Research Topic

The Molecular Mechanisms of Synaptic Plasticity Impairments in Alzheimer's Disease

About this Research Topic

Synaptic plasticity provides a physiological substrate in the central nervous system for individual to achieve cognitive and emotional functions, including learning, memory, forgetting, anxiety and depression et al. Impairments of synaptic plasticity is found in many brain injuries and neurodegenerative ...

Synaptic plasticity provides a physiological substrate in the central nervous system for individual to achieve cognitive and emotional functions, including learning, memory, forgetting, anxiety and depression et al. Impairments of synaptic plasticity is found in many brain injuries and neurodegenerative diseases, including Alzheimer’s disease (AD). In the past decades, with the development of high throughput genomic and proteomic sequencing technologies, high-resolution imaging technology, new neurotransmitter detection systems and precise neuronal activity manipulation and recording systems, intensive research efforts in AD have greatly expanded our understanding of this devastating disease. Numerous molecular mechanisms linking the progressive synaptic dysfunction with the pathological factors, including intracellular accumulated-tau-formed neurofibrillary tangles (NFTs) and extracellular deposited amyloid β, have been identified.

However, many questions in this rapidly evolving field remain open. Synaptic plasticity is manifested in two main forms, long-term depression (LTD) and long-term potentiation (LTP). Compelling evidences have identified impaired hippocampal LTP as the signature in early stage of AD. Is this impairment caused by directly reduced synapse numbers or decreased synaptic transmission efficiency? Does reduced formation of new synapses or disappearances or silencing of pre-existing synapses synergistically or separately contribute to synapse loss? What’re the inherent molecular mechanisms underlying this aberrant number loss (synaptic-associated protein loss, microglia-mediated synapse elimination, neuroinflammation, neuron apoptosis or death)? What are the causes for synaptic transmission reduction? Such as the neurotransmitter synthesis, secretion, receptor binding and recovery pathways, post-synaptic signaling transduction (Glutamate receptors, cholinergic receptors and GABA receptors) and neuronal activity homeostasis, and so on.

Understanding the molecular mechanisms of synaptic dysfunctions could efficiently help to develop new molecular strategies directly targeting to promote synaptic plasticity. This could be a promising therapeutic direction of blocking or delaying disease progression under multiple AD-related risk factors, including aging, oxidative stress, calcium signal dysregulation, misfolded protein aggregation, neuroinflammation, genetic and environmental factors.

The aim of this Research Topic is to cover the recent progresses in the field of AD synaptic plasticity, as well as related mechanistic studies and technological advancements. We will welcome Original Research and Review related, but are not limited to the following areas:
- Genetic and epigenetic changes relating to synaptic plasticity deficits;
- Risk factors (such as free radical, hyperglycemia etc) relating to synaptic plasticity deficits;
- Mechanistic studies relating to synaptic plasticity impairments;
- Therapeutic strategies.


Keywords: Alzheimer’s disease, synaptic plasticity, long-term potentiation, synaptic proteins, cognition


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 March 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 March 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..