Research Topic

Alterations of Epigenetics and MicroRNAs in Cancer and Cancer Stem Cell

About this Research Topic

Studies have shown that alterations of epigenetics and microRNAs (miRNAs) play critical roles in the initiation and progression of human cancer. Epigenetic silencing of tumor suppressor genes in cancer cells is generally mediated by DNA hypermethylation of CpG island promoter and histone modification such as ...

Studies have shown that alterations of epigenetics and microRNAs (miRNAs) play critical roles in the initiation and progression of human cancer. Epigenetic silencing of tumor suppressor genes in cancer cells is generally mediated by DNA hypermethylation of CpG island promoter and histone modification such as methylation of histone H3 lysine 9 (H3K9) and tri-methylation of H3K27. MiRNAs are small non-coding RNAs that regulate expression of various target genes. Specific miRNAs are aberrantly expressed and play roles as tumor suppressors or oncogenes during carcinogenesis. Important tumor suppressor miRNAs are silenced by epigenetic alterations, resulting in activation of target oncogenes in human malignancies.
Stem cells have the ability to perpetuate themselves through self-renewal and to generate mature cells of various tissues through differentiation. Accumulating evidence suggests that a subpopulation of cancer cells with distinct stem-like properties is responsible for tumor initiation, invasive growth, and metastasis formation, which is defined as cancer stem cells. Cancer stem cells are considered to be resistant to conventional chemotherapy and radiation therapy, suggesting that these cells are important targets of cancer therapy. DNA methylation, histone modification and miRNAs may be deeply involved in stem-like properties in cancer cells. Restoring the expression of tumor suppressor genes and miRNAs by chromatin modifying drugs may be a promising therapeutic approach for cancer stem cells. In this research topic, we discuss about alterations of epigenetics and miRNAs in cancer and cancer stem cell and understand the molecular mechanism underlying the formation of cancer stem cell, which may provide a novel insight for treatment of refractory cancer.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top