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Exploring the Relationship Between
Psychiatric Traits and the Risk of
Mouth Ulcers Using Bi-Directional
Mendelian Randomization
Kai Wang1, Lin Ding1, Can Yang2, Xingjie Hao1* and Chaolong Wang1*

1 Key Laboratory for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, China, 2 Department of Mathematics,
The Hong Kong University of Science and Technology, Hong Kong, China

Background: Although the association between mouth ulcers and psychiatric traits
has been reported by observational studies, their causal relationship remains unclear.
Mendelian randomization (MR), powered by large-scale genome-wide association
studies (GWAS), provides an opportunity to clarify the causality between mouth ulcers
and psychiatric traits.

Methods: We collected summary statistics of mouth ulcers (sample size n = 461,106)
and 10 psychiatric traits from the largest publicly available GWAS on Europeans,
including anxiety disorder (n = 83,566), attention deficit/hyperactivity disorder
(n = 53,293), autism spectrum disorder (n = 46,350), bipolar disorder (n = 51,710),
insomnia (n = 1,331,010), major depressive disorder (n = 480,359), mood instability
(n = 363,705), neuroticism (n = 168,105), schizophrenia (n = 105,318), and subjective
wellbeing (n = 388,538). We applied three two-sample bi-directional MR analysis
methods, namely the Inverse Variance Weighted (IVW) method, the MR pleiotropy
residual sum and outlier (MR-PRESSO) method, and the weighted median method, to
assess the causal relationship between each psychiatric trait and mouth ulcers.

Results: We found significant effects of autism spectrum disorder, insomnia, major
depressive disorder, and subjective wellbeing on mouth ulcers, with the corresponding
odds ratio (OR) from the IVW method being 1.160 [95% confidence interval (CI):
1.066–1.261, P = 5.39 × 10−4], 1.092 (1.062–1.122, P = 3.37 × 10−10), 1.234 (1.134–
1.342, P = 1.03 × 10−6), and 0.703 (0.571–0.865, P = 8.97 × 10−4), respectively.
We also observed suggestive evidence for mood instability to cause mouth ulcers
[IVW, OR = 1.662 (1.059–2.609), P = 0.027]. These results were robust to weak
instrument bias and heterogeneity. We found no evidence on causal effects between
other psychiatric traits and mouth ulcers, in either direction.

Conclusion: Our findings suggest a protective effect of subjective wellbeing and
risk effects of autism spectrum disorder, insomnia, major depressive disorder, and
mood instability on mouth ulcers. These results clarify the causal relationship between
psychiatric traits and the development of mouth ulcers.

Keywords: psychiatric traits, mouth ulcers, Mendelian randomization, causality, GWAS summary statistics
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INTRODUCTION

A mouth ulcer (also termed oral ulceration) is an ulcer that
occurs on the mucous membrane of the oral cavity, involving
damage to both epithelium and lamina propria (Scully, 2008;
Tugrul et al., 2016). Mouth ulcers are prevalent worldwide,
affecting nearly 25% of young adults and a higher proportion
of children (Scully, 2006; Paleri et al., 2010; Tugrul et al., 2016;
Dudding et al., 2019). Although mouth ulcers do not pose a
substantial health burden, they can interfere with daily activities
(such as speaking or swallowing) and have detrimental effects on
individual quality of life, overall wellbeing, and social interaction
(Huling et al., 2012; Almoznino et al., 2014; Al-Omiri et al.,
2015). Furthermore, mouth ulcers are one of the common
clinical signals of several serious diseases, such as oral cancer,
gastrointestinal diseases, and human immunodeficiency virus
infection (Paleri et al., 2010; Bilodeau and Lalla, 2019). Besides,
mouth ulcers have been reported to associate with head and neck
cancer, pancreatic cancer, breast cancer, and prostate cancer by a
recent epidemiology study (Qin et al., 2018).

The high prevalence of mouth ulcers and its undesired
impact on life quality have motivated numerous studies on
the etiology and efficient therapy of this disease. Recurrent
aphthous stomatitis (RAS) is the most common cause, followed
by local trauma, malignancy, and infection (Paleri et al., 2010;
Gavic et al., 2014; Al-Omiri et al., 2015; Bilodeau and Lalla,
2019). Nevertheless, the pathogenesis of mouth ulcers is still
poorly understood. Psychiatric disorders are potential risk factors
for mouth ulcers, as suggested by observational studies. For
example, patients with depression and anxiety are more likely
to develop mouth ulcers according to a series of observational
studies (Huling et al., 2012; Alshahrani and Baccaglini, 2014;
Ma et al., 2015; Ge, 2018); high levels of psychological stress
were found in mouth ulcers patients (Gallo Cde et al., 2009);
depression and neuroticism were genetically correlated with
mouth ulcers (Dudding et al., 2019); and a transitory rise in
salivary cortisol and/or changes in immunoregulatory activity
caused by psychiatric disorders were linked to mouth ulcers
(MacGregor et al., 1969; Redwine et al., 2003; Slebioda and
Dorocka-Bobkowska, 2019). These observations together lead to
a hypothesis that psychiatric disorders may trigger mouth ulcers.
Nevertheless, the causal relationship between psychiatric traits
and mouth ulcers remains largely unclear.

Abbreviations: GWAS, genome-wide association studies; LD, linkage
disequilibrium; SNP, single nucleotide polymorphisms; MR, Mendelian
randomization; IV, instrumental variable; InSIDE, Instrument Strength
Independent of Direct Effect; IVW, Inverse Variance Weighted; MR-PRESSO, MR
pleiotropy residual sum and outlier; OR, odds ratio; CI, confidence interval; SD,
standard deviation; UKB, UK Biobank; 23andMe, 23andMe company; PGC29,
the Psychiatric Genomics Consortium, 29 European samples; deCODE, deCODE
Genetics company; GenScot, Generation Scotland: Scottish Family Health Study;
GERA, Genetic Epidemiology Research on Adult Health and Aging Study;
iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research;
SSGAC, Social Science Genetics Association Consortium; PGC, the Psychiatric
Genomics Consortium; GPC, the Genetics of Personality Consortium; RAS,
Recurrent aphthous stomatitis; ADHD, attention deficit/hyperactivity disorder;
ASD, autism spectrum disorder; BIP, bipolar disorder; MDD, major depressive
disorder; SCZ, schizophrenia.

With the development of large-scale GWAS and Mendelian
randomization (MR), causal inference between complex traits
and diseases has become possible (Lawlor et al., 2008; Hartwig
et al., 2017). The MR approach uses genetic variants, such
as single nucleotide polymorphisms (SNPs), associated with a
modifiable exposure (e.g., a psychiatric trait) as the instrumental
variables (IVs) to estimate the causality between this exposure
and an outcome of interest (e.g., mouth ulcers) (Lawlor et al.,
2008). The basic idea is that SNPs associated with the exposure,
which were randomly passed from parents to offsprings during
meiosis irrespective of confounders, would also be associated
with the outcome if the exposure is causally associated with
the outcome. To ensure the validity of MR for causal inference,
the IVs need to satisfy three model assumptions: (a) associated
with the exposure (the relevance assumption); (b) independent
of any confounder of the exposure-outcome association (the
independence assumption); and (c) only affect the outcome
through the exposure (the exclusion restriction assumption)
(Lawlor et al., 2008; Hartwig et al., 2016). Recent studies have
found that the exclusion restriction assumption may be too
strong given the polygenic architecture of complex traits/disease
and the ubiquity of pleiotropy (Zhao et al., 2019). Instead,
an alternative weaker assumption named Instrument Strength
Independent of Direct Effect (InSIDE) has been proposed
(Bowden et al., 2015). This assumption allows for the direct
effects of IVs on the outcome, assuming that genetic associations
with the exposure are independent of the direct effects (Bowden
et al., 2015). Two-sample MR refers to the application of MR on
GWAS summary statistics of the exposure and the outcome from
two independent samples, which can overcome the winner’s curse
and maximize the statistical power (Burgess et al., 2016). Further
information about the assumptions and interpretations of MR
can be found elsewhere (Haycock et al., 2016; Zheng et al., 2017;
Davies et al., 2018).

As the pathogenesis of mouth ulcers is complicated,
identification of causal risk factors will be useful to facilitate
both the prevention and treatment of the disease. In this study,
we aim to systematically investigate the causal relationship
between mouth ulcers and psychiatric traits. We conducted
two-sample bi-directional MR analyses using publicly
available GWAS summary statistics of mouth ulcers and
10 psychiatric traits, including anxiety disorder, attention
deficit/hyperactivity disorder (ADHD), autism spectrum
disorder (ASD), bipolar disorder (BIP), insomnia, major
depressive disorder (MDD), mood instability, schizophrenia
(SCZ), neuroticism, and subjective wellbeing (Pardiñas et al.,
2018; Turley et al., 2018; Wray et al., 2018; Demontis et al.,
2019; Grove et al., 2019; Jansen et al., 2019; Purves et al., 2019;
Stahl et al., 2019; Ward et al., 2020).

MATERIALS AND METHODS

Data Collection
We collected GWAS summary statistics of eight psychiatric
traits and mouth ulcers from published studies with the largest
sample sizes of European ancestry (Table 1). In addition, we only
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TABLE 1 | Description of GWAS consortiums used for each trait.

Trait Population Sample size
(cases/controls)

Sample
overlap$

Data source References

Anxiety disorders Europeans 25,453/58,113 18.2% UKB Purves et al., 2019

ADHD 96% Europeans 19,099/34,194 0 PGC Demontis et al., 2019

ASD Europeans 18,381/27,969 0 PGC Grove et al., 2019

BIP Europeans 20,352/31,358 0 PGC Stahl et al., 2019

Insomnia Europeans 397,972/933,038 29.0% UKB, 23andMe Jansen et al., 2019

MDD Europeans 135,458/344,901 6.5% UKB, 23andMe, PGC29, deCODE,
GenScot, GERA, iPSYCH

Wray et al., 2018

Mood instability Europeans 157,039/206,666 78.9% UKB Ward et al., 2020

Neuroticism Europeans 168,105 22.5% UKB, GPC Turley et al., 2018

SCZ Europeans 40,675/64,643 0 CLOZUK, PGC Pardiñas et al., 2018

Subjective wellbeing Europeans 388,538 8.8% UKB, 23andMe, SSGAC Turley et al., 2018

Mouth ulcers Europeans 47,079/414,027 – UKB Dudding et al., 2019

ADHD, attention deficit/hyperactivity disorder; ASD, autism spectrum disorder; BIP, bipolar disorder; MDD, major depressive disorder; SCZ, Schizophrenia; UKB, the
UK Biobank; 23andMe, 23andMe company; PGC29, the Psychiatric Genomics Consortium, 29 European samples; deCODE, deCODE Genetics company; GenScot,
Generation Scotland: Scottish Family Health Study; GERA, Genetic Epidemiology Research on Adult Health and Aging Study; iPSYCH, The Lundbeck Foundation
Initiative for Integrative Psychiatric Research; SSGAC, Social Science Genetics Association Consortium; PGC, the Psychiatric Genomics Consortium; GPC, the Genetics
of Personality Consortium. $The overlapping sample size divided by the larger sample size of the corresponding psychiatric trait and mouth ulcers. For the two quantitative
traits, neuroticism and subjective wellbeing, the total sample size was present.

obtained summary statistics of significant associated SNPs for
anxiety disorders and mood instability due to restricted access
to the GWAS summary statistics of these two traits. GWAS on
mouth ulcers were based on the UK Biobank (UKB), in which
all participants were asked about their oral health in the baseline
questionnaire. “Mouth ulcers (yes/no)” was defined as having
mouth ulcers within the last year. Supplementary Table S1 lays
out the definitions of 10 psychiatric traits.

Patient and Public Involvement
Because this study used published GWAS summary statistics
available in the public domain, specific ethical review or consent
from study participants was not sought.

Statistical Analyses
The overall workflow of our analyses was summarized in
Figure 1. We took the following steps to choose valid
instrumental SNPs given the assumptions of MR. Firstly,
candidate IVs were restricted to those of genome-wide significant
association (P < 5 × 10−8) with the exposure (e.g., a psychiatric
trait). Secondly, we pruned the candidate IVs to independent
SNPs (r2 < 0.05, window size = 1 Mb), keeping those with
the smallest P-values, based on linkage disequilibrium (LD)
calculated from the 1000 Genomes Project Phase 3 European
dataset using PLINK v.1.90 (Chang et al., 2015; Consortium,
2015). Thirdly, because bi-directional MR assumes no overlap
or LD between the IVs for the exposure and the outcome
(Davey Smith and Hemani, 2014), we excluded SNPs in LD
(r2 > 0.05) with the significant SNPs for mouth ulcers. Finally,
we removed potential pleiotropic SNPs by excluding SNPs of
suggestive association (P < 10−5) with mouth ulcers (Au Yeung
et al., 2017; Zeng and Zhou, 2019). The remaining SNPs were
used as valid IVs to conduct MR analyses. Valid IVs for all

exposure-outcome pairs are listed in Supplementary Tables S2–
S19. For each IV, we computed the F statistic to quantify whether
it was strongly associated with the exposure (Lawlor et al., 2008).
For multiple IVs, we computed the F statistic as the mean of the
F statistics of individual IVs and the 95% confidence interval (CI)
by 10,000 bootstraps (Burgess et al., 2016).

Given an IV, the causal effect of exposure (X) on outcome (Y),
βXY can be estimated as β̂IV = β̂ZY/β̂ZX where β̂ZY represents
the effect of the IV (Z) on the outcome (Y), β̂ZX represents
the effect of the IV (Z) on the exposure (X), and the variance
of β̂IV can be estimated by the delta method (Thomas et al.,
2007). In the presence of multiple IVs (e.g., multiple instrumental
SNPs), several methods have been proposed to estimate βXY
under different assumptions. In this study, we used three different
methods, namely the Inverse Variance Weighted (IVW) method
(Burgess et al., 2013), the MR pleiotropy residual sum and outlier
(MR-PRESSO) method (Verbanck et al., 2018), and the weighted
median method (Bowden et al., 2016a).

Briefly, the IVW estimate is the IVW average of β̂IV , assuming
all SNPs are valid IVs or the overall bias is zero (balanced
pleiotropy) (Bowden et al., 2016b). We performed multiplicative
random effects IVW to account for potential heterogeneity,
which is measured by the Cochran’s Q statistic (Hemani et al.,
2018a). The IVW method is equivalent to fitting a weighted linear
regression with no intercept of β̂ZY on β̂ZX where the weight is the
inverse variance of β̂ZY and the estimated regression slope is the
estimated causal effect of the exposure on the outcome (βXY ).

The MR-PRESSO method is designed to correct for horizontal
pleiotropy, in which the IV acts on the outcome via a pathway
other than through the exposure. MR-PRESSO is based on
the IVW regression framework and detects IVs of horizontal
pleiotropy as outliers in the regression. In particular, MR-
PRESSO implements a global test based on the leave-one-out
approach to test for the existence of horizontal pleiotropy and
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FIGURE 1 | The analysis flowchart of this study. IVW_mre, inverse variance weighted multiplicative random effects; MR-PRESSO, Mendelian randomization
pleiotropy residual sum and outlier.

an outlier test to detect specific SNPs with horizontal pleiotropy.
MR-PRESSO provides the final IVW estimate after removing
outlier IVs (Verbanck et al., 2018).

Finally, the weighted median method uses the inverse variance
of β̂IV as weight to construct the empirical distribution of β̂IV , and
derives the final estimate by taking the median (Bowden et al.,
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2016a). The confidence interval of the weighted median estimate
is obtained by a parametric bootstrap method. This method can
provide a consistent estimate as long as at least 50% of the weight
comes from the valid IVs.

We displayed the scatter plot of genetic effect on the outcome
(β̂ZY ) vs. genetic effect on the exposure (β̂ZX) for each IV to
facilitate the identification of possible heterogeneity and the
illustration of causal effects. We used mRnd1 to calculate post hoc
statistical power. With a Bonferroni-corrected significance level
of 2.8 × 10−3 (α = 0.05/18, correcting 18 exposure-outcome
paired tests), we estimated the required OR of exposure on
outcome (in the unit of per standard deviation increment in
exposure) to achieve 80% statistical power given the summary
statistics (Brion et al., 2013). A causal effect of an exposure on the
outcome is concluded if the effect estimates agree in direction and
magnitude among MR methods, pass the Bonferroni-corrected
significance threshold of 2.8 × 10−3 in the IVW method, and
show no evidence of heterogeneity in the Cochran’s Q-test and
MR-PRESSO global test. Findings with P-values between 0.05
and 2.8 × 10−3 were deemed suggestive evidence of causality.
Analyses were performed with TwoSampleMR and MR-PRESSO
packages in R version 3.5.3 (Hemani et al., 2018b; Verbanck et al.,
2018; Team RC, 2019).

RESULTS

Psychiatric Traits Predicting Mouth
Ulcers
After the IV selection process, we displayed the genetic
associations with mouth ulcers over genetic associations with
psychiatric traits for the valid IVs (Figure 2). By the MR-
PRESSO outlier test, we detected two outlier SNPs (solid red
dots in Figures 2C,I): one each for ASD and SCZ. After
removing these two SNPs, all three MR methods agreed well
in fitting the linear relationship between the genetic effect sizes
on mouth ulcers and each of the psychiatric traits (colored
solid lines in Figure 2). Estimates of the causal effects of 10
psychiatric traits on mouth ulcers were presented in Figure 3.
We found that ASD, insomnia, and MDD have significant
risk effects and subjective wellbeing has significant protective
effect on mouth ulcers. The corresponding effect sizes from
the IVW method were OR = 1.160 (95% CI: 1.066–1.261,
P = 5.39 × 10−4), 1.092 (1.062–1.122, P = 3.37 × 10−10),
1.234 (1.134–1.342, P = 1.03 × 10−6), and 0.703 (0.571–0.865,
P = 8.97 × 10−4) for ASD, insomnia, MDD, and subjective
wellbeing, respectively. There was suggestive evidence for risk
effect of mood instability on mouth ulcers (IVW, OR = 1.662,
95% CI: 1.059–2.609, P = 0.027). All the F statistics were greater
than 32, indicating robust causal estimates against the weak
instrument bias (Figure 3). We confirmed that these estimated
effect sizes were close to or above the threshold to achieve
80% statistical power given the available summary statistics
(Supplementary Table S20). Importantly, the MR-PRESSO
global test and Cochran Q-test suggested no heterogeneity

1http://cnsgenomics.com/shiny/mRnd/

or pleiotropic effect (Supplementary Table S22). We found
no evidence of causal effects on mouth ulcers from all three
MR methods for the remaining five psychiatric traits (anxiety
disorder, ADHD, BIP, neuroticism, and SCZ, Figures 2, 3 and
Supplementary Tables S20, S22).

Mouth Ulcers Predicting Psychiatric
Traits
Because the summary statistics of anxiety disorders and mood
instability were only available for significantly associated SNPs,
we could not perform MR analyses of mouth ulcers on these
two traits. For the remaining eight psychiatric traits, we displayed
their genetic effect sizes vs. the genetic effect sizes on mouth ulcers
for the valid IVs (Figure 4). Two outlier SNPs (solid red dots in
Figures 4D,G) were detected by the MR-PRESSO outlier test and
excluded subsequently. Although the instrumental SNPs could
explain a substantial amount of phenotypic variance (≥ 0.9% for
all eight traits, Supplementary Table S21) and the F statistics
indicated strong instrumental effects (all F > 52), we found no
significant evidence of causal effects of mouth ulcers on these
psychiatric traits (Figures 4, 5). The only suggestive evidence
was given by the MR-PRESSO method for mouth ulcers on ASD
(OR = 1.065, 95% CI: 1.002–1.132, P = 0.046). The effect estimates
for mouth ulcers on ASD were 1.065 (0.994–1.141, P = 0.071)
and 1.092 (0.986–1.209, P = 0.094) by the IVW method and the
weighted median method, respectively (Figure 5). Furthermore,
these effect estimates were below the threshold to achieve 80%
statistical power, suggesting a high potential for false discoveries
(Supplementary Table S21). No heterogeneity or directional
pleiotropy was indicated by the MR-PRESSO global test and
Cochran Q-test (Supplementary Table S23).

DISCUSSION

Psychiatric disorders have been suggested to associate with
mouth ulcers by observational studies. We performed two-
sample bi-directional MR analyses to explore the causality
between 10 psychiatric traits (anxiety disorder, ADHD, ASD,
BIP, insomnia, MDD, mood instability, neuroticism, SCZ, and
subjective wellbeing) and mouth ulcers based on summary
statistics of the largest available GWAS to date. Our analyses
suggested that ASD, insomnia, MDD, and mood instability have
risk effects and subjective wellbeing has a protective effect on
mouth ulcers, whereas mouth ulcers have no significant effect on
any of these psychiatric traits. Our analyses were well-powered
and did not suffer from weak instrumental bias according to the
F statistics. The MR-PRESSO global test, Cochran’s Q-test, and
scatter plots indicated no directional pleiotropy or heterogeneity.

It has been pointed out that stress, depression, and anxiety
are associated with mouth ulcers by a cross-sectional study
(Alshahrani and Baccaglini, 2014). A recent study, based on
linkage disequilibrium score regression analysis, also found a
significant genetic correlation (correlation coefficient = 0.24,
P = 5.73 × 10−7) between depression and mouth ulcers in
Europeans (Dudding et al., 2019). Using bi-directional MR
analyses, we tested these observational results and confirmed that
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FIGURE 2 | Scatter plots of genetic associations with mouth ulcers (outcome) vs. genetic associations with 10 psychiatric traits (exposure) for all the valid IVs. (A)
anxiety disorders; (B) ADHD; (C) ASD; (D) BIP; (E) insomnia; (F) MDD; (G) mood instability; (H) neuroticism; (I) SCZ; (J) subjective wellbeing. Each dot corresponds
to one genetic variant, with corresponding standard error bars of its association with psychiatric trait (horizontal) and mouth ulcers (vertical); solid red dot represents
the pleiotropic SNP (outlier) identified by MR-PRESSO global test; the solid lines illustrate estimations of the causal effect after excluding outlier SNP, colored by
different colors with different MR methods. The horizontal gray solid line indicates no effect. In this study, the causal effect estimations from the IVW_mre and
MR-PRESSO are consistent, such that the red line (IVW_mre) is covered by the green line (MR-PRESSO), and no red line could be observed.
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FIGURE 3 | Two-sample Mendelian randomization analyses showing the effect estimates of 10 psychiatric traits on mouth ulcers. ADHD, attention
deficit/hyperactivity disorder; ASD, autism spectrum disorder; BIP, bipolar disorder; MDD, major depressive disorder; SCZ, schizophrenia; IVW_mre, inverse variance
weighted with multiplicative random effects; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; N SNP, number of the instrumental SNPs
used to conduct MR analyses; Effect estimates express the change in odds ratio (OR) per standard deviation (SD) increment in psychiatric traits, error bars indicate
95% confidence intervals.

MDD has a causal effect on mouth ulcers. However, inconsistent
findings were observed for anxiety; our analyses did not support
a causal relationship between anxiety and mouth ulcers. The
relatively small sample size (n = 83,566) and only 0.2% of
phenotype variation explained by the four IVs of anxiety may
explain the null finding. While the precise mechanism linking
depression to mouth ulcers is not well understood, the immune
system or inflammatory response is suggested to be involved (Al-
Omiri et al., 2012; Huling et al., 2012; Alshahrani and Baccaglini,
2014). Depression can increase the number of leukocytes, which
exhibit increased motility and enhanced adhesion to endothelial
cells and thus induce endothelial dysfunction and mouth ulcers
ultimately (Gavic et al., 2014; Demir et al., 2015; Qin et al.,
2018). Besides, a serotonin transporter gene polymorphism (5-
HTTLPR), which is commonly found in depressed patients, is
also significantly enriched in patients with mouth ulcers (Victoria
et al., 2005). Further functional experiments are required to
clarify the mechanistic link between MDD and mouth ulcers.

Many observational studies have reported positive
associations between stress and mouth ulcers (Al-Omiri

et al., 2012; Huling et al., 2012; Ma et al., 2015; Ge, 2018). For
example, ulceration is exacerbated during examination periods
and lessened during periods of vacation for students (Scully,
2013). Meanwhile, stress is well known to correlate with mood
instability and subjective wellbeing (Schneiderman et al., 2005;
Atanes et al., 2015; Berrios et al., 2016; Gillett and Crisp, 2017;
Faurholt-Jepsen et al., 2019). Our study suggested that mood
instability and subjective wellbeing are causally associated with
mouth ulcers using several MR methods. Stress is thought
to affect multiple immune system components including the
distribution and proliferation of lymphocytes and natural killer
cells and production of cytokines and antibodies (Huling et al.,
2012). Stressful situations can cause a transitory increase of
salivary cortisol and stimulate immunoregulatory activity by
increasing the number of leukocytes in inflammatory sites,
which are often observed during the pathogenesis of mouth
ulcers (Albanidou-Farmaki et al., 2008; Gallo Cde et al., 2009;
Al-Omiri et al., 2015). However, the exact mechanism about how
stress-related mood instability and subjective wellbeing trigger
mouth ulcers remains to be elucidated.
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FIGURE 4 | Scatter plots of genetic associations with eight psychiatric traits (outcome) vs. genetic associations with mouth ulcers (exposure) for all the valid IVs. (A)
ADHD; (B) ASD; (C) BIP; (D) insomnia; (E) MDD; (F) neuroticism; (G) SCZ; (H) subjective wellbeing. Each dot corresponds to one genetic variant, with
corresponding standard error bars of its association with mouth ulcers (horizontal) and psychiatric trait (vertical); solid red dot represents the pleiotropic SNP (outlier)
identified by MR-PRESSO global test; the solid lines illustrate estimations of the causal effect after excluding outlier SNP, colored by different colors with different MR
methods. The horizontal gray solid line indicates no effect. In this study, the causal effect estimations from the IVW_mre and MR-PRESSO are consistent, such that
the red line (IVW_mre) is covered by the green line (MR-PRESSO), and no red line could be observed.

Consistent with previous observational studies (Ma et al.,
2015; Du et al., 2018), we also found that insomnia has a causal
effect to increase the risk of mouth ulcers. Insomnia will lead to
late bedtime, which can disturb the secretion of hormones, such
as growth hormone, cortisol, and adrenocorticotropic hormone
(Ma et al., 2015). The reduced secretion of growth hormone
can promote the occurrence of mouth ulcers and delay healing
(Brandenberger, 2004; Dioufa et al., 2010; Lee et al., 2010;
Smaniotto et al., 2011). Insufficient secretion of cortisol and

adrenocorticotropic hormone may also increase inflammation
and allergic reactions and facilitate the occurrence of mouth
ulcers (MacGregor et al., 1969; Bierwolf et al., 2000; Sakamoto
et al., 2013; Gavic et al., 2014). Hormonal factors are capable of
altering the thickness of the mucosa, which is an important factor
in mouth ulcers (Neville et al., 2008; Scully, 2013).

It is worth noting that MR uses genetic variants as the IVs
such that its causal effect estimate represents the average effect
of lifetime exposure on the outcome (Holmes et al., 2017). Most

Frontiers in Genetics | www.frontiersin.org 8 December 2020 | Volume 11 | Article 60863012

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-608630 December 11, 2020 Time: 10:18 # 9

Wang et al. Causal Relationship Between Psychiatric Traits and Mouth Ulcers

FIGURE 5 | Two-sample Mendelian randomization analysis showing the effect of mouth ulcers on eight psychiatric traits. ADHD, attention deficit/hyperactivity
disorder; ASD, autism spectrum disorder; BIP, bipolar disorder; MDD, major depressive disorder; SCZ, schizophrenia; IVW_mre, inverse variance weighted with
multiplicative random effects; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; N SNP, number of the instrumental SNPs used to conduct
MR analyses; Effect estimates express the change in odds ratio (OR) per standard deviation (SD) increment in mouth ulcers, error bars indicate 95% confidence
intervals.

of the psychiatric traits we studied were clinically diagnosed
long-term disorders (Supplementary Table S1), but their clinical
symptoms might be time-dependent. For example, patients with
anxiety disorders might present different levels of anxiety across
time periods. Hence, the risk of developing mouth ulcers is also
likely to be time-dependent if the anxiety symptom is causal.
More caution needs to be taken when interpreting causal effect
sizes derived from MR analysis in clinical practice.

Our bi-directional MR analyses had important strengths.
Firstly, using randomly allocated genetic variants as IVs, we could
reduce the potential impacts of conventional confounders and
reverse causality, which are common in observational studies.
Secondly, the SNP-exposure and SNP-outcome estimates we
used were derived from studies of the largest sample sizes to
date (ranging from 46,350 to 1,331,010 individuals), allowing
credible causal inference between psychiatric traits and mouth
ulcers in the European population. Thirdly, by utilizing a bi-
directional MR design, we evaluated the causal relationship
between two traits simultaneously and could assess the causal
direction more confidently. Finally, our conclusions were drawn
based on comprehensive analyses involving 10 psychiatric traits,
three credible MR methods, and several heterogeneity tests to
prevent possible pleiotropic bias.

There were also some limitations in our study. First,
our analysis did not distinguish different types of mouth

ulcers, because mouth ulcers in UKB were inferred from the
questionnaire rather than clinical examination. Given that most
of the significant variants from UKB have been validated in
independent samples, including three specific to RAS, the major
type of mouth ulcers (Bilodeau and Lalla, 2019), while other
types of ulcers, such as traumatic mouth ulcers, are less likely
to be genetic (Dudding et al., 2019), our findings are expected
to largely reflect the causality between psychiatric traits and
RAS. Second, the sample overlapping between GWAS of mood
instability and mouth ulcers was as large as 78.9%, which violated
the assumption of two-sample MR. Nevertheless, the F statistic
was large enough (F = 37.78, 95% CI: 35.06–40.91), suggesting
that the sample overlapping would not materially affect the causal
inference (Burgess et al., 2016). Third, consistent with findings
in other MR studies involving of psychiatric traits, the effect
sizes of genetic variants on psychiatric traits were estimated
with large standard errors (Figure 2), indicating difficulty to
accurately measure these traits (Wootton et al., 2018; Vermeulen
et al., 2019). For this reason, we did not use the MR-Egger
method, because it assumes that the associations between IVs
and the exposure are precisely estimated or have a wide spread
(Bowden et al., 2016b; Burgess and Thompson, 2017). Fourth,
cautions are needed when generalizing our findings, which were
derived from data of European population, to non-European
populations, because different environmental factors might have
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substantial impacts on psychiatric traits and mouth ulcers. Lastly,
we did not consider sex-specific effects, which might differ for
psychiatric traits and mouth ulcers due to differences in hormone
levels. Because GWAS summary statistics we collected were not
stratified by sex, we could not perform sex-specific analyses to
validate different sex-specific causal effects of psychiatric traits on
mouth ulcers observed in epidemiological studies (Huling et al.,
2012; Slebioda and Dorocka-Bobkowska, 2019).

CONCLUSION

In conclusion, utilizing large-scale GWAS summary statistics
and two-sample bi-directional MR analyses, our study provides
causal evidence on the risk role of ASD, insomnia, MDD, and
mood instability, and the protective role of subjective wellbeing
on mouth ulcers in the European population. Future work is
needed to understand the biological pathways from psychiatric
traits to mouth ulcers.
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Polygenic risk score (PRS) has been shown to be predictive of disease risk such as
type 2 diabetes (T2D). However, the existing studies on genetic prediction for T2D only
had limited predictive power. To further improve the predictive capability of the PRS
model in identifying individuals at high T2D risk, we proposed a new three-step filtering
procedure, which aimed to include truly predictive single-nucleotide polymorphisms
(SNPs) and avoid unpredictive ones into PRS model. First, we filtered SNPs according
to the marginal association p-values (p ≤ 5 × 10−2) from large-scale genome-wide
association studies. Second, we set linkage disequilibrium (LD) pruning thresholds (r2)
as 0.2, 0.4, 0.6, and 0.8. Third, we set p-value thresholds as 5 × 10−2, 5 × 10−4,
5 × 10−6, and 5 × 10−8. Then, we constructed and tested multiple candidate PRS
models obtained by the PRSice-2 software among 182,422 individuals in the UK
Biobank (UKB) testing dataset. We validated the predictive capability of the optimal PRS
model that was chosen from the testing process in identifying individuals at high T2D risk
based on the UKB validation dataset (n = 274,029). The prediction accuracy of the PRS
model evaluated by the adjusted area under the receiver operating characteristics curve
(AUC) showed that our PRS model had good prediction performance [AUC = 0.795,
95% confidence interval (CI): (0.790, 0.800)]. Specifically, our PRS model identified 30,
12, and 7% of the population at greater than five-, six-, and seven-fold risk for T2D,
respectively. After adjusting for sex, age, physical measurements, and clinical factors,
the AUC increased to 0.901 [95% CI: (0.897, 0.904)]. Therefore, our PRS model could
be useful for population-level preventive T2D screening.

Keywords: type 2 diabetes, UK Biobank, screening, prediction model, polygenic risk score

INTRODUCTION

Type 2 diabetes (T2D) is a global public health problem. Identifying individuals at high risk for
T2D for early targeted detection, prevention, and intervention is of great public health significance.
Besides the well-known behavioral and environmental factors, T2D has a strong genetic
component (Zimmet et al., 2014). Genome-wide association studies (GWASs) have successfully
identified many common genetic variants that confer T2D susceptibility (Burton et al., 2007;
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Scott et al., 2007; Palmer et al., 2012; Visscher et al., 2017; Pärna
et al., 2020). However, all of these common genetic variants
discovered by GWAS can only be able to account for a small
proportion of the total heritability (McCarthy, 2010; Herder and
Roden, 2011; Prasad and Groop, 2015) and thus lead to low
predictive power. Polygenic risk score (PRS) that aggregates the
information of many common single-nucleotide polymorphisms
(SNPs) weighted by the effect size obtained from large-scale
discovery GWAS has been used to predict T2D risk. PRS is
expected to have better predictive power and the potential to
improve the performance in T2D risk assessment (Wray et al.,
2013; Khera et al., 2019).

The most commonly used method for constructing PRS is
called clumping and thresholding (C + T) [or pruning and
thresholding (P + T)] method, which applies two filtering steps.
To retain SNPs that weakly correlated with each other, it first
forms clumps around SNPs by using linkage disequilibrium
(LD)-driven clumping procedure (Privé et al., 2019). Each
clumping contains all SNPs within 250 kb of the index SNPs,
and the degree of LD is determined by a provided pairwise
correlation (r2). Then, it removes SNPs with p-values obtained
from a disease-related GWAS larger than a given threshold.
C+T is regarded as the most intuitive and easiest method to
generate PRS. There are two common software programs (i.e.,
PLINK and PRSice) that can be used to implement C + T
method. Recently, Choi et al. developed a new software PRSice-2
from https://www.prsice.info (Choi and O’Reilly, 2019), which is
demonstrated to be more computationally efficient and scalable
than alternative PRS software while maintaining comparable
predictive power.

Several researchers have tried to construct PRS models based
on the C + T method for predicting T2D risk by PLINK or
PRSice software. The earliest PRS model assessed the combined
risk of only three variants that had been published to predispose
to T2D in 6,078 individuals. The area under the receiver
operating characteristics curve (AUC) of their PRS model was
0.571 (Weedon et al., 2006). Thereafter, other researchers have
attempted various strategies to improve the predictive ability
of the PRS model, including increasing the number of SNPs,
adjusting for sex and age, some physical measurements [e.g.,
body mass index (BMI), diastolic blood pressure (DBP), and
systolic blood pressure (SBP)] (Lango et al., 2008) and clinical
factors [e.g., triglyceride level (TL), glucose level (GL), and
cholesterol level (CL)] (Lyssenko et al., 2008; Meigs et al.,
2008; Vassy et al., 2014). The AUC of those improved PRS
models increased to some extent (range from 0.600 to 0.800).
However, there are still several limitations. First, their sample
sizes are not large (range from 2,776 to 39,117). Second, they
only take a small number of SNPs (range from 3 to 1,000)
that passed the “GWAS significant variant” derivation strategy
(p ≤ 1 × 10−8 and r2 < 0.2 ) into account, which is too strict
and might miss predictive SNPs. Amit et al. (Khera et al.,
2018) constructed the PRS model across the whole genome and
finally included a total of 409,258 individuals with 6,917,436
SNPs from the UK Biobank (UKB) project. The AUC was
0.730 after adjusting for age, sex, and the first four principal
components for ancestry. This strategy has a slight improvement

in prediction accuracy; however, the computational burden is
relatively large.

To further explore the prediction capability of the PRS model
in identifying high-risk individuals for T2D, we proposed a
new strategy to construct PRS model by the following three-
step filtering procedure to consider a statistical compromise
between signal and noise. First, rather than including SNPs
across the whole genome, we selected a subset of SNPs by
a lenient significance threshold (p ≤ 5 × 10−2) from a huge
number of SNPs included in large-scale GWASs. Second, we
set r2 equal to 0.2, 0.4, 0.6, and 0.8 as candidate LD pruning
thresholds according to Khera et al. (2018). Third, we set p-value
thresholds as 5 × 10−2, 5 × 10−4, 5 × 10−6, and 5 × 10−8 .
After applying the above thresholds to the GWAS summary data,
a total of 16 candidate PRS models were then generated based on
the PRSice-2 software in the target samples. We conducted testing
using the UKB testing dataset (n = 182,422) to avoid the model
overfitting issue. Finally, we chose the best predictive PRS model
among a set of candidate PRS models and evaluated it in the
UKB validation dataset (n = 262,751). We also considered non-
genetic risk factors, including sex, age, physical measurements,
and clinical factors to further increase prediction accuracy. Real
data analysis showed that our PRS model outperforms previous
prediction models for T2D.

MATERIALS AND METHODS

Study Design and Population
Our study was conducted based on the UKB project1, one of
the largest prospective cohort studies (Conroy et al., 2019).
Nearly half a million participants aged 40–69 years were
enrolled from the United Kingdom at the time of their baseline
assessment visited from 2006 to 2010 (Sudlow et al., 2015).
A wide kind of physical measures (e.g., height, weight, blood
pressure, and spirometry) and biological samples (e.g., blood,
urine, and saliva) were collected. It then converted the limited
information contained in the biological samples into widely
shared cohort-wide genotyping (Bycroft et al., 2018) and whole-
exome sequencing data (Khera et al., 2019). More details about
the study design, method, and participants of the UKB project
have been provided elsewhere (Sudlow et al., 2015).

A total of 487,409 individuals with available genotyping array
and altogether 625,394 variants were originally collected from
UKB. We conducted strict quality control (QC) steps described
by Marees et al. (2018) based on PLINK 2.0 from https://www.
cog-genomics.org/plink2. Specifically, we first filtered out SNPs
and individuals with very high levels of missingness. Based on
a relaxed threshold of 0.2 (>20%), we removed 89,752 variants
and 30,855 subjects. There were also 262,751 SNPs removed
with minor allele frequency <0.03 and 1,204 SNPs removed
with a p-value of Hardy–Weinberg equilibrium Fisher’s exact test
< 1× 10−6. Finally, 456,451 individuals and 271,687 variants
passed QC and were considered in the following analysis.

1http://biobank.ctsu.ox.ac.uk/crystal/
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The ascertainment of T2D was based on a composite
of self-report, the International Classification of Diseases,
Ninth Revision (ICD-9) codes of 25000 and 25010, and the
International Classification of Diseases, Tenth Revision (ICD-
10) code of E11. The individual-level data of T2D-related
risk factors, including sex, age, physical measures [e.g., BMI,
waist circumference (WC), DBP, and SBP] and clinical factors
[e.g., GL, CL, TL, high-density lipoprotein (HDL), low-density
lipoprotein (LDL)] were also collected from the UKB project.
We further imputed the inevitably missing values of these
factors by their means. To analyze individuals with a relatively
homogeneous ancestry, the population was constructed centrally
based on a combination of self-reported ancestry and genetically
confirmed ancestry using the first 10 principal components
(i.e., PC1, ..., PC10). To construct, test, and further validate the
robustness of the polygenic predictor of T2D, we randomly
divided the overall data into two parts, i.e., the testing and
validation dataset. We assigned 40% of all individuals as the UKB
testing dataset (n = 182,422) and the remaining 60% as the UKB
validation dataset (n = 274,029). Other ratios were also tried to
divide the testing and validation datasets, i.e., 30–70%, 50–50%,
60–40%, and 70–30%. Individuals in the UKB validation dataset
were distinct from those in the UKB testing dataset. The detail of
the study design is described in Figure 1.

Genome-Wide Polygenic Score
Construction, Testing, and Validation
The PRS model provides a quantitative metric of an individual’s
inherited risk based on the cumulative impact of many SNPs.
Generally, the PRS model can be unweighted or weighted.
Suppose that we have n subjects and K SNPs that passed the first-
step filtering procedure. The unweighted PRS model is defined as,

PRSu = G1 + ....,GK ,

where Gk(k = 1, ....,K) denotes the number of risk alleles for
each genetic variant coded as 0, 1, or 2 under the additive
genetic model. For the weighted PRS model, weights are generally
assigned to each genetic variant according to the strength of
association with a given disease. The weighted PRS model can be
written as,

PRSw = β̂1G1 + . . ., β̂KGK ,

where β̂k
(
k = 1, . . . ,K

)
is the estimate of marginal genetic

effect in the external large-scale GWAS. Both unweighted or
weighted PRS models can be implemented by the PRSice-2
software (Choi and O’Reilly, 2019).

For PRS model construction, we used summary statistics
from a T2D GWAS conducted among 60,786 participants with
12,056,346 SNPs of European ancestry2 (Morris et al., 2012).
Note that the UKB samples did not overlap with the samples
from discovery GWAS. We first selected SNPs according to
their association p-values (p ≤ 5 × 10−2) obtained from the
above GWAS, and 50,224 SNPs remained. We then considered
multiple r2 thresholds (0.2, 0.4, 0.6, and 0.8) according

2http://diagram-consortium.org/

to Khera et al. (2018) and p-value thresholds (5 × 10−2,5 ×
10−4,5 × 10−6, and 5 × 10−8) to conduct the second and third
filtering procedures also on the DIAGRAM summary dataset.
A total of 16 candidate PRS models were created for T2D based
on the UKB testing dataset with 182,422 participants.

The PRS model with the best discriminative accuracy was
determined based on the maximal AUC in the following
logistic regression model adjusting for sex, age, and the first 10
principal components of ancestry. We use X1, X2 and PC =
(PC1, . . . , PC10)

T to represent the value of sex, age, and the
first 10 principal components of ancestry, respectively, where T
denotes the transpose of a vector or matrix. Let Y be the T2D
status with 0 and 1 representing control and case. The predictive
model for T2D can be represented as,

Logit [P (Y = 1 |X1, X2, X3 , PRSw)]

= β0 + β1X1 + β2X2 + βPCPC + βgPRSw,

where β0 is the intercept, and β1, β2, βPC =

(βPC1, . . ., βPC10), and βg are the regression coefficients for
X1, X2, PC, and PRSw. Then, the AUCs could be calculated
with trapezoids (Fawcett, 2006), and their 95% confidence
intervals (CI) could be computed by Delong’s method (DeLong
et al., 1988). Both AUC and their CI could be implemented
directly by the “pROC” package3 within R 3.6.34. More details
about this package are provided elsewhere (Robin et al., 2011).
The best score created in the testing dataset carried forward into
subsequent validation step.

Statistical Analysis in Validation Dataset
Baseline characteristics of the study population were described
as means ± standard deviations (M ± SD) or percentages.
Two independent sample t-test or chi-square test was used to
compare the baseline characteristics between the UKB testing
and validation datasets. Wilcoxon signed-rank test was applied
to give more information about the difference of PRSs between
the individuals with T2D and individuals without T2D. The
relationship between PRS and T2D was determined in the UKB
validation dataset based on logistic regression model adjusting
for sex, age, and the first 10 principal components of ancestry
(model1), which can be represented as,

T2D ∼ PRS+ sex+ age+ PC.

We stratified 274,029 participants in the UKB validation dataset
as 100 groups according to the percentiles of the PRS, and then,
the prevalence of T2D could be determined within each group.

To further observe the contribution of PRS, sex, age, physical
measurements, and other clinical risk factors to T2D, we provided
other four types of prediction models:

model2 : T2D ∼ sex+ age+ PC; (1)

model3 : T2D ∼ PRS; (2)

3https://cran.r-project.org/web/packages/pROC/index.html
4https://cran.r-project.org/bin/macosx/
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FIGURE 1 | Flowchart for the polygenic risk score (PRS) model for type 2 diabetes.

model4 : T2D ∼ sex+ age+PC+BMI+GL

+CL+HDL+ LDL+TL+WC+DBP+ SBP; (3)

model5 : T2D ∼ PRS+ sex+ age+PC+BMI+GL+CL

+HDL+ LDL+TL+WC+DBP+ SBP. (4)

We have checked and did not find the presence of collinearity
among the above variables. All of the above statistical analyses
were conducted using R version 3.6.3 software.

RESULTS

A total of 456,451 participants collected in UKB were divided into
the UKB testing dataset (n = 182,422) and the validation dataset
(n = 274,029) randomly. The mean ages of participants were
57 years old, and 54% were female in both testing and validation
datasets. There were nearly 5.494% (n = 10,023) participants
who were cases in the testing dataset and 5.575% (n = 15,277)
in the validation dataset. All of these factors were comparable
at baseline. The details of baseline characteristics are shown
in Table 1.

To obtain an optimal PRS model, we generated a total of
16 candidate PRS models implemented by PRSice-2 software.
We evaluated the performance of these 16 PRS models in

the UKB testing dataset and chose the best one for further
validation analysis. The AUCs of these 16 candidate PRS models
ranged from 0.691 to 0.792 (Table 2). We selected the best PRS
model with the highest AUC [AUC = 0.792, 95% CI: (0.787,
0.796)] based on 25,454 SNPs when p ≤ 5 × 10−2 and r2 <
0.2. The AUCs of different ratios of the testing and validation
datasets are shown in Table 3. We can see that the AUCs of
different ratios were very close to each other, which ranged from
0.791 to 0.795. The AUC of the 40–60% ratio had the best
performance in the validation dataset [AUC = 0.795, 95% CI:
(0.790, 0.800)]. Additional details of PRS model construction,
testing, and validation are provided in Figure 1.

To facilitate interpretation, we scaled PRS to have zero mean
and one standard deviation. We investigated whether our PRS
model could identify individuals at high T2D risk. Figure 2
showed that the median of the standardized PRS was 0.941 for
individuals with T2D versus−0.056 for individuals without T2D,
a difference of 0.997 (p < 0.00001). From Figure 3A, we found
that the standardized PRS approximated a normal distribution
across the population with the empirical risk of T2D rising
sharply in the right tail of the distribution. The PRS model
identified nearly 30% of the population at greater than or equal
to fivefold risk, 12% of the population at greater than or equal to
sixfold risk, and the top 7% of the population at greater than or
equal to sevenfold increased risk for T2D shown in Figure 3A.
Then, we stratified the population according to the percentiles of

Frontiers in Genetics | www.frontiersin.org 4 February 2021 | Volume 12 | Article 63238520

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-632385 February 6, 2021 Time: 18:23 # 5

Liu et al. An Improved Genome-Wide Polygenic Score Model

TABLE 1 | Baseline characteristics of the UK Biobank (UKB) testing dataset and the UKB validation dataset (M ± SD or %).

Variable UKB testing (n = 182,422) UKB validation (n = 274,029) Statistics and p-value

Sex

Male (%) 83,200 (45.609) 125,670 (45.860) x2 = 2.783, p = 0.095

Female (%) 99,222 (54.391) 148,359 (54.140)

Age (years) 56.777 ± 8.020 56.809 ± 8.009 t = −1.341, p = 0.179

Physical measurements

BMI (kg/m2) 27.388 ± 4.758 27.404 ± 4.765 t = −1.087, p = 0.277

WC (cm) 90.250 ± 13.485 90.306 ± 13.505 t = −1.135, p = 0.175

DBP (mmHg) 82.174 ± 10.311 82.171 ± 10.313 t = −0.118, p = 0.906

SBP (mmHg) 139.924 ± 19.000 139.917 ± 19.000 t = −0.116, p = 0.908

Clinical factors

CL (mmol/L) 5.711 ± 1.115 5.710 ± 1.117 t = −0.314, p = 0.753

GL (mmol/L) 5.119 ± 1.134 5.118 ± 1.132 t = 0.150, p = 0.881

TL (mmol/L) 1.753 ± 1.002 1.753 ± 1.000 t = −0.010, p = 0.992

HDL (mmol/L) 1.452 ± 0.357 1.453 ± 0.358 t = −0.625, p = 0.532

LDL (mmol/L) 3.556 ± 0.839 3.556 ± 0.841 t = −0.083, p = 0.934

Type 2 diabetes

Case (%) 10,023 (5.494) 15,277 (5.575) x2 = 1.342, p = 0.247

Control (%) 172,399 (94.506) 258,752 (94.425)

BMI, body mass index; CL, cholesterol level; DBP, diastolic blood pressure; GL, glucose level; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic
blood pressure; TL, triglyceride level; WC, waist circumference.

the PRS and defined the top 10 percentiles as “high risk” group
while the bottom 10 percentiles as “low risk” group. Figure 3B
showed the prevalence of T2D increases with the percentiles of
the PRS model. There were 5,642 (18.698%) cases in “high risk”
group among 30,174 individuals, while only 282 (0.935%) cases in
the “low risk” group, corresponding to a nearly 20-fold increase
in the risk of T2D comparing the top 10 percentiles versus the
bottom 10 percentiles.

TABLE 2 | The predictive power of candidate polygenic risk score (PRS) models
for type 2 diabetes (T2D).

Tuning parameter SNP number AUC (95% CI)

p ≤ 5 × 10−8 and r2 < 0.2 363 0.706 (0.701–0.711)

p ≤ 5 × 10−8 and r2 < 0.4 486 0.702 (0.697–0.707)

p ≤ 5 × 10−8 and r2 < 0.6 670 0.696 (0.691–0.701)

p ≤ 5 × 10−8 and r2 < 0.8 957 0.691 (0.686–0.697)

p ≤ 5 × 10−6 and r2 < 0.2 750 0.715 (0.710–0.720)

p ≤ 5 × 10−6 and r2 < 0.4 1,013 0.709 (0.704–0.714)

p ≤ 5 × 10−6 and r2 < 0.6 1,335 0.701 (0.696–0.706)

p ≤ 5 × 10−6 and r2 < 0.8 1,853 0.696 (0.691–0.701)

p ≤ 5 × 10−4 and r2 < 0.2 2,616 0.736 (0.732–0.741)

p ≤ 5 × 10−4 and r2 < 0.4 3,394 0.726 (0.721–0.731)

p ≤ 5 × 10−4 and r2 < 0.6 4,299 0.715 (0.710–0.720)

p ≤ 5 × 10−4 and r2 < 0.8 5,690 0.708 (0.703–0.713)

p ≤ 5 × 10−2 and r2 < 0.2 25,454 0.792 (0.787–0.796)

p ≤ 5 × 10−2 and r2 < 0.4 32,600 0.782 (0.777–0.787)

p ≤ 5 × 10−2 and r2 < 0.6 40,001 0.771 (0.766–0.776)

p ≤ 5 × 10−2 and r2 < 0.8 50,224 0.760 (0.755–0.765)

AUC was determined using a logistic regression model adjusted for sex, age, and
the first 10 principal components of ancestry. The highest AUC is denoted by the
bold values.

We further investigated the contribution of polygenic
predictor, sex, age, physical measurements, and clinical factors in
identifying individuals at high risk of T2D. Table 4 showed that
the AUCs of model3, which only included PRS into the prediction
model without adjusting for any other covariates, was 0.749 [95%
CI: (0.744,0.754)] in the testing dataset and 0.755 [95% CI: (0.752,
0.755)] in the validation dataset. Interestingly, if only considering
sex, age, and the first 10 principal components of ancestry into
the model, the AUC was 0.667 [95% CI: (0.663, 0.672)]. After
adding PRS, the AUC reached 0.795 [95% CI: (0.790, 0.800)],
which increased about 13% than model2. The AUC of model4
(i.e., considering sex, age, PC, BMI, WC, DBP, SBP, GL, CL, HDL,
LDL, and TL simultaneously) was 0.880 [95% CI: (0.878, 0.888)]
and raised to 0.901 [95% CI: (0.897, 0.904)] in the validation
dataset when adding PRS into the model. In brief, the polygenic
score indeed helps to identify high-risk individuals for T2D,
while the role of T2D-related covariates could also help increase
prediction accuracy. As showed in Table 5, PRS, sex, age, physical
measurements, and most clinical factors were all significantly
associated with T2D (p < 0.0001).

DISCUSSION

Our results showed that the AUC of the best PRS model was
0.795 after adjusting for sex, age, and the first 10 principal
components of ancestry. It demonstrated that the PRS was really
helpful for identifying individuals at high risk of developing T2D.
Meanwhile, the distributions of the PRS in cases and controls
were substantially different from each other, i.e., the median
PRS of cases (0.941) was much higher than that of the controls
(−0.056). Moreover, about 30% of participants were at greater
than or equal to fivefold increased risk of developing T2D, 12%
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TABLE 3 | Area under the receiver operating characteristics curves (AUCs) of different ratios of the testing and validation dataset when p ≤ 5 × 10−2 and r2 < 0.2.

Dataset 30–70% 40–60% 50–50% 60–40% 70–30%

Testing 0.791 0.792 0.794 0.795 0.794

(0.781–0.791) (0.787–0.796) (0.790–0.800) (0.791–0.799) (0.790–0.799)

Validation 0.794 0.795 0.793 0.792 0.791

(0.790–0.799) (0.790–0.800) (0.789–0.797) (0.787–0.796) (0.781–0.791)

AUC was determined using a logistic regression model adjusted for sex, age, and first 10 principal components of ancestry.

FIGURE 2 | Polygenic risk score (PRS) among type 2 diabetes (T2D) cases versus controls in the UK Biobank (UKB) validation dataset.

were at greater than or equal to sixfold risk, and the top 7% were
at greater than or equal to sevenfold increased risk. Particularly,
the stratified PRS according to their percentiles showed that the
“high-risk” group is strongly associated with the risk of T2D.

The above results suggest that our PRS model can be used as
a powerful tool in identifying individuals at high risk of T2D;
improved previous studies that summarized in Table 6. The AUC
of the PRS model assessed with only three SNPs that had been
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FIGURE 3 | Risk for type 2 diabetes (T2D) according to polygenic risk score (PRS). (A) Distribution of PRS for T2D in the UK Biobank (UKB) validation dataset
(n = 301,736). The x-axis represents PRS for T2D, which was scaled to have zero mean and one standard deviation. Dotted lines reflect the proportion of the
population with five-, six-, and seven-fold increased risk versus the remainder of the population, respectively. The odds ratio was assessed in a logistic regression
model adjusting for sex, age, and the first 10 principal components of ancestry. (B) Prevalence of T2D according to 100 groups of the UKB validation dataset
stratified according to the percentile of the PRS for T2D.

TABLE 4 | Area under the receiver operating characteristics curve (AUC) of different models in the testing and validation dataset.

Dataset Mean model2 model3 model1 model4 model5

Testing −0.003 0.671 (0.666–0.676) 0.749 (0.744–0.754) 0.792 (0.787–0.796) 0.886 (0.882–0.889) 0.902 (0.899–0.905)

Validation −0.003 0.667 (0.663–0.672) 0.755 (0.752–0.755) 0.795 (0.790–0.800) 0.882 (0.878–0.888) 0.901 (0.897–0.904)

model1: AUC was determined using a logistic regression model adjusted for sex, age, and the first 10 principal components of ancestry. model2: AUC was determined
using a logistic regression model only considering sex and age. model3 : AUC was determined using a logistic regression model only considering genome-wide polygenic
score. model4: AUC was determined using a logistic regression model considering demographic factors, physical measurements, and clinical factors. model5 : AUC was
determined using a logistic regression model adjusted for sex, age, body mass index, waist circumference, diastolic blood pressure, systolic blood pressure, glucose
level, cholesterol level, high-density lipoprotein, low-density lipoprotein, triglyceride level, and the first 10 principal components of ancestry.

published to predispose to T2D in 6,078 individuals was 0.571
(Weedon et al., 2006). After including more SNPs, Lango et al.
(2008) constructed a PRS model with 18 SNPs and obtained

TABLE 5 | Parameter estimations under model5 in validation dataset.

Variables Estimate beta Stand error Z p-value

(Intercept) 24.500 0.495 49.474 < 2 × 10−16

PRS 12370.000 167.400 73.943 < 2 × 10−16

CL −0.591 0.057 −10.377 < 2 × 10−16

HDL 0.051 0.063 0.876 0.381

LDL 0.010 0.068 0.140 0.888

TL 0.285 0.013 21.826 < 2 × 10−16

Sex −0.214 0.028 −7.731 1.070 × 10−14

WC 0.045 0.002 28.356 < 2 × 10−16

BMI 0.036 0.004 9.325 < 2 × 10−16

Age 0.060 0.002 38.401 < 2 × 10−16

DBP −0.018 0.001 −13.928 < 2 × 10−16

SBP 0.005 0.001 7.626 2.410 × 10−16

GL 0.449 0.006 69.917 < 2 × 10−16

PC10 0.020 0.004 4.726 2.280 × 10−16

BMI, body mass index; CL, cholesterol level; DBP, diastolic blood pressure; GL,
glucose level; PRS, genome-wide polygenic score; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; SBP, systolic blood pressure; TL, triglyceride level;
WC, waist circumference.

an AUC of 0.600 (Lango et al., 2008). A later study with 22
SNPs had an AUC of 0.570 (Chatterjee et al., 2013) and allowed
for the identification of 3.0% of the population at twofold or
higher than average risk for T2D. Notably, the above three studies
with smaller sample sizes (range from 4,907 to 39,117), and a
smaller number of SNPs (range from 3 to 22) had relatively poor
predictive performance compared to our study (AUC = 0.755)
with 25,454 SNPs among 274,029 individuals.

In addition, we highlight the role of non-genetic risk factors,
i.e., sex, age, physical measurements, and clinical factors. When
adjusting for sex and age, Meigs et al. (2008) obtained an AUC
of 0.581 among 2,776 individuals, Vassy et al. (2014) provided
an AUC of 0.726 among 11,883 people, and the AUC of Läll
et al. (2017) reached 0.740. Interestingly, the study that handled
nearly 7 million variants in 288,978 individuals only generated
an AUC of 0.730 after adding sex and age, which was smaller
than ours (0.795) including only 25,454 SNPs (Khera et al., 2018).
They further reported that 3.5% of the population had inherited
a genetic predisposition that conferred greater than or equal to
threefold increased risk for T2D, 0.2% of the population greater
than or equal to fourfold, and 0.05 of the population greater than
or equal to fivefold. Their study differs from ours in four aspects.
First, our study has larger sample size (456,451 versus 409,258).
Second, we first perform SNP selection based on genome-wide
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TABLE 6 | A comprehensive comparison with other researches.

Year SNP N Case\Control Case/N (%) Dataset AUC Ethnicity Covariates

Weedon et al., 2006 3 6,078 2,409\3,669 39 UKCS 0.571 British –

Lango et al., 2008 18 4,907 2,309\2598 47 GoDARTS 0.600 Scotland –

Lango et al., 2008 18 4,907 2,309\2598 47 GoDARTS 0.800 Scotland Age, BMI, and sex

Lyssenko et al., 2008 16 18,831 2,201\16,630 11.68 MPP and BS 0.750 Finland Sex, age, family history, BMI,
BP, TL, and GL

Chatterjee et al., 2013 22 39,117 130\38,987 0.3 – 0.570 Caucasian –

Chatterjee et al., 2013 22 39,117 130\38,987 0.3 – 0.740 Caucasian Sex, age, and family history

Läll et al., 2017 1,000 10,273 1,181\9,092 11.5 EBC 0.74 Estonia Sex and age

Läll et al., 2017 1,000 10,273 1,181\9,092 11.5 EBC 0.767 Estonia Sex, age, and BMI

Läll et al., 2017 1,000 10,273 1,181\9,092 11.5 EBC 0.790 Estonia Sex, age, BMI, BP, GL, physical
activity, smoking, and food
consumption

Khera et al., 2018 6,917,436 288,978 5,853\283,125 2 UKB 0.730 British Sex and age

– 25,454 274,029 18,176\283,560 6 UKB 0.755 British –

– 25,454 274,029 18,176\283,560 6 UKB 0.795 British Sex and age

– 25,454 274,029 18,176\283,560 6 UKB 0.901 British Sex, age, WC, BMI, SBP, DBP,
GL, CL, TL, HDL, and LDL

association p-values (p ≤ 5 × 10−2) so that we included more
predictive SNPs (25,454) and avoided spurious SNPs into our
PRS model. Third, they used the first 4 principal components
of ancestry, while we used the first 10 principal components of
ancestry for a better control of population stratification. Fourth,
we generated PRS based on the more computationally efficient
and scalable PRSice-2 software, while they used LDpred program
(Ripke et al., 2015), which is much slower than PRSice-2. Those
differences explain why our PRS model has better predictive
power. Certainly, we also tried to incorporate more non-genetic
risk factors, and the AUC increased from 0.755 to 0.901. Our
study is thus more accurate in identifying individuals at low and
high risk of developing T2D.

Our study has multiple strengths. First, we construct the PRS
model based on the UKB dataset, which is one of the largest
prospective cohort studies with comprehensive and abundant
personal information, as well as high-quality genotyping data
in the world. Second, we choose SNPs into our PRS model
based on our proposed three-step filtering procedure. This
approach is simple to implement and has a very good prediction
performance. Third, we include new physical measurements
and clinical factors (i.e., WC, DBP, HDL, and LDL) in
our predictive model to increase prediction accuracy. Fourth,
we adopted a new PRS software PRSice-2, which has been
shown to outperform other competing methods and software
in terms of prediction accuracy and computational speeds
(Choi and O’Reilly, 2019).

Although the present study has made important contributions
in identifying individuals with increased risk of developing
T2D; however, there exists one major limitation. Individuals
in the UKB dataset are primarily European ancestry;
the specific PRS calculated here may not have optimal
predictive power for other ethnic groups because the allele
frequencies, LD patterns, and effect sizes of common
SNPs may be different across populations with different
ethnic backgrounds.

In conclusion, our findings show that the PRS model is highly
predictive of T2D risk even based on genetic data only, and the
prediction accuracy improves after including non-genetic risk
factors, suggesting that our PRS model can be used as a powerful
tool for preventive T2D screening.
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Next-generation sequencing has emerged as an essential technology for the quantitative

analysis of gene expression. In medical research, RNA sequencing (RNA-seq) data are

commonly used to identify which type of disease a patient has. Because of the discrete

nature of RNA-seq data, the existing statistical methods that have been developed

for microarray data cannot be directly applied to RNA-seq data. Existing statistical

methods usually model RNA-seq data by a discrete distribution, such as the Poisson,

the negative binomial, or the mixture distribution with a point mass at zero and a Poisson

distribution to further allow for data with an excess of zeros. Consequently, analytic

tools corresponding to the above three discrete distributions have been developed:

Poisson linear discriminant analysis (PLDA), negative binomial linear discriminant analysis

(NBLDA), and zero-inflated Poisson logistic discriminant analysis (ZIPLDA). However, it

is unclear what the real distributions would be for these classifications when applied to

a new and real dataset. Considering that count datasets are frequently characterized

by excess zeros and overdispersion, this paper extends the existing distribution to a

mixture distribution with a point mass at zero and a negative binomial distribution and

proposes a zero-inflated negative binomial logistic discriminant analysis (ZINBLDA) for

classification. More importantly, we compare the above four classification methods from

the perspective of model parameters, as an understanding of parameters is necessary

for selecting the optimal method for RNA-seq data. Furthermore, we determine that the

above four methods could transform into each other in some cases. Using simulation

studies, we compare and evaluate the performance of these classification methods in

a wide range of settings, and we also present a decision tree model created to help

us select the optimal classifier for a new RNA-seq dataset. The results of the two real

datasets coincide with the theory and simulation analysis results. The methods used

in this work are implemented in the open-scource R scripts, with a source code freely

available at https://github.com/FocusPaka/ZINBLDA.

Keywords: RNA-seq data, classification, PLDA, NBLDA, ZIPLDA, ZINBLDA
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1. INTRODUCTION

RNA sequencing (RNA-seq), which involves directly sequencing
complementary DNAs and aligning the sequences to the
reference genome or transcriptome, has emerged as a powerful
technology for measuring gene expression (Mardis, 2008;
Morozova et al., 2009; Wang et al., 2009). In recent years, the
affordability and effectiveness of RNA-seq has resulted in its
application in biological and medical studies, such as genomics
research (Nagalakshmi et al., 2008; Trapnell et al., 2010) and
clinical use (Berger et al., 2010; Biesecker et al., 2012). Unlike
microarray technology, RNA-seq allows for the detection of novel
transcripts with low background signals. One of the biological
applications of RNA-seq is inferring differential expression (DE)
genes between different conditions or tissues. Existing popular
methods include edgeR (Robinson and Smyth, 2008; Robinson
et al., 2010), DESeq2 (Love et al., 2014), and LFCseq (Lin
et al., 2014). Another important application is the diagnosis of
diseases. Numerous discriminant methods have been proposed
for the diagnosis of diseases using microarray data, such as
diagonal linear discriminant analysis and diagonal quadratic
discriminant analysis in Dudoit et al. (2002). In previous RNA-
seq experiments, the read counts (the number of short reads
mapped to the reference genome) have been used to measure the
expression level. However, because the expression matrix entries
are non-negative integers, classification methods that follow a
Gaussian distribution may not perform well for RNA-seq data.

Classification methods based on different discrete

distributions have been proposed for RNA-seq data. Witten
(2011) assumed RNA-seq data follow a Poisson distribution
and proposed a Poisson linear discriminant analysis (PLDA)
method. Comparison studies (Tan et al., 2014) have shown
that PLDA performs much better than the method used for
microarray data when classifying RNA-seq data. Considering
the overdispersion of RNA-seq data, Dong et al. (2016) assumed
that data follow a negative binomial distribution and developed

a negative binomial linear discriminant analysis (NBLDA)

method. Zhou et al. (2018) found excess zeros in real RNA-seq
data and proposed a zero-inflated Poisson logistic discriminant
analysis (ZIPLDA) method, which assumes RNA-seq data
follow a mixture distribution with a point mass at zero and a
Poisson distribution.

Due to the shallow sequence depth and dispersed biological
replicates, there may be excess zeros and overdispersion in a real
RNA-seq dataset, which should be considered when conducting
data analysis. For instance, the real dataset TCGA-LIHC, which
includes a cancerous and normal group, contains about 43.24%
zeros of all numerical values, and the estimated dispersion
parameter is 1.12. Therefore, a natural assumption would be to
extend the existing discrete distribution to a mixture distribution
with a point mass at zero and a negative binomial distribution.
We call this method zero-inflated negative binomial logistic
discriminant analysis (ZINBLDA). To obtain the model, which
is similar to ZIPLDA, we built a mixture distribution with a
point mass at zero and a negative binomial distribution for
the remaining data. We then estimated the parameters in the
model. Finally, we obtained a classifier by Bayes rule to predict

for a future observation. We also analyzed the relationship
between the above four classification methods, and the resulting
discriminant scores for the four classification methods showed
that they can transform into each other in some cases. We
examined these four methods from the perspective of their
parameters and determined how the parameters provide the link
between the selected optimal method and themodel classification
performance. In addition, we built a decision tree to help us select
the optimal classifier from these four methods for a new dataset.

The remainder of the article is organized as follows. In section
2, we review the existing three classificationmethods and propose
the ZINBLDA method for overdispersion RNA-seq data with an
excess of zeros. We also give the estimation of the parameters
in the model in detail. We further discuss the transformation
relations between the four methods. Section 3 discusses the
results of the simulation studies that were conducted to evaluate
the performance of the four methods in a wide range of settings.
This section also presents a decision tree that was built to
select the optimal classifier from these four methods for a new
dataset. In section 4, we employ the four methods to analyze two
real RNA-seq datasets and evaluate their performance. Finally,
we conclude the work with a discussion of the findings and
future directions.

2. CLASSIFICATION METHODS

There are three existing classification methods for RNA-seq data:
PLDA (Witten, 2011), NBLDA (Dong et al., 2016), and ZIPLDA
(Zhou et al., 2018). We propose a new discriminant analysis
method to model overdispersion RNA-seq data with excess zeros.
We examined these four methods from the perspective of their
parameters and analyzed the transformation relations between
the methods.

Before introducing the methods, we must first specify some
notations used in this work. In this paper, K is the number of
classes, and Xkikg denotes the number of read counts that are
mapped to gene g in sample ik of class k, where k = 1, · · · ,K;
ik = 1, · · · , nk; and g = 1, · · · ,G. Specifically, there are nk
samples in class k, and n =

∑K
k=1 nk denotes the total number

of samples for all classes.

2.1. Principle of the Classifiers
The principle of the classifiers is applicable for the following four
classifiers. Suppose that for the training set {(xxxi, yi)}

n
i=1 we wished

to classify a new observation xxx∗ = (X∗
1 , · · · , X

∗
G)

T . If y∗ is the
unknown label of xxx∗, by Bayes’ rule

P(y∗ = k|xxx∗) ∝ fk(xxx
∗)πk, (1)

where fk is the probability density function of an observation
in class k, and πk is the prior probability that an observation
belongs to class k. In general, we can use πk = nk/n to satisfy
∑K

k=1 πk=1.We define a discriminant score function as dk(xxx
∗) =

log[P(xxx∗|y∗ = k)πk] on the basis of formula (1) and assign a
new observation to the class for which the discriminant score is
the highest.
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2.2. Poisson Linear Discriminant Analysis
For PLDA, Witten (2011) assumed that RNA-seq data follow a
Poisson distribution, that is,

Xkikg |yik = k ∼ Poisson(µkikg), µkikg = dkgsikλg , (2)

where µkikg is the expectation for gene g in sample ik of class k,
sik is the size factor used to identify individuals in the kth class,
λg is the total number of read counts for gene g, and dkg allows
for the differential expression of gene g between the different
classes. Following the expression of (2), the probability density
function is

P(Xkikg = xkikg) =
µ
xkikg

kikg

(xkikg)!
e
−µkikg .

Thus, according to formula (1), the discriminant score of PLDA
is obtained by

dk(xxx
∗) =

G
∑

g=1

X∗
g log(dkg)− s∗

G
∑

g=1

λgdkg + logπk + C, (3)

where s∗ is the size factor of test observation, and C represents a
constant that is unrelated to the class label.

2.3. Negative Binomial Linear Discriminant
Analysis
Modeling RNA-seq data with a negative binomial distribution
instead of a Poisson distribution is a natural extension. Dong
et al. (2016) proposed NBLDA to allow for cases where variance
is greater than or equal to the mean, and they also demonstrated
that NBLDA is more suitable when biological replicates are
available. The negative binomial distribution is expressed as

Xkikg |yik = k ∼ NB(µkikg ,φg), µkikg = dkgsikλg , (4)

where φg is a non-negative dispersion parameter, and the rest of
parameters are the same as for PLDA. Therefore, the probability
density function of Xkikg = xkikg in model (4) is

P(Xkikg = xkikg) =
Ŵ(xkikg + φ−1

g )

(xkikg)!Ŵ(φ
−1
g )

(
µkikgφg

1+ µkikgφg
)
xkikg

(
1

1+ µkikgφg
)φ

−1
g .

Similarly, the discriminant score can be obtained by

dk(xxx
∗) =

G
∑

g=1

X∗
g [log(dkg)− log(1+ s∗λgdkgφg)]

−

G
∑

g=1

φ−1
g log(1+ s∗λgdkgφg)+ logπk + C.

(5)

2.4. Zero-Inflated Poisson Logistic
Discriminant Analysis
Considering data with excess zeros due to missing records or
no observation signal, Zhou et al. (2018) proposed ZIPLDA
method, which assumes that data follow a zero-inflated Poisson
distribution. The distribution is expressed as

Xkikg ∼

{

δ{0}, pkikg ,

Poisson(µkikg), (1− pkikg),

where δ{0} denotes the point mass at zero, pkikg is the probability
of δ{0} in gene g of sample ik in class k, and µkikg is same as in the
former two classifiers. Thus, the probability of Xkikg is written as

P(Xkikg) =











pkikg + (1− pkikg)e
−µkikg , Xkikg = 0,

(1− pkikg)
µ
Xkikg

kikg

(Xkikg
)!
e
−µkikg , Xkikg > 0.

Additionally, the probability density function of Xkikg = xkikg is

P(Xkikg = xkikg) =
[

pkikg + (1− pkikg)e
−µkikg

]I(xkikg
=0)



(1− pkikg)
µ
xkikg

kikg

(xkikg)!
e
−µkikg





I(xkikg
>0)

.

Finally, the discriminant score dk(x
∗) is,

dk(xxx
∗) =

G
∑

g=1

I(X∗
g=0) log

(

p̂∗kg + (1− p̂∗kg)e
−dkg s

∗λg
)

−

G
∑

g=1

I(X∗
g >0)dkgs

∗λg +

G
∑

g=1

I(X∗
g >0) log(1− p̂∗kg)

+

G
∑

g=1

I(X∗
g >0)X

∗
g log(dkg)+ logπk + C. (6)

2.5. Zero-Inflated Negative Binomial
Logistic Discriminant Analysis
2.5.1. Model

In this section, we extend the zero-inflated Poisson distribution
to the zero-inflated negative binomial distribution and propose
ZINBLDA to model overdispersion data with excess zeros. The
distribution is expressed as

Xkikg ∼

{

δ{0}, pkikg ,

NB(µkikg ,φ
′

g), (1− pkikg).

Thus, the probability of Xkikg is written as

P(Xkikg) =























pkikg + (1− pkikg)(
1

1+µkikg
φ′

g
)φ

′−1
g , Xkikg = 0,

(1− pkikg)
Ŵ(Xkikg

+φ
′−1
g )

Xkikg
!Ŵ(φ

′−1
g )

(
µkikg

φ′
g

1+µkikg
φ′

g
)
Xkikg ( 1

1+µkikg
φ′

g
)φ

′−1
g , Xkikg > 0.
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The probability density function of Xkikg = xkikg is

P(Xkikg = xkikg)=
[

(1− pkikg)
Ŵ(xkikg + φ

′−1
g )

xkikg !Ŵ(φ
′−1
g )

(
µkikgφ

′
g

1+ µkikgφ
′
g
)
xkikg

(
1

1+ µkikgφ
′
g
)φ

′−1
g

]I(xkikg
>0)

(7)

[

pkikg + (1− pkikg)(
1

1+ µkikgφ
′
g
)φ

′−1
g

]I(xkikg
=0)

.

(8)

By Bayes’ rule, we obtain the discriminant score dk(xxx
∗) of

ZINBLDA using

dk(xxx
∗) =

G
∑

g=1

I(X∗
g=0) log

[

(1− p̂∗kg)(
1

1+ s∗λgdkgφ′
g
)φ

′−1
g

+p̂∗kg

]

+

G
∑

g=1

I(X∗
g >0) log(1− p̂∗kg)

+

G
∑

g=1

I(X∗
g >0)X

∗
g [log dkg − log(1+ s∗λgdkgφ

′

g)]

−

G
∑

g=1

I(X∗
g >0)φ

′−1
g log(1+ s∗λgdkgφ

′

g)

+ logπk + C. (9)

2.5.2. Parameters Estimation

Next, we estimate the parameters in the ZINBLDA model, which
includes the class difference parameter dkg , size factors sik and
s∗, dispersion parameter φ′

g , and the probability of excess zeros
pkikg .

2.5.2.1. Class Difference Parameter Estimation
Similar to the former three methods, to estimate dkg we

first obtain the maximum likelihood estimation d̂kg =

(
∑nk

ik=1 Xikg)/(
∑nk

ik=1 sikλg) and then take a Gamma(β ,β) prior

in case of
∑nk

ik=1 Xikg = 0. Therefore, the posterior mean

d̂kg = (

nk
∑

ik=1

Xikg + β)/(

nk
∑

ik=1

sikλg + β)

is our estimation. For convenience and due to the small influence
of β on the estimation result, we assume β=1 in this work.

2.5.2.2. Size Factor Estimation
The total number of reads between samples differs due to
various sequencing depths. Generally, data must be normalized
by their size factor. The three existing classification methods
(PLDA, NBLDA, and ZIPLDA) use three different normalization
methods: total count (Dillies et al., 2013), median ratio (Love
et al., 2014), and quantile (Bullard et al., 2010). Note that there
is little difference in the performance of classification among
the three normalization methods. In this work, we use total

count to estimate the size factor for convenience. Therefore, the
estimation of size factor ŝik for the training data is

ŝik =

∑G
g=1 Xikg

∑K
k=1

∑nk
ik=1

∑G
g=1 Xikg

,

and the estimation of size factor ŝ∗ for the testing data is

ŝ∗ =

∑G
g=1 X

∗
g

∑K
k=1

∑nk
ik=1

∑G
g=1 Xikg

.

2.5.2.3. Dispersion Parameter Estimation
Since ZINBLDA assumes that data follow a mixture distribution
rather than a negative binomial distribution, the method used to
estimate the dispersion parameter in NBLDA is not applicable
in this case. Therefore, we used the maximum likelihood to
estimate φ′

g . Based on equation (8), the log likelihood function
of ZINBLDA is

L=

G
∑

g=1

{I(xkikg=0) log[p̂kikg + (1− p̂kikg))(
1

1+ µ̂kikgφ
′
g
)φ

′−1
g ]

+I(xkikg>0)[log(1− p̂kikg)+ logŴ(xkikg + φ
′−1
g )

− logŴ(φ
′−1
g )− logŴ(xkikg !)

+xkikg log µ̂kikgφ
′
g − xkikg log(1+ µ̂kikgφ

′
g)

−φ
′−1
g log(1+ µ̂kikgφ

′
g)]}. (10)

Because the parameter pkikg must also be estimated, we cannot
directly take the partial derivatives and let the result equal zero
to get the estimation of dispersion parameter φ̂′

g in formula (10).
Therefore, we first set an initial value for parameters pkikg and
φg , and then we used the PORT routines optimization method

(David, 1990) to get the estimation value φ̂′
g .

2.5.2.4. The Probability of Excess Zeros Estimation
Assuming the data for the classifier follow a zero-inflated mixture
distribution, we needed to estimate the probability of excess
zeros in the distribution. Based on the process proposed by
Zhou et al. (2018), we assumed that the probability of zeros, the
mean of the genes, and the sequencing depth have the following
logistic relation:

log{
P(Xkikg = 0)

1− P(Xkikg = 0)
} = α + β1(

Nkik

N1i1

)+ β2µkikg . (11)

Replacing P(Xkikg = 0) in model (11) with pkikg + (1 −

pkikg)(
1

1+µkikg
φ
′
g

)φ
′−1
g , we get

p̂kikg =

p1 − (1+ p1)(
1

1+µkikg
φ̂
′
g

)φ̂
′−1
g

(1+ p1)[1− ( 1

1+µkikg
φ̂
′
g

)φ̂
′−1
g ]

,

where p1=exp{α + β1(
Nkik
N1i1

)+ β2µkikg}; Nkik =
∑G

g=1 Xkikg ; and

α, β1, and β2 are coefficients in the logistic model (11).
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FIGURE 1 | The transformation relation between the four methods. Given a

sufficient sample size, the four models can transform into one another

according to the value of dispersion parameter φ and the average probability

of excess zeros p0.

2.6. Transformation Relation
Note that the above four models can transform into one another
under some conditions.

(1) From the discriminant score function of NBLDA
(formula 5), we found that if s∗λgdkg is bounded and φg → 0,

then log(1 + s∗λgdkgφg) → 0 and φ−1
g log(1 + s∗λgdkg) →

s∗λgdkg . Therefore, the discriminant score of NBLDA approaches
that of PLDA (formula 3). That is, the NBLDA classifier reduces
to the PLDA classifier when the dispersion value tends to zero.

(2) For the discriminant score function of ZIPLDA
(formula 6), when p̂∗

kg
→0, then log(p̂∗

kg
+(1 − p̂∗

kg
)e−dkg s

∗λg ) →

−dkgs
∗λg , and the discriminant score of ZIPLDA approaches

that of PLDA. Thus, with the probability of zeros decreased to
zero, the ZIPLDA score reduces to the PLDA score.

(3) Similarly, for the discriminant score of ZINBLDA

(formula 9), when φ′
g → 0, then φ

′−1
g log(1 + s∗λgdkgφ

′
g) →

dkgs
∗λg and (1 + s∗λgdkgφ

′
g)

−φ
′−1
g → exp{−dkgs

∗λg}. That
is, when dispersion tends to zero, the discriminant score of
ZINBLDA reduces to that of the ZIPLDA. Furthermore, if p̂∗

kg
→

0, then log[(1 − p̂∗
kg
)( 1

1+s∗λgdkgφ
′
g
)φ

′−1
g + p̂∗

kg
] → −φ

′−1
g log(1 +

s∗λgdkgφ
′
g). Therefore, when the probability of δ{0} tends to zero,

the ZINBLDA classifier reduces to the NBLDA classifier.
Figure 1 shows the above transformation relations, where φ

denotes the dispersion parameter, and p0 denotes the average
probability of excess zeros. Starting at the bottom right of the
figure and going clockwise, ZINBLDA reduces to ZIPLDA as
φ → 0, and ZIPLDA reduces to PLDA as p0 → 0. Likewise,
starting at the bottom right corner and going counterclockwise,
ZINBLDA reduces to NBLDA as p0 → 0, and NBLDA reduces
to PLDA as φ → 0. The transformation relationship between
the four classification methods indicates that for data without
dispersed biological replicates and excess zeros, PLDA may
perform better than the other methods. However, NBLDA is
good at dealing with overdispersion data, while ZIPLDA is
designed to handle data with excess zeros. For data with excess

zeros and dispersed biological replicates, ZINBLDA may be the
optimal choice.

3. SIMULATION STUDIES

We evaluated the performance of the four methods by
conducting simulations in various scenarios. We also built a
decision tree to help us select the optimal classifier from the four
methods for a new dataset.

3.1. Simulation Design
To ensure a fair comparison between the four classifiers,
we followed the same process as Zhou et al. (2018) and
generated simulation data from the following negative
binomial distribution:

Xkikg ∼ NB(dkgsikλg ,φ).

We set K = 2 to illustrate the binary classification, and
each class included about n/2 samples. We also considered
multiple classifications with K = 3, with each class including
approximately n/3 samples. The rest of the distribution
parameters were as follows: the size factors sik had a uniform
distribution at [0.2, 2.2], the λg values had an exponential
distribution with an expectation of 25, and the log dkg values
had a normal distribution with a location of 0 and scale of
σ 2 (where σ = 0.2). In the simulation studies, the DE rate
represented the proportion of differentially expressed genes, and
p was the number of genes in the samples. For simplicity, we
denoted p0 as the probability of excess zeros. In each simulation
study, we changed one parameter and fixed the others, then
compared the misclassification rates of the four classifiers. We
specified the values for p,DE rate, p0, φ, and n in each simulation
study. Each simulation was repeated 1,000 times, and the average
misclassification rates were calculated for the four methods.

3.2. Simulation Results
Study 1 investigated the impact of the dispersion parameter on
the performance of the four classification methods. Considering
a binary classification, we set the probability of excess zeros of
data to 0 and generated 50 training and 50 testing samples.
Each sample included 100 genes, 20% of which were DE genes.
Figure 2 shows the average misclassification rates of the four
methods with different dispersions. Overall, the misclassification
rates of the four classifiers decreased when the dispersion
parameters changed from 1 to 0. PLDA and ZIPLDA showed
similar performance, and both were slightly worse than NBLDA
and ZINBLDA in different dispersion settings. However, when
the dispersion was reduced to zero, the misclassification rates
of all four methods tended to zero. From the expressions of the
negative binomial and Poisson distributions, the former reduced
to the latter when the dispersion parameter was reduced to zero,
which indicates that NBLDA and ZINBLDA (which are based on
negative binomial distribution) are more suitable for classifying
overdispersion data. In addition, we changed the probability
of excess zeros of simulation data from 0 to 0.1, and the
other parameters remained the same. Supplementary Figure 1
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FIGURE 2 | The misclassification rates of the four methods with different

dispersions (Study 1). Here, σ = 0.2, p = 100, n = 50, p0 = 0, and

DE rate = 0.2.

FIGURE 3 | The misclassification rates of the four methods with different

probabilities of excess zeros (Study 2). Here, σ = 0.2, p = 100, n = 50, φ = 0,

and DE rate = 0.2.

shows that when dispersion changed the value from 0 to 1,
ZINBLDA outperformed the other methods. However, NBLDA
and PLDA performed worse than ZINBLDA and ZIPLDA when
the dispersion tended to zero. This result indicates that the
probability of excess zeros has a major effect on the performance
of the four methods.

Study 2 investigated the performance of the four methods
with different probabilities of excess zeros. In this study, we set
the dispersion parameter to 0, and p0 ∈ [0.1, 0.3]; the rest of
the parameters were the same as in Study 1. Figure 3 shows
that the average misclassification rates of the four classifiers

FIGURE 4 | The misclassification rates of the four methods with different

sample sizes (Study 3). Here, σ = 0.2, p = 100, φ = 0, p0 = 0.3, and

DE rate = 0.2.

FIGURE 5 | The misclassification rates of the four methods with different

numbers of genes (Study 4). Here, σ = 0.2, n = 50, φ = 0, p0 = 0.1, and

DE rate = 0.2.

increased as the probability of excess zeros increased. ZIPLDA
performed slightly better than ZINBLDA when p0 tended to
0. The performance of these two classifiers was far better than
the other two classifiers, and PLDA performed the worst with
different probabilities of excess zeros. This result demonstrates
that ZIPLDA and ZINBLDA (which are designed for excess
zeros) have a clear advantage over the other two methods
when classifying data with excess zeros. Setting φ = 0 could
explain why ZIPLDA performed slightly better than ZINBLDA.
In addition, when we reduced the sample size from 50 to 8,
the result (Supplementary Figure 2) showed that ZIPLDA still
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performed the best out of the four classifiers; however, ZINBLDA
performed the worst in this case, which indicates that the sample
size has a major effect on the performance of ZINBLDA.

Figure 4 shows the performance of the four classification
methods when the sample size changes. In Study 3, we set
the probability of excess zeros to 0.3, and the sample size was
gradually changed from 8 to 300. The rest of the parameters

FIGURE 6 | The misclassification rates of the four methods with different

probabilities of differential expression genes (Study 5). Here, σ = 0.2, p = 100,

n = 8, φ = 0.5, and p0 = 0.

were the same as in Study 2. The overall misclassification rates
gradually declined to nearly a constant value for all four classifiers
when the sample size increased. ZIPLDA showed superiority
over the other methods when the sample size was less than 130,
and ZINBLDA attained a lower misclassification rate when the
sample size was over 150. The same pattern existed between
NBLDA and PLDA.When the sample size was less than 20, PLDA

FIGURE 8 | The misclassification rates of the four classifiers for the GSE86507

dataset.

FIGURE 7 | The decision tree model used to choose an optimal classifier.
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FIGURE 9 | The misclassification rates of the four classifiers for the LIHC

dataset.

had a lower misclassification rate; however, NBLDA yielded a
lower value when the sample size increased. The results illustrate
that sample size has a huge impact on the performance of
ZINBLDA and NBLDA, and ZINBLDA outperformed the other
methods when a sufficient sample size was available. The reason
for this may be that ZINBLDA requires a minimal number of
samples to estimate the parameters in the model.

In the above three studies, we fixed the gene number at 100. In
Study 4, we changed the number of selected genes and evaluated
the performance of the four classifiers. The parameters were the
same as in the former studies except φ = 0 and p0 = 0.1. Figure 5
shows that the misclassification rates of the four methods
declined as the number of genes selected increased. ZINBLDA
and ZIPLDA showed similar performance and outperformed
the other two methods, and PLDA performed the worst of the
four methods. In Supplementary Figure 3, we changed the data
dispersion from 0 to 0.2. A lower misclassification rate was
obtained by ZINBLDA and NBLDA, and PLDA again performed
the worst of the four methods. This result agrees with the
conclusion that dispersion affects the performance of PLDA
and ZIPLDA.

Study 5 investigated the influence of the probability of
differential expression in the selected genes on the performance
of the four classifiers. In this study, we set the dispersion
parameter to 0.5, the probability of excess zeros was set at
0, and 100 genes were selected for all eight samples. Figure 6
shows that the overall misclassification rates of the four methods
decreased as the DE rate increased. PLDA and ZIPLDA showed
similar performances, and both performed better than NBLDA
and ZINBLDA with different DE rates. ZINBLDA and NBLDA
performed nearly same with different probabilities of DE genes.
This result demonstrates that the sample size has a marked
impact on the performance of the four classifiers. In addition,

Supplementary Figure 4 shows that when the dispersion was set
to 0.2 and the probability of zeros to 0.1, ZIPLDA performed
remarkably better than the other methods with an increasing
number of DE rates, followed by PLDA and then NBLDA,
ZINBLDA performed the worst. This indicates that excess zeros
in the data enable ZIPLDA to perform better than PLDA, and the
sample size affects the performance of ZIPLDA notably.

We also conducted Simulation Studies 1–5 using multiple
classifications (K = 3). Supplementary Figures 5–9 show
the performance of the four methods. The parameters
were the same as in Studies 1–5 except for the sample
sizes. We set n = 75 in Supplementary Figures 5, 6,
8; n = 12 in Supplementary Figure 9; and n = 450 in
Supplementary Figure 7 and compared the results with those of
Studies 1–5. The performance of the four classifiers remained the
same as in the binary classification.

In the simulation studies conducted above, the performance
of the four classifiers was related to the attributes of the
dataset, including sample size n, dispersion parameter φ, and
the probability of excess zeros p0. In the final simulation study,
we considered a binary classification with three changeable
parameters and compared the performance of the four methods
for different combinations of those three parameters. We still
selected 100 genes, 40% of which were DE genes. The probability
of excess zeros was set at 0.001, 0.1, or 0.3, and the sample size was
8, 50, or 100. The dispersion parameters changed from 0.001 to
0.1 to 1 with every 0.2 steps. The average misclassification rates
of the four methods are shown in Supplementary Figure 10.
To clarify display the result, Supplementary Table 1 shows the
concrete values of each misclassification rate. Comparing the
results of the three panels in each column, we found that for
the first column (sample size of 8), the overall misclassification
rates of the four methods increased when the probability of
excess zeros increased from 0.001 to 0.3. When the probability
of excess zeros was equal to 0.3, the misclassification rates
approached 50%. When p0 = 0.001, the performance of ZIPLDA
and PLDA was better than NBLDA and ZINBLDA. However,
when p0 = 0.1, ZIPLDA outperformed the other methods,
which indicates that ZIPLDA is more suitable for handling
data with a small probability of excess zeros, and the sample
size has less of an impact on it. When the sample size was
increased to 50 (the second column), the overall performance
of ZINBLDA was slightly better than that of ZIPLDA except
when φ was small and p0 = 0.3. The reason for this may be
that there were not enough samples to estimate the parameters
of ZINBLDA. Therefore, when the sample size increased to 100
(the third column), that ZINBLDA yielded a lower or equal
misclassification rate compared to the other methods, which
indicates that ZINBLDA can achieve the best classification result
as long as enough samples are available. The performance of
ZIPLDA also improved when p0 increased from 0.1 to 0.3 due
to the increase in the probability of excess zeros.

3.3. Optimal Classifier Selection
To select an optimal classification method for different datasets,
we built a decision tree and a random forest. A decision tree
is a machine learning algorithm that is widely used in many
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scenarios because of its accuracy for the current algorithms. As
its name implies, a decision tree is a decision support tool that
uses a tree-like model. It is comprised of nodes and branches,
and each sample is tested on an internal node. The outcome of
the test determines which branch is followed, and this procedure
continues until the leaf node that holds the class label of this
sample is reached. Random forest is an ensemble of a decision
tree, and it can achieve a more stable result than a decision tree.

To employ a tree-like model to select the optimal classifier,
the chosen features were the sample number n, dispersion φ,
and probability of excess zeros p0, and y was regarded as the
optimal classification method. The parameter region was divided
to assign the value of the feature vector. The values of sample
size n ranged from 8 to 100 with a step size of 8. The dispersion
parameter ranged from 0.001 to 1.001 at intervals of 0.1. The
probability of excess zeros p0 ranged from 0 to 0.6 with a
step size of 0.05. For each calculation, we took one value from
each parameter set to generate the simulation data, allowing for
multiple combinations of these three parameters. This procedure
was repeated 1,000 times, and the classifier corresponding to the
smallest value of the average misclassification rate was regarded
as the optimal classification method. We used the obtained data
to train a decision tree, and Figure 7 displays the classification
result. This model fits the data very well, with a misclassification
rate of only 7.4%. To use this model, we only need to know
or estimate the values of the three parameters, then use the
conditional control statements in the decision tree to distinguish
in each internal node, which will result in the optimal method
when the leaf node is reached. In this way, this model can be used
to help choose the optimal classification method. Similarly, we
can obtain a random forest with a lower misclassification rate
(2.2%). The classification results of decision tree and random
forest are saved in R scripts, which could be used to choose the
optimal classifier when inputting the parameters of dataset.

4. APPLICATION TO REAL DATA

We further compared the four methods by analyzing two
real datasets: GSE86507 and TCGA-LIHC (Liver Hepatocellular
Carcinoma). The details of these two RNA-seq datasets are
as follows.

Woo et al. (2017) created the GSE86507 dataset to compare
gene expression between two mouse models, Pkd1f/f: HoxB7-
cre mice and Pkd2f/f: HoxB7-cre mice. Each group includes 18
samples, and there are a total of 29,996 transcripts in this dataset.
It contains about 17.74% zeros of all numerical values.

The dataset TCGA-LIHC contains two groups of samples:
the normal group (340 samples) and the cancerous group (50
samples). There are 60,487 genes in this dataset, which contains
about 43.24% zeros of all numerical values.

We chose to classify parts of genes since the majority of
genes in a dataset are not differentially expressed and thus
do not contribute to the sample classification. Including entire
genes in the model would reduce the classification accuracy and
increase the computational complexity. Thus, selecting parts of
genes not only improves the accuracy of classification but saves

computation time. Following the steps outlined by Dudoit et al.
(2002), we selected genes by first calculating the ratio of the
sum of the squares between groups and within groups for each
gene, then sorted all of the genes according to the ratio from
greatest to least, and finally selected a certain number of genes
for downstream analysis.

We randomly split the data into a training set and test
set, with both datasets containing all classes. We selected the
300 most differentially expressed genes to train the model.
This procedure was repeated 1,000 times, and the average
misclassification rates for each method were recorded. The
left panels of Figures 8, 9 show that for the test data, the
average misclassification rates of the four methods decreased
as the number of training data gradually increased. For the
GSE86507 dataset, the misclassification rates of PLDA and
ZIPLDA were lower than NBLDA and ZINBLDA, both of
which were close to zero. However, for the TCGA-LIHC dataset,
PLDA and ZIPLDA were superior to NBLDA and ZINBLDA
when the sample size was small. As the training sample size
increased, the misclassification rates of NBLDA and ZINBLDA
decreased remarkably, and ZINBLDA outperformed the other
three methods for a large sample size. We also evaluated the
classification performance of the four methods by fixing 30
training sets and gradually increasing the number of selected DE
genes. The right panel of Figure 8 shows that PLDA and ZIPLDA
outperformed the other two methods, whereas the right panel
of Figure 9 shows the superiority of ZINBLDA over the other
methods in this case.

To assess the efficiency of the decision tree model, we
estimated the dispersion and probability of excess zeros for
the two datasets. The estimated dispersion of GSE86507 was
φ = 0.12, and the probability of excess zeros was 0.5%,
which indicates that the dataset has slight overdispersion and
almost no excess zeros. The estimated dispersion of TCGA-LIHC
was φ = 1.12, and the probability of excess zeros was 8%,
which indicates that the dataset has high overdispersion and
many excess zeros. According to the conclusions in section 2.6,
PLDA should perform better with the GSE86507 dataset, and
ZINBLDA should be the optimal method to classify the TCGA-
LIHC dataset. We used the estimated parameters to select the
optimal method according to the conditional control statements
in the decision tree model (Figure 7). Based on the result, we
recommend selecting ZIPLDA for the GSE86507 dataset and
ZINBLDA for the TCGA-LIHC dataset, which coincides with the
real analysis results.

5. DISCUSSION

RNA-seq data classification is vital to the diagnosis of diseases.
In this work, we extended the existing classification methods
and proposed a ZINBLDA method for overdispersion RNA-seq
data with an excess of zeros. Concretely, we built a mixture
distribution with a point mass at zero and a negative distribution
to model the data, and a logistic regression was used to build a
relation between the probability of zeros, the mean of the genes,
and the sequencing depth. Most importantly, we examined four
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classification methods from the perspective of their parameters,
and we found that these four methods can transform into each
other in some cases.

In the simulation studies, we evaluated the performance of
the four methods in a wide range of settings. The simulation
results showed that different methods perform better for different
applications. In addition, we found that the application region
of each method is associated with the attributes of the dataset,
such as the dispersion, sample size, and probability of excess
zeros. Therefore, we built a decision tree to help us select the
optimal classification methods in different cases. In the real
data analysis, we analyzed two real, next-generation sequencing
datasets, and the results further confirmed the theory and
simulation conclusions.

Although each of the four methods performed well in certain
scenarios, there are numerous issues that remain to be solved,
such as single cell RNA-seq data being particularly prone to
dropout events due to the relatively shallow sequencing depth
per cell. In this case, the existing classification methods may not
provide a good result in practice. Therefore, we plan to develop a
new classification method that employs deep learning technology
to model scRNA-seq data to further improve our current work.
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Background: Observational studies suggest an association between inflammatory
bowel disease (IBD) [including ulcerative colitis (UC) and Crohn’s disease (CD)] and
Primary sclerosing cholangitis (PSC), but the causal association between the two
diseases remains unclear.

Methods: We used two-sample Mendelian randomization (MR) to estimate the causal
association between IBD and PSC. We chose single nucleotide polymorphisms (SNPs)
data for analysis, obtained from previous genome-wide association studies (GWASs).
Pleiotropy, heterogeneity, and sensitivity analyses were performed for quality control.

Results: We found that the causal associations between IBD (both UC and CD)
and PSC were significant (e.g., IBD and PSC, Robust adjusted profile score (RAPS)
OR = 1.29, 95% CI 1.16∼1.44, p< 0.01; UC and PSC, RAPS OR = 1.40, 95% CI
1.23∼1.58, p< 0.01; CD and PSC, RAPS OR = 1.13, 95% CI 1.02∼1.26, p = 0.02).
MR Egger, IVW, and ML tests found statistical heterogeneity between determined IV
estimates. The leave-one-out analysis also indicated the sensitivity of the SNPs (e.g.,
IBD and PSC, MR-Egger Q = 644.30, p< 0.01; UC and PSC, MR-Egger Q = 378.30,
p< 0.01; UC and PSC, MR-Egger Q = 538.50, p < 0.01).

Conclusion: MR analyses support the positive causal effect of IBD (including UC and
CD) on PSC in a European population. We provide suggestions for preventing and
treating the two diseases.

Keywords: inflammatory bowel disease, ulcerative colitis, Crohn’s disease, mendelian randomization, primary
sclerosing cholangitis
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INTRODUCTION

Primary sclerosing cholangitis (PSC) is a rare, progressive
cholestatic disease featuring impaired bile formation and chronic
liver dysfunction, led by inflammation and fibrosis with a
0.77 per 100,000 person-years incidence rate (Molodecky
et al., 2011; Karlsen et al., 2017; Dyson et al., 2018). Both
genetic and environmental factors contribute to PSC, with the
intestinal microbiome being considered as a pathogenetic factor.
Inflammatory bowel diseases (IBDs) describe a series of chronic
inflammatory disorders of the gastrointestinal tract including two
main types: Crohn’s disease (CD) and ulcerative colitis (UC)
(Rosen et al., 2015; Hodson, 2016).

It has been reported that IBD and PSC are closely associated.
According to a comprehensive review, the prevalence of IBD
in PSC has reached two-thirds (Karlsen et al., 2017). It has
been observed that total colectomy can reduce the recrudesce
risk of PSC by 50%, prior to or within liver transplantation
(Lindström et al., 2018; Ricciuto et al., 2018). It has also
been reported that the inflammatory type of PSC differs from
UC or CD (Karlsen et al., 2017). Genetically, PSC appears
to be more like an autoimmune condition compared with
IBD (Liu et al., 2013). Although the striking association
has been found for more than 50 years (Warren et al.,
1966), the mechanisms for the relationships between the two
diseases remain elusive.

The causal relationship between IBD and PSC is important
in exploring the function of the disease, and thus in informing
evidence for effective treatment. Randomized controlled trials
(RCTs) are the most reliable method for determining causal
inference in treatment studies. However, due to the requirements
of the design and implementation, difficultly to control, and
the consideration of ethics, RCTs are difficult to conduct. We
used the Mendelian randomization (MR) analysis to explore the
likely causal relevance between exposure and outcome, based on
observational epidemiological studies.

Because gametes follow Mendelian rules of inheritance
(parental alleles are randomly assigned to offspring), genetic
variation is not affected by confounders such as environmental
exposure, socioeconomic status, and behavior. Furthermore,
genetic variation comes from parents, thus the association with
outcomes is chronological. Therefore, MR can overcome the
problems of confounding and reverse causality.

The instrumental variables (IVs) in the MR study rely on
three core assumptions: (a) the genetic variant (either combined
or isolated with other variants) is associated with the exposure;
(b) the genetic variant is not associated with confounders that
are either known or unknown; (c) there is no pathway from the
genetic variant to outcomes that do not include the exposure. In
MR research, it is difficult to obtain an accurate estimate of causal
association without any one of the above assumptions.

Genome-wide association studies (GWAS) featuring large
sample sizes make genetic variants available. Based on the
previous GWAS, we selected single nucleotide polymorphisms
(SNPs) that are strongly relevant to IBD (including UC and CD)
as IVs. The effect of IVs on the exposures (IBD) and outcomes
(PSC) was from two independent samples. We used two-sample

MR and statistical methods to analyze the quantitative effects of
IBD (UC, CD) on PSC.

MATERIALS AND METHODS

Data Source
More SNP sites related to IBD were screened out by GWAS
results combined with literature reports. This study chose
SNPs from publicly available GWAS data bases associated with
exposures (IBD, including UC and CD). IBD-associated SNPs
were derived from a GWAS meta-analysis study of IBD in the
European Genome-phenome Archive (EGA). The statistics came
from an extended cohort of 86,640 European individuals and
9,846 non-Europeans (Liu et al., 2015). Studies showed that
most of the risk loci were shared across divergent populations
(Teslovich et al., 2010; Okada et al., 2014; Liu et al., 2015). The
SNPs associated with PSC were selected from the largest GWAS
of PSC up to date, the European population, including 4,796
cases and 19,955 population controls. Quality control, like the
Inverse variance weighted (IVW) fixed-effects meta-analysis, was
performed to test the evidence of association across the GWAS
and cohorts. Bayesian tests were conducted in both studies to
identify loci with strong evidence.

SNP Selection
From the collection of SNPs in previous studies, we then set
some standards for including eligible SNPs. We chose SNPs
that were significantly associated with exposures (p ≤ 5e-8)
and that had a certain probability of mutation (Minor allele
frequency, MAF ≥ 5%), without reported loci coincidence or
linkage disequilibrium (LD) (R2<0.001). The palindromic SNPs
which can introduce ambiguity into the identity of the effect allele
in the exposure GWAS were also excluded. The SNPs that were
both related to PSC and IBD were the excluded to meet the third
core assumption, eliminating other pathways from the genetic
variant to outcomes that do not include the exposure.

Effect Size Estimate
We estimated the causal association between exposures (IBD, UC
and CD) and outcomes (PSC) with Inverse variance weighted
(IVW), MR Egger, Weighted median (WM), Robust adjusted
profile score (MR. RAPS), and Maximum likelihood (ML). IVW
takes the inverse variance of each study as the weight to calculate
the weighted average of effect sizes, to summarize the effect
sizes of multiple independent studies (Lee et al., 2016). We
also performed the Weighted median estimator (WME), with
which causal effects can be accurately estimated with more
than 50% weight using IVs when doing the analysis (Bowden
et al., 2016a). A newly developed analysis called Robust adjusted
profile score (MR. RAPS) considering the measurement error
in SNP-exposure effects was conducted to reduce bias from
weak IVs (Zhao et al., 2019). Maximum likelihood maximizing
the likelihood function to estimate the probability distribution
parameters was also used as a reference traditional method
(Milligan, 2003). However, due to potential pleiotropic effects,
the genetic variants may influence the outcome in an additional
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way, thus causing a bias. Therefore, we used MR-Egger regression
as well, the slope of which can estimate the magnitude of
directional pleiotropy. The MR-Steiger directionality test is used
to test the causal direction between the hypothesized exposure
and outcomes as a verification of the reliability of the results
(Hemani et al., 2017). The results were presented in odds ratios
(OR) and 95% confidence intervals (CI). A two-sided p-value
was considered statistically significant when it was less than 0.05
(Figure 1). All statistical analyses were performed in R 3.4.2 with
the package “TwoSampleMR.”

Sensitivity Analyses
In the MR analysis, it is necessary to consider whether
SNPs, as instrumental variables, associate with other exposures.
We used MR-Egger to test pleiotropy, verifying whether a
single locus affects multiple phenotypes. The “Leave-one-out
sensitivity analysis” algorithm is used as sensitivity analyses.
With non-specific SNPs eliminated, if the correlation between
other instrumental variables and outcomes was still statistically
significant, it indicates more sufficient evidence of the causal
association between exposure and outcomes. By removing SNPs
one by one, the results are reanalyzed to draw the forest map
with a stable result intuitively judged (Supplementary Figures
S1–S3). As for the heterogeneity analysis, we conducted it for
MR Egger, Inverse variance weighted, and Maximum likelihood.
Heterogeneity was standardized with Cochran Q statistics; the
weighted sum of the squared differences between the effect of
each SNP and the summed effect of all SNPs. We also used
a two-sided p-value and considered statistical significance at
p < 0.05.

RESULTS

Based on the selection criteria above, we conducted linkage
disequilibrium tests to choose SNPs that are both related to IBD
and PSC. A total of 121, 76, and 104 SNPs were selected as
IVs for IBD, UC, and CD, respectively. We then excluded 17
palindromic SNPs (nine for IBD, three for UC, and five for CD).
Finally, we included 112, 73 m and 99 SNPs for IBD, UC, and CD,
respectively (Supplementary Tables S4–S6).

The causal associations between IBD (UC, CD) and PSC were
not accordant among the five methods. The RAPS indicated that
IBD (both UC and CD) was significantly associated with PSC
(IBD and PSC, RAPS OR = 1.29, 95% CI 1.16∼1.44, p< 0.01; UC
and PSC, RAPS OR = 1.40, 95% CI 1.23∼1.58, p< 0.01; CD and
PSC RAPS OR = 1.13, 95% CI 1.02∼1.26, p = 0.02) (Table 1).
However, using MR-Egger, none were significantly associated
with PSC (For IBD, OR = 1.16, 95% CI 0.82∼1.63, p = 0.41; For
UC, OR = 1.13, 95% CI 0.80∼1.61, p = 0.50; For CD, OR = 1.06,
95% CI 0.75∼1.50, p = 0.74) (Table 1). When all genetic variants
are valid, the causal effect may be underestimated due to the
inflated type I error (Bowden et al., 2016b). Additionally, ML,
WM showed the significant associations between UC, CD, and
PSC while IVW did not reveal the associations between CD and
PSC (Table 1). Based on the above five analyses, we concluded
that the causal association between IBD and PSC were significant.

FIGURE 1 | Scatter plots of the genetic causal associations with IBD, UC,
and CD against PSC using different MR methods. (A) IBD against PSC;
(B) UC against PSC; and (C) CD against PSC. The slopes of the line
represent the causal association for different methods. The light green line
represents the MR Egger, the dark green line represents the Robust adjusted
profile score (RAPS), the pink line represents the weighted median estimate,
the light blue line represents the Inverse variance weighted estimate, and the
dark blue line represents the Maximum likelihood estimate.

Pleiotropy, heterogeneity, and sensitivity analyses were
performed for quality control. We used MR-Egger regression to
test the pleiotropy, finding an unlikely bias caused by horizontal
pleiotropy (IBD p = 0.48, UC p = 1.03, CD p = 0.72) (Table 2).
To test the heterogeneity, we conducted MR Egger,IVW, and
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ML, finding statistical heterogeneity between determined IV
estimates(e.g., For IBD, MR-Egger Q = 644.30, p < 0.01; For UC,
MR-Egger Q = 378.3, p < 0.01; For UC, MR-Egger Q = 538.50,
p < 0.01.)(Table 2). For sensitivity, we conducted a Leave-
one-out sensitivity analysis, finding that the MR estimates were
reasonable considering the effect of single SNPs (Supplementary
Figures S1–S3). Additionally, the MR-Steiger test supported a
positive causal correlation between IBD (UC, CD) and PSC, also
identifying IVs’ affecting susceptibility to IBD traits and PSC.
These results indicate the powerful relevance of MR assumption
and the weak bias in the analysis.

DISCUSSION

To our knowledge, it is the first study to illustrate the causal
relationship between IBD (UC, CD) and PSC using MR and
GWAS. We found that IBD (including UC and CD) had a
causal association with PSC, indicating that they may have a
similar pathogenesis.

Several hypotheses have been proposed over the years, to
explain the mechanisms of the model (Karlsen, 2016). An early
RCT found that a small bowel bacterial overgrowth is associated
with bile duct proliferation and destruction. Hypotheses based
on the “leaky gut concept” indicated that bacteria and bacterial
products could pass through damaged mucosa in IBD into
the portal circulation (Lichtman et al., 1991). A review also
reported that gut-derived mucosal T-cells expressing α4β7 would
contribute to biliary inflammation. Barrier functions like the
expression of pathogen pattern receptors are similar between the
biliary and gut epithelium. The receptor CXCR6, is found to
have a higher expression on liver-infiltrating and gut-infiltrating
lymphocytes. Blocking the receptors is a developing treatment for
inflammation (Adams et al., 2008). Another hypothesis suggests
the possibility of FtsZ and TBB-5 antigens deriving from colonic
content, which may drive the biliary inflammation. This is related
to an abnormal immune response to intestinal microorganisms
in susceptible individuals (Terjung et al., 2010). In summary, the
association may result from hyperreactive bile duct proliferation,
aberrant increased enterohepatic circulation pathogen-associated

TABLE 1 | MR estimates from each method assessing the causal effects of UC, CD, and IBD on PSC.

Exposure traits MR methods PSC

Number of SNPs OR(95% CI) SE MR p-value MR-Steiger test

IBD MR Egger 112 1.16 (0.82∼1.63) 0.17 0.41 TRUE

Inverse variance weighted 112 1.29 (1.12∼1.50) 0.08 < 0.01

Maximum likelihood 112 1.31 (1.23∼1.34) 0.03 < 0.01

Weighted median 112 1.24 (1.10∼1.40) 0.06 < 0.01

Robust adjusted profile score (RAPS) 112 1.29 (1.16∼1.44) 0.05 < 0.01

UC MR Egger 73 1.13 (0.80∼1.61) 0.18 0.50 TRUE

Inverse variance weighted 73 1.48 (1.27∼1.72) 0.08 < 0.01

Maximum likelihood 73 1.52 (1.42∼1.63) 0.04 < 0.01

Weighted median 73 1.31 (1.15∼1.49) 0.06 < 0.01

Robust adjusted profile score (RAPS) 73 1.40 (1.23∼1.58) 0.06 < 0.01

CD MR Egger 99 1.06 (0.75∼1.50) 0.18 0.74 TRUE

Inverse variance weighted 99 1.13 (0.99∼1.28) 0.07 0.07

Maximum likelihood 99 1.13 (1.07∼1.20) 0.03 < 0.01

Weighted median 99 1.12 (1.02∼1.24) 0.05 0.02

Robust adjusted profile score (RAPS) 99 1.13 (1.02∼1.26) 0.05 0.02

TABLE 2 | Heterogeneity and pleiotropy analysis of UC, CD, and IBD with PSC, using different analytical methods.

Exposure traits MR methods PSC

Cochran Q statistic Heterogeneity p-value Pleiotropy p-value

IBD MR Egger 644.30 <0.01 0.48

Inverse variance weighted 647.28 <0.01

Maximum likelihood 643.80 <0.01

UC MR Egger 378.30 <0.01 0.10

Inverse variance weighted 392.85 <0.01

Maximum likelihood 386.16 <0.01

CD MR Egger 538.50 <0.01 0.72

Inverse variance weighted 539.21 <0.01

Maximum likelihood 538.40 <0.01
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molecular patterns (PAMPs), or an abnormal immune response
(Tabibian et al., 2013).

All five MR methods indicated a significant relationship
between UC and PSC. Another study also reported the strong
association of PSC with UC (90%) (Adams et al., 2008). As for
CD, MR Egger, IVW showed no significant relationship between
CD and PSC, while the other three methods revealed the causal
relationship. MR Egger and IVW are similar, both using the
inverse of the outcome variance (Se2) as the weight to carry out
the fitting. The biggest difference between them is whether or
not to consider the intercept term in the regression. Because
of the low statistical power of MR-Egger, we usually focus on
the consistency of the direction rather than the significance of
estimates (Yeung and Schooling, 2020). From Supplementary
Figures S1–S3, the consistent direction can be intuitively judged.
Thus, we conclude that both UC and CD have a significant
relationship with PSC.

In the Leave-one-out sensitivity analysis, we also found
the specific SNPs that are strongly related to the disease
(rs9836291 and rs2836883 for IBD; rs9836291 and rs2836883
for UC; rs3197999for CD). A previous study reported that the
chromosome 3 SNP (rs3197999) is in the MST1 (Macrophage
Stimulating 1) gene and is associated with MST1 protein levels.
This SNP (rs3197999) can induce IBD by regulating the protein
level of the Macrophage Stimulating Protein (MSP) (Di Narzo
et al., 2017). Our results may provide inspiration for possible
mechanism analyses in the future.

The causal association of IBD and PSC could contribute
to improvement in PSC diagnostics and therapy, as well as
prevention for IBD patients. For PSC, the diagnostics and
therapy should better include IBD as a factor for improvement.
According to PSC guidelines in the United States and
Europe (Valuing Integrity, 2009; Lindor et al., 2015), major
detection includes markers of cholestasis, bile duct lesions,
and structuring on cholangiography with Magnetic resonance
cholangiopancreatography (MRCP), along with a liver biopsy.
Apart from these diagnostic investigations, we suggest regular
colonoscopy surveillance for detecting IBD. For PSD patients
with or without IBD, the clinical treatment and follow-up
may be different. For example, clinical trials have tested the
positive effect of antibiotics in PSC treatment (Tabibian et al.,
2013). However, we should consider the potential consequent
disturbance of gut microbiota (Karlsen, 2016), especially for
IBD patients. For IBD, measures should be taken to prevent
PSC at the very beginning. PSC-IBD has become an important
public health issue due to the increased risk of malignancy (Rossi
et al., 2016). Thus, regular physical examinations of PSC signs
and symptoms are necessary for IBD patients. Currently, gut
microbial signatures have been reported for their discriminatory
function of determining early-stage PSC in IBD (Tabibian et al.,
2013; Karlsen, 2016). Admittedly, the complex physiological
machinery between IBD and PSC goes far beyond such simple
models. Further studies are also needed to identify a potential
mechanism for the association between IBD and PSC, to inform
disease prevention.

Our study has several limitations. First, the SNP statistics we
used were from a mixed population, 89.8% (86,640 in 96,486)

of Europeans. However, the selected SNPs can explain 0.085 for
IBD, 0.044 for UC, and 0.105 for CD of the phenotypic variation.
Accordingly, the model fitness of PSC was also acceptable
(0.06, 0.07, and 0.04). Second, although a series of sensitivity
analyses have been conducted, we cannot guarantee that each
SNP site meets the three basic conditions as instrumental
variables. Considering the known confounding factors, we
checked the confounders including smoking, drinking, and
obesity and eliminated relative IVs. Admittedly, the influence
of unknown possible confounders inevitably affects causal
inference. Third, the MR model is based on the assumption
of a linear effect association between exposure and outcome.
Limited by the summary statistics, we did not perform a
non-linearity of the association, which may be appropriate in
some cases. Lastly, we found statistical heterogeneity between
determined IV estimates, which may require further discussion
(Supplementary Tables S4–S6).

CONCLUSION

MR analyses support the positive causal effect of IBD (including
UC and CD) on PSC in the European population. Diagnostics
and therapy improvement for PSC as well as the prevention of
IBD should be promoted in clinical practice.
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Background: Observational studies have indicated an association between polycystic
ovary syndrome (PCOS) and periodontitis, but it is unclear whether the association
is cofounded or causal. We conducted a two-sample Mendelian randomization (MR)
study to investigate the bidirectional relationship between genetically predicted PCOS
and periodontitis.

Methods: From two genome-wide association studies we selected 13 and 7 single
nucleotide polymorphisms associated with PCOS and periodontitis, respectively,
as instrumental variables. We utilized publicly shared summary-level statistics from
European-ancestry cohorts. To explore the causal effect of PCOS on periodontitis,
12,289 cases of periodontitis and 22,326 controls were incorporated, while 4,890
cases of PCOS and 20,405 controls in the reverse MR. Inverse-variance weighted
method was employed in the primary MR analysis and multiple sensitivity analyses
were implemented.

Results: Genetically determined PCOS was not causally associated with risk of
periodontitis (odds ratio 0.97; 95% confidence interval 0.88–1.06; P = 0.50) per
one-unit increase in the log-odds ratio of periodontitis. Similarly, no causal effect of
periodontitis on PCOS was shown with the odds ratio for PCOS was 1.17 (95%
confidence interval 0.91–1.49; P = 0.21) per one-unit increase in the log-odds ratio
of periodontitis. Consistent results were yielded via additional MR methods. Sensitivity
analyses demonstrated no presence of horizontal pleiotropy or heterogeneity.
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Conclusion: The bidirectional MR study couldn’t provide convincing evidence
for the causal relationship between genetic liability to PCOS and periodontitis in
the Europeans. Triangulating evidence across further observational and genetic-
epidemiological studies is necessary.

Keywords: periodontitis, polycystic ovary syndrome, Mendelian randomization, causal inference, genetic
epidemiology

INTRODUCTION

Polycystic ovary syndrome (PCOS) is a metabolic and hormonal
disorder, which is prevalent in women of reproductive ages.
About 15–20% premenopausal women are afflicted with
PCOS in Europe (Sirmans and Pate, 2013; Escobar-Morreale,
2018) according to the Rotterdam criteria (Rotterdam ESHRE
Group, 2004). PCOS is characterized by hyperandrogenism
(HA), ovulatory dysfunction (OD), and polycystic ovarian
morphology (PCOM). Unfavorable metabolic conditions, such
as insulin resistance and endocrine-reproductive comorbidities,
are commonly involved in the pathophysiology of PCOS (Azziz
et al., 2019). As for the etiology, the complex interplay of genetic
and environmental elements has been well recognized (Yu et al.,
2018). However, the comprehensive links between PCOS and its
downstream traits are waiting to be explored, as well as their
underlying factors.

Periodontitis has posed an increasingly substantial burden on
public health (Chaffee et al., 2020; Eke et al., 2020). Periodontitis
features deterioration of local periodontal tissues, progressive
destruction of alveolar bone and supporting ligament, and
ultimately could result in tooth loss. Inadequate oral hygiene and
microbe plaque accrual is known as initiation factors. Meanwhile,
host susceptibilities to periodontopathic germs and inflammatory
response are partly determined genetically; several loci have been
identified in suggestive association with periodontitis (Divaris
et al., 2013; Offenbacher et al., 2016; Munz et al., 2017, 2019;
Kurushima et al., 2019). Moreover, periodontitis has much wider
implications in multiple systems (Czesnikiewicz-Guzik et al.,
2019; Bae and Lee, 2020; Sun et al., 2020) beyond oral health
alone, albeit the underpinning is largely unidentified.

Emerging studies have proposed the association between
PCOS and periodontitis (Kellesarian et al., 2017; Machado et al.,
2020; Marquez-Arrico et al., 2020). As an essential parameter in
the diagnosis of periodontitis, periodontal probing depth (PPD)
was higher in PCOS in one recent cross-sectional research (Isik
et al., 2020). The latest meta-analysis (Machado et al., 2020)
suggested that patients with PCOS were at 28% higher odds
of having periodontitis, and periodontitis increased the odds of
PCOS by 46% (both P < 0.001). Notably, current evidence was
mostly drawn from case-control or cohort studies, while high-
quality studies like randomized controlled trails were scarce.
Hence, effect estimates were prone to bias. Due to inherent
weaknesses of traditional observational designs, we could not
figure out whether the effects were causative. The direction of
causality which was informative of risk factors and prevention
strategies in the bidirectional association between PCOS and
periodontitis, if existed, remains unknown.

Mendelian randomization (MR) is a powerful genetic-
epidemiological tool to strengthen the causal inference and give
the robust estimate (Burgess et al., 2019; Czesnikiewicz-Guzik
et al., 2019; Bae and Lee, 2020; Sun et al., 2020), especially when
well-powered randomized clinical trials are faced with financial
challenges and ethical dilemmas. MR studies employs single
nucleotide polymorphisms (SNPs) identified from the genome-
wide association study (GWAS) as instrumental variables. MR
design is supposed to give evidence whose strength is comparable
to that of the meta-analysis (Davies et al., 2018). Therefore, we
performed a bidirectional MR study to investigate the possible
causal role for PCOS on periodontitis, along with the reverse
causal effect of periodontitis on PCOS.

MATERIALS AND METHODS

Overall Study Design
This bidirectional MR study was undertaken in a framework as
delineated in Figure 1. Causal effects of PCOS on periodontitis
and the reverse causation were investigated separately. Three
key assumptions underlie the MR analysis (Burgess et al.,
2019). Firstly, the relevance assumption was met, considering
genetic variants associated with exposures of interest were
identified in sufficiently large-sample GWAS. Secondly, the
independence assumption was validated. Mendel’s laws make
perfect randomization, that is, randomized segregation and
independent assortment of alleles during gamete formation
far precedes the onset of oucome diseases concerned. Hence,
instrumental SNPs rarely links to confounders which are
commonly involved in the traditional observation study
examining the exposure-outcome relationship. Lastly, the
exclusion-restriction assumption requires that instrumental
variables exert influences on the outcome via no other pathways
than the exposure, also known as pleiotropic effects. We
have examined the potential pleiotropy through multiple
sensitivity analyses. This MR study was conducted using
publicly shared datasets, and the approval by concerned
ethical committee and consent from all participants
were obtained in the original GWAS studies and their
contributing cohorts. Additional ethic statement or consent
was not required.

Summary Statistics for PCOS
Day et al. (2018, 2019) has conducted the largest GWAS
meta-analysis of PCOS in 10,074 cases and 103,164 controls
of European ancestry and identified 14 SNPs at genome-
wide significance (P < 5 × 10−8). Diagnosis of PCOS is
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FIGURE 1 | Schematics for the bidirectional Mendelian randomization design. Mendelian randomization requires valid genetic instrumental variants satisfying three
assumptions. PCOS, polycystic ovary syndrome.

based on National Institutes of Health criteria (Carmina, 2004),
Rotterdam criteria (Rotterdam ESHRE Group, 2004), or self-
report questionnaire (Day et al., 2015). Presence of both OD
and HA satisfies the National Institutes of Health criteria, while
Rotterdam criteria incorporates PCOM and requires two out
of three principal traits to be met. Self-reported diagnosis was
used in the 23 and Me (Mountain View, CA, United States)
cohort, and due to the data shared policy, summary-level statistics
from 4,890 cases of PCOS and 20,405 controls excluding this
cohort were available. Nevertheless, 14 genome-wide significant
loci manifested negligible heterogeneity in the effect direction
and magnitude, after examining the odds ratio for PCOS as a
function of diagnostic criteria. Shared genetic architecture across
three diagnostic criteria was elaborated in the GWAS (Day et al.,
2018). Hence, we utilized summary statistics for PCOS derived
from as large sample fulfilling either criterion.

In the MR analysis exploring causal effects of PCOS on
periodontitis, 13 SNPs were selected as instrumental variables
(Supplementary Table 1). SNPs with minor allele frequency
less than 1% or Hardy-Weinberg equilibrium test P-value
less than 0.0001 will not be considered. Palindromic alleles
with minor allele frequency above 0.45 was also excluded
due to the ambiguous strand aligning issue. One such variant
(rs853854, A/T, allele frequency, 0.499/0.501) reported in
the original GWAS, hence was not selected as instrumental
variables for PCOS. Linkage disequilibrium (threshold set at
R2 > 0.01, within 1 Mb window, EUR panel of 1,000 Genomes
Project Phase 3) was examined (Myers et al., 2020) and the
variant with the lowest P-value at each locus was retained.
Look-up of potential pleiotropic associations (Supplementary
Table 2) was performed in the GWAS Catalog (Buniello
et al., 2019). Proportion of variance explained was calculated
using the formula 2 × MAF × (1 – MAF) × Beta2, where
MAF was the minor allele frequency, Beta represented the
estimated genetic effect on the risk of PCOS. Total variance

explained by instrumental SNPs for PCOS approximated 6.2%
(Supplementary Table 3). The strength of each SNP was assessed
by F-statistic using the formula R2(N – 2)/(1 – R2), where
R2 was the proportion of variance explained, N was the total
sample size. F-statistic for individual variant ranged from 30.8
to 57.6; therefore, none was weak instrument (F < 10). GWAS
results for PCOS are publicly available from Apollo1. Effect size
has been adjusted for age and presented as beta (log-odds) per
additional effect allele.

Summary Statistics for Periodontitis
Summary-level data for periodontitis were obtained from the
newly released GWAS (Shungin et al., 2019). Totally, this GWAS
incorporated 12,289 cases and 22,326 controls of European-
ancestry from seven contributing cohorts in the Gene-Lifestyle
Interactions in Dental Endpoints consortium. The clinical
diagnostic criteria by the Centers for Disease Control and
Prevention/American Academy of Periodontology (Page and
Eke, 2007) and self-reported diagnosis from the Women’s Health
Study at Brigham and Women’s Hospital (Yu et al., 2018) were
primarily adopted, whereas additional inclusion criteria were
defined as one of the following conditions, two or more tooth
surfaces with PPD ≥ 5 mm, or four or more with PPD ≥ 4 mm,
two or more tooth surfaces with PPD≥ 5.5 mm or dental records
of “gum surgery”.

For the MR analysis of periodontitis on PCOS, seven
instrumental SNPs associated with periodontitis (P < 5 × 10−6)
were selected (Supplementary Table 4) since no genome-wide
significant loci were identified in the European-ancestry GWAS
(Shungin et al., 2019). No pleiotropic associations were identified
through look-up in the GWAS Catalog (Supplementary Table 5).
Considering allele frequency variable has been removed to
prevent re-identification of individuals in the shared dataset, we
utilized the reference minor allele frequency from 1,000 Genomes

1https://www.repository.cam.ac.uk/handle/1810/289950
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European panel to calculate F-statistic. Although a more liberal
threshold (P < 5 × 10−6) was adopted, there was no evidence
of the existence of weak instrument (Supplementary Table 6).
Initially, 20 SNPs reaching an arbitrary threshold for suggestive
association (P < 5 × 10−6) were retrieved from the summary-
level dataset. Criteria of instrumental SNPs for periodotitis,
like minor allele frequency and linkage disequilibrium, were
set similar to the criteria of instrumental SNPs for PCOS.
Linkage disequilibrium was examined, and nine SNPs with the
lowest P-value at each locus were kept. Two SNPs were further
omitted, for whom or their proxies (R2 > 0.8), corresponding
statistics were not present in the PCOS dataset. Effect estimates
denote log-odds of periodontitis given by the additive genetic
model, adjusted for age and principal components as covariates.
Summary-level statistics for periodontitis can be obtained from
the dataset depository, University of Bristol2.

Statistical Analysis
The statistical analysis was performed using the R software,
version 3.6.1 (R Foundation for Statistical Computing, Vienna,
Austria) and TwoSample MR and MR-PRESSO packages
(Hemani et al., 2018; Verbanck et al., 2018). The inverse variance
weighted (IVW) approach was implemented as the primary MR
method to yield an overall estimate from multiple instrumental
variables (Burgess et al., 2013). Specifically, for each variant SNPk,
its genetic effect on the exposure and outcome per additional
effect allele, β̂Xk

and β̂Yk , and their standard errors σ̂Xk and σ̂Yk ,

MR causal estimates can be given by the Wald ratio β̂Yk

/
β̂Xk with

the standard error σ̂Yk

/
β̂Xk . Then an overall causal estimator

β̂IVW with standard error σ̂IVW can be derived as shown below.

β̂IVW =
6kβ̂Xk β̂Yk σ̂

−2
Yk

6kβ̂
2
Xk

σ̂−2
Yk

σ̂IVW =

√
1
/

6kβ̂
2
Xk

σ̂−2
Yk

Inverse variance weighted estimates requires all instrumental
variants to be valid and would be biased if average pleiotropic
effects deviated from zero. Hence, robust analyses under weaker
assumptions are required to provide valid causal inferences
and to assess the sensitivity across these findings. Three
complementary MR methods were adopted, MR-pleiotropy
residual sum and outlier (MR-PRESSO), weighted median
estimator and MR-Egger regression. MR-PRESSO (Verbanck
et al., 2018) takes into account the horizontal pleiotropy and
gives a causal estimate corrected for it, should instrumental
variables with horizontal pleiotropy be identified via MR-
PRESSO global test. Weighted median (Bowden et al., 2016)
yields a pooled effect size more robustly if more than 50% of
instrumental variables are valid (majority valid assumption). It
is not as sensitively influenced by the presence of a handful of
pleiotropic variants as the IVW method. MR-Egger regression

2https://data.bris.ac.uk/data/dataset/2j2rqgzedxlq02oqbb4vmycnc2

(Bowden et al., 2015) has a lower statistical power with a wide
range of causality estimates. It requires pleiotropic effects to be
independent of the variant–exposure associations (instrument
strength independent of direct effect assumption). MR-Egger
method gives an causal estimate with the regression slope,
meanwhile MR-Egger intercept also provides an assessment of
unbalanced horizontal pleiotropy across all variants. Additional
sensitivity analyses for heterogeneity detection were performed
through Cochran’s Q test, leave-one-out plots and funnel plots.
Power calculations were conducted in mRnd, a web-based
application (Brion et al., 2013) assuming a 80% power and
5% Type-I error rate. Statistical significance was set at 0.025
(P = 0.05/2 association tests) with the Bonferroni method to
correct for multiple testing.

RESULTS

Estimated Causal Effect of PCOS on
Periodontitis
Overall, there was no causal relationship between genetically
predicted PCOS and periodontitis. Primary MR results (Figure 2)
indicated that odds ratio (OR) of periodontitis is 0.97 [95%
confidence interval (CI), 0.88–1.06; P = 0.50] per one-unit
increase in log-OR of PCOS (equivalent to 2.718 fold change
in the OR of PCOS) by the IVW method, and estimates by
MR-PRESSO and weighted median methods (Figure 3) were
consistent with respect to the effect size and direction. Causal
estimates given by MR-Egger (OR = 1.04 per one-unit increase
in log-OR of PCOS) with wide 95% CI (0.67–1.62) were less
precise. No horizontal pleiotropy was identified (Supplementary
Table 7), as shown by MR-Egger test (Intercept = -0.009; P = 0.75)
and MR-PRESSO global test (RSSobs = 10.62; P = 0.69). There
was no significant heterogeneity detected through Cochran’s Q
test (Q = 9.07; P = 0.70). Elimination of single instrumental
SNP would not lead to distortion of the overall MR estimate
(Supplementary Figure 1), whereas overall symmetry of the
funnel plot further demonstrated negligible heterogeneity and
validated the robustness of the causal estimate given by the fixed-
effect IVW method. Since the closer an OR approaching 1, the
much larger a sample size is required to detect such a weak
effect, this study was underpowered to detect an OR interval of
0.88–1.13 according to our power calculation.

Estimated Causal Effect of Periodontitis
on PCOS
Genetic liability to periodontitis was not causally associated
with risk of PCOS. By the IVW method (Figure 2), the OR
of PCOS was 1.17 (95% CI 0.91–1.49; P = 0.21) per one-unit
increment in the log-OR of periodontitis. Causal estimates by
three additional approaches (Figure 3) did not reach nominal
significance, either. There was no evidence for the existence of
outlier SNPs, heterogeneity or horizontal pleiotropy by the MR
sensitivity analyses (Supplementary Table 7). Examination of the
leave-one-out plot and funnel plot (Supplementary Figure 1)
suggested that the MR results were not driven by certain SNP

Frontiers in Genetics | www.frontiersin.org 4 March 2021 | Volume 12 | Article 64410146

https://data.bris.ac.uk/data/dataset/2j2rqgzedxlq02oqbb4vmycnc2
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-644101 March 22, 2021 Time: 13:41 # 5

Wu et al. Causality Between PCOS and Periodontitis

FIGURE 2 | Primary results by Mendelian randomization analysis using the inverse-variance-weighted method. The causal estimate (overall fitted line) for the effect of
PCOS on periodontitis was shown in panel (A), while the overall effect for the casual association of periodontitis with PCOS was presented in panel (B). Individual
SNP-effect on the outcome (point and vertical line) against its effect on the exposure (point and horizontal line) was delineated in the background. CI, confidence
interval; IVW, inverse variance weighted; OR, odds ratio; PCOS, polycystic ovary syndrome; SNP, single nucleotide polymorphism.

FIGURE 3 | Comparisons of Mendelian randomization results by different methods. CI, confidence interval; IVW, inverse variance weighted; MR, Mendelian
randomization; OR, odds ratio; PCOS, polycystic ovary syndrome; PRESSO, pleiotropy residual sum and outlier.

alone and overall causal estimates were consistent and accurate
on the whole. This study was underpowered to detect an OR
interval of 0.70–1.26 according to our power calculation.

DISCUSSION

This study explored the bidirectional relationships between
PCOS and periodontitis using a two-sample MR design for
the first time. The MR analysis failed to identify a causal
effect of PCOS on periodontitis in European women, and
the statistical power was adequate if the observed effect
(OR = 1.28) in the recent meta-analysis (Machado et al., 2020)
represented a true causality. Meanwhile, our results provided
no evidence that genetically predicted risk of periodontitis was

causally associated with liability to PCOS. Previous established
relationship between predisposition to PCOS and periodontitis
might result from uncontrolled biases or cofounders in
observational epidemiological studies.

Two systematic reviews (Kellesarian et al., 2017; Marquez-
Arrico et al., 2020) have been conducted to address the
hypothesis: whether a causal relationship exists between PCOS
and periodontal diseases. The qualitative evidence suggested that
a variety of periodontal parameters, such as PPD and bleeding
on probing, together with altered immunoinflammatory and
microbiological outcomes were observed in patients with PCOS.
A positive association between PCOS and periodontal diseases
was concluded. However, most included studies featured the
case-control design, a small sample size ranging from 52 to 196,
and non-follow-up. The strength of evidence should be taken
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into account before promoting regular referral of PCOS patients
to oral-health evaluation. Machado et al. (2020) conducted a
quantitative synthesis and yielded an OR of 1.28 (95% CI
1.06–1.55; P < 0.001) for the effect of PCOS on periodontitis
and an OR of 1.46 (95% CI 1.29–1.66; P < 0.001) for the
reverse association. Notably, the effect estimates were derived
from three Asian cohorts (Porwal et al., 2014; Tong et al.,
2019; Saljoughi et al., 2020) in the meta-analysis. Discrepancies
between this MR study and the recent meta-analysis in the
assessment of bidirectional association might be partly explained
by the population difference.

It has been postulated that PCOS and periodontitis is linked
by systemic inflammation and oxidative status (Dursun et al.,
2011; Saglam et al., 2018). Myeloperoxidase and nitric oxide,
indicative of oxidative stress, were higher in women with
PCOS than healthy controls (Marquez-Arrico et al., 2020).
Likewise, increased levels of malondialdehyde and 8-hydroxy-2′-
deoxyguanosine were identified in PCOS, which were prominent
both in serum and gingival crevicular fluid (Saglam et al., 2018).
Neutrophils are recognized to play a key role in the initiation
of inflammatory responses to periodontal pathogens, and local
oxidative stress is strengthened in periodontitis (Porwal et al.,
2014). Hence, altered oxidative status in PCOS might contribute
to the occurrence or progression of periodontitis. Considering
the observed links between periodontitis and multiple diseases
(Czesnikiewicz-Guzik et al., 2019; Bae and Lee, 2020; Sun et al.,
2020), inflammatory response cascade in periodontitis might as
well exert an influence on the risk of PCOS through molecular
changes in the metabolic-endocrine networks.

Notably, PCOS is known as a heterogeneous disorder with
three principal components, OD, HA, and PCOM. Several other
diagnostic criteria have been adopted as well. To enhance
the statistical power, there is a trade-off between phenotypic
refinement and incorporating sufficiently large cohorts. However,
Day et al. (2018) has demonstrated minimal heterogeneity of
the SNP effect, except one SNP near GATA4/NEIL2 (rs804279,
Phet = 2.6 × 10−5), across NIH, Rotterdam, and self-reported
criteria. Therefore, we deemed that negligible bias should
be incurred when utilizing summary statistics derived from
multiple cohorts. Besides, with currently available summary-
level statistics, we could not perform a comprehensive MR
analysis exploring the effects of different subtypes of PCOS on
periodontitis. Likewise, a broad spectrum of periodontal diseases,
incorporating gingivitis, moderate chronic periodontitis, and
severe aggressive periodontitis, could not be considered in
the MR analysis.

There are several limitations in this study. Firstly, instrumental
SNPs selected from GWAS were mainly based on a statistically
driven hypotheses, and genome-wide significance alone cannot
guarantee the plausibility of these variants. Especially, their
biological implication and complexity has not been fully
understood, let alone thoroughly examined. Notably, seven
instrumental SNPs for periodontitis were only suggestively
significant (P < 5 × 10−6). Therefore, we should be cautious
with the null effect in the MR analysis of periodontitis on
PCOS, which might be due to the lack of association strength

of instrumental SNPs. Secondly, current GWAS design and
analysis models cannot take all sources of potential bias into
account, such as Collider bias, winner’s curse and Beavis effects.
Given that the genetic estimates of SNP-association underlie the
further MR analysis, there might be bias incurred into the MR
causal estimates as well. Thirdly, selected instrumental variants
collectively explained a small proportion of variance of PCOS
or periodontitis. Thus, we were not capable of detecting weak
effects, although horizontal pleiotropy and weak instrument bias
have been ruled out. Forthly, with summary-level data, we failed
to conduct a stratified analysis exploring the effects of PCOS
based on body mass index or obesity status, which has been
proposed to account for diverged outcomes in PCOS. Moreover,
GWAS estimates of PCOS were from studies in women while the
corresponding estimates of periodontitis were not restricted to
female participants, which could possibly introduce bias. Lastly,
data sets were of European ancestry, and cautions should be
exercised when interpreting and generalizing the MR results.

To conclude, this bidirectional MR study failed to provide
convincing evidence to support the causal relationshipbetween
genetic liability to PCOS and periodontitis. To elucidate
previously observed links, high-qualified clinical trials and
laboratory researches are warranted. Triangulation of evidence
across multiple study designs is essential when assessing the
association between PCOS and periodontitis.
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Recovering Spatially-Varying
Cell-Specific Gene Co-expression
Networks for Single-Cell Spatial
Expression Data
Jinge Yu and Xiangyu Luo*

Institute of Statistics and Big Data, Renmin University of China, Beijing, China

Recent advances in single-cell technologies enable spatial expression profiling at the

cell level, making it possible to elucidate spatial changes of cell-specific genomic

features. The gene co-expression network is an important feature that encodes the

gene-gene marginal dependence structure and allows for the functional annotation of

highly connected genes. In this paper, we design a simple and computationally efficient

two-step algorithm to recover spatially-varying cell-specific gene co-expression networks

for single-cell spatial expression data. The algorithm first estimates the gene expression

covariance matrix for each cell type and then leverages the spatial locations of cells to

construct cell-specific networks. The second step uses expression covariance matrices

estimated in step one and label information from neighboring cells as an empirical prior

to obtain thresholded Bayesian posterior estimates. After completing estimates for each

cell, this algorithm can further predict or interpolate gene co-expression networks on

tissue positions where cells are not captured. In the simulation study, the comparison

against the traditional cell-type-specific network algorithms and the cell-specific network

method but without incorporating spatial information highlights the advantages of the

proposed algorithm in estimation accuracy. We also applied our algorithm to real-world

datasets and found some meaningful biological results. The accompanied software is

available on https://github.com/jingeyu/CSSN.

Keywords: Bayesian posterior estimates, cell-specific, gene co-expression network, prediction, single-cell spatial

expression, neighborhood

1. INTRODUCTION

The last decade witnesses that the single-cell RNA-sequencing has revolutionized the focus of
genomic analyses from bulk samples to single cells, but the technology loses important cell spatial
information during tissue dissociation. Fortunately, recent technological advances have allowed for
measurements of the gene expression levels at single-cell resolution while retaining the coordinates
of cells in the tissue section (Chen et al., 2015; Moffitt et al., 2018; Wang et al., 2018). Specifically,
various spatially resolved transcriptomic techniques have been developed to profile single-cell
expressionwith cells’ spatial information, includingMERFISH (Chen et al., 2015), seqFISH (Lubeck
et al., 2014), and FISSEQ (Lee et al., 2014), just to name a few. They are mainly based on either in
situ hybridization or in situ sequencing. Fluorescence in situ hybridization (FISH) based approaches
can measure hundreds of preselected marker genes, while in situ sequencing based approaches
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can measure thousands of transcripts. Moreover, different
techniques may have different strategies to capture
transcriptomic spatial information. For example, MERFISH
adopts an imaging-based way to map transcriptomic spatial
organization for a three-dimensional tissue region. Usually, the
region needs to be first sectioned into evenly spaced slices, and
MERFISH is then performed on these slices, resulting in two-
dimensional localization information. The information makes
it possible to investigate spatial and functional organization
of cells.

The amazing biological progress also offers rich opportunities
to investigate the spatial patterns of cell-specific genomic features
(Zhang et al., 2020). When features are genes, Sun et al. (2020)
developed a statistical method to identify genes with spatially
differential expressions. Li D. et al. (2020) utilized an expert
system to predict signaling gene expression using information
from nearby cells. However, as observed gene expressions may
suffer from systematic biases (Köster et al., 2019) and are
dynamically driven by an underlying regulation system, it is of
more interest to study a more stable feature—gene co-expression
network—(Dai et al., 2019) and learn its spatial pattern from one
cell to another.

The gene co-expression network (Butte and Kohane, 2000;
Stuart et al., 2003; Carter et al., 2004) can be encoded in an
undirected graph, where nodes correspond to genes and an
edge between nodes A and B indicates a significant association
between expressions of the genes A and B. It has important
biological applications including functional annotation for a

FIGURE 1 | An illustration of the two-step algorithm. (A) The input of the algorithm, including spatial coordinates of cells, the gene-cell expression matrix, and cell class

information. Different shapes and colors represent different types of cells. (B) The two steps in the proposed algorithm. We first estimate cell-type covariance matrices,

and then we use those estimates to refine cell-specific gene co-expression networks. (C) Gene co-expression network prediction based on the estimates from (B).

set of unknown but highly connected genes (Serin et al.,
2016) and single cell expression simulation (Tian et al., 2021).
The pipeline to construct gene co-expression networks usually
consists of two steps (Zhang and Horvath, 2005). In step one,
we adopt a similarity measure (e.g., the absolute value of Pearson
correlation) and calculate the similarity for all pairs of genes. In
step two, we choose a threshold and genes with similarity larger
than the threshold are thought of as co-expressed. Following
the pipeline, Dai et al. (2019) proposed a hypothesis testing
based approach to estimate cell-specific gene co-expression
network, which is a breakthrough from “cell-type-specific” to
“cell-specific” since most computational network methods for
single-cell expression are restricted to a group of cells and
ignore cell heterogeneity. Li L. et al. (2020) extends the approach
to a conditional cell-specific network situation. Unfortunately,
the method (Dai et al., 2019) does not incorporate the spatial
information of cells and thus may lose power in estimating cell-
specific gene co-expression structures, let alone carry out network
prediction given a new cell location in the tissue.

To overcome the challenges, we present an easy-to-implement
and computationally efficient two-step algorithm to recover
cell-specific gene co-expression networks for single-cell spatial
expression data. The input of the proposed algorithm is
comprised of the spatial locations of cells, cell labels, as well as the
gene-cell expression matrix (Figure 1A). If cell label information
is not available, we can first carry out clustering using single-cell
expression data clustering tools (Butler et al., 2018; Stuart et al.,
2019). In step one, we estimate the sample expression covariance
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matrix for each cell type, which serves as the “average” of the cell-
specific covariance matrices in a given cell type (Figure 1B). In
step two, for any given cell, we find its appropriate neighborhood
and combine the cell label proportions in the neighborhood
and the cell-type covariance matrices estimated in step one to
assign an empirical prior to the covariance matrix of that cell.
Subsequently, we apply the Bayes’ rule to obtain the posterior
mean estimates, transform it to the correlation matrix, and select
a threshold to shrink absolute values of correlations less than
it to zero, resulting in the cell’s gene co-expression network
(Figure 1B). After completing the estimates for each cell, we can
further predict the network structures for a position where cells
are not detected. We set a neighborhood of the location like in
the estimation step two, and then an edge is present if and only
if this edge appears more than or equal to half times among the
gene networks of its neighboring cells (Figure 1C).

In the following, we introduce our proposed algorithm in
detail in section 2. Section 3 provides the simulation study to
compare the two-step algorithm against competing methods
including traditional network construction methods (Zhang
and Horvath, 2005) based on a group of cells and the cell-
specific network construction approach (Dai et al., 2019). We use
MERFISH data to demonstrate the good utility of the algorithm
in section 4 and conclude the paper with a discussion in section 5.

2. METHOD

We first give some notations to clearly express the data
preprocessing and our algorithm. Suppose that expression levels
of G genes in n cells are measured and the expression of gene g in
cell i is denoted by Xgi. We let X = (Xgi)G×n represent the gene-
cell expressionmatrix and useXi to denote the ith column vector.
The coordinates of cell i in the tissue section are denoted by
(ℓi, hi). We further assume that cells are from K distinct cell types
and Ci indicates the membership of cell i. In other words, Ci = k
(k = 1, . . . ,K) implies that cell i belongs to cell type k. Notice
that the cell labels C = (C1, . . . ,Cn) are assumed to be known in
advance, and in case the cell label information is not available we
can cluster cells using off-the-shelf single-cell expression tools.
nk is the cell number in cell type k, and Sk represents the index
set {i :Ci = k}.

During data preprocessing, we need to normalize raw read
count data to reduce the effects of different library sizes and
other systematic biases. As we are interested in the pairwise
gene correlations, the normalized expression values are further
centered to zero and scaled to variance one within each cell type.
If we still use Xgi to represent the normalized expression, then the
transformed value is as follows. When Ci = k,

˜Xgi =
Xgi −

1
nk

∑

j∈Sk
Xgj

√

1
nk−1

∑

j∈Sk
(Xgj −

1
nk

∑

j∈Sk
Xgj)2

.

Next, we utilize the scaled expression matrix ˜X = (˜Xgi)G×n and
its ith column vector˜Xi in our algorithm.

In step one, we derive the sample expression covariancematrix
for each cell type, which serves as the “average” of all cell-specific

expression covariance matrices in that cell type and hence can be
treated as an initial and coarse-grained estimate of the expression
covariance matrix for each cell. Specifically, for cell type k, its

sample expression covariance matrix is estimated by ̂6
(k)

: =
1

nk−1

∑

i∈Sk
˜Xi˜X

T
i (1 ≤ k ≤ K).

In step two, suppose the gene expression covariance matrix of
cell i is denoted by 6i. Biologically, 6i depends on both cell i’s
cell type as well as cell i’s spatial circumstances. Taking this into
account, we assume the following Bayesian statistical model for
the observations,

˜Xi ∼ N (0,6i) (1)

6i ∼W−1(9 i, ν), (2)

where N (0,6i) is a multivariate normal distribution with mean
vector zero and covariance matrix 6i, and W−1(9 i, ν) is an
inverse-Wishart distribution with scale matrix 9 i and ν degrees
of freedom.

Equation (1) corresponds to the data-generating mechanism
in which cell i’s observation is sampled from its own distribution
parameterized by 6i. In the normal distribution, a zero
element in 6i indicates that the corresponding two genes are
independent, so6i fully captures the gene co-expression network
structure of cell i. Equation (2) reflects that we need to provide
prior information for6i to stabilize the estimate of6i; otherwise,
only one sample is available, making the common maximal
likelihood estimate very sensitive. We employ the inverse-
Wishart distribution here as it is conjugate to the multivariate
normal distribution (Gelman et al., 2013), which can enhance fast
calculation of posterior estimates. Accordingly, we aim to borrow
information from cell i’s neighbors to define the hyper-parameter
in the prior—the scale matrix 9 i.

For each cell, we define its neighborhood as a square region
with side length 2r and center at the location of the cell
(Figure 1B). The choice of r depends on the cell density in
the tissue section and our knowledge about the number of
informative neighboring cells. We define the cell density as the
ratio of the cell number (n) to the area where cells locate (A).
As the area shape is often like a rectangle, we estimate A by Â : =

(maxi ℓi−mini ℓi)(maxi hi−mini hi). If we believe that on average
each cell hasminfo informative neighboring cells, we then have the

relationship n/Â × 4r2 = minfo, leading to r = 0.5
√

minfoÂ/n.

Based on our experience, we set minfo = 70 throughout our
paper. Subsequently, we count the number of cells in this square
region for each cell type and calculate proportions (ωi1, . . . ,ωiK)
with ωik ≥ 0 and

∑K
k=1 ωik = 1, where ωik is the proportion of

type k cells in the neighborhood of cell i.

Next, we assign the weighted value
∑K

k=1 ωik
̂6

(k)
to the prior

mean of 6i, which is 9 i/(ν − G − 1), resulting in the scale

matrix 9 i = (ν − G − 1)
∑K

k=1 ωik
̂6

(k)
. This prior reflects the

information of nearby cells and helps stabilize the estimate of 6i.
We remark that the choice of the hyper-parameter 9 i depends
on the data we are analyzing, so strictly speaking the approach is
not fully Bayesian (Gelman et al., 2013).
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Given the assigned prior, we estimate 6i by the
posterior mean,

̂6i : = E(6i|˜Xi) =
1

ν − G
(9 i +˜Xi˜X

T
i )

=
1

ν − G
((ν − G− 1)

K
∑

k=1

ωik
̂6

(k)
+˜Xi˜X

T
i ),

where we set ν to 2G depending on the number of genes. ̂6i is
then transformed to its corresponding correlation matrix ̂Ri =

diag(̂6i)
−1/2

̂6idiag(̂6i)
−1/2, where diag(̂6i) is a diagonal matrix

with diagonal elements the same as those of ̂6i. Finally, we select
a threshold d (0 < d < 1), and if the (g1, g2) element of the
matrix ̂Ri, ̂Ri,g1g2 , has an absolute value larger than d, then we
believe there is an edge between gene g1 and g2 in the gene co-
expression network of cell i. Algorithm 1 displays the two-step
estimation procedure.

Algorithm 1: Two-step gene co-expression network
estimation.

1 Input: normalized gene expression matrix X, cell labels C,
cell coordinates (ℓi, hi), 1 ≤ i ≤ n, and hyper-parameters
(minfo, ν, d).

2 Output: cell-specific gene co-expression networks Gi
(1 ≤ i ≤ n).

3 Preprocessing:
4 for i in 1 : n do

5 for g in 1 :G do

6 ˜Xgi =
Xgi−

1
nk

∑

j∈Sk
Xgj

√

1
nk−1

∑

j∈Sk
(Xgj−

1
nk

∑

j∈Sk
Xgj)2

when Ci = k

7 end

8 end

9 Step 1: Obtain cell-type-specific covariance matrix:
10 for k in 1 :K do

11 ̂6
(k)
= 1

nk−1

∑

i∈Sk
˜Xi˜X

T
i

12 end

13 Step 2: Estimate cell-specific gene co-expression networks.
14 for i in 1 : n do

15 ̂6i =
1

ν−G ((ν − G− 1)
∑K

k=1 ωik
̂6

(k)
+˜Xi˜X

T
i )

16 ̂Ri = diag(̂6i)
−1/2

̂6idiag(̂6i)
−1/2

17 for g1 in 1 :G do

18 for g2 in (g1 + 1) :G do

19 Gi,g1g2 =

{

0 if |̂Ri,g1g2 | < d
1 if |̂Ri,g1g2 | ≥ d

20 end

21 end

22 end

After completing the network structure estimates for all cells,
we can take advantage of the estimates to predict the gene
co-expression network for any missing cell with a position
in the studied tissue section area. If we are interested in an

undetected cell at a new location (ℓ∗, h∗), its gene co-expression
network is constructed as follows. We first find all detected
cells in the neighborhood of (ℓ∗, h∗), and then we believe an
edge between genes g1 and g2 in the prediction if there are
more connections than disconnections for this pair of genes
among the gene networks of (ℓ∗, h∗)’s neighboring detected cells.
Algorithm 2 shows the steps of making gene co-expression
network predictions.

Algorithm 2: Gene co-expression network prediction for a
new cell position.

1 Input: Gene network estimates from Algorithm 1, cell
coordinates (ℓi, hi) for 1 ≤ i ≤ n, hyper-parameterminfo,
and a new cell position (ℓ∗, h∗).

2 Output: Gene co-expression network G(ℓ∗,h∗) for cell
(ℓ∗, h∗).

3 Step 1: Find all cells in the neighborhood of (ℓ∗, h∗),
denoted by Nei(ℓ∗ ,h∗) : = {i ∈ {1, 2, . . . , n} :(ℓi, hi) is in the
neighborhood of (ℓ∗, h∗)}.

4 Step 2: Obtain gene co-expression network for cell (ℓ∗, h∗):
5 for g1 in 1 :G do

6 for g2 in (g1 + 1) :G do

7 G(ℓ∗,h∗),g1g2 =














0 if #{j ∈ Nei(ℓ∗ ,h∗) :Gj,g1g2 = 0} > #{j ∈ Nei(ℓ∗ ,h∗) :

Gj,g1g2 = 1}
1 if #{j ∈ Nei(ℓ∗ ,h∗) :Gj,g1g2 = 0} ≤ #{j ∈ Nei(ℓ∗,h∗) :

Gj,g1g2 = 1}

8 end

9 end

3. SIMULATION STUDY

In this section, we used simulated data to evaluate the
performance of the proposed two-step algorithm. We set the
gene number G = 100, the cell-type number K = 5,
and the cell number for each cell type (n1, n2, n3, n4, n5) =
(394, 373, 428, 274, 529). We chose a rectangle area as the
tissue section with length L = 1, 000 and width H =

750, where a total of n =
∑K

k=1 nk = 1998 cells
distribute on the section and display clear spatial patterns
(Figure 2A). For example, cells from cell-type 5 concentrate
on the left side, while cells from cell-type 1 enrich on the
right side.

We then generated cell-type-specific covariance matrices 6(k)

for k = 1, . . . ,K. Genes that work together often form a gene
module, which can exhibit a block structure in the covariance
matrix. Hence, the covariance matrix of each cell type was set as
a block diagonal matrix, where each block was a 20× 20 positive
definite matrix. Five different modules were used for this purpose
and were as follows.

• In module 1 (M1), its (i, j) element σij = ρ|i−j| + 0.5I(i = j)
for 1 ≤ i ≤ 20 and 1 ≤ j ≤ 20, where I(A) is an indicator
function of event A. We took ρ = 0.7.
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FIGURE 2 | Cells’ spatial pattern and performance comparisons on the network structure recovery. (A) Cells’ spatial pattern. Different shapes and colors correspond

to different types of cells. (B) ROC curves of the two-step algorithm, WGCNA, CTS, CSN-joint, and CSN-separate.

• In module 2 (M2), σij = (1 −
|i−j|
10 )+, which forms a banded

matrix. The function (x)+ equals x for x ≥ 0 and zero for
x < 0.
• In module 3 (M3), σij = ρI(|i − j| = 1) + 1.3I(i = j) for

ρ = −0.3.
• In module 4 (M4), σj = (1−

|i−j|
k

)+, where k = ⌊G/2⌋.

• In module 5 (M5), the block was F + ǫI20×20. I20×20
is an identity matrix. F = (fij)20×20 is a symmetric

matrix with independent upper triangle elements fij =
unif (−0.2, 0.8)×Ber(1, 0.2), where unif (−0.2, 0.8) is a random
variable uniformly distributed on(−0.2, 0.8), and Ber(1, 0.2) is
a Bernoulli random variable with the success probability 0.2.
We set ǫ = max{−λmin(F), 0}+0.01 to ensure that B is positive
definite, where λmin(F) is the smallest eigenvalue of F.

If we denote a block diagonal matrix with diagonal blocks being
Mi1 , Mi2 , Mi3 , Mi4 , Mi5 in the order from the upper left to
the lower right by (Mi1 , Mi2 , Mi3 , Mi4 , Mi5 ), then we specify
6

(1)=(M1,M2,M3,M4,M5),6
(2)=(M1,M3,M2,M4,M5),

6
(3)=(M1,M3,M2,M5,M4),6

(4)=(M3,M1,M2,M5,M4),
and 6

(5)=(M3,M2,M5,M1,M4).
Next, we generated the cell-specific gene expression

covariance matrix for each cell i. We first obtained the
neighborhood of cell i using r = 80, then calculated cell-
type proportions qik, 1 ≤ k ≤ K in the neighborhood,

and sampled 6i from the inverse-Wishart distribution
W−1(

∑K
k=1 qik496

(k),G + 50). Moreover, to make the network
sparse and covariance matrix positive definite, non-diagonal
elements in the 6i with absolute values less than 0.5 were shrunk
to zero, and the diagonal elements in 6i were added by five.
Finally, we sampled the observed gene-cell expression matrix
Xi = (X1i, . . . ,XGi)

T from the multivariate normal distribution
N (0,6i) for 1 ≤ i ≤ n.

To show the advantage of our algorithm in estimating
cell-specific gene expression matrix, we compared it against
the weighted gene co-expression network analysis (denoted by
WGCNA) (Zhang and Horvath, 2005), the traditional hard-
thresholding cell-type-specific network estimation approach
(denoted by CTS), and the cell-specific gene network estimation
method that does not make use of cell spatial information
(denoted by CSN, Dai et al., 2019). Specifically, in WGCNA,
we first calculated pairwise gene expression similarity using
the absolute values of Pearson correlations, then utilized the
“soft” power adjacency function to convert the similarity matrix,
and finally obtain the topological overlap matrix based on the
adjacency matrix. Regarding CTS, we used the cell-type-level
gene network as the estimate for each cell in that cell type. For
CSN, we adopted two versions: in the joint version (CSN-joint),
we used the gene-cell expressionmatrix for all cells as the input of
the CSN method; and in the separate version (CSN-separate), we
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FIGURE 3 | Heatmaps of estimated gene co-expression networks for different methods and underlying truth. The network heatmaps of the cell on location

(207.3442, 207.3983) was used for illustration.

only input the gene-cell expression matrix for cells coming from
one cell type, repeat the procedure for each cell type, and also
obtain cell-specific network estimates. In other words, for CSN-
separate, the estimations for one cell only rely on the information
of cells from the same cell type.

Figure 2B provides the receiver operating characteristic
(ROC) curves for network structure recovery of the proposed
algorithm (denoted by two-step algorithm) and other four
competing approaches (WGCNA, CTS, CSN-joint, CSN-
separate). The horizontal axis represents the false positive rate
(FPR), which equals the ratio of the number of edges that were
wrongly detected by the method for all cells to the number of
absent edges in the underlying true networks for all cells, while
the vertical axis corresponds to the true positive rate (TPR),
describing the ratio of the number of edges that were correctly
detected by the method for all cells to the number of edges in
the underlying true networks for all cells. It is observed that the
ROC curve of our algorithm is uniformly over the ROC curves
of the other four approaches, indicating that given any FPR the
TPR of the proposed algorithm is always higher than that of
the other four competing methods. As WGCNA also estimates
cell-type-specific networks, it does not outperform our algorithm
but is slightly better than traditional CTS.

Figure 3 displays heatmaps of gene co-expression matrix
of the cell with the coordinates (207.3442, 207.3983), both
true and estimated gene co-expression matrix by two-step
algorithm, WGCNA, CTS, CSN-joint, and CSN-separate are
shown (the results of CSN-separate are similar to CSN-joint’s).
From Figure 3, we can observe that our two-step algorithm
outperforms the other four methods in estimating cell-specific
gene co-expression networks. To further quantify the network
recovery error for these methods, we used the following error
term E : = 1/n ·

∑n
i=1

∑

g1<g2
|Gi,g1g2 − Gtrue

i,g1g2
|. For WGCNA,

TABLE 1 | Mean errors and corresponding standard deviations of five methods.

Methods Two-step

algorithm

WGCNA CTS CSN-joint CSN-separate

Mean error 288.62 484.05 484.44 1869.60 2462.09

(standard deviation) (14.15) (18.78) (18.80) (347.49) (95.57)

we chose the truncation value 0.0001 for the topological overlap
matrix; for the proposed algorithm and CTS, the threshold d for
the gene-gene correlations was chosen as 0.1; for the two CSN
methods, the significance level was set at 0.01. Table 1 shows the
errors based on ten replicates and indicates that the proposed
method is more accurate than the others in terms of the network
structure recovery.

The degree of a gene is the number of edges connected to that
gene. We investigated the degree distributions of the estimated
cell-specific gene co-expression network and compared it to truth
and other competing approaches on one gene for each cell type.
Figures 4A–E show the violin plots of the degrees of gene 91
for each cell type. We can see that the distribution created by
our proposed algorithm is much closer to the underlying truth
than CSN-separate and CSN-joint, while WGCNA and CTS’s
distributions are just horizontal line segments as their network
estimates are identical for all cells in one cell type.

Figure 4F shows the violin plot for the computation time in
second for these methods based on ten replicates. It is reasonable
that WGCNA and CTS have the minimum computing time
as they only estimate K cell-type-specific gene-gene network,
but their performances are obviously not good. The proposed
algorithm has a similar computing time to CSN-separate
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and is faster than CSN-joint. Hence, our algorithm not only
performs well in estimating networks but also has relatively
fast computing.

Given the network estimates by our method, we can easily use
algorithm 2 to predict network structures for a new location. We
randomly generated 50 new coordinates as the locations of 50
missing cells, simulated the true gene network of these 50 new
cells following the data-generating procedure above, and then
applied the prediction algorithm. The prediction error is 347.84
(in terms of E). WGCNA, CTS, CSN-joint, and CSN-separate
do not have the ability to predict gene co-expression networks
of missing cells, so the proposed algorithm provides an extra
important function to make network predictions.

4. REAL APPLICATION

4.1. MERFISH Mouse Hypothalamus Data
Moffitt et al. (2018) combined single-cell RNA-sequencing and

a single-cell transcriptome imaging method called MERFISH

to obtain expression profiles at the cellular level as well

as x-y coordinates of centroid positions for cells in the

mouse hypothalamic preoptic region. In the MERFISH mouse

hypothalamus data, class information of cells are also available.

The single-cell spatial expression data can be downloaded from

https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248.
We chose the expression data with animal id 35 and location

0.26 of the slice in bregma coordinates and removed cells labeled

FIGURE 4 | (A–E) Violin plots of gene degrees of gene 91 in the five cell types in the simulation study. (F) Violin plots of the computational time (in seconds) for the five

approaches based on ten replicates.

FIGURE 5 | (A) Cells’ spatial distribution pattern, where different colors of points correspond to different cell classes. (B) The spatial pattern of the Pak3-Crpr

connection obtained by two-step algorithm. The black point reflects that an edge exists between “Pak3” and “Crpr” in that cell. (C) The spatial pattern of the

Pak3-Crpr connection obtained by WGCNA.
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“Ambiguous” as well as cell types that contain less than 10 cells,
resulting in 13 cell classes. The spatial pattern of the selected
cells was displayed in Figure 5A. We further removed “blank”
genes and genes whose expressions are zero across all the cells
in one cell type, resulting in G = 147 genes and n = 4, 682
cells. Subsequently, we applied the proposed two-step algorithm

with informative neighboring cell number minfo = 70 and
threshold parameter d = 0.1. We randomly selected two cells
from cell classes “inhibitory neurons” and “excitatory neurons,”
respectively, and the gene co-expression networks of the two cells
were shown in Figure 6. It is observed that the two gene co-
expression networks have similar functional gene modules on the

FIGURE 6 | Estimated gene co-expression networks of two selected cells in the MERFISH mouse hypothalamus data: the left panel corresponds to an inhibitory cell,

while the right panel corresponds to an excitatory cell.

FIGURE 7 | Violin plots of two genes’ degree distributions across thirteen cell classes in the MERFISH mouse hypothalamus data.
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FIGURE 8 | (A) Cells’ spatial distribution pattern, where different colors and shapes of points correspond to different cell classes. (B–F) Estimated gene co-expression

networks of five randomly selected cells in the MERFISH U-2 OS cell line data.

diagonal possibly because both of them are neurons. Moreover,
the network of the cell in excitatory neurons is denser than the
network in inhibitory neurons, and the reason may be that the
gene activity in cells controlling excitement is more active than
that in cells controlling inhibition.

Cell-specific gene co-expression networks can provide
insightful information about how genes’ degrees vary in each
cell type. To show that, in excitatory neuron cells, we selected
15 genes with the most variable degrees: Sln, Baiap2, Tmem108,
Oprk1, Slc17a6, Nos1, Htr2c, Irs4, Gpr165, Slc18a2, Vgf, Pgr, Ar,
Gabrg1, and Gabra1. To validate the functions of the gene set,
we conducted gene set enrichment analysis (Subramanian et al.,
2005) based on the gene ontology (GO) database (Gene Ontology
Consortium, 2004). We found several significant annotations
related to the excitatory neurons including GO_MODULATION
_OF_EXCITATORY_POSTSYNAPTIC_POTENTIAL(biologic
alprocess),GO_EXCITATORY_SYNAPSE (cellular component),
and GO_NEURON_PROJECTION (cellular component). In
terms of the inhibitory neurons, we identified 15 genes with the
most variable degrees: Baiap2, Sox6, Irs4, Ar, Gda, Oprk1, Isl1,
Cyr61, Prlr, Glra3, Gabra1, Dgkk, Tmem108, Sln, and Ano3.
Using GO annotations, the gene set is associated with inhibitory
neurons-related activities including GO_INHIBITORY_EXTR
ACELLULAR_LIGAND_GATED_ION_CHANNEL_ACTIV
ITY (molecular function) and GO_NEURON_PROJECTION
(cellular component). These observations show that estimated
cell-specific networks have the potential to find genes with

variable degrees for each cell type, which cannot be accomplished
by cell-type-specific approaches.

We next illustrated the spatial feature of estimated gene
co-expression networks in terms of gene-gene connections.
We calculated the median degree for each gene. Gene
Pak3 with the maximum median degree (31) and gene
Grpr with the minimum median degree (0) were chosen
for demonstration. Figure 5B shows that the Pak3-Grpr
connection mainly appears in the region where “mature
oligodendrocytes” are enriched. The observation indicates
that the two genes may tend to work together in the mature
oligodendrocytes. Actually, mutations on gene Pak3 are
related to intellectual disability diseases, and its expression
decreases in mature oligodendrocytes and may regulate
oligodendrocyte precursor cell differentiation, as reported in
a previous study (Renkilaraj et al., 2017). To demonstrate
the advantage of estimating cell-specific networks, we
further applied WGCNA (Zhang and Horvath, 2005) with
truncation level 0.1 to obtain cell-type-specific networks.
However, Figure 5C indicates that the cell-type-specific
estimations by WGCNA cannot reveal the pattern provided by
cell-specific estimations.

From the perspective of cell types, Figure 7 demonstrates the
cell-type-specific degree distributions of two genes, Htr2c and
Slc17a6 (Campbell et al., 2017; Chen et al., 2017), which have
the most degree variances across cells. It is observed that the
degree distribution of one gene varies across cell types, and
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FIGURE 9 | Violin plots of two genes’ degree distributions across five cell classes in the MERFISH U-2 OS cell line data.

this cannot be observed by traditional cell-type-specific gene
co-expression networks.

4.2. MERFISH U-2 OS Data
We further provided some simple results of the proposed
algorithms on another single-cell spatial expression dataset.
Xia et al. (2019) carried out the MERFISH experiments on
human osteosarcoma (U-2 OS) cells, and we downloaded the
expression count data from https://www.pnas.org/content/116/
39/19490/tab-figures-data. The data contain expression profiles
for 10,050 genes and 1,368 cells in three batches. To avoid
possible influences caused by batch effects, our analysis focuses
on the batch one. We first removed “blank” genes, resulting in
n = 645 cells and G = 10, 050 genes. Since there is no cell-
type annotation information, we first performed cell clustering
procedure using Seurat (Butler et al., 2018; Stuart et al., 2019).
By setting the resolution at 0.8 in Seurat clustering procedure,
we obtained K = 5 cell classes, which is consistent with the
cell type number in Xia et al. (2019). Figure 8A shows the cells’
spatial distribution.

The original expression data were count data, so we

normalized the data following the formula xgi ←
106

∑

g xgi
xgi,

where xgi is the expression level of gene g in cell i and then
selected the most variable 500 genes to perform the proposed
two-step algorithm. The informative neighboring cell number

minfo was set to 70, and the threshold parameter d was set to
0.3. Accordingly, we randomly selected five cells from the five
cell classes, respectively, and the gene co-expression networks of
the five chosen cells were shown in Figures 8B–F. It is observed
that the five gene networks from different cell types have similar
gene modules. Moreover, we showed the degree distributions
across five cell types for two genes, SRP72P2 and MYBL2, which
have the most degree variances across cells. Figure 9 tells us
that the degree distributions of the two genes not only have
variation within one cell type but also change from one cell type
to another.

5. DISCUSSION

Recent technology advances enable us to gain deep insights
into spatial cell-specific gene expressions. In this paper,
we developed a simple and computationally efficient two-
step algorithm to recover spatially-varying cell-specific
gene co-expression networks. The simulation study shows
that the proposed algorithm outperforms the traditional
cell-type-specific gene network approach and cell-specific
gene network estimation methods that do not employ
spatial information. The application to the MERFISH
data provides some interesting biological findings. In the
meanwhile, there are some limitations in the proposed
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algorithm we aim to improve in the future work. For
example, we choose a hard threshold to identify a gene-
gene connection, but an adaptive threshold selection needs to
be derived.

We also acknowledge that using normal distributions to
fit normalized gene expression data can lose power and be
suboptimal compared to directly modeling the sequencing count
data via Poisson distributions (Sun et al., 2017). Fortunately,
in several previous bioinformatics works, using continuous
multivariate normal distributions to model normalized single-
cell sequencing data (Pierson and Yau, 2015; Chen and Zhou,
2017; Wang et al., 2020) or spatial single-cell expression data (Li
D. et al., 2020) can still provide key biological findings. Moreover,
in terms of computation, multivariate Poisson distributions
(Karlis, 2003) largely increase the computational burden.
Statistically, the covariance matrix in the multivariate Poisson
distribution does not have a standard conjugate prior, thus failing
to obtain an analytical form of the posterior mean. In real data,
the cell number is often large (∼4,000 in our real application),
which actually guarantees a satisfying normal approximation.
Considering these issues, we chose the multivariate normal as
the data distribution, but it is very interesting and challenging
to extend the algorithm to directly model raw count data and we
leave it for future work.
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In recent years, a number of literatures published large-scale genome-wide association

studies (GWASs) for human diseases or traits while adjusting for other heritable covariate.

However, it is known that these GWASs are biased, which may lead to biased genetic

estimates or even false positives. In this study, we provide a method called “BTOB” which

extends the biased GWAS to bivariate GWAS by integrating the summary association

statistics from the biased GWAS and the GWAS for the adjusted heritable covariate.

We employ the proposed BTOB method to analyze the summary association statistics

from the large scale meta-GWASs for waist-to-hip ratio (WHR) and body mass index

(BMI), and show that the proposed approach can help identify more susceptible genes

compared with the corresponding univariate GWASs. Theoretical results and simulations

also confirm the validity and efficiency of the proposed BTOB method.

Keywords: GWAS, bivariate GWAS, summary association statistics, heritable covariate, biased

1. INTRODUCTION

Genome-wide association studies (GWASs) have been greatly successful in identifying tens of
thousands susceptible genes for complex diseases or traits, revealing the genetic architectures of
complex diseases or traits in question (Visscher et al., 2012, 2017). These large scale studies produce
extremely valuable resource for further studies. However, due to the privacy concerns and other
logistical considerations, most GWASs publish the summary association statistics rather than the
individual-level data. This limitation motivates the rapid development of developing methods for
analyzing the summary association statistics, such as conditional association analysis (Yang et al.,
2012), gene-based association tests (Hu et al., 2013; Lee et al., 2013), jointly analyzingmultiple traits
(Zhu et al., 2015; Liu and Lin, 2018; Ray and Michael, 2018). A recent publication systematically
reviews the development of summary association statistics-based methods (Pasaniuc and Price,
2017).

In this study, we mainly focus on the summary association statistics obtained from the GWASs
of human diseases or traits while adjusting for heritable covariate, such as the GWAS of waist-to-hip
ratio (WHR) after adjusting for BMI (Heid et al., 2010; Randall et al., 2013), the GWAS of fasting
glycemic traits and insulin resistance after adjusting for BMI (Manning et al., 2012). However, it
has been known that the results from these GWASs are biased, which may result in biased genetic
estimates or even false positive genetic discoveries (Aschard et al., 2015). If the aim is to increase
the statistical power, it is suggested to use the bivariate analyse of the trait (or disease) of interest
and the corresponding heritable covariate (Aschard et al., 2015). However, the practical issue is
still under addressed for this suggestion, that is how to extend the existing the biased GWAS to
the bivariate analyse. Recent efforts have indicated that the multivariate GWAS can be conducted
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based on summary association statistics of the univariate GWASs
(Zhu et al., 2015; Liu and Lin, 2018; Ray and Michael,
2018). However, these methods require the summary association
statistics from the unbiased GWASs, that is the univariate
GWASs without adjusting the heritable covariate. In reality,
many studies only have the results from theGWAS after adjusting
the heritable covariate. For example, in the GIANT (Genetic
Investigation of ANthropometric Traits) consortium website, we
can only download the summary association statistics for WHR
adjusted BMI stratified by sex and age (Winkler et al., 2015).
To obtain the results for WHR without adjusting for BMI, it
needs to re-run a GWAS, which needs a great effort. To our best
knowledge, there are no literatures addressing how to extend the
biased GWAS to the bivariate GWAS.

In this paper, we develop a simple integration method called
BTOB which extends the Biased GWAS TO Bivariate GWAS.
We assess the valid and efficiency of BTOB using theoretical
arguments and simulation studies. Finally, we apply the BTOB
method to analyze the data downloaded from the GIANT
consortium website.

2. METHOD

2.1. BTOB: Extending the Biased GWAS to
Bivariate GWAS
Mathematically, the model used in the biased GWAS can be
formulated as Y2 = Gβ2 + Y1γ1 + Z2ς2 + ε2, where Y2 is the
trait or disease of interest, Y1 is the adjusted heritable covariate,
G is the genotype score, and Z2 is the adjusted non-heritable
covariates. In reality, many studies also had conducted additional
GWAS for Y1, that is Y1 = Gβ1 + Z1ς1 + ε1. For example, the
GIANT consortium had conducted the GWASs for WHR while
adjusting for BMI, and the GWASs of BMI (Winkler et al., 2015).
In addition, it is common that partial sample overlap between
these two GWASs. For example, the sample size of the GWAS for
BMI inmen cohort with age greater than 50 is about 90,000, while
the corresponding GWAS for WHR after adjusting BMI only use
a sub-sample with about 60,000 sample. And the two studies may
use different covariates adjustment strategies. In conclusion, the
above real scenarios can be formulated as follows

(

Yc
1

Yu1
1

)

=

(

Gc

Gu1

)

β1 + Z1ς1 + ε1, (1)

(

Yc
2

Yu2
2

)

=

(

Gc

Gu2

)

β∗
2 +

(

Yc
1

Yu2
1

)

γ1 + Z2ς2 + ε2. (2)

Where Yc
1 and Yc

2 are the overlap sample of two phenotypes with
genotypes Gc, Yu1

1 is the unique sample only used in first model
with genotypes Gu1 , and Yu2

2 and Yu2
1 are the unique sample only

used in second model with genotypes Gu2 . Z1 and Z2 includes
the intercept and covariates, which may consider different
covariates for different GWAS. In Supplementary Theorem 1,
we show that the estimates of the genetic effects β̂1 and β̂∗

2 are
independent. Under the null hypothesis H0: none of Y1 and Y1

associates with G, we have
(

β̂1

se(β̂1)

)2
∼ χ2

1 ,
(

β̂∗
2

se(β̂∗
2 )

)2
∼ χ2

1 .

Therefore, we can simply integrate the summary association
statistics in model (1) and (2), that is

( β̂1

se(β̂1)

)2
+

( β̂∗
2

se(β̂∗
2 )

)2
∼ χ2

2 (3)

which is a test statistics about testing the null hypothesisH0: none
of Y1 and Y2 associates with G. Hence the proposed procedure
extends the biased GWAS to bivariate analyse, which is termed
BTOB (extends the Biased GWAS to Bivariate GWAS).

2.2. Simulations
We simulate 1,000 replicates of correlated traits, the causal SNP
G is generated with minor allele frequency of 0.3 assuming the
Hardy Weinberg equilibrium. The traits are generated using a
linear additive model

Yk = βkG+ εk, k = 1, . . . ,K

where (ε1, . . . , εK)
⊤ follows multivariate normal distribution

with mean 0 and covariance matrix 6. We set the sample size
of Y1 to be 5,000, and then vary the sample size of Y2 to be
5,000, 4,000, and 3,000. We consider three scenarios:(1) The
tested variant affects the bivariate traits in the same direction.
The tested variant explains 0.5% of the variance of Y1 and 0 to
0.5% of the variance of Y2, or the tested variant explains 0.5%
of the variance of Y2 and 0 to 0.5% of the variance of Y1. The
correlation was set to be low (ρ = 0.4), moderate (ρ = 0.6), or
high (ρ = 0.8), where ρ was the correlation coefficient between
Y1 and Y2. (2) The tested variant affects one phenotype only.
Specifically, we considered the following two scenarios: the tested
variant explains 0.5% of the variance of Y1 and 0% of the variance
of Y2, or the tested variant explains 0.5% of the variance of Y2

and 0% of the variance of Y1. The correlation coefficient between
Y1 and Y2 is varied from −0.9 to 0.9. (3) The test variant affects
the bivariate traits in the opposite directions. The tested variant
explains 0.3% of the variance of Y1 and 0.4% of the variance of Y2

with the opposite directions, or the tested variant explains 0.4%
of the variance of Y1 and 0.3% of the variance of Y2 with the
opposite direction. The correlation between Y1 and Y2 is varied
from 0 to 0.9.

2.3. Study Decription
We download the gender and age specific summary association
statistics for WHR after adjustment for BMI, and the marginal
summary association statistics of BMI by the GIANT consortium
from website http://portals.broadinstitute.org/collaboration/
giant/index.php/GIANT_consortium_data_files (Winkler et al.,
2015). We integrated the summary association statistics from
the following univariate GWASs stratified by age and gender:
BMI∼SNP, WHR∼SNP+BMI, resulting in the bivariate analysis
of WHR and BMI. The aim of this study is to assess whether the
proposed BTOB approach can contribute novel gene compared
with the corresponding univariate GWASs. Hence, the gene is
considered to be novel if the lead SNP in (or 400 KB flanking)
a gene is genome-wide significant in the bivariate analysis,
whereas none of the lead SNPs in (or 400 KB flanking) this
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FIGURE 1 | Power comparison of BTOB, MANOVA, and the univariate analysis. The test variant explains 0.5% of the variance of Y1, and the proportion of the test

variant’s variance for Y2 varies from 0 to 0.5%. The genetic effects of Y1 and Y2 are with the same direction. The sample size of Y1 is 5,000, and the sample size of Y2
is set to be 5,000, 4,000 and 3,000, respectively. Three levels of correlation between Y1 and Y2 are investigated: low correlation with ρ = 0.4 (A), moderate correlation

with ρ = 0.6 (B), and high correlation with ρ = 0.8 (C).

gene reach genome-wide significance in the corresponding
univariate GWASs. As we can only assess the HapMap II allele
frequencies instead of pooled allele frequencies across all cohorts,
we only included SNPs with sample size greater than 30,000,
for which the HapMap allele frequencies may be representative.

3. RESULT

3.1. The Performance of BTOB in
Integrating the Summary Association
Statistics
For illustrate purpose, we conducted simulation studies to
investigate the validity and efficiency of the proposed BTOB. As
a comparison, we include the MANOVA method (Ray et al.,
2016). Since MANOVA is not directly applicable to the summary
association data, we use the overlap sample and re-run the
multivariate association analysis using the MANOVA.

Supplementary Table 1 presents the type 1 error for BTOB,
which shows that the proposed BTOB can control the type 1
error rate quite well. Figure 1 presents the power comparisons
when the tested variant affects the bivariate phenotypes in the
same direction. The tested variant explains 0.5% of the variance
of Y1 and 0 to 0.5% of the variance of Y2. We can observe
from Figure 1 that BTOB and MANOVA have nearly the same
power when both phenotypes have the sample size 5,000, which
indicates the validity and efficiency for BTOB. However, as the
overlap sample size is set to be 4,000, BTOB performs much
better than MANOVA. When the overlap sample size is set to
be 3,000, the power discrepancy between BTOB and MANOVA
is more obvious. This is expected as the sample size used in
GWAS: Y1 = µ1 + β1G + Z1ς1 + ε1 is often larger than the
sample size used in GWAS: Y2 = β2G + Y1γ1 + Z2ς2 + ε2.
Traditional multivariate approaches, such as MANOVA, are only
applicable to the overlap sample between Y1 and Y2. However,
the proposed BTOB canmake full use of the whole sample for Y1,
hence boosting the power compared with MANOVA. The same
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TABLE 1 | The novel Genome-wide Significant loci which were identified by the proposed combining method but not found by the standard univariate approach for the

analysis of WHR and BMI.

BMI WHR∼BMI BTOB

Cohort SNP Chr Gene Beta SE P − valuea N1 Beta SE P − valuea N2 P − valueb

Men(Age>50) rs10923746 1 WARS2 –0.020 0.0051 5.3e-05 90,515 0.029 0.0063 4.4e-06 56,398 5.405e-09

Men(Age>50) rs12073056 1 TBX15 –0.022 0.0049 6.7e-06 90,142 0.030 0.0062 9.9e-07 55,682 1.774e-10

Men(Age>50) rs3817973 6 HCG23 –0.018 0.005 2.7e-04 91,470 0.031 0.0062 4.7e-07 56,924 3.019e-09

Men(Age>50) rs9378213 6 HLA-DRA –0.022 0.0051 1.6e-05 89,222 0.03 0.0063 3.2e-06 56,647 1.264e-09

Women(Age>50) rs12998590 2 SLC38A11 –0.022 0.0054 6.3e-05 88,374 0.031 0.0067 3.2e-06 57,158 4.702e-09

Women(Age>50) rs253393 5 POC5 –0.026 0.0058 8.40E-06 88,423 -0.026 0.0072 0.00024 57,159 4.24E-08

Women(Age>50) rs6971365 7 KLF14 –0.017 0.0052 0.0013 104,946 0.033 0.0062 1.00E-07 71,909 3.09E-09

Women(Age>50) rs11191295 10 TMEM180 0.017 0.0049 4.1e-04 97,313 –0.027 0.0058 3.3e-06 66,010 2.898e-08

aThe results for univariate phenotypes approach. The genome-wide Significant level is set to be 2.5E-08 with the Bonferroni correction. bThe results for the BTOB approach. The

genome-wide Significant level is set to be 5E-08. Chr, chromosome; N1, the sample size of GWAS for BMI; N2, the sample size of GWAS for WHR adjusting for BMI.

phenomenons can be observed in Figures 1B,C with median
and high correlation. In Figure 1, we also compare the power
between the bivariate analysis and the univariate analysis after
the Bonferroni correction. We can observe from Figure 1 that
BTOB approach performs better than the univariate approach
in most scenarios. It should be noted that there is a decrease
of power for BTOB when the proportion of the test variant’s
variance for Y2 varies from 0 to a reasonably small value. This
counterintuitive phenomenon can be explained by using the
theoretical results given in a recent work (Guo et al., 2018).
Supplementary Figures 1–3 present the power comparison for
two other scenarios: the tested variant affects one trait only,
and the tested variant affects the bivariate traits in the opposite
direction. All of the simulated results indicate the superior
performance for BTOB compared with MANOVA when the
overlap sample size is set to be 4,000 and 3,000, and the
superior power for BTOB compared with univariate analysis in
most scenarios.

3.2. Real Data Analysis
In total, 8 loci are novel compared with the univariate GWASs:
4 for bivariate analysis of WHR and BMI in the cohort of men
aged over 50, and 4 for bivariate analysis of WHR and BMI in the
cohort of women aged over 50 (Table 1). The genomic control
(GC) inflation factors of these 4 bivariate analyses is presented in
Supplementary Table 2.

Firstly, for the analyses of WHR and BMI in the cohort
of women aged over 50, we identified 4 novel genes
compared with the univariate GWASs (WARS2, leading
SNP: rs10923746, p-value = 5.405E-09; TBX15, leading
SNP: rs10923715, p-value = 4.88E-11; HCG23, leading SNP:
rs3817973, p-value = 3.019e-09; HLA-DRA, leading SNP:
rs9378213, p-value = 1.264e-09) (Table 1). Even though these
4 leading SNPs show evidence of association in the univariate
analyses: GWAS for WHR after adjusting BMI and GWAS for
BMI, these univariate analyses have no enough power to reach
the genome-wide significance. What is more, for the analyse of
WHR and BMI in the cohort of women aged over 50, BTOB
method identified 4 novel loci compared with the univariate

GWASs (SLC38A11, leading SNP: rs12998590, p-value = 4.702e-
09; POC5, leading SNP: rs253393, p-value = 4.24E-08; KLF14,
leading SNP: rs6971365, p-value = 3.09E-09; TMEM180, leading
SNP: rs11191295, p-value = 2.898e-08) (Table 1). The real data
analysis suggested that the BTOB method is capable to integrate
moderate signals from the corresponding univariate analyses,
hence leading to the identification of novel genetic signals
compared with the univariate analyses. Further, six identified
loci from the BTOB method, including TBX15, WARS2, POC5,
KLF14, HLA-DRA, SLC38A11, were confirmed in the follow-up
GWASs with at least ten times larger sample size (Pulit et al.,
2019; Zhu et al., 2020), suggesting BTOB can help identify novel
genes in the GWASs when the sample size is limited.

Finally, several studies have suggested a potential causal role of
these identified genes in adipose development and function. For
example, animal models have demonstrated that the important
role of WARS2 in regulating brown adipose tissue function
and consequently lipid and glucose metabolism, by regulating
mitochondrial respiration, leading to the increased glucose
oxidation in brown adipose tissues (Pravenec et al., 2017; Ejarque
et al., 2019). TBX15 encodes a T-box transcription factor (TF)
that has shown to be involved in various aspects of adipose
development and maintenance, also to be associated with body
fat distribution (Singh et al., 2005; Zhang et al., 2020). It has
also been implicated the transcription factor KLF14, a member
of the Krupple-like factor family (KLF), plays a key role in energy
homeostasis by regulating lipid and glucose metabolism, and
adipogenesis via promoting adipocyte differentiation (Chen et al.,
2005; Birsoy et al., 2008).

4. DISCUSSION

There are several concerns that should be noted about
multivariate approaches in GWAS. First, the proposed bivariate
method or other multivaraite methods for summary association
statistics from univariate GWASs have been shown to help
identify novel genes compared with univariate GWASs. While
the multivariate approaches can also fails some genes identified
in the univariate GWASs. Hence, the multivaraite GWASs
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should be considered as a valuable compensation rather
substitution for univariate GWASs. Second, there is no single
multivariate method that is uniformly most powerful in all
scenarios. Hence, it is valuable to try several candidate methods
in real case.

In summary, our proposed approach provides an efficient
shortcut for extending the existing biased GWASs to the bivariate
GWAS. Considering a great amount of large scale biased GWASs
have been published (Hancock et al., 2010; Kaplan et al., 2011;
Randall et al., 2013; Loth et al., 2014; Winkler et al., 2015; Pulit
et al., 2019; Zhu et al., 2020), the proposed BTOB method is
expected to be of great practical utility.
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Cutaneous squamous cell carcinoma (cSCC) accounts for about 20% of all skin
cancers, the most common type of malignancy in the United States. Genome-
wide association studies (GWAS) have successfully identified multiple genetic variants
associated with the risk of cSCC. Most of these studies were single-locus-based, testing
genetic variants one-at-a-time. In this article, we performed gene-based association
tests to evaluate the joint effect of multiple variants, especially rare variants, on the risk of
cSCC by using a fast sequence kernel association test (fastSKAT). The study included
1,710 cSCC cases and 24,304 cancer-free controls from the Nurses’ Health Study,
the Nurses’ Health Study II and the Health Professionals Follow-up Study. We used
UCSC Genome Browser to define gene units as candidate loci, and further evaluated the
association between all variants within each gene unit and disease outcome. Four genes
HP1BP3, DAG1, SEPT7P2, and SLFN12 were identified using Bonferroni adjusted
significance level. Our study is complementary to the existing GWASs, and our findings
may provide additional insights into the etiology of cSCC. Further studies are needed to
validate these findings.

Keywords: region-based association test, fast sequence kernel association test, cutaneous squamous cell
carcinoma, rare variants, generalized genetic random field

INTRODUCTION

Cutaneous squamous cell carcinoma (cSCC) is the second most common type of non-melanoma
skin cancers, accounting for about 20% of all skin cancers and the majority of deaths attributable to
non-melanoma skin cancers (Chitsazzadeh et al., 2016; Motaparthi et al., 2017; Parekh and Seykora,
2017; Que et al., 2018a). The incidence of cSCC in the United States has been increasing over the last
few decades, with over 1 million annual cases in recent years (Nguyen et al., 2014; Muzic et al., 2017;
Que et al., 2018a,b). The increase is also expected to continue because of the longer life expectancy,
aging population and chronic ultraviolet exposure (Nguyen et al., 2014; Motaparthi et al., 2017;
Waldman and Schmults, 2019). The growing mortality and morbidity of cSCC has posed immense
economic burden on the national healthcare systems. Though the remission rate of cSCC cases
has substantially improved, many cases were still associated with higher probability of recurrence,
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metastasis and poor prognosis after surgery (Motaparthi et al.,
2017; Que et al., 2018a; Waldman and Schmults, 2019). It is of
crucial importance to understand the pathogenesis of cSCC and
to reduce the public health impact of the disease.

The etiology of cSCC has not been fully understood.
However, the risk of the disease can be influenced by multiple
environmental exposures. For example, higher risk of cSCC is
found to be associated with increased age, fair skin color, male
gender, exposure to ultraviolet radiation, immunosuppression
and human papillomavirus (Chahal et al., 2016; Parekh and
Seykora, 2017; Que et al., 2018a; Waldman and Schmults,
2019). Similar to all cancers, genetic susceptibility also plays an
important role in the development of cSCC. Familial aggregation
provides direct evidence for the heritability of cSCC (Hussain
et al., 2009; Asgari et al., 2015). A few known cancer-related
genes, such as TP53, CDKN2A, Ras, and NOTCH1 were also
causal to skin cancers (Que et al., 2018a). Mutations with these
genes may disrupt normal cell growth, cell circle and cellular
signal transduction, leading to the development of the disease.
In the past decade, genome-wide association studies (GWAS)
have become a commonly used strategy to identify genetic
variants for complex human diseases in the general population.
A few GWASs have identified multiple genetic variants that are
associated with the risk of cSCC, such as CADM1, AHR, SEC16A,
and DEF8 (Nan et al., 2011; Asgari et al., 2016; Chahal et al.,
2016; Siiskonen et al., 2016). Many findings were also successfully
replicated in independent populations. These findings have
provided valuable insights into the genetic etiology of cSCC.

Despite of these successes, it was estimated that the genetic
variants identified by existing GWASs only account for ∼8.5%
of the cSCC heritability (Sarin et al., 2020). The genetic causes
of the disease remain largely unknown (Chahal et al., 2016). This
challenge may be due to a number of limitations of the existing
GWASs, such as insufficient statistical power to detect small to
moderate genetic effects, burden of multiple testing adjustment,
and overlooking potential interactions among variants (Mo et al.,
2015; Nettiksimmons et al., 2016). As an alternative to the
single-locus analysis, gene- or region-based analysis can be a
complementary approach addressing some of those limitations.
It may integrate effects of multiple genetic variants, especially
rare variants, within a genetic region for improved power,
reduce the computational intensities and alleviate the burden of
multiple testing (Wu et al., 2010). In recent years, a number of
statistical methods have been developed for conducting region-
based association test. For example, a sequence kernel association
test (SKAT) has been a commonly used method that evaluates the
joint effects of genetic variants in a region on a disease outcome
while adjusting for covariates (Wu et al., 2011). It uses flexible
kernel functions to integrate the effects from multiple variants
and allows the effect of causal variants to be bi-directional.
Further, a fast sequencing kernel association test (fastSKAT)
has been developed to implement SKAT in a computational
efficient fashion, especially for large-scale studies with thousands
of subjects (Lumley et al., 2018). In this article, we assessed
the validity of region-based fastSKAT by replicating 18 GWAS-
identified SNPs using single-locus testing. We further tested
the association between approximately 23,000 gene regions and

cSCC outcome in five independent study populations. The results
from each population were further integrated by a Fisher’s
combined probability test.

MATERIALS AND METHODS

Ethics Statement
The study protocol was approved by the institutional review
boards of the Brigham and Women’s Hospital and Harvard
T.H. Chan School of Public Health, and those of participating
registries as required.

Study Population
Our study included 26,014 individuals from three large
prospective cohort studies in the U.S., including the Nurses’
Health Study (NHS), the Nurses’ Health Study 2 (NHS2), and the
Health Professionals Follow-up Study (HPFS). The subjects were
selected under a nested case-control design based on cSCC status.
Cases were defined as individuals diagnosed with invasive cSCC,
while controls were individuals free of cSCC or any primary type
of cancers. The individuals’ characteristics, genotypes and other
covariates information were collected in the NHS, the NHS2
and the HPFS studies. In this study, we partitioned the subjects
into five independent sub-populations based on their genotyping
platforms, including “Affymetrix,” “Illumina,” “OmniExpress,”
“OncoArray” and “HumanCore.” In the following, we used these
platforms to represent five populations. After the quality control
process, the five populations included a total of 5,533, 3,314,
5,354, 5,267, and 6,646 subjects, respectively. More details about
the study design and data collection were described elsewhere
(Chahal et al., 2016; Duffy et al., 2018).

Genomic Imputation and Quality Control
The genomic datasets, imputation and quality control procedures
were conducted separately in each population and were
described with details in previous publications (Lindström
et al., 2017; Duffy et al., 2018). Briefly, the participants from
five sub-populations were genotyped at different times and by
different genotyping platforms. The subjects in “Affymetrix”
were genotyped by the Genome-wide Human SNP Array
6.0. The subjects in “Illumina” were genotyped by either
Illumina HumanHap300 BeadChip, HumanHap550-Quad
BeadChip, Human610-Quad BeadChip, or Human660W-Quad
BeadChip. The subjects in “OmniExpress” were genotyped by
Illumina HumanOmniExpress-12 BeadChip. The subjects in
“OncoArray” were genotyped by Infinium OncoArray-550K
BeadChip. The subjects in “HumanCore” were genotyped by
Illumina HumanCoreExome-12v1-0 BeadChip.

Variants with low call rate (<95%) were removed. A pairwise
identity-by-descent (IBD) analysis was conducted to identify
duplicates. For individuals who may be genotyped for more
than once using different genotyping platforms, one of the
duplicated pair was excluded by the order of “Affymetrix,”
“Illumina,” “OmniExpress,” “OncoArray,” and “HumanCore.”
For individuals with different cohort IDs but a high genetic
concordance rate, both of the pairs were removed. Genome
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imputation was further conducted in each population using
the 1000 Genomes Project Phase 3 Integrated Release Version
5 as reference panels. Software ShapeIT (v2.r837) was used
for genotype phasing, and the phased genotypes were further
imputed to ∼ 47 million variants using Minimac3 (O’Connell
et al., 2014; Das et al., 2016).

Replication of GWAS Identified SNPs
Using Single-Locus Testing
To evaluate the validity of fastSKAT, we used 18 SNPs identified
in two previous GWAS as positive controls (Chahal et al., 2016;
Sarin et al., 2020). In these previous GWASs, ten SNPs were
identified involving 3 independent populations (i.e., “Affymetrix,”
“Illumina,” and “OmniExpress”), and 8 SNPs were identified
using all 5 populations. For comparison purpose, we first used
fastSKAT to test the association between each of these SNPs and
cSCC, and further conducted a Fisher’s combined probability test
to evaluate the overall association across three or five populations
consist with their analysis in the previous GWASs. For fair
comparison, we calculated p-values by applying fastSKAT to the
same NHS and HPFS populations used in previous publications.
In particular, “Affymetrix,” “Illumina,” and “OmniExpress” were
used in Chahal et al. (2016), while “Affymetrix,” “Illumina,”
“OmniExpress,” “OncoArray,” and “HumanCore” were all used
in Sarin et al. (2020). The p-values were compared to those of
previous GWAS publications for consistency.

Genomic Region Selection
To identify biologically meaningful loci, we used UCSC Genome
Browser (assembly GRCh37/hg19) to define gene units as
candidate loci for region-based analysis. Software bedtools were
used to merge the redundant and overlapping genomic regions
based on the gene annotation (Kindlon ARQaN, 2009–2019;
Quinlan and Hall, 2010). A candidate locus was then defined
as 7.5KB upstream and downstream the corresponding gene
region. Ultimately, a total of 25,437 regions were extracted.
During the data processing, SNPs with an imputation quality
score less than 0.3 were removed. We also extracted common
and rare variants separately for each region using PLINK2.0
(Purcell et al., 2007; Purcell). Common and rare variants were
defined based on whether the minor allele frequency (MAF) was
larger than 5%. Because previous GWAS has comprehensively
evaluated each single variant for association with cSCC, we only
considered regions with two or more variants for region-based
association analysis.

Region-Based Association Test
We evaluated the association between genomic regions and
cSCC using the fastSKAT, a region-based association test that
is computationally efficient for large-scale genomic datasets
(Lumley et al., 2018). Similar to the SKAT method, it is a
variance component score test that integrates the effect of
multiple genetic variants within the same region (Wu et al.,
2011). The improvement of computational speed over SKAT
was achieved by accurately approximating the tail probability for
the asymptotic distribution of the test statistics (Lumley et al.,
2018). Instead of computing all the eigenvalues of the genotypic

similarity matrix, only the top ones were computed through
random projections (Halko et al., 2011; Tropp, 2011). The tail
probability can then be approximated by the top eigenvalues and
a reminder term computed using Satterthwaite approximation,
which approximates the sum of weighted chi-square distributions
with a single chi-square distribution. The fastSKAT has been
implemented in R package “bigQF” (Lumley et al., 2018). For
each gene region, the method was applied for rare variants
(MAF < 5%) and common (MAF ≥ 5%) variants separately,
and also for all variants together, adjusting for age, gender and
the first five genetic principal components. A weighted linear
kernel was used with each variant weighted by Beta(MAF, 1, 25),
the beta distribution density function. After testing each region
within each of the five sub-populations, we further adopted the
Fisher’s combined probability test to integrate the p-values from
sub-populations for an overall p-value.

Cross-Check With Expression
Quantitative Trait Loci (eQTL) Database
The majority of variants identified by existing GWASs were
located in the non-coding regions of the genome, and were
therefore likely to be involved in gene regulation. One hypothesis
is that that causal genetic variants for complex diseases may
function through regulating the expression level of genes within
specific tissues. To prioritize our findings, we further examined
if the identified genes harbor any known expression quantitative
trait locus (eQTL) in the database. We used the Genotype-
Tissue Expression (GTEx) database (GTEx Consortium, 2013)
for cross checking. There are two main types of skin tissues
available in the GTEx, including sun-exposed skin at lower leg
and sun-unexposed skin in suprapubic region. We summarized
the number of eQTLs located within each identified region for
either of skin tissue types.

RESULTS

Study Population
Our study included a total of 1,710 cSCC cases and 24,304
controls, partitioned into five sub-populations based on
genotyping platforms. The number of subjects and their
characteristics by each population is summarized in Table 1.
The case-control ratios ranged from 1:6 to 1:31 across five
populations. Gender was statistically different between cases
and controls in four populations (p < 0.05), which was consist
with the fact that the incidence rate was higher in men than
in women (Karagas et al., 1999; Nguyen et al., 2014). Age, a
well-established risk factor, was associated with cSCC in all
populations (p < 0.001).

Replication of GWAS Identified SNPs
Using Single-Locus Testing
For a total of 18 SNPs identified by previous GWASs, we used
fastSKAT to test each variant for association with the disease
outcome and compared the testing p-values with those reported
in previous publications. The comparison is presented in Figure 1
and summarized in Table 2. We found that the Fisher’s p-values
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combining fastSKAT results of multiple populations were highly
correlated with the reported p-values in previous publications.
The Fisher’s combined p-values tend to be smaller, especially
for variants with relatively small testing p-values (e.g., <0.01),
leading to a higher level of statistical significance for the

TABLE 1 | Study population characteristics and number of regions tested in
each population.

Population n (%) Male Age

n (%) p-valuea Mean (SD) p-valuea

Affy (n = 5,533)

Cases 340 (6.1) 166 (48.8) 0.004 50.34 (9.53) <0.001

Controls 5193 (93.9) 2118 (40.8) 48.10 (9.48)

Illumina (n = 3,314)

Cases 200 (6.0) 63 (31.5) 0.002 48.25 (8.70) <0.001

Controls 3114 (94.0) 683 (21.9) 43.72 (8.71)

Omni (n = 5,354)

Cases 737 (14.0) 281 (38.1) 0.310 48.51 (9.52) <0.001

Controls 4517 (86.0) 1631 (36.1) 46.90 (8.90)

Onco (n = 5,267)

Cases 226 (4.3) 94 (41.6) <0.001 47.80 (9.77) <0.001

Controls 5041 (95.7) 866 (17.2) 41.01 (8.87)

HumanCore (n = 6,646)

Cases 207 (3.1) 102 (49.3) <0.001 48.40 (10.24) <0.001

Controls 6439 (96.9) 1262 (19.6) 40.96 (9.54)

ap-value by two-sample t-test for age and by Chi-square test for gender.

association. The results suggested that testing with fastSKAT
in each population and combining with Fisher’s combined
probability test was able to reliably identify the gene-disease
association with improved statistical power.

Region-Based Association Test
Approximately 23,000 candidate regions were extracted and
tested in each population. The numbers differed slightly across
populations and was listed in Table 3. For each candidate region,
the rare variants, common variants and all variants were tested
separately for association with cSCC outcome using fastSKAT.
The distribution of testing p-values were examined against a
uniform distribution via quantile-quantile plots (Supplementary
Figures 1–3 for rare, common and all variants, respectively).
The genomic inflation factors ranged between 0.974 and 1.07,
suggesting well-controlled type I error rates. The Manhattan
plots based on fastSKAT and Fisher’s method are provided in
Figures 2–4.

A total of four genomic regions were identified by Fisher’s
combined probability test at the Bonferroni adjusted significance
level. The genomic regions and their testing p-values are listed
in Table 4. Four regions were identified via rare variants
association, and one of them was also identified via all
variants analysis. No regions reached statistical significance
after Bonferroni adjustment via common variants analysis.
While the overall significant association was largely driven
by one particular population for most of these regions, the
association for one region was replicated by one additional
population in the study. In particular, a region (gene

TABLE 2 | Comparison of p-values for 18 SNPs identified by published GWASs and computed by fastSKAT.

Publication SNP Chro Genec p-value in paperd p-value by fastSKATe

Sarin et al., 2020a rs10399947 1 ARNT–[]–SETDB1 2.31 × 10−2 9.41 × 10−1

rs10200279 2 ALS2CR12 3.34 × 10−1 2.59 × 10−1

rs10944479 6 BACH2 5.99 × 10−2 3.73 × 10−1

rs7834300 8 TRPS1 1.58 × 10−1 6.89 × 10−1

rs1325118 9 []–TYRP1 8.60 × 10−2 2.08 × 10−1

rs7939541 11 ZNF143–[]–WEE1 8.55 × 10−2 1.80 × 10−1

rs657187 12 KRT6A–[]–KRT5 3.25 × 10−1 4.20 × 10−1

rs721199 12 HAL 1.08 × 10−3 3.07 × 10−1

Chahal et al., 2016b rs12203592 6 IRF4 3.10 × 10−6 1.33 × 10−10

rs1805007 16 MC1R 4.90 × 10−5 1.88 × 10−7

rs35407 5 SLC45A2 5.50 × 10−2 8.56 × 10−2

rs1126809 11 TYR 3.30 × 10−1 1.15 × 10−2

rs6059655 20 RALY-ASIP 5.40 × 10−1 5.51 × 10−2

rs1800407 15 OCA2 8.30 × 10−1 4.76 × 10−1

rs57994353 9 SEC16A 4.70 × 10−1 5.65 × 10−1

rs10810657 9 BNC2, CNTLN 1.20 × 10−2 1.70 × 10−3

rs74899442 11 CADM1, BUD13 1.80 × 10−1 1.85 × 10−1

rs117132860 7 AHR 4.00 × 10−2 1.94 × 10−1

aSarin et al. (2020). Genome-wide meta-analysis identifies eight new susceptibility loci for cutaneous squamous cell carcinoma. Nat Commun 11, 820.
bChahal et al. (2016). Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma. Nat Commun 7, 12048.
cThe format gene–[]– indicates SNPs are located within intergenic regions.
dp-values reported in previous publications using either three or five NHS/HPFS populations.
ep-values of Fisher’s method combining fastSKAT p-values from NHS/HPFS populations used in previous publications.
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FIGURE 1 | Replication of 18 GWAS identified SNPs using fastSKAT. The p-values of fastSKAT were based on Fisher’s method combining its testing p-values from
the same NHS and HPFS populations used in previous publications.

TABLE 3 | Total number of regions and genetic variants tested in each population.

Population Rare variants Common variants All variants

# of
regions

# of SNPs in regions Significance
levela

# of
regions

# of SNPs in regions Significance
levela

# of
regions

# of SNPs in regions Significance
levela

Range Median Range Median Range Median

Affy 23,566 2–26,354 131 2.12 × 10−6 23,552 2–13,667 79 2.12 × 10−6 23,675 2–40,021 210 2.11 × 10−6

Illumina 23,565 2–26,485 131 2.12 × 10−6 23,518 2–13,673 80 2.13 × 10−6 23,661 2–40,158 211 2.11 × 10−6

Omni 23,645 2–27,077 157 2.11 × 10−6 23,619 2–13,700 80 2.12 × 10−6 23,729 2–40,777 230 2.11 × 10−6

Onco 23,546 2–24,220 120 2.12 × 10−6 23,540 2–13,655 79 2.12 × 10−6 23,673 2–37,875 198 2.11 × 10−6

HumanCore 23,734 2–18,549 109 2.11 × 10−6 23,699 2–13,648 79 2.11 × 10−6 23,823 2–32,197 214 2.10 × 10−6

Fisher 23,844 – – 2.10 × 10−6 23,803 2.10 × 10−6 23,897 – – 2.09 × 10−6

aBonferroni adjusted significance level.

SLFN12) was located on chromosome 17, BP: 33,737,940–
33,760,195. The rare variant association test achieved statistical
significance after Bonferroni correction (p = 2.40 × 10−8). The
association was highly significant in “OncoArray” population
(p = 5.05 × 10−9) and was replicated in “HumanCore”
population (p = 3.73× 10−3).

We further looked into the significant findings within each
population. In Table 5, we summarized the regions that were
identified in a particular population by both rare variants and all
variants association test. In Table 6, we summarized the regions
that were identified by rare variants association test only. The
p-values computed in five populations for these regions were

Frontiers in Genetics | www.frontiersin.org 5 May 2021 | Volume 12 | Article 65749973

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-657499 May 4, 2021 Time: 16:29 # 6

Huang et al. Region-Based Test for cSCC

FIGURE 2 | The Manhattan plots by rare variants analysis in each population (A) Affymetrix. (B) Illumina. (C) OmniExpress. (D) OncoArray. (E) HumanCore. (F) Fisher.

summarized in Supplementary Tables 1, 2. In particular, the
results suggested that multiple gene regions on chromosome 12
and chromosomes 17 were identified for association with the
disease outcome. For example, two regions close to each other on
chromosome 17 (gene LOC101928000, BP: 5,015,229–5,017,677
and gene USP6, BP: 5,019,732–5,078,326) were identified for
both rare and all variants association. A different region on
chromosome 17 was identified for rare variants association.
While the underlying genetic mechanism and causal SNPs were
not clear, we think the rare variants association test may provide
findings that are complementary to existing GWAS that usually
are limited to relatively common variants. For common variants

analysis, we were not able to identify any regions after Bonferroni
adjustment. In Table 7, we summarized regions with suggestive
significance (i.e., 10−5) in a particular population. In particular,
the association for region SPATA2L was marginally significant
in “OmniExpress” and was also nominally significant in both
“Illumina” and “OncoArray.”

Cross-Check With Expression
Quantitative Trait Loci (eQTL) Database
To provide additional insights on the possible involvement
of these identified regions in regulating gene expression, we

Frontiers in Genetics | www.frontiersin.org 6 May 2021 | Volume 12 | Article 65749974

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-657499 May 4, 2021 Time: 16:29 # 7

Huang et al. Region-Based Test for cSCC

FIGURE 3 | The Manhattan plots by common variants analysis in each population (A) Affymetrix. (B) Illumina. (C) OmniExpress. (D) OncoArray. (E) HumanCore.
(F) Fisher.

summarized the number of known eQTLs within each region
(Table 8). Most of those loci (15 out of 18) included at
least one eQTL either in not-sun-exposed or sun-exposed skin
tissues. Among 24,279 regions being tested, a total of 16,534
contained at least one eQTL in the GTEx database. To evaluate
the overrepresentation of eQTL in the identified region, we
calculated an exact p-value using a hyper-genomic distribution as:

pval =
k=18∑
k=15

(
16, 534

k

)(
24, 279− 16, 534

18− k

)
(

24, 279
16, 534

) = 0.126

It is also worthwhile to note that most of existing studies
of eQTL were also based on single-locus association test
between each genetic variants and gene expression data. Though
the p-value was not statistically significant at 0.05 level, the
large proportion of identified regions harboring known eQTL
suggested their possible involvement of gene expression within
skin tissues.

DISCUSSION

In this study, we identified 18 cSCC-associated genomic regions
using gene-based fastSKAT method. One region (i.e., SLFN12)
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FIGURE 4 | The Manhattan plots by all variants analysis in each population (A) Affymetrix. (B) Illumina. (C) OmniExpress. (D) OncoArray. (E) HumanCore. (F) Fisher.

was statistically significant in one population and replicated in
another population. The eQTL analysis further supported the
possible biological contribution of those regions to the genetic
susceptibility of cSCC. The replication of previous GWAS-
identified SNPs also demonstrated the reliability of fastSKAT in
identifying susceptibility loci with improved statistical power. To
our knowledge, our study is among the first ones to investigate
the region-based association for cSCC on a genome-wide level.

As an effective and powerful tool, GWAS has been commonly
used to investigate the genetic architecture of complex diseases,
including squamous cell carcinoma. The goal of our study is to
provide a complementary strategy to address a few limitations

of the GWAS, especially to evaluate the rare variants with low
frequencies in the populations. In our study, although the total
sample size was relatively large (∼26K), the number of cases
were relatively small in each sub-population (<800). In such
a situation, the single-locus-based GWAS is expected to be
under-powered to identify rare variants (Tong et al., 2011; Mo
et al., 2015). In addition, the highly unbalanced numbers of
cases and controls may also present additional challenge to both
conventional GWAS and rare-variants association tests. Recent
studies have suggested that the number of cases and case to
control ratio may both have an impact on the statistical power
and type I errors, especially under large control group scenarios

Frontiers in Genetics | www.frontiersin.org 8 May 2021 | Volume 12 | Article 65749976

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-657499 May 4, 2021 Time: 16:29 # 9

Huang et al. Region-Based Test for cSCC

TABLE 4 | Regions identified by Fisher’s combined probability test after Bonferroni adjustment.

Chro Regions Gene p-value

Affy Illumina Omni Onco HumanCore Fisher

Rare variants analysis 1 21,069,170–21,113,181 HP1BP1 7.90 × 10−1 7.97 × 10−11 8.47 × 10−1 3.62 × 10−1 6.99 × 10−2 3.65 × 10−8

3 49,506,135–49,573,051 DAG1 8.62 × 10−1 5.80 × 10−11 8.30 × 10−1 7.00 × 10−1 7.32 × 10−1 3.83 × 10−7

7 45,763,385–45,808,617 SEPT7P2 5.35 × 10−1 7.72 × 10−1 1.07 × 10−1 4.56 × 10−1 6.94 × 10−9 1.86 × 10−6

17 33,737,940–33,760,195 SLFN12 1.64 × 10−1 6.11 × 10−1 4.38 × 10−1 5.05 × 10−9 3.73 × 10−3 2.40 × 10−8

All variants analysis 1 21,069,170–21,113,181 HP1BP1 8.29 × 10−1 8.03 × 10−11 5.86 × 10−1 9.51 × 10−1 3.52 × 10−1 2.54 × 10−7

Bold values indicate significant association after Bonferroni adjustment in the discovery phase or nominal significant association in the replication phase.

TABLE 5 | Regions identified by both rare and all variants analysis in a particular population after Bonferroni adjustment.

Population Chro Regions Gene Rare variants analysis All variants analysis

p-value in this
population

Fisher’s
p-value

# of SNPs
in region

p-value in this
population

Fisher’s
p-value

#of SNPs
in region

Illumina 1 21,069,170–21,113,181 HP1BP3 7.97 × 10−11 3.65 × 10−8 224 8.03 × 10−11 2.54 × 10−7 296

3 48,445,260−48,471,460 PLXNB1 5.82 × 10−8 7.17 × 10−6 155 5.82 × 10−8 1.43 × 10−5 187

3 49,506,135–49,573,051 DAG1 5.80 × 10−11 3.83 × 10−7 169 5.99 × 10−8 6.37 × 10−5 304

17 5,015,229–5,017,677 LOC101928000 1.20 × 10−6 4.25 × 10−5 78 1.14 × 10−6 1.72 × 10−4 119

17 5,019,732–5,078,326 USP6 3.11 × 10−7 1.31 × 10−4 253 2.92 × 10−7 3.43 × 10−5 406

HumanCore 12 56,512,003–56,516,280 ZC3H10 9.95 × 10−7 1.37 × 10−4 54 1.05 × 10−6 1.16 × 10−4 71

12 56,521,985–56,538,460 ESYT1 1.14 × 10−6 1.68 × 10−4 102 1.16 × 10−6 1.66 × 10−4 122

12 56,546,203–56,551,771 MYL6B 6.04 × 10−7 7.77 × 10−5 61 6.04 × 10−7 9.85 × 10−5 76

12 56,660,641–56,664,750 COQ10A 5.68 × 10−7 9.10 × 10−5 27 1.38 × 10−6 5.74 × 10−4 53

12 57,623,355–57,628,718 SHMT2 1.57 × 10−7 2.49 × 10−5 70 1.57 × 10−7 2.49 × 10−5 86

12 57,628,685–57,634,475 NDUFA4L2 1.90 × 10−7 2.81 × 10−5 52 1.90 × 10−7 2.81 × 10−5 66

12 57,637,237–57,644,976 STAC3 7.88 × 10−8 1.23 × 10−5 55 7.88 × 10−8 1.23 × 10−5 70

12 57,647,546–57,824,788 R3HDM2 1.96 × 10−7 1.10 × 10−5 501 1.96 × 10−7 1.11 × 10−5 729

12 57,828,467–57,845,845 INHBC 1.06 × 10−6 2.94 × 10−5 85 1.06 × 10−6 2.94 × 10−5 133

TABLE 6 | Regions identified by rare variants analysis in a particular population after Bonferroni adjustment.

Population Chro Regions Gene Rare variants analysis

p-value in this population Fisher’s p-value # of SNPs in region

Illumina 9 71,650,478–71,715,094 FXN 4.32 × 10−8 6.01 × 10−6 394

Onco 17 33,737,940–33,760,195 SLFN12 5.05 × 10−9 2.40 × 10−8 154

HumanCore 7 45,763,385–45,808,617 SEPT7P2 6.94 × 10−9 1.86 × 10−6 97

HumanCore 12 56,631,590–56,652,143 ANKRD52 9.60 × 10−7 1.50 × 10−4 49

(Zhang et al., 2019). It was also found that SKAT can reach
reasonably high power with well-controlled type I error if the
number of cases is larger than 200. In our study, the number of
cases ranged between ∼200 and 700 across five subpopulations,
and the results appeared to be consistent with previous studies.
The QQ-plot and estimated genomic inflation factors suggested
well-controlled type I errors. While we expect the statistical
power will improve with additional cases, the current results also
suggested that region-based association test was able to identify
genomic regions though rare variants association.

A number of gene units were identified to harbor genetic
variants that may contribute to the susceptibility of cSCC. One
gene was identified with replicated association in two sub-
populations. Gene SLFN12, or Schlafen family member 12,

belongs to a group of genes mediating growth-inhibition as cell
cycle regulators (Katsoulidis et al., 2010). Many studies have
found that SLFN12 played a key role in generating anti-tumor
effects triggered by certain drugs or interventions (Katsoulidis
et al., 2010; An et al., 2019; Lewis et al., 2019). For example, the
drug Anagrelide (ANA) can only inhibits cancer cell growth when
both PED3A and SLFN12 are expressed.

A number of other gene units were identified to be associated
with cSCC in one population without replication. However, they
have been reported in the literature for involvement with cancer
development. For example, the identified gene units HP1BP1
and SEPT7P2 have been found to be involved in cancer growth
and progression (Dutta et al., 2014; Wang et al., 2019). In
addition, gene SPATA2L have been identified to be associated
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TABLE 7 | Regions reaching suggestive significance level of 10−5 by common variants analysis.

Identification Chro Regions Gene p-values in each population
platform

Affy Illumina Omni Onco Human core Fisher

Illumina 1 52,254,865–52,344,609 NRDC, MIR761 2.95 × 10−1 6.39 × 10−6 2.50 × 10−1 1.13 × 10−1 4.91 × 10−1 1.29 × 10−4

2 190,627,505–190,630,282 OSGEPL1-AS1 3.97 × 10−1 7.95 × 10−6 8.37 × 10−1 8.93 × 10−1 8.73 × 10−1 3.50 × 10−3

2 190,634,992–190,649,097 ORMDL1 4.16 × 10−1 4.94 × 10−6 7.25 × 10−1 9.57 × 10−1 8.96 × 10−1 2.47 × 10−3

2 190,648,810–190,742,355 PMS1 4.15 × 10−1 4.93 × 10−6 7.25 × 10−1 9.57 × 10−1 8.96 × 10−1 2.47 × 10−3

Omni 16 89,762,764–89,768,121 SPATA2L 7.03 × 10−1 2.56 × 10−2 4.96 × 10−6 2.77 × 10−2 1.96 × 10−1 5.19 × 10−6

Fisher 21 42,513,426–42,519,991 LINC00323 5.21 × 10−1 7.41 × 10−3 1.11 × 10−5 3.02 × 10−1 5.87 × 10−2 7.54 × 10−6

No regions were genome-wide significant after Bonferroni adjustment.
Bold values indicate suggestive association in the discovery phase or nominal significant association in the replication phase.

TABLE 8 | Number of eQTLs located within identified regions in skin tissues exposed or not exposed to sun.

Population Chro Regions Gene Number of eQTLs within region

Skin not exposed to sun Skin exposed to sun

Illumina 1 21,069,170–21,113,181 HP1BP3 0 0

3 48,445,260–48,471,460 PLXNB1 2 2

3 49,506,135–49,573,051 DAG1 3 3

17 5,015,229–5,017,677 LOC101928000 0 2

17 5,019,732–5,078,326 USP6 1 1

HumanCore 12 56,512,003–56,516,280 ZC3H10 0 1

12 56,521,985–56,538,460 ESYT1 2 1

12 56,546,203–56,551,771 MYL6B 2 0

12 56,660,641–56,664,750 COQ10A 2 4

12 57,623,355–57,628,718 SHMT2 2 0

12 57,628,685–57,634,475 NDUFA4L2 0 0

12 57,637,237–57,644,976 STAC3 0 2

12 576,47,546–57,824,788 R3HDM2 2 4

12 57,828,467–57,845,845 INHBC 0 0

Illumina 9 71,650,478–71,715,094 FXN 1 2

Onco 17 33,737,940–33,760,195 SLFN12 3 4

HumanCore 7 45,763,385–45,808,617 SEPT7P2 3 1

HumanCore 12 56,631,590–56,652,143 ANKRD52 3 3

with vitiligo in a recent study (Cai et al., 2021), and the inverse
relationship between vitiligo and NMSC was suggested in many
research (Paradisi et al., 2014; Rodrigues, 2017; Wu et al., 2018;
Wen et al., 2020).

A number of other methods were also available for region-
based association test. For example, we and others have proposed
a generalized genetic random field (GGRF) method for testing
the association between a set of variants and a disease phenotype
(Li et al., 2014). The proposed GGRF is a similarity-based
method. It maps subjects to a Euclidean space using on their
genotypes as coordinates, so that subjects who are close to
each other in space would have similar phenotype if there is
a gene-phenotype association (Li et al., 2014). GGRF used a
Wald-type of test statistic and may achieve improved power
over SKAT under various disease scenario. However, fastSKAT
used a score test and is more computationally efficient with
the approximation by random projection. In this study, we
have used fastSKAT for analysis and we showed in Appendix,

GGRF would be equivalent to SKAT if a generalized score
test is used.

Our study must be considered in the light of certain
limitations. First, none of the association was consistently
replicated in all populations. This is partly due to the
heterogeneous nature of rare variants and their low allele
frequencies across populations. Multiple rare mutations within
the same gene can independently influence the disease (i.e.,
allelic heterogeneity), and rare variants in different genes can
also be involved in related pathways underlying complex human
diseases (i.e., locus heterogeneity) (McClellan and King, 2010).
Second, due to the nature of gene-based analysis, it is not
straightforward to ascertain the causal SNPs or estimate their
effect on cSCC risk. We also have not considered intergenic
variants that were not within the gene regions (Mo et al., 2015).
Third, the existing findings based on region-based association
have been limited. For example, the eQTL variants available in
GTEx database were mainly identified via single-locus analysis.
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Additional functional analysis is needed to validate the identified
regions in the future. Forth, we are also aware that the results
are subject to the strengths and limitations of fastSKAT due to
its assumptions and implementation. For example, we have used
a weight function that is inversely correlated with the MAF of
each variant (i.e., probability density of beta distribution, default
option of fastSKAT). It is often helpful to incorporate functional
annotation of the variants to upweight those with potentially
stronger effect on the disease (Kumar et al., 2009; Lee et al., 2015;
Quick et al., 2019). Further, extensions of SKAT, such as SKAT-
O, were able to effectively combine the test statistics of SKAT
and burden test (Lee et al., 2012), which may have improved
power when the causal variants have the same direction of effects.
We have adopted fastSKAT mainly because of the computational
advantage for studies with a very large number of subjects and
variants. It can also be helpful to improve the power in other
scenarios when SKAT-O becomes feasible for extremely large
studies. Fifth, no genomic region was identified by common
variants analysis after Bonferroni adjustment. It is partly because
the weight function adopted gave more weight to variants with
low MAF and regions with common variants receiving less weight
may not be able to identify. Furthermore, region-based test would
be less powerful when there are a few susceptible loci with effects
in this region and the total number of tested SNPs is large.
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APPENDIX

In our study, a fastSKAT method was applied to test the association between each genomic region and disease outcome. A number of
other methods were also available for region-based association test. For example, we and others have proposed a generalized genetic
random field (GGRF) method for testing the association between a set of variants and a disease phenotype (Li et al., 2014), and
compared its performance to that of SKAT. We described below that GGRF would have similar test statistic with SKAT if a generalized
score test is used for inference.

Suppose the study include a total of N subjects, each withK variants in a region and M covariates. Let Y , G, X denotes the phenotype
(N = 1), genotype (N = K), and covariates (N = M) matrix, respectively. The GGRF adopts a conditional autoregression model as:

E (Y | Y−) = µγS (Y − µ) , ;

Where the i-th element of Y− denotes the phenotype of all other subjects other than i-th subject, µ = f (Xβ) is used for covariants
adjustment, and S is a matrix for pairwise genetic similarity among N subjects. To test the genotype-phenotype association (H0 : γ =

0), a generalized score test can be used (Liang and Zeger, 1989), so that:

Uγ (β, γ) =
∂E (Y | Y−)

∂γ

T
{Y − E (Y | Y−)} = (Y − µ)TS {I − γS} (Y − µ) = 0;

A generalized score statistic can thus be defined as (Boos, 1992)

Q = Uγ

(̂
β, 0

)
= (Y − µ̂)′S (Y − µ̂) ;

where β̂ is estimated under the null hypothesis that γ = 0 via a generalized linear model. The score statistic 1
mQ takes the same format

with that of SKAT, and follows asymptotically a mixture of Chi-square distributions (Wu et al., 2011).
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Mediation analysis is a common statistical method for investigating the mechanism
of environmental exposures on health outcomes. Previous studies have extended
mediation models with a single mediator to high-dimensional mediators selection. It
is often assumed that there are no confounders that influence the relations among the
exposure, mediator, and outcome. This is not realistic for the observational studies.
To accommodate the potential confounders, we propose a concise and efficient high-
dimensional mediation analysis procedure using the propensity score for adjustment.
Results from simulation studies demonstrate the proposed procedure has good
performance in mediator selection and effect estimation compared with methods that
ignore all confounders. Of note, as the sample size increases, the performance of
variable selection and mediation effect estimation is as well as the results shown in the
method which include all confounders as covariates in the mediation model. By applying
this procedure to a TCGA lung cancer data set, we find that lung cancer patients
who had serious smoking history have increased the risk of death via the methylation
markers cg21926276 and cg20707991 with significant hazard ratios of 1.2093 (95%
CI: 1.2019–1.2167) and 1.1388 (95% CI: 1.1339–1.1438), respectively.

Keywords: high-dimensional mediators, confounders, survival model, mediation analysis, propensity score

INTRODUCTION

Mediation analysis was firstly used to deal with the causal chain of events as the primary exposure
has an effect on the outcome through affecting one or more mediators in psychological studies, and
gradually extended to sociological and biomedical researches (Baron and Kenny, 1986; MacKinnon
et al., 2002; Preacher and Hayes, 2008; Biesanz et al., 2010; Huan et al., 2016). Of note, the mediators
are usually measured after the intervention, but before the main outcome of interest. Mediation
effect is often assessed through a regression-based analysis procedure by decomposing the total
effect that describes the relationship between the exposure and the outcome variable into direct
effect and indirect effect (Baron and Kenny, 1986; MacKinnon et al., 2007). In the past couple of
decades, the topic of mediation analysis has received a great deal of attention, particularly in the area
of causal inference (Robins and Greenland, 1992; Ten Have et al., 2007; Albert, 2008; Sobel, 2008;
VanderWeele, 2009; Pearl, 2014). Researches in mediation analysis have been generalized from the
case of a single mediator to multiple mediators (Albert and Nelson, 2011; Zhang and Wang, 2013;
VanderWeele and Vansteelandt, 2014; Daniel et al., 2015), even to the case of high-dimensional
mediators (Huang and Pan, 2016; Zhang et al., 2016; Zhao and Luo, 2016; Chén et al., 2018;
Sohn and Li, 2019; van Kesteren and Oberski, 2019; Zhao et al., 2020). Recently, much progress

Frontiers in Genetics | www.frontiersin.org 1 June 2021 | Volume 12 | Article 68887183

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.688871
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.688871
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.688871&domain=pdf&date_stamp=2021-06-28
https://www.frontiersin.org/articles/10.3389/fgene.2021.688871/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-688871 June 21, 2021 Time: 18:27 # 2

Yu et al. High-Dimensional Mediation Analysis With Confounders

has been made in extensive of mediation methods to survival
models (Lange and Hansen, 2011; VanderWeele, 2011; Wang and
Zhang, 2011; Huang and Yang, 2017).

The regression-based or structural equation modeling
approach is commonly used to assess mediation effect. This
approach assumes that there are no confounders influencing
the relationships among exposure and mediator, mediator
and outcome, and exposure and outcome. Randomization to
levels of the exposure guarantees that there are no confounders
that influence both the relation of exposure-mediator and
exposure-outcome. However, the assumption that individuals
are randomly assigned to exposure, especially for research about
smoking and lung cancer, is difficult to achieve.

Propensity score method can be used to solve such a problem
with a non-randomized exposure which usually appears in
observational studies (Rosenbaum and Rubin, 1983). Previous
studies have focused on mediation analysis with confounders in
the case of a single mediator. For example, Valente et al. (2017)
introduced confounders in mediation analysis and described
how to address confounders with design-based techniques and
analysis-based approaches. Coffman (2011) proposed to use the
calculated propensity score to adjust for confounders between
the mediator and the outcomes. However, methods for high-
dimensional mediation selection adjusting for confounders,
especially for survival outcome, are still yet to be developed.

For example, in a lung cancer study, it is showed that
smoking increases the risk of lung cancer patients’ progression
to death through DNA methylation markers (Luo et al., 2020).
However, as an observational (or non-randomized) study, it is
unrealistic for a subject to be randomly assigned to the exposure,
as moral and ethical factors, in the research of how smoking
affects the lung cancer patients’ risk of progression to death
mediated by DNA methylations. Therefore, the relationship
among smoking status, DNA methylations, and overall survival
may be confounded by baseline characteristics, such as age,
gender, and other physical health indicators. However, high-
dimensional mediation analysis for survival analysis subject to
confounders is still to be developed.

In this paper, we study mediator selection and indirect effect
estimation via high-dimensional mediation analysis in survival
models with confounders. For observational studies, as the
exposure is not randomly assigned, we propose to use the
propensity score approach to adjust confounding effects. The key
ideas are as follows. Firstly, we adjust for baseline confounders
based on the calculated propensity score which serves as a
covariate in the mediation models. Secondly, we reduce the
dimension of potential mediators from ultra high-dimensional
to moderate (i.e., one that is less than the sample size) using
sure independence screening (SIS) method (Fan and Lv, 2008).
Thirdly, we conduct variable selection via Cox proportional
hazards model with the minimax concave penalty (MCP) (Zhang,
2010). Finally, we carry out the Sobel and joint significance test
for mediation effect.

The rest of the paper proceeds as follows. In the next part,
we introduce the notations and models, definition of propensity
score, and develop the proposed procedure. Then, we provide
simulation studies to evaluate the performance of our proposed

procedure and a real data application to analyze the mediation
effects of high-dimensional DNA methylation markers on the
causal effect of smoking on lung cancer in an epigenome-
wide study. Finally, we conclude the paper through discussing
limitations and other feasibilities.

STATISTICAL METHOD

Notations and Models
For individual i, i = 1, 2, · · · , n, we let Di denote the
time from onset to an event (death) and Ci be the potential
censoring time. The observed survival time is Ti = min(Di,Ci),
and the failure indicator is δi = I(Di ≤ Ci), where I(·) is an
indicator function. Let Xi be the exposure (smoking status,
i.e., smoker or non-smoker), Mi = (M1i,M2i, · · · ,Mpi)

T be
a p-dimensional continuous mediator vector (including all
the methylation information), p� n. In observational studies,
the assumption that no confounders influence the relation of
exposure-mediator, mediator-outcome, and exposure-outcome
is violated. Let Z = (Z1, · · · ,Zm)T denotes for the baseline
confounders. Figure 1 illustrates how confounders Z influence
the relation of X −M, M − Y , and X − Y .

For survival outcome (Cox, 1972), the high-dimensional
mediation models with confounders can be expressed as follows,

λi (t) = λ0 (t) exp
{
γ ∗Xi + β

TMi + ϕ
TZi

}
, (1)

Mki = ck + αkXi + φ
T
k Zi + eki, k = 1, 2, · · · , p, (2)

where Eq. (1) is the Cox proportional hazards model which
describes the relationship between the exposure X, mediators
M and the time-to-event variable; Eq. (2) characterizes how
the exposure variables influence the mediators; λ0 (t) is the
baseline hazard function; γ ∗ is the direct effect of the exposure
on the outcome; β = (β1, · · · , βp)

T is the coefficient vector
relating the mediators to the outcome adjusting for the
effect of exposure and confounders; ϕ = (ϕ1, · · · , ϕm)

T is the
coefficient vector relating the confounders to the outcome;

FIGURE 1 | The directed acyclic graph describes high-dimensional mediation
with confounders affecting the relation among exposure, mediator, and
outcome.
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α = (α1, · · · , αp)
T is the coefficient vector relating the exposure

to the mediators; φk = (φk1, · · · , φkm)
T is the coefficient vector

relating the confounders to the mediator; ck is the intercept term;
eki ∼ N(0, σ 2) is the residual.

Propensity Score
The propensity score is proposed to help remove the selection
bias result from potential confounders of X (Rosenbaum
and Rubin, 1982). The propensity score is defined as the
probability that an individual i, i = 1, · · · , n be allocated to the
treatment group often estimated using logistic regression models,
πi = Pr (Xi = 1 | Z1i, · · · ,Zmi), given measured confounders
Z = (Z1, · · · ,Zm)T . This method is often used to minimize the
influence of observed baseline covariates on the exposure. There
are many propensity-based techniques for estimating average
causal effect, including sub-classification (Rosenbaum and Rubin,
1984), matching (Rosenbaum and Rubin, 1985), and inverse
propensity weighting (Robins et al., 1995). In this article, we focus
on incorporating the calculated propensity score as the covariate
to adjusting the confounding effects.

According to Rosenbaum and Rubin (1984), the propensity
score is assessed by using baseline measured confounders as
covariates in a logistic regression model with treatment status as
the outcome as following

logit (P (Xi = 1)) = θ0 + θ1Z1i + · · · + θmZmi,

where θ = (θ1, · · · , θm)
T denotes the coefficients of confounders

on the exposure, and θ0 denotes the intercept. Hence, the
propensity score, πi, the probability to be assigned to the
intervention group can be expressed as

πi =
1

1+ exp (− (θ0 + θ1Z1i + · · · + θmZmi))
.

The superiorities of propensity score over the classical regression
adjustment method have been described elsewhere for the non-
mediation model (Schafer and Joseph, 2008; VanderWeele, 2010).
Briefly, propensity score approaches allow the inclusion of
a large scale of confounders through reducing the potential
covariates into a single numerical summary. More importantly,
the comparison between subjects in treatment group and
control group who have the same propensity score equals
the comparison of control conditions with randomly assigned
(Rosenbaum and Rubin, 1982).

Methodology
Since the assumption of no confounders affecting the relation
among exposure, mediator and outcome is violated in
observational researches, we propose a new method using
the propensity score as a covariate in the high-dimensional
mediation model as follows,

λi (t) = λ0 (t) exp
{
γ ∗Xi + β1M1i + · · ·βpMpi + ϕ̃πi

}
, (3)

Mki = ck + αkXi + eki + φ̃kπi, k = 1, 2, · · · , p, (4)

where πi is the covariate of calculated propensity score; ϕ̃ is the
effect of the covariate on the outcome; φ̃k is the effect of the
covariate on the mediator. We will compare this with the method
of adjusting all confounders as covariates and the method of
ignoring confounders.

The goal of variable selection is to identify S ={
k : α̂kβ̂k 6= 0

}
, which are the significant mediators between

the exposure and the outcome when the number of potential
mediators p is much larger than the sample size n, and the
traditional statistics methods for Cox regression analysis fail to
work (Luo et al., 2020). Besides, there are confounders influence
the relationship of exposure, mediators, and outcome. To solve
this problem, we propose the following procedure for high-
dimensional mediation analysis with confounders in survival
models. The overall workflow is as follows (Figure 2):

Step 0: We first construct the propensity score of confounders
through a logistic regression model of exposure vs. baseline
confounders, and use it as a covariate in the mediation models.

Step 1: For k = 1, · · · , p, we select a subset
S1 =

{
k: 1 ≤ k ≤ p

}
of size d =

⌈
2n/log (n)

⌉
based on SIS

method, where d·e is the ceiling function (Fan and Lv, 2008). For
the mediators in S1 are among the top d strongest P-values for
the response variable. SIS procedure has been a general technique
to reduce dimensionality from high to a small scale that is
below the sample size. Here we use d =

⌈
2n/log (n)

⌉
instead

of d =
⌈
n/log (n)

⌉
to increase the probability for identifying

important mediators, considering that both αk and βk have to be
selected as nonzero to ensure a specific mediator to be selected.

Step 2: Among all the screened mediators Mk, k ∈ S1 from
Step 1, we further identify the subset S2 =

{
k: β̂k 6= 0

}
via MCP-

based Cox model. We obtain mediators Mk through the penalized
log-partial likelihood optimization

β̂ = argmaxβ
{
ln(β)−

p∑
k= 1

Pλ (βk)
}
, k ∈ S1,

where ln (β) =
∑n

i=1 δi
{
PT
i Q− log[

∑
l∈Ri exp(P

T
l Q)]

}
with the

at-risk set Ri =
{
l : Tl ≥ Ti

}
, Pi = (Xi, πi,M1i, · · · ,

Mki, · · · )
T , and Q = (γ ∗, ϕ̃, β1, · · · , βk, · · · )

T; P′λ (βk) =
(aλ−|βk|)+

aλ with shape parameter a > 1. Breheny and Huang
(2011) implemented the MCP procedure with the R package
ncvreg.

Step 3: For k ∈ S2, a variable Mk is considered as a mediator
between the exposure and outcome only if the indirect effect
is significant. Here, we considered two methods to test the
mediation effects, including the Sobel test (i.e., product method;
Sobel, 1982) and the joint significant test.

Followed with the Sobel test for indirect effect, we have the
P-value for testing the null hypothesis H0 : αkβk = 0 of no
indirect effect

Praw, k = 2
{

1− φ(
|̂αkβ̂k|

σ̂αkβk
)

}
,

where σ̂αkβk is the estimate of the Sobel standard error (SE)
(Sobel, 1982); α̂k is the ordinary least squares estimator for αk;
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FIGURE 2 | Overall workflow for high-dimensional mediation analysis. The workflow includes the main processes: (0) adjusting for confounders based on the
propensity score method; (1) using SIS technique for preliminary screening; (2) conducting MCP-based variable selection; (3) testing for mediation effects. (0–3) is
correspond to Step0–Step3 in the methodology.

β̂k is the estimate of βk, by refitting regression Eq. (3) with the
mediators obtained in step 2.

The joint significant test for indirect effect is based on the
path-specific (i.e., X→ M and M→ Y) P-values (MacKinnon
et al., 2002) and does not provide an estimate. The P-value for
testing H0 : αk = 0 is given as

Praw, αk = 2
{

1− φ(
|̂αk|

σ̂αk
)

}
,

and the P-value for testing H0 : βk = 0 is

Praw, βk = 2
{

1− φ(
|β̂k|

σ̂βk
)

}
.

Thus, the P-value for the joint significance test is defined as

Praw, k = max
(
Praw, αk , Praw, βk

)
.

We have the revised P-value via the Bonferroni’s method in order
to adjust for multiple comparisons

Pk = min
{
Praw,k · |S2|, 1

}
,

where |S2| is the number of elements in set S2. Hence, we can
reject the null hypothesis of no IEk if Pk < 0.05, and conclude
that the variable Mk is the significant mediator between the
exposure and outcome.

Remark 1: Luo et al. (2020) proposed a compositional
mediation framework to identify biomarkers which mediate
the influence of smoking on lung cancer survival with high-
dimensional candidates. They used a regression-based approach,

which relies on the assumptions that there are no confounders
that influence the relations between exposure and mediator, and
exposure and outcome. This assumption holds if subjects are
randomly assigned to levels of exposure, but generally random
assignment is not possible in observational studies. We propose
the use of propensity scores to adjust for confounders in high-
dimensional mediation analysis in survival models.

Remark 2: Our method has three advantages. First, different
from Luo et al. (2020), our approach is a simultaneous
inference for high-dimensional mediation analysis with multiple
confounders in survival models implemented with a propensity
score method. The propensity score method can help remove the
selection bias that may result when subjects are not randomly
assigned to levels of exposure in observational studies. Second,
compared with regression adjustment approach that include the
confounders in mediation model directly, our method is more
concise since we focus on incorporating the logit propensity
score as a covariate in the mediation analysis. An advantage
of propensity scores is that they reduce multiple potential
confounders into a single numerical summary. Third, our
method has a substantial improvement over method that does not
include propensity scores.

SIMULATION STUDIES

In this section, we evaluate the performance of the proposed
mediator selection and mediation effect estimation method
through simulation studies. In order to investigate how
the sample size impacts the performance, three sample size
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levels (N = 300, N = 500, N = 1, 000) are presented with
potential mediators number p = 10, 000. For each scenario, 500
replications of simulated data sets are conducted. Besides, we also
consider two censoring rate settings of 15 and 30%.

For each subject i, i = 1, 2, · · · ,N:

1) we consider 10 confounders Z = (Z1, · · · ,Z10)
T affecting

the relationship of X, M, and Y , where Z1, · · · ,Z5 are
independently generated from the Bernoulli distribution
with Pr (Zm = 1) = 0.3,m = 1, 2, · · · , 5 and Z6, · · · ,Z10
are generated from the multivariate normal distribution
N(0,) with a covariance matrix 6 =

(
σij
)

5×5, σii = 1, i =
1, · · · , 5 and σij = 0.3, i 6= j;

2) we generate exposure X as a Bernoulli distributed variable
Xi ∼ Bernoulli(P), where P = 1/

[
1e−(θ

TZ)
]

, and

θ = (θ1, · · · ,θ10)
T
= (0.2, 0.3, 0.3, 0.5, 0.6, 0.2, 0.3, 0.3,

0.5, 0.6)T denote for the coefficients of confounders Z on
X. The 10 confounders have varying influences on the
exposure. For example, the coefficients of Z1 and Z6 are
much smaller than Z5 and Z10;

3) we generate the mediator Mki = ck + αkXi + φk1Z1 +

· · · + φk10Z10 + eki,k = 1, 2, · · · , p, where ck is generated
from the uniform distribution U(0, 1); (α1, · · · , α8)

T
=

(0.5, 0.6, 0.5, 0.6, 0.5, 0.5, 0, 0)T and the rest elements of α
equals zero; φk = (φk1, · · · , φk10)

T
= (0.3, 0, 0.4, 0.2,

0.5, 0, 0.4, 0.2, 0.5, 0.3)T denote the effects of Z on
mediator Mk; ek is generated from the standard normal
distribution N(0, 1); the correlation between mediators

basically falls between 0.5 and 0.6 which is close to the
real data;

4) the death time Di is generated as exponential
distribution with the hazard function λi (t | Xi,Mi) =
λ0 (t) exp

{
γXi + β1M1i + · · · + βpMpi + ϕ1Z1 + · · ·+

ϕ10Z10} , where λ0 (t) equals 0.5; γ equals 0.5;
the first eight elements of β be (β1, · · · , β8)

T
=

(0.6, 0.6, 0.5, 0.5, 0, 0, 0.5, 0.5)T and the rest
elements of β equals zero; ϕ = (ϕ1, · · · , ϕ10)

T
=

(0, 0.2, 0.2, 0.3, 0.2, 0.3, 0, 0.2, 0.3, 0.2)T denote the
effects of Z on Y ;

5) the censoring time is generated through Ci ∼ U (0, c0)
with constant c0 chosen so that we can control the
percentage of censored subjects.

To summarize, only the first four mediators have significant
mediation effects, which satisfy the condition of αkβk 6= 0. In this
part, we conduct a comparison of our proposed method with the
other two approaches, including models ignoring confounders
(Naïve approach) and models adjusting all 10 confounders as
covariates (Z approach). We use the proposed procedure to
identify significant mediators and estimate mediation effects,
where the proposed approach uses the logit propensity score
estimated through logistic regression as the covariate to adjust
for confounding effects. Through the simulation studies, we
want to demonstrate that propensity score methods can be used
to adjust for confounding in the high-dimensional mediation
selection and estimation.

TABLE 1 | Accuracy of mediator selection (p = 10,000, with 500 replications).

Cen = 15% Methods Sobel test Joint test

TPR FP FDP TPR FP FDP

N = 300 PS 0.6025 0 0 0.6890 0.0100 0.0025

Naïve 0.6580 4.4780 0.4982 0.6580 5.0860 0.5721

Z 0.6670 0 0 0.7800 0.0240 0.0060

N = 500 PS 0.9610 0.0020 0.0004 0.9690 0.0040 0.0008

Naïve 0.9425 3.6400 0.4745 0.9425 4.3420 0.5168

Z 0.9565 0.0020 0.0004 0.9695 0.0260 0.0056

N = 1,000 PS 1 0.0100 0.0020 1 0.0100 0.0020

Naïve 0.9995 3.3420 0.4401 0.9995 3.6460 0.4593

Z 1 0.0100 0.0020 1 0.0280 0.0056

Cen = 30% Methods TPR FP FDP TPR FP FDP

N = 300 PS 0.5370 0.0020 0.0005 0.6565 0.0080 0.0021

Naïve 0.6370 3.6060 0.5469 0.6370 5.3460 0.6474

Z 0.5825 0 0 0.7450 0.0220 0.0058

N = 500 PS 0.9505 0.0020 0.0004 0.9650 0.0080 0.0017

Naïve 0.9235 3.5900 0.4778 0.9235 4.3940 0.5285

Z 0.9460 0 0 0.9695 0.0340 0.0069

N = 1,000 PS 1 0.0080 0.0016 1 0.0100 0.0020

Naïve 0.9995 3.6160 0.4581 0.9995 3.9020 0.4756

Z 1 0.0040 0.0008 1 0.0260 0.0052

PS, method of using the propensity score as the covariate; Naïve, method of ignoring confounders; Z approach, method of using confounders as covariates.
TPR, true positive rates; FP, false positive; FDP, false discovery proportion (=V/R, where V is the number of false discoveries and R is the number of total discoveries); all
the three measures are the average value over 500 times.
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TABLE 2 | Estimation of log hazard mediation effects: αkβk (Cen = 15%).

Cen = 15% N = 300 N = 500 N = 1,000

(αk, βk) PS Naïve Z PS Naïve Z PS Naïve Z

(0.5, 0.6) = 0.30 (MSE) 0.2895 (0.0088) 0.7712 (0.2484) 0.2925 (0.0100) 0.2960 (0.0049) 0.8473 (0.3156) 0.3117 (0.0062) 0.3077 (0.0026) 0.8545 (0.3145) 0.3151 (0.0026)

(0.6, 0.6) = 0.36 (MSE) 0.3501 (0.0096) 0.8333 (0.2547) 0.3574 (0.0127) 0.3559 (0.0058) 0.8932 (0.3024) 0.3765 (0.0075) 0.3682 (0.0030) 0.9111 (0.3122) 0.3728 (0.0031)

(0.5, 0.5) = 0.25 (MSE) 0.2426 (0.0061) 0.6614 (0.1901) 0.2680 (0.0082) 0.2499 (0.0037) 0.7032 (0.2192) 0.2626 (0.0048) 0.2576 (0.0019) 0.7075 (0.2161) 0.2592 (0.0018)

(0.6, 0.5) = 0.30 (MSE) 0.2907 (0.0073) 0.7034 (0.1885) 0.3146 (0.0102) 0.3045 (0.0044) 0.7513 (0.2191) 0.3228 (0.0060) 0.3120 (0.0021) 0.7564 (0.2149) 0.3130 (0.0021)

(0.5, 0) = 0 (MSE) – (–) 0.3002 (0.0902) – (–) – (–) – (–) – (–) – (–) 0.1246 (0.0155) – (–)

(0.5, 0) = 0 (MSE) – (–) – (–) – (–) 0.0724 (0.0052) 0.1789 (0.0320) – (–) – (–) 0.1588 (0.0253) 0.0688 (0.0047)

(0, 0.5) = 0 (MSE) 0.0037 (0.0048) 0.4406 (0.2075) 0.0201 (0.0061) 0.0040 (0.0026) 0.4727 (0.2305) 0.0079 (0.0028) 0.0031 (0.0015) 0.4769 (0.2309) 0.0031 (0.0014)

(0, 0.5) = 0 (MSE) 0.0026 (0.0051) 0.4479 (0.2143) 0.0102 (0.0059) 0.0022 (0.0029) 0.4711 (0.2289) 0.0006 (0.0032) 0.0017 (0.0016) 0.4746 (0.2293) 0.0020 (0.0016)

(0, 0) = 0 (MSE) – (–) – (–) – (–) – (–) 0.1624 (0.0263) 0.0247 (0.0006) – (–) 0.0882 (0.0078) – (–)

(0, 0) = 0 (MSE) – (–) – (–) – (–) – (–) – (–) 0.0135 (0.0002) – (–) – (–) – (–)

PS, method of using the propensity score as the covariate; Naïve, method of ignoring confounders; Z approach, method of using confounders as covariates.
MSE, mean square error; –, means the not available value.

TABLE 3 | Estimation of log hazard mediation effects: αkβk (Cen = 30%).

Cen = 30% N = 300 N = 500 N = 1,000

(αk, βk) PS Naïve Z PS Naïve Z PS Naïve Z

(0.5, 0.6) = 0.30 (MSE) 0.2793 (0.0096) 0.7589 (0.2415) 0.2982 (0.0108) 0.2932 (0.0053) 0.8362 (0.3085) 0.3139 (0.0070) 0.3081 (0.0028) 0.8597 (0.3214) 0.3197 (0.0034)

(0.6, 0.6) = 0.36 (MSE) 0.3431 (0.0113) 0.8289 (0.2546) 0.3666 (0.0146) 0.3528 (0.0059) 0.8851 (0.2978) 0.3819 (0.0084) 0.3689 (0.0032) 0.9179 (0.3213) 0.3839 (0.0040)

(0.5, 0.5) = 0.25 (MSE) 0.2377 (0.0069) 0.6745 (0.2054) 0.2697 (0.0098) 0.2480 (0.0040) 0.6983 (0.2176) 0.2649 (0.0057) 0.2571 (0.0019) 0.7099 (0.2199) 0.2618 (0.0022)

(0.6, 0.5) = 0.30 (MSE) 0.2803 (0.0084) 0.7082 (0.2021) 0.3241 (0.0130) 0.3018 (0.0046) 0.7449 (0.2162) 0.3226 (0.0067) 0.3121 (0.0023) 0.7626 (0.2225) 0.3184 (0.0029)

(0.5, 0) = 0 (MSE) – (–) – (–) – (–) – (–) – (–) 0.0818 (0.0067) – (–) – (–) 0.0390 (0.0015)

(0.5, 0) = 0 (MSE) – (–) – (–) – (–) – (–) – (–) 0.0925 (0.0085) – (–) 0.1301 (0.0169) 0.0730 (0.0053)

(0, 0.5) = 0 (MSE) 0.0056 (0.0046) 0.4388 (0.2087) 0.0080 (0.0061) 0.0043 (0.0026) 0.4657 (0.2259) 0.0043 (0.0029) 0.0034 (0.0015) 0.4798 (0.2346) 0.0034 (0.0015)

(0, 0.5) = 0 (MSE) 0.0016 (0.0051) 0.4394 (0.2084) 0.0031 (0.0061) 0.0015 (0.0029) 0.4631 (0.2232) 0.0021 (0.0033) 0.0018 (0.0016) 0.4743 (0.2297) 0.0021 (0.0016)

(0, 0) = 0 (MSE) – (–) – (–) 0.0391 (0.0015) – (–) – (–) – (–) – (–) 0.0977 (0.0095) 0.0062 (0.0001)

(0, 0) = 0 (MSE) – (–) – (–) 0.0147 (0.0002) – (–) – (–) – (–) – (–) – (–) 0.0008 (0.0000)

PS, method of using the propensity score as the covariate; Naïve, method of ignoring confounders; Z approach, method of using confounders as covariates.
MSE, mean square error; –, means the not available value.
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Simulation results are presented in Tables 1–3. Table 1
evaluates the performance of mediator selection of the proposed
approach in comparison to the other two approaches using
the true positive rate (TPR), the number of false positive (FP),
and false discovery proportion (FDP) of selection after the
significance test for mediation effects based on the joint and
the Sobel methods. The TPR of the proposed propensity score
approach is lower than the Z approach when the sample size is
300, but performs similarly to the Z approach as the sample size
increases. And the proposed method has lower FP and FDP rates
than the Z approach. The Naïve approach has lower TPR and
higher FP and FDP rates, indicating the deficiency in identifying
significant mediators due to confounding effects. Take sample
size 500 as an example, the FP and FDP rates based on the joint
test are 0.004 and 0.0008 for the proposed approach; 0.026 and
0.0056 for the Z approach; and 4.342 and 0.5168 for the Naïve
approach. Selection results based on the joint test are similar.
Besides, as the censoring rate increases, the TPR rates decrease,
especially for the lower sample size. Similar results can be seen
for the setting with a 30% censoring rate.

Tables 2, 3 show the estimation of mediation effects with
censoring rate by 15 and 30%, respectively. The bias of the
indirect effect estimator using the PS approach is very small. The
Naïve approach is biased severely. It is important to note that
the proposed method even has slightly better performance than
the Z approach including all confounders as covariates in the
estimation of indirect effects.

In summary, the results demonstrate that the bias of the
mediation effect estimator of our proposed methods for high-
dimensional mediation analysis using the calculated propensity
score to adjust confounding influence is nearly unbiased. Besides,
with the increase of sample size, the ability in mediator
selection including TPR, the number of FP, and FDP shows
good performance as well as the Z approach. The Naïve
approach ignoring the confounders produces a severe bias
in both mediator selection and mediation effects estimation.
Compared with the classical regression method for mediation
analysis with confounders, the procedure we proposed is more
concise and efficient.

REAL DATA ANALYSIS

As we know, smoking is an important risk factor for lung cancer,
one of the deadliest cancer worldwide (Herbst et al., 2008).
With the development of sequencing technology, both Illumina
Infinium HumanMethylation27 and HumanMethylation450
are widely used platforms that allow measuring high-
dimensional DNA methylation levels of roughly 27 and
450 k respectively(Bibikova et al., 2011). As the individual level
phenotype and genotype data are available, researchers have
indicated that methylation markers are acting as mediators
between smoking and lung function or lung cancer patient’s
overall survival (Zhang et al., 2016; Luo et al., 2020). The TCGA
(The Cancer Genome Atlas) lung cancer cohort study had
been used for mediation analysis to identify the methylation
markers (Luo et al., 2020). However, the assumption that

samples are randomly assigned to the smoking or non-smoking
group is violated. Hence, it is of great importance to adjust
for confounding effects when conducting high-dimensional
mediation analysis.

We apply the proposed method using the calculated
propensity score as a covariate in high-dimensional mediation
analysis with survival outcome to a lung cancer dataset including
lung squamous cell carcinoma and lung adenocarcinoma. There
are 1,299 lung cancer patients aged 33–90 years and 907 of
them had DNA methylation profile measured using the Illumina
Infinium HumanMethylation 450 platform. DNA methylation
values were recorded for each array probe in each sample via
BeadStudio software. A total of 365,307 probes were included
in the analysis.

To identify the potential methylation mediators between the
tobacco smoking and the overall survival, we apply the high-
dimensional mediator model with smoking status assessed at
their initial diagnosis (smoker/non-smoker) as the exposure
variable, DNA methylation measured concurrently as the high-
dimensional mediators, and the survival time as the outcome
variable. The overall survival time is defined as the number of
days from the initial diagnosis to the death or the last follow-
up date. Subjects with no observed time, exposure, and other
covariates are excluded; there are 696 patients with 269 deaths
left. Covariates including age at initial diagnosis, gender, and
radiotherapy (yes/no) are considered.

We first adjust for the baseline confounders including age,
gender, and radiotherapy using the calculated propensity score.
Due to the fact that the relationships between methylation and
the outcome are much stronger than those between exposure and
methylation in the analysis data set, we add top d = 2n/log(n)
CpGs using SIS method based on the path from smoking to the
methylation in order to improve the probability to recognize
significant mediators. Then, we run a variable selection on the
CpGs screened in the above step. Finally, we carry out the
significance test for the mediation effects.

The analysis results are presented in Table 4. We identify
CpGs mediating the relationship between smoking and the
overall survival of lung cancer patients with Bonferroni’s adjusted
P < 0.05. Since smoking generally increases the risk of
progression to death and reduces the overall survival of lung
cancer patients with the total effect of 1.3436 (95% CI: 1.0377–
1.7400), we focus on the mediators with the log-hazard indirect
effect αβ = 0 (smoking increases the mortality). Our method
finds two CpGs (cg21926276 and cg20707991) mediating the
relationship of smoking and risk of progression to death, while
methods including all confounders as covariates and methods
ignoring confounders only find cg20707991 to be a significant
mediator. The methylation site cg21926276 has been reported as
a mediator of smoking and the risk of progression to death (Luo
et al., 2020). All the two genes in which methylation sites locate
are associated with lung cancer or tumor growth in previous
studies. For example, the gene H19 (cg21926276 locate) is related
to both lung cancer and tumor growth, methylation of which
has been thought of as a sensitive marker of tobacco history
(Bouwland-Both et al., 2015; Matouk et al., 2015). The gene
PTPRN2 (cg20707991 locate) is also associated with lung cancer
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TABLE 4 | Summary of selected CpGs with estimators (̂αβ̂ > 0) and P-values for significant mediators.

Methods CpGs Chromosome Gene α̂ β̂ P(Sobel) P(Joint)

Proposed cg21926276 chr11 H19 –0.06 –3.21 6.69e–03 1.75e-04

cg20707991 chr7 PTPRN2 –0.06 –2.12 5.36e–02 1.28e–02

Z cg20707991 chr7 PTPRN2 –0.06 –2.40 2.49e–03 4.82e–05

Naïve cg20707991 chr7 PTPRN2 –0.06 –1.01 2.58e–02 1.61e–02

and survival of cancer patients (Anglim et al., 2008; Wielscher
et al., 2015). Besides confirming the previously reported genes,
cg20707991 is identified as a novel marker for the survival of lung
cancer patients.

The CpGs are the DNA methylation sites. Chromosomes and
Genes are where the CpGs locate. α̂ is the estimation of the effect
of exposure on methylation. β̂ is the estimation of the effect of
methylation on the risk of progression to death. P(Sobel) is the
Sobel test P-values and P(Joint) is the joint test P-values, which
are corrected by Bonferroni’s method.

Based on the above analysis, compared with non-smokers,
the risk of death for those smokers is 1.3436 (95% CI: 1.0377–
1.7400). Mediation analysis using Cox proportional hazards
model discovers that the effect of having serious smoking history
on the increased risk of progression to death is mediated through
methylation markers including cg21926276 and cg20707991; the
hazard ratio for each mediator is 1.2093 (95% CI: 1.2019–1.2167)
and 1.1388 (95% CI: 1.1339–1.1438), respectively. Interventions
can be explored on these markers to improve medical care for the
detection and treatment of lung cancer among smokers.

To sum up, through the mediation analysis of smoking, DNA
methylation, and the survival time of the lung cancer patients, we
found two CpGs mediating the smoking and the mortality. Our
findings not only were in line with previous studies which found
that the gene that CpGs locate were important biomarkers for
lung cancer, but also uncovered the mediation role of the markers
connecting the smoking exposure and the survival time.

DISCUSSION

The motivation of this study is that the assumption of no
confounders affecting the relationship of exposure, mediators
and outcome in the classical mediation model is difficult to
be satisfied with observational studies. Hence, how to adjust
these confounders is an important and practical question.
The propensity score method can summarize a large scale
of confounders into a single value which is more concise
than the methods with a regression adjustment for all the
potential confounders. Thus, motivated by the above facts, we
develop a new method that using the propensity score as a
covariate to adjust for confounding effects in high-dimensional
mediation models.

In this article, we focus on how to adjust for confounding
influences when the exposure is not randomly assigned in
observational studies. We propose a new model for high-
dimensional mediation analysis using propensity score
methods to adjust for confounding effects. To identify

the significant mediators from high-dimensional potential
candidate variables, we mainly combine the sure screening
technique, MCP-based penalty, and Sobel and joint methods
for significance tests. We evaluate the performance of the
proposed procedure via several simulation studies and a real
data application.

Compared with the mediation analysis which includes
all the confounders as covariates, our proposed approach
for high-dimensional mediation analysis using the calculated
propensity score to adjust confounding influence would be
an improvement in mediator selection and indirect effect
estimation. The simulation results also show that the proposed
method can obtain a nearly unbiased estimation for indirect
effects. It is also interesting to note that if confounders are
omitted from the model, then the estimates for mediation
effects will be severely biased. In conclusion, we suggest using
the calculated propensity score to adjust for confounders
among the exposure, mediators, and the outcome when
evaluating mediation.

As mentioned previously, propensity score methods have
many other applications, such as matching, weighting, and
sub-classification. It is of interest to explore the performance
of high-dimensional mediation selection and estimators using
propensity score weighting. Also, the propensity score in our
current approach is only valid for single exposure. Analysis
approach for the high-dimensional mediators with more than
two exposure status is still to be developed. The present
simulation results do not address the cases that confounders
only affect mediators and the outcome. It is of future interest
to developed methods involving estimating propensity score
for high-dimensional mediators. Of note, the Sobel test and
the joint significant test we used are conservative, which paves
the way for developing a more powerful test method, such
as the Divide-Aggregate Composite null Test (DACT; Liu
et al., 2021). The DACT method is especially useful for the
composite null hypothesis of no mediation effect in large-
scale genome-wide epigenetic studies. It is desirable to consider
such a powerful test method for mediation effects in the
future research.
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High-throughput omics data are becoming more and more popular in various areas

of science. Given that many publicly available datasets address the same questions,

researchers have applied meta-analysis to synthesize multiple datasets to achieve more

reliable results for model estimation and prediction. Due to the high dimensionality of

omics data, it is also desirable to incorporate variable selection into meta-analysis.

Existing meta-analyzing variable selection methods are often sensitive to the presence

of outliers, and may lead to missed detections of relevant covariates, especially for

lasso-type penalties. In this paper, we develop a robust variable selection algorithm

for meta-analyzing high-dimensional datasets based on logistic regression. We first

search an outlier-free subset from each dataset by borrowing information across the

datasets with repeatedly use of the least trimmed squared estimates for the logistic model

and together with a hierarchical bi-level variable selection technique. We then refine a

reweighting step to further improve the efficiency after obtaining a reliable non-outlier

subset. Simulation studies and real data analysis show that our new method can provide

more reliable results than the existing meta-analysis methods in the presence of outliers.

Keywords: heterogeneity, logistic regression, meta-analysis, robust estimation, variable selection

1. INTRODUCTION

With the advances in biological sciences, omics data have been playing an important role in many
different fields of research. A typical example of such data includes gene expression data targeting
for the identification of important genes that are related to disease status or clinical outcomes (Zhao
et al., 2015). Nevertheless, as biological experiments are often measured with a relatively small
number of samples, many identified genes are in fact very sensitive to mild data perturbations
and thus lack of reliability. From another perspective, since many publicly available datasets have
addressed the same scientific problems, one may consider to integrate multiple sources of data
to borrow information across the studies and so improve the model interpretation and boost the
statistical power (Glass, 1976; Wu et al., 2019). As an example, the integration analysis of genomic
data from multiple studies has discovered new loci that are related to diseases including childhood
obesity, colorectal cancer, and Crohn’s disease (Houlston et al., 2008).

Meta-analysis is an efficient tool for integrating the scientific results from multiple studies.
The classical meta-analysis methods are mainly based on the summary statistics including the
p-values (Li and Tseng, 2011; Zhang et al., 2020) and/or the effect sizes (Choi et al., 2003;
Chang et al., 2013). Recently, He et al. (2016) proposed a sparse method for meta-analyzing
high-dimensional regression coefficients, which is based solely on the estimates of coefficients
from multiple studies. When raw data from multiple studies are available, as recommended by
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Tang and Song (2016), a retreat to the classical meta-
analysis methods is often necessary. Specifically, under such
circumstances, it becomes possible to jointly assess the effect
of selected covariates at the study and group levels, which can
incorporate heterogeneous effects from different studies so as
to outperform the classical meta-analysis with better estimation
accuracy (George, 2019).

Due to the high-dimensionality of omics data, the number
of genes is often larger than the sample size. Incorporation of
variable selection into raw data analysis has been one hot topic
in statistics. For example, Zhou and Zhu (2010) proposed a bi-
level variable selection method for selecting important genes,
which not only removes unimportant groups efficiently but
also maintains the flexibility of selecting variables within the
group. When the heterogeneity exists between multiple studies,
however, the important genes may only be remarkable in some
studies but not in others. In view of this, Li et al. (2014)
further extended the bi-level variable selection to heterogeneous
high-dimensional multiple datasets. They treated the coefficients
of each covariate from all datasets as groups, and performed
the simultaneously variable selection both on the group and
within the group. For other existing variable selection methods
including, for example, group Bridge, composite MCP, and
group exponential lasso that can be extended to meta-analyzing
multiple studies, one may refer to Zhao et al. (2015), Kim et al.
(2017), and Rashid et al. (2020).

Despite the huge popularity of variable selection methods
in meta-analysis, little attention has been paid to the extension
of these methods to handle outliers in high-dimensional data
(Chi and Scott, 2014). For biological data, it is not uncommon
that the tissue samples are mislabeled or contaminated (Wu
et al., 2019). Outliers may strongly influence the accuracy of
parameter estimation and variable selection, and as shown in
Alfons et al. (2013), even one single outlier has the potential to
make the selected variables based on the lasso penalty completely
unreliable. This motivates us to consider the robust alternatives,
especially when integrating the multiple datasets collected from
different platforms and laboratories. Needless to say, robust
estimation has a long history under the classical paradigm where
the sample size is large and the dimension is small, see, for
example, Yohai (1987), Hadi and Simonoff (1993), and Bianco
and Yohai (1996). In particular, Rousseeuw and Leroy (1987)
proposed a least trimmed squares estimator (LTS), which was
shown to have a high breakdown point and was further improved
by the well-designed fast algorithm (Fast-LTS) in Rousseeuw and
Driessen (2006). More recently, Alfons et al. (2013) and Yang
et al. (2018) extended LTS to high-dimensional data with the
alternatingminimization algorithm. Ren et al. (2019) investigated
a robust variable selection for continuous censored data, where
the least absolute deviation loss was adopted to accommodate
heavy-tailed data. For a review of recent developments on robust
regression and variable selection methods, one may refer to Wu
and Ma (2015) and Sun et al. (2020).

We note, however, that the aforementioned robust methods
have all been focused on a single study. Moreover, most of
the existing methods are based on robust loss functions that
aim to deal with heavy-tailed continuous data; see, for example,

the least absolute deviation and check loss functions (Wu and
Ma, 2015). In recent public biological database (e.g., Gene
Expression Omnibus database), many datasets are collected
from case-control studies with binary phenotypes. Therefore,
the commonly used robust loss functions may not be directly
applicable to this scenario. In this paper, inspired by the idea
of the LTS estimator and the bi-level lasso variable selection
(Zhou and Zhu, 2010; Li et al., 2014), we propose a two-step
procedure for the robust variable selection that can be applied
to meta-analyzing multiple case–control studies. In the first step,
we search a clean index subset for each study based on the Fast-
LTS algorithm and the bi-level variable selection technique. In
the second step, we further refine a reweighting rule to enhance
the estimation efficiency and the accuracy of variable selection.
The key idea in this step is to identify outliers according to the
current model obtained in the first step and to assign a small or
zero weight for outliers. Our new robust meta-analysis method
has two main advantages: (1) the Fast-LTS algorithm guarantees
the convergence of the selected clean subsets; (2) the bi-level
variable selection not only identifies important covariates with
the strength of multiple datasets, but also maintains the flexibility
of variable selection between the datasets to account for the
data heterogeneity. Consequently, in the presence of outliers,
our proposed method can provide better parameter estimation
and also identify more accurate informative covariates than the
existing strategies, especially when the dimension is large.

The rest of this paper is organized as follows. In section 2, we
describe the model setting and develop the new algorithm for our
two-step robust meta-analysis method. The selection of tuning
parameters involved in the algorithm is also discussed. In section
3, we conduct simulation studies to assess the performance of
the our robust estimation in meta-analyzing multiple datasets.
We further apply the new method to robustly analyze a real data
example in section 4. Finally, we conclude the paper with some
future work in section 5, and provide the technical results in
the Appendix.

2. METHODS AND ALGORITHM

In this section, we first formulate the model in section 2.1, then
propose a two-step robust meta-analysis method in section 2.2,
and finally, we present the selection of tuning parameters in
section 2.3.

2.1. Data and Models
Suppose there are M independent studies, and each study
contains nk subjects for k = 1, . . . ,M. Let also Dk =

{(xki, yki), i = 1, . . . , nk} be the raw data, where yki ∈ {0, 1} is
a binary response variable and xki = (xki,1, . . . , xki,p)

T ∈ Rp is
the covariate vector. Throughout this paper, we assume that the
dimension p is common for all the studies. To link yki to xki, we
consider the logistic model with

πki = P(yki = 1|xki) =
exp(βk0 + x

T
ki
βk)

1+ exp(βk0 + x
T
ki
βk)

, (2.1)
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where βk = (βk1, . . . ,βkp)
T ∈ Rp is the unknown coefficient

vector for the kth study that captures the effect of each covariate.
Since the intercept βk0 can be readily handled, without loss of
generality, we will suppress it for convenience. To model the
heterogeneity between the studies, we allow βk to vary with k.
For omics data, as mentioned earlier, the number of covariates
p is often much larger than the sample size n, and meanwhile
only a small proportion of covariates will be related to the
response variable. We divide the covariates into two disjoint
sets: the informative set Ik1 = {j = 1, . . . , p :βkj 6= 0} and
the noninformative set Ik1 = {j = 1, . . . , p :βkj = 0} for
k = 1, . . . ,M. Our main goals are to identify the informative sets
and to estimate the coefficients of the informative covariates.

Note that each covariate hasM coefficients across the studies.
When the M datasets come from studies that focus on the same
biological questions, theM coefficients may share some common
information. This makes it possible to integrate information
across multiple datasets and make simultaneous coefficient
estimation and variable selection. On the other side, however,
outliers and data contamination have been widely observed in the
predictors and responses, and as a consequence, they will yield
the lasso-type penalties largely unreliable.

2.2. Robust Meta-Analysis Method
In this section, we propose a new two-step procedure for robustly
meta-analyzing multiple omics data.

2.2.1. Simultaneous Estimation
Let Hk ⊆ {1, 2, . . . , nk} be a subset of the indexes from the kth
study with the cardinality |Hk| = hk for k = 1, . . . ,M, and
H = {H1, . . . ,HM} be a subset of the indexes for the M studies.
Then by following Zhou and Zhu (2010) and Li et al. (2014), we
define the objective function as

Q(H,β) =

M
∑

k=1

∑

i∈Hk

d(xTkiβk, yki)+ λ

p
∑

j=1

(

M
∑

k=1

|βkj|

)1/2

, (2.2)

where β = (βT
1 , . . . ,β

T
M)T is the stack of the coefficient vectors,

and

d(xTkiβ , yki) = −yki logπki − (1− yki) log(1− πki) (2.3)

is the deviance. When the set H is outlier-free, minimizing the
objective function (2.2) gives the robust and sparse estimator for
the coefficients as

̂βH = (̂β
T
1 , . . . ,

̂β
T
M)T = argmin

β
Q(H,β),

where ̂βk = (β̂11, . . . , β̂1p)
T is the estimate of the coefficient

vector in the kth study.
Note that the square root penalty (or L1/2 norm) in (2.2) treats

β1j, . . . ,βMj as a group for each covariate j, and conducts a group-
type variable selection. In addition, the L1 norm used inside
the square root penalty can perform a study-specific variable
selection that shrinks the small coefficients to zero and keeps
only the large coefficients (Tsybakov and Vande, 2005). Then, in

total, the penalty term in (2.2) essentially plays a role for the bi-
level variable selection; that is, it cannot only borrow common
information across the studies, but also take into account the
data heterogeneity and maintain the flexibility of parameter
estimation between the studies. From this perspective, with
the penalty term in (2.2), the optimization procedure actually
borrows the strength across the M studies and is quite different
from performing a separate variable selection in each individual
study (Li et al., 2014).

In practice, to determine a set that can well approximate
the outlier-free set H, it will involve iteratively optimizing the
objective function (2.2). Note also that the square root penalty
in (2.2) is not a convex function and has a complex nonlinear
form. To solve the problem, we first give a simpler and equivalent
version for the optimization.

THEOREM 1. Let βkj = αjγkj for k = 1, . . . ,M and j = 1, . . . , p.

Let also α = (α1, . . . ,αp)
T and γ k = (γk1, . . . , γkp)

T . Consider
the following objective function:

Q1(H,α, γ ) =

M
∑

k=1

∑

i∈Hk

d(xkiβk, yki)+

p
∑

j=1

|αj| + λ1

M
∑

k=1

p
∑

j=1

|γkj|,

(2.4)
where H is a set of indexes as in (2.2) and γ = (γ T

1 , . . . , γ
T
M)T .

For the minimization problems of (2.2) and (2.4) with tuning
parameter λ1 = λ2/4, (a) if (̂αH, γ̂H) is a solution of (2.4), then
̂βH with β̂kj = α̂jγ̂kj is a solution of (2.2); and (b) if ̂βH is a
solution of (2.2), then there exists a solution (̂αH, γ̂H) of (2.4) such
that β̂kj = α̂jγ̂kj.

The proof of Theorem 1 is given in Appendix A. This theorem
further verifies that the penalty term in (2.2) performs a bi-level
variable selection. By a decomposition of βkj, the parameter αj
controls the sparsity of the jth group β1j, . . . ,βMj, and γkj reflects
the sparsity within the jth group. If αj is shrunk to zero, all
βkj, k = 1, . . . ,M in the jth group will be zero. Since the objective
function (2.4) only has two lasso penalties without interaction,
Zhou and Zhu (2010) and Li et al. (2014) applied the lasso
algorithm to solve α and γ , iteratively. Moreover, they have also
implemented this algorithm by the “glmnet” in the R software.

Next, to find an approximate outlier-free subset for the M
studies, we propose to combine the bi-level variable selection
technique with Fast-LTS (Rousseeuw and Driessen, 2006; Alfons
et al., 2013). We first introduce a definition that will be useful for
the searching algorithm.

DEFINITION 1. Let ̂βH = (̂β
T
1,H, . . . ,̂β

T
M,H)T be the estimate

of β based on the set H = {H1, . . . ,HM}. Then, an approximate
clean subset for the kth study based onH is given as

˜Hk|H = argminG∈˜Gk

∑

i∈G

d(xTki
̂βk,H, yki), (2.5)

where ˜Gk = {G :G ⊆ {1, . . . , nk} and |G| = hk}. Furthermore, an
approximate clean subset for the M studies based on H is defined
as ˜H|H = {˜H1, . . . ,˜HM}.
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FIGURE 1 | The flow chart of the two-step procedure for meta-analyzing multiple studies, which provides a summarization for the searching procedure for H∗ and the

reweighting step.

Accordingly, let H0 and ̂βH0
be the initial subset for the studies

and the corresponding estimate of β , respectively. By using (2.5)
recursively, we can obtain the approximate clean subset for the
kth study in the tth iteration, denoted as Hk,t . Consequently, the
approximate clean subset for all studies in the tth iteration is
given as Ht = {H1,t , . . . ,HM,t}. A similar procedure was also
adopted in Rousseeuw and Driessen (2006) and Alfons et al.
(2013); that is, selecting a subset with minimal deviance may
gradually exclude outlier samples.

THEOREM 2. For any given initial set H0, by recursively
applying (2.5), we have

Q(Ht+1,̂βHt+1
) ≤ Q(Ht ,̂βHt

).

This theorem, with the proof in Appendix A, shows that the
objective function decreases in each iteration. Since there are only
a finite number of index subsets of the collected observations,
we can obtain a decreasing finite-length sequence, e.g., Q1 ≥

Q2 ≥ · · · ≥ QtM with Qt = Q(Ht ,̂βHt
), this shows

that a convergence can be reached after a finite number of
iterations (Rousseeuw and Driessen, 2006; Alfons et al., 2013).
For convenience, we refer to the searching procedure in (2.5)
as the concentration step (C-step). Note that the selected
subset after convergence of the C-step is related to the initial
subset; to alleviate this problem, we perform this searching
procedure with several different initial subsets as in Alfons
et al. (2013). Throughout this paper, we consider 500 initial
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FIGURE 2 | The coefficient estimates with clean data for M = 2 and (n,p) = (100, 50). The blue points and lines represent the mean values and the interval estimates

of coefficients over 100 simulations. Rows from top to bottom correspond to π0 = 0.2, 0.5, 0.9, respectively.

sets as H
(s)
0 = {H

(s)
1,0, . . . ,H

(s)
M,0} for s = 1, . . . , 500, where

H
(s)
k,0

is the initial subset for the kth study. To construct H
(s)
k,0
,

we adopt a similar procedure as in Kurnaz et al. (2018),
where the indexes of four observations from the kth study
are randomly selected, two from each of the groups. This
construction method leads to a high possibility of having no
outliers in the initial subsets.

Assume that H∗
s = {H∗

s,1, . . . ,H
∗
s,M} is the converged

approximate clean subset based on H
(s)
0 and ̂βH∗

s
=

(̂β1,H∗
s
, . . . ,̂βM,H∗

s
)T is the resulting coefficient estimate. Then

for the kth study, the index of the best clean subset among

H∗
1,k
, . . . ,H∗

500,k
can be given as

s∗k = arg min
s∈{1,...,500}

∑

i∈H∗
s,k

ψ(xTki
̂βk,H∗

s
, yki) for k = 1, . . . ,M,

where ψ(x, y = 0) = φ(x), ψ(x, y = 1) = φ(−x), and φ(x) is
given in Definition A1 of the Appendix. As mentioned in Bianco
and Yohai (1996) and Crous andHaesbroeck (2003), the function
ψ(x, y) provides a robust loss measure for binary classification,
which assigns a nearly zero score to the points with correct
classification and a high score to the points withmisclassification.
Hence, the best clean subset for the kth study indicates the lowest
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FIGURE 3 | The coefficient estimates with clean data for M = 2 and (n,p) = (150, 1, 000). The blue points and lines represent the estimated values and the interval

estimates of coefficients over 100 simulations. Rows from top to bottom correspond to π = 0.2, 0.5, 0.9, respectively.

classification loss among all those identified clean subsets for this
study. Finally, the best clean set for the M studies is given as
H∗ = {H∗

s∗1 ,1
, . . . ,H∗

s∗M ,M
}.

Also, in view of the heavy computation in the C-step on each
of the 500 initial subsets. As alternative, we propose an alternative
to perform two C-steps and find the best 10 subsets for the M
studies as initial subsets. The rest searching procedure is similar
as above paradigm. To summarize, we have the new algorithm
as follows.

1. Let H
(s)
o = {H

(s)
1,o, . . . ,H

(s)
M,o} be the initial sets for s =

1, 2, . . . , 500.

2. LetH = H
(s)
o and compute the estimator for β by minimizing

(2.4), denoted as ̂β
H

(s)
o

= (̂β
T

1,H
(s)
o
, . . . ,̂β

T

M,H
(s)
o
)T .

3. Search the approximate clean subset for the kth study as

H
(s)
k,1

= argminG∈˜Gk

∑

i∈G

d(xTki
̂β
k,H

(s)
o
, yki),

where ˜Gk is the index set as in (2.5). The approximate clean

subset for theM studies isH
(s)
1 = {H

(s)
1,1, . . . ,H

(s)
M,1}.
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TABLE 1 | Results for low-dimensional data with clean data.

(n,p) = (100, 50)

M = 2 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.689 (0.019) 0.714 (0.018) 0.623 (0.020) 0.563 (0.013)

Recall 0.910 (0.007) 0.934 (0.007) 0.762 (0.016) 0.909 (0.008)

F1 0.769 (0.012) 0.795 (0.012) 0.653 (0.010) 0.684 (0.011)

RMSE 0.303 (0.011) 0.272 (0.010) 0.224 (0.003) 0.202 (0.005)

π = 0.5

Precision 0.861 (0.008) 0.879 (0.007) 0.806 (0.015) 0.708 (0.012)

Recall 0.950 (0.006) 0.976 (0.040) 0.358 (0.018) 0.763 (0.018)

F1 0.820 (0.008) 0.835 (0.007) 0.566 (0.010) 0.710 (0.008)

RMSE 0.295 (0.005) 0.253 (0.004) 0.578 (0.010) 0.456 (0.008)

π = 0.9

Precision 0.861 (0.008) 0.879 (0.007) 0.806 (0.015) 0.708 (0.012)

Recall 0.959 (0.006) 0.978 (0.040) 0.358 (0.018) 0.727 (0.016)

F1 0.900 (0.005) 0.920 (0.045) 0.457 (0.015) 0.069 (0.010)

RMSE 0.302 (0.005) 0.259 (0.034) 0.706 (0.010) 0.643 (0.013)

M = 8 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.721 (0.009) 0.729 (0.010) 0.597 (0.008) 0.531 (0.007)

Recall 0.949 (0.004) 0.953 (0.004) 0.767 (0.011) 0.942 (0.003)

F1 0.815 (0.005) 0.821 (0.005) 0.665 (0.006) 0.676 (0.006)

RMSE 0.138 (0.002) 0.110 (0.001) 0.179 (0.002) 0.141 (0.001)

π = 0.5

Precision 0.706 (0.007) 0.691 (0.006) 0.658 (0.007) 0.588 (0.006)

Recall 0.987 (0.002) 0.992 (0.001) 0.626 (0.011) 0.928 (0.004)

F1 0.820 (0.005) 0.812 (0.004) 0.634 (0.006) 0.718 (0.005)

RMSE 0.189 (0.003) 0.176 (0.004) 0.306 (0.005) 0.266 (0.003)

π = 0.9

Precision 0.889(0.005) 0.905 (0.005) 0.754 (0.008) 0.671 (0.006)

Recall 0.992 (0.001) 0.995 (0.007) 0.469 (0.002) 0.774 (0.011)

F1 0.936 (0.003) 0.947 (0.003) 0.578 (0.007) 0.712 (0.005)

RMSE 0.209 (0.002) 0.187 (0.001) 0.634 (0.005) 0.565 (0.011)

The presented values are the means of Precision, Recall, F1, and RMSE with standard errors in parentheses, respectively, averaged over 100 simulations. The bold values for Presicion,

Recall, and F1 score are the highest values, and the bold value for RMSE is the lowest value.

4. Repeat Step 2 on H = H
(s)
1 . Let also ̂β

H
(s)
1

=

(̂β
T

1,H
(s)
1
, . . . ,̂β

T

M,H
(s)
1
)T be the corresponding coefficient

estimate.
5. For H

(s)
k,1

∈ H
(s)
1 with s = 1, . . . , 500 and k = 1, . . . ,M, let

eks =
∑

i∈H
(s)
k,1

ψ(xTki
̂β
k,H

(s)
1
, yki).

Search a subset of indexes such that {πk,1, . . . ,πk,10} ⊂

{1, . . . , 500} with ek,πk,1 ≤ . . . ≤ ek,πk,10 . The best

10 sets among H
(1)
1 , . . . ,H

(500)
1 are given as ˜H

(s)
1 =

{H
(π1,s)
1,1 , . . . ,H

(πM,s)
M,1 } for s = 1, . . . , 10.

6. Let H = ˜H
(s)
1 be the initial set for s = 1, . . . , 10, respectively,

and repeat Steps 2–3 for a total of t times until convergence
such that ||̂β

H
(s)
t
− ̂β

H
(s)
t−1

||2 ≤ ǫ, where || · ||2 is the Euclidean

norm and ǫ is a pre-specified small constant. The converged
approximate clean subset and the coefficient estimate for all
M studies are denoted as H∗

s = {H∗
s,1, . . . ,H

∗
s,M} and ̂βH∗

s
=

(̂β
T
1,H∗

s
, . . . ,̂β

T
M,H∗

s
)T , respectively.

7. For H∗
s,k

∈ H∗
s with s = 1, . . . , 10 and k = 1, . . . ,M, let

s∗k = arg min
s∈{1,...,10}

∑

i∈H∗
s,k

ψ(xTki
̂βk,H∗

s
, yki).

The best clean subset for all M studies is given as H∗ =

{H∗
s∗1 ,1

, . . . ,H∗
s∗M ,M

}, and the corresponding estimate of β is

̂βH∗ = (̂β
T
1,H∗ , . . . ,̂β

T
M,H∗ )T .

Finally, we observe that in the first several C-steps, the algorithm
for minimizing (2.4) may not stable. For this, we may restrict that
α1 = · · · = αp = 1.

2.2.2. Reweighting Step
Note that the LTS-type estimator only uses a subset of data and
may suffer from a low efficiency. To further improve the model
estimation, Kurnaz et al. (2018) proposed a reweighting step
such that the identified outliers based on the current estimated
model will be assigned with a small or zero weight. For our
robust meta-analysis method, we adopt a similar reweighting
procedure, which is based on the Pearson residuals r̂ki =

(yki − π̂ki)/
√

π̂ki(1− π̂ki), where π̂ki = exp(xT
ki
̂βk,H∗ )/[1 +

exp(xT
ki
̂βk,H∗ )] is the conditional probability of the logistic model.
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TABLE 2 | Results for high-dimensional data with clean data.

(n,p) = (150, 1, 000)

M = 2 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.536 (0.015) 0.489 (0.014) 0.633 (0.024) 0.807 (0.015)

Recall 0.900 (0.007) 0.934 (0.007) 0.740 (0.016) 0.878 (0.006)

F1 0.658 (0.011) 0.632 (0.012) 0.642 (0.013) 0.833 (0.010)

RMSE∗ 0.276 (0.047) 0.239 (0.071) 0.208 (0.054) 0.226 (0.014)

π = 0.5

Precision 0.747 (0.012) 0.665 (0.011) 0.716 (0.021) 0.787 (0.011)

Recall 0.965 (0.005) 0.974 (0.010) 0.321 (0.012) 0.684 (0.013)

F1 0.835 (0.007) 0.785 (0.007) 0.417 (0.011) 0.721 (0.009)

RMSE∗ 0.253 (0.040) 0.157 (0.089) 0.447 (0.091) 0.452(0.102)

π = 0.9

Precision 0.722 (0.012) 0.759 (0.011) 0.762 (0.025) 0.790 (0.013)

Recall 0.850 (0.010) 0.975 (0.004) 0.178 (0.008) 0.448 (0.015)

F1 0.778 (0.010) 0.849 (0.007) 0.274 (0.010) 0.548 (0.012)

RMSE∗ 0.261 (0.074) 0.196 (0.014) 0.489 (0.075) 0.446 (0.071)

M = 8 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.694 (0.015) 0.709 (0.012) 0.573 (0.014) 0.783 (0.008)

Recall 0.957 (0.004) 0.840(0.002) 0.630 (0.008) 0.863 (0.004)

F1 0.796 (0.007) 0.811 (0.008) 0.587 (0.007) 0.818 (0.004)

RMSE∗ 0.321 (0.068) 0.311 (0.075) 0.509 (0.063) 0.451 (0.045)

π = 0.5

Precision 0.687 (0.005) 0.688 (0.005) 0.664 (0.014) 0.769 (0.007)

Recall 0.988 (0.002) 0.994 (0.001) 0.395 (0.008) 0.784 (0.006)

F1 0.809 (0.004) 0.812 (0.003) 0.483 (0.006) 0.774 (0.005)

RMSE∗ 0.416 (0.064) 0.316 (0.087) 0.447 (0.076) 0.435 (0.081)

π = 0.9

Precision 0.942 (0.002) 0.952 (0.001) 0.712 (0.012) 0.760 (0.006)

Recall 0.988 (0.001) 0.964 (0.003) 0.198 (0.004) 0.473 (0.008)

F1 0.965 (0.002) 0.958 (0.002) 0.305 (0.004) 0.579 (0.007)

RMSE∗ 0.574 (0.072) 0.475 (0.031) 0.639 (0.064) 0.622 (0.105)

The presented values are the means of Precision, Recall, F1, and RMSE∗ with standard errors in parentheses, respectively, averaged over 100 simulations. RMSE∗= 10× RMSE. The

bold values for Presicion, Recall, and F1 score are the highest values, and the bold value for RMSE is the lowest value.

Since rki is a standardized statistic and is approximately normally
distributed, the weights for the observations are given as

ŵki =

{

0, |̂rki| > 8−1(1− δ),
1, |̂rki| ≤ 8−1(1− δ),

for k = 1, . . . ,M and

i = 1, . . . , nk, (2.6)

where 8 is the cumulative distribution function of the standard
normal distribution. Throughout this paper, we select δ = 0.0125
as in Alfons et al. (2013) and Kurnaz et al. (2018) such that 2.5%
of the observations from the standard normal distribution are
considered as outliers. The reweighed objective function is

Qw(β) =

M
∑

k=1

nk
∑

i=1

ŵkid(x
T
kiβk, yki)+ λ

p
∑

j=1

(

M
∑

k=1

|βkj|

)1/2

, (2.7)

Consequently, the robust estimator for meta-analyzing multiple
studies is given as

˜β = (˜β
T
1 , . . . ,

˜β
T
M)T = argmin

β

Qw(β),

where ˜βk is the estimate of the coefficient vector for the kth study.
Obviously, when the data do not have outliers or only have a

small proportion of outliers, the reweighing procedure uses more
observations and hence may improve the estimation accuracy.

Finally, to give more insights on the algorithms in sections
2.2.1 and 2.2.2, we present a flow chart of the two-step
procedure for meta-analyzing multiple studies in Figure 1, which
provides a summary for the searching procedure for H∗ and the
reweighting step.

2.3. Selection of the Tuning Parameters
In section 2.2, we need to pre-specify the cardinalities h1, . . . , hM
before searching the approximate clean subset ˜H∗. If some
studies contain a large proportion of outliers, then the
cardinalities of the selected subsets from the studies ought to be
small, e.g., hk ≈ nk/2, and vice versa. In practice, if we do not
have prior knowledge for the number of outliers, we recommend
to use hk ≈ 0.75nk as adopted in Rousseeuw and Driessen (2006),
Alfons et al. (2013), and Kurnaz et al. (2018).

Note that the optimization problems in (2.2) and (2.7) can be
rewritten as (2.4), and hence we only need to select the tuning
parameter in (2.4). Various data-driven techniques have been
well developed in the literature including, for example, the cross-
validation, the generalized cross-validation, and the Bayesian
information criterion (BIC) procedures. We adopt the BIC to
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FIGURE 4 | The coefficient estimates with contamination data for M = 2 and (n,p) = (100, 50). The blue points and lines represent the mean values and the interval

estimates of coefficients over 100 simulations. Rows from top to bottom correspond to π0 = 0.2, 0.5, 0.9, respectively.

select the tuning parameter as recommended in Alfons et al.
(2013). Specifically, we compute the BIC after obtaining H∗ in
the C-steps, which is given as

BIC(λ1) =

M
∑

k=1

{

−2Lk(̂βk,H∗ ,H∗)+ df(̂βk,H∗ ) log(hk)
}

, (2.8)

where Lk(̂βk,H∗ ,H∗) =
∑Hk

i=1 d(xki
̂βk,H∗ , yki) with Hk ∈ H∗,

and df(̂βk,H∗ ) is the number of non-zero components in ̂βk,H∗ . A
similar procedure is also performed in the reweighting procedure
to select the tuning parameter.

3. NUMERICAL STUDIES

In this section, we conduct simulations to evaluate the
numerical performance of our new robust lasso-type meta-
analysis method (RL-meta) and compare it with some existing
methods. Specifically, we consider the state-of-the-art methods
from Li et al. (2014), Alfons et al. (2013), and Friedman
et al. (2010). Noting that the latter two methods perform
the variable selection on each study individually, hence for
convenience, we refer to them as L-meta, RL-each, and L-
each, respectively.

Let TP, FP, and FN be the number of true positives, false
positives, and false negatives, respectively. Then to evaluate
the performance of these methods, we consider four criteria
including Precision = TP/(TP+FP), Recall = TP/(TP+FN), the F1
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TABLE 3 | Results for low-dimensional data with contamination.

(n,p) = (100, 50)

M = 2 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.635 (0.019) 0.248 (0.027) 0.338 (0.007) 0.764 (0.032)

Recall 0.854 (0.016) 0.184 (0.019) 0.848 (0.010) 0.138 (0.011)

F1 0.728 (0.014) 0.362 (0.013) 0.480 (0.009) 0.301 (0.010)

RMSE 0.376 (0.015) 0.449 (0.023) 0.207 (0.009) 0.456 (0.017)

π = 0.5

Precision 0.664 (0.017) 0.537 (0.001) 0.374 (0.015) 0.898 (0.018)

Recall 0.768 (0.026) 0.113 (0.026) 0.634 (0.023) 0.135 (0.010)

F1 0.701 (0.020) 0.252 (0.013) 0.465 (0.017) 0.243 (0.010)

RMSE 0.470 (0.021) 0.725 (0.024) 0.615 (0.019) 0.725 (0.026)

π = 0.9

Precision 0.715 (0.021) 0.340 (0.029) 0.391 (0.015) 0.921 (0.012)

Recall 0.636 (0.030) 0.089 (0.008) 0.518 (0.021) 0.077 (0.005)

F1 0.658 (0.025) 0.188 (0.010) 0.445 (0.017) 0.159 (0.006)

RMSE 0.608 (0.027) 0.817 (0.031) 0.707 (0.026) 0.813 (0.034)

M = 8 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.682 (0.009) 0.568 (0.043) 0.291 (0.005) 0.592 (0.032)

Recall 0.899 (0.010) 0.105(0.010) 0.842 (0.011) 0.051 (0.003)

F1 0.770 (0.012) 0.251 (0.005) 0.432 (0.006) 0.104 (0.004)

RMSE 0.216 (0.014) 0.289(0.021) 0.219 (0.018) 0.927 (0.013)

π = 0.5

Precision 0.691 (0.010) 0.128 (0.017) 0.358 (0.010) 0.840 (0.018)

Recall 0.923 (0.011) 0.042 (0.005) 0.724 (0.012) 0.102 (0.003)

F1 0.787 (0.005) 0.118 (0.007) 0.479 (0.008) 0.181 (0.005)

RMSE 0.251 (0.016) 0.473 (0.021) 0.352 (0.019) 0.480 (0.023)

π = 0.9

Precision 0.828 (0.010) 0.238 (0.028) 0.358 (0.007) 0.939 (0.011)

Recall 0.866 (0.010) 0.053 (0.006) 0.519 (0.012) 0.052 (0.002)

F1 0.839 (0.013) 0.161 (0.008) 0.423 (0.008) 0.098 (0.004)

RMSE 0.516 (0.027) 0.701(0.029) 0.680 (0.015) 0.699 (0.030)

The presented values are the means of Precision, Recall, F1 score, and RMSE with standard errors in parentheses, respectively, averaged over 100 simulations. The bold values for

Presicion, Recall, and F1 score are the highest values, and the bold value for RMSE is the lowest value.

score (F1), and the root mean squared error (RMSE), where

F1 =
2× Presicion× Recall

Presicion+ Recall
and

RMSE =
( 1

M

M
∑

k=1

p
∑

j=1

(β̂kj − βkj)
2
)1/2

.

Note that Precision, Recall, and F1 all range from 0 to 1, which
measure the accuracy of variable selection with a larger value
being preferred. As an addition, RMSE measures the loss of
coefficient estimation, for which a small value is favorable.

3.1. Clean Data
In the first simulation, we consider clean data with no outliers.
Specifically, we generate M studies and each has n observations.
The covariate vector xki = (xki1, . . . , xkip)

T are randomly
sampled from the multivariate normal distribution N(0, Ip) for
k = 1, . . . ,M and i = 1, . . . , n, where Ip is the identity matrix.
Then the response variables are generated as yki = 1 if xkiβk +

εki > 0, otherwise, yki = 0, where βk = (βk1, . . . ,βkp)
T ,

εki is the independent noise sampled from N(0, 1). To access
the performance of our RL-meta under different levels of
heterogeneity, we let βkj = zkjbkj for k = 1, . . . ,M and j =

1, . . . , 10 and βkj = 0 for j = 11, . . . , p, where zkj is randomly
sampled from a Bernoulli distribution with the success rate π0
and bkj is randomly sampled from N(1.5, 0.52). This means that
only the first 10 covariates may be possibly related to the response
variable in each study, it is informative with probability π0 and
uninformative with probability 1 − π0. We consider π0 = 0.2,
0.5, or 0.9 to represent three levels of heterogeneity between the
studies. In addition, we also consider (n = 100, p = 50) or
(n = 150, p = 1, 000) as a low or large dimension, respectively,
and the numbers of studies asM = 2 or 8.

To visualize the coefficient estimation for more insights, we
plot the average values of the estimates for each coefficient with
the confidence intervals (mean ±3× standard error) for M = 2
studies (see Figures 2, 3). To save space, we move the plots of
L-each and RL-each to Appendix B (see Figures S1, S2). When
there is no outlier, RL-meta and L-meta both provide good
estimates for the coefficients, where they are close to the true
coefficients especially with a low dimension (e.g., p = 50).
Figure A1 shows that RL-each and L-each can provide an accurate
variable selection, whereas the estimates for nonzero coefficients
tend to be smaller than the true coefficients, especially when the
dimension is larger than the sample size. This phenomenon was
also observed in Zhao and Yu (2006), where they showed that
the convex penalty often shrinks the estimates of the nonzero
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TABLE 4 | Results for high-dimensional data with contamination data.

(n,p) = (150, 1, 000)

M = 2 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.510 (0.017) 0.076 (0.006) 0.878 (0.009) 0.273 (0.043)

Recall 0.873 (0.009) 0.324 (0.014) 0.261 (0.005) 0.018 (0.005)

F1 0.613 (0.013) 0.125 (0.007) 0.202 (0.003) 0.246 (0.001)

RMSE∗ 0.298 (0.032) 0.379 (0.045) 0.161 (0.008) 0.316(0.032)

π = 0.5

Precision 0.463 (0.024) 0.104 (0.009) 0.139 (0.006) 0.314 (0.044)

Recall 0.685 (0.027) 0.082 (0.004) 0.553 (0.020) 0.015 (0.003)

F1 0.563 (0.023) 0.082 (0.005) 0.226 (0.009) 0.136 (0.002)

RMSE∗ 0.387 (0.069) 0.548 (0.093) 0.425(0.060) 0.500 (0.073)

π = 0.9

Precision 0.414 (0.036) 0.029 (0.004) 0.108 (0.007) 0.583 (0.046)

Recall 0.531 (0.030) 0.055 (0.006) 0.348 (0.023) 0.022 (0.003)

F1 0.499 (0.025) 0.070 (0.003) 0.181 (0.010) 0.107 (0.003)

RMSE∗ 0.435 (0.070) 0.548 (0.071) 0.489 (0.083) 0.561 (0.071)

M = 8 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.660 (0.011) 0.053 (0.001) 0.120 (0.002) 0.374 (0.033)

Recall 0.915 (0.007) 0.664(0.009) 0.810 (0.008) 0.040 (0.004)

F1 0.760 (0.007) 0.097 (0.001) 0.208 (0.003) 0.106 (0.004)

RMSE∗ 0.210 (0.011) 0.374 (0.039) 0.227 (0.091) 0.292 (0.018)

π = 0.5

Precision 0.660 (0.007) 0.044 (0.002) 0.145 (0.003) 0.383 (0.034)

Recall 0.906 (0.008) 0.323 (0.013) 0.675 (0.011) 0.019 (0.002)

F1 0.760 (0.005) 0.077 (0.003) 0.237 (0.005) 0.059 (0.003)

RMSE∗ 0.316 (0.098) 0.547 (0.107) 0.519 (0.095) 0.469 (0.026)

π = 0.9

Precision 0.752 (0.011) 0.048 (0.002) 0.087 (0.002) 0.584 (0.024)

Recall 0.767 (0.021) 0.219 (0.011) 0.433 (0.010) 0.032 (0.002)

F1 0.753 (0.015) 0.080 (0.004) 0.144 (0.003) 0.062 (0.003)

RMSE∗ 0.358 (0.097) 0.614(0.085) 0.503 (0.082) 0.471 (0.074)

The presented values are the means of Precision, Recall, F1 score, and RMSE with standard errors in parentheses, respectively, averaged over 100 simulations. The bold values for

Presicion, Recall, and F1 score are the highest values, and the bold value for RMSE is the lowest value.

coefficients too heavily. In contrast, since our RL-meta and L-
meta both use a nonconvex regularization, they are able to reduce
the estimation biases.

Tables 1, 2 show the scores of the measure criteria for each
scenario with clean data. Based on the evaluation criteria, L-
meta exhibits superiority than the other three methods, which
has a higher Precision, Recall, and F1 in most settings. RL-meta
is nearly as good as L-meta and is much better than L-each and
RL-each. For example, when the dimension and the number of
informative covariates tend to large, L-each and RL-each both
exhibit an inflated RMSE, whereas RL-meta and L-meat still keep
a low RMSE. This verifies that borrowing information across the
studies can improve the estimation accuracy, especially when the
dimension is large and the sample size is small.

3.2. Contamination Data
In the second simulation, we consider contamination data
with outliers. We randomly select m0 observations from
each study and add outliers to those informative covariates.
More specifically, for the observations with yki = 0
(or yki = 1), the informative covariates are replaced by
values randomly sampled from N(5, 1). To avoid high-leverage
points, those observations are assigned an opposite class label.
That is, yki = 1 − δ(xkiβk > 0), where δ(·) is an

indicator function. Throughout this section, we fix m0 =

10, and the other parameter are the same as those in
section 3.1.

Figures 4, 5 plot the mean values of the estimates for each
coefficient with the confidence intervals (mean ±3× standard
error) for M = 2 studies under contamination data. To
save space, we also move the plots of L-each and RL-each
to Appendix B (see Figures S3, S4). From those figures, it is
evident that RL-meta outperforms the other three methods
in the presence of outliers. In particular, RL-meta and L-
meta are able to select more informative covariates, whereas,
L-meta and L-each both miss most informative variables,
especially when the dimension is large. As we mentioned in the
Introduction, this may due to the fact that classical lasso-type
variable selection is sensitive to outliers and has a high-break
down point.

Tables 3, 4 show the scores of the four measure criteria
for each scenario under contamination data. RL-meta and
RL-each both exhibit a higher Precision and Recall and a smaller
RMSE than L-meta and L-each, especially when the number of
informative covariates is large. This indicates that the two robust
methods are able to identify more informative covariates and
also keep a low false discovery rate when presenting outliers.
When the number of studies and the number of informative
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FIGURE 5 | The coefficient estimates with contamination data for M = 2 and (n,p) = (150, 1, 000). The blue points and lines represent the estimated values and the

interval estimates of coefficients over 100 simulations. Rows from top to bottom correspond to π = 0.2, 0.5, 0.9, respectively.

variable are both small (e.g., M = 2 and π = 0.2), we note
that RL-each has a smaller RMSE than RL-meta, which exhibits
a good coefficient estimation. One possible reason is that when
the number of studies and informative covariates is very small,
there no or little information can be borrowed to improve the
estimation accuracy. As the number of studies and/or the number
of informative variable tend to large, our RL-meta consistently
has the best performance among the three methods including L-
meta, RL-each, and L-each. This again verifies that borrowing
information across similar studies can significantly improve
parameter estimation and the accuracy of variable selection (Liu
et al., 2011).

4. REAL DATA APPLICATION

In this section, we consider three publicly available lung cancer
datasets from GEO (https://www.ncbi.nlm.nih.gov/gds/). The
first data are the gene expression signature of cigarette smoking
(GSE10072), which contains the gene expression levels of 49
normal and 58 tumor tissues from 28 current smokers, 26
former smokers, and 20 never smokers, and each sample has
22,283 genes. The second data are the early stage non-small-
cell lung cancer (GSE19188), which contains the gene expression
levels of 65 adjacent normal and 91 tumor tissues, and each
sample has 54,675 genes. The third data are the non-smoking
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TABLE 5 | Gene selections of RL-meta, L-meta, RL-each, and L-each in three lung cancer studies.

GSE10072 GSE19188 GSE19804

RL-meta AF007147 AF007147, ACSL4, GRIA1

SVEP1 SVEP1, EHD1, LGALSL EHD1, LGALSL

COL10A1 COL10A1, FUT2 COL10A1, FUT2

L-meta COL10A1 ACSL4, COL10A1 COL10A1

AF007147 AF007147 FUT2

LINC01140 LINC01140

RL-each CA4, CD36 AGER, CA4 CA4, SGCG

SPP1, GPM6A GDF10, GAPDH MME

FAM107A, FCN3 FAM189A2, LRRC36

L-each PDE2A AOX1, AF007147, ACADL ALDH18A1, COL10A1

SPP1 GAPDH, PAFAH1B3 GOLM1, MME

TNXA LRRC36, LINC00341 EFNA4, SORD

HIST1H2BD, PPBP SPOCK2, HN1L

CCL23, FCN3

The bolded and italic bolded names are overlapped identified genes between GSE10072 and GSE19188 and between GSE19188 and GSE19804, respectively. The underlined names

are overlapped identified genes across the three studies.

TABLE 6 | Gcta, L-meta, RL-each, and L-each in three lung cancer studies.

GSE10072 GSE19188 GSE19804

RL-meta COL10A1 COL10A1, ACSL4 COL10A1

SPOCK2 FUT2, GRIA1, TYRP1 FUT2

LINC01140 EHD1, AF007147 EHD1

L-meta MIF CFP, MIF CFP, MIF, GOLM1

KCNJ8 KCNJ8 KCNJ8, COL10A1

RL-each CA4 AGER, CA4 CA4, SGCG

GPM6A LRRC36, GDF10 SH3GL3, MASP1

COL10A1, SPP1

L-each FAM107A AGER, GAPDH COL10A1

SPP1 PAFAH1B3, NEK2 GOLM1

MIF, HIST1H2BD SPOCK2

The bolded and italic bolded names are overlapped identified genes between GSE10072 and GSE19188 and between GSE19188 and GSE19804, respectively. The underlined names

are overlapped identified genes across the three studies.

female lung cancer in Taiwan (GSE19804), which contains the
gene expression levels of 60 normal and 60 tumor tissues, and
each sample has 54,675 genes. Consequently, there are 13,515
common genes shared between these three datasets. We map the
probes of the raw data to gene names by annotation packages
in Bioconductor. Also as per Hui et al. (2020) and Alfons et al.
(2013), if multiple probes match a same gene, we compute the
median values of these probes as the expression values for this
gene and do the normalization for the raw expression data by the
“affy” R package. Let |tkj| be the absolute value of standardized
mean difference for the jth gene in the kth dataset and Tj =

max(|t1j|, |t2j|, |t3j|). We select the 1,000 genes with the largest
values of Tj for j = 1, . . . , 13, 515, and then perform the variable
selection for the three datasets based on RL-meta, L-meta, RL-
each, and L-each, respectively.

Figure 6 shows the density plots for each of the selected 1,000
genes in the GSE10072, GSE19198, and GSE19804, respectively.

The expression levels of some genes in GSE10072 and GSE19198
exhibit heavy-tailed distributions and may present outliers.
Table 5 shows the detected informative genes by RL-meta, L-
meta, RL-each, and L-each in the three lung cancer studies. We
observe that RL-meta detects 7more genes than L-meta, and both
of the methods identify one common gene “COL10A1” between
the three studies. In addition, RL-meta detects four overlapped
informative genes in GSE19188 and GSE19804, whereas L-meta
only detects 1 overlapped gene. Since GSE19188 and GSE19804
are both from the same Affymetrix Platform (U133 Plus 2.0),
it is expected that RL-meta has a higher detection power and
is also more reproducible than L-meta. Finally, RL-each and L-
each detect 15 and 22 genes, respectively. Nevertheless, these two
methods identify very different genes across the three studies and
so may lack of reproducibility.

To further compare the performance of the four methods, we
also consider to create outliers for the three datasets. Specifically,
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FIGURE 6 | Density plots for each of the selected 1,000 genes in the

GSE10072, GSE19198, and GSE19804, respectively.

we select the first eight samples from each of the three datasets,
and then add a number 10 to the expression levels of those
informative genes. In order to generate outliers instead of
leverage points, we assign the labels of those samples to their
opposite class. Table 6 shows the identified informative genes
with RL-meta, L-meta, RL-each, and L-each in the artificially
created three datasets. L-meta and L-each both identify quite
different genes between the artificially created datasets and
the original datasets, whereas RL-meta and RL-each identify
more common genes between the artificial created datasets
and the original datasets. In addition, RL-meta detects four
overlapped informative genes in artificially created GSE19188
and GSE19804, whereas L-meta only detects one overlapped
gene. As we discussed in the analysis of original datasets,
GSE19188 and GSE19804 are both from the same Affymetrix
Platform, and hence it is expected that RL-meta is more
reproducible than L-meta. To conclude, RL-meta is more robust
and tends to be more powerful when outliers present in the
datasets.

5. DISCUSSION

In this paper, we propose a robust method for meta-analyzing
multiple studies with high-dimensional data. Our method is
based on a two-step procedure including a search step for a clean
subset from each study and a reweighting scheme to improve the
estimation efficiency. In particular, we incorporate the bi-level
variable selection technique into both of the two steps. Our new
robust method has the capacity to capture the sparsity at both the
study and group levels so as to better integrating the structural
information that can enhance the parameter estimation and
variable selection. Simulation studies demonstrate that, in the

presence of outliers, our proposed method can provide better
parameter estimation and also identify informative covariates
more accurately than the existing strategies, especially when
the dimension is large. We also provide a comparison of
computational cost for RL-meta, RL-each, L-meta, and L-each in
Table A1. We note that RL-meta and RL-each suffer from a heavy
computational burden. The main reason is that the two robust
methods need to perform C-steps with different starting subsets,
and hence the number of iterations is considerably higher than
the classical lasso-based methods.

In addition, the lasso-based variable selection methods
usually suffer from a low power when some covariates are
highly correlated. As an alternative, Zou and Hastie (2005)
and Tibshirani et al. (2005) proposed the elastic net and the
fused lasso penalty to handle correlations among covariates.
Following this direction, our RL-meta may further be improved
by incorporating the correlated covariates. Specifically, with
the hierarchical reparameterization in Theorem 1, one possible
extension of (2.4) can be given as:

Qnet(H,α, γ ) =

M
∑

k=1

∑

i∈Hk

d(xkiβk, yki)+

p
∑

j=1

(|αj| + |αj|
2)+ λ1

M
∑

k=1

p
∑

j=1

(|γkj| + |γkj|
2).

We leave this problem for further theoretical and numerical
studies.

Finally, we note that Bayesian meta-analysis is also a popular
approach for the integration of multiple studies. Recently, Cai
et al. (2020) proposed a Bayesian variable selection approach for
joint modeling multiple datasets. They developed a hierarchical
spike-and-slab prior (a Bayesian version of the bi-level lasso
penalty) to borrow information across the studies, which is
shown to have a higher power for detecting informative single
nucleotide polymorphisms in genome-wide association studies
(GWAS). In addition, Pickrell (2014) proposed a Bayesian
hierarchical model for GWAS data by borrowing information
from functional genomic studies. As a future work, it would be
worthwhile to develop such Bayesian methods for robustly meta-
analyzing multiple datasets and make a comparison with the
RL-meta and L-meta methods introduced in the current paper.
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CoMM-S4: A Collaborative Mixed
Model Using Summary-Level eQTL
and GWAS Datasets in
Transcriptome-Wide Association
Studies
Yi Yang†, Kar-Fu Yeung† and Jin Liu*

Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore,
Singapore

Motivation: Genome-wide association studies (GWAS) have achieved remarkable success
in identifying SNP-trait associations in the last decade. However, it is challenging to identify the
mechanisms that connect the genetic variants with complex traits as the majority of GWAS
associations are in non-coding regions. Methods that integrate genomic and transcriptomic
data allow us to investigate how genetic variants may affect a trait through their effect on gene
expression. These include CoMM and CoMM-S2, likelihood-ratio-based methods that
integrate GWAS and eQTL studies to assess expression-trait association. However, their
reliance on individual-level eQTL data render them inapplicable when only summary-level
eQTL results, such as those from large-scale eQTL analyses, are available.

Result:We develop an efficient probabilistic model, CoMM-S4, to explore the expression-
trait association using summary-level eQTL and GWAS datasets. Compared with CoMM-
S2, which uses individual-level eQTL data, CoMM-S4 requires only summary-level eQTL
data. To test expression-trait association, an efficient variational Bayesian EM algorithm
and a likelihood ratio test were constructed. We applied CoMM-S4 to both simulated and
real data. The simulation results demonstrate that CoMM-S4 can perform as well as
CoMM-S2 and S-PrediXcan, and analyses using GWAS summary statistics from Biobank
Japan and eQTL summary statistics from eQTLGen and GTEx suggest novel susceptibility
loci for cardiovascular diseases and osteoporosis.

Availability and implementation: The developed R package is available at https://
github.com/gordonliu810822/CoMM.

Keywords: summary statistics, genome-wide association studies, variational bayesian, parameter expanded
expectation-maximization (PX-EM) algorithm, transcriptome-wide association studies

1 INTRODUCTION

Genome-wide association studies (GWAS) have identified a large number of genetic risk variants
associated with complex traits, with over 250,000 single nucleotide polymorphism (SNP)-trait
associations tagged as significant in the NHGRI-EBI GWAS Catalog (Buniello et al., 2018). However,
the specific biological mechanisms through which the identified genetic variants affect these traits
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have yet to be elucidated. Genetic variants may influence complex
traits by altering gene expression and, consequently, protein
abundance. These genetic variants may be within the
regulatory sequences or secondary motifs of the target gene
(cis regulation), or may affect genes at larger genomic
distances by modifying upstream regulators which interact
with the cis-regulatory sequences (Williams et al., 2007).

Transcriptome-wide association studies (TWAS) aim to
provide insights into the specific mechanisms through which
variants affect traits. In TWAS, the gene expression of GWAS
samples is predicted with the aid of an eQTL dataset; the
predicted expression is then analysed for any association with
the trait of interest. Unlike approaches that examine gene
expression and genetic variants in a pairwise manner, TWAS
consider the combinatory effects of all genetic variants within a
pre-defined window of the target gene, hence it is especially
effective at detecting novel susceptibility loci when multiple
variants influence expression. TWAS have proved useful as a
stepping stone to generate new insights to a range of complex
traits, including schizophrenia (Gusev et al., 2018), glioma
(Strunz et al., 2020), prostate cancer (Mancuso et al., 2018),
and age-related macular degeneration (Atkins et al., 2019).

Existing TWAS methods can be categorised into two groups,
depending on whether they use individual-level or summary-level
GWAS data. PrediXcan (Gamazon et al., 2015) and CoMM (Yang
et al., 2018) use individual-level GWAS data, while S-PrediXcan
(Barbeira et al., 2018) and CoMM-S2 (Yang et al., 2020) use
summary-level GWAS data in conjunction with a matching
reference panel to estimate linkage disequilibrium. Both
CoMM and CoMM-S2 account for the imputation uncertainty
in the prediction step and thus are more powerful in identifying
expression-trait associations than other methods. However, these
methods are limited by the availability of individual-level
transcriptome data, and they neglect the ready accessibility of
summary-level eQTL datasets. Datasets of eQTL summary
statistics are maintained by various consortia including the
eQTLGen Consortium (Võsa et al., 2018) and the GTEx
Consortium (The GTEx Consortium, 2020). The ability to
integrate summary-level eQTL data and summary-level GWAS
data would broaden the scope of studies to which TWAS can be
applied.

Here we introduce a powerful strategy that integrates eQTL
summary statistics (SNP-expression correlation), GWAS
summary statistics (SNP-phenotype correlation), and linkage
disequilibrium information from reference panels (SNP-SNP
correlation) to assess the association between the cis
component of expression and trait. We extend CoMM-S2, a
likelihood-based method which uses individual-level eQTL
data to assess expression-trait association, and propose a
probabilistic model, Collaborative Mixed Models using
Summary Statistics from eQTL and GWAS (CoMM-S4).
Compared with CoMM-S2, a major advantage of CoMM-S4 is
its ability to use summary-level eQTL data and integrate them
with GWAS summary statistics. In CoMM-S4, a joint likelihood is
constructed using summary statistics from GWAS and eQTL
studies, as well as SNP correlation information from reference
panels representative of the GWAS and eQTL populations. We

develop an efficient algorithm based on variational Bayes
expectation-maximization and parameter expansion (PX-
VBEM). To examine the expression-trait association, a
likelihood ratio test is constructed.

The performance of CoMM-S4 is assessed in simulated data,
and is also applied to traits from the NFBC1966 cohort (Sabatti
et al., 2009) and Biobank Japan (Ishigaki et al., 2020). The TWAS
analysis using GWAS summary statistics from NFBC1966 and
eQTL summary statistics from eQTLGen suggest novel
susceptibility loci for lipid traits, glucose levels, insulin levels
and C-reactive protein, when compared against known
susceptibility loci in the GWAS Catalog (Buniello et al., 2018).
Moreover, the TWAS analysis using GWAS summary statistics
from Biobank Japan and eQTL summary statistics from
eQTLGen and GTEx reiterate the importance of MHC
molecules, interferon-gamma signalling and apoptosis for
several autoimmune and infection-related traits (rheumatoid
arthritis, Graves’ disease, chronic hepatitis B and chronic
hepatitis C), and suggest novel susceptibility loci for
cardiovascular traits (congestive heart failure, ischemic stroke,
peripheral artery disease) and osteoporosis.

2 MATERIALS AND METHODS

2.1 Notation
We denote the individual-level eQTL dataset for n1 samples by
{Y,W1}, whereY is the gene expressionmatrix for g genes andW1

is the genotype matrix for m SNP positions. For the j-th gene, let
yj denote the gene expression vector, and W1j ∈ Rn1×mj denote
the centered genotype matrix for the mj SNPs within a pre-
defined distance from the gene. In addition, we denote the
individual-level GWAS dataset for n2 samples by {z, W2},
where z is the phenotype vector and W2 is the genotype
matrix. Similarly, for the j-th gene, W2j ∈ Rn2×mj denotes the
centered genotype matrix for the mj SNPs within a pre-defined
distance from the gene.

We have the summary statistics, in the form of z-scores, from
the analysis of genetic variant-gene expression pairs in the eQTL
dataset. We also have the summary statistics from single-variate
analysis in the GWAS dataset. We denote the eQTL z-scores for
the j-th gene by γ̂1j ∈ Rmj , and the GWAS z-scores by γ̂2j ∈ Rmj

(j � 1, . . . , g). To model linkage disequilibrium (LD) in the eQTL
and GWAS datasets, we require the SNP correlation matrices
R̂1j ∈ Rmj×mj and R̂2j ∈ Rmj×mj (j � 1, . . . , g) estimated using
reference panels that correspond to the eQTL and GWAS
populations respectively.

2.2 Model
The relationship between the j-th gene expression yj and genotype
W1j is modelled as

yj � W1jβ1j + e1, (1)

where β1j � [β1j,1, . . . , β1j,mj
]T is an mj-vector of effect sizes, and

e1 ∼ N (0, σ2e1I) is an n1-vector of independent noise. Similarly,
the relationship between trait z and genotype W2j is modelled as
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z � W2jβ2j + e2, (2)

where β2j � [β2j,1, . . . , β2j,mj
]T is an mj-vector of effect sizes, and

e2 ∼ N (0, σ2e2I) is an n2-vector of independent noise. We further
model the GWAS effect size as β2j � αjβ1j, where αj can be
interpreted as the effect of gene expression on phenotype under
the assumption of no horizontal pleiotropy. To perform a
likelihood ratio test for the null hypothesis αj � 0, we first
derive the form of the log-likelihood and develop an efficient
algorithm to estimate its parameters.

Let γ̂1j � [ĉ1j,1, . . . , ĉ1j,mj
]T and γ̂2j � [ĉ2j,1, . . . , ĉ2j,mj

]T
denote the z-scores for the eQTL and GWAS data,
respectively. Let ŝ1j � [ŝ1j,1, . . . , ŝ1j,mj]T and ŝ2j �
[ŝ2j,1, . . . , ŝ2j,mj]T denote the standard errors of the effect
size estimators, β̂1j and β̂2j, in the eQTL and GWAS analyses
respectively. Using the approximated likelihood in regression
with summary statistics (RSS) (Zhu and Stephens, 2017), the
distribution for β̂ij can be written as β̂ij|βij, R̂ij,
Ŝij ∼ N (ŜijR̂ijŜ

−1
ij βij, ŜijR̂ijŜij), where Ŝij � diag(ŝij) (i � 1, 2).

Details regarding this approximated distribution can also be
found in related literature (Hormozdiari et al., 2014; Huang
et al., 2021). In practice, we may observe only the z-scores for
the summary statistics. In this case, the distribution of the eQTL
z-scores γ̂1j � Ŝ

−1
1j β̂1j can be written as

γ̂1j|γj, R̂1j ∼ N (R̂1jγj, R̂1j), (3)

where γj � Ŝ
−1
1j β1j. Similarly, the distribution of the GWAS

z-scores γ̂2j can be approximated by

γ̂2j|γj, R̂2j ∼ N (αjcjR̂2jγj, R̂2j), (4)

where cj ≈
σ̂yj
σ̂z

��
n2
n1

√
when the summary statistics are generated

using simple linear regression, σ̂yj is the sample standard
deviation for the expression of gene j, and σ̂z is the sample
standard deviation of the trait (details in Supplementary
Material). Furthermore, a Gaussian prior is used for γj,

γj ∼ N (0, σ2
cj
Imj), (5)

and the complete-data likelihood can be written as

Pr(γ̂1j, γ̂2j, γj|R̂1j, R̂2j; θ) � ∏2
i�1

pr(γ̂ij|γj, R̂ij)pr(γj), (6)

where θ � {σ2cj , αj′} is the collection of parameters and αj′ � αjcj.
We are primarily interested in the effect αj of gene expression

on trait. Notably, testing the hypothesis of whether αj � 0 is
equivalent to testing whether αj′ � 0, as cj is a positive constant.
The accuracy of the above distributional approximations depend
on the sample sizes of the eQTL and GWAS datasets, as well as
the number of SNPs/genes associated with the gene expression/
phenotype. The larger the sample size and the higher the degree of
polygenecity, the greater the estimation accuracy.

2.3 Parameter Expansion-Variational Bayes
Expectation-Maximization Algorithm
An efficient algorithm is needed to estimate the parameters of the
model. Although the EM algorithm is widely used and has a

highly stable performance, it requires inverting the matrix R̂1j

and R̂2j in each iteration. To speed up the computational process,
we use Variational Bayes Expectation-Maximization (VBEM),
augmented with parameter expansion (PX) (Liu et al., 1998). The
parameter-expanded model is

γ̂1j|γj, R̂1j ∼ N (τR̂1jγj, R̂1j), (7)

where the τ ∈ R is the expanded parameter. The model
parameters are θ � {σ2cj , αj, τ}, and the expanded model reduces

to the original one when τ � 1. In VBEM, the marginal log-
likelihood can be decomposed into the evidence lower bound
(ELBO) and the Kullback-Liebler (KL) divergence between the
variational and true posterior distribution of the latent variable γj:

log Pr(γ̂1j, γ̂2j|R̂1j, R̂2j; θ) � L(q) +KL(q‖p), (8)

where

L(q) � ∫
γj

q(γj)log
Pr(γ̂1j, γ̂2j, γj|R̂1j, R̂2j; θ)

q(γj)
dγj

KL(q‖p) � ∫
γj

q(γj)log
q(γj)

p(γj|γ̂1j, γ̂2j, R̂1j, R̂2j; θ)
dγj.

(9)

We adopt the mean-field form of the variational posterior
distribution

q(γj) � ∏mj

k�1
q(cjk) (10)

to speed up the computational process. The analytical form of the
variational posterior distribution is obtained by minimizing the
KL divergence, and the derived variational parameters are plugged
back into the ELBO. The model parameters are then updated by
setting the derivative of the ELBO with respect to the parameters
equal to zero. By maximizing the ELBO with respect to the
expanded parameter τ, we are able to further increase the
ELBO and speed up the convergence process. Since the
parameter-expanded model reduces to the original model when
τ � 1, the original model can be recovered by incorporating τ into
the model parameters, as outlined in the Supplementary Material.

2.4 Likelihood Ratio Test to Evaluate
Expression-Trait Association
We perform a likelihood ratio test for expression-trait
association:

H0 : αj � 0 Ha : αj ≠ 0, (11)

with the assumption of no horizontal pleiotropy. This is
equivalent to testing

H0 : cjαj � 0 Ha : cjαj ≠ 0, (12)

since cj ≠ 0. The test statistic for the j-th gene is

Λj � 2 log Pr(γ̂1j, γ̂2j|R̂1j, R̂2j; θ̂
ML) − log Pr(γ̂1j, γ̂2j|R̂1j, R̂2j; θ̂

ML

0 )( ),
(13)
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where θ̂
ML
0 and θ̂

ML
are parameter estimates obtained by

maximizing the marginal likelihood under H0 and H0 ∪ Ha,
respectively. The test statistic asymptotically follows the χ2df�1
under the null hypothesis (Van der Vaart, 2000), and the
calculation of the marginal log-likelihood is detailed in the
Supplementary Material. In practice, horizontal pleiotropy
may be present, and the null hypothesis for CoMM-S4

becomes “there is no expression-trait effect and no horizontal
pleitoropy.” As with other TWAS methods, horizontal pleiotropy
could produce significant associations and inflation of test
statistics (Gusev et al., 2016; Barbeira et al., 2018).

3 RESULTS

3.1 Simulation Studies
In the simulation studies, we primarily focus on a) comparing the
likelihood ratio test statistics from CoMM-S4 and CoMM-S2, b)
assessing the type-I error of CoMM-S4 under the null hypothesis
(h2T � 0), and c) comparing the power of CoMM-S4, CoMM-S2

and S-PrediXcan.

3.1.1 Simulation Settings
When comparing the test statistic and type-I error of CoMM-S4

with CoMM-S2, the sample sizes of the eQTL and GWAS datasets
are n1 � 5, 000 and n2 � 5, 000 respectively. In the power
comparison with CoMM-S2 and S-PrediXcan, the sample sizes
are n1 � 500 and n2 � 10, 000 respectively. For all simulation
scenarios, the sample size of the reference panels for the eQTL
and GWAS datasets are n3 � 400 and n4 � 400 respectively.

A multivariate normal distribution with the covariance
structure N (0,Σ(ρ)) is used to generate a prototype of the
genotype matrix, where the parameter ρ ∈{0.2, 0.5, 0.8}
determines the strength of correlations among the SNPs.
Subsequently, minor allele frequencies are generated from the
uniform distribution U(0.05, 0.5). At each SNP position, the
probability that an individual has 0, 1 or 2 minor alleles is
calculated using the minor allele frequencies, assuming Hardy-
Weinberg Equilibrium; individuals are assigned genotype values
such that the desired genotype probabilities and minor allele
frequencies are achieved.

We generate gene expression values according to yj � W1jγj +
e1, where e1 ∼ N (0, σ2e1In1). The effect sizes cjk are generated fromN (0, σ2cj ) with probability π and set to 0 with probability 1 − π,
where π denotes the sparsity level and k indexes the genetic
variants within a pre-defined window of gene j. To simulate
distinct scenarios, we choose equally-spaced cellular heritability
levels (h2C) of 0.01, 0.03, 0.05, 0.07, and 0.09, and sparsity levels of
0.1, 0.2, 0.3, 0.4, 0.5, and 1. Complex traits are generated
according to z � αjW2jγj + e2 and the number of cis-SNPs is
set to 100. The trait level heritability (h2T) is set to 0 under the null
hypothesis and 0.001, 0.002, and 0.003 under the alternative
hypothesis.

The corresponding summary statistics were generated by
applying a simple linear regression to the individual-level
eQTL and GWAS datasets. Further details on the simulation
procedure are in the Supplementary Material.

3.1.2 Simulation Results
There is a high concordance between the likelihood ratio test
statistics from CoMM-S4 and CoMM-S2, which suggests that
eQTL summary statistics can generally provide comparable
power as individual-level data. In the scatter plot of CoMM-S4

and CoMM-S2 test statistics, the R2 value is greater than 80% and
the simple linear regression slope ranges from 0.88 to 1 (Figure 1
and Supplementay Figures S1–S6). Moreover, the QQ plots
indicate that the observed p-values from CoMM-S4 are close
to the expected p-values under the null hypothesis of no
expression-trait association (Figure 2, Supplementary Figures
S7–S9), indicating good type-I error control.

The power of CoMM-S4, CoMM-S2 and S-PrediXcan is also
evaluated in the following scenarios: i) the eQTL and GWAS
populations have the same LD structure, ii) the eQTL and
GWAS populations have different LD structures, and iii) the
eQTL and GWAS populations have different LD structures and
different gene expression architectures, i.e. the set of cis-SNPs for the
two populations only partially overlap (Figure 3, Supplementary
Figures S10–S14; simulation details in Supplementary Material).

Across the scenarios considered, the greatest gains in power
were observed when the cellular heritability is low (h2C � 0.01)
and the trait heritability is high (h2T � 0.003). When the eQTL and
GWAS samples are drawn from the same population, there is
71% power for CoMM-S4, compared with 30 and 16% power for
S-PrediXcan (ridge) and S-PrediXcan (elastic net), respectively
(sparsity � 0.1; Figure 3). When the eQTL and GWAS samples
have distinct LD structures, there is 76% power for CoMM-S4,
compared with 38 and 15% power for S-PrediXcan (ridge) and
S-PrediXcan (elastic net), respectively (sparsity � 0.1; Figure S13).
When the eQTL and GWAS samples have distinct LD structures
and different gene expression architectures, there is 67% power
for CoMM-S4, compared with 21 and 10% power for S-PrediXcan
(ridge) and S-PrediXcan (elastic net), respectively (sparsity � 0.1;
Supplementary Figure S14).

When the cellular heritability is large (h2C � 0.09) and the gene
expression architecture is the same in both the eQTL and GWAS
datasets, the power of CoMM-S4 is comparable to S-PrediXcan
(Figure 3; Supplementary Figures S10–S13). However, when the
eQTL and GWAS samples have distinct LD structures and
different gene expression architectures, CoMM-S4 shows some
improvement in power over S-PrediXcan: there is 61% power for
CoMM-S4, compared with 39 and 48% power for S-PrediXcan
(ridge) and S-PrediXcan (elastic net), respectively (h2T � 0.003,
sparsity � 0.1; Supplementary Figure S14).

3.2 Real Data Analysis
3.2.1 NFBC1966 Cohort
In the real data analysis, we apply CoMM-S4 to the NFBC1966
dataset (Sabatti et al., 2009). The NFBC1966 dataset contains
phenotype data for the following ten traits: body mass index
(BMI), systolic blood pressure (SysBP), diastolic blood pressure
(DiaBP), high-density lipoprotein cholesterol (HDL-C), low-
density lipoprotein cholesterol (LDL-C), triglycerides (TG),
total cholesterol (TC), insulin levels, glucose levels and
C-reactive protein (CRP). The summary statistics were
generated by applying simple linear regression to individual-
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level NFBC1966 using plink (Purcell et al., 2007). Summary
statistics of cis-eQTLs from eQTLGen Consortium (Võsa
et al., 2018) were used. In addition, linkage disequilibrium for
the eQTL and GWAS datasets was estimated using the 1,000
Genomes dataset (The 1000 Genomes Project Consortium, 2015)
and 400 NFBC subsamples, respectively.

The genomic inflation factor is between 0.91 and 1.09, and the
number of significant genes (p-value < 5 × 10−6) identified by
CoMM-S4 is between 0 and 64 (Table 1). For the trait HDL, CoMM-
S4 identified 61 genes, of which 20 are reported to be associated with
HDL in NHGRI-EBI GWAS Catalog (Buniello et al., 2018). For the
trait LDL, CoMM-S4 detected 64 genes, of which 13 are reported in
GWAS Catalog. The corresponding QQ plots for these ten traits are
illustrated in Supplementary Figure S15.

3.2.2 Biobank Japan
We apply CoMM-S4 to GWAS summary statistics from Biobank
Japan (BBJ) (Ishigaki et al., 2020). We considered two
autoimmune traits (Graves’ disease, rheumatoid arthritis),
four cardiovascular traits (cerebral aneurysm, congestive
heart failure, ischemic stroke, peripheral artery disease), two
infection-related traits (chronic hepatitis B, chronic hepatitis C)
and osteoporosis. The TWAS analysis is performed using

whole-blood cis-eQTL summary statistics from two studies,
eQTLGen (Võsa et al., 2018) and GTEx (v8) (The GTEx
Consortium, 2020), to assess the robustness of TWAS results
to choice of eQTL dataset. The GTEx and eQTLGen datasets
contain association results for 19,599 and 19,176 genes
respectively, of which 16,692 genes are in common. Linkage
disequilibrium corresponding to the GWAS and eQTL datasets
were estimated using Japanese and European samples from the
1,000 Genomes Project (The 1000 Genomes Project
Consortium, 2015), respectively. As population differences in
eQTL architecture may reduce gene expression imputation
accuracy for the GWAS samples, it is preferable for the
eQTL and GWAS data to be collected from the same
population (Keys et al., 2020). However, the availability of
highly-powered eQTL studies may be limited for the
population of interest. Moreover, populations that are closely
related still provide good power to detect associations between
gene expression and trait (Keys et al., 2020), and the relatively
high concordance rate (68.8%) of cis-regulation in European
and Japanese eQTL studies (Narahara et al., 2014) suggest that
European eQTL studies could serve as a reasonable proxy.

TWAS was performed to find genetic loci that may be
associated with the traits of interest. For traits where TWAS

FIGURE 1 | The scatter plot of CoMM-S4 vs. CoMM-S2, the model setting is n1 � 5,000, n2 � 5,000, n3 � 400, n4 � 400,mj � 100, ρ � 0.5, π � 0.2, the number of
replication is 2,000.
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identified more than 100 statistically significant genes, we further
carried out an enrichment analysis based on gene ontology (GO)
terms using Enrichr (Chen et al., 2013). The genomic inflation
factor is between 1.06 and 1.30 when eQTL summary statistics

were obtained from eQTLGen, and between 0.87 and 1.26 when
eQTL summary statistics were obtained from GTEx (v8) whole
blood (Table 2). The number of identified genes (p-value < 5 ×
10−6) ranged from 2 to 450, and there is a high degree of overlap

FIGURE 2 | The QQ plot of CoMM-S4, the model setting is n1 � 5,000, n2 � 5,000, n3 � 400, n4 � 400, ρ � 0.5, the number of replication is 2,000.

FIGURE 3 | The empirical type I error (h2T � 0) and power (h2T >0) of CoMM-S4, CoMM-S2, S-PrediXcan (ridge) and S-PrediXcan (elastic net) across 500
replications. The model setting is n1 � 500, n2 � 10,000, n3 � 400, n4 � 400, ρ � 0.5.
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between the genes identified in the two analyses (Table 2),
indicating robustness to eQTL dataset choice. Moreover,
around half or more of the genes identified by CoMM-S4 have
not been previously reported as significant in the GWAS Catalog
or the Biobank GWAS analysis (Table 2).

The TWAS results recapitulate known or proposed biological
mechanisms that give rise to the studied traits. GWAS and animal
model studies have implicatedMHCmolecules, interferon-gamma
signalling and apoptosis in the development of Graves’ disease
(Morshed and Davies, 2015; Okada et al., 2015; Smith and
Hegedüs, 2016), rheumatoid arthritis (Castañeda-Delgado et al.,
2017; Okada et al., 2019), and chronic hepatitis B infection (Ebert
et al., 2015; Zhu et al., 2016). Pathway enrichment analyses
recapitulate these findings. For Graves’ disease, 143 of the 245
associated genes (TWAS p-value < 5 × 10−8) are involved in GO
biological processes, and the 23 significantly enriched processes
(FDR<0.05, Supplementary Table S3) include interferon-gamma-
mediated signaling pathway (p � 6.86 × 10−10), as well as antigen
processing and presentation of peptide antigen via MHC class I
(p � 3.14 × 10−8) and via MHC class II (p � 2.76 × 10−6). For
rheumatoid arthritis, 137 of the 220 associated genes are involved
in GO biological processes, and the 25 significantly enriched

processes (Supplementary Table S4) include interferon-gamma-
mediated signaling pathway (p � 1.20 × 10−11), and antigen
processing and presentation of exogenous peptide antigen via
MHC class II (p � 4.21 × 10−11). For chronic hepatitis B, 91 of
the 132 associated genes are involved in GO biological processes,
and the 32 significantly enriched processes (Supplementary Table
S5) include antigen processing and presentation of exogenous
peptide antigen via MHC class II (p � 2.28 × 10−7) and positive
regulation of apoptotic cell clearance (p � 9.21 × 10−6).

Moreover, CoMM-S4 is able to identify novel susceptibility
loci by aggregating the contributions of SNPs with smaller effect
sizes. A comparison of the GWAS results with CoMM-S4 results
based on the highly-powered eQTLGen study shows that the
TWAS signal is larger than the GWAS signal at chr17q12 for
congestive heart failure (CHF), chr17p13.1 for peripheral artery
disease (PAD), chr17q21.31 for ischemic stroke, and chr6q22.33
for osteoporosis (Supplementary Figures S17–S25). Plausible
mechanisms can be identified for genes at these loci, which may
serve as a stepping stone for further investigation. For CHF, the
second largest signal at chr17q12 corresponds to FBXL20 (p �
1.33 × 10−5), which negatively regulates autophagy (Mathiassen
and Cecconi, 2017). Reduced autophagy contributes to
accelerated cardiac ageing and heart failure (Nishida et al.,
2009; Abdellatif et al., 2018; Dong et al., 2019), and may serve
as a link between FBXL20 and CHF. For PAD, the second largest
signal at chr17p13.1 corresponds to GABARAP (p � 8.63 × 10−8),
which is involved in autophagy initiation and autophagosome-
lysosome fusion (Schaaf et al., 2016). Impaired autophagy
aggravates atherosclerosis (De Meyer et al., 2015), and may
serve as a link between GABARAP and PAD.

For ischemic stroke, the TWAS signal is larger than the GWAS
signal at chr17q21.31. The top association corresponds to
HEXIM1 (p � 1.07 × 10−6), which modulates hypoxia-
inducible factor-1 alpha and vascular endothelial growth factor
(Ogba et al., 2010; Ketchart et al., 2013), angiogenic factors which
may influence stroke risk by mediating neovascularization in
atherosclerotic lesions, potentially precipitating thrombi that
obstruct blood flow to the brain (Bentzon et al., 2014;
Chistiakov et al., 2015; Camaré et al., 2017). For osteoporosis,

TABLE 1 | The genomic inflation factor (GIF) and the number of associated genes
(p-value <5 × 10−6) found by CoMM-S4 for the ten NFBC traits. The number
within the parentheses is the number of associated genes reported in the NHGRI-
EBI GWAS Catalog (Buniello et al., 2018).

GIF No. of associated
genes (reported in
GWAS Catalog)

CRP 0.94 25 (5)
Glucose 0.99 4 (1)
Insulin 0.86 1 (0)
TC 1.06 26 (4)
HDL 1.09 61 (20)
LDL 1.09 64 (13)
TG 1.06 2 (0)
BMI 0.98 3 (1)
SysBP 1.05 0 (0)
DiaBP 0.91 0 (0)

TABLE 2 | The genomic inflation factor and number of associated genes (p-value <5 × 10−6) for 9 traits in the Biobank Japan dataset. Two eQTL datasets were used:
eQTLGen and GTEx. In parentheses are the number of associated genes that are also present in the other eQTL dataset’s gene set. The last column shows the number
of associated genes that are common to both the eQTLGen and GTEx analyses; in parentheses are the number of associated genes that are statistically significant in the
GWAS analysis (p-value <5 × 10−8), and the number of associated genes reported in the GWAS Catalog.

eQTLGen GTEx eQTLGen and GTEx

GIF No. associated genes
(No. in GTEx)

GIF No. associated genes
(No. in eQTLGen)

No. common associated genes (sig. in BBJ GWAS;
reported in GWAS Catalog)

Graves’ disease 1.17 283 (247) 1.09 454 (364) 245 (125; 7)
Rheumatoid arthritis 1.30 266 (230) 1.26 402 (323) 220 (134; 22)
Chronic hepatitis B 1.06 148 (133) 0.87 211 (172) 132 (70; 6)
Chronic hepatitis C 1.09 73 (66) 1.00 163 (145) 64 (4; 1)
Ischemic stroke 1.25 23 (21) 1.24 60 (56) 19 (3; 3)
Congestive heart failure 1.18 4 (2) 1.13 10 (9) 1 (0; 0)
Peripheral artery disease 1.13 13 (10) 0.99 45 (37) 7 (0; 0)
Cerebral aneurysm 1.11 4 (4) 0.99 6 (6) 2 (0; 0)
Osteoporosis 1.07 2 (2) 0.93 7 (6) 1 (0; 0)
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the TWAS signal is larger than the GWAS signal at chr6q22.33.
The top association corresponds to RNF146 (p � 1.05 × 10−8),
which was shown to promote osteoblast development while
antagonizing osteoclast differentiation in mice (Matsumoto
et al., 2017). Notably, none of the genes described above are
reported as significant in the GWAS Catalog or the Biobank
Japan GWAS analysis, thus highlighting the potential utility of
applying CoMM-S4 to identify relevant genes.

On the other hand, the TWAS results are limited by the data
availability in the eQTL dataset. Although the TWAS results
recapitulate most GWAS results, the Manhattan plots also show
some GWAS signals without corresponding TWAS signals
(Supplementary Figures S17–S25), in part due to the relative
sparsity of genes in the eQTL dataset. A further limitation is that
TWAS provide information about association, rather than
causality. In the present analysis, TMEM184C and PRMT10
showed significant association with cerebral aneurysm.
However, a previous report has indicated that these are not
the causal genes. Instead, the likely causal gene is EDNRA,
which is in the same locus as TMEM184C and PRMT10 and
regulates response to hemodynamic stress (Low et al., 2012). As
EDNRA is not present in any of the eQTL datasets, it could not be
evaluated in this analysis.

In addition, we compare the CoMM-S4 results with
S-PrediXcan (elastic net) results for the 9 Biobank Japan traits.
For S-PrediXcan, gene expression prediction weights for GTEx
(v8) whole blood were obtained from the elastic net model in
PredictDB (http://predictdb.org/), and the covariance matrix
used to calculate the test statistics is based on Japanese
samples from the 1,000 Genomes Project. To allow for fair
comparison, we consider only genes that are common to both
the CoMM-S4 and S-PrediXcan analyses. Compared with
S-PrediXcan (elastic net), CoMM-S4 identifies a similar
number of statistically significant genes for 5 Biobank Japan
traits (cerebral aneurysm, congestive heart failure, ischemic
stroke, peripheral artery disease, and osteoporosis), and more
statistically significant genes for 4 Biobank Japan traits (Graves’
disease, rheumatoid arthritis, chronic hepatitis C, and chronic
hepatitis B) (Supplementary Table S2). The tail behaviour in the
QQ plots indicate that the p-values tend to be smaller for
statistically significant genes (Supplementary Figure S16). The
higher number of identified genes in the Biobank Japan traits is
consistent with the higher power demonstrated in simulations.

4 DISCUSSION

In this article, we have developed a collaborative mixed model
using both summary statistics from eQTL and GWAS to examine
the expression-trait associations in transcriptome-wide
association studies. We compared the performance between
CoMM-S4 and CoMM-S2, and simulation results demonstrate
that CoMM-S4 performs as well as CoMM-S2 even though the
former uses only summary-level data. Moreover, our analysis of
the NFBC1966 cohort has suggested novel susceptibility loci for
glucose levels, insulin levels, C-reactive protein, BMI and lipid
traits. Our analysis of Biobank Japan traits has similarly suggested

novel susceptibility loci for congestive heart failure, ischemic
stroke, peripheral artery disease and osteoporosis, and has also
recapitulated known and putative mechanisms for Graves’ disease,
rheumatoid arthritis, chronic hepatitis B and chronic hepatitis C.

CoMM-S4 has several advantages over CoMM-S2 and
S-PrediXcan. Compared to stage-wise methods like S-PrediXcan,
CoMM-S4 accounts for imputation uncertainty, which makes it
statistically more powerful in identifying expression-trait
associations. Moreover, CoMM-S4 requires only summary-level
data (z-scores) from eQTL studies, instead of individual-level
data. This allows us to make use of eQTL large-scale studies and
meta-analyses where individual-level data may be unavailable.

On the other hand, likelihood-ratio tests are less
computationally efficient than score-based tests; the
relationship between these tests in the context of individual-level
data (CoMM and SKAT, respectively) are discussed in detail in
(Yang et al., 2018). To reduce the computational time of CoMM-S4,
we have estimated the parameters using variational inference and
parameter expansion. Finally, CoMM-S4, like S-PrediXcan, is not
able to distinguish between causal relationship and horizontal
pleiotropy. In practice, we can first perform a TWAS to identify
regions that show association with the trait of interest, and then
applyMendelian randomization analysis to draw causal conclusions.
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LORSEN: Fast and Efficient eQTL
Mapping With Low Rank Penalized
Regression
Cheng Gao1, Hairong Wei2 and Kui Zhang1*

1Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States, 2College of Forest
Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States

Characterization of genetic variations that are associated with gene expression levels is
essential to understand cellular mechanisms that underline human complex traits.
Expression quantitative trait loci (eQTL) mapping attempts to identify genetic variants,
such as single nucleotide polymorphisms (SNPs), that affect the expression of one or more
genes. With the availability of a large volume of gene expression data, it is necessary and
important to develop fast and efficient statistical and computational methods to perform
eQTL mapping for such large scale data. In this paper, we proposed a new method, the
low rank penalized regression method (LORSEN), for eQTL mapping. We evaluated and
compared the performance of LORSEN with two existing methods for eQTL mapping
using extensive simulations as well as real data from the HapMap3 project. Simulation
studies showed that our method outperformed two commonly used methods for eQTL
mapping, LORS and FastLORS, in many scenarios in terms of area under the curve (AUC).
We illustrated the usefulness of our method by applying it to SNP variants data and gene
expression levels on four chromosomes from the HapMap3 Project.

Keywords: eQTL mapping, proximal gradient method, cis-eQTL, trans-eQTL, penalized regression

1 INTRODUCTION

With rapid advancements in sequencing technologies and high-throughput technologies, a large
number of single nucleotide polymorphism (SNP) data and gene expression data have become
available. This allows us to investigate the associations between SNP genotypes and gene expression
levels. Expression quantitative trait loci (eQTLs) are those genetic variants that can explain variation
in gene expression levels and can help to elucidate the underlying genetic mechanisms of human
complex traits (Albert and Kruglyak, 2015). eQTL mapping aims to identify eQTLs associated with
genes of interest (Hu et al., 2015; Banerjee et al., 2021). In general, eQTLs are classified into two types:
cis-eQTLs (or local eQTLs) and trans-eQTLs (or distant eQTLs) (Cookson et al., 2009). cis-eQTLs
refer to the genetic variants that functionally act on local genes and are physically located close to the
target genes. trans-eQTLs are those genetic variants that functionally act on distant genes residing on
the same or different chromosome and are physically located far from the target genes. It is worth
mentioning that trans-eQTLs account for a large proportion of heritability of gene expression levels,
though trans effects are usually weaker than cis effects in humans (Cookson et al., 2009).

In fact, gene expression levels observed are not only regulated by genetic variants but also
influenced by non-genetic factors which are known or hidden, for example, batch effects. Therefore,
in eQTL mapping, how to account for confounding factors is an important issue and can influence
the detection power of eQTL mapping. Up to now, a number of methods have been proposed to
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account for confounding factors in eQTL mapping, for example,
PANAMA (Fusi et al., 2012), PEER (Stegle et al., 2010), LORS
(Yang et al., 2013), HEFT (Gao et al., 2014), LMM-EH-PS
(Listgarten et al., 2010) and ECCO (Yue et al., 2020). Another
challenge in eQTL mapping is that the number of SNPs involved
is usually very large (Yang et al., 2013). This not only results in
heavy computational burden for estimating model parameters
but also generally results in reduced detection power if all SNPs
are included in eQTL mapping. This is because the signal-to-
noise ratio (SNR) is very low, meaning only a very small portion
of SNPs that are actually associated with gene expression levels.
To overcome this problem, a number of SNP screening
procedures (Wang et al., 2011; Yang et al., 2013; Jeng et al.,
2020) and variable selection techniques (Fan and Lv, 2008) that
aim to reduce the number of SNPs and only keep informative
SNPs in eQTL mapping have been developed. More importantly,
a number of methods based on the penalized regression have been
developed to model such sparsity of eQTLs (Lee and Xing, 2012;
Yang et al., 2013; Cheng et al., 2014; Jeng et al., 2020).

LORS, a method based on the low rank sparse regression, was
proposed for eQTL mapping in (Yang et al., 2013). LORS is based
on a linear model with gene expression levels as response
variables and SNP genotypes as predictors. To model the
sparsity of regression coefficients, LORS poses the L1 penalty
on the regression coefficient matrix. In addition, LORS includes
one unknown matrix with the nuclear norm penalty to account
for variations caused by non-genetic factors. Yang et al. (2013)
applied the coordinate descent algorithm to optimize the
objective function and estimate the model parameters. A SNP
screening method, called LORS-Screening, was also developed to
reduce the number of SNPs involved in the subsequent joint
modeling, thus reduce the computational burden greatly. Similar
to LORS, FastLORS (Jeng et al., 2020) employs the same low rank
sparse regression model that is used in LORS. Different from
LORS, FastLORS uses generic proximal gradient algorithm to
optimize the objective function and estimate the model
parameters. Moreover, Jeng et al. (2020) proposed a SNP
screening method based on the Higher Criticism (HC)
statistic, called HC-Screening.

To improve the detection power of eQTL mapping, a number
of methods have been developed to incorporate the structure
information from SNP variants data and gene expression levels,
for example, clustering based on gene expression levels
(Kendziorski et al., 2006; Chun and Keles, 2009) and gene
regulatory networks (Rakitsch and Stegle, 2016), into eQTL
mapping. A number of studies have shown that such structure
information from SNP variants data and gene expression levels
can be effectively used in penalized regression to boost the
detection power of eQTL mapping (Chen et al., 2012; Kim
and Xing, 2012, 2009). For example, the graph-regularized
dual lasso (GDL) proposed by (Cheng et al., 2014) can
simultaneously integrate the correlation structures among
SNPs and gene expression levels. Through extensive
experimental evaluations, Cheng et al. (2014) showed that
GDL significantly outperformed the existing method for eQTL
mapping. Similar to GDL, the graph-guided fused lasso (GFlasso)
proposed by (Lee and Xing, 2012) can also consider the structure

of the genetic variants and the structure of the gene expression
levels. As a penalized regression method, GFlasso also inherits the
benefits from the group lasso. Lee and Xing (2012) showed that
GFlasso was able to detect weak association signals between the
genetic variants and the gene expression levels.

However, there are some drawbacks for most of the
aforementioned methods. First, if two SNPs are highly
correlated with each other, and one SNP is associated with
some genes, but the other SNP is not associated with them,
we should not expect that these two SNPs have similar
coefficients for those genes. Similarly, if some SNPs are
classified into one group, we should not expect that the SNPs
within the same group have similar coefficients for common
genes. Second, the group structures of SNP data and gene
expression data are usually identified by performing clustering
on the data, however, clustering is an unsupervised leaning
approach, the number of clusters is usually artificially
determined. When we use the resulting clusters of SNPs and
gene expressions to design the penalty term, it may lead to loss of
detection power and even spurious associations. Third,
complicated design of penalty term in penalized regression
modeling can result in untractable computational bottleneck,
especially when dealing with a large volume of data.

To overcome such limitations of existing methods for eQTL
mapping, we proposed a novel method, LOw Rank Sparse
regression with Elastic Net penalty, abbreviated as LORSEN.
Different from LORS (Yang et al., 2013) and FastLORS (Jeng
et al., 2020), we applied the Elastic Net penalty to the association
coefficients instead of the L1 penalty in LORSEN. In addition, we
used the low rank approximation to account for non-genetic
factors in LORSEN (Yang et al., 2013). There are several
advantages to use the Elastic Net penalty instead of the L1
penalty (Tibshirani, 1996). First, when the number of SNPs p
is much larger than the sample size n, theoretically, the methods
based on the L1 penalty can only yield at most n non-zero
coefficients. This can lead to the substantial loss of detection
power in eQTLmapping since the number of samples is generally
much smaller than the number of eQTLs in gene expression
studies. Second, when several eQTLs are in linkage disequilibrium
(LD), the methods based on the L1 penalty can only select one of
them. In theory, the Elastic Net penalty can overcome these two
drawbacks. For the estimation of the model parameters in
LORSEN, we developed an efficient optimization algorithm
based on the proximal gradient method (Parikh and Boyd,
2014). Our algorithm allows us to perform the eQTL mapping
for a large number of SNPs and genes. We evaluated and
compared the performance of LORSEN with LORS and
FastLORS using extensive simulation studies as well as the
HapMap3 data.

2 MATERIAL AND METHODS

2.1 Model
We assume that the genotypes for p SNPs and the gene expression
levels for q genes over n samples are collected. Let X denote the
n × pmatrix of SNP genotypes coded in an additive manner, and
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Y denote the n × qmatrix of gene expression levels. To model the
association between SNPs and gene expressions, we can use the
following multivariate linear model as proposed in (Yang et al.,
2013):

Y � XB + L + 1μT + e, (1)

where B is a p × q matrix for the regression coefficients, 1 is a
n-dimensional all-ones vector, μ is a q-dimensional vector for
the intercepts in the regression model, e is a n × q matrix for
the error terms and each element in e has a normal
distribution with zero mean and variance σ2, all eij are
independent, L is a n × q matrix which is introduced to
account for variations caused by non-genetic factors.

For the convenience of description, we first introduce the
following notations used in this paper. For a n-dimensional vector
v with the elements vi(i � 1, . . ., n): the L1 norm of v is defined as
‖v‖1 � Σn

i�1|vi| (the sum of absolute values of the elements) and
the L2 norm (also called the Euclidean norm) of v is defined as
‖v‖2 �

�����
Σn
i�1v2i

√
(the squared root of the sum of squares of the

elements), respectively. For a m × n matrix M with the elements
Mij(i � 1, . . .,m; j � 1, . . ., n), the Frobenius norm ofM is defined
as ‖M‖F �

����������
Σm
i�1Σn

j�1M
2
ij

√
(the squared root of the sum of squares

of the elements); the nuclear norm ‖M‖* � Σr
i�1σ i, where σ1, . . .,

σr are the singular values of M and r is the rank of M; and the L1
norm of M is defined as ‖M‖1 � Σm

i�1Σn
j�1|Mij| (the sum of

absolute values of the elements).

In this paper, we follow the same sparsity assumptions used in
(Yang et al., 2013). First, we assume that there are only a small
number of non-genetic factors that influence the gene expression
levels globally, not locally. Second, we assume that there are only a
small fraction of SNPs that influence the gene expression levels.
This assumption implies that the regression coefficient matrix B is
sparse. Yang et al. (2013) proposed the following LORS procedure
to estimate B, L, μ by solving the optimization problem

min
B,L,μ

1
2
‖Y −XB − L − 1μT‖2F + ρ‖L‖* + λ‖B‖1, (2)

where ρ and λ are regularization (tuning) parameters that
control the rank of L and the sparsity of B, respectively.
When L and μ are fixed, the optimization problem becomes
a least absolute shrinkage and selection operator (Lasso)
(Tibshirani, 1996) problem with respect to B. As pointed
out in (Zou and Hastie, 2005), the Lasso has some
limitations that affect its usefulness. First, when n < p (the
number of samples is smaller than the number of SNPs), the
Lasso selects at most n SNPs. In the context of eQTL mapping,
there are usually a small number of samples available. Even
though the proportion of SNPs that are associated with the
gene expression levels is small, it is highly likely that the
number of SNPs associated with the gene expressions can
still be larger than the number of samples. In this case, the L1
penalty on B will fail to identify some SNPs that are associated
with the gene expressions. Second, the Lasso tends to select
only one variable among a group of highly correlated variables.
This can be problematic in eQTL mapping. For example, if
two SNPs are in high linkage disequilibrium and both of them

are associated with gene expressions, only one SNP will be
selected by the Lasso. Furthermore, if two SNPs are in high
linkage disequilibrium and only one of them is associated with
gene expressions, the selected SNP by the Lasso may not even
be associated with gene expressions.

The use of the Elastic Net penalty (Zou and Hastie, 2005)
instead of the L1 penalty on B can overcome the limitations of the
Lasso. Therefore, we propose the following optimization problem
to estimate B, L, μ:

min
B,L,μ

1
2
‖Y −XB − L − 1μT‖2F + ρ‖L‖* + λ1‖B‖1 + λ2

2
‖B‖2F, (3)

where ρ, λ1 and λ2 are non-negative tuning parameters. For real
data sets, it is quite possible that some entries in Y are unobserved
(missing). In such scenarios, the missing data will not be used in
(Eq. 3). As used in (Yang et al., 2013), we use Ω to index the
observed entries in Y. Specifically, Ω is a n × q matrix with the
entry

Ωij � 0, Yij missing
1, otherwise.

{ (4)

Then we define the projection of a matrix A onto Ω as
~A � PΩ(A) � Ω0A, where A has the same dimension as Ω
and0 represents Hadamard product, that is, ~Aij � Aij ×Ωij.
Based on the observed data, the optimization problem
becomes

min
B,L,μ

1
2
‖PΩ(Y −XB − L − 1μT)‖2F + ρ‖L‖* + λ1‖B‖1 + λ2

2
‖B‖2F.

(5)

2.2 Theory and Algorithm
To solve the optimization problem in (Eq. 5) efficiently, we
developed a fast and efficient algorithm based on proximal
gradient method (Parikh and Boyd, 2014).

We first describe the proximal gradient method for a general
optimization problem

min
x

f(x) � g(x) + h(x), (6)

where g(x) is a convex and differentiable function, h(x) is a closed
proper convex which means h(x) is a convex function, the
epigraph of h(x) is closed and h(x) < +∞ for at least one x
and h(x) > −∞ for every x. Furthermore, we assume that ∇g(x),
the gradient of g(x), is Lipschitz continuous with constant ℓ,
which implies that ∇2g(x)6ℓI. Two symmetric matrices of the
same dimensions A and B have the relationship A6B, if B − A is
positive semidefinite. Then we have

f(x) � g(x) + h(x)#g(x0) + 〈∇g(x0), x − x0〉 + 1
2t
‖x − x0‖2

+ h(x), t ∈ (0, 1
ℓ
], (7)

where x0 is an arbitrary point in the domain of f(x) and 〈·, ·〉
represents the inner product of two vectors. Instead of using
the optimization problem (Eq. 6), we focus on minimizing an
upper bound of the objective function, that is,
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min
x

g(x0) + 〈∇g(x0), x − x0〉 + 1
2t
‖x − x0‖2

+ h(x), t ∈ (0, 1
ℓ
], (8)

which can be interpreted as an application of majorization-
minimization algorithm (Parikh and Boyd, 2014). The
optimization problem in (Eq. 8) is equivalent to the
following optimization problem:

min
x

1
2t
‖x − (x0 − t∇g(x0))‖2 + h(x). (9)

Problem (Eq. 9) can be solved with an iterative procedure:
given the value of x at the k-th iteration, i.e., xk, the value of x at
the k + 1-th iteration, xk+1 can be updated by the following
formula

xk+1 � argmin
x

1
2t
‖x − (xk − t∇g(xk))‖2 + h(x)

� Proxt,h(xk − t∇g(xk)),
where Prox(·) is called proximal operator. The iterative process
is repeated until the stopping criterion is satisfied or the
maximum number of iterations is reached.

To solve the optimization problem (Eq. 5), we adopted an
alternating optimization approach that is similar to the method
in (Yang et al., 2013). Note that in the following part, tL, tB, and
tμ are like t used in problem (Eq. 9) and correspond to the
variables L, B, and μ, respectively.

First, for fixed B and μ, (Eq. 5) becomes

min
L

1
2
‖Y −XB − 1μT − L‖2F + ρ‖L‖*. (10)

In the setting of optimization problem (Eq. 10), 12‖Y −XB −
1μT − L‖2F plays the role of g(x) and ρ‖L‖* plays the role of h(x) in
(Eq. 6). By Lemma 1 (Appendix A), at the k + 1-th iteration, we
have

Lk+1 � ProxtL,ρ‖·‖*(Lk − tL(XBk + 1μTk + Lk − Y))
� StLρ(Lk − tL(XBk + 1μTk + Lk − Y)),

where StLρ(·) is the singular value shrinkage operator (please
refer to the Appendix A), tL is the step size which can be
constant or be determined by backtracking line search.

Second, for fixed L and μ, then (Eq. 5) becomes

min
B

1
2
‖Y −XB − L − 1μT‖2F + λ1‖B‖1 + λ2

2
‖B‖2F, (11)

where tB is the step size which can be constant or be determined
by backtracking line search. By Lemmas 2 and 3 and Theorem 1
(Appendix A), we can update Bk+1 accordingly:

Ba
k+1 � Bk − tBX

T(XBk + 1μTk + Lk+1 − Y)
Bb
k+1 � ProxtB,λ1‖·‖1(Ba

k+1)
� sign(Ba

k+1)0(|Ba
k+1| − λ1J)+

Bk+1[, j] � ProxtB,λ2‖·‖2(Bb
k+1[, j])

� {1 − λ2
max{‖Bb

k+1[, j]‖2, λ2}
}Bb

k+1[, j], j � 1, 2, . . . , q,

Algorithm 1 | FISTA with constant step size.
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where J is a all-ones p × q matrix, B[, j] is the j-th column of
matrix B and is a p-dimensional vector, c+ � max{c, 0}, the
maximum of c and 0, |Ba

k+1|, sign(Ba
k+1), and (|Ba

k+1| − λ1J)+ are
all elementwise operations.

Third, for fixed L and B, the proximal gradient method reduces
to the gradient descent method with respect to μ because there is
no penalty on μ. At the k + 1-th iteration, we have

μk+1 � μk − tμ(XBk+1 + 1μTk + Lk+1 − Y)T1.
To accelerate the computational speed, we used the accelerated

proximal gradient method. Specifically, we applied the fast iterative
shrinkage-thresholding algorithm (FISTA) (Beck and Teboulle,
2009) which keeps the simplicity of the iterative shrinkage-
thresholding algorithms (ISTA) but has an improved rate
O(1/k2), where k indexes the iteration. In FISTA, the step
size can be constant or be determined by backtracking line
search. The algorithm to solve LORSEN with FISTA is
described in Algorithm 1. For simplicity, here, only the
detailed algorithm with the constant step size is described,
but the algorithm using the step size determined by
backtracking line search is also provided in our R program
(https://github.com/gaochengPRC/LORSEN).

2.3 Parameter Tuning
For parameter tuning, we mainly followed the idea described
in (Yang et al., 2013). Specifically, we divided the entries of Ω
into training entries and testing entries such that training
entries and testing entries include roughly the same number of
1’s. We define two matrices Ω1 and Ω2 such that they have the
same dimensions as Ω, Ω1 contains all training entries and Ω2

contains all testing entries. Furthermore, we have Ω �Ω1 + Ω2

and Ω1 0Ω2 � 0. For the consistency, we re-parameterized λ1
and λ2 as λ · α and λ · (1 − α), respectively. So the optimization
problem (Eq. 5) becomes

min
B,L,μ

1
2
‖Y −XB − L − 1μT‖2F + ρ‖L‖* + λ α‖B‖1 + 1 − α

2
‖B‖2F( ).

(12)

This form is the same as that in glmnet (Friedman et al., 2010).
Given the values of parameters (ρ, α, λ), we solve the following

optimization problem

min
B,L,μ

1
2
‖PΩ1(Y −XB − L − 1μT)‖2F + ρ‖L‖*

+ λ α‖B‖1 + 1 − α

2
‖B‖2F( ). (13)

The solutions are B(ρ, α, λ), L(ρ, α, λ) and μ(ρ, α, λ), then we
evaluate the parameters by calculating the prediction error

Err(ρ, α, λ) � 1
2
‖PΩ2(Y −XB(ρ, α, λ) − L(ρ, α, λ)

− 1μ(ρ, α, λ)T)‖2F. (14)

The grid search over three parameters may be too
computationally intensive. Therefore, we first found an optimal
value for ρ, ρ̂, which minimizes the prediction error as shown in

(Yang et al., 2013) by means of Lemmas 1 and 4 (Appendix A).
Please refer to (Yang et al., 2013) to find the details about how to find
the optimal value of ρ, ρ̂. Once the optimal value of ρ, ρ̂ is obtained,
we selected a value of α from a sequence sequentially, thereafter, we
performed one-dimensional grid search for λ for each α. Specifically,
we generated a sequence of λ values with length nλ decreasing from
λmax(ρ̂, α) to ϵλmax(ρ̂, α) on the log scale with equal space, where
λmax(ρ̂, α) is defined as the smallest λ such that B(ρ̂, α, λ(ρ̂, α)) is a
zero matrix. λmax(ρ̂, α) is derived as 1

α max
i�1,2,...,p max

j�1,2,...,q |〈Xi,Yj〉|
from coordinate-descent algorithm (Friedman et al., 2007),
where Xi is the i-th column of X, and Yj the j-th column of Y. In
our R program, we set ϵ � 0.02, nλ � 50 and Sαd(0.2, 0.4, 0.6,
0.8, 0.9). The optimal parameters were (ρ̂, α, λ̂(ρ̂, α)) that
minimize the prediction error. The optimal feasible
solutions of B, L, and μ were then obtained based on the set
of optimal tuning parameters.

2.4 Single Nucleotide Polymorphism
Ranking and Joint Modeling
The procedure to select the set of optimal tuning parameters is
computationally intensive. Therefore, as it is discussed in
(Yang et al., 2013), it may not be computationally tractable
to directly apply such method to the large-scale data sets that
contain a large number of gene expression levels and SNPs. A
commonly used strategy to reduce such computational burden
is to choose a subset of SNPs and then only use them in the
subsequent eQTL analysis. In this paper, we used and
evaluated two existing methods for the pre-selection of
informative SNPs: LORS-Screening (Yang et al., 2013) and
Higher Criticism Screening (HC-Screening) (Jeng et al., 2020).
For LORS-Screening, we first obtained the initial estimate of
βi’s by solving

min
βi ,L,μ

1
2
‖Y −Xiβ

T
i − L − 1μT‖2F + ρ‖L‖*, (15)

where Xi is the i-th column of X, βi is a q-dimensional vector for the
coefficient of the i-th SNP on q genes, i � 1, 2, . . ., p. For each gene,
we selected the top n SNPs in terms of the absolute values of
association coefficients, then we obtained the union of selected SNPs
for each gene as the final set of SNPs to be involved in the joint
modeling. For HC-Screening, we first obtained association
coefficients as above, then calculated the standardized estimates
of coefficients. For each SNP, the Higher Criticism (HC) statistic
(Donoho and Jin, 2004) is calculated based on the standardized

TABLE 1 | Simulation scenarios.

Chromosome #Causal SNPs Scenario Method Screening

Chr 1 60 weak-dense FastLORS LORS
200 strong-sparse LORSEN HC
400 LORS

Chr 1 + Chr 21 45 + 15 weak-dense FastLORS LORS
150 + 50 strong-sparse LORSEN HC
300 + 100 LORS
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estimates of coefficients. Then we selected the top n SNPs in terms of
the p-values of HC statistics.

2.5 Simulation Design
Our simulation is similar to that described in (Jeng et al., 2020).We
first downloaded the genotype data of Chromosome 1 and
Chromosome 21 for CEU samples from HapMap3, the third
phase of the International HapMap Project (https://www.
genome.gov/10001688/international-hapmap-project). CEU
samples refer to Utah residents with Northern and Western
European ancestry from the CEPH collection. After the quality-
control (please refer to Real Data Analysis section), the genotype
data of 13,815 SNPs of Chromosome 1 and 2,607 SNPs of
Chromosome 21 for n � 165 samples were retained in analysis.
To simulate gene expression levels for q � 200 genes over n � 165
samples, we first simulated non-genetic effects of k � 15 hidden
factors. We randomly generated nk random numbers fromN(0, 1)
to form a n × k matrix H, then let Σ � HHT. Uj’s were simulated
from N(0, 0.1*Σ), j � 1, 2, . . ., q and stacked by column to form a
n × qmatrixU. ej’s were simulated fromN(0, I) as random noise for
j-th gene expression and combined by column to form a n × q
random noise matrix e. Then the expression data of q genes over n
samples were simulated by Y � XB + U + e, where X is the n × p
genotype data matrix. We set the total number of SNPs p � 2000,
the number of causal SNPs as 60, 200, or 400. Each causal SNP
randomly influences m � 10 (or 50) genes. We simulated nonzero
genetic effects from a uniform distribution. For the “weak-dense”
scenario, each causal SNP affects m � 50 randomly selected genes
and the corresponding values in B were simulated from a uniform

distribution between 0.25 and 0.75. For the “strong-sparse”
scenario, each causal SNP affects m � 10 randomly selected
genes and the corresponding values in B were simulated from a
uniform distribution between 1.5 and 2. The different simulation
scenarios are summarized in Table 1.

3 RESULTS

3.1 Simulation Results
The number of selected SNPs and the number of selected causal
SNPs from two screening methods under different simulation
scenarios are summarized in Table 2. Several conclusions
emerge from Table 2. First, when the number of samples is
much smaller than the number of SNPs and the number of
causal SNPs is larger than the number of samples, HC-Screening
is seemingly not an appropriate screening tool. This is because
the number of causal SNPs retained after the HC-Screening is
much smaller than the actual number of causal SNPs, resulting
in possible power loss in subsequent analysis. Second, even
when the number of causal SNPs is smaller than the number of
samples, from Table 2, we still observed that the
LORS-Screening retains more causal SNPs than the HC-
Screening. Of course, the HC-Screening reduces much
computational burden especially when the number of
samples is much smaller than the number of SNPs.

The area under the curve (AUC) was used to compare the
performance between LORSEN and two existing methods, LORS
(Yang et al., 2013) and FastLORS (Jeng et al., 2020). For each

TABLE 2 | Results of the HC-Screening and the LORS-Screening with ten replicates for each simulation scenario.

Chromosome #Causal Scenario Screening Average
#Slected SNPs

Average
#Selected Causal SNPsSNPs

Chr 1 60 weak-dense LORS 1,017 43
HC 165 7

strong-sparse LORS 1,023 60
HC 165 9

200 weak-dense LORS 1,036 130
HC 165 20

strong-sparse LORS 1,095 199
HC 165 28

400 weak-dense LORS 1,045 237
HC 165 39

strong-sparse LORS 1,142 346
HC 165 44

Chr 1 + Chr 21 45 + 15 weak-dense LORS 1,044 46
HC 165 7

strong-sparse LORS 1,065 60
HC 165 10

150 + 50 weak-dense LORS 1,064 136
HC 165 20

strong-sparse LORS 1,123 199
HC 165 28

300 + 100 weak-dense LORS 1,064 244
HC 165 37

strong-sparse LORS 1,188 361
HC 165 44
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scenario, we repeated the simulation ten times.We considered the
joint modeling of multiple SNPs and multiple gene expression
levels with the SNP screening and without the SNP screening. The
results without the SNP screening before the eQTL mapping
under different simulation scenarios are presented in Tables 3, 4.

From Tables 3, 4, we can see that the average AUC of LORSEN is
uniformly larger than those of LORS and FastLORS in the weak-
dense scenarios across different number of causal SNPs no matter
the SNPs are from single chromosome (Chr 1) or two
chromosomes (Chr 1 + Chr 21). For the strong-sparse

TABLE 3 | The average AUC and 95% confidence interval without the SNP screening with ten replicates for each simulation scenario. SNPs are only from chromosome 1. For
each simulation scenario, the highest AUC is in bold.

#Causal SNPsScenario Method

60 200 400

weak-dense FastLORS 0.514 (0.511, 0.517) 0.582 (0.580, 0.584) 0.581 (0.580, 0.582)
LORSEN 0.651 (0.648, 0.654) 0.649 (0.647, 0.651) 0.630 (0.629, 0.631)
LORS 0.502 (0.499, 0.505) 0.514 (0.512, 0.516) 0.515 (0.514, 0.516)

strong-sparse FastLORS 0.762 (0.755, 0.769) 0.840 (0.837, 0.843) 0.810 (0.807, 0.813)
LORSEN 0.823 (0.817, 0.829) 0.834 (0.831, 0.837) 0.774 (0.771, 0.777)
LORS 0.824 (0.818, 0.830) 0.819 (0.815, 0.823) 0.754 (0.751, 0.757)

TABLE 4 | The average AUC and 95% confidence interval without the SNP screening with ten replicates for each simulation scenario. SNPs are from chromosome 1 and
chromosome 21. For each simulation scenario, the highest AUC is in bold.

#Causal SNPsScenario Method

60 200 400

weak-dense FastLORS 0.530 (0.527, 0.533) 0.567 (0.565, 0.569) 0.575 (0.574, 0.576)
LORSEN 0.658 (0.655, 0.661) 0.679 (0.677, 0.681) 0.625 (0.624, 0.626)
LORS 0.503 (0.500, 0.506) 0.510 (0.508, 0.512) 0.514 (0.513, 0.515)

strong-sparse FastLORS 0.774 (0.767, 0.781) 0.826 (0.822, 0.830) 0.813 (0.810, 0.816)
LORSEN 0.814 (0.807, 0.821) 0.810 (0.806, 0.814) 0.788 (0.785, 0.791)
LORS 0.813 (0.806, 0.820) 0.801 (0.797, 0.805) 0.756 (0.753, 0.759)

TABLE 5 | The average AUC and 95% confidence interval with the SNP screening with ten replicates for each simulation scenario. SNPs are only from chromosome 1. For
each simulation scenario, the highest AUC is in bold.

ScreeningScenario #Causal SNPs Method

HC LORS

weak-dense 60 FastLORS 0.514 (0.511, 0.517) 0.596 (0.593, 0.599)
LORSEN 0.515 (0.512, 0.518) 0.618 (0.615, 0.621)
LORS 0.503 (0.500, 0.506) 0.541 (0.538, 0.544)

200 FastLORS 0.512 (0.510, 0.514) 0.583 (0.581, 0.585)
LORSEN 0.511 (0.509, 0.513) 0.592 (0.590, 0.594)
LORS 0.502 (0.500, 0.504) 0.519 (0.517, 0.521)

400 FastLORS 0.510 (0.509, 0.511) 0.557 (0.556, 0.558)
LORSEN 0.509 (0.508, 0.510) 0.547 (0.546, 0.548)
LORS 0.502 (0.501, 0.503) 0.511 (0.510, 0.512)

strong-sparse 60 FastLORS 0.565 (0.557, 0.573) 0.900 (0.895, 0.905)
LORSEN 0.558 (0.550, 0.566) 0.903 (0.898, 0.908)
LORS 0.560 (0.552, 0.568) 0.897 (0.892, 0.902)

200 FastLORS 0.552 (0.548, 0.556) 0.894 (0.891, 0.897)
LORSEN 0.544 (0.540, 0.548) 0.894 (0.891, 0.897)
LORS 0.543 (0.539, 0.547) 0.874 (0.871, 0.877)

400 FastLORS 0.536 (0.533, 0.539) 0.797 (0.794, 0.800)
LORSEN 0.523 (0.520, 0.526) 0.782 (0.779, 0.785)
LORS 0.528 (0.525, 0.531) 0.738 (0.735, 0.741)
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scenarios, FastLORS achieves the relatively larger AUC than
LORS and LORSEN. For a fixed number of causal SNPs, each
method achieves the larger AUC value in the stong-sparse
scenario than in the weak-dense scenario. For each method
under each simulation scenario, the AUCs in Tables 3, 4 are
similar, implying that each of three methods has the similar
power to detect cis-eQTLs and trans-eQTLs.

The results with the SNP screening before eQTL mapping
under different simulation scenarios are presented in Tables 5, 6.
As we have mentioned, the LORS-Screening keeps more SNPs in
the analysis, thus retains more causal SNPs than the HC-
Screening does. Each method with the LORS-Screening has
the larger AUC values than it with the HC-Screening. From
Tables 5, 6, we can see that the AUC values of methods with the
HC-Screening are quite close to 0.5, which indicates that the HC-
Screening can essentially lead to the loss of power of methods.
With the LORS-Screening, similar to the non-screening cases,
LORSEN has better performance than LORS and FastLORS in the
weak-dense scenarios and LORSEN and FastLORS perform
similarly and slightly better than LORS in the strong-sparse
scenarios. Finally, we find that for the weak-dense scenarios,
each method without the SNP screening before joint modeling
achieves the larger AUC values than it with the SNP screening.
However, for the strong-sparse scenarios, each method with the
LORS-Screening before joint modeling achieves the larger AUC
values than it without the SNP screening. This may be due to that
there are a large number of SNP-gene pairs with the weak
association effects in the weak-dense scenarios and many
causal SNPs may not be selected by the pre-screening
methods. So, in the weak-dense scenarios with the use of pre-
screening methods, the computational cost and the detection
power can be reduced at the same time. In the strong-sparse

scenarios, there are a smaller number of SNP-gene pairs with the
stronger association effects than in the weak-dense scenarios, and
it is expected that most of the causal SNPs will be selected by the
pre-screening methods. Therefore, for the strong-sparse
scenarios, the use of pre-screening methods reduce the
computational cost while still retain the high detection power.

Our simulation results showed that LORSEN is more powerful
to identify weak signals, while it does not have obvious advantage
in identifying strong signals compared to LORS. Therefore, we
performed additional simulation studies in which the causal
variants have mixed weak and strong effects. Specifically, the
half of the causal variants had the weak effects and their effects
were generated from a uniform distribution between 0.25 and
0.75, while the other half of the causal variants had the strong
effects and their effects were generated from a uniform
distribution between 1.5 and 2. The number of causal SNPs
was set as 60, 200, or 400. The number of genes affected by
one causal SNP was set as 50. The AUCs and corresponding 95%
confidence intervals are presented in Supplementary Table S1.
From the results in Supplementary Table S1, we can see that
LORSEN has the overall highest detection power when the
number of causal SNPs is large. It is well known that the rare
variants play an important role in the etiology of human complex
diseases. Therefore, it is necessary to assess the performance of
eQTL mapping methods when most of causal variants are rare.
We conducted simulations in which the proportion of rare causal
variants was set to be 50 and 75%. Here, the variants with minor
allel frequency (MAF) less than 0.03 were considered as the rare
variants. The number of causal variants was set as 200. The
results from different simulation scenarios (weak-dense and
strong-sparse) are presented in Supplementary Table S2. From
Supplementary Table S2, we can see that when the proportion

TABLE 6 | The average AUC and 95% confidence interval with the SNP screening with ten replicates for each simulation scenario. SNPs are from chromosome 1 and
chromosome 21. For each simulation scenario, the highest AUC is in bold.

ScreeningScenario #Causal SNPs Method

HC LORS

weak-dense 60 FastLORS 0.518 (0.515, 0.521) 0.606 (0.603, 0.609)
LORSEN 0.518 (0.515, 0.521) 0.629 (0.626, 0.632)
LORS 0.505 (0.502, 0.508) 0.544 (0.541, 0.547)

200 FastLORS 0.512 (0.510, 0.514) 0.591 (0.589, 0.593)
LORSEN 0.512 (0.510, 0.514) 0.615 (0.613, 0.617)
LORS 0.503 (0.501, 0.505) 0.524 (0.522, 0.526)

400 FastLORS 0.510 (0.509, 0.511) 0.563 (0.562, 0.564)
LORSEN 0.507 (0.506, 0.508) 0.556 (0.555, 0.557)
LORS 0.501 (0.500, 0.502) 0.511 (0.510, 0.512)

strong-sparse 60 FastLORS 0.570 (0.562, 0.578) 0.891 (0.886, 0.896)
LORSEN 0.563 (0.555, 0.571) 0.906 (0.901, 0.911)
LORS 0.564 (0.556, 0.572) 0.891 (0.886, 0.896)

200 FastLORS 0.553 (0.549, 0.557) 0.904 (0.901, 0.907)
LORSEN 0.547 (0.543, 0.551) 0.904 (0.901, 0.907)
LORS 0.544 (0.540, 0.548) 0.883 (0.880, 0.886)

400 FastLORS 0.534 (0.531, 0.537) 0.821 (0.818, 0.824)
LORSEN 0.524 (0.521, 0.527) 0.813 (0.810, 0.816)
LORS 0.525 (0.522, 0.528) 0.765 (0.762, 0.768)
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of causal rare variants is 50%, the AUCs of FastLORS are slightly
higher than the AUCs of LORSEN. However, when the
proportion of causal rare variants is 75%, the AUCs of
LORSEN are at least 10% higher AUCs than the AUCs of
FastLORS and about 20% higher than the AUCs of LORS.
Our results show that LORSEN has the higher power in
detecting rare causal variants. To see how the detection
power of LORSEN is affected by the positive and negative
effects, we conducted simulations in which the half of the
causal variants had the positive effects on genes and the
other half of the causal variants had the negative effects on
genes. The results from different simulation scenarios (weak-
dense and strong-sparse with 60, 200, and 400 causal variants)
are presented in Supplementary Table S3. From
Supplementary Table S3, we can see that LORSEN achieves
the highest AUCs in almost all simulation scenarios, which
implies that the detection power of LORSEN is not affected by
the effect directions of causal variants.

In addition to AUC, a commonly used measure to assess the
performance of methods for eQTL mapping, we also reported the
false positive rates (FPRs) based on four thresholds for the regression
coefficients: 0, 10–12, 10–6, 10–4. From the Supplementary Figures
S1–S3, we can see that FastLORS has the highest FPRs in almost all
scenarios, and the FPRs of FastLORS are quite sensitive to the
thresholds: the FPRs of FastLORS decrease dramatically for large
thresholds. LORS has the smallest FPRs in all simulation scenarios.
For LORSEN, it has the small and comparable FPRs with LORS
when the effects of the causal variants are all weak or are amixture of
weak and strong effects. LORSEN has the large FPRs when the
effects of the causal variants are all strong.

A number of conclusions emerge from the results based on our
extensive simulation studies. First, the HC-Screening method
retains much smaller number of SNPs than the LORS-Screening
method. Second, when all the SNPs are not filtered with the SNP
screeningmethod and are used in the analysis, LORSEN is themost
powerful method to identify weak signals, while it does not have

obvious advantage in identifying strong signals compared to LORS
and FastLORS. LORSEN still performs the best with the mixture of
the strong and weak effects when the number of causal variants is
large. Third, when the SNPs are first filtered with theHC-Screening
method, FastLORS performs the best in all simulation scenarios.
With the LORS-Screening method, LORSEN has the highest
detection power in most of simulation scenarios. Fourth,
LORSEN outperforms FastLORS and LORS when a large
portion of the causal SNPs are rare and when the causal
variants have a mixture of positive and negative effects.

3.2 Real Data Analysis Results
To illustrate our method in real data analysis, we also applied
LORS-LORSEN (LORSEN with the LORS-Screening), LORS-
LORS (LORS with the LORS-Screening) and HC-FastLORS

FIGURE 1 | The top 100 SNP-probe pairs identified by FastLORS,
LORSEN, and LORS on Chromosome 3.

FIGURE 2 | The top 100 SNP-probe pairs identified by FastLORS,
LORSEN, and LORS on Chromosome 15.

FIGURE 3 | The top 100 SNP-probe pairs identified by FastLORS,
LORSEN, and LORS on Chromosome 17.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 6909269

Gao et al. LORSEN for eQTL Mapping

127

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(FastLORSwith theHC-Screening) to theHapMap3 data. Here, we
focused on Asian samples (CHB and JPT) in the HapMap3 data and
selected four chromosomes for the analysis. SNP genotype data and
gene expression data are publicly available, and can be downloaded
from ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/hapmap3_r3/
plink_format/and http://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-264/, respectively. Because the set of samples with the
SNP genotype data and the set of samples with the gene expression
data are slightly different, we only kept the samples that have both
the SNP genotype data and the gene expression data in the analysis.
We removed SNPs with missing values, and performed the LD
pruning using PLINK with its default parameters (window size: 50;
moving window increment: five SNPs; cutoff value of R2: 0.5). After
the data pre-processing, a total of 160 samples (CHB: 79; JPT: 81)
were included in analysis. The number of SNPs and the number of
genes with the expression used in the analysis on chromosome 3 are
4,086 and 1,075, on chromosome 15 are 2,235 and 612, on
chromosome 17 are 2,226 and 1,098, on chromosome 20 are
1,863 and 606, respectively. Since the significance tests generally
cannot be performed for the penalization based regression models,
we focused on the top 100 SNP-probe pairs with the largest absolute
regression coefficients. From the Venn diagrams (Figures 1–4), we

FIGURE 4 | The top 100 SNP-probe pairs identified by FastLORS,
LORSEN, and LORS on Chromosome 20.

TABLE 7 | Top ten detected SNP-probe pairs for chromosome 3. The SNP-probe pairs that are confirmed in seeQTL database are in bold.

Method SNP Probe (gene) Association
coefficient

Distance Class

HC-FastLORS rs13084976 ILMN_1657373 (LEPREL1) 0.0430 188.72 mb distant
rs17029694 ILMN_1657373 (LEPREL1) 0.0424 188.49 mb distant
rs12494696 ILMN_1812093 (UTS2D) 0.0322 189.72 mb distant
rs2322212 ILMN_1756501 (ST6GAL1) 0.0310 184.74 mb distant
rs17029694 ILMN_1708743 (NT5DC2) 0.0303 49.86 mb distant
rs2322212 ILMN_1686920 (CCDC58) 0.0300 120.03 mb distant
rs7647780 ILMN_1762084 (DNASE1L3) 0.0292 57.51 mb distant
rs1516347 ILMN_1726020 (LOC652670) 0.0278 75.49 mb distant
rs13061928 ILMN_1692261 (EPHB1) 0.0273 133.55 mb distant
rs1377213 ILMN_1698934 (CMTM7) 0.0270 26.76 mb distant

LORS-LORSEN rs1505587 ILMN_1657373 (LEPREL1) 0.3336 127.69 mb distant
rs6807033 ILMN_1787750 (CD200) 0.2796 4.163 kb local
rs11914577 ILMN_1700967 (C3orf59) 0.2245 113.51 kb local
rs1403719 ILMN_1771599 (PLOD2) 0.1963 25.06 mb distant
rs628267 ILMN_1760509 (EOMES) 0.1941 302.30 kb
rs4016435 ILMN_1757350 (CTNNB1) 0.1908 27.772 kb local
rs16839507 ILMN_1761058 (ACAD11) 0.1856 117.942 kb local
rs693430 ILMN_1657708 (MGLL) 0.1796 86.074 kb local
rs693430 ILMN_1707310 (MGLL) 0.1710 47.617 kb local
rs1498090 ILMN_1793724 (C3orf31) 0.1662 58.605 kb local

LORS-LORS rs1505587 ILMN_1657373 (LEPREL1) 1.2549 127.69 mb distant
rs6807033 ILMN_1787750 (CD200) 0.5621 4.163 kb local
rs4857653 ILMN_1700967 (C3orf59) 0.3640 16.16 mb distant
rs11914577 ILMN_1700967 (C3orf59) 0.2984 113.514 kb local
rs1403719 ILMN_1771599 (PLOD2) 0.2824 25.06 mb distant
rs628267 ILMN_1760509 (EOMES) 0.2439 302.302 kb
rs4016435 ILMN_1757350 (CTNNB1) 0.2404 27.772 kb local
rs16839507 ILMN_1761058 (ACAD11) 0.2338 117.942 kb local
rs3773014 ILMN_1762084 (DNASE1L3) 0.2268 29.187 kb local
rs1799977 ILMN_1688392 (ZBED2) 0.2234 75.77 mb distant
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notice that there is a large overlap between the eQTLs identified by
LORS-LORS and LORS-LORSEN. However, there is a small overlap
between the eQTLs identified by HC-FastLORS and LORS-LORS
(or LORS-LORSEN). For example, among the top 100 SNP-probe
pairs identified on Chromosome 3 (Figure 1), LORS-LORS and
LORS-LORSEN share 77 SNP-probe pairs in common, while LORS-
LORSEN and HC-FastLORS only share four SNP-probe pairs in
common and LORS-LORS and HC-FastLORS share three SNP-
probe pairs in common. This observation is consistent with the
observation from (Jeng et al., 2020) which also noticed that there is a
small overlap between the SNP-probe pairs identified by LORS-
LORS and HC-FastLORS. Additionally, as adopted in (Jeng et al.,
2020), we classified the detected eQTL as local if the physical distance
between the SNP and the probe midpoint is less than 250 kb or as
distant if the distance is greater than 5mb following the criterion
described in (Westra et al., 2013). For each chromosome, we report
our findings on the top ten identified SNP-probe pairs in Table 7 and
Supplementary Tables S4–S6 (see Supplementary Material). From
Table 7, we can see that the SNPs in the top ten SNP-probe pairs
identified by HC-FastLORS are all trans-eQTLs. As a comparison,
seven SNPs in the top ten SNP-probe pairs identified by LORS-
LORSEN are cis-eQTLs and two SNPs are trans-eQTLs. Five SNPs in
the top ten SNP-probe pairs identified by LORS-LORS are cis-eQTLs
and four SNPs are trans-eQTLs. LORS-LORSEN and LORS-LORS
share seven SNP-probe pairs while LORS-LORSEN and LORS-LORS
do not share any SNP-probe pair withHC-FastLORS. In addition, the
coefficients obtained from HC-FastLORS are ten-fold smaller
than those obtained from LORS-LORSEN and LORS-LORS.
This indicates that the findings of LORS-LORSEN and LORS-
LORS may be more convincing.

To further validate our findings, we searched an existing
database called seeQTL (Xia et al., 2011). seeQTL (https://
seeqtl.org/) records the eQTLs identified from a meta-analysis
(consensus eQTLs) from the HapMap human lymphoblastoid
cell lines. A total of fourteen SNP-probe pairs were found in
seeQTL and were listed in Table 8. Among them, two SNP-probe
pairs were identified by HC-FastLORS only, three were identified
by LORS-LORSEN only, two were identified by LORS-LORS
only, seven were identified by both LORS-LORSEN and LORS-
LORS, and one was identified by all three methods. To further

validate these fourteen SNP-probe pairs, we searched the eQTL web-
browser (http://www.gtexportal.org/home/) built by the Genotype-
Tissue Expression Project (GTEx) (https://www.genome.gov/
Funded-Programs-Projects/Genotype-Tissue-Expression-Project) to
see if those SNP-probe (gene) pairs are listed as the eQTLs and/or
sQTLs (splicing quantitative trait locus). A total of seven SNP-probe
pairs were also found in GTEx and were presented in Table 8.
Among seven SNP-probe pairs found both in seeQTL andGTEx, one
SNP-probe pair was identified by all three methods, five SNP-probe
pairs were identified by both LORS-LORSEN and LORS-LORS, and
one SNP-probe pair was identified by LORS-LORSEN only.

A number of conclusions emerge from the results based on
HapMap3 data. First, there is a large overlap between the SNP-
probe pairs identified by LORS-LORS and LORS-LORSEN but
there is a small overlap between the SNP-probe pairs identified by
HC-FastLORS and LORS-LORS (or LORS-LORSEN). Second,
LORS-LORS and LORS-LORSEN perform similarly and have
higher detection power than HC-FastLORS since LORS-LORS
and LORS-LORSEN have identified more SNP-probe pairs that
are also found in seeQTL and GTEx. Third, five out of seven SNP-
probe pairs identified by both LORS-LORS and LORS-LORSEN
and found in seeQTL are also found in GTEx, thus it may be
beneficial to combine the results from multiple methods to
generate a list of SNP-probe pairs for further investigation.

4 DISCUSSION

As more human gene expression data become available, fast and
efficient statistical and computational methods are needed to fully
take advantage of such data to investigate the relationship
between genetic variants and gene expression levels to further
reveal the genetic mechanisms that underlie human complex
diseases. However, most existing methods are built on small-scale
samples and not applicable to human-size datasets. In this paper,
we proposed a new low rank penalized regression method
(LORSEN) to detect eQTLs. We developed a fast and efficient
algorithm to solve optimization problems arising from our
methods based on proximal gradient methods. Comprehensive
simulation studies showed that LORSEN outperformed two

TABLE 8 | The SNP-probe pairs found in seeQTL database out of the top ten SNP-probe pairs for chromosomes 3, 15, 17, and 20, respectively.

Chromosome SNP Probe (gene) Method Information from GTEx

3 rs4016435 ILMN_1757350 (CTNNB1) LORS-LORSEN, LORS-LORS Not found in GTEx
3 rs16839507 ILMN_1761058 (ACAD11) LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
3 rs693430 ILMN_1657708 (MGLL) LORS-LORSEN Not found in GTEx
3 rs693430 ILMN_1657708 (MGLL) LORS-LORSEN Not found in GTEx
15 rs7162538 ILMN_1784364 (STARD5) LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
15 rs1347069 ILMN_1795822 (DIS3L) LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
15 rs2292114 ILMN_1795524 (C15orf44) LORS-LORS Not found in GTEx
17 rs4968140 ILMN_1706959 (TIMM22) HC-FastLORS Not found in GTEx
17 rs4251704 ILMN_1773352 (CCL5) LORS-LORSEN A single hit for sQTLs
17 rs17657522 ILMN_1697227 (USP36) LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
17 rs4968140 ILMN_1706959 (TIMM22) LORS-LORSEN, LORS-LORS Not found in GTEx
17 rs9905601 ILMN_1750511 (NT5C3L) LORS-LORS Not found in GTEx
20 rs16989514 ILMN_1721128 (TOMM34) LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
20 rs6041750 ILMN_1702237 (FKBP1A) HC-FastLORS, LORS-LORSEN, LORS-LORS Multiple hits for eQTLs and sQTLs
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commonly used methods, LORS and FastLORS, in many
simulation scenarios. From our simulation results, we can
briefly conclude that, first, LORSEN is more powerful in
detecting eQTLs which are rare and/or have weak effects. This
is especially an appealing advantage since it is expected that a
portion of causal variants are rare and/or have the weak effects in
the real world. Second, LORSEN is more powerful when some
causal variants have the positive effects and the other causal
variants have the negative effects.

Since there are a large number of SNPs and genes to be included
in the eQTLmapping and it is expected that only a small portion of
SNPs will affect the gene expression levels, a number of pre-
screening methods have been developed. In this paper, we used
the LORS-Screening (Yang et al., 2013) and the HC-Screening
(Jeng et al., 2020). We found that the HC-Screening retained much
smaller number of SNPs than the LORS-Screening. Both the
LORS-Screening and the HC-Screening can reduce the
computational cost, but they may also reduce the detection
power in the eQTL mapping, depending on the association
patterns between SNPs and gene expression levels. Since we do
not know such association patterns in real studies, we should be
cautious to apply such pre-screening methods.

There are several limitations for LORSEN. First, as a method
based on the penalized regression model, we can rank the SNP-
gene pairs in terms of the regression coefficients obtained from
LORSEN, but cannot perform the significance test. Second, the
computational time of LORSEN depends on many factors such
as the number of candidate values of hyperparameters, the
initial values of hyperparameters, and the number of samples.
The computation was performed parallelly using software R
(verson 4.1.1) and 16 cores on a server with 64 Intel(R) Xeon(R)
Gold 6130 CPUs @ 2.10 GHz. From Supplementary Table S7,
we can see that, as expected, LORSEN costs much more time in

parameter tuning than other two methods due to the exhaustive
grid search. The grid search is easy to be implemented but is
computationally intensive. It may not be feasible for large scale
data. A more efficient strategy is desirable.

It has shown that the incorporation of the SNP correlation and the
gene interaction network can potentially increase the power of
detecting eQTLs (Kim and Xing, 2009; Chen et al., 2012; Kim and
Xing, 2012; Cheng et al., 2014). We expect that our method can be
improved if we use the prior knowledge of correlation structures of
SNPs and genes to refine the penalty terms in optimization problems.
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APPENDIX A

Lemma 1: For each τ P0 and Y ∈ Rn1×n2 , the solution of

min
X

1
2
‖X − Y‖2F + τ‖X‖* (16)

is Sτ(Y)dUSτ(Σ)VT(� Proxτ‖·‖*(Y)), where
Sτ(Σ) � diag({(σ i − τ)+}), Y � UΣVT, the singular value
decomposition of matrix Y, Σ � diag({σ i}1#i#r), r is the rank
of Y. Sτ(·) is called singular value shrinkage operator.

Proof: see (Cai et al., 2010) or (Mazumder et al., 2010).

Lemma 2: For each fixed non-negative λ and v ∈ Rn, the
solution of

min
x

1
2
‖x − v‖22 +

λ

2
‖x‖22 (17)

is (Proxλ
2‖·‖22(v))i � sign(vi)(|vi| − λ)+, i � 1, 2, . . ., n, known as

the (elementwise) soft thresholding operator.

Proof: see (Parikh and Boyd, 2014).

Lemma 3: For each fixed non-negative ρ and v ∈ Rn, the
solution of

min
x

1
2
‖x − v‖22 + ρ‖x‖1 (18)

is Proxρ‖·‖1(v) � (1 − ρ
max{‖v‖2 ,ρ})v.

Proof: see (Parikh and Boyd, 2014).

Lemma 4: (soft-impute algorithm)

For the optimization problem

min
X

1
2
‖PΩ(Y −X)‖2F + τ‖X‖*

� min
X

1
2
‖[PΩ(Y) + PΩ⊥(X)] −X‖2F + τ‖X‖*,

the optimization solution can be obtained via updating X using
X← Sτ(PΩ(Y) + PΩ⊥(X)) with an arbitrary initialization.

Proof: see (Mazumder et al., 2010).

Theorem 1: A sufficient condition for Proxf+g � Proxf◦Proxg is
∀ x ∈ H, zg(Proxf(x))J zg(x), whereH represents Hilbert space
and ◦ represents composition of two operators.

Proof: see (Yu, 2013).
Details of Confidence Interval of AUC
We followed the method used in (Hanley and McNeil,

1982) to calculate the 95% confidence interval (CI) of AUC.
Let AUĈ and Var(AUĈ) denote the sample mean and the
estimated variance of AUCs from ten replicates, respectively, the
95% CI of average AUC was calculated using the following formula:

AUĈ ± 1.96
������������
Var(AUĈ)/10

√
. (19)

We used the following formula (Hanley and McNeil, 1982) to
calculate Var(AUĈ):

Var(AUĈ) � q0 + (n1 − 1)q1 + (n2 − 1)q2
n1n2

, (20)

where q0 � AUĈ(1 − AUĈ), q1 � AUĈ
2−AUĈ − AUĈ

2
,

q2 � 2AUĈ
2

1+AUĈ − AUĈ
2
, n1 is the number of true positives, and n2

is the number of true negatives.
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In high-throughput genetics studies, an important aim is to identify gene–environment

interactions associated with the clinical outcomes. Recently, multiple marginal

penalization methods have been developed and shown to be effective in G×E studies.

However, within the Bayesian framework, marginal variable selection has not received

much attention. In this study, we propose a novel marginal Bayesian variable selection

method for G×E studies. In particular, our marginal Bayesian method is robust to

data contamination and outliers in the outcome variables. With the incorporation of

spike-and-slab priors, we have implemented the Gibbs sampler based on Markov Chain

Monte Carlo (MCMC). The proposed method outperforms a number of alternatives in

extensive simulation studies. The utility of the marginal robust Bayesian variable selection

method has been further demonstrated in the case studies using data from the Nurse

Health Study (NHS). Some of the identified main and interaction effects from the real data

analysis have important biological implications.

Keywords: gene-environment interaction, marginal analysis, robust Bayesian variable selection, spike-and-slab

priors, markov chain monte carlo method

1. INTRODUCTION

The risk and progression of complex diseases including cancer, asthma and type 2 diabetes are
associated with the coordinated functioning of genetic factors, the environmental (and clinical)
factors, as well as their interactions (Hunter, 2005; Von Mutius, 2009; Cornelis and Hu, 2012;
Simonds et al., 2016). The identification of important gene–environment(G×E) interactions leads
to novel insight in dissecting the genetic basis of complex diseases in addition to the main effects
of genetic and environmental factors. In the last two decades, searching for the important G×E
interactions has been extensively conducted based on genetic association studies (Cordell and
Clayton, 2005; Wu et al., 2012). One representative example is the genome-wide association
study (GWAS), where the statistical significance of interaction between the environmental
exposure and the genetic variant has been marginally assessed one at a time across the whole
genome. Important findings are evidenced by genome-wide significant p-values after adjusting for
multiple comparisons.

Recently, substantial efforts have been devoted to novel penalized variable selection methods
for G×E studies (Zhou et al., 2021). In particular, marginal penalization has achieved very
competitive performances with the aforementioned significance-based G×E analysis (Shi et al.,
2014; Chai et al., 2017; Zhang et al., 2020). For example, within the framework of maximum rank
correlation, Shi et al. (2014) has developed a penalization method robust to outliers and model
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misspecification in determining important G×E interactions
one at a time. Zhang et al. (2020) has imposed hierarchical
structure between the main effects and interactions in marginal
identification of G×E interactions using regularization. Despite
success, these studies have limitations. First, as a common tuning
parameter is demanded for all the marginal models, its selection
requires pooling all genes together to conduct a joint model-
based cross-validation. While such a strategy is not rare, it
seems not in favor of the marginal nature of the proposed G×E
studies. Second, a rigorous measure to quantify uncertainty is
not available. Zhang et al. (2020) has constructed 95% confidence
intervals based on the observed occurrence index (OOI) values
(Huang and Ma, 2010); nevertheless, this measure has been
used to demonstrate stability of identified effects rather than
quantifying uncertainty of penalized estimates.

These limitations have motivated us to consider Bayesian
analyses. In literature, Bayesian variable selection methods have
been developed for G×E analysis in multiple studies (Zhou
et al., 2021). For example, with indicator model selection, Liu
et al. (2015) has imposed hierarchical Bayesian variable selection
for linear G×E interactions. Li et al. (2015) has proposed a
Bayesian group LASSO to identify non-linear interactions in
nonparametric varying coefficient models. Ren et al. (2020) has
further incorporated selection of linear and nonlinear G×E
interactions simultaneously while accounting for structured
identification in the Bayesian adaptive shrinkage framework. All
these fully Bayesian methods can efficiently provide uncertainty
quantification based on the posterior samples from MCMC.
Nevertheless, our limited literature mining shows that none of
the marginal Bayesian variable selection methods have been
proposed for interaction studies so far.

Historically, marginal analysis has prevailed in G×E
interaction studies within the framework of genetic association
studies. Although recent studies have confirmed the utility of
regularized variable selection in joint G×E analysis, more efforts
are needed for marginal penalizations, especially through the
Bayesian point of view. The step toward marginal Bayesian
variable selection is of particular significance in developing a
coherent framework of analyzing G×E interactions.

Here, we propose a novel marginal Bayesian variable selection
method for the robust identification of G×E interactions. As
heavy-tailed distributions and outliers in the response variable
have been widely observed, robust modeling is essential for
yielding reliable results. Specifically, the robustness of the
proposed method is facilitated by the Bayesian formulation
of the least absolute deviation (LAD) regression, which has
been a popular choice in frequentist G×E studies but seldom
investigated in a similar context from the Bayesian perspective.
We consider the Bayesian LAD LASSO for regularized
identification of interaction effects. As Bayesian LAD LASSO
does not lead to zero coefficients, the spike-and-slab priors
(George and McCulloch, 1993; Ishwaran and Rao, 2005) has
been incorporated to impose exact sparsity in the adaptive
shrinkage framework. The corresponding MCMC algorithm has
been developed to accommodate fast computations. We have
demonstrated the advantage of the proposed robust Bayesian
marginal analysis in simulation. The findings from the case study

of the Nurses’ Health Study (NHS) with SNP measurements have
important biological implications.

2. METHOD

We use Y to denote a continuous response variable representing
the cancer outcome or disease phenotype. Let X = (X1, . . . ,Xp)
be the p genetic variants, E = (E1, . . . ,Eq) be the q environmental
factors and C = (C1, . . . ,Cm) be the m clinical factors. We
denote the ith subject with i. Let (Yi, Ei, Ci, Xi) (i = 1, . . . , n)
be independent and identically distributed random vectors. For
Xij (j = 1, . . . , p), the measurement of the jth genetic factor on
the ith subject considers the following marginal model:

Yi =

q
∑

k=1

αkEik +

m
∑

t=1

γtCit + βjXij +

q
∑

k=1

ηjkXijEik + ǫi

=

q
∑

k=1

αkEik +

m
∑

t=1

γtCit + βjXij + ηjW̃i + ǫi,

(1)

where αk’s and γt ’s are the regression coefficients corresponding
to effects of environmental and clinical factors, respectively. For
the jth gene Xj (j = 1, . . . , p), the G×E interactions effects

are defined with Wj = (XjE1, . . . ,XjEq), ηj = (ηj1, . . . , ηjq)
T .

With a slight abuse of notation, denote W̃ = Wj. The βj’s and
ηjk’s are the regression coefficients of the genetic variants and
G×E interactions effects, correspondingly. Let us denote α =

(α1, . . . ,αq)
T and γ = (γ1, . . . , γm)

T . Then model (1) can be
written as:

Yi = Eiα + Ciγ + Xijβj + W̃iηj + ǫi. (2)

2.1. Bayesian Formulation of the LAD
Regression
The necessity of accounting for robustness in interaction studies
has been increasingly recognized (Zhou et al., 2021). Within the
frequentist framework, it is essentially dependent on adopting a
robust loss function to quantify lack of fit (Wu and Ma, 2015).
Among a variety of popular robust losses, the least absolute
deviation (LAD) loss function is well known for its advantages
in dealing with heavy-tailed error distributions or outliers in
response. The estimation of regression coefficients amounts to
the following minimization problem:

min
α,γ ,βj ,ηj

n
∑

i=1

|Yi − Eiα − Ciγ − Xijβj − W̃iηj|.

Here, we propose the robust marginal Bayesian variable selection
based on LAD. As the Laplace distribution is equivalent to the
mixture of an exponential distribution and a scaled normal
distribution (Kozumi and Kobayashi, 2011), for a Bayesian
formulation of LAD regression, we assume that ǫi(i = 1, . . . , n)
are i.i.d. random variables following the Laplace distribution
with density:

f (ǫi|τ ) =
τ

2
exp(−τ |ǫi|),
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where τ is the inverse of the scale parameters from the Laplace
density. Then the likelihood function of our marginal G×E
model can be expressed as:

f (Y|α, γ ,βj, ηj) =

n
∏

i=1

τ

2
exp(−τ |Yi−Eiα−Ciγ −Xijβj−W̃iηj|).

The above formulation using Laplace distribution is a special case
of the asymmetric Laplace distribution, which has been widely
adopted in Baysian quantile regression (Yu and Moyeed, 2001;
Yu and Zhang, 2005). In Baysian quantile regression, ǫi’s are
assumed to follow the skewed Laplace distribution with density

f (ǫ|τ ) = θ(1− θ)τexp(−τρθ (ǫ)),

where ρθ (ǫ) = ǫ{θ − I(ǫ < 0)} is the check loss function. The
random errors can be written as

ǫi = ξ1vi + τ−1/2ξ2
√
vizi,

where

ξ1 =
1− 2θ

θ(1− θ)
and ξ2 =

√

2

θ(1− θ)

with quantile level θ ∈ (0, 1), vi∼exp(τ−1), and zi∼N(0, 1).
The Bayesian LAD regression is a special case of Bayesian

quantile regression (Li et al., 2010) with θ=0.5, resulting in that
ξ1 = 0 and ξ2 =

√
8. Therefore, the response Yi can be written as:

Yi = µi + τ−1/2ξ2
√
vizi,

vi|τ
iid
∼ τexp(−τvi),

zi
iid
∼ N(0, 1),

(3)

where µi = Eiα + Ciγ + Xijβj + W̃iηj.

2.2. Bayesian LAD LASSO With
Spike-and-Slab Priors
In model (1), the coefficients βj and ηj correspond to the main
and interaction effects with respect to the jth genetic variant,
respectively. When βj = 0 and ηj = 0, the genetic variant has
no effect on the phenotype. A non-zero βj suggests the presence
of main genetic effect. For ηj, if at least one of its component
is not zero, then the G×E interaction effect exists. In literature,
Bayesian quantile LASSO, with Bayesian LAD LASSO as its
special case, has been proposed to conduct variable selection
(Li et al., 2010). However, a major limitation is that Bayesian
quantile LASSO cannot shrink regression coefficients to 0 exactly,
resulting in inaccurate identification and biased estimation. To
overcome such a limitation, we incorporate spike-and-slab priors
to impose sparsity within Bayesian LAD LASSO framework
as follows.

For the jth gene (j = 1, . . . , p), the marginal LAD LASSO
model is given by

n
∑

i=1

|Yi − Eiα − Ciγ − Xijβj − W̃iηj| + λ1|βj| + λ2

q
∑

k=1

|ηjk|.

Let ϕ1 = τλ1 and ϕ2 = τλ2. Then the conditional Laplace
prior on the coefficient of main effect βj can be expressed as scale
mixtures of normals:

π(βj|τ , λ1) =
ϕ1

2
exp{−ϕ1|βj|}

=

∫ ∞

0

1
√
2πs1

exp(−
β2
j

2s1
)
ϕ2
1

2
exp(

−ϕ2
1

2
s1)ds1.

The conditional Laplace prior on the coefficients of interaction
effect ηj can be written as:

π(ηj|τ , λ2) =

q
∏

k=1

ϕ2

2
exp{−ϕ2|ηjk|}

=

q
∏

k=1

∫ ∞

0

1
√
2πs2

exp(−
η2
jk

2s2
)
ϕ2
2

2
exp(

−ϕ2
2

2
s2)ds2.

Therefore, we consider the following hierarchical formulation for
the marginal G×E model:

βj|s1,π1∼(1− π1)N(0, s1)+ π1δ0(βj),

s1|ϕ
2
1∼

ϕ2
1

2
exp(−

ϕ2
1

2
s1),

ηjk|s2k,π2
iid
∼ (1− π2)N(0, s2k)+ π2δ0(ηjk)(k = 1, . . . , q),

s2k|ϕ
2
2
iid
∼

ϕ2
2

2
exp(−

ϕ2
2

2
s2k)(k = 1, . . . , q),

(4)

where δ0(βj) and δ0(ηjk) denote the spike at 0, respectively,
and the slab distributions are represented by two normal
distributions, N(0, s1) and N(0, s2k). Here, π1 ∈ [0, 1] and π2 ∈

[0, 1]. The mixture of the spike and slab components facilitate
the selection of main and interaction effects. Instead of setting
π1 and π2 to a fixed value such as 0.5, we assign conjugate beta
priors on them as π1∼Beta(r1, u1) and π2∼Beta(r2, u2), which
account for the uncertainty in π1 and π2. In this paper, we choose
r1 = u1 = r2 = u2 = 1 as it gives a prior mean with 0.5 and it
also allows a prior to spread out.

In addition, the normal prior has been placed on the
coefficients of environmental factor αk(k = 1, . . . , q) and clinical
factor γt(t = 1, . . . ,m) as:

αk
iid
∼

1
√
(2πα0)

exp(−
α2
k

2α0
)(k = 1, . . . , q)

γt
iid
∼

1
√

(2πγ0)
exp(−

γ 2
t

2γ0
)(t = 1, . . . ,m),

We also assume conjugate Gamma priors on τ , ϕ2
1 and ϕ2

2 with

τ∼Gamma(a, b),

ϕ2
1∼Gamma(c1, d1),

ϕ2
2∼Gamma(c2, d2).

In typical G×E studies, the environmental and clinical factors are
of low dimensionality and the selection of them is not of interest.
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Therefore, the sparsity-inducing priors have not been adopted
for these factors. We consider the Bayesian LAD LASSO type of
regularization in the proposed study as published studies have
demonstrated that baseline penalty such as MCP and LASSO
work well for marginal variable selection (Shi et al., 2014; Chai
et al., 2017).

It is noted that Zhang et al. (2020) has proposed a marginal
sparse group MCP to respect the strong hierarchy between main
and interaction effects. Their results are promising when long
tailed distributions and outliers are not present in the response
variable. Although sparse group (or, bi-level) variable selection
has been demonstrated as being very effective in multiple G×E
studies based on joint models (Zhou et al., 2021), in our study,
there is only one group per each marginal model. The sparse
group no longer has significant advantages over individual level
selection. Therefore, it has not been considered here.

Our model respects the weak hierarchy of “main effects,
interactions.” If imposing the strong hierarchy is needed, the
genetic factor, once it is not selected given the presence of
corresponding interaction effects, can be added back to the
identified marginal model for a refit to impose strong hierarchy
(Chai et al., 2017). While such a practice is not uncommon
in marginal interaction studies, Shi et al. (2014) has also
revealed satisfactory performance when strong hierarchy has not
been pursued.

2.3. The Gibbs Sampler for Robust
Marginal G×E Analysis
For the jth genetic factor, the joint posterior distribution of all the
unknown parameters conditional on data can be expressed as

π(α, γ ,βj, ηj, v, s1, s2, τ ,ϕ1,ϕ2,π1,π2, zi|Y)

∝

n
∏

i=1

1
√

2πτ−1ξ 22 vi

exp
{

−
(yi − Eiα − Ciγ − Xijβj − W̃iηj)

2

2τ−1ξ 22 vi

}

×

n
∏

i=1

τexp(−τvi)τ
a−1exp(−bτ )

1
√
2π

exp(−
1

2
z2i )

×

q
∏

k=1

1
√
(2πα0)

exp(−
α2
k

2α0
)

×

m
∏

t=1

1
√

(2πγ0)
exp(−

γ 2
t

2γ0
)

×
(

(1− π1)(2πs1)
−1/2exp(−

β2
j

2s1
)I{βj 6=0} + π1δ0(βj)

)

×

q
∏

k=1

(

(1− π2)(2πs2k)
−1/2exp(−

η2
jk

2s2k
)I{ηjk 6=0} + π2δ0(ηjk)

)

×
ϕ2
1

2
exp(−

ϕ2
1

2
s1)

×

q
∏

k=1

ϕ2
2

2
exp(−

ϕ2
2

2
s2k)

× (ϕ2
1)

c1−1exp(−d1ϕ
2
1)

× (ϕ2
2)

c2−1exp(−d2ϕ
2
2)

× π
r1−1
1 (1− π1)

u1−1

× π
r2−1
2 (1− π2)

u2−1

Let µ(−αk) = E(yi) − Eikαk, (i = 1, . . . , n), (k = 1, . . . , q),
representing the mean effect without the contribution of Eikαk.
The posterior distribution of the coefficient of environmental
factor αk conditional on all other parameters can be expressed as:

π(αk|rest)

∝ π(αk)π(Y|·)

∝ exp
{

−

n
∑

i=1

(yi − Eiα − Ciγ − Xijβj − W̃iηj)
2

2τ−1ξ 22 vi

}

× exp(−
α2
k

2α0
)

∝ exp
{

−
1

2

[

(

n
∑

i=1

τE2
ik

ξ 22 vi
+

1

α0
)α2

k

− 2

n
∑

i=1

τ (yi − µ(−αk))Eik

ξ 22 vi
αk

]

}

.

Hence, the full conditional distribution of αk is normal
distribution N(µαk , σ

2
αk
)with mean

µαk =
(

n
∑

i=1

τ (yi − µ(−αk))Eik

ξ 22 vi

)

σ 2
αk
,

and variance

σ 2
αk

=
(

n
∑

i=1

τE2
ik

ξ 22 vi
+

1

α0

)−1
.

The posterior distribution of the coefficient of clinical factor
γt(t = 1, . . . ,m) conditional on all other parameters can be
obtained in similar way. Let µ(−γt) = E(yi) − Citγt , i =

1, . . . , n, then

γt|rest∼N(µγk , σ
2
γt
),

where

µγt =
(

n
∑

i=1

τ (yi − µ(−γt))Cit

ξ 22 vi

)

σ 2
γt
,

σ 2
γt
=

(

n
∑

i=1

τC2
it

ξ 22 vi
+

1

γ0

)−1
.

Let µ(−βj) = E(yi) − Xijβj and l1 = π(βj = 0|rest), the
conditional posterior distribution of the coefficient of genetic
factor βj is a spike-and-slab distribution:

βj|rest∼(1− l1)N(µβj , σ
2
βj
)+ l1δ0(βj), (5)
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where

µβj =
(

n
∑

i=1

τ (yi − µ(−βj))Xij

ξ 22 vi

)

σ 2
βj
,

σ 2
βj
=

(

n
∑

i=1

τX2
ij

ξ 22 vi
+

1

s1

)−1
.

We can show that

l1 =
π1

π1 + (1− π1)s
−1/2
1 (σ 2

βj
)1/2exp{ 12 (

∑n
i=1

τ (yi−µ(−βj)
)Xij

ξ22 vi
)2σ 2

βj
}

.

The posterior distribution of βj is a mixture of a normal
distribution and a point mass at 0. That is, at each iteration of
MCMC, βj is drawn from N(µβj , σ

2
βj
) with probability (1 − l1)

and is set to 0 with probability l1.
Similarly, the posterior distribution of the interaction of the

jth gene and environmental factors ηjk(k = 1, . . . , q) is also a
spike-and-slab distribution. Denoteµ(−ηjk) = E(yi)−Wikηjk and

l2k = π(ηjk = 0|rest), ηjk follows this distribution:

ηjk|rest∼(1− l2k)N(µηjk , σ
2
ηjk
)+ l2kδ0(ηjk), (6)

where

µηjk =
(

n
∑

i=1

τ (yi − µ(−ηjk))W̃ik

ξ 22 vi

)

σ 2
ηjk
,

σ 2
βj
=

(

n
∑

i=1

τW̃2
ik

ξ 22 vi
+

1

s2k

)−1
.

And

l2k =
π2

π2 + (1− π2)s
−1/2
2k

(σ 2
ηjk
)1/2exp{ 12 (

∑n
i=1

τ (yi−µ(−ηjk)
)W̃ik

ξ22 vi
)2σ 2

ηjk
}

. (7)

The full conditional posterior distribution of s1 is:

s1|rest

∝ π(βj|s1,π1)π(s1|ϕ
2
1)

∝
(

(1− π1)(2πs1)
−1/2exp(−

β2
j

2s1
)I{βj 6=0}

+ π1δ0(βj)
)

exp(−
ϕ2
1

2
s1).

(8)

When βj = 0, equation (8) is proportional to exp(−
ϕ2
1
2 s1).

Therefore, the posterior distribution of s1 is exp(
ϕ2
1
2 ).

When βj 6= 0, equation (8) is proportional to

1
√
s1
exp(−

ϕ2
1

2
s1)exp(−

β2
j

2s1
)

∝
1

√
s1
exp

{

−
1

2
[ϕ2

1 s1 +
β2
j

s1
]}.

Therefore, when βj 6= 0, the posterior distribution for s−1
1 is

Inverse-Gaussian(

√

ϕ2
1

β2
j

,ϕ2
1).

Similarly, for s2k(k = 1, . . . , q), when ηjk = 0, the posterior

distribution of s2k is exp(
ϕ2
2
2 ). When ηjk 6= 0, the posterior

distribution for s−1
2k

is Inverse-Gaussian(

√

ϕ2
2

η2
jk

,ϕ2
2).

The full conditional posterior distribution of ϕ2
1 :

ϕ2
1 |rest

∝ π(s1|ϕ
2
1)π(ϕ

2
1)

∝
ϕ2
1

2
exp(−

ϕ2
1 s1

2
)(ϕ2

1)
c1−1exp(−d1ϕ

2
1)

∝ (ϕ2
1)

c1exp
(

− ϕ2
1(s1/2+ d1)

)

.

Therefore, the posterior distribution for ϕ2
1 is Gamma (c1 +

1, s1/2+d1). Similarly, the posterior distribution for ϕ2
2 is Gamma

(c2 + q,
∑q

k=1
s2k/2+ d2).

The full conditional posterior distribution of π1 is given as:

π1|rest

∝ π(s1|ϕ
2
1)π(ϕ

2
1)

∝ π
r1−1
1 (1− π1)

u1−1

×
(

(1− π1)(2πs1)
−1/2exp(−

β2
j

2s1
)I{βj 6=0} + π1δ0(βj)

)

.

Then, the posterior distribution for π1 is Beta (1 + r1 −

I(βj 6= 0), u1 + I(βj 6= 0)).
The full conditional posterior distribution of π2 is given as:

π2|rest

∝ π(s2|ϕ
2
2)π(ϕ

2
2)

∝ π
r2−1
2 (1− π2)

u2−1

×

q
∏

k=1

(

(1− π2)(2πs2k)
−1/2exp(−

η2
jk

2s2k
)I{ηjk 6=0} + π2δ0(ηjk)

)

.

So, the posterior distribution for π2 is Beta (1 + r1 −
∑q

k=1
I(ηjk 6= 0), u1 +

∑q

k=1
I(ηjk 6= 0)).

The full conditional posterior distribution of τ is given as:

τ |rest

∝ π(v|τ )π(τ )π(Y|·)

∝ τn/2 exp
{

−

n
∑

i=1

(yi − Eiα − Ciγ − Xijβj − W̃iηj)
2

2τ−1ξ 22 vi

}

× τnexp(−τ

n
∑

i=1

vi)τ
a−1exp(−bτ )

∝ τ a+
3
2 n−1exp

{

− τ
[

n
∑

i=1

(
(yi − Eiα − Ciγ − Xijβj − W̃iηj)

2

2ξ 22 vi

+ vi)+ b
]

}

.
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Therefore, the posterior distribution for τ is Gamma(a +

3
2n,

[
∑n

i=1(
(yi−Eiα−Ciγ−Xijβj−W̃iηj)

2

2ξ22 vi
+ vi)+ b

]

).

Last, we have the full conditional posterior distribution of vi:

vi|rest

∝ π(v|τ )π(Y|·)

∝
1

√
vi

exp
{

−
(yi − Eiα − Ciγ − Xijβj − W̃iηj)

2

2τ−1ξ 22 vi

}

× exp(−τvi)

∝
1

√
vi

exp
{

−
1

2

[

(2τ )vi

+
τ (yi − Eiα − Ciγ − Xijβj − W̃iηj)

2

ξ 22 vi

]

}

.

It is easy to show that

1

vi
|rest∼ Inverse-Gaussian

(

√

2ξ 22

(yi − Eiα − Ciγ − Xijβj − W̃iηj)2
, 2τ ).

The spirit of marginal penalization for G×E interactions lies
in the usage of a common sparsity cutoff to determine a list
of important main and interaction effects. Instead of focusing
on a fixed cutoff, varying the cutoff can generate different lists,
resulting in a comprehensive view of important findings. The
tuning parameter in penalized estimation serves as the cutoff.
Therefore, the same tuning parameter has to be adopted for
all the sub-models (Shi et al., 2014; Chai et al., 2017; Zhang
et al., 2020). To further justify such a common tuning parameter,
Zhang et al. (2020) has attempted using the joint model to
select the common tuning through cross-validation. However,
this seems not coherent with the nature of marginal analysis.

Ideally, the tuning parameter should be determined by
each model itself to allow for flexibility in controlling
sparsity individually, and a common cutoff is still available to
examine different lists of important effects. With the Bayesian
formulation, we can avoid such a limitation of frequentist
marginal penalization methods. In particular, the priors have
been placed on regularization parameters to determine the
sparsity in a data-driven manner for each sub-model. With
the spike-and-slab priors, the posterior distributions on the
coefficients of main and interaction effects naturally lead to the
usage of inclusion probability as a common cutoff to pin down
the list of important effects, which is described in detail in the
next section.

3. SIMULATION

To demonstrate the utility of the proposed approach, we
evaluate the performance through simulation study. In particular,
we compare the performance of the proposed method, LAD
Bayesian Lasso with spike-and-slab priors (denoted as LADBLSS)
with three alternatives, LADBayesian Lasso (denoted as LADBL),

Bayesian Lasso with spike-and-slab priors (denoted as BLSS)
and Bayesian Lasso (denoted as BL). LADBL is similar to the
proposed method, except that it does not adopt the spike-
and-slab prior. The details of posterior inference are given in
the Appendix.

Under all settings, the sample size is set as n = 200, and
the number of G factors is p = 500 with q = 4, m = 3. For
environmental factors, we simulate four continuous variables
from multivariate normal distributions with marginal mean
0, marginal variance 1 and AR1 correlation structure with
ρ = 0.5. In addition, three clinical factors are generated from
a multivariate normal distribution with marginal mean 0 and
marginal variance 1 and AR1 structure with ρ = 0.5. Among
the p main G effects and pq G×E interactions, 8 and 12 effects
are set as being associated with the response, respectively. All the
environmental and clinical factors are important with nonzero
coefficients, which are randomly generated from a uniform
distribution Unif[0.1, 0.5]. The random error are generated
from: (1) N(0, 1)(Error 1), (2) t-distribution with 2 degrees
of freedom (t(2)) (Error2), (3) LogNormal(0,2)(Error3),
(4) 90%N(0,1)+10%Cauchy(0,1)(Error4), (5)
80%N(0,1)+20%Cauchy(0,1)(Error5). All of them are
heavy-tailed distribution except the first one.

In addition, the genetic factors are simulated in the following
four settings.

Setting 1: In simulating continuous genetic variants, we
generate multivariate normal distributions with marginal mean
0 and variance 1. The AR structure is considered in computing
the correlation of G factors, under which gene j and k have
correlation ρ|j−k| with ρ = 0.5.

Setting 2: We assess the performance under single-nucleotide
polymorphism (SNP) data. The SNPs are obtained by
dichotomizing the gene expression values at the 1st and
3rd quartiles, with the 3 levels (0,1,2) for genotypes (aa, Aa,
and AA). Here, the gene expressions are generated from the
first setting.

Setting 3: Consider simulating the SNP data under a pairwise
linkage disequilibrium (LD) structure. For the two minor alleles
A and B of two adjacent SNPs, let q1 and q2 be the minor
allele frequencies (MAFs). The frequencies of four haplotypes
are as pAB = q1q2 + δ, pab = (1 − q1)(1 − q2) + δ, pAb =

q1(1 − q2) − δ, and paB = (1 − q1)q2 − δ, where δ denotes the
LD. Assuming Hardy–Weinberg equilibrium and given the allele
frequency for A at locus 1, we can generate the SNP genotype
(AA, Aa, aa) from a multinomial distribution with frequencies
(q21, 2q1(1 − q1), (1 − q1)

2). Based on the conditional genotype
probability matrix, we can simulate the genotypes for locus 2.
With MAFs 0.3 and pairwise correlation r = 0.6, we have δ =

r
√

q1(1− q1)q2(1− q2).
We collect the posterior samples from the Gibbs Sampler with

10,000 iterations and discard the first 5,000 samples as burn-
ins. The posterior medians are used to estimate the coefficients.
For approaches incorporating spike-and-slab priors, we consider
computing the inclusion probability to indicate the importance
of predictors. Here, we use a binary indicator φ to denote that
the membership of the non-spike distribution. Take the main
effect of the jth genetic factor, Xj, as an example. Suppose we
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have collected H posterior samples from MCMC after burn-ins.
The jth G factor is included in the marginal G×E model at the
hth MCMC iteration if the corresponding indicator is 1, i.e.,

φ
(h)
j = 1. Subsequently, the posterior probability of retaining the

jth genetic main effect in the final marginal model is defined as
the average of all the indicators for the jth G factor among the H
posterior samples. That is,

pj = π̂(φj = 1|y) =
1

H

H
∑

h=1

φ
(h)
j , j = 1, . . . , p.

A larger posterior inclusion probability pj indicates a stronger
empirical evidence that the jth genetic main effect has a non-zero
coefficient, i.e., a stronger association with the phenotypic trait.

To comprehensively assess the performance of the proposed
and alternative methods, we consider a sequence of probabilities
as cutting-offs in inclusion probability for methods with
spike-and-slab priors. Given a cutoff probability, the main or
interaction is included in the final marginal model if its posterior
inclusion probability is larger than the cutoff, and is excluded
otherwise. Provided with a sequence of cutting-off probabilities
from small to large, we can investigate the set of identified effects
and calculate the true/false positive rates (T/FPR) as the ground
truth is known in simulation. For the sequence of cut-offs, we are
able to compute the area under curve (AUC) as a comprehensive
measure. Besides, for methods without spike-and-slab priors, the
confidence level of the credible intervals can be adopted as the
cut-off to compute TPR and FPRs. Therefore, all the methods
under comparison can be evaluated on the same ground.

In addition, we also consider Top100, which is defined as
the number of true signals when 100 important main effects
(or interactions) are identified. For methods with spike-and-
slab priors, 100 main effects or interactions are chosen with
the highest inclusion probabilities. For methods without spike-
and-slab priors, the indicators of all effects are computed
for a sequence of credible levels. The top 100 main effects
or interactions are chosen in terms of the highest average
identification values.

Simulation results for the gene expression data in the first
setting are tabulated in Tables 1, 2. We can observe that
the proposed method has the best performance among all
approaches, especially when the response variable has heavy-
tailed distributions. First, the performance of methods with
spike-and-slab priors is consistently better than methods without
spike-and-slab priors. For example, in Table 1, under error 3,
the AUC of LADBLSS is 0.9558 (sd 0.0161), which is much
larger than that of the robust method without spike-and-slab
priors, i.e., 0.8432(sd 0.0115) from LADBL. Also, the AUC of
robust methods is much larger than that of non-robust methods,
especially in the presence of heavy-tailed errors. For instance, in
the first setting under error 3, the AUC of LADBLSS is 0.9558
and the AUC of LADBL is 0.8432 while that of BLSS and BL
is around 0.5. Similar advantageous performance can also be
observed from the identification results with Top100. In Table 2

under error 5, LADBLSS identifies 7.80 (sd 0.55) out of the 8
main effects and 10.53 (sd 1.36) out of the 12 interaction effects.

TABLE 1 | Simulation results of the first setting for BL (Bayesian LASSO), BLSS

(Bayesian LASSO with spike-and-slab priors), LADBL (LAD Bayesian LASSO), and

LADBLSS (LAD Bayesian LASSO with spike-and-slab priors).

BL BLSS LADBL LADBLSS

Error 1 AUC 0.9182 0.9901 0.9258 0.9887

N(0,1) SD 0.0052 0.0021 0.0076 0.0026

Error 2 AUC 0.8332 0.9420 0.9004 0.9841

t(2) SD 0.0107 0.0235 0.0078 0.0031

Error 3 AUC 0.5343 0.5473 0.8432 0.9558

Lognormal(0,2) SD 0.0144 0.0576 0.0115 0.0161

Error 4 AUC 0.8221 0.9124 0.9222 0.9895

90%N(0,1) + 10%Cauchy(0,1) SD 0.0212 0.0410 0.0071 0.0024

Error 5 AUC 0.7507 0.8431 0.9192 0.9904

80%N(0,1) + 20%Cauchy(0,1) SD 0.0217 0.0633 0.0059 0.0018

AUC (mean of AUC) and SD (sd of AUC) based on 100 replicates. n = 200, p = 500, q =

4, and m = 3.

This is higher than the results of LADBL with 7.57 (sd 0.57)
of main effects and 6.83 (sd 1.07) of interaction effects. Second,
among all the methods with spike-and-slab priors, Bayesian LAD
method with spike-and-slab priors has the best performance in
all identification results. Under error 3, in Table 1, the AUC
of LADBLSS is 0.9558(sd 0.0161) while the AUC of BLSS is
0.5473(sd 0.0576). Under error 4 in Table 2, LADBLSS identifies
7.77(sd 0.57) main effects and 10.67(sd 1.50) interaction effects
while BLSS identifies 6.2(sd 2.62) main effects and 8.3(sd 3.98)
interaction effects, respectively.

Similar patterns can be observed in Tables 4, 5 in Appendix

for the second setting, and Tables 6, 7 in Appendix for the third
setting in Appendix. We have also investigated the performance
of when n = 2,000 under setting 1. While the difference among
the 4 methods significantly diminishes with such a large sample
size, we can still observe the superior performance of LADBLSS
by using a shorter list of top ranked effects. The results are
provided in the table from Supplementary Material. Overall, the
advantages of conducting robust Bayesian G×E analysis using
the proposed approach can be justified based on the results
of comprehensive simulation studies. The convergence of the
MCMC chains with the potential scale reduction factor (PSRF)
(Brooks and Gelman, 1998) has been conducted. In this study,
we use PSRF ≤ 1.1 (Gelman et al., 2004) as the cut-off point,
which indicates that chains converge to a stationary distribution.
The convergence of chains after burn-ins has been checked for
all parameters with the value of PSRF <1.1. Figure 1 shows
the convergence pattern of PSRF for the main and interaction
coefficients of the first genetic factors in Example 1 under error 3.

In simulation, the hyperparameters for the Gamma priors and
Beta priors specified in section Bayesian LADLASSOWith Spike-
and-slab Priors are set to 1. In addition, the initial values of the
regression parameters are also set to 1. Based on our experiments,
the results and convergence of the MCMC algorithm are not
sensitive to the choice of these parameters. We have observed
satisfactory convergence for all of our simulations. For one
simulated dataset under the first setting with n = 200, p = 500
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TABLE 2 | Identification results of the first setting with Top100 method for BL

(Bayesian LASSO), BLSS (Bayesian LASSO with spike-and-slab priors), LADBL

(LAD Bayesian LASSO) and LADBLSS (LAD Bayesian LASSO with

spike-and-slab priors).

Main Interaction Total

Error 1 BL 7.60(0.49) 6.80(1.6) 14.40(1.73)

N(0,1) BLSS 7.80(0.41) 10.80(0.92) 18.60(1.13)

LADBL 7.67(0.55) 6.53(1.85) 14.20(1.81)

LADBLSS 7.76(0.5) 10.53(1.36) 18.30(1.49)

Error 2 BL 6.37(1.90) 3.90(2.07) 10.27(3.19)

t(2) BLSS 6.33(1.63) 8.53(2.46) 14.87(3.71)

LADBL 7.43(0.94) 5.80(1.71) 13.23(2.01)

LADBLSS 7.53(0.51) 9.90(1.56) 17.43(1.76)

Error 3 BL 0.90(1.21) 0.50(0.97) 1.40(1.45)

Lognormal(0,2) BLSS 0.73(0.94) 0.47(0.68) 1.20(1.35)

LADBL 6.27(1.55) 3.67(1.94) 9.93(2.75)

LADBLSS 6.10(1.37) 8.93(2.02) 15.03(3.09)

Error 4 BL 5.57(2.99) 3.63(2.53) 9.20(5.05)

90%N(0,1) BLSS 6.20(2.62) 8.30(3.98) 14.50(6.39)

+10%Cauchy(0,1) LADBL 7.77(0.43) 7.00(1.93) 14.77(1.81)

LADBLSS 7.77(0.57) 10.67(1.50) 18.23(1.67)

Error 5 BL 5.07(2.89) 3.00(2.49) 8.07(5.01)

80%N(0,1) BLSS 4.60(3.25) 5.70(4.23) 10.30(7.27)

+20%Cauchy(0,1) LADBL 7.57(0.57) 6.83(1.07) 14.40(1.83)

LADBLSS 7.80(0.55) 10.53(1.36) 18.33(1.69)

Mean(sd) based on 100 replicates. n = 200, p = 500, q = 4, and m = 3.

and standard normal error, the CPU time (in minutes) for fitting
all the 500 marginal models through 10,000 MCMC iterations on
a laptop with standard configurations are 1.27(BL), 1.75(BLSS),
6.16(LADBL), and 5.95 (LADBLSS) minutes, respectively. The
source codes of implementing all the methods under comparison
are included in the Supplementary Material.

4. REAL DATA ANALYSIS

In this study, we analyze the type 2 diabetes (T2D) data from
Nurses’ Health Study (NHS), which is a well-characterized
cohort study of women with high-dimensional SNP data, as
well as measurements on lifestyle and dietary factors. We
consider SNPs on chromosome 10 to identify main and gene–
environment interactions associated with weight, which is an
important phenotypic trait related to type 2 diabetes. Here,
weight is used as response and five environment factors, age
(age), total physical activity (act), trans fat intake (trans), cereal
fiber intake (ceraf), and reported high blood cholesterol (chol),
are considered. Data are available on 3,391 subjects and 17,016
gene expressions after cleaning the raw data through matching
phenotypes and genotypes and removing SNPs with MAF <0.05.
A prescreening is done before downstream analysis. We use a
marginal linear model with weight as response and age, act,
trans, ceraf, and chol as environment factors. Note that 10,000
SNPs that have at least two main or interaction effects with p <

0.05 are kept.The scale of working data is generally not a major

concern for marginal analysis, as the computation can be done
in a highly parallel manner. Here, we focus on chromosome
10 which has been reported to harbor interesting genes in
existing studies.

We use Top 100 method to identify 100 most important
main and interaction effects. The proposed method LADBLSS
identifies 20 main SNP effects and 80 gene–environment
interactions, which are listed in Table 8 in Appendix. Our study
provides crucial implications in identifying the important main
and interactions of SNPs and its associations with weight. For
example, three SNPs, rs17011106, rs4838643 and rs17011115,
located within gene WDFY4 are identified. WDFY4 has been
observed as an influential factor related to weight and obesity
(Barclay et al., 2015; Martin et al., 2019). In addition, SNPs
rs10994364, rs10821773, and rs10994308, located within gene
ANK3, are identified with interacting environment factors age
and chol. There are findings showing an association between
ANK3 and higher systolic blood pressure (Ghanbari et al.,
2014). Published studies have also shown that ANK3 is linked
to pulmonary and renal hypertension (Ghanbari et al., 2014).
Allele risk variants have been identified in ANK3, and these
variants explain a proportion of the heritability of BD (bipolar
disorder), which is associated with higher body mass index
(BMI) and increased metabolic comorbidity and the genetic risk
for BD relates to common genetic risk with T2D (Winham
et al., 2014). Our proposed method identifies its interaction
with chol, the high blood cholesterol. Data from several sources
suggest that islet cholesterol metabolism contributes to the
pathogenesis of T2D (Brunham et al., 2008). Furthermore, the
SNP rs1244416, corresponding to gene ATP5C1, interacts with
the reported high blood cholesterol. This gene has been found
to be deregulated in T2D skeletal muscle through pathway-
based microanalysis (Morrison et al., 2012). The interactions
between SNP rs10857590 and trans fat intake has also been
identified by using the proposed method. The SNP is within
gene ARHGAP22, which has been investigated in Huang
et ail. (2018). As a diabetic retinopathy (DR) susceptibility
gene, the expression of ARHGAP22 is positively associated
with endothelial progenitor cells (EPC) levels in T2D patients
with DR.

Analysis with alternatives BL, BLSS, and LADBL has also
been conducted. To compare the alternative methods with the
proposed method, we provide the numbers of main effects
and interactions identified by these methods with pairwise
overlaps in Table 3. It clearly shows that the proposed one
results in a very different set of effects compared to alternatives.
We refit the regularized marginal models by LADBL and
LADBLSS using robust Bayesian Lasso, and those identified
by BL and BLSS using Bayesian Lasso. In addition, the
inclusion probabilities of the selected main and interaction
effects using LADBLSS are provided in Table 9 in Appendix.
Results from the alternative methods are available from the
Supplementary Material. The proposed method selects the
100 most important effects with the inclusion probability
larger than 0.9, demonstrating its superiority in quantifying
uncertain compared to marginal penalization methods (Shi
et al., 2014; Chai et al., 2017; Zhang et al., 2020). We noticed
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FIGURE 1 | Potential scale reduction factor (PSRF) against iterations for the coefficients of the first genetic factors and its interaction with environmental factors in

Example 1 under error 3. Black line: the PSRF. Red dotted line: the upper limits of the 95% confidence interval for the PSRF. Blue dotted line: The threshold of 1.1. The

β̂1 represents the estimated coefficients of the main effects for the first genetic factor. The η̂11 to η̂13 represent the estimated coefficients of the first three interaction

effects for the first genetic factor.

the small magnitude of refitted regression coefficients from
LAD-based methods compared to those obtained by the non-
robust method in the Supplementary Material. This is due to
the difference between the LAD-based and least square based
loss function for robust and non-robust methods, respectively.
The advantage of LADBLSS over the non-robust methods can
be clearly observed. First, majority of the top 100 important
effects identified by BL are main genetic effects. This is
less likely to be reasonable as the response variable weight
has been well acknowledged to be also dependent on gene–
environment interactions. For BLSS, the inclusion probabilities
are low compared to those of the LADBLSS, suggesting lower
level of certainty and confidence in the regression coefficients
obtained from BLSS. The inferior performance of BL and
BLSS further justifies the need of developing robust methods
in marginal gene–environment interaction studies. Overall,
LADBLSS leads to identification results significantly different
from all the alternatives, as well as main and interaction effects
of important biological implications that are not discovered by
the benchmarks.

TABLE 3 | The numbers of main G effects and interactions identified by different

approaches and their overlaps for BL (Bayesian LASSO), BLSS (Bayesian LASSO

with spike-and-slab priors), LADBL (LAD Bayesian LASSO), and LADBLSS (LAD

Bayesian LASSO with spike-and-slab priors).

T2D Main Interaction

BL BLSS LADBL LADBLSS BL BLSS LADBL LADBLSS

BL 86 5 6 8 14 14 4 8

BLSS 24 3 6 76 20 23

LADBL 20 12 80 50

LADBLSS 20 80

5. DISCUSSION

In the past, G×E interaction studies have been mainly conducted
throughmarginal hypothesis testing, based on a diversity of study
designs utilizing parametric, nonparametric, and semiparametric
models (Murcray et al., 2009; Thomas, 2010; Mukherjee et al.,
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2012), which later have been extended to joint analyses driven
primarily by the pathway or gene set based association studies
(Wu and Cui, 2013a; Jin et al., 2014; Jiang et al., 2017). In
addition, published literature has also reported the success of
marginal screening studies, including those based on partial
correlations (Niu et al., 2018; Xu et al., 2019). Recently, the
effectiveness of regularized variable selection in G×E interaction
studies has been increasingly recognized, and a large number of
regularization methods have been proposed for joint interaction
studies (Zhou et al., 2021). Marginal penalization has also been
demonstrated as promising competitors, although they have only
been investigated in a limited number of frequentist studies (Shi
et al., 2014; Chai et al., 2017; Zhang et al., 2020).

Therefore, the proposed marginal robust Bayesian variable
selection is of particular importance, since joint and marginal
analysis cannot replace each other and marginal Bayesian
penalization has not been examined for G×E studies so far. In
particular, with the robustness and incorporation of spike-and-
slab priors in the adaptive Bayesian shrinkage, the LADBLSS
has an analysis framework more coherent with that of the joint
robust analysis1, which significantly facilitates methodological
developments for interaction studies.

Nevertheless, the proposed method has limitations. As a fully
Bayesian methods based onMCMC algorithms, the computation
cost is generally high due to the tradeoff for quantifying
uncertainty using posterior samples. Such a drawback can be
addressed through conducting the computation in a parallel
manner given the marginal nature of the method. Besides, the
variable selection conducted in our study is based on the L1
penalty within the Bayesian framework. As this structure ignores
the correlation among genetic features, a possible direction
for future improvement is to incorporate network or gene set
information in the identification of important gene–environment
interactions (Wang et al., 2021). Furthermore, in our study, the
genetic factor is represented by one SNP coded as a triadic factor.
A closer look at both the additive and dominant penetrance
effects of the SNP will lead to elucidation of the genetic basis
using marginal interaction studies on a finer scale. For gene–
environment interaction studies, marginal and joint analysis are
the two major paradigms, and cannot replace each other (Zhou
et al., 2021). It is always on a safe side to perform marginal
analysis in G×E studies in addition to the joint ones, facilitating
a more comprehensive understanding on the genetic architecture
of complex diseases.

The marginal Bayesian regularization can be extended
to different types of response, for example, under binary,
categorical, prognostic and multivariate outcomes. Nevertheless,
considering robustness in the generalized models with the
Bayesian framework is not trivial, especially under the
multivariate responses (Wu et al., 2014; Zhou et al., 2019).
We postpone the investigations to the future studies.The
interaction between genetic and environmental factors in this
study has been modeled as the product of the two corresponding
variables, which amounts to “linear” interactions. In practice,

1Ren, J., Zhou, F., Li, X., Ma, S., Jiang, Y., and Wu, C. (under revision). Robust

Bayesian variable selection for gene-environment interactions. Biometrics.

the linear interaction assumption has been frequently violated
(Ma et al., 2011; Wu and Cui, 2013b; Zhao et al., 2019), which
demands accommodation of these nonlinear effects through
nonparametric and semiparametric models (Li et al., 2015; Wu
et al., 2015, 2018; Ren et al., 2020). It is of great interest and
importance to migrate the nonlinear G×E studies to marginal
cases in the near future.
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Random forest is considered as one of the most successful machine learning algorithms,
which has been widely used to construct microbiome-based predictive models. However,
its use as a statistical testing method has not been explored. In this study, we propose
“Random Forest Test” (RFtest), a global (community-level) test based on random forest for
high-dimensional and phylogenetically structured microbiome data. RFtest is a
permutation test using the generalization error of random forest as the test statistic.
Our simulations demonstrate that RFtest has controlled type I error rates, that its power is
superior to competing methods for phylogenetically clustered signals, and that it is robust
to outliers and adaptive to interaction effects and non-linear associations. Finally, we apply
RFtest to two real microbiome datasets to ascertain whether microbial communities are
associated or not with the outcome variables.

Keywords: random forest, hypothesis testing, community-wide test, microbiome, omics association test

1 INTRODUCTION

The microbiome, the collection of microorganisms and their genetic materials in an environment,
has been intricately related to human health (Gao et al., 2018; Gentile and Weir, 2018) and
ecosystem functioning (Fierer, 2017). Studying the composition and function of the microbiome
has been greatly facilitated by next-generation sequencing viamarker gene (Weisburg et al., 1991)
and/or shotgun metagenomic sequencing techniques (Handelsman, 2004). For the past
three decades, the marker gene sequencing has been the dominant approach to investigate the
phylogenies and the abundance of microbial groups (Weisburg et al., 1991), while shotgun
metagenomics has become increasingly popular to study the functional potential of the
microbiome (Quince et al., 2017). Sequences stemming from this marker gene sequencing
procedure are usually quality-filtered, merged, and clustered into operational taxonomic units
(OTUs) (Schloss et al., 2009; Edgar, 2013) or denoised into amplicon sequence variants (ASVs)
(Callahan et al., 2016; Bharti and Grimm, 2021). These OTUs and ASVs are regarded as surrogates
of microbial taxa, and downstream statistical analyses are then performed based on the OTU/ASV
abundance table, which records the frequencies of the detected OTUs/ASVs in each microbiome
sample, together with a phylogenetic tree relating the OTUs/ASVs and the metadata describing the
characteristics of the samples.
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One central task of microbiome data analyses is to test the
association between the microbiome and a variable of interest,
while adjusting for potential confounders. Although the ultimate
goal is to identify specific microbial taxa associated with the
variable of interest, a process also known as differential
abundance analysis (Chen et al., 2018), the large abundance
variation, weak effects, and the need for multiple testing
correction makes differential abundance analysis
underpowered for a moderate sample size. It is not
uncommon that differential abundance analysis fails to make
any discoveries after multiple testing correction when a number
of microbial taxa are weakly associated with the variable of
interest. In such cases, a community-level test, which jointly
analyzes the abundance data at the community level, may be
more powerful due to its ability to pool individual weak signals
and no need for multiple testing correction. It is also possible to
explore the interspecific interactions (Zengler and Zaramela,
2018) and phylogenetic relations (Washburne et al., 2018) in
the test to further improve the statistical power. In fact, the
community-level tests have been routinely applied, as the first
step in statistical analysis of microbiome data, to establish an
overall association between the microbiome and the variable of
interest. They have been instrumental in disentangling microbial
association with, for example, clinical outcomes (Clooney et al.,
2021) and environmental gradients (Zhang et al., 2021).

The first community-level test for microbiome data is based on
permutational multivariate analysis of variance (PERMANOVA)
(Anderson, 2001). PERMANOVA is a distance-based
permutation test for assessing the association between a
multivariate outcome and a covariate of interest, where the
variability of the multivariate outcome is summarized in a
distance/dissimilarity matrix. In microbiome applications,
ecologically motivated distances/dissimilarities, such as
UniFrac (Lozupone and Knight, 2005; Lozupone et al., 2007)
distance and Bray–Curtis dissimilarity (Bray and Curtis, 1957),
are frequently used. As an alternative to PERMANOVA, the
microbiome regression-based kernel association test (MiRKAT)
(Zhao et al., 2015) follows a similar logic but treats the abundance
data as the covariate and transforms those distance or
dissimilarity matrices into kernels; subsequently, community-
level associations are evaluated using semi-parametric kernel
machine regressions. MiRKAT is computationally efficient,
allows a straightforward adjustment for covariates, and
accommodates multiple distance kernels through an omnibus
test (Zhao et al., 2015). Another community-level test is the
adaptive microbiome-based sum of powered scores (aMiSPU),
which is an adaptive test based on a series of microbiome-based
sum of powered scores (MiSPU) calculated using different powers
(Wu et al., 2016). aMiSPU utilizes the variable selection/
weighting of the SPU framework (Pan et al., 2014) based on
weighted and unweighted generalized taxon proportions and is
designed to adapt to the underlying signal structure. Combining
the strength of MiRKAT and aMiSPU, the optimal microbiome-
based association test (OMiAT) (Koh et al., 2017) substitutes
MiSPU with its non-phylogenetic version, sum of powered scores
(SPU), and integrates these two criteria via an omnibus p-value to
improve power. These methods all use permutation to assess the

statistical significance and hence the type I error rates are well
controlled (Anderson, 2001; Zhao et al., 2015; Wu et al., 2016;
Koh et al., 2017). However, their power relies on the choice of
candidate distances/kernels or specific data transformation (e.g.,
the power function for MiSPU). Moreover, they have limited
ability to exploit the interactions among taxa, which are expected
to be prevalent in microbiome data (Zengler and Zaramela, 2018).
Additionally, they have not leveraged the strength of machine
learning algorithms, which have been shown to be effective in
building up microbiome-based predictive models (Marcos-
Zambrano et al., 2021).

In the present study, we propose a community-level test based
on random forest (RFtest) for testing the associations between the
microbiome and an outcome variable. Random forest (Breiman,
2001) is considered as one of the most successful machine
learning algorithms, which can be readily applied to diverse
tasks, such as variable selection and prediction from high-
dimensional omics datasets (Degenhardt et al., 2019). As a
non-parametric decision tree-based method, it is robust to
outliers and can automatically adapt to the complex
relationship between the taxa abundance and the outcome
variable without the need for data transformation. Moreover,
they can capture high-order interactions in the data without prior
knowledge provided (Wright et al., 2016). The proposed method
RFtest uses the generalization error estimate of random forest as
the test statistic and uses permutation to calculate p-values. It
incorporates the phylogenetic information via creating features
that accumulate OTU/ASV abundance along the branches of the
phylogenetic tree. RFtest is flexible and can be applied to different
types of outcomes. It can also adjust covariates, which facilitates
confounder adjustment in microbiome association analysis. By
comprehensive simulations, we show that our approach has
controlled type I error rates, and is particularly powerful to
detect phylogenetically clustered signal, robust to outliers, and
capable of detecting complex relationships between microbial
taxa, and between the taxa and the outcome.

2 METHODS AND MATERIALS

2.1 Notations
Suppose that we have abundance measurements from n
independent microbiome samples and p OTUs/ASVs, denoted
by X � (X1, X2, . . . , Xi, . . . , Xn)

T (1 ≤ i ≤ n), where Xi � (xi1,
xi2, . . . , xij, . . . , xip)

T (1 ≤ j ≤ p) and xij is the (normalized)
abundance of the jth OTU/ASV in the ith sample. Let Y � (y1,
y2, . . . , yi, . . . , yn)

T (1 ≤ i ≤ n) denote the vector for the outcome
variable, such as clinical outcomes and environmental gradients.
Additionally, we may have q covariates, such as age and biological
sex, which are denoted by Zn×q � (Z1, Z2, . . . , Zi, . . . , Zn)

T, where
Zi � (zi1, zi2, . . . , zik, . . . , ziq)

T (1 ≤ k ≤ q) are the measurement of
the q covariates in the ith sample. Moreover, we may have a
rooted phylogenetic treeG capturing the phylogenetic relatedness
of the OTUs/ASVs.G has p leaves (terminal vertices with a degree
of 1) and one node (an internal vertex with a degree greater than
1) called root. The p leaves correspond to the pOTUs/ASVs while
the root is theoretically assumed to be the last common ancestor
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of all vertices in the phylogenetic tree. In a path connecting a leaf
and the root, the vertices closer to the root are regarded as
“ancestors” of vertices that are farther from; thus, this
ancestral relationship describes the relative closeness of
vertices to the root of G. The aim for RFtest is to test the
association between Yn×1 and Xn×p while adjusting Zn×q.

2.2 Methods
The tree of life underpins our understanding towards
microorganisms (Washburne et al., 2018). Closely related
microorganisms share similar biological traits and association
signals tend to be clustered with respect to their phylogenetic
relationship (Xiao et al., 2017; Xiao et al., 2018a; Xiao et al.,
2018b). We therefore aim to utilize the phylogenetic information
in the random forest test to improve its power. We incorporate
such phylogenetic information by augmenting the OTU/ASV-
level abundance data with the abundances of the internal nodes of
the phylogenetic tree G. This is achieved by creating an n-by-m
feature matrix Wn×m � (wil)n×m for the m internal nodes in G,
where the features accumulate the abundance of OTUs/ASVs
belonging to the same ancestor in G. As each leaf corresponds to
one OTU/ASV in microbiome and there exists exactly one path
between each leaf and the root, the total abundance of all OTU/
ASV leaves that shares a specific common ancestor or internal
node l is well-defined. Thus, we have

wil � ∑
j∈A

xij (1)

where wil is the collective abundance of the l
th internal node of the

ith sample andA is the set of OTUs/ASVs whose ancestor is the lth

internal node.
The RFtest uses the generalization error rate estimate

(Breiman, 2001) of random forest as a test statistic, and uses
permutation to calculate p-values. Specifically, random forest is
firstly grown using the “ranger” package (Wright and Ziegler,
2017) in the R platform (Team, 2020) using Yn×1 as outcome
variable and Xn×p and Wn×m as input features, and the observed
out-of-bag (OOB) error rate Tobs is used as the test statistic. The
OOB error is the average error for each observation calculated
using predictions from the trees that do not contain in their
respective bootstrap sample. Here, we use the probabilistic
prediction for classification and the OOB error is essentially a
Brier’s score (Malley et al., 2012). Regression and classification
trees are used for continuous and binary Ys, respectively. When
there are no covariates, it permutes the outcome Yn×1 B times and
calculates the OOB error rate ~T

b (b � 1, . . . , B) based on the
permuted Yn×1. The p-value is calculated using:

p-value � [#(~Tb
≤Tobs) + 1]/(B + 1) (2)

where #(~T
b ≤ Tobs) is the number of permuted datasets satisfying

~T
b ≤ Tobs.
When covariates are present, RFtest accommodates covariates

using the following steps. Firstly, Yn×1 is regressed on covariate Zk

(1 ≤ k ≤ q) using linear model if Y is continuous:

yi � β̂0 + β̂1zi1 + . . . + β̂qziq + ei � β̂0 +∑q
k�1

β̂kzik + ei (3)

and using logistic regression model if Y is binary:

logit(P(yi � 1)) � β̂0 +∑q
k�1

β̂kzik (4)

where β̂0 and β̂k (1 ≤ k ≤ q) are the estimated coefficients, and ei
are regression residuals. Next, for a continuous Y, we generate ~Y

b

using residual permutation. The observed error rate Tobs is
calculated based on the input features Xn×p and Wn×m and the
adjusted outcome Yadj � (e1, e2, . . . , ei, . . . , en)

T (1 ≤ i ≤ n).
Thereafter, the permutated ~Y

b � (~yb
1, ~y

b
2, . . . , ~yb

i , . . . , ~yb
n)T is

generated by

~yb
i � ~ebi (5)

where ~ebi is the permutated regression residuals for the ith sample.
For a binary covariate Y, ~Y

b
is generated using a (0, 1) random

number generator according to adjusted probabilities of

logit⎛⎝P⎛⎝~yb
i � 1

∣∣∣∣∣∣∣∣∣ ∑i ~yb
i � ∑

i

yi
⎞⎠⎞⎠ � β̂0 +∑q

k�1
β̂kzik (6)

where we conditioned on the number of observed cases.
Finally, we calculate the error rate ~T

b
under permutation

based on ~Y
b

similarly. Consequently, p-value can be
obtained using (Eq. 2).

We implemented the random forest test in the package
“RFtest” on the R platform, which is available on GitHub
(https://github.com/Lujun995/Random-forest-test-RFtest).

2.3 Simulation Studies
Simulations were conducted under various scenarios to study
whether RFtest would control type I error rates at desired levels
and whether it would be a powerful testing approach compared
with competing methods. Instead of using a parametrical
model such as the Dirichlet-multinomial model (Chen and
Li, 2013), the microbiome data were directly resampled from a
large gut microbiome study by Hale et al. (2017). Briefly, the
study compared the fecal microbiome profiles of patients with
adenomas versus healthy controls. 16s rRNA sequences were
analyzed using IM-TORNADO pipeline (Jeraldo et al., 2014),
OTUs were clustered at 97% identity, and singletons were
removed (Hale et al., 2017). After rarefaction to 20,000 counts
per sample, the adenoma dataset contained 439 samples and
2,100 OTUs, where we resampled n � 50 samples, i.e., X50×p,
without replacement for each simulated dataset. We then
constructed the outcome variable Y50×1 under six scenarios,
following the strategy by Zhao et al. (2015). Let S denote the set
that comprises OTUs associated with Y. We generated the
continuous and binary outcome Y � (y1, y2, . . . , yi, . . . , y50)

T (1
≤ i ≤ 50) based on

yi � β0 + zi + β scale[∑
j∈S

(xij)] + εi, (7)
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and

logit(P(yi � 1)) � β0 + zi + β scale[∑
j∈S

(xij)], (8)

where β0 is a constant, β is an adjustable effect size, εi ∼ N (0, σ2),
and the “scale” function standardizes the data to have mean 0 and
standard deviation 1.We used β0 � 10 for a continuousY and β0 �
0 for a binary Y, εi ∼ N (0, 1).

The first scenario (S0) was used to study the type I error rate of
RFtest by setting the effect size β � 0 under three cases, including
no covariates [zi � 0 and εi ∼ N (0, 1)], one covariate independent
of X (zi ∼ N (0, 1) and εi ∼ N (0, 9)), and one covariate associated
with X {zi � scale[Σj∈S(xij)] + N (0, 1) and εi ∼ N (0, 9)},
respectively. In the third case, S consisted of OTUs from an
abundant lineage SA, which contributed to 15% of the total OTU
number and 21% of the total abundance.

The other five scenarios (S1–S5) were used to evaluate the
power of RFtest. No covariates were included (zi � 0) in these
scenarios. In S1, we investigated different signal types
(phylogenetically clustered vs. non-phylogenetically clustered)
and different signal densities (5% vs. 15%). For
phylogenetically clustered signals, the signal OTUs for 5% and
15% densities were from two abundant lineages SB and SA,
respectively, where SB was contained in SA described above
and contributed to 5% of the total OTU number and 11% of
the total abundance. For non-clustered signals, the signal OTUs
were randomly selected and OTUs for 5% density were also
contained in those for 15%. We further substituted the term
Σj∈S(xij) in Eq. 7 and Eq. 8 with Σj∈S(xij/x·j), where
x·j � 1

n ∑n
i�1 (xij), to avoid several OTUs dominating the

overall signal strength.
The scenario S2 was designed to further validate the results of

clustered signals in S1 using different lineages. We studied seven
disjoint major lineages (SI: I �A, C,D, E, F,G,H) in the dataset of
Hale et al. (2017), which spanned 80% of the total OTU number
and more than 80% of the total abundance. Each lineage
possessed 5%–20% of the total OTU number and 1%–40% of
the overall abundance. The simulations in this scenario were
conducted under β � 2.25 for a binary Y and β � 0.75 for a
continuous Y.

The scenario S3 was to evaluate the power of the RFtest when
the outcome variable was non-linearly associated with the signal
OTUs. We applied a non-linear link function flink to xij.
Specifically,

yi � β0 + β scale[∑
j∈S

flink(xij)] + εi (9)

for a continuous Y, and

logit(P(yi � 1)) � β0 + β scale[∑
j∈S

flink(xij)] (10)

for a binary Y, where flink(xij) � log2(xij + 1) (xij ≥ 0).
The scenario S4 studied a complex association between Y and

X where there was interaction between two sets of signal OTUs.
Particularly, for a continuous Y, it was generated via

yi � β0 + β scale[∑
j∈S

(xij)] · scale[∑
j’∈S’

(xij’)] + εi (11)

and for a binary Y, it was generated using

logit(P(yi � 1)) � β0 + β scale[∑
j∈S

(xij)] · scale[∑
j’∈S’

(xij’)], (12)

where β was fixed at 1.33 and 5 for a continuous and binary Y,
respectively, and S and S’ were two disjoint sets comprising 15%
and 13% of total OTUs, respectively. For phylogenetic signals, we
let S � SA and S’ � SC, where SA had been characterized in S0
and SC was another major lineage accounting for 12% of the total
abundance. For non-phylogenetic signal, the terms ∑j∈S (xij) and∑j’∈S’ (xij’) in Eq. 11 and Eq. 12 were normalized using∑
j∈S orS

(xij/x·j), where x·j � 1
n ∑n

i�1(xij). The sample size used

in this scenario ranged from 50 to 250 as detection of an
interaction generally requires a relatively large sample size.

The last scenario (S5) was used to assess the robustness of
RFtest to outliers. Firstly, the outcome variable Y was generated
according to the procedure in S1, using clustered or non-clustered
signals with a density of 15%. Subsequently, the order of OTUs in
0, 1, or 3 samples was randomly shuffled, yielding 0, 1, or 3
outliers; therefore, these outliers would possess distinct
microbiome profiles.

The source code of this section is available at GitHub (https://
github.com/Lujun995/RFtest-Simulations).

2.4 Competing Methods and Evaluation
The competing methods include the optimal microbiome
regression-based kernel association test (optimal MiRKAT)
(version 1.1.1, https://cran.r-project.org/package�MiRKAT)
(Zhao et al., 2015), the adaptive microbiome-based sum of
powered score test (aMiSPU) (version 1.0, https://cran.r-
project.org/package�MiSPU) (Wu et al., 2016) and optimal
microbiome-based association test (OMiAT) (version 6.0,
https://github.com/hk1785/OMiAT) (Koh et al., 2017).
While multiple distance or dissimilarity functions could be
used in MiRKAT, we followed the example in the “MiRKAT”
package (Zhao et al., 2015) and selected weighted and
unweighted UniFrac distance (Lozupone and Knight, 2005;
Lozupone et al., 2007) and Bray–Curtis dissimilarities (Bray
and Curtis, 1957), which have been widely used in microbiome
studies. All the results were averaged over 1,000
simulation runs.

3 RESULTS

3.1 Simulation Studies
3.1.1 Factors Influencing the Power of RFtest
We first studied factors that might influence the performance of
RFtest including choice of the test statistic, method for p-value
calculation, sparsity filtering, and the parameters of the random
forest (“ranger”). Results of these evaluations were obtained
under the scenario S1 (binary outcome).

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7495734

Zhang et al. Random Forest-Based Test for Microbiome

148

https://github.com/Lujun995/RFtest-Simulations
https://github.com/Lujun995/RFtest-Simulations
https://cran.r-project.org/package=MiRKAT
https://cran.r-project.org/package=MiRKAT
https://cran.r-project.org/package=MiSPU
https://cran.r-project.org/package=MiSPU
https://cran.r-project.org/package=MiSPU
https://github.com/hk1785/OMiAT
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


For the choices of test statistic, we investigated the OOB error
rate (“OOB_P”), training error, 0.632 error, and 0.632
+ error based on probabilistic predictions. It is well known
that the training error underestimates the generalization error
while OOB error overestimates it. The 0.632 and 0.632 + rule
proposed by Efron and Tibshirani (Efron and Tibshirani, 1997)
tried to obtain a more unbiased estimate. In addition to the use of
probabilistic predictions, we also compared to the OOB error rate
based on binary prediction (“OOB_noP”). Supplementary
Figure S1 shows that error rates based on probability
predictions were found to be more powerful than that based
on binary predictions, while for different types of error rates
based on probabilistic predictions, their performance was similar
(Supplementary Figure S1). Thus, we selected the OOB error
rate with probabilistic predictions as the test statistic. Next, we
compared the permutation test to a naïve test, which applied a
Wilcoxon rank sum test based on the OOB predicted
probabilities. We observed that their p-values were highly
correlated (Supplementary Figure S2); nonetheless, the naïve
approach was unable to adjust for covariates and slightly less
powerful than the permutation-based RFtest (Supplementary
Figure S3). We also examined the effect of sparsity filtering
on power and computational time of RFtest by filtering features at
sparsity thresholds of 98%, 96%, 90%, and 80%. Supplementary
Figure S4 shows that mild filtering (e.g., filter OTUs present in
less than 4%–10% of samples) was more beneficial than no
filtering or aggressive filtering. Such mild filtering could
remarkably reduce computation time while maintaining a
similar power. Finally, we studied the impact of the
parameters of random forest (“ranger”) on the power of
RFtest. Concerning the number of split variables, splitting a
proportion of 2%–3% of the total OTU number (close to the
default) generally performed well under both phylogenetic and
non-phylogenetic signals while a greater or smaller numbermight
be preferrable for phylogenetic or non-phylogenetic signals,
respectively (Supplementary Figure S5). A larger number of
decision trees in random forest would stabilize the error rate
(Supplementary Figure S6A); however, the variance of the
sampling distribution of the error rate under permutation was
observed 10 times larger than the variance of the OOB error rate
across different runs (Supplementary Figure S6A). Thus, a larger
number would hardly increase the power of the RFtest
(Supplementary Figure S6B) but significantly increase
computational burden. Based on these evaluations, we used an
ensemble of 500 decision trees in the RFtest to accelerate the
computation and stabilized the estimated error rate by averaging
over three runs.

3.1.2 Type I Error Control
We studied the type I error rate control of RFtest by simulating
null datasets (S0) with or without covariates. At the nominal level
of 5%, we observed that the type I error was controlled at the
desired level in situations where a covariate was absent,
independent with X or correlated with X (Table 1).

3.1.3 Power Studies
Next, we studied the power of RFtest under different scenarios
with association signals (S1–S5). In scenario S1, RFtest was more
powerful than competing methods under phylogenetically
clustered signals across signal densities for both binary and
continuous outcomes (Figures 1C,DS7c & S7d). While the
margin by which the RFtest led might expand or contract for
different OTU clusters defined based on the phylogenetic tree in
scenario S2 (Figure 2 & S8), RFtest was generally considered as a
leading test among all competing methods except in lineage
“3590” (Figure 2 & S8). Furthermore, this margin was more
notable when the outcome variable is binary (Figures 1C,D, S7c
& S7d). For random or non-phylogenetic signals, however, the
RFtest appeared to be less powerful than OMiAT and optimal
MiRKAT but outperformed aMiSPU (Figures 1A,B, 1b,
S7a & S7b).

Scenarios S3–6 demonstrated the robustness of the RFtest to
outliers and its adaptivity to diverse association patterns between
X and Y. In scenario S3, the microbiome profile X was related to
Y on the log scale yielding a non-linear relationship. We found
that the results remained similar to those in scenario S1, where a
linear relationship was assumed. The RFtest was observed to
maintain a leading position under phylogenetical signals but
became relatively less powerful under non-phylogenetic signals
(Figure 3 & S9). However, compared to scenario S1, the
difference diminished among the RFtest, the optimal
MiRKAT, and the OMiAT (Figure 3 & S9). These three
methods also outperformed aMiSPU (Figure 3 & S9).

In scenario S4, where we simulated interaction effects between
OTU clusters, we observed that while the RFtest was a leading
method in this scenario, the pattern differed for a binary and
continuous outcome. For a binary outcome, RFtest could
effectively detect interactions between two phylogenetic
clusters or non-phylogenetic groups at a relatively larger
sample sizes (Figure 4). Meanwhile, the competing methods
appeared powerless for both phylogenetic and non-
phylogenetic signals (Figure 4). For a continuous outcome,
RFtest could powerfully detect the association for both types
of signals (Supplementary Figure S10). Meanwhile, the optimal
MiRKAT and the OMiAT became considerably more powerful

TABLE 1 | Estimated type I error rate of the random forest test (RFtest).

Binary outcome variable (Y) Continuous Y

No covariates (Z) 4.7% (3.6%, 6.2%)a 5.3% (4.1%, 6.9%)
Z independent with microbiome data (X) 5.2% (4.0%, 6.8%) 4.7% (3.6%, 6.2%)
Z correlated with X 3.6% (2.6%, 4.9%) 2.9% (2.0%, 4.1%)

aData are presented as “proportion (L, U),” where the proportion is a point estimate of type I error rate and the L and the U are the lower and upper bounds of Wilson’s 95% confidence
interval for proportion data. Type I error rates are expected to be ≤ ∼5%.
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FIGURE 1 | Power comparison among the competing methods for a binary outcome variable under different signal types and densities. Abbreviation: O.MiRKAT,
optimal MiRKAT. (A,B) Random signals with a density of 5% and 15%, respectively. (C,D) Phylogenetically clustered signal with a density of 5% and 15%, respectively.

FIGURE 2 | Power comparison among the four competingmethods under signals from sevenmajor lineages. The lineage numbers correspond to node numbers in
the phylogenetic tree used in simulation in the present study. These lineages span ≥80% of the total OTUs and the total abundance. Abbreviations have the same
meaning as in Figure 1.
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than the binary case under a non-phylogenetic signal (Supplementary
Figure S10); however, they remained underpowered under a
phylogenetic signal (Supplementary Figure S10).

In scenario S5, we simulated one and three outliers to assess
the reduction in power when outlier samples were present. The
results indicated that RFtest was the most robust among the
competing methods, and that the presence of several outliers did
not affect the power much for both binary and continuous
outcomes with phylogenetic or non-phylogenetic signals, while
the power of other methods might be considerably reduced
(Figure 5; Supplementary Figure S11).

3.2 Real Data Analysis
In this section, we aimed to compare the results of RFtest, optimal
MiRKAT, aMiSPU, and OMiAT in real-world examples. We re-

analyzed the relationship between outcome variables and
microbiome profiles in two published datasets. The first
example was taken from a study on the throat microbiome
(Charlson et al., 2010). That study investigated the effect of
smoking on human microbiota in the upper respiratory tract.
While detailed information of sample collecting and data
processing procedures can be accessed from Charlson et al.
(2010), a summary is provided here. Nylon-flocked swabs
were taken from the nasopharynx and oropharynx of 62
healthy subjects, including 33 non-smokers and 29 smokers.
From each swab, DNA was extracted using the QIAamp DNA
Stool Minikit (Qiagen) and the V1–V2 region of the 16S rRNA
was amplified. Thereafter, this 16S rRNA was sequenced using a
454 Life Sciences Genome Sequencer FLX instrument (Roche).
The sequence reads were denoised (Quince et al., 2009), analyzed

FIGURE 3 | Power comparison among the competing methods for a binary outcome variable when X and Y are non-linearly associated. The raw OTU abundance
data were transformed using a link function of flog2 (xij) � log2 (xij + 1) (xij ≥ 0). Two signal types, phylogenetic and non-phylogenetic, with a density of 15% were used.

FIGURE 4 | Power comparison among the competing methods when there was interaction between two microbial groups. The outcome variable was binary, and
two signal types, phylogenetic and non-phylogenetic, were investigated. The two microbial groups comprised 13% and 15% of the total OTUs.
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using the QIIME pipeline (Caporaso et al., 2010), and clustered
into OTUs at 97% similarity using UCLUST (Edgar, 2010).

In the original study (Charlson et al., 2010), the association
between smoking and the respiratory tract microbiome was tested
by Permutational Multivariate Analysis of Variance (Anderson,
2001). based on weighted and unweighted UniFrac distances
(Lozupone and Knight, 2005; Lozupone et al., 2007). A
difference in microbial community structure was reported
between smokers and non-smokers (p < 0.05). In the present
study, we re-analyzed the microbiome data and found consistent
results with previous studies (Charlson et al., 2010; Zhao et al.,
2015; Wu et al., 2016). When no covariate was considered, the
p-value estimated by the RFtest was 0.001 while those of the
optimal MiRKAT, the OMiAT, and the aMiSPU were 0.006,
0.008, and 0.009, respectively. When biological sex was included
as a confounder, the estimated p-values became 0.002, 0.009, 0.010,
and 0.005 for the RFtest, the optimal MiRKAT, the OMiAT, and
the aMiSPU, respectively. The RFtest provided more significant
p-values in general, while all competing methods rejected the null
hypotheses at a significance level of 0.01.

Another relevant example was taken from a study of the
distance–decay relationship in microbial ecology (Xue et al.,
2021). This relationship can be portrayed as relatedness of
microbial communities decreases as their spatial distance
increases (Hanson et al., 2012). In brief, surface soil was
collected intact from a paddy field in Wenling, Zhejiang
Province, China (28°21′ N, 121°15′ E) in November 2017.
From the sample, a soil cube (2.0 cm × 2.0 cm × 2.0 cm) was
selected and further divided into 4 × 4 × 4 cubes of which each
had sides 0.5 cm in length. DNA samples were extracted from
these sub-cubes, and the V4–V5 region of the 16S rDNA genes

was amplified and subsequently sequenced using an Illumina
HiSeq platform. After removal of adaptors and quality control,
16s rDNA sequences were aligned using USEARCH11 (https://
www.drive5.com/usearch/) and OTUs were clustered at 97%
identity using UPARSE (Edgar, 2013). Finally, the microbial
communities were rarefied to 41,752 sequences per sample.

As one of the original findings (Xue et al., 2021), a decreased
community similarity, measured by 1 − Bray–Curtis dissimilarity
(Bray and Curtis, 1957) between microbial communities, was
observed as the spatial distance increased in the 64 sub-cubes
(Mantel test, p � 0.001). Herein, we re-examined this
distance–decay association using the RFtest via an assessment
of microbial changes along each spatial axis of the xyz-coordinate
defined in the study of Xue et al. (2021). We found a similar result
that the microbiome was associated with the x- and y-axes, and
p-values by the RFtest were 0.001, 0.001, and 0.310 for the x-, y-,
and z-axes, respectively. Those of the optimal MiRKAT were
0.011, 0.001, and 0.618, respectively; those of the OMiAT were
0.001, 0.001, and 0.265; and those of aMiSPU were 0.006, 0.001,
and 0.135. While all methods discovered a statistically significant
association between microbial changes and the x-axis, the RFtest
reported a more significant p-value than the optimal MiRKAT
and the aMiSPU, rejecting the null hypotheses at a significance
level of 0.01.

4 DISCUSSION

Random forest has been one of the most successful machine
learning methods for microbiome data (Marcos-Zambrano et al.,
2021). The superior predictive performance of random forest is

FIGURE 5 | Power curves of the competing methods when outliers were present. The outcome variable was binary, and two signal types, phylogenetic and non-
phylogenetic, with a density of 15% were assessed. Zero to three outlier samples were included.
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due to its ability to model a complex nonlinear relationship
between the microbiome and the outcome, to capture high-
order interactions among taxa, and to accommodate a large
number of taxa. In this study, we proposed a random forest-
based test (RFtest) to assess the association between the
microbiome and an outcome variable, borrowing the strengths
of random forest in prediction. In RFtest, we incorporated
phylogenetic structure by creating features that accumulate
OTU abundance along the branches of the phylogenetic tree
and used residual permutation to address covariates. Simulation
results showed that RFtest could control type I error rate at the
desired level with or without confounders (Table 1). This approach
was closely linked to the naïve approach (Supplementary Figure
S2); however, the naïve method could not address covariates,
which limits its use in real-world applications.

Our benchmarking study further revealed that RFtest had a clear
edge over the competing methods to detect phylogenetically
clustered signals (Figure 1; Supplementary Figure S11). This is
because our approach incorporates topological information of a
phylogenetic tree G into random forest via creating features that
accumulate leaf OTU abundances. This strategy could also be
explored in other machine learning algorithms to capture a
clustered signal. Conversely, when the signal OTUs are randomly
distributed in the phylogenetic tree, the OMiAT (Koh et al., 2017)
and optimal MiRKAT (Zhao et al., 2015) may become a better
choice than the RFtest (Figure 1A; Supplementary Figure S7A).
Though non-phylogenetic signal cases were less advantageous to
RFtest, we consider that the superior power of RFtest for
phylogenetically clustered signals may be practically more
important, since phylogenetic signals are extensively observed in
microbiome studies, and phylogenetic approaches are of particular
interest in microbiome analysis (Washburne et al., 2018).

Our simulation results also demonstrated the robustness of RFtest
to outliers and its adaptivity to various types of associations (Figures
3–5; Supplementary Figure S9–11). Microbiome composition is
highly variable, which would largely be ascribed to stochasticity
rather than explained (Clooney et al., 2021). Such large biological
variation might consequently result in several outliers in a study.
Remarkably, outliers affected the power of RFtest minimally, and
RFtest was the most robust method to outliers in our benchmarking
study (Figure 5; Supplementary Figure S11). Moreover, microbial
communities have been portrayed as a complex ecosystem, in which
its components closely interact with each other (Zengler and
Zaramela, 2018). These interactions are generally categorized into
two groups—beneficial and neutral relationships, such as mutualism
and commensalism, and antagonistic relationships, such as
competition and predation (Little et al., 2008). For mutualism and
commensalism, they can be depicted as a non-linear, positive
correlation between bacterial lineages and the outcome variable Y.
For antagonistic relationships, a possible signal indicating competitive
exclusion, denoted by Y � 0, would occur when one of two lineages
overwhelms the other, denoted by X1 (+), X2 (–); otherwise, Y � 1
when X1, X2 (+) or X1, X2 (–). Therefore, they would be identified as
interaction effects. Notably, our results showed that the RFtest was
efficient in discovering a non-linear relationship (Figure 3 & S9) as
well as an interaction effect (Figure 4& S10). Given the relatively high
performance of the RFtest under these complex conditions (Figures

3–5, S9, S10& S11), it may be projected that the RFtest can be flexibly
applied to a wide range of data structures to ascertain associations
between a microbiome profile X and an outcome variable Y.

There are several limitations for our proposed method. First,
because of the use of bootstrapping in the random forest algorithm,
RFtest can be computationally intensive. For example, it took 68 s
and 70MB in memory using a single core on a laptop computer to
test the dataset of throat microbiome in our first real data example,
compared to 2–4 s and 60–100MB memory usage of its
counterparts. Although computation is usually not a problem for
a small dataset, more time would be required for larger datasets. The
computation time of random forest increases linearly with the
number of variables, i.e., p, and approximately linearly with the
sample size n (Wright and Ziegler, 2017). To accelerate the
computation of RFtest, we have implemented parallel computing
in our software, where each permutation could be run in parallel.
Moreover, we could perform sparsity-based filtering to reduce the
number of input features to speed up the computation, without
affecting the power much (Supplementary Figure S4). Another
limitation may be that current random forest test could not as
effectively identify random, non-phylogenetical signals as OMiAT
(Figures 1A,B; Supplementary Figures S7A,B). Increasing the
power for non-phylogenetic signal is our future direction of
research, for example, by leveraging multiple weighting schemes
in RFtest from external data with an omnibus test (Li et al., 2020).
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Biological time series data plays an important role in exploring the dynamic changes of
biological systems, while the determinate patterns of association between various
biological factors can further deepen the understanding of biological system functions
and the interactions between them. At present, local trend analysis (LTA) has been
commonly conducted in many biological fields, where the biological time series data
can be the sequence at either the level of gene expression or OTU abundance, etc., A local
trend score can be obtained by taking the similarity degree of the upward, constant or
downward trend of time series data as an indicator of the correlation between different
biological factors. However, a major limitation facing local trend analysis is that the
permutation test conducted to calculate its statistical significance requires a time-
consuming process. Therefore, the problem attracting much attention from
bioinformatics scientists is to develop a method of evaluating the statistical significance
of local trend scores quickly and effectively. In this paper, a new approach is proposed to
evaluate the efficient approximation of statistical significance in the local trend analysis of
dependent time series, and the effectiveness of the new method is demonstrated through
simulation and real data set analysis.

Keywords: local trend analysis, dependent time series, statistical significance, Markov chain model, spectral
decomposition theory

1 INTRODUCTION

Due to the rapid development of molecular biology technology and the significant reduction to
sequencing cost, a large amount of biological time series data has been generated in molecular
biological research over the past decade. Among the statistical methods used for time series, local
similarity analysis (LSA) has been extensively carried out to identify the correlation between various
factors, which can be the genes used in gene expression analysis or operational taxonomic units (OTUs) in
metagenomics (Qian et al., 2001; Ruan et al., 2006). Extending the LSA method to the study on the local
correlation of repeated time series data, Xia et al. (2011) proposed the extended Local Similarity Analysis
method(eLSA), where the confidence interval of LSAwas constructed by bootstrap. Due to the ease to use
allowed by LSA, it has been widely applied in various fields, for example gene expression profiling (Ji and
Tan, 2004; Balasubramaniyan et al., 2005), gene regulatory network construction (Madeira et al. (2010)),
symbiotic relationship pattern recognition (Beman et al., 2011; Steele et al.. 2011; Goncalves andMadeira,
2014; Cram et al., 2015) etc. Initially, the permutation test is commonly performed to evaluate the
statistical significance of LSA, however, both the approximations of statistical significance and
permutation test require the assumption that the time series are independent identically distributed
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(i.i.d.), which can be violated in most time series data. In order to
analyze the statistical significance of LSA for stationary time series,
an approach based on moving block bootstrap was proposed by
Zhang et al. (2018), and it is referred to as Moving Block Bootstrap
LSA (MBBLSA). To assess statistical significance of LSA for
stationary time series data, Zhang et al. (2019) developed a
theoretical method, which is known as Data Driven LSA
(DDLSA). According to DDLSA, long run variance estimated by
a nonparametric kernel method is applied to adjust the asymptotic
theory of LSA, on the basis of which the limit distribution of LS score
for stationary time series can be obtained.

As suggested by Ji andTan (2004), the degree of similarity shownby
rising, unchanged, or falling trends in time series data can be taken as
another indicator of the correlation among various biological factors,
which is known as local trend analysis (LTA). In LTA, local similarity
analysis is performed on the transformed trend sequence, and the
corresponding similarity measure is referred to as the local trend score.
Local trend analysis is an extension of local similarity analysis, which
can better preserve the changing trend of time series. In addition, the
discretization of the original sequence can transform some non-
stationary time series into stationary Markov series, which is a big
advantage of local trend analysis. He and Zeng (2006) applied dynamic
programming algorithm to calculate this value, and then conducted
permutation test to evaluate statistical significance. Currently, LTA has
been widely adopted in many biological fields, including gene
association network (He et al.. 2012; Goncalves et al., 2012; Seno
et al., 2006; Skreti et al.. 2014) and transcription factor network (Wu
et al., 2010). Nevertheless, it takes long to evaluate the statistical
significance of local trend analysis through permutation test. In this
case, bioinformatics scientists have shifted attention to exploring how
the statistical significance of local trend scores can be evaluated quickly
and effectively. By extending the statistical significance evaluation
method of local similarity analysis theory to local trend analysis,
Xia et al. (2015) developed the statistical significance evaluation
method of local trend analysis. However, this method is effective
only when the original sequence is independent and identically
distributed. On the basis of this and prior studies, this paper
improves the approximation method proposed by Xia et al. to
develop a general method of statistical significance evaluation for
local trend analysis.

This paper is organized as follows. In Section 2, an
introduction is made of the concept of local trend analysis,
and a general method of theoretical evaluation regarding the
statistical significance of local trend scores is proposed. In Section
3, the effectiveness of the new method is demonstrated by
simulation and real data analysis. Finally, the conclusions and
future work are indicated in Section 4.

2 MATERIAL AND METHODS

2.1 Introduction to Local Trend Analysis
The first step in local trend analysis is to convert time series data
into a change trend sequence. In general, if the change trend is
indicated by two states, decline and rise, the change trend state set
can be set as Σ = (D, U) or Σ = (−1, 1). If the change trend is
indicated by three states decline, unchanged and rise, the change

trend state set can be set as Σ = (D, N, U) or Σ = (−1, 0, 1).
Undoubtedly, a collection with more changing trend states can be
chosen, but it is rare in practice. For a given time series X1, X2, . . .,
Xn, they can be converted into dXi (i � 1, 2, . . . , n − 1) as follows:

when Xi ≠ 0,

dX
i �

1 if
Xi+1 −Xi

|Xi| ≥ t

0 if − t<Xi+1 −Xi

|Xi| < t

−1 if
Xi+1 −Xi

|Xi| ≤ − t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (1)

where t ≥ 0 is a threshold to determine whether there is a trend of
change; when Xi = 0,

dX
i �

1 if Xi � 0, Xi+1 > 0
0 if Xi � 0, Xi+1 � 0
−1 if Xi � 0, Xi+1 < 0

⎧⎪⎨⎪⎩ . (2)

When t = 0, dXi involves only two states, and the change trend
state set is Σ = (−1, 1); when t ≠ 0, dXi involves three states, and the
change trend state set is Σ = (−1, 0, 1). It is assumed that two time
seriesXt and Yt are of the same length, t = 1, 2, . . ., n. First of all,Xt

and Yt are converted into tred series dXi and dYi , i = 1, 2, . . ., n−1.
Given the maximum time delayD > 0, the local similarity analysis
is conducted on the transformed trend sequence dXi and dYi to
obtain the local trend score LT(D), i.e.,

LT D( ) � max
0≤i,j,k≤n;|i−j|≤D

∑k−1
l�0

dX
i+ld

Y
j+l

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣. (3)

2.2 Statistical Significance Analysis of Local
Trend Score
After the local trend score is obtained, it is necessary to
evaluate its statistical significance which can be estimated
by means of permutation test. In the permutation test,
however, only the p value obtained by fully permutating the
original data is regarded as an accurate estimate. Since the full
permutation is a lengthy process, part permutation is usually
selected on a random basis. The p value obtained at this time is
limited to an approximate estimate. Besides, the p value
obtained may deviate from the actual p value if the number
of replacements is too small.

In case that the asymptotic distribution result of the local trend
score is obtainable, then the p value of the local trend score can be
obtained through the limit distribution. Probability statisticians have
obtained the asymptotic distribution theory of the local similarity
scores of Markov chains with a mean value of 0, finite second-order
moment, and finite subset in R (Feller, 1951; Daudin et al., 2003;
Etienne and Vallois, 2004), as shown in the following theorem.

Theorem 1. Assume that Zi, i = 1, 2, . . ., n, Markov chains with a
mean value of 0, finite second-order moment, and finite subset in
R. AssumeE](Z1) � 0, σ2 � E](Z2

1) + 2∑∞
k�1E](Z1Zk+1), where ν

is the stationary distribution of Zi. Sk is the randomwalk process of Zi:
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S0 � 0, Sk � ∑k
i�1

Zi, 1≤ k≤ n.

Let

Hn � max
0≤i≤j≤n

Sj − Si( ) � max
0≤i≤j≤n

Zi+1 +/ + Zj( ).
Then Hn/(σ �

n
√ ) is the convergence in probability of W*,

where W* = max0≤v≤1|Wv|, Wt is a standard Brownian motion.
Xia et al. (2015) used the Theorem 1 to obtain a theoretical

evaluation method of statistical significance for local trend analysis.
Different from the theoretical evaluation method of statistical
significance for local similarity analysis, in local trend analysis,
even if the original sequence Xt is independent, the transformed
trend sequence dXi (i � 1, 2, . . . , n − 1) is not independent, because
dXi and dXi+1 both depend on Xi. In order to facilitate the use of
Theorem 1 to calculate the p value of the local trend score, the
following assumptions are proposed.

Assumption 1. dXi and dYi are mutually independent first-order
Markov chains, and the product of dXi and dXi is also a first-order
Markov chain, namely

P dX
i d

Y
i |dX

i−1d
Y
i−1, . . . , d

X
1 d

Y
1( ) � P dX

i d
Y
i |dX

i−1d
Y
i−1( ). (4)

Under the Assumption 1, dXi and dYi are irreducible non-
periodic Markov chains, so the theoretical method in Feller
(1951), Daudin et al. (2003) and Etienne and Vallois (2004)
can be directly applied. Xia et al. (2015) suggested a method of
theoretically evaluating statistical significance for local trend
analysis, with the approximate p value of the local trend score
LT(D) obtained as:

P LT D( )≥ sD( ) � P
LT D( )
σ

�
n

√ ≥
sD

σ
�
n

√( ) ≈ LD
sD

σ
�
n

√( ), (5)

where sD represents the local trend score of Xt and Yt, and the
definition of the tail probability distribution function LD(x) is
expressed as follows:

LD x( ) �
1−82D+1 ∑∞

k�1

1
x2

+ 1

2k−1( )2π2
{ }exp − 2k−1( )2π2

2x2
{ }⎡⎣ ⎤⎦2D+1

. (6)

It can be found out that σ2 plays a vital role in the p value
approximation Eq. 5 of the local trend score, which is referred to as
the variance of Markov chain. From the formula
σ2 � E](Z2

1) + 2∑∞
k�1E](Z1Zk+1), it can be seen that when the

stationary distribution of Markov chain ] and k step transition
probability matrix are known, E](Z1Zk) (k≥ 1) can be obtained.
Thus, σ2 can be obtained easily through calculation. Xia et al.
presented the display expression of σ2 when the original sequence
is independent and identically distributed. In practice, however, the
original sequence contradicts the assumption of independent and
identical distribution. Zhang et al. (2019) proposed an asymptotic
statistical significance for local similarity analysis, with the
approximate p value of the local similarity score LS(D) similar
to LT(D):

P LS D( )≥ sD( ) � P
LS D( )
ω

�
n

√ ≥
sD

ω
�
n

√( ) ≈ LD
sD

ω
�
n

√( ), (7)

where ω � limn→∞

������������
var(∑n

i�1Zi)/n
√

is referred to as the long-run
variance, andLD(x) is expressed as Eq. 6. BecauseMarkov chains
can be regarded as time series, they also satisfy Eq. 7. It is obvious
that ω for Markov chains is σ. Therefore, we can get the statistical
significance for local trend analysis of non-independent
identically distributed time series if the σ2 is obtained.

Next, the formula of σ2 is proposed for the local trend score of the
time series in general using the spectral decomposition theory of the
matrix.

2.2.1 Spectral Decomposition Theorem of Matrix
First, the definition and properties of simple matrix are given.

Definition 1. Let matrix A ∈ Cn×n, λi be the differential eigenvalues
of A, i = 1, 2, . . ., s, and the characteristic polynomial of A is

det λI − A( ) � λ − λ1( )m1 λ − λ2( )m2 . . . , λ − λs( )ms ,

where ∑s
i�1mi � n. Call mi the algebraic multiplicity of the

eigenvalues λi of the matrix A.

Definition 2. The solution space Vλi of the homogeneous equation
set Ax = λix (i = 1, 2, . . ., s) is called the eigenspace of A
corresponding to the eigenvalue λi, and the dimension of Vλi is
called the geometric multiplicity of the eigenvalue λi of the matrix A.

Definition 3. If the algebraic multiplicity of each eigenvalue of the
matrix A is equal to its geometric multiplicity, then A is called a
simple matrix.

Theorem 2. (Spectral decomposition theorem) Let matrix A ∈
Cn×n, λi be the differential eigenvalues of A, mi is the algebraic
multiplicity of λi, i = 1, 2, . . ., s, then the sufficient and necessary
condition of A being a simple matrix is that there is a unique Ei ∈
Cn×n, i = 1, 2, . . ., s, so

1) ∑s
i�1Ei � I.

2) EiEj � Ei, i � j
0, i ≠ j

{ .

3) A � ∑s
i�1λiEi.

2.2.2 Two-State Markov Chain Model
Firstly, the two-state Markov chain model is studied. When t = 0,
dXi and dYi , i = 1, 2, . . ., n−1 can be obtained by discretizing
the original sequence Xt and Yt. Assume that the distribution of
the original sequence is symmetrical, and the mean is 0.
Also assume that dXi is a first-order stationary Markov chain.
Since the original sequence distribution is symmetrical, the
stationary distribution of dXi is P(dXi � 1)� P(dXi �−1)� 1/2,
E((dX1 )2)� 12 × 1

2 + (−1)2 × 1
2 � 1. It is assumed that the

transition probability matrices of dXi and dYi are TX and TY

respectively, as expressed below.
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It can be obtained by calculation, E(dX1 dXk+1) � (2aX − 1)k,
E((dX1 )2) � E((dY1 )2) � 1, E(dY1 dYk+1) � (2aY − 1)k
(Supplementary Material S1). Under the null hypothesis that Xi

and Yi are uncorrelated,

σ2 � E dX
1 d

Y
1( )2( ) + 2∑∞

k�1
E dX

1 d
X
k+1( ) dY

1 d
Y
k+1( )( )

� E dX
1( )2( )E dY

1( )2( ) + 2∑∞
k�1

E dX
1 d

X
k+1( )E dY

1 d
Y
k+1( )

� 1 + 2∑∞
k�1

2aX − 1( )k 2aY − 1( )k

� 1 + 2 × lim
k→∞

2aX − 1( ) 2aY − 1( ) − 2aX − 1( )k+1 2aY − 1( )k+1
1 − 2aX − 1( ) 2aY − 1( )

� 1 + 2 ×
2aX − 1( ) 2aY − 1( )

1 − 2aX − 1( ) 2aY − 1( )
� 1 + 2aX − 1( ) 2aY − 1( )
1 − 2aX − 1( ) 2aY − 1( ).

(9)
thus, when t = 0, the p value of the local trend score LT(D) is

written as

P LT D( )≥ sD( ) � LD
sD

σ
�
n

√( ), (10)

where sD indicates the local trend score of Xi and
Yi, σ is obtained using the Eq. 9, and LD(x) is defined
as Eq. 6.

2.2.3 Three-State Markov Chain Model
Secondly, the three-state Markov chain model is studied.
When t ≠ 0, dXi and dYi are three-state Markov chains.
Similarly, it is assumed that the transition probability
matrices of dXi and dYi are TX and TY respectively, as
expressed below.

It can be obtained by calculation,
E(dX1 dXk+1)�φX

1 T
X,k
1,1 +φX

−1T
X,k
−1,−1 −φX

1 T
X,k
1,−1 −φX

−1T
X,k
−1,1, E((dX1 )2)�

φX
−1 +φX

1
, E((dY1 )2)� φY

−1 +φY
1
, E(dY1 dYk+1)�φY

1T
Y,k
1,1 +φY

−1T
Y,k
−1,−1 −

φY
1T

Y,k
1,−1 −φY

−1T
Y,k
−1,1 (Supplementary Material S2). Under the null

hypothesis that Xi and Yi are uncorrelated,

σ2 � E dX
1 d

Y
1( )2( ) + 2∑∞

k�1
E dX

1 d
X
k+1( ) dY

1 d
Y
k+1( )( )

� E dX
1( )2( )E dY

1( )2( ) + 2∑∞
k�1

E dX
1 d

X
k+1( )E dY

1 d
Y
k+1( )

� φX
−1 + φX

1( ) φY
−1 + φY

1( )
+ 2∑∞

k�1
φX
1 T

X,k
1,1 + φX

−1T
X,k
−1,−1 − φX

1 T
X,k
1,−1 − φX

−1T
X,k
−1,1( )

φY
1T

Y,k
1,1 + φY

−1T
Y,k
−1,−1 − φY

1T
Y,k
1,−1 − φY

−1T
Y,k
−1,1( )

� 4φX
1 φ

Y
1 + 2φX

1 φ
Y
1

× ∑∞
k�1

TX,k
1,1 + TX,k

−1,−1 − TX,k
1,−1 − TX,k

−1,1( ) TY,k
1,1 + TY,k

−1,−1−TY,k
1,−1− TY,k

−1,1( )
� 4φX

1 φ
Y
1 + 2φX

1 φ
Y
1 ∑∞

k�1
2 bX − cX( )k × 2 bY − cY( )k

� 4φX
1 φ

Y
1 1 + 2 lim

k→∞

bX − cX( ) bY − cY( ) − bX − cX( )k+1 bY − cY( )k+1
1 − bX − cX( ) bY − cY( )( )

� 4
dX

1 − bX − cX + 2dX
( )
× dY

1 − bY − cY + 2dY
( ) 1 + bX − cX( ) bY − cY( )

1 − bX − cX( ) bY − cY( )( ).
(12)

Thus, when t ≠ 0, the p value of the local trend score LT(D) is
expressed as

P LT D( )≥ sD( ) � LD
sD

σ
�
n

√( ), (13)

where sD represents the local trend score ofXi and Yi, σ is obtained
using the Eq. 12, and LD(x) is defined as Eq. 6.

2.2.4 Mixed-State Markov Chain Model
Thirdly, the mixed-state Markov chain model is studied. When
t ≠ 0, dXi or dYi is potentially a two-state Markov chain as well.
At this time, if dXi and dYi are both two-state Markov chains, σ2

can be estimated using the two-state Markov chain model. The
circumstance where only dXi or dYi is a two-state Markov chain
is defined as a mixed-state Markov chain model. Without any
compromise on generality, it is supposed that dXi is a two-state
Markov chain while dYi is a three-state Markov chain.

It can obtained by the previous derivation that

E dX
1( )2( ) � 1,

E dX
1 d

X
k+1( ) � 2aX − 1( )k,

E dY
1( )2( ) � φY

−1 + φY
1 � 2dY

1 − bY − cY + 2dY
,

E dY
1 d

Y
k+1( ) � φY

1T
Y,k
1,1 + φY

−1T
Y,k
−1,−1 − φY

1T
Y,k
1,−1 − φY

−1T
Y,k
−1,1,

� 2
dY

1 − bY − cY + 2dY
( ) bY − cY( )k.

So,
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σ2 � E dX
1 d

Y
1( )2( ) + 2∑∞

k�1
E dX

1 d
X
k+1( ) dY

1 d
Y
k+1( )( )

� E dX
1( )2( )E dY

1( )2( ) + 2∑∞
k�1

E dX
1 d

X
k+1( )E dY

1 d
Y
k+1( )

� 2dY

1 − bY − cY + 2dY
+ 4dY

1 − bY − cY + 2dY
∑∞
k�1

2aX − 1( )k bY − cY( )k

� 2dY

1 − bY − cY + 2dY
( ) ×

1 + 2 lim
k→∞

2aX − 1( ) bY − cY( ) − 2aX − 1( )k+1 bY − cY( )k+1
1 − 2aX − 1( ) bY − cY( )( )

� 2dY

1 − bY − cY + 2dY
( ) 1 + 2aX − 1( ) bY − cY( )

1 − 2aX − 1( ) bY − cY( )( ).
(14)

Thus, when t ≠ 0 and the circumstance arises that dXi and dYi
are not both three-state Markov chains, the p value of the local
trend score LT(D) is expressed as

P LT D( )≥ sD( ) � LD
sD

σ
�
n

√( ), (15)

where sD represents the local trend score ofXi and Yi, σ is obtained
using the Eq. 14, and LD(x) is defined as Eq. 6.

In summary, the p value approximation formula has been
obtained for the local trend score of a two-state, three-state or
mixed-state Markov chain. Despite a lack of rigorous
mathematical proof for the aforementioned p value
approximation method, it is still discovered that the p value
obtained using this algorithm is approximately equal to the given
significance level by simulation, especially when the sample size is
large. Therefore, the results obtained using this method are
deemed approximately valid.

2.2.5 Estimation of Markov Chain Transition
Probability Matrix
In order to calculate the p value of the local trend score, it is
essential to estimate the variance σ2, and the estimation of the
variance depends only on the transition probability matrix of the
Markov chain. With the original sequence considered as
independent and identically distributed, Xia et al. (2015)
deduced the value of parameter in transition probability
matrix of the two-state (t = 0) and three-state (t = 0.5)
Markov chain. When the original series are non-independent
and identically distributed, however, the estimate is inaccurate. It
is detailed below how to estimate the transition probability matrix
of a two-state or three-state Markov chain under normal
circumstances.

For a two-state Markov chain, since both T−1,−1 and T1,1 are
equal to a, the mean of n−1,−1/n−1,· and n1,1/n1,· is taken as the final
estimate of a, that is, â � 1

2 (n−1,−1n−1,· + n1,1
n1,· ), where n−1,· = n−1,−1 + n−1,1,

n1,· = n1,−1 + n1,1, nu,v represents the number of (di, di+1) = (u, v),
u, v ∈ (−1, 1), i = 1, 2, . . ., n − 2.

Likewise, for a three-state Markov chain, since both T−1,−1 and
T1,1 are equal to b, the mean of n−1,−1/n−1,· and n1,1/n1,· is treated
as the final estimate of b, that is, b̂ � 1

2 (n−1,−1n−1,· + n1,1
n1,· ), where n−1,· =

n−1,−1 + n−1,0 + n−1,1, n1,· = n1,−1 + n1,0 + n1,1, and nu,v represents

the number of (di, di+1) = (u, v), u, v ∈ (−1, 0, 1), i = 1, 2, . . ., n−2.
Similarly, the estimate of c is ĉ � 1

2 (n−1,1n−1,· +
n1,−1
n1,· ), and the estimate of

d is d̂ � 1
2 (n0,−1+n0,1n0,· ), where n0,· = n0,−1 + n0,0 + n0,1.

In this article, the method put forward by Xia et al. is denoted
as TLTA (Theoretical Local Trend Analysis), while the method
proposed in this paper is referred to as STLTA (Stationary
Theoretical Local Trend Analysis).

3 RESULTS AND DISCUSSION

3.1 Simulation
The effects on the correlation test of time series data are explored
by conducting Permutation test, TLTA and STLTA respectively.
The following three models are commonly used and familiar to
researchers, which can better reflect the correlation between two
time series, especially the correlation of two time series can be
adjusted by changing the coefficient values. In order to study the
difference in type I error rate and significance level among
different methods under the original hypothesis, simulation
data is generated using the following three models: The effects
on the correlation test of time series data are explored by
conducting Permutation test, TLTA and STLTA respectively.
In order to study the difference in type I error rate and
significance level among different methods under the original
hypothesis, simulation data is generated using the following three
models:

1) AR(1) model:

Xt � ρ1Xt−1 + εXt ,
Yt � ρ2Yt−1 + εYt .

(16)

2) ARMA(1,1) model:

Xt � ρ1Xt−1 + εXt + 0.5εXt−1,
Yt � ρ2Yt−1 + εYt + 0.5εYt−1.

(17)

3) ARMA(1,1)-TAR(1) model:

Xt � ρ1Xt−1 + εXt + 0.5εXt−1,

Yt � ρ2Yt−1 + εYt , Yt−1 ≤ − 1
0.5Yt−1 + εYt , Yt−1 > − 1.

{ (18)

Where 0 < |ρ1|, |ρ2| < 1, εXt and εYt are independent standard
normal random variables. All the three models are stationary. For
each model, it starts by generating X1 and Y1 through the
standard normal distribution, before the generation of Xt and
Yt, i = 2, . . ., 100, + , n using the above-mentioned model. Finally,
the first 100 samples are discarded, and the remaining n samples
are treated as real Xt and Yt. This data generation process is
effective in ensuring the stationarity of the time series.

With consideration given to the impact of autoregressive
coefficients ρ1, ρ2 and sample size n on the type I error rate
for the different methods with the three models, we choose six
different combinations of autoregressive coefficients ρ1, ρ2, and
respectively take the values of −0.5, −0.5; 0, 0; 0.3, 0.3; 0.3, 0.5; 0.5,
0.5; 0.5, 0.8. For each combination of autoregressive coefficients,
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the sample size n is set to 20, 40, 60, 80, 100, 200. For simplicity,
we select the time delay D = 0. In all simulations, the significance
level is set to 0.05.

When t = 0, the original sequence is converted into a two-state
Markov chain, and the type I error rates in the AR(1) model of
different methods are presented in Table 1. The results show that
when ρ1 = −0.5, ρ2 = −0.5, neither Permutation test nor TLTA can
control the type I error rate even if the sample size n is small, and
their type I error rates are getting bigger as the sample size
increases. At this time, the type I error rate of STLTA gradually
approaches the significance level 0.05 with the increase of sample
size. When ρ1 = 0, ρ2 = 0, Xt and Yt are all independent and
identically distributed sequences, the type I error rates of the three
methods are very close to the given significance level, and are

getting closer as the sample size increases. When ρ1 > 0, ρ2 > 0, the
type I error rate of Permutation test decreases with the increase of
sample size n, and gradually deviates from the significance level
0.05, while the type I error rate of STLTA is closer to the
significance level than that of TLTA. For different
autocorrelation coefficients, the type I error rates of
Permutation test and TLTA show a declining trend with the
increase of ρ, and they are increasingly deviant from the
significance level. By contrast, STLTA shows an upward trend
with the rise of ρ, and it gradually approaches the significance
level, suggesting that STLTA is more suitable for stationary time
series data. The performances of these three methods in
ARMA(1,1) and ARMA(1,1)-TAR(1) models are shown in the
Tables 2, 3 respectively, which are similar to that in the AR(1)

TABLE 1 | Type I error rate for different methods (the third to fifth columns) in the
AR(1) model whent = 0. The first and second columns represent different
combinations of autoregressive coefficients and sample sizes. The number of
permutation tests is 1,000, the number of repeated simulations is 10,000, and the
significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.1413 0.0470 0.0040
40 0.1444 0.0764 0.0128
60 0.1378 0.0880 0.0169
80 0.1472 0.1040 0.0213
100 0.1380 0.1046 0.0238
200 0.1465 0.1059 0.0283

0, 0 20 0.0610 0.0170 0.0119
40 0.0613 0.0270 0.0209
60 0.0605 0.0311 0.0257
80 0.0545 0.0363 0.0282
100 0.0551 0.0360 0.0300
200 0.0581 0.0367 0.0357

0.3, 0.3 20 0.0518 0.0109 0.0136
40 0.0451 0.0177 0.0272
60 0.0475 0.0179 0.0285
80 0.0408 0.0238 0.0310
100 0.0435 0.0260 0.0349
200 0.0428 0.0254 0.0371

0.3, 0.5 20 0.0459 0.0092 0.0135
40 0.0397 0.0165 0.0288
60 0.0379 0.0181 0.0314
80 0.0407 0.0233 0.0334
100 0.0359 0.0237 0.0354
200 0.0345 0.0221 0.0424

0.5, 0.5 20 0.0398 0.0091 0.0159
40 0.0414 0.0159 0.0284
60 0.0365 0.0176 0.0314
80 0.0369 0.0199 0.0343
100 0.0355 0.0213 0.0374
200 0.0344 0.0215 0.0428

0.5, 0.8 20 0.0412 0.0088 0.0161
40 0.0388 0.0134 0.0277
60 0.0338 0.0145 0.0342
80 0.0319 0.0165 0.0357
100 0.0337 0.0214 0.0411
200 0.0314 0.0170 0.0402

TABLE 2 | Type I error rate for different methods (the third to fifth columns) in the
ARMA(1,1) model whent = 0. The first and second columns represent different
combinations of autoregressive coefficients and sample sizes. The number of
permutation tests is 1,000, the number of repeated simulations is 10,000, and the
significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.0617 0.0166 0.0112
40 0.0609 0.0262 0.0219
60 0.0557 0.0323 0.0289
80 0.0562 0.0333 0.0267
100 0.0538 0.0354 0.0311
200 0.0572 0.0338 0.0329

0, 0 20 0.0444 0.0109 0.0210
40 0.0463 0.0170 0.0380
60 0.0455 0.0213 0.0404
80 0.0422 0.0270 0.0464
100 0.0397 0.0242 0.0444
200 0.0428 0.0260 0.0539

0.3, 0.3 20 0.0472 0.0109 0.0240
40 0.0497 0.0168 0.0426
60 0.0413 0.0187 0.0404
80 0.0395 0.0222 0.0421
100 0.0421 0.0261 0.0545
200 0.0418 0.0250 0.0559

0.3, 0.5 20 0.0483 0.0095 0.0218
40 0.0447 0.0172 0.0410
60 0.0438 0.0198 0.0427
80 0.0453 0.0230 0.0432
100 0.0399 0.0240 0.0515
200 0.0420 0.0231 0.0505

0.5, 0.5 20 0.0503 0.0097 0.0220
40 0.0409 0.0186 0.0403
60 0.0455 0.0191 0.0417
80 0.0445 0.0235 0.0460
100 0.0399 0.0271 0.0509
200 0.0342 0.0257 0.0591

0.5, 0.8 20 0.0492 0.0093 0.0202
40 0.0430 0.0158 0.0337
60 0.0399 0.0193 0.0372
80 0.0435 0.0206 0.0366
100 0.0359 0.0204 0.0418
200 0.0381 0.0199 0.0462
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model. Under these two models, when ρ1 = −0.5, ρ2 = −0.5, Xt is
an independent and identically distributed sequence, so the type I
error rates of Permutation test, TLTA and STLTA are close to the
significance level. In other cases, the type I error rate of STLTA is
closer to the significance level than that of TLTA, while the type I
error rate of Permutation test gradually gets away from the
significance level as the sample size increases.

When t = 0.5, the original sequence is converted into a three-
state Markov chain, and the type I error rates in the AR(1) model
of different methods are presented in Table 4. In the AR(1)
model, when ρ1 = −0.5, ρ2 = −0.5, the type I error rate of
Permutation test still far exceeds the given significance level
0.05 even if the sample size is very small (n = 20), and TLTA
cannot control the type I error rate even when the sample size is

large. When ρ1 = 0, ρ2 = 0, the type I error rate of Permutation test
is closer to the significance level than that of TLTA and STLTA,
and the type I error rate of TLTA is far less than the significance
level. When ρ1 > 0, ρ2 > 0, similar to the case of t = 0, the type I
error rate of Permutation test also decreases with the increase of
sample size n, and gradually deviates from the significance level.
The type I error rate of TLTA is much smaller than the
significance level, while that of STLTA shows an upward trend
with the rise of the sample size n and gradually approaches the
significance level. For different combinations of autocorrelation
coefficients, the type I error rates of permutation test and TLTA
decline with the increase of ρ, with a gradual deviation from the
significance level, with TLTA in particular. Even though the
autocorrelation is extremely weak, the type I error rate is
far less than 0.05, even below 0.01. While STLTA performs

TABLE 3 | Type I error rate for different methods (the third to fifth columns) in the
ARMA(1,1)-TAR(1) model whent = 0. The first and second columns represent
different combinations of autoregressive coefficients and sample sizes. The
number of permutation tests is 1,000, the number of repeated simulations is
10,000, and the significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.0563 0.0127 0.0119
40 0.0527 0.0194 0.0220
60 0.0463 0.0247 0.0282
80 0.0481 0.0279 0.0285
100 0.0481 0.0264 0.0291
200 0.0437 0.0277 0.0341

0, 0 20 0.0437 0.0083 0.0147
40 0.0436 0.0150 0.0270
60 0.0393 0.0177 0.0350
80 0.0412 0.0212 0.0377
100 0.0354 0.0210 0.0382
200 0.0362 0.0221 0.0435

0.3, 0.3 20 0.0395 0.0076 0.0172
40 0.0382 0.0126 0.0332
60 0.0393 0.0136 0.0349
80 0.0363 0.0183 0.0385
100 0.0353 0.0195 0.0411
200 0.0296 0.0186 0.0470

0.3, 0.5 20 0.0372 0.0068 0.0199
40 0.0345 0.0128 0.0328
60 0.0356 0.0137 0.0336
80 0.0328 0.0174 0.0382
100 0.0315 0.0208 0.0437
200 0.0354 0.0184 0.0448

0.5, 0.5 20 0.0343 0.0067 0.0170
40 0.0338 0.0130 0.0337
60 0.0305 0.0130 0.0367
80 0.0319 0.0196 0.0400
100 0.0309 0.0160 0.0399
200 0.0251 0.0163 0.0463

0.5, 0.8 20 0.0410 0.0061 0.0176
40 0.0316 0.0127 0.0322
60 0.0330 0.0142 0.0354
80 0.0323 0.0170 0.0377
100 0.0273 0.0181 0.0414
200 0.0294 0.0189 0.0466

TABLE 4 | Type I error rate for different methods (the third to fifth columns) in the
AR(1) model whent = 0.5. The first and second columns represent different
combinations of autoregressive coefficients and sample sizes. The number of
permutation tests is 1,000, the number of repeated simulations is 10,000, and the
significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.2236 0.0275 0.0400
40 0.2155 0.0520 0.0134
60 0.2210 0.0508 0.0119
80 0.2158 0.0665 0.0166
100 0.2159 0.0682 0.0178
200 0.2213 0.0702 0.0226

0, 0 20 0.0737 0.0039 0.0263
40 0.0628 0.0059 0.0188
60 0.0594 0.0075 0.0220
80 0.0572 0.0089 0.0247
100 0.0552 0.0084 0.0246
200 0.0580 0.0107 0.0325

0.3, 0.3 20 0.0379 0.0009 0.0276
40 0.0296 0.0012 0.0216
60 0.0296 0.0011 0.0277
80 0.0229 0.0025 0.0304
100 0.0270 0.0017 0.0324
200 0.0241 0.0021 0.0398

0.3, 0.5 20 0.0243 0.0006 0.0229
40 0.0174 0.0010 0.0246
60 0.0170 0.0013 0.0263
80 0.0184 0.0018 0.0337
100 0.0184 0.0012 0.0334
200 0.0152 0.0011 0.0355

0.5, 0.5 20 0.0196 0.0002 0.0175
40 0.0149 0.0005 0.0221
60 0.0102 0.0006 0.0282
80 0.0105 0.0003 0.0311
100 0.0124 0.0005 0.0350
200 0.0104 0.0003 0.0430

0.5, 0.8 20 0.0099 0.0001 0.0159
40 0.0052 0.0001 0.0194
60 0.0036 0.0002 0.0286
80 0.0032 0.0001 0.0303
100 0.0033 0.0000 0.0325
200 0.0017 0.0000 0.0377
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well in controlling the type I error rate across all
autocorrelation coefficient combinations. The performances
of these three methods in ARMA(1,1) and ARMA(1,1)-
TAR(1) models are shown in the Tables 5, 6. In these two
models, the type I error rate of TLTA is always far less than the
significance level. When ρ1 = −0.5, ρ2 = −0.5, the type I error
rate of Permutation test is closer to the significance level than
that of STLTA. But in other cases, the type I error rate of
Permutation test is much smaller than the significance level,
and it increasingly deviants from the significance level with the
increase of sample size and autocorrelation, while the type I
error rate of STLTA gradually approaches the significance level
as the sample size increases.

According to the analysis of the results, it can be figured out
that STLTA is capable to control the type I error rate under

different models, while the permutation test and TLTA are
ineffective in this respect, which evidences that STLTA is
more effective in utilizing the internal properties of time series
than the other two methods, and that it can achieve a more
accurate approximation of the local trend score p value.

3.2 Empirical Analysis
3.2.1 Data set of Moving Pictures of Human
Microbiome
The STLTA method is applied to the Moving Pictures of Human
Microbiome (MPHM) data set, for comparison with the results as
obtained from DDLSA, TLTA and Permutation test. The data set
of MPHM was collected from two healthy subjects, one male
(“M3”) and one female (“F4”). Both individuals were sampled

TABLE 5 | Type I error rate for different methods (the third to fifth columns) in the
ARMA(1,1) model whent = 0.5. The first and second columns represent
different combinations of autoregressive coefficients and sample sizes. The
number of permutation tests is 1,000, the number of repeated simulations is
10,000, and the significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.0767 0.0033 0.0269
40 0.0609 0.0047 0.0166
60 0.0595 0.0070 0.0212
80 0.0566 0.0082 0.0229
100 0.0542 0.0094 0.0284
200 0.0552 0.0104 0.0343

0, 0 20 0.0300 0.0008 0.0251
40 0.0211 0.0008 0.0354
60 0.0187 0.0013 0.0429
80 0.0201 0.0012 0.0442
100 0.0185 0.0018 0.0456
200 0.0190 0.0016 0.0533

0.3, 0.3 20 0.0137 0.0001 0.0239
40 0.0112 0.0004 0.0395
60 0.0115 0.0008 0.0424
80 0.0083 0.0004 0.0453
100 0.0100 0.0003 0.0489
200 0.0073 0.0007 0.0579

0.3, 0.5 20 0.0109 0.0001 0.0208
40 0.0073 0.0002 0.0306
60 0.0044 0.0001 0.0431
80 0.0044 0.0003 0.0456
100 0.0048 0.0004 0.0473
200 0.0037 0.0003 0.0565

0.5, 0.5 20 0.0076 0.0000 0.0206
40 0.0050 0.0000 0.0360
60 0.0052 0.0002 0.0406
80 0.0041 0.0000 0.0442
100 0.0041 0.0002 0.0511
200 0.0028 0.0001 0.0509

0.5, 0.8 20 0.0020 0.0000 0.0148
40 0.0010 0.0000 0.0249
60 0.0011 0.0000 0.0288
80 0.0008 0.0000 0.0333
100 0.0007 0.0000 0.0333
200 0.0003 0.0000 0.0470

TABLE 6 | Type I error rate for different methods (the third to fifth columns) in the
ARMA(1,1)-TAR(1) model whent = 0.5. The first and second columns
represent different combinations of autoregressive coefficients and sample sizes.
The number of permutation tests is 1,000, the number of repeated simulations is
10,000, and the significance level is α = 0.05.

ρ1, ρ2 n Permutation test TLTA STLTA

−0.5, −0.5 20 0.0521 0.0013 0.0241
40 0.0421 0.0034 0.0201
60 0.0375 0.0040 0.0257
80 0.0364 0.0049 0.0264
100 0.0370 0.0049 0.0282
200 0.0330 0.0049 0.0338

0, 0 20 0.0276 0.0005 0.0234
40 0.0189 0.0009 0.0245
60 0.0186 0.0009 0.0311
80 0.0188 0.0009 0.0360
100 0.0174 0.0011 0.0340
200 0.0150 0.0016 0.0440

0.3, 0.3 20 0.0169 0.0003 0.0207
40 0.0113 0.0005 0.0294
60 0.0097 0.0007 0.0301
80 0.0108 0.0006 0.0351
100 0.0091 0.0007 0.0386
200 0.0072 0.0004 0.0440

0.3, 0.5 20 0.0140 0.0000 0.0209
40 0.0089 0.0005 0.0283
60 0.0077 0.0000 0.0317
80 0.0072 0.0006 0.0340
100 0.0079 0.0003 0.0375
200 0.0067 0.0004 0.0439

0.5, 0.5 20 0.0090 0.0001 0.0198
40 0.0047 0.0001 0.0271
60 0.0054 0.0000 0.0296
80 0.0039 0.0002 0.0360
100 0.0038 0.0002 0.0370
200 0.0045 0.0000 0.0450

0.5, 0.8 20 0.0072 0.0000 0.0184
40 0.0045 0.0001 0.0251
60 0.0024 0.0001 0.0328
80 0.0024 0.0001 0.0323
100 0.0016 0.0000 0.0338
200 0.0013 0.0000 0.0440

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 7290118

Shan et al. Statistical Significance in LTA

163

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


daily at three body sites: gut (feces), mouth(tongue), and skin (left
and right palms) (Caporaso et al. (2011)). The data set consists of
130, 135 and 133 daily samples from “F4”, and 332, 372 and 357
samples from “M3”. There are 335, 373 and 1,295 operational
taxonomic units (OTUs) from feces, tongue and palm (both left
and right) sites of “F4” and “M3”, where the taxonomic level is
Genus. We selected 59 “core”OTUs that were observed in at least
60% samples from the feces of “M3” and analyzed their
relationships. Then, metagenomic analysis is conducted to
obtain a time series of OTU abundance. As shown in
Figure 1, there are two OTUs chosen to display their time
series graphs and autocorrelation graphs. It can be found that
the abundance sequence of Parabacteroides shows more
significant autocorrelation compared to Bifidobacterium, and

that their Box-Ljung test p values are all very close to 0,
indicating that their autocorrelation relationship is of much
significance.

FIGURE 1 | Standardized abundance map of Parabacteroides (A) and Bifidobacterium (B) in MPHM “M3” sample fecal data set. The autocorrelation graph (C,D)
shows the autocorrelation coefficient of the time series at different delays.

TABLE 7 | The numbers of significant correlations between OTUs found by
permutation tests, TLTA, STLTA and DDLSA for different data sets and
significance levels.

— t = 0.5 t = 0

Dataset — MPHM PML MPHM PML
# of factors — 59 75 59 75
p ≤ 0.05 q ≤ 0.05 Permutation 589 87 727 29
— TLTA 165 75 532 13
— STLTA 739 50 667 13
— DDLSA 685 371 685 371

p ≤ 0.01 q ≤ 0.01 Permutation 489 84 549 29
— TLTA 86 74 436 11
— STLTA 621 16 514 4
— DDLSA 549 227 549 227

FIGURE 2 | The Venn diagram of the significant relationships found in
permutation test, TLTA and STLTA for the MPHM “M3” fecal data set. Green,
blue, and red indicate the number of significant relationships found by
permutation test, TLTA, and STLTA, respectively.
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The significance level is set to 0.05 and 0.01, based on
which a comparison is drawn in the significant relationship
between the OTUs found by permutation test, TLTA, STLTA
and DDLSA with the time delay of D = 3. The results are
presented in Table 7. When t = 0.5 and the significance level
p = 0.05, Q = 0.05, in all 1711 pairs of OTU relationships in
the “M3” feces sample, it was found that 589, 165, 739 and 685
pairs of significant relationships by Permutation test, TLTA,
STLTA and DDLSA respectively, which were 34.4, 9.6, 43.2
and 40% of the total. STLTA found the most significant
relationship, followed by DDLSA, and TLTA the least.
This is very similar to the simulation results obtained
earlier: when t = 0.5 and the sample time point is 300, if
the samples have autocorrelation relationship, the simulation
results show that the type I error rates of Permutation test and
TLTA are far less than the given significance level, while the
type I error rate of STLTA is close to the given significance
level. Therefore when there is correlation between
autocorrelation samples, it is possible that permutation test
and TLTA fail to identify many significant relationships that
actually exist, but STLTA can do this. Although the
permutation test can also find many significant
relationships, most of them are between samples without
autocorrelation. In addition, the numbers of significant
correlations between OTUs found by STLTA and DDLSA
are approximate, shown that STLSA can discover most
significant relationships found by DDLSA.

Venn diagram (Figure 2) shows the relationship among the
results obtained using different methods in the “M3” stool
sample. All of the significant relationships identified by TLTA
are discovered by permutation test, and all of the significant
relationships identified by permutation test are discovered by
STLTA. For more stringent standards p = 0.01 and Q = 0.01 as
well as different thresholds, the results are listed in Table 7. By
comparing the results of t = 0 and t = 0.5, it can be found out that

the permutation test and TLTA can identify more significant
relationships at t = 0 then at t = 0.5, especially for TLTA.
However, STLTA is just the opposite, with the significant
relationship found at t = 0 less then at t = 0.5.

3.2.2 Data set of Plymouth Marine Laboratory
The STLTA method is applied to the Plymouth Marine
Laboratory (PML) data set, for comparison with the results as
obtained from DDLSA, TLTA and Permutation test. The PML
data set is one of the longest microbial time series consisting of
monthly samples taken over 6 years at a temperate marine coastal
site off Plymouth, United Kingdom (Gilbert et al. (2012)). These
samples were sequenced using high-resolution 16S rRNA tag
NGS sequencing. A total of 155 bacterial OTUs were identified
with the taxonomic level of Order. Among them, we chose 62
abundant OTUs that were present in at least 50% of the time
points, and 13 environment factors to analyze their association
network. We filled the missing values in the environment data
using linear interpolation.

Given time delay D = 3 and significance level p = 0.05, Q =
0.05, when t = 0.5 among all the relationships between OTUs and
between OTU and environmental factors, permutation test,
TLTA, STLTA and DDLSA identified 87, 75, 50 and 371 pairs
of significant relationships, as shown in Table 7. Venn diagram
(Figure 3) reveals the relationships among the results as obtained
using different methods in the PML samples. All of the significant
relationships identified by TLTA are discovered by permutation
tests. Among all these significant relationships, however, only 11
pairs of relationships are found out by both permutation test and
STLTA. This is because there are only 33 (~44%) factors showing
autocorrelation, with more than half of the factors bearing no
autocorrelation. Therefore, permutation test can be conducted to
find out about the significant relationships between many time
series without autocorrelation. However, there are as few as 72
sample time points, since STLTA is conservative to some extent
when there are a small number of time points. Among the
significant relationships discovered by the permutation test,
there are 76 pairs not identified by STLTA. In addition, it is
suspected that 39 pairs of significant relationships which are
found out by STLTA but fail to be detected by permutation test
are between autocorrelation sequences, and these relationships
can be discovered by neither permutation test nor TLTA. For
more stringent standards p = 0.01 andQ = 0.01 as well as different
thresholds, the results are shown in Table 7. It can be found out
from the table that when t = 0, the number of significant
relationships identified by all methods is smaller than that of
relationships discovered when t = 0.5. As the PML data set has
only 72 time points, there is a massive information loss in STLTA.
Thus, the number of significant correlations between OTUs
found by STLTA is far from that by DDLSA.

4 CONCLUSION

In this paper, a theoretical evaluation method was proposed for
the statistical significance of local trend scores, STLTA. First of all,
the original sequence was discretized into a changing trend

FIGURE 3 | The Venn diagram of the significant relationships found in
permutation test, TLTA and STLTA for the PML data set. Green, blue, and red
indicate the number of significant relationships found by permutation test,
TLTA, and STLTA, respectively.
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sequence and the local trend score was calculated. Then,
according to the spectral decomposition theory of the matrix,
the variance of the trend sequence was estimated for different
state spaces. Finally, in combination with the limit theory of
Markov chain local similarity analysis, the limit distribution of
the local trend score was obtained, and the approximate p value of
the local trend score was calculated. By means of simulation, it
was discovered in a given stationary time series model that the
type I error rate of STLTA can be made significantly closer to the
given significance level, with the type I error rates of permutation
test and TLTA increasingly deviant from the given significance
level over time, especially when t = 0.5. It is suggested that STLTA
method is more effective than permutation test and TLTA
method. Then, these three methods were applied to the
MPHM and PML data sets. In the relatively long data set
MPHM “M3” fecal data set, STLTA detected the most
significant relationships, and all of the significant relationships
discovered by permutation tests and TLTA were identified by
STLTA. In the PML data set with relatively short time points,
STLTA discovered some relationships that cannot be found out
by permutation tests and TLTA, with these relationships resulting
from the autocorrelation of the sequence.

Compared with local similarity analysis, however, local trend
analysis converts a continuous original time series into a
discrete trend series, which may cause the loss of some
information from the original series, thus limiting the
practical application of local trend analysis. Nonetheless,
the discretization of the original sequence may lead to the
transformation of some non-stationary time series into a
stationary Markov sequence, which is a major advantage of
local trend analysis. In addition, the DDLSA based on non-
parametric kernel estimation and the MBBLSA based on
moving block bootstrap can be applied to the statistical

significance analysis as part of local trend analysis, which
provides another direction of further research.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. The
"MPHM" datasets used during the current study are publicly
available in the supplementary of Gilbert et al. (2012), whose link
is https://genomebiology.biomedcentral.com/articles/10.1186/
gb-2011-12-5-r50#additional-information. The "PML" data can
be found here: https://vamps2.mbl.edu/.

AUTHOR CONTRIBUTIONS

AS gave the main writing of the manuscript. FZ gave the main
data analysis program of the manuscript. YL gave some idea and
proofreading of the manuscript.

FUNDING

This work was supported by the National Science Foundation of
China (Grant Number: 11971264) and the National Key R&D
program of China (Grant Number: 2018YFA0703900).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.729011/
full#supplementary-material

REFERENCES

Balasubramaniyan, R., Hüllermeier, E., Weskamp, N., and Kämper, J. (2005).
Clustering of Gene Expression Data Using a Local Shape-Based Similarity
Measure. Bioinformatics 21 (7), 1069–1077. doi:10.1093/bioinformatics/
bti095

Beman, J. M., Steele, J. A., and Fuhrman, J. A. (2011). Co-occurrence Patterns for
Abundant marine Archaeal and Bacterial Lineages in the Deep Chlorophyll
Maximum of Coastal California. ISME J. 5 (7), 1077–1085. doi:10.1038/ismej.
2010.204

Caporaso, J. G., Lauber, C. L., Costello, E. K., Berg-Lyons, D., Gonzalez, A.,
Stombaugh, J., et al. (2011). Moving Pictures of the Human Microbiome.
Genome Biol. 12 (5), R50. doi:10.1186/gb-2011-12-5-r50

Cram, J. A., Xia, L. C., Needham, D. M., Sachdeva, R., Sun, F., and Fuhrman, J. A.
(2015). Cross-depth Analysis of marine Bacterial Networks Suggests
Downward Propagation of Temporal Changes. ISME J. 9 (12), 2573–2586.
doi:10.1038/ismej.2015.76

Daudin, J.-J., Etienne, M. P., and Vallois, P. (2003). Asymptotic Behavior of the
Local Score of Independent and Identically Distributed Random Sequences.
Stochastic Process. their Appl. 107 (1), 1–28. doi:10.1016/s0304-4149(03)
00061-9

Etienne, M. P., and Vallois, P. (2004). Approximation of the Distribution of the
Supremum of a Centered Random Walk. Application to the Local Score.
Methodol. Comput. Appl. Probab. 6 (3), 255–275. doi:10.1023/b:mcap.
0000026559.87023.ec

Feller, W. (1951). The Asymptotic Distribution of the Range of Sums of
Independent Random Variables. Ann. Math. Statist. 22 (3), 427–432. doi:10.
1214/aoms/1177729589

Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbrück, L., Reeder, J., Temperton, B.,
et al. (2012). Defining Seasonal marine Microbial Community Dynamics. Isme
J. 6 (2), 298–308. doi:10.1038/ismej.2011.107

Goncalves, J. P., and Madeira, S. C. (2014). LateBiclustering: Efficient Heuristic
Algorithm for Time-Lagged Bicluster Identification. Ieee/acm Trans. Comput.
Biol. Bioinf. 11 (5), 801–813. doi:10.1109/tcbb.2014.2312007

Gonçalves, J. P., Aires, R. S., Francisco, A. P., and Madeira, S. C. (2012). Regulatory
Snapshots: Integrative Mining of Regulatory Modules from Expression Time
Series and Regulatory Networks. Plos One 7 (5), e35977. doi:10.1371/journal.
pone.0035977

He, F., Chen, H., Probst-Kepper, M., Geffers, R., Eifes, S., del Sol, A., et al.
(2012). PLAU Inferred from a Correlation Network Is Critical for
Suppressor Function of Regulatory T Cells. Mol. Syst. Biol. 8 (1), 624.
doi:10.1038/msb.2012.56

He, F., and Zeng, A.-P. (2006). In Search of Functional Association from
Time-Series Microarray Data Based on the Change Trend and Level of
Gene Expression. BMC Bioinformatics 7, 69. doi:10.1186/1471-2105-
7-69

Ji, L., and Tan, K.-L. (2004). Mining Gene Expression Data for Positive and
Negative Co-regulated Gene Clusters. Bioinformatics 20 (16), 2711–2718.
doi:10.1093/bioinformatics/bth312

Madeira, S. C., Teixeira, M. C., Sá-Correia, I., and Oliveira, A. L. (2010).
Identification of Regulatory Modules in Time Series Gene Expression Data

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 72901111

Shan et al. Statistical Significance in LTA

166

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2011-12-5-r50#additional-information
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2011-12-5-r50#additional-information
https://vamps2.mbl.edu/
https://www.frontiersin.org/articles/10.3389/fgene.2022.729011/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.729011/full#supplementary-material
https://doi.org/10.1093/bioinformatics/bti095
https://doi.org/10.1093/bioinformatics/bti095
https://doi.org/10.1038/ismej.2010.204
https://doi.org/10.1038/ismej.2010.204
https://doi.org/10.1186/gb-2011-12-5-r50
https://doi.org/10.1038/ismej.2015.76
https://doi.org/10.1016/s0304-4149(03)00061-9
https://doi.org/10.1016/s0304-4149(03)00061-9
https://doi.org/10.1023/b:mcap.0000026559.87023.ec
https://doi.org/10.1023/b:mcap.0000026559.87023.ec
https://doi.org/10.1214/aoms/1177729589
https://doi.org/10.1214/aoms/1177729589
https://doi.org/10.1038/ismej.2011.107
https://doi.org/10.1109/tcbb.2014.2312007
https://doi.org/10.1371/journal.pone.0035977
https://doi.org/10.1371/journal.pone.0035977
https://doi.org/10.1038/msb.2012.56
https://doi.org/10.1186/1471-2105-7-69
https://doi.org/10.1186/1471-2105-7-69
https://doi.org/10.1093/bioinformatics/bth312
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Using a Linear Time Biclustering Algorithm. Ieee/acm Trans. Comput. Biol.
Bioinform 7 (1), 153–165. doi:10.1109/TCBB.2008.34

Qian, J., Dolled-Filhart, M., Lin, J., Yu, H., and Gerstein, M. (2001). Beyond
Synexpression Relationships: Local Clustering of Time-Shifted and Inverted
Gene Expression Profiles Identifies New, Biologically Relevant Interactions.
J. Mol. Biol. 314 (5), 1053–1066. doi:10.1006/jmbi.2000.5219

Ruan, Q., Dutta, D., Schwalbach, M. S., Steele, J. A., Fuhrman, J. A., and Sun, F.
(2006). Local Similarity Analysis Reveals Unique Associations Among marine
Bacterioplankton Species and Environmental Factors. Bioinformatics 22 (20),
2532–2538. doi:10.1093/bioinformatics/btl417

Seno, S., Takenaka, Y., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., et al. (2006).
A Method for Similarity Search of Genomic Positional Expression Using
CAGE. Plos Genet. 2 (4), e44. doi:10.1371/journal.pgen.0020044

Skreti, G., Bei, E. S., Kalantzaki, K., and Zervakis, M. (2014). Temporal and Spatial
Patterns of Gene Profiles during Chondrogenic Differentiation. IEEE J. Biomed.
Health Inform. 18 (3), 799–809. doi:10.1109/jbhi.2014.2305770

Steele, J. A., Countway, P. D., Xia, L., Vigil, P. D., Beman, J. M., Kim, D. Y., et al.
(2011). Marine Bacterial, Archaeal and Protistan Association Networks Reveal
Ecological Linkages. ISME J. 5 (9), 1414–1425. doi:10.1038/ismej.2011.24

Wu, L.-C., Huang, J.-L., Horng, J.-T., and Huang, H.-D. (2010). An Expert System
to Identify Co-regulated Gene Groups from Time-Lagged Gene Clusters Using
Cell Cycle Expression Data. Expert Syst. Appl. 37 (3), 2202–2213. doi:10.1016/j.
eswa.2009.07.053

Xia, L. C., Steele, J. A., Cram, J. A., Cardon, Z. G., Simmons, S. L., Vallino, J. J., et al.
(2011). Extended Local Similarity Analysis (eLSA) of Microbial Community
and Other Time Series Data with Replicates. BMC Syst. Biol. 5 Suppl 2, S15.
doi:10.1186/1752-0509-5-S2-S15

Xia, L. C., Ai, D., Cram, J. A., Liang, X., Fuhrman, J. A., and Sun, F. (2015).
Statistical Significance Approximation in Local Trend Analysis of High-

Throughput Time-Series Data Using the Theory of Markov Chains. BMC
Bioinformatics 16, 301. doi:10.1186/s12859-015-0732-8

Zhang, F., Shan, A., and Luan, Y. (2018). A Novel Method to Accurately Calculate
Statistical Significance of Local Similarity Analysis for High-Throughput Time
Series. Stat. Appl. Genet. Mol. Biol. 17 (6), 20180019. doi:10.1515/sagmb-2018-
0019

Zhang, F., Sun, F., and Luan, Y. (2019). Statistical Significance Approximation for
Local Similarity Analysis of Dependent Time Series Data. BMC Bioinformatics
20, 53. doi:10.1186/s12859-019-2595-x

Conflict of Interest: Author AG is employed by Postdoctoral Programme of
Zhongtai Securities Co. Ltd, Jinan, China

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Shan, Zhang and Luan. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 72901112

Shan et al. Statistical Significance in LTA

167

https://doi.org/10.1109/TCBB.2008.34
https://doi.org/10.1006/jmbi.2000.5219
https://doi.org/10.1093/bioinformatics/btl417
https://doi.org/10.1371/journal.pgen.0020044
https://doi.org/10.1109/jbhi.2014.2305770
https://doi.org/10.1038/ismej.2011.24
https://doi.org/10.1016/j.eswa.2009.07.053
https://doi.org/10.1016/j.eswa.2009.07.053
https://doi.org/10.1186/1752-0509-5-S2-S15
https://doi.org/10.1186/s12859-015-0732-8
https://doi.org/10.1515/sagmb-2018-0019
https://doi.org/10.1515/sagmb-2018-0019
https://doi.org/10.1186/s12859-019-2595-x
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	Statistical Approaches 
in Omics Data Association Studies
	Table of Contents
	Exploring the Relationship Between Psychiatric Traits and the Risk of Mouth Ulcers Using Bi-Directional Mendelian Randomization
	Introduction
	Materials and Methods
	Data Collection
	Patient and Public Involvement
	Statistical Analyses

	Results
	Psychiatric Traits Predicting Mouth Ulcers
	Mouth Ulcers Predicting Psychiatric Traits

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	An Improved Genome-Wide Polygenic Score Model for Predicting the Risk of Type 2 Diabetes
	Introduction
	Materials and Methods
	Study Design and Population
	Genome-Wide Polygenic Score Construction, Testing, and Validation
	Statistical Analysis in Validation Dataset

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Selecting Classification Methods for Small Samples of Next-Generation Sequencing Data
	1. Introduction
	2. Classification Methods
	2.1. Principle of the Classifiers
	2.2. Poisson Linear Discriminant Analysis
	2.3. Negative Binomial Linear Discriminant Analysis
	2.4. Zero-Inflated Poisson Logistic Discriminant Analysis
	2.5. Zero-Inflated Negative Binomial Logistic Discriminant Analysis
	2.5.1. Model
	2.5.2. Parameters Estimation
	2.5.2.1. Class Difference Parameter Estimation
	2.5.2.2. Size Factor Estimation
	2.5.2.3. Dispersion Parameter Estimation
	2.5.2.4. The Probability of Excess Zeros Estimation


	2.6. Transformation Relation

	3. Simulation Studies
	3.1. Simulation Design
	3.2. Simulation Results
	3.3. Optimal Classifier Selection

	4. Application to Real data
	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Causal Linkage Between Inflammatory Bowel Disease and Primary Sclerosing Cholangitis: A Two-Sample Mendelian Randomization Analysis
	Introduction
	Materials and Methods
	Data Source
	SNP Selection
	Effect Size Estimate
	Sensitivity Analyses

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Assessment of Bidirectional Relationships Between Polycystic Ovary Syndrome and Periodontitis: Insights From a Mendelian Randomization Analysis
	Introduction
	Materials and Methods
	Overall Study Design
	Summary Statistics for PCOS
	Summary Statistics for Periodontitis
	Statistical Analysis

	Results
	Estimated Causal Effect of PCOS on Periodontitis
	Estimated Causal Effect of Periodontitis on PCOS

	Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Recovering Spatially-Varying Cell-Specific Gene Co-expression Networks for Single-Cell Spatial Expression Data
	1. Introduction
	2. Method
	3. Simulation Study
	4. Real Application
	4.1. MERFISH Mouse Hypothalamus Data
	4.2. MERFISH U-2 OS Data

	5. Discussion
	Data Availability Statement
	Code Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	BTOB: Extending the Biased GWAS to Bivariate GWAS
	1. Introduction
	2. Method
	2.1. BTOB: Extending the Biased GWAS to Bivariate GWAS
	2.2. Simulations
	2.3. Study Decription

	3. Result
	3.1. The Performance of BTOB in Integrating the Summary Association Statistics
	3.2. Real Data Analysis

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Identifying Susceptibility Loci for Cutaneous Squamous Cell Carcinoma Using a Fast Sequence Kernel Association Test
	Introduction
	Materials and Methods
	Ethics Statement
	Study Population
	Genomic Imputation and Quality Control
	Replication of GWAS Identified SNPs Using Single-Locus Testing
	Genomic Region Selection
	Region-Based Association Test
	Cross-Check With Expression Quantitative Trait Loci (eQTL) Database

	Results
	Study Population
	Replication of GWAS Identified SNPs Using Single-Locus Testing
	Region-Based Association Test
	Cross-Check With Expression Quantitative Trait Loci (eQTL) Database

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References
	Appendix

	High-Dimensional Mediation Analysis With Confounders in Survival Models
	Introduction
	Statistical Method
	Notations and Models
	Propensity Score
	Methodology

	Simulation Studies
	Real Data Analysis
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Meta-Analyzing Multiple Omics Data With Robust Variable Selection
	1. Introduction
	2. Methods and Algorithm
	2.1. Data and Models
	2.2. Robust Meta-Analysis Method 
	2.2.1. Simultaneous Estimation
	2.2.2. Reweighting Step

	2.3. Selection of the Tuning Parameters

	3. Numerical Studies
	3.1. Clean Data
	3.2. Contamination Data

	4. Real Data Application
	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	CoMM-S4: A Collaborative Mixed Model Using Summary-Level eQTL and GWAS Datasets in Transcriptome-Wide Association Studies
	1 Introduction
	2 Materials and Methods
	2.1 Notation
	2.2 Model
	2.3 Parameter Expansion-Variational Bayes Expectation-Maximization Algorithm
	2.4 Likelihood Ratio Test to Evaluate Expression-Trait Association

	3 Results
	3.1 Simulation Studies
	3.1.1 Simulation Settings
	3.1.2 Simulation Results

	3.2 Real Data Analysis
	3.2.1 NFBC1966 Cohort
	3.2.2 Biobank Japan


	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	LORSEN: Fast and Efficient eQTL Mapping With Low Rank Penalized Regression
	1 Introduction
	2 Material and Methods
	2.1 Model
	2.2 Theory and Algorithm
	2.3 Parameter Tuning
	2.4 Single Nucleotide Polymorphism Ranking and Joint Modeling
	2.5 Simulation Design

	3 Results
	3.1 Simulation Results
	3.2 Real Data Analysis Results

	4 Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References
	Appendix A

	Identifying Gene–Environment Interactions With Robust Marginal Bayesian Variable Selection
	1. Introduction
	2. Method
	2.1. Bayesian Formulation of the LAD Regression
	2.2. Bayesian LAD LASSO With Spike-and-Slab Priors
	2.3.  The Gibbs Sampler for Robust Marginal GE Analysis 

	3. Simulation
	4. Real Data Analysis
	5. Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	RFtest: A Robust and Flexible Community-Level Test for Microbiome Data Powerfully Detects Phylogenetically Clustered Signals
	1 Introduction
	2 Methods and Materials
	2.1 Notations
	2.2 Methods
	2.3 Simulation Studies
	2.4 Competing Methods and Evaluation

	3 Results
	3.1 Simulation Studies
	3.1.1 Factors Influencing the Power of RFtest
	3.1.2 Type I Error Control
	3.1.3 Power Studies

	3.2 Real Data Analysis

	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Efficient Approximation of Statistical Significance in Local Trend Analysis of Dependent Time Series
	1 Introduction
	2 Material and Methods
	2.1 Introduction to Local Trend Analysis
	2.2 Statistical Significance Analysis of Local Trend Score
	2.2.1 Spectral Decomposition Theorem of Matrix
	2.2.2 Two-State Markov Chain Model
	2.2.3 Three-State Markov Chain Model
	2.2.4 Mixed-State Markov Chain Model
	2.2.5 Estimation of Markov Chain Transition Probability Matrix


	3 Results and Discussion
	3.1 Simulation
	3.2 Empirical Analysis
	3.2.1 Data set of Moving Pictures of Human Microbiome
	3.2.2 Data set of Plymouth Marine Laboratory


	4 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Back Cover 



