolute spectral model - ASM; relative spectral model - RSM; absolute spatiospectral

model - ASSM; and relative spatiospectral model - RSSM) for fully automated and blind

visualization of task-related neural networks. Two (spatio)spectral patterns (high δ4 band

and low β1 band) demonstrated significant negative linear relationship (pFWE < 0.05) to

the frequent stimulus and three patterns (two low δ2 and δ3 bands, and narrow θ1 band)

demonstrated significant positive relationship (p < 0.05) to the target stimulus. These

patterns were identified as ERSPats. EEG-fMRI F-map of each δ4 model showed strong

engagement of insula, cuneus, precuneus, basal ganglia, sensory-motor, motor and

dorsal part of fronto-parietal control (FPCN) networks with fast HRF peak and noticeable

trough. ASM and RSSM emphasized spatial statistics, and the relative power amplified

the relationship to the frequent stimulus. For the δ4 model, we detected a reduced HRF

peak amplitude and a magnified HRF trough amplitude in the frontal part of the FPCN,

default mode network (DMN) and in the frontal white matter. The frequent-related β1

patterns visualized less significant and distinct suprathreshold spatial associations. Each

θ1 model showed strong involvement of lateralized left-sided sensory-motor and motor

networks with simultaneous basal ganglia co-activations and reduced HRF peak and

amplified HRF trough in the frontal part of the FPCN and DMN. The ASM θ1 model

preserved target-related EEG-fMRI associations in the dorsal part of the FPCN. For δ4,

β1, and θ1 bands, all models provided high local F-statistics in expected regions. The

most robust EEG-fMRI associations were observed for ASM and RSSM.

Keywords: simultaneous EEG-fMRI, task-related network visualization, spectral and spatiospectral models, visual

oddball paradigm, general linear model, GLM, independent component analysis
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INTRODUCTION

Ives et al. and Huang-Hellinger et al. optimized initial
simultaneous EEG-fMRI data acquisition (1, 2) and Allen et al.
and Goldman et al. implemented first algorithms suppressing
gradient MR artifacts induced in the simultaneous EEG
recordings (3, 4). The development of various multimodal data
fusion strategies has taken off driven by themotivation to gain the
most information from EEG high temporal resolution and fMRI
high spatial resolution. The first published data fusion approach
cross-correlated EEG α band power fluctuations with the fMRI-
BOLD signals of the resting-state paradigm (5, 6), followed by
the general linear model (GLM) implementation (7, 8). The GLM
became a prominent method frequently applied in the field and
not only for the EEG spectra integration with resting-state (9–
14) or task induced (15–20) datasets. GLMs inducing event-
related potential (ERP) amplitudes or timings (21, 22), and spike-
informed GLMs (23–25) have been proposed and optimized.

The voxelwise GLM results self-organize into large scale
brain network (LSBN) structures (19). Concurrent fusion
strategy often rotates fMRI data into space of linearly mixtured
spatially independent components, i.e., the LSBNs, with their
representative clusterwise induced BOLD fluctuations, which
are compared to various EEG dynamics (26–31). In parallel,
regression or correlation approaches inferring EEG and fMRI
dynamics, joint independent component analysis (32), graph
build approach (33), dynamic functional connectivity (34), or
multimodal dynamic causal modeling (35) have been proposed
to fuse EEG-fMRI data with various result interpretations. Many
regression or deconvolution approaches reported that EEG-fMRI
hemodynamic response function (HRF) demonstrates varying
timings and shapes (10, 19, 20, 36–42). In physiologic situations,
the BOLD signal is delayed to EEG events but an extreme
example is the epileptic spike EEG-fMRI where BOLD signal
peaks can precede the EEG spikes (41, 42). Thus, it is a preferable
approach to model variable HRF than to use fixed canonical
HRF, which has still been dominating in the common practice
(5–9, 11–18, 21–26, 28–33, 43).

Over various existing EEG-fMRI data fusion techniques,
the ability to blindly and automatically visualize and quantify
robust task-related functional networks and their EEG-fMRI
associations (e.g., via variable HRF) is lacking. We have
focused on the simple GLM fusion approach with variable
HRF aggregating automatically induced EEG spectra (19,
20) and tested whether we can identify fusion settings that
blindly visualizes task-related networks. This automated method
may offer high reproducibility with tremendous potential in
the clinical research or even clinical practice applications to
quantitatively measure cognitive dysfunction.

Cognitive dysfunction may occur in various neurologic and
psychiatric conditions including epilepsy and can be estimated
from EEG, e.g., by measuring cognitive event-related responses
such as P300 potential. The P300 response is time-locked to an
event and is elicited by a task/event when a tested individual
is requested to respond to a single stimulus or a set of stimuli
as in the oddball paradigm. The P300 has been increasingly

investigated as a marker of cognitive processing. Specifically, the
P300 response represents a neural signature of the processing of
stimulus context depending on the attention and state of arousal
leading to an appropriate response (44). Although the P300 has
been almost exclusively assessed in the temporal domain via ERPs
(45, 46), the characterization in the frequency/spectral domain,
since time and frequency are fully complementary domains,
may provide additional insight into the data. Spectral (Equation
1) (16, 17, 43, 47) and spatiospectral (Equation 2) (19, 43)
models have already been proposed for the blind visualization
of task-related networks from simultaneous EEG-fMRI data. The
1st model (Equation 1) assumes that local fMRI BOLD signal
fluctuations (b) are proportional to fluctuations of the frequency-
specific (ω) weighted EEG absolute/relative power spectra (p)
with modeled between-signal delay via HRF convolution kernel
(h). The weighting function g(ω) can be considered a frequency
specific filter modulating the power spectra and final power
fluctuations are often estimated as an average over channels (16,
17, 43, 47). The 2nd model (Equation 2) is similar but considers
the filtering property to be channel (c) specific. The identification
of a robust task-related weighting function g(ω) or g(c,ω), i.e.,
event-related (spatio)spectral patterns (ERSPat) in EEG spectra,
remains a not fully optimized challenge in the fusion process.

b ∝
( ∫

g(ω)p(ω) dω

)

∗ h (1)

b ∝
( ∫ ∫

g(c,ω)p(c,ω) dc dω

)

∗ h (2)

The EEG absolute/relative power spectra consist of a linear
mixture of stable spatiospectral patterns [i.e., different stable
g(c,ω) functions in Equation (2)] with temporal fluctuations that
were more task-related for the relative power rather than the
absolute power (48, 49). Absolute EEG power identified 14 stable
patterns with highly significant EEG-fMRI associations at visual
oddball dataset (19, 48). Relative EEG power identified 10 stable
patterns similar to the absolute power patterns and two other
relative power specific stable patterns, for which the EEG-fMRI
relationships have not been investigated yet (49).

Several studies utilized the spectral model for the visualization
of task-related neuronal networks from EEG-fMRI data (15–
18) or the spatiospectral model (19, 43) with few mutual
discrepancies: (i) the response function was fixed or variable; (ii)
different tasks were used. Therefore, a direct and fair comparison
between models still needs to be investigated.

Within the current study, we are presenting the full
comparison between absolute/relative power based spectral
(Equation 1) and spatiospectral (Equation 2) models for
fully automatic EEG-fMRI fusion. The goal is to optimize
the automatic visualization and quantification of task-
related neuronal networks. The robustness over models
was objectively assessed.
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MATERIALS AND METHODS

Experimental Design
The identical simultaneous EEG-fMRI dataset of visual oddball
paradigm was used as previously described (18, 19, 48, 49). The
event-related designed visual oddball task was performed by 21
healthy subjects (13 right-handed men, one left-handed man,
seven right-handed women; age 23 ± 2 years). Three stimulus
types were presented randomly to each subject. Each stimulus
consisted of a single yellow uppercase letter shown for 500ms
on a black background. Inter-stimulus intervals were either
4, 5, or 6 s (drawn uniformly and randomly). A total of 336
stimuli (divided into four consequential sessions) were presented,
consisting of targets (letter X, 15%), frequents (letter O, 70%),
and distractors (letters other than X and O, 15%). Subjects were
instructed to press a button on the box held in their right hand
whenever the target stimulus appeared and not to respond to
distractor or frequent stimuli.

This study was approved by and carried out in accordance
with the recommendations of the Masaryk University Ethics
committee guidelines and all subjects signed the approved
written informed consent in accordance with the Declaration
of Helsinki.

Simultaneous EEG-fMRI Data Acquisition
The scalp EEG data, with reference between Cz and Fz electrodes,
were acquired with an MR compatible 32-channel 10/20 EEG
system (BrainProducts, Germany) and a sampling frequency
of 5 kHz. Two channels were used for ECG and EOG. Via
the BrainVision Recorder system (BrainProducts, Germany),
the EEG data were synchronized and acquired simultaneously
with fMRI data during gradient echo imaging sequences
[1.5 T Siemens Symphony scanner equipped with Numaris
4 System (Mrease)]. Gradient echo, echo-planar functional
imaging sequence was acquired with following parameter setting:
TR = 1,660ms; TE = 45ms; FOV = 250 × 250mm; FA = 80◦;
matrix size = 64 × 64 (3.9 × 3.9mm); slice thickness = 6mm;
15 transverse slices covering the whole brain except the inferior
part of the cerebellum. The task was divided into four equal runs
of 256 scans and 84 stimuli.

Following simultaneous EEG-fMRI acquisition, high-
resolution anatomical T1-weighted images were acquired using
an MPRAGE sequence with 160 sagittal slices, matrix size 256 ×
256 resampled to 512× 512; TR= 1,700ms; TE= 3.96ms; FOV
= 246mm; FA= 15◦; and slice thickness= 1.17 mm.

EEG Data Preprocessing
The EEG data were preprocessed as described in (19, 48) using
BrainVision Analyzer 2.02 (BrainProducts, Germany) with the
implemented manufacturer’s pipeline. Gradient artifacts were
removed using average artifact subtraction (used sliding window
with window length=21∗TR) at the acquisition sampling rate
5 kHz (3) and filtered with a Butterworth zero phase 1–40Hz
band-pass filter. Then, EEG signals were resampled to 250Hz
(antialiasing filter included). Ballistocardiogram (BCG) artifacts
were removed by average artifact subtraction (used sliding
window with window length= 21∗BCG epochs) waveform from

each channel (50) and signals were re-referenced to the average.
Eye-blinking artifacts were removed by conducting a temporal
ICA decomposition and removing eye-blink artifacts from the
back-reconstructed time course.

EEG Spatiospectral Decomposition
The decomposition was the same as implemented and previously
described (48, 49). The preprocessed EEG signal from each
lead and session was normalized to 0 mean and variance 1,
and divided into 1.66 s (repetition time of fMRI scanning TR)
epochs without overlap. Each epochwas transformed to a spectral
domain with the fast Fourier transform (FFT), generating a
vector (length = 67) of complex valued spectral coefficients
between 0 and 40Hz. Complex values were converted to absolute
power by taking the absolute value and squaring, or converted
to relative power value by dividing the squared value by the
power of the whole epoch. The output vector of 67 real
absolute/relative power values comprised a 3D matrix E with
dimensions nt , nc, and nω. The dimension nt represents the
number of spatiospectral epochs (nt = 256), the dimension
nc is the total number of leads (nc = 30), the dimension nω

is the total number of spectral coefficients (nω = 67). The
EEG spatiospectral decomposition (Equation 3) decomposes
the matrix of spatiospectral maps E into a source matrix S

of dimensions S(m,n∗cnω) containing independent spatiospectral
patterns and a mixing matrix W of dimensions W(nt ,m)
containing the patterns’ dynamics. Dimensionm is the number of
decomposed independent spatiospectral components (m= 20).

E = WS (3)

Using the GIFT toolbox (http://mialab.mrn.org/software/gift/)
(51), the matrix E was dimensionally reduced using PCA (single-
subject reduction to 50 principle components and group-based
reduction to 20 components), followed by INFOMAX group-
ICA (52) with 10 ICASSO runs (53).

Only spatiospectral patterns, which were reported to be stable
and observed in both absolute/relative power spectra (48, 49), i.e.,
10 patterns, have been selected from output source matrices S of
separate group-ICA runs for absolute/relative powers.

Individual subject’s time courses were generated by PCA
based back-reconstruction (i.e., the individual partition of the
PCA reducing matrix is matrix multiplied by the individual
partition of the aggregate reducing matrix) (51) of the group
spatiospectral patterns on the individual subject spatiospectral
maps and time-courses.

Selection of Stable EEG Spatiospectral
Patterns With Relationship to the Task
For each subject and session, we have one matrix W with
dimensions W(nt , 20) containing the back-reconstructed time
course of each spatiospectral component. Let a matrix U

of dimensions U (4∗nt ,10) to be a single-subject matrix of
fluctuations of stable spatiospectral patterns over all four sessions.
Relationships between these dynamics and stimulus vector
timings (in matrix X) were assessed with a single-subject general
linear model (Equation 4, GLM) (54) solved with the least mean
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square algorithm (Equation 5) and a continuous group one-
sample t-test for the k-th stimulus vector (Equation 6) (48).
Variable c is the vector of binary positive contrast at the stimulus
vector of interest, the brackets <> characterize the expectation
over subjects, variable σ is the standard deviation and variable s is
the total number of subjects. Model matrix X contained frequent,
target and distractor timings in 12 separate binary vectors for
each stimulus and session and four vectors for theDC component
in each session.

U = Xβ + ǫ (4)

β = (XTX)−1XTU (5)

tk =
√
s
〈cT

k
βk〉

σ〈cT
k
βk〉

(6)

These spatiospectral patterns, where any |t|-value was higher than
3.25 (critical value at pFWE < 0.05 for 10 multiple comparisons,
i.e., 10 selected stable patterns, and 16 degrees of freedom,
i.e., 16 variables in model matrix X) for any stimulus type
in absolute or relative power, were considered as a pattern
with task-related EEG power fluctuations. Second selection
criteria was to demonstrate mean |t|-value averaged over all
spatiospectral/spectral models with p < 0.05 (∼|t| > 2.0) with
relatively small standard deviation in the averaged |t|-value over
models, i.e., STD|t| < 0.5.

Task-Related EEG Spectral Patterns
All 10 stable spatiospectral patterns observed in both power types
were averaged over leads and provided 10 spectral filters g(ω)
(Equation 1). The filters were used for filtering of power spectra
of matrix E reshaped at dimensions E(nt , nc, nω). Separate for
each filter, time point and channel, the absolute/relative power
value p(t,c) was filtered as Equation 7. Time-course p(t) of each
channel c was normalized to mean 0 and variance 1, and final
absolute/relative power fluctuation ¯p(t) was estimated as an
average over channels for each specific spectral pattern.

p(t, c) =
nω
∑

ω=1

g(ω)E(t, c,ω) (7)

Task-related spectral patterns were evaluated and identified with
the same methodology as described in sub-chapter Selection of
Stable EEG Spatiospectral PatternsWith Relationship to the Task,
but matrix U (Equations 4, 5) consisted of 10 pattern-specific
averaged ¯p(t) fluctuations.

fMRI Data Preprocessing
The fMRI data were preprocessed with SPM8 (Wellcome Trust
Center for Neuroimaging, London, UK) software library. Motion
artifacts were minimized by alignment of all functional scans,
followed by co-registration with the subject’s anatomical image
and normalization into standardized MNI space (Montreal
Neurological Institute template) (55). Functional scans were
spatially smoothed with an isotropic 3D Gaussian filter (FWHM
= 8mm) to increase the signal to noise ratio (SNR) and to make
the random errors more normally distributed. Periods longer
than 128 s were linearly detrended to remove slow drifts and
physiological noise.

EEG-fMRI General Linear Modeling With
Variable HRFs
Relationships between fMRI voxel time-courses (Y) and EEG
task-related spectral/spatiospectral pattern time-courses were
examined using the individual GLMs (Equation 8) (54) with
the EEG time course convolved with the canonical HRF (x1),
convolved with the 1st temporal derivative of the HRF (x2) or
convolved with the 2nd temporal derivative of the HRF (x3)
(19, 20). In addition to the three EEG regressors x1-x3, the
model matrix X contained a DC component. Regressionmatrices
β were estimated over all GLMs with the ReML algorithm
(Restricted Maximum Likelihood) implemented in SPM12
software (Wellcome Trust Center for Neuroimaging, London,
UK) in the MATLAB programing environment (MathWorks,
Natick, USA).

Y = Xβ + ǫ (8)

Group-averaged EEG-fMRI results were estimated with a one-
way ANOVA test (implemented in SPM12) of three EEG-
derived single-subject spatial β-maps for each of three EEG
regressors. The β weights served as dependent variables in
separate ANOVA tests conducted for each spectral/spatiospectral
pattern, generating group-averaged spatial EEG-fMRI F-maps.
The final F-maps were thresholded for objective evaluations at
p < 0.001 uncorrected for multiple statistical tests (i.e., with a
critical absolute F-value of 5.7), and the criteria that clusters
contain 100 voxels or more. For visualizations, the F-maps
were thresholded at p < 0.0001 (i.e., F > 8.1) due to high
result robustness.

Group-averaged EEG-fMRI HRFs (hi) in each voxel i
were estimated from group-averaged regression coefficients β

(estimated within Equation 8) with Equation 9 where r is the
canonical HRF and numbers 1–3 are indexes of regressors x1-x3
(19, 56).

hi = βi,1r+ βi,2
dr

dt
+ βi,3

d2r

dt2
(9)

Assessment of EEG-fMRI Results
Group-averaged EEG-fMRI F-maps and HRFs were visually
inspected for a subjective similarity/dissimilarity evaluation over
the similar spectral/spatiospectral patterns. For the objective
assessment, volume, mean F-value, median F-value, andmaximal
F-value were automatically extracted from the suprathreshold
voxels (p< 0.001) of the final group-averaged EEG-fMRI F-maps
of every stable task-related spectral/spatiospectral pattern. The
spectral/spatiospectral model with the highest objective metrics
was considered as the most successful one in blind visualization
of a task-related neural network.

RESULTS

Task-Related EEG Spectral/Spatiospectral
Patterns
Significant negative linear relationship between EEG
fluctuations and frequent stimulus was observed in two
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TABLE 1 | Group t-values of linear relationship between stable EEG pattern fluctuations and stimuli vectors.

Spectral Spatiospectral Mean STD

Absolute Relative Absolute Relative

Frequent δ1 −0.09 0.46 −1.13 −0.58 −0.34 0.59

δ2 −5.24 −2.42 −0.81 −0.92 −2.35 1.79

δ3 −3.71 −1.71 −1.45 −1.45 −2.08 0.95

δ4 −3.44 −4.70 −2.09 −4.32 −3.64 1.00

θ1 −1.76 −0.87 −0.34 −2.03 −1.25 0.68

θ4 −2.54 −1.95 0.39 −1.01 −1.28 1.10

α1 1.65 3.54 1.72 2.59 2.38 0.77

α3 0.62 2.03 2.48 0.12 1.31 0.97

β1 −3.64 −3.25 −3.23 −3.28 −3.35 0.17

β2 −1.89 −0.64 −0.17 −3.74 −1.61 1.38

Target δ1 2.80 3.35 −0.40 −1.86 0.97 2.18

δ2 2.53 2.93 1.77 2.63 2.46 0.43

δ3 2.26 2.20 2.43 2.46 2.34 0.11

δ4 1.08 0.35 0.24 1.04 0.68 0.39

θ1 2.18 1.49 2.37 2.17 2.05 0.33

θ4 1.93 0.65 0.39 1.45 1.11 0.62

α1 2.05 0.51 2.62 1.73 1.73 0.77

α3 0.93 0.17 0.58 0.21 0.47 0.31

β1 −0.11 −2.30 −0.52 −1.44 −1.09 0.85

β2 −0.82 −2.06 −0.06 −1.40 −1.08 0.74

Distractor δ1 −0.19 0.30 0.56 0.21 0.22 0.27

δ2 −1.30 −0.40 0.31 1.30 −0.02 0.95

δ3 −1.05 −0.56 0.21 −0.35 −0.44 0.45

δ4 −3.11 −2.76 −2.24 −1.46 −2.39 0.62

θ1 −0.58 1.45 −0.25 0.01 0.16 0.77

θ4 −2.06 −2.52 −1.00 −0.43 −1.50 0.83

α1 −0.23 1.17 0.56 1.65 0.79 0.70

α3 −0.39 0.60 −0.34 0.40 0.07 0.44

β1 −0.79 0.19 −0.61 −0.97 −0.55 0.44

β2 −1.06 −1.00 0.12 −1.31 −0.81 0.55

Bold highlighted t-values demonstrated significant relationship with pFWE < 0.05. Green-color highlighted rows indicate the patterns with significant task-related relationships. These

patterns demonstrated pFWE < 0.05 or a mean over models of p < 0.05 (i.e., mean |t| > 2.0) with t-value standard deviation of STD|t| < 0.5.

spectral/spatiospectral patterns (i.e., δ4 with inter-model t-
value −3.64 ± 1.00, β1 with t-value −3.35 ± 0.17, Table 1,
Figure 1A, pFWE < 0.05). The negative linear relationship
can be interpreted as the EEG pattern power decrease during
the frequent stimulus onset. Other three patterns (i.e., δ2

with t-value 2.46 ± 0.43, δ3 with t-value 2.34 ± 0.11, θ1 with
t-value 2.05 ± 0.33) demonstrated a significant positive linear
relationship between the EEG power fluctuations and target
stimulus (Table 1, Figure 1B, p < 0.05 and STD|t| < 0.5).
The positive linear relationship can be interpreted as the EEG
pattern power increase during the target stimulus onset. The
δ4 pattern fluctuations with t-value −2.39 ± 0.62 may also
be sensitive to distractor stimulus with similar negative linear
relationship (Table 1, Figure 1A, p < 0.05) as observed for the
frequent stimulus. Lower robustness of relationships between
EEG patterns and target or distractor stimuli might be caused by
lower stimulus amounts. Five of 10 analyzed stable EEG patterns

demonstrated potentially significant relationship to stimuli
vectors of the visual oddball task (Table 1, Figure 1).

Frequent-Related EEG-fMRI Networks
As the δ4 pattern demonstrated the highest level of relationship
between pattern fluctuations and frequent stimulus, the EEG-
fMRI F-maps also visualized the highest F-values and largest
amounts of supra-threshold voxels over all four investigated
EEG patterns (Table 2, Figure 2). The absolute spectral model
(ASM) provided the largest and the most significant EEG-
fMRI associations in comparison to other models (Table 2). Still,
statistical measures are very high and robust in all investigated
models for the δ4 pattern (Table 2).

Positive δ4 pattern demonstrated significant (pFWE < 0.05)
bilateral EEG-fMRI associations in cuneus, precuneus, insula,
basal ganglia, and in sensory-motor network, somatosensory
network and dorsal parts of the fonto-parietal control network
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FIGURE 1 | Task-related EEG spectral or spatiospectral patterns. (A) Frequent

related; (B) target related. Pattern shortcuts and indexes (e.g., δ4) are the

same as used in (19) for consistency purposes. All spectral patterns are

averages over electrodes of both absolute or relative spatiospectral patterns.

Patterns’ amplitudes (i.e., y-axis for spectral patterns and color-coding for

spatiospectral patterns) are in arbitrary units. For spatiospectral patterns, the

dark blue color is an approximate minimum value in the y-axis of the

corresponding spectral pattern. The dark red color is an approximate

maximum value in the y-axis of the corresponding spectral pattern.

(FPCN) (57–60) (Figure 2). Putamen, pallidum, thalamus,
and brainstem were involved within subcortical gray matter
structures (Figure 2). The dorsal parts of the FPCN overlap
with the dorsal attention network (DAN) (57) and may be no
discernable one from the other in a lower spatial resolution
(Figure 2). Spatial distribution in Figure 2B represents the
same result, which was presented in (19) with absolute

spatiospectral model (ASSM) and variable HRF modeling.
Here, we proposed that the ASM with variable HRF modeling
or relative spatiospectral model (RSSM) with variable HRF
modeling increased the statistical power and the robustness
(Table 2, Figure 2). All models demonstrated a positive HRF
peak faster than a peak timing of widely used canonical
HRF (Figure 2) and noticeable HRF trough (Figure 2) in the
insula, sensory-motor network, somatosensory network, dorsal
part of the FPCN and basal ganglia. Except this expected
response (i.e., red HRFs in Figure 2), every model detected
brain areas with reduced HRF peak followed by larger HRF
trough amplitude (i.e., the blue HRFs in Figure 2). Trough
peaks in both detected HRFs were again faster than an expected
trough timing for the canonical HRF (Figure 2). The HRF
with a reduced peak and an amplified trough was observed in
areas of superior frontal cortex and parietal cortex (Figure 2A),
which might belong to the frontal parts of the FPCN (57–60)
or default mode network (DMN) (57). Inferiorly, we noticed
significant (pFWE < 0.05) bilateral cluster spots in frontal
white matter areas (Figure 2A) where forceps minor, anterior
thalamic radiation and inferior fronto-occipital fasciculus might
pass [evaluated by a visual inspection of EEG-fMRI F-maps
overlaid with the JHU white-matter atlas (61–63) in the
MNI space].

As the β1 pattern demonstrated similar negative linear
relationship between its power fluctuation and the frequent
stimulus (Table 1), the EEG-fMRI F-maps demonstrated similar
locations of association spots (Figure 3) where maximal |F|
values were observed in the δ4 EEG-fMRI F-maps (Figure 2),
and similar HRF properties (Figure 3). The β1 EEG-fMRI
F-maps demonstrated a lower statistical robustness for all
models (Figure 3, Table 2) when compared to the δ4 F-
map robustness (Figure 2, Table 2). Again, the ASM provided
the most robust statistics at the inter-model comparison
level (Table 2). The relative spectral model (RSM) did not
demonstrate any significant EEG-fMRI associations, which
is analogical to the previous observation of no relative
β associations with the fixed canonical HRF at the same
dataset (18). Again, the RSSM was more robust than the
ASSM (Table 2). Overall, the lower robustness, the β1 EEG-
fMRI associations might appear more spatially specific. As
interpreted from the ASM EEG-fMRI β1 F-map (Figure 3).
From the basal ganglia, the bilateral putamen demonstrated
EEG-fMRI associations with normal HRF peak. From the
sensory-motor network, bilateral EEG-fMRI associations with
normal HRF peak were observed in primary sensoric, premotor,
somatosensory cortices, supramarginal gyrus, left lateralized
Brodmann area 7 (BA7), and premotor BA6. The reduced
HRF peak properties were observed for lateralized BA9, BA10,
BA46, and right hand primary motor cortex. The RSSM
emphasized somatosensory BA6 associations compared to the
ASM results (Figure 3). In regards to the mentioned spatial
specificity, it is important to note that one can get similar
spatial distribution for the δ4 EEG-fMRI F-map if stricter
threshold than p < 0.0001 is set in the Figure 2 visualization
where local spatial statistics exceeded the β1 pattern results
(Table 2).

Frontiers in Neurology | www.frontiersin.org 6 April 2021 | Volume 12 | Article 64487433

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Labounek et al. EEG-fMRI: Visualization of Task-Related Networks

TABLE 2 | Spatial statistics of task-related EEG-fMRI F-maps.

Spectral Spatiospectral

Absolute Relative Absolute Relative

Frequent related δ4 Volume [mm3] 937,845 431,865 571,266 656,910

Mean F-value 14.08 9.96 10.65 13.05

Median F-Value 12.48 9.04 9.57 11.4

Max F-value 53.83 27.35 32.19 45.27

β1 Volume [mm3] 282,555 - 40,797 106,704

Mean F-value 8.37 - 7.4 7.61

Median F-Value 7.76 - 7.19 7.23

Max F-value 22.39 - 12.17 15.31

Target related δ2 Volume [mm3] 524,205 26,271 58,185 26,865

Mean F-value 10.14 7.34 7.68 7.35

Median F-Value 9.14 7.00 7.26 6.96

Max F-value 28.86 13.76 16.12 14.97

δ3 Volume [mm3] 658,557 15,525 2,646 17,118

Mean F-value 10.64 7.54 7.01 7.45

Median F-Value 9.45 7.05 6.81 6.98

Max F-value 36.09 16.5 9.57 14.03

θ1 Volume [mm3] 852,930 140,994 236,844 334,746

Mean F-value 12.44 7.94 8.92 9.02

Median F-Value 11.08 7.41 8.25 8.19

Max F-value 47.32 17.1 21.24 29.78

The values were estimated from all supra-thresholded voxels with p < 0.001 (i.e., |F| > 5.7). Bold highlighted numbers are the highest obtained values over investigated models per

metric. Values |F| > 8.1 met the condition p < 0.0001, values |F| > 12.1 met the condition pFWE <0.05.

Target-Related EEG-fMRI Neworks
Although δ2, δ3, and θ1 patterns demonstrated all the positive
relationship (p < 0.05 and STD|t| < 0.5) between EEG pattern
fluctuations and target stimulus, the EEG-fMRI data fusion
visualized the largest and most robust F-maps for the θ1 pattern
over all investigated models (Table 2, Figure 4). The most robust
statistics was yielded by ASM, followed by RSSM, ASSM, and
RSM (Table 2). All models emphasized left lateralized EEG-fMRI
associations in the sensory-motor network (corresponding to
the push on the right hand held button box and the target
push button response) with smaller amounts of the basal
ganglia associations, which were somewhat preserved for the
ASM and partly for the RSSM (Figure 4). The ASM preserved
significant EEG-fMRI associations in the dorsal parts of the
FPCN overlapping with DAN (Figure 4). These EEG-fMRI
associations presented a non-reduced HRF peak and a noticeable
HRF trough again with timing faster than classic canonical HRF
(Figure 4). The ASM still visualized a significant (pFWE < 0.05)
reduced HRF peak and an amplified HRF trough in areas of
the frontal parts of the FPCN, DMN and superior frontal white
matter but in smaller amounts than observed for the frequent-
related δ4 pattern (Figures 2, 4). The RSM, ASSM, and RSSM
revealed a comparably smaller amount of significant clusters in
locations as ASM (Figure 4).

The RSM, ASSM and RSSM did not demonstrate almost
any significant EEG-fMRI associations for δ2 and δ3 patterns
(Figures 5, 6, Table 2). The ASM for δ2 and δ3 patterns
showed similar spatial and HRF observation as for the θ1

ASM (Figures 4A, 5A, 6A). The similarity in EEG-fMRI
results between δ2 and δ3 ASMs was expected as both
use almost the same spectral filtering properties over all
leads (Figure 1).

Distractor-Related EEG-fMRI Networks
The evidence of a negative relationship between EEG power
fluctuations and distractor stimulus was only noticed for the δ4

pattern. The δ4 EEG-fMRI F-maps might then represent both
frequent-related or distractor-related associations (Figure 2).

DISCUSSION

Novelty and Neuroimaging Impact
Our results on visual oddball task data represent the systematic
objective comparison of spectral (i.e., ASM, RSM) and
spatiospectral (i.e., ASSM, RSSM) EEG-fMRI data fusion
methods with the variable HRF permitting the variable delay
between the immediate EEG following the BOLD signal changes.
The automatically quantified effect of the variable HRF in the
EEG-fMRI data fusion was remarkable. Both ASM and RSM
results gained from the same dataset with fixed canonical HRF
were far from reaching pFWE < 0.05 in EEG-fMRI statistical
parametric maps (18, 43). In contrast, large numbers of
voxels in δ4 and θ1 EEG-fMRI F-maps for all models met the
statistical significance condition pFWE < 0.05. While accounting
for the obtained EEG-fMRI map robustness and due to the
involvement of insula, sensory-motor cortex, somatosensory
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FIGURE 2 | EEG-fMRI F-maps and estimated hemodynamic response functions for all investigated models of the δ4 pattern. The EEG-fMRI F-map colorbar is the

same over all models. HRF, hemodynamic response function; IRF, impulse response function. If HRF demonstrated a reduced peak and an amplified trough (i.e., blue

color-coded HRFs) the F-values were assigned with a negative sign. The F-maps were threholded with p < 0.0001, i.e., |F| > 8.1. The voxels with |F| > 12.1 met the

condition pFWE < 0.05. The red color coded HRFs were derived from voxels with positive signed suprathreshold F-values. All F-maps are shown following the

neurological convention, i.e., left hemisphere on the left side of the axial slice. (A) Absolute spectral. (B) Relative spectral. (C) Absolute spatiospectral. (D) Relative

spatiospectral.

cortex, cuneus, precuneus, basal ganglia, and FPCN (also known
as central executive network) in the oddball/P300 tasks (64–
73), we recommend using variable HRF and absolute spectral
(ASM) or relative spatiospectral model (RSSM) for blind and

fully automatic visualization of task-related networks from
simultaneous EEG-fMRI data.

The current approach is fully automated, blind, and robust.
It overcomes EEG-fMRI fusion via event related potential (ERP,
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FIGURE 3 | EEG-fMRI F-maps and estimated hemodynamic response functions for all investigated models of the β1 pattern. The EEG-fMRI F-map colorbar is the

same over all models. HRF, hemodynamic response function; IRF, impulse response function. If HRF demonstrated a reduced peak and an amplified trough (i.e., blue

color-coded HRFs) the F-values were assigned with a negative sign. The F-maps were threholded with p < 0.0001, i.e., |F| > 8.1. The voxels with |F| > 12.1 met the

condition pFWE < 0.05. The red color coded HRFs were derived from voxels with positive signed suprathreshold F-values. All F-maps are shown following the

neurological convention, i.e., left hemisphere on the left side of the axial slice. (A) Absolute spectral. (B) Relative spectral. (C) Absolute spatiospectral. (D) Relative

spatiospectral.

e.g., the P300) analysis of amplitudes or latencies (22, 74–76) and
is without a need of supplying an input information about stimuli
timings. Manpower expertise and efforts are required for the
visual identification in the ERP analysis. In the proposed analysis
approach, quantitative EEG-fMRI task-related networks are
generated automatically. The potential neuroimaging impact of
this methodology is in a quantitative measurement of local data-
driven determinants of cognitive deficit in patients suffering with
epilepsy or other conditions with a cognitive impairment. The
specific outcome determinants may be subject/group-specific F-
valuemagnitudes or variable HRF amplitudes and latencies. High
variance in local HRF latencies has been recently reported in
patients with refractory focal epilepsy (40). This observation
underlines the importance of variable HRF models for future
clinical EEG-fMRI applications.

We demonstrated local EEG-fMRI response functions with
the reduced HRF peak and the amplified HRF trough with the
most robust location in the center of white matter bundles. These
bundles may convey information related to execution and goal-
directed tasks (77–79). Although the white matter BOLD signal
was considered as a nuisance signal that was usually regressed
out from the dataset during the preprocessing (80), several
studies have reported the white matter fMRI-BOLD signal and
disregarded its previous categorization as a blind spot in the
functional imaging (81–85). Our robust white matter EEG-fMRI
associations with the reduced HRF peak and the amplified HRF
trough corroborate this recent blind spot hypothesis.

Task-related δ4 and θ1 EEG-fMRI associations might be
considered controversial but we are convinced that they
represent the bands of major event-related fingerprints in the
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FIGURE 4 | EEG-fMRI F-maps and estimated hemodynamic response functions for all investigated models of the θ1 pattern. The EEG-fMRI F-map colorbar is the

same over all models. HRF, hemodynamic response function; IRF, impulse response function. If HRF demonstrated a reduced peak and an amplified trough (i.e., blue

color-coded HRFs) the F-values were assigned with a negative sign. The F-maps were thresholded with p < 0.0001, i.e., |F| > 8.1. The voxels with |F| > 12.1 met the

condition pFWE < 0.05. The red color coded HRFs were derived from voxels with positive signed suprathreshold F-values. All F-maps are shown following the

neurological convention, i.e., left hemisphere on the left side of the axial slice. (A) Absolute spectral. (B) Relative spectral. (C) Absolute spatiospectral. (D) Relative

spatiospectral.

simultaneously recorded EEG spectra. The postulated event-
related fingerprint hypothesis is described in more detail
in the following sub-chapter and supported by previous
ERP findings.

Event-Related Fingerprints in EEG Spectra
Hypothesis
The oddball paradigm elicits ERPs in EEG recordings (22,
67, 74–76, 86). The averaged ERP can be decomposed
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FIGURE 5 | EEG-fMRI F-maps and estimated hemodynamic response functions for all investigated models of the δ2 pattern. The EEG-fMRI F-map colorbar is the

same over all models. HRF, hemodynamic response function; IRF, impulse response function. If HRF demonstrated a reduced peak and an amplified trough (i.e., blue

color-coded HRFs) the F-values were assigned with a negative sign. The F-maps were threholded with p < 0.0001, i.e., |F| > 8.1. The voxels with |F| > 12.1 met the

condition pFWE < 0.05. The red color coded HRFs were derived from voxels with positive signed suprathreshold F-values. All F-maps are shown following the

neurological convention, i.e., left hemisphere on the left side of the axial slice. (A) Absolute spectral. (B) Relative spectral. (C) Absolute spatiospectral. (D) Relative

spatiospectral.

at several components of different frequency bands with
major contributions of δ oscillations to P300 wave and θ

oscillations to P300, P1, and N1 waves (87). Generally, δ

and θ oscillations, which underline the P300 wave (88–93),
reconfigure and enhance functional connectivity architecture

from the baseline resting-state condition to the P300 task
condition (73).

Temporal and spectral domains are fully complementary
spaces. Therefore, each single event-related change of each
oddball stimulus recorded in the EEG temporal domain
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FIGURE 6 | EEG-fMRI F-maps and estimated hemodynamic response functions for all investigated models of the δ3 pattern. The EEG-fMRI F-map colorbar is the

same over all models. HRF, hemodynamic response function; IRF, impulse response function. If HRF demonstrated a reduced peak and an amplified trough (i.e., blue

color-coded HRFs) the F-values were assigned with a negative sign. The F-maps were threholded with p < 0.0001, i.e., |F| > 8.1. The voxels with |F| > 12.1 met the

condition pFWE < 0.05. The red color coded HRFs were derived from voxels with positive signed suprathreshold F-values. All F-maps are shown following the

neurological convention, i.e., left hemisphere on the left side of the axial slice. (A) Absolute spectral. (B) Relative spectral. (C) Absolute spatiospectral. (D) Relative

spatiospectral.

fingerprints into the spectral domain such as power change in
the ERSPat. Then, the task-related networks can be visualized
while utilizing power spectral or spatiospectral models in the fully
automated approach that is fully blind to the external stimulus
timings. Our results demonstrated that the δ4 and θ1 ERSPats
might be key filtering properties, i.e., g(ω) in Equation 1 or g(c,ω)
in Equation 2, which appear to be in correspondence with the
spectral properties of the P300 ERP (87–93). Our observation
expands beyond the original hypothesis that was simply
monitoring changes in the EEG mean root square frequency
characterizing a signal roughness increase after stimuli (16, 47).
These global EEG spectra changes are tiny and hard to detect in
the event-related paradigm design. The ERSPat approach may
be beneficial for the assessment of the event-related changes
in EEG signal.

We have shortened the term, “event-related (spatio)spectral
patterns” to an acronym, “ERSPat” and not “ERSP” to avoid
confusion with the ERSP acronym. The “ERSP” acronym is used
in the field for the event-related spectral perturbation (94), which
are estimated from EEG segments that are apriori time-locked to
the stimulus on-sets. Thus, ERSP has a slightly different meaning
and interpretation than proposed ERSPats.

Comparison With Concurrent Brain
Network and Early Visual Components
Our results corroborate the previous findings of δ and θ

oscillations representing the major operating rhythms in P300
(87–93). Detected β oscillations underlying P300 were likely
related to directed attention and cognitive activity (95). The
earliest components in ERP with visual sensory input are positive
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and negative peaks reflecting P1 and N1 potentials and are
likely generated in lateral extrastriate occipital cortex, temporo-
parietal junction, and fusiform gyrus, respectively (96–98). These
components may be linked to visual perceptual processing,
especially visuospatial attention. Within the latency window of
P1-N1 complex (90–120ms for P1; and 150–190ms for N1), the
suggested superposition of α and θ evoked oscillations (99) was
corroborated with the oscillatory activity detected in α and θ

bands in the frequency decomposition of P300 response (87).
In our findings, the activity in the α1 band approached the
borderline of significance for the frequent stimulus and, thus, was
not associated with fMRI signals. We believe that the θ activity
was likely dominated by the P300-related oscillatory response
and the discernibility of the rhythms linked to a minute P1-N1
complex is rather challenging.

The detection and discrimination between stimuli initiate a
frontal lobe activity underlying attention-demanding task. The
frontal activation interplays with an activation in temporal-
parietal areas that promote memory operations. At rest,
DMN (hippocampal-cingular-temporal-parietal network) is
characterized by high activity. During attention-demanding
task DMN activity is suppressed. FPCN is often found to
be reciprocally anti-correlated with DMN, which is one of
the examples of the functional antagonism (100–103). The
involvement (δ4 and θ1 oscillation related) of the insula, the
central node of the salience-detection system, represents an
expected “switch” between the DMN and the FPCN (57–60).
Observed δ4 oscillation related EEG-fMRI associations in the
DMN regions are speculative. Predominantly, α oscillation
related DMN deactivation has been present within the oddball
task (18, 19, 60, 73) or resting-state (13). The involvement of
the posterior cingulate cortex has been proposed as a potential
regulatory modulator of the DMN in the task-negative state
(104, 105).

Comparison With Concurrent Methods
Applicable for EEG-fMRI Fusion
Temporal ICA of EEG data can isolate time-locked oscillations,
artifacts (e.g., EKG, eye-blinking, etc.) (106) and epileptogenic
spikes (if present) (25, 107, 108). The task specific activity
represents only a small portion of signal variance, such as
high frequency gamma band activity or ERPs. In addition,
the present approach isolates EEG responses over large
windows (e.g., 1.66 s in the present study), which discards
the time-locked activity present with conventional ERP
analysis. The time-locked activity preservation, e.g., with group
temporal ICA, may also be a promising approach for task
data (48).

Yet, considering the hypothesis that event-related changes
(i.e., the small portion of signal variance) fingerprints into several
distinct spectral patterns (87), then the temporal ICA appears
less well-suited at decomposing distinct EEG oscillations (i.e.,
decompose EEG signal from EEG signal) compared to alternative
approaches including (but not limited to) second-order blind
identification (109–111), approximate joint diagonalization of
cospectra (112, 113), and spectral ICA (114, 115).

The presented GLM EEG-fMRI fusion approach with variable
HRF significantly increased robustness of obtained results for all

investigated models compared to the same dataset observations
proposed with ASM/RSM with the fixed HRF (18). The
dominating fixed HRF GLM approach (5–9, 11–18, 21–26, 28–
33, 43) may be revisited to gain an increased robustness of the
results enabling variable HRF timings or utilizing an EEG-fMRI
deconvolution approach (36–38). Similarly, this approach can be
adopted for epileptogenic focus localization (25, 107, 108) due
to the fact that the deconvolution approach demonstrated that
delay timings between ictal EEG-fMRI associations does not fit
to canonical HRF timings and often the local BOLD signal even
precedes the EEG spike (41, 42).

The voxel-wise GLM approach is not the only data processing
strategy to compare and fuse the EEG and fMRI data. The
spatial ICA can rotate fMRI data into a space of spatially
independent large scale brain networks (116, 117) with a
representative component-specific time-course, which can be
associated with simultaneously acquired EEG signal transformed
into a comparable signal form (i.e., undersampled to fMRI
timings, power fluctuations, spike timings/delays, etc.) (27, 30).
Utilizing sliding windows over both EEG and fMRI-BOLD time-
courses can be applied in the estimation of dynamic functional
connectivity associations (34). A graph matrix between EEG and
fMRI measures may be build via correlation measures or other
similarity criteria (33). EEG-fMRI mixing parameters can be
estimated through joint analysis approaches such as the joint-
ICA (32, 118–120).

Over various existing EEG-fMRI data fusion strategies, we
have demonstrated a fully automated GLM approach for robust
lateralized task-related network visualization from local fMRI-
BOLD signals and spectrally distinct task-related EEG patterns.
In our approach, the variable HRF significantly improved
the final robustness as the modeled EEG-fMRI peak delay
did not overlap with the canonical HRF peak delay for the
most task-related spectral patterns. Therefore, we propose this
method for future clinical research applications in patients
with neurocognitive deficits. These outcomes may also derive
objective disease specific markers through local F-statistics or
HRF changes that can be potentially used for the diagnostics,
disease severity and treatment effect evaluations.

Limitations and Future Work
From the set of tested models, the ASM and RSSM were
the most promising and robust for the blind visualization of
task-related networks derived from simultaneous EEG-fMRI
data. Several similar spectral models (16, 17, 47) considered
Equation 10 instead of using Equation 1 for the EEG-fMRI
fusion formulation, sometimes not-using the function g(ω).
Comparison to the Equation 10 spectral model was not
addressed here. All investigated EEG patterns were narrow band-
pass filters and the effect of the non-linear ω2 modulation
were considered minimal. The ASM and RSSM have also
not been directly compared to the concurrent recent data-
driven EEG spectra decomposition approaches such as parallel
factor analysis (PARAFAC) (20, 30, 121), coupled matrix-tensor
factorization (40, 122), coupled tensor-tensor decomposition
(123), or source-space ICA (124, 125). A full comparison to the
most recent EEG-spectra fusion strategies should be addressed
in the future research. Yet the variability in HRF yielded more
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significant effects with all four models than in our previous
work (18).

b ∝
( ∫

ω2g(ω)p(ω) dω

)

∗ h (10)

The robust task-related EEG-fMRI F-maps might be an effect of
the active push-button response to the target stimuli. The maps’
robustness may decrease using target count or passive responses
(126) but such investigation was beyond the investigation of
the current dataset and the study scope. The F-maps can
be interpreted as data-driven functional connectivity maps
(127, 128) where the EEG pattern’s fluctuations emphasize
the common relationships with local variable HRFs. The
effective connectivity (127, 128) has not been quantified and
evaluated here. Dynamic causal modeling (DCM), mostly
between pre-selected regions of interest (ROIs), belongs to
one of the most actively developed procedures quantifying
the effective connectivity in fMRI or EEG data (129–132).
Recently, the Bayesian fusion and multimodal EEG-fMRI
DCM substantially improved the best effective connectivity
model evidence (35). Future test-retest at ROIs of robust
visual oddball data can provide important evidence of the
DCM applicability.

Although the ASM provided the most robust spatial results,
there are two weaknesses in the current ASM approach: (i) All
ASM filtering properties were derived as an spectral average
of the ASSM and RSSM patterns. Therefore, there would not
be any optimized spectral filtering property without prior EEG
ASSM and RSSM data-driven estimation via the spatiospectral
ICA. Still, it appears that simple band-pass filters might be
a sufficient approximation for the most promising δ4 and θ1

patterns. (ii) Thresholded ASM spatial F-maps appeared very
similar over different EEG patterns. That might be an effect of
a reported broadband component in the absolute EEG spectra
resulting in lower spatial specificity of the ASM. On the other
hand, high spatial specificity might be obtained with stricter
statistical threshold, e.g., pFWE < 0.01 or even more stricter,
which, however, would not be applicable for other fusion models.

Several EEG patterns demonstrated similar spatial EEG-fMRI
F-maps while variable HRF was modeled in each voxel of each
EEG band. It was not optimized and tested whether a weighted
(wi∈ <-1,1>) mixture of N EEG patterns (ui) would increase
a linear dependence (i.e., |t|-values) between the final EEG
pattern and the stimulus vector (x), see Equation 11. Then, a
general linear mixture EEG-fMRI fusion model with one global
but still variable HRF would appear as Equation 12. Similar
model analogy has been tested on hand-grip task data and
compared to a single band EEG pattern with variable HRF (39).
The results demonstrated more significant and specific blind
task-related network visualizations for single δ and θ bands
with band-specific variable HRFs. It is basically the same result
presented here on the visual oddball dataset. Considering a linear
mixture of EEG patterns with pattern specific HRFs maximizing
relationships to the task, the Equation 12 would change to
Equation 13. The optimization of the right side of the Equation
13 regarding the maximized linear dependence to the stimulus
vector is challenging. Such EEG-fMRI fusion model alterations

(i.e., Equations 12, 13) require a further investigation and testing
on visual oddball data within the future research.

w = argmax t

( N
∑

i=1

wiui, x

)

(11)

b ∝
N

∑

i=1

wiui ∗ h (12)

b ∝
N

∑

i=1

wiui ∗ hi (13)

Although temporal and spectral domains are considered fully
complementary, the phase information of the spectral domain in
all implemented EEG-fMRI fusion models was omitted here. It is
a common procedure in the field to only utilize the magnitude
information (5, 7, 10, 16, 17, 26). We suggest that the phase
coupling effect should not be neglected in the future research.
The phase coupling can separate different sources of similar
magnitude/power profiles and it has already been successfully
implemented in several EEG spectra blind source separation
techniques (112–114, 133–136) including the used spatiospectral
ICA (37, 137).

Our proposed experiments and the comparison of the fully
automated and blind methodological approaches were tested in
healthy subjects. The clinical impact needs to be determined
in future studies of the electrical neural and neurovascular
associations measured by simultaneous EEG-fMRI. The P300
ERP has been extensively investigated in studies of cognition
in healthy individuals and in a wide range of neurological or
psychiatric disorders. The lower amplitude and longer latency are
measures indicative of slowing of general cognitive ability due to
the disease condition (100, 138). We propose that local F-map
or HRF changes may discern patients with a specific cognitive
dysfunction and improve spatial specificity of dysfunction focus
as a benefit of the fMRI resolution in future applications.
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Combining functional magnetic resonance imaging (fMRI) and electroencephalography

(EEG) enables a non-invasive investigation of the human brain function and evaluation

of the correlation of these two important modalities of brain activity. This paper explores

recent reports on using advanced simultaneous EEG–fMRI methods proposed to map

the regions and networks involved in focal epileptic seizure generation. One of the

applications of EEG and fMRI combination as a valuable clinical approach is the

pre-surgical evaluation of patients with epilepsy to map and localize the precise brain

regions associated with epileptiform activity. In the process of conventional analysis

using EEG–fMRI data, the interictal epileptiform discharges (IEDs) are visually extracted

from the EEG data to be convolved as binary events with a predefined hemodynamic

response function (HRF) to provide a model of epileptiform BOLD activity and use as a

regressor for general linear model (GLM) analysis of the fMRI data. This review examines

the methodologies involved in performing such studies, including techniques used for the

recording of EEG inside the scanner, artifact removal, and statistical analysis of the fMRI

signal. It then discusses the results reported for patients with primary generalized epilepsy

and patients with different types of focal epileptic disorders. An important matter that

these results have brought to light is that the brain regions affected by interictal epileptic

discharges might not be limited to the ones where they have been generated. The

developed methods can help reveal the regions involved in or affected by a seizure onset

zone (SOZ). As confirmed by the reviewed literature, EEG–fMRI provides information that

comes particularly useful when evaluating patients with refractory epilepsy for surgery.

Keywords: EEG-fMRI, epilepsy, localization, seizure onset zone, epileptic foci, BOLD response, IED

INTRODUCTION

Localization of the epileptic generators is one of the striking topics in the treatment of epilepsy. It is
still a challenge to find the precise brain regions of epileptic foci. Simultaneous EEG and fMRI data
recordings are two modalities that can expose the brain regions with changes in metabolism and
blood flow in response to epileptic spikes seen in the EEG, which are presumably accordant to the
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origin of epileptic discharges. fMRI which has a relatively poor
temporal resolution but excellent spatial resolution is proper
for localizing the brain regions with neuronal activity changes
compared to the sham. This change is accompanied by a
modification of the ratio of the concentration of oxy- and deoxy-
hemoglobin in the blood, measured through the blood oxygen
level-dependent (BOLD) effect (1, 2). In contrast, EEG has a
high temporal resolution that makes it capable of measuring
the neuronal currents directly from the scalp in the range of
milliseconds but poor spatial resolution, which causes difficulty
in determining the exact location of the current sources. The
limitations of EEG are the deficiency in precise information of
individual geometry and conductivity and the limited number of
recording channels. Therefore, simultaneous recording of EEG
and fMRI data provides a useful tool in using the two techniques’
complementary features and overcoming the spatial limitations
of EEG and fMRI’s temporal boundaries.

An area where EEG and fMRI modalities have considerable
clinical relevance is the pre-surgical evaluation in patients with
epilepsy. In many patients with drug-resistant focal epilepsy
undergoing surgery, standard magnetic resonance imaging
(MRI) scans cannot visualize an exact source of epileptic seizures.
Therefore, an invasive stereo-EEG analysis is required. However,
simultaneous EEG and fMRI recordings offer a non-invasive
alternative that can be a valuable approach for the localization
of brain regions generating interictal epileptiform activity. This
recording approach has become a useful tool for exploring
ictal and interictal epileptic activity to reveal the epileptic foci
and specify the relationship between hemodynamic changes and
epileptic activity (3–6). EEG and fMRI are complementary for
the localization of epileptic spike areas, but they can indicate
different activity regions. Also, SEEGmeasures confirm EEG and
fMRI results, although the concordance of simultaneous EEG–
fMRI is not as good as the concordance between either one and
SEEG (7). Unlike the general fMRI studies involving sensory,
motor, and cognitive functions, the control and experimental
conditions are determined based on the task. In epilepsy studies,
these conditions are determined based on the absence and
presence of epileptic discharges on the baseline of the EEG
signal. So, in this context, the EEG signal is necessary for the
analysis of fMRI data. The epileptic analysis of EEG–fMRI data
is conventionally based on the identification of IEDs on EEG
to create a regressor representing the effects of interest for a
GLM analysis. Also, the model of epileptic activity is generally
obtained by the convolution of EEG events as the stick functions
of unitary amplitude with a predefined model of the event-
related fMRI response, represented by the HRF. Finally, the
activity maps showing the regions of significant IED-related
change are obtained through the voxel-wise fitting of the model
and application of appropriate statistical thresholds (3, 6, 8–10).
Generally, BOLD responses are much less visible in patients with
focal epilepsy compared to patients with generalized epilepsy
(11, 12). Also, the posterior head regions are almost as involved as
frontal regions in the BOLD response of patients with generalized
epilepsy (11).

This paper reviews majority of the interictal studies presented
with the aim of epileptic focus localization. For this purpose,

the articles were classified based on their analysis method and
reviewed in each part sorted by their publication date to reveal the
trend of works in all the covered methods. First, we will present
the primary concepts of epileptic source localization and analyze
EEG inside the MRI scanner covered by associated studies. We
will then review the localizationmethods and their clinical results
obtained from patients with various types of epilepsy, showing
the capability of each method for the pre-surgical evaluation of
patients with epilepsy in comparison with the other methods.
Finally, we discuss the complex issue of interpreting the result
of EEG–fMRI in epilepsy studies. In this review, we tried to strike
a balance between method-based studies and clinical outcomes.
The Preferred Reporting Items for Systematic Reviews andMeta-
Analyses (PRISMA) flowchart below shows the organization of
the extracted articles (Figure 1). This review includes all EEG–
fMRI studies focused on epileptic focus localization, which we
have found by searching the related keywords in Google Scholar,
PubMed dataset, Scopus, and ResearchGate. All studies are
done interictally.

PRIMARY CONCEPTS

Signal Quality and Pre-processing
Recording EEG in the MR scanner requires non-magnetic
electrodes and anMR-compatible amplifier system that transmits
the amplified EEG outside the scanner. The patient must be as
immobile as possible during the session. The magnetic gradient
of the MR scanner induces large artifacts in the EEG. After the
scanning session is finished, the artifacts will be removed by
software to retrieve an EEG of reasonable quality (to retrieve
a “clean” EEG); consequently, it allows us to mark the time of
epileptic events. The next step is to build a mathematical model
of what the BOLD signal should be at the voxels involved in the
event. Voxels that took part in the event should have changes
in their time courses as a result of each event in a predictable
manner (in concordance with the HRF). Finally, the time course
of every voxel is analyzed, and the voxels that have a correlative
time course with the model are identified. Such voxels are either
involved in the generation of the marked epileptic events in the
EEG or a consequence of the event (3–6, 8–11).

Although the simultaneous recording of EEG–fMRI is one of
the most valuable non-invasive tools for studying brain activity,
it remains challenging to reach a high-quality signal of EEG and
fMRI recorded simultaneously. Generally, simultaneous EEG–
fMRI data are affected by various confounding factors and
artifacts. The most important effective factor on the quality of
the EEG and MRI recording is the immobilization of the head
and electrode wires that can be reached by a plastic bag full of
small polystyrene spheres. Besides, MRI-compatible sandbags are
well-suited to immobilize the electrode wires on the way to the
amplifiers (13).

Among the various artifacts, the artifact of MR gradient
switching and ballistocardiogram (BCG) remain the major
challenges in simultaneous EEG–fMRI study that make the EEG
signal hard to interpret. Removing the fMRI scanner artifact is
essential for the successful EEG–fMRI analysis. On the other
hand, the presence of the BCG artifact does not necessarily lead
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FIGURE 1 | PRISMA flowchart showing the classification of the extracted articles related to the epileptic focus localization through simultaneous EEG–fMRI recording.
iWeb of Science, Google Scholar, Pub Med, Scopus dataset, and ResearchGate websites and the references of the research and review articles. iiNot relevant to

research question, aims and objectives, or old articles. iii Intracranial or ictal studies.

to a complete failure in identifying epileptic events (13–16). Yet,
eliminating the BCG artifact improves the readability of the
EEG and is useful for detecting subtle events like small epileptic
discharges (13, 17).

To reduce the MR artifacts, one of the effective
ways is the blind source extraction (BSE) algorithm
followed by the averaging-and-subtraction method (18).
Also, Amini et al. (19) proposed an approach based
on generalized eigenvalue decomposition (GEVD) and
median filtering, which demonstrated a considerable
improvement in reducing MR artifacts compared to the
conventional methods.

For eliminating BCG artifacts, two well-known methods
are independent component analysis (ICA) and principal
component analysis (PCA) which keep the spikes intact.
However, ICA usually makes a better distinction between
artifact and non-artifact components and performs stronger
in artifact removal while preserving the spikes (13). Also, for
a significant number of events, the subtraction filter is better

than the Fourier filter in producing distortion but impairs the
readability of EEG because of leaving large remaining artifacts
inside the frames (13). Another approach for BCG artifact
correction is multiple-source correction (MSC) (20). First, the
source of IEDs is extracted from the EEG data collected outside
the scanner to avoid the distortion of EEG data during the
correction of BCG artifacts. Then, the topographies of the BCG
artifacts defined based on the EEG data acquired inside the
scanner are added to the alternative model of IED sources.
The combined source model is applied inside the EEG data.
Lastly, the artifact signal is subtracted from the EEG without
considerable distortion of the IED topography. Compared with
the traditional averaged artifact subtraction (AAS) method, the
MSC approach has improved the ability of IED detection,
especially when the BCG artifact is correlated and time-locked
with the EEG signal produced by the focal brain activity of
interest (20).

In the study of Körbl et al. (21), 18 patients with epilepsy
were studied with the commonmethods of BCG removal and the
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conventional method of using marked IEDs to perform event-
related analysis. Besides, nine patients used the moiré phase
tracking (MPT) marker to discard suspicious IEDs synchronous
with the BCG before the event-related analysis. The results
demonstrated no significant difference between the two groups.
However, the IED timing distribution was significantly related
to the cardiac cycle in 11 of the 18 patients recorded without
the MPT marker, but only two of the nine patients with the
marker. In patients recorded without the marker, failing to
discard suspicious IEDs led to more distant activations and more
inaccurate fMRI maps.

In some of our previous works (22–24), the MRI gradient
switching artifact was removed by using the fMRIb algorithm
(https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin), which first
increases the sampling rate to 20 kHz and then applies a low-pass
filter at 60Hz. The fMRIb toolbox also removed the BCG
artifact associated with cardiac pulsations. Figure 2 shows the
EEG signals inside the scanner before and after the artifact
removal procedure.

One of the other factors that affect the quality of the
BOLD images is the signal loss due to variations in magnetic
susceptibility, which alters the local magnetic field experienced
by the subject’s brain. For reducing this signal loss and increasing
the ability to detect significant regions of BOLD signal changes,
z-shimming is a practical technique. However, the question is
whether this signal loss will be a limiting factor to identify the
spike-related BOLD signal changes in patients with epilepsy.
To find the actual effect of z-shimming in the results of
identifying the spike-related BOLD responses, Bagshaw et al. (25)
designed an experiment in which eight patients with temporal
lobe epilepsy (TLE) underwent an EEG–fMRI session, and z-
shimming was applied to their BOLD images. After comparing
the intensities between z-shimmed and standard images and
creating BOLD activation maps from the two sets of functional
images using the times of spikes extracted from the EEG, it
was found that the mean signal of the temporal lobes (TLs)
increased 45.9 ± 4.5% as a result of z-shimming. Also, the
percentage of the TL voxels above the brain intensity threshold
increased from 66.1 ± 7.6% to 77.6 ± 5.7%. However, this
increase in the signal did not make any significant differences
in the statistical maps. So, the signal loss is not a limiting factor
for identifying the spike-related BOLD responses in patients
with TLE.

The magnetic field strength of the MRI scanners could be an
effective factor for the reproducibility of the EEG–fMRI results,
which makes the results reliable as a clinically valuable method.
This issue was addressed by Gholipour et al. (26). Fifteen epilepsy
patients, including seven who had one 1.5T and one 3T EEG–
fMRI scans and eight who had two 3T EEG–fMRI scans were
studied. Then, the IED-related BOLD responses acquired from
equal numbers of the IED events were compared between the
scans of each patient. In four of the 15 patients, the results of the
comparison between two sets of scans acquired from 1.5T and
3T scanners showed more significant responses in 3T scans just
because of the higher magnetic field strength. Also, for the eight
patients, the results of comparisons between two consecutive 3T
scans showed reproducible responses in five cases with similarity

in the visual pattern of activation and partly differences in terms
of maximum t-score and cluster size in some cases.

Reduction of motion interference has been considered in
some studies. In a study of Klovatch-Podlipsky et al. (27), a
method based on MR-compatible dual-array EEG (daEEG) was
proposed to reduce the motion interference in the EEG–fMRI
recordings. The EEG electrodes were organized into two sets
of nearly orthogonally intersecting wire bundles, and virtual
bipolar measurements were obtained both along and across the
bundles. By applying ICA on the EEG data and using the fact that
only motion interference is influenced by the cable orientation
and is more prominent in across-bundle measurements, daEEG
allows suppression of both BCG and non-BCG interference from
the data. Testing this method in 10 patients with epilepsy and
comparing the results with those of the Optimal Basis Set (OBS)
(28–30) showed more detected spikes after using daEEG than
after OBS in nine of the 10 patients.

In the GLM analysis, settings and preprocesses are also
important for the localization of the epileptic sources and
can be optimized. For instance, considering some video-EEG
physiological confounds like eye blinks and swallowing as
additional regressors can reveal further IED-related BOLD
clusters which might be part of the epileptic networks (31).
Mikl et al. in (32) used the EEG–fMRI data of 13 patients with
pharmacoresistant epilepsy and an excellent surgical outcome
and performed 240 statistical analyses for each patient including
all possible combinations of the used preprocessing and GLM
settings. The results showed that preprocessing type, i.e., mainly
the basic pipeline, or cardiac artifact correction does not affect
GLM-based analysis results. The IED stimulation time course
shifted 2 s earlier than positions from the EEG description, and
also the massive filtering of artifact (24 movement regressors,
signals from white matter and CSF, and global signal) are
considered as the optimal preprocessing pipeline. Also, they
reported that the canonical HRF as the basis function led to the
best results of GLM analysis in agreement with some previous
studies like (33, 34). However, its superiority over more flexible
basis functions may be due to the used concordance measure.
It is noticeable that in another study, Lemieux et al. (35) used
a more flexible model of the event-related response, a Fourier
basis set, to identify regions of activation corresponding to
non-canonical responses associated with individual IED in 30
experiments of patients with focal epilepsy. They reported that
non-canonical activations were almost always remote from the
presumed generator of epileptiform activity. Thus, the BOLD
response to IED is primarily canonical and the non-canonical
responses may represent a number of phenomena, including
artifacts and propagated epileptiform activity.

HRF and Spike Characteristics
In the commonmethods of EEG–fMRI analysis, a particular HRF
is usually used for all patients. For example, the GLM framework
models a prior knowledge of hemodynamic response in the
design matrix and then explains the measured data by parameter
estimation (10, 36–38). However, the real BOLD response to IEDs
for each patient can be significantly different from the healthy
controls (6, 39, 40). Even in a specific patient, the shape of HRF
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FIGURE 2 | EEG signal recorded inside the MR scanner: (A) before and (B) after the elimination of gradient and BCG artifacts (24).

varies with different brain areas and also is time-variant in each
area (41, 42). The delay of the estimated function in a patient is
different from those of the common theoretical models (43, 44).
Using patient-specific HRF increases the detection sensitivity of
epileptic spikes in EEG–fMRI (40). For instance, van Houdt et al.
(17) used a finite impulse response approach for estimating the
HRF from a dataset including 42 IED sets acquired in 29 patients
and observed that more brain regions were active consistent with
the EEG focus compared to the classical approach supposing a
fixed HRF for each voxel in the brain (26 vs. 16).

Using multiple HRFs with peaks ranging from 3 to 9 s
increases the BOLD response compared with using the standard
HRF alone (11, 45). It was shown that the standard HRF that
peaked at 5.4 s was more proper in detecting positive BOLD
responses, and the HRFs that peaked later than the standard were
more accurate for negative BOLD responses (45).

It has been observed that the results of EEG–fMRI analysis are
influenced by the evaluation of the EEG signal and the scanning
techniques more than the HRF model. Thus, although the HRF
model influences the results of EEG–fMRI analysis, it may not be
the main parameter in clinical practice (46).

Regarding the epileptic spikes in the EEG signal, it is
revealed that the activation in BOLD response from EEG–fMRI
analysis depends on the number of IEDs occurring during data
acquisition (11, 17). However, the spiking rate is not the only
influencing factor in the presence of the BOLD response. BOLD
responses were seen in patients who had very few spikes, and a
lack of response was noted in patients who had a high spiking
rate (11).

Another issue is the spike identification that can be done
automatically (20, 47) or by an expert. According to the study
of Pedreira et al. (48), the automated spike-sorting algorithms
for the classification of IEDs increase the value of EEG–fMRI
analysis andmapping of IED-related BOLD responses (Figure 3).
However, there is uncertainty in the results of spike identification
because of the false detections andmissed events. Huiskamp et al.
(49) evaluated the impact of these two errors on the significance
of the expected fMRI activation and revealed that the effect
of missed events is larger in deteriorating the expected results.
According to this study, although the uncertain spikes cause
errors in IED-related BOLD responses, if they are considered

as the events and included in the analysis, the responses will be
closer to the expected results.

In the same direction, the aim of Flanagan et al. (50)
was to find the influence of inexact or unreliable marking of
EEG epileptiform events on the result of statistical parametric
mapping (SPM) analysis in EEG–fMRI studies of patients with
epilepsy. In this paper, the EEG–fMRI data of 10 patients with
epilepsy were analyzed, and epileptiform events were marked.
Then, the effect of omitting, mislabeling, and inconsistent timing
of events was observed separately, considering the numbers of
voxels above the threshold in the resulting SPM analysis. The
results showed that omitting true epileptiform events decreased
the number of above-threshold voxels. Mixing epileptiform and
non-epileptiform events usually (but not always) caused a similar
decrease. Inconsistent timing of events for small (<200ms) and
large (>500ms) inconsistencies had small and large effects on
the results, respectively. This suggests that accurate marking up
of epileptiform events in EEG is still one of the most important
factors for obtaining reliable results from EEG–fMRI analysis.

Besides, multiple fast fMRI sequences have been recently
developed, one of which is magnetic resonance encephalography
(MREG). Comparing MREG with the traditional sequence of
echo-planar imaging (EPI) has revealed that MREG gives higher
maximum t-values than EPI (49). However, Safi-Harb et al. in
(51) reported that EPI yielded a better true positive rate and larger
cluster size than MREG using a proper threshold. Also, it was
shown that the HRF shape had a larger effect onMREG detection
than EPI. Additional studies are needed to make a definitive
judgment on their relative sensitivity. In terms of localizing the
epileptic network, Jäger et al. (52) state that high-density EEG and
fast fMRI seem to improve EEG–fMRI analysis results.

Pre-spike BOLD Signal Changes
Hemodynamic changes that are time-locked to spikes may reflect
the propagation of neuronal activity from a focus, or conversely
the activation of a network linked to spike generation (53). That
is why pre-spike concordant BOLD signal changes may contain
information about the epileptic networks. In a study of Jacobs
et al. (54), five patients with idiopathic focal epilepsy and six
patients with symptomatic focal epilepsy were studied. Spike
timing was identified, and HRFs were calculated as the most focal
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FIGURE 3 | A sample of visual and algorithmic classification of the IEDs. (A) The result of visual classification from the bipolar montage (64 channels) of EEG recorded

inside the scanner is performed by an expert. (B) The results of EEG–fMRI analysis, based on visual-IED labeling. (C) The seven classes identified using the algorithmic

classification. (D) The result of EEG–fMRI analysis, associated with class 7 of identified IEDs. All the fMRI results are overlaid on the subject’s T1-weighted image (48).

BOLD response tomodel the regressors of statistical analysis with
the timing of spike events convolved to HRFs peaking at −9
to +9 s around the spike. The results showed pre-spike BOLD
responses in 11 of the 13 studies which were more focal and
related to the spike field than post-spike responses (Figure 4).

The question of whether these pre-spike BOLD responses
were the result of a synchronized neuronal discharge was
yet to be investigated. In another study (55), four patients
with pharmacoresistant focal epilepsy were selected by showing
both pre- and post-spike BOLD responses concordant with
the EEG focus during the session of EEG–fMRI recording.
Then, they underwent stereo-EEG (SEEG) as part of their pre-
surgical evaluation to specify the origin of pre-spike BOLD
signal changes. Pre-spike BOLD signal changes in the spike
field area were analyzed using HRFs with peaks ranging

from −9 to +9 s around the spike. After that, SEEG signals
were analyzed for detecting electrographic changes consistent
with the time and location of the early HRF responses.
The results showed that only one of the patients had a
consistent SEEG interictal discharge. No electrographic changes
were detected in the rest of the patients, consistent with
the early HRF responses in period and location. Therefore,
the early BOLD signal change usually reflects a metabolic
event that does not seems to be the result of a synchronized
neuronal discharge.

BOLD Response to IEDs
There may be a direct relationship between the BOLD signal
changes and overall synaptic activity (56, 57). The generation
mechanisms of interictal discharges are unknown in humans,
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FIGURE 4 | Projected HRFs illustrated according to a sequence of patients. The bottom row shows HRFs calculated over the area with the highest t-statistic. The

HRFs which presented with dotted lines are those that did not pass the SNR criterion of 4.5. The Blue scales had to be adjusted to obtain visibility of the HRF and

thus differ from the rest. The HRF shape differences and their sporadic early peak times are obvious (54).

Frontiers in Neurology | www.frontiersin.org 7 April 2021 | Volume 12 | Article 64559452

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Sadjadi et al. EEG-fMRI Localization of Epileptic Foci

but the cortical development abnormalities have distinctive
interictal discharges (56). For a reliable localization of epileptic
foci using EEG–fMRI, we need IEDs correlated with the BOLD
signals recorded simultaneously. However, the epileptogenic
regions with correlated signals have not yet been thoroughly
understood (58). Thus, a considerable part of the literature is
centered on the behavior of BOLD signal changes associated with
interictal discharges.

Federico et al. (56) focused on the BOLD signal changes
associated with interictal discharges in six patients with
malformations of cortical development and seizures using spike-
triggered fMRI 3T. They revealed four positive changes in
the lesion and four negative changes surrounding the lesion,
five changes at distant cortical sites, and three subcortical
sites (basal ganglia, reticular formation, or thalamic). Waites
et al. (33) studied two patients with frequent epileptiform
events and concluded that interictal discharges result in BOLD
responses distinctly different from those obtained by examining
random events. Besides, Bonaventura et al. (59) investigated
BOLD responses related to epileptic EEG abnormalities in
31 partial and 12 generalized epilepsy patients and revealed
that there are obvious associations between BOLD results and
EEG abnormalities in 21 cases with 18 concordant to electro-
clinical findings.

Another strand of literature focuses on idiopathic generalized
epilepsy (IGE). For instance, Briellmann et al. in (60) analyzed
the data from 17 patients with IGE and frequent, stereotypical
generalized discharges that were present in 14 of them during
scanning. As reported, the cortical changes were found in all
patients, and subcortical changes were found in only seven of the
patients who had bursts of rhythmic discharges during scanning.
Fifty-five percent of the patients showed deactivation in the
posterior cingulate, and two of the patients who had marked
activation and electro-clinical absences during scanning showed
thalamic signal change.

Tyvaert et al. (61) analyzed the EEG–fMRI data from 10
patients with IGE during generalized spike-and-wave discharges
(GSWDs). The HRFs were calculated in four ROIs related
to the left and right thalamic structures and were compared
within and between them. The results pointed to an activation
of the centromedian and parafascicular (CM-Pf) nuclei and
then of the anterior nucleus during GSWDs. This suggests that
the early propagation and maintenance of epileptic discharges
may belong to the posterior intralaminar nuclei and anterior
nucleus, respectively.

In another study (62), the EEG–fMRI data of 83 patients with
medication-refractory IGE (R-IGE) were analyzed, and statistical
parametric maps concerning the BOLD response were generated.
Thirty-six patients were identified as cases with absence seizures.
It was inferred that when thalamic BOLD changes peaked at∼6 s
after the onset of absence seizures, the other areas, including
the prefrontal and dorsolateral cortices, showed brief and non-
sustained peaks at ∼2 s earlier than the thalamic peak. Also,
TL peaks occurred at the same time as the thalamic peak,
with a cerebellar peak occurring ∼1 s later. Thus, the origin
of absence seizures may be the widespread cortical (frontal
and parietal) regions and sustained in subcortical (thalamic)

areas, representing the cortical onset of epileptic seizures with
propagation to the thalamus.

In a study of Benuzzi et al. (63), 18 patients with IGE and
absence seizure (AS) were studied, and the event-related analysis
was performed using the onset and duration of GSWD as one
regressor and GSWD offset as another. The results pointed to
a thalamic activation and a deactivation in pre-cuneus/posterior
cingulate related to the GSWD onset and a BOLD signal decrease
over the bilateral dorsolateral frontal cortex GSWD termination.

For a 28-year-old focal epilepsy patient with left frontal
seizures who were treated with oxcarbazepine (1,200 mg/d),
two sessions 1 month apart of continuous EEG–fMRI with
two different runs for each session were held. The IEDs were
extracted using the location of the electrodes with the maximum
amplitude of the epileptiform activity, and the colocalization of
fMRI clusters was established based on the anatomical lesion
and IEDs. In both runs of the first session, a unique left frontal
main cluster was identified in the left opercular region colocalized
to IEDs and near the posttraumatic lesion. However, in the
second session, two main clusters were detected in the inferior
frontal gyrus of both hemispheres. Therefore, EEG activity did
not considerably change within each session, whereas the spatial
distribution of interictal events showed significant variations
between the sessions (64).

In another study, Flanagan et al. (65) reviewed the EEG–fMRI
data of 27 patients with focal epilepsy in terms of the location
and extent of the IEDs and the resulting pattern of significant
BOLD responses. This study characterized important features of
the BOLD responses associated with the IEDs and confirmed
that the piriform cortex is a common node underlying IEDs and
suggests a purpose for further study and potential therapy.

Fahoum et al. (66) studied 32 patients with TLE, 14 patients
with frontal lobe epilepsy (FLE), and 20 patients with posterior
quadrant epilepsy (PQE) and acquired the patterns of cortical
and subcortical BOLD responses related to focal IEDs using a
group analysis. The patients with TLE showed activations in the
midcingulate gyri bilaterally, ipsilateral mesial and neocortical
temporal regions, insula, and cerebellar cortex, and also the
most widespread deactivations in the default mode network
(DMN) areas. The patients with FLE showed activations in
the midcingulate gyri bilaterally, ipsilateral frontal operculum,
thalamus, internal capsule, and the contralateral cerebellum, and
also deactivations in the DMN areas. Lastly, the patients with
PQE showed only deactivations in the DMN area.

Negative BOLD Signals
For the cases of negative BOLD signals, the epileptogenic regions
with correlated signals are not also completely understood
(58). For explaining the negative BOLD signals, three different
scenarios could be as follows: An overcompensating cerebral
blood flow decrease could accompany a decreased metabolism
as a “normal” negative BOLD response; the epileptic activity
could produce an increased metabolism without adequate blood
flow change resulting in a negative BOLD effect; and the oxygen
consumption could stay constant throughout the IED event while
at the same time, a reduced local blood flow is induced (58).
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The study of Rathakrishnan et al. (67) aimed to explain the
negative BOLD responses seen in the source of epileptiform
discharges by the undershoot of an antecedent positive response.
In analyzing the EEG–fMRI data of 82 patients with focal
epilepsy, only eight patients showed a focal negative BOLD
response in the spike field area using models with HRFs peaking
from −9 to +9 s around the spike. Thus, the origin of negative
BOLD responses in the epileptic foci is not an initial positive
BOLD response and remains unexplained in most patients.

To determine the origin of BOLD negative response to the
IEDs, Pittau et al. (68) studied two groups of patients, each
including 15 patients with significant positive and negative BOLD
responses within the IED region, and explored the relationship
between the type of response (activation/deactivation) and
several IED characteristics. The results denoted that the IEDs of
patients with deactivation were more frequently of long duration
with larger involved cortical areas and more focused in the
posterior quadrant. Also, the IEDs accompanied by a slow wave
were present in 87% of the deactivation group and only in 33%
of the activation group which is the critical feature reliable for
focal deactivations.

LOCALIZATION APPROACHES

Localization of Epileptic Focus Using
EEG–fMRI
The EEG–fMRI analysis has been widely used for the localization
of epileptic foci. However, the respective approaches need more
refinement to be reliable for pre-surgical decision making (69).
In the following section, the results of applying various analysis
methods are reported.

Conventional Analysis
Simultaneous EEG and fMRI recordings can reveal the source of
spiking activity that is highly correlated with epileptic foci and
epileptogenic lesions in a large number of patients. However,
many of the patients have no significant activation for unknown
reasons (12). In the study of Al-Asmi et al. (12), the EEG–fMRI
data of 38 patients with focal epilepsy and frequent spikes were
analyzed in terms of fMRI activation using two methods: (1) the
significance of the t-statistic value at every single voxel and (2)
the significance in the clusters of contiguous voxels based on
random field theory (70). The concordance between the spike
location of EEG and anatomic abnormalities of MRI and other
EEG and clinical measures were taken into consideration. From
the analyzable ones, activation regions were obtained in 39% that
were concordant with EEG source localization in nearly all of
them. Forty percent showed activation without any MRI lesion,
and 37.5% showed activation near or inside the lesion.

In a study of Zijlmans et al. (71), the EEG–fMRI data of 29
patients with epilepsy were studied, and 46 sets of IEDs were
identified in the agreement between two experts. The BOLD
response related to each type of IEDs was modeled in an event-
related design using a canonical HRF with a temporal derivative,
and statistical maps of activity were created. The results showed
an improvement in the localization of epileptic focus and opened
new prospects for surgery. For instance, at least one significant

positive BOLD response topographically concordant with the
IEDs was found in eight patients who were rejected for surgery
due to reasons like unclear focus or multifocality. This is,
therefore, a valuable tool in the pre-surgical evaluation of patients
with epilepsy.

Besides, in the study of De Tiège et al. (72), the IEDs
were extracted and segregated into separate regressors
applying a half-maximum amplitude cutoff in six children
with pharmacoresistant focal epilepsy. The regressors were then
convolved with the canonical HRF and its temporal derivative for
an event-related fMRI analysis. The results showed significant
activations in four children, colocalized with the presumed
epileptic focus, activation and deactivation in one child, and a
widespread deactivation in another.

In another study, Grova et al. (73) evaluated the level
of consistency between EEG source localization and BOLD
responses using two comparison strategies: (1) MEM
concordance, which is the comparison between EEG sources
detected using Maximum Entropy on the Mean (MEM) and
fMRI clusters of significant BOLD response and (2) fMRI
relevance: if sources located in an fMRI cluster could explain
some scalp EEG data, the assessment of the fMRI-relevance index
α would measure when this fMRI cluster was used to constrain
the EEG inverse problem. For this purpose, seven patients with
focal epilepsy underwent EEG–fMRI and an EEG recording
outside the scanner. The results of combining two mentioned
strategies to report the concordance between BOLD response
and EEG sources showed that from 62 fMRI clusters assessed
by standard event-related analysis, 15 were highly concordant
with EEG according to both strategies, five were concordant only
according to the fMRI-relevance index, 30 were not concordant,
and 10 clusters had a significantly negative α index suggesting
EEG–fMRI discordance.

Avesani et al. (74) analyzed the EEG–fMRI data of a patient
with symptomatic epilepsy to find the linkage between the
“epileptogenic” zone and the “irritative” zone, which is the
meticulous cortical distribution of spikes. They used EEG signals
as paradigms in the fMRI study and compared the EEG interictal
slow-spiked wave with the normal EEG conditions. The results
showed a BOLD signal increase around the epileptogenic area
in the left neocortical temporal region, laterally and posteriorly
to the porencephalic cavity, representing a connection between
“epileptogenic” and “irritative” areas.

In a study of Jackson (75), Jackson extracted 46 IED sets
from 29 patients with epilepsy who were excluded for surgery on
unclear foci. Also, he analyzed the fMRI data to identify BOLD,
significant responses, and topographical concordance with IEDs.
Fifteen patients showed significant positive or negative BOLD
responses. Eight patients showed IED-related positive BOLD
responses. Four of the five patients with presumed multifocality
showed multiple epileptic foci. Four of six patients with
unclear foci showed a confined focus, opening new predictions
for surgery.

Besides, in the study of Liu et al. (76), the EEG–fMRI analysis
for the localization of partial epilepsy includes extracting and
convolving the spike times with a two gamma-variate canonical
HRF and adding the result as a task regressor to the SPM
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design matrix. This approach was applied to the data of eight
EEG–fMRI sessions acquired from six patients with partial
epilepsy and showed six with activation and deactivation, one
with activation only, and one with deactivation only. Seven of
the observations corresponded to electroclinical localization of
epileptic focus. As reported in this study, the concordance seems
to be more associated with positive BOLD responses, and the
response to deactivation seems less associated with IEDs. Such
studies generally demonstrate that IEDs may be revealed in the
brain regions well beyond the presumed area in which they are
generated (77). In the study of Moeller et al. (78), the EEG–
fMRI data was acquired from nine patients with non-lesional
frontal lobe epilepsy (FLE). Using four HRFs, IED-related BOLD
responses were obtained and compared to the spike topography
determined by BESA as a voltage activation map. The results
showed a concordance between the positive BOLD response and
the spike localization in eight of nine patients.

Borelli et al. in (79) studied a patient of focal cryptogenic
epilepsy with speech arrest seizures and bilateral synchronous
spike and wave scalp EEG pattern (secondary bilateral
synchrony). Following the conventional analysis of EEG–fMRI
data, the IEDs were identified, convolved with a two-gamma
canonical HRF, and added to a single-subject GLM. The statistical
map of significantly activated voxels showed an explicit BOLD
response over the left supplementary motor area (SMA) and, to
a lesser degree, over the homolateral motor strip. Forty-three
patients with focal epilepsy were studied in (80), and BOLD
responses associated with IEDs, including at least five significant
contiguous voxels, were extracted and labeled as consistent and
inconsistent with the EEG spike field and contributory or not
contributory, based on whether or not they provided additional
information to EEG about the epileptic foci. The main analysis
included convolving a regressor developed using the time and
duration of each IED-type event with four HRF peaking at 3,
5, 7, and 9 s and adding all the regressors to GLM. Thirty-three
patients who had more than two IEDs during recording were
shown to have significant BOLD changes, among which 29 were
considered consistent, and 21 were contributory. The BOLD
responses were validated in 12 of 14 patients having intracerebral
EEG or a focal lesion on MRI.

Ten patients with atypical benign partial epilepsy (ABPE)
underwent simultaneous EEG–fMRI, and several types of IEDs
were extracted from their data in (81). The analysis of BOLD
signal changes associated with each IED type showed distant
significant responses in cortical and subcortical structures for
31 cases out of 33 among which 21 were concordant with the
spike field. Also, to find the responses across the patients, group
analysis was performed and showed a thalamic activation. It is
noteworthy that the revealed activation in ABPE was analogous
to the outlines showed in studies of rolandic epilepsy and
continuous spike-wave during slow sleep (CSWS). Zhang et al.
(82) investigated the results of pre-surgical EEG–fMRI analysis
and iEEG monitoring in a patient with seizure recurrence after
epilepsy surgery. They suggested that EEG–fMRI is a useful tool
for pre-surgical evaluation but requires caution. Also, the intact
seizure foci in the remaining brain may cause the non-seizure-
free outcome.

In previous studies of improvement in the localization of
epileptic foci, Tousseyn et al. (83) used the conventional GLM-
based approach for the localization of epileptic focus in a semi-
automated manner by proposing a spike identification method
as an alternative for the challenging and time-consuming visual
spike detection. In this method, a patient-specific spike template
was generated by averaging the spikes observed on the EEG
outside the scanner, and the cross-correlations were calculated
between the template and the EEG inside the scanner. Then,
the result was binarized by a threshold determined from healthy
controls and convolved with a canonical HRF to be used as the
regressor of GLM. Examining this semi-automatic method on
the EEG–fMRI data of 21 patients with refractory focal epilepsy
yielded a good performance with the optimal area under the ROC
curve of 0.77.

Sandhya et al. (84) studied three patients with drug-
resistant reflex epilepsy, including eating, startle myoclonus,
and hot water epilepsy using conventional analysis. The
results showed frontoparietal network activation pattern in
the patient with startle myoclonus epilepsy concordant with
SPECT, fronto-temporo-parietal involvement in the patient with
eating epilepsy concordant with SPECT, and fronto-parietal-
occipital involvement in the patient with hot water epilepsy. In
research conducted by Tousseyn et al. (85), 28 patients with
refractory focal epilepsy underwent EEG–fMRI and subtraction
ictal SPECT co-registered to MRI (SISCOM). Comparing the
perfusion changes during seizures obtained from SISCOM and
spike-related BOLD signal changes obtained from EEG–fMRI
revealed a concordance between the BOLD responses and
EEG spikes in 27 cases, a significant spatial overlap between
hyperperfusion on SISCOM and hemodynamic changes on
EEG–fMRI in 20 cases, and significant overlay between ictal
hypoperfusion and interictal deactivation in 22 cases.

Dipole-Based Analysis
The spike source reconstruction of EEG is generally consistent
with the BOLD localization (86). It can therefore be used for the
localization of epileptic focus. Some of the source localization
methods are fixed dipoles, moving dipoles, LCMV (linearly
constrained minimum variance), spatial filtering, MUSIC
(multiple-signal classification) dipole scans, and LORETA (low-
resolution tomography) (87).

Lemieux et al. (86) recorded a 12-channel EEG inside a 1.5T
MRI scanner in six epilepsy patients with partial seizures. A T1-
weight volume scan and a 64-channel scalp EEG outside the
scanner were obtained from each patient. Having extracted spikes
from the EEG signals, they performed the source reconstruction
using three generator models consisting of multiple moving
dipoles, MUSIC dipole scan, and current density reconstruction
(Curry 3.0 software) to localize spike generators and compared
its results with the spike-triggered fMRI activation maps (SPM96
software). They concluded that the spike generator was located
inside or in the same fMRI activation lobe. Therefore, source
reconstruction was generally consistent in EEG generator models
and fMRI individual clusters.

Bagshaw et al. (88) showed that EEG–fMRI results should not
constrain MEG and EEG inverse solutions for equivalent current
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dipole approaches in epilepsy and that the use of distributed
source modeling would be a more appropriate way of combining
EEG–fMRI results with source localization techniques. They
analyzed the EEG–fMRI data from 17 patients with focal epilepsy
and compared the results of spatiotemporal dipole modeling with
the peak and closest EEG–fMRI activations and deactivations.
They reported that, generally, the distance from the dipoles to
the voxel with the highest positive t-value and nearest activated
voxel was 58.5 and 32.5mm, respectively, and also that for
deactivations was 60.8 and 34.0mm, respectively. It is obvious
that these values are significantly higher than what is generally
observed with ERPs, possibly due to a comparatively broad field
that could lead to deep artificial dipoles and also the prevalence
of EEG–fMRI responses away from the focus of the epileptic
activity hypothesis.

Recently, a new method has been proposed for measuring
the physical distance between the BOLD clusters and selected
component dipoles to improve the identification of epilepsy-
related components in the EEG–fMRI analysis (22).

In a study of Secca et al. (89), two patients with idiopathic
occipital lobe epilepsy (OLE) were studied in terms of the
source analysis using instantaneous regional dipoles at the
peak of averaged detected spikes with a three-layer boundary
element model (BEM) of volume conduction. Relating the
BOLD effect with interictal spikes using a standard Gamma
HRF with derivatives, the authors were able to detect BOLD
clusters and compared them with the malformative lesion
and diagnosed seizure symptomatology, which was moving the
right hand, which yielded a very good concordance for each
patient between the BOLD clusters, malformative lesion, and the
seizure symptomatology.

In another study (90), three patients with idiopathic childhood
occipital lobe epilepsy (OLE) underwent EEG–fMRI. EEG source
analysis was conducted using prompt moving dipoles at the peak
of averaged spikes, which were detected visually, with a standard
three-layer boundary element model (BEM). Next, the BOLD
activation map was acquired coupled with the incidence of EEG
spikes. The results showed no changes in the BOLD activation in
the cortex adjoining to the source analysis dipoles. Deactivation
analysis showed several clusters with more consistency to the
localization of EEG source analysis over the right parietal area.
Therefore, the spatial overlap between EEG source analysis
results and the BOLD activation map was not quite acceptable.
However, the fMRI results were more consistent with the
clinical advents.

In our works, we used a dipole-based method for the
evaluation of our localization method (22). This study revealed
that BOLD responses were related to epileptic spikes in
various brain regions of patients with refractory focal epilepsy
(Figure 5). So, dipole-based analysis can help in the localization
of epileptic focus in patients with focal epilepsy and is
comprised as part of the pre-surgical evaluation for patients with
pharmacoresistant epilepsy.

Component-Involved Analysis
Besides the SPM that is a hypothesis-driven method, ICA
is a data-driven method (91) that can be used to find

independent components of epileptic sources and add them to
the simultaneous EEG–fMRI analysis. The component-involved
approaches can also corroborate a negative decision concerning
surgical candidacy in some cases (24).

In the study of Penney et al. (92), the EEG–fMRI data of a
patient with refractory right TLE were studied. Applying spatial
ICA (sICA) to the BOLD fMRI measurements, a hemodynamic
response model signal derived from the task-related spatial ICs
and used as a regressor in SPM to generate the significant BOLD
activity maps. The results of this approach were compared to
the same results using a conventional regressor generated from
a canonical hemodynamic model and revealed a concordance
between the activated regions. So, this sICA-based model may
improve the accuracy of localizing epileptic focus.

Also, in the study of Rodionov et al. (93), the findings of sICA
compared to the EEG-based GLM analysis in eight patients with
focal epilepsy. The spatiotemporal concordance was assessed
between the BOLD-related ICs and GLM-derived results to find
one IC related to IED-based GLM results. So, the remaining
candidate BOLD-related ICs may include the IEDs which were
not apparent on the EEG. So, the sICA-based approach can be
used to recognize the SOZ and may be helpful when the epileptic
activities are not evident on the EEG signal.

Sercheli et al. in (94) used the EEG dipole modeling analysis
to ICA components for the localization of epileptic focus in
a patient with right mesial TLE before and after a successful
resecting of the epileptic region. With this aim, the same
dipole source localization of ICs was performed within a three-
shell boundary element model of MNI standard brain using
DIPFIT2 plug-in of the EEGLAB toolbox. The conventional
approach was also performed to evaluate the results of ICA dipole
modeling analysis, which used the fMRI statistical analysis with
a regressor of IEDs convolved to a gamma HRF. The results of
the conventional analysis showed a right hippocampus induction
of the large interictal activity in the left hemisphere. However,
the results of dipole modeling analysis showed a widespread
distribution of activity, and almost only a quarter of the dipoles
were near the right hippocampus region. Using just the EEG
analysis to precisely identify the epileptic sources is too weak even
by a sophisticated method like ICA.

Marques et al. (4) suggested a technique based on the ICA
and applied it to the EEG–fMRI data of nine patients with
epilepsy. In this method, after using ICA on the EEG data, the
candidate ICs were one or two components that were most
powerfully related to IED activity considering only the signal,
which is over three standard deviations from the mean of the
respective channel. The candidate components were convolved
with the canonical HRF and added as the regressor to GLM of
the BOLD signals. The results of thismethodwere compared with
the conventional method and showed concordance in six patients
with more significance and extent in most of them, compared to
the conventional method results. The rest of the three patients
showed no significant activation using the conventional method
to be comparable.

In another study (95), various IED types were classified using
ICA and temporal correlation of ICs with the raw EEG channel.
Then, the time pulse of each IED type was convolved with a
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FIGURE 5 | Dipole-related BOLD response showed a focal activation in the left frontal lobe. (A) Raw EEG data acquired inside the MR scanner. (B) Cleaned EEG after

removing the gradient artifact. (C) Identified component time series. (D) The component identified on scalp EEG located in the left lateral frontal lobe. The active area

is marked by yellow-red color. (E) Dipole localization of the identified generator in deep brain structures. (F) Localization of the generator applying simultaneous

analysis of EEG–fMRI (22).

canonical HRF and added separately to GLM for finding the
focus of each identified IED type. This method was used in
10 patients with epilepsy including two cases with unknown
sources of activity using the conventional method. The results of
the proposed method on two patients with unknown source of
activity showed some foci consistent with electroclinical data, and
those on the rest of the eight patients showed significant activity
from at least one type of IED consistent with the conventional
method that proves the efficacy of this method for the localization
of epileptic focus.

In a study of LeVan (96), 15 patients with focal epilepsy
underwent simultaneous EEG–fMRI, and ICA was applied to
each of their fMRI data. Then, matching a canonical HRF to
the ICs time series in the IEDs’ time, the components associated
with the seizures were found, and the matched HRFs were used
to regulate the sign and delay of the actual HRF peaks. HRFs
with an obvious peak were used to create the activation maps of
significant BOLD signal changes and compared with the results
of a common GLM method. Evaluating the concordance of
results with the presumed epileptic foci determined by clinical
history, EEG, and MRI abnormalities revealed that the ICA
maps were correlated with the GLM maps for all the patients
with an activation network that always included the presumed
epileptic foci, but more widespread, asmuch as 20.3% of the brain
volume averagely.

Besides, in the study of Leite et al. (97), five metrics including
total power, un-normalized root mean square frequency, un-
normalized mean frequency, root mean square frequency, and
mean frequency were calculated and added to GLM using

the performed ICA on the EEG data. For calculating these
metrics, the power spectrum was acquired from time-frequency
analysis using Morlet wavelets. The metrics were calculated for
only the component spectrums presenting spectral alterations
during the events identified by the neurophysiologist. In a
practical case, applying this method to the EEG–fMRI data of
one patient with epilepsy produced wider and more significant
activation maps compared to the conventional method using
a standard square waveform regressor. Furthermore, the EEG
metrics with a frequency content were better predictors of the
BOLD signal than global power metrics, supporting previous
theoretical predictions and experimental evidence. This method
was also tested in (98) for four patients with epilepsy and
again revealed more significant activations compared to the
conventional analysis.

In another experiment (99), a 10-year-old male patient with
epilepsy underwent simultaneous EEG–fMRI for investigating
the dynamic responses of epileptic networks. ICA was used in
fMRI data, and IED-related ICs were detected fitting an HRF
to their time courses at the time of the IED event. Then, the
epileptic source of the EEG signals was identified by convolving a
canonical HRFwith the time pulse function of IEDs as a regressor
of a GLM analysis. Comparing IED-related ICs with the EEG
source imaging of IEDs in terms of HRF peak delay and spatial
consistency using minimum norm estimation (MNE), the fMRI
ICs were classified into spatially consistent and inconsistent ones.
So, the spatially compatible ICs with early HRF peaks which
resulted from spatial-temporal EEG–fMRI fusion (STEFF) would
be the possible indicators of the epileptic focus.
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Formaggio et al. in (100) presented a novel automatic
approach for simultaneous EEG–fMRI to identify the epileptic
focus based on ICA and wavelet analysis. This method consists
of four steps: (1) applying ICA and selecting components related
to IEDs based on their power using a wavelet time-frequency
representation because of higher amplitude in IED activity than
background activity and the non-stationarity of the signal; (2)
eliminating unselected components and reconstructing the EEG
signal with only the IED-related components; (3) calculating
the cross-correlation between the reconstructed EEG and the
original signal to compare and find the IED channel with the
highest correlation coefficient, and also building the power signal
using a partial maximum of the estimated time-frequency power
spectrum of IED channel for each epoch of 3.7 s by wavelet
analysis; and (4) convolving the power time series with the
canonical two-gamma HRF as the regressor of GLM. After
validating this method on simulated data and applying it on
real EEG–fMRI data, including five patients with partial epilepsy
and two normal subjects, the results showed an extension in
current knowledge on epileptic focus localization and suggested
that BOLD activation related to slow activity might contribute
to the localization of epileptic foci even in the absence of clear
interictal spikes.

Franchin et al. (101) presented a method to classify the ICs of
fMRI using an elevated algorithm to distinguish the sources of
interest from noisy signals. Applying this method for estimating
the BOLD activations related to epilepsy and comparing its
results with the conventional GLM approach showed that the
activations resulted using this method comprised subareas of the
those resulted from the conventional analysis, even with partial
discordant patterns of the activated areas, and also consists of
additional negative regions implicated in a default mode of brain
activity, and not clearly identified by GLM.

In our previous study (24), we attempted to localize the focus
of epileptic seizures by identifying the neural behavior of the
seizures and detecting the related components as a regressor
and the input of a GLM model. For this aim, 28 sets of IEDs
from nine patients who were excluded for surgery because of
unclear focus in four, presumed multifocality in three, and a
combination condition in two cases were analyzed. The result
of localization showed an improvement in localization of foci
using the component-based approach, which includes five of six
patients with unclear foci, advocating one of the foci in five
patients with assumed multifocality, confirming multifocality in
one of them, opening new prospects for surgery in seven of the
patients. Also, in two of the patients, intracranial EEG supported
the EEG–fMRI results.

In a study of Hunyadi et al. (102), the ICA was used in
the fMRI time series collected from 28 patients with refractory
focal epilepsy. For reducing the number of ICs to an optimal
number by the minimum description length (MDL) criteria,
the temporal dimension of the time series was reduced using
principal component analysis (PCA). Then, the component
activation maps were generated with Z-scoring the component
voxel values and using the threshold of Z > 5. The results showed
that the selected ICs, regardless of the spike presence during EEG
recording, truly correspond to the epileptic activity. Considering

only one of the ICs as the epileptic IC according to the overlap
with the already known SOZ, the component activation maps
were ordered. The average overlap between the epileptic IC and
the SOZ was 10.6%± 7.2.

Rummel et al. (103) analyzed the ordinal patterns and revealed
that the BOLD responses to EEG-ICA predictors involved the
brain region whose resection led to seizure freedom. In the study
of Panda et al. (104), the EEG microstates were considered as
the regressor in the GLM design to reveal the epileptic resting-
state network. The EEG microstates were obtained from the
maxima of the global field power (GFP) due to the stability
in topography around the peaks of the GFP using sLORETA
software. Considering each EEG microstate as an event, an input
function was modeled based on the timing of each microstate
and convolved with three columns customized gammaHRF. This
model was added as the regressor in the GLM design for the
ICA of fMRI data. The results of this method on five patients
with epilepsy showed that using EEG microstate and ICA of
fMRI data may examine the brain areas involved in resting-state
brain discharge.

In another study (105), eight patients with epilepsy and known
epileptogenic zone from the outcome of surgery were studied
for the association between the ICs of fMRI epochs during the
presence and absence of the IEDs. The fMRI data were divided
into two epochs according to the EEG signal with visible IEDs
and without IEDs. Then, spatial ICA was applied to each epoch
separately, and IC maps were compared to the resection area
and the EEG–fMRI correlation pattern by calculating a spatial
correlation coefficient for identifying the epilepsy-related IC. The
results showed a high similarity between the epilepsy-related ICs
of the epochs with IEDs and those without IEDs. So, the epilepsy-
related components are not contingent on the existence of the
IEDs in the EEG signals.

Hunyadi et al. (106) studied 12 patients with refractory
epilepsy and good surgical outcomes. The epilepsy-related
independent components (eICs) were obtained from temporal
ICA applied to EEG and spatial ICA applied to fMRI. After
convolving the time courses of EEG ICs with the canonical HRF
and upsampling the time courses of fMRI ICs to match the
sampling rate of the EEG, Pearson’s correlation coefficient was
calculated for all possible pairs of EEG–fMRI ICs and labeled as
matched for the correlation coefficient > 0.1. The results showed
matching EEG-eIC for a single fMRI-eIC in four patients with
three overlapped to the epileptic zone and matching EEG-eIC for
at least two fMRI-eICs in six further patients.

Carnì et al. (107) compared two data-driven methods based
on sICA and semi-blind ICA with the conventional GLM-based
method using the EEG–fMRI data of 10 patients with epilepsy.
A cross-correlation analysis was then completed between the
epilepsy-related ICs and a GLM regressor. The results showed
a concordance of the BOLD activation areas in response to
synchronized epileptic activity obtained from sICA and semi-
blind ICA with the GLM analysis and presumed electroclinical
hypothesis. Semi-blind ICA showed more power against the
noise and a higher correlation with the GLM regressor.

In our study (22), to measure the physical distance
between BOLD clusters and selected component dipole location
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using patient-specific high-resolution anatomical images, we
recommended a component-based EEG–fMRI method. The
EEG–fMRI data of 17 patients with refractory focal epilepsy
underwent this method for the localization of epileptic focus,
determination of quantitative concordance, and comparison of
the maximum BOLD cluster with the recognized component
dipole. For the concordance level, the distance from the voxel
with maximal z-score of maximum BOLD response to the center
of the extracted component dipole was measured. This improved
the localization accuracy to 97% that marks a significant rise
compared to conventional works. Figure 6 illustrates a graphic
illustration of the recommended technique in (22) to identify the
components. The results of the implementation of the proposed
method are shown in Table 1.

Also, in our recent work (23), we found and obtained the
time series of components associated with epileptic foci from
EEG and added them to the GLM analysis. Twenty patients
with refractory epilepsy and 20 age- and gender-matched healthy
controls were studied, and the identified components were
examined statistically to find the epilepsy-related components.
The threshold of localization accuracy was determined as 86%
using receiver operating characteristic (ROC) curve analysis,
and the accuracy, sensitivity, and specificity were found to be
88, 85, and 95%, respectively. Also, the contribution of EEG–
fMRI and concordance between the location of maximal BOLD
response and the spike field were evaluated. The result confirmed
the concordance in 19 patients and contribution in 17. Besides,
considering the spatial correlation between the spike template
and candidate components as well as the patients’ medical
records makes it possible to predict the behavior of epileptic
generators. Figure 7 shows the results of the method proposed
in (23), comparing three different methods. In this study, the
epileptic focus localization can be viewed through the ICA
algorithm, dipole, and on the MR images.

Dynamic Causal Modeling Analysis
Dynamic causal modeling (DCM) is another useful tool that can
be used for estimating the synaptic drivers of cortical dynamics
during an epileptic seizure. However, it has a costly computation
in the requisite Bayesian inversion procedure (108).

In the study of Hamandi et al. (109), the EEG–fMRI data was
acquired from a 23-year-old patient with refractory TLE. The
EEG spikes were detected and convolved with an HRF and its
temporal derivative to be used as the onsets of GLM. The results
showed activation related to the left anterior temporal interictal
discharges, in the left temporal, parietal, and occipital lobes. For
determining the functional relationship between the IED-related
activation areas, DCM was used and the deployment of neural
activity from the focus of temporal to the region of occipital
activation was suggested. Also, for tractography analysis, the
probabilistic index of connectivity (PICo) algorithm was used to
detect the anatomical connections of TL activation and showed
connections from this origin to the site of occipital activation,
which delineate the pathways of deployment of epileptic activity.

In a study of Murta et al. (110), the EEG–fMRI data from
five patients with focal epilepsy were analyzed for detecting
the focus of epileptic seizures. For this purpose, three different

methods were used, and the outcomes were compared with
the clinical outlook: (1) the classic method based on GLM at
different neurophysiology regressor lags (LasgM) considering
19 regressors by lags ranging from −16 to +20 s in 2-s steps
around the events which were convolved with four types of HRF
including single gamma with its temporal derivative, canonical
HRF with its temporal derivative, gamma bases functions, and
FIR basis functions. In this method, the activation map was
obtained using GLM analysis for each lag, and the lags with the
maximum number of activated voxels for each VOI were selected
to detect the focus of activity propagation; (2) the DCMmethod,
which is a suitable model-based method for studying effective
connectivity and has been used several times in the fMRI data
of epilepsy patients (109, 111); and (3) the Granger causality
(GC) which is a data-driven statistical hypothesis test to analyze
effective connectivity in fMRI data with the primary precondition
of stationary covariance for the data variables (62, 112–114).
Evaluating the results of three methods revealed that DCM
analysis, although suffering from generally poor SNR, provides
meaningful results in a sufficient number of seizure events. Also,
the LagsM results were concordant with the clinical anticipation
as much as to be a useful complementary approach. However, the
CG results showed that this method seems to be not appropriated
to use in the cases like this effective connectivity analysis, at least
with the situation of SNR and time resolution of the data used in
this study.

In epilepsy associated with hypothalamic hamartomas (HH),
although the origin of seizures is known to be in HH,
diffusion pathways are not known specifically. Murta et al. in
(115) employed the DCM approach to estimate these diffusion
pathways from the fMRI data acquired from an HH patient.
Examination evaluating a set of clinically possible network
connectivity models of discharge diffusion, the most likely model
to explain the data showed a diffusion pathway from the HH
to the temporal–occipital lobe followed by the frontal lobe.
Therefore, this method makes it possible to find the diffusion
pathway of seizures, which is helpful in the surgical procedure
of epilepsy treatment (Figure 8).

Vaudano et al. in (116) studied a patient with reading epilepsy
(RE) to identify the network of seizures. The BOLD, significant
changes were obtained in 21 s around each seizure corresponding
to various linear combinations of a set of Fourier basis functions
to find a range of possible HRF shapes. Then, using the results
of this analysis, four ROIs were selected, and four linear models
were constructed using DCM to analyze the effective connectivity
between ROIs. It was eventually revealed that the dominant
premotor cortex (BA6) is the origin of seizures in RE, but also
an area in the left deep PFC is closely linked to the beginning of
the epileptic activity.

For the localization of epileptic focus, IED-related fMRI maps
acquired from common analysis methods often show a network
including multiple regions of the signal change instead of a
highly focal region that drives the generation of seizures within
the epileptic network. Vaudano et al. in (117) used the DCM
approach to identify the SOZ on the EEG–fMRI data of one
patient with FLE. Although pre-surgical EEG–fMRI showed two
distinct clusters of IED-related BOLD activation in the left frontal
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FIGURE 6 | The model of the proposed approach in (22) to identify the components.

pole and the ipsilateral dorsolateral frontal cortex, the DCM
approach revealed the left dorsolateral frontal cortex as the
driver of changes in the frontopolar area, and An et al. in (118)
generated the BOLD activationmaps and linearly registered them
to postoperative anatomic MRI images for 35 patients with focal
epilepsy who later had a surgical resection. The results showed
10 fully concordant patients with maximum t-value inside the
resection area, nine partially concordant patients with maximum
t-value near to resection area and overlapped results, five partially
discordant patients with a less significant cluster inside the
resection area, and 11 fully discordant patients with no response
related to the resection area.

Functional Connectivity Analysis
Functional connectivity is a perfect technique for epilepsy to
detect the complex brain effects because of dysfunctional and
maladaptive networks produced by seizures (119).

Preti et al. in (120) recommended a new way to reveal the
connectivity changes associated with an epileptic activity using
the information of EEG and dynamic functional connectivity

(dFC). Applying this method to the EEG–fMRI data of
two patients with epilepsy revealed the specific patterns of
connections and disconnections successfully associated with the
epileptic activity.

Omidvarnia et al. (121) studied seven patients with focal
epilepsy who underwent EEG–fMRI to identify the relationship
between the interictal EEG power and local fMRI connectivity.
The wavelet coherence was developed between dynamic regional
phase synchrony (DRePS, calculated from fMRI) and band
amplitude fluctuation (BAF) of a target EEG electrode with
dominant IEDs. This approach revealed the regions with a
concordance between EEG power and local fMRI connectivity
that were near the suspected SOZ in some of the cases.
Also, the found regions had a little overlap with the results
of conventional EEG–fMRI analysis more in medial posterior
cortices, perhaps because of reflecting different aspects of the
epileptic network.

In a study of Dong et al. (122), 18 patients with juvenile
myoclonic epilepsy (JME) were studied to identify discharge-
affecting networks using eigenspace maximal information
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TABLE 1 | Summary of IED studies which indicated a significant component-related BOLD response to consensus IEDs (22).

Pt.-type Ictal EEG Interictal EEG IED Activation Deactivation

1-1 Temporal left Temporal right/left 14 Temporal right/left (++) –

1-2 Frontocentral bilateral Frontal left 9 Frontocentral bilateral (*)

2-1 Unclear Frontal right 11 – Frontal right (++)

3-1 Parietal left/right Parietal left 13 – Parietal right (+)

3-2 Temporal left Parietotemporal left 8 Parietotemporal left (++) Frontotemporal left-right (*)

4-1 Bilateral generalized Bilateral generalized 9 Thalamus (++) –

5-1 Unclear Temporal right–left 15 Temporal right (*) Temporofrontal (+)

5-2 Frontal right/left Frontal right 6 – –

5-3 Frontal left Frontocentral left 7 Frontal left (++) –

6-1 Left hemisphere Frontotemporal left 17 Frontotemporal left (++) –

7-1 Occipitotemporal right Occipitotemporal right 12 – Occipital right (++)

7-2 Bitemporal Bilateral temporal 7 Bilateral temporal (++) Bilateral temporal (++)

7-3 Left parietal/post temporal Left parietal/post temporal 11 Paritotemporal bilateral (*) Frontal right (–)

8-1 Frontopolar right Frontocentral right 14 Frontal right–left (+) Central right (–)

9-1 Unclear Temporal right 12 Temporoparietal right (*) Temporal right (++)

9-2 Parieto-occipital left Parietal left 9 Parietal left (++) Occipital right (–)

In the superscript, the topographical concordance between clinical localization and BOLD response is given: (++): same area, ipsilateral; (+): same area, contralateral; (*): ipsilateral but
a different area; (–): no concordance (22).

canonical correlation analysis (emiCCA) and functional network
connectivity (FNC) analysis (Figure 9). emiCCA is a data-
driven method to detect the linear and non-linear relationships
between two datasets, which can be the EEG discharges and
fMRI networks in JME, and tackle the multivariate problem
in the comparison of two datasets (123). Also, the FNC is
an approach to identify the interactions between resting-state
networks (RSNs) and the effects of epileptic discharges on them
(124–127). The results showed a relationship of the epileptic
discharges with the discharge-affecting networks in the DMN,
self-reference (SRN), basal ganglia (BGN), and frontal networks.
Also, a significant increase was found in FNCs between the
salience network (SN) and resting-state networks.

In the study of Siniatchkin et al. (128), the EEG–fMRI
data recorded from 33 children with focal and multifocal
epilepsy during sleep and resting-state functional connectivity
were acquired using 15 ROIs. For the focal epilepsy patients,
some strong correlations were found between the corresponding
interhemispheric homotopic regions with a short-distance
and weak long-distance functional connectivity similar to the
healthy children. However, for the multifocal epilepsy patients,
significantly stronger correlations were found among several
regions of DMN, thalamus, and brainstem with longer-distance
functional connectivity and not dependent on the presence of
Lennox-Gastaut syndrome in patients.

In another study (129), a total of 261 IED events from
21 patients with unilateral left and right TLE were identified,
and a 20-s period around them was used in the dynamic FC
analysis for left and right hippocampus and amygdala separately.
The results showed that the left IEDs had more effect on the
hippocampus-seeded networks and caused FC changes in the
reward–emotion network (more of the prefrontal-limbic system)
and visual network, but the right IEDs had more effect on

amygdala-seeded networks and caused a coactivation in the
reward-emotion network (more of the reward system).

Su et al. (130) identified the different types of IEDs
according to the spatial distributions from 38 patients with focal
epilepsy and were used separately in the analysis of IED-related
BOLD responses. The concordance between the maximal BOLD
responses and the SOZ was found using iEEG, and then the
functionally connected zone was determined for each one using
the maximal BOLD as a seed (Figure 10). Lastly, IED rates in
iEEG channels inside and outside the functional connectivity
zone (FCZ) were examined. The results of 36 studies from 25
patients revealed that IED rates inside the FCZ were considerably
greater than outside in concordant cases.

In a study of Iannotti et al. (131), 10 patients with
pharmacoresistant focal epilepsy were studied, and the regions
involved in epileptic network generation were identified by GLM
analysis using the time course of fMRI-defined focus acquired
from the IED-related BOLD maps as the main regressor. Then,
using a sliding-window approach, the dFC time courses were
assessed between the involved regions and correlated with the
sliding-window variance of the IED signal (VarIED) to identify
connections whose dynamics related to the epileptic activity. This
method’s results revealed the epileptic network in nine patients
with dynamic subnetwork connections proximate to the epileptic
focus (Figure 11).

Electrical Source Imaging
Electrical source imaging (ESI) is a non-invasive, low-cost
method of localizing the sources of the EEG signals recorded with
scalp electrodes (132). So, it also can be used in the EEG–fMRI
analysis of localizing the epileptic sources.

In the study of Vulliemoz et al. (133), 13 IED types detected
from nine patients with focal epilepsy were used as the separate
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FIGURE 7 | A sample of component-related BOLD response illustrates a neocortical activation in the first occipito-temporal cortex concordant with the spike field.

Also, the marked events are in P8, PO8, and TP8 with referential montage. Top: The identified epilepsy-related component located in the right occipito-temporal lobe.

Middle: The result of dipole-based localization of the identified component. Bottom: The localization of the epileptic generator acquired from simultaneous EEG–fMRI

analysis (23).

regressors in the GLM to obtain the map of IED-related BOLD
signal changes. Also, in 12 cases, the electrical source imaging
(ESI) could be performed successfully on the IEDs using a
realistic head model (SMAC) and a distributed linear inverse
solution (LAURA). The results showed that in 10/12 studies,
ESI at IED onset (ESIo) was anatomically close to one BOLD
cluster in which, for 4/12, it was most relative to the maximally
significant positive BOLD cluster, and for 4/12, it was closest
to the negative BOLD responses. Furthermore, in 6/12, ESI at a
later time frame (ESIp) revealed a diffusion to remote sources co-
localized with other BOLD clusters. So, this study showed that
analyzing ESI and EEG–fMRI simultaneously can discriminate
areas of BOLD response related to the initiation of IED from
propagation areas.

In another similar study of Vulliemoz et al. (134), the maps
of BOLD responses explained by continuous activity of the
estimated IED sources (cESI) were compared to the results of
the conventional IED-related analysis. The comparison showed a
concordance between the results in 13/15 different types of IED.
The cESI model showed other major BOLD alterations in the
concordant regions for 10/15, better detection of the IED-related
BOLD responses in 4/7, and contaminated diffusion pattern due
to the incompletely corrected artifacts of the source signal in four
IED types.

Brodbeck et al. (135) performed the ESI using LAURA on
the IEDs of 10 operated patients with non-lesional MRI, and at
postsurgical follow-up of at least 1 year five had extratemporal
lobe epilepsy. The results showed localization of the SOZ in
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FIGURE 8 | Model space tested with DCM. Each row contains eight models consistent with each propagation hypothesis. Each column corresponds to a different

latent connectivity structure. For each latent connectivity structure, the linear model is presented with solid arrows and the bilinear model is presented with solid

arrows (intrinsic connections) and dashed arrows (connections’ modulation). Seizure activity is fed into the HH network node (115).

eight patients correctly, and it means that ESI reflects the
definite source of the epileptic activity. However, the spike peak
comprises the diffusion areas.

In another study (136), nine children with refractory focal
epilepsy undergoing pre-surgical evaluation were studied. The
resected area was compared with three analyses for the
localization of epileptic foci, which were, respectively, the
conventional method, the analysis of IED-related BOLD changes
using spike-specific voltage maps of average IED acquired from
long-standing monitoring outside the scanner, and the ESI
approach using LAURA. The concordant results of activation
within the resection area using the mentioned analysis were
revealed in three, four, and all the nine patients, respectively.
Therefore, the ESI method is a more valid approach to localize
the epileptic foci in children with refractory focal epilepsy.

Also, Centeno et al. (137), studied 53 children with drug-
resistant epilepsy, and the localization map of the epileptic focus
was performed using BOLD responses, ESI, and the combination
of both maps. Comparing the results with the presumed epileptic
focus and the postsurgical outcome revealed significant maps in
52 patients, which included 47 for EEG–fMRI, 44 for ESI, and 34
for both. Also, the epileptogenic zone was concordant with the
results of 29 patients, which included 11 for EEG–fMRI, 17 for
ESI, and 11 for both (Figure 12).

Long-Term EEG Recording
In conventional methods, an experienced neurophysiologist
reviews the EEG obtained from within the scanner and identified
and marked the timing of epileptiform discharges. Spikes were

modeled as zero-duration events, convolved with a standard
HRF, and used as a regressor for the GLM model and fMRI
analysis (138). Given that it is difficult to detect spikes inside
the scanner due to artifacts, many studies have suggested
automatic detection methods. These methods require long-term
EEG recording outside the scanner (139, 140). In many studies,
to extract the spike pattern inside the scanner, it is necessary
to identify the spike pattern of the same subject outside the
scanner in order to extract the spikes inside the scanner through
computational methods and detection algorithms (22, 24, 83). To
this end, IED-related spikes distinguished on the EEG collected
outside the MRI scanner are averaged to build a patient-specific
spike template, and their similarity is then examined through
methods such as cross-correlation (23, 141, 142). In these studies,
all patients undergo a preoperative assessment at the hospital,
including long-term monitoring (143). To evaluate the extracted
results from source localization algorithms, the results obtained
need to be compared with the medical results obtained from
different modalities. For the localization of SOZ and irritative
zone (IZ) in the pre-surgical evaluation of each patient, all
the available data such as the comprehensive clinical record,
full neurological examination, long-term video-EEG monitoring
(144), structural MRI (145), neuropsychological assessment, and
other non-invasive investigations such as PET and ictal SPECT
(146) are usually reviewed.

An important study by Grouiller et al. (139) benefited from
long-term EEG recording to localize seizure foci in patients
without inside scanner IEDs. To this end, the correlation of
epilepsy-specific EEG voltage maps with the hemodynamic
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FIGURE 9 | The framework of discharge-affecting network analysis using emiCCA. (A) Dataset Y was defined by applying group ICA to fMRI data and concatenating

the ICs across the patients. Also, after identifying the onsets of GSWDs by neurologists and convolving with four SPM canonical HRFs peaking at 3–9 s, one Glover

HRF, and one single Gamma HRF, a design matrix containing all of them formed the dataset X. (B) The emiCCA was applied for identifying significant linear and

non-linear discharge affecting ICs with weights (α) exceeding the 1.5 standard deviations of weight values corresponding to the significant maximal information Eigen

coefficients (MIECs). (C) For examining the possible functional network connectivity between the networks identified by emiCCA, the maximal time-lagged correlation

method was used (122).

changes was investigated in 23 patients with focal epilepsy. An
epilepsy-specific EEG voltage map was built by averaging IEDs
acquired from long-term clinical EEG recording outside the
scanner. Then, for each time frame, the correlation between the
voltage maps of the EEG signals outside and inside the scanner

was calculated. Next, the time course of the correlation coefficient
convolved with a standard HRF was used as a regressor for
fMRI analysis. The results of this technique were like those of
the conventional analysis in all five patients who had significant
BOLD changes associated with IEDs. More importantly, the
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FIGURE 10 | The general pipeline of the research (130). (A) Functional MRI data were preprocessed through realignment, slice timing, outlier detection, coregistration,

segmentation, spatial smoothing, and noise regression. Then the maximal BOLD response and its neighboring 26 voxels were used as seed regions to calculate the

seed-based functional connectivity maps. One-sample t-test was applied to determine regions with significant functional connectivity. (B) Preimplantation 3D-T1

images were segmented to obtain the brain region. The postimplantation 3D-T1 images were first coregistered to the pre-implantation images, and then the location

of electrodes was determined. (C) The iEEG data were resampled to 200Hz, band-pass-filtered between 10 and 60Hz, and notch-filtered at 60Hz to eliminate noise.

Spike detection based on signal envelope distribution modeling was applied afterward. (D) The number of IEDs in each channel was normalized by the median

number of IEDs in each subject. Statistical analysis was performed to determine group difference of IED rates between channels inside and outside the FCZ (130).

method correlated BOLD responses with the scalp maps of
epileptic activity in 14 out of the remaining 18 patients who had
inconclusive simultaneous EEG–fMRI study using conventional
analysis due to the absence of IEDs in the inside scanner
EEG recording.

In another study (147), 30 patients with drug-resistant TLE
and undergoing TL resection were monitored. The IEDs were
visually identified by experts on the intra-MRI EEG, and the
average topography map of IEDs recorded during long-term
video-EEG outside the scanner was computed. Then, both of
them were used as the regressors of a GLM analysis, and
the results of BOLD responses in TL were divided into two
groups of Concordant and Discordant compared to the surgical
resection areas. So, it was revealed that 13 of the patients
with good surgical outcomes were in the concordant group (16
patients), and only three of them were in the Discordant group
(14 patients).

In our previous study (24), we extracted the IED template
from the outside of the scanner for computing the correlation.
To this end, IED-related spikes were detected in the outside of
the scanner and were averaged to build a patient-specific spike
template. After band-pass filtering, the template was ultimately
outlined by a significant spike deflection on the EEG channels,
beginning from the onset at baseline to the negative peak of the
following slow wave. The objective was to identify the neural
behavior of epileptic generators by detecting the components-of-
interest and using the GLM analysis substituting in the classical
linear regressor. The general pipeline of this study is shown in
Figure 13. This method applied 28 IED sets from nine patients
who were excluded for surgery because of the unclear focus
in four, presumed multifocality in three, and a combination
of the two conditions in two of them. The results revealed at
least one BOLD response, which was significant, positive, and
topographically related to the IEDs in eight patients.
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FIGURE 11 | Visualization of dynamic epileptic subnetwork. For each patient, the dynamic epileptic subnetwork is shown in the form of a brain graph in axial, coronal,

and sagittal views. Green spheres of equal size represent fROIs, labeled with a number indicating their statistical relevance in the epileptic network. The strength of

significant connections is color-coded according to a global color bar scaled in the range [−1, 1]. The dynamic epileptic subnetwork is also reported in the form of a

lower triangular correlation matrix with equivalent color-code. The lightning bolt indicates the epileptogenic hemisphere for each patient. L, left; R, right (131).
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FIGURE 12 | Localization extraction procedure from left to right. For the individual map of EEG–fMRI, the result of localization based on global maxima is shown. Also,

for the individual map of ESI, the same result based on maxima in the map from the 50% rising phase of the IED is shown. For the combined test, the spatial

conjunction of both maps was used for the localization. Only for the concordant maps, the result of combined localization was extracted from the region

encompassing the ESI max and the closest significant EEG–fMRI cluster located in the same sub-lobe (137).

FIGURE 13 | Graphic illustration of the suggested method for identification of components (24).
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Localization of Epileptic Focus Using Other
Approaches
EEG Slow-Wave Discharges
In the study of Laufs et al. (148), a patient with refractory
epilepsy was studied using continuous EEG–fMRI, characterizing
the seizures by head turning to the left and clonic jerking
of the left arm that suggests a right mesial frontal onset
zone. The routine interictal EEG showed symmetrical post-
central alpha rhythm and occasional runs of independent, non-
lateralized slow activity in the delta band with right frontocentral
dominance. Although long-term scalp EEG, structural MRI,
and the EEG during simultaneous EEG–fMRI showed no clear
significance, the observed slow activity suggests a role for
seizure localization with EEG–fMRI even in the absence of clear
interictal discharges.

Manganotti et al. in (149) compared the BOLD signal changes
on fMRI in two states of rest and activation in terms of EEG
focal interictal slow-wave discharges. In all the eight volunteered
patients with partial epileptic seizures, the EEG activation of focal
slow-wave discharges caused a significant BOLD activation in
the related brain region. This significant concordance showed
that focal BOLD activation provides useful information for the
pre-surgical process even in partial epilepsy patients whose
standard EEGs demonstrate focal interictal slow-wave discharges
without spikes.

Additional EEG Measures
In the recent EEG–fMRI studies for identifying epileptic focus,
some patients have shown poor sensitivity and inconsistency
between EEG epileptic foci and BOLD activation patterns.
That said, using additional measures may be helpful for
better localization of epileptic focus. Moehring et al. (150)
studied 11 children with focal epilepsy. Then, the sleep-
specific activities such as sleep spindles, k-complexes, and
vertex sharp waves were extracted, characterized as a twig
function, convolved with a canonical HRF peaking at 6 s,
and considered in the GLM as the additional separate
regressors. The results showed that considering these regressors
increased the significance of activated voxels inside the
anticipated IED source area and decreased the number of
significantly activated voxels outside of it. So, using the
sleep-specific activities in the statistical model is useful to
achieving better sensitivity and results of identifying seizure foci
in epilepsy.

Also, in the study of R. Abreu et al. (151), the phase
synchronization index (PSI) and global field synchronization
(GFS) within the frequency bands of 1–45 and 3–10Hz along
with the root mean square frequency (RMSF), total power
(TP), and conventional unitary regressors were computed and
used to reveal the associated epileptic networks on nine EEG–
fMRI datasets including IEDs. After cross-validating the results
through ESI, the best performance was revealed using the average
PSI within 3–10Hz across several measures in all datasets
(Figure 14). Also, testing the PSI in three patients with no IEDs
during EEG recording showed partially reasonable networks in
all patients.

Mutual Information Maps
The most outstanding feature of using mutual information (MI)
for the EEG–fMRI analysis is the balance of involving both
imaging modalities, not requiring any prior model of HRF or
relationship between EEG spikes and BOLD responses (152).

In the study of Caballero Gaudes et al. (153), five patients with
epilepsy underwent EEG–fMRI and electroclinical localization
of epileptic focus. For each IED onset, a period with TR
duration was defined, and the result was downsampled to the
temporal resolution of BOLD signals. Then, the voxel-wise MI
was computed between the EEG–fMRI score and the fMRI
data, and MI maps were thresholded using a non-parametric
wavelet resampling approach. Comparison of the results with the
electroclinical localization and conventional GLM-based analysis
revealed a concordance of focal BOLD responses in four patients.

Caballero-Gaudes et al. (154) investigated the MI between
the IEDs on EEG and BOLD signal on fMRI to generate the
MI maps and validate its performance for the localization of
epileptic focus (Figure 15). The EEG–fMRI data of 14 patients
with pharmacoresistant focal epilepsy were used to generate
the MI maps based on the four-dimensional wavelet packet
resampling method. Comparing the results with the statistical
maps obtained from two conventional GLMmethods showed the
same concordance of ∼57% with the epileptogenic area defined
electro-clinically or surgically.

Voxel-Based Morphometry
In the study of Salek-Haddadi et al. (155), nine patients
with reading epilepsy underwent simultaneous EEG–fMRI
with an extra recording of voice, electromyography (EMG), and
electrocardiography (ECG), and six of them experienced reading-
induced seizures during recording. Also, 30 neurologically
normal control subjects with a similar age range and gender
distribution were scanned for comparison. Voxel-based
morphometry (VBM) was used for the structural brain analysis.
However, as the result of VBM analysis, no significant differences
in gray matter density were detected comparing the epilepsy
patients with the control group.

Non-linear Hemodynamic Responses
Pouliot et al. (34) studied the EEG–fMRI data recorded from
three patients with refractory focal epilepsy for quantifying
non-linear hemodynamic responses using the second-order
expansion of the Volterra kernel. In the Volterra expansion,
which is a functional Taylor expansion, the time-dependent
inputs were epileptic spikes, and the outputs were BOLD,
oxyhemoglobin (HbO), and deoxyhemoglobin (HbR) time
series at a certain fMRI voxel. The results showed significant
non-linearities in all the patients with a good concordance
to the epileptic focus and negative BOLD response regions.
Furthermore, this method identified the epileptic focus in one
patient who had shown nothing while common analyses.

Two-Dimensional Temporal Clustering Analysis
The two-dimensional temporal clustering analysis (2dTCA) is a
data-driven approach for the localization of epileptic networks
using fMRI data. Maziero et al. in (156) used the EEG–fMRI data
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FIGURE 14 | The results of epileptic network mapping for a patient. (Top–Left) The epileptic networks obtained using the EEG regressors UR, TP, RMSF, GSFNB, and

PSINB, together with the number of voxels (Nvox); the color codes red-yellow and blue-green depict positive and negative BOLD responses, respectively. (Top–Right)

The BOLD signal measured at the maximum Z-score voxel (black trace), the average BOLD signal within the activation cluster (blue trace), and EEG regressor (thicker

red trace), together with the maximum Z-score (Zmax) and the variance explained by the motion parameters (VEMP). (Bottom–Left) ESI solution maps at IED onset

and propagation, obtained at half the maximum of the first rising phase of GFP and its associated peak, respectively, for validation of the GLM-derived epileptic

networks. Consistent results with the ESI solutions were obtained for all patients with clear IEDs only when using the PSINB metric. (Bottom–Right) Correlation matrix

between all metrics of interest (151).

of 14 patients with epilepsy as inputs to the 2dTCA for generating
the histograms and adding to GLM as predictors. The results
showed success in eight patients, not confined to the presence of
IEDs, while the conventional analysis identified coherent maps in
only six patients who had at least one IED during recording.

Maziero et al. (157) also used the 2dTCA to map the seizure
onset zone in 18 patients with focal epilepsy (12 presenting
IEDs). The results of this method, along with the conventional
method, were compared to the region of surgical resection.

The concordant results showed that 2dTCA was successful in
localizing the EZ in 13 patients (3 of the cases with no IEDs),
but the conventional method was successful in only five of the
patients who presented IEDs.

Lateralization Index
Mangalore et al. in (158) used the EEG–fMRI data of 10 patients
with refractory epilepsy who showed well-formed IEDs in a
proposing method to lateralize the seizure focus in an ROI
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FIGURE 15 | Schematic diagram of the information-theoretic approach. The EEG recorded in the MR scanner is corrected for gradient and pulse artifacts. The time of

occurrence of IED peaks is marked, and the EEG score indicating the existence of epileptic activity is created and finally downsampled to the temporal resolution of

fMRI (TR) to generate the EEG–fMRI score (top gray-shaded square). The fMRI data is first preprocessed (rigid-body registration for motion correction, spatially

smoothed, high-pass filtered, and z-normalized). The MI between the fMRI voxel time series and the EEG–fMRI score is computed based on the entropy and

conditional entropy (bottom-right red-shaded square) at multiple latencies by shifting the EEG–fMRI score, resulting in an MI time course. The shape of the HRF is

deconvolved based on the IED timing. Significant MI statistics are those exceeding a thresholded thMI, which is chosen according to the non-parametric statistical

procedure where 19 surrogate datasets created with a 4D wavelet resampling approach are analyzed in the same way as the original dataset and the PDF of the MI

statistics under the null is estimated (bottom gray-shaded square). To summarize the results, three maps are generated: a maximum MI map, a latency map showing

the latency at which the maximum MI occurs, and a map plotting the amplitude of the HRF at the latency of the maximum MI (154).

with the aid of the peak BOLD signals. For each patient, the
lateralization index was computed from the significant clusters
of different ROIs using the following formula: the number of
activated voxels multiplied by the Z-scored intensity of activation
in the given ROI. Then, the seizure focus was determined by
thresholding the lateralization index. Compared with the output
of other modalities, the results of this method were successful in
temporal and extratemporal lobe epilepsy, reflex epilepsy, and
lesional epilepsy. The only disadvantage of EEG–fMRI in this
work was if irrelevant BOLD changes were correlated with the
specified IED or not.

Adapted Directed Transfer Function
In the study of Qin et al. (159), 18 patients with juvenile
myoclonic epilepsy (JME) underwent simultaneous EEG–fMRI.

Between EEG electrodes, the adapted directed transfer function
(ADTF) values were computed to describe the time-varying
network, and its information within sliding windows were
used as a temporal regressor in GLM analysis (Figure 16).
The outcomes demonstrated that BOLD activations allied
with high network variation were mostly placed in the
thalamus, cerebellum, precuneus, inferior TL, and sensorimotor-
related areas, including the middle cingulate cortex (MCC),
supplemental motor area (SMA), and paracentral lobule. Also,
the deactivations related to medium network alternative were
originated in the frontal, parietal, and occipital areas.

Four-Stage Localization Method
Wan et al. (160) proposed a four-stagemethod for the localization
of SOZ that includes identifying events of interest using
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FIGURE 16 | An overview of the suggested EEG–fMRI analysis. (A) After preprocessing the EEG signal, the time-varying scalp network was constructed using ADTF.

(B) The variation of the ADTF information flow between electrodes in each 2-s time window was extracted for the generation of network variation time series. (C) The

significant values of network variation time series exceeding one standard deviation and the mean were selected as the regressors and added to the GLM analysis,

respectively. (D) The results were acquired from the GLM analysis (159).

Hilbert transform, acquiring channels of interest (CoIs) using
the Shannon-entropy-based complex Morlet wavelet transform
(SE-CMWT)-based power spectral density, detecting high-
frequency oscillations (HFOs) on CoIs with the combination
of adaptive-genetic-algorithm-based matching pursuit (AGA-
MP) and Morlet wavelets, and localizing SOZs based on the
half-maximum method using characteristics of HFOs. This
approach showed the highest sensitivity and specificity compared
to the four existing methods of SE-CMWT, AGA-MP, RMS,
and CMWT.

Ancillary Issues
The Relation Between rCBF and Epileptogenic Areas
Studies have shown that seizures induced by musical stimulation,
especially in temporal epilepsy, cause a rise of regional cerebral
blood flow (rCBF) in putative epileptogenic foci and the other
brain regions. However, this is a virtual temporal relation
between epileptic discharges and rCBF changes due to the offline
EEG recordings (161). In the study of Marrosu et al. (161),
simultaneous EEG–fMRI recording of musicogenic elicited
seizures was studied in a patient with partial epilepsy. The
statistical maps obtained from the GLM technique showed that
EEG features extracted from epileptogenic areas are largely
coupled with rCBF increase. Also, the rCBF changes in other
areas may suggest further aspects of musicogenic seizures.
For instance, this physiological activation induced by music
in several brain areas may initiate musicogenic seizures in
predisposed subjects.

Validation of EEG–fMRI Results Using a Gold

Standard
For the validation of EEG–fMRI outcomes with a gold standard
to figure out the actual role of this multimodal approach in pre-
surgical evaluation, Houdt et al. (162) compared the correlation
patterns of EEG–fMRI data acquired from 16 surgical candidates
with the involved brain areas of ECoG IEDs, the SOZ, resected
area, and degree of seizure freedom (Figure 17). The results of
the comparison revealed a concordance between at least one of
the EEG–fMRI areas and an interictally active ECoG area for all
patients. Also, the EEG–fMRI areas covered the whole SOZ in
83% and resected area in 93% of the dataset.

The Relations Between IEDs and SOZ
Regarding the relations between IEDs and SOZ, Yamazoe et al.
(163) hypothesized that the number of IEDs and their spatial
extent could contribute to revealing the SOZ. To test this
hypothesis, 157 types of IED grouped by spatial distribution
were extracted clinically from the EEG–fMRI data of 64 patients
with refractory localization-related epilepsy. Then, each IED was
convolved with four HRFs peaking at 3, 5, 7, and 9 s to construct
four regressors, and a combined t-map was created with the most
significant t-value at each voxel. Two levels of significance were
defined to observe reliable activation in the combined t-maps.
The first level was defined by any set of five contiguous voxels
with the t-value ≥ 3.1, and the second level was the t-values
being higher than the whole-brain topological false discovery rate
(FDR) of 0.05 for multiple-cluster comparisons. For each type of
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FIGURE 17 | Flowchart of ECoG analysis consisting of two steps: estimation of interictally active ECoG areas (steps 1–6) and the estimation of an onset area (steps

7–9) (162).

IED, the primary cluster was referred to as the cluster with the
highest absolute t-value at a peak located in the cerebral cortex
compared to the thresholds defined in significance levels. Finally,
the presumed seizure onset zone (pSOZ) of the patients that were
determined using SEEG findings or the other comprehensive
evaluations (164) was compared to the primary cluster in EEG–
fMRI to measure their concordance at the sublobar level. The
result of this study confirmed the initial hypothesis and revealed
the significance in the number of IEDs in the types with t-value
above FDR that was higher than below FDR and in the extent
of IED types concordant with the SOZ that was larger than IED
types discordant with the SOZ. The complex pathophysiology
of epileptic cerebral structures, types of seizures, and frequency
features have not been studied as the authoritative factor for
precise detection of epileptic foci using EEG–fMRI (22).

CONCLUSIONS

Recording EEG and fMRI simultaneously is a non-invasive
method identifying cerebral hemodynamic changes related to
IEDs on scalp EEG. Several studies revealed the capacity of
EEG–fMRI to distinguish various forms of generalized and
focal epilepsy. In patients with epilepsy, especially those who
are pharmacoresistant and surgical candidates, the significant
clinical matter of how BOLD changes relate to IEDs can
contribute to localizing the epileptic focus. The BOLD signal

usually rises in regions causing focal IEDs, but often in the
context of more extensive, or even distant, responses.

The simultaneous EEG–fMRI recording is an effective non-
invasive method to study the brain regions associated with
the epileptic discharges. The neuronal discharges that occur
through interictal spikes or spike-wave bursts cause an increase
in metabolism and blood flow, redirected in the BOLD signal
measured by fMRI. Although this increase has the highest
intensity in generating discharges, it can be revealed in areas
only affected by the discharges. Also, the epileptic discharges
can lead to a decrease in metabolism that the origin of which
is not completely understood. It has been shown that EEG–
fMRI applied to patients with focal epilepsy results in maxima of
the BOLD signal most often concordant with other localization
methods and helped to localize the epileptic focus in non-lesional
frontal-lobe epilepsy. It has also been revealed that the thalamus
is an active region in generalized epileptic discharges. These
can be used to investigate the location and extent of the brain
regions intricate during epileptic discharges and evaluate the
disease progression.

Simultaneous recording of EEG and fMRI provides a great
potential to find the pathophysiological mechanisms of the
discharges (165). The most capable method of acquiring data is
probably continuous scanning followed by EEG artifact removal.
Some cases have shown inconsistent fMRI results with EEG.
However, we cannot imagine a one-to-one correspondence
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between EEG and fMRI findings. These inconsistencies may
be due to the fMRI data analysis problems. Some of the
responses shown in the fMRI results are “noises” caused by
practical artifacts such as movement, an erroneous HRF model,
or inappropriate statistical methods. Despite the noise, most
responses can be considered valid since they make sense in the
context of our understanding of an epileptic condition.

It is also essential to consider the natural differences between
the two modalities. First, in fMRI, the BOLD response is
measured everywhere, but EEG records only superficial cortical
layer activity. Secondly, two different types of activities are
evaluated: one is electrical, and the other is based on the changes
in deoxyhemoglobin in the veins. EEG and fMRI are considered
complementary since eachmeasures an activity that the other one
does not.

Although the ideal approach of data analysis remains
undefined, the majority of focal and generalized epilepsy patients
had a consistent BOLD effect with the spikes. Instead of using
techniques developed for functional activation in the future,
there should be a focus on adapting fMRI analysis techniques
to the specific requirements of the epileptic activity. Friston
et al. (166) proposed a method that does not depend on linear
assumption. Other approaches such as temporal clustering try
to analyze the BOLD signal independently of the EEG event
(167, 168). The deconvolution approachmakes assumptions with
regard to HRF (169, 170). Finally, the ICA approach decomposes
the data sets into spatially independent components. Using
some of these methods, we may be able to discover epileptic
discharges anywhere in the brain, regardless of seeing spikes on
the scalp EEG.

The importance of the diverse BOLD response is another issue
that should be assessed. In epilepsy studies, the fact that we see
both activation and deactivation is considered perplexing, where
it is expected to see activation (increased BOLD) as a result
of extreme neural activity. Moreover, it is important to assess
particular responses in different types of epileptogenic structural
abnormalities such as mesial temporal sclerosis, brain tumors,
and malformations of cortical development (MCDs), which are
commonly complicated by intractable focal epilepsy (171).

The presence of both positive and negative BOLD responses in
generalized epilepsy patients may be interpreted differently, also
indicating the explanation of deactivation. Bilateral activations
were observed in the thalamus, mesial mid-frontal region,
insulae, and cerebellum. Deactivations were found bilaterally in
the anterior frontal and parietal regions, in a global pattern
resembling the default state of the brain (98). This finding
suggests that the default state of the brain is suspended during an
epileptic discharge. Deactivation occurs as a result of the indirect
effect of the discharges on attention mechanisms. Performing
these studies on experimental animals provides further insight
into human results (172, 173).

When the BOLD responses are found in multiple regions,
particularly in focal epilepsy, this possibility arises that the
regions are related to the propagation of the interictal discharge,
or distant sites particularly sensitive to the effect of epileptic
discharges. However, the temporal resolution of fMRI is not

able to measure the propagation times of a few milliseconds.
So, the EEG source modeling can help to assess the propagation
of epileptic discharges if the model includes EEG sources in
the same regions as BOLD responses. BOLD response patterns
may be different in the primary epileptogenic region and in
the region in which the activity propagated (42). It would be
interesting to assess functional connectivity using the fMRI
data (174).

In the past, most studies used a 1.5-T scanner, although
a few studies used 3 T. Using a 3-T scanner may create the
expectation of better recognition of hemodynamic changes and
deteriorating some difficulties such as higher signal loss as a
result of susceptibility artifact, the pulse artifact, and movements
that cause worse artifacts in the EEG. Fortunately, with suitable
artifact removal methods, studies in a 3-T scanner would bemore
efficient (26).

Finally, an important study of Markoula et al. (175) assessed
the impact of EEG–fMRI on the clinical decision-making
process and showed the actual capability of this approach
to be applied prospectively in localization of seizure focus
during the pre-surgical evaluation. They studied 16 patients
with refractory extra-temporal focal epilepsy, referred for pre-
surgical evaluation in a period of 18 months. Interpretable
EEG–fMRI results which were available in 13 patients made
a modification of the initial surgical plan in 10 (77%),
suggesting a significant influence of EEG–fMRI on epilepsy
surgery planning.

In conclusion, combining EEG and fMRI seems to be a
potential method in the source localization of epileptic foci.
This complicated technique is quite practical and offers a new
view in the study of epileptic disorders. Although applying
it to individual patients (subjects) to localize epileptic foci
is not yet justified, it can present potential areas for further
research, for instance, focused anatomical MRI analysis or
electrode implantation.

All in all, the works reviewed in this paper can bring us
closer to the localization of focal epileptic activity and, afterward,
to real-life applications. Applying simultaneous EEG–fMRI for
combining EEG temporal resolution and fMRI spatial resolution
recommends more excellent diagnoses of precise epileptic source
localization. This allows for providing more patients with the
option of surgery while increasing the likelihood of a successful
and life-improving operation.
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The stark discrepancy in the prognosis of epilepsy is closely related to brain damage

features and underlying mechanisms, which have not yet been unraveled. In this study,

differences in the epileptic brain functional connectivity states were explored through a

network-based connectivity analysis between intractable mesial temporal lobe epilepsy

(MTLE) patients and benign epilepsy with centrotemporal spikes (BECT). Resting state

fMRI imaging data were collected for 14 MTLE patients, 12 BECT patients and 16

healthy controls (HCs). Independent component analysis (ICA) was performed to identify

the cortical functional networks. Subcortical nuclei of interest were extracted from

the Harvard-Oxford probability atlas. Network-based statistics were used to detect

functional connectivity (FC) alterations across intranetworks and internetworks, including

the connectivity between cortical networks and subcortical nuclei. Compared with HCs,

MTLE patients showed significant lower activity between the connectivity of cortical

networks and subcortical nuclei (especially hippocampus) and lower internetwork FC

involving the lateral temporal lobe; BECT patients showed normal cortical-subcortical

FC with hyperconnectivity between cortical networks. Together, cortical-subcortical

hypoconnectivity in MTLE suggested a low efficiency and collaborative network pattern,

and this might be relevant to the final decompensatory state and the intractable

prognosis. Conversely, cortical-subcortical region with normal connectivity remained well

in global cooperativity, and compensatory internetwork hyperconnectivity caused by

widespread cortical abnormal discharge, which might account for the self-limited clinical

outcome in BECT. Based on the fMRI functional network study, different brain network

patterns might provide a better explanation of mechanisms in different types of epilepsy.

Keywords: resting state networks, mesial temporal lobe epilepsy, benign epilepsy with centrotemporal spikes,

BOLD fMRI, functional network connectivity
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INTRODUCTION

Epilepsy derives from the long-term spontaneous
abnormal discharge of neurons in the brain, resulting in
hypersynchronization of the cortical-cortical and subcortical-
cortical regions, thus leading to brain dysfunction and behavioral
abnormalities. About 25% epilepsy patients with a dissatisfied
clinical control of seizure even with the optimal anti-epileptic
drugs (AEDs) (1). The most common drug-resistant epilepsy in
adults is mesial temporal lobe epilepsy (MTLE) (2), accounting
for 80% of temporal lobe onset seizures (3). Inversely, some
of the epilepsy patients have a good response to AEDs and
even achieve a seizure-free result, such as benign epilepsy with
centrotemporal spikes (BECT). BECT is the most common form
of childhood focal epilepsy and is usually idiopathic without
structural brain abnormalities (4).

The drug-resistance epilepsy might relate to brain
decompensatory processes (5) and self-limited epilepsy might
contribute to compensatory cortical reorganization (6, 7).
Therefore, patients with MTLE and BECT might mark different
prognosis by different brain compensatory patterns. The two
patterns manifest brain networks abnormalities usually caused
by epileptic discharges in widespread brain areas in MTLE and
BECT. Thus, resting state functional connectivity (RSFC) could
be used to detect the network -level epileptic effect.

Routine EEG examination and different imaging methods
drive the conclusion that epilepsy is a network disease that
is not only confined to the epileptogenic zones but also
involved in widespread cortical and subcortical disturbances
(8, 9). Ictal EEG performance suggests that MTLE primarily
involves the temporal lobes, and the abnormal network is
known to have widespread extratemporal connectivity, such as
the lateral temporal, insular, and frontal regions (2, 10, 11).
Imaging observations have suggested the presence of one ormore
common subcortical sources of widespread network dysfunction
in MTLE. Hippocampal sclerosis is very significant and the most
common pathological feature of MTLE. Moreover, the thalamus
directly connected to the hippocampus has been shown to suffer
atrophy (12, 13). In addition, chronic network changes associated
with MTLE have been identified by impaired RSFC within the
hippocampus and enhanced RSFC within the medial temporal
lobe with extensions to the lateral temporal lobes (10, 14).

In the same vein, patients with BECT were found to
have bilateral frontal and parieto-occipital regions that showed
spectral changes in a resting-state EEG study (15). A growing
body of literature examining cognitive and behavioral outcomes
by imaging methods suggests that BECTS children perform
less well-than their peers (16), including worse attention and
visuomotor performance (17, 18) and reversible speech and
cognitive dysfunction (19, 20).

MTLE and BECT both suffer from neural abnormal discharges
while their prognosis is obviously different. Moreover, alterations
in the brain functional networks related to epileptic prognosis
remain to be fully clarified, especially in the state of epileptic
compensation. Thus, the fMRI approach was used to find
the changes in functional networks and probably pathological
mechanisms. We speculated that the network-based approach

would be promising for revealing the complex network patterns
to explain the mechanisms underlying the different prognosis
in epilepsy.

MATERIALS AND METHODS

Participants
Fourteen MTLE patients and twelve BECT patients were
recruited from the Epilepsy Clinic of Neurology and
Neurosurgery Departments in Tianjin Medical University
General Hospital. The diagnoses of MTLE and BECT were
established by history, clinical symptoms, magnetic resonance
imaging (MRI), and video electroencephalogram (VEEG)
by 2 senior epileptologists (Q.Y. and Z.C.). The inclusion
criteria for patients with MTLE and BECT were as follows: (1)
typical clinical manifestations and specific EEG characteristics
according to International League Against Epilepsy (ILAE)
(21); (2) the presence of routine clinical scans, including high-
resolution 3D T1-weighted and FLAIR MRI and high in-plane
resolution 2D coronal T2-weighted MRI according to the
Harmonized Neuroimaging Of Epilepsy Structural Sequences
(HARNESS) (22); (3) no evidence of other structural brain
abnormalities due to hypoplasia of brain parenchyma, brain
trauma, tumor, etc; and (4) MTLE patients should be diagnosed
as the drugs resistance epilepsy (23) and the patients with BECT
should respond well to AEDs. Patients in both groups received
oxcarbazepine/carbamazepine for seizures treatment.

For the lesion lateralization, there were 2 on right MTL and
3 on left MTL, and the rest of our drug-resistant MTLE patients
were failed to detect the epileptogenic focus. And all of the BECT
patients were bilateral abnormal discharges in EEG and we could
not find the stationary focus on one side. Patient demographics
and a clinical summary are shown in Table 1. A healthy control
group (n = 16) was matched by demographic characteristics
from the local community. None of the HCs had a history of
neurological or mental illness. The study was approved by the
ethics committee of Tianjin Medical University General Hospital
and completed according to the standards established in the
Helsinki Declaration. Each subject gave written informed consent
in accordance with the Hospital Research Ethics Committee.

MRI Acquisition
All MRI scanning data were obtained on a 3-Tesla MRI scanner
(Siemens Trio Tim). High-resolution T1-weighted data images
were acquired using a magnetization-prepared rapid gradient
echo (MPRAGE) sequence (repetition time (TR) = 1,900ms,
echo time (TE) = 2.52ms, field of view (FOV) = 256mm
× 256mm, matrix 256 × 256, slice thickness 1mm, 176
volumes). Resting-state functional blood oxygen level-dependent
(12) data images were acquired using an echo planar imaging
sequence (TR = 2,000ms, TE = 30ms, flip angle 90◦, FOV
= 220mm × 220mm, matrix 80 × 80, slice thickness 5mm,
300 volumes). The patients were asked to not move and to
stay with eyes closed and resting. Headphones and cushions
were used to reduce noise interference and prevent excessive
head movement.
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Network-Based Functional MRI (fMRI)

Analysis
Resting-State fMRI Preprocessing
Preprocessing of the data was performed according to the
Graph-theoretical Network Analysis Toolkit (GRETNA)

TABLE 1 | Demographic and clinical characteristic of all participants.

Characteristics Groups p

HCs n = 16 MTLE n = 14 BECT n = 12

Male: Female (n) 6:10 5:9 5:7 0.95

Age (years)

Mean ± SD 27.1 ± 4.8 35.36 ± 17.2 10.42 ± 4.5 <0.001

Epilepsy Duration

(years)

Mean ± SD 17.28 ± 8.16 4.62 ± 4.1 <0.001

Seizure type (n)

SPS: CPS: SGTCS 1:12:1 2:5:5 0.06

Interictal EEG (n)

BCT: +CFT: +CPT — 7:3:2

Sph1: Sph2 7:7 —

HCs, healthy controls; MTLE, mesial temporal lobe epilepsy; BECT, benign epilepsy with

centrotemporal spikes; SPS, simple partial seizure; CPS, complex partial seizure; SGTCS,

secondary generalized tonic-clonic seizure; BCT, bilateral centro-temporal; +CPT, BCT
and centro-parieto-temporal;+CFT, BCT and centro-fronto-temporal; Sph1, left sphenoid
electrode; Sph2, right sphenoid electrode.

(http://www.nitrc.org/projects/gretna/) fMRI preprocessing
pipeline. The first 10 volumes were removed, and then slice-
timing correction and head motion correction were performed.
The data from patients with head motion exceeding 2mm or
head rotations <2◦ were excluded from further calculations,
while head motion in controls was limited 1mm or 1◦,The
motion-corrected functional images were normalized to the
standard Montreal Neurological Institute (MNI) space by
applying an EPI template at a 3 × 3 × 3 mm3 resolution, which
led to our data showing a better match with the EPI template
(24). Subsequently, to avoid mixing white matter and gray
matter signals, the normalized images were spatially smoothed
using a 4-mm full-width half-maximum Gaussian kernel. The
acquired smoothed data were utilized in independent component
analysis (ICA).

The following denoising steps were performed with the
unsmoothed images (25): (1) removing the linear trends of
time courses; (2) bandpass filtration (0.01–0.08Hz) to minimize
the influence of low-frequency drifts and high-frequency
physiological noise; (3) linear regressing out the confounding
signals that were unlikely to reflect neural activity, including
the head motion effect (26) (Friston 24 parameter), white
matter and cerebrospinal fluid signals; and (4) an indispensable
“scrubbing” procedure (27). Concretely, in terms of the criteria of
framewise displacement (FD) above 0.5mm, functional imaging
data presenting sudden head motion were discarded, together
with one volume before and two volumes after the bad volume
(28). No patient had fewer than 200 volumes. BOLD signal

FIGURE 1 | BOLD signal contrasts and seed regions from the 10 RSNs. BOLD signal of HC and MTLE was compared in (A), and BECT-HC contrast in (B) (p < 0.05,

cluster sizes: 50 voxels). Spatial maps of the 10 independent components computed across the entire samples. The color scale represents t values in each spatial

component of RSN (maps thresholded at p < 0.01, FDR corrected). For networks construction, nodes of interest in the RSNs were extracted according to the peak

coordinates of thresholding maps. Different RSNs were depicted as different colors in (C).
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differences of MTLE-HC and BECT-HC pair-wise contrasts were
depicted by REST 18 toolbox (29) to under two simple t-test (p <

0.05) with cluster sizes as 50 voxels, shown in Figure 1.

Cortical Network Identification
Regions that exhibit correlated BOLDfluctuations, i.e., functional
connectivity (FC), are regarded as the same functional network
(30). According to this theory, we used the group ICA (GICA)
method to extract the spatial components of 10 defined resting
state networks (RSNs). The Group ICA Of fMRI Toolbox was
used for all participants for the group spatial ICA. The data
were decomposed into 61 components that were estimated by
GIFT, including data reduction by PCA, ICA separation, and
back-reconstruction. Two-step PCA was used for data reduction.
The maximum likelihood algorithm was used for group-level
spatial ICA. A regular algorithm was used for stability analysis,
and GICA was used for back-reconstruction. Each subject
obtained a spatial component and the corresponding time-
series component, and correlation coefficients were converted
to a normal distribution by Fishers r-to-z transformation. For
each component selection, we obeyed the selection criterion.
In particular, ICA selection was independently completed by 2
senior neuroimaging physicians (J.Y. and A.A.) and referred to
corresponding templates (31). The spatial maps of each RSNwere
gathered across all the subjects by the intranetwork connectivity
maximum for each cluster of voxels (p < 0.01, FDR corrected).
The 10 statistic maps were T-value connectivity maps. We
selected the total 38 ROIs in 10 RSNs based on where was
the highest T-value in the bilateral sides. The methodology was
according to King BR et al. (32). For each local maximum, 38
regions of interest (ROIs) with a 6-mm radius sphere centered
on the peak voxel were built with the xjView toolbox (http://
www.alivelearn.net/xjview, version 9.6) and REST in MATLAB
(Supplementary Figure 1).

Subcortical Nucleus Identification
Wedefined three core subcortical ROIs, the bilateral hippocampi,
thalamus and putamen, based on theHarvard-Oxford subcortical
atlas inMNI space (33, 34). The subcortial ROIs selection criteria:
hippocampus is crucial for MTLE pathological mechanism (35)
and putamen and thalamus are all key nuclei for patients
with epilepsy. For local motor seizures, epileptogenic networks
include thalamocortical circus (36). And putamen is a core
nucleus for basal ganglia neuromodulation for motor seizures
treatment (37). Therefore, we chose the 3 ROIs in subcortical.
Because we did not focus on effects from particular sides of the
ROIs, we regarded bilateral ROIs as one seed. In the current
study, the hippocampus, putamen and thalamus are abbreviated
Hip, Put and Tha, respectively. The selected subcortical ROIs
are shown in Supplementary Figure 2. Finally, we obtained 41
spatial mappings of RSNs and 41 average time series of ROIs.
The brain networks were visualized with BrainNet Viewer (http://
www.nitrc.org/projects/bnv, version 1.6).

Intranetwork and Internetwork Analyses
The corresponding time series of the ROI seeds were extracted
with REST software, and RSFC in the BECT group, TLE group

and HC group was calculated. We obtained three 41 × 41
RSFC matrices and performed Fishers z transformation. For
completeness, plots depicting seed-level connectivity (i.e., 41
× 41 matrices) are provided in Supplementary Figure 3. The
significance level was set at p < 0.05 and corrected for multiple
comparisons using network-based statistic (NBS) method (38)
(NBS, edge significance: p < 0.001, component significance:
p < 0.05, iterations: 1,000). RSN matrices were acquired by
averaging the NBS-corrected FC value (p< 0.05) in each group to
generate 13 × 13 RSN matrices (32). Cortical internetworks and
cortical-subcortical interactions are shown in the off-diagonal
line of the 13 × 13 RSN matrices. Intranetwork analysis results
were revealed in the diagonal line and indicated the interaction
between the inner seeds of each cortical network.

Statistical Analysis
Demographic information, including age and sex, was compared
among the BECT, MTLE and HC groups. Seizure type and
duration of epilepsy were compared between BECT and MTLE
patients. One-way analysis of variance (ANOVA) was used to test
discrepancies in age among the three groups. Chi-square tests
were used to compare categorical data, such as sex among the
three groups and seizure type distribution between the BECT and
TLE groups.

Two-sample t-test was used to test the differences of duration
between two patient groups. All the above analyses were
performed in SPSS 25.0, and p < 0.05 was statistically significant.

Ten spatial components of thirty-eight seeds were chosen
based on a one-sided one-sample t-test (p < 0.01, FDR
corrected). Correlation maps for each seed in each RSN were
computed by correlating regional time series (averaged over all
voxels within the seed region) with every voxel in the brain. The
41 time courses, including 3 pairs of subcortical nuclei, were
extracted to generate RSFC maps of the 41 × 41 matrix in the
three groups. Correlation maps were converted to z maps using
Fisher’s r-to-z transformation (Supplementary Figure 4). Then,
comparisons within each group were performed using one-sided
one-sample t-tests (p < 0.05, NBS corrected) in GRETNA. For
detecting intergroups differences, two sample t-test was used
between MTLE/BECT and HC. And the age differences were
taken into account in pairwise comparisons, and the level of
significance for group differences was set at p < 0.05 (edge p <

0.001, NBS corrected).

RESULTS

Demographic and Clinical Data
No differences were found among the 3 groups in terms of
gender (p = 0.951) and seizure type (p = 0.056) between the
BECT and MTLE groups. For the analysis of duration, BECT
shows significant different with MTLE group (p < 0.001). One-
way ANOVA revealed a significant difference in age among the
three groups (p < 0.001). A post hoc test was performed to
find that the BECT-HC contrast (p < 0.001) and BECT-MTLE
contrast (p < 0.001) were significant. The demographic and
clinical information of the study participants is presented in
Table 1.

Frontiers in Neurology | www.frontiersin.org 4 May 2021 | Volume 12 | Article 66885682

http://www.alivelearn.net/xjview
http://www.alivelearn.net/xjview
http://www.nitrc.org/projects/bnv
http://www.nitrc.org/projects/bnv
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fu et al. Network Connectivity Patterns in Epilepsy

BOLD Signal Contrast and Resting State

Networks
The differences of BOLD signal between BECT-HC and MTLE-
HC were shown in Figures 1A,B (p < 0.05, cluster size: 50
voxels). A total of 61 components were identified by ICA.
After selection by visual inspection and templates, 10 valuable
components were identified. One-sample t-test showed a typical
spatial pattern in each RSN and ROIs in each RSN are shown
Figure 1C and Table 2. Spatial location of 38 ROIs were detailed
in Supplementary Figure 1.

Functional Connectivity Analysis
Internetwork Connectivity
Our findings showed different aberrations in network-based
interactions in the MTLE (Figure 2A) and BECT (Figure 2B)
groups. Compared with the HC group, the MTLE group had
lower connectivity between the subcortical hippocampus and
task-positive RSNs (ECN and DAN) and sensory RSN (SMN).
Notably, the auditory network showed widespread abnormal
connectivity with other functional networks, excluding the SMN
(Figure 2C), which has been associated with impaired interictal
connectivity with the temporal neocortex.

The BECT group showed increased connectivity in the
frontoparietal cortex, including the intrinsic RSNs, task-positive
RSNs and sensory RSNs (p < 0.05, NBS corrected). The SMN
showed an increased negative (farther from zero) connectivity
with the attention networks (DAN and VAN) and VN
(Figure 2D), indicating a relationship to visual attention deficit.
Importantly, no particular differences in connectivity were
revealed between the cortical networks and the subcortical ROIs,
but a trend toward higher interconnectivity was observed (p >

0.05, NBS corrected).

Intranetwork Connectivity
No differences were found between the MTLE and BECT
patients and the HC participants through a two-sample t-
test. Some critical trends in intranetwork connectivity were
revealed in each group. In the MTLE group, intranetwork
connectivity was not different from that in the HC group,
with the exception of the AN in the lateral temporal
lobe. The BECT group showed higher levels of connectivity
within most RSNs, such as the SN, pDMN, ECN and DAN
(Figure 4).

DISCUSSION

A comparative study of epilepsy compensatory and
decompensatory prognosis was conducted in this research.
We recruited the patients with BECT and MTLE, the most
common types of benign and drug-resistant epilepsies. With
the utility of a network-based approach, we demonstrated the
different network pattern changes caused by compensation
and decompensation, and we also uncovered meaningful
networks in a wide range of brain areas with implications for
cognitive function.

TABLE 2 | Resting state functional connectivity networks.

Brain network and label Abbreviation MNI Coordinates t

X Y Z

Salience network SN

Left insula INS.L −30 21 −6 16.10

Right insula INS.R 30 −15 −18 15.66

Anterior cingulum ACG.L −5 33 30 15.26

Post default modal network pDMN

Left inferior parietal IPL.L −51 −42 42 9.48

Right inferior parietal IPL.R 48 −51 39 6.45

Post cingulum PCG.L −6 −45 30 20.79

Right precuneus PCUN.R 9 −57 27 23.50

Anterior default modal network aDMN

Anterior cingulum ACG.L −6 42 −3 12.16

Left medial prefrontal cortex SFGmed.L −5 57 6 16.59

Right medial prefrontal cortex SFGmed.R 3 57 18 18.32

Executive control network ECN

Left dorsal lateral prefrontal cortex MFG.L −48 21 33 16.12

Right dorsal lateral prefrontal cortex MFG.R 48 21 33 19.03

Medial prefrontal cortex SFGmed.R 3 36 39 10.63

Left post parietal cortex IPL.L −27 −57 39 9.42

Right post parietal cortex IPL.R 30 −54 45 6.91

Dorsal attention network DAN

Left intraparietal sulcus SPG.L −24 −72 51 18.88

Right intraparietal sulcus SPG.R 24 −66 51 17.73

Left frontal eye field SFG.L −21 −6 57 9.04

Right frontal eye field SFG.R 27 0 57 9.05

Ventral attention network VAN

Left temporoparietal junction SMG.L −54 −33 27 11.72

Right temporoparietal junction SMG.R 60 −21 24 15.53

Ventral frontal cortex ORBsupmed.L −45 21 −9 8.27

Auditory network AN

Left superior temporal STG.L −60 −33 9 14.81

Right superior temporal STG.R 57 −24 −3 18.14

Medial somatomotor network mSMN

Left support motor area SMA.L −3 −12 63 13.39

Right support motor area SMA.R 6 −6 48 15.56

Left paracentral lobule PCL.L −6 −36 54 16.04

Right paracentral lobule PCL.R 9 −36 54 15.33

Lateral somatomotor network lSMN

Left precentral gyrus PreCG.L −42 −27 51 16.37

Right precentral gyrus PreCG.R 48 −18 45 17.65

Left postcentral gyrus ProCG.L −51 −9 30 15.73

Right postcentral gyrus ProCG.R 60 0 24 17.87

Left Rolandic operculum ROL.L −39 −30 15 21.32

Right Rolandic operculum ROL.R 48 −21 15 13.32

Visual network VN

Left lingual LING.L −15 −90 −9 17.11

Right lingual LING.R 21 −87 −3 16.46

Left calcarine CAL.L −21 −90 −6 15.67

Right calcarine CAL.R 21 −87 6 14.82

MNI coordinates and peak connectivity t value for the 38 seed regions extracted from

the 10 networks of interest and labels and abbreviations based on the AAL template in

MNI space. Ten RSNs were belonged to the following three types of intrinsic functional

connectivity pattern: (1) task-positive RSNs (ECN, DAN and VAN); (2) intrinsic RSNs (DMN,

SAN); (3) sensory RSNs (SMN, AN and VN). The DMN was subdivided into the anterior

DMN (aDMN) and the posterior DMN (pDMN) in our outcomes. And SMN was divided

into the medial SMN (mSMN) and the lateral SMN (lSMN).
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FIGURE 2 | Pairwise comparisons of Internetwork connectivity aberration. Values represented t-statistics between 10 networks and 3 subcortical regions of interest

(ROIs: bilateral hippocampus, putamen and thalamus) in the pairwise comparisons of MTLE- HC (A, C) and BECT- HC (B, D). Tests of statistical significance were

based on two-sample t-test corrected for multiple comparisons with a network-based statistic (NBS) threshold set to 0.05. Thredsholded edges and nodes

corresponded results of internetwork connectivity (A, B). Specially, we used AAL coordinates to symbolically depict the subcortical ROIs. To better elucidate the

general trend, matrix maps were used (C, D). Significant differences are also marked by yellow circuses in the connectivity matrices. The black rectangular box

highlighted the characteristic networks, AN in MTLE-HC and lSMN in BECT-HC (details as shown in Figure 3).

RSN Alterations in Patients With MTLE
The current study found that RSNs in the MTLE patients
compared with the HCs had lower connectivity with subcortical
ROIs, especially the hippocampus, which plays a core role
in MTLE. The abnormal connectivity patterns of these
networks with the hippocampus were related to functional
and structural impairments in the hippocampus. Deactivation
compared to the control condition corresponded to decreased
synaptic activity, such as that caused by reduced neuronal
input from the hippocampus (35). In current study, the
condition of impaired consciousness in most patients with
MTLE (13/14) might have been caused by subcortical networks
with extensive impairments in connectivity with the cortical
functional networks (39). These abnormal connections occurred

with both task-positive networks and sensory networks. Task-
positive networks (e.g., ECN, DAN, and VAN) are dominant
in executive control and external attention. Sensory networks
are primarily involved in primary somatomotor, somatosensory,
visual and auditory processes. Our findings accorded with earlier
observations, which showed that MTLE patients demonstrated
diffuse neocortical hypometabolism and multitudinous brain
connectivity perturbations (40).

The AN showed higher connectivity with other widespread
RSNs, including the DMN, which could be explained by the
reconfiguration in the lateral temporal area in MTLE patients
(41). Blumenfeld and his colleagues used SPECT (39) and
found that ictal TLE patients had increased cerebral blood flow
(CBF) in the temporal lobe, as well as an increase in CBF in
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FIGURE 3 | Strongly characteristic networks in MTLE and BECT. We detailed the black rectangular boxes in Figures 2C,D, AN in MTLE-HC and lSMN in BECT-HC.

In the analysis of pairwise seed connectivity, bilateral superior temporal gyrus (STG) were found hyperconnectivity with almost functional networks in MTLE-HC (A).

Bilateral postcentral gyrus (ProCG.L and ProCG.R) and right Rolandic operculum (ROL.R) showed hypoconnectivity with right intraparietal sulcus (SPG.R within DAN)

and left temporoparietal junction (SMG.L within VAN) (B). Tests of statistical significance were based on two-sample t-tests (p < 0.05, NBS corrected).

bilateral midline subcortical structures. CBF activity coherence
was interpreted as a BOLD signal effect between the lateral
temporal and midline areas, manifested as a higher connectivity
compared with HCs (see Figure 3A). Thus, damage to lateral
temporal lobes, one of the functional network hubs, will affect
the sets of functional brain areas at large (42).

RSN Alterations in Patients With BECT
A resting-state BOLD response was demonstrated to be
consistent with interictal seizure discharges in the rolandic region
in an EEG-fMRI study (43). Initial studies have shown that
the areas of increased connectivity and activity are usually the
sensorimotor cortex and immediate regions surrounding the
zone. Therefore, a network-based approach may expand our
traditional knowledge about the organization of the sensorimotor
cortex, especially the interaction between the motor system and
the rest of the networks.

The network we refer to as “rolandic” has usually been
recognized as a sensorimotor network (SMN) in large-scale
RSNs. Effective connectivity studies have suggested that the
rolandic area is the key region for the spread of interictal
epileptic spikes to distal cortical regions. However, the effect of
the rolandic regions is based on the regional distribution of its
connectivity among the sets of functional brain areas. Consistent
with the research, several studies have found that participants

who reported using functional near-infrared spectroscopy
(fNIRS) and fMRI also detected a decreased oxyhaemoglobin
(HbO) response and an increased deoxyhaemoglobin (HbR)
response in the frontal and parieto-occipital lobes, indicating a
widespread effect across distributed networks (44, 45).

Similar findings of discrepant intranetwork connectivity have
been previously reported (18, 46), although the current results
were not significant compared with the HC group (Figure 4). It
was difficult to explain this result, but it might be related to a
stronger regional integration (47) in BECT patients. Regardless,
there was higher internetwork connectivity among an extensive
range of networks, such as the DMN and SAN with other
sensory networks (p< 0.05, NBS corrected), which corresponded
to the loss of cortical global processing (48). In the network-
based analysis, excitatory local and global networks indicated
that the small-world functional topology was disrupted in BECT
patients (49). Notably, no marked lower or higher FC was found
between cortical RSNs and subcortical ROIs, which indicated that
subcortical core nuclei were not involved in the alterations.

In addition, we uncovered a decreased RSFC between the
SMN and attention networks in the hyperconnectivity setting
(see Figure 2D) (p < 0.05, NBS corrected). The SMN is a motor
network as demonstrated in previous studies but is also partially
integrated into a multimodal network associated with motor
systems and cognitive hubs (50). Impacts on cognition were
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FIGURE 4 | Radar plots showing intranetwork RSFC differences in each group. The values displayed by the dots in the radar plots are the Fisher z-transformed values

of Pearson’s correlation in each group, and a table of the values is provided in Supplementary Table 1. In the white area, node-edge graphs of 10 RSNs were

showed according to Table 2.

shown by Caterina et al., who found that BECT patients had
impairments in attention (51). Attention control deficits have
been related to alterations in the DAN and VAN. A previous
study showed increased FC within the VAN in patients when
compared with controls (46). This finding was also supported by
Jiang et al., who found that children newly diagnosed with BECT
showed alterations in brain activity in the attention networks,
and the unmedicated group showed increased RSFC in the
rolandic network and decreased RSFC in the DAN (52). These
findings were in line with attention dysfunction in BECT patients
(see Figure 3B). Moreover, the decreased connectivity between
the VN and SMN can explain the poor visual spatial memory
observed in BECT children (49, 53), which manifests as a loss
in integration of the motor network and visual network that
forms a multimodal network (54). Moreover, the VN was shown

to have a strong correlation with the DMN, indicating that
BECT was characterized by possible functional compensatory
mechanisms (55) and related to attention-deficit/hyperactivity
disorder (ADHD).

Considering the age differences between BECT group (10.42
± 4.5) and HC group (27.1 ± 4.8), characteristics of RSNs in
heathy children and adults were also needed to be discussed
as it might influence the results’ interpretation to some degree.
Resting state studies have shown that children have the same
RSNs as adults’ and children round 8 years old have strong
functional organization, but exhibit immature characteristics
(56, 57). Compared with adults, this immature performance was
characterized by the functional segregation and the insufficient
integration (58, 59). And structure network studies suggested
that the approach of network interaction changed from local
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anatomically regions in children to long-distance cortical
interaction in young adults (59, 60). A study of the size of
functional networks was found that the number of voxels
were more than adults in the majority RSNs and also more
widespread (57). In conclusion, it is demonstrated that this
kind of segregative pattern in children is less efficient or
specialized than adult (61). However, a principle finding in RSNs
development was that SMN increased the efficiency of local
and global functional connectivity with aging (57, 62). In the
current study, BECT patients suffered from the epileptic neural
activity in Rolandic area, which could be the reason why healthy
adult subjects showed a lower connectivity compared with BECT
children. Hence, our primary result was not be interrupted by the
age differences.

Differences in RSNs in Patients With MTLE

and BECT
In the internetwork analysis, it was notable that network state
differences between the MTLE and BECT patients showed
hypoconnectivity between cortical networks and subcortical
ROIs in a general setting of lower connectivity in MTLE
contrasted against normal cortical-subcortical connectivity and
extensive hyperconnectivity among the majority of networks
in BECT. This suggested that the two types of epilepsy have
completely different brain network patterns that impact clinical
outcomes. In our study, patients with MTLE and BECT have
totally different severity of clinical manifestations. One of the
critical reasons is because the different pathological mechanism.
Generally, patients with MTLE have the most common etiology
and pathological performance, hippocampus sclerosis, which is
irreversible in the course of epilepsy (3). By comparison, BECT
is an idiopathic epilepsy without brain structural abnormality
and recently research have shown a strong correlation between
genetics and BECT development (63). Moreover, different
durations of two patient groups were also contributed to different
clinical response. Long-term epileptiform discharges would be
able to interrupt the brain normal functional activity and also
induced structural damage inMTLE (64) while majority of BECT
patients remit spontaneously before adolescence.

Connectivity patterns seem to be correlated with the duration
and severity of the disease, indicating progressive connectivity
reorganization in the context of recurrent seizure activity. BECT
was more reflective of a state of increased synchronization in
functional network activities, which could be understood as
synchronous activity of these related regions that did not stop
during the interictal period. Hence, it could conceivably be
regarded as a compensatory state of higher synchronization.
Moreover, normal cortical-subcortical interactions suggested
disruptions confined to cortical functional regions in BECT. In
contrast, the MTLE patients showed a widespread state of lower
connectivity between RSNs and subcortical ROIs compared with
the HCs, which meant a lower global cooperativity that should
have relevant functional consequences due to the loss of their
normal FC. It could be concluded that MTLE results in more
significant disruptions throughout brain networks, and this may
help to explain the longer course of the disease, more severe
symptoms and worse prognosis of MTLE than BECT through a
pathological network mechanism.

We provide new evidence for brain network pattern
abnormalities in different epilepsy compensatory states. And
we expect that future studies will focus more on the lateral
temporal lobes in MTLE and the attention networks in BECT.
Furthermore, it seems feasible to use different neuromodulation
approaches, for example, transcranial magnetic stimulation
(TMS), to investigate these underpinning mechanisms. Michael
D. Fox and his colleagues (65) suggested the potential to balance
abnormal activity based on RSFC in psychiatric and neurological
diseases, including epilepsy (66, 67). Network-based cortical
modulation in BECT andMTLE, as typical focal epilepsies, might
have the potential to investigate the substrate. Concretely, our
findings suggested that the lateral temporal lobes and attention
networks are probably valid TMS targets for MTLE and BECT.
In addition, transcranial direct current stimulation (tDCS) and
other network-based neuromodulation methods, which take
these variables into account, will need to be undertaken.

LIMITATIONS

In the current study, our primary focus was on the discrepant
state and characteristics of brain functional networks in patients
with MTLE and BECT. However, the study findings should be
interpreted in the context of their limitations. Firstly, a potential
limitation of our study was the small sample size in both epilepsy
groups. A larger sample sizemay produce significant results when
the MTLE and BECT groups are compared with the HC group in
the intranetwork analysis. Secondly, in our future study, the age
discrepancy between BECT and HC needed to be further solved.
Thirdly, cognitive state evaluation, such as attention, motion,
audition and visual function, is necessary as a Supplementary
to verify these dysfunctions. Finally, there is more detailed
and related work that could be performed, including effective
connectivity and global property analysis in future studies. Future
work is required for a full consideration of the above factors.
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Polymicrogyria (PMG) is a commonmalformation of cortical development associated with

a higher susceptibility to epileptic seizures. Seizures secondary to PMG are characterized

by difficult-to-localize cerebral sources due to the complex and widespread lesion

structure. Tracing the dynamics of interictal epileptiform discharges (IEDs) in patients

with epilepsy has been shown to reveal the location of epileptic activity sources, crucial

for successful treatment in cases of focal drug-resistant epilepsy. In this case series

IED dynamics were evaluated with simultaneous EEG-fMRI recordings in four patients

with unilateral peri-sylvian polymicrogyria (PSPMG) by tracking BOLD activations over

time: before, during and following IED appearance on scalp EEG. In all cases, focal

BOLD activations within the lesion itself preceded the activity associated with the time

of IED appearance on EEG, which showed stronger and more widespread activations.

We therefore propose that early hemodynamic activity corresponding to IEDs may hold

important localizing information potentially leading to the cerebral sources of epileptic

activity. IEDs are suggested to develop within a small area in the PSPMG lesion with

structural properties obscuring the appearance of their electric field on the scalp and

only later engage widespread structures which allow the production of large currents

which are recognized as IEDs on EEG.

Keywords: epilepsy, interictal epileptiform discharges, polymicrogyria, EEG-fMRI, interictal dynamics

INTRODUCTION

Recent findings point to both ictal (during seizures) and interictal (between seizures) epileptic
event types as arising from a common cortical source, termed the epileptogenic zone [EZ; (1, 2)].
Though the precise relationship between these epileptic phenomena and their cerebral origins is
still not sufficiently understood (3, 4), interictal activity is often utilized in order to identify the
generators of seizure activity. This is particularly relevant for patients with drug-resistant epilepsy
for which achieving seizure control highly depends on correct EZ localization and its removal by
surgical resection. Such patients undergo extensive pre-surgical testing including neuroimaging,
electrophysiology and neuropsychological examinations for identifying their seizure sources. In
most cases, no single method is sufficient for reliably assessing this area’s location and extent and
even after exhaustive testing, many surgical procedures are unsuccessful (5, 6). When possible,
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seizure semiology and neurophysiology are used to study the
sources of seizure activity, however in many cases seizures
are difficult to capture in a clinical setting. Interictal activity,
however, may be captured non-invasively and in an outpatient
setting, providing more accessible options for EZ identification
and adding crucial localizing information (7).

PMG is a common malformation of cortical development,
characterized by an excessively folded cortical ribbon of
miniature, individually thin convolutions (8). PMG, including
the most common peri-sylvian (PSPMG) subtype, has been
associated with a wide range of clinical manifestations such
as cognitive impairment (9), focal neurological deficits (10)
and intractable epilepsy (11). Contradicting findings have been
reported regarding the areas generating ictal and interictal events
in patients with PMG, which include areas within the PMG
(12) and outside of it (13). In the latter study, Jacobs and
colleagues suggested that aberrant synaptic connectivity develops
around the microgyri and produces a focal epileptogenic zone
whose capacity to generate epileptiform activity does not depend
on connections with the malformation itself. Intralesional
recordings in humans with PMG demonstrated a large epileptic
network involving both the lesion and non-malformed cortex
(14), while intracranial electroencephalography (iEEG) studies
have shown that the seizure onset zone may only partially overlap
with the PMG cortex (15). Surgical resection of sub-portions
of the malformed cortex have been shown to result in positive
surgical outcomes (16, 17), suggesting that a region within the
PMGmay be the source of abnormal electrical activity.

In many cases, fast propagation and dynamic distribution of
IEDs confound the localization of their cerebral sources (18, 19),
leading to misinterpretation of pre-surgical testing and mis-
localization of the EZ. Using high resolution imaging methods,
studies have shown that source localization may be improved
when focusing on the early phases of the interictal discharge, as
the later stages are associated with more widespread activity (1,
18). The simultaneous measurement of electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI) is
a non-invasive neuroimaging method which provides valuable
information concerning the localization of regions generating
IEDs (20, 21). It is a useful diagnostic tool to guide pre-surgical
evaluation of refractory epilepsy, assisting in depth electrode
implantation (22) and consistent with epileptogenic tissue (23).
EEG-fMRI had also been successfully used for localizing the EZ in
patients with cortical and subcortical malformations such as focal
cortical dysplasia (24), cortical tubers (25) and polymicrogyria
[PMG; (26)]. Notwithstanding, the efficacy of this method is
still under investigation and its sensitivity to epileptic sources
is reportedly equal to or lower than other diagnostic methods
(27). Recent work suggests the sensitivity of EEG-fMRI may
be enhanced by taking into account the temporal dynamics of
epileptic activity (28). Epileptogenic lesions such as PMG may
affect IED dynamics in predictable ways (29), allowing to test the
ability of EEG-fMRI to map IED pathways over time.

IED dynamics in PSPMG have been studied in animal models
but are difficult to assess in humans non-invasively. This may be
due to source epileptic structures being located deep in the brain
in unorganized cortical structures not able to produce sufficiently

strong dipoles as to be observed from the scalp (30). Thus, it
is not always clear whether the fields observed by scalp EEG
and MEG are related to the source of the activity or due to its
spread to neighboring superficial and more organized cortical
structures. The purpose of the current study was to examine the
dynamics of IEDs as reflected in EEG-fMRI BOLD activations
correlated with observed IEDs on the scalp of patients with
PSPMG.We hypothesized that IEDs observed on the scalp would
correspond to IED spread to superficial cortical structures while
BOLD activity within the PMG could be observed in the time
preceding IED appearance on scalp recordings and reveal their
focal sources.

METHODS

Patients
Included in this study are all four patients diagnosed with
PSPMG and refractory epileptic seizures which underwent an
EEG-fMRI scan at the Tel Aviv SouraskyMedical Center between
March 2014 and June 2019. Patients’ clinical and imaging findings
are detailed below and summarized in Table 1. Neuroimaging
results include scalp EEG seizure onset, main MRI finding, major
dipole concentration on MEG, significant PET results and peak
BOLD activations observed during EEG-fMRI. Activations are
reported at two time points: 2.25 s after IED appearance on
scalp EEG, corresponding to pre-IED activity; and 5.25 s after
IED appearance on scalp EEG, corresponding to IED initiation
according to the standard hemodynamic response function
[HRF; (31)].

Patient 1 is a right-handed female aged 24 suffering from
epilepsy since the age of 13 involving frequent complex
partial seizures. Ictal EEG shows right frontotemporal onset
with fast contralateral spread. Neurological deficits include
memory loss and difficulties with word retrieval, concentration
and motivation. MRI shows a right PSPMG with pre-central
and post-central involvement and right hemispheric atrophy.
Interictal PET scan showed diffuse hypometabolism. Interictal
MEG sources were found in right temporo-parietal areas.

Patient 2 is a right-handed female aged 19 suffering from
epilepsy since the age of 10. Ictal semiology is concordant with
right hemisphere onset with or without secondary generalization.
She suffers from left sided hemiparesis from childhood. MRI
shows diffuse right PSPMG including pre and post central
areas with loss of volume in the right hemisphere. PET
shows right temporo-parietal hypometabolism and left temporal
hypometabolism. MEG shows right fronto-temporal dipoles.

Patient 3 is a right-handed female aged 26 suffering from
epilepsy since the age of 16. She has a mild left hemiparesis and
focal seizures originating from the right antero-mid temporal
areas. Right PSPMG is seen on MRI with loss of volume in the
right hemisphere and specifically in right hippocampus. MEG
reveals right temporal dipole concentration and PET shows right
temporo-parieto-occipital and left temporal hypometabolism.

Patient 4 is a right-handed female aged 42 suffering from
early onset epilepsy which subsided for several years. At the
age of 19 seizures reappeared characterized as focal seizures
with impaired consciousness accompanied by right temporal
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TABLE 1 | Summary of patient details and main neuroimaging findings.

Patient Age (years) Onset (years) Hand-edness Ictal EEG

onset

MRI MEG PET Pre-IED peak

activity

IED peak activity

1 24 13 R R FT R PSPMG R TP Diff (HM) R In R IFG R In

2 19 10 R R F R PSPMG R FT L T (HM) R SFG R Op R SFG

3 26 16 R R FT R PSPMG R T R TPO L T (HM) R In* R MTG R STG

4 40 19** R R T R PSPMG R

Schize- ncephaly

– RT (HM) R TOp R TOp

R, right; L, left; PSPMG, perisylvian polymicrogyria; T, temporal; O, occipital; P, parietal; F, frontal; In, insula; Op, operculum; IFG, inferior frontal gyrus; SFG, superior frontal gyrus; MTG,

medial temporal gyrus; STG, superior temporal gyrus; HM, hypometabolism; Diff, diffuse.

*Not significant after FWE correction.

**Onset age of typical seizures. Patient reported childhood absence seizures as well.

sharp and slow waves on EEG. MRI shows right sided PSPMG
and schizencephaly, and a PET scan points to right lateral
temporal hypometabolism.

Data Acquisition
The study was approved by the Tel-Aviv Sourasky Medical
Center Ethical Review Board. Written informed consent for
participation in the study was obtained from all patients.

All patients underwent EEG-fMRI scans using the dual
array EEG (daEEG) method for improved EEG signal artifact
identification and removal. EEG was performed using a 64-
channel recording system (Figure 1) based on an in-house
adaptation of an MR compatible 64-electrode EEG cap (Brain
Products GmbH, Gilching, Germany). For a full description of
the adapted system see (32).

MRI scans for patients 1–3 (4) were performed in a 3.0 T MRI
scanner [GE Signa EXCITE (Siemens Prisma system)] using a
body transmitter coil and an eight (twenty) channel head receiver
coil. The EEG-fMRI recordings were performed in 20 (10) m
sessions of scanning; 3–5 (8) such sessions were recorded during
each patient scan. Patients were instructed to lie still and remain
at rest. The helium pump was turned off during the recording
as well as air conditioning inside the bore. A T2∗- weighted,
gradient echo, echo planar imaging (EPI) sequence was used
for recording the fMRI images (TR/TE/flip angle: 3000/35/90).
Thirty-nine (forty) axial slices (thickness/gap: 3/0) were collected
(FOV: 22 × 22 cm; matrix size: 128 × 128). In addition, a high
resolution T1-weighted 3D (1× 1× 1mm) volume was obtained
using spoiled gradient echo [SPGR (MPRAGE)] sequence.

EEG Evaluation
EEG data analysis was performed using EEGLAB software
(33). Initial EEG processing included gradient interference
suppression (FMRIB plug-in for EEGLAB, provided by the
University of Oxford Centre for Functional MRI of the Brain),
down-sampling from 5,000 to 250Hz and band-pass filtering
to 0.5–40Hz. After recalculating the data according to the
daEEG method, ICA was applied in order to identify and
separate components which are differently distributed between
the channels. The effect of motion artifacts is larger in data
corresponding to measurements between electrodes connected
to different bundles in comparison to electrodes connected to
the same bundle (Figure 1). The ICA components considered
as artifact-affected were removed (32). In order to account for

signal changes associated with cardiac activity, the components
with high correlation to the recorded ECG trace were removed
as well.

Detection of IEDs from the EEG traces after artifact
removal was performed manually by a neurologist experienced
in EEG interpretation. IEDs of predominant topography
and morphology were selected for further analysis. Epochs
concurrent with large EEG artifacts were regressed out of
the fMRI analysis using the Artifact Detection Tools (ART)
toolbox (nitrc.org/projects/artifact_detect/).

fMRI Analysis
Data analysis was performed using SPM12 software (34).
Preprocessing included slice timing correction, 3D motion
correction and co-registration to the anatomical image. No
normalization to an anatomical atlas was performed. The
data was spatially smoothed with an 8mm full width at half
maximum (FWHM) Gaussian kernel. For each session, the first
six functional volumes were excluded from analysis. Functional
EPI data were automatically aligned and co-registered with 3D
anatomical data and manually corrected if necessary. Standard
SPM event related fMRI analysis was performed with a general
linear model, using the timing of the detected EEG epileptiform
waveforms as events. To follow the dynamics of the epileptic
events, predictors were modeled with three delays: the standard
delay (HRF peak at 5.25 s after the event, corresponding to
IED appearance), −3 s delay (HRF peak at 2.25 s after event,
corresponding to pre-IED activity) and +3 s delay (HRF peak
at 8.25 s after event, corresponding to post-IED activity). In
each analysis voxel clusters were significantly active at p <

0.05 after Family-Wise Error correction (FWE) and a minimum
cluster size of 50 adjacent voxels. Earlier peaks showed weaker
and more focal activations as expected, thus any cluster of
activation composed of over 10 adjacent significant voxels was
reported. If no clusters were found significant for standard or
early peaks, clusters of>50 adjacent voxels at an uncorrected p<

0.005 threshold are reported. Sub-threshold clusters within white
matter regions were not reported.

RESULTS

See Supplementary Material for full details of all detected
activation clusters (Table A1 in Supplementary Material) and
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FIGURE 1 | Dual array design and concept. (A) The electrode cables are arranged into bundles according to two sets of intersecting lines: longitudinal and

transverse. The bundles are grouped into two braids of cables so that the bundles from two neighboring lines travel to the different braids. Each braid is connected to

a separate 32 channel referential MR-compatible EEG amplifier. In the dual array arrangement applied in this study, adjacent bundles were sent to a distal amplifier

location to cause an increase in the area between electrode cables. A comparison of the bundles is used to differentiate motion artifact from brain signal. (B) This wire

arrangement is used in order to reduce as much as possible the area within the loop created by two adjacent electrode wires along a single bundle (along bundles)

and increase the area within the loop created by adjacent electrodes of different bundles (across bundles). Thus, while the true brain signal should be recorded

similarly by adjacent electrodes, motion artifacts should differ depending on the loop created by the bundle each electrode is connected to, allowing separation

between signal and noise. For a more detailed explanation of this setup see Klovatch-Podlipsky et al. (32).

for representative IED traces of each patient (Figure A1 in
Supplementary Material).

Patient 1
During the 40-min recording, 28 spike-and-wave complexes, 11
poly-spike clusters lasting up to 3.5 s and 180 slow waves lasting
up to 8 s (1.13 ± 1.36) were detected over right and left fronto-
centro-parietal areas. Only spike complexes and clusters were
used for the subsequent analyses. Standard delay generated peak
activation (T= 8.37) at the right inferior frontal gyrus, anterior to
the malformation (Figure 2, P1). The FWE corrected BOLDmap
included the inferior frontal gyrus and insula (areas within the
malformation). At −3 s delay the peak activation (T = 5.51) was
at the right anterior insula (within the malformation, Figure 2,
P1) which survived FWE correction. At+3 s delay no significant
activation was found, but five clusters of deactivations were
observed within the malformation (right pre-central area, right
posterior insula) and outside of it in the left temporal operculum,
left post central gyrus and left posterior insula all with a peak
T-score between 5 and 5.6.

Patient 2
In the 40-min recording 16 spike-and-wave complexes and
25 poly-spike clusters lasting up to 94 s were detected over
right fronto-centro-parietal areas. Standard delay generated peak
activation at the right anterior superior frontal gyrus (T = 6.2).
The related FWE corrected BOLD map included this cluster

only (Figure 2, P2). Peak deactivation was found in a bilateral
occipital cluster (T = 7.0). FWE corrected deactivation maps
included additional clusters within the malformation (Table A1
in Supplementary Material). At−3 s delay the peak activation (T
= 6.3) was at the right superior frontal gyrus and a second cluster
in the right parietal operculum cortex within the malformation.
The related FWE corrected BOLDmap consisted of the described
clusters. Two deactivation clusters were found in the right and left
occipital lobes. At+3 s delay no significant activation was found,
five clusters of deactivations were observed.

Patient 3
In the 20-min recording 108 spike-and-wave complexes were
detected over right centroparietal areas. Standard delay generated
peak activation (T = 6.21) outside the lesion at the right
middle temporal gyrus (Figure 2, P3) along with a superior
temporal gyrus activation with similar statistics (T = 6.19)
and both survived FWE correction. No additional activation or
deactivations were found. At −3 s delay the peak activation (T
= 3.76) was at the right anterior insula. No cluster survived
FWE correction, but at p = 0.005 without correction this cluster
could be observed along with three additional clusters in the
right posterior insula, right posterior temporal cortex and a
small left occipital cluster. No significant deactivations were
found. At +3 s delay no significant activations or deactivations
were found.
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FIGURE 2 | IED and pre-IED correlated fMRI maps for patients 1-4. For each patient areas of peak activation are marked at two time points: 6 s after IED appearance

on scalp EEG, showing activity correlated with IEDs according to the standard delay of the HRF peak (right), and 3 s after scalp IED appearance on EEG which shows

pre-IED activity (left). All patients show weaker and earlier pre-IED activations within the PMG and later stronger activations on the border of the malformation or

outside of it correlated with IED appearance.
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Patient 4
In the 60-min recording 62 spike-and-wave complexes were
detected over right temporal areas. Standard delay after FWE
correction generated peak activation (T = 7.9) at the right
temporal operculum within a widespread cluster extending to
parietal and frontal operculum (Figure 2, P4). Three seconds
earlier a peak activation (T = 5.61) appeared within a smaller
cluster within the temporal operculum. Deactivations correlated
with a standard delay were seen in bilateral frontal areas. At
+3 s delay one activation was seen at the right post-central gyrus
and several deactivation clusters were detected mostly around
bilateral frontal areas (Table A1 in Supplementary Material).

DISCUSSION

The origin of both ictal and interictal activity in PMG has
been debated in the literature with findings pointing to an
electrophysiological source within the PMG (12) or outside of it
(13). In the current study, we set out to evaluate this disagreement
by analyzing the simultaneous EEG-fMRI scan results of four
patients with unilateral PSPMG, before, during and after the
appearance of IED on scalp EEG. All four patients presented
BOLD activations within and surrounding the lesion. When
applying the HRF with the standard delay, the maximum BOLD
activation was found outside or on the borders of the cortical
malformation (premotor cortex, superior frontal gyrus, middle
temporal gyrus and parietal operculum for patients 1,2,3, and
4, respectively, Figure 2) and corresponded to the maximum
BOLD activation overall, considering all evaluated time shifts.
Interestingly, we found focal activations correlated with an HRF
peak shifted by −3 s in relation to the standard HRF model, and
these activations were within the PMG in all four patients (insula
in patients 1 and 3, and operculum in patients 2 and 4).

Stutterd and Leventer (35) illustrated that polymicrogyria is
highly heterogeneous and the most poorly-delineated among
the more common malformations of cortical development. The
initial result with the standard HRF seems to support the line of
both animal and human studies placing the source of epileptic
activity outside of the anatomical malformation. For example,
Jacobs et al. (13) proposed that cortical afferents are unable
to find appropriate targets within the malformed region and
may instead synapse in the adjacent paramicrogyral area, thus
suggesting that there is an increase in the number of functional
excitatory synapses in the paramicrogyral cortex causing seizures.
One previous study evaluated EEG-fMRI in patients with PMG
(26) and reported variable maximum BOLD locations: of the 13
analyses showing activations in nine patients, four were inside the
lesion, four on the edge and five outside the lesion’s boundaries.
This discrepancy may stem from the heterogeneity of pathologies
evaluated including bilateral, unilateral, frontal and parieto-
occipital PMG. The reported variability may have also resulted
from the grouping of multiple time delays: at each voxel, the
maximum t value was taken from four t-maps created using four
hemodynamic response functions with peaks at 3, 5, 7, and 9 s.
Such an analysis has the potential to obscure earlier and possibly
weaker activations.

In this work, we thus concentrated on a homogenous group
of patients with unilateral PSPMG. Indeed, we found focal
activations in the analysis correlated with an HRF peak shifted
by −3 s in relation to the standard HRF model, and these
activations were within the PMG in all four patients (insula in
patients 1 and 3, and operculum in patients 2 and 4). On this
basis, we propose that IEDs in PSPMG initiate in a relatively
small cortical structure within the lesion itself. The stronger
activations observed with the standard delay are suggested to
represent the shift and expansion of the interictal generators
to adjacent, more organized or superficial cortical structures, as
these structures are more capable of producing currents detected
on the scalp. BOLD responses preceding interictal activity have
been previously observed and discussed (36–39). These studies
point to the significance of such early, often weaker BOLD
responses and their potential clinical relevance. Jacobs et al. (36)
suggested that early hemodynamic activity seen in the spike field
prior to scalp EEG result from neuronal activity invisible to scalp
EEGwhich is more focal and which systematically leads to amore
widespread response. This early activity has also been associated
with other metabolic events preceding the IED and suggested to
be associated with its generation (36, 38).

Several models have been proposed for the epileptogenicity
of the PMG cortex. Takano (12) found reduced parvalbumin-
immunoreactive interneurons within the medial parts of the
PMG compared to more lateral parts. Stouffer et al. (40) report
malfunction of the cytoskeleton caused by mutations of neural
migration genes leading to an excitatory-inhibitory imbalance.
Our study does not allow the evaluation of such hypotheses and
further research, primarily with animal models, is necessary to
improve our understanding of these mechanisms. Moreover, our
study only examines IED related activity, which may be governed
by a divergent neuro-electrical circuit as compared to that
which governs ictal phenomena (41). Nevertheless, this result
implies several mechanistic traits of the processes underlying
epileptic seizures secondary to PSPMG. From the spread of both
activations and deactivations we observed (with the standard
delay and +3 s delays), it appears that a complex interaction of
network nodes within the PMG and outside it is involved during
IEDs. Such a heterogeneous network of cortical activation has
also been reported in human intracranial studies. Ramantani
(42) found a network of interictal and ictal activity including
the PMG and medial temporal cortex and Chassoux et al. (14)
reported epileptogenicity in the PMG cortex extending beyond
the visible abnormality.

Our work further suggests that the focal activity preceding
later widespread interictal events may be overlooked using
standard EEG-fMRI. Such activity may also be undetected with
iEEG as shown in one study which explored the area of early
BOLD activation with depth electrodes. In this study the early
focal activity was correlated with interictal events on iEEG in
only one of four patients examined (38). The authors suggest this
finding may point to the early BOLD activations reflecting non-
synchronized neuronal activity or non-neuronal mechanisms.
In addition, while intracranial recordings offer an opportunity
to directly record local fields, they have the disadvantage of
under-sampling relevant areas. As resective surgery was not
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performed on these patients, this study cannot verify whether
the reported initial areas of activation indeed identify the
epileptogenic zone. Further studies using intracranial recordings
and clinical outcomes of surgery are needed to address this
question. Notwithstanding, these results support the exploration
of interictal dynamics at the timescale of BOLD activity for
inferring patterns of epileptic spread from the source areas.

When considering the presented results and their
interpretation it is important to note several limitations of
the applied methodology. Primarily, the hemodynamic response
itself may vary within and between patients, reflecting differences
in the BOLD signal among brain areas and conditions, as
suggested by previous studies (43, 44). Such differences could
also account for the activity associated with the different HRF
peaks, perhaps pointing to sources of several interictal event
types and not the shift of a specific IED source. In addition,
the averaged IEDs may themselves carry information regarding
the location of earlier activity as suggested in studies which
use high resolution source imaging with MEG or EEG data
(1, 18). In future studies it may thus be interesting to compare
the sources of averaged IEDs recorded by EEG or MEG to the

hemodynamic activations seen with fMRI. In these cases, the
appearance of early focal activation clusters within the PMG
may still be indicative of relevant treatment targets as previously
discussed. Our finding of preceding activations within the
PSPMG support the notion that IEDs initiate inside the PMG
and propagate to neighboring cortex. As well as improving our
understanding of epilepsy related processes in PMG, this finding
has the potential to assist in tailoring invasive treatments: from
directing depth electrode implantation, to guiding resection and
neuro-stimulation probes. Finally, this finding supports the use

of EEG-fMRI for tracing IED dynamics with potential benefits
for improved localization of epileptogenic areas.
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Background: Disruptions in central autonomic processes in people with epilepsy have

been studied through evaluation of heart rate variability (HRV). Decreased HRV appears

in epilepsy compared to healthy controls, suggesting a shift in autonomic balance

toward sympathetic dominance; recent studies have associated HRV changes with

seizure severity and outcome of interventions. However, the processes underlying these

autonomic changes remain unclear. We examined the nature of these changes by

assessing alterations in whole-brain functional connectivity, and relating those alterations

to HRV.

Methods: We examined regional brain activity and functional organization in 28

drug-resistant epilepsy patients and 16 healthy controls using resting-state functional

magnetic resonance imaging (fMRI). We employed an HRV state-dependent functional

connectivity (FC) framework with low and high HRV states derived from the following four

cardiac-related variables: 1. RR interval, 2. root mean square of successive differences

(RMSSD), 4. low-frequency HRV (0.04–0.15Hz; LF-HRV) and high-frequency HRV

(0.15–0.40Hz; HF-HRV). The effect of group (epilepsy vs. controls), HRV state (low vs.

high) and the interactions of group and state were assessed using a mixed analysis

of variance (ANOVA). We assessed FC within and between 7 large-scale functional

networks consisting of cortical regions and 4 subcortical networks, the amygdala,

hippocampus, basal ganglia and thalamus networks.

Results: Consistent with previous studies, decreased RR interval (increased heart

rate) and decreased HF-HRV appeared in people with epilepsy compared to healthy

controls. For both groups, fluctuations in heart rate were positively correlated with

BOLD activity in bilateral thalamus and regions of the cerebellum, and negatively

correlated with BOLD activity in the insula, putamen, superior temporal gyrus

and inferior frontal gyrus. Connectivity strength in patients between right thalamus

and ventral attention network (mainly insula) increased in the high LF-HRV state

compared to low LF-HRV; the opposite trend appeared in healthy controls. A

similar pattern emerged for connectivity between the thalamus and basal ganglia.
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Conclusion: The findings suggest that resting connectivity patterns between the

thalamus and other structures underlying HRV expression are modified in people with

drug-resistant epilepsy compared to healthy controls.

Keywords: state-dependent functional connectivity, sympathovagal balance, SUDEP, thalamic connectivity,

ventral attention network, insula cortex

INTRODUCTION

Heart rate varies on a moment-to-moment basis in response
to changing physiological demands, and is regulated by
sympathetic and parasympathetic components of the autonomic
nervous system (ANS). Evaluation of the momentary changes
in heart rate variability (HRV) can provide insights into
the interplay of central mechanisms controlling sympathetic
and parasympathetic (vagal) activity (1, 2). A shift toward
parasympathetic dominance is typically accompanied by heart
rate declines and increased HRV; whereas, increased sympathetic
dominance is typically associated with an accelerated heart rate
and decreased HRV [although deviations from this generality
occur (3)]. Considerable evidence exists that HRV provides an
indication of sympathovagal balance and can be useful as a
marker for certain cardiovascular diseases (4), mortality, and
sudden death (5).

Epilepsy is accompanied by significantly different patterns
of HRV (6). A lower interictal HRV is often reported in
drug-resistant epilepsy, suggesting a shift toward sympathetic
predominance (6–9). In addition, a link between peri-ictal HRV
and major motor seizure severity (10) has been outlined, as
well as an indication of seizure reduction following vagal nerve
stimulation in patients with drug-resistant epilepsy (11). HRV
determination of low parasympathetic activity and increased
risk of sudden unexpected death in epilepsy SUDEP has been
described (12, 13), as well as altered circadian rhythms of HRV in
epilepsy (14, 15); the latter findingmay explain the larger number
of night-time SUDEP cases (16). However, a poor understanding
of the mechanisms underlying expression of cardiac functions in
epilepsy hampers interpretation of alterations in brain regulatory
sites controlling HRV and the potential to gain insights into
dysfunctions within those processes.

Functional magnetic resonance imaging (fMRI), a non-
invasive tool for probing brain activity and functional
connectivity (FC), has been used to study the neural substrates

of autonomic regulation (17–20). Initial studies primarily relied

on tasks to excite the ANS (21–26), while subsequent studies

have used resting-state fMRI (27–29), which has a benefit of

not being confounded by task-related changes in local brain
activity and FC. Differences in HRV across participants as
well as fluctuations in HRV within-individuals have been
related to spontaneous regional blood-oxygen-level-dependent
(BOLD) fluctuations and connectivity between distinct regions
(27–29). Regions found in fMRI studies to be associated with
autonomic regulation, such as the anterior cingulate (ACC),
medial prefrontal (mPFC) and insular cortices, form part of
the central autonomic network (CAN) described in preclinical

studies, a system of brain structures involved in ANS functions
(30, 31).

Functional connectivity measures between brain sites are
altered in people with epilepsy (32–36); however, it is
unclear whether these alterations are linked to impaired
cardiac regulation. Here, we investigated alterations in brain
functional organization in relation to cardiac rhythms in
people with epilepsy. We employed an HRV state-dependent
FC framework with two levels of variability states estimated
from electrocardiogram (ECG) recorded during resting-state
fMRI. Given the association between HRV measures and time-
varying FC reported in the literature (27), a state-dependent FC
framework informed by concurrent cardiac recordings appeared
more suitable for studying cardiac dysfunction than static
FC approaches that do not utilize physiological recordings.
Moreover, we examined whole-brain FC in a data-driven manner
rather than restricting the analysis to interactions between
regions of the CAN, as recent studies suggested that the neural
correlates of cardiac regulation aremore widespread than initially
thought (17, 29, 37).

MATERIALS AND METHODS

Subjects
Thirty-two (32) patients with drug-resistant epilepsy were
selected from an ongoing investigation into the localization of
epileptic activity in the brain using simultaneous EEG-fMRI
with ECG (38), with a case ascertainment period between 2005
and 2014. The inclusion criteria were: (1) the availability of
a resting-state EEG-fMRI scan; and (2) a high-resolution T1-
weighted scan. The exclusion criteria were: (1) large brain lesion
or previous neurosurgery [we considered large to be anything
greater than a small area of focal cortical dysplasia (FCD) or
sclerosis – e.g., tumors, cavernomas] (2) incomplete clinical
or imaging data (e.g., abandoned scans). Sixteen (16) healthy
controls were also considered with comparable age and sex
characteristics; the group demographics and clinical details are
shown in Supplementary Tables 1, 2. The study was approved
by the National Research Ethics Committee (United Kingdom;
04/Q0502/89) and all patients gave written informed consent.

Simultaneous EEG-fMRI Acquisition
Scanning was performed at the Epilepsy Society (Chalfont St
Peter, Buckinghamshire, UK) on a 3.0 Tesla GE (Signa excite
HDX) scanner. A 20-min (400 vol) T∗

2-weighted fMRI scan
was collected from each subject except for two patients that
were scanned for 10-min instead. The fMRI scan was done
using a gradient-echo echo-planar-imaging with the following
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characteristics: repetition time (TR) = 3,000ms, echo time (TE)
= 30ms, flip angle = 90, matrix size = 64 × 64, field of view
(FOV) = 24 × 24 cm2, slice thickness = 2.4mm with 0.6mm
gap, 44 slices, and voxel size = 3.75 × 3.75 × 3 mm3. Subjects
were instructed to keep their eyes closed, avoid falling asleep,
and not think about anything in particular. A T1-weighted image
was also acquired using an FSPGR (fast spoiled gradient recalled
echo) sequence, with the following parameters: matrix size= 256
× 256, FOV= 24× 24 cm2, slice thickness= 1.5mm, 150 slices,
and voxel size= 0.94× 0.94× 1.5 mm3.

Scalp EEG signals and an ECG signal were simultaneously
acquired during fMRI scanning at 5 kHz using a 64 channel
MR-compatible EEG system with ring Ag/AgCl electrodes
(BrainAmp MR+; Brain Products GmbH, Munich, Germany).
The electrodes were placed according to the 10/20 system and
referenced to electrode FCz.

Preprocessing of fMRI Data
As described previously (38), preprocessing of fMRI data was
conducted using the Statistical Parametric Mapping software
(SPM12,Welcome Trust Centre for Neuroimaging, London, UK,
http://www.fil.ion.ucl.ac.uk/spm) (39) in a Matlab environment
(R2020a; Mathworks, Natick, Massachusetts, USA). The first
five functional volumes were discarded to allow steady-state
magnetization to be established, and the remaining volumes were
realigned to correct for head movements. The structural image of
each subject was co-registered to the mean realigned functional
volume and, subsequently, underwent tissue segmentation
into gray matter, white matter and cerebrospinal fluid tissue
compartments. The functional images as well as the coregistered
structural images and tissue compartment masks were spatially
normalized to the Montreal Neurological Institute (MNI)
reference space using non-linear transformation.

To account for anatomical variability across participants and
reduce thermal noise, all individual functional volumes were
smoothed using a 5mm full-width half-maximum (FWHM)
Gaussian kernel. Subsequently, the Brainnetome atlas was used
to extract mean fMRI time-series from 210 cortical and 36
subcortical parcels (40). The parcel time-series were high-pass
filtered at 0.008Hz to avoid spurious correlations that arise from
low-frequency fluctuations (41).

We used the framewise displacement (FD) as defined in Power
et al. (42) to identify and exclude subjects with high levels of
motion, as motion can obscure neural-related BOLD activity
(43, 44) and lead to systematic biases in FC studies (45–47).
FD is calculated from the six motion realignment parameters
and reflects the extent of motion at each timepoint. Subjects
that were characterized by mean FD larger than 0.25mm were
excluded. In addition, for the remaining of the subjects that were
considered in the study, timepoints with FD larger than 0.2mm
were disregarded.

Finally, to further mitigate the effects of motion as well as
reduce the effects of physiological processes and scanner artifacts,
we regressed out the following nuisance regressors from all parcel
time-series: the first ten principal components from voxel time-
series within the white matter (48), six regressors related to
cardiac pulsatility artifacts obtained with the convolution model

proposed in Kassinopoulos and Mitsis (45), and the mean fMRI
time-series averaged across all voxels within the gray matter.

Preprocessing of ECG and Calculation of

HRV Measures
The ECG was corrected for gradient artifacts using adaptive
template subtraction (49) implemented in BrainVision Analyzer
2 software (Brain Products GmbH, Munich, Germany), and
band-pass filtered from 0.5 to 40Hz. The R-waves were detected
using Matlab’s function findpeaks with a minimum peak distance
varying between 0.5 and 0.9 s depending on the subject’s average
RR interval (time between successive R-waves).

The RR intervals were used to obtain time-series of the root
mean square of successive differences in RR intervals (RMSSD),
and the normalized low (0.04–0.15Hz) and high (0.15–0.40Hz)
frequency components of HRV. The aforementioned three HRV
measures were computed in adjacent time windows of 100 s
each, and a timestep of 1 s, to probe changes in sympathetic and
parasympathetic activity during the 20-min resting-state scan.
RMSSD is a time-domain HRVmeasure that is believed to reflect
parasympathetic activity (50), the low-frequency HRV (LF-HRV)
is a frequency-domain measure presumably sensitive to both
branches of the ANS, and the high-frequency HRV (HF-HRV)
is a frequency-domain measure that, similar to RMSSD, reflects
parasympathetic activity. To derive the normalized LF- and HF-
HRV measures, the time-series of successive differences in RR
intervals was uniformly resampled at 10Hz before estimating the
Welch power spectral density. Subsequently, the power within
the frequency ranges 0.04–0.15Hz (LF-HRV) and 0.15–0.40Hz
(HF-HRV) was divided by the power within the range 0.04–
0.50Hz and multiplied by 100%. Apart from the three HRV
measures, the moving average of RR intervals was also computed
across the time windows. Before the calculation of an HRV
measure or mean RR interval within a time window, outliers of
RR values, defined as three median absolute deviations (MAD)
away from the median, were linearly interpolated. To disentangle
fluctuations in HRV from fluctuations in RR interval, the three
HRV measures were orthogonalized with respect to fluctuations
in RR interval. Furthermore, heart rate was estimated as the
inverse of instantaneous RR interval multiplied by 60. The heart
rate was preferred over the instantaneous RR interval to facilitate
comparison with the activation maps shown in Valenza et al. (29)
that link regional BOLD fluctuations to heart rate.

Relationship Between BOLD Fluctuations

and Cardiac Dynamics
The three HRV measures (RMSSD, LF-HRV and HF-HRV),
moving-average RR interval and instantaneous heart rate were
convolved with the canonical hemodynamic response function
(HRF) from SPM12 (39) prior to resampling at the fMRI
acquisition rate. The association between the obtained time-
series and voxel-wise fMRI time-series within the gray matter
was quantified using one-sample t-test on the associated beta
parameters derived from the general linear model. Differences
in the activation maps between epilepsy patients and healthy
controls were assessed with a second-level, mixed-effects analysis
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with subjects as the random-effects factor, using a two-sample t-
test on the associated beta parameters. To control for potential
effects, sex, age and levels of head motion (i.e., mean FD) were
treated as covariates. Moreover, to account for false positives, the
statistical maps were thresholded with a voxel-wise threshold of
family-wise error (FWE) rate p < 0.05 corrected for multiple
comparisons using the random-field theory (51) and an extent
threshold ≥ 10 voxels.

Whole-Brain HRV State-Dependent

Functional Connectivity
To investigate the effects of HRV state on brain functional
organization, a whole-brain state-dependent FC analysis was
performed on the parcellation of the Brainnetome atlas that
includes 246 parcels covering the neocortex and sub-cortical
regions (40). The connectivity strength between parcel pairs was
determined based on the pairwise Pearson correlation coefficient
of the parcel time-series. Cortical parcels were grouped into
the following seven large-scale functional networks described in
Yeo et al. (52): visual (34 parcels), somatomotor (33 parcels),
dorsal attention (30 parcels), ventral attention (22 parcels), limbic
(26 parcels), frontoparietal (26 parcels) and default mode (36
parcels), using the mapping provided on the Brainnetome atlas’
website (https://atlas.brainnetome.org/), and the subcortical
parcels were grouped into the following four networks: amygdala
(four parcels), hippocampus (four parcels), basal ganglia (12
parcels) and thalamus (16 parcels) (three cortical parcels were
excluded from the analysis as they were not assigned to any of
the networks). To better understand how FC depends on the
state of autonomic activity, we estimated FC in each individual
considering low or high HRV states separately. The low and high
HRV states were defined as the timepoints in a scan at which an
HRVmeasure (e.g., RMSSD) had values in the lowest and highest
quartile range for that given scan, respectively.

A mixed analysis of variance (ANOVA) was conducted with
the group (epilepsy patients / healthy controls) as a between-
subject factor and HRV state (low/high) as a within-subject
factor, which allowed us to examine the effect of the group
and HRV state on FC within and between networks as well as
their interactions. Potential effects of sex, age and levels of head
motion on FC were regressed out through linear regression at the
group level before conducting the mixed ANOVA. The levels of
head motion for the low and high HRV state were determined
separately considering only the timepoints corresponding to
each state. The connectivity strength between pairs of networks
that was used in the mixed ANOVA was defined as the mean
correlation averaged across all pairs of parcels that belonged to
the two corresponding networks. The HRV state-dependent FC
analysis was performed for the three HRV measures and the
moving-average RR interval. Statistical significance was set at p <

0.0125 (i.e., 0.05/4) adjusted formultiple comparisonwith respect
to pairs of networks using false discovery rate (FDR).

RESULTS

Data from four patients were excluded due to excessive motion
(mean FD > 0.25mm). The sex and age distributions were

similar between the epilepsy patients (n = 28, mean age of 28.7,
14 women) and healthy controls (n = 16, mean age of 30.6,
seven women;) (p > 0.48; two-sample permutation test; number
of permutations q = 10,000; Supplementary Table 2). Motion-
contaminated fMRI volumes (FD > 0.2mm) were also excluded,
resulting in an average of 353 ± 65 volumes per subject. Based
on a two-sample permutation test (q = 10,000) there were no
significant differences in the number of volumes between healthy
controls and epilepsy patients (p > 0.10), and the two groups
exhibited similar levels of motion during the fMRI scan (p >

0.10; Supplementary Figure 1). The consideration of a subset of
volumes for the low and high HRV states (average 88 volumes
per state) did not have any apparent effects on the estimates of
whole-brain FC as compared to the FC matrices obtained from
the entire scan (Supplementary Figure 2).

Heart Rate and HRV Measures
Comparisons of cardiac dynamic metrics between patients
and healthy controls were performed using a two-sample
permutation test (q = 10,000) after regressing out potential
effects of sex and age. The mean RR interval during the
20-min scan was significantly lower in patients compared to
healthy controls (950 ± 100ms vs. 1,100 ± 200ms; p <

0.003; equivalently, the mean heart rate was significantly higher)
(Figure 1). HF-HRV was also lower in epilepsy compared
to controls (71 ± 11% vs. 78 ± 8 %; p < 0.05) whereas
RMSSD and LF-HRV were similar in the two groups. The
LF-HRV (0.04–0.15Hz) and HF-HRV (0.15–0.40Hz) measures
demonstrated a strong negative inter-correlation (r = −0.56;
Supplementary Figure 3) whereas the correlations between the
remaining pairs of RR interval and HRVmeasures were relatively
low (<0.26; Supplementary Figure 3).

Relationship Between BOLD Fluctuations

and Cardiac Dynamics
Across all subjects, BOLD signal fluctuations were associated
(p < 0.05; FWE-corrected) with only one of the cardiac
dynamic metrics, namely instantaneous heart rate, in the
following regions: positive correlations in the thalamus and
several regions of the cerebellum (culmen, declive, uvula, nodulus
and inferior semilunar lobule); negative correlations in the
bilateral inferior frontal gyrus, orbitofrontal cortex, middle
temporal gyrus, precentral gyrus and claustrum, as well as
right insula and putamen (Figure 2). A more liberal threshold
of p < 0.001 uncorrected indicated positive correlations of
heart rate in bilateral caudate, and negative correlations in
left insula and putamen, as well as bilateral superior temporal
gyrus (Supplementary Figure 4). We did not find significant
differences in correlations between the two groups.

HRV State-Dependent Functional

Connectivity
When comparing whole-brain connectivity between patients and
healthy controls, for all cardiac dynamic metrics, the strongest
differences were observed in the connectivity strength between
the frontoparietal, limbic and default mode networks, albeit these
did not reach statistical significance (Figure 3 left column). The
connectivity strength of the thalamus with the ventral attention
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FIGURE 1 | Comparison of mean RR interval and heart rate variability (HRV) measures between epilepsy patients and healthy controls. The bottom and top of each

box correspond to the 25th and 75th percentiles of the sample distribution, the line in the box corresponds to the median and the crosses indicate outliers, defined as

values that are more than 1.5 times the interquartile range away from the edges of the box. The epilepsy patients showed significantly lower values of mean RR

interval and HR-HRV than healthy controls. n.s., not significant.

FIGURE 2 | Association of regional BOLD fluctuations with changes in heart rate at the group level. Statistical map of one-sample t-test considering patients and

controls (n = 44), thresholded with a voxel-wise threshold of family-wise error (FWE) rate p < 0.05 corrected for multiple comparisons using the random-field theory

(51). The unthresholded statistical map is available at https://neurovault.org/collections/9452/.

network and basal ganglia had strong interactions of group
and LF-HRV state (p < 0.0125, FDR corrected; Figure 3 right
column). The connectivity between the thalamus and ventral
attention network demonstrated also strong interactions of group
and RMSSD state.

To shed further light on the interactions of group and
HRV state in the connectivity of thalamus with the ventral

attention network and basal ganglia, we performed a post-hoc
analysis on the connectivity between the pairs of parcels of the
associated networks with the strongest interactions. Specifically,
we investigated the connectivity between the right caudal
temporal thalamus and left dorsal granular insula (parcel of the
ventral attention network; f -test for interactions = 17.5) and
the connectivity between the left posterior parietal thalamus
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FIGURE 3 | Mixed analysis of variance (ANOVA) for evaluating the effects of the group (epilepsy vs. controls; 1st column) and HRV state (low vs. high, patients and

healthy controls; 2nd column) on whole-brain connectivity, and their interactions (3rd column). The lower triangular matrix corresponds to the f-test for pairs of parcels

whereas the upper triangular matrix corresponds to the f-test for pairs of the eleven networks. The connectivity strength between pairs of networks that was used in

the mixed ANOVA was defined as the mean correlation averaged across all pairs of parcels that belonged to the two corresponding networks. Pairs of networks with

p < 0.0125 after FDR correction are indicated with an asterisk (*). Note that the lower triangular matrices are only shown to provide a qualitative description of the

interactions of networks at the parcel level, and that their significance levels are not assessed. We observe that the connectivity strength of the thalamus with the

ventral attention network and basal ganglia has strong interactions between the group and the LF-HRV state, which led us to examine thalamic connectivity with the

ventral attention network and basal ganglia more carefully.
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and left ventromedial putamen (parcel of the basal ganglia;
f -test for interactions = 17.7). For both connections of the
thalamus, healthy controls exhibited a lower (toward negative
values) connectivity strength in the high LF-HRV state compared
to the low LF-HRV state, whereas epilepsy patients exhibited the
opposite trend (Figure 4).

Figure 5 shows the degree to which the voxel-level
connectivity profile of the right caudal temporal and left
posterior parietal thalamus differs between low and high LF-
HRV state (red color corresponds to higher correlations in high
LF-HRV compared to low LF-HRV, and vice versa for blue color),
for both controls and patients as well as the differences between
the two groups. When comparing high with low HRV-state, in
controls we observe a decrease in the connectivity of the caudal
temporal thalamus with the bilateral anterior insula cortex
(AIC), the anterior cingulate cortex (ACC), middle frontal gyrus
(MFG) and supramarginal gyrus (SMG); whereas, in patients, we
observe a small decrease in the connectivity with MFG and an
increase with ACC. When examining the effect of LF-HRV state
in the connectivity of the posterior parietal thalamus, in controls,
a decrease in connectivity with the bilateral AIC, putamen and
caudate appears, and in patients, an increase in connectivity with
left putamen and AIC as well as bilateral caudate.

DISCUSSION

We examined the association of autonomic cardiac regulation
with spontaneous fluctuations in fMRI and whole-brain FC
in people with drug-resistant epilepsy, compared to healthy
controls. In both groups, heart rate was positively correlated
with fMRI signal intensity in bilateral thalamus and regions of
the cerebellum, and negatively correlated with lateral regions,
including bilateral inferior frontal gyrus, orbitofrontal cortex,
middle temporal gyrus and right insula and putamen (Figure 2;
Supplementary Figure 4). In addition, fluctuations in RMSSD
and LF-HRV exhibited strong associations with changes in FC
(Figure 3), despite the absence of correlation with brain activity
in individual regions. Importantly, these relations differed
between healthy controls and epilepsy patients. In controls,
increased levels of RMSSD and LF-HRV were associated with
declines in connectivity between thalamus and ventral attention
network, whereas in patients, similar HRV changes accompanied
increases in connectivity. The different patterns between the
two groups were more pronounced for the connectivity
between right caudal temporal thalamus and left dorsal granular
insula (Figure 4). Note, however, that the interactions between
ipsilateral regions [left (right) caudal temporal thalamus with left
(right) dorsal granular insula] were also statistically significant,
albeit with slightly higher p-values (p < 0.01). Therefore, it
is unclear whether the stronger interactions observed between
the right caudal temporal thalamus and left dorsal granular
insula compared to ipsilateral interactions have some biological
significance. Similar altered interactions emerged for changes in
LF-HRV levels and connectivity between the thalamus and basal
ganglia, with more pronounced effects for the connectivity of left
posterior parietal thalamus and ventromedial putamen.

These findings support the role of thalamus, insula and
putamen in autonomic control, as shown in previous studies
(17, 20, 30, 53), and add roles for the temporal gyrus whose
role in cardiac regulation has been recently suggested (29, 37).
Despite the well-established association of activity in amygdala
with heart rate fluctuations in task-based experiments (17, 54),
no association was observed here. Valenza et al. (29), who also
investigated the neural substrates of heart rate in task-free fMRI,
found no association of amygdala activity with heart rate either,
which may indicate that recruitment of amygdala activity with
heart rate occursmainly during emotional processing tasks rather
than the neutral conditions studied; the amygdala traditionally
serves affective roles. The neural correlates of heart rate found in
our work and in Valenza et al. (29) were not entirely consistent,
which may result from the more aggressive physiological
correction applied in our work. Artifacts due to cardiac pulsatility
were removed using the newly proposed cardiac pulsatility model
(55) and systemic low-frequency oscillations were removed
through gray matter signal regression (47, 56).

In healthy controls, a seed-to-voxel connectivity analysis
revealed that thalamic activity was anticorrelated with core
regions of the ventral attention network such as the insula,
anterior cingulate cortex (ACC) and supramarginal gyrus, and
this anti-correlation was enhanced during elevated levels of HRV
(Figure 5). However, the HRV-dependent interplay between the
thalamus and ventral attention network was absent in epilepsy.
Burianová et al. (57) previously demonstrated a disturbed (static)
connectivity between thalamus and the ventral attention network
(also referred to as the salience network) in patients with mesial
temporal lobe epilepsy which is consistent with our findings (i.e.,
the insula exhibited increased connectivity with the thalamus
and decreased connectivity with the dorsal ACC). However, the
present study also shows a strong relationship within healthy
individuals between autonomic cardiac regulation and thalamus
– ventral attention network connectivity, in line with findings of
Chang et al. (27), which is altered in epilepsy.

The thalamus consists of a series of nuclei which are
responsible, among others, for the relay of information from
cardiovascular receptors to the insular cortex (31). In turn,
the insular cortex integrates this information with inputs from
ACC, amygdala and high-order polysensory cortex, providing
interoceptive awareness. Stimulation of the insula (58, 59), basal
ganglia or thalamus (60) lead to marked changes in heart rate and
blood pressure. Any impairment in connectivity between these
regions, such as found here, may be involved in cardiac rate and
variability dysfunction.

A growing body of evidence from functional and structural
studies suggests thalamic dysfunction in epilepsy which may
underlie the abnormal connectivity of the thalamus with the
ventral attention network and the basal ganglia observed in
our study (Figures 4, 5). Allen et al. (32), using resting-state
fMRI, showed that the nodal participation of thalamus, a
measure that reflects the connectivity strength of a region with
regions from separate large-scale networks, was increased in
epilepsy patients compared to healthy controls, and particularly
in patients that succumbed to SUDEP or were at high-risk.
Similarly, two recent studies reported altered thalamocortical
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FIGURE 4 | Functional connectivity (FC) for pairs of parcels with strong group (epilepsy vs. controls)-LF-HRV interactions. In the healthy controls (n = 16), the

connectivity strength between the right caudal temporal thalamus and left dorsal granular insula [region of ventral attention (VA) network] was lower in times with high

levels of LF-HRV (i.e., levels of LF-HRV in the highest quartile of a scan) compared to times with low levels of LF-HRV (i.e., levels of LF-HRV in the lowest quartile of a

scan), whereas in people with epilepsy (n = 28) the connectivity strength was higher in times with high levels of LF-HRV. Similar results were observed for the

connectivity strength between the left posterior parietal thalamus and the left ventromedial putamen [region of the basal ganglia (BG)].

connectivity (61) as well as impaired connectivity between
thalamus and basal ganglia (62) in individuals with focal to
bilateral tonic-clonic seizures (FBTCS), a group of epilepsy
patients associated with increased risk of seizure-related injuries
and sudden unexpected death. Structural studies have revealed
association of thalamic volume loss with SUDEP and high-
risk patients (63) as well as with patients that present severe
hypoxia during generalized tonic-clonic seizures (64). Moreover,
electrical stimulations of the anterior nucleus of the thalamus
has been shown in clinical trials to reduce seizure frequency
even when seizures are remote from the stimulation site (65–
67). The body of thalamic evidence on mediating seizure
processes, and especially the altered FC between the thalamus
and ventral attention network in epilepsy suggest a target for
intervention. Specialized regions within the thalamus can be
modified by peripheral somatosensory stimulation; activation
of those thalamic sites by active stimulation has the potential

to modify these FC networks, and thus alter the dysfunction
patterns we found here.

RR intervals and, to a less extent, the high frequency
component of HRV (i.e., HF-HRV), were on average lower in
patients compared to controls (Figure 1) which is consistent with
the increased interictal heart rate and decreased HRV reported
in several studies (6–9). A major component of HF-HRV (0.15–
0.40Hz) is respiratory sinus arrhythmia, a phenomenon where
heart rate fluctuates in synchrony with the breathing cycle at
around 0.3Hz, and is often considered to reflect parasympathetic
influences on heart rate (68). Therefore, the findings may
indicate reduced parasympathetic influences on the heart in
the patients of our cohort. Interestingly, although RMSSD and
LF-HRV had similar levels in the two groups, when state-
dependent FC was assessed based on these twometrics it revealed
different connectivity patterns between the groups, suggesting
that HRV-state dependent FC has the potential to lead to more
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FIGURE 5 | Differences in seed-based FC between low and high LF-HRV state with seeds placed in the (top) right caudal temporal thalamus and (bottom) left

posterior parietal thalamus. The first and second rows of each panel show the fisher-transformed correlations average across all healthy controls and epilepsy

(Continued)
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FIGURE 5 | patients, respectively. Red color indicates higher (toward positive values) connectivity with the seed region in high LF-HRV state whereas blue color

indicates lower connectivity. The last row of each panel shows the two-sample t-test thresholded at p < 0.001 (uncorrected). Even though no significant differences

were found between the two groups after correcting for multiple comparison (FWE; p < 0.05), the differences observed with p < 0.001 (uncorrected) are consistent

with the results obtained with the analysis in the atlas space (Figures 3, 4) where the spatial autocorrelation between voxels of the same parcel are implicitly taken into

account. The unthresholded statistical maps are available at https://neurovault.org/collections/9452/.

sensitive biomarkers for cardiac dysfunction processes than HRV
quantification alone.

This study has limitations that should be considered. While
cardiovascular mechanisms are likely impaired in epilepsy and
contribute to SUDEP (69), breathing disturbances also appear
(70), and may contribute to alterations in FC. Cardiorespiratory
arrests monitored via video-electroencephalogram (VEEG)
suggest that terminal cardiac arrest was preceded by central
apnea in the majority of the cases (71), indicating a potential
mediator role for disturbed breathing in cardiac dysfunction.
To obtain a more holistic understanding of the neural processes
underlying autonomic dysregulation in epilepsy, recognition
of the close coupling of respiratory and autonomic control
mechanisms should be incorporated in the analysis which
was not possible in the present study, as breathing was
not monitored during the fMRI scans. Respiratory measures
would also be helpful in distinguishing parasympathetic from
sympathetic activity in frequency-based HRV measures. HRV
parasympathetic activity, lying within the high-frequency range
(0.15–0.40Hz) and associated with respiratory sinus arrhythmia,
can decline below 0.15Hz during periods with low breathing
rate, and apnea can completely disrupt respiratory sinus
arrhythmia measures. As a consequence, HRV-based measures of
parasympathetic and sympathetic activity may be blurred when
considering solely cardiac recordings (72).

Several studies describe an inverse relationship between
heart rate and HRV measures (73–76). However, as this
relationship is not well-understood and heart rate (or RR
interval) is already a good measure of ANS activity that can
be easily measured, further research is needed to understand
the additional information provided with HRV compared to
heart rate (73, 77). To this end, in this study, the power
spectral density of the HRV that the LF-HRV and HF-HRV
measures were derived from, was estimated using the successive
difference in RR intervals rather than the RR intervals as
this was found to yield HRV measures less correlated with
fluctuations in RR interval. In addition, to further disentangle
fluctuations in HRV from fluctuations in RR interval, the three
HRV measures were orthogonalized with respect to fluctuations
in RR interval.

An important caveat of this study in the use of fMRI as
a means to study the neural correlates of ANS activity is
that there are not well-established methods for disentangling
neuronal from physiological effects of autonomic activity (18,
19). While the BOLD (T2∗) contrast mechanism used in fMRI
is a measure sensitive to changes in blood oxygenation induced
by local neuronal activity (78), it is also prone to sources
of noise that can be categorized to scanner artifacts, motion
artifacts, high-frequency physiological artifacts and systemic
low-frequency oscillations (79–81). Sources from the first three
categories, including fast effects of cardiac pulsatility (∼1.0Hz)

and breathing motion (∼0.3Hz), can be mitigated to a large
degree using advanced pulse sequences (e.g., multi-echo fMRI)
and noise correction techniques (43–45, 47, 79, 82, 83). However,
systemic low-frequency (<0.1Hz) oscillations which typically
refer to BOLD fluctuations driven by changes in heart rate,
breathing patterns and blood pressure can be difficult to
be separated from neuronal fluctuations as they share the
same mechanism; i.e., both neuronal (in an attempt to satisfy
increased demands in oxygen) and physiological processes (e.g.,
heart rate) influence the levels of blood oxygenation (56, 84–
87). When studying the neural substrates of the ANS, this
is particularly problematic as brain regions not involved in
autonomic regulation may share similar BOLD activity with
core regions of the CAN due to effects of heart rate in global
cerebral blood flow, and therefore the physiological effects of
autonomic activity (e.g., fluctuations in heart rate) may lead to
artificial connectivity. In this study, to mitigate the effects of
systemic low-frequency oscillations, we employed gray matter
signal regression which outperforms alternative preprocessing
strategies (45, 47, 88, 89). Note that the effects of systemic
oscillations are more prominent in visual and sensorimotor areas
(85, 89), regions that did not appear to be correlated with heart
rate variations in the present study (Figure 2), suggesting that the
preprocessing strategy employed here successfully removed the
effects of systemic oscillations. However, we cannot exclude the
possibility that gray matter regression removed signal of interest
as well.

HRV impairment in epilepsy is more pronounced during
nocturnal periods (14, 15) and risk for SUDEP is increased
during night hours (16). These observations raise the question
whether alterations in FC are also enhanced by sleep or during
particular phases of the HRV circadian cycles. Note that even
though participants often fall asleep during resting-state fMRI
and, thus, there might be segments of fMRI data corresponding
to sleep in our dataset, the low sample size (N = 44) impedes
investigations in relation to sleep effects. The potential for more
exaggerated changes in FC during sleep mandates further studies
on this issue.

This study represents an exploratory, data-driven approach to
investigate whether large-scale networks are involved in cardiac
regulation, and is hampered by potential sleep, breathing, and
circadian interactions that could interfere with understanding
of important brain interactions. A hypothesis-driven analysis,
controlling for these interactions may elucidate more precisely
the key disruptions in autonomic processes found in epilepsy.

CONCLUSION

In healthy controls and people with drug-resistant epilepsy,
fluctuations in heart rate covaried with brain activity in key
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regions of the central autonomic network and in regions
associated with cardiac regulation. Functional connectivity
of the thalamus with the basal ganglia, a major autonomic
regulatory site, and the ventral attention network was strongly
linked to levels of LF-HRV, and that relationship differed
between healthy controls and epilepsy patients. These findings
support a significant role for thalamic contributions to
cardiovascular impairments in epilepsy which may lead to
cardiac rhythm and blood pressure failings implicated in
SUDEP. Because activity in regional thalamic structures
can be so readily modified by somatosensory peripheral
stimulation, we speculate that the findings suggest a means
to interfere with the deficient functional connectivity patterns
in epilepsy.
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The simultaneous acquisition of electroencephalographic (EEG) signals and functional

magnetic resonance images (fMRI) aims to measure brain activity with good spatial

and temporal resolution. This bimodal neuroimaging can bring complementary and very

relevant information in many cases and in particular for epilepsy. Indeed, it has been

shown that it can facilitate the localization of epileptic networks. Regarding the EEG,

source localization requires the resolution of a complex inverse problem that depends

on several parameters, one of the most important of which is the position of the EEG

electrodes on the scalp. These positions are often roughly estimated using fiducial points.

In simultaneous EEG-fMRI acquisitions, specific MRI sequences can provide valuable

spatial information. In this work, we propose a new fully automatic method based on

neural networks to segment an ultra-short echo-time MR volume in order to retrieve the

coordinates and labels of the EEG electrodes. It consists of two steps: a segmentation

of the images by a neural network, followed by the registration of an EEG template

on the obtained detections. We trained the neural network using 37 MR volumes and

then we tested our method on 23 new volumes. The results show an average detection

accuracy of 99.7% with an average position error of 2.24 mm, as well as 100% accuracy

in the labeling.

Keywords: EEG, fMRI, electrode detection, electrode labeling, deep learning, U-Net, ICP

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a technique that allows to visualize brain activity
by detecting hemodynamic variations. It is a non-invasive method that is widely used for the study
of brain function [see for example (1)]. Moreover, electroencephalography (EEG) is a technique
for measuring the electrical activity of the brain by using electrodes placed on the scalp, which
is also a non-invasive method, widely used for the diagnosis of brain disorders and the study
of neurophysiological activity (2). These two techniques are complementary and can be very
relevant in the study of many neurological disorders. In particular, recent studies have shown
the contribution that simultaneous EEG-fMRI can make to the understanding and treatment of
epilepsy, for example in identifying epileptogenic networks (3–5). Indeed, fMRI has an excellent
spatial resolution, in the order of a millimeter, and a lower temporal resolution, in the order
of a second, while EEG has a high temporal resolution (milliseconds), but has a lower spatial
resolution (6). In fact, source localization in EEG requires the solving of an inverse problem that
is sensitive to several parameters (7), one of the main ones being the forward head model used.
Another important parameter for the inverse problem is the 3D position of the electrodes on
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the scalp (8). Indeed, the accuracy of the estimated coordinates of
the EEG electrodes impacts the localization of the EEG sources.
Position errors lead to inaccuracies in the estimation of the EEG
inverse solution (9). This is an even more important issue in the
case of studies involving simultaneous EEG/fMRI acquisitions,
where several sessions and thus several EEG cap installations can
be required. Furthermore, in order to take full advantage of these
mixed acquisitions, the registration between EEG and MRI data
must be optimal. It is therefore essential to be able to obtain the
EEG electrode positions reliably and accurately.

Several methods have been proposed to address this
question (10). To begin with, there are semi-automated methods
that require manual measurements (11), which are therefore
time-consuming and subject to human error. Then, there are
methods that require additional material, such as electromagnetic
or ultrasound digitizers (12, 13). Finally, in the context of
simultaneous EEG/fMRI acquisitions, there are methods that
use MR localization of electrodes. In that case, a measurement
system external to the EEG, the MRI, is available, but with the
following problem: MRI-compatible EEG systems are designed
to be as invisible as possible on most MRI sequences. Therefore,
some of these methods require manual measurements (14) as
well, and others require special equipment (15, 16). More recent
studies have proposed the use of an ultra-short echo-time (UTE)
sequence in which the electrodes are more visible (17, 18). This
type of recently proposed sequences (19, 20) allows to visualize
the tissues with a very short T2 and T2⋆, such as cortical
bone, tendons and ligaments, and has the side-effect of enabling
imagingMR compatible electrode. The introduction of these new
sequences opens the door to new methods, more automatic and
more easily usable in the clinical routine. Indeed, no additional
equipment is required, and the additional acquisition time is
quite short, which does not overburden the corresponding EEG-
fMRI studies. In (21), the authors proposed a fully automated
method based on a segmentation step followed by a Hough
transform in order to select the positions of MR-compatible
electrodes in an MRI volume using the UTE sequence. This
method does not require any additional hardware and is fully
automatic, but can be sensitive to scalp segmentation error. Thus,
our aim here is to keep the advantages of this method (i.e.,
generalization and automation) while simplifying the process,
which means minimizing the preliminary steps, and improving
performance. In this work, we therefore also use a type of
UTE sequence to create an automatic method, but study the
contribution of machine learning on the electrode detection task.

Therefore, we propose a new two-fold approach based on a
combination of deep learning and template-based registration. In
fact, our method starts by training a model to detect the position
of the electrodes in an MRI volume. This model is based on
the U-Net neural network, a fully convolutional neural network
whose architecture allows to obtain accurate segmentations (22).
As mentioned above, we use a type of UTE sequence: the PETRA
(Pointwise Encoding Time reduction with Radial Acquisition)
sequence (23), which is gradually becoming the new standard
in applications of UTE sequences. Finally, we use the iterative
closest point (ICP) (24) algorithm to take into account the

geometrical constraints after the deep learning phase, and to
obtain labeling of the electrodes.

2. MATERIALS

2.1. Simultaneous EEG/fMRI
EEG signals were acquired with an MR-compatible 64-channel
cap (Brain Products, Gilching, Germany) of a circumference
between 56 and 58 cm, with 64 Ag/AgCl electrodes placed
in conformity with the extended international 10–20 EEG
system, with one additional ground electrode as AFz. Two 32-
channel MR-compatible amplifiers (actiCHamp, Brain Products,
Gilching, Germany) were used, and the electrodes were
attached to small cups of a diameter of 10 mm and a
height of 4 mm, inserted in the cap with gel. A particular
attention was given to the reduction of electrode impedance
and the positioning of the electrodes according to standard
fiducial points.

MRI was performed with a 3T Prisma Siemens scanner
running VE11C with a 64-channel head coil (Siemens
Healthineers, Erlangen, Germany). PETRA acquisitions were
obtained using echo-planar imaging (EPI) with the following
parameters: Repetition time (TR1)/(TR2) = 3.61/2,250 ms,
Inversion Time (TI1)/(TI2) = 1,300/500 ms, Echo Time
(TE) = 0.07 ms, Flip Angle 6◦, FOV = 300 × 300 mm2,
0.9 × 0.9 × 0.9 mm3 voxel size, matrix size = 320 × 105,
with 60,000 and 30,000 spokes. The acquisition lasted
6 min for the 60K quality and 3 min for the 30K quality.
As a result, PETRA images that we used have a size of
320× 320× 320 mm and a voxel spacing of 0.9375× 0.9375 mm.
We also acquired a 1 mm isotropic 3D T1 MPRAGE
structural scan.

2.2. Subjects
We acquired a set of 60 PETRA volumes that came from
20 different subjects, ranging from 2 to 5 images per subject
acquired at different sessions (implying a new positioning
of the EEG cap), all varying between two quality levels:
30k and 60k spokes. These volumes were divided into two
datasets. The first one was used to train a segmentation
model, and the second one was used to test the performance
of this model. We decided to separate the data by taking
12 subjects for the training dataset and 8 subjects for
the test dataset, resulting in 37 training volumes and
23 test volumes.

3. METHODS

Our two-fold method consists of a first step based on a
deep neural network and a second based on a template
registration. Figure 1 shows an overview of the method’s
principles. We will begin by describing how to proceed to
train a segmentation model, from data preparation to neural
network training by deep learning. Then, we will detail our
method for detecting and labeling EEG electrodes on MR
images, by explaining how to use the previously trained
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FIGURE 1 | Overview of the presented detection framework, with the learning process (top), and then the deep learning-based prediction and the registration-based

refinement step (bottom). From the training dataset and the corresponding labeled ground truths, the deep learning model is trained using the nnU-Net framework.

Secondly, our method consists of taking an image never seen by the model and making a predicted segmentation map of the electrodes. Then, template-based

adjustments are carried out and the final labeled segmentation map is obtained.

model as well as the template registration step to obtain the
electrode coordinates.

3.1. Ground Truth Estimation
To train our model, ground truth segmentation needs to be
computed on the PETRA volumes in the training dataset. In our
case, ground truths are segmentation maps of the same size and
characteristics as the PETRA, with segmented spheres having a
different value, also called “label,” for the 65 EEG cap electrodes
visible on the scalp and a value of 0 for the background.

To ease the manual creation of these ground truths, a scalp
segmentation mask was first estimated. As T1 images have a
higher quality than PETRA on the scalp area, this mask is
obtained by firstly registering the T1 image on the corresponding
PETRA image and then by segmenting the registered T1 image
using the FSL library (25). These two inputs allow the use of a
Matlab implementation, developed by Butler (26), of a method
proposed by de Munck et al. (14) which displays a so-called
“pancake” view of the scalp. This colorimetric 2D projection
of the scalp region eases the manual selection of the electrode
positions. As a result, a 3D labeled segmentation of each PETRA
volume was created.

3.2. Training Framework
The training dataset thus consists of 37 PETRA images, and their
associated ground truth, described above. We use the nnU-Net
framework (27). This framework is a tool that can automate
the choice of hyperparameters used to train a model from
any dataset and for any segmentation task. This is very useful,
especially since a large number of variations of neural network
architectures have been proposed for segmentation, for example
in the biomedical field, and the authors of (27) showed that
slight design improvements hardly improve performance, while
the choice of hyperparameters seems to be crucial. In fact, this
framework with a basic U-Net architecture outperformed most
of the specialized deep learning pipelines for 19 international
competitions, and 49 segmentation tasks, demonstrating its
efficiency but also its adaptability.

Among the different types of neural networks available,
we chose the 3D U-Net (28) network whose operations
such as convolutions and max pooling are replaced by their
3D counterparts. Once the neural network architecture is
chosen, the framework automatically estimates the best training
hyperparameters from the dataset provided as input. Here, our
model is trained over 1,000 epochs (number of times each
training data is considered) and 250 minibatches (number
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of samples considered before updating internal parameters),
with a loss function which is the sum of cross-entropy and
Dice loss and with a Stochastic Gradient Descent (SGD)
optimizer. The patch used has a size of 128 × 128 × 128 and
the default data augmentation scheme provided by nnU-net
was used.

3.3. Deep Learning-Based Predictions and
Template-Based Refinement
Once the model is trained, PETRA images from the test dataset
can be provided as input and the model can then perform
predictions. The method for making predictions, available in
the nnU-net framework, consists of a sliding window approach,
using the same patch size that has been used during training,
overlapping half of the patch at each step. In order to increase
performance, to avoid artifacts, and overall to have a good
quality of segmentation, several strategies have been selected: a
Gaussian importance weighting is used to reduce edge problems
and stitching artifacts, and a so-called “test-time augmentation,”
which is data augmentation for test datasets, is used by generating
slightly modified images from the tested image and averaging the
detections made on them. This data augmentation step is quite
time-consuming, so we will compare the results obtained with
and without it in the following.

The deep network can take into account spatial information,
as well as, naturally, the values present in the image. However, it
has more difficulties to incorporate the rather strong geometrical
constraint of our problem: the electrodes are all placed on a cap,
certainly a little elastic, but the distances between electrodes are,
for example, relatively steady. To take into account this geometric
constraint, we propose a second step to improve the predictions
provided by the neural network. The main objectives of this
second step are therefore to force the number of detections to be
exactly equal to 65, and to correctly label the electrodes. We start
by registering the n detections (n is not necessarily equal to 65) to
an averagemodel of the EEG cap, using the Iterative Closest Point
(ICP) algorithm. Figure 2 illustrates the principles of this step.

This template used here is obtained by averaging the
coordinates of 12 manually obtained ground truths point clouds
from the training set (one per subject, to account for head
shape variability). This step then consists of registering these two
point clouds (the prediction from the deep learning step and the
template) using the ICP algorithm with similarity transformation
(rotation, translation, scaling). This registration algorithm (24),
between two unpaired point clouds, iterates between two steps.
First, each point of the moving set is associated with the nearest
point in the fixed set. Then the geometric transformation that
minimizes the distance between these pairs of corresponding
points is estimated.We then apply this transformation and iterate
until convergence.

Then, by comparing the distance between the prediction and
the template points, a refinement of the detection is carried
out. First, each prediction point is associated with its closest
template point, and for each point of the template, only the
closest prediction point is kept. As a result of this sub-step, a
maximum of 65 predicted positions are conserved. Since only the

predictions closest to themodel were kept, outliersmay have been
removed from our initial detections. This is likely to improve
the registration, which is why a new ICP is then performed.
Finally, using this improved registration, and in the case where
less than 65 predictions were kept, the missing positions are
added as follows: each template point that is not associated with
any prediction positions are added in the final result. Thus, our
final result contains exactly 65 detections, each associated with a
point of the template, which provides us with a label.

3.4. Validation on the Test Dataset
To evaluate the proposed method, and for the test dataset, we
compared the detected electrodes to the ground truth coordinates
obtained manually. We computed the connected components for
the two images and the position of their center. Finally, for each
prediction point, its distance to the nearest point of ground truth
is computed. This distance is therefore considered a position
error. A prediction presenting an error greater than 10 mm,
corresponding to the diameter of an electrode cup, is considered
as a wrong detection (false positive). Since we systematically
consider the nearest ground truth electrode, we do not consider
the labeling when estimating the position error. The quality of
the final labeling, as well as that of the intermediate labeling, will
be evaluated separately. Finally, the number of detections being
exactly 65, the number of false positives is automatically equal to
the number of missing points (false negatives).

3.5. Evaluation of the Robustness of the
Method on a Different UTE Sequence
In order to evaluate the robustness of the method, as well as
to compare our results with those of (21), we also applied
it to images acquired according to a different UTE sequence,
the one described in the mentioned article. First, we directly
used the model learned from the PETRA images, to study the
generalizability of the learned model to another MR sequence.
Then, we learned a new model from the different UTE
database, containing fewer images, allowing us to investigate the
importance of the number of data in the learning set, but also to
compare our results to the previously introduced method.

4. RESULTS

All the implementations were made on Nvidia Quadro M6000
24GB GPU (which was the most powerful graphics card in
2016 according to NVIDIA Corporation). The training then
lasts between 1 and 2 weeks, depending on the number of
processes launched on the GPU available. Classically in deep
neural network methods, the prediction of one test data is
much faster. The presented method predicts a segmentation
map from a PETRA image in about 7 min on the above-
mentioned GPU.

4.1. With Test-Time Augmentation
The results are assessed by measuring the position error as
described in the validation section, for all volumes in the test
dataset. Table 1 presents the average results for all subjects in the
PETRA test dataset. This test set consists of 23 volumes, from
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A B C D E

FIGURE 2 | Description of the registration-based refinement step. (A) In blue: the prediction points from the deep learning-based step, in red: the template obtained

by averaging on the training set, (B) a first ICP is performed in order to register the two points cloud, (C) for each template point, only the closest detection is kept, (D)

then, a second ICP is performed and the number of detections is now less than or equal to 65, (E) finally, the points in the model not associated with any predictions

are added to our final result, which therefore contains exactly 65 detections.

TABLE 1 | Electrodes detection on the test dataset.

Deep learning-based

detection

Final results

Mean PE (mm) 2.12 2.24

Std PE (mm) 1.50 1.37

Max PE (mm) 8.84 7.99

Mean number of false positives 0.30 0.22

Mean number of true positives 65.0 64.8

PPV (%) 99.5 99.7

Rows 1,2,3: mean, standard deviation, and maximum values of Position Error (PE). Rows

4,5: mean number of false positives (PE > 10 mm) and true positives (PE ≤ 10 mm).

Second column: intermediate results after the deep learning step. Third column: our final

results after registration-based refinement step.

8 different subjects not included in the learning data set, with
sampling resolutions of either 30k or 60k spokes, corresponding
to amore or less long acquisition time. The average position error
is equal to 2.24 mm, to be compared with the diameter of one
electrode cup, 10 mm. The number of good (true positive) and
wrong (false positive) detections was also assessed, taking that
distance of 10 mm as the threshold. As can be seen in the table,
after the deep learning step, the number of detections was too
high on average, and it was corrected after the registration step,
resulting in a better Positive Predictive Value (PPV) defined as
the percentage of detections that are true positive relative to the
total number of detections.

The average total number of detections after the first step is
65.3 (65+0.3) and is therefore higher than the actual number of
electrodes (65). This is totally logical since the neural network
architecture used does not incorporate any constraint on the
number of detections. The output of this first step is a simple
volume, where, at each voxel, a label indicates whether it is
considered to belong to the background or to a specific electrode.
Note that, in this case, two detections associated with the same
electrode can count as two good detections, as long as their

distance to the said ground truth electrode is less than 10mm.
After our registration-based refinement step, the final number
of detections is, as expected, exactly equal to 65 (64.8+0.22).
Twenty-three volumes were processed, corresponding to a total
of 1,495 electrodes, out of which 1,490 were correctly detected
and 5 were missed. These missing electrodes often corresponded
to those located behind the ears and provoked few outliers
in the output. These outliers are reflected in the value of the
average maximum error, 8.84 mm. One can note a slight increase
of the mean PE after registration. The refinement step indeed
usually allows the recovering of some missing electrodes in the
intermediate detections provided by the neural network. These
new electrodes are therefore provided by the registered model.
Although often considered as “true positives” because they are
close enough to the ground truth, they are sometimes a little less
accurate than the MRI-based detections and cause this relative
increase of the mean PE. However, it can be noted that this
increase in mean PE comes with a decrease in the standard
deviation of position error.

Finally, regarding labeling, 100% of the electrodes were
correctly labeled in our final results. As can be seen in the
Table 2, this was not the case after the deep learning step.
This explains our choice of ICP for the registration step: we
cannot always rely on the labeling of intermediate results. Indeed,
the number of labeling errors can be as many as 11 in a
volume. In fact, these observed errors often correspond to a
simple offset in labeling: an electrode is incorrectly labeled
and all its neighbors are then likely to be contaminated by
this error. We therefore decided to disregard the labeling
information provided by the neural network and rely solely
on the ICP result for this. It may seem a bit odd to include
labels in the ground truth for the training step since we discard
the resulting label afterward. Nevertheless, our experiences
have interestingly shown that training a neural network with
labeled ground truth improves detection results (in terms of
position error) compared to a situation where the ground truths
are simple binary maps. In particular, in the case where 65
different labels are provided during training, the network is
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TABLE 2 | Electrodes labeling on the test dataset.

Number of labeling

errors among true

positives

Deep learning-

based detection

Final results

Mean 1.87 0

Maximum 11 0

Number of labeling errors among the true positives, for the intermediate results from deep

learning and for our final results.

TABLE 3 | Faster electrode detection on the test dataset.

Faster deep

learning-based

detection

Final results

Mean PE (mm) 6.78 2.23

Std PE (mm) 25.4 1.40

Max PE (mm) 168.7 8.20

Mean number of false positives 2.57 0.13

Mean number of true positives 65.1 64.9

PPV (%) 96.3 99.8

Rows 1,2,3: mean, standard deviation, and maximum values of Position Error (PE). Rows

4,5: mean number of false positives (PE > 10 mm) and true positives (PE ≤ 10 mm).

Second column: intermediate results after the faster deep learning step. Third column:

our final results after registration-based refinement step.

more likely to detect a number close to 65 also during the
test phase.

4.2. Faster Predictions Without Test-Time
Augmentation
For each new PETRA image provided, the method presented
above allows us to make predictions in about 7 min on our GPU,
almost all of this time being used by the first step, based on neural
network. As a matter of fact, the ICP-based refinement step runs
in few seconds. Therefore, we finally explored the possibility of
reducing the computing time required by the neural network to
obtain a prediction. To this end, we have removed the test-time
augmentation, mentioned in section 3.3. The prediction time of
an image was then significantly reduced to about 2 min. Table 3
presents the results of this faster detection pipeline.

All of the indicators for intermediate results, after the deep
learning-based step alone, show that they are clearly worse with
this accelerated version: strong increase in Position Error (mean,
standard deviation, and maximum values) and increase of the
total number of detections. However, the associated detections
contain enough valuable information so that the robustness
brought by our refinement step allows us to finally obtain results
as good as in the first version, as reported in Table 1. Counter-
intuitively, some metric values are even slightly better. However,
a statistical paired t-test showed that none of these changes were
significant (p > 0.5 for all comparisons).

Finally, and as in the original version, the labeling contained
some errors in the intermediate results, but is completely accurate
in our final results, even with this faster version, as shown in

TABLE 4 | Electrodes labeling on the test dataset for the faster version.

Number of labeling

errors among true

positives

Deep learning-

based detection

Final results

Mean 3.2 0

Maximum 13 0

Number of labeling errors among the true positives, for the intermediate results from deep

learning and for our final results.

TABLE 5 | Electrodes detection on the UTE dataset, using the previous model,

learned using the PETRA images.

Deep learning-based

detection

Final results

Mean PE (mm) 1.81 2.47

Std PE (mm) 1.67 1.64

Max PE (mm) 11.06 9.36

Mean number of false positives 0.33 0.72

Mean number of true positives 56.4 64.22

PPV (%) 99.4 98.89

Rows 1,2,3: mean, standard deviation, and maximum values of Position Error (PE). Rows

4,5: mean number of false positives (PE > 10 mm) and true positives (PE ≤ 10 mm).

Second column: intermediate results after the deep learning step. Third column: our final

results after registration-based refinement step.

Table 4. The second step, already important to improve the
results in the previous version, turns out to be crucial when we
want to accelerate the processing by the neural network, and
allows us to obtain similar results.

4.3. Tests on a Different UTE Sequence
In order to evaluate the robustness of our method, we challenged
it by testing it on a data set from another MRI sequence, the
original UTE one (21). Eleven subjects were included in this new
study. A 60k-spokes acquisition was done for all subjects and a
30k-spokes image was acquired for seven of them.

First, the previous model, learned using the PETRA images,
was used to detect the electrode positions on these 18 new
images, acquired with a different UTE sequence. Results are
shown in Table 5. As expected, the detections estimated by
the neural network were not as good as in the previous case.
Indeed, the average number of electrodes provided was lower
than 57. However, and very interestingly, these electrodes were
mostly true detections. For this reason, and as can be seen in
the table, the ICP-based registration step was able to retrieve
almost all missing electrodes, leading once again to excellent
performance results. Our registration-based refinement step thus
brings robustness to the method, allowing to limits the risk of
overfitting, and improving its generalizability.

Finally, in order to compare our results to (21), we
learned a new neural network, using only this different UTE
sequence, applied the refinement step, and evaluated the resulting
performance. From the previously described UTE dataset, we
built two groups: 9 MRI volumes in the training set and 9
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TABLE 6 | Electrodes detection on the UTE dataset, using a new model, learned

using images acquired with the same UTE sequence.

Deep learning-based

detection

Final results

Mean PE (mm) 1.70 2.42

Std PE (mm) 1.24 1.29

Max PE (mm) 8.02 8.19

Mean number of false positives 0.56 0.44

Mean number of true positives 60.0 64.6

PPV (%) 99.1 99.3

Rows 1,2,3: mean, standard deviation, and maximum values of Position Error (PE). Rows

4,5: mean number of false positives (PE > 10 mm) and true positives (PE ≤ 10 mm).

Second column: intermediate results after the deep learning step. Third column: our final

results after registration-based refinement step.

volumes in the test set, again ensuring that no subjects were
present in both sets. Table 6 shows the corresponding results.
Training the model using the same type of images as in the tests
slightly improves the quality of the detections, compared to when
training the model on PETRA images. Moreover, and despite this
smaller group size (compared to the PETRA study), our results
are now better than those reported in (21). For example, themean
PPV is now 99.3% and was between 88 and 94% for 30k and 60k
spokes images, respectively.

For both of these cases, all the detected electrodes were
once again well-labeled: there was no mislabeling among the
true positives.

5. DISCUSSION

We have introduced a new fully automatic method for
the detection of EEG electrodes in an MRI volume during
simultaneous EEG-MRI acquisition. This technique is easy to
set up and use, and gives accurate and reliable results. Indeed,
after the model has been learned once and for all, the method
requires nothing more than acquiring a PETRA volume, after
the installation of the EEG headset. No additional equipment
is required, and the PETRA volume can be acquired in a few
minutes. The computation time is, for the most part, used by
the deep learning-based prediction. This can be accelerated up
to 2 min and is the most important part of the proposed method.
Nevertheless, as the results showed, the second registration-based
step allows both to improve the final results and to make them
more robust to possible outliers.

It is well-known that deep learning models are highly
dependent on the quality and representativeness of the data in
the learning set. Our first investigations in this direction, using
a different UTE sequence, seem to indicate that the method can
be generalized to other types of images, even keeping the model
learned on the initial data, thanks to the robustness brought by
the registration step. Another interesting question is the behavior
of the method when the number of electrodes is not the same
between the learning and testing phases. One can hope that the
robustness brought by the second ICP-based step can provide
a good detection, if the same sequence and the same type of

electrodes are used, but this needs to be verified with a future
investigation. Finally, this method has been tested on one type of
EEG cap (Brain Products), but is valid for any detection problem
of elements on the scalp. It will therefore also be interesting to test
it on other EEG headsets, but also on other systems, for example,
the near-infrared spectroscopy (NIRS) modality, which consists
of a system of optodes placed on the scalp.

Finally, it should also be noted that our second study, on
the original UTE sequence, had a smaller sample size, probably
more consistent with a typical simultaneous EEG-MRI study (11
subjects were involved, corresponding to 18 volumes, and only
9 of these were used in the training phase). Despite the smaller
amount of data, the results (Table 6) were only slightly less good
than those obtained with a larger sample (Table 1).

6. CONCLUSION

We presented a new method for the detection and labeling
of EEG electrodes in an MR volume acquired using PETRA
sequence. The first step is to train a model from a set of training
data and associated manual ground truths, then use this model
to obtain a segmentation map, and finally to apply a step using
the ICP registration algorithm to improve the detections and
their labeling. This fully automatic method is easy to implement,
requires very few steps, and gives excellent results. For all
these reasons, we strongly believe that it can be very useful
for all protocols with simultaneous EEG-fMRI acquisitions. In
particular, when an EEG source localization is planned later, as
is often the case when studying epilepsy, accurate information on
the position of the electrodes is a definite advantage.
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Objective: Whilst stimulation of the anterior nucleus of the thalamus has shown efficacy

for reducing seizure frequency in adults, alterations in thalamic connectivity have not

been explored in children. We tested the hypotheses that (a) the anterior thalamus has

increased functional connectivity in children with focal epilepsy, and (b) this alteration

in the connectome is a persistent effect of the disease rather than due to transient

epileptiform activity.

Methods: Data from 35 children (7–18 years) with focal, drug-resistant epilepsy and 20

healthy children (7–17 years) were analyzed. All subjects underwent functional magnetic

resonance imaging (fMRI) whilst resting and were simultaneously monitored with scalp

electroencephalography (EEG). The fMRI timeseries were extracted for each Automated

Anatomical Labeling brain region and thalamic subregion. Graph theory metrics [degree

(DC) and eigenvector (EC) centrality] were used to summarize the connectivity profile of

the ipsilateral thalamus, and its thalamic parcellations. The effect of interictal epileptiform

discharges (IEDs) captured on EEG was used to determine their effect on DC and EC.

Results: DC was significantly higher in the anterior nucleus (p = 0.04) of the thalamus

ipsilateral to the epileptogenic zone in children with epilepsy compared to controls. On

exploratory analyses, we similarly found a higher DC in the lateral dorsal nucleus (p =
0.02), but not any other thalamic subregion. No differences in EC measures were found

between patients and controls. We did not find any significant difference in DC or EC in

any thalamic subregion when comparing the results of children with epilepsy before, and

after the removal of the effects of IEDs.
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Conclusions: Our data suggest that the anterior and lateral dorsal nuclei of the

thalamus are more highly functionally connected in children with poorly controlled focal

epilepsy. We did not detect a convincing change in thalamic connectivity caused by

transient epileptiform activity, suggesting that it represents a persistent alteration to

network dynamics.

Keywords: epilepsy, focal epilepsies, childhood epilepsies, deep brain stimulation, functional magnetic resonance

imaging, electroencephaloagraphy, connectivity, thalamus

INTRODUCTION

Focal epilepsy is increasingly recognized as a disorder of
brain connectivity (1–4), and both structural and functional
connectome studies suggest that large-scale network alterations
associate with epilepsy (5, 6). The thalamus has been implicated
as a major “hub” in epilepsy since it integrates information across
multiple functional cortical networks (7). Thalamo-cortical
connectivity has long been implicated in the network-based
pathogenesis of epileptic seizures (8–10), and has been shown to
be a mechanism of interhemispheric seizure propagation, both in
generalized (11, 12) and focal epilepsies (13).

Deep brain stimulation (DBS) has therefore become a
potential surgical treatment for epilepsy and the SANTE trial
in 2010 showed that bilateral stimulation of the anterior nuclei
of the thalamus reduced seizure frequency in adults with both
medically refractory, temporal lobe, and extratemporal lobe
epilepsy (14). Mechanistic understanding of the alterations to
thalamic connectivity that may be targeted by this therapy are
invaluable for increasing, and potentially predicting efficacy.
Thalamic DBS could be therapeutic in children but thus far has
not yet been accepted as a therapeutic option to the same degree
as in adults. In part this may be explained by the paucity of data
on therapeutic outcomes of DBS in this group (15).

There have been a number of human neuroimaging studies
in temporal lobe epilepsy (TLE) in adults that examined the
significance of the thalamus in the functional and structural
connectomes. Magnetic resonance imaging (MRI) currently
offers the only non-invasive method of examining the role
of thalamic connectivity within the whole-brain connectome.
Graph theory has been increasingly used to analyze these
structural and functional brain networks to understand the
alterations posed by disease states such as epilepsy. Measures
such as degree centrality (number of functional connections with
other brain regions) and eigenvector centrality (“influence” of a
node within a network) have commonly been used.

Studies from functional MRI (fMRI) have shown that the
thalamus is a hub of functional connectivity in patients with
TLE when compared to controls (16). The study by He et al.
(16) demonstrated that the thalami of patients with TLE who
were not seizure-free following temporal lobe resection had
a higher degree and eigenvector centrality than compared to
patients rendered seizure free and healthy controls. Studies
of connectivity using diffusion tensor imaging (DTI) have
shown findings suggestive of decreased structural connectivity
between medial thalamic and temporal regions. Whilst this may

seem paradoxical to findings from functional studies, this still
strengthens the association of the abnormal connectivity between
thalamus and the epileptogenic zone (17, 18). What is not clear
from these imaging studies, however, is whether this altered
thalamic connectivity is a result of the persistent effect of epilepsy
or is instead due to transient interictal epileptiform activity.
Interictal epileptiform discharges (IEDs) have been associated
with significant thalamic or basal ganglia involvement in children
with focal epilepsy (19, 20). This raises a question as to whether
the differences in the functional connectivity seen in other studies
may be driven by the transient epileptiform activity.

There has been notably less work on establishing the
significance of the thalamus in the functional connectome in
childhood focal epilepsies, particular in extratemporal epilepsy
which has recently been reported to constitute 37.9% of all
pediatric epilepsy surgeries (21). We therefore set out to test the
hypothesis that the anterior nucleus of the thalamus has a higher
level of functional connectivity in children with focal epilepsy
than in those without epilepsy. We aimed to do this by using
graph theory to measure connectiveness (degree and eigenvector
centrality) of the anterior thalamus, as performed in prior studies
(16). We additionally wished to test the hypothesis that these
changes are not predominantly due to transient effects, but rather
persisting alterations in the network.

METHODS

Our methodology and imaging pipeline is summarized in
Figure 1.

Patients
This study examined data obtained from 35 children with
drug-resistant, focal epilepsy undergoing evaluation for
epilepsy surgery at Great Ormond Street Hospital (London,
United Kingdom) (20/35 female, median age 15 years, age range
7–18 years), previously described in the work by Centeno et al.
(19, 22). We excluded patients in whom there were large lesions
that deformed brain architecture to ensure a reliable parcellation
of brain regions would be possible in all subjects. The putative
epileptogenic zone (determined by the epilepsy multidisciplinary
team bymeans of clinical, neurophysiological, and neuroimaging
data) was most commonly the frontal lobe (21/35 cases). The
putative epileptogenic zone was lateralized to the left-side in
20/35 children. We summarize the patient details individually
in Table 1 and at a group level in Table 2. Our control group
consisted of twenty children without epilepsy (13/20 female,
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FIGURE 1 | Imaging analysis pipeline. (A) Pre-processing pipeline. (B) Timeseries extraction. (C) Demonstration of the correction method for interictal epileptiform

discharges (IEDs) in the anterior nucleus of the thalamus for patients 13 (one spike type) as detailed in Table 1. (D) Functional network analysis.

median age 10 years, age range 7–17 years). Ethical approval was
given by the NRES Committee London: Surrey Borders Research
Ethics Committee London Center (REC reference: 11/LO/1421).
The guardian of each participant provided informed and written
consent on the participant’s behalf.

Magnetic Resonance Imaging Acquisition
All subjects underwent simultaneous EEG-fMRI according to
the protocol previously published Centeno et al. (22). Briefly,
subjects were scanned at Great Ormond Street Hospital (London,
United Kingdom) in a 1.5T Siemens Avanto scanner using a 12
channel receive head coil. One cubic millimeter isotropic T1-
weighted images were acquired using a Fast Low Angle Single
Shot (FLASH) gradient echo sequence. The fMRI acquisition
consisted of echo planar imaging (EPI) with 3.3×3.3×4mm
resolution with a field of view of 210mm, TR of 2,160ms, TE
of 30ms and flip angle of 75 . There were 30 contiguous slices in
each volume with a slice thickness of 3mm, slice gap of 1mm,
and matrix of 64 × 64. There were 300 volumes per session
but the first five volumes in each session were omitted. Each
subject underwent up-to four fMRI sessions (each for 10min and
48 s), based on their ability to tolerate all of the sessions. In two
randomly allocated sessions the child watched a cartoon, and in
the other two sessions the child was asked to rest with their eyes
closed. We chose to include the first resting fMRI session, in

which children were asked to rest with their eyes closed, since
this session had reduced motion compared to the second on
average (22).

Image Pre-processing
Image pre-processing was performed using Statistical Parametric
Mapping (SPM; https://www.fil.ion.ucl.ac.uk/spm/software/
spm12/). fMRI data was re-aligned and then the Functional
Image Artifact Correction Heuristic (FIACH) method (23)
was applied. This removes biophysically implausible signal
jumps, and creates a parsimonious noise model from brain
regions exhibiting high noise levels. This method has been
shown to be highly effective when compared to a number of
alternative pipelines (23, 24). The six noise regressors estimated
by FIACH were added to the six re-alignment parameters
generated by SPM. The fMRI data was then corrected for
slice-timing and then registered to the 1mm isotropic T1W
volume. Image registration was visually verified for each subject.
Each patient’s T1W volumes were normalized to standard space
(MNI 152 template) and then the fMRI was normalized using
the derived transform. The fMRI volumes were then converted
to a 2mm isotropic resolution following the normalization
step. A Gaussian kernel was used to smooth fMRI 8mm in
each direction.
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TABLE 1 | Demographic, clinical, neurophysiological, and neuroradiological descriptions of each child.

ID Age*

(years)

Age of

onset**

(years)

Sex Laterality

of EZ

Location of EZ MRI features Focal vs.

multifocal

No. of IEDs Medications

1 8 Female Left Temporal Tuberous sclerosis Focal 2 NZP and ZNS

2 14 4 Female Left Frontal Cryptogenic Focal 2 LCM and LVT

3 11 0.25 Male Left Hypothalamus/temporal Hypothalamic hamartoma Focal 59 LVT

4 15 10 Male Left Posterior quadrant Cryptogenic Multifocal 31, 10 CBZ

5 17 Male Right Parietal Focal cortical dysplasia Multifocal 51, 37, 71, 28 LVT, CBZ, and VPA

6 15 10 Male Right Frontal-central Cryptogenic Focal 15 CBZ

7 17 3 Female Left Temporal Cryptogenic Multifocal 175, 30, 131 LVT

8 14 2.5 Female Right Temporal Focal cortical dysplasia Multifocal 206, 16 LVT and TOP

9 11 6 Female Right Frontal-temporal Cryptogenic Focal 132 CBZ and LTG

10 11 7 Female Right Frontal Focal cortical dysplasia Focal 141 OXC

11 17 10 Female Right Frontal Cryptogenic Focal 34 LTG and LEV

12 16 6 Female Left Frontal Cryptogenic Focal 7 VPA and CBZ

13 16 13 Female Left Insula Focal cortical dysplasia Focal 76 TPM and CBZ

14 11 3 Male Right Frontal Cryptogenic Multifocal 128, 29 CBZ

15 11 8 Male Right Frontal Cryptogenic Multifocal 25, 1 LVT and VPA

16 16 2 Female Left Temporal-parietal-occipital Polymicrogyria Multifocal 236, 62, 39 LEV and CLNZ

17 15 9 Male Left Temporo-occipital Hippocampal sclerosis Multifocal 83, 21 LMT 575 Zonasimne 200

18 15 8 Male Left Fronto-temporal Focal cortical dysplasia Focal 112 OXZC 1200 LVT

19 17 5 Female Left Frontal Cryptogenic Focal 82 OXC

20 8 4 Female Left Frontal Middle cerebral artery stroke Focal 150 VPA 1200, LEV 600, ETHX

1000

21 16 Male Left Frontal Cryptogenic Multifocal 129, 77 PMP

22 13 3 Male Left Frontal Focal cortical dysplasia Focal 26 OXC and CLBZ

23 10 3 Female Left Frontal Cryptogenic Multifocal 47, 4 LVT and CBZ

24 11 6 Male Right Posterior quadrant Cryptogenic Multifocal 25, 23, 5 OXC

25 17 8 Male Left Frontal Cryptogenic Multifocal 35, 13 LVT, OXC, and CLBZ

26 17 Male Right Occipital Ischaemic perinatal insult Focal 21 OXC, LMT, and LVT 2000

27 18 Female Right Frontal Focal cortical dysplasia Multifocal 148, 6 LTG

28 17 5 Female Right Fronto-temporal Bilateral polymicrogyria Multifocal 242, 43 LVT and VPA

29 11 Female Right Parietal Cryptogenic Focal 81 OXC, PHE, and CLBZ

30 17 5 Male Left Frontal Cryptogenic Focal 67 LVT and LAC

31 11 5 Female Right Parietal Focal cortical dysplasia Focal 450 OXC, CLBZ, and VPA

32 17 12 Female Left Frontal Cryptogenic Multifocal 62, 1, 75 VPA

33 13 7 Female Left Frontal Focal cortical dysplasia Multifocal 128, 23 VPA

34 15 Female Right Posterior cingulate Dysembryoplastic

neuroepithelial tumor

Focal 26 LVT and LTG

35 7 Male Left Frontal Cryptogenic Focal 145 LVT, OXC, and CLBZ

The number of interictal epileptiform discharges (IEDs) are listed for each IED type within each patient. EZ, epileptogenic zone; IED, interictal epileptiform discharge; *Age rounded to

nearest integer. **Age-of-onset (if known) is an approximate. CBZ, Carbamazepine; CLBZ, Clobazam; GAB, Gabapentin; LCM, Lacosamide; LTG, Lamotrigine; LVT, Levetiracetam; NZP,

nitrazepam; OXC, Oxcarbazepine; PHE, Phenobarbital; PGB, Pregabalin; PMP, Perampanel; RUF, Rufinamide; TPM, Topiramate; VPA, Valproate; ZNS, Zonisamide.

Electroencephalography (EEG) Acquisition
and Analysis
Simultaneous scalp EEG data was acquired using a 64-channel,
MRI-compatible cap (EASYCAP, Brain Products, Munich,
Germany). The full EEG acquisition protocol is available in
prior work (22). The onsets and durations of IEDs for each
session were identified by a neurologist and neurophysiologist,
as described in prior work (19, 22). Events onsets and durations
were used to generate a temporal regressor by convolution with

the standard canonical hemodynamic response, and its temporal
and dispersion derivatives as implemented in SPM8.

Timeseries Analyses
Determination of the fMRI timeseries for each region within
the brain had the following processing steps applied using
MATLAB (MathWorks, Natick, MA, United States). This script
is freely available to download (https://github.com/roryjpiper/rs-
fMRI.git). A general linear model was applied to control noise
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TABLE 2 | Summaries of the patient and control cohorts.

Patients Controls

Median age (range) 15 (7–18) years 10 (7–17) years

Male:female ratio 15:20 7:13

Median age of seizure onset (range)* 6 (0.25–13) years –

Median duration of epilepsy* 7 (3–14) years –

*Data missing for eight patients.

according to the six re-alignment parameters aforementioned.
We then took the mean timeseries signal from the voxels of
each region of the brain according to the Automated Anatomical
Labeling (AAL) template (25). The cerebellar regions were
excluded to leave 90 cerebral regions. We investigated thalamic
nuclei by removing the left and right thalami from the AAL
atlas and replaced these with seven paired thalamic subregions,
which instead parcellated the cerebrum into 102 regions. The
sub-parcellations of the thalamus used here are described in
previously published work by He et al. (26). These thalamic
subregions included the anterior, medial dorsal, lateral dorsal,
lateral posterior, ventral lateral posterior, medial pulvinar and
lateral pulvinar subregions (shown in Figure 1). The timeseries
signal for each region was then band-pass filtered to 0.04–0.07Hz
as per our previous work (27).

Correction for the Effects of Inter-ictal
Epileptiform Discharges
Following the procedure described in detail by Shamshiri et al.
(20), we used functions in R (Version 3.6.1) to remove the
influence of IEDs from the fMRI signal. Figure 2 demonstrates
the effect of IED regression on fMRI signal. Briefly, IED signal
changes are modeled by convolving the IEDs with the canonical
hemodynamic response function, and its derivatives before
projecting the data from each region into an orthogonal space.
Following this correction, the “IED-corrected” timeseries’ for
each patient was determined using the identical pipeline as
described above.

Graph Theory Analyses
We created a 102×102 adjacency matrix for each subject by
calculating the Pearson correlation coefficient between each
region using the corcoeff.m MATLAB function. We re-assigned
the values in the diagonal of the adjacency matrix (self-
correlation) to 0. All negative correlation values were re-
assigned to 0. We used the Brain Connectivity Toolbox (29)
(www.brain-connectivity-toolbox.net) in MATLAB to calculate
the degree centrality (DC) (number of links connected to a
node) and eigenvector centrality (EC) (self-referential measure
of a node influence) for each region-of-interest (ROI) in every
individual. These measures were selected to allow us to interpret
our findings in the context of prior work in thalamic connectivity
(16), but also are selected to test our hypothesis that brain
activity will have greater synchrony in children with epilepsy
when compared to those without.

Statistical Analyses
For the purpose of statistical analysis, we selected a range of 10–
50% of the highest correlations found in the adjacency matrix.
Fifty percent was used as the upper limit since after this point the
number of connections (defined as positive correlation values)
did not increase any further in some subjects. To determine the
difference in DC and EC between groups that are relatively robust
to our choice of network density and thresholds, we compared
results derived from the thalamus ipsilateral to hemisphere of
the epileptogenic focus in patients to the median results derived
from the left and right thalami of controls. Using a MATLAB-
based permutation test (30), we statistically compared themedian
area-under-the-curve (AUC) between 10 and 50% of the network
density for each graph theory metric (see Figure 2) between the
results for these subject groups. Statistical testing for measures
of the anterior nucleus of the thalamus were performed with
an established priori hypothesis, whereas those performed on
the remaining thalamic subregions were exploratory, and the
reported p-values should be interpreted as descriptive. Our
statistical testing used 10,000 permutations and outputted a two-
tailed p-value. The effect of IEDs on the graph theory measures
were further examined by measuring the Spearman correlation
of the residual AUC for each patient vs. the number of spikes
per session. Effect size was determined using theMann-Whitney-
Wilcoxon test (r = z /

√
n1 + n2). Figure representation of

data uses the median value ± standard error of the mean (SEM).
Decimal places are rounded to two decimal points.

RESULTS

Degree and Eigenvector Centrality
The anterior nucleus of the thalamus ipsilateral to the EZ was
found to have a significantly higher AUC for DC in children
(1,516.5 ± 66.15) with epilepsy compared to controls (1,345 ±
56.41) (r = 0.10; p = 0.04) (Figures 2, 3). We performed the
same analysis on only the patients with a frontal EZ (n = 17)
and found a similar trend in DC, but this did not reach statistical
significance (p= 0.38).

We then performed an exploratory analysis of the medial
dorsal, lateral dorsal, lateral posterior, ventral lateral posterior,
medial pulvinar and lateral pulvinar thalamic subregions, on
comparing these two groups again, the median AUC for DC was
also significantly higher in the ipsilateral lateral dorsal nucleus
(p= 0.02) (Supplementary Figure 1).

No significant difference was found, however, for the same
analyses for the ipsilateral thalamus, taken as a whole (the AAL
thalamus ROI) (p= 0.30), nor for any of the remaining five nuclei
(Supplementary Figure 2). No significant differences were seen
in EC between patients and controls (Supplementary Figure 2).

Effects of Interictal Epileptiform Activity
Total number of captured IEDs ranged from 2 to 450 per EEG-
fMRI session, as detailed in Table 1. Nineteen patients had one
spike type (focal) and 16 had more than one IED type. We did
not detect significant differences in the median AUC for DC
(p = 0.62) or EC (p = 0.81) in the anterior thalamic nucleus
when comparing between the results from children with epilepsy
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FIGURE 2 | Degree centrality of the anterior thalamic subregion ipsilateral to the epileptogenic zone (EZ). The lines represent controls (blue), patients before (red) and

after (green) correction for interictal epileptiform discharges (IEDs). The left graphs show the full range of network densities from 0 to 100%. The dotted box shows the

range selected for statistical analysis and shown in the right graph.

before, and after the effects of IEDs were removed. No other
thalamic subregion showed these differences either.

When correlating between IED frequency and the AUC for
DC in the ipsilateral anterior nucleus in children with epilepsy,
we found a borderline, but non-significant negative correlation
in DC [ρ = −0.34; p = 0.05 (rounded up to two decimal
places)], and a significant negative correlation in EC (ρ =−0.38;
p= 0.03).

DISCUSSION

The anterior nucleus of the thalamus has consistently been an
area of clinical interest and a therapeutic target in patients with
epilepsy. High-frequency stimulation of the anterior nucleus has
been shown to desynchronize focal large-scale brain activity and
reduce the number of IEDs in adults with TLE (31). The SANTE
trial in 2010 is, to date, the largest randomized controlled trial
of stimulation of the anterior nucleus of the thalamus significant
reduction in seizure frequency for adults with both TLE and those
with epileptogenic foci elsewhere (14).

Our study suggests that the number of connections (degree
centrality [DC]), determined by fMRI, is higher in the anterior
nucleus of the thalamus ipsilateral to the EZ in children with
focal epilepsy when compared to age-matched controls. Our
findings support the significance of these nuclei in the functional
connectome of children with epilepsy, and add weight to the
hypothesis that DBS to these regions could be therapeutic.

The increased functional connectivity that we demonstrated
in the anterior nucleus is in keeping with the aforementioned
work, and also with a number of studies which have found the
“midline thalamus” to be a key region involved in thalamo-
temporal networks (32, 33). He et al. used resting state fMRI
to study functional connectivity, and suggest that presurgical
thalamic “hubness” (the thalamus being an important node in

FIGURE 3 | Area under the curve (AUC) for the degree centrality of the

anterior thalamic subregion ipsilateral to the epileptogenic zone (EZ). The violin

plot (28) demonstrates the distributions of the AUC for degree centrality in

patients before (red) and after (green) interictal epileptiform discharges (IEDs)

and controls (blue). The clear dot shows the median.

the network) is a biomarker for predicting seizure outcome
in patients undergoing surgery for TLE (16). In patients not
rendered seizure free, increased nodal hubness was seen in
both the ipsilateral and contralateral thalami on account of an
increased DC and EC. Furthermore, simulated lesioning of the
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thalami showed a greater reduction in network integration in
the patients not rendered seizure free. In another study, Bonilha
et al. (34), showed that a feature of the connectome after temporal
lobectomy was reduced connectivity in thalamo-cortical circuits,
and that patients were more likely to achieve seizure freedom if
their preoperative network did not involve abnormal thalamic
connectivity (35).

Furthermore, on exploratory analysis, we identified a higher
functional connectivity of the lateral dorsal nucleus of the
thalamus, but this in the context of a predominantly extra-
temporal epilepsy cohort. The lateral dorsal nucleus has been
shown to have connections with the limbic lobe (including
cingulate gyrus), parietal and visual cortex (36). Furthermore, it
has been postulated that the anterior and lateral dorsal nuclei,
may represent a “higher order” set of thalamic nuclei that,
rather than act as a “simple relay,” have a more significant
influence in the regulation of cortical-cortical interactions (37).
It is important to note the limited spatial resolution and effects of
co-registration that affect fMRI. It is possible that some of the
effect seen in the lateral dorsal nucleus is a spillover of signal
detected from the anterior nucleus.

The differences in functional connectivity we observed in this
study, however, were of modest magnitude. In contradistinction
to relatively homogeneous TLE cohort studies, this study
included patients with an epileptic focus in various brain regions
which is representative of the surgical population in pediatric
practice. Additionally, thalamic connectivity in this cohort needs
to be measured against a background of developmental changes.
While both of these factors could dilute the effect in childhood
epilepsy, we demonstrate a significant effect confirming our
primary hypothesis. Our analysis of the patients in this dataset
may have combined and averaged the results of distinct groups
of children who either do or do not have the thalamus, or
its subregions, as regions of higher connectivity within the
functional network. It would be interesting to continue this work
in this cohort by studying whether or not increased connectivity
of the anterior thalamus is predictive of clinical outcome in
children undergoing DBS.

Our secondary hypothesis was that altered functional
connectivity of the anterior thalamic nuclei was not due to
transient effects of IEDs, but instead to stable alterations in
the network. We did not detect a significant difference in
DC values in this region in patients after the effects of IEDs
were corrected for. This study adds to the ongoing discussion
regarding the effect of IEDs in the functional connectivity of
the brain and the role of the thalamus. It could be that long-
term alterations in thalamic connectivity facilitate the spread
of IEDs and that thalamic DBS reduces seizure frequency by
inhibiting this pathway of connectivity. This idea is supported
by a study by Yu et al. (31) aforementioned, that showed that
bilateral anterior thalamic nucleus stimulation reduces IEDs. An
alternative hypothesis is that focal IEDs are the cause of increased
thalamic connectivity, but our study did not show a significant
difference between DC and EC in patients before, and after
the effects of IEDs were removed, suggesting that the anterior
and lateral dorsal thalamic regions have an intrinsically altered
baseline. This is in keeping with prior work that suggests that

increased connectivity within epileptogenic networks survives
the regression of IED effects (38). A study by Shamshiri et al.
(20) showed that IEDs can have a pervasive yet transient effect on
the brain’s functional organization using a seed-to-voxel analysis
during a low level attention task. This is compatible with our
study findings, where the anterior nucleus of the thalamus may
facilitate a permissive state of increased connectivity whereby
IEDs (from different brain regions in this heterogeneous group)
can affect the coherence of “active” networks.

We acknowledge the following limitations of our study.
Firstly, our patient group was heterogeneous in etiology and
epileptogenic focus (with a frontal lobe predominance). This
could, however, be observed as a strength since the findings
we have detected have survived in this mixed cohort, which
is somewhat reflective of the pool of patients referred for
epilepsy surgery workup. Secondly, the AAL atlas was designed
for the analysis of the adult MNI-registered brain. Although
we have visually validated the registration of the AAL atlas
in each case and used a kernel smoothing method for fMRI
signal, there may be inaccuracies that are unavoidable when
using this brain region atlas in children. Due to limited sample
size and heterogeneous surgical management, we could not
make meaningful correlations of clinical outcomes with our
quantitative graph theory metrics. Lastly, we recognize the need
to validate these findings in external cohorts, particularly in
children with generalized epilepsy or those with focal seizures
with secondary generalization.
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Background: Potentially curative epilepsy surgery can be offered if a single, discrete

epileptogenic zone (EZ) can be identified. For individuals in whom there is no clear

concordance between clinical localization, scalp EEG, and imaging data, intracranial EEG

(icEEG) may be needed to confirm a predefined hypothesis regarding irritative zone (IZ),

seizure onset zone (SOZ), and EZ prior to surgery. However, icEEG has limited spatial

sampling and may fail to reveal the full extent of epileptogenic network if predefined

hypothesis is not correct. Simultaneous icEEG-fMRI has been safely acquired in humans

and allows exploration of neuronal activity at the whole-brain level related to interictal

epileptiform discharges (IED) captured intracranially.

Methods: We report icEEG-fMRI in eight patients with refractory focal epilepsy who

had resective surgery and good postsurgical outcome. Surgical resection volume in

seizure-free patients post-surgically reflects confirmed identification of the EZ. IEDs

on icEEG were classified according to their topographic distribution and localization

(Focal, Regional, Widespread, and Non-contiguous). We also divided IEDs by their

location within the surgical resection volume [primary IZ (IZ1) IED] or outside [secondary

IZ (IZ2) IED]. The distribution of fMRI blood oxygen level-dependent (BOLD) changes

associated with individual IED classes were assessed over the whole brain using a

general linear model. The concordance of resulting BOLD map was evaluated by

comparing localization of BOLD clusters with surgical resection volume. Additionally, we

compared the concordance of BOLD maps and presence of BOLD clusters in remote

brain areas: precuneus, cuneus, cingulate, medial frontal, and thalamus for different

IED classes.

Results: A total of 38 different topographic IED classes were identified across the 8

patients: Focal (22) and non-focal (16, Regional= 9, Widespread= 2, Non-contiguous=
5). Twenty-nine IEDs originated from IZ1 and 9 from IZ2. All IED classes were associated

with BOLD changes. BOLDmaps were concordant with the surgical resection volume for

27/38 (71%) IED classes, showing statistical global maximum BOLD cluster or another

cluster in the surgical resection volume. The concordance of BOLD maps with surgical

resection volume was greater (p < 0.05) for non-focal (87.5%, 14/16) as compared to

Focal (59%, 13/22) IED classes. Additionally, BOLD clusters in remote cortical and deep
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brain areas were present in 84% (32/38) of BOLD maps, more commonly (15/16; 93%)

for non-focal IED-related BOLD maps.

Conclusions: Simultaneous icEEG-fMRI can reveal BOLD changes at the whole-brain

level for a wide range of IEDs on icEEG. BOLD clusters within surgical resection volume

and remote brain areas were more commonly seen for non-focal IED classes, suggesting

that a wider hemodynamic network is at play.

Keywords: intracranial EEG, EEG-fMRI, IED/spikes, BOLD, post-surgical outcome

INTRODUCTION

Intracranial electroencephalography (icEEG) recordings are
performed during presurgical evaluation to localize irritative
zone (IZ), seizure onset zone (SOZ), epileptogenic zone (EZ),
and eloquent cortex for patients being considered for epilepsy
surgery. icEEG has better spatial resolution and sensitivity
compared to scalp EEG (1), which has low sensitivity (2, 3) and
can provide inaccurate localization (4) and even lateralization (5),
especially in patients with frontal lobe epilepsy. icEEG, however,
has limited spatial sampling, only detecting electrical activity
within a 1-cm core of tissue from recording site (6), and carries
surgical risk (7, 8).

Simultaneous scalp EEG and functional magnetic resonance
imaging (EEG-fMRI) can map interictal epileptiform discharges
(IED) and seizure-related blood-oxygen-level-dependent
(BOLD) changes (9–21). In patients with focal cortical dysplasia,
IED-related BOLD changes distributed over multiple lobes
are associated with poor postsurgical outcome (22). The
interpretation of EEG-fMRI findings is often limited by the low
sensitivity of scalp EEG, low rates of IED, and an incomplete
understanding of the relationship between IED and BOLD
changes (12, 13, 23–25). The sensitivity of EEG-fMRI can
be increased by using topographical map correlation-based
comparison of EEG recorded inside and outside the scanner
(26). Simultaneous icEEG and fMRI (icEEG-fMRI) has been
performed following extensive safety testing and locally adapted
protocol (27–30) [see (31) for review], revealing IED-related
BOLD changes local and remote from the relevant intracranial
electrodes (32, 33).

We used icEEG-fMRI to explore BOLD changes and their
distribution at the whole brain level for different IED classes
on icEEG, in patients with refractory focal epilepsy who had
good postsurgical outcome and well-characterized EZ. Surgical
resection volume in this group of patients with good postsurgical
represents confirmed identification of the EZ [where EZ is area
of the brain deemed necessary to be resected to render patient
seizure free (1, 34)].

Our hypotheses were as follows: (1) widespread BOLD
networks, involving the surgical resection volume and remote
brain areas, can be seen for IEDs on icEEG; (2) distribution of
BOLD changes in surgical resection volume and remote brain
areas is different for IED classes based on their topographic
localization and their relationship with surgical resection
volume. We investigated the anatomical localization and level
of concordance of IED-related BOLD maps with the surgical

resection volume. We also evaluated the relationship between
different IED classes and level of concordance of BOLD maps
with the surgical resection volume, and different IED classes and
presence of BOLD changes in remote healthy cortex and other
brain areas.

METHODS

Eight patients with refractory focal epilepsy had icEEG-
fMRI during their invasive pre-surgical evaluation, who had
subsequently undergone resective epilepsy surgery with a good
postsurgical outcome, i.e., completely seizure free or only auras
(ILAE class I or II outcome) for more than 2 years after
surgery. All patients gave written informed consent. The study
was approved by the joint research ethics committee of the
National Hospital for Neurology and Neurosurgery, Queen
Square, London (UCLH NHS Foundation Trust) and UCL
Institute of Neurology, Queen Square, London, UK.

Clinical Background
Prior to implantation, all patients had undergone detailed clinical
history and examination, a structural MRI as per protocol
specifically designed for epilepsy (35), long-term scalp video-
EEG monitoring, neuropsychological and neuropsychiatric
assessments, and additional functional imaging tests including
positron emission tomography (PET), magnetoencephalography
(MEG), or ictal single photon emission computed tomography
(ictal SPECT) as indicated (see Table 1).

In accordance with routine clinical practice at our center,
implantation of intracranial electrodes was guided by a
hypothesis-based consensus decision generated from the results
of non-invasive investigations. The SOZ, EZ, and the extent
of surgical resection (Table 2) were defined by experienced
Clinical Neurophysiologists/Epileptologists (BD, TW, and MW)
and members of the multidisciplinary team based on invasive
(multiple grid/depth electrode contacts on icEEG) and non-
invasive investigations. The implantation scheme for each patient
is shown in Supplementary Table 1. Post-surgical outcome
(Table 2) was assessed with the ILAE classification (36).

Intracranial EEG-fMRI Acquisition
After the clinical icEEG recordings were completed, the
implanted electrodes (numbering between 56 and 128 contacts)
were connected to magnetic resonance scanner-compatible
cables and amplifier system (32) for icEEG-fMRI acquisition.
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TABLE 1 | Clinical characteristics.

ID Age Sex Age @

seizure

onset

Epilepsy Scalp EEG MRI Other non-invasive investigations

1 39 M 8 FLE Sharp: R centro-parietal

Seizure: central fast activity

*L HS PET: R parietal and posterior frontal

hypometabolism

Ictal SPECT: bi frontocentral and R insular

hyperperfusion

MEG: R temporo-occipital and

frontocentral spikes

2 28 M 12 FLE Spike: L fronto-central

Seizure: regional central

FCD

L posterior

SFG + MFG

PET: No focal hypometabolism

Ictal SPECT: L frontal lobe

3 36 F 7 FLE Spikes: L inferior frontal/orbito-frontal

Seizure: regional L frontal

FCD

L IFG

PET: L frontal hypometabolism

4 39 M 9 FLE Spikes: Regional L temporal-frontal

Seizure: Regional L fronto-central

FCD

L

posterior MFG

PET: No focal hypometabolism

5 32 M 16 FLE Spikes: Regional R frontal, bi frontal and

L fronto-temporal

Seizure: Bi frontocentral

NL PET: R frontal hypometabolism

6 27 F 3 FLE Spikes: None

Seizure: Regional L

frontocentral frontocentral

FCD

L superior

frontal sulci

PET: L SFG hypometabolism

Ictal SPECT: L frontal and insular

hyperperfusion

MEG: no spikes recorded

7 26 M 7 TLE Spikes: Bi temporal regional

Seizure: Regional L temporal

L HS None

8 28 M 7 PLE Spikes: Regional R anterior parietal

Seizure: Focal R postcentral

FCD

Right

Supramarginal gyrus

None

M, male; F, female; FLE, frontal lobe epilepsy; TLE, temporal lobe epilepsy; TOLE, Temporo-occipital lobe epilepsy; R, right; L, left; NL, nonlesional; HS, hippocampal sclerosis; FCD,

focal cortical dysplasia; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; SMC, sensori-motor cortex; HMC, hand motor cortex; *incidental finding.

icEEG was recorded, processed online (to reduce the scanner-
related artifacts), and displayed (BrainVision Recorder, Brain
Products, Germany) during the fMRI scanning.

In accordance with our icEEG-fMRI protocol (29) echo planar
images (EPI: TR/TE/flip angle = 3,000 ms/40 ms/90◦, 64 ×
64 acquisition matrix, 38 × 2.5mm slices with a 0.5-mm gap)
were acquired using a 1.5-T Siemens Avanto scanner (Erlangen,
Germany) with a standard transmit/receive head coil and low
specific absorption rate sequences (≤ 0.1 W/kg, head average)
to reduce the risk of health hazards. One (for patients #2 and
4) or two (for patients #1, 3, 5, 6, 7, and 8) 10-min resting-
state EPI time series (depending on patient comfort inside the
scanner and time constraints) and T1-weighted structural scans
were acquired.

Intracranial EEG Pre-processing and IED
Classification
icEEG recorded during fMRI was corrected offline for scanner-
related artifact (37) and reviewed by expert users (UC and MC)
to identify and classify all IED using BrainVision Analyzer2
(Brain Products GmbH, Germany) and compared with clinical
long-term icEEG recording and reports.

The identified IEDs were classified for the purpose of
fMRI modeling according to the topographic distribution and
localization (Table 2). For this topographic scheme, IED were

classified according to the number of electrodes involved, their
spatial location, field extent, and propagation (38) (Figure 1,
Table 2) as either Focal: if they involved 2–4 contiguous electrode
contacts and had similar field; Regional: if they involved 5–10
contiguous electrode contacts that may span up to two gyri;
Widespread: if they involved more than 10 contiguous electrode
contacts; or Non-contiguous: if they had a focal or regional
field but also propagated to non-contiguous electrode contacts.
The Regional, Widespread, and Non-contiguous classes taken
together formed the non-focal IED class.

Furthermore, to assess our second hypothesis, we divided
IEDs for their relationship with the surgical resection volume
(i.e., confirmed EZ): IED classes overlapping the surgical
resection volume were identified as IZ1 (primary irritative zone)
and IED classes outside the surgical resection volume were
identified as IZ2 (secondary irritative zone) (39) (see Table 2).

For patients #3 and #7 one of the two icEEG-fMRI sessions
had to be excluded: for patient #3, icEEG had scanning-related
artifacts and patient #7 had a subclinical seizure during one of
the sessions (40).

fMRI Processing and Modeling
The fMRI data were analyzed using Statistical Parametric
Mapping 8 (www.fil.ion.ucl.ac.uk) after discarding the first two
volumes to account for the T1-saturation effect. Functional
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TABLE 2 | Invasive localization and post-surgical outcome.

ID IED type (Number) Spike classification Seizure onset

zone

Epileptogenic

zone

Surgical

resection

Histopathological

diagnosis

Post-surgical

outcome

Topographic

distribution

Irritative zone (IZ)

1 PSMA1–3 (211) Focal IZ1: R SMA R SMA R SMA and SFG R SMA and SFG No FCD confirmed ILAE II @ 5 years

ASMA1–3 (46)

ASMA1–3 + PSMA1–3 (476) Regional

PC5, 6 (150) Focal IZ2: R inferior

parietal and MFG

PC5, 6 + AI5, 6 (150) ∼NC

2 G4, 5 (72) Focal IZ1: L posterior SFG

and MFG

L posterior SFG

and MFG

L posterior SFG,

MFG and SMA

L posterior SFG,

MFG and SMA

FCD IIB (Balloon

cells present)

ILAE I @ 6 years

G12–15 (29)

G4–6 + G12, 13 + G22–24 + G28–30 (80) Regional

G12–15 + G21–24 + DP2-4 (350)

G4–8 + G12–15 + G20–24 + G28–30 + DP2–4 (244) Widespread

3 DA3, 4 (770) Focal IZ1: L IFG and MFG L anterior IFG and

MFG

L anterior IFG and

MFG

L anterior IFG and

MFG

FCD IIB (Balloon

cells present)

ILAE I @ 9 years

DA3, 4 + G1 18, 27, 35, 43 (265) Regional

G2 6, 14 (195) Focal IZ2: L lateral

orbitofrontal

4 DA3–6 (423) Focal IZ1: L IFG and MFG L inferior MFG L IFG, MFG and

lateral orbitofrontal

L IFG, MFG and

lateral orbitofrontal

FCD IIB (Balloon

cells present)

ILAE I @ 2 years

DA4, 5 + GA51 (261)

DA2–6 + GA49–54 (208) Regional

5 FP2–4 (140) Focal IZ1: R anterior

inferior orbitofrontal

R anterior IFG

and orbitofrontal

R anterior

orbitofrontal

R anterior

orbitofrontal

No FCD confirmed ILAE I @ 7 years

FP2–4 + AM2–4 (44)

AM2–4 + FP1–4 PMFG3–6 + IFG9-11 (36: runs of IED

lasting 1–9 s)

∼NC IZ2: R anterior

inferior orbitofrontal,

MFG, IFG, and SMA

AM1–4 + FP3–4 FP1–8 + AM1–14 + ASMA2–5+
PMFG3–10 + IFG5–10 (45: runs of IED lasting 3–12 s)

(Continued)
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TABLE 2 | Continued

ID IED type (Number) Spike classification Seizure onset

zone

Epileptogenic

zone

Surgical

resection

Histopathological

diagnosis

Post-surgical

outcome

Topographic

distribution

Irritative zone (IZ)

FP1–4 + AM1–6 FP1–8 + AM1–14 + FOF1–10 +
ASMA2–7 + PMFG4–12 + IFG5–11 (90: runs of IED

lasting 3–12 s)

6 SF5–7 (168) Focal IZ1: L SFG (lateral

and medial)

L SFG (lateral and

medial)

L posterior SFG

(lateral and medial)

L posterior SFG

(lateral and medial)

FCD IIA (No

Balloon cells)

ILAE I @ 7 years

GB4-6 + 14–16 (90) Regional

GC5–16 (474)

SF5–7 + GB5-8 + GC5, 10, 11, 12, 15, 16 (23) ∼NC

7 LAH1, 2 + LPH1, 2 + LA3, 4 (60) Regional IZ1: L temporal lobe SOZ1: L

hippocampus

SOZ2:

R amygdala

L anterior temporal

lobe

L anterior temporal

lobe

Hippocampal

sclerosis

No FCD

ILAE I @ 10 years

LAH1–2 (359) Focal

LA3–4 (57) Focal

LPH 1–2 (96) Focal IZ2: R and L

temporal lobe

RA1, 2 + RH1, 2 (624) Focal

RA1, 2 + RAH1, 2 + LAH2, 3 + LPH2, 3 (10) Regional

8 D1+ D2 + G31 (62) Widespread IZ1: R supramarginal

gyrus

SOZ: R

supramarginal

gyrus

R supramarginal

gyrus extending to

hand sensory

cortex

R supramarginal

gyrus extending to

hand sensory

cortex

FCD IIB (Balloon

cells present)

ILAE I @ 7 years

D1 3–4 (43) Focal

D2 5–6 (2,481) Focal

G23 (83) Focal

G31 (72) Focal

G36 (209) Focal

G38 (226) Focal

R, right; L, left; NL, non-lesional; HS, hippocampal sclerosis; FCD, focal cortical dysplasia; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; SMC, sensori-motor corte; HMC, hand motor cortex; SOZ,

seizure onset zone.

∼Focal/regional with non-contiguous spread.
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FIGURE 1 | IED-related BOLD changes for Patient #2. (A) Implantation scheme of intracranial grid, strip, and depth electrodes and the invasively defined EZ is

highlighted as red-colored electrodes on the sketched diagram and red square on the 3D rendered brain. (B) Representative sample of icEEG showing different IED

classes based on their topographic distribution and localization included in the general linear model. (C) SPM[F] maps (p < 0.001) for different IED types overlaid on

co-registered postsurgical T1-volume. (i) Focal IED [G4, 5 (n = 72); Concordant plus BOLD map]: changes in left inferior/middle frontal gyrus (GM cluster, within 2 cm

of the surgical resection volume), left posterior temporal, and cuneus/precuneus. (ii) Focal IED [G12–15 (n = 29); BOLD map with Some concordance]: changes in left

medial occipital (GM cluster), left inferior/middle frontal gyrus (within 2 cm of the surgical resection volume), left parieto-temporal, and cingulate gyrus. (iii) Regional IED

[G4–6 + G12, 13 + G22–24 + G28–30 (n = 80); Discordant BOLD map]: changes in left inferior frontal gyrus (GM cluster 2.6 cm from the surgical resection volume),

medial superior frontal gyrus, left temporo-occipital, and left middle frontal gyrus. (iv) Regional IED [G12–15 + G21–24 + DP2–4 (n = 350); Concordant plus BOLD

map]: changes in left middle/inferior frontal gyrus (GM cluster, within 2 cm of the surgical resection volume), medial superior frontal gyrus, and supplementary motor

area. (v) Widespread IED [G4–8 + G12–15 + G20–24 + G28–30 + DP2–4 (n = 244); Concordant plus BOLD map]: changes in left middle frontal gyrus (GM cluster,

within 2 cm of the surgical resection volume), right middle temporal gyrus, posterior supplementary motor area, and cingulate/precuneus.

imaging data were corrected for slice acquisition time, realigned
to the mean, and spatially smoothed using an isotropic Gaussian
kernel of 8-mm FWHM (41).

A general linear model (GLM) was built to map IED-
related hemodynamic changes. For patients who underwent two
EPI series, these were included in a single GLM as separate
sessions. Each IEDwas represented either as a zero-duration stick
function (individual IED) or blocks (runs of IED). Each IED
class was modeled as a separate effect and the corresponding
time series of stick functions or blocks convolved with the
canonical hemodynamic response function and its temporal and
dispersion derivatives. In line with previous analyses, 24 inter-
scan realignment parameters [6 realignment parameters from
image pre-processing and a Volterra-expansion of these (42)]

were included in the GLM as confounds to account for motion-
related effects similar to our previous work (40).

Assessment of IED-Related BOLD
Changes
For each IED class, the presence of significant BOLD clusters
was assessed over whole brain using SPM[F]-maps at a statistical
threshold of p < 0.001 (uncorrected for family-wise error) and a
cluster threshold of five contiguous voxels, as in previous studies
from our group and others (15, 22, 26, 32, 40, 43). The resulting
SPMswere co-registered with pre- and post-surgical T1-weighted
MRI scans using rigid-body registration in SPM. The localization
of BOLD clusters, for each IED class, was visually assessed in
relation to the surgical resection volume. Clusters of activity
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were also assessed in remote areas including cuneus, precuneus,
cingulate gyrus, medial frontal lobe, and other brain areas such
as basal ganglia, thalamus. The fitted BOLD time course for
each cluster was plotted and classified as increases, decreases, or
biphasic (consisting of both increases and decreases) according
to the sign of the peak change relative to baseline.

The concordance of BOLD maps with surgical resection
volume (i.e., confirmed EZ) was assessed for each IED class on
icEEG using a concordance classification scheme in line with our
previous work (15, 22, 26, 40, 43) as either:

• Entirely concordant: All BOLD clusters overlapping with/or
located within 2 cm of the surgical resection volume in the
same lobe.

• Concordant plus: The global statistical maximum BOLD
cluster (GM cluster) overlapping with/or located within 2 cm
of the surgical resection volume in the same lobe and other
clusters were remote (i.e., >2 cm away in different lobe or
opposite hemisphere) from the surgical resection volume.

• Some concordance: The GM cluster was remote from the
surgical resection volume and at least one of the other
clusters overlapped with or located within 2 cm of the surgical
resection volume in the same lobe.

• Discordant: all clusters were remote, i.e., more than 2 cm
from the surgical resection volume in the same lobe or were
in a different lobe or opposite hemisphere from the surgical
resection volume.

BOLD clusters confined to the ventricular system, vascular tree,
edges, and base of brain and cerebellum were not considered
further in this analysis (20, 43–46).

We performed chi-square tests (χ2) (SPSS Statistics) to assess
the association between (1) topographic IED classes and level
of concordance of BOLD maps/presence of BOLD clusters in
remote brain areas/presence of balloon cells in patients with
FCD; (2) IZ1/IZ2 IED classes and level of concordance of BOLD
maps/presence of BOLD clusters in remote brain areas/presence
of balloon cells in patients with FCD; (3) presence of balloon cells
in FCD patients and level of concordance of BOLD maps.

RESULTS

The clinical details for eight patients fulfilling selection criteria
are summarized in Table 1. There were six males; the median
age at the time of icEEG-fMRI was 32 years and the median
age at seizure onset was 7.5 years. Six patients had frontal lobe
epilepsy, one had temporal lobe epilepsy, and one had parietal
lobe epilepsy. The median follow-up time with ILAE class I/II
postsurgical outcome was 6 years.

Classification of IED
All patients had a mixture of different topographic IED classes
(Table 2). The number of IED classes in any given patient ranged
between 3 and 7 (median 4.5). There was a total of 38 IED classes
across the group. Out of these 38 IED classes, 22 were Focal, and
16 were non-focal: Regional = 9, Widespread = 2, and Non-
contiguous = 5 according to topographic classification scheme
(see Table 2). In terms of irritative zones, 29/38 IEDs originated

from IZ1 (Focal = 18, Regional = 8, Widespread = 2, and Non-
contiguous = 1) and 9/38 from IZ2 (Focal = 4, Regional = 1,
Widespread= 0, and Non-contiguous= 4).

Distribution of IED-Related BOLD Changes
for IED Classes
All IED classes were associated with significant BOLD clusters
(Table 3) that were both co-located with recording electrodes but
also in regions remote from them (Figure 1). BOLD clusters were
seen within the surgical resection volume (Concordant) in 71%
(27/38) of IED-related BOLD maps. The cluster of concordance
corresponded to the statistical global maxima in 8 maps (Entirely
Concordant = 1, Concordant plus = 7) and to the second or
other significant cluster in 19 maps (Some concordance). At least
two maps were concordant in every patient, with a mean of 70%
of the maps per patient being concordant (range 50–100%).

All maps except one contained more than one BOLD cluster
(see Table 3). Across the group, BOLD clusters were distributed
in the ipsi/contralateral hemisphere remote cortical or other
brain areas including precuneus, medial superior frontal gyrus,
cingulate, basal ganglia, and thalamus in 32/38 (84%) of BOLD
maps (see Table 3).

Relationship With IED Topographic Classification
BOLD maps for non-focal IEDs (Regional, Non-contiguous, and
Widespread) were more commonly concordant with surgical
resection volume (Entirely Concordant = 1, Concordant plus =
5, Some Concordance = 8; 14/16, 87.5%) than for Focal IEDs
(Concordant plus = 2, Some Concordance = 11; 13/22, 59%),
(χ2 = 7.08, p < 0.05). Presence of BOLD clusters in remote
cortical and/or other brain areas, i.e., precuneus, medial frontal,
cingulate, and thalamus, was more frequent for non-focal IED
maps (15/16, 93%: Regional = 8, Non-contiguous = 5, and
Widespread = 2) as compared to Focal IED maps (17/22, 77%)
but the difference did not reach statistical significance.

Relationship With Irritative Zones
BOLD maps were concordant with the surgical resection volume
for 20/29 (68%) IED classes from IZ1 (Entirely Concordant = 1;
Concordant plus: 6; Some concordance: 13), and 7/9 (77%) IZ2
IED (Concordant plus: 1; Some concordance: 6). The map’s level
of concordance or presence of BOLD changes in remote cortical
and/or other brain areas did not differ significantly between IZ1
and IZ2 IED classes.

Structural Abnormalities
Seven patients had structural abnormalities seen on MRI
(Table 1). In six patients, these were in the EZ [focal cortical
dysplasia (FCD) = 5, hippocampal sclerosis (HS) = 1], and one
patient had an incidental finding of HS unrelated to the EZ.

In the subgroup of patients with FCD, four patients had
FCD type IIB with balloon cells and one patient had FCD type
IIA with no balloon cells (see Table 2). All patients with FCD
showed at least onemapwith a BOLD cluster overlying the lesion.
We did not find a statistically significant association between
presence/absence of balloon cells and different IED classes and
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TABLE 3 | BOLD changes for individual IED class.

Patient

ID #

IED type BOLD clusters (↑ increase, ↓decrease, ↑↓biphasic) Level of

concordance

Neocortex Other Remote BOLD

clusters

Right Left

Frontal Parietal Temporal Occipital Frontal Parietal Temporal Occipital

1 PSMA1–3 ↓MFG ↓Superior

parietal

↓IFG ↑↓Medial SFG SC

ASMA1–3 ↓MFG, ↑IFG ↓Superior
parietal

↓IFG ↓Superior
parietal

↓SMA, Medial SFG,

Precuneus/Cuneus.

↓Medial occipital

SC

ASMA1–3 + PSMA1–3 ↓SFG, MFG ↓SFG, MFG ↓ITG ↓Cuneus, Cingulate,
Medial SFG/SMA

SC

PC5, 6 ↓MFG ↓Lateral
superior

↓Medial SFG/SMA,

Precuneus/Cuneus

SC

PC5, 6 + AI5, 6 ↓SFG/MFG, ↑Posterior
temporal, MTG

↑Lateral
superior

↓MFG ↑Posterior
Temporal,

MTG

↓Precuneus/Cuneus,
Cingulate ↑SMA

C+

2 G4, 5 ↓IFG/MFG ↑Posterior
Temporal

↑Cuneus/Precuneus C+

G12–15 ↓IFG/MFG ↓Medial occipital, Parieto-temporal ↓Cingulate, SMA SC

G4–6 + G12, 13 + G22–24 +
G28–30

↓IFG/ ↑MTG ↑Temporo-occipital ↑Medial SFG D

G12–15 + G21–24 + DP2–4 ↓MFG/IFG ↑Medial SFG/SMA C+

G4–8 + G12–15 + G20–24 +
G28–30 + DP2–4

↑MTG ↑MFG ↓SMA,

Cingulate/Precuneus

C+

3 DA3, 4 ↑Thalamus,

↓Cingulate
D

G2 6, 14 ↓OF ↓Superior
parietal

↑MFG/IFG ↓Precuneus, Thalamus SC

DA3, 4 + G1 18, 27, 35, 43 ↑IFG EC

4 DA3–6 ↓OF ↓Superior
parietal

↓ITG, Temporo-occipital ↓IFG, OF ↓Medial

occipital

SC

DA4, 5 + GA51 ↑IFG, SMC ↓Superior

parietal

↑ITG, STG ↓OF/IFG ↑Medial

occipital

↓Medial SFG D

DA2–6 + GA49–54 ↑IFG ↓Inferior
parietal

↑ITG ↓IFG ↓Precuneus SC

(Continued)
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TABLE 3 | Continued

Patient

ID #

IED type BOLD clusters (↑ increase, ↓decrease, ↑↓biphasic) Level of

concordance

Neocortex Other Remote BOLD

clusters

Right Left

Frontal Parietal Temporal Occipital Frontal Parietal Temporal Occipital

5 FP2–4 ↑↓Inferior

Parietal

↑Cingulate D

FP2–4 + AM2–4 ↑↓FP, SFG ↑↓Superior
parietal

C+

AM2–4 + FP1–4 PMFG3–6 +
IFG9–11

↑MFG, OF ↑↓Precuneus, Medial

SFG

SC

AM1–4 + FP3–4 FP1–8 +
AM1–14 + ASMA2–5+
PMFG3–10 + IFG5–10

↓MFG, OF ↑↓FP ↑↓Medial SFG,

Cuneus/Precuneus

SC

FP1–4 + AM1–6 FP1–8 +
AM1–14 + FOF1–10 +
ASMA2–7 + PMFG4–12 +
IFG5–11

↓Temporo-

parietal

↓FP, OF ↓ITG ↓Cingulate, Basal
ganglia, Medial OF

SC

6 SF5–7 ↑Cingulate D

GB4–6 + 14–16 ↓Medial

occipital

↓Superior
parietal

↓Medial

occipital

↓Precuneus, Medial

SFG

D

GC5–16 ↑SFG/MFG ↓Cingulate, Medial SFG C+

SF5–7 + GB5–8 + GC5, 10,

11, 12, 15, 16

↑↓MFG ↑↓Cingulate,
Thalamus

SC

7 LAH1, 2 + LPH1, 2 + LA3, 4 ↑MFG ↑Superior
parietal

↑IFG, MFG,

OF

↑Superior
parietal

↑Posterior temporal, STG ↑Precuneus, Cingulate,
Medial SFG

SC

LAH1–2 ↑Superior parietal, posterior temporal ↑Superior
parietal

↑Posterior
temporal,

STG

↑Precuneus, Cingulate,
Medial SFG

SC

LA3–4 ↑SFG ↑Posterior temporal ↑Posterior
temporal

↓Precuneus D

LPH 1–2 ↑Superior parietal ↑MFG ↑Cingulate D

RA1, 2 + RH1, 2 ↓Superior parietal, Temporo-parietal, temporo-occipital ↓Superior
parietal

↓Precuneus, cingulate D

RA1, 2 + RAH1, 2 + LAH2, 3

+ LPH2, 3

↑MFG ↑Superior
parietal

Temporal pole, Medial temporal ↑MFG, OF ↑Superior
parietal

↑Posterior temporal, STG, ITG↑Precuneus, Cingulate,
Medial SFG

SC

8 D1 + D2 + G31 ↑MFG ↑SMG,

↑Superior
parietal

↑Superior
parietal

↑Insula ↑Thalamus C+

(Continued)
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level of concordance of BOLD maps in this small subgroup
of patients.

The patient with hippocampal sclerosis (#7) did not show
any BOLD cluster directly overlying HS; however, BOLD clusters
were seen within 2 cm of the structural abnormality.

DISCUSSION

Scalp EEG-fMRI studies have shown that IED-related BOLD
changes in EZ can predict good postsurgical outcome (9,
13, 14, 22–25, 47–49). One of the limiting factors for these
studies has been low sensitivity of scalp EEG to capture the
whole spectrum of epileptiform activity that can be revealed
by invasive recordings (50, 51). Therefore, what is considered
the baseline (“non-epileptic” state) in scalp EEG-fMRI studies
must in fact contain a significant amount of epileptic discharges.
Simultaneous icEEG-fMRI allows us to overcome this problem
by exploring whole-brain changes for epileptiform discharges
recorded directly from the cortex using icEEG. This study
revealed significant BOLD signal changes for a wide range
of IEDs using simultaneous icEEG-fMRI. Furthermore, we
found that:

• Significant BOLD clusters for IEDs on icEEG were localized
both within the surgical resection volume and remote cortical
and other brain areas;

• More than 70% of IED classes showed BOLDmaps concordant
with the surgical resection volume, where BOLD clusters were
seen within the surgical resection volume;

• IED with wider topographic distribution and localization:
non-focal IED classes on icEEG were associated with
the presence of BOLD clusters within the surgical
resection volume.

Previous studies using icEEG-fMRI have shown BOLD changes
related to IEDs and seizures (32, 33, 40, 52, 53). Comparison of
visual and automated IED classification on icEEG (53) presented
a more objective interpretation of icEEG, but there was no
statistically significant difference in concordance of the BOLD
maps for two IED classification techniques. The relationship of
BOLD clusters in surgical resection volume and in remote brain
areas for different IED classes has not been explored in previous
studies. For this study, we think that visual classification of IEDs
based on their topographic distribution and localization and
IZs, which reflects clinical insight of the expert user, facilitates
clinical interpretation of resulting BOLD maps. We compared
distribution of BOLD clusters in surgical resection volume (i.e.,
level of concordance) and remote brain areas for different IED
classes using icEEG-fMRI in the largest group of patients to
date who had undergone epilepsy surgery and had a good
postsurgical outcome with a long follow-up time (median: 6
years). The surgical resected volume can be rendered confirmed
EZ considering long postsurgical seizure freedom.

Methodological Considerations
The feasibility and safety of simultaneous icEEG-fMRI has
been established (27, 28, 30, 31). Signal degradation can be
observed within up to 1 cm (often less at 1.5 T as in this
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study) of the electrode contacts and is orientation dependent
(27), therefore limiting interpretation of the BOLD maps in the
electrode contact’s immediate vicinity. However, BOLD effects
are generally more widespread (27, 54). BOLD maps revealed
significant clusters for different IED classes on icEEG, which
were concordant with the surgical resection volume (confirmed
EZ) and other non-invasive and invasive investigations, and were
also seen in distant areas known to be related to resting-state
networks associated with interictal discharges (55, 56). Therefore,
it is unlikely that these changes are false positive. Also, icEEG
has high sensitivity to show IEDs from smaller generators as
compared to scalp EEG (50, 51) and, thus, may be associated with
relatively weaker BOLD changes from smaller brain regions; this
is in line with previous icEEG-fMRI studies (29, 32, 33, 40).

IEDs were represented as single or series of events in
separate regressors for each different class to evaluate specific
BOLD pattern in a GLM framework (12, 22, 24, 32) using a
standard hemodynamic response function and its derivatives as
a hemodynamic kernel (41) to account for a degree of variability
in hemodynamic peak delay and duration (12, 24).

In patients with a single seizure onset zone, there may be more
than one IED class reflecting different topographic localization
and distribution and IZs and not all of these require removal for
good surgical outcome. Our interpretation of the IED classes took
into account spatial localization, field distribution, propagation,
and their relationship with the EZ (1, 38, 39).

In the concordance classification scheme, the first two levels
of concordance—Entirely concordant and Concordant plus—are
defined based on the location of GM cluster overlapping with
or within 2 cm of the surgical resection volume ± presence of
other BOLD clusters. For BOLD maps with Some concordance,
a cluster other than GM cluster was overlapping with or within
2 cm of the surgical resection volume. In this retrospective study,
confirmed EZ was known, and this other cluster in the surgical
resection volume was identified. However, during prospective
pre-surgical evaluation of patients with a presumed EZ, this
cluster can be identified by a consensus agreement, for example,
if it is concordant with the structural lesion such as FCD and/or
other non-invasive/invasive localization techniques. Our choice
of 2 cm as a distance threshold (within a single lobe) to ascertain
concordant BOLD clusters reflects the uncertainties associated
with implantation and co-registration-related brain shift and
the anticipated spatial dislocation of two classes of signals due
to neurovascular coupling (57, 58). We evaluated the level of
concordance of IED-related BOLD maps irrespective of sign of
BOLD change, as both BOLD increases and decreases can be
found in the EZ (20, 22, 59, 60).

Neurophysiological and Neurobiological
Significance
BOLD clusters were seen in multiple areas for all IEDs on
icEEG, and these areas included surgical resection volume (i.e.,
confirmed EZ) and adjacent/remote apparently healthy cortex.
This suggests the possibility of common underlying brain areas or
networks recruited as propagation nodes or even generators for
different IED classes (50, 51, 61–63), or these widespread BOLD

changes may be secondary to extensive underlying pathology
(64). We suggest that BOLD changes in cortex and other brain
areas remote from the surgical resection volume (i.e., confirmed
EZ) may represent propagated epileptic activity in agreement
with scalp EEG-fMRI (16, 22, 24, 65, 66) and electric source
imaging studies (67). Also, this propagated epileptic activity in
remote cortical or other brain areas such as precuneus, medial
frontal, cuneus, and thalamus may represent an interaction with
resting-state networks in line with previous scalp EEG-fMRI
studies (55, 56), which can have implications on level of cognition
and consciousness (55, 68) at some level and grants further
research. We noted that changes in these areas that are part of
default mode network were deactivations, but activations were
also seen for some IEDs (see Table 3). Though a complete picture
of underlying neuronal activity for IEDs may not be seen on
icEEG (48) due to its limited spatial sampling, it is difficult to
further elucidate whether these activations represent propagation
of epileptic activity and deactivations represent involvement of
default mode network. Future investigations correlating IEDs on
icEEG with topographic maps of IEDs on scalp EEG and their
associated BOLD changes will be required to understand the full
pathologic nature of such networks.

The presence of BOLD clusters in surgical resection volume
(confirmed EZ), as reflected by level of concordance of BOLD
maps, was associated with topographic and field distribution
of IED on icEEG. Non-focal IEDs on icEEG with wider
topographic and field distribution (Regional, Widespread, and
Non-contiguous) showed BOLD clusters in surgical resection
volume more commonly, compared to focal IEDs on icEEG. This
finding is similar to a recent scalp EEG-fMRI study (66) in which
widespread epileptic discharges were more likely to show BOLD
activation in seizure onset areas. The significance of this finding
raises interesting questions about the BOLD effect, for example: is
there a spatial scale of neural activity below which the strength of
the BOLD change reflects only the local intensity of that activity,
in contrast to its spatial extent? Hemodynamic changes may be
limited to the activation of a minimum neuronal volume and
its synchronization on EEG (69); this may explain the more
common presence of BOLD changes in surgical resection volume
and remote areas for IEDs with more widespread field extent. It is
possible that signal dropout in the local vicinity of icEEG contact
(28, 29) can limit to show BOLD change for IED with a very
focal field extent. Future imaging sequence development with
less signal dropout around implanted electrodes may be able to
localize BOLD changes for very focal IEDs on icEEG. In addition,
duration of underlying field potentials for epileptic discharges
reflected by the sharp wave width can also affect amplitude of
the BOLD signal (70), and event parameterization (amplitude,
frequency content and duration) may be a useful way forward to
further investigate BOLD changes for IED on icEEG.

Clinical Significance
We found that icEEG-fMRI has greater sensitivity: all patients
showed IED-related BOLD changes, whereas previously
published scalp EEG-fMRI studies have shown IED-related
BOLD changes in 30–78% of patients (12, 24, 26). We suggest
that this partly reflects the high sensitivity, specificity, and spatial
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resolution of icEEG (when placed judiciously) compared to scalp
EEG (1) and the possibility that this results in more accurate
definition of the BOLD baseline. Also, there could possibly be
selection bias; patients with a clear focus and IEDs on scalp EEG
are more likely to proceed for invasive icEEG.

The strength of our data is that the surgical resection volume
represents confirmed EZ as reflected by long seizure freedom
after surgery (1). This level of confidence is lacking in previous
studies. We found BOLD clusters located in the surgical resection
volume in 70% of the maps for different IED classes on icEEG. As
icEEG-fMRI can reveal BOLD network across the whole brain
and does not suffer from limited spatial sampling of icEEG, it
is possible that BOLD clusters remote from surgical resection
volume may represent other generator or propagator areas of
epileptic activity that are not covered by icEEG. Small sample
size and heterogenous underlying pathology could be considered
limitations of this study, restraining generalized application of
these findings to all patients undergoing epilepsy surgery. It will
be interesting to compare in the future, in larger sample size,
if there is any difference of BOLD patterns for IEDs on icEEG
between seizure-free patients and patients who did not achieve
seizure freedom after epilepsy surgery, and if it can inform
epilepsy surgery approach.

In conclusion, icEEG-fMRI studies constitute a significant
step toward the better understanding of hemodynamic changes
related to epileptic activity. It can provide localization of
BOLD network at whole-brain level with high sensitivity for
different classes of interictal discharges on icEEG originating
from focal areas. In addition, BOLD clusters in surgical resection
volume (confirmed EZ) were seen more commonly for non-focal
epileptiform discharges on icEEG.
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Hui Ming Khoo 3,4, Jorge Bosch-Bayard 3 and Jorge J. Riera 1*

1Neuronal Mass Dynamics Laboratory, Florida International University, Miami, FL, United States, 2Nicklaus Children Hospital,
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Alongside positive blood oxygenation level–dependent (BOLD) responses associated

with interictal epileptic discharges, a variety of negative BOLD responses (NBRs) are

typically found in epileptic patients. Previous studies suggest that, in general, up to four

mechanisms might underlie the genesis of NBRs in the brain: (i) neuronal disruption

of network activity, (ii) altered balance of neurometabolic/vascular couplings, (iii) arterial

blood stealing, and (iv) enhanced cortical inhibition. Detecting and classifying these

mechanisms from BOLD signals are pivotal for the improvement of the specificity of

the electroencephalography–functional magnetic resonance imaging (EEG-fMRI) image

modality to identify the seizure-onset zones in refractory local epilepsy. This requires

models with physiological interpretation that furnish the understanding of how these

mechanisms are fingerprinted by their BOLD responses. Here, we used a Windkessel

model with viscoelastic compliance/inductance in combination with dynamic models

of both neuronal population activity and tissue/blood O2 to classify the hemodynamic

response functions (HRFs) linked to the above mechanisms in the irritative zones of

epileptic patients. First, we evaluated the most relevant imprints on the BOLD response

caused by variations of key model parameters. Second, we demonstrated that a general

linear model is enough to accurately represent the four different types of NBRs. Third,

we tested the ability of a machine learning classifier, built from a simulated ensemble

of HRFs, to predict the mechanism underlying the BOLD signal from irritative zones.

Cross-validation indicates that these four mechanisms can be classified from realistic

fMRI BOLD signals. To demonstrate proof of concept, we applied our methodology

to EEG-fMRI data from five epileptic patients undergoing neurosurgery, suggesting the

presence of some of these mechanisms. We concluded that a proper identification and

interpretation of NBR mechanisms in epilepsy can be performed by combining general

linear models and biophysically inspired models.

Keywords: negative BOLD responses, Windkessel models, hemodynamic response function, general linear model,

machine learning, epilepsy, EEG-fMRI multimodal

142

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.659081
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.659081&domain=pdf&date_stamp=2021-10-08
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jrieradi@fiu.edu
https://doi.org/10.3389/fneur.2021.659081
https://www.frontiersin.org/articles/10.3389/fneur.2021.659081/full


Suarez et al. Negative BOLD Epilepsy Windkessel Models

INTRODUCTION

The interest in the concurrent electroencephalography–
functional magnetic resonance imaging (EEG-fMRI) method as
an important imaging modality in epilepsy surgical planning
has increased gradually during the last 20 years (1–3). This
method generates whole-brain maps of blood oxygenation
level–dependent (BOLD) responses evoked by interictal
epileptiform discharges (IEDs), which are then used to
locate/identify potential irritative zones (IZs) within the brain.
IED-evoked BOLD response analysis is attractive for epilepsy
surgery planning, owing to its low invasiveness, accessibility,
low cost, and efficiency. The standard clinical protocol for
using IED-evoked BOLD signal to demarcate IZs includes
(a) concurrent EEG and fMRI recordings while the patient
is resting or prompted to sleep; (b) IEDs (spikes and sharp
waves) are visually identified by EEG technicians; (c) series
of IED onsets are convolved with a canonical hemodynamic
response function (HRF, 4) to create a set of regressors; (d) the
BOLD signal at each voxel is described as a function of these
IED-based regressors via a general linear model (GLM) (4);
and (e) statistical parametric maps (t-test and F-test) of the
linear coefficients are created to detect positive BOLD responses
(PBRs). In advanced clinical protocols, IZ detection with the
EEG-fMRI technique is performed with flexible parametric
HRF models (5–9) to account for voxel and subject variability.
Unfortunately, these parametric HRF models misrepresent
atypical BOLD responses frequently observed in certain regions
of an epileptic brain, e.g., negative BOLD responses (NBRs),
precluding detection of the seizure-onset zones (SOZs) in many
patients (10–16). Non-parametric HRF models (17–23) could
in principle account for HRF misspecification in epilepsy by
sacrificing parsimony, but they are computationally intensive,
do not include spatial dependencies, and lack mechanistic
foundations. These limitations create opportunities to increase
the sensitivity of the EEG-fMRI method in epilepsy.

Initial EEG-fMRI clinical studies have associated SOZs with
PBRs as a result of a localized hyperemic response triggered by
abnormal neuronal excitability [e.g., the pioneer work by (24)].
More recent data suggest NBRs in SOZs might be caused by local
circuit inhibitions during after-spike slow-wave components
(13), presumably owing to a profound hyperpolarization of
pyramidal cells (25, 26) after a fast spike. In general, this is
the most accepted mechanism for the NBR found in many
experimental paradigms (27–32). The inhibition can occur in
the same active region, but exceeding the excitation, provoking
negative changes in the overall neuronal activity, resulting in an
NBR. For simplicity, we shall refer to these mechanisms as the

enhanced cortical inhibition (ECI). Clinical [see reviews by (33)
and (34)] and preclinical (35) studies of focal epilepsy point out to

the existence of abnormal decreases in the hyperemic/metabolic

ratio during frequent/strong epileptogenic activity, which might
be linked to an NBR according to computer simulations

presented in this study. We shall refer to this mechanism as
altered neurometabolic/vascular couplings (ANCs).

However, not all NBRs might be considered as SOZ
candidates during surgical planning. For example, deactivations

(or disruption) of normal resting state networks (RSNs), such
as the default mode network (DMN), have also been linked
to NBRs, a phenomenon reported in epileptic patients during
IEDs (11, 36, 37). Here, we refer to this mechanism as neuronal
disruption of network activity (NDA). Also, an initial work by
Harel et al. (38) suggested that arterial blood stealing (ABS) could
cause an NBR in healthy brain areas as a result of decreases
in cerebral blood flow (CBF) and volume (CBV) in a region in
close proximity to an IED-evoked PBR. A recent computational
model (39) demonstrated that ABS is physically possible in
the brain vasculature. More recent studies have corroborated
experimentally the existence of ABS (40, 41). Therefore, areas
with NDA and ABS types of NBRs are not IZs; hence, they should
not be considered during the surgical workup.

Classifying these different types of NBRs from the noise
fMRI signal must be challenging. However, it is reasonable to
expect they have different HRF waveforms, which could be
used as fingerprints of the underlying mechanism. To verify
and take advantage of these differences for the identification of
the mechanisms, it is advised to have biophysical models.
Incorporating biophysical model–based discrimination
of disparate NBR types in refractory focal epilepsy may
significantly improve the accuracy of the EEG-fMRI method
to localize/delineate SOZs, thereby increasing success rates of
ablative surgery. Windkessel (balloon) models (42) have been
utilized in the last decades for statistical inference of BOLD
signals (43, 44) due to their parsimonious capabilities to capture
most of the features of the HRFs reported experimentally.

In this article, we propose a comprehensive Windkessel-based
model to account for these four possible mechanisms underlying
NBRs in patients with focal epilepsy. Using the model, we predict
a specific HRF waveform for each of the four NBR mechanisms
aforementioned. We also investigate if these HRFs are classifiable
from noisy fMRI data. To that end, HRFs were fitted using
the near-neighborhood exogenous autoregressive (NN-ARx) (45)
model. HRF dimensionality was reduced using the principal
component analysis (PCA). We subsequently build a machine
learning ensemble classifier that uses the first three principal
components as features and their corresponding mechanisms
as classes. We evaluate the performance of the classifier in
predictingmechanisms from their BOLD signals. Finally, we used
this method to evaluate the presence of different NBR types in
cases of drug-resistant focal epilepsy.

MATERIALS AND METHODS

EEG-fMRI Data
This is a prospective study duly approved by the Western
Institutional Review Board (WIRB #20160218). Parents or
legal guardians of 10 patients (9–18 y/o) recruited at Nicklaus
Children’s Hospital signed a written approved–informed
consent. All patients were refractory to pharmacology treatment
and exhibited frequent IED. In this context, “frequent” was
defined as at least 1 IED per minute. Patients needing sedation
or vascular malformations were excluded. In this study, patients
exhibiting significant NBRs were only included (n = 5).
Demographics and clinically relevant findings are summarized
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in Table 1. The results of EEG source localization, positron
emission tomography (PET), ictal single-photon emission
computed tomography (SPECT), subdural implantation
(ECoG/sEEG), MRI diagnosis, and pathology were annotated.
The MR-compatible EEG system used in this study is not Food
and Drug Administration–approved. Therefore, results obtained
from the EEG-fMRI analysis were not used in any form during
the surgical evaluation of the patients.

We acquired four 10-min trials of simultaneous EEG-fMRI
data from each patient. Using the fMRI trials for which the
IEDs were better identified from the EEG, we fitted GLM and
NN-ARx to estimate IED-related PBRs and NBRs. The IEDs
were visually detected and classified into several subtypes by two
experts based on their morphology, the semiology of the patient,
and other neuroimaging modalities. The different subtypes of
IEDs and other types of events were used as different types of
inputs (conditions) in GLM and NN-ARx. In addition, motion
correction parameters were included as nuisance regressors.

MRI data were collected in a Philips 1.5-T scanner with
a 16-channel SENSE Rx coil. fMRI was acquired with a GE-
EPI sequence. Each fMRI scan consists of 21 interleaved slices
6 mm thick with a 2-mm gap, in-plane voxel size of 3 × 3 mm,
and field of view (FOV) = 204mm. Flip angle (FA) was 90,
repetition time (TR) = 2 s, and echo time (TE) = 45 ms.
For the purpose of anatomical reference, a high-resolution T1-
weighted image was acquired using a spoiled three-dimensional
(3D) gradient echo sequence with TR = 9.7 ms, TE = 4 ms, and
FA = 12. The structural MRIs have 90 to 100 slices, covering the
whole brain. In some cases, a T2-weighted 3D image was also
acquired with parameters: TR = 25 ms and TE = 3.732 ms,
FA = 30, FOV = 240mm, and 160 2-mm-thick axial slices. 3D
fluid-attenuated inversion recovery volumes were acquired in
sagittal plane using the following parameters: TR = 4,800ms,
TE = shortest; FA = 40◦; 230 sagittal cuts, matrix: 212 × 185
× 230mm; FOV= 250; matrix reconstruction isovoxel 0.98mm.
The fMRI volumes were preprocessed using statistical parametric
mapping (SPM) (http://www.fil.ion.ucl.ac.uk/spm/). They were
corrected for motion artifacts and spatially smoothed with an 8-
mm Gaussian kernel. Both smoothed and unsmoothed images
were used in GLM analysis to detect significant voxels. Although
the minimum variance estimator of GLM may be biased due to
non-Gaussian noise (46), the latter was necessary to detect near
PBR and NBR, as it was suggested by Goense et al. (47) and Harel
et al. (38) for detecting the NBR of vascular origin. The GLM
analysis and the results were masked to the gray matter using the
SPM segmentation obtained from the anatomical image (48).

EEG was recorded using a 10–10 system 32-channel EasyCap
(BrainAmp MR, Brain Product GmbH). To record EEG data
simultaneously with the fMRI signal, we used MRI-compatible
EEG amplifiers (BrainAmp MR, Brain Product GmbH). EEG
signals were sampled at 5 kHz and digitized (0.5-µV resolution)
(BrainVision Recorder 1.4, Brain Products GmbH). The majority
of EEG electrodes had impedances lower than 5 kΩ . The
electrocardiogram (ECG) was measured with an ECG electrode
attached to the middle of the back of the patients. To synchronize
the EEG with fMRI scans, a trigger marking the beginning of the
scans was sent to the EEG recording laptop. To ensure the highest T
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temporal precision, the clock of the laptop was synchronized
to the 10-MHz clock of the MR console using a Syncbox
(Brain Products GmbH). The following EEG preprocessing
was performed using BrainVision Analyzer 2 (Brain Products
GmbH). To remove the MR-related artifact, the EEG data were
first subsampled to 50 kHz using sinc interpolation to virtually
increase its resolution and correct the random phase jittering—
of no <0.2-ms resolution determined by the 5-kHz sampling
rate—that is present in the scan markers. This phase jittering has
significant negative effects in the estimation of the MR gradient
artifacts as the latter can change as fast as 0.2ms. Subsequently,
we applied a method for removing the MRI gradient artifacts
(49), based on the estimation of an average artifact template.
The resultant EEG data were bandpass filtered within 0.5–
125Hz. After marking the R-waves using a semiautomatic tool,
we applied a method to detect and remove the effects of the
balistocardiogram (50). Finally, we applied ICA based on the
Infomax method (51, 52) to remove further artifacts.

As IEDs last∼70–200ms, the input u (t) is modeled as a train
of short pulses. To account for the actual time in which the slice
containing the region with significant voxels was acquired, the

inputs u (t) were transformed according to u
(

t + nTR
Nz

)

, where

n is the position of the slice according to the sequence in which
they were acquired, and Nz , the number of slices the whole scan.

Ictal SPECT was performed using a Siemens Multispect 3
gamma camera (Hoffman States, IL). Technetium-HMPAO was
used as the radiotracer at a dose of 300 µCi/kg with a minimum
dose of 3 mCi and a maximum dose of 20 mCi. PET was
performed using a GE Discovery-Dimension ST PET/CT system.
FDG was injected at a dose of 140 µCi/kg with a minimum of 1
mCi and maximum of 15 mCi. The stereo-EEG was performed
utilizing a Natus Neurology, Natus Medical Incorporated, Excel-
Tech Ltd (XLTEK) (Ontario, Canada). The electrode type was
a Natus Neuro Grass disposable deep cup electrode (silver
chloride, AgAgCl).

The Biophysical Model
The proposed model comprises a two-state dynamic causal
modeling component (P-DCM) (53) for principal excitatory
cells and inhibitory interneurons, extended to having long-range
modulatory excitatory inputs also in the inhibitory population.
NDA and ECI types of NBRs are explained by adjusting
the time constants of the modulatory synaptic connections in
the excitatory and inhibitory population of the extended P-
DCM model, respectively. Each brain region has a Windkessel
component linked to its neuronal activity through an inducing
signaling (i.e., the neurovascular coupling). A viscoelastic non-
linear delayed compliance was also included (54). To account
for blood stealing effects in brain regions sharing a common
supply artery (Option 1, Supplementary Table A1), an inductive
element was added to connect their respective Windkessel
components (39). For regions not sharing a common supplying
artery, the two equations for the CBF become independent.
For this particular case, a simplified model proposed by Friston
et al. (55) is used (Option 2, Supplementary Table A1). An
oxygen-to-tissue transport (OTT) component was used to

account for the dynamics of the oxygen extraction fraction
and the O2 concentrations in both tissue and blood (i.e.,
the neurometabolic coupling) (56). ABS and ANC types of
NBRs are explained by fitting those parameters in the model
controlling the stealing effect size and the vascular/metabolic
imbalance, respectively. The differential equations describing
the biophysical model are shown in Supplementary Table A1.
Supplementary Figure A1 shows the flow diagram for the
physiological mechanisms with their respective state variables
(Supplementary Table A2). A graphical representation of all
model configurations and defining parameters for each of
the four mechanisms is shown in Supplementary Figure A2.
Values of the parameters for all these particular situations are
summarized in Supplementary Table A3. All the specifics related
to the particular cases of themodel can be found in theAppendix.

Detecting IZs Using the GLM
The fastest and most widely used method to detect significant
BOLD responses is the GLM regression (4):

y (ti) =
Nu
∑

k=1

(

β
(k)
hrf

(

h⊗ uk
)

(ti) + β
(k)
der

(

h
′
⊗ uk

)

(ti)

+ β
(k)
disp

(

d⊗ uk
)

(ti)
)

+
Nr
∑

r=1

βrxr (ti) + η (ti) (1)

where {ti}i=1,...,N , being N the number of scans and Nu

the number of types of inputs {uk (t)}k=1,...,Nu
, {xr}r=1,...,Nr

the confounding or nuisance regressors (e.g., the motion

parameters), and βr their effect sizes. h, h
′
, and d are the canonical

BOLD HRF (57), its temporal derivative, and its dispersion,
respectively. The noise is prewhitened by applying a first-order
autoregressive (AR) model to the signal. To demonstrate that
the NBR mechanisms are detectable using GLM, we simulated
a set of 10-min BOLD signals with a single type of input (Nu =
1) consisting of a random Poisson train of pulses with average
frequency of 2.6/min. This input was the same across all models
and trials. We then created a simulated set of N = 300 fMRI
scans with TR = 2 s by adding the simulated BOLD signals to
the voxels of a real EPI image. The trials from the same type of
model were added to neighboring voxels to form spatial clusters.
The amplitude of the simulated BOLD signal in each cluster
was multiplied by a Gaussian spatial kernel [full width at half
maximum (FWHM)= 2.5mm] with the maximum at the center
of the cluster. The resultant set of images was further corrupted
with colored noise, according to a spectral density given by 1/f p,
with 0 < p < 1, to account for biological noise inherent to
the BOLD signal but not attributable to the temporal filtering
of the HRF (58). No nuisance regressor was included in these
simulations, i.e., xr = 0. Following standard fMRI preprocessing
procedures, the simulated fMRI scans were spatially smoothed
with a Gaussian kernel of 8-mm FWHM. For each voxel, the

vectors of coefficient β=
[

βcan&βder&βdisp

]T
of the GLM were

estimated using SPM (4). Using an F contrast, we selected the
voxels where the null hypothesis, I3β = 0 was rejected with p <
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0.05, after correcting for multiple comparisons using the family-
wise error criterion, i.e., the significant voxels. I3 is the 3 × 3
identity matrix, and⊗ denotes temporal convolution.

Estimation of HRFs for the IZs
Although the responses fitted by the GLM, i.e., the first-order
Volterra kernel (59), can reconstruct a large variety of HRFs,
we used a more adaptable method to accommodate all possible
extreme HRF waveforms, the NN-ARx (45), which has been
simplified here to extract the HRFs from fMRI time series from
the detected IZs. In this particular case, there is no need for a
term describing the near-neighbor effect. Under this assumption,
the NN-ARx consists of an ARmodel with an exogenous input si,
i.e., the IEDs.

yi = µi +
p

∑

j=1

ϕjyi−j+
r

∑

j=1

θjsi−j−d + εi (2)

With yi = y (ti) defining the BOLD signal at discrete time
instants. The term µi accounts for any drift in the BOLD signal,
which is modeled by a polynomial. εi represents a normally
distribute noise with zero mean and variance σ to be estimated
from the fMRI data. This model is suitable to deal with the
colored nature of the fMRI time series and the spatial correlation
between neighboring voxels in the images. A simple recursive
method to estimate the linear coefficient ϕj and θj can be found in
Riera et al. (45). By minimizing the Akaike information criterion,
NN-ARx estimates the orders and coefficients of the AR (p), the
order of a polynomial modeling the drift, and the delay of the
HRF onset (d). With these, the HRF can be constructed (45).
By applying the NN-ARx to the unsmoothed fMRI scans, we
extracted the HRF in the IZs with significant PBR and NBR from
the GLM.

Classification of Mechanisms
Once the IZs are detected and their HRF estimated using the NN-
ARx method, it is necessary to classify them according to the
type of NBR mechanism. For this purpose, we propose to build
a classifier based on a machine learning algorithm. We simulated
M = 51 trials of 10-min fMRI signals with TR = 2 swith random
inputs consisting of trains of short pulses Poisson-distributed
in time. To account for the entire span of HRF waveforms, we
model the possible intraindividual and interindividual variability
in the parameters by randomly sampling their values, for each
trial, from a uniform distribution within the intervals specified
in Supplementary Table A3. For all trials, the NN-ARx–based
HRFs were normalized by the maximum of their absolute value.
The number of time points of the HRFs was T

TR
= 32

2 = 16. The
PCA was used to reduce the dimension of each HRF to just its
three most relevant components (features). Then, a final matrix
5M × 3 of features was created, with number 5 representing the
number of classes (i.e., ECI, NDA, ANC, and ABS). The PBR
class was included as reference. This matrix of features and the
corresponding vector of classes were used to create a multiclass
machine learning ensemble classifier based on support vector
machine (SVM) (60, 61). This type of algorithm is a very popular
and powerful tool for classification and regression in many of the

research fields today (62). We tested the ability of the classifier to
differentiate among the five different classes trying with different
kernel functions to find the optimal classification.

RESULTS

Predicted Responses for Single Impulses
Figure 1 shows the predicted responses for the mechanisms
proposed in this article, and their sensibility to the relevant
parameters, following a single IED event. A longer inhibitory
recovery creates an ECI type of NBR with smaller amplitude
(Figure 1A). The recovery time of the network is reflected
in the NBR duration of NDA (Figure 1B). For ANC, a
disproportionately high neurometabolic to neurovascular
coupling ratio yields NBR (Figure 1C). Regarding the vascular
phenomena, the NBR only occurs in the presence of blood
resistance in the shared vessel. The higher the resistance,
the higher the amplitude of the NBR (39) (Figure 1D). As
Supplementary Material, we uploaded the model codes to the
public. The folder includes a pdf file with the documentation that
contains user instructions (http://web.eng.fiu.edu/jrieradi/NBR-
Model/).

Detection, Estimation, and Classification
of NBR Mechanisms
Figure 2 indicates that by using the GLM it is possible to detect
voxels exhibiting different simulated NBR types. The mechanism
with the least significance is ABS—because its NBR has the
smaller amplitude. The ECImechanismwas not included because
of the similarity of the HRF with that of the ABS mechanism.

Figure 3 shows the performance of the machine learning
classifier based on the SVM analysis of ensembles of simulated
HRFs as described in section Materials and Methods. We
demonstrate the ability of this classifier to predict new
mechanisms using a five-fold cross-validation, i.e., leaving five
HRFs out for prediction and using the rest as the training set.
Six kernel functions were tested (i.e., linear, quadratic, cubic, fine
Gaussian, medium Gaussian, and coarse Gaussian). However, we
present here only the results obtained with the coarse Gaussian
kernels, which provided the best range of accuracy from a
minimum 89% to a maximum 93.7%. Trivially, the PBR response
is clearly separable from the NBRs. The ANC is distinguishable
from the PBRs, even though its HRF can have a significant
positive overshoot. NDA and ANC can be distinguished from
each other and from the rest of the NBR types, owing to the
prolonged recovery of the former and the fast and bipolar
shape of the latter. However, the margin of classification and
the confidence of prediction of ECI and ABS are the lowest
because of their proximity. This means that it might be difficult
to distinguish in some cases, at least merely from fMRI signals. In
general, mechanisms were incorrectly classified in ∼6.3% of the
cases, only among ECI and ABS types.

NBR Mechanisms Associated With
Particular IZs in the Epileptic Patients
In this section, we used the HRF classifier, previously trained with
data from the biophysical models, to predict the NBR types in
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FIGURE 1 | Simulation of the ECI (A), NDA (B), ANC (C), and ABS (D) mechanisms after a single short pulse. Red (blue) corresponds to PBR (NBR). Each column

corresponds to variation in a parameter that significantly determines the NBR waveform. The sensibility of the responses to these parameters is illustrated with

different curves corresponding to three different values of the parameters covering the ranges in Supplementary Table A3. The light blue arrow indicates how the

NBRs change by increasing the value of the parameters. Besides BOLD responses, we also show other candidate observables in MRI: rCBF and rCBV. Increasing the

duration of the inhibitory recovery decreases the amplitude of the ECI mechanism. Expectedly, the longer the recovery time constant in the NDA mechanism, the

slower the NBR. We also note that higher neurometabolic coupling gain yields higher NBR amplitudes in the ANC mechanism. Besides, the higher the arterial

resistance, relative to the arteriole, in the ABS mechanism, respectively, the higher NBR amplitude.

some particular IZs of five patients with refractory focal epilepsy.
For each case, we applied the following pipeline: (a) GLM-
based detection of voxels significantly correlated with the IEDs
(SPM); (b) selection of the region-of-interest (ROI) for the IZ
of interest; (c) estimation of the NN-ARx HRF, averaged inside
spheres within the ROIs; (d) classification of the mechanisms
using the machine learning (SVM) classifier; and (e) estimation
of key parameters of the biophysical model associated with
the identified mechanism. To obtain confidence intervals for
the HRFs, we estimated the empirical distribution of the null
hypothesis of no significant response using a permutation test.
This was done by estimating the NN-ARx HRFs from 5,000 trials
with random order of the IEDs. For each time point, the lower
and upper confidence values were the 5 and 95 percentiles of
these null HRF distributions, respectively. Not all IZs detected
for each patient by the EEG-fMRI technique are discussed in
this study. Results from these five patients are introduced only as
proof of concept. This part of the study does not aim at clinically
validating our methodology, but rather at illustrating its value.

Patient 1 is a 14-year-old girl with partial autonomic evolving
to tonic seizures and left hemisphere polymicrogyria. We
found a PBR–NBR pair surrounding the anterior parietal artery
(Figure 4). Slices showing the thresholded F statistics map built
from the estimated coefficients of the GLM using SPM overlaid
on the T1-weighted image are presented in panel A. The blue
crosshair locates the center of the NBR region in the right
postcentral gyrus (PG), whereas the red crosshair locates the
center of the PBR region in the right superior parietal lobule
(SPL), separated by the postcentral sulcus (another PBR in the

left SPL is also shown in this panel). The schematic to the bottom
illustrates the ABS mechanism—the regions share the final
segment of the anterior parietal artery. The dark gray curve in
panel B shows the NN-ARx PBR-HRF and its confidence interval,
estimated from the real data, and averaged across the voxels
satisfying F ≥ 4.5 within a 10-mm radius sphere with origin in
red crosshair in panel A. The light gray curve shows the estimated
NN-ARx NBR-HRF and its confidence interval and averaged
across the voxels satisfying F ≥ 5 within a 10-mm radius sphere
with origin in the blue crosshair in panel A. The light red and blue
curves show the unnoisy simulated PBR-HRF and NBR-HRF of
the fitted ABS model with the estimated value RA = 0.17. In
panel C, the temporal behaviors of the ABS simulated BOLD in
the PBR and NBR regions (with the aforementioned estimated
parameters) overlap the time series of the real fMRI and the
54 IEDs (input) used in the NN-ARx estimation. Note that, to
detect this NBR/PBR pair, the unsmoothed images had to be used,
considerably decreasing statistical significance. This is however
the strategy used in Goense et al. (47) and Harel et al. (38) to
detect close BOLD responses with inverted polarities. According
to the predicted HRF type, this NBR should not be classified as
an IZ.

Patient 2 is a 13-year-old girl with generalized and uncinate
gyral seizures. An NBR with ECI type of HRF was found in this
patient (Figure 5). No lesions were present (A). In concordance
with the ictal-SPECT (hyperperfusion, B) and the brain source
imaging (EEG-BSI) (C), we found an NBR in the right frontal
eye field. sEEG data (C) showed better correspondence with a
hypometabolism (interictal PET, B) in the right parietal lobe.
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FIGURE 2 | Detection, using the GLM, of simulated spatial distribution of PBRs and three NBRs in a realistic sequence of echoplanar fMRI scans. (A) Three-

dimensional glass brain showing the regions where the mechanisms were simulated. (B) F contrast (the 3-order identity matrix) and design matrix of the GLM, used to

detect significant voxels. (C) Two-dimensional glass brain showing the F statistics. The plots show the responses predicted by the GLM (color curves) and the

adjusted data (black dots), for each mechanism. Besides each plot, the estimated values and confidence intervals of the coefficients, βcan, βder , and βdisp, of the GLM

are shown. PBR (red), NDA (green), ANC (cyan), ABS (blue).

Ictal EEG points out to a bifrontal spike/slow wave at 3 to
4Hz. Our classifier linked this particular NBR-HRF to an ECI
mechanism (D). A total of 38 IEDs were used to generate the
BOLD signal regressors. The right parietal lobe was removed.
The patient was free of seizures for 30 weeks. Thermal ablation of
the right posterior cingulate gyrus was performed 7 months later
obtaining a reduction of 90% of seizure frequency. According to
our hypothesis, the right frontal eye field is an IZ with potential
to be the SOZ; hence, seizures could resume. An alternative
explanation is that the ECI might be reflecting the presence of an
inhibitory mechanism linked to the ictal slow-wave component.

Patient 3 is a 17-year-old boy with partial seizures in the right
frontal insula. There are unarguably several regions with NDA
type of NBRs linked mainly to the DMN (Figure 6). All nodes
of the DMN, as well as the superior frontal gyri, the middle
frontal gyri, the left inferior frontal gyrus (IFG), part of the right
IFG, the right fronto-opercular region, and the right caudate
nucleus, were highly significantly deactivated. In addition, PBR
was detected in the right IFG, which could be one of the foci of the
IEDs, based on the semiology of the patient and their proximity
to the EEG electrodes used to detect the IEDs (i.e., spikes with
highest amplitude in electrode F8). Other types of events were
also marked and used as regressors in the linear models. Panel A

shows the thresholded F statistics map built from the estimated
coefficients of the GLM overlaid on the T1-weighted image. Top
left axial slice: green crosshair locating the center of one NBR
region in the right lateral parietal node of the DMN—coinciding
with the maximum value of the F statistics (bottom left sagittal:
green crosshair locating another NBR region in the caudate
nucleus; right slices: red crosshair locating the center of the PBR
region in the right frontal cortex—presumably in the origin of
the IEDs). The approximate location of electrode F8 is shown
with a green circle in the right axial slice to illustrate the possible
relation of the frontal PBR and the IEDs. The right inset shows a
short segment of the preprocessed EEG data where 2 IEDs were
identified. In panel B, the dark gray curve shows the estimated
NN-ARx PBR-HRF and its confidence interval, estimated from
the real data around the region marked by the red crosshair in
panel A and averaged across voxels satisfying F ≥ 9.5 within a 7-
mm radius sphere. The light gray curve shows the estimated NN-
ARx NBR-HRF and its confidence interval, estimated from the
real data around the DMN node marked by the green crosshair
in the top left slice in in panel A and averaged across the voxels
satisfying F ≥ 70 within a 10-mm radius sphere. The red and
green curves show the unnoisy simulated PBR-HRF and NBR-
HRF, respectively, of the fitted model with the estimated value of
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FIGURE 3 | NN-ARx estimation and classification of HRFs. (A) Example of a portion of simulated fMRI time series for the ABS mechanism. The input u (t) is

represented with a black trace at the bottom graph. (B) Both positive and negative HRFs estimated using NN-ARx from the example in A. (C) Estimated HRFs from all

trials. The black continuous curve represents the average across trials, whereas the black dash curve corresponds to a simulation without noise. To geometrically

illustrate their separability, the 3D plot depicts the scores of the first three components of the PCA decomposition of the matrix formed by stacking all HRF as row

vectors, after normalizing their amplitudes. PBR (red), ECI (yellow), NDA (green), ANC (cyan), and ABS (blue). (D) Results of the five-fold cross-validation of the SVM

classifier with a coarse Gaussian kernel function resulted in 6.3% of misclassification. Center figure shows the confusion matrix. TPR, true-positive rate; FNR,

false-negative rate; PPV, positive predictive value; FDR, false discovery rate. As expected, the PBR is distinguishable from all the NBRs. NDA and ANC mechanisms

were also perfectly classified, whereas ECI and ABS are the ones that are closer to each other.

the recovery time constant: τe2 = 3s. For illustration purposes
(panel C), we also show the temporal behavior of the simulated
BOLD signal in the NBR region (with τe2 = 3s), the time series
of the real BOLD signal, and the IEDs (input). To account for
the actual relative effect of the IEDs, the amplitude of the input
pulses was multiplied by the normalized power of the EEG in
F8. The patient underwent a right anterior temporal lobectomy
and partial hippocampus/anterior–insular resection. The patient
is not yet seizure-free.

Patient 4 is a 10-year-old boy with focal seizures and leg
pedaling. The patient exhibits ANC-type NBR (cyan crosshair),
just in the edge of a tumor in the left frontal cortex (Figure 7).
Although the null hypothesis in the significant voxels could not
be rejected with a probability corrected by multiple comparisons,
this probability was set to a very low value (p < 0.0005), and
the minimum cluster size of the significant regions was set to
five voxels (by decreasing the minimum size of significant voxels,

more significant voxels appear in the upper edge of the lesion).
Moreover, the HRF was significant according to the permutation
test. This HRF corresponded to 50 IEDs identified in electrode F7.
Other IEDs, for a total of 81, were also identified and included
as regressors in the linear models. Panel A shows an axial slice
of the thresholded F statistics map built from the estimated
coefficients of the GLM overlying on the T1-weighted image. The
IEDs were detected using the EEG signal in electrode F7 (green
circle), which was very close to the area with the ANC type of
NBR. The right inset shows a short segment of the preprocessed
EEG data where 2 of 50 IEDs were identified. The patient suffers
from tuberous sclerosis complex (B). The cyan crosshair—the
maximum value of the F statistics—locates the center of the NBR
region, in the perimeter, and below one of the patient’s tumors.
The tumor is highlighted with the yellow circle in the axial slice
and the red arrow in the coronal slice of the T2-weighted image.
In panel C, the gray curve shows the estimated NN-ARx HRF
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FIGURE 4 | Patient #1 shows an irritative zone with ABS-type HRF. (A) Slices showing the thresholded F-statistics map built from the estimated coefficients of the

GLM overlaid on the T1-weighted image. The blue crosshair locates the center of the NBR region in the Right Post-central Gyrus; whereas the red crosshair locates

the center of the PBR region in the Right Superior Parietal Lobule (SPL). The cartoon at the bottom illustrates the ABS mechanism-the regions share the final segment

of the Anterior Parietal Artery. (B) The dark gray curve shows the estimated NN-ARx PBR-HRF and its confidence interval, estimated from the real data, and averaged

across the voxels within a 10 mm-radius sphere with origin in red crosshair in (A). The light gray curve shows the estimated NN-ARx NBR-HRF and its confidence

interval, estimated from the real data, and averaged across the voxels within a 10 mm-radius sphere with origin in the blue crosshair in (A). The light red and blue

curves show the unnoisy simulated PBR-HRF, NBR-HRF of the fitted ABS model with the estimated values R_A = 0.17. (C) Temporal behavior of the ABS simulated

BOLD in the PBR and NBR regions (with the above-mentioned estimated parameters), the time series of the real fMRI and the input used in the NN-ARx estimation.

and its confidence interval, estimated from the real data, and
averaged across the voxels satisfying F ≥ 6.5 within a 10-mm
radius sphere with origin in the crosshair in panel A. The cyan
curve shows the unnoisy simulated HRF of the fitted OTT model
with the estimated value of the neurometabolic coupling gain:
κ = 0.51 s−1. We also show the simulated temporal behavior
of g and the simulated BOLD signal in the NBR region (with κ =
0.51 s−1), the time series of the real fMRI, and the IEDs (input).
Also, to account for the actual relative effect of the IEDs, the
amplitude of the input pulses was multiplied by the normalized
power of the EEG in F7. Our EEG-fMRI results predict the SOZ

in the periphery of the tumor. The patient has neither been sEEG
implanted nor undergone a surgical procedure.

Patient 5 is a 9-year-old girl with electric status epilepticus
on sleep and left (C3-P3-FZ) ictal spikes–waves discharges. A

very significant PBR was found in the premotor cortex with
high probability to be the SOZ (Figure 8). There is a non-
enhancing cystic lesion in the left posterior frontal lobe (A).
Interictal PET (C) reveals hypermetabolism (perhaps due to the
high frequency of IEDs) on the left posterior paracentral (both
precentral and postcentral sulcus) in agreement with the PBR.
EEG-BSI indicates brain sources on the bank of the left central
sulcus (C). Hence, we expect total seizure control if this area is
resected. In contrast, we found an NBR posterior to the cyst that
was classified as ABS. We found a PBR nearby this deactivation,
but it was not significant. To illustrate the usefulness of the NN-
ARx method, we compared HRFs estimated with it and those
obtained with the impulse response function (IRF) method (SPM
software). The IRF method was not able to capture underlying
HRFs. Results from the EEG-fMRI analysis are shown in panel D.
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FIGURE 5 | Patients #2 shows an irritative zone with ECI-type HRF with a high probability to be the seizure onset zone. (A) Two modalities of fMRI anatomical imaging:

left, T1-weighted; right, FLAIR. (B) Two modalities of nuclear imaging: left, interictal PET; right, ictal SPECT. (C) Left, Ictal EEG points out to a bifrontal spike/slow wave

at 3-4Hz; right, brain source imaging (EEG-BSI) in Right Tempo-Frontal. (D) Composed panel: left top and center, two slices with the thresholded F-statistics map built

from the estimated coefficients of the GLM overlaid on the T1-weighted image with blue crosshair locating the center of one NBR region in the Right Frontal Lobe, left

bottom-estimated NN-ARx of this particular NBR-HRF was classified as ECI mechanism, right-stereo EEG (sEEG) electrodes placement is shown as reference.

DISCUSSION

The most accessible, inexpensive, and least-invasive brain

imaging method available for localizing seizure foci with high

sensitivity (85%) is fMRI combined with EEG. Unfortunately,

its benefits remain controversial for many patients, owing to

an incomplete understanding of the neuronal, vascular, and
metabolic responses in epileptic tissues, decreasing the sensitivity
of the biomarker used to locate foci. A large percentage (∼17.4%)

of discordance in the use of the EEG-fMRI technique is due to a

poor classification of clinically relevant NBR responses (Table 2).
Here, we hypothesize that NBRs during IEDs could be caused

by both clinically and non-clinically relevant mechanisms. A
clinically relevant mechanism should be that resulting as a direct
consequence of epileptogenic tissues, i.e., an enhanced inhibition
and a vascular/metabolic balance mismatch both due to tissue
overexcitability. A secondary effect, such as blood flow stealing
and resting-state network shutdown, should be considered not
clinically relevant and hence not discussed during the surgical
workup. Therefore, tools aiming at the classification of these four
mechanisms might increase accuracy in the localization of foci
for neurosurgical excision, improving success rates. Henceforth,
we discuss the rationale and implications of the mechanisms
proposed for NBR genesis in epilepsy.

Modeling NBRs With a Neuronal Network
Origin
Inhibition-related phenomena, i.e., ECI and NDA, require
accounting for the imbalance between the local activation of
inhibitory and excitatory neuronal states, which depend on
their respective connectivity structure. A two-state model (P-
DCM) was used by Havlicek et al. (44, 53) to explain NBR
during static and flickering visual stimulation. In this article, we
extended the P-DCM model to include an additional external
input to the inhibitory population in each brain region of
interest and an IED-evoked synaptic modulation of the RSNs.
Long-range excitatory (thalamocortical/corticocortical) inputs
targeting inhibitory populations in the granular layers of the
cerebral cortex have been extensively reported in previous
literature. IEDs are mostly initiated by a brief increase in
excitatory feedback gains and decrease in the thresholds for firing
(63). In many cases, local neuronal excitability is followed by an
enhancement in cortical inhibition (e.g., the wave component
in the spike-wave events), which has been linked to a robust
hyperpolarization in III/V layer pyramidal cells (25, 26). Data by
Pittau et al. (13) suggested this type of enhanced inhibition might
cause NBR in, or near, the actual IZs. Therefore, we hypothesize
NBR with an ECI-HRF type should be included as a potential
candidate for ablation in the epilepsy surgical workup. We
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FIGURE 6 | Patients #3 shows an irritative zone with NDA-type HRF in a brain area of the DMN. (A) Slices showing the thresholded F-statistics map built from the

estimated coefficients of the GLM overlaid on the T1-weighted image. Top left axial slice: green crosshair locating the center of one NBR region in the Right Lateral

Parietal node of the DMN—coinciding with the maximum value of the F-statistics. Bottom left sagittal: green crosshair locating another NBR region in the caudate

nucleus. Right slices: Red crosshair locating the center of the PBR region in the right frontal cortex-presumably in the origin of the IEDs. The IEDs were detected using

the EEG signal in electrode F8. The approximate location of this electrode is shown with a green circle in the right axial slice to illustrate the possible relation of frontal

PBR and the IEDs. The right inset shows a short segment of the preprocessed EEG data where 2 IEDs were identified. (B) The dark gray curve shows the estimated

NN-ARx PBR-HRF and its confidence interval, estimated from the real data around the region marked by the red crosshair in (A). The light gray curve shows the

estimated NN-ARx NBR-HRF and its confidence interval, estimated from the real data around the DMN node marked by the green crosshair in the top left slice in (A).

The red and green curves show the unnoisy simulated PBR-HRF and NBR-HRF, respectively, for a τe2 = 3s. (C) For illustration purposes, we also show the temporal

behavior of the simulated neuronal activity and BOLD signal in the NBR region [with τe2 = 3s], the time series of the real fMRI and the input. To account for the actual

relative effect of the IEDs, the amplitude of the input pulses was multiplied by the normalized power of the EEG in F8.

believe the NBR results from an abnormal enhancement in the
external input to inhibitory populations in the neocortex, which
is modeled by a large response time of the inhibitory population
τi1. In this article, the τi1 parameter was fitted using the BOLD
data to accurately represent the particular NBRwaveform. On the
other hand, the recovery of the neuronal activity of the disrupted
RSN (NDA) after an IED affects one of its nodes is characterized
by amodulation of the excitatory synapses in specific areas within
the RSNs, which was characterized by a reduced intralaminar
excitatory connectivity ce2 = 0.01 and a large response time
τe2. The latter actually depends on the way the different nodes
interact to effectively “shut down” and recover the network. Note
that brain dynamics operate near criticality (64–66), i.e., on the
brink to instability. Neuronal activities in this situation require

higher recovery time to reach equilibria after perturbed and are
associated with large-scale dependencies and scale invariance
(67). Therefore, the time response for excitatory τe2 was fitted to
the BOLD data to accurately characterize the NDA type of NBRs.

Modeling NBRs With a Vascular/Metabolic
Origin
Enhancements in the neurovascular coupling gain ε cause
increases in CBF, hence a larger PBR effect. Ictal hyperperfusion
has been observed with 15O-H2O PET and 99mTc-HMPAO/ECD
(33, 34). Using invasive recordings from a preclinical model of
epilepsy, we have reported increases in the perfusion gain around
the SOZs (35). In this previous study, we associated a small value
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FIGURE 7 | Patients #4 shows an irritative zone with ANC-type HRF in a brain area at the edge of a tumor (TSC). (A) Axial slice of the thresholded F-statistics map

built from the estimated coefficients of the GLM overlaid on the T1-weighted image. The IEDs were detected using the EEG signal in electrode F7. The approximate

location of this electrode is shown with a green circle to illustrate the possible relation between the NBR region and the IEDs. The right inset shows a short segment of

the preprocessed EEG data where 2 IEDs were identified. (B) The patient suffers from tuberous sclerosis complex. The cyan crosshair—the maximum value of the

F-statistics—locates the center of the NBR region, in the perimeter and below one of the patient’s tumors. The tumor is highlighted with the yellow circle in the axial

slice and the red arrow in the coronal slice of the T2-weighted image. (C) The gray curve shows the estimated NN-ARx HRF and its confidence interval, estimated

from the real data, and averaged across the voxels within a 10 mm-radius sphere with origin in the crosshair in (A). The cyan curve shows the unnoisy simulated HRF

of the fitted OTT model with the estimated value of the neuro-metabolic coupling gain: κ = 0.51 s−1. (D) For illustration purposes, we also show the simulated

temporal behavior of the state variable g and the simulated BOLD in the NBR region [with κ = 0.51 s−1], the time series of the real fMRI and the input. To account for

the actual relative effect of the IEDs, the amplitude of the input pulses was multiplied by the normalized power of the EEG in F7.

of κ in the SOZ with an increase in the baseline O2 metabolism,
which might be related to reported glucose hypermetabolism
in the SOZs from ictal FDG PET. The interplay between
O2/glucose metabolism and blood perfusion during IEDs is still
controversial. Several studies have shown a hypometabolism in
IZs, whereas others have reported complex glucose metabolism
patterns with hypermetabolism also in some SOZ candidates (34,
68). Using 15O-H2O PET, Bittar et al. (68) showed an increase in
blood perfusion during IEDs. However, reductions in perfusion
have been also reported in the past (34). If this neurovascular
coupling gain is kept constant, the parameter that is highly
correlated with NBR amplitude will be κ . A disproportionate
increase of this value leads to the ANC type of HRF. In this
mechanism, the NBR can be seen as an exaggerated initial dip

as a result of an abnormally enhanced O2 metabolism. It is
hypothesized that this particular type of NBR may be clinically
relevant while defining IZs. NBR can also have a pure vascular
origin via an ABS effect. Here, we use a model proposed by
Suarez et al. (39) that couples two Windkessels by a common
artery to classify ABS types of HRFs. Simulations indicate
that the parameter that determines the NBR amplitude is the
resistance of the vessel (artery), relative to the total steady state
resistance of the vasculature within the tissue, i.e., the arterioles,
capillaries, and venules. A vascular anatomical network (VAN)
model proposed earlier by Boas et al. (69) predicts also a
relative decrease in CBF and O2 saturation around a brain area
undergoing a positive functional hyperemic response. However,
the authors are not aware of the application of the VANmodel to
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FIGURE 8 | Patients #5 shows an irritative zone with ABS-type HRF. (A) Three different slices of anatomical fMRI imaging (T1-weighted) show non-enhancing cystic

lesion in the Left Posterior Frontal Lobe (red crosshairs). (B) Slices showing the thresholded F-statistics map built from the estimated coefficients of the GLM overlaid

on the T1-weighted image; left panel, NBR highlighted with blue crosshairs; right panel, PBR highlighted with red crosshairs. (C) Composed panel: top, two slices of

nuclear imaging (interictal PET); bottom, EEG-BSI data. (D) Comparison between the NN-ARx method with the impulse response function (IRF) method (SPM

software). The IRF method was not able to capture underlying HRFs. Results from the NN-ARx were classified as the ABS mechanism.

study NBRs in epilepsy. The existence of ABS effect in the brain
have been experimentally demonstrated by several groups (38,
41). Here, we recommend excluding IZs with ABS types of NBRs
as potential candidates of SOZ. Some authors have suggested
that a type of NBR might also result from the combination of
blood backpressure and neuronal inhibition (47, 70). That would
explain the presence of the poststimulus overshoot, which is
in contrast to those observed in our pure vascular simulations.
This undershoot is shown to be determined by the dynamics of
the inhibitory neuronal state (44). Other causes including vein
delayed compliance might also explain these transient. However,
these last mechanisms were not investigated in this study.

NBR Classification
In this article, we focus on the possibility of detecting and
classifying the NBR mechanisms using the HRFs extracted from
BOLD fMRI signals. We use linear models for the detection
and estimation of the HRFs, i.e., GLM and NN-ARx methods,
respectively. Under the assumption of the extended balloon
model, the validity of the GLM was previously investigated by
quantifying the effect size of second-order Volterra kernels (55).
Under the same model, the validity of the NN-ARx to estimate
HRFs was evaluated in (17, 45). Although linear models have
been used to detect and reconstruct BOLD responses for decades,
even before addressing the non-linear characteristics of BOLD
signals (59, 71), we decided to analyze if linear models are able
to accurately characterize PBRs and NBRs in epileptic patients.

In general, for balloon/Windkessel models—with sporadic IED
events and typical canonical-like responses (57), these linear
models are suitable for spatial detection estimation of the
HRF. We investigated if the NBR mechanisms can be solely
classified from their BOLD responses. This is important for
clinical applications when only standard fMRI paradigms are
available or designed. Figure 3D shows that the machine learning
classifier is able to differentiate PBR (red), ECI (yellow), NDA
(green), ANC (cyan), and ABS (blue) in 100% of the cases.
However, ECI and ABS were undistinguishable in some trials.
In practice, this might be worse as there is a loss of sensitivity
and specificity related to the usual misclassifications of IEDs,
which is expert dependent. Furthermore, we cannot outline
the possibility of having more than one NBR mechanism in
the same area at the same time. Thus, failing to identify IZs
with multiple NBR mechanisms could lead, in the worst-case
scenario, to the incorrect clinical assessment. According to our
hypothesis, an ABS/ECI misclassification will be the most critical
case. However, these mechanisms are different in nature, and our
model predicts different responses when using other imaging or
recording modalities. At the expense of experimental feasibility,
other imaging technique can be combined with our EEG-
fMRI methodology to verify the predicted NBR mechanisms.
For example, MION (38) and/or VASO (47) can be used to
measure CBV concurrent with BOLD signals. Measurements
of neuronal activity can be incorporated using ECoG/sEEG
and EEG (27). In addition, CBF can be also included using
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TABLE 2 | Results from two studies (different laboratories) about the accuracy of the EEG-fMRI technique, with specifications to (a) typical percentage of refractory

epileptic patients who will not be able to complete a successful EEG-fMRI study and (b) typical percentage of these patients with a “discordant” NBR result.

References No. Removed [Art, No IED] Concordance (%) Discordant (%) NBR-/Tot (%)

PBR NBR Total PBR NBR Total

Salek-Haddadi et al. (14) 63 29 (46.0%) 17 4 62% 2 9 32% 9/34 (26%)

An et al. (1) 47 12 (25.5%) 21 6 77% 5 3 23% 3/35 (8%)

Total 110 41 (37.3%) 38 10 69% 7 12 27% 12/69 (17.4)

arterial spin labeling (ASL) (30) and/or FAIR (47). In the
case of ABS/ECI misclassification, a radiologist could use EEG
concurrently recordedwith ASL focused on the particular regions
to verify whether there is a decrease in CBF. If no decrease in
CBF is observed, ECI mechanisms should be expected. With
these multimodal observations, we foresee a significant increase
in the margins of classification of the NBR mechanisms, even
in the case more than one is present in the same region (47,
72). It is important to highlight that none of the available
imaging modalities (Table 1) provides conclusive results, and a
thorough data evaluation in the surgical workup is needed for
each clinical case. Our approach only aims at providing another
level of EEG-fMRI data interpretation to improve the accuracy
of this technique. To illustrate this, five specific clinical cases are
discussed below.

Epileptic Cases Discussion
We found an ABS type of NBR in patients 1 and 5. In
patient 1, an NBR was located in the SPL and a PBR in the
PG. The NBR was classified as ECI, which would occur via
either U fibers or pure vascular phenomena. However, we cast
doubt on ECI as we believe an inhibitory pathway from SPL
to PG is rather weak. Note that the PG hosts the primary
somatosensory cortex (S1) (73), which is a granular cortex
that mainly receives somatotopic feedforward afferents from the
ventral posterolateral and posteromedial relay nuclei (VPL and
VPM) of the thalamus (74). In addition, the SPL, involved in
transforming visual information in complex motor planning, has
efferent pathways mainly to the premotor supplementary motor
cortices in the precentral gyrus. A top–down inhibition from
higher areas (prefrontal cortex) to the somatosensory area is
mainly via efferent pathways. Moreover, both difussion spectrum
imaging (DSI)-based connectivity (75) and cortical thickness–
based connectivity (76) between SPL and PG are rather low.
The mechanism might be ABS. Note that the detected BOLD
responses are in the vascular domain of the middle central artery,
at both sides of the postcentral sulcus. Thus, they might be
sharing a final segment of the anterior parietal artery. Although
we do not discard the existence of a venous blood backpressure
effect, in which the regions could be sharing some anastomotic
vein feeding the central sulcal vein or a branch of the superior
anastomotic vein of Trolard, it has been reported that venous
CBV changes are relevant only for longer stimuli (77). The NBR
in patient 5 was found posterior to the cyst. We used data
from this patient to illustrate the HRF estimation with the IRF

method (SPM) and our NN-ARx method. Because of a probable
revascularization around the cyst, angiography data from this
patient will be required for a discussion about possible scenarios

for the ABS effect. A frontal eye-field NBR with an ECI HRF was
found in patient 2, which is most likely due to ictal propagation

with frontal slow-wave responses. Slow-wave discharges have

been found associated with NBR (13). DMN deactivations, like
those found in patient 3, have been systematically reported

in the literature for temporal lobe epilepsy (TLE) (11, 37)

and for other types of focal epilepsy (36, 78). The pattern of
deactivation depicted in Figure 6, with a predominance in the

parietal node of the DMN ipsilateral to the focus, is similar to

that reported ibyn Fahoum et al. (36) for four of five patients,

with concomitant decrease of electrophysiological activity. Our
results suggest that the PBR region might have afferents on the

anterior part of the caudate nucleus that relay to central nodes of
the DMN. This is consistent with the hypothesis of widespread
secondary inhibition of non-seizing cortical regions via basal
ganglia (79). The temporal profile of the PBR HRF in the right
IFG experienced an unpredicted decay (or rebound) correlated
with the amplitude of the NBR in the DMN nodes. This might
be seen as an interruption of the PBR mechanism by inhibitory
afferents coming from the regions exhibiting NDA, which in
this case are present all around the right IFG. This might have
implications in the interpretations of BOLD responses during
IEDs or stimulation paradigms. If the location of the PBR is
close to an affected RSN node, its HRF waveform might be
misleading of the actual underlying PBR mechanism, due to
either the interaction between mechanisms, i.e., inhibitory inputs
from the NBR to the PBR region, or the effect of the BOLD spatial
point-spread function. This rebound can be also explained as an
increase in dHb due to an increase in neuronal activity in theNBR
region, or even a vascular reallocation phenomena, as suggested
by Hu and Huang (40). They observed positive and negative
optical responses, concurrent with local field potentials (LFP)
and multiunit activity (MUA) measurements, in rats during
hindlimb electrical stimulation. Finally, it has been hypothesized
that NDA is a disruption of RSN provoking a reduction of
consciousness and cognitive reserve (36). Interestingly, our
results suggest that a recovery from this disrupted state is not
instantaneous. In our data, the estimated value for the recovery
time constant was τe2 = 3s. The Epilepsy Connectome Project
(ECP) (80) constitutes a huge database that contains clinical,
neurophysiological, and resting-state fMRI (rs-fMRI) data of
105 patients with TLE and 55 healthy individuals as control.
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Using graph (nodes and edges) theory combined with rs-fMRI
measures, a characterization of abnormal patterns in the local
and global neuronal connectivity in TLE has been possible,
thanks to the ECP. Our model-based method to identify different
types of NBRs in epilepsy can help provide a neurophysiological
foundation to the reported connectivity maps abnormalities.
The ANC mechanism, as reported for patient 4, is related to a
decrease in the CBF/CMRO2 balance. NBRs in the hippocampus
of rats during bicuculline-induced generalized tonic–clonic
seizures were associated with this type of mechanism (81). The
authors reported that, even with higher LFP/MUA activity in
the hippocampus, as compared to the cortex, the CBF was
lower, and the CMRO2 was higher, yielding to NBRs in the
hippocampus. Quantitatively, the unbalance corresponds to a
decrease in the ratio ε

κ
in the OTT model (56), which is ∼ 0.4

0.05 =
8 for normal positive responses. Song et al. (35) estimated a
ratio approximately five-fold smaller in rat with focal cortical
seizures. Although the rCBF/CMRO2 coupling was reported to
be preserved in human IEDs without any apparent lesion (82),
we do not discard the possibility of an unbalance produced by a
more critical state of tissue pathology. For example, the typical
calcification of the surrounding blood vessels present in TSC
tumors (83) could hamper the expected IED-induced increase
of rCBF. We estimated κ = 0.51s−1 for the IED-related ANC
mechanism around the lesion, which yields 0.28

0.51 = 0.55, 14 times
smaller than the normal values.

Final Remarks
It is worth noting the foreseeable boost that BOLDmodeling will
have with the advent of new and optimized sequences in high-
field spin-echo fMRI, with the considerably improved ability
to measure high-resolution layer-dependent BOLD images and
correlates of rCBV and rCBF (47, 70, 84–89). This allows for the
construction and estimation of more detailed models of BOLD
generation, through understanding of the actual role of arteries,
capillaries, and veins in the generation of these observables and
the possible biases that the variability of neurovascular/metabolic
coupling, CBV, and signal-to-noise ratio (SNR) across layers
could introduce. For example, it has been reported that the
baseline CBV distribution varies over cortical layers biasing fMRI
signal to layers with high CBV values (77). This affects the
interpretation of what the contribution of the different vascular
compartments to the average low-resolution BOLD response is.
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Conventional EEG-fMRI methods have been proven to be of limited use in the sense

that they cannot reveal the information existing in between the spikes. To resolve

this issue, the current study obtains the epileptic components time series detected

on EEG and uses them to fit the Generalized Linear Model (GLM), as a substitution

for classical regressors. This approach allows for a more precise localization, and

equally importantly, the prediction of the future behavior of the epileptic generators. The

proposed method approaches the localization process in the component domain, rather

than the electrode domain (EEG), and localizes the generators through investigating

the spatial correlation between the candidate components and the spike template, as

well as the medical records of the patient. To evaluate the contribution of EEG-fMRI

and concordance between fMRI and EEG, this method was applied on the data of 30

patients with refractory epilepsy. The results demonstrated the significant numbers of

29 and 24 for concordance and contribution, respectively, which mark improvement

as compared to the existing literature. This study also shows that while conventional

methods often fail to properly localize the epileptogenic zones in deep brain structures,

the proposed method can be of particular use. For further evaluation, the concordance

level between IED-related BOLD clusters and Seizure Onset Zone (SOZ) has been

quantitatively investigated by measuring the distance between IED/SOZ locations and

the BOLD clusters in all patients. The results showed the superiority of the proposed

method in delineating the spike-generating network compared to conventional EEG-fMRI

approaches. In all, the proposed method goes beyond the conventional methods by

breaking the dependency on spikes and using the outside-the-scanner spike templates

and the selected components, achieving an accuracy of 97%. Doing so, this method

contributes to improving the yield of EEG-fMRI and creates a more realistic perception
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of the neural behavior of epileptic generators which is almost without precedent in

the literature.

Keywords: simultaneous EEG-fMRI, epileptogenic zone, independent component analysis (ICA), generalized linear

model (GLM), blood-oxygen-level dependent imaging (BOLD), epilepsy, source localization

HIGHLIGHTS

- In this study, we succeeded in diminishing limitations through
presenting a method in the component domain for localizing
epileptic foci, taking into account the clinical application, so
that more satisfactory results than the conventional EEG-fMRI
methods could be obtained.

- The component-based method plays a more prominent role
in eliminating the need for invasive electrode implantations
compared to conventional EEG-fMRI analysis.

- The component-based method brings to attention the
variations in amplitude and duration of epileptic spikes,
whereas the conventional methods simplistically assume that
all events are equal.

- The conventional approach overlooks the fact that IED activity
is continuous and contains fluctuating sub-threshold epileptic
activity that is not clearly observed on surface EEG recordings.

- Such valuable information will be obtained by the ICA
algorithm applied as part of the proposed method.

INTRODUCTION

Epilepsy is one of the most common neurological disease
worldwide (1). It is generally characterized by an enduring
predisposition to recurrent yet spontaneous seizures, defined
as brief episodes of signs or symptoms indicating excessive,
abnormal, or synchronous neuronal activity in the brain (2).
The first course of treatment for this condition is drug therapy.
However, about 30% of patients are refractory to antiepileptic
medications (2), and those with focal epilepsy may be considered
for epilepsy surgery.

To provide successful surgical treatment, an improved
preoperative evaluation that delineates the epileptogenic zone
(EZ) is a critical prerequisite. Several methods have been
proposed in the literature (3–5), among which intracranial
electroencephalography recording (icEEG) has gained the most
attention and is known as the gold standard for defining
the epileptogenic zone (EZ) and localizing the seizure onset
zone (SOZ) (6). Although popular, this invasive monitoring
technique is not without risks or shortcomings (7): it explores
only a small fraction of the brain and tends to be time-
consuming as the frequency of seizure occurrence is relatively
low compared with interictal epileptiform discharges (IEDs).
Consequently, over the past few years, greater attention has been
directed toward noninvasive EEG-correlated functional magnetic
resonance imaging (EEG-fMRI) method as an additional tool to
localize the SOZ (8–11). EEG-fMRI combines the high spatial
resolution of blood oxygen level-dependent (BOLD) MRI with
the high temporal resolution of the EEG signal. This method
is now increasingly available following the resolution of crucial

technical challenges such as developing suitable amplifiers and
procedures for correcting the scanner-related artifacts in the EEG
signal (12–15). There is a clinical need for optimized mapping
of the changes in neuronal activity related to epileptic discharges
observed on surface EEG (16) considering the subclinical nature
of some of the interictal epileptiform activity which makes the
events of interest only recognizable on the EEG record. Studying
the correlation of these events with the fMRI time series reveals
complex patterns of hemodynamic change indicative of brain
networks. Studies investigating the spike-related BOLD changes
have shown that in addition to characterizing different types
of focal and generalized epilepsy, these measures could also
improve the presurgical evaluation of patients with refractory
focal seizures (17–19).

In epilepsy patients, spike-related BOLD changes can
contribute to the localization of the epileptic foci. As shown

in the literature, the BOLD signal tends to increase in regions
that generate spikes (20), although it is often in the form of
widespread responses (21). The study of (22) reports a noticeable
rate of 60% in seizure freedom in patients who underwent

surgical resections where the cortical tissues responsible for
the highest spike-correlated BOLD changes were completely
removed. Furthermore, the simultaneous recording and analysis

of EEG-fMRI is now an important tool in localizing epileptic
generators in patients with nonlesional frontal lobe epilepsy,
as confirmed by other imaging modalities (19). The literature

has found this technique to be of great value when it comes
to clinical decision makings. Pittau et al. (18) demonstrated

that EEG-fMRI analysis facilitated the localization of epileptic
generators in 64% of the patients and the BOLD responses were
concordant with the spike-generating regions in 88% of the

patients. In patients who were considered ineligible for surgery
according to the conventional clinical decision makings, EEG-
fMRI confirmed multifocality in 4 of 5 presumed multifocal
patients and improved SOZ localization in 4 of 6 patients with
unclear foci (23).

According to the conventional method, the IEDs are
considered the primary indicators of epileptic activity (24). So,
the conventional analysis begins with identifying and marking
the IEDs by trained experts assessing the simultaneous EEG-
fMRI. The timing of the detected IEDs is then taken as simple
epileptic events and convolved with the hemodynamic response
function (HRF) to produce a regressor for a General Linear
Model (GLM) analysis. Finally, the estimated activation area
with the highest statistical significance will be considered as
the spike onset zone, a potential marker of the epileptogenic
zone (EZ). Many of the recent studies are still based on the
GLM analysis (8–15) and their improvement is in increasing of
magnetic field strength (25) or using simultaneous intracranial
EEG-fMRI (iEEG-fMRI) (26, 27). Yet, the clinical utility of the
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conventional EEG-fMRI approach is not completely supported
by the published literature (9–13). An important limitation
of the conventional IED-based EEG-fMRI analysis is that it
only considers the information of epileptic focus activity at
the time of the spikes and ignores all the neural activities
associated with epileptic generators in other time points. So,
the actual neural behavior of epileptic generators over the
entirety of the recording is not captured by the conventional
method, which is unable to localize the epileptic generator
when the spikes do not occur during the EEG recording.
The proposed method covers this limitation by considering
epileptic neural activity regardless of whether or not a spike
occurs, potentially leading to a more accurate localization of the
epileptogenic zone.

To improve upon the conventional analysis method, we
introduced a new method for analyzing EEG-fMRI data that
utilizes the information contained within the entire time series
of a relevant EEG source. To do this, we first separated the
EEG components using independent component analysis (ICA)
and calculated the cross-correlation between the time series
of the extracted ICA components and a patient-specific IED
spike template to determine the most relevant component.
Ultimately, the time series of this component was convolved
with the HRF, resampled to the frequency of the fMRI
recording, and used in the GLM analysis. To evaluate this
method quantitatively, we calculated the distance from the
dipole locations in EEG source localization to the BOLD
cluster and compared the results to those obtained from the
conventional methods.

MATERIALS AND METHODS

Subjects
30 patients from Epilepsy Center, Pars Hospital, Tehran, Iran,
who were surgery candidates with focal or generalized epilepsy
and also would show at least 10 distinct IEDs during the MRI
scanning were included in the study. The ethical approval was
obtained from the ethics committee of the Iran University of
Medical Sciences, Tehran, Iran, and all patients provided written
informed consent.

Long-Term Monitoring (LTM)
All the patients underwent a long-term 64-channel EEG with
500Hz sampling rates and following the 10–20 standard for
electrode placement as a preoperative evaluation at the Epilepsy
Center, Pars Hospital, Tehran, Iran. Besides, all the other
available information such as the comprehensive clinical record,
full neurological examination, neuropsychological assessment,
structural MRI, and other non-invasive investigations like ictal
SPECT and PET were reviewed to help the localization of
irritative zone (IZ) and Seizure Onset Zone (SOZ) through the
preoperative evaluation.

EEG-fMRI Acquisition
Simultaneous recording of EEG-fMRI was performed from May
2017 to June 2018 at the National Brain Mapping Laboratory
(NBML), Tehran, Iran, in the form of 20-mins sessions with

eyes closed. The MRI scanner was the 3 T Siemens Prisma, and
the EEG amplifier was a 64-channel BrainAmp MRI-compatible
system from Brain Products with 5 kHz sampling rates. The EEG
internal clock was synchronized with the MRI clock and the
EEG electrodes followed the 10–20 placement system with the
reference of Cz. Besides, the ECG signal was recorded using a
bipolar lead (10, 28), and a 10-min EEG recording was acquired
with eyes closed outside the scanner immediately before the
EEG-fMRI session (28). EEG electrodes were equipped with an
additional 5 k� terminal resistance, and impedances were kept
as low as possible to improve the quality of the recording.

For the MRI scanning, a T1MPRAGE anatomic sequence was
first scanned [1mm slices, 256× 256 matrices, echo time (TE)=
3.74ms, repetition time (TR)= 1,810ms, flip angle= 30◦] to use
in registering functional images. Functional data was obtained in
20-min runs with patients at rest, using a T2∗-weighted gradient-
echo (GRE) imaging sequence (234 × 234 matrix, 40 slices, 3 ×
3 × 3mm, TE = 26ms, TR = 2,500ms, flip angle = 60◦) (29).
To minimize the movement of the patient’s head and provide
comfort, a pillow filled with foam microspheres was used inside
the scanner.

EEG Signal Processing—Long Term
Monitoring
The EEG signals were preprocessed using the EEGLAB toolbox
(https://sccn.ucsd.edu/eeglab/). First, the sampling rate of the
signal was reduced to 250Hz, and a Butterworth high-pass filter
at 1Hz was used to suppress the low-frequency components
(30–32). Then, all the channels were reviewed, and those with
a standard deviation greater than ±3.1 from the mean standard
deviation (across all channels) were excluded as the abnormal
channels. For eliminating the power-line noise at 50Hz, the
Clean Line algorithm was used (29). The advantage of this
algorithm over the notch filter is that it adaptively estimates and
removes sinusoidal artifacts without creating band-holes in the
EEG power spectrum (29, 33).

Next, the ICA algorithm was applied on the EEG signal
and the irrelevant components corresponding to eye blink,
eye movement, cardiac pulsatile, muscular tension, swallowing,
or machine vibration were visually identified using the
component’s scalp map, spectral power activity, and spectral
power distribution. Figure 1 shows typical samples of two such
components identified as artifacts. After identifying all the
artifact components, the data were re-composed without them.

The resultant cleaned signals were evaluated by a trained
expert, and the IEDs were marked for the main analysis.
Then, the IEDs were averaged to build patient-specific and
morphology-specific IED templates. After band-pass filtering
(34) (1–30Hz) and epoching the spikes with a fixed length of 0.3 s
and step size of 1 sample (2.5ms) to include the negative peak
and slow-wave, the template of the spike was set for each subject
by hand-selecting and averaging 10–20 spikes from the marked
signal by an experienced electroencephalographer. New spikes
would then be detected and added to the initial template (29).
In case a patient had more than one type of spike, this process is
separately done for each different type (35). The match between
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FIGURE 1 | The eye-blinking and eye-movement artifacts are visible both in the scalp map and in the activity power spectrum. (A) Eye-blinking artifact. (B)

Eye-movement artifact.

the template, x, and each 300ms of candidate component at the
times of the IED, y, was defined as the magnitude of the sample
correlation, |rxy|, presented in Eq. 1.

rxy =
∑n

i=1 (xi − x) (yi − y)
√

∑n
i=1 (xi − x)2

∑n
i=1

(

yi − y
)2

(1)

To add to the initial, hand-selected template, a first pass over
the data was performed at a high threshold (rxy = 0.96–0.98
depending on the subject) (36).

EEG Signal Processing—Simultaneous
EEG/fMRI
For the EEG signals recorded inside the scanner, the MR
gradient switching artifact was eliminated using the fMRIb
algorithm (https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/) which
first increases the sampling rate to 20 kHz, and then applies a
low-pass filter at 60Hz (37). Also, the ballistocardiogram (BCG)
artifact that occurs because of the movements of the electrodes
associated with cardiac pulsations, was detected and removed
with the fMRIb toolbox using the heartbeat information from
the extra ECG electrode during EEG-fMRI recording. A sample
of EEG signals recorded inside the MR scanner before and after
removing the MR gradient and BCG artifacts are shown in
Figure 2.

Template Component Cross-Correlation
(TCCC) Method
The general pipeline of the proposed method is summarized in
Figure 3. First, the EEG signal recorded outside the scanner was
preprocessed, and the individual patient-specific IED templates
were extracted for each subject. Besides, the EEG signal recorded

inside the scanner underwent ICA analysis and was decomposed
to its independent components after artifact removal for selecting
a set of candidate components representing actual generators
of epileptic activity. Different ICA algorithm parameters can
lead to various components but if the candidate components
are reliable sources, they should be robust to variations in the
ICA decomposition process. Therefore, the ICA algorithm was
applied 10 times using different arbitrary (random) initialization
weights, and the initial candidates selected based on being those
seen most often in the 10 repetitions (38). From these, the three
components with the highest average λ (weight of extracted
independent components) across all 10 iterations were selected
as final candidates.

The set of final candidate components of each patient
underwent the analysis of cross-correlation with their specific
IED templates, built earlier from Long Term Monitoring (LTM)
data (Figure 4A). The process employed a sliding window of
width 0.3 s and step size of 1 sample (the yellow box with
the arrow in Figure 4B). EEG inside scanner was marked
by an experienced electroencephalographer and the marked
times were used for the cross-correlation. Components that
did not have cross-correlation with the templates at the times
of the IED events of at least 0.85 were rejected (Figure 4C).
Also rejected were the candidates judged to be discordant
with the observed IEDs in the EEG (more than 50mm
away) (Figure 4D).

The time course of each remaining component was assumed
to be the temporal activity of an epileptic source. So, they were
convolved with the canonical HRF (Figure 4E), resampled to the
frequency of the fMRI recording (TR = 2.5 s), and used as the
predicted model in the GLM analysis. For multiple spikes, the
regressors of the different types were entered simultaneously into
a single first-order analysis.
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FIGURE 2 | An illustration of EEG signals recorded inside the scanner: (A) noisy signal; (B) after removing the MR gradient artifact; (C) after eliminating the BCG

artifacts.

fMRI Analysis
In the conventional analysis, the EEG signals recorded
simultaneously with fMRI are reviewed and marked for
determining IEDs as zero-duration events, and the resultant
time series is convolved with a standard HRF for use in the GLM
analysis as the regressor of epileptic activity. However, in our
Template Component Cross-Correlation (TCCC) method, the
time series of the epileptic-related components are convolved
with four HRFs, peaking at 3, 5, 7, and 9 s (12).

The fMRI dataset was preprocessed and analyzed using FSL
(FMRI Expert Analysis Tool, Version 6.0.1, FMRIB’s Software
Library, http://www.fmrib.ox.ac.uk/fsl). Motion correction was
done via a 6-parameter rigid-body transformation, and the
dataset was spatially smoothed via 6-mm full width at half-
maximum. Also, an autoregressive model of order one was
used to correct the temporal autocorrelations (39), a third-order
polynomial was used to model low-frequency drifts and applied
as high-pass temporal filtering. For each fMRI dataset, all of the
models built from each of its IED components were included in
the same GLM, thus total variance was partitioned amongst the
inputs, effectively treating the others as confounds.

All regressors were included in the same GLM in the fMRI
analysis (fMRIstat). For each event type, a statistic z-map
was created for each regressor using the other regressors as
confounds. A combined z-map was created by taking, at each
voxel, the maximum z-value from the four z-maps based on four
HRFs. The single combined t-map was used for the subsequent
analysis. For the second-level analysis, each cluster with at least
five contiguous voxels having a z-value >3.1, corresponding to
a p value smaller than 0.05 was selected as the significant result.
This included correction for multiple comparisons, accounting
for the number of voxels and the 4 HRFs. The final statistical
maps were then registered to and overlaid on the patient-specific
structural MRI. In the z-maps, a yellow-red scale corresponds
to positive BOLD responses (activation) and a blue-white scale
to negative responses (deactivation). Responses outside the
brain were excluded and BOLD responses in the ventricles
were excluded using a mask, as they are often interpreted as
artifactual findings.

Concordance Between IED Location and
Maximal BOLD Response
For evaluating the results of the analysis, the spatial concordance
between the BOLD response and the IED field was assessed.
First, the locations of the single voxel with maximal z-score
of the maximum BOLD cluster and the extracted dipole from
ICA algorithm were determined. Next, the distance between
the locations was measured and classified into three levels
of spatial concordance: (i) concordant (C) for the distance
<25mm; (ii) partially concordant (PC) for the distance between
25 and 50mm; and (iii) discordant (D) for the distance more
than 50mm (36, 40). To evaluate the distance between dipole
and maximum BOLD, the spherical head model has been co-
registered to the MNI brain. Spherical dipoles coordinates are
also converted to MNI. The fMRI data is also co-registred and
normalized into a MNI atlase.

Contribution of TCCC Method
The evaluation of IED sources and seizure onset zone is usually
involved in the standard clinical practice for the planning of
surgical resection in epilepsy. However, the use of simultaneous
EEG-fMRI is not currently part of such standard practice. If it
presents meaningful information for more precise localization of
the IED sources, it may become a helpful part of the standard
clinical practice for presurgical evaluation. Therefore, we have
included the evaluation of our final BOLD results for each type
of IED in terms of their potential contribution. We defined the
BOLD results as contributory if: (i) the BOLD response detected
the IED generation field with higher precision and accuracy than
EEG source localization, and (ii) the maximum BOLD response
was in deep brain structures compared to the surface location of
the recorded IED.

If there was no concordance between the BOLD response and
the IED field or the results had no new information beyond that
provided by the EEG signals, it was not labeled as contributory.
Besides, another comparison was made between the the lesional
findings of the structural MRI and our BOLD response to ensure
precision that possible contributory effects of an MRI lesion on
the BOLD response were also taken into account.
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FIGURE 3 | Schematic of the suggested method to localize the epileptic foci using simultaneous EEG-fMRI.

RESULTS

From the total of 34 patients who were recruited for the study
and underwent EEG-fMRI, four were not included because
of having no clear IEDs during the EEG-fMRI session or
significant movement artifact during recording. Table 1 shows
the summarized clinical details for the remaining 30 patients who

were 16 females and 14 males (15–48 years with the mean of
27.3 years) and a seizure onset age of 1–22 years (mean of 10.6
years). 28 of the patients had focal epilepsy which 23 of themwere
unifocal, four were bifocal, and one was multifocal. The other
two were generalized epilepsy patients which one of them had
continuous spikes and waves during slow sleep (CSWS) and the
other one had West’s Syndrome. These classifications were done
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FIGURE 4 | Schematic illustration of the method proposed for the identification of epilepsy-related components. The order of the process from (A–E) is shown in the

figure.
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TABLE 1 | Patients clinical information.

No. Sex/Age Age of onset Type of epilepsy AED Ictal EEG Onset Interictal EEG No. of spikes in

routine EEG

No. of spikes during fMRI

1 F/15 1 TLE, R VPA, LEV Tempo. R Tempo. R 25 17

2 M/14 18 FLE, L LCM, LTG Fronto-cent. Bil Front. L 38 22, 18

3 M/19 10 FLE, R LCM, OXC, LEV Front. R Front. R 49 14, 18, 16

4 F/23 8 PLE, L OXC, LEV Pariet. L Pariet. L 46 38

5 M/34 7 TLE, L LEV, VPA Tempo. L Fronto-tempo. L 33 13, 15

6 F/28 3 IE OXC, LTG, PT Bil Gen. Bil Gen. 36 21

7 F/48 8 FLE, L LEV Front. L Fronto-cent. L 37 18, 9, 11

8 M/32 12 TLE, R LTG, LCM Tempo. R Tempo. R 31 28

9 M/17 1 FLE, R OXC, VPA, TPM Front. R/L Front. L 26 19

10 F/29 20 Unclear OXC Hemisphere L Fronto-temp. L 33 27

11 M/28 16 OLE, R LTG, OXC Occip. R Occip. R 61 14, 18, 25

12 F/18 3 SE OXC, LTG Bil. Front. Bil. Front. 29 13,7

13 M/36 7 Multifocal: P/T VPA, TPM, LEV L Pariet./Post Tempo. L Pariet./Post Tempo. 25 22

14 M/24 15 FLE, R LTG Frontopolar R Fronto-cent. R 34 13, 8, 9

15 F/33 9 TLE, R CMC, OXC Tempo. R Tempo. R 35 38

16 F/40 16 PLE, L TPM, VPA, Parieto-occip. L Pariet. L 26 32

17 F/25 13 Unclear LEV, OXC Fronto-cent. Bil Front. R 38 44

18 F/21 10 FLE, L LTG, CLO Fronto-tempo. L Fronto-tempo. L 41 21, 12, 11

19 M/28 17 PLE, R CMC, LTG Pariet. R Pariet. R 28 35

20 F/19 1 TLE, R LEV, ESM, ZSM Tempo. pole Tempo. R 26 29

21 M/41 16 TLE, R VPA, CMC Tempo. R Tempo. R 28 21

22 M/24 17 FLE, L LTG Fronto-tempo. L Fronto-tempo. and Tempo. L 33 26, 17

23 F/16 3 PLE, R OXC Pariet/Occip R Pariet R 27 10, 19

24 M/18 8 FLE, L LEV, VPA Fronto-tempo. L Front. L 18 13

25 F/28 21 TLE, L LEV Tempo. L Tempo./ Pariet. L 45 28, 16

26 F/32 22 FLE, Bil LEV, OXC, LCM Front. Bil. Front. L>R 17 19

27 M/36 7 TLE, R OXC Fronto-tempo. R Tempo. R 29 32

28 F/26 15 FLE, L VPA Front. L Tempo./ Front. L 25 19

29 F/38 14 TLE, R VPA, LTG Tempo. Bil Tempo. R 37 24, 19

30 M/20 2 OLE, R TPM, OXC Pariet./Occip. R Occip. R 47 43

AED, antiepileptic drug; Bil, bilateral; CMC, carbamazepine; CLO, clobazam; ESM, ethosuximide; FLE, frontal lobe epilepsy; Gen, generalized; IE, idiopathic epilepsy; L, left; LCM,

lacosamide; LEV, levetiracetam; LTG, lamotrigine; OLE, occipital lobe epilepsy; OXC, oxcarbazepine; Pariet., Parietal; PT, phenytoin; PLE, parietal lobe epilepsy; R, right; SE, symptomatic

epilepsy; P, parietal; TLE, temporal lobe epilepsy; VPA, valproate; TPM, topiramate; ZSM: zonisamide (29).

by two expert neurologists before EEG-fMRI recording, based
on structural MRI, EEG signals, and clinical records of patients.
6 of the patients in the focal group had lesions on their MRI
scans. For each patient, the number of spikes in the routine EEG
and during EEG-fMRI recording is listed in the last columns of
Table 1.

From the total number of patients, seven had two types
of IED, five had three types of spikes, and the rest had
one type of spike. We generated one study for each type
of spike for the analysis of the TCCC method. Therefore,
a total of 792 IEDs from 47 IED-studies underwent EEG-
fMRI analysis. Two of the patients with multiple IED types
showed no BOLD response. In all of the other 45 studies,
at least one BOLD response was observed; 19 had spike-
associated activation only (Figures 5, 7, 8), 9 had spike-
associated deactivation only (Figure 6), and 17 had spike-
associated activation and deactivation.

Concordance Between TCCC-Related
BOLD Changes and Identified
Component-Related Dipole
After calculating the distance between the center of gravity for

maximum BOLD clusters and center of identified component-
related dipole for all 45 IED-analyses, the result of statistical

analysis showed that the distances between spike field

and BOLD cluster for discordant (D) (>50mm), partially
concordant (PC) (25–50mm), and concordant (C) (<25mm)

groups were significantly distinct from each other (p <

0.0001). Overall, 35 types of IED were concordant (13.83 ±
5.37mm), 9 types of IED were partially concordant (32.44

± 7.24mm), and 1 was discordant to the relevant BOLD
cluster (p < 0.0001).

In 29 patients out of 30 (97%), a minimum of one
concordant TCCC-related BOLD response (35 analyses)
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FIGURE 5 | (Patient 15, spike 1) Marked events are F8, FT8 spikes, and the TCCC-related BOLD response shows a neocortical activation in the right head and the

superior temporal gyrus. This response is considered concordant with the spike field but not contributory. Based on the mesial temporal sclerosis (MTS), the patient

has independent validation information, but the response is invalidated. The green circle shows the MTS area. Top, the component identified on scalp EEG located in

the right temporal lobe (left) and the dipole localization of the identified generator in deep brain structures (right) based on analysis of EEG inside the scanner. Middle,

scalp recorded EEG. Bottom, Localization of the generator applying simultaneous analysis of EEG-fMRI. The active area is marked with a yellow-red color.

with the identified component location was found (Figures 5, 6).
These concordant responses were generalized in 2 patients
and focal in 27 ones who had focal discharges. Less

significant responses were found in the rostral anterior
cingulate gyrus, hypothalamus or posterolateral and
occipital areas.
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FIGURE 6 | (Patient 23—spike 1) marked events are parietal spikes and wave complexes (referential montage). The TCCC-related BOLD response shows

deactivation in the posterior part of the right superior parietal lobule. This BOLD response is considered concordant with the spike field and contributed to a better

localization of the epileptic foci compared with the scalp EEG. Top, the component identified on scalp EEG located in the right middle parietal lobe (left) and the dipole

localization of the identified generator in brain structures (right) based on analysis of EEG inside the scanner. Middle, scalp recorded EEG. Bottom, Localization of the

generator applying simultaneous analysis of EEG-fMRI. The deactivation is marked with a blue-white color.

The highest activations and deactivations were found in
four cases who had bilateral diffuse discharges at the posterior
cingulate or the parietal areas (default mode regions) and the
anterior cingulate or hypothalamus, respectively. Patient 3 had
right FLE symptomatic of a small area of focal cortical dysplasia.

The BOLD response to the identified components was spatially
concordant with the lesion.

Only one of all the 30 patients with one IED-study (patient
10) (3%), who was not a candidate for surgical resection because
of poor clinical seizure focus, had a partially concordant BOLD
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response with the dipole. This patient with left frontotemporal
discharge did not show any significant BOLD changes at
the region of the identified component. However, a BOLD
response was found with a maximum z-score in the contralateral
parietal region.

Contribution of TCCC Method to Defining
SOZ
In 24 patients (80%), a minimum of one contributory significant
BOLD change (29 analyses) was found (Figures 6, 7). In 19 of
them, the TCCC-related BOLD change was more capable in
comparison with EEG alone to identify the cortical region that
generates the spike (Figure 6): frontal lobe in 8 (patients 3, 5,
7, 9, 12, 14, 18, and 28), temporal lobe in 4 (patients 1, 20,
25, and 29), parietal lobe in 5 (patients 13, 16, 17, 19, and 23),
and occipital lobe in 2 (patient 11 and 30). In the remaining 5
subjects, themaximumTCCC-related BOLD changes were found
in deep brain structures, which are most probably involved in
the epileptogenic zone (Figure 7): basal ganglia and amygdala in
2 (patient 22, 27), and heterotopic tissue in three with nodular
heterotopias (patients 2, 8, and 21).

In 16 of the 45 IED studies, the most clinically relevant
BOLD response was not contributory. In 9 of them, the TCCC-
related BOLD change was partially concordant with the identified
component location. In 1 IED study, it was discordant, in 5 IED
studies, the BOLD response did not provide any new information
in comparison with EEG alone (Figure 8), and in the last one
(patient 15, spike 1), it was invalidated (Figure 5).

For evaluating the TCCCmethod in patients with an epileptic
lesion localized by structural MRI, we drew our attention to six
of these patients with focal epilepsy, and it revealed concordant,
contributory, and validated BOLD response in five of them. The
only subject (patient 15) who showed invalidated response had a
right frontal MTS but only a neocortical right temporal activation
(Figure 5).

In comparison between the TCCC method and conventional
EEG-fMRI analysis, the localization of the TCCC-identified
component was concordant with the epileptogenic area of
conventional analysis for 35 out of 45 IED studies (77%). This
clearly shows the accuracy of the TCCC method for detecting
the epileptic generators by studying the component of interest,
confirming the detected generator’s temporal behavior.

Comparison With Conventional
Spike-Related Analysis
In Table 2, we present a comparison between the spatial
distribution of spike-related and TCCC-related BOLD responses.
The spatial concordance of the BOLD responses of the
conventional method with the electroclinical evaluation was
found in 14 of the 30 patients. All of these patients also showed
concordant TCCC-related BOLD responses with the results of
conventional analysis and validated by clinical records of the
patient and the site of the surgical resection. The results of the
TCCC method were better than the conventional analysis in 7
patients for determining the cortical spike generator region. No
clear IEDs were found during the EEG-fMRI recording in one

of them, the significant BOLD changes was not concordant with
the spike field in the remaining 6 patients. Unlike other medical
information, the results of the conventional analysis in these 6
patients showed no clear foci or multiple potential distinct foci.
However, the BOLD responses of the TCCC method revealed a
circumscribed foci within the expected region (Figure 9). In 3
of the 45 IED studies, the TCCC method was weaker than the
conventional analysis (Figure 10)

The concordance of the results of the TCCC method and the
conventional analysis is shown in Table 3. The most obvious
information that can be extracted from the table are: (1) a
satisfactory agreement between the results of the TCCC method
and the conventional method in 32 IED studies; (2) a higher
maximum z-score in 28 patients and greater extent of activation
in 22 of patients using TCCCmethod; and (3) different activation
regions in three patients with deep located epileptic foci, and no
apparent agreement in one patient with deep epileptic foci and
also no noticeable activation using the conventional method. This
suggests that the conventional method is less effective when the
epileptic generator is located remote from the scalp.

Concordance Level Evaluation
The results of localization through TCCC determine 35C, 9 PC,
1 D, and 2 IED studies had no BOLD response. However, 26 C,
15 PC and 3 D were found through the conventional method
and 3 EEG-fMRI studies showed no BOLD response. Comparing
the two methods based on concordance level evaluation, in
21 cases, the TCCC method confirmed the results of the
conventional method.

In three cases, the proposed method was able to provide
satisfactory results with one C and 2 PC, while the conventional
method was unable to provide results. In 11 IED studies the
results of the two methods were not consistent (Table 3, last
column); in 10 cases, TCCC improved the results and in only
one case (7/2) the conventional method provided better results
compared to TCCC (Figure 10).

Since the weakness of the proposed method in the mentioned
case is due to the automatic selection of the relevant component
(Figure 10, third row), an improved epileptic foci localization
may be obtained by manual selection of the component, which
leads to results superior to those of the conventional method
(Figure 10, fifth row).

DISCUSSION

Conventional methods for localizing epileptic sources usually
consider timings of all IEDs for identifying a seizure zone.
However, an IED may be produced by multiple sources located
at different brain regions. Therefore, only the voxels of a specific
region should be examined for the localization of the seizure
generator. Since spikes are frequently detected in a specific area
of the electrode domain, it will be helpful to filter out the cortical
components that do not show epileptic activity and choose the
ones that do. In this study, we proposed a new method that
incorporates all temporal information of the identified epileptic
sources and avoids being deceived by irrelevant or imperfect
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FIGURE 7 | (Patient 8—spike 1) marked events are C4–C6 spikes (referential montage), and TCCC-related BOLD response shows a focal activation in the right head.

This response is considered concordant with the spike field and contributory, because it shows the involvement of a deep brain structure, in the epileptic focus, which

is not visible on the scalp EEG, based on anatomo-electroclinical correlations. The focus was identified in the cerebral medulla (with matter). Top, the component

identified on scalp EEG located in the right temporal lobe and the dipole localization of the identified generator in deep brain structures. The active area is marked with

a yellow-red color. Middle, scalp recorded EEG. Bottom, Localization of the generator applying simultaneous analysis of EEG-fMRI.

information and mistakenly recognizing an unrelated source as
a generator of epileptic activity.

The epileptic studies using EEG-fMRI are basically different
from the task-based studies, as they consider seizure-related

events as opposed to stimulation (41). In the epileptic studies,
each source of the large spikes should not be inevitably accepted
as an epileptic generator. For example, in focal epilepsy, a large
spike detected in the frontal region, which is initiated from
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FIGURE 8 | (Patient 28—spike 1) marked events are F3, F5, and F7 spikes (referential montage) and the TCCC-related BOLD response demonstrates a neocortical

activation in the inferior frontal gyrus. This response is considered concordant with the spike field but not contributory because it does not add any new information to

the scalp EEG. Top, the component identified on scalp EEG located in the left frontotemporal lobe (left) and the dipole localization of the identified generator in deep

brain structures (right). Middle, scalp recorded EEG. Bottom, Localization of the generator applying simultaneous analysis of EEG-fMRI. The active area is marked with

a yellow-red color.

the source domain of the parietal lobe is not a valid indicator
but the conventional analysis cannot distinguish them, because
they use all temporal information of IEDs in one regressor
regardless of the corresponding regions. We addressed this
problem by adding the spatial information associated with the

spike generators to ensure the concordance between the position
of the accepted epileptic component and the observed spike in
EEG. The concordance of results between various localization
methods can improve the reliability of planning surgical resection
or interictal EEG (iEEG) electrode placement.
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TABLE 2 | Comparison of localization between conventional method and

TCCC-method.

SOZ (No.) Epileptic types TCCC-method Conventional

method

Generalized (2) CSWS (1) 1 –

Syndrome (1) 1 1

Unifocal (23) Non-lesional (17) 10 8

Lesional (6) 5 3

Bifocal (4) 3 2

Multifocal (1) 1 –

Total SOZ-based (30) 21, 70% 14, 46%

Spike-type analysis (45) 29, 64% 21, 46%

The main inspiration for combining fMRI and EEG
measurements comes from the ability to benefit from advantages
of each modality. For instance, the EEG-derived activity map
alone includes just the weighted sum of electrical activation
in the brain with a poor spatial resolution and affected by
artifacts, voltage drops, and interference with signals caused by
non-epileptic sources. While the EEG signal alone is poorly
capable of correctly identifying and localizing the epileptic
generators, the EEG components time series associated with
epileptic activity can be a consistent indicator. Based on this view,
we reveal that hemodynamic correlations of EEG components
can detect pathological brain activity. Therefore, simultaneous
EEG-fMRI recording with patient’s medical record form a ‘golden
package’ and extracted component information from scalp EEG
that improves the localization of epileptic foci compared to
previous methods. This was the case in 90% of the patients
in whom the most recent conventional EEG-fMRI analysis was
negative, representing that component-related hemodynamic
changes could add a more accurate and efficient identification.
It is noticeable that in patients who got reasonable results from
the conventional analysis, the method of this study also produced
similarly concordant results.

In a simultaneous EEG-fMRI acquisition of 34 patients with
epilepsy, the TCCC-related BOLD response was observed in
all the 30 patients who had IEDs during recording, which
makes 90.1% of the whole and is higher performance than that
reported in the previous works (18, 42, 43). Also, these responses
revealed the epileptic focus in 80% of patients with active EEG
(65% of analyzed IEDs), which shows a significant improvement
compared to Pittau et al. (18).

Regarding the localization of epileptic generators, Grouiller
et al. (44) built an epileptic map by using the spikes detected
in the EEG recorded outside the scanner and used it to create
a regressor of IEDs from the EEG recorded inside the scanner.
Convolving this regressor with an HRF and using it in the GLM
analysis revealed concordant BOLD results in 78% (14 of 18)
of the patients while this accuracy had a significant rise to 97%
using our proposed method. Additional factors also affect the
results of analysis, e.g., using higher MRI magnetic field strength
which improves the intrasubject reproducibility of EEG-fMRI

results (25, 45), using continuous EEG-fMRI instead of spike-
triggered which increases the IED-related BOLD response among
the patients (46), and using multiple HRFs peaking at 3–9 s after
the spike for better localization of the epileptic focus (11, 12, 18).

Drawing on these strategies, our study used multiple HRFs to
increase the gain of EEG-fMRI analysis and a high magnetic field
MRI scanner to improve the signal-to-noise ratio and reach more
informative images. The results showed BOLD responses that
were concordant with the spike field in 97% of patients (29 cases
out of 30; 74.5% of the analyzed IEDs). This level of concordance
which is significantly higher than previous studies (18, 43, 44) is
associated with using the component-based approach instead of
the linear regressor, multiple HRFs for the fMRI analysis, high-
field 3-T scanner for acquiring fMRI data, and effective methods
for eliminating artifacts.

However, the definition and evaluation of spatial concordance
between the BOLD response and EEG is still to some extent
subjective and remains a constant challenge in EEG-fMRI
analysis. In our study, the BOLD response is concordant with
EEG if the maximum z-value complies with the localization of
the EEG spike field. This approach makes the evaluation reliably
objective and clinically applicable. All responses have been
reported as suggested previously (8, 18). The BOLD responses
are more widespread than typical electroclinical findings, due to
possible distant or diffuse activations intricate in the epileptic
network apart from the focus.

Concordance Level Scrutiny
Our studies have focused on the use of simultaneous EEG-
fMRI for SOZ identification in patients with epilepsy. Since
SOZs are best characterized using EEG-fMRI, our TCCC
method would be suitable to identify presumed SOZ and
evaluate its accuracy by comparing it with the IED-related
BOLD activation. The concordance between IED-related BOLD
activation and presumed SOZ for different brain structures
has not been fully characterized using EEG-fMRI. Besides,
seizure types have not been reflected as prominent features for
precise identification of the SOZ using EEG-fMRI because of
the complex pathophysiology of epileptic cerebral structures.
Therefore, there is a fundamental need to quantitatively measure
the concordance between IED-related BOLD and presumed SOZ
for different brain structures to advance SOZ description. This
may provide useful information for surgical guidance and better
understanding of the mechanisms underlying seizure generation.

This study examined the distance of maximum BOLD clusters
to the location of IED (Figure 10, third, fourth, and fifth rows).
The maximum BOLD clusters appeared to be the most clinically
relevant responses for all discharge types. From a clinical
standpoint, this would assist in identifying the spike-generating
network and hence the presumed SOZ.

Concordant BOLD clusters measured up to 25mm of distance
from the center of gravity to the IED contacts while partly
concordant clusters measured between 25 and 50mm of distance
when the BOLD cluster is in the same hemisphere. This
methodology was used to comprise two confounding factors: (1)
electrophysiological activity that does not completely tie with the
associated hemodynamic alterations (47) and (2) susceptibility
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FIGURE 9 | (Patient 22—spike 1) marked events are AF7, T7, and FT7 spikes (referential montage) and the TCCC-related BOLD response demonstrates a

neocortical activation in the caudate nucleus and lentiform nucleus for the TCCC method, this response is considered both concordant with the spike field and

(Continued)
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FIGURE 9 | contributory duo to it leads to better localization of the epileptic focus compared with the scalp EEG because it adds new information to the scalp EEG,

while is considered partially concordance and not contributory for the conventional method. These foci are scattered in three areas. Top, the component identified on

scalp EEG located in the left frontotemporal lobe and the dipole localization of the identified generator in deep brain structures. The active area is marked with a

yellow-red color. Second row, scalp recorded EEG. Third row, localization of the generator applying simultaneous analysis of EEG-fMRI by the conventional method.

Forth row, localization of the generator applying simultaneous analysis of EEG-fMRI by the TCCC.

artifact that distorts the BOLD signal up to 20mm of the
electrodes (48). These measures are coherent with an earlier scalp
EEG-fMRI study in which high concordance was defined as a
distance between the BOLD response and the spike location on
scalp EEG between 20 and 40mm (49). Other EEG-fMRI studies
which compared the location of IEDs with the BOLD responses
did not describe the concordance as described in the current
study; some used any BOLD cluster rather than separating the
maximum for evaluation of concordance (28, 44, 50).

Despite the benefits mentioned, it is worth mentioning that
the TCCC method heavily depends on accurate component
identification. In case, for any reason, the component is identified
in other areas, it will exert influence on the results. Although
this study proposes a variety of filters to identify appropriate
components, there have still been cases in which inaccurate
identification performed by the algorithm has led to inaccurate
localization (Figure 10, third row). However, the localization
improved by the selection of other candidate time series
(Figure 10, fifth row).

Method Limitations
Notwithstanding the mentioned advantages, it should be noted
that since we take the time series of the selected components
to detect the respective BOLD changes, there will be a plurality
to the number of samples of interest, which inevitably makes
the proposed method fairly time consuming. The sampling rate
for each component is around 250Hz while the BOLD signal
provides one sample per 2.5 s (each TR time). In order to
accelerate the process, we have proposed to reduce the sampling
rate for the component of interest to the number of BOLD
samples. Therefore, we would have invaluable information of the
epileptic activity of each generator with respect to the number of
BOLD samples.

In this study, although the simultaneous EEG-fMRI method
was compared with the epileptic source localization by EEG only
and the conventional EEG-fMRI method and its superiority was
demonstrated, basically the post-surgical outcome information
or the intracranial EEG recording can lead to more reliable
results and it more precisely will approve the improvement of
the findings.

Comparison With Other Modalities
Regarding other modalities, PET and SPECT were also used
in several studies for the localization of epileptic generators.
However, some points need to be considered. For instance,
delayed injection in such studies can lead to a misconception of
the attained results. Besides, some valuablemethods for localizing
the epileptic network like interictal FDG PET are not cost-
effective while posing risks following radiation exposure.

Generally, although the ictal-based SPECT and PET analyses
are suggested and supported by the literature for localizing
epileptic foci, their usefulness is limited to revealing regional
abnormalities instead of focal epileptic generators (51–54).
Besides, our method achieved a BOLD sensitivity of 90%
which is higher than those reported for the SPECT and
PET studies. However, the obtained specificity might be
cooperated by distant BOLD correlations and should be
fostered by postsurgical processes. The EEG and MEG source
imaging is another promising method that has made incredible
development in the number of recorded channels and algorithms
to estimate the sources (55–57). The inverse solution of
EEG and MEG has reached a sensitivity of around 70% in
the study of Knake et al. (58) which is comparable to the
EEG-fMRI methods.

Comparison With Other EEG-fMRI-Based
Methods
The classical EEG-fMRI method is an event-related design for
fMRI analysis based on the time series of constant amplitude and
zero duration or block events with the timing of interictal spikes
recorded in the simultaneous EEG (43, 59–61). These interictal
spikes are found manually or by an automatic spike detection
algorithm based on the spike template acquired from the EEG
recorded outside the scanner (9, 34, 44, 62–64). Convolving
the time series of events with the standard or patient-specific
HRFs (65, 66) makes the base regressor for the GLM analysis to
localize BOLD responses as the epileptic generators. The main
flaws of the conventional method which calls into question 40–
70% of EEG-fMRI studies are: (1) existence of insufficient events
during recording; and (2) insignificant BOLD correlation with
the observed spikes. One of the proposed solutions for the EEG-
fMRI studies with no observed spikes during recording was the
fMRI data-driven source identification whose specificity was not
particularly promising (67). Therefore, there was a limitation
in the cases with detectable spikes for applying similar data-
driven approaches premised on spatial independent component
analysis of fMRI, and the accomplished results revealed high
concordance with those from more conventional methods (38,
67–69).

Also, there are a couple of studies that take continuously
fluctuating variables to model epileptic behavior, including
continuous electrical imaging (70) which was stated to have
enhanced EEG/fMRI by 20%. In addition, the spatial correlation
coefficient of the reference topography has been considered
in a few studies as a continuously fluctuating parameter to
be useful in fMRI analysis (44). This approach can act as a
spatial filter analogous to using the strength of a dipole source
(71) or the current density that was estimated by electrical
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FIGURE 10 | (Patient 22—spike 2) An illustration of a sample result for conventional and TCCC methods both manually and automatically. First row, the identified

component and its dipole localization in deep brain structures. Second row, scalp recorded EEG. Third row, TCCC-related BOLD response using auto-identified

component (Discordant). The active area is marked with a yellow-red color. Forth row, IED-related BOLD response (conventional method). Fifth row, TCCC-related

BOLD response using manually-selected component (Concordance).
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TABLE 3 | Comparison of concordance between conventional EEG-fMRI analysis and TCCC method in relation to BOLD response and EEG data of 47 IED studies.

Pt/IED

type

IEDs

Location

Template Component Cross-correlation EEG-fMRI Conventional EEG-fMRI Agreement

between TCCC

and

conventional

methods

Dis.a

(mm)

Conc.b Max Z score

for relevant

cluster

Max BOLD

volume

(cm3)

BOLD in other

location(s)

Contribution Dis.a

(mm)

Conc.c Max Z score

for relevant

cluster

Max BOLD

volume

(cm3)

BOLD in

other

location(s)

Contribution Concordanced/

Dis. (mm)

1/1 T R 21.33 C 3.84 1.22 L lateral T Yes 19.52 C 3.63 0.98 L mesial T Yes Yes/5.23

2/1 FC bil 17.80 C 4.10 3.51 – Yes 20.14 C 4.18 2.94 L lateral T Yes Yes/6.01

2/2 FC L 14.35 C 2.22 1.12 – Yes 16.39 C 6.15 1.04 – No Yes/4.28

3/1 FT R 19.32 C 3.17 1.94 L mesial P Yes 28.45 PC 4.52 3.12 – No Yes/11.49

3/2 F R 42.15 PC 3.45 2.51 – No 51.64 D 3.66 2.43 L middle T

gyrus

No Yes/18.54

3/3 Bif 15.25 C 4.07 3.73 – Yes 18.25 C 4.12 4.26 – Yes Yes/7.64

4/1 P L 11.61 C 5.26 4.12 – No 12.35 C 4.53 1.15 – Yes Yes/9.23

5/1 T L 36.42 PC 4.01 0.75 LP–O No 30.25 – – – – – –

5/2 FL 9.34 C 6.95 0.86 – Yes 14.28 C 5.42 2.51 L anterior P Yes Yes/15.81

6/1 Bil

generalized

17.55 C 3.87 10.23 – No 18.41 C 3.54 8.79 – No Yes/2.18

7/1 F L 10.48 C 5.16 1.64 L anterior P Yes 13.25 C 4.56 1.88 Bil F–P Yes Yes/22.37

7/2 C L 50.24 D 4.46 2.65 R middle F No 43.25 PC 3.56 1.02 No No/12.65

7/3 T R 26.01 PC 5.13 2.41 – No 18.98 C 16.14 0.89 mesial T–P Yes Yes/17.24

8/1 T R 7.61 C 4.38 1.32 L lateral T Yes 32.27 PC 4.85 5.27 L anterior F No No/26.55

9/1 F R/L 8.04 C 6.23 3.18 – Yes 13.52 C 5.93 3.26 L posterolateral

F

Yes Yes/6.24

10/1 L

hemisphere

38.25 PC 3.87 5.44 L P No 55.14 D 3.36 5.36 – No Yes/15.67

11/1 O R 14.32 C 4.29 1.01 L anterior P Yes 12.62 C 4.11 0.98 L orbito–F Yes Yes/8.45

11/2 PO R – – – – – – 51.56 D 2.14 3.14 – No –

11/3 P R 23.25 C 6.52 8.42 – Yes 19.25 C 5.34 2.64 – Yes Yes/5.06

12/1 Bifrontal 37.52 PC 5.13 2.80 – No 35.14 PC 5.09 3.02 – No Yes/4.34

12/2 F L 13.46 C 4.58 0.98 – Yes 13.46 C 6.18 1.06 – Yes Yes/0.09

13/1 P L/Post T 16.18 C 3.28 1.62 – Yes 28.62 PC 4.16 1.15 – No No/27.35

14/1 Frontopolar

R

22.57 C 4.49 3.46 – Yes 21.78 C 4.28 3.61 – Yes Yes/2.42

14/2 FT R 30.24 PC 4.68 2.16 – No 32.47 PC 3.74 2.13 – No Yes/5.67

14/3 FT L 21.85 C 5.85 0.61 – Yes 26.85 PC 4.88 0.24 L post T–O No No/29.13

15/1 T R 5.34 C 4.57 1.16 R anterior F No 13.25 C 6.11 0.76 – No Yes/10.16

(Continued)
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TABLE 3 | Continued

Pt/IED

type

IEDs

Location

Template Component Cross-correlation EEG-fMRI Conventional EEG-fMRI Agreement

between TCCC

and

conventional

methods

Dis.a

(mm)

Conc.b Max Z score

for relevant

cluster

Max BOLD

volume

(cm3)

BOLD in other

location(s)

Contribution Dis.a

(mm)

Conc.c Max Z score

for relevant

cluster

Max BOLD

volume

(cm3)

BOLD in

other

location(s)

Contribution Concordanced/

Dis. (mm)

16/1 PO L 18.62 C 4.36 2.53 – Yes 19.77 C 4.28 2.84 – Yes Yes/3.49

17/1 FC bil 9.48 C 5.61 6.18 – Yes 28.65 PC 5.24 8.15 – No No/28.57

18/1 F L 16.58 C 4.95 2.16 L posterolateral

F

No 22.58 C 4.97 2.19 – Yes Yes/15.86

18/2 F R 12.87 C 6.03 4.65 – Yes 18.47 C 3.67 5.27 – Yes Yes/3.15

18/3 FT L – – – – – – 18.62 C 3.65 4.50 T L No –

19/1 P R 13.13 C 5.72 1.35 – Yes 31.24 PC 5.34 1.84 – No No/27.64

20/1 T pole 15.56 C 3.96 7.52 – Yes 12.66 C 3.50 7.16 – Yes Yes/4.33

21/1 T R 11.68 C 4.26 3.17 L lateral T Yes 33.92 PC 4.97 0.67 – No No/26.85

22/1 FT L 8.26 C 4.16 2.03 – Yes 48.04 PC 4.36 3.12 L O + R T No No/31.75

22/2 T L 25.18 PC 5.39 1.88 – No – – – – – – –

23/1 P R 6.23 C 7.18 3.63 – Yes 14.41 C 3.98 4.65 R middle T Yes Yes/10.32

23/2 P R 27.64 PC 4.35 2.12 – No 31.45 PC 4.11 0.77 – No Yes/8.64

24/1 F L 7.65 C 5.18 4.34 – No 9.17 C 4.50 1.85 Bil Occipital Yes Yes/5.93

25/1 T L 24.13 C 3.98 1.05 R lateral T Yes 21.42 C 4.80 6.54 – Yes Yes/5.13

25/2 PO L 18.92 C 5.62 1.54 – Yes – – – – – – –

26/1 Bifrontal 13.34 C 6.84 9.25 – No 33.46 PC 2.98 12.57 L P/R T No No/26.21

27/1 FT R 14.42 C 5.34 4.35 – Yes 10.24 C 4.76 2.64 – No Yes/6.95

28/1 F L 7.52 C 3.28 2.46 – Yes 28.33 PC 5.45 8.34 Bil Occipital No No/25.37

29/1 T R 11.62 C 7.26 2.66 R lateral T Yes 17.46 C 4.13 3.16 – Yes Yes/8.62

29/2 FT R 29.85 PC 3.65 2.07 R anterior F No 31.17 PC 4.80 3.09 L O No Yes/10.21

30/1 O R 4.59 C 4.84 2.13 – Yes 11.09 C 5.12 2.11 – Yes Yes/9.64

aDistance from the center of gravity of the relevant BOLD to the dipole location of the identified component.
bConcordance between the BOLD response and the IED location in the proposed analysis.
cConcordance between the BOLD response and the IED location in the conventional analysis.
dConcordance between the BOLD response in the proposed and the conventional analysis.

Bif, bifrontal; Bil, bilateral; C, concordant; D, discordant; F, frontal; FT, frontotemporal; FC, frontocentral; L, left; O, occipital; P, parietal; PC, partially concordant; PO, parieto-occipital; R, right; T, temporal.
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source imaging in a specific region (70). Also, some other
approaches based on dynamic causal modeling (DCM) (72)
and functional connectivity (73) have played a useful role in
this regard.This technique despite improving the sensitivity
compared to similar studies has not addressed the localization
of epileptic generators. Besides, the results of component-based
methods have been better than those of the topographic maps
even while the presence of detectable spikes during EEG-fMRI
recording (70). The source separation methods have been also
considered to localize the epileptic focus in the literature (74,
75). In order to identify the epileptic-related components in
this method, the EEG signal collected inside the scanner must
include spikes or clear focal slowing. The main challenge in such
studies is appropriately recognizing the component(s) associated
with epileptic activity without using clinical information. We
have addressed this challenge by imposing specific conditions
on the components along with the convolution of the spike-
template obtained from the outside-of-scanner EEG and the
candidate ones.

In the study of Bast et al. (34), a new method was
proposed to simplify visual detection of spikes in EEG-fMRI
premised on spatiotemporal pattern search. For this aim, the
principal component analysis (PCA) was applied on a spike
template and then its correlation was evaluated with the EEG
recorded inside the scanner. The trials with a spatiotemporal
correlation above 0.85 were visually evaluated and false-positive
identifications manually detached. Although this is a great
method to identify the spikes registered inside the scanner, it still
uses a traditional linear regressor of temporal information for the
GLM analysis.

In total, the mentioned studies provide an overview of the
localization of epileptic generators with reasonable accuracy
that can be used in real-life applications. Simultaneous EEG-
fMRI is a promising combination of temporal and spatial
resolution that allows reaching higher prospects for precise
localization of epileptic generators in patients with focal epilepsy.
In this study, the source domain has been used instead
of the sensor field to provide a more accurate recognition
of epileptic foci. The results showed that epileptic-related
components can be considered as a representative of epileptic
foci activity in the GLM analysis and afford clinically precious
information even in cases of datasets with inadequate detectable
interictal events.

Accurate epileptic foci localization is an essential step
in pre-surgical assessments of patients with medically
resistant epilepsy. Measuring BOLD changes using EEG-
fMRI offers an advanced technique to adequately record
abnormal epileptic activities from localized brain regions
while capturing related fluctuations in functional brain
activities. Further understanding of the epileptogenic zone
using IED-related BOLD responses obtained from EEG-fMRI
provides a new avenue for clinicians to accurately identify
epileptic foci, guide epilepsy surgery, and improve post-surgical
results. This study sheds light on the consideration of EEG-
fMRI as an indentifer of the epileptic focus, which can be
included as part of the clinical assessment for patients with
refractory epilepsy.

CONCLUSION

This study sets out to provide a realistically estimated pattern
of epileptic generators. To do so, we shifted the attention
from the electrode domain to the source domain, where we
extracted the epilepsy-related components through an ICA
analysis. Then, we prioritized these components on the basis
of (a) the cross-correlation between the spike-template and the
time-series of each component, and (b) their alignment with
the complementary physiological information. This would yield
a set of ranked components that are most likely contributory
to the occurrence of spikes, which can well substitute the
simplistic linear regressor in conventional approaches. We went
on to convolve the time series of the selected components
with HRF and used them in the GLM model and checked
if the result was consistent with the physiological EEG
observations, if so, we accepted the region as a generator of
epileptic activity.

In this study, we have also introduced a new EEG-
fMRI method which highlights the correlation between the
corresponding BOLD alterations and the spike-related EEG
components, which were validated against the gold standard
for epileptic generators localization. This approach leads
to an increase in the EEG-fMRI yield to non-invasively
localize the seizure generators, which is particularly
useful in the presurgical evaluation of the patients and
implantation of intracranial electrodes, allowing a wider
range of patients to consider the option of surgery with
more confidence.

In future studies, we intend to apply a new approach for
EEG-fMRI integration in the field of epilepsy, which incorporates
and tests different models of the transfer function between
EEG and BOLD signals, hence allowing better predictions of
the hemodynamic changes associated with epileptic activity.
This work will therefore provide a contribution to our
understanding of the link between EEG and BOLD signals
as well as for improving the yield of EEG-fMRI studies in
epilepsy (76, 77).
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