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Editorial on the Research Topic

Exploration of Natural Product Leads for Multitarget-Based Treatment of

Cancer—Computational to Experimental Journey

Natural products are being used for the treatment of various diseases and disorders. A series
of studies are undergoing from computational to clinical level to assess the translational
potential of natural products (Scotti et al., 2016; Singla and Dubey, 2019; Singla et al., 2019;
Kapusta et al., 2020; Singla et al., 2021a; Bansal et al., 2021; Singla et al.; Singla et al., 2021¢; Dk
and Nj, 2021; Singla et al.; Singla et al., 2021e; Singla et al.; Madaan et al., 2021; Marzocco et al., 2021;
Okoh et al; Talukdar et al, 2021). Cancer is one of the major public health burdens
significantly impacting on a global level to both developed as well as the developing
countries (Bray et al,, 2018; Singla et al.,, 2021e; Qi et al., 2021; Joon et al., 2022). Specifically
for the poor and underdeveloped countries, it is quite important to find cost-effective
and sustainable resources for the treatment and management of cancer, as it will reduce
the financial strain on them (Suryanarayana Raju et al,, 2015; Singla et al.). Further, the high
vulnerability to the point mutations leading to the development of resistance to the existing
anticancer drugs, it is relevant to explore new multitarget leads to overcome resistance. This
research topic was thus devised to collect the studies where natural products have been investigated
for their multitarget potential against cancer.

Liu et al, in their article “Targets and Mechanism Used by Cinnamaldehyde, the
Main Active Ingredient in Cinnamon, in the Treatment of Breast Cancer”, had used both in
silico and in vitro methodologies for the screening of targets for the bioactive constituents
against breast cancer. They had utilized information from various databases, including
TCMSP, TCMID, OMIM, etc, and bioinformatic tools like STRING,
Cytoscape, Gene ontology, KEGG, etc for the analysis of relationship between cinnamon
phytoconstituents and breast cancer’s targets. Results from both the computational
and experimental studies led them to conclude cinnamaldehyde as a promising
multifunctional molecule.

Yuan et al,, in their article “Transcriptome Profiling and Cytological Assessments for Identifying
Regulatory Pathways Associated With Diorcinol N-Induced Autophagy in A3 Cells” had noticed the
potential of a fungal originated secondary metabolite, Diorcinol N for the treatment and
management of acute lymphoblastic leukemia. The authors had utilized both the bioinformatic

various
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tools and in vitro methodologies. Diorcinol N was capable of
controlling the growth of A3 leukemia cells in a multimodal way.

Wei et al, in their article “Computational and In Vitro
Analysis of Plumbagin’s Molecular Mechanism for the
Treatment of Hepatocellular Carcinoma” had studied
Plumbagin, naphthoquinone from Plumbago zeylanica L., for
the treatment and management of hepatocellular carcinoma.
Results from the network pharmacology-based analysis were
further  validated experimentally using the human
hepatocellular carcinoma cell lines, SMMC-7721 and BEL-
7404. To combat hepatocellular carcinoma, authors had
observed that Plumbagin was able to exert anticancer effects
via multiple targets and signaling pathways, including that related
to oxidative stress, autophagy, and apoptosis.

Jiang et al. In their article “Network Pharmacology and
Pharmacological Evaluation Reveals the Mechanism of the
Sanguisorba  Officinalis in  Suppressing  Hepatocellular
Carcinoma” had identified 41 bioactive ingredients from
Sanguisorba  Officinalis by utilizing some databases like
TCMSP and BATMAN-TCM, which then reduced to 12 after
filtering through ADME parameters. Network pharmacology
approaches were used to analyze those 12 compounds against
the selected targets of hepatocellular carcinoma. The results were
validated experimentally using human hepatocellular carcinoma
cell lines, HepG2, MHCC97H, SMCC7721, and BEL-7404. Based
on the bioinformatics analysis, they noticed four compounds like
quercetin, kaempferol, mairin, and beta-sitosterol. Overall, they
had concluded the significance of Sanguisorba Officinalis as an
anticancer agent against hepatocellular carcinoma.

Rahman et al, in their review article “Phytochemicals as a
Complement to Cancer Chemotherapy: Pharmacological
Modulation of the Autophagy-Apoptosis Pathway” had
critically analyzed and compiled the knowledge about the
plant-based natural products which were having potential to
modulate autophagy and apoptosis. The authors had
represented the pathways well in the form of interactive
figures. They illustrated the detailed pathways for the
phytomolecules like 18-a-Glycyrrhetinic acid, Oxyresveratrol,
and other polyphenolic and alkaloids. They had also indicated
the phytochemicals which have currently been investigated in the
clinical trials for the treatment and management of various types
of cancer.

Ghanbari-Movahed et al,, in their systematic review article “A
Systematic Review of the Preventive and Therapeutic Effects of
Naringin Against Human Malignancies” had covered several
studies indicating the potential of naringin, either alone or
synergistic with other drugs or as metal complexes for the
treatment and management of various types of human
malignancies. They had also specified the plant sources for
naringin, all of which belong to the Citrus genus and Rutaceae
family. They had reported the significance of naringin against
various cancers like bladder, leukemia, lymphoma, brain, breast,
cervical, colon, colorectal, esophageal, laryngeal, liver, lung,
neuroblastoma, ovarian, prostate, osteosarcoma,
chondrosarcoma, melanoma, gastric, and thyroid cancer. Thus,
naringin is a multitarget and multiple signaling pathways acting
bioactive molecule.

Editorial: Natural Products Against Cancer

Rasool et al, in their article “Evaluation of the Anticancer
Properties of Geranyl Isovalerate, an Active Ingredient of
Argyreia nervosa Extract in Colorectal Cancer Cells” had
evaluated the effect of geranyl isovalerate against HCT116 and
HT29 cell lines related to colorectal cancer. The authors adopted
various experimental methodologies for cytotoxicity, live and
dead cell detection, JC-1 staining, generation of reactive
oxygen species (ROS), genes related to apoptosis, and proteins
related to apoptosis. Their results indicated the significance of
geranyl isovalerate and generated further interest to assess the
translational potential of this WHO-approved food additive as a
food supplement.

Sampaio et al,, in their systematic review article “Antitumor
Effects of Carvacrol and Thymol: A Systematic Review” had
covered the literature published from 2003 to 2021 and
systematically analyzed the significance of carvacrol, and its
isomeric analog, thymol, in the treatment and management of
various types of cancer. Authors have recorded the scientific
evidence claiming anticancer potential of these two molecules
against cancers like that of breast, liver, colon, liver, lung, prostate,
etc.  Accordingly, authors have indicated various
chemopreventive and antimetastatic effects of these molecules
as per the recorded literature. Further studies on these molecules
can provide vital information about their therapeutic and
translational potential to reach the bedside.

Chavda et al,, in their review article “Advanced Computational
Methodologies Used in the Discovery of New Natural Anticancer
Compounds” had discussed the utility aid of computational
techniques in the advancement of natural products-based
research with a focus on anticancer compounds. In Table 1,
they had also discussed 25 natural compounds with details about
their anticancer potential, while Table 2 briefly indicated the
computational methodologies and tools used during natural
anticancer research. Further, the illustrations made by authors
represented the global cancer statistics, stepwise structure
elucidation, and protocol for fragment-based screening. This
article highlighted the crucial role of reliable computational
methodologies in the translational process of natural
anticancer agents.

Allegra et al., in their article “Evaluation of the IKKB Binding
of Indicaxanthin by Induced-Fit Docking, Binding Pose
Metadynamics, and Molecular Dynamics” had assessed the
molecular level mechanistic information related to the
inhibition of hIKKP by Indicaxanthin (a betaxanthin from
betalain class), using computational tools and techniques like
induced-fit docking, binding pose metadynamics, MD
simulations, as well as MM-GBSA binding free energy
calculation. Previous reports indicated that Indicaxanthin
exhibited activity against human melanoma cells by
modulating NF-kB and ceasing IxBa degradation. This had
generated interest in the team of Mario to explore the
mechanisms further on the molecular level, and their results
have indeed provided insights and significant knowledge for
readers and researchers.

Nouclear factor-kB signalling pathway is a significant and well-
known factor influencing immunity, inflammation, cancer, and
functioning of the nervous system (Liu et al., 2017; Albensi, 2019).
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Uddin et al,, in their review article “Natural Small Molecules
Targeting NF-kB Signaling in Glioblastoma” had discussed the
structural and functional properties of NF-«B, role of NF-kB in
glioblastoma, as well as the information about small natural products
like resveratrol, quercetin, apigenin, isothiocyanates, sulforaphane, etc
which were able to target NF-kB in glioblastoma. This article will be
interesting for the readers, researchers, and clinicians to explore the
translational potential of these natural products for the treatment and
management of the most aggressive brain cancer, glioblastoma
multiforme.

Crotoxin, a major constituent from the venom of Crotalus
durissus terrificus, is a known for its pharmacological actions like
anticancer activity against breast cancer (Almeida et al,, 2021),
pain alleviation (Teixeira et al, 2020), antithrombotic (de
Andrade et al, 2019), etc, along with its venomous effects.
Kato et al, in their research article “Crotoxin Inhibits
Endothelial Cell Functions in Two- and Three-dimensional
Tumor Microenvironment” studied the antiangiogenic role of
the crotoxin in detail and mentioned as to how it will be
supportive in the inhibition of tumor progression.

Feng et al. in their research article “Downregulation of
ATPI1AIl Expression by Panax notoginseng (Burk.) F.H. Chen
Saponins: A Potential Mechanism of Antitumor Effects in HepG2
Cells and In Vivo”, had evaluated the saponin enriched
formulation (commercial source containing notoginsenoside
R1, ginsenoside Rgl, ginsenoside Re, ginsenoside Rbl, and
ginsenoside Rd) of Panax notoginseng (Burk.) F.H. Chen
against ATP1Al, an important target for the treatment and
management of hepatic carcinoma. They had noticed that the
saponin enriched formulation was able to downregulate ATP1A1
and its associated signaling pathway when observed in HepG2
cells. These observations will increase the interest of clinicians’
and researchers’ interest in assessing the translational potential of
this saponin enriched formulation of Panax notoginseng (Burk.)
F.H. Chen.

Singla et al, in their review article “Natural Product-Based
Studies for the Management of Castration-Resistant Prostate
Cancer: Computational to Clinical Studies”, had covered the
literature from last 36 years, and analysed the information
about natural products which were effective against castration-
resistant prostate cancer (CRPC). They had covered the
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epidemiology, tumor microenvironment, signaling pathways,
genomic targets related information of CRPC. They had
covered the computational studies, preclinical studies, and
clinical studies that had proved the therapeutic potential of the
natural products against CRPC. Clinical studies are undergoing
for the phytomolecules like curcumin, EGCG, gossypol,
quercetin, lycopene, soy isoflavones, and resveratrol. These
observations will increase the interest of clinicians and
researchers to assess the translational potential of natural
products for the treatment and management of CRPC.

This research topic “Exploration of Natural Product Leads for
Multitarget-Based Treatment of Cancer - Computational to
Experimental Journey” has been successful in collecting 14
articles: 4 review articles, 2 systematic reviews, and 8 research
articles, covering scientific literature pertaining to acute
lymphoblastic ~ leukemia, breast cancer, hepatocellular
carcinoma, colorectal cancer, melanoma, glioblastoma, and
castration-resistant prostate cancer. This research topic has its
significance because it has further the knowledge about various
natural products like carvacrol, thymol, naringin, diorcinol-N,
cinnamaldehyde, plumbagin, crotoxin, geranyl isovalerate,
indicaxanthin, Sanguisorba  Officinalis L., and Panax
notoginseng (Burk.) F.H. Chen Saponins.

We express our thanks to all the authors for contributing
wonderful works in our research topic. To disseminate the
knowledge to a wider audience, social media tools are of
immense significance. The utilization of hashtags like #INPST,
#NPMND and #DHPSP on Twitter or other social media resulted
in the greater circulation of the articles and is being considered as
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Fungal secondary metabolites serve as a rich resource for exploring lead compounds with
medicinal importance. Diorcinol N (DN), a fungal secondary metabolite isolated from an
endophytic fungus, Arthrinium arundinis, exhibits robust anticancer activity. However, the
anticancer mechanism of DN remains unclear. In this study, we examined the growth-
inhibitory effect of DN on different human cancer cell lines. We found that DN decreased
the viability of A3 T-cell leukemia cells in a time- and concentration-dependent manner.
Transcriptome analysis indicated that DN modulated the transcriptome of A3 cells. In total,
9,340 differentially expressed genes were found, among which 4,378 downregulated
genes and 4,962 upregulated genes were mainly involved in autophagy, cell cycle, and
DNA replication. Furthermore, we demonstrated that DN induced autophagy, cell cycle
arrest in the G1/S phase, and downregulated the expression of autophagy- and cell cycle-
related genes in A3 cells. By labeling A3 cells with acridine orange/ethidium bromide,
Hoechst 33,258, and monodansylcadaverine and via transmission electron microscopy,
we found that DN increased plasma membrane permeability, structural disorganization,
vacuolation, and autophagosome formation. Our study provides evidence for the
mechanism of anticancer activity of DN in T-cell leukemia (A3) cells and demonstrates
the promise of DN as a lead or even candidate molecule for the treatment of acute
lymphoblastic leukemia.

Keywords: acute lymphocytic leukemia, autophagy, diorcinol N, G1/S phase arrest, transcriptome profiling
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INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a hematological
malignancy associated with uncontrolled proliferation and
transformation of lymphoid progenitor cells within the bone
marrow (Soulier and Cortes, 2015). Over the past few decades,
the revolution in tumor cell biology and chemotherapeutic
strategies coupled with high-throughput sequencing has led to
significant improvement in outcomes for pediatric patients
(Hunger and Mullighan, 2015). The survival rate of leukemia
patients can reach 90% in children under 14 years of age, while
it can decrease to 40% in adults between 25 and 64 years of age
and to almost 15% in adults aged over 65 (Curran and Stock,
2015; Hunger and Mullighan, 2015; Kansagra et al., 2018). The
poor prognosis for the elderly is because of the ease of
metastasis to different organs and frequent relapse (Aldoss
and Stein, 2018). The most difficult problem is in the
treatment of hematologic malignancies is that few treatments
show the desired therapeutic efficacy or achieve complete
responses (Phelan and Advani, 2018). Further, the use of
localized surgery and radiation approaches may not always be
possible to prevent the dissemination of tumor cells (Malard
and Mohty, 2020). To date, chemotherapy is the most preferred
treatment of choice for these patients (Paul et al., 2017).
Therefore, there is an urgent need to develop novel therapies
that overcome resistance to the currently administered
anticancer drugs for ALL cells.

Secondary metabolites, especially those produced by
endophytic fungi, have been demonstrated to be rich sources
of not only anticancer lead compounds with high potential
against ALL cells, but have also contributed significantly to the
discovery of novel drugs (Deshmukh et al., 2019). For example,
Ophiobolins A, B, C, and K, obtained from three fungal strains in
the Aspergillus section Usti, could reduce leukemia cell viability
and induce cell apoptosis at nanomolar concentrations. Secalonic
acid D, isolated as a secondary metabolite of the mangrove
endophytic fungus No ZSU44, exhibited potent cytotoxicity to

Abbreviations: ALL, Acute Lymphoblastic Leukemia; AO/EB, Acridine Orange/
Ethidium Bromide; AMPK, Adenosine 5-monophosphate (AMP)-Activated
Protein Kinase; ATG, Autophagy-Related Gene; CCK-8, Cell Counting Kit-8;
CDK, Cyclin-Dependent Kinase; CycD, Cyclin D; CycE, Cyclin E; DMSO,
Dimethyl Sulfoxide; DN, Diorcinol N; EtOAc, Ethyl Acetate; FBS, Fetal Bovine
Serum; FC, Fold Change; FCS, Fetal Calf Serum; FoxO, Forkhead Box; FPKM,
Fragments Per Kilobase Of Transcript Of Exon Model Per Million Reads Mapped;
GAPDH, Glyceraldehyde-3-Phosphate Dehydrogenase; GO, Gene Ontology;
HPLC, High Performance Liquid Chromatography; HRESIMS, High Resolution
Electrospray Ionization Mass Spectrometry; ICsy, The Half Maximal Inhibitory
Concentration; KEGG, Kyoto Encyclopedia of Genes and Genomes; MCM2,
Minichromosome Maintenance Complex Component 2; MDC,
Monodansylcadaverine; MEM, Minimum Essential Medium; MeOH, Methanol;
mTOR, Mammalian Target of Rapamycin; NMR, Nuclear Magnetic Resonance;
p21, Cyclin-Dependent Kinase Inhibitor 1o; p27, Cyclin-Dependent Kinase
Inhibitor 1B; PBMCs, Peripheral Blood Mononuclear Cells; PBS, Phosphate-
Buffered Saline; PE, Petroleum Ether; PI3K, Phosphoinositide 3-Kinase; qRT-
PCR, Quantitative Reverse-Transcription Polymerase Chain Reaction; RNase H,
Reverse Transcriptase H; ROS, Reactive Oxygen Species; RP, Reverse Phase;
RPMI, Roswell Park Memorial Institute; RT, Reverse Transcription; SE,
Standard Error; TBST, Tris-buffered saline containing 0.1% Tween 20; TEM,
Transmission Electron Microscopy; TGFp, Transforming Growth Factor Beta;
TNF, Tumor Necrosis Factor.

ALL cells. Further studies have indicated that secalonic acid D
led to cell cycle arrest of G1 phase related to the downregulation
of c-Myc via activation of GSK-3p, followed by degradation of B-
catenin. Consequently, it is necessary to explore more secondary
metabolites in endophytic fungi and to investigate their potential
anticancer activity.

Diorcinols are prenylated diphenyl ether derivatives that are
isolated from numerous endophytic fungi and possess various
biological activities. For example, diorcinol D, which was
isolated from an endolichenic fungus, showed fungicidal
activity against Candida albicans by destroying the
cytoplasmic membrane and generating reactive oxygen species
(ROS) (Li et al., 2015). Diorcinol J, which was produced by co-
cultivation of marine fungi, Aspergillus sulphureus and Isaria
feline, can induce the expression of heat shock protein (Hsp70)
in Ehrlich ascites carcinoma cells (Zhuravleva et al., 2016).
Recently, in our ongoing search for structurally diverse
metabolites with novel cytotoxic mechanisms, a new
prenylated diphenyl ether, diorcinol N (DN), was isolated and
identified from an endophytic fungus Arthrinium arundini,
which was collected from fresh leaves of Nicotiana tabacum L.
(Zhang et al., 2018). DN displayed promising cytotoxicity
against the human THP-1 monocytic cell line in a cytotoxic
assay (Li et al., 2018).

Thus, DN appears to be a potential candidate for blood cancer
treatment and can be used as a lead for the development of novel,
targeted anti-leukemia drugs. In this study, we performed cell-based
assays and transcriptome profiling to investigate the anticancer
mechanism of DN. First, we studied the effects of DN on the
viability of selected human cancer cell lines. Transcriptome analysis
was used to analyze DN-regulated genes and related signaling
pathways that are responsible for growth and autophagy in A3
cells. In addition, the molecular mechanism of growth inhibition
and autophagy induction by DN in this cell line was investigated via
ultrastructural observation, flow cytometry, and quantitative
reverse-transcription polymerase chain reaction (QRT-PCR).

MATERIALS AND METHODS

Chemicals and Fungal Material

High-performance liquid chromatography (HPLC) was
performed using a Waters ultra-performance liquid
chromatography-class system equipped with a C;g column (1.6
pum, 2.1 x 50 mm) and a photodiode array detector. The
chromatographic conditions were as follows: mobile phase:
10% methanol (MeOH), 0-5 min; 10%-100% MeOH, 5-35
min; 100% MeOH, 35-45 min; 100%-10% MeOH, 45-50 min;
10% MeOH, 50-60 min; flow rate: 1 ml/min; ultraviolet
detection: 235 nm. High-resolution electrospray ionization
mass spectrometry (HRESIMS) data were obtained with a
Thermo Scientific LTQ Orbitrap XL spectrometer (Thermo
Scientific, Waltham, MA, USA). The 'H, '’C, and two-
dimensional nuclear magnetic resonance (NMR) spectra were
measured using an Agilent DD2 spectrometer (500 and 125
MHz, respectively) (Agilent, Santa Clara, CA, USA). Open
column chromatography was performed using silica gel (200
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—-300 mesh, Qingdao Haiyang Chemical Factory, Qingdao,
China), Lobar LiChroprep RP-18 (Merck, Darmstadt,
Germany), and Sephadex LH-20 (Merck). All solvents used for
HPLC, HRESIMS, and NMR analyses were of analytical grade
(purchased from Merck, Darmstadt, Germany). The fungal
strain, A. arundinis, was previously isolated from fresh leaves
of Nicotiana tabacum L., with the GenBank number MK182939
and CGMCC number 14792 (Zhang et al., 2018).

Cell Cultures

All cell lines used in this study were purchased from the Chinese
Academy of Sciences Committee on Type Culture Collection
Cell Bank (Shanghai, China) and then conserved in the Tobacco
Research Institute of Chinese Academy of Agricultural Sciences.
The human lymphoblastic leukemia Jurkat and A3 cell lines and
human lung cancer HCC827 cell lines were cultured using
Roswell Park Memorial Institute (RPMI) 1640 medium
(RPMI-1640; #A1049101, Invitrogen, Carlsbad, CA, USA)
containing 10% fetal bovine serum (FBS; #16140071, Gibco,
Carlsbad, CA, USA). The human breast cancer cell lines, MCF-
7 and MDA-MB-231, human cervical cancer cell line, HeLa, and
human prostate cancer cell lines DU-145 and PC-3, were
cultured in Minimum Essential Medium (MEM; #10370021,
Invitrogen, Carlsbad, CA, USA) supplemented with 10% FBS.
The human lung cancer cell line, A549, was maintained in Ham’s
F-12K (Kaighn’s) Medium (#21127022, Invitrogen, Carlsbad,
CA, USA) supplemented with 10% FBS. We isolated peripheral
blood mononuclear cells (PBMCs) via density-gradient
centrifugation using a Lymphocyte Separation Solution
(NakalaiTesque, Kyoto, Japan). Subsequently, we harvested the
PBMCs by centrifugation at 1,500 rpm for 10 min at 22°C and
then resuspended them in RPMI 1640 with 10% FBS (Gibco). All
cells were cultured in a humidified atmosphere containing 5%
CO, at 37°C.

+100 L EtOAc)

gradient (from 1:9 to 1:0)

= silica gel column chromatography with

-
petroleum ether—EtOAc (from 10:1 to 1:1) MeO.s 0.
1" 1 3
} = Lobar LiChroprep RP-18 with a MeOH-H,0 } \Q/ o
5

Purification of DN From A. arundinis

The general isolation procedure for DN is shown in Figure 1.
Details of fermentation, extraction, and isolation procedures
have been reported previously (Zhang et al., 2018). Briefly, to
obtain sufficient amounts of DN, large-scale fermentation was
performed with the productive strain, A. arundinis, in liquid
Potato Dextrose Broth medium. The broth (approximately 200
L) was extracted exhaustively with 100 L of ethyl acetate
(EtOAc), which was evaporated to yield 86 g of residue. The
residue was subjected to silica gel column chromatography with a
mobile phase consisting of mixed petroleum ether (PE)-EtOAc
(from 10:1 to 1:1, v/v) to yield four fractions (Frs. 1-4). Fr. 4
(8.0 g), eluting with PE-EtOAc 1:1, was applied to Lobar
LiChroprep reverse phase (RP)-18 with a MeOH-H,O gradient
(from 1:9 to 1:0) to give three subfractions (Frs. 4.1-4.3). Fr. 4.3
was separated using silica gel (dichloromethane-MeOH 20:1),
followed by Sephadex LH-20 (MeOH) to yield DN (120 mg).
Finally, DN with a purity of more than 98% was obtained and
dissolved in dimethyl sulfoxide (DMSO) to prepare a 100-mM
stock solution. Since a large number of experiments have shown
that 0.1% DMSO is not cytotoxic to different tumor cells (Chou
etal., 2018; Chiang et al., 2019; Song et al., 2020), DN was diluted
further in cell culture media for use in the treatment of cells, so
that the final concentration of DMSO in wells was 0.1% at the
highest concentration of DN used in the study. Viability assays
showed that 0.1% DMSO was non-toxic to cells (data not
shown). All solvents (EtOAc, PE, dichloromethane, MeOH,
and DMSO) used for column chromatography were of
chemical grade (purchased from Sinopharm Chemical Reagent
Co., Ltd, Shanghai, China).

Cell Viability Analysis

The effects of DN on cell viability were investigated by using the
Cell Counting Kit-8 (CCK-8) assay. Briefly, 3.0 x 10* cells/well

" = extracted with EtOAc (200 L culture medium

N

= silica gel (CH,Cl,~MeOH 20:1, v/v) T 12

Diorcinol N

= Sephadex LH-20 eluted with MeOH

2.00!
1.50]
1.00]

0.50]

|

0.00!

0.00 6.00 12.00 1800 2400

3000

36.00 4200  48.00 5400  60.00

FIGURE 1 | Isolation flowchart, chemical structure, and high-performance liquid chromatography (HPLC) analysis of Diorcinol N (DN).
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were seeded in 96-well plates for 24 h of incubation. Then, the
cells were co-cultured for 24, 48, and 72 h with various
concentrations of DN (0, 3.125, 6.25, 12.5, 25, 50, and 100
uM), after which cell viability was assessed using the CCK-8
Cell Proliferation and Cytotoxicity Assay Kit (#CA1210,
Solarbio, Beijing, China). Absorbance was measured using a
microplate spectrophotometer (Multiskan GO, Thermo
Scientific, Waltham, MA, USA) at 490 nm.

Cell Cycle Analysis

After treatment with 6.25, 12.5, and 25 uM DN for 48 h, 1 x 10°
A3 cells/ml were collected, washed three times with phosphate-
buffered saline (PBS), and fixed overnight by incubation with
70% ethanol. The fixed cells were stained using a DNA Content
Quantitation Assay Kit (#CA1510, Solarbio, Beijing, China) for
cell cycle analysis. The test data were analyzed using Multicycle
(Phoenix Flow Systems, San Diego, CA).

Fluorescence Microscopy

The morphology of A3 cells was observed by staining with
acridine orange/ethidium bromide (AO/EB; Sigma-Aldrich
Corp., St. Louis, MO, USA) and monodansylcadaverine (MDC;
ab139484; Abcam), as described previously, and then with
Hoechst 33258 (Wu et al., 2018; Laha et al., 2019; Zhang et al,,
2020). Briefly, A3 cells were subjected to 6.25, 12.5, and 25 pM
DN for 48 h for fluorescence microscopy. For AO/EB staining,
cells were harvested and washed three times with PBS.
Subsequently, the cells were stained with 0.1 ml of 4 pug/ml
AO/EB solution (Sigma-Aldrich Corp., St. Louis, MO, USA) at
37°Cin the dark for 15 min. For MDC labeling, resuspended cells
were incubated with fluorescent dye at 37°C in the dark for
45 min. The cells were centrifuged and resuspended with 100 ul
of assay buffer according to the manufacturer’s protocol for the
Autophagy Detection Kit (ab139484; Abcam). The remaining A3
cells were fixed with 70% ethanol and incubated with 1 pg/ml
Hoechst 33258 solution (Sigma-Aldrich Corp., St. Louis, MO,
USA) at room temperature for 10 min. A confocal laser scanning
microscope was used to observe the morphology of each group of
cells (Leica Microsystems, Hessen Wetzlar, Germany).

Cellular Ultrastructure Examination

Cellular ultrastructure was examined using conventional
transmission electron microscopy (TEM), as described
previously (Yuan et al, 2017). Briefly, A3 cells treated with
different concentrations of DN (6.25, 12.5, and 25 uM) for
48 h were collected as mentioned in Cell Cycle Analysis. The
cells were subsequently fixed with 2.5% glutaraldehyde
(Analytical grade reagent; Sinopharm Chemical Reagent Co.,
Ltd, Beijing, China) containing 0.1 M sucrose (Analytical grade
reagent; Sinopharm Chemical Reagent Co., Ltd) and 0.2 M
sodium cacodylate (Analytical grade reagent; Sinopharm
Chemical Reagent Co., Ltd) for 24 h at 4°C, followed by the
addition of 10 g/L OsO, (Analytical grade reagent; Sinopharm
Chemical Reagent Co., Ltd). The cells were then dehydrated,
embedded in epoxy resin, cut into sections, and observed with an
H700 transmission electron microscope (Hitachi, Tokyo, Japan).

RNA Extraction

A3 cells were treated with 12.5 and 25 UM DN for 48 h, while
untreated A3 cells served as the control. Total RNA was isolated
from each sample using the Cell RNA Kit (Omega Bio-Tek, Inc.,
Norcross, GA, USA) according to manufacturer’s instructions.
The quality and concentration of the RNA were estimated using
a NanoPhotometer spectrophotometer (IMPLEN, Westlake
Village, CA, USA), and the integrity of the RNA was detected
on 1% agarose gels. High-quality RNAs were used for library
construction and quantitative analysis.

Library Construction for Digital Gene
Expression Sequencing

For RNA library construction, a total of 5 g of RNA per sample was
used as input to produce sequencing libraries using an NEBNext
Ultra RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA)
according to the manufacturer’s recommendations. During the
process of library construction, a unique barcode was added to
each sample to distinguish between the different samples. Briefly, we
isolated and purified mRNA from total RNA using poly-T oligo-
attached magnetic beads. The first strand of cDNA was synthesized
using random hexamer primer and M-MuLV Reverse Transcriptase
H (RNase H) from the fragmented RNAs. Then, the second strand
of cDNA was synthesized using DNA polymerase I and RNase H.
After repairing the cohesive ends with exonuclease/polymerase and
adenylation of 3" ends, a specific adapter was added in each sample
through amplification. Finally, PCR products of length ranging from
150 bp to 200 bp were purified using AMPure beads (Beckman
Coulter, Beverly, MA, USA). The quality and quantity of the final
libraries were assessed by using an Agilent Bioanalyzer 2100 (Agilent
Technologies, Palo Alto, CA, USA) before sequencing.

Analysis of Differentially Expressed Genes
After filtering reads containing adapter, reads containing ploy-N,
and low-quality reads from raw data, clean data were mapped to the
human genome. Then, the number of reads mapped to each gene
were calculated using HT'Seq v0.6.0 (Illumina Inc, Santa Clara, CA,
USA). The differential expression between the DN-treated and
control groups was calculated by using the DESeq R package
(1.18.0). Their expression levels were measured using fragments
per kilobase of transcript of exon model per million reads mapped
(FPKM) values. Genes with an adjusted p-value <0.05 found using
DESeq2 were considered to be differentially expressed.

Functional Annotation and Gene Ontology
(GO)/Kyoto Encyclopedia of Genes and
Genomes (KEGG) Enrichment Analysis

For functional annotation of differentially expressed genes,
GOseq R package and KOBAS software were used to analyze
GO enrichment and KEGG pathways, respectively (Kanehisa
and Goto, 2000; Young et al., 2010; Kanehisa et al., 2016).

Real-Time Quantitative PCR Validation

Total RNA was extracted from the DN treated and control groups,
as previously described in 2.8, and reverse-transcribed into cDNA
using a PrimeScript " reverse transcription (RT) reagent Kit
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(Takara, Otsu, Japan) according to the manufacturer’s instructions.
Two other pairs of primers for glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and PB-actin were used as internal
controls for normalization of gene expression, as shown in
Supplementary File S5. Primers of 16 differentially expressed
genes used for quantitative reverse-transcription polymerase
chain reaction (qRT-PCR) analysis were designed using
PrimerQuest (https://sg.idtdna.com/PrimerQuest/Home). The
qRT-PCR was performed using LightCycler 480 (Roche, Basel,
Switzerland). The reaction volume was 20 pl; it contained 10 pl of
SYBR mix (#A25741, Thermo Fisher, Waltham, MA, USA), 0.6 ul
of each primer, 2 pl of cDNA template, and 6.8 ul of RNase-free
water. The thermocycling program was as follows: 95°C for 5 min,
followed by 45 cycles of 95°C for 10 s, 57°C for 10 s, and 72°C for
20 s. Relative gene expression levels were calculated by using the
2 “A4Ct method (Zhang et al., 2020).

Western Blotting

A3 cells were treated with 6.25, 12.5, and 25 uM DN for 48 h, and
harvested and washed with cold PBS. Total protein was extracted
from RIPA Lysis Buffer (#P0013B, Beyotime, Shanghai, China) with
1% phenylmethyl sulfonylfluoride. The protein concentrations of
different samples were determined using the BCA assay, as
described previously (Heshmati et al., 2020). Proteins were
electrophoresed using 8-15% SDS-PAGE and electrically
transferred onto poly (vinylidene fluoride) membranes
(ISEQ00010 0.22 pum, Millipore, MA, USA) successively. After
blocking with 5% non-fat milk, the membranes were incubated
with rabbit anti-AMPK, p-AMPK (Thr172), mTOR, p-mTOR
(Ser2448), ATG1, p-ATG1 (Ser555), Beclin-1, p-Beclin-1 (Ser93),
and GAPDH antibodies (Cell Signaling Technology, MA, USA) at
4°C overnight. After incubation, membranes were washed with
Tris-buffered saline containing 0.1% Tween 20 (TBST) and
incubated with horseradish peroxidase-conjugated secondary
antibodies or anti-rabbit IgG antibodies for 1.5 h at room
temperature. The proteins were visualized using Millipore’s
enhanced chemiluminescence (ECL) and detection system
(ChemiDoc Touch, BioRad, Germany).

Statistical Analysis

In our study, three replicates were used for each treatment. Data are
shown as means * standard error (SE) of three replicates. The SPSS
21.0 software package (SPSS, Chicago, IL, USA) was used to detect
statistically significant differences among different groups.
Differences were considered statistically significant when p < 0.05.

RESULTS

Isolation of DN From A. arundinis

Repeated column chromatography using silica gel, a reversed-
phase C;g column, and Sephadex LH-20 were used for
compound isolation from A. arundinis cultures. The chemical
structure of DN was determined using mass spectrometry and
NMR. DN was isolated as a yellowish oil. Its molecular formula

was established as C,yH,40,4, as evidenced from the
quasimolecular ion peak at m/z 327.1597 [M — H]™ (calcd. for
Cy0H»304, 327.1602) in its (-)-HRESIMS spectrum. The
structure of DN was finally elucidated as a prenylated diphenyl
ether by comparison of its NMR data with those reported
previously in the literature (Zhang et al., 2020). HPLC analysis
indicated that the purity of DN was > 98% (Figure 1).

In Vitro Growth Inhibitory Effect of DN
Growth inhibition effects induced by DN on different tumor cell
lines were investigated using the CCK-8 assay. Six cancer cell
lines were treated with different concentrations (0.39-50 uM) of
DN for 48 h. DN showed concentration-dependent inhibitory
effects on the growth of these different cancer cell lines (Figure
2A). However, the cell lines showed different levels of sensitivity
to DN. The most remarkable effect was observed for A3 cells
(ICs50 = 16.31 uM) (Figure 2A). Since A3 cells are T cell leukemia
cells, we examined the sensitivity of different leukemia cell lines
to DN. Concentration- and time-dependent growth inhibition
was observed for three leukemia cell lines, A3, Jurkat, and
PBMCs (Figures 2B-D). As A3 cells were the most sensitive to
DN compared to PBMCs and Jurkat cells, they were used in
subsequent experiments.

DN Modulated the Transcription of
Different Genes in A3 Cells

To investigate the anticancer mechanism of DN, transcriptional
profiling analysis was performed for untreated A3 cells and A3
cells treated with different concentrations of DN. RNA-Seq was
used to generate 65,926,953 reads in the 12.5 uM-DN-treated
group, 45,756,714 reads in the 25-uM-DN-treated group, and
66,200,048 reads in the control group (Table S1). These reads
were mapped to the human genome and the unique mapping
rates were found to be over 80%, which represented 8400, 9340,
and 9832 expressed genes, respectively (Table S1). Then, the
expression levels of these genes were quantified based on FPKM
values (Figure 3A and Table S1). These results indicated that
compared to the control group, 2,964 and 3,011 genes were
uniquely expressed in the 12.5-uM-DN- and 25-uM-DN-treated
groups, respectively (Figure 3B). Using P < 0.05 and a 2-fold
change (FC) as the conditions for discrimination, 8400
differentially expressed genes were found in the 12.5-uM-DN-
treated group, among which 47.85% (4859) were downregulated
and 42.15% (3541) were upregulated (Figure 3C, Tables S2, $3).
Moreover, the number of differentially expressed genes rose as
the concentration of DN increased (Figure 3D, Tables S4, S5).
To assess the expression patterns of mRNAs at different
concentrations of DN, heatmaps were used to determine
overall transcriptomic differences. The heatmaps showed
accurate repeatability and high reliability (Figures 3E, F).

GO and KEGG Enrichment Analyses of
Differentially Expressed Genes in
DN-Treated A3 Cells

Based on the p-value thresholds described above, the differentially
expressed genes were divided into four clusters. Among four
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FIGURE 2 | Effects of Diorcinol N (DN) on cancer cell lines. (A) Inhibitory effects of DN on nine cancer cell lines (lymphoblastic leukemia cell lines A3 and Jurkat;
breast cancer cell lines MCF-7 and MDA-MB-231; prostate cancer cell line DU-145 and PC-3; lung cancer cell line A549 and HCC827); cervical cancer cell line
Hela. (B-D) Inhibitory effects of DN on three leukemia cell lines: lymphoblastic leukemia cell lines, A3 and Jurkat, and human peripheral blood mononuclear cells

clusters, clusters 3 was significantly enriched with 3,413 differentially
expressed genes (Figure S1). In addition, cluster 2 containing 155
differentially expressed genes was significantly enriched as the
upregulated cluster. To estimate the functions of genes that were
differentially expressed between the treated and control groups, GO
category and KEGG pathway analyses were performed for the
differentially expressed genes. The enrichment of GO categories
for these genes showed that the upregulated genes were mainly
involved in the cellular response to endoplasmic reticulum stress,
autophagy, mitochondrion disassembly, protein polyubiquitination,
and vacuole organization (Figure 4A, Tables S6, S7), whereas the
downregulated genes were mainly related to DNA replication,
mitotic cell cycle phase transition, chromosome segregation, G1/S
transition of mitotic cell cycle, and cell cycle G1/S phase transition
(Figure 4B, Tables S6, S7). Analysis of the metabolic pathways in
which these differentially expressed genes participated showed that
the most enriched upregulated pathways were involved in adenosine
5’-monophosphate-activated protein kinase (AMPK) signaling,
autophagy, epidermal growth factor receptor signaling,
phagosome formation, Notch signaling, forkhead box O (FoxO)
signaling, and tumor necrosis factor (TNF) signaling (Figure 4C,
Tables S8, S9), whereas the most enriched downregulated gene
pathways included cell cycle, DNA replication, oxidative
phosphorylation, nucleotide excision repair, and mismatch repair
(Figure 4D, Tables S8, S9). The effects of DN were most closely
associated with the pathways of autophagy (Figure S2), cell cycle
(Figure S3), and DNA replication (Figure S4), all of which can
decrease cell viability. These findings indicate that DN may

modulate A3 cell biological processes by inhibiting the cell cycle
and inducing autophagy.

DN Induced G1/S-Phase Arrest in A3 Cells
To explore the effects of DN on the cell cycle of A3 cells, cells
were treated with 6.25, 12.5, and 25 UM DN for 48 h and
analyzed using flow cytometry. As shown in Figures 5A, B,
treatment with DN significantly increased the cell population in
the G1 phase from 54.55% for untreated cells to 79.31% for 25-
UM-DN-treated A3 cells. Additionally, DN-treated cells showed
a reduction in the population in S phase (18.15% (6.25 uM),
11.41% (12.5 uM), and 10.12% (25 uM DN)) from 24.3% for
untreated cells, and a reduction in the population in the G2 phase
(18.82% (6.25 uM), 14.95% (12.5 uM), and 10.81% (25 uM))
from 21.25% for untreated cells. These findings indicate that DN
induced A3 cell cycle arrest in the G1/S phase.

DN Induced Autophagy in A3 Cells

To further examine the mechanism of anticancer activity in DN-
treated A3 cells, cytological changes were observed using
fluorescence microscopy and TEM. The results indicated that
A3 cells showed dose-dependent autophagy-like cytological
changes (Figure 6) after exposure to DN at doses ranging from
6.25 to 25 WM. The observed morphological features included
elevated permeability (Figure 6A), atypical chromatin (Figure
6B), ultrastructural disorganization (Figure 6C), and autophagic
vacuoles (Figure 6C). Furthermore, autophagic vacuoles were
assessed using imaging studies with the use of MDC staining.
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FIGURE 3 | Overview of genes that were differentially expressed between untreated cells and diorcinol N (DN)-treated (12.5 and 25 uM) A3 cells. (A) FPKM density
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downregulated genes in 25-uM-DN-treated A3 cells and control cells. FPKM, fragments per kilobase of transcript of exon model per million reads mapped.
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Cells with activated autophagy had a green fluorescent signal in
the cytoplasm (Figure 6D). Increasing MDC fluorescence in A3
cells was observed after DN treatment (Figure 6E).

Validation of the Expression of Autophagy-
and Cell Cycle-Associated Genes and
Proteins

To validate the results of the RNA-Seq analysis, QRT-PCR was
performed to validate the expression patterns of 16 differentially
expressed genes, which are closely related to autophagy and the

cell cycle (Table S10). We measured the levels of expression of
genes that are involved in autophagy—adenosine 5’-
monophosphate (AMP)-activated protein kinase (AMPK),
autophagy-related gene 1 (ATGI), beclin-1, vacuolar protein
sorting 34 (VPS34), autophagy-related gene 7 (ATG7),
autophagy-related gene 12 (ATG12), phosphoinositide 3-kinase
(PI3K), and mammalian target of rapamycin (mTOR)—and in
the cell cycle—cyclin D (CycD), cyclin E (CycE), cyclin-
dependent kinase 2 (CDK2), cyclin-dependent kinase 4
(CDK4), minichromosome maintenance complex component 2
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(MCM2), transforming growth factor beta (TGFp), cyclin-
dependent kinase inhibitor 1o (p21), and cyclin-dependent
kinase inhibitor 1B (p27). The results indicate a significant
increase in the expression of genes involved in the promotion
of autophagy (AMPK, beclin-1, ATGI, VPS34, and ATG?) and a
reduction in the expression of genes involved in the inhibition of
autophagy (PI3K and mTOR) (Figure 7A). Additionally, we
detected a significant decrease in CycD, CycE, CDK2, CDK4,
and MCM2 transcript levels; these genes play positive roles in the
cell cycle, whereas cell cycle inhibitory genes, such as
transforming growth factor beta (TGFp), p21 and p27, were
upregulated (Figure 7B). In addition, AMPK levels of expression
and the concentrations of its substrates, beclin-1 protein levels,
increased following treatment with DN in a dose-dependent
manner (Figure 7C). Activated AMPK negatively regulates
mTOR and, in turn, enhances autophagy flux. In our
experiments, we observed that DN dephosphorylated mTOR in
a dose-dependent manner (Figure 7C). Finally, DN also induced
a dose-dependent increase in the levels of phosphorylated ATG1,
which is a downstream target of mTOR (Figure 7C).

DISCUSSION

While tremendous progress has been made in the treatment of
pediatric ALL, the success rate of current treatments is much
more modest in adults (Aldoss and Stein, 2018). Hence, new
therapeutic agents are urgently needed for ALL therapy (Thu
Huynh and Bergeron, 2017; Dyczynski et al., 2018a). The
antifungal, anticancer, and antinociceptive effects of diorcinol
have been investigated in previous studies (Gao et al., 2013; Li
et al.,, 2015; Zhuravleva et al., 2016; Li et al., 2018; Zhang et al.,
2018). However, the mechanism by which DN exerts anticancer
effects on ALL cells requires further elucidation. In this study, we
provide evidence that DN inhibited growth and induced
autophagy in leukemia cells by modulating multiple cell
signaling molecules. To characterize the anticancer mechanism
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FIGURE 5 | Cell cycle profiling of A3 cells exposed to diorcinol N (DN). (A) Cell cycle distribution of DN-treated A3 cells. (B) Cell cycle profile of DN-treated A3 cells.

of DN in human cell lines, we first explored the effects of DN on
the viability of human cancer cell lines and PBMCs. DN
decreased the viability of numerous cancer cell lines in our
present study; however, the most obvious anticancer effect of
DN was observed on A3 cells in the CCK-8 assay. Digital
expressed gene profiling was performed to identify genes that
were differentially expressed in untreated and DN-treated A3
cells. GO and KEGG analyses were performed for the 9,340
differentially expressed genes observed in treated and untreated
A3 cells. We found that DN could inhibit the growth of A3 cells
by affecting biological processes, such as autophagy, cell cycle,
DNA replication, vacuole organization, and mitotic nuclear
division. However, we detected that the genes associated with
the apoptotic pathway were not in the top 20 enrichment list.
Thus, DN probably modulated the expression of genes related to
autophagy and the cell cycle to a greater degree. The effects of
DN on A3 cells were similar to those observed for Ghrelin on
Jurkat and Molt-4 human lymphoblastic cell lines (Heshmati
et al., 2020).

Studies have reported changes in the expression of genes
related to the cell cycle that are relevant to abnormal
karyomorphism. Hoechst 33258 labeling revealed DN-induced
pyknotic karyomorphism over time. Pyknotic karyomorphism
has been found during autophagy in other leukemia cells and is
induced by treatment with different kinds of anticancer drugs
(i.e., 786-0 cells and L-02 cells) (Yuan et al,, 2017; Chen et al.,
2018). The fidelity of replication is affected by abnormal
karyomorphism, and low fidelity of replication could lead to
cell cycle arrest (Dyshlovoy et al., 2020; Oh et al.,, 2020). Our
findings indicate that DN arrested the cell cycle of A3 cells at the
G1/S phase, which is similar to the effects of previously reported
anticancer agents, such as triacanthine and licoricidin (Ji et al.,
2017; Shin et al., 2019). In addition, transcriptome profiling and
qRT-PCR analyses show that cycle-stimulative genes, such as
CDC, CDE, CDK2, and CDK4, were downregulated in DN-
treated A3 cells, whereas cycle-suppressive genes, such as
TGFp, p21, and p27 were upregulated. TGFp plays a vital role
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FIGURE 6 | Diorcinol N (DN) induced autophagy in A3 cells. (A) Elevated plasma membrane permeability was detected by staining cells in the AO/EB double-
staining assay. Original magnification, x100. (B) Autophagy-related nuclear morphological changes were detected by labeling cells with Hoechst 33258. Autophagic
cells were defined as those with blue nuclei that exhibited a fragmented/condensed appearance (red arrow). Original magnification, x200. (C) Ultrastructural changes
in A3 cells were detected via TEM. a, autophagosome; ¢, condensed chromatin; mv, microvillus; N, nucleus; v, vacuole. (D) The autophagosomes of autophagic
cells were labeled using MDC and viewed under a fluorescence microscope. Original magnification, x200. (E) Bar graph showing the quantification of MDC-positive
A3 cells. Mean values are shown with standard deviation (SD). AO/EB, acridine orange/ethidium bromide; TEM, transmission electron microscopy; MDC,
monodansylcadaverine. *p < 0.05, *p < 0.01 indicates a significant difference versus the untreated group.

in promoting G1/S phase arrest via a complex of mothers against ~ in the formation of replication forks for recruiting other DNA
decapentaplegic homolog 2/3/4 and specificity protein 1 (Sun  replication-related proteins in the G1 phase (Braun and Breeden,
et al., 2019). Phosphorylated tyrosine-containing p27 inhibits ~ 2007). The results show that the downregulated genes are closely
CDK4 and CDK2 to cause cell cycle G1/S arrest (Kang et al.,  related to the cell cycle and thus influence the viability of A3 cells,
2002; Blain, 2018). As a cyclin-dependent kinase (CDK)  which is also supported by the results of the Hoechst 33258
inhibitor, p21 binds to cyclin A/CDK2, E/CDK2, D1/CDK4,  staining and cell cycle analysis. The cellular results, together with
and D2/CDK4 complex to inhibit the phosphorylation of  gene expression, indicate that DN-treated leukemia cells cannot
retinoblastoma protein and thus, inhibit G1/S transition (Kang  progress through the G1/S checkpoint, which is consistent with
et al., 2002; Karimian et al, 2016). As a new marker for  previous findings (Vijayaraghavan et al., 2017). Previous studies
proliferating cells, MCM2 is one of the six highly conserved  have shown that the cell cycle is tightly controlled by precise
proteins that form a double hexameric MCM complex that is ~ mechanisms, among which autophagy is an important upstream
essential for the pre-replication apparatus and may be involved  regulator of the cell cycle (Mathiassen et al., 2017; Zheng et al.,

Frontiers in Pharmacology | www.frontiersin.org 18 October 2020 | Volume 11 | Article 570450


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Yuan et al.

DN Induced A3 Cells Autophagy

>

0
6.25 M

[ R VAN

Fold change of gene expression

AMPK ATGI Beclinl ATG7 VPS34

0
6.25 M

=125 M
u25uM

[T N Y

Fold change of gene expression

=}

CYCD

CYCE CDK2 CDK4 Mcm2

a significant difference versus the untreated group.

2019). Therefore, the observed cell cycle arrest, combined with
reduced cell viability, caused by DN in A3 cells could explain the
autophagy-inducing effect of DN on A3 cells.

Literature evidence identifies autophagy as an important mode
of cancer treatment, via the promotion of cell cycle arrest (Onorati
et al, 2018; Kocaturk et al, 2019). Autophagic cells present
characteristics, such as elevated plasma membrane permeability,
karyopyknosis, and autophagic body formation (Zhang et al,
2015; Karch et al., 2017; Padman et al., 2017). Therefore, plasma
membrane permeability, autophagosomes, karyomorphism, and
ultrastructure of DN-treated A3 cells were examined by labeling
with AO/EB, Hoechst 33258, and MDC, as well as TEM,
respectively, to detect the effects of DN on autophagy. Our
results indicate that DN increased the plasma membrane
permeability of A3 cells. Previous studies have reported that
anticancer agents, such as o-hederin and curcumin, have a
similar effect on the permeability of cell membranes (Lorent
et al, 2016; Seo et al, 2018). DN has been shown to induce
typical autophagic changes in A3 cells, such as cell structure
disorder, vacuolation, and autophagosome formation. Moreover,
we observed that the increased expression of AMPK at the gene
and protein levels, which can directly or indirectly suppress the
expression of downstream mTOR (Jia et al., 2019). Downregulated
mTOR can promote autophagy via the formation of the ATGI-
ATGI13-FIP200 complex, which causes the upregulation of p21
and p27, leading to cell cycle arrest in the G1 phase (Jung et al.,
2018; Kazemi et al, 2018). In addition, transcriptional levels of
PI3K, a negative regulator of autophagy, had decreased, resulting
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FIGURE 7 | Validation of expression levels of genes related to autophagy and the cell cycle. (A) Differentially expressed autophagy-related genes induced by
diorcinol N (DN). (B) Differentially expressed cell cycle-related genes induced by DN. (C) Western blot analysis of AMPK, p-AMPK (Thr172), mTOR, p-mTOR
(Ser2448), ATG1, p-ATG1 (Serb55), Beclin1, p-Beclin1 (Ser93) expression A3 cells treated with different concentrations of DN for 48 h. *p <0.05, **p <0.01 indicates

in the downregulation of downstream mTOR via the PI3K/ATK/
mTOR signaling pathway (Chen et al., 2019). Moreover, beclin-1
is phosphorylated by ATGI and forms the Beclin-1-VPS34
complex to promote the localization of autophagic proteins in
autophagic vesicles (Dyczynski et al., 2018b; Feng et al., 2019).
ATG?7 acts as an El-like ubiquitin-activating enzyme to activate
ATG]12. Subsequently, the activated ATG12 forms a complex with
ATGS5 and ATGI16 to promote the process of autophagy. Our
results also show that DN induced autophagy by increasing the
expression of autophagy-related genes such ATG1, ATG7, ATG12,
Beclin-1, and VPS34 (Dyczynski et al., 2018b; Sun et al., 2018;
Wang et al.,, 2018). Overall, our data support the conclusion that
DN regulated gene expression to induce autophagy, which is the
main mechanism underlying its anticancer effects in A3 cells.
The fungal metabolite DN exerts its effects against A3 leukemia
cells by decreasing their viability, altering plasma membrane
permeability, promoting autophagic morphological changes,
arresting the cell cycle at the G1/S phase via p21, p27, TGF-,
and the PI3K/Akt/mTOR pathways. Although further study is
required to investigate the anticancer activity of DN, our study
demonstrates the promise of DN as a lead or even a candidate
molecule for the treatment of acute lymphoblastic leukemia.
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Background: Breast cancer has become one of the most commmon malignant tumors in
women owing to its increasing incidence each year. Clinical studies have shown that
Cinnamomum cassia (L.) J. Pres/ (cinnamon) has a positive influence on the prevention and
treatment of breast cancer.

Aim: We aimed to screen the potential targets of cinnamon in the treatment of breast
cancer through network pharmacology and explore its potential therapeutic mechanism
through cell experiments.

Methods: We used the TCMSP, TCM Database @ Taiwan, and TCMID websites and
established the active ingredient and target database of cinnamon. Thereafter, we used
the GeneCards and OMIM databases to establish a breast cancer-related target database,
which matched the cinnamon target database. Based on the matching results, the
STRING database was used to analyze the interaction between the targets, and the
biclogical information annotation database was used to analyze the biological process of
the target (gene ontology) and the pathway enrichment of Kyoto Encyclopedia of Genes
and Genomes (KEGG). After establishing the layout of the analysis, we used Cytoscape
3.6.0 software for network analysis. Finally, the cell experiment was used to verify the anti-
breast cancer effect of cinnamaldehyde.

Results: Our research showed that the main components of cinnamon, including
cinnamaldehyde, can play a role in the treatment of breast cancer through 59 possible
important targets. Subsequently, enrichment analysis by gene ontology and Kyoto
Encyclopedia of Genes and Genomes showed that 83 cell biological processes and
37 pathways were associated with breast cancer (p < 0.05), including the peroxisome
proliferator-activated receptor and PIBK-Akt pathway, which are closely related to tumor
cell apoptosis. In vitro cell verification experiments showed that cinnamaldehyde can
significantly inhibit cell proliferation, change cell morphology, inhibit cell migration and
invasion ability, and promote cell apoptosis.
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Conclusion: Our results showed that cinnamaldehyde is a potential novel drug for the
treatment and prevention of breast cancer.

Keywords: cinnamaldehyde, breast cancer, network pharmacology, active components, MDA-MB-231

INTRODUCTION

Cinnamon, the dried bark of Cinnamomum cassia (L.) J. Presl, is
one of the most commonly used traditional herbs worldwide.
Studies have shown that the chemical components of cinnamon
exert anti-tumor effects. Cinnamic acid derivatives can inhibit the
growth of lung cancer cells (A549), breast cancer cells (MCF-7),
and MCF-10A (Reddy et al,, 2016). Cinnamon essential oil is
cytotoxic in vitro and exhibits certain inhibitory effects on PC3,
A549, and MCEF-7 prostate cancer cells, with PC3 exerting the
strongest inhibitory effect (Zu et al., 2010). Trans-cinnamic acid
can inhibit melanoma proliferation and tumor growth (Cabello
et al., 2009). Eugenol is another important active ingredient in
cinnamon. In fact, in vivo studies have shown that eugenol can
upregulate the expression of p53 and p21WAF1 and promote
apoptosis of cancer cells in mice with skin cancer (Kaur et al.,
2010). Cinnamaldehyde can also exert a significant anticancer
effect on HepG2 hepatoma cells by reducing the expression of the
anti-apoptotic protein, Bcl-XL (Ng and Wu, 2011).

Breast cancer is a malignant tumor with a high clinical
incidence. Accordingly, approximately 1.39 million new breast
cancer patients are identified worldwide each year (Siegel et al,
2018). Its incidence rate is the highest among malignant tumors
for women, and its mortality rate ranks second among female
malignancies (Bray et al., 2018). In China, the annual growth rate
of breast cancer patients has exceeded the world average.
According to the 2015 China Breast Cancer Survey,
approximately 26,000 new breast cancer patients are diagnosed
each year, causing approximately 70,000 deaths each year (Chen
et al., 2016). Triple-negative breast cancer (TNBC) is a special
type of breast cancer that is characterized by the progesterone
receptor (PR), estrogen receptor (ER), and human epidermal
growth factor receptor 2 (HER2), all of which are negative (Parise
and Caggiano, 2017; Liao et al, 2018). TNBC accounts for
15-20% of all breast cancer pathological types, most of which
occur in premenopausal young women, with high malignancy
and poor prognosis (Rida et al., 2018). Besides this, 30-40% of
TNBC cases can develop metastatic breast cancer, with visceral
metastases being more common, especially lung and brain
metastases (Foulkes et al., 2010). TNBC is a group of highly
heterogeneous mixed breast cancers with seven subtypes, and
endocrine and anti-HER2 treatment are ineffective treatment
options for this cancer type (Lehmann et al, 2011). Currently,
TNBC mainly relies on adjuvant therapy such as chemotherapy.
Therefore, there is an urgent need to develop new drugs and
targets for the treatment of refractory breast cancer TNBC.

In the current study, we used network pharmacology to
predict the main ingredients and potential therapeutic targets
that are responsible for the anti-breast cancer effects of
cinnamon. Subsequently, based on the results of network
analysis, we investigated the gene ontology (GO) terms and

pathways of cinnamon and breast cancer, and carried out
biological verification using breast cancer cells in vitro. Our
research findings may provide experimental data for further
development and utilization of cinnamon and may serve as a
reference for research on traditional herbs for cancer and cancer-
related diseases.

METHODS AND MATERIALS

Screening of the Active Ingredients of
Cinnamon by Network Pharmacology

We built a network of potential therapeutic targets for cinnamon
based on previous research (Lu et al, 2020). Specifically, all
ingredients in cinnamon were obtained through three
databases: TCM Systems Pharmacology Database and Analysis
Platform (TCMSP), TCM Database @ Taiwan (TCM Database @
Taiwan), and the TCM Integrated Database (TCMID).
Subsequently, by setting Lipinski rule-based drug-likeness (DL)
and oral bioavailability (OB), the active ingredients related to
cinnamon were screened (OB > 20%, DL > 0.1).

Correlation Analysis of Cinnamon and the

Breast Cancer-Related Targets

The corresponding target of the compound in cinnamon was
verified through the TCMSP database. If no target information
for the compound was found on the platform, the small-molecule
structure information of the component was searched using the
PubChem database and saved in the SMILES format. Thereafter,
we used Swiss Target Prediction according to its chemistry
similarity to find targets. The UniProt database was used to
normalize the gene information and eliminate genes without
UniProt ID from human samples. The breast cancer-related
targets were obtained through the integration of multi-source
databases. Specifically, “breast cancer” was used as the search
term; the results obtained from the GeneCards database and
Online Mendelian Inheritance in Man (https://omim.org/) search
were comprehensively analyzed and a breast cancer target library
was constructed. Through Venny 2.1.0 (http://bioinfo.cnb.csic.es/
tools/venny/index.html), the targets associated with breast cancer
and the main compounds in cinnamon were related for a visual
demonstration of the targets that intersect between them.

Screening of the Main Components and
Targets in Cinnamon for the Treatment of

Breast Cancer

The intersection of the corresponding target of the active
ingredient in cinnamon and the target of breast cancer disease
was used to construct a protein—protein interaction (PPI) map in
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the STRING database. The matched targets were analyzed using
the Database for Annotation, Visualization, and Integrated
Discovery  (https://david.ncifcrf.gov/)  v6.8.  biological
information annotation database for target GO (http://
geneontology.org/) biological process analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG, https://www.
keggjp/) pathway enrichment analysis. p < 0.05 was
considered statistically significant.

Cell Culture and Treatment With

Cinnamaldehyde

MDA-MB-231, a human breast cancer cell line, was obtained
from the Be Na Culture Collection (Biotechnology Research
Institute) and cultured with RPMI 1640 (11875093,
INVITROGEN) supplemented with 10% fetal bovine serum
(FBS, Corning-Cellgro Bio Inc., New Zealand) and 1%
penicillin-streptomycin in an incubator set to 37°C and 5%
CO,. When the confluence of MDA-MB-231 reached 80-90%,
it was treated with different concentrations of cinnamaldehyde
(CA, 110710-201821; Chemical formula, Supplementary Figure
S$1) for subsequent detection.

Effects of Cinnamaldehyde on the Viability

of MDA-MB-231 Cells

The MTT assay was used to analyze the effect of different
concentrations of cinnamaldehyde on the viability of MDA-
MB-231 cells (Buglak et al., 2018). MDA-MB-231 cells with
moderate density were seeded in 96-well plates and cultured
with complete medium until adherence occurred. Subsequently,
different concentrations of cinnamaldehyde (0, 2.5, 5, 10, 20, 40,
80, and 160 pg/ml) were used to treat breast cancer cells for 24 and
48 h. Thereafter, 20 ul of MTT was added to each well, and the
plates were incubated for another 4h at 37vC. Finally, the
medium was aspirated, and DMSO (150 ul/well) was added. A
multifunctional microplate reader (FLUO star Omega, BMG
Labtech, Germany) was employed to measure the optical
density (OD) at 490 nm. GraphPad Prism 8.0 software was
used to calculate the ICsy at 48 h. The cell proliferation
inhibition rate was calculated using the following formula [1 —
(OD value of drug group/OD value of the control group)] x 100%.

Effect of Cinnamaldehyde on MDA-MB-231

Cell Morphology

MDA-MB-231 cells (1 x 10°cells/ml) were seeded in 6-well
plates, and their morphology was observed under a
microscope after treatment with cinnamaldehyde (0, 10, 15,
20 pg/ml) for 48 h. Subsequently, Hoechst 33258 staining was
used to observe the effect of different concentrations of
cinnamaldehyde on the cytoplasmic morphology of MDA-MB-
231 cells (Hagenlocher et al., 2015).

Effects of Cinnamaldehyde on the

Apoptosis of MDA-MB-231 Cells
MDA-MB-231 cells (1 x 10°cells/mL) were seeded in 6-well
plates and treated with cinnamaldehyde (0, 10, 15, 20 pg/ml) for

Anti-Breast Cancer Effects of Cinnamon

24 h. A cell digestion solution (Beijing Solbio Technology Co.,
Ltd., article number: 20171024) was then used to prepare a cell
suspension. Thereafter, 100 pl of the cell suspension was pipetted
into a 1.5-ml Eppendorf tube. Subsequently, according to the
instructions of the fluorescein thiocyanate (FITC)-conjugated
Annexin-V apoptosis detection kit (Becton, Dickinson and
Company, Franklin Lake, New Jersey), the cell suspension and
5 ul of Annexin-V-FITC were mixed with 5 ul of propidium iodide
(PI, United States, batch number: 7040932) and incubated for
15 min. A 150-yl volume of the binding buffer was then added to
each test tube and analyzed by flow cytometry.

Effects of Cinnamaldehyde on the Invasion
and Migration of MDA-MB-231 Cells

The cell invasion assay was performed using Corning Transwell
Chamber and Matrigel according to a previously described
method (Guo et al.,, 2020). Briefly, a serum-free medium was
used to hydrate the Matrigel. Thereafter, cells with different
concentrations of cinnamaldehyde intervention and serum-free
medium culture were placed in the upper chamber. RPMI 1640
medium supplemented with 10% fetal bovine serum was placed
in the lower chamber. After 48 h, the cells were fixed with 4%
paraformaldehyde for 30 min and stained with 0.1% crystal violet
for 10 min. The invasiveness of the cells was then observed under
a microscope.

The migration of cells was investigated using a wound-healing
assay. MDA-MB-231 cells (1 x 10°) from different administration
groups were seeded in triplicate in six-well plates and incubated at
37°C for 48 h. Scratches were generated using a 1-ml micropipette
tip when the cells reached 100% confluence. Thereafter, the cells
were washed twice with PBS and incubated at 37°C in complete
medium. Images were captured after 0 and 48 h, and the wound
area was calculated.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 8

software. All results are presented as mean + standard
deviation (SD). One-way analysis of variance was performed
between multiple groups when the homogeneity of variance
and normality were met. Otherwise, Dunnett’s T3 and
nonparametric tests were conducted between multiple groups.
p < 0.05 was determined as a statistical difference.

RESULTS

Active Compounds of Cinnamon
A total of 147 related components of the whole formula was

retrieved from three databases, TCMSP, TCM Database @
Taiwan, and TCMID. Based on the ADME thresholds of OB
> 20%, DL > 0.1, and Caco-2 > 0, 12 active ingredients were
selected. Thereafter, an herb-compounds network was built as
shown in Figure 1. Following the construction of the cinnamon-
compounds network and an analysis of the 12 active ingredients,
the top four ingredients in descending order of edge betweenness
were linoleic acid (EIC, MOL000131, OB = 41.9, DL = 0.14, Caco-
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FIGURE 1 | Cinnamon-compounds-breast cancer network. (A) Cinnamon-compounds, (B) Cinnamon-related compounds-breast cancer. Yellow represents the
main compound in cinnamon and blue represents the target associated with breast cancer.

2 =1.16), oleic acid (MOL000675, OB = 33.13, DL = 0.14, Caco-2
= 1.17), diisobutyl phthalate (DIBP, MOL000057, OB = 49.63, DL
= 0.13, Caco-2 = 0.85), and cinnamaldehyde (CA, MOL000449,
OB = 31.99, DL = 0.12, Caco-2 = 1.35) (Figure 1A).

Prediction and Analysis of the
Cinnamon-Related Compounds and Breast
Cancer-Related Targets

A target fishing analysis was conducted on the 12 cinnamon-
related compounds based on chemical similarity. As a result, 66
related targets were obtained. Through the method of integration
of multi-source databases, the target data for breast cancer-related
targets from GeneCards (13,933) and OMIM (14,301) were
integrated. Thereafter, 61 matching targets of cinnamon and
breast cancer-related targets were collected as related targets
for the anti-breast cancer effects of cinnamon (Figure 2.).
Subsequently, we constructed an active ingredient-disease-
target network to further screen the effective ingredients
responsible for the anti-breast cancer activity of cinnamon
(Figure 1B). Among the 12 active ingredients, oleic acid,
DIBP, and cinnamaldehyde were identified as the more critical
ingredients. Therefore, we speculate that cinnamon may play an
anti-breast cancer role mainly through this composition.

Target Prediction and Analysis
In the String database, the PPI network of the 61 targets was

constructed. After two free nodes were deleted, a total of 59 nodes
and 295 edges were found (Figure 3). Thereafter, we sorted the
targets according to the number of connected nodes (Figure 4) to

obtain the core targets, including insulin (INS), peroxisome
proliferator-activated receptor gamma (PPARG), catalase
(CAT), brain-derived neurotrophic factor (BDNF), and
prostaglandin-endoperoxide synthase 2 (PTGS2).

GO Biological Process and KEGG Pathway

Enrichment Analysis

Through GO function enrichment analysis, we obtained 83 items
related to breast cancer, the top 20 of which include the
following (Figure 5A): amide binding (GO:0033218), steroid
hormone receptor activity (GO:0003707), antioxidant activity

Cinnamon

Breast cancer

FIGURE 2| Venn diagram of the targets in breast cancer and cinnamon.
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(GO:0016209), ammonium ion binding (GO:0070405),
protease binding (G0O:0002020), carboxylic acid binding
(GO:0031406), monocarboxylic acid binding (GO:0033293),
steroid binding (GO:0005496), fatty acid-binding (GO:

0005504), peroxidase activity (G0:0004601),
neurotransmitter binding (G0O:0042165), oxidoreductase
activity, G protein-coupled amine receptor activity (GO:
0008227), sodium: chloride symporter activity (GO:

0015378), anion: cation symporter activity (GO:0015296),
and retinol dehydrogenase activity (GO:0004745). Therefore,
it is speculated that cinnamon mainly exerts its anti-breast
cancer effects through the above biological processes.

To further reveal the pathways employed by cinnamon against
breast cancer, we used p < 0.05 as the screening criterion,
conducted a KEGG pathway enrichment analysis on 59
targets, and screened out 37 pathways related to breast cancer.

Accordingly, we listed the top 20 related items, including
neuroactive ligand-receptor interaction (hsa04080), PI3K-Akt
pathway (hsa04151), PPAR pathway (hsa03320), cAMP
pathway (hsa04024), NF-kappa B pathway (hsa04064), and
HIF-1 pathway (hsa04066) (Figure 5B). Based on these
pathways, the anti-cancer effect of cinnamon on breast cancer
may result from a complex multi-pathway synergetic effect.

Inhibitory Effect of Cinnamaldehyde on the

Growth of Breast Cancer Cells

MDA-MB-231 cells were treated with cinnamaldehyde. Our
results indicated that 2.5, 5, 10, 20, 40 pg/ml cinnamaldehyde
inhibited cell proliferation (Figure 6A). The ICs, of
cinnamaldehyde at 24 and 48 h was 16.9 ug/ml and 12.23 ng/
ml, respectively, with a 95% confidence interval of 17.81-44.20
(Figures 6B,C).

Frontiers in Pharmacology | www.frontiersin.org

27

December 2020 | Volume 11 | Article 582719


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Liu et al. Anti-Breast Cancer Effects of Cinnamon

A >

£ 100+

a=

g g 80

= C

] E 60+

Q

> © J

-g ® 40

[ 20+

[~

04— T T T T v <
S I I
CA concentration ( pug/ml)
B 24h 1C5,=16.9 c 48h 1C5,=12.23
Z | Z ] 3
= 100 = 100
23 23
S g 80+ S g 80+
= C = €
9 § 601 9 § 60+
o o
%a\e 40- %; 401
e 204 e 20
-4 [-4
0 T T T T ] 0 T T T v 1
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
Log CA concentration ( pug/ml) Log CA concentration ( pg/ml)
FIGURE 6 | Rate of inhibition of MDA-MB-231 cell proliferation and the ICso of cinnamaldehyde. CA, cinnamaldehyde.

Cinnamaldehyde Affects the Morphological 20-pg/ml intervention group demonstrating a more evident

and Cytoplasmic Changes of MDA-MB-231 decrease. Cinnamaldehyde inhibited the growth and
Cells proliferation of MDA-MB-231 cells. In addition, the
In the blank group, the MDA-MB-231 cells were fibrous, uniform characteristic morphology of the cells gradually disappeared, the
in size, smooth, and refractive. Further, the cells exhibited normal ~ number of cells decreased, the fibers became shorter, and some cells
growth. However, after 48h of treatment with different began to cluster (Figure 7A). Hoechst 33258 staining showed that
concentrations of cinnamaldehyde (10, 15, 20, and pg/ml), the with an increase in cinnamaldehyde concentration, the cell spacing
number of MDA-MB-231 cells significantly decreased, with the =~ of MDA-MB-231 became significantly larger, the cell morphology

Control CA10pg/ml CA20pg/ml

R o

FIGURE 7 | Cell morphological and cytoplasmic changes in MDA-MB-231 cells in the different treatment groups. (A) Cell morphological changes of MDA-MB-231
cells in different treatment groups (original magnification, x100); (B) Hoechst 33,258 staining shows changes in the cytoplasm of MDA-MB-231 cells in different
cinnamaldehyde treatment groups (original magnification, x200). CA, cinnamaldehyde.
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became rounder, the nucleus became larger, chromatin pyknosis
was evident, and nuclear fragmentation was aggravated.

Promoting Effect of Cinnamaldehyde on the

Apoptosis of Breast Cancer Cells

Flow cytometry was used to detect the effect of different
concentrations of cinnamaldehyde on apoptosis. Our results
showed that MDA-MB-231 cells exhibited 8.7, 9.5, 10.5, and
22.5% apoptosis when treated with 0, 10, 15, and 20 pg/ml of
cinnamaldehyde, respectively. Compared with the control group,
the cinnamaldehyde group in the normal quadrant of the 20-ug/
ml cinnamaldehyde intervention group was significantly reduced,
whereas the early apoptosis quadrant was significantly increased
(p < 0.01; Figure 8).

Anti-Breast Cancer Effects of Cinnamon

Inhibitory Effect of Cinnamaldehyde on the
Migration and Invasion of Breast Cancer

Cells

Transwell experiments revealed that MDA-MB-231 cells had a
strong invasive ability. However, after 48h of cinnamaldehyde
intervention, the invasive ability of the cells was reduced in all
intervention groups, especially in the 15 and 20 pg/ml groups (p <
0.01). In addition, the wound healing test results revealed that 15 and
20 yg/ml cinnamaldehyde intervention significantly reduced the
migration ability of MDA-MB-231 cells (p < 0.05) (Figures
9A,B). Based on the transwell invasion test, the number of
transmembrane cells in the control group was 159.3 + 12.22,
whereas that in the cinnamaldehyde group (5, 10, and 15 pg/ml)
was 129.3 + 25.11, 74.67 + 16.17, and 56 + 9.54, respectively. Our
results showed that there was a statistically significant difference (p <
0.05) between the cinnamaldehyde group and the control group as
well as a dose-effect relationship (Figures 9C,D). Such findings
indicate that cinnamaldehyde could significantly inhibit the
invasion of breast cancer MDA-MB-231 cells.

DISCUSSION

In recent years, network pharmacology has enabled the integration of
functions such as high-throughput omics data analysis, virtual
computer calculation, and network database retrieval. Therefore, it
has been widely employed in research on a pharmacological basis and
as a mechanism of action of Chinese medicine and traditional herbs
(Yin et al,, 2019; Li et al,, 2020). Network pharmacology can combine
system biology with multi-directional pharmacology, explore the
correlation between the target of each component in traditional
Chinese medicine preparations and diseases, and explain its
mechanism of action (Zhang et al, 2019). The multi-component
and multi-target network research model of network pharmacology
breaks the traditional single-component, single-target research model,
ultimately providing a new method for comprehensive analysis of
compound mechanisms (Yuan et al, 2017). Existing studies have
shown that in recent years, network pharmacology has been widely
used in the screening of breast cancer and metastatic therapy drugs and
targets (Yang et al,, 2019; Mao et al,, 2020).

In the present study, the effective components of the ancient herb,
cinnamon, were analyzed through network pharmacology, and a
network of cinnamon-chemical component-breast cancer targets was
constructed. Based on our findings, the key chemical constituents in
cinnamon were of 12 types, including EIC, oleic acid, DIBP, and
cinnamaldehyde, corresponding to 66 active targets, including 61
common targets related to breast cancer. The PPI results showed that
its key targets for breast cancer include PPARG, TLR-4, BDNF, and
PPAR-a. PPARG is a nuclear receptor that is widely involved in the
regulation of lipid metabolism, glucose homeostasis, and tumor
progression due to its role as a transcription factor (Shen et al,
2020). Recent studies have shown that PPARG has a tumor
suppressor effect and can inhibit the proliferation, migration, and
invasion of breast cancer cells (Tan et al, 2013). Corresponding
clinical studies have also confirmed that among breast cancer
patients, those with high PPARG expression levels have a higher
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FIGURE 9 | Effects of different concentrations of cinnamaldehyde on the migration and invasion ability of MDA-MB-231 cells after a 48-h intervention. (A), (B),
Wound healing assay of MDA-MB-231 cells in different treatment groups (original magnification, x100). (C), (D), Invasive assay after 48 h of CA intervention (original
magnification, x200) (#, #*, *#*, *++x compared to the control group p < 0.05, p < 0.01, p < 0.001, and p < 0.0001, respectively). CA, cinnamaldehyde.

survival rate than patients with low PPARG expression levels (Xu
et al, 2019). In this study, we found that the main compounds in
cinnamon are most closely related to targets related to breast cancer
cell apoptosis, invasion, and metastasis (Wang et al, 2016). For
example, the upregulation of TLR-4 and PPAR-« expression is related
to breast cancer cell apoptosis (Geng et al, 2018). Further, the
upregulation of the adipose transcription factor, PPAR-q, can
promote the migration and invasion of breast cancer cells
(Blucher et al, 2020). The reduction of NCOA2 expression can
induce breast cancer cell apoptosis by regulating the MAPK-ERK
signaling pathway (Cai et al., 2019). The upregulation of BDNF can
promote breast cancer cell proliferation and invasion (Gao et al,
2017). Therefore, we speculate that cinnamon and its main chemical
components may exert an anti-breast cancer effect by regulating the
targets and pathways related to breast cancer cell apoptosis, invasion,
and metastasis.

GO analysis results showed that the key targets were involved in
amide binding, steroid hormone receptor activity, antioxidant activity,
transcription factor activity, direct ligand regulated sequence-specific
DNA binding, carboxylic acid-binding, steroid binding, fatty acid-
binding, peroxidase activity, neurotransmitter binding, oxidoreductase
activity (acting on peroxide as an acceptor), G protein-coupled amine
receptor activity, and other biological processes. Further pathway
analysis revealed that cinnamaldehyde in cinnamon and breast
cancer targets are mainly involved in the neuroactive ligand-
receptor interaction, PI3K-Akt signaling pathway, PPAR signaling
pathway, cAMP signaling pathway, NF-kappa B signaling pathway,

and other pathways closely related to cancer. Cinnamaldehyde can also
participate in the regulation of cell apoptosis, cell metabolism,
inflammation, and other pathways.

The network pharmacological screening results revealed that
cinnamaldehyde is one of the main active ingredients in
cinnamon. Previous studies have shown that cinnamaldehyde
and cinnamaldehyde-derived compounds are drug candidates for
the development of anticancer drugs, which has attracted
extensive  research  attention (Hong et al, 2016).
Cinnamaldehyde can improve the anti-cancer efficacy of
oxaliplatin by promoting the apoptosis of colorectal cancer
cells in vivo and in vitro (Wu et al.,, 2019). As an antioxidant,
cinnamaldehyde can inhibit the spread of cancer by inhibiting the
expression of extracellular and intracellular fat factor
nicotinamide phosphoribosyltransferase (Chiang et al., 2019).
Although compared with other cancers, the role of
cinnamaldehyde in breast cancer is not well understood.
However, in recent years, related studies have also discovered
the anti-proliferation effect of cinnamaldehyde on breast cancer
cells in vitro and in vivo (Lu et al,, 2010). In this study, through
network pharmacology, we predicted that the targets related to
the anti-breast cancer effect of cinnamaldehyde are mainly
associated with breast cancer cell apoptosis, invasion, and
metastasis. However, the bioinformatics data used for target
prediction can only reflect the correlation. Thus, its specific
role in regulating breast cancer cell apoptosis, invasion, and
metastasis remains unknown. As a result, we verified the effect
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of cinnamaldehyde on human breast cancer cells through cell  apoptosis. Our research findings provide an experimental and
experiments and further confirmed the anti-cancer effect and  theoretical basis for further applications of cinnamaldehyde in
mechanism of the active ingredients of cinnamon. Our research is the treatment of breast cancer (Figure 10).
a supplement to previous research and further reveals the anti-
breast cancer effect of cinnamaldehyde.

TNBC is an aggressive breast cancer subtype and one of the most DATA AVAILABILITY STATEMENT
clinically malignant breast cancers; however, there is currently a lack of
targeted treatment options (Rigiracciolo et al, 2020). Herein, we  The original contributions presented in the study are included in
selected human TNBC MDA-MB-231 cells for subsequent  the article/Supplementary Materials, further inquiries can be
verification experiments. Impaired apoptosis plays a critical role in  directed to the corresponding author.
the initiation and progression of cancer (Sadeghi et al, 2019).
Therefore, we speculated that as a therapeutic agent,
cinnamaldehyde may exert an anti-breast cancer effect by affecing ~AUTHOR CONTRIBUTIONS
the apoptosis-related pathways of cancer cells. Our cell experiments
demonstrated that cinnamaldehyde inhibited the proliferation of =~ XP designed the experiments; YL and TA performed the
MDA-MB-231 cells, changed the cytoplasmic morphology,  experiments and wrote the manuscript. BY, DW, and YF
promoted the apoptosis of MDA-MB-231 cells, reduced the  analyzed the data. All authors reviewed the manuscript.
invasion and migration ability of MDA-MB-231 cells, and exhibited
anti-breast cancer effects. The anti-breast cancer effect of
cinnamaldehyde may be related to the eight targets selected for FUNDING
breast cancer. In future experiments, we will conduct further studies
on its role and function. This work was financially supported by grants from the National

In summary, in the present study, we revealed the main active = Natural Science Foundation of China (NSFC81774319), Beijing
ingredient in cinnamon and explored its potential targets for the =~ Natural Science Foundation Project (7182098), and the
treatment of breast cancer. By establishing a breast cancer disease ~ independent subject graduate student projects of Beijing
network and enriching the key nodes and pathways for the University of Traditional Chinese Medicine (2019-JYB-XS).
regulation of cinnamon active ingredients, we found that
antioxidant activity and the PI3K-Akt and NF-«B signaling
pathways play important roles in the pharmacological effects of ~SUPPLEMENTARY MATERIAL
cinnamon. Furthermore, through breast cancer cell experiments, we
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GLOSSARY

cinnamon Cinnamomum cassia (L.) J. Presl
TNBC Triple-negative breast cancer

TCMSP Traditional Chinese Medicine Systems Pharmacology Database
and Analysis Platform

DL Drug-likeness

TCM Traditional Chinese Medicine

TCMID The Traditional Chinese Medicines Integrated Database
FDR False discovery rate

OB Oral bioavailability

PPI Protein—protein interaction

TS Tanimoto similarity

STP Swiss Target Prediction

Anti-Breast Cancer Effects of Cinnamon

OMIM Online Mendelian Inheritance in Man

DAVID The Database for Annotation, Visualization, and Integrated
Discovery

GO gene ontology

KEGG Kyoto encyclopedia of genes and genomes
OD optical density

FITC fluorescein isothiocyanate

PI Propidium iodide

SD standard deviation

PPARG Peroxisome Proliferator-Activated Receptor Gamma
INS Insulin

BDNEF Brain-derived neurotrophic factor

CAT catalase

CA Cinnamaldehyde
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Background: Sanguisorba Officinalis L. (SO) is a well-known traditional Chinese medicine
(TCM), commonly applied to treat complex diseases, such as anticancer, antibacterial,
antiviral, anti-inflammatory, anti-oxidant and hemostatic effects. Especially, it has been
reported to exert anti-tumor effect in various human cancers. However, its effect and
pharmacological mechanism on hepatocellular carcinoma (HCC) remains unclear.

Methods: In this study, network pharmacology approach was applied to characterize the
underlying mechanism of SO on HCC. Active compounds and potential targets of SO, as
well as related genes of HCC were obtained from the public databases, the potential
targets and signaling pathways were determined by protein-protein interaction (PPI), gene
ontology (GO) and pathway enrichment analyses. And the compound-target and target-
pathway networks were constructed. Subsequently, in vitro experiments were also
performed to further verify the anticancer effects of SO on HCC.

Results: By using the comprehensive network pharmacology analysis, 41 ingredients in
SO were collected from the corresponding databases, 12 active ingredients screened
according to their oral bioavailability and drug-likeness index, and 258 potential targets
related to HCC were predicted. Through enrichment analysis, SO was found to show its
excellent therapeutic effects on HCC through several pathways, mainly related to
proliferation and survival via the EGFR, PISK/AKT, NFkB and MAPK signaling
pathways. Additionally, in vitro, SO was found to inhibit cell proliferation, induce
apoptosis and down-regulate cell migration and invasion in various HCC cells.
Moreover, western blot analysis showed that SO treatment down-regulated the
expression of p-EGFR, p-PI3K, p-AKT, p-NFkB and p-MAPK proteins in HepG2 cells.
These results validated that SO exerted its therapeutic effects on HCC mainly by the
regulation of cell proliferation and survival via the EGFR/MAPK and EGFR/PI3SK/AKT/NFxB
signaling pathways.
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Pharmacological Mechanism of SO on HCC

Conclusion: Taken together, this study, revealed the anti-HCC effects of SO and its
potential underlying therapeutic mechanisms in a multi-target and multi-pathway manner.

Keywords: PI3K/Akt signal pathway, cell proliferation, network pharmacology, hepatocellular carcinoma,
Sanguisorba officinalis L, EGFR/MAPK signaling

INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most commonly
diagnosed cancer, ranking the third leading cause of cancer-
related death according to GLOBCAN in 2018, with
approximately 841,000 new incidences and 782,000 deaths
yearly around the world, posing a major health problem (Bray
etal,, 2018; EASL, 2018). Although survival rates of HCC patients
have improved on benefit from modern therapeutic strategies,
namely, liver transplantation, radiofrequency ablation,
transcatheter arterial chemoembolization, surgical resection,
and sorafenib (Liu et al, 2015; EASL, 2019), many HCC
patients still face high long-term mortality, recurrence, drug
resistance and serious side effects (Cheng et al, 2009; Zhu
et al, 2017). Therefore, it is urgent to search for the
alternative therapeutic strategies with low toxicity and less
drug resistance for HCC.

Traditional Chinese medicine (TCM) with diverse chemical
substances has been widely accepted as an effective strategy with
less toxicity and higher efficacy for the therapy of cancer (Yuan
et al,, 2017; Xiang et al., 2019). Researches shown that TCM has
the advantages in clinical cancer treatment, especially in
suppressing tumor cells, reducing the side effects of
radiotherapy and drug resistance, and improving patients’
overall survival (Liao et al., 2017; Kuo et al., 2018; Lou et al.,
2018). The plant of Sanguisorba Officinalis L. (SO), also known as
Diyu in Chinese, a widely used herb medicine in east Asia, has
been prescribed clinically for more than 2000 years in China
(Zhao et al, 2017). According to preliminary reports, SO
possessed a variety of pharmacological effects, such as
anticancer (Cai et al., 2012), antibacterial (Chen et al., 2015),
antiviral (Kim et al., 2010), anti-inflammatory (Seo et al., 2016),
anti-oxidant (Zhang et al., 2012) and hemostatic effects (Sun
etal., 2012). It was reported that a hot water preparation made of
a single herb (SO) has excellent antitumor effect in human oral
cancer cells (Shin et al, 2012). Moreover, triterpenoids and
tannins isolated from the roots of SO have been shown
promising antitumor effects in several cancer researches (Liu
et al., 2005; Bai et al, 2019; Li et al., 2019). Notably, it was
reported recently that Ziyuglycoside II, a major active compound
of SO, markedly impaired HepG2 proliferation, migration and
invasion, by blocking EGFR/NF-kB signaling (Liao et al., 2020).
However, the effects and mechanism of SO to treat HCC have not
been fully elucidated with suitable approaches.

TCM is associated with complex chemical composition and
synergistic or antagonistic interactions, making it difficult to
systematically study its pharmacological mechanisms with
conventional pharmacological approaches (Ma et al, 2015).
Fortunately, the concept of network pharmacology, as an
integrated approach, derived from systems biology and

bioinformatics, was proposed to comprehensively investigate
and study the underlying molecular mechanisms of Chinese
herb medicine (Ma et al, 2015). Network pharmacology
analysis was used to reveal the complex mechanism of TCM,
via the construction and visualization of “medicine-target-
disease” interaction network, (Li and Zhang, 2013). In recent
years, network pharmacology emerged as a powerful tool
resonates well with the holistic view of TCM. This approach
has been successful applied to investigate the complex
mechanism of TCM in many researches (Zhang et al.,, 2013;
He et al., 2019; Wan et al,, 2019).

In the present study, we aim to construct the pharmacological
network to explore the potential molecular mechanisms and
pathways of SO on HCC, using multiple database and
computational tools. Additionally, in vitro experiments were
also performed to verify the underlying molecular mechanism
of SO on HCC, as predicted by network pharmacology. The
workflow of this study is shown in Figure 1.

METHOD

Collection of Chemical Ingredients in
Sanguisorba Officinalis L. for Network

Pharmacology Analysis

As previous reported (Ru et al, 2014), Potential
compounds of SO were acquired from the two
databases: 1) Traditional Chinese Medicine
Pharmacology Database and Analysis Platform (TCMSP,
http://tcmspw.com/tcmsp.php, Version. 2.3) (Ru et al, 2014).
A total of 499 registered Chinese herbal medicines and 12,144
ingredients from the Chinese Pharmacopoeia (2010 edition) were
collected in the TCMSP database (Ru et al, 2014). 2)
Bioinformatics Analysis Tool for Molecular mechanism of
Traditional Chinese Medicine (BATMAN-TCM, http://bionet.
ncpsb.org/batman-tcm, updated in 2016), including of 46,914
formulas, 8,159 medical herbs, and 25,210 components (Liu et al.,
2016).

candidate
following
Systems

Active Ingredients Screening Strategy

For oral traditional Chinese medicine, absorption, distribution,
metabolism, and excretion (ADME) was employed to screen
active components with potential therapeutic effects (Liu et al.,
2013). The screening criterion we applied in this research were 1)
Oral bioavailability (OB) greater than 30%, 2) Drug-likeness (DL)
larger than 0.18. A total of 12 active ingredients and their
corresponding 2D and 3D structures were downloaded from
the PubChem database (https://pubchem.ncbinlm.nih.gov/)
(Zhu et al., 2017).
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FIGURE 1 | The workflow of network pharmacology analysis and validation of SO on HCC.

Prediction of Targets of the Active

Ingredients in Sanguisorba Officinalis L.
The related protein targets of bioactive components were
retrieved from TCMSP (TCMSP, http://tcmspw.com/tcmsp.
php, Version. 2.3) (Ru et al, 2014) and Swiss Target
Prediction network database (STP, http://www.
swisstargetprediction.ch/, updated in 2019) (Gfeller et al,
2014). The UniProt database (https://www.uniprot.org/) was
adopted to change protein names to their corresponding gene
symbols (UniProt Consortium, 2018).

Collection of Potential Target Genes for

Hepatocellular Carcinoma

The HCC-related gene targets were collected from four databases:
GeneCards (https://www.genecards.org/, version. 5.0) database
(Stelzer et al., 2016). OMIM (http://www.omim.org/, updated in
2020) database (Amberger and Hamosh, 2017). Therapeutic
Target Database (TTD, https://db.idrblab.net/ttd/, updated in
2020) (Li et al, 2018). PharmGKB (https://www.pharmgkb.
org/, updated in 2020) (Whirl-Carrillo et al, 2012), using

keywords such as “hepatocarcinoma” and “Hepatocellular
Carcinoma”.

Construction of Protein-Protein Interaction
(PPI) Network

Protein—protein interaction network was constructed by the
STRING (https://string-db.org/, version. 11.0) database, using
the overlap genes between SO active ingredients targets and HCC
targets (Szklarczyk et al., 2019), with the species limited to “Homo
sapiens”, and correlation degree greater than 0.700, as the cut-off
confidence score.

Pharmacology Network Construction
Pharmacology networks were generated as follows: 1) Active
compound-Target-Disease network of SO (C-T-D network). 2)
OS targets—HCC targets PPI network (T-T network). 3) Target -
pathway network (T-P network). The pathway annotation of
targets was obtained from the KEGG pathway enrichment
analysis. All networks were visualized by Cytoscape 3.7.0
(Shannon et al., 2003).
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Network Topological Analysis
For network topological analysis, we calculated three parameters to

assess topological features of nodes, namely: 1) “Degree” measures
links to one node. 2) “Betweenness Centrality” is the number of a
node lies on paths between other nodes. 3) “Closeness Centrality”
measures the mean distance from a node to other nodes (Tang
etal., 2015). The level of the three parameters shows the topological
importance of the nodes in the network.

Gene Ontology (GO) and KEGG Pathway

Enrichment Analyses

Database for Annotation, Visualization and Integrated Discovery
(Huang da et al, 2009) (DAVID, https://david.ncifcrf.gov/,
version 6.8) was used for gene ontology (GO) and KEGG
pathway enrichment analysis (Kanehisa et al., 2017).

Reagents and Antibodies

Fetal bovine serum (FBS), Dulbecco’s modified Eagle’s medium
(DMEM) were purchased from Gibco (Gibco, Thermo Fisher
Scientific, Waltham, MA, United States). Penicillin and
streptomycin were obtained from Beyotime (Beyotime, Sichuan,
China). Paclitaxel (PTX) purchased from Sigma- Aldrich (St. Louis,
MO, United States) Primary antibodies, including anti-EGFR
(#4267), anti-p-EGFR (#3777), anti-PI3-kinase (#4249), anti-p-
PI3K (#4228), anti-AKT (#4691), anti-p-AKT (#4060), anti-NFkB-
P65 (#8242), anti-p-NFxB-P65 (#3033), anti-MAPK (#4695), anti-
p-MAPK (#4370), anti-Cleaved Caspase-3 (#9664), anti-PARP
(#9542) and P-actin (#4970) were purchased from Cell
Signaling Technology Inc. (CST, MA, United States).

Preparation of Sanguisorba Officinalis L.

Ethanol Extract

Dried roots of SO were obtained from Chengdu Wukuaishi
herbal medicine wholesale market (Chengdu, Sichuan, China).
The original herb was authenticated by professor Can Tang of the
Department of Chinese Materia Medica, Southwest Medical
University, China. A voucher specimen (SWMU-YL-
DY2019031501) was deposited at the specimen repository of
the Department of Traditional Chinese Medicine, Southwest
Medical University. Samples (200 g) of dried roots of SO were
extracted with 2 L of 75% ethanol and then filtered with a 0.22 pm
pore-size filter. The filtrates of ethanol extracts of SO (ESO) were
evaporated to dried powder and stored in —20°C for future use.

Phytochemical Analysis of ESO

ESO were qualitatively analyzed by ultra-high-performance
liquid chromatography (Exion)—QTOF (X500R) MS system
(SCIEX, MA, United States). AB Sciex ExionLC system (AB
SCIEX, Foster City, CA, United States), equipped with an
ExionLC Solvent Delivery System, an ExionLC AD Auto-
sampler, an ExionLC AD Column oven, an ExionLC Degasser,
an ExionLC AD Pump, an ExionLC PDA Detector, and an
ExionLC Controller, were used for chromatographic analysis.
ESO were separated on Phenomenex Kinetex C18 column (100 x
2.1 mm, 2.6 um, 100 A) at 40°C. The sample was eluted at a flow

Pharmacological Mechanism of SO on HCC

rate of 0.2 ml/min in a gradient elution program of A (0.1%
formic acid-water (v/v)) and B (0.1% formic acid-acetonitrile(v/
v)): 0-2.00 min (5% B); 2.01-18 min (5-50% B); 18.00-20.00 min
(50-100% A). The injection volume was 5 pL.

Cell Culture

Human HCC cells (HepG2, MHCC97H, SMCC7721, and BEL-
7404) were chosen for the following experiments. HepG2 and
SMCC7721 cells were commercially obtained from American
Type Culture Collection (ATCC, Manassa, VA, United States);
BEL-7404 cells were and MHCC97H cells were kindly gifted by
Professor Lv Muhan from department of internal medicine, The
affiliated hospital of Southwest Medical University. Cells were
cultured in DMEM medium supplemented with 10% FBS, 100 U/
ml penicillin-streptomycin and maintained at 37°C in a
humidified incubator with 5% CO,.

Cell Viability Assay

HCC cells were seeded in 96-well plates at density of 4 x 10* cells/
ml (100 uL/well) and incubated for 24 h. After pretreatment with
different concentrations of ESO (0, 15.625, 31.25, 62.5, 125, 250,
500, and 1,000 pg/ml) for 24, and 48 h. Following the addition of
10 pL CCK8 (Dojindo, Japan) per well, cells were cultured for
another 4 h at 37°C. The absorbance was determined at 450 nm
using a Microplate Reader (Thermo Fisher Scientific Inc.,
Waltham, MA, United States).

5-Ethynyl-2’-deoxyuridine (EdU) Assay

The proliferation of HCC cells was determined by EdU assay.
After HCC cells (4,000 cells/well) were seeded in 96-well plates
and incubated for 24 h, cells were exposed to concentrations of
ESO (0, 62.5, 125, and 250 pg/ml) for 24 h and incubated with
10 uM EdU (APExBIO, Houston, United States) for another 2 h.
Then the cells were fixed with 3.7% formaldehyde for 15 min and
cell nuclei were stained with Hoechst 33,342. Eventually, EdU-
positive cells were observed and photographed under a
photographed at a magnification of X100 with an ImageXpress
- Micro 4 High-Content Screening system (Molecular Devices,
LLC, CA, United States). The EdU-positive cells (%) = The count
of red EdU/The count of blue Hoechst 33,342 x 100.

Wound-Healing and Transwell Invasion

Assay

For wound-healing assay, HepG2 and SMCC7721 cells were
incubated in 6-well plates with 100% confluence. After cells were
scratched using a sterile pipette tip on the cell monolayer, medium
was removed and the monolayer was washed 3 times with PBS.
Then, medium containing indicated concentrations of ESO was
added to each well and cell movements into the wound area were
obtained after 0 and 24 h incubation with a phase-contrast inverted
microscope at a magnification of x40. The transwell invasion assay
was conducted using a Corning transwell chamber system (8.0 pm,
#3442, Corning, NY, United States). 1.5 x 10° treated cells were
seeded into the upper chamber in the presence of a Matrigel-
precoated membrane (#M8370, Solarbio, Beijiang, China)
containing 200 pL of serum-free MEM. Then, complete medium
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TABLE 1 | Active ingredients and ADME parameters of SO.

Mol ID

MOL000098

MOL000211

MOL000358

MOL000422

MOL005399

MOL005853

MOL005858

MOL005860

Molecule name

Quercetin

Mairin

Beta-sitosterol

Kaempferol

Alexandrin_qgt

Methyl-2,3,6-tri-O-galloyl-B-p-glucopyranoside

3,7,8-Tri-O-methylellagic acid

3-0O-galloylprocyanidin B-3

Pharmacological Mechanism of SO on HCC

Structure OB (%)

46.43

55.38

36.91

41.88

36.91

44.95

37.54

30.06

DL

0.28

0.78

0.75

0.24

0.75

0.67

0.57

0.33

(Continued on following page)
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TABLE 1 | (Continued) Active ingredients and ADME parameters of SO.

Mol ID Molecule name

MOL005862 Methyl 4,6-di-O-galloyl-beta-p-glucopyranoside
MOL005864 Methyl-6-O-galloyl-B-p-glucopyranoside
MOL005880 Sauvissimoside R1

MOL005883 Gambiriin B-3

(500 pL) containing 10% FBS was added to the bottom chamber.
Following incubation for 24 hat 37°C, the chambers were washed
twice with phosphate-buffered saline, fixed with 4%
paraformaldehyde, and stained with 1% crystal violet solution at
room temperature. Cells were counted under a light microscope in
five random fields.

Flow Cytometry for Analysis of Cell
Apoptosis

Apoptosis was analyzed using an Annexin V-FITC apoptosis
detection kit (San Jose, CA, United States). HepG2 and
SMCC7721 cells were seeded at a density of 1.5 x 10° cells/well
in 6-well plates. After 24h treatment with ESO at indicated
concentrations, the cells were analyzed using an annexin V-FITC/
PI Detection Kit from BD Biosciences (San Jose, CA, United States)
to detect apoptosis. The apoptotic cells were detected by FACSVerse
flow cytometer (BD Biosciences, San Jose, CA, United States). Data
acquisition and analysis were performed using the Flowjo software
(BD Biosciences, San Jose, CA, United States).

Western Blotting

Cells (1.5 x 10° cells/well) were seeded into 6-well plates. Cell proteins
were extracted after treatment of the indicated concentrations of ESO,
according to procedures as described previously (Teng et al., 2020).
The cells were lyzed in 1 x PIPA buffer, containing 1: 100 protease and
phosphatase inhibitor cocktail on ice for 30 min. The protein
concentration of the lysate was then determined by the Bradford
protein assay reagent (Bio-Rad, CA, United States) according to the
manufacturer’s instructions. An equal amount of the protein (30 ug
per sample) was loaded onto 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) for separation and
transferred onto polyvinylidene difluoride (PVDF) membranes (Bio-
Rad, United States). Then, the membranes were blocked with 5% no-

Pharmacological Mechanism of SO on HCC

Structure OB (%) DL
OH 48.07 0.68
HO. OH
o
44.85 0.29
37.39 0.31
34.99 0.75

fat milk for 1 h at room temperature and incubated with the primary
antibodies including anti-EGFR, anti-p-EGFR, anti-PI3-kinase, anti-
p-PI3-kinase, anti-AKT, anti-p-AKT, anti-NF«B (p65), anti-p-NFkB
(p65), anti-MAPK, anti-p-MAPK and p-actin at 1:1,000 (Cell
Signaling Technology, Danvers, MA, United States) overnight at
4°C. Then, the membranes were washed with TBST three times
and further incubated with HRP-conjugated secondary antibodies for
1 h at room temperature and the protein bands were developed by an
UltraSignal Hypersensitive ECL Chemiluminescent Substrate (4A
Biotech Co., Ltd., Beijing, China). and detected by the ChemiDoc
MP Imaging System (Bio-Rad, California, United States). The band
intensity of proteins was quantified by using Image] software
(National Institutes of Health, MD, United States), and the relative
expression of protein was normalized by expression of B-actin.

Statistical Analysis

All the data were presented as means + standard deviation (SD).
Difference between groups was analyzed by one-way univariate
analysis of variance (ANOVA) by Prism 8.0 software (San Diego,
CA, United States). if p-value < 0.05, difference was considered to
be statistically significant (marked as *). Higher significance levels
were established at p-value < 0.01 (marked as **).

RESULT

Identification and Verification of Active

Ingredients of Sanguisorba Officinalis L.

A total of 41 ingredients of SO were retrieved by searching the
TCMSP and BATMAN database (Supplementary Table S1), and 12
bioactive ingredients were preliminarily screened out using ADME
parameters such as OB and DL, as shown in Table 1. And to verify
those active ingredients of SO, the 12 compounds of ESO were
identified by UHPLC- QTOF, shown in Supplementary Figure S1.
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FIGURE 2 | Compound-Target network of SO (C-T network). Network of 12 active ingredients of SO and 327 putative targets. The size of compound nodes is
proportional to the number of degrees.

Target Identification of Active Ingredients of  four ingredients were quercetin, kaempferol, mairin, and beta-
Sanguisorba Officinalis L. sitosterol.

TCMSP and Swiss Target Prediction database were used to predict the . T .
targets of 12 active compounds of SO, and a total of 327 targets were Sanguisorba Officinalis L. Active Compound

obtained after high-possibility screening and overlaps eliminating. Target-Hepatocellular Carcinoma Target
And we found that 201 of the 327 putative targets were ommonto 2 Interactional Network Analysis

or more of these ingredients, showing that these ingredients act in By searching the GeneCards, OMIM, TTD, PharmGKB databases,
similar biological processes or pathways, suggesting the synergistic ~ we obtained 6,569 genes associated with HCC. A total of 258
effect of multiple ingredients in SO. The compound-target network is ~ overlapping genes were obtained by looking for the intersection
shown in Figure 2, and according to the number of degrees, the top  of the above compound target and the HCC targets (Figure 3. and
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FIGURE 3| The Venn diagram of HCC targets and SO active compound targets and C-D-T network of SO. The blue circle stands for gene, purple hexagon stands
for compounds of SO. The green diamond stands for SO, and orange V shape stands for HCC.

HCC Targets

Supplementary Table S2). By inputting compound-disease co-
targets data into STRING, we obtained compound target-HCC
target PPI network with higher connectivity (interaction score
>0.700), containing 246 nodes and 1,616 edges (Figure 4A). The
topological analysis of the PPI network, based on three major
network parameters of “degree”, “betweenness” and “closeness”,
was applied to select nodes above two-fold median values as key
targets and constructed the hub nodes of the anti-cancer effect of SO
on HCC. The threshold values of the first screening were degree = 18,
closeness = 0.399 and betweenness = 0.0077, and the results were 30
hub nodes and 215 edges. The 30 key targets were then further
screened with the second screening threshold values as degree = 44,
closeness = 04664, and betweenness = 0.0396. The second
screening ended up with 10 hub nodes and 42 edges (Figure 4B).
In the hub network, the nodes interacted with others numerous edges
(66 in AKT1, 59 in MAPK3, 57 in STAT3, 57 in VEGFA, 56 in SRC,
54 in IL6, 54 in EGFR, 53 in MYC, 51 in HSP90AA1 and MAPKS).
These results suggested that these high-degree hub targets may
account for the essential therapeutic effects of SO in HCC.

GO Biological Process and KEGG Pathway
Enrichment Analysis

To explore the therapeutic mechanisms of putative targets of SO
on HCC, the GO and KEGG pathway enrichment analyses were

performed using DAVID 6.8. There were respectively 474
biological process (BP), 53 cellular component (CC), and 136
molecular function (MF) terms in total, which met the
requirements of Gene count >2 and p-value < 0.05
(Supplementary Table S3). The top 15 significantly enriched
GO terms in BP, CC, and MF were plotted in Figure 5A, showing
that SO may regulate HCC cancer cell proliferation and apoptosis
via protein kinase binding, enzyme binding, and transcription
factor binding in cytosol, nucleoplasm, extracellular, protein
complex and plasma membrane to exert its anti-cancer effect
on HCC. To further reveal the underlying mechanism on
involved pathways of SO on HCC, KEGG pathway enrichment
analysis of involved targets was conducted (Supplementary
Table S4). The most significantly enriched 15 pathways of SO
on HCC were shown in Figure 5B. The result also indicated the
PI3K/AKT signaling pathways is the top enriched pathway, with
39 involved targets.

Target-Pathway Network Analysis

To further investigate the molecular mechanism of SO alleviated
HCQC, a target-pathway network was constructed based on top 15
significant signaling pathways and their corresponding genes
(Figure 6). This network consisted of 109 nodes (94 genes
and 15 pathways). In these pathways, PI3K/AKT signaling
pathways is the top important one with the highest degree.
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Among these target genes, AKT1, PIK3R1, EGFR, MAPK3,  pathway enrichment analysis and pharmacology networks
CCND1, IKBKB, RELA, BRAF, BCL2, BCL2L1, CASP9, MYC  analyses, we suggested that the anti-cancer effects of SO on
and RAF1 were identified as relatively high-degree targets. = HCC might be related to regulate cancer cell proliferation and
Therefore, these genes were considered as the key therapeutic ~ survival via pathways including EGFR, PI3K/AKT, NF«kB and
genes of SO on HCC. From the drug target prediction, GO and =~ MAPK signaling pathways.
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Sangu[sorba Officinalis L. Inhibits markedly inhibited in the ESO treatment group. As is shown

Hepatocellular Carcinoma Cell Proliferation in Figure 8B, in the jcrar}s?vell 'invasion assay, the invasion of ESO
and Induces Cellular Apoptosis treated groups were inhibited in a dose-dependent manner. These

results confirmed that SO suppressed the migration and invasion
To assess the anti-proliferative effect of SO on HCC as predicted PP 8

) A of HCC cells.
from network pharmacology analysis, CCK8, Edu, and apoptosis
flow cytometry were performed on several HCC cell lines. As
shown in Figure 7A, ESO remarkably inhibited the viability of Sanguisorba Officinalis L. Attenuated
HCC cells (HepG2, MHCC97H, SMCC7721, and BEL-7404), in a Proliferation Pathways in Hepatocellular
dose- and time-dependent manner upon treatment for 24 h and Carcinoma Cells
48 h. And according to the IC50 values, BEL-7404 is the least
sensitive cell line for ESO, with other HCC cell lines showing
almost same level sensitivities. As shown in Figure 7B, the EQU
assay further confirmed that ESO reduced the percentage of

Network pharmacology analysis described above suggested that
the PI3K/AKT, EGFR, MAPK, and NF«kB signaling pathway may
be highly related to the anti-cancer mechanism of SO on HCC in
! . . . regulating HCC cell proliferation and survival. Therefore, we
proliferation active cells in a dose-dependent manner, after further assessed the expressions level of the EGFR, PI3K, AKT,
treatment with increasing ESO for 24 h. Figure 7C,D shows .
. . MAPK and their phosphorylated counterparts by western blot.
that the percentage of apoptotic cells and the apoptosis - .
bi 5 leaved PARP and cleaved 3 bl As shown in Figure 9, pretreatment of HepG2 cells with ESO
iomarker (cleave and cleaved capase 3) were notably (62.5, 125 and 250 ug/ml) led to apparent repression of

increased in a dose-dependent manner, after treatment with ESO phosphorylation level of EGER, PI3K, AKT, MAPK (p44, p42)

for 24 h. In summary, these findings clearly confirmed that ESO :

hibit HCC cell proliferation i . and NFkB (p65) in a dose-dependent manner. Taken together,

inhibit cell proliferation in various aspects. these results suggested that the effect of SO on HCC might be
exerted via the EGFR/MAPK and EGFR/PI3K/AKT/NF«B

Sanguisorba Officinalis L. Inhibits Human pathways.

Hepatocellular Carcinoma Cell Migration
and Invasion DISCUSSION

To explore SO’s effect on migratory and invasive ability in human

HCC cells, wound healing and transwell invasion assays were  Development of HCC is a very complicated and multistep
performed. As is shown in Figure 8A, compared to the control  biological process, which is associated with diverse molecular
group, the migration of HepG2 and SMCC7721 cells was  and cellular signaling pathways (Forner et al., 2018). Owing to the
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complexity of compounds, TCM may show extensive
pharmacological activities with multiple protein targets.
However, because of this property, it is difficult to investigate
the underlying mechanisms of TCM (Zhang et al, 2019).
Network pharmacology, derived from systems biology and
bioinformatics, provide a comprehensive and powerful
approach for studying the mechanism of complicated TCM
(Zhou et al,, 2020). In the current study, we applied network
pharmacology approach to predict the pharmacological
mechanism of SO on HCC, following validation by
experimental methods.

Pharmacokinetic properties are very important for drug
screening and design. Due to lacking suitable pharmacokinetic
properties, drugs could not reach the target organs to exert the
therapeutic effect (Tian et al., 2015). In this study, 12 chemical
components of SO were identified by the criteria of oral
bioavailability >30% and drug-likeness index >0.18, because of
their good absorption and druglike feature. Among these 12
active components, several compounds have been reported to
possess anti-cancer effects including HCC. Among of them,
quercetin, a natural flavonoid, was reported to exert an anti-
carcinogenic effect via increasing p53 and BAX and
downregulating ROS, PI3K, COX2 and PKC in HCC cell line

(Maurya and Vinayak, 2015). And it was also reported that
quercetin exert its anti-cancer effects by promoting apoptosis
and autophagy through the modulation of PI3K/Akt/mTOR,
Wnt/-catenin, and MAPK/ERK1/2 pathways (Reyes-Farias and
Carrasco-Pozo, 2019). Kaempferol, a phytoestrogen, was
reported to induce autophagic cell death and inhibit survival
and proliferation of human HCC cell lines through targeting
AMPK signaling pathway (Han et al, 2017). Moreover,
kaempferol treatment was shown to significantly inhibit HIF-1
activity and HCC cell viability under hypoxic conditions
(Mylonis et al., 2010). And mairin, also called betulinic acid, a
lupane-type pentacyclic triterpene, was shown to induce
apoptosis and suppressed metastasis in both HCC cells and
NOD/SCID mice model (Wang et al, 2019). All these
literatures together with our experimental studies supported
the conclusion of network pharmacology prediction and
shown a good practice of network pharmacology method in
identification of function mechanism of TCM herb.

From the integrated network pharmacology analysis, SO
might exert anti-HCC effects by suppressing of cancer cell
proliferation and survival, which was reported as the crucial
mechanism of HCC development (Llovet et al., 2015). As
demonstrated by network pharmacology analysis, SO may

Frontiers in Pharmacology | www.frontiersin.org

4

March 2021 | Volume 12 | Article 618522


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Jiang et al.

Pharmacological Mechanism of SO on HCC

A HepG2
120

_ - 24h ICs: 4540 pgml
= 100 = 48h ICsp: 2716 ugml. X
] 3
g 0 ]
c <
S 6 S
o g
2 4w 2
&= S

SMCC7721

- 24h [Csp: 432.9 pg/mL.
= 48h ICs: 276.1 pg/mL.

BEL-7404

- 24 ICsy: 600.2 pg/mL
- 480 [Cso: 298.6 pg/mL

Proliferation Rate(%)
Proliferation Rate(%)

MHCC97H

- 24h ICso: 439.1 pg/mL.
= 480 ICso: 261.5 pg/mL

T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

— T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

— T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

— T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

2 B
kS £
S S
3 3
-3 -3
E4 B4
F] F}
k- o
w w
° @
2 2
s s
= =

SMcCC7721

' ...

Concentration(ug/mL) Concentration(ug/mL) Concentration(pg/mL) Concentration(pg/mL)
B HepG2 smccC7721 BEL-7404 MHCC97H
625 pg/ml 125 pg/ml 250 pg/ml NC 625 ug/ml 125 pg/ml 250 pg/ml 625ug/ml 125 pg/ml 250 pg/ml 62.5pg/ml 125 pg/ml 250 pg/mi

Hoechst
Hoechst

Merge Edu
Merge Edu

BEL-7404

°

MHCC97H

°

ok,

P < 0.001 vs. the nontreated

3 % o0s % o0s % o0s
3 T 3 3
o o o o
° o 0.6 o 0.6 o 0.6
2 £ H .
K] 2 0.4 2 0.4 2 0.4
g g 2 2
3 202 202 302
w w w w
0.0 0.0 0.0 0.0
control 62.5 125 250 control 62.5 125 250 control 62.5 125 250 control 62.5 125 250
C HepG2 SMCC7721
Control PTX Control PTX
oot o | wdor o ot or @ | 2o @ 80
08t oors 03 ol e 08 04 120 _
' g ' )
10 0 & 5 | i 10" g
) ) é ) g 40
e e 2 o K}
5 § 20
*: 1/)l 3 wl.‘cl o3 Q3 w’qm Q3 <
o Jms o1 o 22 0% o J00 o2
». » " . . s Ctrl 62.5 125 250 PTX ° Ctrl62.5125 250 PTX
w R B w B R B B o o
o o
a 62.5 pg/mL 125 pg/mL 250 pg/mL o 62.5 pg/mL. 250 pg/mL
W0t 02 w40t % o 02 W ot a2 Wt a2 w401 02
012 I 054 197 02 an o8 127 Tor ses 328 2s
w0'q % ' 'y 'y w0y 'y
w01 0* w0’ 10°4 I | I |
I | ' | 5 | | 5 | L |
mv_‘m ml‘O‘ - 101 03 w'-‘m 03 m'~m 03 © Joe 03
el ol ol w o le e | e we | o da o
W w0 w° w10 0 0 10 107 0 10t 10° 0 ' w0’ 0’ 10* 10° 0 w0’ o’ 10’ w0 10°
Annexin V - FITC Annexin V - FITC
-
ESO(ug/ml) 0 62.5 125 250 N 1.2+ mm Control
© axn E wun
PARP-1 E 1.0 i . mm 62.5 (ug/ml)
2 T mm 125 (ug/ml)
— o 8.. AR
Cleaved PARP-1™> 5 - mm 250 (ug/ml)
» 0.6+
S
Cleaved Caspase-3 = 5 0.4+
3
o 0.24
>
=
B-actin g 00-
14 C- PARP C-Caspase-3
ESO (ug/ml)

FIGURE 7 | SO inhibits HCC cell proliferation and induces cellular apoptosis. (A) the cell viability was tested by CCK8 assay, showing a time- and dose-dependent
inhibiting effect of ESO treatment on the viability of HCC cells. n = 3. (B) EAU assays were performed to verify the effects of ESO treatment on HCC cells proliferation, the
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control group.
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exert anti-HCC effects mainly by inhibiting proliferation and ~ member of the epidermal growth factor receptor family on
survival on HCC via EGFR, PI3K/AKT, NFkB, MAPK  cell surface, binds epidermal growth factor to trigger tyrosine
signaling pathways. To further verify the prediction, various  kinase phosphorylation, leading to cell proliferation. It was
in vitro experiments were performed to investigated the reported that EGFR signaling axis exert a major regulatory
therapeutic effects of SO on diverse HCC cells, showing  effect during liver regeneration, liver cirrhosis and HCC,
that ESO treatment significantly suppressed HCC cell  showing a pivot role of EGFR signaling in the development
proliferation, induced cellular apoptosis, and inhibited the  of liver diseases (Komposch and Sibilia, 2015). Thus, after
cell migration and invasion activities in a dose-dependent = HCC cells were treated by ESO, the downregulated
manner. Especially, the phosphorylation level of EGFR,  phosphorylation of EGFR may contribute to its anti-cancer
PI3K, AKT, MAPK and NFkB (p65) were significantly  effects. PI3Kis a kinase which could phosphorylate the inositol
downregulated in a dose-dependent manner. EGFR, a  ring of phosphatidylinositol and related second messengers,
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FIGURE 9 | Western blot analysis of related proteins with ESO treatment in HepG2 cells *p < 0.05, *p < 0.01, **p < 0.001 vs. the control group. Statistical results of
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coordinating a variety of cell functions including proliferation
and survival. It was reported that the PI3K can be activated by
many oncogenes and growth signaling, and upregulated PI3K
signaling is regarded as a hallmark of cancer (Fruman et al.,
2017). AKT, the major downstream target of PI3K, is a key
pivot kinase in signaling communication network and it makes
crosstalk between several important pathways, including NF-
kB, p53, apoptosis and cell cycle pathways, regulating diverse
important cellular processes including cell growth, survival
regulation and metabolism in multiple solid tumors
(Whittaker et al., 2010). Moreover, it was reported that
PI3K/AKT/mTOR signaling pathway is strongly related to
HCC development and the inhibition of PI3K signaling axis
could be a HCC treatment strategy (Dimri and Satyanarayana,
2020). From our validation in laboratory, after pretreatment
with ESO, the apparent decrease of pPI3K and pAKT in HCC
cells might contribute to its anti-cancer effects. NFkB, a
pleiotropic transcription factor, plays an essential role in
inflammation, cell growth, immunity, differentiation,
tumorigenesis and apoptosis. The abnormal activation of
NFkB are highly associated with cancer development and
progression, and the signaling pathways that induce NFkB
activation provide promising targets for chemotherapeutic

approaches (Karin and Greten, 2005; Karin, 2006). RELA,
the 65KD subunit of NFxB, forms the most abundant
heterodimeric NFkB complex with NFKBI1. It was reported
that antisense RELA oligomers exerted antigrowth effects on
diverse cancer cells in vitro and caused a significant inhibition
of tumorigenicity in nude mice tumor models (Sharma and
Narayanan, 1996). In this research, target-pathway network
shown that RELA, is one of the high-degree targets of SO. And
in laboratory experiment, after pretreatment with ESO, a
gradually decrease of pNFkB-P65 level in HCC cells was
observed in a dose-dependent manner, which might
contribute to anti-tumor effects of SO on HCC. Taking
EGFR, PI3K, AKT, and NF«B together, Our finding was in
accordance with the report that EGFR activation could further
trigger the PI3K-AKT-NF«B signaling axis and eventually
cause tumor cells proliferation (Engelman et al., 2006;
Zhang et al, 2014). MAPK, also known as extracellular
signal-regulated kinases (ERKs), act in a signaling cascade
that regulates various cellular processes such as proliferation,
angiogenesis,differentiation, apoptosis and survival in
response to a variety of extracellular signals (Le Gallic et al,,
1999). Moreover, it was reported that MAPK phosphorylation
level in HCC tissues was 7 times higher than that in adjacent
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cecesss

cell proliferation
and survival

benign tissues (Huynh et al., 2003). And MAPK signaling
activation might be caused by the upstream signals, such as
EGFR signaling (Zhang et al., 2017). In our laboratory
experiment, after treated with ESO, an apparent
downregulation of pEGFR and pMAPKI in HCC cells was
observed, which may might also contribute to its anti-HCC
effects.

Taken together, this study for the first time, shows that SO can
efficiently suppress cellular proliferation, migration, invasion and
induce apoptosis in HCC cells, indicating that SO may inhibit HCC
mainly through the EGFR/PI3K/AKT/NF«B and MAPK signaling
pathways (Figure 10). Owing to budgetary and time constraints, the
present study has some limitations. Firstly, the public online
databases we used in this research are imperfect and constantly
updating, so some of the active ingredients of SO and their target
genes might not be included in the analysis. Moreover, there are
other signaling pathways (e.g., VEGF, p53 and JAK-STAT signaling
pathways) might also play roles in the anti-tumor effect of SO.
Further studies are needed to explore the potential function of these
pathways. Despite the limitations, this study provides powerful tool
and preliminary data for further investigation of SO in HCC. SO
might be a potential anti-HCC medicine, which can be developed as
a therapeutic option for the treatment of HCC.

CONCLUSION

In conclusion, via the integrating network pharmacology and
experimental validation, our study has investigated the underlying
mechanism of SO in suppressing HCC. The results suggest that SO
might inhibit the proliferation, induce cellular apoptosis and impair
the migration and invasion of HCC cells, mainly via regulating of
EGFR/PI3K/AKT/NF«B, and MAPK signaling pathways. Moreover,
the combined network pharmacology analysis and experimental
validation in this study may provide a powerful tool to explore the
mechanism of TCM.
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Background: Natural product-based cancer preventive and therapeutic entities, such as
flavonoids and their derivatives, are shown to have a noticeable capability to suppress
tumor formation and cancer cell growth. Naringin, a natural flavanone glycoside present in
various plant species, has been indicated to modulate different signaling pathways and
interact with numerous cell signaling molecules, which allows for an extensive variety of
pharmacological actions, such as amelioration of inflammation, oxidative stress, metabolic
syndromes, bone disorders, and cancer. The purpose of this systematic review is to
present a critical and comprehensive assessment of the antitumor ability of naringin and
associated molecular targets in various cancers.

Methods: Studies were identified through systematic searches of Science Direct,
PubMed, and Scopus as well as eligibility checks according to predefined selection criteria.

Results: Eighty-seven studies were included in this systematic review. There was strong
evidence for the association between treatment with naringin alone, or combined with
other drugs and antitumor activity. Additionally, studies showed that naringin-metal
complexes have greater anticancer effects compared to free naringin. It has been
demonstrated that naringin employs multitargeted mechanisms to hamper cancer
initiation, promotion, and progression through modulation of several dysregulated
signaling cascades implicated in cell proliferation, autophagy, apoptosis, inflammation,
angiogenesis, metastasis, and invasion.

Conclusion: The results of our work show that naringin is a promising candidate for
cancer prevention and treatment, and might offer substantial support for the clinical
application of this phytocompound in the future. Nevertheless, further preclinical and
clinical studies as well as drug delivery approaches are needed for designing novel
formulations of naringin to realize the full potential of this flavonoid in cancer prevention
and intervention.
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INTRODUCTION

Cancer is a set of complex processes, including unlimited cell
proliferation, death of impaired cells, and spatial-temporal
changes in cell physiology, that may result in the formation of
malignant tumors with the potential for metastasis (Seyfried and
Shelton, 2010). There are many different approaches for the
treatment of cancer, but some may be ineffective due to
increased resistance to classical anticancer drugs as well as
adverse side effects (Abotaleb et al., 2019).

Scientific reports and traditional knowledge demonstrate that
a high intake of fruits and vegetables is constantly associated with
a decreased risk of some type of human cancers, such as lung,
colon, prostate, and breast cancer (Neuhouser, 2004). Fruit-based
cancer preventive and therapeutic entities, such as flavonoid and
their derivatives, have shown a noticeable capability to suppress
tumor formation and cancer cell growth (Ramesh and Alshatwi,
2013). Flavonoids are a big class of natural polyphenols, existing
in a broad variety of vegetables and fruits commonly consumed
by humans. These phytochemicals are divided into different
subclasses, including flavonols, flavan-3-ols, isoflavones,
flavanones, anthocyanidins, and flavones (Romagnolo and
Selmin, 2012). In the context of carcinogenesis, flavonoids
intervene with multiple signal transduction cascades and
increase apoptosis as well as inhibit metastasis, angiogenesis,
and proliferation (Ravishankar et al., 2013).

Naringin, a flavanone glycoside derived from the flavanone
naringenin, is present in many plant species, especially citrus fruits
(Zhang et al,, 2014). It has been indicated to interact with a wide range
of signaling molecules and modulate various signaling pathways and
thus has multiple pharmacological impacts, such as antioxidant, anti-
inflammatory, antiapoptotic, antitumor, and antiviral properties as well
as effects on metabolic syndrome, bone regeneration,
neurodegenerative disorders, cardiovascular disease, and genetic
damage (Bharti et al, 2014; Chen et al, 2016; Joshi et al, 2018;
Rivoira et al., 2020). Notably, previous studies have demonstrated that
high dietary intake of naringin reduced the risk of certain cancers, such
as lung cancer (Le Marchand et al,, 2000). Although a few reports exist
on the overview of naringin in cancer, these publications are narrative
reviews or reviews of the pharmacological activities of naringin without
particular emphasis on its antitumor effects and none of them have
evaluated naringin individually in the prevention and treatment of
cancer (Meiyanto et al., 2012; Rivoira et al,, 2020; Memariani et al,
2020). Hence, a critical and comprehensive systematic review on the
anticancer ability of naringin and associated molecular targets within
different cancers has not been conducted in the past. Accordingly, the
objective of this article is to present a critical and up-to-date systematic
evaluation of the preventive and therapeutic impacts of naringin and
associated cellular and molecular mechanisms of action.

NATURAL PRODUCTS AND
MALIGNANCIES

It is known that throughout history, natural products have played
an important role in health promotion and disease prevention.
Natural products represent a valuable resource in the

Anticancer Pharmacology of Naringin

development and discovery of new drugs, particularly those
used for cancer treatment (Newman and Cragg, 2012; Cragg
and Pezzuto, 2016; Newman and Cragg, 2020). A large number of
the significant advances in cancer treatment are directly
associated with the development of natural product-based
drugs and the use of these agents to suppress, reverse, or
retard the process of carcinogenesis (Cragg and Pezzuto,
2016). Many natural products from herbs, vegetables, plant
extracts, and fruits exert chemoprotective properties against
carcinogenesis (Amin et al, 2009; Gullett et al, 2010; Lee
et al, 2011; Bishayee and Sethi, 2016). Plant secondary
metabolites, also known as phytochemicals, belong to four
major classes, such as terpenoids, phenolics, alkaloids, and
sulfur-containing compounds. A large number of these
phytocompounds are strong antioxidants as well as anti-
inflammatory agents with groups that confer
protective activities. The vast majority of the non-nutrient
antioxidants present in various plants are phenolic
compounds, including catechins in tea, isoflavones in
soybeans, phenolic esters in coffee, quercetin in onions,
phenolic acid in red wine, and rosmarinic acid in rosemary
(Sheikh et al, 2021). Flavonoids, a subclass of polyphenols,
have also been demonstrated to block the cell cycle
progression, protect cells from damage due to external factors,
suppress mutations, inhibit prostaglandin synthesis, and inhibit
carcinogenesis in animal models (Abdulla and Gruber, 2000).
Several animal studies have shown a protective effect for
isoflavonoids against mammary cancers (Steiner et al, 2008;
Basu and Maier, 2018; Avila-Galvez et al, 2020). A high
isoflavone diet has also been indicated to suppress
tumorigenesis in various animal models for prostate cancer
(Persky et al., 1994). Multiple lines of experimental evidences
suggest that treatment with naringenin or novel naringenin
formulations could inhibit various malignancies, such as
melanoma, breast, and cervical cancer (Krishnakumar et al,
2011; Rajamani et al., 2018; Choi et al, 2020). Tea is an
essential source of flavonols and flavanols. Many experimental
studies show an anticancer effect for tea polyphenols (Yang et al.,
2001). It has also been indicated that administration of genistein
early in life increases the differentiation and early maturation of
the rat mammary gland (Persky et al, 1994), conferring
protection against breast cancer. Although synthetic cancer

reactive

drugs cause non-specific cell killing, natural products,
OH
OH
HO 0)
HO (0] O .“‘\\\\
O
H.C o
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OH 0o
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FIGURE 1 | The chemical structure of naringin.
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TABLE 1 | Various natural sources of naringin.

Source plant

Citrus x aurantium L. [Rutaceae]
Citrus x limon (L.) Osbeck [Rutaceae]
Citrus deliciosa Ten. [Rutaceae]

Anticancer Pharmacology of Naringin

Naringin content (ug/ml) References

19.7 Kawaii et al. (1999)
22.3 Kawaii et al. (1999)
8.0 Dhuique-Mayer et al. (2005)

Citrus medica L. [Rutaceae] 18.6 Menichini et al. (2016)

Citrus x aurantium L. [Rutaceae] 230.0 Kawaii et al. (1999)

Citrus x aurantium L. [Rutaceae] 3383.6 de Lourdes Mata Bilbao et al. (2007)
Citrus x aurantium L. [Rutaceae] 21.3 Ooghe et al. (1994)

TABLE 2 | Description of population, intervention, comparator, outcome and study design (PICOS).

Population

e Normal and cancer cell lines

® Healthy and tumor bearing animals

Intervention
Comparison
Outcome
Study design

® Naringin
® A-changes between treatments (naringin/control/anticancer drug)

e Effect of naringin on cancer cell growth inhibition and/or reduction of tumor size and volume
® |n vitro studies

® /n vivo studies

including dietary phytochemicals, offers therapeutic and
protective activities with low cytotoxicity (Reddy et al., 2003).

NARINGIN: SOURCES, CHEMISTRY, AND
PHARMACOLOGY

Naringin, chemically known as 4',5,7-trihydroxyflavanone-7-

factor 2 (Nrf2) (Habauzit et al., 2011). It has also been reported to
decrease metabolic syndrome through downregulation of the
expression of key gluconeogenic enzymes and upregulation of
AMP-activated protein kinase. Additionally, it decreases the
activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase and
enhances the production of nitric oxide metabolites. Naringin also
shows antigenotoxic actions and decreases DNA damage by
controlling the generation of free radicals and the expression of

rhamnoglucoside  (C,;H;3,0;4, molecular  weight:  580.5, oxidative mediators (Chen et al., 2016). It has beneficial effects on
Figure 1), is a flavone glycoside that is present in many plant  many central nervous system diseases, including epilepsy,
species,  particularly  citrus  fruits, with remarkable  Parkinson’s disease, and Alzheimer’s disease (Jiger and Saaby,

pharmacological and biological activities. It is one of the main
active components of various Chinese herbal medicines, such as
Citrus medica L. (CM) and Citrus aurantium L. (CA) (Table 1)
(Alam et al., 2014; Zhang et al., 2014). The chemical structure of
naringin was first annotated in 1928 by Inubuse and Asahina
(EFSA, 2011). In one study, naringin was isolated from C.
aurantium crude peel extract after HPLC separation and its
structure was confirmed by electrospray ionization mass
spectrometry. The predicted mass for naringin was 580 Da
(Zhang et al., 2018a). Naringin is derived from naringenin and
is responsible for the bitterness of citrus fruits and their products
(Konno et al., 1982). It can be hydrolyzed by rhamnosidase
activity of naringinase into prunin and rhamnose, which can
be further hydrolyzed by the b-D-glucosidase component of
naringinase, into naringenin and glucose (Real et al., 2007).
Naringin has been shown to modulate various enzyme and
protein expressions, thus exerting potential therapeutic activities.
Naringin has been demonstrated to significantly affect cell
proliferation and osteogenic differentiation (Dai et al.,, 2009).
Naringin has also been indicated to be effective in decreasing the
expression of numerous signaling factors involved in the
inflammatory response, e.g., interleukin-8 (IL-8), tumor
necrosis factor-a (TNF-a), interleukin-6 (IL-6), inducible nitric
oxide synthase (INOS), and nuclear factor erythroid 2-related

2011), and has been demonstrated to have dose-dependent
radical scavenging activity and decreased oxidative stress
(Rajadurai and Prince, 2007). Overall, naringin can be regarded
as a promising natural compound that elicits various health benefits.

METHODOLOGY FOR LITERATURE
SEARCH ON NARINGIN AND
MALIGNANCIES

Search Strategy

The current systematic review was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines (Moher et al., 2009), employing several electronic databases
(Science Direct, PubMed, and Scopus) and using the following
keywords: “naringin” AND (“neoplasm” OR “cancer” OR “tumor”
OR “carcinoma” OR “malignancy”). The information about
populations, interventions, comparators, outcomes, and study
designs (PICOS) criteria are presented in Table 2.

Inclusion Criteria

Experimental studies (in vivo and in vitro) up to September 2020 in the
English language which assessed the anticancer effect of naringin (in
any cancer cell line and/or animal model) were included.
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(n=2,998)

Records identified through databases searching

PubMed=220 Scopus=324 ScienceDirect=2,454

Identification

- |

Records after duplicates removed

(n=2,861)

2 l

=

{ =

(]

Y

A

Records screened Records excluded
(n=2,861) (n=2,568)
% > Reviews=613
5 Non-English=18
Irrelevant title/abstract=952
p D Other type of articles= 985
Full-text articles

- assessed for eligibility

=

E (n=293) Full-text articles excluded, with

W reasons (n=206)

w

Whole plantwas evaluated=97
_ Other pharmacological effects of
4 4 naringin was assessed= 75
Other compounds were evaluated=34

p—

e

= In vitro= 69

2 Studies included In vivo=11

£ (n=87) — | Both invitroand in vivo=7

FIGURE 2 | The PRISMA flow chart of the selection process for the included studies.

Exclusion Criteria
We applied the following exclusion criteria: 1) conference

abstracts, books, book chapters, and unpublished results; 2)
non-English papers; 3) reviews, systematic reviews, meta-
analysis, and letters; 4) primary research papers that do not
involve tumor cell lines or animal tumor models.

Data Extraction

Among the initial 2,998 reports that were collected through
electronic search, 137 were omitted due to duplicated results,
985 were ruled out because of the article type, 613 review
articles were omitted, and 952 were deemed irrelevant based
on abstract and/or title information. Besides, 18 were
excluded because they were not in English language. Out

of 293 retrieved reports, 97 were excluded as they evaluated
the whole plant, 75 were ruled out as they examined other
biological impacts of naringin rather than anticancer effects,
and 34 were excluded because they concentrated on other
compounds, not naringin.

Data Synthesis

Finally, 87 articles were included in this study as demonstrated in
a flowchart of the literature search and selection process
(Figure 2). It was envisioned that studies would be too
heterogeneous to be combined. Hence, a narrative synthesis
was conducted. The results are summarized according to type
of cancer and outcome measures assessed. The magnitudes of
effects on each outcome measure are reported.
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TABLE 3 | Potential anticancer effects and related mechanisms of action of naringin based on in vitro studies.

Anticancer Pharmacology of Naringin

Cancer Cell Conc Source Purity Quality Duration Anticancer References
type type (%) control effects
reported?
(Y/N)
Bladder T24 and 50-150 uM Wako pure chemical ND Y 24 h 1Cell proliferation, Kim et al. (2008)
5,637 cell Industries, Itd. (Osaka, Lcell viability, |cell
lines Japan) growth, Tcell cycle
arrest, Tp21WAF1,
TRas, TRaf
Bladder TCC cell line 0.3-5 uM Merck Chemical Co. ND Y 24-48h | Cell proliferation, Karami et al.
(Darmstadt, Germany) Lcell viability (2018)
Bladder TCC cell line 75 pg/ml Sigma-Aldrich ND Y 24-72 h | Cell proliferation, Orsoli¢ et al.
(Munich, Germany) Lcell viability (2009)
Blood (leukemia) HL-60, 0.125-2 mg/ml China Institute of ND Y-HPLC 24-48 h | Cell proliferation, Dai et al. (2017)
Kasumi-1, drugs and Tapoptosis, |Mcl-1
and K562 Bioproducts (Beijing,
cell lines China)
Blood (leukemia) U937 cellline 50-500 uM Sigma-Aldrich (Lyon, (90%) Y 24 h 1Cell proliferation, Jin et al. (2009)
France) Lcell growth, Tcell
death
Blood (leukemia) THP-1 cell 50-400 uM Gibco BRL ND Y 48 h 1Cell proliferation, Park et al. (2008)
line (Gaithersburg, MD, Lcell viability
United States)
Blood (leukemia) HL-60 and 40-80 uM Sigma-Aldrich (Lyon, ND Y 6-24 h No effect Chen et al. (2003)
THP-1 cell France)
lines
Blood (leukemia) K562 cell line 5-500 uM Quinabra Company ND Y 24-72 h | Cell number, |cell Pereira et al.
(S&o José dos growth, Tcell death, (2007)
Campos, Brazil) |DPPH
Blood (leukemia) K562 cell line 1-100 uM Fluka chemie GmbH (295%)  Y-TLCandHPLC 20-100h |VEGF Mellou et al.
(Buchs, Switzerland) (2006)
Blood (lymphoma) P-388D1, L- 1-2mM Sigma-Aldrich ND Y 12h TCytotoxic activity, Kim et al. (1998)
1210 cell (St. Louis, MO, USA) Tanti-platelet
lines aggregation activity,
Ttrypsin inhibition
Blood (lymphoma)  Raji cell line 10-1,000 puM Extrasynthese-Genay ND Y 24 h 1Cell proliferation, Ramanathan et al.
(Lyon, France) lcell growth (1992)
Brain U-87cell line 5-30 uM Sigma-Aldrich (Lyon, (98%) Y 24-48 h | Cell proliferation, Aroui et al. (2020)
France) Lcell viability, |cell
invasion,
[tubulogenesis
Brain u87 and 10-40 uM Invitrogen (Carlsbad, ND Y 12-48h  |Cell proliferation, Li et al. (2017)
U251 cell CA, USA) |FAK/cyclin D1
lines pathway,
Tapoptosis, |cell
invasion,
Imetastasis,
Imigration, |FAK/
MMPs pathway,
Lkinase activity
of FAK
Brain U373 and 5-100 uM Sigma-Aldrich (Lyon, ND Y 12-24h | Cell growth, |cell Arouiet al. (2016a)
us7 cell France) viability, |migration,
lines Lcell invasion,
IMMP-9, |MMP-2,
TMAPK signaling
pathways,
|metastasis
Brain U251 cellline 5-60 uM Sigma-Aldrich (Lyon, (98%) Y 24 h | Cell proliferation, [cell  Aroui et al.
France) viability, [cell invasion,  (2016b)
Imigration, | MMP-9,
IMMP-2, 1TIMP-2,
TTIMP-1, |p38 signal
transduction
pathways
(Continued on following page)
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TABLE 3 | (Continued) Potential anticancer effects and related mechanisms of action of naringin based on in vitro studies.

Anticancer Pharmacology of Naringin

Cancer Cell Conc Source Purity Quality Duration Anticancer References

type type (%) control effects

reported?
(Y/N)

Brain (Glioma) U343 and 0.1-100 uM Sigma-Aldrich ND Y 24 h |VEGF Schindler and
U118 cell (Steinheim, Germany) Mentlein (2006)
lines

Breast MCF-7 cell 50-400 pg/ml Sigma-Aldrich (Berlin, ND Y-HPLC 48-72 h | Cell proliferation, Elansary et al.
line Germany) Lcell growth, (2020)

Tapoptosis
Breast MCF7 cell 5uM Sigma-Aldrich ND Y-HPLC 12-48 h | Cell proliferation, Puranik et al.
line (St. Louis, MO, USA) Lcell viability (2019)

Breast MCF7 and 0.78-100 pg/ml Purified by Basta ND Y-TLC 48 h 1Cell proliferation, Basta et al. (2020)
HCT116 cell et al., 2020 Lcell viability
lines

Breast MCF7 cell 0.78-100 pg/ml  Purified by Atta et al., ND Y-TLC 48 h 1 Cell viability, |cell Atta et al. (2019)
line 2019 growth, Tapoptosis

Breast MCF-7 cell 200 pM Sigma-Aldrich (>95%) Y 72 h 1Cell proliferation, Fazary et al.
line (St. Louis, MO, Lcell viability, (2017)

United States) Tapoptosis

Breast MCF7 cell 0.3-5 uM Merck Chemical Co. ND Y 24-48h | Cell proliferation, Karami et al.
line (Darmstadt, Germany) Lcell viability (2018)

Breast MCF7 cell 20-100 uM Sigma-Aldrich (97%) Y-HPLC 1-48 h 1Cell proliferation, Selvargj et al.
line (St. Louis, MO, USA) Lcell viability (2014)

Breast MCF-7 and 5-100 uM Sigma-Aldrich ND Y 24-48h | Cell viability, Tcell Kabata-Dzik et al.
MDA-MB- (Poznan, Poland) cycle arrest, (2018)

231 cell lines Tapoptosis

Breast CMT-U27 20-1,000 pM Sigma-Aldrich ND Y 48 h | Cell proliferation, Ozyirek et al.

cell line Chemical Co. Lcell viability (2014)
(Steinheim, Germany)

Breast MDA-MB- 50-200 puM Sigma-Aldrich (=95%) Y-HPLC 24-48h | Cell proliferation, Li et al. (2013a)
231, MDA- (St. Louis, MO, USA) Lcell growth, Tcell
MB-468, cycle arrest, |cell
and BT-549 viability, Tapoptosis,
cell lines |B-catenin pathway

Breast Ehrlich 5-100 pM Sigma-Aldrich ND Y 3-24h TTumor cell death, Menon et al.
ascites (St. Louis, MO, USA) ltumor cell growth (1995)
tumor cells

Breast MDA-MB- 0.1-100 uM Sigma-Aldrich ND Y 24 h |VEGF Schindler and
231 cell line (St. Louis, MO, USA) Mentlein (2006)

Cervical C33A, SiHa, 10-10,000 pM Sigma-Aldrich (>95%) Y-HPLC 24 h 1Cell viability, Tcell Chen et al. (2020)
and Hela (St. Louis, MO, USA) cycle arrest,
cell lines Tapoptosis, |Wnt/

B-catenin pathway
Cervical SiHa cell line 250-2000 pM Sigma-Aldrich ND Y 24-48h | Cell proliferation, Ramesh and
(St. Louis, MO, Lcell viability, Tcell Alshatwi (2013)
United States) cycle arrest,
Tapoptosis,
Tcaspases, Tp53,
TBax, TFas
Cervical Hela cell line 200-2000 pM Sigma-Aldrich ND Y 24 h 1Cell proliferation, Liu et al. (2017)
(St. Louis, MO, Lcell growth,
United States) Tapoptosis
Cervical Hela cell line 200-3200 pM Nacalai tesque ND Y 48 h 1Cell growth, Yoshinaga et al.
(Kyoto, Japan) Tapoptosis, [NEU3, (2016)
TEGFR/ERK
signaling
Cervical Hela cell line 10-1,000 uM Extrasynthese-Genay ND Y 24 h 1Cell proliferation, Ramanathan et al.
(Lyon, France) lcell growth (1992)
Cervical Hela cell line 50-400 pg/ml Sigma-Aldrich (Berlin, ND Y-HPLC 48-72h | Cell proliferation, Elansary et al.
Germany) Lcell growth, (2020)
Tapoptosis
Cervical Helacellline  200-1,500 umol/  Sigma-Aldrich ND Y 3-48 h 1Cell viability, |cell Zeng et al. (2014)
L (St. Louis, MO, growth, Tapoptosis,
United States) INF-kB/COX-2-
caspase-1 pathway
(Continued on following page)
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TABLE 3 | (Continued) Potential anticancer effects and related mechanisms of action of naringin based on in vitro studies.

Anticancer Pharmacology of Naringin

Cancer Cell Conc Source Purity Quality Duration Anticancer References
type type (%) control effects
reported?
(Y/N)
Colon HT-29 cell 50-400 pg/ml Sigma-Aldrich (Berlin, ND Y-HPLC 48-72h  |Cell proliferation, Elansary et al.
line Germany) Lcell growth, (2020)
Tapoptosis
Colon CT26 cellline 1-100 pg/ml Purified by Zhou et al., ND Y- HPLC |Cell proliferation, Zhou et al. (2018)
2018 Lcell viability,
Tapoptosis
Colon SW480 cell 12.5-200 uM Sigma-Aldrich ND Y 12-48 h | Cell proliferation, Chidambara
line (St. Louis, MO, USA) Lcell viability Murthy et al.
(2012)
Colorectal HCT116 and  6-25 ug/ml Beijing Solarbio ND Y 12-72h  |Cell proliferation, Cheng et al.
SW620 cell Science and Tapoptosis, |PI3k/ (2020)
lines Technology Co., Ltd Akt/mTOR pathway
(Beijing, China)
Colon Colo 205 4-10 pg/ml Purified by Ugocsai ND Y 24 h TApoptosis Ugocsai et al.
and Colo et al. (2005) (2005)
320 cell lines
Colon COLO 200 uM Sigma-Aldrich ND Y 24 h No effect Shen et al. (2004)
320HSR, (St. Louis, MO, USA)
COLO 205,
and HT 29
cell lines
Colon HT29 cellline 10-250 pg/ml Sigma-Aldrich ND Y-HPLC and 24-48h | Cell proliferation, Ferreira et al.
(St. Louis, MO, USA) mass Lcell growth (2013)
spectrometer
Colon HCT116 cell 200 M Sigma Aldrich (=95%) Y 72h 1Cell proliferation, Fazary et al.
line (St. Louis, MO, Lcell viability, (2017)
United States) Tapoptosis
Colon HCT116 cell 0.78-100 pg/ml  Purified by Basta ND Y-TLC 48 h 1Cell proliferation, Basta et al. (2020)
line et al., 2020 Lcell viability
Colon SNU-C4 cell 1-2mM Sigma-Aldrich ND Y 12h TCytotoxic activity, Kim et al. (1998)
line (St. Louis, MO, USA) Tanti-platelet
aggregation activity,
Ttrypsin inhibition
Colorectal Caco-2 cell 10-1,000 uM Sigma-Aldrich ND Y 24 h 1Cell proliferation, Yadav et al. (2016)
line (St. Louis, MO, USA) Lcell growth, |cell
viability |GLO-I
activity
Colon HT-29 and 10-60 uM Fluka Chemika- (>95%) Y 24-48h  No effect Kuo (1996)
Caco-2 cell BioChemika (New
lines York, USA)
Esophageal YM1 cell line 300 yM Sigma-Aldrich ND Y 24 h 1Cell proliferation, Tajaldini et al.
(St. Louis, MO, USA) Lcell viability (2020)
Head and Neck HEp2 cell 3.8-500 yM Sigma-Aldrich ND Y 72h 1Cell viability, [lipid  Durgo et al. (2007)
(laryngeal) line (St. Louis, MO, USA) peroxidation,
TCYP1A1
Liver HepG2 cell 12.5 yM-3.2 MM Sigma-Aldrich (>95%) Y-HPLC 48 h 1Cell viability, |cell Elsawy et al.
line (St. Louis, MO, growth, Tapoptosis  (2020)
United States)
Liver HepG2 cell 5uM Sigma-Aldrich ND Y 24 h 1Cell proliferation, Syed et al. (2020)
line (St. Louis, MO, Lcell viability
United States)
Liver HepG2 cell 10-40 uM Sigma-Aldrich ND Y 24-72 h | Cell proliferation, Xie et al. (2017)
line (St. Louis, MO, USA) Tapoptosis, TBax,
1Bcl-2, TmiR-19b
Liver HepG2 cell 50-250 pg/ml Sigma-Aldrich ND Y 24 h 1Cell proliferation, Banjerdpongchai
line (St. Louis, MO, Lcell viability, |cell et al. (2016a)
United States) growth, Tapoptosis
Liver HepG2 cell 100 pg/ml Sigma-Aldrich ND Y 24 h 1Cell proliferation, Banjerdpongchai
line (St. Louis, MO, Tapoptosis, TBax, et al. (2016b)
United States) TBak, |Bcl-xL, TtBid
(Continued on following page)
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TABLE 3 | (Continued) Potential anticancer effects and related mechanisms of action of naringin based on in vitro studies.

Anticancer Pharmacology of Naringin

Cancer Cell Conc Source Purity Quality Duration Anticancer References
type type (%) control effects
reported?
(Y/N)
Liver HepG2 cell 1-100 pg/ml Purified by Zhou et al., ND Y- HPLC |Cell proliferation, Zhou et al. (2018)
line 2018 Lcell viability,
Tapoptosis
Liver HepG2, 25-100 uM Sigma-Aldrich (>98%) Y 8-24h 1Cell invasion, Yen et al. (2015)
Huh-7, and (St. Louis, MO, Imigration,
HA22T cell United States) |metastasis, |MMP-
lines 9, |PIBK/AKt,
IMAPK, |IxB
Liver HepG2 cell 10-250 pg/ml Sigma-Aldrich ND Y-HPLC and 24-48 h | Cell proliferation, Ferreira et al.
line (St. Louis, MO, USA) mass Lcell growth (2013)
spectrometer
Liver HepG2, 200 mM Sigma-Aldrich (=95%) Y 72h |Cell proliferation, Fazary et al.
MCF-7, and (St. Louis, MO, Lcell viability, (2017)
HCT116 cell United States) Tapoptosis
lines
Liver HA22T and 10-100 uM Aldrich chem. Co. ND Y 24 h 1Cell viability, |cell Hsiao et al.
SK-Hep1 (Milwaukee, WI, growth (20074a)
cell lines United States)
Liver HepG2 cell 1-2mM Sigma-Aldrich ND Y 12h TCytotoxic activity, Kim et al. (1998)
line (St. Louis, MO, USA) Tanti-platelet
aggregation activity,
Ttrypsin inhibition
Liver Hepa-1cic7 50-100 uM Sigma-Aldrich ND Y 72h No effect Campbell et al.
cell line (St. Louis, MO, USA) (2006)
Lung A549 cellline 3-1,000 yM Purified by Nie et al.,  (>98.3%) Y-determined by = 24-96h  |Cell proliferation, Nie et al. (2012)
2012 peak area Lcell viability
normalization
Lung A549 and 10-100 uM Aldrich chem. Co. ND Y 24 h 1Cell viability, |cell Hsiao et al.
LLC celllines (Milwaukee, WI, growth (20074a)
United States)
Lung HB9AR cell 6-25 pg/ml ND ND ND 24 h |Cell proliferation, Chen et al. (2018)
line Lcell growth,
Tapoptosis, TmMiR-
126, |PI3K, |p-Akt,
lp-mTOR, |VCAM-
1, INF«B, |PI3K/
Akt/mTOR pathway
Lung A549 cell line 10-50 uM Aldrich chem. Co. ND Y 24 h 1Cell viability, |cell Hsiao et al.
(Milwaukee, WI, invasion, |cell- (2007b)
United States) matrix adhesion,
lcellular motility
Lung A549 cellline 1-2 mM Sigma-Aldrich ND Y 12h TCytotoxic activity, Kim et al. (1998)
(St. Louis, MO, USA) Tanti-platelet
aggregation activity,
Ttrypsin inhibition
Lung A549 cell line 10-120 pg/ml Sigma-Aldrich, ND Y 6-24 h 1Cell proliferation, Garcia et al.
(St. Louis, MO, Lcell viability, (2019)
United States) Tapoptosis
Lung AB49 cellline  0.78-100 pg/ml  Purified by Atta et al., ND Y-TLC 48 h 1Cell viability, |cell Atta et al. (2019)
2019 growth, Tapoptosis
Lung Hela and 200-3200 M Nacalai Tesque, Inc. ND Y 48 h 1Cell growth, Yoshinaga et al.
A549 cell (Kyoto, Japan) Tapoptosis, [INEU3, (2016)
lines TEGFR/ERK
signaling
Neuroblastoma SH-SY5Y 1-10 uM Sigma-Aldrich ND Y 24 h 1Cell viability, Tcell Kim et al. (2009)
cell line (St. Louis, MO, USA) death
Ovarian SKOV3/ 10-40 pmol/L Institute of ND Y 48 h INF-xB, |P-gp Zhu et al. (2018)
CDDP cell pharmacology at
line Nanchang university
(Nanchang, China)
(Continued on following page)
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TABLE 3 | (Continued) Potential anticancer effects and related mechanisms of action of naringin based on in vitro studies.

Anticancer Pharmacology of Naringin

Cancer Cell Conc Source Purity Quality Duration Anticancer References
type type (%) control effects
reported?
(Y/N)
Ovarian SKOV3/ 10-40 pmol/L Shandong Qilu ND Y 48 h INF-kB, |[COX-2 Zhu et al. (2017)
CDDP cell Pharmaceutical Co.,
line Ltd. (Shandong,
China)
Ovarian OVCAR-3 5-160 uM Sigma-Aldrich ND Y 24 h No effect Luo et al. (2008)
cell line (St. Louis, MO, USA)
Prostate PC-3 and 2.56-300 uM Selleck (Maple Valley, ND Y 24-48h | Cell growth, Wu et al. (2019)
LNCaP cell WA, USA) Imigration, |cell
lines invasion,
Tapoptosis, TBax,
1p-|STATS,
Lsurvivin, |Bcl-2,
Lp-Akt
Prostate PC3, 3.9-500 pM Sigma-Aldrich ND Y 72h 1Cell survival, |cell Erdogan et al.
DU145, and (St. Louis, MO, viability, Tapoptosis, (2018)
LNCaP cell United States) Tcell cycle arrest,
lines TPTEN, |nuclear
factor-xB p50
protein, |cell
migration, |[NF-«xB
signaling
Prostate DU145 cell 50-250 uM Sigma-Aldrich ND Y 24 h 1 Cell proliferation, Lewinska et al.
line (Poznan, Poland) Lcell viability, |cell (2015)
number, Toxidative
stress, Tapoptosis
Sarcoma MG63 and 10-20 pmol/L Beyotime ND Y 24 h 1Cell proliferation, Ming et al. (2018)
(osteosarcoma) U20S cell Biotechnology Lcell invasion,
lines (Shanghai, China) Tapoptosis, [Zeb1,
Lcell migration, Tcell
cycle arrest
Sarcoma MG-63 cell 1-100 pg/ml Purified by Zhang ND Y-HPLC and 24-72 h  No effect Zhang et al.
(osteosarcoma) line etal, 2018a Mass (20184)
spectrometry
Sarcoma JJ012 cell 3-30 uM Sigma-Aldrich ND Y 24-48 h  |Cell invasion, Tan et al. (2014)
(chondrosarcoma)  line (St. Louis, MO, Imigration, |VCAM-
United States) 1, TmiR-126
Skin (Melanoma) A375 and 10-40 uM ND ND ND 12-60 h | Cell proliferation, Guo et al. (2016)
A875 cell |cancer
lines metabolism, Tcell
cycle arrest,
Tapoptosis, |cell
growth, [cell
invasion, |migration,
lc-Src
Skin (Melanoma) MO4 cell line 0.5mM Provided by dr. J, A. ND Y- Reversed- 4 days lInvasion Bracke et al.
Attaway (department phase high- (1991)
of citrus, state of pressure liquid
Florida, United States) chromatography
Skin (Melanoma) B16F10 cell 5-500 uM Quinabra Company ND Y 24-72h  |Cell number, |cell Pereira et al.
line (S&o José dos growth, Tcell death, (2007)
Campos, Brazil) |DPPH
Stomach (Gastric)  AGS cell line 1-3 mM Sigma-Aldrich ND Y 3-24h TROS, TERK1/2- Raha et al. (2020)
(St. Louis, MO, p38 MAPKSs,
United States) Tautophagy cell
death
Stomach (Gastric)  AGS cell line 10-100 uM Aldrich Chemical Co. ND Y 24 h 1 Cell viability, |cell Hsiao et al.
(Milwakee, WI, growth (20074a)
United States)
(Continued on following page)
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TABLE 3 | (Continued) Potential anticancer effects and related mechanisms of action of naringin based on in vitro studies.

Cancer Cell Conc Source
type type
Stomach (Gastric)  AGS cell line 1-3 mM Sigma-Aldrich
(St. Louis, MO,
United States)
Stomach (Gastric)  SNU-1 1-2mM Sigma-Aldrich
(St. Louis, MO, USA)
Thyroid TPC-1 and 6-25 pg/ml Beyotime
SW1736 cell Biotechnology
lines (Shanghai, China)

Purity Quality Duration Anticancer References
(%) control effects
reported?
(Y/N)

ND Y 24-48 h | Cell proliferation, Raha et al. (2015)
leell growth, |PI3K/
Akt/mTOR,
TMAPKS,
Tp21 CIF’I/\NAFIY
Tautophagosome

ND Y 12h TCytotoxic activity, Kim et al. (1998)
Tanti-platelet
aggregation activity,
Ttrypsin inhibition

ND Y 24-72 h | Cell proliferation, Zhou et al. (2019)

Tapoptosis, |PI3k/
Akt pathway

Note: A down arrow indicates a reduction or decrease and an up arrow indiicates an increase. Bak, Bcl-2 homologous antagonist/killer; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma
2; Bel-xL, B-cell lymphoma-extra-large; COX-2, cyclooxygenase- 2; c-Src, proto-oncogene tyrosine-protein kinase Src; DPPH, diphenylpicrylhydrazyl radical; EGFR, epidermal growth factor
receptor; ERK, extracellular signal-regulated kinase; FAK, focal adhesion kinase; GLO-I, glyoxalase-I; kB, inhibitor of NF-kB; MIMPs, matrix metallopeptidases; MAPK, mitogen-activated protein
kinase; Mcl-1, myeloid cell leukemia 1; miR, microRNA; mTOR, mammalian target of rapamycin; ND, not determined; NEUS3, plasma membrane-associated sialidase; NF-xB, nuclear factor-«B;
P53, tumor protein p53; P38 MAPKS, p38 mitogen-activated protein kinases; p-Akt, phosphorylated Akt; P-gp, P-glycoprotein; PI3K, phosphatidylinositol-3-kinase; p-mTOR, phosphorylated
mammalian target of rapamycin; p-STAT3, phosphorylated signal transducer and activator of transcription 3; ROS, reactive oxygen species; tBid, truncated BH3 interacting domain death
agonist; TIMP, tissue inhibitor of metalloproteinase; VCAM-1, vascular cell adhesion molecule 1; VEGF, vascular endothelial growth factor; Zeb1, zinc finger E-box binding homeobox 1.

Assessment of Bias and Errors

The primary search was conducted by two researchers, and they
extracted the data independently, which limits the risk of bias and
errors.

ANTICANCER ACTIVITIES OF NARINGIN

Naringin has been shown to inhibit various cancers via different
mechanisms, including growth suppression of malignant cells,
apoptosis induction and cell cycle arrest, and modulation of
oxidative stress, inflammation, and angiogenesis, through the
regulation of several cellular signaling cascades. The antitumor
effects and associated mechanisms of naringin in various cancers
are presented in the following sections.

Bladder Cancer

Bladder cancer includes a broad range of tumors, including
transitional cell carcinoma, which is categorized into three
types, namely superficial tumors, tumors confined to the
bladder, and invasive tumors. In superficial bladder cancer, the
risk of disease recurrence and/or progression to invasive diseases
is high (Levi et al., 1993). For these cases, efficient preventive
measures are required. One study determined a new mechanism
of naringin anticancer activity observed in bladder cancer cell
lines. Results demonstrated that naringin treatment suppressed
cell viability and growth, and induced p21"*"! expression and
cell cycle arrest in 5,637 and T24 bladder carcinoma cell lines,
potentially through suppressing the Ras/Raf/extracellular signal-
regulated kinase (ERK)-signaling pathway (Table 3) (Kim et al.,
2008). Another study showed that treatment with mononuclear
palladium (II) complexes of naringin decreased the viability and
proliferation of TCC bladder carcinoma cell lines, and these

complexes noticeably showed major and selective cytotoxicity
toward bladder cancer cells (Karami et al., 2018). In another
in vitro study, naringin reduced cell proliferation and viability in
TCC Human urinary bladder transitional cell carcinoma cells
(Or3oli¢ et al., 2009).

Blood Cancer

Leukemia is one form of the hematological malignancies with
particularly high mortality (Vardiman et al., 2009). At present,
leukemia treatment relies on chemotherapies to abrogate
malignant cells or to promote differentiation in leukemia cells.
Conversely, the available chemotherapies commonly have severe
adverse effect (Goldman and Melo, 2003). Accordingly, the
discovery of novel therapeutic reagents with a magnificently
safe profile is required. One study indicated that treatment of
K562, HL-60, and Kasumi-1 human myeloid leukemia cells with
naringin blocked cell proliferation and promoted their apoptosis
in a time- and concentration-dependent way, via downregulation
of Mcl-1 expression and activation of caspase and PARP pathway
(Dai et al.,, 2017). Naringin treatment also enhanced cell death
and decreased cell proliferation and growth in U937 (Jin et al,
2009) and THP-1 (Park et al, 2008) human leukemia cells.
However, one study showed that naringin had no cytotoxic
effect on THP-1 and HL-60 are leukemia cell lines (Chen
et al, 2003). In another study, a naringin-derived copper (II)
complex 1 was engineered, and its anticancer effect was
investigated. Results showed that treatment of K562 human
chronic myeloid leukemia cells with naringin-Cu (II) complex
1 or naringin reduced cell proliferation and growth, increased cell
death, and decreased diphenylpicrylhydrazyl radical (DPPH).
Results also showed that naringin-Cu (II) complex 1 had
greater anti-inflammatory, antioxidant, and anticancer
activities in comparison to free naringin without decreasing
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TABLE 4 | Potential anticancer effects and related mechanisms of action of naringin based on in vivo studies.

Cancer

type

Brain

Breast

Breast

Breast

Breast

Breast

Cervix

Colon

Colon

Esophagus
Head and neck
(oral cavity)

Liver

Ovary

Prostate

Sarcoma
(osteosarcoma)

Sarcoma

Animal Dose
model
Athymic mice 60-180 mg/kg

bearing U-87 tumor

SCID female mice
bearing MDA-MB-
231 tumor

Swiss albino mice
bearing ehrlich
ascites tumor cells

100 mg/kg

100 mg/kg

Swiss albino mice
bearing ehrlich
ascites tumor cells
Swiss albino mice
bearing ehrlich
ascites tumor cells
Female Sprague-

100 mg/kg

100 mg/kg

500 mg/100 g

dawley rats with diet
DMBA-induced

breast tumors

Female athymic 20 mg/kg

nude mice bearing
Hela tumors

Male C57BL/6 mice
with AOM/DSS-
induced colon
carcinogenesis
Male
Sprague-Dawley
rats with AOM-
induced colon
carcinogenesis
Male nude mice with
YM1 xenograft
tumors

Hamster cheek
pouch oral cancer
model

Male Wistar rats
bearing DEN-
induced
hepatocellular
carcinoma

Female BALB/c
nude mice bearing
SKOV3 tumor

50-100 mg/kg

200 mg/kg

50 mg/kg

0.5-8.0 mg/kg

40 mg/kg

0.5-2 mg/kg

Male SCID mice
bearing PC-3 and
LNCaP tumors
Female, athymic
nude BALB/c mice
bearing MG63
tumor

Male ddY mice
bearing S180 tumor

50 mgrkg

5-10 mg/kg

30-300 mg/kg

Source Purity
(%)
Sigma-Aldrich (98%)
(St. Louis, MO, USA)
Sigma-Aldrich (=95%)

(St. Louis, MO, USA)

Sigma-Aldrich Chemie ND
GmbH (Munich,
Germany)

Sigma-Aldrich chemie ND
GmbH (Germany)

Sigma-Aldrich chemie ND
GmbH (Munich,

Germany)

Provided by dr. W. ND
Widmer (state of

Florida dept. of citrus,

United States)

Sigma-Aldrich ND
(St. Louis, MO,

United States)

Sigma-Aldrich (>98%)

(St. Louis, MO, USA)

Purified by Vanamala ND
et al., 2006

Sigma-Aldrich ND
(St. Louis, MO, USA)

ND ND

Sigma-Aldrich ND
(St. Louis, MO, USA)

Merck KGaA
(Darmstadt, Germany)

(>90%)

Selleck (Maple Valley, ND
WA, USA)

Beyotime ND
Biotechnology
(Shanghai, China)

Sigma-Aldrich ND
(St. Louis, MO, USA)

Quality Duration
control
reported?
(Y/N)
Y 7 days
Y-HPLC 1-5 weeks
Y 90 days
Y 5 days
Y 5 days
N 10 weeks
Y 20 days
Y 1-63 days
Y-Reverse phase 10 weeks
liquid
chromatography
Y 14 days
ND
Y 6-16 weeks
Y 10 days
Y 16 days
Y 16 days
Y 5 days

Anticancer Pharmacology of Naringin

Anticancer References
effects
1 Tumor size, Aroui et al.
Lsurvival, (2020)
langiogenesis
1 Tumor volume, Lietal
Ltumor weight (2013a)
TSurvival, [tumor Benkovic
growth, [tumor cell et al. (2007)
proliferation, Ttumor
regression
| Tumor growth, Orsoli¢ et al.
Tsurvival, [tumor (2010)
cell proliferation
1 Tumor growth, Knezevi¢
Tsurvival, [tumor et al. (2011)
cell proliferation
1 Tumor So et al.
development, (1996)
Ltumor weight
1 Tumor growth, Liu et al.
Tapoptosis (2017)
| Tumor growth, Zhang et al.
Ltumor size, (2018b)
ISTATS, |p-
mTOR, [NF-xB
1 Tumor cell Vanamala
proliferation, et al. (2006)
Tapoptosis
1 Tumor size, Tajaldini et al.
ltumor growth (2020)
[ Tumor growth, Miller et al.
ltumor number, (2008)
{tumor burden
1Cell proliferation, Thangavel
Tapoptosis, and Vaiyapuri
IAgNOR/nuclei (2013)
TApoptosis, [tumor Cai et al.
size, [tumor weight,  (2018)
Ltumor growth,
1Bcl-xL, |Bcl-2,
leyclin D1, [c-Myc,
1 survivin,
Tcaspase-3,
Tcaspase-7
| Tumors growth, Wu et al.
Tapoptosis (2019)
lInvasion, Ming et al.
Imigration |cyclin (2018)
D1, [MMP-2,
|Bcl-2, |Zeb1
1 Tumor growth Kanno et al.
(2005)

(Continued on following page)
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TABLE 4 | (Continued) Potential anticancer effects and related mechanisms of action of naringin based on in vivo studies.

Cancer Animal Dose Source

type model

Sarcoma Male Wistar rats 10-85mg/kg  Sigma-Aldrich
(carcinosarcoma)  bearing W256 tumor (St. Louis, MO, USA)
Skin (melanoma)  C57BL/6 female 200 nmol/kg  Sigma-Aldrich

mice bearing
B16FIO tumors

(St. Louis, MO, USA)

Purity Quality Duration Anticancer References
(%) control effects
reported?
(Y/N)

ND Y 50 days | Tumor growth, Camargo
Tsurvival, |TNF-q, et al. (2012)
lIL-6

ND Y 10 days | Metastatic foci Menon et al.
formation, Tsurvival, (1995)
llung tumor
nodules

Note: A down arrow indicates a reduction or decrease and an up arrow indicates an increase. AQNOR, argyrophilic nucleolar organizer region; Bcl-2, B-cell lymphoma 2; Bcl-xL, B-cell
lymphoma-extra-large; DEN, diethylnitrosamine, DMBA, 7,12-dimethylbenz|ajanthracene; MMP-2, matrix metallopeptidase-2;, mTOR, mammalian target of rapamycin; ND, not
determined; NF-xB, nuclear factor-«xB; STAT3, signal transducer and activator of transcription three; Zeb1, zinc finger E-box binding homeobox 1.

cell viability (Pereira et al., 2007). One study demonstrated that
in vitro naringin treatment reduced the VEGF production in
K562 human leukemia cells (Mellou et al., 2006). Naringin also
increased the inhibitory activity of trypsin and enhanced the
antiplatelet aggregation activity and cytotoxic activity against P-
388D1 (mouse lymphoid neoplasma) and L-1210 (mouse
lymphocytic leukemia) cell lines (Kim et al., 1998). Another
study also showed that in vitro naringin treatment suppressed
cell proliferation and growth in Raji lymphoma cells
(Ramanathan et al., 1992).

Brain Cancer

Gliomas are the most aggressive and frequent brain tumors, and
regardless of progress in therapeutic management, they are still
lethal. Accordingly, various therapeutic approaches are required to
treat this aggressive disease (Martinez-Vélez et al, 2018). One
study examined the antitumor effects of naringin treatment in vitro
and in vivo. Results indicated that naringin had a toxic impact on
the U-87 cell line and reduced cancer cell proliferation and viability
in a concentration-dependent way. Moreover, naringin
administration also suppressed tubulogenesis and angiogenesis
and reduced tumor size and cell invasion U-87 mouse xenograft
tumor model (Table 4) (Aroui et al, 2020). Another study
demonstrated that naringin could specifically suppress the focal
adhesion kinase (FAK) activity and inhibit the FAKp-Try397 and
its downstream pathway in glioblastoma cells. Treatment of U87
and U251 glioblastoma cells with naringin blocked cell
proliferation through suppression of the FAK/cyclin Dl
pathway and induction of cell apoptosis via the FAK/Bad
pathway. It also inhibited cell metastasis and invasion by
suppressing the FAK/MMPs pathway (Li et al., 2017). Another
study demonstrated that naringin had inhibitory impacts on the
migration, adhesion, and invasion of U87 and U373 human
glioblastoma cells in a concentration-dependent way.
Additionally, naringin inhibited several aspects of the MAPK
signaling pathways, including p38, ERK, and JNK, and led to
the downregulation of the MMP-9 and MMP-2 expression and
enzymatic activities, contributing to the suppression of metastasis
of glioblastoma cells (Aroui et al., 2016a). Treatment with naringin
also reduced cell proliferation and viability in U251 glioma cells.
Additionally, naringin suppressed cell invasion and migration via

the modulation of matrix metallopeptidase-9 (MMP-9) and MMP-
2 expressions. Therefore, naringin might have therapeutic potential
for the control of the invasiveness of malignant gliomas through
suppressing the p38 signal transduction pathways (Aroui et al.,
2016b). In an in vitro study, the treatment of U343 and U118
glioma cells with naringin showed a reduction in VEGF levels
(Schindler and Mentlein, 2006). These findings have shown a new
potential for exploring the capability of naringin as a promising
therapeutic agent in gliomas.

Breast Cancer

Breast cancer is a heterogeneous group of tumors. Lately, a large
number of personalized treatments for breast cancer have been
introduced, with proven effectiveness (Cadoo et al., 2013). Natural
products containing bioactive compounds are being used for both
chemotherapy and cancer chemoprevention. Treatment with naringin
suppressed proliferation and growth, and also increased apoptosis in
MCEF-7 cell lines (Puranik et al., 2019; Elansary et al., 2020). One study
indicated that treatment with naringin alone or in combination
with the sodium salt of carboxymethyl cellulose-phenyl
alanine and sodium caseinate-phenyl alanine reduced
viability and proliferation of MCF-7 cell line. Besides,
naringin in hybrids had a greater cytotoxic effect in
comparison to naringin alone (Basta et al., 2020). Moreover,
treatment with naringin and its metal complexes decreased cell
viability and proliferation and increased apoptosis in MCF-7
cell line (Atta et al., 2019). Based on the results, metal
complexes of naringin demonstrated the highest cytotoxicity
against cancer cells in comparison with naringin alone (Fazary
et al,, 2017). In another study, mononuclear palladium (II)
complexes of naringin were synthesized, and the cytotoxic
effect against MCF-7 cells was investigated. Results showed
that naringin complexes reduced the viability and proliferation
of breast cancer cells (Karami et al., 2018). Another study
showed that treatment with naringin and its iron and copper
complexes resulted in a reduction in the proliferation and
viability of MCF-7 breast adenocarcinoma cell line (Selvaraj
et al,, 2014). One study, using different breast cancer cells
(MCE-7 and MDA-MB-231), indicated that naringin reduced
cell viability and promoted apoptosis and cycle arrest in breast
cancer cells (Kabata-Dzik et al., 2018).
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TABLE 5 | Anticancer effects of naringin-based nano-drug delivery systems.

Anticancer Pharmacology of Naringin

Nano- Cancer Study Cell Dose/Conc Source Purity Quality Duration Outcomes References
formulation type type line/animal (%) control
model reported?
(Y/N)
Gold-naringin Lung Invitro  A549 cell 16-90 ug/ml Sigma-Aldrich ND Y 1-5days  |Cell viability Sangubotla
nanoclusters line (St. Louis, MO, et al. (2020)
United States)
Naringin-reduced ~ Colon Invitro  HT-29 cell 0.39-125 uM  KPI. (Shanghai, ND Y 24 h 1Cell growth, Han et al.
graphene oxide line China) Lcell (2020)
nanosheets proliferation,
Tapoptosis
Ti-Naringin-PBA-  Osteosarcoma  Invitro  Saos-2 cell 98.6 pg/ml Aladdin ND Y 1-7 days  TApoptosis, Yang et al.
ZnO line industrial co. TROS, (2020)
nanoparticles Ltd. (Shanghai, TMAPK/ERK
China) pathway
Nanostructured Liver In vitro;  HepG2 cell 0.39-25 uM;  Shanghai (>98%) Y 1-10days |Cell Zhu et al.
lipid carrier- Invivo line; BALB- 20 mg/kg Standard proliferation, (2020)
containing nu nude Technology Tapoptosis,
naringin and coix mice with Co. Ltd. Lcell viability,
seed oil HepG2 (Shanghai, Ltumor
xenografts China) growth
PTX-NRG-MIC Breast In vitro  MCF-7 cell 156-100 mg/  Sigma-Aldrich ND Y 4-24 h 1Cell growth, Jabri et al.
micelles line ml (Taufkirchen, Lcell viability, (2019)
Germany) Tintracellular
uptake
Naringin-PF68 Liver, breast In vitro;  Caco-2, 0.1-40 pM; Sigma-Aldrich ND Y-HPLC 1-7 days  |[Tumor Mohamed
micelles and colorectal  Invivo  HepG2, and 100 mg/kg co. (St louis, growth, |cell et al. (2018)
MCF-7 cell MO, viability, [cell
lines; female United States) proliferation,
Swiss albino 1 Tumor size
mice with
EAC cells
PLGA Lung Invitro  A549 cell 0.78-100 yM  Sigma-Aldrich ND Y 10-70h  |Cell viability, Said-Elbahr
nanoparticles co- line (St. Louis, Lcell et al. (2016)
encapsulating MO, USA) proliferation,
naringin and Tapoptosis
celecoxib
Naringin- Breast and In vitro  MCF-7, 30-100 pg/ml  Sigma-Aldrich ND Y 24 h 1Cell viability,  Singh et al.
conjugated gold prostate MDA-MB- (Chandigarh, Leell (2016)
nanoparticles 231, T47D, India) proliferation
and PC-3
cell lines

Note: A down arrow indicates a reduction or decrease and an up arrow indicates an increase. EAC, Ehrlich ascites carcinoma; ERK, extracellular signal-regulated kinase pathway; MAPK,
mitogen-activated protein kinase; ND, not determined; PLGA, poly D,L-lactide-co-glycolic acid copolymer; PTX-NRG-MIC, paclitaxel- and naringin-loaded mixed micelles; ROS, reactive
oxygen species; Ti-naringin-PBA-ZnO, titanium-naringin-3-carboxyphenylboronic acid-zinc oxide.

Recently, there has been an increased interest in polyphenolic
antioxidants because of their health advantages, which has
resulted in the evaluation of novel polyphenolic compounds
with increased antioxidant activity, such as naringin oxime.
Treatment with naringin oxime reduced cell viability and
proliferation in CMT-U27 canine mammary carcinoma cells.
New oxime-type antioxidants, such as naringin oxime, can be
synthesized from various flavanones, and these derivatives may
be used as anticancer and radioprotective agents (Ozyiirek et al.,
2014). In another study, triple-negative breast cancer cell lines
(MDA-MB-231, MDA-MB-468, and BT-549) were used to
investigate the antitumor effect and related mechanisms of
naringin. Results showed that naringin suppressed cell
proliferation and increased Gl cycle arrest and apoptosis,
accompanied by enhanced p21 and reduced survivin. Besides,

the [B-catenin signaling pathway was blocked by naringin
treatment. Correspondingly, the anticancer potential of
naringin was investigated in an in vivo condition, and
naringin decreased tumor volume and weight in naringin-
treated MDA-MB-231 xenograft mice (Li et al., 2013a).
Irinotecan is a semi-synthetic derivate of camptothecin that
belongs to the class of topoisomerase I inhibitors and has
significant activity against various cancers. In vivo studies
showed that treatment with naringin alone or combined with
irinotecan suppressed tumor growth and tumor cell proliferation
and promoted survival in Ehrlich ascites tumor cell bearing-mice.
Besides, naringin enhanced irinotecan-induced cytotoxicity to
cancer cells in mice bearing Ehrlich ascites tumors, while
protecting normal cells (Benkovic et al, 2007; Orsoli¢ et al,
2010; Knezevi¢ et al, 2011). Another study also showed that
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FIGURE 3| Molecular mechanisms underlying anticancer effect of naringin. Bax, Bcl-2-associated X protein; Bak, Bcl-2 homologous antagonist/killer; Bcl-2, B-cell
lymphoma 2; Bcl-xL, B-cell ymphoma-extra-large; Bid, BH3-interacting domain death agonist; cyt. ¢, cytochrome c; EGF, epidermal growth factor; EGFR, epidermal
growth factor receptor; ERK1/2, extracellular signal-regulated kinase 1 and 2; FAK, focal adhesion kinase; MEK, mitogen-activated protein kinase; MMPs, matrix
metallopeptidases; MTOR, mammalian target of rapamycin; NF-kB, nuclear factor-«B; p53, tumor protein p53; PI3K, phosphatidylinositol-3-kinase; Raf, rapidly
accelerated fibrosarcoma; TNF-a, tumor necrosis factor-a; VEGF, vascular endothelial growth factor; Zeb1, zinc finger E-box binding homeobox 1.

naringin increased cell death in Ehrlich ascites tumor cells  apoptosis. It also inhibited the Wnt/B-catenin pathway by
(Menon et al, 1995). Naringin treatment also inhibited the  reducing the protein expression and phosphorylation of
development of mammary tumors and decreased the tumor  glycogen synthase kinase-3p (Ser9) and P-catenin (Ser576),
weight in Sprague-Dawley rats induced by 7,12-dimethylbenz ~ while simultaneously induced cell cycle arrest (Chen et al,
[a]anthracene (DMBA) (So et al., 1996). Numerous solid tumors 2020). In vitro treatment of SiHa cells with naringin decreased
induce vascular proliferation through the production of  cell proliferation and viability by G2/M cell cycle arrest and
angiogenic factors, especially vascular endothelial growth  induced apoptosis via DwM disruption, and intrinsic and
factor (VEGF). One study demonstrated that naringin extrinsic pathway activation (Ramesh and Alshatwi, 2013).

treatment decreased the level of secreted VEGF from MDA- The doxorubicin (DOX) application in cervical cancer
MB-231 cells (Schindler and Mentlein, 2006). chemotherapy is severely hampered by the DOX side effects.

The formation of DOX-iron complexes by oxygen free radicals
Cervical Cancer plays an important role in DOX-induced toxicity (Myers, 1998).
Cervical cancer is the second-highest cause of death among  Fortunately, flavonoids have excellent radical scavenging and
women between the ages of 20 and 39 years (Fidler et al,  iron-chelating properties (Kaiserovd et al., 2007), and they can

2017). Although chemotherapy is the standard therapeutic = act as an effective modulator for DOX-induced toxicity.
option, the survival rates of patients with cervical cancer are Treatment with naringin, DOX, and their combination
poor and need improvement via investigation of specific = reduced cell proliferation in HeLa human cervical cancer cells
antitumor agents with less adverse effects on healthy cells  and suppressed HeLa cervical tumor and induced cell apoptosis
(Pfaendler and Tewari, 2016). Hence, novel therapeutic targets  in tumor-bearing mice. More importantly, the combined
are urgently required for the improvement of cervical cancer  treatment had a greater antitumor effect in comparison to
therapeutics. One study evaluated the antiproliferative effect and  either agent alone (Liu et al., 2017). Another study showed
the associated mechanism of naringin-induced cell death in  that naringin treatment suppressed plasma membrane-
C33A, SiHa, and HeLa human cervical cancer cell lines. associated sialidase (NEU3), and the NEU3-inhibitory effect of
Results demonstrated that naringin treatment reduced cell  naringin promoted GM3 accumulation in HeLa cells, resulting in
viability and induced endoplasmic reticulum stress-mediated  epidermal growth factor receptor (EGFR)/ERK  signaling
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TABLE 6 | Anticancer effects of naringin based on google patents and US patents registry.

Patent NO Cancer types Subjects Results Major outcomes References
ES2519040T3 Liver and lung cancers Cell lines, Inhibiting TGF-p1 signaling pathway; Treating or preventing  Liang et al. (2008)
animals, and improving serum IFN-y fibrosis and tumors
humans
US7326734B2 Bladder cancer Cell lines Inhibiting cell proliferation Treating or preventing  Zi et al. (2004)
tumors
US10307393B2 Pulmonary carcinoma, esophageal Cell lines and Reducing the release of the inflammatory ~ Radiotherapy Liang et al. (2016)
carcinoma, breast carcinoma, and animals factors (IL-1p, IL-6, TNF-a, TGF-B, and protection and treating
mediastinum tumors IFN-y) tumors
JP2005508312A Colorectal, cervical, gastric, lung Cell lines, Inhibiting MDR1 gene expression Treating or preventing ~ Gunther and
cancer, malignant glioma, ovarian, animals, and tumors Reinhold, (2005)
and pancreatic cancers humans
KR20060120101A  Prostate, colorectal, and liver Cell lines Binding to EGR-1-like promoter sequences ~ Treating or preventing ~ \Wong et al. (2004)

cancers

to modulate the expression of cancer

tumors

related genes (p21 and p53)

EGR1, early growth response 1; IFN-y, interferon-y, IL-1B, interleukin-1p; IL-6; interleukin-6; MDR1, multi-drug resistance-1; TGF-$1, transforming growth factor-g1; TNF-«, tumor

necrosis factor-a.

attenuation accompanied by a reduction in cell growth and
enhancement of apoptotic cells (Yoshinaga et al, 2016).
Additional studies demonstrated that naringin decreased
proliferation and viability and also induced apoptosis of HelLa
cervical adenocarcinoma cells (Ramanathan et al., 1992; Elansary
et al,, 2020) by blocking the NF-kB/cyclooxygenase-2 (COX-2)-
caspase-1 pathway (Zeng et al., 2014).

Colon Cancer

Colorectal cancer (CRC) is one of the most frequent malignant
tumors. The primary methods for CRC treatment are
radiotherapy, chemotherapy, and surgery. However, because of
the challenges rising from drug resistance, it is vital to explore
additional effectual compounds targeting alternative signaling
pathways (Van der Jeught et al., 2018). Studies show that naringin
has antineoplastic activities and treatment with naringin can
reduce proliferation, and viability, while also enhancing
apoptosis in HT-29 colon adenocarcinoma (Elansary et al,
2020) and CT26 colorectal cancer cell lines (Zhou et al., 2018).
Another study indicated that treatment of human colon tumor
cell lines (HCT116 and SW620) with naringin suppressed the
CRC cell viability and proliferation, and promoted apoptosis by
suppressing the phosphoinositide-3 kinase (PI3K)/protein
kinase-B (also known as Akt)/mammalian target of rapamycin
(mTOR) signaling pathway (Chidambara Murthy et al.,, 2012;
Cheng et al., 2020). Naringin treatment also induced apoptosis in
Colo 205 and Colo 320 human colon cancer cells (Ugocsai et al.,
2005). However, one study indicated that naringin had no
inhibitory effect on cell growth of COLO 320HSR, COLO 205,
and HT 29 colon cancer cells (Shen et al., 2004). In another study,
naringin treatment interestingly abrogated cell growth and
proliferation in human colon adenocarcinoma cells (HT29) in
a concentration-dependent manner, and bio-transformed
naringin showed significant antiproliferative activity (Ferreira
et al, 2013). Also, treating HCT116 human colorectal
carcinoma cells with naringin and synthesized binary and
ternary platinum and vanadium metal complexes has shown
moderate cytotoxic activities, with enhanced apoptosis and

reduced cell viability and proliferation (Fazary et al., 2017). In
another study, the antitumor effect of naringin was examined
alone and in hybrids with SCMC-PA and SC-PA conjugates
against the HCT116 colon cancer cells. Results showed that
naringin, individually or in hybrids, reduced the proliferation
and viability of colon cancer cell lines (Basta et al, 2020).
Naringin also increased the inhibitory activity of trypsin and
enhanced the antiplatelet aggregation activity and cytotoxic
activity toward SNU-C4 human colon cancer cells (Kim et al.,
1998).

In an in vivo study, the cytotoxic impacts of naringin on
azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced
colorectal carcinogenesis and inflammation in C57BL/6 mice
were investigated. Results indicated that naringin-treatment
reduced tumor size and growth in C57BL/6 mice through
inhibiting robust endoplasmic reticulum stress-induced
autophagy in colorectal mucosal cells (Zhang et al, 2018b).
Another study showed that naringin reduced tumor cell
proliferation and promoted apoptosis in AOM-injected
Sprague-Dawley rats (Vanamala et al, 2006). Glyoxalase-I
(GLO-I), the ubiquitous detoxification system component, is
involved in methylglyoxal (MG) conversion to D-lactate in the
glycolytic pathway and has been shown to be regularly
overexpressed in several cancer cells (Thornalley, 2008). One
study showed that naringin reduced GLO-I activity and
suppressed cell proliferation and viability in Caco-2 human
epithelial colorectal adenocarcinoma cells (Yadav et al., 2016).
However, naringin had no cytotoxic impact on Caco-2 and HT-
29 human colon adenocarcinoma cells (Kuo, 1996).

Esophageal/Head and Neck Cancer

Esophageal carcinoma is a relatively rare cancer with a high death
rate worldwide (Pennathur et al.,, 2013). DOX is an important
chemotherapy agent that has been widely used as an antitumor
agent (Hajjaji et al., 2012). Recent works demonstrated that the
combination of herbal medicines and chemotherapy drugs have
several advantages. One study showed that treatment with
naringin alone or combined with DOX reduced cell viability
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and proliferation in YM1 esophageal cancer cell line, and reduced
tumor size in xenograft mice tumor model (Tajaldini et al., 2020).
An in vivo study indicated that naringin treatment markedly
reduced tumor size and growth, and also significantly decreased
tumor burden in the hamster cheek pouch oral cancer model
(Miller et al., 2008). A separate study demonstrated that in vitro
treatment with naringin reduced cell viability in HEp2 human
laryngeal carcinoma cells. Naringin also reduced lipid
peroxidation and enhanced cytochrome P-450 (CYP) 1Al
expression in laryngeal cancer cell lines (Durgo et al., 2007).

Liver Cancer

Irrespective of the combined efforts of researchers and clinicians
around the world, there has been a continuous increase in the
incidence rate of hepatocellular carcinoma (HCC) over the last
two decades (Alwhibi et al., 2017). In one study, HepG2 cell lines
were used to examine the possible antiproliferative and cytotoxic
effects of naringin and/or methotrexate (MTX). Naringin and/or
MTX treatment exhibited cytotoxic and antiproliferative effects
and induced apoptosis in HepG2 hepatocellular cancer cells via
Bax activation and downregulation of Bcl-2 protein expression in
a concentration-dependent way. Additionally, naringin
potentiated the viability and cytotoxic effect of MTX in
HepG2 cells (Elsawy et al., 2020). In another study, naringin
substantially reduced the viability and proliferation of HepG2
cells (Syed et al., 2020). Naringin treatment also significantly
suppressed proliferation, upregulated the expression of
microRNA (miR)-19b, and promoted apoptosis in HepG2
cells. Additionally, it downregulated the Bcl-2 protein
expression and upregulated the Bax protein expression to
trigger apoptosis (Xie et al, 2017). Naringin blocked
proliferation and enhanced early apoptosis of HepG2 cells via
activation of Bid proteolysis mediated by caspase-8 and caspase-
9. Therefore, the intrinsic and extrinsic pathways were linked in
naringin-mediated apoptosis in HepG2 cells. Additionally,
increased expression levels of pro-apoptotic Bak and Bax
proteins and reduced levels of anti-apoptotic Bcl-xL protein
were demonstrated, verifying the participation of the
mitochondrial pathway (Banjerdpongchai et al, 2016b).
Treatment with naringin reduced proliferation, viability, and
growth and promoted apoptosis in HepG2 cells through
extrinsic and intrinsic pathways (Banjerdpongchai et al,
2016a; Zhou et al., 2018). In another in vitro study, the
cytotoxic effect of naringin in different hepatocellular
carcinoma cells (Huh-7, HepG2, and HA22T) was
investigated. Treatment with naringin inhibited MMP-9
transcription by suppressing NF-kB and activator protein-1
(AP-1) activity. It inhibited 12-O-tetradecanoylphorbol 13-
acetate (TPA)-induced AP-1 activity by suppressing the
phosphorylation of the c-Jun N-terminal kinase (JNK) and
ERK signaling cascades, and it inhibited TPA-induced
suppression of NF-kB nuclear translocation by IkB. This data
demonstrates that naringin inhibits the metastasis and invasion
of HCC cells by suppressing multiple signal transduction
pathways (Yen et al,, 2015). In another study, treatment with
various concentrations of naringin hampered cell growth and cell
proliferation of HepG2 cells and biotransformation with tannase
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significantly increased its antiproliferative activity (Ferreira et al.,
2013).

Diethylnitrosamine (DEN) is one of the major environmental
carcinogens and hepatotoxins (Sreepriya and Bali, 2005). In an in
vivo experiment, the apoptotic and antiproliferative effect of
naringin on DEN-induced liver carcinogenesis in male Wistar
rat models was evaluated. Results showed that treatment with
naringin significantly reduced the levels of proliferating cell
nuclear antigen (PCNA) and the argyrophilic nucleolar
organizer region (AgNOR)/nuclei. Naringin also suppressed
proliferation and enhanced apoptosis in the liver cancer cells
of rats (Thangavel and Vaiyapuri, 2013). In one study, cytotoxic
actions of the synthesized binary and ternary platinum and
vanadium metal complexes of naringin were evaluated using
HepG2 cells. Results demonstrated that treatment with
naringin and its metal complexes reduced cell viability and
proliferation, and enhanced apoptosis in liver cancer cells.
Additionally, metal complexes of naringin had a greater
cytotoxic effect compared with naringin alone (Fazary et al,
2017). Moreover, naringin treatment of Hepl and HA22T
human liver cancer cells resulted in the suppression of cell
viability and growth (Hsiao et al, 2007a). In another study,
naringin treatment increased cytotoxic and antiplatelet
aggregation activities and enhanced trypsin inhibition in
HepG2 cells (Kim et al., 1998). However, at least one study
demonstrated that naringin did not suppress cell growth in Hepa-
1clc7 mouse liver cancer cell line (Campbell et al., 2006).

Lung Cancer
Lung carcinoma is one of the main causes of cancer-related death
worldwide (Jemal et al., 2002). The high death rate of lung cancer
is possibly due to challenges associated with diagnosis and a high
metastatic potential (Sangodkar et al., 2010). Consequently, it is
essential to determine non-toxic alternative therapies to improve
the responsiveness of lung cancers to chemotherapy. Treatment
with naringin reduced viability and growth in the A549 human
lung adenocarcinoma (Nie et al., 2012), and Lewis lung
carcinoma (LLC) cell lines (Hsiao et al., 2007a). Naringin
treatment also suppressed cell viability and proliferation, and
promoted apoptosis in human small cell lung cancer cells
(H69AR) by regulation of miR-126/Akt/mTOR/PI3K pathway
via miR-126 overexpression and suppression of VCAM-1, p-Akt,
PI3K, NF-«B, and p-mTOR pathways (Chen et al., 2018). In one
study, the antimetastatic properties of naringin were evaluated,
and results showed that treating A549 lung cancer cells with
naringin resulted in a reduction of cell invasion, cellular motility,
cell viability, and cell-matrix adhesion (Hsiao et al., 2007b). In a
separate study, treatment with naringin increased the inhibitory
activity of trypsin and enhanced its cytotoxic and anti-platelet
aggregation activity against A549 cells (Kim et al., 1998).
Ruthenium is a great alternative to platinum due to its
extensive variety of oxidation states and its capability to form
complexes with bioactive ligands (Jayakumar et al, 2018).
Naringin was used to fabricate a ruthenium complex with
anticancer activity. Results showed that a naringin-ruthenium
(II) complex reduced cell viability and proliferation, and
promoted apoptosis in A549 human lung adenocarcinoma
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(Garcia et al., 2019). Also, treatment with naringin alone and in
combination with transition metal ions [Ag (I), Y (III), and Ru
(III)] reduced cell growth and viability, and enhanced apoptosis in
A549 human lung adenocarcinoma. Additionally, results showed
that transition metal ions enhance the naringin activity when they
are coordinated with each other (Atta et al.,, 2019). Another study
showed that treatment of A549 cells with naringin promoted
accumulation of GM3 through inhibition of NEU3 and resulted
in the attenuation of ERK/EGFR signaling accompanied by a
reduction in cell growth (Yoshinaga et al., 2016).

Neuroblastoma

Neuroblastoma is the most frequent extracranial solid tumor in
children. There is an increasing interest in using plant-derived
dietary compounds for the treatment of several solid tumors,
including malignant neuroblastoma (Yamane and Kato, 2012).
Naringin treatment reduced cell viability and promoted apoptosis
in rotenone-treated SH-SY5Y human neuroblastoma cell line
through suppression of P38 and JNK phosphorylation, as well as
activation of caspase-3 and caspase-9 (Kim et al., 2009).

Ovarian Cancer

Ovarian cancer is a heterogeneous group of neoplasms, which is
classified based upon type and degree of differentiation. It is one
of the most deadly female reproductive system malignant tumors
(Cho and Shih, 2009). The most efficient treatment for ovarian
cancer is platinum-based chemotherapy and surgical
cytoreduction (Jessmon et al,, 2017). Resistance to platinum-
based agents is one of the difficulties of ovarian cancer treatment
using pharmacological agents (Choi et al,, 2008). Therefore,
investigating novel agents with low toxicity and high efficacy
that can also reduce resistance to platinum-based agents, is very
important. NF-kB is highly expressed in cisplatin-resistant
ovarian cancer cell lines and has a crucial role in the drug
resistance of ovarian cancer cells (Choi et al., 2008). One
study demonstrated that the inhibitory effect of naringin was
associated with inhibition of the NF-«xB signaling pathway, and
treatment with naringin significantly reduced P-glycoprotein
(P-gp) and NF-kB expression in a concentration-dependent
way in SKOV3/CDDP cisplatin-resistant human epithelial
ovarian cancer cell line (Zhu et al,, 2018). Another study also
indicated that naringin downregulated COX-2 and NF-xB
expression in a concentration-dependent way in SKOV3/
CDDP cells (Zhu et al.,, 2017). In an in vivo study, treatment
with naringin reduced ovarian tumor size and weight in tumor-
bearing mice. Naringin also induced apoptosis by decreasing
c-Myg, Bcl-2, surviving, cyclin D1, and Bcl-xL and increasing
caspase-3 and caspase-7 levels in ovarian tumor cells. Such
suppression may be related to the NF-kB signaling pathway
regulation (Cai et al, 2018). Interestingly, at least one study
indicated that naringin had no obvious inhibitory impact on cell
growth and proliferation of OVCAR-3 human ovarian cancer cell
line (Luo et al., 2008).

Prostate Cancer
Prostate cancer is the second most common cancer in men and
the fourth most common cancer overall (Ferlay et al., 2015). The

Anticancer Pharmacology of Naringin

combined consumption of nutraceutical agents and
chemotherapeutic drugs is a great approach for increasing the
therapeutic anticancer impacts, as well as easing adverse effects of
chemotherapy and drug resistance (de Oliveira Junior et al,
2018). Atorvastatin, a 3-hydroxyl-3-methylglutaryl coenzyme
A reductase inhibitor, has demonstrated antitumor activity in
prostate cancer (Allott et al,, 2017). One study examined the
anticancer effect of naringin in combination with atorvastatin on
PC-3 and LNCaP prostate cancer cell lines. Results demonstrated
that combined treatment of atorvastatin and naringin
synergistically induced apoptosis, reduced cell growth,
suppressed invasion and migration, and potently inhibited AR,
p-STAT3, survivin, p-Akt, and Bcl-2 expression levels.
Additionally, treatment with naringin alone or combined with
atorvastatin suppressed the tumor growth in tumor-bearing
SCID mice, and the combined treatment demonstrated a
greater inhibitory effect compared to either compound alone
(Wu et al., 2019). In another study, PC3, DU145, and LNCaP cell
lines were treated with different concentrations of naringin,
paclitaxel, and their combinations. Treatment with naringin
individually or combined with paclitaxel suppressed cell
proliferation and cell survival in a concentration- and time-
dependent way through induction of apoptosis and cycle
arrest as well as decreased cell migration via inhibition of NF-
kB, ERK, and Akt signaling and upregulation of phosphatase and
tensin homologue (PTEN) expression. Taken together, naringin
synergistically promoted the paclitaxel cytotoxic impact in PCa
cell lines (Erdogan et al., 2018). In an in vitro study, treatment
with naringin decreased cell viability and proliferation as well as
enhanced apoptosis in DU145 prostate cancer cell line. Naringin
also enhanced oxidative stress and had a genotoxic effect on
prostate cancer cells (Lewinska et al., 2015).

Sarcoma

Even though adjuvant chemotherapy has led to the improved
survival rates in osteosarcoma patients, the development of
multidrug resistance has seriously influenced prognosis and
limited the success of therapeutic attempts (Davis et al., 2018).
Hence, novel and effective drugs for osteosarcoma treatment are
required. One study showed that naringin treatment suppressed
cell migration, invasion, and proliferation, and promoted
apoptosis and cell cycle arrest in MG63 and U20S human
osteosarcoma cells through blockage of zinc finger E-box
binding homeobox 1 (Zebl), which plays a role in tumor
metastasis. Additionally, naringin decreased tumor nodule
formation and expression of MMP-2, Bcl-2, and cyclin D1 in
the livers of mice bearing MG63 osteosarcoma cell line (Ming
et al,, 2018). However, another study indicated that naringin did
not affect the MG-63 osteosarcoma cells’ growth rate (Zhang
et al., 2018a). In vitro treatment of JJ012 human chondrosarcoma
cells with naringin reduced cell invasion and migration through
the suppression of VCAM-1 expression by enhancing miR-126
expression (Tan et al., 2014).

In an in vivo study, naringin treatment demonstrated
significant inhibition of tumor growth in male ddY mice
bearing S180 sarcoma cancer cells (Kanno et al.,, 2005). In vivo
treatment of naringin decreased TNF-a and IL-6 levels,
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suppressed tumor growth, and increased the survival rate in
Wistar rats bearing W256 carcinosarcoma cells (Camargo
et al., 2012).

Skin Cancer

Melanoma is the leading cause of mortality from skin cancer (Siegel
and Naishadham, 2013). Historically, melanoma has been refractive
to chemotherapy which provides very low response rates and very
few beneficial effects in overall survival. Therefore, multiple targeted
therapeutic approaches have been examined (Ascierto et al., 2013).
Treatment of A375 and A875 melanoma cell lines with naringin
promoted cycle arrest and apoptosis, and also suppressed cell
proliferation and growth in a concentration-dependent way.
Naringin also suppressed c-Src and cancer cell metabolism
through suppression of the c-Src/Akt signaling pathway, leading
to a decrease in cell migration and invasion (Guo et al, 2016).
Another study demonstrated that naringin treatment reduced the
metastatic foci formation and increased the survival rate in mice
bearing B16FIO melanoma cells (Menon et al., 1995). Another study
also indicated that in vitro treatment of naringin reduced cell
invasion in MO4 mouse melanoma cell line (Bracke et al., 1991).
In an in vitro study, the anticancer effect of the naringin-derived
copper (II) complex was investigated. The results showed that
treatment of B16FIO melanoma with naringin or naringin-Cu
(IT) complex reduced cell proliferation and growth, increased cell
death, and decreased diphenylpicrylhydrazyl radical (DPPH).
Additionally, it demonstrated that the naringin-Cu (II) complex
had higher anti-inflammatory, antioxidant, and anticancer activities
in comparison to free naringin without decreasing cell viability
(Pereira et al., 2007).

Stomach Cancer

Gastric cancer is the fourth most detrimental cancer-related death
in the world (Torre et al., 2015). A large number of cancer cases
and mortality could be avoided with early detection, using the
phytomedicine intervention as an alternative to radiotherapy and
chemotherapy. One study investigated the mechanism behind
naringin-mediated autophagic cell death in AGS gastric cancer
cell line. Naringin treatment promoted lysosomal membrane
permeabilization through suppression of Akt/mTOR/PI3K
signaling cascade, resulting in lysosomal cell death protein
cathepsin D-mediated ERK1/2-p38 MAPKs activation through
Bcl-xL decrease, and Bad, BH3, and ROS increase in autophagy-
mediated cell death in AGS cell line. Additionally, rapamycin pre-
treatment with naringin indicated a significant reduction in
mTOR phosphorylation and enhancement in LC3B activation
in AGS cells compared with naringin treatment alone (Raha et al.,
2020). In another study, naringin treatment suppressed viability
and growth in the AGS (human gastric epithelial 108
adenocarcinoma) cells (Hsiao al, 2007a). Naringin
treatment of AGS cells induced autophagy-mediated growth
suppression through suppression of PI3K/Akt/mTOR cascade,
and potentially via activation of MAPKs (Raha et al, 2015).
Furthermore, treatment with naringin increased the inhibitory
activity of trypsin and increased the cytotoxic activity and anti-
platelet aggregation activity against SNU-1 human stomach
cancer cells (Kim et al., 1998).

et
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Thyroid Cancer

Thyroid cancer is the most frequent malignant tumor of the
endocrine system (Kweon et al., 2014). The current approach for
thyroid cancer treatment includes thyroid hormone inhibition
therapy, surgical treatment, adjuvant radiotherapy, and isotope
iodine-131 therapy. However, there are several disadvantages for
these different types of treatment (Tang et al., 2017; Zivancevic-
Simonovic et al.,, 2017). Hence, the development of low-toxic,
effective, and new inhibitors is important in improving the
survival rates of thyroid cancer patients. One study showed
that in vitro treatment of SW1736 and TPC-1 thyroid cancer
cells with naringin reduced cell proliferation and promoted
apoptosis via suppression of PI3K/Akt pathway (Zhou et al,
2019).

NANOSTRUCTERED FORMULATIONS OF
NARINGIN IN COMBATING
MALIGNANCIES

In the past two decades, nanotechnology-based delivery systems
have gained interest as a method to overcome the challenges
associated with solubility, bioavailability, distribution, low
therapeutic index, toxicity and targeting of conventional
chemotherapeutic drugs as well as anticancer natural
compounds (Feng and Mumper, 2013; Davatgaran-Taghipour
et al., 2017; Kashyap et al., 2021; Lagoa et al., 2020). Naringin is
one of the most fascinating phytopharmaceuticals that has been
broadly examined for different biological activities. Yet, its
suboptimal bioavailability, limited permeability, and low water
solubility have restricted its use. A useful approach to overcome
these difficulties is encapsulation of the agent into different nano-
sized delivery vehicles (Mohamed et al., 2018).

Gold-naringin nanoclusters (GNNC) showed cytotoxic effects
against A549 lung cancer cells and reduced the cell viability with
increased concentrations of GNNC. At the same time, the WI-38
levels in lung normal cells remained elevated, even after treatment
with high doses of GNNC (Sangubotla et al., 2020) (Table 5).

With advances in nanotechnology and the extensive use of
graphene, it has become essential to evaluate the possible
disadvantages of graphene. Thus, most of the current studies
are focused on different modified graphene. Naringin-reduced
graphene oxide nanosheets (fGO@Nar), promotes cytotoxicity in
the colon cancer cells (HT-29) through increased apoptosis and
reduced cell viability and proliferation. The rGO@Nar plus
naringin is more efficient toward colon cancer in comparison
to rGO@Nar or naringin alone. Additionally, it has been shown
that rGO@Nar together with naringin and rGO@Nar can
efficiently eliminate tumor cells without affecting normal cells
(Han et al, 2020). rtGO@Nar may be a promising agent for
assessment in the in vivo models of colon cancers.

After bone tumor resection, the large deficits are normally
reconstructed with titanium (Ti)-based metallic endoprosthesis.
When applied in osteosarcoma resection, Ti implant-related
infection and tumor recurrence were determined as two
crucial factors for failure of implantation. Ti-naringin-3-
carboxyphenylboronic  acid  (PBA)-zinc oxide (ZnO)
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nanoparticles reduce infection and tumor recurrence and induce
Saos-2 osteosarcoma cells apoptosis through activation of ROS/
ERK signaling. In vitro cellular experiments showed that these
nanoparticles could promote the proliferation and growth of
osteoblasts (Yang et al, 2020). Nevertheless, in vivo
experiments are required for understanding the anticancer
properties of Ti-Naringin-PBA-ZnO  nanoparticles in
osteosarcoma.

Lipid-based nanoparticles are another delivery system that has
particular benefits due to their unique properties, such as
biodegradation, biological compatibility, multiple routes of
administration, and convenient and easy industrial scale-up
process (Rout et al., 2018). Nanostructured lipid carriers
containing naringin and coix seed oil (NCNLCs) were
successfully fabricated, and their cytotoxic activity was
evaluated. NCNLCs reduced proliferation and viability and
promoted apoptosis in HepG2 liver cancer cells and had a
greater cytotoxic effect compared with free naringin, NONLCs,
and NDNLCs. Moreover, the in vivo synergistic anticancer
efficacy was evaluated in NCNLCs in xenograft tumor mice
models and results showed that NCNLCs upregulated the IL-
10 and IL-6 expression in the serum of tumor-bearing mice and
inhibited tumor growth (Zhu et al., 2020).

The development of multidrug resistance (MDR) has
restricted the efficacy of chemotherapeutic agents. Co-delivery
of natural flavonoids with anticancer drugs in polymeric micelles
is a potentially significant approach for overwhelming MDR and
enhancing their anticancer efficacy. Paclitaxel co-encapsulation
with naringin in mixed polymeric micelles increased in vitro
cytotoxicity toward MCF-7 breast cancer cell line. Paclitaxel- and
naringin-loaded mixed (PTX-NRG-MIC) micelles synergistically
reduced the growth and viability of MCF-7 cell line and increased
their intracellular uptake. Additionally, PTX-NRG-MIC micelles
are more effective toward breast cancer when compared to
naringin or paclitaxel (Jabri et al, 2019). Yet, in vivo
experiments are required to confirm the active targeted
delivery of PTX-NRG-MIC micelles.

Naringin polymeric micelles based on pluronic F68 were
fabricated and their in vitro cytotoxicity was assessed against
different cancer cell lines. Naringin-PF68 micelles reduced the
viability and proliferation of Caco-2, HepG2, and MCF-7 cells.
Furthermore, Swiss albino mice were used to evaluate the
anticancer activity of naringin-PF68 micelles compared to the
free drug. Results showed that PF68 micelles of naringin reduced
tumor size and inhibited tumor growth in tumor-bearing mice.
Naringin-PF68 micelles had a greater cytotoxic effect when
compared with free naringin (Mohamed et al., 2018).

In another study, poly D,L-lactide-co-glycolic acid copolymer
(PLGA) nanoparticles co-encapsulating celecoxib and naringin
synthesized and induced apoptosis and inhibited
proliferation in the A549 cells in a concentration-dependent
manner. They also showed greater cytotoxic activity on A549
cells in comparison to the combination of free drugs, while
exhibiting significant safety on healthy lung tissues (Said-
Elbahr et al., 2016).

In another study, gold nanoparticles (AuNPs) were
synthesized using naringin as a reducing and stabilizing agent

were
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to create nano-theranostic agents. Naringin-conjugated gold
nanoparticles (N-AuNPs) were evaluated with cytotoxicity and
hemolysis assays, which showed their biocompatibility with
MDA-MB-231 cell lines and normal red blood cells, while also
demonstrating their potential to induce cell death in T47D, PC-3,
and MCF-7 cell lines. In vivo studies must be conducted to
confirm the active targeted delivery of N-AuNPs in cancer
(Singh et al., 2016).

Taken together, results show that the nano-drug delivery
systems have the capability to overwhelm the pharmacokinetic
restrictions of naringin, highlighting its impacts on cancer
therapy. Further research is required for designing surface-
modified nano-formulations of naringin to achieve adjusted
drug delivery systems.

PHARMACOKINETICS AND TOXICITY OF
NARINGIN

After a single oral administration (42 mg/kg) of naringin in aged
rats, minor differences were shown in the area under the plasma
concentration-time curve (AUC) of total naringenin and naringin
gained in the gastrointestinal tract, stomach, liver, muscle, kidney,
and brain between male and female aged rats. It must be
mentioned that the AUC of naringin in the trachea (3,140%)
and lung (1,250%) of female rats in comparison to male rats were
considerably higher, indicating that naringin may exhibit gender
differences in the treatment of respiratory diseases in elderly
individuals (Zeng et al, 2019). In multiple-dose studies, no
considerable accumulation of naringenin was detected in rats,
dogs, and humans. In single-dose studies, various
pharmacokinetic parameters in females, including the
elimination half-life (t;,) (naringenin, rats, oral, 42 mg/kg),
AUC (naringin, humans, 160 mg (high-fat diet); naringin, rats,
oral, 21 mg/kg; and naringenin, humans, 40 mg), peak plasma
concentration (C,,,) (naringenin, humans, 40 mg), and time to
reach Cyax (Tmao) (naringenin, rats, oral, 168 mg/kg) were
considerably higher than those of males, while a small number
of pharmacokinetic parameters in females, including AUC
(naringin, humans, 40mg) and C,,.x (naringenin, rats,
i.v., 42 mg/kg) were significantly lower than those of males. In
multiple-dose studies, considerably greater female parameters
were only detected in rats (naringenin, accumulation index,
1.79 + 0.457 and naringin, Ty, 2.70 + 1.48h) (Bai et al,
2020). The plasma drug concentration-time curves indicate
that the oridonin AUC 0-24h value was nearly three times
larger compared to naringin, while the naringin dose was
approximately four times larger compared to oridonin,
indicating that the oridonin absorption in rats is higher than
naringin (Jin et al.,, 2015). Naringin administration (15 mg/kg)
suppressed the P-gp function and considerably enhanced the
candesartan intestinal absorption by 3.2 times (Surampalli et al.,
2015). After administration of 600 and 1,000 mg/kg naringin
through the duodenal cannula, the naringin average Cp, in
portal plasma was measured at 18.8 + 3.8 min, while the naringin
absorption ratios in lymph fluid and portal plasma were nearly
4.1 and 95.9, respectively. This suggests that naringin may be
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absorbed through portal blood and concentrations may be
reduced via bile excretion (Tsai and Tsai, 2012). In membrane
toxicity studies, naringin administration (15 mg/kg, w/w) did not
cause any toxicity; but, it insignificantly increased the protein
release from the intestinal membrane (Surampalli et al., 2015).
The sub-chronic and acute toxicology of naringin was indicated
to be almost non-toxic for Sprague-Dawley rats, and the naringin
no-observed-adverse-effect-level (NOAEL) in rats was larger
than 1,250 mg per kg per day after oral administration for
13weeks (Li et al, 2013b). No intestinal membrane
impairment was noted in the naringin presence through
measurement of the alkaline phosphatase and protein release
(Surampalli et al., 2015).

CONCLUSIONS AND FUTURE DIRECTIONS

Natural products have played an important part in the treatment
of human diseases and most notably, in cancer therapies.
Naringin, a flavone glycoside, is promising for the treatment
of many diseases due to its low cost, broad availability, long
history of use, and variety of pharmacological actions, with the
predominant evidence currently focusing on its anticancer
impacts. Naringin alone, or combined with other drugs may
be useful for treating cancers. Emerging studies showed that
naringin-metal complexes have greater anticancer activities
compared to free naringin. Naringin can impact several cancer
types, including glioblastoma, hepatocellular carcinoma, lung
adenocarcinoma, breast cancer, prostate cancer, melanoma,
leukemia, colon cancer, gastric cancer, oral cancer, brain
cancer, bladder cancer, and ovarian cancer. It has been
demonstrated that naringin employs multiple mechanisms to
hamper cancer initiation, promotion, and progression via
modulation of several dysregulated signaling cascades
implicated in inflammation, proliferation, cell survival,
apoptosis, autophagy, angiogenesis, invasion, and metastasis
(Figure 3). In particular, the cancer-inhibitory effects of
naringin have been linked to the regulation of various
signaling pathways, such as Nrf2, NF-«kB, PI3K/Akt/mTOR,
JNK, ERK, and p38 MAPK. Naringin intervenes with the
function of various signaling molecules, such as caspases, Bax,
TNF-a, Bcl-2, VEGF, and ILs. Various patents have shown that
naringin can specifically affect desired targets (Table 6), making it
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Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor and the second
leading cause of cancer-related death in the world. Plumbagin (PL) is a small molecule
naphthoquinone compound isolated from Plumbago zeylanica L. that has important
anticancer properties, but its mechanism requires further investigation. In this study,
we used a comprehensive network pharmacology approach to study the mechanism of
action of PL for the treatment of HCC. The method includes the construction of multiple
networks; moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed to identify biological processes and
signaling pathways. Subsequently, in vitro experiments were performed to verify the
predicted molecular mechanisms obtained from the network pharmacology-based
analysis. Network pharmacological analysis showed that PL may exert anti-HCC
effects by enhancing reactive oxygen species (ROS) production to generate oxidative
stress and by regulating the PIBK/Akt and MAPK signaling pathways. In vitro experiments
confirmed that PL mainly mediates the production of ROS, regulates the PI3K/Akt and
MAPK signaling pathways to promote apoptosis and autophagy, and shows significant
therapeutic effects on HCC. In conclusion, our work proposes a comprehensive systems
pharmacology approach to explore the potential mechanism of PL for the treatment
of HCC.

Keywords: plumbagin, hepatocellular carcinoma, network pharmacology, ROS, PI3K/Akt pathway, MAPK pathway

INTRODUCTION

Hepatocellular carcinoma (HCC) comprises a group of malignant tumors that seriously threaten human
life. Surgical treatment is currently the accepted treatment of choice, but the high recurrence and high
metastatic characteristics of HCC severely restrict the survival prognosis of HCC patients (Farazi and
Depinho, 2006). In recent years, studies have found that traditional Chinese medicine can inhibit the
growth and proliferation of HCC cells in various ways and has a prominent role in HCC treatment
(Franco and Usatoff, 2001; Belghiti and Fuks, 2012). Therefore, it is a feasible research direction to search
for potential liver cancer treatment drugs by screening and selecting biologically active ingredients that
can effectively reduce liver cancer mortality (Su et al., 2019).

East Asian (China, Japan, and South Korea) and traditional Chinese medicine (TCM) have been
widely used for disease prevention and treatment for more than two thousand years. Chinese herbal
medicine is an important part of Chinese medicine, including plant medicine, animal medicine
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and mineral medicine. In recent years, Chinese medicine has
received increasing attention (Lam et al., 2015). Plumbagin
(PL) is a natural naphthoquinone compound isolated and
purified from Plumbago zeylanica L., a traditional Chinese
medicinal plant from China (Tilak et al., 2004; Sakamoto et al.,
2011). A large number of studies have shown that PL has
antitumor, anti-liver fibrosis, anti-hepatitis B virus,
antiplatelet activity, anti-atherosclerosis and other effects
(Panda and Kamble, 2016). Studies have shown that PL has
significant inhibitory effects on leukemia, lung cancer, prostate
cancer, melanoma, breast cancer and other malignant tumors
(Subramaniya et al., 2011; Tian et al., 2011; Liu et al., 2017).
Previous experimental studies have shown that PL can induce
HCC SMMC-7721 cell apoptosis by inhibiting the epithelial-
mesenchymal transition (EMT) and inhibit HCC cell
angiogenesis and proliferation through the SDF-1-CXCR4/
CXCR7 axis (Wei et al., 2019; Zhong et al., 2019).

However, more detailed therapeutic targets and signaling
mechanisms of PL acting on HCC have not been revealed.
Therefore, to further explore the relevant mechanisms of PL
acting on HCC, this study aimed to identify therapeutic targets
and signaling mechanisms through network pharmacology based
on bioinformatics and verify them through relevant experiments
in vitro. Network pharmacology is an emerging new method to
explore the systemic mechanism of therapeutic compounds in
diseases (Kohl et al., 2011; Szklarczyk et al., 2016a). The workflow
is shown in Figure 1. Using network pharmacology to determine
herbal targets and potential mechanisms is becoming increasingly
important to save money, effort and time required for drug
discovery and design (Gyorffy et al.,, 2013; Zhang et al,, 2013).
Indeed, network pharmacology has successfully led to the
construction and visualization of drug-disease-target networks,
which are helpful for evaluating drug mechanisms from multiple
perspectives (Gao et al, 2016; Fang et al, 2017). Therefore,
network pharmacology can be used to determine the
pharmacological target and mechanism of action of PL in
HCC and provide guidance and evidence for future research
on the use of PL to treat HCC.

MATERIALS AND METHODS

Network Pharmacology-Based Analysis
Identifying PL Targets

The predicted genes were obtained by searching the keyword
“plumbagin” in the STITCH database (http://stitch.embl.de)
(Szklarczyk et al., 2016b). The chemical structural formula of
PL was entered into the SuperPred database (http://prediction.
charite.de) (Mathias et al., 2008) and the PhamMapper database
(http://lilab.ecust.edu.cn/pharmmapper/help.php) (Li al,,
2017). Additionally, the UniProt database (https://www.
UniProt.org/) was combined with the literature to collect PL-
predictive genes (Rolf et al, 2004), and the Swiss Target
Prediction  database  (http://www.swisstargetprediction.ch/)
(Antoine et al., 2019) was used to supplement the gene
prediction information. We predicted the target genes of the
compound by selecting the compound with the highest

et
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“Tanimoto score” and set the “minimum required interaction
score” to “high confidence (0.700)” in STITCH. The threshold of
“gene probability” was set to >0.6, and the related genes of the
predicted compounds in the “Swiss Target Forecast” were
selected.

Identification of HCC Prediction Genes

The significant prediction genes of HCC were retrieved from
OncoDB.HCC (http://oncodb.hcc.ibms.sinica.edu.tw/) (Su et al.,
2007) and the GeneCards database (https://www.genecards.org/)
(Marilyn et al., 2010). OncoDB.HCC can effectively integrate data
sets in public references, provide a multidimensional view of
current HCC research, and is the first comprehensive HCC
genome database. Potential genes associated with HCC were
collected from GeneCards with the keyword “Hepatocellular
carcinoma.”

Construction of the Components-Targets-Disease
Network

Venny2.1.0 (http://bioinfogp.cnb.csic.es/tools/venny/) (Shade
and Handelsman, 2012) was used to screen common targets
related to PL and HCC. The Cytoscape v3.7.1 (Shannon et al,
2003) software was used to establish target disease and
component-target network models, and the merge function
was used to build component-target-disease network models.
The results were analyzed to determine the relationships in
the network model. The proteins were sorted according to
their degree of binding.

Gene Ontology and KEGG Pathway Analysis

Gene Ontology and KEGG pathway analyses can clarify the role of
potential targets by gene function and signaling pathways. The
Bioconductor package “org.Hs.eg.db” was installed and run in the
R software (Stoll et al., 2005). The drug-disease common targets
were converted into Entrez IDs, and then the “clusterProfiler”
package was installed in the R software. According to the converted
Entrez IDs, enrichment analysis of key target gene GO functions
and analysis of KEGG signaling pathways were performed with p <
0.05. The results were output in the form of bar and bubble charts.

EXPERIMENTAL VALIDATION

Chemicals and Reagents

Plumbagin (PL) was purchased from Sigma-Aldrich (St. Louis,
MO, United States) with purity >98%; the Acridine Orange
(AO)/Ethidium bromide (EB) Double Stain Kit was from
Solable Technology (Beijing, China); N-acetyl-l-cysteine,
SB203580, and SB202190 were from Sigma-Aldrich (St.
Louis, MO, United States); SC-79, MEK2206, 3-MA, and
Z-VAD-FMK were from Selleck (Texas, United States); the
BCA Protein Assay Kit, ROS Assay Kit, Annexin V-FITC
Apoptosis Detection Kit and Cell lysis buffer for Western
were all obtained from Beyotime Biotechnology (Shanghai,
China); antibodies against Akt, phospho-Akt, mTOR,
phospho-mTOR, p38 MAPK, phospho-p38 MAPK, PI3K,
phospho-PI3K, LC3B, cleave-RP, and cleave-caspase 3 were
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from Cell Signaling Technology, Inc. (Boston, MA,
United States); and p-p38 MAPK was purchased from
Boster Technology (Wuhan, China).

Cell Lines and Culture
The human HCC cell lines SMMC-7721 and BEL-7404 were
purchased from the Shanghai Institute of Biological Sciences

(Shanghai, China). The DMEM high-glucose medium
required for human HCC SMMC-7721 cell culture and the
RPMI-1640 medium required for human HCC BEL-7404 cells
were from Thermo Fisher Scientific (MA, United States). The
complete culture medium contained 10% fetal bovine serum
(FBS), 100 pug/ml penicillin and 100 pg/ml streptomycin, which
were obtained from Invitrogen (CA, United States). The cells
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were cultured in an incubator at 37°C with a humidified
atmosphere of 5% CO,.

Cell Viability Assay

Cell operations were performed on an ultraclean workbench.
After the cells were recovered, SMMC-7721 and BEL-7404 cells at
80% confluence were digested into seed plates and seeded in 96-
well plates at a density of 5 x 10° cells/well. After 24 h, the cells
were completely attached to the wall and then synchronized. Each
group was equipped with four auxiliary holes. A negative control
well was set up without seeding cells. After treatment with various
concentrations of PL (0.5, 3, 6, and 10 uM) for 6, 12 or 24hin a
5% CO, incubator at 37°C, 20 pL of 5 mg/ml MTT solution was
added to each well, the plates were wrapped in foil and protected
from light, and then placed in an incubator to continue
incubation for an additional 3-4h. The absorbance value of
each well was measured using a continuous spectrum scanning
microplate reader (Thermo Fisher, MA, United States) at a
wavelength of 560 nm.

AO/EB Staining

SMMC-7721 and BEL-7404 cells in logarithmic growth phase
were digested and plated. Three multi-wells were set up and
inoculated into a 24-well culture plate according to the standard
of 500 pL per well, after which a moderate concentration of PL
was added to stimulate the cells for 24 h. The supernatant was
discarded after the intervention, a final concentration of 1 ug/ml
AO/EB was added, and the plate was incubated for 10 min in the
dark. Observation by fluorescence microscopy (Olympus, Tokyo,
Japan) revealed that AO produces green fluorescence in the
cytosol and the nuclear compartment (emission peak between
530 and 550 nm). Fluorescence microscopy showed four cell
morphologies. The nuclear chromatin of living cells was green
and showed a normal structure; the nuclear chromatin of early
apoptotic cells was green, though the shape was shrunken or
rounded; the nuclear spot material of late apoptotic cells was
orange-red, and the shape was solid or as round beads; and the
nuclear chromatin of nonapoptotic dead cells was orange-red,
with normal cell morphology.

Detection of ROS

ROS  production determined using a 2,7'-
dichlorodihydrofluorescein ~ diacetate ~(DCFH-DA)  assay
(Beyotime, Shanghai, China). After treatment, SMMC-7721
and BEL-7404 cells were incubated with DCFH-DA for 30 min
at 37°C in the dark. The cells were then harvested and suspended
in PBS. The fluorescence intensity in each well was detected by an
LSM 700 confocal microscope (Zeiss, Hamburg, Germany).

was

Flow Cytometry for Apoptosis Analysis

The instructions of the Annexin V-FITC Apoptosis Detection Kit
were strictly followed to process each group of cells. The cells
were digested with trypsin without EDTA and washed twice with
prechilled PBS, and 10-50 x 10* cells were collected. The cells
were then resuspended in 100 puL of 1xBinding Buffer, and then
5uL each of Annexin V-FITC and PI staining solution were
added. The lysates were then mixed gently and incubated at room
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temperature in the dark for 10 min. The cells were detected by
flow cytometry within 1 h. Apoptosis rate = (number of apoptotic
cells/total number of cells observed) x 100%.

Immunofluorescence Staining

The cells were fixed with 4% paraformaldehyde for 15 min and
permeabilized with 0.1% Triton X-100 for 10 min. The cells were
then blocked with 2% bovine serum albumin (BSA) at 37°C for
30 min, after which the cells were incubated with anti-LC3B (1:
100, Cell Signaling Technology, Boston, United States) overnight
at 4°C. The cells were then incubated with the corresponding
secondary antibodies for 1h at room temperature. The nuclei
were stained with DAPI for 10 min and washed twice with PBS,
and then images were captured using an LSM 700 confocal
microscope (Zeiss, Hamburg, Germany).

Western Blotting

SMMC-7721 and BEL-7404 cells treated with the preset
intervention conditions were collected and proteins were
extracted. After using BSA to measure the absorbance, a
standard curve was prepared versus the standard, and the
protein concentration of the sample was determined according
to the standard curve. The samples were prepared according to
the instructions for the BCA protein quantitation kit. Depending
on the relative molecular weights of the proteins, 7.5-12.5%
PAGE-SDS gel electrophoresis was performed, and the
proteins were then transferred to PVDF membranes. The
PVDF membranes were blocked with 5% skimmed milk
powder for 1h at room temperature. Then, the following
appropriately diluted primary antibodies were added: anti-
B-actin (1:200), PI3K (1:1000), p-PI3K (1:500), Akt (1:2000),
p-Akt (1:500), mTOR (1:1000), p-mTOR (1:1000), p38 MAPK
(1:1000), p-p38 MAPK (1:500), cleave-caspase 3 (1:1000), cleave-
PARP (1:1000), and LC3B (1:1000). Next, the blots were
incubated at 4°C overnight. After washing three times with
PBS, the corresponding secondary antibody was added and
incubated for 2h at room temperature. After incubating with
the luminescent solution from the ECL kit, the film was exposed
in the cassette, the protein bands were developed, and Band Scan
software was used to scan grayscale images.

Statistical Analysis

Data are expressed as the means + standard deviation (SD).
Statistical analysis was performed using SPSS 22.0. One-way
ANOVA was used for comparisons between groups, and the
difference was statistically significant at p < 0.05.

RESULTS

Screening Results of PL Targets and HCC

Disease Targets

The 3D chemical structure of PL was imported into the
chemical substance interaction search tool STITCH and the
SuperPred and PhamMapper databases for retrieval; the Swiss
Target Prediction database was used to supplement the target
information. Then, the corresponding targets were input into
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the UniProt database, and after removing the duplicates, 98
targets of PL were obtained; the list of targeted genes is shown
in Supplementary Table S1. Potential genes related to HCC
were collected from GeneCards with the keyword
“hepatocellular carcinoma.” In addition, the potential
targets of HCC were retrieved from the OncoDB.HCC
database, and after removing the duplicates, 6192 targets
related to HCC were obtained; the list of targeted genes is
shown in Supplementary Table S2.

Network Construction
Among the 6192 HCC-related targets discovered, 84 targets were

common targets corresponding to PL. Through Venny 2.1.0,
AKT1, ALDH1A1, MTOR, NROB2, FOX0O3, FOXO1, MMP9,
SOD1, JUND, RECQL, CXCR4, NQOI1 and other common
targets were obtained (Figure 2A and Table 1). The 84 drug-
disease common targets of PL and HCC were input into
the Cytoscape 3.7.1 software, and a network diagram of the
“component-target-disease” interaction was drawn
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TABLE 1 | Common targets between PL and HCC.
Gene name

Histone acetyltransferase p300

Indoleamine 2,3-dioxygenase

Dual specificity phosphatase Cdc25B
Serine/threonine-protein kinase PIM1

Dual specificity protein phosphatase 1
Monoamine oxidase B

Glutathione reductase

Serine/threonine-protein kinase/endoribonuclease IRE1
Myoglobin

C-X-C chemokine receptor type 4

RAC-alpha serine/threonine-protein
Mitogen-activated protein kinase 8

Superoxide dismutase [Cu-Zn]

Transcription factor NF-E2

Solute carrier family 2

Proto-oncogene tyrosine-protein kinase
Cyclin-dependent kinase inhibitor 1

DNA topoisomerase |

RAF proto-oncogene serine/threonine-protein kinase
Tumor suppressor p53/oncoprotein Mdm?2
Vitamin D receptor

15-Hydroxyprostaglandin dehydrogenase [NAD+]
78 kDa glucose-regulated protein

Aldehyde dehydrogenase 1A1

Arachidonate 15-lipoxygenase

ATP-dependent DNA helicase Q1

Caspase-1

Caspase-7

DNA polymerase kappa

Dual specificity mitogen-activated protein kinase kinase
Endoplasmic reticulum-associated amyloid beta-peptide-binding protein
Microtubule-associated protein tau
Mitogen-activated protein kinase kinase kinase 14
Mitogen-activated protein kinase; ERK1/ERK2
Nuclear factor NF-kappa-B p65 subunit
Transcription factor AP-1

Transcription factor jun-D

Estrogen receptor, ER

Dual specificity mitogen-activated protein kinase kinase 4
Signal transducer and activator of transcription 3
Tyrosine-protein phosphatase non-receptor type 1
ES3 ubiquitin-protein ligase CBL

Nuclear receptor subfamily O group B member 2
E3 ubiquitin-protein ligase Mdm2
Serine/threonine-protein kinase mTOR

Heat shock protein HSP 90-alpha
Cyclin-dependent kinase 2

S-phase kinase-associated protein 2

E3 ubiquitin-protein ligase CCNB1IP1
G1/S-specific cyclin-E1

G1/S-specific cyclin-D3

Cyclin-dependent kinase 4

Glycogen synthase kinase-3 beta

Cyclic AMP-dependent transcription factor ATF-2
Integrin-linked protein kinase
Rapamycin-insensitive companion of mMTOR

Nitric oxide synthase, endothelial

Zinc finger protein Gfi-1

PCNA-associated factor

Forkhead box protein O3

Forkhead box protein O1

Breast cancer anti-estrogen resistance protein 1
Baculoviral IAP repeat-containing protein 3
Interleukin-6

Gene symbol

EP300
IDO1
CDC25B
PIM1
DUSP1
MAOB
GSR
ERN1
MB
CXCR4
AKT1
MAPK8
SOD1
NFE2
SLC2A4
SRC
CDKN1A
TOP1
RAF1
TP53
VDR
HPGD
HSPAS
ALDH1A1
ALOX15
RECQL
CASP1
CASP7
POLK
MAP2K1
HSD17B10
MAPT
MAP3K14
MAPK1
RELA
JUN
JUND
ESR1
MAP2K4
STAT3
PTPN1
CBL
NROB2
MDM2
MTOR
HSPO0AAT
CDK2
SKP2
CCNBH1
CCNET1
CCND3
CDK4
GSK3B
ATF2
ILK
RICTOR
NOS3
CDKNIA
PCNA
FOXO3
FOXO1
BCAR1
BIRC3
L6

Plumbagin Anti-Hepatocellular Carcinoma

Uniprot ID

Q09472
P14902
P30305
P11309
pP28562
P27338
P00390
075460
P02144
P61073
P31749
P45983
P00441
Q16621
P14672
P12931
P38936
P11387
P04049
P04637
P11473
P15428
P11021
P00352
P16050
P46063
P29466
P55210
QOUBT6
Q02750
Q99714
P10636
Q99558
pP28482
Q04206
P05412
P17535
P03372
P45985
P40763
P18031
P22681
Q15466
Q00987
P42345
P0O7900
P24941
Q13309
QINPC3
P24864
P30281
P11802
P49841
P15336
Q13418
Q6R327
P29474
Q99684
Q15004
043524
Q12778
P56945
Q13489
P05231
(Continued on following page)
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TABLE 1 | (Continued) Common targets between PL and HCC.
Gene name

Phosphatidylinositol 3-kinase regulatory subunit alpha
Bcl2-associated agonist of cell death
Histone-lysine N-methyltransferase 2A
Interleukin-4

Early activation antigen CD69

M-phase inducer phosphatase 1
CASP8 and FADD-like apoptosis regulator
Matrix metalloproteinase-9
Prostaglandin G/H synthase 2
DNA-(apurinic or apyrimidinic site) lyase
Perilipin-1

Muscleblind-like protein 3

Interleukin-2

Interleukin-2 receptor subunit alpha
Cytochrome P450 1A2

Ubiguinol oxidase 1a

Cytochrome P450 3A4

Cytochrome P450 2C9

Cytochrome P450 2D6

Interferon gamma

NAD(P)H dehydrogenase [quinone] 1

(Figure 2B). The above 84 common targets were entered into the
STRING database, and the PPI network of protein interactions
was analyzed (Figure 2C). The ranking of the top 30 targets is
shown in Figure 2D.

GO and KEGG Pathway Analyses
GO enrichment analysis was used to further study the biological
processes, cellular components and molecular functions of the 84
common targets. As shown in Figure 3A, the intersection genes
were enriched in 1,560 biological processes, and there were 164
biological processes with a number of enriched genes >10. The
results indicated that the top 20 GO items with significant
abundance (p < 0.001) are mainly related to biological processes
such as oxidative stress, reactive oxygen synthesis, cell proliferation,
and peptidyl-serine phosphorylation. Intersect gene enrichment analysis
of the expression processes of the 27 cell components revealed that they
are mainly related to transferase complex, transferring phosphorus-
containing groups, transcription factor complex, and membrane raft
(Figure 3B). The intersection genes were enriched in 100 processes
related to molecular function, mainly related to protein serine/threonine
kinase activity and phosphatase binding (Figure 3C). The above results
indicate that PL correlates highly with anticancer activity, and PL may
exert anti-HCC effects by participating in oxidative stress and reactive
oxygen synthesis, regulating protein kinase phosphorylation.
Furthermore, of the 84 common targets, 78 genes participate in 154
KEGG pathways with adjusted p-values <0.01; after sorting the
adjusted p-values, the top 20 pathways were analyzed (Figure 3D).
The results show that the common targets of PL and HCC are mainly
enriched in the PI3K-Akt, mTOR and MAPK signaling pathways.
Then, considering the complex mechanism of PL to treat HCC, a
complete “HCC pathway” was constructed by integrating the key
pathways obtained through KEGG network analysis, as shown in
Figure 3E. The results indicate that these integration pathways involve
multiple pathophysiological modules, such as cell survival,
proliferation, apoptosis, and angiogenesis. The PI3K/AKT pathway

Plumbagin Anti-Hepatocellular Carcinoma

Gene symbol Uniprot ID
PIK3R1 P27986
BAD Q92934
KMT2A Q03164
IL4 P05112
CD69 Q07108
CDC25A P30304
CFLAR 015519
MMP9 P14780
PTGS2 P35354
APEX1 P27695
PLINT 060240
MBNL3 QINUKO
L2 PB0568
IL2RA P01589
CYP1A2 P05177
AOX1 Q39219
CYP3A4 P08684
CYP2C9 P11712
CYP2D6 P10635
IFNG P01579
NQO1 P15559

is responsible for regulating cell proliferation and apoptosis, and the
mTOR/p38 MAPK pathway is responsible for regulating cell
autophagy. Therefore, we performed in vitro experiments to
validate that PL promotes apoptosis and autophagy through the
PI3K-Akt/p38 MAPK signaling pathway, thereby explaining the
potential therapeutic mechanism of PL in HCC treatment.

Experimental Validation

PL Inhibits HCC Cell Proliferation

The MTT assay was found that PL inhibited BEL-7404 and SMMC-
7721 cell proliferation (Lin et al,, 2018). And the inhibitory effect of PL
on BEL-7404 and SMMC-7721 cell proliferation was concentration-
and time-dependent. After treatment with different concentrations of
PL (0-10uM) at three time points (6, 12 and 24h), the cell
proliferation rate decreased significantly (p < 0.05). Within the dose
range of 3-10 M, the cell growth inhibition rate reached greater than
50% within 24 h (Figures 4A,C). The half-inhibitory concentrations
(IC50) of PL on BEL-7404 hepatocellular carcinoma cells were
4689uM at 6h, 2770uM at 12h, and 2457uM at 24h
(Figure 4B). The half-inhibitory concentrations (IC50) of PL on
SMMC-7721 HCC cells were 36.05uM at 6h, 541 uM at 12h,
and 243 pM at 24 h (Figure 4D) (Lin et al., 2018).

PL Mediated Reactive Oxygen Generation in HCC
Cells

Oxidative stress mediates the pathogenesis of liver cancer. The
network pharmacology GO analysis results indicate that PL may
mediate oxidative stress by activating the production of ROS and may
have an anti-liver cancer effect. In our in vitro validation experiments,
we treated BEL-7404 and SMMC-7721 cells with PL, the antioxidant
NAC and PL+NAC and then detected levels of ROS in the cells using
fluorescent probe technology. The results are shown in Figure 4E.
After PL treatment, ROS expression levels in the two cell groups were
significantly increased. Statistical analysis showed that after
treatment with PL+NAC antioxidants, ROS expression levels
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represents the counts of enriched targets. The gradient of color represents the different adjusted p values. (D) KEGG analysis for common targets of PL and HCC. The Y-axis
represents significant KEGG pathways, and the X-axis represents the ratio of enriched targets in a pathway to all common targets. The size of the nodes shows the count of targets,
and the gradient of color represents the adjusted p value. (E) Distribution of target proteins of PL on the compressed “HCC pathway.” Five pathways form the tubular HCC
pathway. Arrows show activation activity, T-arrows show inhibition activity, and segments represent indirect activation effects or inhibition effects.
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FIGURE 4 | (A) Cell viabilty of BEL-7404 cells treated with various concentrations of PL (0.5, 3, 6, and 10 uM) for 6, 12 or 24 h*; p < 0.05, *; p < 0.01 **; p < 0.001, compared
with the O uM group. (B) The 50% inhibitory concentrations (IC50) of BEL-7404 cells were 4.756 pM at 6 h, 2.690 pM at 12 h, and 2.407 uM at 24 h. (C) Cell viability of SMMC-7721
cells treated with various concentrations of PL (0.5, 3, 6, and 10 uM) for 6, 12 or 24 h; p < 0.05, **; p < 0.01 **; p < 0.001, compared with the O uM group. (D) The 50% inhibitory
concentrations (IC50) of SMMC-7721 cells were 7.796 pM at 6 h, 6.098 uM at 12 h, and 3.407 uM at 24 h. (E) The production of ROS was measured by DCFH-DA to assess
the level of oxidative stress. SMMC-7721 and BEL-7404 cells were pretreated with 10 mM NAC for 30 min and were then treated with 5 uM PL for 24 h, and fluorescence was
detected by confocal fluorescence microscopy. Scale bar, 50 pum. (F) For statistical analysis, the mean DCFH-DA fluorescence intensity (representing cellular ROS level) was measured
from 9 random fields for each culture. All values represent the mean + SEM of three independent experiments. “p < 0.05, *p < 0.01 vs. normal control group, respectively.

were lower than in the PL group but higher than in the NAC group  that cells in the PL group emitted green fluorescence after AO staining
(Figure 4F). These findings indicate that PL may mediate oxidative =~ The nuclei presented one to several bead-shaped bodies of varying
stress through the production of ROS and may promote an anti-liver  sizes, called apoptotic bodies, which are characterized by smooth and
cancer effect. clear edges, and the fluorescence under the excitation of a fluorescence

microscope is enhanced and uniform. These findings are consistent
PL Promotes Apoptosis by Mediating the Generation  with the nuclear morphological features of apoptosis. In addition, the
of ROS in HCC Cells cell membrane may display a “budding” phenomenon. Late apoptotic
SMMC-7721 and BEL-7404 cells were subjected to AO/EB staining  cells with damaged cell membranes were simultaneously stained by EB
(Lin et al,, 2018). Observation under a fluorescence microscope showed ~ and showed the same nuclear morphological characteristics, but the
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fluorescence showed orange-red, the green fluorescence of cells in the
PL+NAC group decreased after AO staining, and the formation of
apoptotic bodies was reduced, while the green fluorescence intensity
was stronger than that of the NAC group alone (Figures 5A,B). These
results indicate that PL may mediate apoptosis through ROS.
Moreover, we used flow cytometry to further verify that PL may
mediate apoptosis through ROS. As shown in Figures 5C,D, after PL
treatment, the percentage of apoptosis increased significantly
compared with the control group, mainly with regard to the
percentage of late apoptotic cells. The level of apoptosis in the
PL+NAC group was significantly reduced. Therefore, these findings
further indicate that PL may mediate apoptosis through ROS.

PL Induces Autophagy by Mediating the Production of
ROS in HCC Cells

The expression level of the autophagy marker LC3 in BEL-7404 and
SMMC-7721 cells after PL treatment was assessed by
immunofluorescence detection. As depicted in Figure 5E, the red
fluorescence of the autophagy marker LC3 in the PL group showed a
concentrated state, the fluorescence dot density increased, and the
fluorescence intensity increased, indicating that the expression level of
LC3 protein increased. In contrast, the fluorescence intensity decreased
in the PL+NAC antioxidant group. These findings indicate that PL
may induce autophagy by mediating the generation of ROS in HCC
cells, thereby playing a role in the treatment of liver cancer.

PIBK/Akt/ and mTOR/p38 MAPK Pathway Verification
Western blotting revealed no significant difference in expression of
Akt and mTOR phosphorylated protein in the PL low concentration
group compared with the control group in SMMC-7721 cells (p >
0.05). After intervention, the medium- and high-concentration groups
of PL showed significantly reduced expression of PI3K Akt and
mTOR phosphorylated proteins and upregulated expression of p38
MAPK phosphorylated proteins (Figure 6A). As shown in Figure 6B,
when using PI3K, MAPK, Akt, and mTOR as internal reference total
proteins for gray value analysis, the difference was statistically
significant (p < 0.05). For BEL-7404 cells, there was no significant
difference in expression levels of PI3K, MAPK, Akt and mTOR
phosphorylated proteins in the PL low-concentration group
compared with the control group (p > 0.05). Additionally, PI3K,
Akt, and mTOR phosphorylated protein expression was significantly
downregulated in the PL medium- and high-concentration groups,
with increased expression of p38 MAPK phosphorylated protein
(Figure 6C). As shown in Figure 6D, the difference was
statistically significant when using PI3K, MAPK, Akt, and mTOR
as internal reference total proteins for gray value analysis (p < 0.05).

PL Promotes Apoptosis Through the PISK/Akt
Signaling Pathway

We employed Western blotting to verify that PL mediates apoptosis
through regulation of the PI3K/Akt signaling pathway. The results
showed that for the SMMC-7721 liver cancer cell line, expression of
phosphorylated Akt was significantly downregulated in the PL group
compared with the control group. At the same time, protein expression
levels of cleave-caspase 3 and cleave-PARP were upregulated, but
caspase 3 and PARP total proteins were decreased, as shown in Figures
7A,B. After pretreatment with the Akt agonist SC-79 and apoptosis-
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targeting Caspase inhibitor Z-VAD-FMK for 1h followed by PL
treatment for 24 h, p-Akt levels increased, and the levels of cleave-
caspase 3 and cleave-PARP were reduced; however, caspase 3 and
PARP total protein levels remained unchanged. Interestingly, after
pretreatment with the Akt inhibitor MEK2206 for 1 h followed by PL
incubation for 24 h, there was no significant difference in protein
expression levels of p-Akt, cleave-caspase 3 and cleave-PARP
compared with the PL treatment group alone.

In the BEL-7404 liver cancer cell line, pretreatment with the Akt
agonist SC-79 and the apoptosis-targeting Caspase inhibitor Z-VAD-
FMK for 1h followed by PL treatment for 24 h upregulated p-Akt
expression. Protein expression levels of cleave-caspase 3 and cleave-
PARP were downregulated, which was consistent with the results for
SMMC-7721 cells (Figures 7C,D). The above results indicate that PL
mediates apoptosis by regulating the PI3K/Akt signaling pathway.

PL Induces Autophagy Through the mTOR/p38 MAPK
Signaling Pathway

The experimental results showed that in SMMC-7721 cells, both PL
and the autophagy agonist rapamycin upregulated the expression
level of the autophagy marker protein LC3 and the phosphorylation
level of p-p38 compared with the control group, and the difference
was significant. In addition, the autophagy inhibitor 3-MA and the
p38 MAPK inhibitors SB202190 and SB203580 jointly interfered in
SMMC-7721 cells treated with PL. Compared with the PL treatment
alone group, levels of LC3 were significantly downregulated in the
p-p383-MA+PL group. These expression levels indicated
suppression of PL-induced autophagy. In the SB202190+PL and
SB203580+PL groups, LC3 expression was increased, whereas that of
p-p38 was significantly decreased (Figures 8A,B).

In BEL-7404 cells, expression levels of the autophagy marker
protein LC3 in the PL and autophagy agonist rapamycin groups
were significantly increased compared with the blank control group.
In addition, the autophagy inhibitor 3-MA and the p38 MAPK
inhibitors SB202190 and SB203580 acted in BEL-7404 cells treated
with PL. Compared with the PL treatment group, the 3-MA+PL group
showed significantly decreased levels of LC3 and p-p38. LC3 expression
levels were increased in the SB202190+PL and SB203580+PL groups,
while p38 phosphorylation expression levels were significantly reduced
in the SB203580+PL group (Figures 8C,D). The above results indicate
that PL may simultaneously upregulate the phosphorylation of the p38
MAPK protein and induce autophagy in HCC cells.

DISCUSSION

HCC is a malignant tumor with high morbidity and mortality in
China and worldwide (Orcutt and Anaya, 2018 Jan-Mar). Due to its
rapid proliferation and high metastasis and recurrence rates, it is not
sensitive to the characteristics of conventional chemotherapy drugs
and is prone to drug resistance; thus, treatment of HCC is facing a
severe test. Although the current treatments for HCC include surgical
resection, arterial intubation chemotherapy, radiotherapy and local
treatment, the effects are not satisfactory. Moreover, substantial
progress in the diagnosis and treatment of HCC has failed to
greatly improve its efficacy. Therefore, international interest in
finding new ways to treat HCC is also increasing. The
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FIGURE 7 | (A) Protein expression levels of p-Akt, Akt, PARP, cleaved PARP, caspase 3, and cleaved caspase 3in SMMC-7721 cells measured by Westem blot after treatment with
5 uMPL, 10 uM SC79 Akt agonist, 10 pM MEK2206 Akt inhibitor and 10 uM Z-VAD-FMK caspase inhibitor. (B) p-Akt, Akt, PARP, cleaved PARP, caspase 3, and cleaved caspase 3 were
used as intemal reference total proteins for gray value analysis. *p < 0.05, *p < 0.01 **p < 0.001, compared with the PL group. #p < 0.05, ##p < 0.01 vs. the control group, respectively. (C)
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development and application of new drugs is important for
tumor treatment. The search for safe and effective anti-cancer
drugs is a major research topic in the treatment of HCC. By
exploring the regulation of multichannel signaling pathways,
network pharmacology can improve the efficacy of drugs and
the success rate of clinical trials, reducing the cost of drug
discovery (Zhang et al, 2013). In this study, network

pharmacology results from the network databases revealed
core gene targets, and we explored the biological functions,
pathways, and mechanisms of PL in HCC. The potential targets
and signaling pathways of PL acting on HCC were further
explored and verified through in vitro experiments. These
findings indicate that PL is a promising resource with
specific therapeutic effects on HCC.
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(C) Protein expression levels of LC3-I, LC3-Il, p38 MAPK; and p-p38 MAPK in BEL-7404 cells measured by Westem blot after treatment with 5 uM PL, 10 uM 3-MA autophagy
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In various human cancer cell lines, ROS is involved in autophagy, = MB-231 and MCEF-7 cells, ROS-induced JNK activation induces
apoptosis and cell cycle arrest (Zou et al,, 2017). Studies have shown  apoptosis through mitochondrial membrane depolarization (Lebelo
that c-Jun induced by ROS is activated and regulated in HeLa cells, et al, 2020). In addition, antioxidant N-acetylcysteine (NAC)
leading to apoptosis (Lo and Wang, 2013). In breast cancer MDA- restored the depleted GSH contents of the new polyphenol
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conjugate DPP-23 in pancreatic cancer MIAPaCa-2 cells, further
confirming that apoptosis and oxidation induced by DPP-23 stress
are closely related. These findings also show that oxidative stress is an
upstream event that induces apoptosis (Shin et al., 2014). Studies
have shown that the anticancer effects of PL are mainly related to
ROS generation, mitochondrial function, apoptosis and autophagy
and related signaling pathways (Zhou et al.,, 2015). In our study, GO
analysis results showed that the biological functions affected by the
common targets of PL and HCC are mainly related to oxidative
stress and ROS generation, and KEGG pathway analysis showed that
the targets are mainly concentrated in the PI3K/Akt/and mTOR/
MAPK signaling pathways. Our in vitro cell experiments confirmed
that PL can mediate the generation of ROS and promote apoptosis.
In addition, the phosphorylation levels of PI3K, Akt and mTOR
proteins in the PI3K/Akt signaling pathway were downregulated.
Our study also found that PL mainly mediates apoptosis through the
mitochondrial apoptotic pathway. These results indicate that PL-
induced apoptosis of human liver cancer cells is closely related to the
increase in intracellular ROS, and ROS may be an upstream factor
that regulates the PI3K/Akt/mTOR pathway. The interaction
between PL-induced autophagy and apoptosis varies with
different cell types, external stimuli and environments. Some
studies have suggested that autophagy is a potential partner,
antagonist or promoter of apoptosis. Our study found that the
autophagy inhibitor 3-MA can attenuate PL-induced apoptosis of
HCC cells. Therefore, we speculate that PL-induced autophagy can
enhance apoptosis to a certain extent, and when autophagy is
weakened by autophagy inhibitors, apoptosis will also be affected.

The p38 MAPK signaling pathway is thought to regulate
autophagy. p38 mitogen-activated protein kinase (p38 MAPK) is a
well-known kinase that is phosphorylated and participates in amino
acid signal transduction in bacterial lipopolysaccharide, heat shock,
osmotic stress and other environmental stress responses (Webber,
2010; Gupta et al, 2014). Recent studies have shown interaction
between the p38a type of p38 MAPK and a new ATGY binding
partner, p38IP, to control the level of starvation-induced autophagy
(Webber and Tooze, 2010). p38 MAPK has a dual role in autophagy: it
is both a positive and a negative regulator. Importantly,
phosphorylation of p38a leads to increased expression of the
autophagy protein marker LC3 (Moruno-Manchon et al, 2013).
Our study found that consistency between PL-induced autophagy
in HCC cells and the positive effect of p38a in autophagy control.
Overall, PL acts on SMMC-7721 and BEL-7404 cells to increase the
phosphorylation level of p38a, thereby inducing autophagy.

Studies have also shown that the pyridinimidazole compound
SB203580 is an inhibitor of p38 MAPK. It can inhibit the
expression of p38 and can induce autophagy when acting on
colorectal cancer cells. Prolonged inhibition can lead to cell death
with autophagy characteristics (Lim et al,, 2006). Our research also
found that after co-intervention of the p38 MAPK inhibitors SB203580
and SB202190 with PL, the expression levels of LC3 increased,
indicating that the level of autophagy increased. In addition,
expression of p-p38/p38 was significantly reduced. These results
indicate that using p38 MAPK inhibitors to reduce the
phosphorylation levels of p38 can also induce autophagy, suggesting
that this may be a potential mechanism that limits the degree of
autophagy that cells can withstand and that p38a activity may

Plumbagin Anti-Hepatocellular Carcinoma

determine the balance between cell survival and cell death during
cell stress. As autophagy is becoming an important factor affecting
many neurodegenerative diseases and cancers, p38 in the p38 MAPK
signaling pathway may become a clinical target for autophagy control.

CONCLUSION

In conclusion, this study identified key targets of effects of PL against
HCC through network pharmacology. In vitro experiments were
conducted to verify the effective molecular mechanism by which PL
targets HCC. This study shows that PL can promote apoptosis and
induce autophagy through ROS-mediated PI3K/Akt and mTOR/
MAPK signaling pathways and suggests that PL may exert anti-HCC
effects through multiple targets and signaling pathways. This study
also demonstrates that network pharmacology is of great significance
for target screening and pathway prediction of drugs and diseases.
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Bioactive plant derived compounds are important for a wide range of therapeutic
applications, and some display promising anticancer properties. Further evidence
suggests that phytochemicals modulate autophagy and apoptosis, the two crucial
cellular pathways involved in the underlying pathobiology of cancer development and
regulation. Pharmacological targeting of autophagy and apoptosis signaling using
phytochemicals therefore offers a promising strategy that is complementary to
conventional cancer chemotherapy. In this review, we sought to highlight the molecular
basis of the autophagic-apoptotic pathway to understand its implication in the pathobiology
of cancer, and explore this fundamental cellular process as a druggable anticancer target.
We also aimed to present recent advances and address the limitations faced in the
therapeutic development of phytochemical-based anticancer drugs.

Keywords: phytochemicals, pharmacology, apoptosis, autophagy, anticancer

INTRODUCTION

Cancer is responsible for 9.6 million deaths in 2018 and is listed as the second leading cause of death
globally. Cancer thus poses a pivotal public health concern worldwide (WHO, 2018). During the 20th
century, the cancer death rate was found to markedly increase, primarily because of abnormal
lifestyles, such as excessive tobacco use (Siegel et al., 2020), physical and chemical carcinogens
(Bhatia et al., 2020), alcohol use (Sanford et al., 2020), unhealthy diet (Khaltaev and Axelrod, 2020),
and biological carcinogens (Hartwig et al., 2020). Delaying cancer treatment initiation increases
patient mortality (Hanna et al., 2020). However, increased awareness about the need for lifestyle
modification, early detection, and treatment may have contributed to a decline in cancer prevalence
(i.e., by 1.5%, on average, per year from 2013 to 2017) (Henley et al., 2020). Cancer treatment options,
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such as chemotherapy, radiation therapy, hormone therapy, gene
therapy, immunotherapy, photodynamic therapy, targeted
therapy, surgery, palliative care, and a combination of these,
are increasing in both number and efficiency across multiple
types of cancer and for various patients (Markham et al., 2020).
The main goal of cancer therapy is to stimulate the death of
abnormal cells and preserve normal cells (Schirrmacher, 2019).
Chemotherapy is the backbone of many cancer treatments. It aids
in the reduction of tumor size and kills cancer cells at primary
sites or metastasizing sites (Sak, 2012; Alfarouk et al., 2015).
However, response to treatment varies substantially according to
the type of cancer or even with the same type of cancer (Sak,
2012). Resistance to chemotherapeutic agents poses a major
problem in cancer treatment, ultimately limiting the efficiency
of anticancer drugs, which causes therapeutic failure and
eventually death (Alfarouk et al, 2015). Chemotherapy
resistance can be attributed to numerous mechanisms,
including multi-drug resistance, alterations of cell death
mechanisms (autophagy and apoptosis), changes in drug
metabolism, epigenetic and drug targets, enhanced DNA
repair and gene amplification, tumor cell heterogeneity, drug
efflux and metabolism, and tumor microenvironment stress-
induced genetic or epigenetic alterations as a cellular response
to drug exposure (Wang et al., 2019). Among these mechanisms,
alterations in autophagy (‘self-eating’) and apoptosis (‘self-
killing’), which are two self-destructive processes that have
propelled scientific innovation, are the vital causes of
chemotherapy resistance (Thorburn et al, 2014). Autophagy,
an evolutionarily conserved and regulated cellular recycling
mechanism, has emerged as a key player in metabolic and
therapeutic stresses. In fact, this mechanism attempts to
maintain or restore metabolic homeostasis via the catabolic
degradation of unnecessary proteins and injured or aged
organelles (Santana-Codina al., 2017). The role of
autophagy in cancer treatment is paradoxical; it may act as a
pro-survival or pro-death mechanism to counteract or mediate
the cytotoxic effect of anticancer agents (Santana-Codina et al.,
2017). Autophagy primarily functions as a tumor suppressor by
modulating reactive oxygen species (ROS) within cells and
maintaining genetic instability (Levine and Kroemer, 2008).
Moreover, accumulating evidence suggests that faulty
autophagy is linked to malignant transformation of cancer
stem cells (Moosavi et al., 2018). Under these conditions,
autophagy stimulation might be a critical approach to halt
early tumor formation and development (Moosavi et al,
2018). However, autophagy can promote the growth and
survival of current tumors during migration and epithelial-to-
mesenchymal transition. Further, this process can help cancer
stem cells escape immune surveillance and make cancer cells
resistant to anoikis (Moosavi et al., 2018; Rahman et al., 2020). In
this regard, inhibition of autophagy increases chemotherapy-
induced cytotoxicity. Therefore, autophagy, a double-edge
sword that works in a context-dependent manner, blocks the
early stages of tumorigenesis while becoming a driver of tumor
invasion and metastasis at later stages (Moosavi et al., 2018). The
molecular mechanisms regulating the switch between these
different modes of action are poorly understood (Kardideh

et
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et al,, 2019). Nonetheless, the interplay between apoptosis and
autophagy can be leveraged to improve cancer therapy
(Tompkins 2019). Cancer cells become
chemotherapy-resistant by escaping some of the potential
apoptotic mechanisms, such as downregulated pro-apoptotic
signals, upregulated anti-apoptotic signals, and faulty apoptosis
initiation and implementation. However, the functional
relationship between apoptosis and autophagy is complex and
has recently been deciphered at the molecular level. Therefore,
modulating the key factors in the autophagic and apoptotic
pathways may be a novel therapeutic strategy for enhancing
chemotherapy efficiency.

The potential roles of phytochemicals in the modulation of
autophagy and apoptosis have recently been reviewed (Deng
et al, 2019). However, autophagy and apoptosis induction
and/or inhibition are extremely complex processes that require
thorough exploration. Nevertheless, a better understanding of the
crosstalk between autophagy and apoptosis will enable further
developments of novel anticancer therapeutic strategies. In this
review, we summarize the molecular mechanisms of autophagy
and apoptosis in cancer. Given the pivotal role of phytochemicals
in cancer therapy, we sought to discuss various phytochemicals
that could regulate autophagy and apoptosis-related signaling
pathways to enhance cancer chemotherapy outcomes.

and Thorburn,

METHODS

A literature-based search was accomplished to collect published
databases and relevant methodological contributions of the
molecular mechanism of phytochemicals in autophagy-
apoptosis modulation and cancer prevention has been
conducted using PubMed, Scopus, Google Scholar, Web of
Science, and Google that includes all original research articles
written in English on multifunctional role of phytochemicals.
Searching was conducted using various keywords including
autophagy,  apoptosis, = natural = compounds,  cancer,
phytochemical, neurodegenerative diseases, solid tumors and
lymphomas, heart/cardiovascular diseases, perspectives role
autophagy in cancer therapy and so on. All figures were
generated using Adobe Illustrator software.

MOLECULAR MECHANISM OF
AUTOPHAGY IN CANCER

Autophagy is a cellular process that breaks down or degrades
unwanted or aggregated dysfunctional cellular components
through fusion with lysosomes; this cellular process is known to
play an essential role in maintaining cellular function as well as
homeostasis (Krishnan et al., 2020). Autophagy preserves an active
interlink in cell defense as well as a cytostatic link in cancer cell
progression (Rahman and Rhim, 2017). Generally, the process of
autophagy might be introduced by the generation of pre-
autophagosomal structures known as phagophore assembly sites
(PAS) (Hurley and Young, 2017; Rahman and Rhim, 2017).
Phosphatidylinositol 3-phosphate (PI3K), which is associated with
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FIGURE 1 | Molecular mechanism of the autophagic pathway. Autophagy is initiated by the formation of a pre-autophagosomal structure. PI3K-AMPK and
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the endoplasmic reticulum (ER), plays an essential role in the
initiation of PAS formation (Kotani et al., 2018). AMP-activated
protein kinase (AMPK), mammalian target of rapamycin (mTOR),
and unc-51 like autophagy activating kinase-1 (ULK1) have been
demonstrated to facilitate phagophore formation during autophagy
induction (Alers et al., 2012), with Vps34, Vps15/p150, and Beclin-1
as recruiters for phagophore formation (Velazquez and Jackson,
2018). After phagophores are formed, phagocytosis occurs. This
process is subsequently followed by expansion and sealing to
elongate the membrane for autophagosome formation
(Rubinsztein et al, 2012). Mature autophagosomes bind to
lysosomes, resulting in autolysosome formation (Kardideh et al,
2019). Eventually, autolysosomes containing inner cargos are
degraded by acid hydrolases and produce nutrients; other
recycling metabolites subsequently preserve cellular homeostasis
(Figure 1). The fate of cancer cells is thus dependent on
autophagy (Wei and Huang, 2019). Autophagy decides whether
the cancer is suppressed or promoted under certain conditions.
mTOR plays an important role in protecting or activating oncogenic
cells through the induction of autophagy. However, chemotherapy
drugs have been found to suppress tumor cells by modulating
autophagic pathways. Furthermore, inhibition of this pathway
regulates cancer progression, and the influence of autophagy
becomes either a cellular survival or death function (Jung et al,
2020). The metabolism of malignant cells is intensely altered to
retain  their proliferation and survival under adverse
microenvironmental conditions. Autophagy plays an essential role
in maintaining metabolic adaptations in cancer cells (Goldsmith
et al,, 2014). Although autophagy is recognized to sustain neoplastic
cell metabolism under stress, the mutual association between cancer
cell metabolism and autophagy remains unknown. mTOR and
AMPK have been identified as the main signaling components
that modulate autophagy via the regulation of amino acid and
glucose levels (Alers et al, 2012). However, specific metabolites,
ROS, growth factors, palmitate, oxygen concentration, ATP to ADP

ratio, specific amino acid levels, and oncogenes regulate autophagy
initiation and autophagosome formation. Further, they regulate this
fine balance by assimilating these autophagy-related signals in cancer
(Singh and Cuervo, 2011; Panda et al, 2015). Prominently,
autophagy has been frequently identified to play a “dual role” as
it can either hinder or stimulate cancer initiation and progression
(Patra et al., 2020; Rahman et al., 2020a). In the present review, we
outline the dual role of autophagy in tumorigenesis and emphasize
our recent understanding of autophagy regulation of cancer cell
activation and metabolism to control tumor growth and progression.

MOLECULAR MECHANISM OF APOPTOSIS
IN CANCER

Apoptosis or programmed cell death is one of the predominant
strategies for blocking or avoiding cancer or cancer formation (Lopez
and Tait, 2015). Focusing on apoptosis is most effective for different
cancer types because escaping apoptosis is a trademark of cancer and
is indifferent to the type of cancer. Apoptosis is generally a central
pathway that is associated with intrinsic and extrinsic pathways
(Elmore, 2007). However, these extrinsic and intrinsic pathways
could be involved in the same station, which is known as the
execution pathway (Goldar et al, 2015) (Figure 2). To initiate
apoptosis in apoptotic cells, the extrinsic pathway uses
extracellular signals to induce apoptosis via stimulation of Fas
ligand, tumor necrosis factor (TNF), and TNF-related apoptosis-
inducing ligand (TRAIL), which interact with the extracellular
transmembrane domain of death receptors (DR) (Guicciardi and
Gores, 2009). Finally, caspases participate in the extrinsic pathway
and are generally typified as starter, stimulator, or executioner
caspases owing to their involvement and participation in the
apoptotic signaling pathways. The intrinsic apoptotic pathway is
directly involved in mitochondria-mediated proteins. Different
stimuli, such as adequate Ca®', impaired DNA molecules,
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FIGURE 2 | Mechanism of the apoptotic pathway in cancer. To initiate apoptosis, two central pathways are involved in this mechanism: the intrinsic pathway and
extrinsic pathway. The extrinsic pathway of apoptosis is well defined by the TNF-a/TNFR1 and FasL/FasR models. Herein, the death receptor is induced by an adaptor
protein; adaptor proteins are comprised of FADD (Fas-associated death domain) and TRADD (TNF receptor-associated death domain). The signaling that occurs
through the extrinsic pathway causes the attachment of DRs to specific death ligands (DLs), thereby forming a death-inducing signaling cascade (DISC). The
complex pathway of caspase-8 activation follows a predefined system that actively enables caspase-8 to detach from the DISC, whether or not the pro-domain of
caspase-8 is retained as part of the DISC to initiate the signaling phases of apoptosis. However, in most apoptotic cells, proteins are customarily engaged in intrinsic
phases that involve caspase-9, SMAC/DIABLO, Bcl-2, Bel-w, Aven, Nox, and MYC. Mitochondrial dysfunction is followed by the loss of inner membrane mitochondrial
potential, adequate formation of superoxide ions, impaired mitochondrial biogenesis formation, release of intra-membrane proteins, and matrix calcium glutathione
burst, which enumerate the important potential for cancer therapeutic strategies by triggering the intrinsic phases of apoptosis in tumor cells. The execution phase of
apoptosis initiator caspases, such as caspase-8/-9 or caspase-activated dnase (CAD), Poly (ADP-ribose polymerase (PARP), and other caspases such as caspase-3,
-6, -7, and caspase-10, are typified as upregulator or executioner caspases. Caspase-3 is the most essential and effective of all effector caspases because it can be

activated by all initiator caspases.

pro-apoptotic protein alternatively called BH3-only protein. BID

oxidative stress (OS), surplus oxidants, deprivation of growth factors,
and drug treatment and irradiation, have been associated with this
pathway (Ghavami et al., 2004; Hassan et al., 2020). When Bax/Bak
is incorporated into the mitochondrial membrane, it triggers the
release of cytochrome ¢ from the mitochondrial inner membrane
into the cytosol (Kim, 2005). The intrinsic pathway of cell death is
caused by Bcl-2 family proteins, which are pro-apoptotic and anti-
apoptotic proteins, including Bcl-2 and Bcl-xL (Ghobrial et al,
2005). Apaf-1 and procaspase-9 combine with cytochrome ¢ to
form an apoptosome. Both mitochondria-dependent (intrinsic) and
independent (extrinsic) pathways are connected at the same point,
called the execution pathway (Elmore, 2007). The extrinsic and
intrinsic phases are linked at the same point after caspase-8 is
triggered. Activated caspase-8 in the extrinsic mechanism
regulates the activation of BH3 interacting-domain (BID), a

then stimulates and oligomerizes the pro-apoptotic proteins, BAX
and BAK, resulting in an intrinsic apoptotic phase (Green and

Llambi, 2015).

PHYTOCHEMICALS MODULATE
AUTOPHAGY-APOPTOSIS SIGNALING IN

SEVERAL CANCERS

Autophagy plays an essential role in cancer treatment, especially
in chemotherapy, by removing dysfunctional organelles and
intracellular components and inducing lysosomal degradation.
This self-digestion mechanism strengthens cellular defense to
protect cells from various intracellular and extracellular stresses
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FIGURE 3| Major phytochemicals induce the signal transduction pathways that regulate autophagic and apoptotic cell death in cancer. Phytochemicals have been
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apoptotic cell death, respectively. Phytochemicals induce ER stress and apoptotic cell death. However, some phytochemicals modulate mitichrondrial biogenesis and
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Some phytochemicals activate autophagic signaling and inhibits cell growth and autophagy. For a detailed explanation, see the text.

and regulate redox balance to provide genomic and cytoplasmic ~ phytochemicals have proven to be promising for treating
stability. Emerging evidence supports the dual role of autophagy =~ many cancers (Mitra and Dash, 2018). In some cases,
in cancer (ie., as a promoter and an inhibitor of tumor  metabolites and synthetic products from natural compounds
development). However, the induction of autophagy in cancer =~ have demonstrated better chemopreventive effects than their
is still a potential strategy; this is because it induces type II  original compounds (Aung et al, 2017). Our model and
programmed cell death. During cancer initiation, autophagy  emerging evidence indicate that phytochemicals targeting the
regulators, such as mTOR and AMPK, are negatively  autophagic-apoptotic pathways are promising agents for cancer
modulated by tumor-suppressing factors, which cause  treatment for both pathways, or are dependent- and
autophagy induction (Comel et al, 2014). However, these  -independent of target-specific molecular mechanisms in
autophagy regulators are activated by several oncogenes that  cancer cells (Figure 3). Several phytochemicals and their
suppress autophagy and promote cancer formation (Choi  autophagic-apoptotic effects are summarized in Table 1.

et al, 2013). Autophagy also suppresses carcinogenesis by

regulating ROS, and excessive ROS production promotes Phytochemicals in Autophagy Signaling
tumor generation (Avalos et al., 2014; Filomeni et al., 2015).  Apigenin is a flavonoid derivative that modulates several kinase
Owing to their multifaceted therapeutic activities,  pathways and inhibits the cell cycle at the G2/M phase. Studies
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TABLE 1 | Phytochemicals that activate autophagy and apoptosis in various in vitro and in vivo cancer models.

Phytochemicals

Resveratrol

Eriocalyxin B (EriB)

B-Elemene
Oblongifolin C
Apigenin

Allicin

Anthocyanins

Aspalathin
Baicalein

Berberine

Capsaicin

Celastrol

Cordycepin

Curcumin
Epigallocatechin gallate
(EGCG)

Evodiamine

Fisetin

Genistein
Gingerol

Ginsenoside F2
Hispolon
3'-hydroxydaidzein
(3'-0DI)

Toxicarioside O

Falcarindiol

Oleanolic acid
Honokiol
Magnolol

Alisol B

Doses/
Conc

10-100 uM

1.4 uM

10 uM
15 uM
10 uM

1 pg/ml

50 uM

0.2 UM
200 pM

100 nM

150 M
1.5 uM
200 pM

25 UM

100 nM
10 uM
40-120 pM

50-100 pM
300 pM

100 pM
25-100 pM
100 pM

50 nM

6 pM

100 pg/ml
40 uM
40 uM

30 uM

Cancer model

Human colon carcinoma cell lines
SW480, SW620, B103, and
HCT116

Human pancreatic cancer
celPANC-1, SW1990 CAPAN-2,
and CAPAN-1

Human breast cancer cell lines
Bcap37, MBA-MD-231

Human breast carcinoma cell lines
Hela or MEF

Colorectal cancer cells HCT-116,
SW480, HT-29 and LoVo

Human gastric cancer cell line
MGC-803, BGC-823 and SGC-
7901

Breast cancer cell lines MCF-MDA-
MB-231 and MDA-MB-453

Ovarian cancer cell Caov-3

Human HCC cell lines SMMC-772
and Bel-7402

Human glioma cell lines U251 and
us7 GBM

Human nasopharyngeal
carcinoma cell line NPC-TWO1
Human prostate cancer cell lines
LNCaP, 22Rv1, DU145 and PC-3
Human brain cancer cellSH-SY5Y
and U-251

Malignant mesotheloma cancer
cell line MM-B1, H-Meso-1, and
MM-F1

Vascular endothelial cell line U-937

Gastric cancer cell line SGC-7901

Prostate cancer cell lines PC3 and
DU145

Ovarian cancer cell line A2780
Human colon cancer cell lines SW-
480 and HCT116

Breast cancer cell lines MCF-7

Cervical cancer cell lines Hela and
SiHa
Mouse melanoma cell line B16F1

Human colorectal cancer cell lines
HCT116 and SW480

Human breast cancer cell lines
MDA-MB-231,MDA-MB-468 and
Her2

Human pancreatic cancer cell line
Panc-28

Human glioblastoma cell lines
LN229, GBM8401 and U373
Human glioblastoma cell lines
LN229, GBM8401 and U373
Breast cancer cell lines MCF-7,
SK-BR-3, and Hela

Molecular effects

Activate procaspase-3, 8/FADD

Caspase 8,9 activation and
downstream regulation of caspases
3,7, PARP

Conservation of LC3-I to LC3-II

Activation of CASP3 and cleaved
PARP
Activate NAG-1, p583, p21

Increase expression of p38 and
cleaved Of caspase 3

Inhibit the expression of VEGF,
suppressed the MMP-9,MMP-2 and
UPA expression

Inhibit Dox, decrease expression of
p53 and induce AMPK and Foxo1
Downregulate Bcl 2, increase ER
stress

Inhibition of AMPK/mTOR/ULK1

Downstream of PISK/Akt/mTOR,
increase caspase-3 activity
Upstream of miR-101

Upregulates ROS, p53, and LC3II

Increase Bax/bcl-2 ratio, p53
expression, activation of caspase 9,
cleavage of PARP-1

Reduce TNF-q, inhibit VCAM1, LC3A,
LC3B

Activates beclin-2, Bax,
downregulates Bcl-2

Supressed Mtor and inhibit Akt,
activate AMPK

Reduces Akt/mTOR phosphorylation
Inhibition of JNK, ERK1-2, and P38
MAPK

Elevated Atg-7

Cleaved PARP

Downregulated lysosomal protease
Cathepsin S(CTSS)

Reduce the a-MSH

Inhibition of the Akt/mTOR
Upstream SIRT17

FAD induce expression of GRP78
Modulate JNK and mTOR pathway
Reduction of p-PI3K, p-Akt and Ki67

Reduction of p-PI3K, p-Akt and Ki67

Activation of Ca2+/AMPK/Mtor
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TABLE 1 | (Continued) Phytochemicals that activate autophagy and apoptosis in various in vitro and in vivo cancer models.

Phytochemicals

Luteolin
a-Mangostin

Oridonin

Quercetin
Rottlerin
6-Shogaol

Silibinin (silybin)
Sulforaphane

y-tocotrienol
Thymoquinone

Tripchlorolide
Tetrandrine

N-desmethyldauricine
Quinacrine
Chloroquine
Tangeritin

Myricetin

Galangin
Isorhamnetin

Hesperetin

Delphinidin

Epigallocatechingallate
(EGCG)

Epicatechin-3-
O-gallate (ECG)
Cyanidin-3-

glucoside (C3G)
Benzyl isothiocyanate
(BITO)

Phenethyl isothiocyanates
(PEITC)

Piperlongumine (PL)
Saikosaponin-d
Guttiferone K

Licochalcone A

Ophiopogonin B

Doses/
Conc

100 pM
5-10 uM

8-32 pmolL

15 UM
1-2 uM
55.4 uM

50 UM
40 UM

10 pmol/L
40-60 uM

200 nM
0-4 M

150 uM
15 uM
50 uM
10 uM
100 uM/L
15 uM
100 uM

350 uM

80 uM
500 uM
36 UM
20 uM

6.5 uM

10 uM
6 uM
10 uM
20 pM
20 or 50 pM

10 uM

Cancer model

Human liver cancer SMMC-7721

Human brain cancer cell lines,
GBM8401 and DBTRGO5MG
Human hepatocellular carcinoma
cell line BEL-7402

Lymphoma cell lines BC3, BCBL1
and BC1

Breast cancer cell lines CD44/
CD24

Lung cancer cell line A549

RCC cell lines ACHN and 786-O
Human pancreatic cancer cell lines
MIA PaCa-2,Panc-1

Breast cancer cell lines MCF-7 and
MDA-MB-231

Oral cancer cell lines
SASVO3,SCC-4, OCT,SAS

Lung cancer cell line A549/DDP
Hepatocellular carcinoma cell lines
Huh7, HCCLM9 and Hep3B
Lung cancer cell line H1299

Colon cancer cell lines HCT-116/
HCT-116/HCT-116

Pancreatic cancer cell line
MiaPaCa2 and S2VP10

Breast cancer cell lines MCF7,
MDA-MB-468 and MCF10A
Prostate cancer cell lines PC3,
DU145

Human kidney cancer cell line
A498

Colon cancer cell lines HCT116
and SW480

Lung cancer cell line H522

Breast cancer cell lines MDA-MB-
453 and BT474

Human glioblastoma cell lines
T98G and UTMG

Prostate cancer cell lines LNCaP
and PC-3

Human breast cancer MDA-MB-
231 and Hs-578T

Pancreatic cell lines BxPC-3 and
PanC-1

Breast cancer cell lines MDA-MB-
231 and MCF-7

Lung cancer cell lines A549 and
A549/DTX

Breast cancer cell lines HelLa and
MCF-7

Human HCCs HuH7 and HepG2

Breast cancer cell line MCF-7

Lung cancer (NSCLC) cell lines
NCI-H157 and NCI-H460

Molecular effects

Increase expression of caspase-8,
decrease bcl-2
Activation of AMPK

Activation of caspase-3
Down-regulation of Bcl-2 and Up-
regulation of Bax

Inhibits PIBK/Akt/mTOR and Wnt/
B-catenin

Enhance expression of LC3

Inhibition af Akt and mTOR
downstream

Inhibit mTOR and activate AMPK
Increase ROS level

Activate AMPK, down regulate Ang-
1/Tie-2

Increase expression of LC3-Il, Bax
expression

Inhibition of PISK/Akt/mTOR

Inhibits Wnt/p-catenin

Decreases MTA1

Inhibition of Ulk-1/PERK/AMPK/
mTOR

Activation of p53, p21, and inhibition
of topoisomerase

Decrease the level of O,

Induce CYP1 and CYP1A1/CYP1B1
protein expression

Knockdown the interaction between
P1M1/CXCR4

Inhibition of PI3K/Akt/mTOR signaling

Increase ROS

Knockdown caspase-3/9,p53,Bax
Upregulate Fas, FADD and
caspase-8

Suppression of mTOR

Activation of the AMPK

Increase ROS

Diminished the progression of
carcinofenic cell

Inhibiting STAT3/VEGF and miR124
mediated downregulation STAT3
Decrease the phosphorylation of
PI3K/Akt/FOXO1/PDK1/mTOR/
FOXO3a

Reduction of HER2, EGFR and
STAT3 expression

Regulate PIBK/Akt/mTOR

Calcium mobilization, induce
CaMKKB-AMPK-mTOR
Reduce phosphorylation of Akt
/mTOR, increase ROS
Suppression of PIBK/Akt/mTOR
pathway

Inhibition of PI3K, Akt, mTOR
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TABLE 1 | (Continued) Phytochemicals that activate autophagy and apoptosis in various in vitro and in vivo cancer models.

Phytochemicals Doses/ Cancer model
Conc
Norcantharidin 40 M Human MHCC-97H (97H) and
HepG2 HCC cells
Juglanin 10 uM Breast cancer cell ines MCF-7 and
SKBR3
Isoliquiritigenin 25 uM Human ovarian cancer cell lines,
OVCARS and ES-2
Cucurbitacin B 200 uM Breast cancer cell line MCF-7
Carnosol 25 uM Human breast cancer cell line
MDA-MB-231
Kaempferol 50 or Colorectal cancer cell lines
100 uM HCT116, HCT15, and SW480
Ursolic acid 10-40 uM Prostate cancer cell lines PC3
Triptolide 200 nM Human pancreatic cancer cell line

§2-013, S2-VP10, and Hs766T

have shown that apigenin can inhibit cell growth and induce
autophagy in time-and dose-dependent manners in HepG2 cells
(Zhong et al., 2010). Autophagy was also found to be mediated via
the inhibition of the PI3K/Akt/mTOR pathway in HepG2 cells
(Yangetal., 2018). An organic sulfur compound, allicin, acts as an
antitumor agent that activates autophagic cell death by inhibiting
the PI3K/mTOR signaling pathway (Sak, 2012). Allicin also
inhibits the expression of p53 and Bcl-2, and upregulates the
Beclin-1 signaling and AMPK/TSC2 signaling pathways (Chu
et al,, 2012). Anthocyanins (ACNs) present in black soybeans
induce autophagy; however, their underlying mechanism have yet
to be determined (Choe et al., 2012). Aspalathin is a polyphenolic
dihydrochalcone C-glucoside that plays a critical role in
inhibiting Dox-induced cardiotoxicity and decreasing P53
expression. Aspalatin triggered autophagy-related genes and
decreased p62 by inducing the AMPK and Fox pathways
(Johnson et al., 2017). Berberine is an isoquinoline alkaloid
that exerts anticancer activity for autophagy induction by
inhibiting the AMPK/mTOR/ULK1 pathway (Wang et al,
2016a). Celastrol is another triterpenoid that is effective
against human prostate cancer. Celastrol blocks the AR
signaling  pathway, which induces autophagy and
downregulates the expression of miR-101 (Guo et al, 2015).
Cordycepin generates ROS in cancer cells and enhances p53 and
LC3I/II  expression, thereby  modulating  autophagy
(Chaicharoenaudomrung et al., 2018). Cordycepin inhibits
renal carcinoma in the migration of the Caki-1 cell line by
reducing microRNA-21 expression and Akt phosphorylation,
and increasing PTEN phosphatase levels (Yang et al., 2017). In
addition, cordycepin induces autophagy via Bax activation in
ovarian cancer cell lines, including SKOV-3 and OVCAR-3 (Jang
etal., 2019). Curcumin has been shown to increase ROS and DNA
damage in cancer cells. Further, curcumin increased the
phosphorylation of ERK1/2 and p38 MAPK, inhibited Akt and
P54 JNK (Masuelli et al., 2017), and eventually induced
autophagy in NSLCA549 cells (Liu et al., 2018). Evodiamine, a
quinolone alkaloid, mediates autophagy activation by
upregulating Beclin-1 and Bax expression and downregulating

Inhibition of c-Met, mTOR
Regulation of ROS, JNK

Cleaved caspase-3, increased LC3B-

Molecular effects References

Sun et al. (2017a)
Sun et al. (2017b)

Chen et al. (2017b)

Il, and Beclin-1 level
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Bcl-2 (Rasul et al., 2012). Fisetin is a naturally occurring flavonoid
that is reported to suppress the mTOR signaling pathway via the
inhibition of Akt and activation of AMPK, and autophagic
programmed cell death in prostate cancer cells (Suh et al,
2010). Similarly, genistein displayed chemop