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Editorial on the Research Topic

AAV Gene Therapy: Immunology and Immunotherapeutics

Adeno-associated virus (AAV) has become the vector of choice for current gene therapy approaches.
AAV is a small, single-stranded DNA virus which effectively infects humans and other vertebrates
without causing disease. AAV is highly infectious but naturally replication-defective in the absence of a
helper virus, and its genome is simple to manipulate. To generate a recombinant AAV (rAAV) vector,
the viral genes are replaced with a transgene expression cassette, while the flanking inverted terminal
repeats (ITRs) required for encapsidation, are retained. Virion capsid proteins for encapsidation of the
vector DNA are provided in trans and the resultant rAAV is subsequently purified. The safety profile of
rAAV vectors is well established from decades of research and over 200 clinical trials to date. Manymore
are forthcoming with numerous investigational new drug applications in various stages of review. AAV-
mediated gene transfer has benefited numerous individuals with genetic diseases bymediating long-term
expression of the transgene. However, some hurdles remain, such as pre-existing immunity to the rAAV
capsids and unwanted immune responses to the transgene product. A total of 13 articles in this Research
Topic examine current immunological barriers in the field of rAAV-based gene therapy and
immunotherapeutics, evidencing the latest discoveries on approaches on how best to overcome them.

Pre-existing neutralizing antibodies to the AAV capsid are found in a significant percentage of
the human population from exposure to circulating wild-type AAV. These antibodies substantially
reduce the transduction efficiency of rAAV and can prevent successful delivery of the transgene in
those individuals. In this Research Topic, Weber reviews this topic, including descriptions of what
the prevalence of such antibodies are in the general population, and the difficulties associated with
measuring these antibodies in a way that is predictive of therapeutic outcomes. Importantly, the
author also discusses potential solutions to these issues. In line with this, an approach that holds
great promise to overcome natural pre-existing immunity is the rational design of engineered AAV
capsids. In a perspective article, Wec et al. discussed how machine learning and high-throughput
screening can expand the landscape of engineered capsids, which can make AAV therapies safer and
more broadly applicable.

While rAAV vectors have been traditionally seen as non-immunogenic, immune responses
can be generated to the AAV itself and/or to the transgene product. In a perspective article,
org December 2021 | Volume 12 | Article 82238915
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Hamilton and Wright discuss the inherent immunogenicity of the
rAAV vectors, and how they can trigger both innate and adaptive
immune responses (the latter including both cellular and humoral
responses) and mediate complement activation. Innate immune
responses can be triggered by the rAAV capsid, but also by the
vector’s DNA genome, which can trigger toll-like receptor 9
(TLR9) activation. TLR9 recognizes unmethylated CpG motifs
(cytosine guanine dinucleotides) and is expressed in different sets
of immune cells, including dendritic cells, macrophages, and other
antigen presenting cells. Activation of TLR9 triggers the secretion
of pro-inflammatory cytokines and the recruitment and activation
of cytotoxic T-cells which can, in turn, mediate elimination of
transduced cells. Bertolini et al. have reported a deimmunization
strategy that consists of removing these CpG motifs from the
vectors. In a rodent model of hemophilia B, the authors have
shown markedly reduced cytotoxic T-cell infiltration after
intramuscular administration of CpG-depleted rAAV.
Importantly, this approach resulted in improved preservation of
transduced cells. Immune-mediated rejection and clearance of
rAAV-transduced cells is a crucial issue during gene therapy. In a
review focused on cellular responses, Ertl has discussed how CD8
T-cells can recognize and destroy rAAV-transduced cells. Notably,
ITRs flaking the transgene cassette in rAAV can be sensed by
DNA damage response proteins in transduced cells. Dudek and
Porteus have reviewed the current understanding of DNA damage
response and innate immune activation to both genomes and
capsids during early steps of vector transduction. As reviewed
by Chu and Ng, current strategies to prevent or ameliorate
unwanted host immune responses during gene therapy include
an array of potential pharmacological immunosuppressive and
immunomodulatory regimens.

Post-translational modifications were recently discovered on
rAAV capsids and could be contributing to the undesired
immunogenicity seen in some gene-therapy recipients. Recent
concerns regarding immunogenic responses to high-dose
intravenous administration of rAAV has highlighted the need for
extensive analysis of the preparations in order to identify and
catalog potentially immunogenic vector lot components. In this
Research Topic, Rumachik et al. have described a mass
spectrometry workflow to thoroughly analyze and characterize
post-translational modifications in rAAV capsids and on potential
host cell protein impurities carried over in the vector preparation.
Extensive rAAV characterization promotes enhanced batch-to-
batch consistency and is crucial for the development of safer and
more reliable rAAV vectors.

Viral tropism, or the ability to infect a specific tissue or cell type,
is a key factor to consider when selecting the most appropriate
rAAV serotype for gene delivery. Viral tropism is largely
determined by the rAAV capsid, and a variety of different capsid
serotypes have been identified.When rAAV vectors are produced in
the laboratory, an AAV2 ITR genome is engineered to contain the
transgene of interest and the resulting recombinant genome is
encapsidated in the preferred capsid. Depending on the desired
target cells or tissues, different serotypes may be preferred. Brown
et al. have developed an experimental and computational approach
based on single-cell RNA sequencing to characterize in vivo viral
Frontiers in Immunology | www.frontiersin.org 26
tropisms and uncover targeting biases. An additional potential
source for immunogenicity against the rAAV-expressed transgene
product is related to off-target delivery. Inadvertent transduction of
antigen presenting cells (APCs) can result in presentation to the
immune system, and trigger an immune response. To prevent this,
Muhuri et al. have used miRNA biding sites to efficiently block
transgene expression in APCs. miRNAs are small non-coding
RNAs that function in RNA silencing. By using miRNA binding
sites specific for miRNAs found in APCs, but not in target cells,
expression can be carefully ablated in APCs while sparing target
tissues. rAAV vectors containing this detargeting strategy strongly
inhibited cytotoxic T-cell activation and the generation of antibodies
against the transgene. This approach mediated higher levels of
transgene expression in vivo.

Although mostly used to treat monogenic diseases, gene-transfer
mediated by rAAV can also be exploited to deliver
immunotherapeutics, such as monoclonal antibodies. The coding
sequence of properly characterized protective/neutralizing
antibodies against a pathogen of interest can be delivered via
rAAV, thus aiming to prevent or treat infectious diseases and
confer long-lasting immunity. This strategy passively bypasses the
immune system as no immune response to an immunogen is
required. Zhan et al. have reviewed this topic, highlighting how
rAAVs can become game changers in our fight against transmissible
diseases, including HIV, dengue, influenza and others. Interestingly,
antigens of interest can also be delivered in rAAV vectors with the
aim of conferring protection to a disease in the recipient. Shahnaij
et al. have reported a vectored vaccination regimen against malaria
that conferred full protection to malaria-parasite challenge in a
rodent model. The vaccination regimen consisted of a prime with
human adenovirus and a booster inoculation with AAV8, both
encoding the Plasmodium falciparum circumsporozoite protein
(a protein of the sporozoite’s surface).

As depicted by Rapti and Grimm in their review article, there
is a continuous immunological and molecular race between AAV
and its human host. Current and upcoming advances in rAAV
gene therapy as described in the compelling articles of this
Research Topic, promise safer and more broadly applicable
therapies in the future. We invite you to read each of these
enlightening papers and reflect on the Research Topic as a whole.
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Adeno-associated virus (AAV) vector-based gene therapy is currently the only in vivo

gene therapy approved in the US and Europe. The recent tragic death of three children

in a clinical trial to treat X-Linked Myotubular Myopathy by delivering myotubularin with

an AAV8 vector notwithstanding, AAV remains a highly promising therapeutic gene

delivery platform. But the successful use of AAV vectors to treat an increasing number

of diseases also makes establishing protocols to determine therapeutically relevant titers

of pre-existing anti-AAV antibodies and approaches to deplete those antibodies more

urgent than ever. In this mini review, I will briefly discuss (i) our knowledge regarding the

prevalence of anti-AAV antibodies, (ii) the challenges to measure those antibodies by

methods that are most predictive of their influence on therapeutic efficacy of AAV gene

transfer, and (iii) approaches to overcome the formidable hurdle that anti-AAV antibodies

pose to the successful clinical use of AAV gene therapy.

Keywords: gene therapy, aav, antibodies, antibody assays, removal of antibodies, removal of inhibitors, adeno-

associated virus, prevalence of antibodies

INTRODUCTION

Thirty years ago, the Chicago Tribune published a front-page article entitled “Gene therapy poised
to reinvent medicine.” While, after three humbling decades of intense research, we have not
achieved this lofty goal, it is safe to say that we made tremendous progress toward establishing
gene therapy as an important tool to treat both inherited as well as acquired diseases. Among the
currently available gene therapy platforms, vectors based on adeno-associated virus (AAV) have
clearly emerged as one of the most promising gene delivery vehicles.

In fact, only three in vivo gene therapy treatments have been approved by regulatory agencies
for clinical use (1). Notably, all three of these therapies are based on AAV vectors. Whereas the
treatment of lipoprotein lipase deficiency with an AAV-based vector to deliver the defective protein
was the first to be approved by the European Medicines Agency (EMA) in 2012, it is currently
no longer on the market owing to a lack of demand. In contrast, Luxturna (2) to treat the early
childhood blindness disease Leber’s congenital amaurosis type 2 is in clinical use in both the US
and Europe (1), whereas Zolgensma (1) to treat spinal muscular atrophy (SMA)—a horrific disease
that causes the death of most children afflicted by it before age 2—has been approved by the US
Food and Drug Administration (FDA) in 2019 (1).

The success of AAV as the leading gene delivery modality is based on a multitude of factors: (i)
Even wild-type AAV has not been shown to cause any disease, (ii) In contrast to other currently
available gene delivery methods, in non-dividing or very slowly dividing cells AAV results in the

8

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.658399
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.658399&domain=pdf&date_stamp=2021-03-17
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:thomas.weber@mssm.edu
https://doi.org/10.3389/fimmu.2021.658399
https://www.frontiersin.org/articles/10.3389/fimmu.2021.658399/full


Weber Antibodies in AAV Gene Therapy

long-term expression of the therapeutic payload, even though
the AAV vector DNA persists mostly as extrachromosomal
episomes (3), (iii) AAV vectors are not strongly immunogenic,
most likely because the only viral elements in a therapeutic AAV
genome are the two inverted terminal repeats. As a result, AAV
vectors do not express any viral proteins, which dramatically
reduces the presentation of viral peptides on MHCI complexes
thus strongly reducing the incidence and intensity of a cellular
immune response against transduced cells (4).

Until recently, AAV gene therapy had an unblemished safety
profile (5). Sadly, this unparalleled safety record has recently
been shattered by the tragic death of three children in a
trial (NCT03199469) aimed at treating X-linked myotubular
myopathy (XLMTM) with an AAV8 vector promoting the
expression of functional MTM1. This trial is currently on hold,
and the cause of the deaths of the three children is under active
investigation [Wilson and Flotte (6) and references cited therein].

One of the drawbacks of AAV is its limited cargo capacity
of ∼5 kb. Even though the median size of a human protein is
only 375 amino acids (7), the coding sequences of larger proteins
naturally harbor more mutations. Consequently, many proteins
associated with inherited diseases cannot be expressed with a
single AAV vector because the size of an expression cassette for a
functional protein exceeds the packaging capacity of AAV.

As mentioned above, wild-type AAV is an apparently non-
pathogenic virus. However, infection with wild-type AAV is very
common and depending on the serotype (and assay used, vide
infra) 30–60% of all individuals harbor antibodies that neutralize
AAV transduction (8). Interestingly, however, even when using
the same assay, significant differences in the prevalence of
neutralizing antibodies (NAbs) exist (9, 10). In fact, Greenberg
et al. (9) showed that within the US the prevalence of antibodies
against AAV1 varied from 32% in Wisconsin to 67% in South
Carolina, and in Europe 48% of people in Sweden harbor NAbs
against AAV1 in contrast to 79% NAb positive people in Poland
and Hungary. Another challenge for the use of AAV gene therapy
in patients with NAbs against a specific AAV serotype is the fact
that there is substantial cross-reactivity among the AAV serotypes
(8, 10, 11).

ASSAYS MEASURING NEUTRALIZING AND

TOTAL ANTI-AAV ANTIBODY LEVELS

In the vast majority of past or ongoing AAV gene therapy clinical
trials using AAV vectors the presence of NAbs (determined in
an in vitro assay) is/was one of the exclusion criteria. While
this makes inherent sense, the absence or presence of NAbs is
ill defined. The in vitro assays employ an AAV reporter vector
(usually carrying a luciferase expression cassette or GFP) of the
serotype used in the respective clinical trial. Pre-treatment patient
serum/plasma samples are then serially diluted and incubated
with an AAV reporter virus with a pre-determined number
of vector genomes. After addition of the virus to cells (most
often HEK293 cells) and incubation for a defined amount of
time, the expression of the reporter protein is measured for
each serum dilution as well as samples that did not receive

any patient serum. Expression levels of each serum dilution
sample are then normalized to the no-patient serum control. In
general, the neutralizing titer is defined as the highest dilution
that reduces transduction by ≥50%, although other levels of
reduction have been used as well [e.g., 29% (12)]. However, the
assay conditions vary widely not only for preclinical work (8)
but also for clinical trials. For instance, for their hemophilia A
trial (NCT02576795) (13), Biomarin only enrolled patients that
had no neutralizing antibodies against AAV5. Their NAb assay
used 25,000 vector genome containing particles per cell (14).
Uniqure, on the other hand, used a GFP based assay for their
hemophilia B trial (NCT02396342) (15) without reporting the
MOI. For another hemophilia B trial (NCT03489291) (16) they
used a highly sensitive luciferase assay (12) with anMOI of 378.4.
So, even if all assay conditions were absolutely identical, the
mere use of an MOI 25,000 and 378.4 would yield dramatically
different (>66-fold) NAb titers.

Unfortunately, the AAV dose/MOI is not the only parameter
that can influence NAb titers. Two other critically important
parameters are the purity of the vector preparation, especially
as it relates to the absence or presence of monomeric or
oligomeric capsid proteins. Moreover, depending on the vector
production method and purification scheme, the final vector
preparations can also contain empty viral particles, particles
with truncated vector genomes or particles with plasmid or
genomic DNA. All of those particles are essentially inactive
virus, and their presence in an NAb assay will artificially lower
the NAb titer (17). It is also noteworthy to point out that so-
called “neutralizing antibody assays” also incorporate inhibition
by other factors in the serum [e.g., galectin-3 binding protein
(18)] that inhibit transduction. Hence, the terms neutralizing
or inhibitory factors is more appropriate. Without doubt, the
most critical parameters affecting NAb titers is the AAV dose and
serum volume. Therefore, I propose that, in the future, the field
should report the presence of NAbs not as NAb titers but rather
report the number of AAV particles that are neutralized per µl
serum (or plasma). Not only would this facilitate the comparison
of NAb assay results among different labs, it would also include
non-antibody inhibitory factors. Of course, reporting the number
of AAV particles that can be neutralized perµl serum (or plasma)
doesn’t eliminate variations obtained with different neutralizing
assays. However, in the absence of a very detailed description
of the methods and materials used for NAb assays in every
publication, this is the most accurate unit to report neutralizing
factors in serum (or plasma).

There are several reports that use an in vivo assay to
determine neutralization by human or non-human primate
(NHP) sera [e.g., (19–21)]. These assays, which rely on the
passive immunization of mice with human or NHP sera, appear
to be much more sensitive than most of the currently used in
vitro neutralizing assays (21). However, in vivo experiments are
inherently more cumbersome and expensive and are not useful
for the screening of large potential patient populations.

Currently, AAV gene therapy is rapidly expanding
with more than 200 ongoing or completer clinical trials
(www.clinicaltrials.gov). In my view, going forward, it will be
essential that regulatory agencies such as the FDA and the
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EMA will create standardized in vitro assays for each AAV
serotype/variant. These assays should be sensitive and rely on
laboratory equipment that is commonly available in academic
laboratories. Ideally, these assays will be validated in vivo in mice
and NHPs. Importantly, the assays should include commercially
available reagents, such as a neutralizing, monoclonal antibody,
to allow the validation of the assay in each laboratory using it.
Only standardized assays will allow a valid comparison of NAb
levels reported by different groups.

ELISA assays can be used to measure the total levels of
antibodies against a specific serotype, whether these antibodies
are neutralizing or not. In general, there appears to be
a good correlation between total anti-AAV antibody levels
and neutralizing antibody (factor) levels (11, 22). However,
intravenous IgG (IVIG) appears to also contain non-neutralizing
antibodies against AAV that can, in fact, enhance transduction,
although the precise mechanism needs to be elucidated (23).
As such, the value for using ELISA to determine eligibility for
treatment with AAV gene therapy needs to be established fully.

APPROACHES TO OVERCOME THE

HURDLE THAT ANTI-AAV ANTIBODIES

POSE TO AAV GENE THERAPY

In theory, the most appealing approach to overcome the
challenge of pre-existing NAbs is to introduce mutations into
the AAV capsid that prevent the binding of NAbs. However,
the significant cross-reactivity among AAV serotypes (11) shows
that this is not an easy feat to achieve. Nonetheless, it has been
demonstrated that the introduction of point mutations into the
AAV2 capsid can attenuate the sensitivity of these mutant viruses
to neutralization (24). However, formost viruses, and presumably
for AAV as well, of all the neutralizing antibodies against the
virus a large fraction is directed against the receptor binding
domain(s). Consequently, mutating residues in the receptor
binding region(s) might be best to ameliorate neutralization, but
mutation in the receptor binding region(s) are also very likely to
affect viral tropism and/or transduction efficiencies.

“Traditional” plasmapheresis, which removes all
immunoglobulins, has shown some promise in depleting
most NAbs from patient sera, albeit only in patients with low
NAb titers (25). Moreover, removing all immunoglobulins has
its own drawbacks. More recently Bertin et al. (26) and Orlowski
et al. (27) have demonstrated that neutralizing antibodies/factors
can be removed in vitro by incubating IVIG or human sera
with beads that have AAV particles covalently coupled to them.
Moreover, my colleagues and I were able to demonstrate that
performing hemapheresis with such beads can fully restore
liver transduction in animals with NAb titers that without
hemapheresis show none to negligible transduction (27).
Restoration of transduction of cardiac and especially skeletal
muscle was more modest, likely due to rebound of NAbs from
the extracellular fluid into the bloodstream. Unfortunately,
technical limitations prevented us from performing multiple
rounds of hemapheresis over several days (27). Multiple rounds
of hemapheresis over the span of several days can easily

be performed in humans (25), so it is highly likely that the
rebound limitation in rats could be easily overcome in humans.
Future tests in large animal models, particularly in non-human
primates, could provide proof of principle for the utility of
this approach.

Recently, Mingozzi and colleagues took advantage of
imlifidase (IdeS), a streptococcal cystein protease, that can
cleave IgG into F(ab’)2 fragments and Fc (28, 29). Treatment
of IVIG with IdeS resulted in the complete digestion of total
IgG and anti-AAV8 IgG after a 24-h incubation period. In
addition, when Leborgne et al. passively immunized mice with
human IVIG and 1 day later injected them with AAV8 encoding
either secreted Gaussia luciferase or human FIX (hFIX), this
completely abrogated Gaussia luciferase or hFIX expression. If,
on the other hand, the mice were injected at day 0 first with
human IVIG and 30min. later with IdeS, followed 1 day later
by injection of AAV8 encoding secreted Gaussia luciferase or
hFIX, the expression levels of the luciferase or hFIX in the blood
were indistinguishable from levels in naïve mice (28). Strikingly,
not only did IdeS treatment allow transduction of NHPs with
pre-existing neutralizing antibodies, it even allowed vector
re-administration with the same AAV variant (AAV-LK03) (28).

Using IdeZ, a homolog of IdeS produced by a different
streptococcal strain, Asokan and colleagues (30) also could
demonstrate that administration of IdeZ allows transduction
of mice that have been passively immunized with IVIG.
Furthermore, they also reported successful transduction of an
NHP with pre-existing neutralizing antibodies that had been
pre-injected with IdeZ (30).

DISCUSSION

Pre-existing anti-AAV antibodies are a vexing problem for
AAV gene therapy because they can severely limit the patient
population that could benefit from AAV gene therapy. This
becomes all the more frustrating as the field rapidly advances
and many more AAV therapeutics will become available to treat
an increasing number of genetic diseases. Nonetheless, over
the last couple of years, significant progress has been made in
overcoming this formidable obstacle and to extend therapy to
patients with pre-existing neutralizing antibodies, either as a
result of infection by wild-type AAV or prior treatment with
an AAV vector. Because of the ease of use, the IgG cleaving
proteases IdeS and IdeZ are particularly attractive to use in AAV
gene therapy patients with pre-existing anti-AAV antibodies
(28, 30). However, while these proteases cleave all IgGs, they
do not remove other transduction inhibitors such as galectin 3-
binding protein (18). Plasmapheresis to remove specifically anti-
AAV8 antibodies as well as other inhibitory factors (26, 27) is
a promising alternative, and only clinical trials will ultimately
answer the question, which of the currently available strategies to
mitigate the negative effects of anti-AAV antibodies is best for any
given therapeutic application. It would, however, be interesting to
test with identical human sera whether the addition of IdeS/IdeZ
(28, 30) or incubation of the sera with “AAV-beads” (26, 27) has
a more positive effect on transduction.
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Because of significant differences in assay conditions,
a comparison of neutralizing titers obtained by different
laboratories is currently impossible. As the use of AAV gene
therapy rapidly expands it will, in my view, be absolutely essential
that validated assays that are approved by regulatory agencies for
any given AAV serotype or variant will be used to determine
the amount of neutralizing factors in sera. Until such assays
are validated and approved, I urge my colleagues to report
very detailed descriptions of their assays used and to report the
neutralizing activity of sera/plasma samples as AAV particles
neutralized per µl serum/plasma. While imperfect, this should
allow at least a “reasonable” comparison of results obtained by
different laboratories.

Clearly, a significant amount of future research will be
required to “solve” the problem that neutralizing antibodies and

factors pose to the expansion of the eligible patient population.
Nonetheless, recent developments offer a great deal of optimism
that we are on the way to being able to include patients into
clinical trials and treatment regimens that owing to the presence
of neutralizing antibodies and factors are currently excluded from
treatment with AAV gene therapy.
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Recombinant adeno-associated virus (rAAV) has attracted a significant research focus for
delivering genetic therapies to target cells. This non-enveloped virus has been trialed in
many clinical-stage therapeutic strategies but important obstacle in clinical translation is
the activation of both innate and adaptive immune response to the protein capsid, vector
genome and transgene product. In addition, the normal population has pre-existing
neutralizing antibodies against wild-type AAV, and cross-reactivity is observed between
different rAAV serotypes. While extent of response can be influenced by dosing,
administration route and target organ(s), these pose concerns over reduction or
complete loss of efficacy, options for re-administration, and other unwanted
immunological sequalae such as local tissue damage. To reduce said immunological
risks, patients are excluded if they harbor anti-AAV antibodies or have received gene
therapy previously. Studies have incorporated immunomodulating or suppressive
regimens to block cellular and humoral immune responses such as systemic
corticosteroids pre- and post-administration of Luxturna® and Zolgensma®, the two
rAAV products with licensed regulatory approval in Europe and the United States. In this
review, we will introduce the current pharmacological strategies to immunosuppress or
immunomodulate the host immune response to rAAV gene therapy.

Keywords: immunomodulation, immunosuppression, immune response, gene therapy, adeno associated
virus, pharmacotherapies
INTRODUCTION

Adeno-associated virus (AAV) is a 26nm, non-enveloped virus of Parvoviridae family. It is 4.7kb
single-stranded DNA genome containing 4 open reading frames (ORFs) (rep, cap, aap, and MAAP)
flanked by inverted terminal repeats (ITRs) (1, 2). In therapeutic gene delivery, the viral ORFs are
replaced by the desired transgene expression cassette and referred as recombinant AAV (rAAV). It
has emerged as a leading vector to deliver genetic therapies due to its ability to transduce diverse cell
types and safety profile.

A significant obstacle in clinical delivery of rAAV is host immune response triggered by rAAV
capsid, genome, and therapeutic protein produced (3). Although AAV infection is non-pathogenic
in humans, initial exposure induces humoral and cellular anti-capsid response that are reactive to
org April 2021 | Volume 12 | Article 658038113
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rAAV due to capsid similarity (4, 5). Pre-existing neutralizing
antibody (NAb) can effectively block rAAV transduction even
at low levels (1:5) (6). Most rAAV clinical trials exclude
seropositive patients; given the high seroprevalence
(60% for AAV2), limiting patients suitable for rAAV therapy
(7, 8). Furthermore ex vivo studies have shown predominantly
pre-existing memory phenotype cytotoxic T lymphocytes (CTL),
following exposure to rAAV can undergo expansion and
potentially lead to elimination of transduced cells (9, 10).

After rAAV administration, capsid-derived epitopes can be
presented by professional antigen presenting cells (APC) via
major histocompatibility complex (MHC) class I pathway and
activate CTL (11). The activation of CTL can result in targeted
destruction of transduced cells, as observed in rAAV2
hemophilia B clinical trial (12). Despite initial stable
therapeutic factor IX (FIX) expression (>10% activity) for 4
weeks, FIX levels gradually declined to baseline (<1%). This
was associated with asymptomatic, self-limiting transaminitis,
and corresponding changes in capsid-specific CTL population
(5). In the subsequent study using AAV8, administration of
steroids was able to negate this response and maintain
therapeutic FIX levels albeit a 50-70% decline from peak levels
(13). Moreover, transgene protein product-specific CTL was
observed in human rAAV trials for Duchenne’s Muscular
Dystrophy (14) and a-1-antitrypsin (15). Regulatory T cells
(Treg) modulate immune tolerance towards transgene product
and capsid that are vital to durable expression of therapeutic
protein (16, 17). Although the full clinical significance of innate
response to rAAV is unclear (18), unmethylated CpG motifs in
rAAV vector genome interact with toll-like receptor (TLR) 9
present in plasmacytoid dendritic cells and Kupffer cells,
releasing type I interferons activating cellular and humoral
responses in mouse models (19, 20), and has been suggested as
the cause of loss of expression in a rAAV8 hemophilia B trial
(21). Furthermore, rAAV capsid-targeting TLR2, various DNA
sensors, and complement activation may also play a role (22).

Different pharmacotherapies have been used to modulate
immune responses in current in vivo rAAV studies. Here, with
a particular focus on licensed agents, we discuss the
pharmacology of each drug (Figure 1), and their applications
in enabling safe and long-term expression of rAAV gene
therapies (Table 1).
IMMUNOMODULATION TO FACILITATE
rAAV GENE THERAPY DELIVERY

Global Effects
Corticosteroids
Corticosteroids (CCS; methylprednisolone, prednisolone and
prodrug prednisone) bind to glucocorticoid receptors
modifying diverse downstream transcriptional signaling. This
includes annex I, MAPK phosphatase 1, and NF-kB resulting in
anti-inflammatory and immunosuppressive properties (63).
They have broad inhibitory effects on both innate and adaptive
immune cells by reducing pro-inflammatory cytokine and
Frontiers in Immunology | www.frontiersin.org 214
chemokines, T- and to a lesser extent, B-cells production (64).
CCS are used short-term in conjunction with systemically
delivered gene therapies to negate transaminitis and associated
CTL-induced injury transgene loss (30, 65), and reduce T-cell
infiltrates in muscular fibers in non-human primates (NHP)
(33). They are also adopted in approved gene therapies for
inherited retinal dystrophy (25) and spinal muscle atrophy
(SMA) (26).

Subsequently increasing doses of systemic rAAV have been
delivered in preclinical and clinical studies with significant
hepatic sequelae. High dose intravenous AAV9 (2×1014 vector
genomes (vg)/kg) in NHP resulted in marked transaminitis and
acute liver failure (66), posing concerns over dosage related
hepatotoxicity (67). Furthermore, clinical phase II trial for
X-linked myotubular myopathy delivered intravenous
rAAV8.AT132 (NCT03199469) 3×1014vg/kg in high dosage
group, with 16-weeks of prednisolone commencing 1 day prior
to dosing. Three patients with pre-existing intrahepatic
cholestasis (68) experienced severe hepatobiliary complications
culminating in death. The exact mechanisms of the hepatotoxicity
remain to be elucidated. These studies however build evidence
that short-course CCS alone is likely to be insufficient to inhibit
formation of capsid-reactive T cells (13) and rAAV-mediated
immune response with systemic high dosages. Therefore, the
addition of other immunosuppressive agents maybe beneficial. In
a AAVrh10-microRNA study delivering 4.2×1014 vg intrathecally
into two adult patients, the first developed meningoradiculitis
after intrathecal infusion despite corticosteroids (IV
methylprednisolone on day 0 and oral prednisone tapered over
4 weeks). In the second patient, the addition of rituximab and
rapamycin to the regimen resulted in a lower increase of NAb and
T-cell response (29) and these drugs are further discussed.

Rapamycin (Sirolimus)
Rapamycin is a macrolide immunosuppressant that binds to the
same intracellular target (immunophilin) as tacrolimus; however,
rapamycin/FKPB12 complex inhibits a crucial cell-cycle kinase
known as mammalian target of rapamycin (mTOR). Beneficial
downstream effects include Treg generation, suppressing CTL
and T helper (TH) activation and at higher doses, B-cell
proliferation and differentiation (69–71).

Rapamycin has beneficial effects on circumventing existing
antibodies and studied in current hemophilia gene therapy trials.
Hemophilia patients develop inhibitors (antibodies) to clotting
factor replacement and another cause for exclusion in gene
therapy trials. In a murine hemophilia A model, rapamycin
(4mg/kg three times a week) was given in addition to B-cell
depleting anti-CD20 antibodies to suppress TH and Treg response
suppressing inhibitor development (37). Intraperitoneal
prednisolone with rapamycin was shown to inhibit B-cell
activation in murine spleen and bone marrow, reducing pre-
existing anti-capsid immunoglobulin G (IgG) by up to 93% after
8 weeks (72). Additionally, co-administrating AAV vectors with
rapamycin encapsulated in synthetic vaccine particles (SVP
[Rapa]) enabled re-dosing of AAV8 at 4 × 1012vg/kg in mice
and NHP (39). SVP [Rapa] provided sufficient reduction of B
and T cell activation in an antigen-selective manner, inhibited
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CTL liver infiltration, and efficiently blocked memory T cell
response. Potential of intramuscular rAAV9 re-administration is
currently investigated for Pompe disease (NCT02240407) (73), by
attenuating T and B cell response with rapamycin and rituximab
respectively. Preliminary results were successful in preventing
formation of anti-capsid and anti-transgene antibodies (38),
with aims to enable rAAV re-administration and maintain
effectiveness in different underlying mutations.

Mycophenolate Mofetil
Inosine monophosphate dehydrogenase (IMPDH) is the rate-
limiting enzyme for guanosine nucleotide synthesis, and type II
IMPDH is upregulated in activated lymphocytes. Mycophenolate
mofetil (MMF), prodrug of mycophenolic acid, preferentially
inhibits type II IMPDH, suppressing T and B cells proliferation
(74). In mice MMF reduced rAAV transduction efficiency by
depleting guanosine triphosphate required for vector genome
second strand synthesis (75), but this was not observed in higher
Frontiers in Immunology | www.frontiersin.org 315
animals. No difference in AAV8-hFIX transgene expression was
observed when administered with tacrolimus in NHP (6),
highlighting the difficulties of recapitulating human immune
system in mouse models.

T-Cell Specific
Calcineurin Inhibitors
Ciclosporin and tacrolimus are immunosuppressants that inhibit
calcineurin, a key signaling phosphatase, by binding to their
respective immunophilins - cyclophilin and FKBP12 (76). A
major downstream effect is suppression of interleukin (IL)-2
transcription, thereby inhibiting T cells differentiation, survival,
and subsequent antibody production and CTL activities via
effector TH cells. Daily systemic administration of tacrolimus
(0.06mg/kg/day) has been shown to prolong rAAV8 and rAAV9
expression in NHP skeletal muscle, up to 42 weeks from 8 and 16
weeks respectively (47). No generalized toxicity was reported but
T-cell and macrophages infiltrations were observed.
FIGURE 1 | Mechanisms of action of approved pharmacotherapies for immunomodulation with rAAV gene therapy. Pre-existing NAb can inhibit receptor-mediated
endocytosis thus transduction of rAAV (A). TLR9 recognizes CpG motifs, and TLR2 on cell surface or endosomal membrane recognizes vector capsid, both of which
lead to release of pro-inflammatory cytokines (B). Recent evidence shows that ITRs facilitate bidirectional transcription to form dsRNA, which triggers cytosolic MDA5
and downstream type I interferon response (C). Upon endosomal escape, rAAV can be degraded by proteasome and loaded on MHC class I by the endoplasmic
reticulum (D). Recognition by memory CTL (E) leads to expansion and differentiation into CTL, and both can commence effector functions leading to loss of
transgene expression (F). On the other hand, rAAV can also transduce APC, for instance dendritic cells, and transgene protein product can be phagocytosed (G).
They are processed by proteasomes and endosomes respectively and the antigens can be presented on MHC class II molecules (H), leading to downstream
activation of TH and B-cells; among other actions, B cells would differentiate into plasma cells and produce antigen-specific antibodies (I). Created with BioRender.
com. APC, antigen presenting cells; ATO, arsenic trioxide; CCS, corticosteroids; Chemo, chemotherapeutics; CIs, calcineurin inhibitors; CTL, cytotoxic
T lymphocytes; dsRNA, double-stranded ribonucleic acid; HCQ, hydroxychloroquine; IFN, interferon; IL, interleukin; ITR, inverted terminal repeats; MHC, major
histocompatibility complex; MMF, mycophenolate mofetil; NAbs, neutralizing antibodies; NF-kB, nuclear factor kappa B; PIs, proteasome inhibitors; RAPA,
rapamycin; rATG, rabbit anti-thymocyte globulin; RTX, rituximab; TH, T helper cells; TNF, tumor necrosis factor; TLR, toll-like receptor.
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TABLE 1 | Licensed pharmacotherapies used in preclinical and clinical studies as adjuvant to AAV gene therapies.

Drug Licensed indication(s) Significant adverse effects
in humans

Example AAV
serotype trialed

Type of study

Corticosteroids
(23, 24)

Anti-inflammatory and
immunosuppressive properties
are used in most areas of
medicine
- Autoimmune diseases e.g.
rheumatoid arthritis, systemic
lupus erythematous (SLE)
- Systemic and local
inflammation
- Acute exacerbation of asthma
and inflammatory bowel disease

Short term treatment: adrenal
suppression, hyperglycemia
Long term treatment:
osteoporotic fracture, insulin
resistance, Cushingoid features,
cataracts/glaucoma,
neuropsychiatric disturbances,
cardiovascular risks, muscle and
skin atrophy
In children: growth suppression,
Cushing’s syndrome,
medication-induced diabetes

AAV2 (25),
scAAV9 (26)

Approved

AAV2 (27),
AAV5 (28),
AAVrh10 (29),
AAV-Spark100 (30),
scAAV2/8 (13),
scAAV5 (31)

Clinical

AAV1 (32) Clinical as combination

AAVrh74 (33) Preclinical

Rapamycin (34, 35) Prophylaxis of organ rejection
after transplantation

Thrombocytopenia, dyslipidemia,
mucositis, impaired wound
healing, proteinuria

AAV1 (36),
AAV8 (37),
AAV9 (38),
AAVrh10 (29)

Clinical as combination

AAV8 (39) Preclinical

AAV2 (40), (41),
AAV9 (42)

Preclinical as
combination

Mycophenolate mofetil (43, 44) Prophylaxis of organ rejection
after transplantation

Gastrointestinal toxicity (requiring
dose reduction/discontinuation in
40-50% transplant patients),
myelosuppression, infection,
genotoxic

AAV8 (6),
AAV2 (40) (41)

Preclinical as
combination

Calcineurin inhibitors (45, 46) Prophylaxis of organ rejection
after transplantation

Narrow therapeutic index -
nephrotoxicity, neurotoxicity,
infection, gastrointestinal toxicity,
malignancy

AAV1 (32) Clinical as combination

AAV8, AAV9 (47) Preclinical

AAV8 (48) Preclinical as
combination

Rituximab (49) Rheumatoid arthritis, Non-
Hodgkin’s lymphoma

Infusion reaction including
cytokine release syndrome,
infection, febrile neutropenia,
myelosuppression, cardiotoxicity

AAV2 and 5 NAb (50) Ex vivo human serum

AAV1 (36),
AAV9 (38),
AAVrh10 (29)

Clinical as combination

AAV8, AAV6 (51);
AAV9 (42)

Preclinical as
combination

Imlifidase (52) Pre-transplant desensitization in
highly sensitized, crossmatch
positive renal transplant patients

Infection (pneumonia, sepsis),
infusion site reaction, hepatic
dysfunction, headache

AAV8, AAV-LK03 (53) Preclinical

Proteasome inhibitors (54, 55) Multiple myeloma Peripheral neuropathy,
myelosuppression (especially
thrombocytopenia),
cardiovascular events, herpes
reactivation

AAV2 (56),
AAV8 (57)

Preclinical

Arsenic trioxide (58) Acute promyelocytic leukemia Hyperleukocytosis,
gastrointestinal toxicity, skin
lesions, hepatic dysfunction

AAV8 (59) Preclinical

Hydroxychloroquine (60) Rheumatoid arthritis, SLE Gastrointestinal effects,
retinopathy, myopathy, QT
prolongation (at high dosage)

AAV2 (61) Preclinical

Rabbit anti-thymocyte globulin (62) Prophylaxis of graft-versus-host
disease or organ rejection after
transplantation

Infusion reaction including
cytokine release syndrome,
opportunistic infection/
reactivation

AAV2 (41) Preclinical as
combination
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The first approved gene therapy in Europe, alipogene tiparvovec
(Glybera), incorporated 12-week immunosuppression regimen with
ciclosporin (3mg/kg/day) and MMF (2g/day) (32). In the initial
regimen, 9/14 subjects showed humoral and cellular response
against rAAV1 (77). Subsequent study (AMT-011-02) modified
the regimen to commence ciclosporin and MMF from day -3 with
additional methylprednisolone on day 0 resulting in transient
cellular responses without clinical sequalae (78).

Ciclosporin and tacrolimus were found to inhibit Treg
proliferation and activity in vitro (79), and similar effects were
observed in tacrolimus-treated allograft patients ex vivo (80); this
could be detrimental in inhibiting the development of peripheral
tolerance following rAAV administration. However, preclinical
delivery of ciclosporin and non-depleting CD4 receptor antibody
(NDCD4) have been shown to induce antigen-specific Treg,
enabl ing AAV intravenous re-administrat ion after
3 months (48).

B-Cell Specific
Rituximab
Rituximab (RTX) is a chimeric mouse/human monoclonal
antibody targeting CD20 present in pre‐B and mature B cells
except plasma cells. It depletes B cells by inducing apoptosis,
antibody dependent cell-mediated cytotoxicity and complement
dependent cytotoxicity, thereby limiting antibody production
and epitope presentation via MHC class II to TH cells (81).

A preclinical model for hemophilia B showed RTX with
ciclosporin dampened NAb response to human FIX and capsid
without affecting Treg (51). As ciclosporin inhibits TH cell, this
further improves B-cell inhibition profile. Variable responses
have been observed in RTX’s effect on reducing pre-existing
AAV NAb. A small group of patients with rheumatoid arthritis
were treated with combination of methotrexate and RTX,
lowering anti-AAV2 and anti-AAV5 NAb in a subset of
patients with variable magnitudes (50). For AAV2, 9/28
patients showed at least a half-log reduction, and inferred
individuals with NAb titer ≤1:1000 were more likely to
respond to RTX but the contribution of methotrexate is
unknown. Considering the supportive evidence from previous
AAVrh10-microRNA with RTX (29), further study in RTX
application is warranted.

IgG-Degrading Cysteine Proteinase
Imlifidase (Idefirix, Hansa Biopharma) is a IgG-degrading
cysteine protease derived from Streptococcus pyogenes (IdeS),
which specifically cleaves opsonizing IgG at the lower
hinge region of the heavy chains, resulting in a F(ab’)2 and a
non-functioning dimeric Fc fragment (82). It could potentially
overcome a limitation of RTX and cleave existing capsid-specific
IgG. Using a laboratory version of IdeS with rAAV8, significant
reductions in anti-AAV8 IgG and NAb levels, with enhanced
liver transduction and transgene expression and observed
in passively immunized murine models and naturally
immunized NHP (53). Notably, the study also explored rAAV
re-administration with IdeS pre-treatment in NHPs. In the first
study (n=1), no induction of anti-capsid IgG and NAb, along
with lower IgM and increased transgene level was observed for
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21 days after second rAAV8-hFIX administration. However, this
was not replicated in a larger cohort (n=5) immunized with
rAAV-LK03, that developed anti-capsid IgM and IgG. Further
studies are required as the IdeS dosing regimen differed between
studies, and two rAAV-LK03 vectors (expressing GAA and
hFVIII) were used in the latter study.

Other Pharmacological Agents
Proteasome Inhibitors
Proteasome inhibitors (PIs) are licensed for multiple myeloma.
Second-generation carfilzomib is irreversible and more
specifically inhibits chymotrypsin-like activity than bortezomib,
the reversible first-generation inhibitor, which also inhibits
lysosomal and calcium-activated cellular proteases (54, 83).
After endosomal escape, rAAV particles either enter the
nucleus for transgene expression, or become ubiquitylated then
degraded by proteasome (84). The latter pathway results in
unsuccessful transduction, and capsid-derived peptides are
presented to CTL by MHC class I molecules, provoking
elimination of transduced cells and loss of transgene
expression (85). In addition, these inhibitors may have
immunomodulatory role in suppressing dendritic cells function
and downstream T-cell stimulation (86).

PIs have been investigated in preclinical models for their
ability to increase rAAV availability and reduce CTL responses.
Bortezomib has been shown to dose-dependently decrease cell
surface MHC class I antigen presentation and inhibit CTL-
mediated lysis after rAAV administration in vitro (87).
Moreover, a single bortezomib dose given with rAAV8 dosing
enhanced transgene expression by >50% for one year (compared
to ~10%) in hemophilia A mice, and longer in-range clotting
time for at least 10 months in hemophilia A dogs (57). Both
bortezomib and carfilzomib enhance rAAV2 transduction
in vitro, but bortezomib is more efficacious than carfilzomib
in vivo when administered by retro-orbital injection with rAAV2
(56). Although no toxicity was found in the animal models,
peripheral neuropathy and myelosuppression are adverse effects
observed in humans (54). Emerging evidence showing variations
in PI effectiveness across cell types and AAV serotypes (88),
which warrants further study.

Chemotherapeutics
Second strand synthesis after capsid uncoating in nucleus is
long-recognized as the rate-limiting step of rAAV transduction
(89); an improvement in such efficacy could allow rAAV
administration at lower dose. As traditional chemotherapeutics
directly or indirectly induce DNA damage, thereby initiating
DNA damage response (DDR) to repair lesions (90), it has been
postulated that these repair mechanisms could increase
conversion of rAAV genome into dsDNA (91), or divert DDR
proteins that would otherwise impede dsDNA production (92).
Several chemotherapy agents were evaluated previously (91, 93)
and a high throughput screening study identified teniposide, a
type II topoisomerase inhibitor pharmacologically similar to
etoposide, as a potent transduction enhancer (94). Tail vein
injection of rAAV2-Luc with teniposide (at doses of 1×1011vg
and 20mg/kg respectively) resulted in bioluminescence 2-log
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higher 48 hours post-administration without hepatotoxicity.
This difference reduced to ~1 log at 8 days post-administration
(study endpoint). Further study is required to determine whether
the effect is sustained, and evaluate potential long-term effects of
non-tissue-selective chemotherapy.

Agents Affecting Oxidative Stress
Oxidizing agents, such as arsenic trioxide (ATO) (59), and
antioxidants, such as manganese (III) tetrakis (4-benzoic acid)
porphyrin chloride (MnTBAP) (95), have been evaluated.
Intraperitoneal ATO 5mg/g/day from day -2 to 2 showed 3.9-
fold increase in luciferase assay 12 days after rAAV8 retro-orbital
injection, with dose-dependent increase of intracellular reactive
oxygen species that inhibit vector degradation pathways (59).
Intraperitoneal MnTBAP 80mg/kg/day from day 0-4 reversibly
downregulated CD4 on T cells, inhibiting T cell priming and
humoral responses to initial rAAV1 dosing, and allowing
re-administration of rAAV1 via a different route 28 days
later (95).

Anti-Malarials
Hydroxychloroquine is an anti-malarial that interferes with
TLRs and cyclic GMP-AMP synthase (cGAS), dampening
downstream pro-inflammatory cytokine and type I IFN
production (60). A study injected hydroxychloroquine
subretinally (18.75mM) with rAAV2, resulting in 5.9-fold
improvement in photoreceptor transgene expression (61).
However, endosomal acidification is essential for rAAV escape
(84), and hydroxychloroquine increases endosomal and
lysosomal pH (60), this effect may not be replicated or
consistent with systemic application.

Combination Therapy
Triple T-Cell Directed Therapy
This study highlights importance of pharmacotherapy choice.
rAAV2-hFIX (8×1012vg/kg) was delivered intrahepatically to
NHP alongside 2-drug regimen of MMF and rapamycin
compared to 3-drug adding Daclizumab (40). The addition of
daclizumab resulted in decreased CD4+CD25+FoxP3+ Treg and
consistent formation of inhibitory antibodies to hFIX; this was
not observed in the 2-drug group. Daclizumab is a humanized
monoclonal antibody targeting CD25 present on interleukin-2
receptor commonly found in activated T cells and
CD4+CD25+FoxP3+ (96). This indicates careful selection of
immunosuppressive agents is necessary as Treg play a critical
role in regulating immune response to rAAV products,
particularly observed in liver and muscle gene transfer (97).

Triple T-Cell Directed Therapy: Delayed rATG
Timing of T cell immunosuppressant regimen was evaluated
with liver-directed rAAV2-hFIX, at 7.5×1012vg/kg via hepatic
artery in NHP (41). Rabbit anti-thymocyte globulin (rATG), a
rabbit polyclonal IgG, causes T-cell and plasma cell depletion
and modulation of other immune effectors (98). Used with MMF
(25 mg/kg) and rapamycin (4mg/kg, then 2mg/kg), a 35-day
delay in rATG administration prevented formation of anti-
transgene humoral response compared to commencing
Frontiers in Immunology | www.frontiersin.org 618
immunosuppression on day 0 (41). Neither group had cellular
response to capsid or transgene, and 2 of 3 NHP in the delayed
rATG group did not develop anti-capsid antibodies. It is possible
by postponing rATG lowers the Th17/Treg ratio, allowing
peripheral tolerance to the transgene product (41).

B and T Cell-Directed Therapy
This intensive immunosuppressive therapy included T-cell-targeting
ATG and tacrolimus, B-cell targeting rituximab, with MMF and
methylprednisolone to deliver global immunosuppression (99). This
5-drug regimen with rAAV5-PBGD 1×1013vg/kg infusion resulted
in reduced T-cell response in NHP, but did not prevent NAb
emergence following regimen removal. This suggests that drug
selection, initiation and duration of suppression, and role of global
immunosuppression are important considerations.
DISCUSSION

AAV gene therapy has the potential to be durable and
transformative treatment for previously incurable, life-limiting
genetic diseases. However, human immune responses to the viral
vector, transgene, and protein product determine the therapeutic
efficacy and possibility of re-administration. Studies showed
cross-reactive anti-capsid NAb present at 15 years (100), CTL
and Treg infiltrates at injection site after 5 years (101); and in
NHP adverse effects related to high-dosage (42, 66). With the
increasing applications of systemic rAAV at higher dosages in
clinical trials, further understanding of innate and adaptive
immune responses to rAAV gene therapies is essential to safe
and efficacious treatment.

Multiple approaches are being developed to evade the host
immune response such as evaluating effects of empty capsids
(102), capsid engineering guided by antigenic footprints
(103), and plasmapheresis (104). The use of existing
licensed medications for their immunosuppression and
immunomodulation properties offers the advantages of
flexibility (by allowing variations of drug combinations, dose,
and duration of immunosuppressive course), accessibility, and
well-documented pharmacological and safety profiles. As
summarized above, a range of pharmacological agents have
been used in clinical and preclinical studies, and the timing of
immunomodulation, duration, and drug regimen itself have all
contributed to treatment efficacy. Corticosteroids are the most
commonly used agents to resolve transaminitis, however, its
relationship with resolution by corticosteroids and T-cell
response are not always clear as observed in a hemophilia A
trial (28, 105). Also, rAAV vectors and patients’ characteristics
must be thoroughly evaluated to optimize safe delivery of high-
dose systemic rAAV or re-dosing.

To better design immunomodulation regimens, thorough
considerations of the underlying immunological mechanisms
are essential. Peripheral tolerance mediated by Treg to
counteract CTL responses in hepatic AAV studies remains an
important area of development (106). Reports on Treg in liver
and their persistence in muscle fibers after intermuscular
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delivery (17) further emphasizes the need for Treg-sparing
therapies. Moreover, binding (non-neutralizing) antibodies
in mice seemed to have a different biodistribution profile than
NAb and higher efficacy in liver transduction (107). A proposed
late-phase innate response triggered by ITRs’ inherent promoter
activity that generates dsRNA that activates cytosolic MDA5
sensors and releases type I interferons as demonstrated in mice
xenografted with human hepatocytes (108), poses further questions
as to the ideal immunosuppression regimen. Lastly, the lack of fully
predictive animal models (3, 109), and possibility of alternative,
non-immune-mediated toxicity such as dorsal root ganglion toxicity
with AAV9 (110), continue to represent challenges in safety and
efficacy evaluation.

CRISPR-Cas9 is a promising therapeutic tool that allows
genetic target-specific cleavage and editing (111). The first
clinical trial is currently underway for Leber’s congenital
amaurosis 10 (NCT03872479), EDIT-101, consists of
Staphylococcus aureus Cas9 (SaCas9) and two guide RNA
packaged in AAV5 vector for subretinal redelivery. One
concern is that the prevalence of anti-SaCas9 antibodies and
T-cell in humans are reported to be 78% (111). Studies showed
pre-existing SaCas9 immunity in mice resulted in increased CTL
response leading to hepatocyte apoptosis and loss of transgene
(112). Although no adaptive immune response towards SaCas9
Frontiers in Immunology | www.frontiersin.org 719
was reported (113), the eye is a relatively immunoprivileged site,
these data will not necessarily predict immune response in
humans or systemic administration. By gaining a precise
understanding of the immune mechanisms, drug repurposing
(for instance JAK inhibitors for type I interferon signaling,
anti-interleukin-6 human monoclonal antibodies), alongside
with how and when to immunomodulate around rAAV
dosing and required duration, will help to fully maximize
gene therapy safety and efficacy.
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In vitro effects of cyclosporine a and tacrolimus on regulatoryt-cell
proliferation and function. Transplantation (2012) 94(2):123–31.
doi: 10.1097/TP.0b013e3182590d8f

80. Akimova T, Kamath BM, Goebel JW, Meyers KEC, Rand EB, Hawkins A,
et al. Differing effects of rapamycin or calcineurin inhibitor onT-Regulatory
cells in pediatric liver and kidney transplant recipients. Am J Transplant
(2012) 12(12):3449–61. doi: 10.1111/j.1600-6143.2012.04269.x

81. Smith MR. Rituximab (monoclonal anti-CD20 antibody): Mechanisms of
action and resistance. Oncogene (2003) 22:7359–68. doi: 10.1038/
sj.onc.1206939

82. Lorant T, Bengtsson M, Eich T, Eriksson B-M, Winstedt L, Järnum S, et al.
Safety, immunogenicity, pharmacokinetics, and efficacy of degradation of
anti-HLA antibodies by IdeS (imlifidase) in chronic kidney disease patients.
Am J Transplant (2018) 18:2752–62. doi: 10.1111/ajt.14733

83. Fricker LD. Proteasome Inhibitor Drugs. Annu Rev Pharmacol Toxicol
(2020) 60:457–76. doi: 10.1146/annurev-pharmtox-010919-023603

84. Dhungel BP, Bailey CG, Rasko JEJ. Journey to the Center of the Cell: Tracing
the Path of AAV Transduction. Trends Mol Med (2020) 27(2):172–84.
doi: 10.1016/j.molmed.2020.09.010

85. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for
gene therapy delivery. Nat Rev Drug Discovery (2019) 18:358–78.
doi: 10.1038/s41573-019-0012-9

86. Naujokat C, Berges C, Höh A, Wieczorek H, Fuchs D, Ovens J, et al.
Proteasomal chymotrypsin-like peptidase activity is required foressential
functions of human monocyte-derived dendritic cells. Immunology (2007)
120(1):120–32. doi: 10.1111/j.1365-2567.2006.02487.x

87. Finn JD, Hui D, Downey HD, Dunn D, Pien GC, Mingozzi F, et al.
Proteasome inhibitors decrease AAV2 capsid derived peptide epitope
presentation on mhc class i following transduction. Mol Ther (2010)
18:135–42. doi: 10.1038/mt.2009.257

88. Chaanine AH, Nonnenmacher M, Kohlbrenner E, Jin D, Kovacic JC, Akar
FG, et al. Effect of bortezomib on the efficacy of AAV9.SERCA2a treatment
to preserve cardiac function in a rat pressure-overload model of heart failure.
Gene Ther (2014) 21:379–86. doi: 10.1038/gt.2014.7

89. Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a
rate-limiting step for efficient transduction by recombinant adeno-associated
virus vectors. J Virol (1996) 70:3227–34. doi: 10.1128/jvi.70.5.3227-3234.1996

90. Woods D, Turchi JJ. Chemotherapy induced DNA damage response
Convergence of drugs and pathways. Cancer Biol Ther (2013) 14:379–89.
doi: 10.4161/cbt.23761

91. Russell DW, Alexander IE, Miller AD. DNA synthesis and topoisomerase
inhibitors increase transduction by adeno-associated virus vectors. Proc Natl
Acad Sci USA (1995) 92:5719–23. doi: 10.1073/pnas.92.12.5719

92. Cervelli T, Palacios JA, Zentilin L, Mano M, Schwartz RA, Weitzman MD,
et al. Processing of recombinant AAV genomes occurs in specific nuclear
structures that overlap with foci of DNA-damage-response proteins. J Cell
Sci (2008) 121:349–57. doi: 10.1242/jcs.003632

93. Fields PA, Arruda VR, Armstrong E, Chu K, Mingozzi F, Hagstrom JN, et al.
Risk and prevention of anti-factor IX formation in AAV-mediated
genetransfer in the context of a large deletion of F9. Mol Ther (2001) 4
(3):201–10. doi: 10.1006/mthe.2001.0441

94. Nicolson SC, Li C, Hirsch ML, Setola V, Samulski RJ. Identification and
Validation of Small Molecules That Enhance Recombinant Adeno-
associated Virus Transduction following High-Throughput Screens. J Virol
(2016) 90:7019–31. doi: 10.1128/jvi.02953-15

95. Da Rocha S, Bigot J, Onodi F, Cosette J, Corre G, Poupiot J, et al. Temporary
Reduction of Membrane CD4 with the Antioxidant MnTBAP Is Sufficient to
April 2021 | Volume 12 | Article 658038

https://doi.org/10.1038/mt.2010.170
https://doi.org/10.1038/mt.2010.170
https://doi.org/10.1016/j.lrr.2017.03.001
https://doi.org/10.1128/jvi.03443-12
https://doi.org/10.1128/jvi.03443-12
https://doi.org/10.1038/s41584-020-0372-x
https://doi.org/10.1016/j.omtm.2019.05.012
https://doi.org/10.1038/s41409-020-0792-x
https://doi.org/10.1056/nejmra050541
https://doi.org/10.1056/nejmra050541
https://doi.org/10.1016/j.mce.2010.04.005
https://doi.org/10.1056/NEJMoa1108046
https://doi.org/10.1089/hum.2018.015
https://doi.org/10.1038/s41587-020-0642-9
https://doi.org/10.1089/hum.2020.217
https://doi.org/10.1073/pnas.1407104111
https://doi.org/10.1016/j.immuni.2009.04.014
https://doi.org/10.1182/blood-2007-06-094482
https://doi.org/10.1182/blood-2007-06-094482
https://doi.org/10.1016/j.omtm.2017.01.003
https://doi.org/10.1089/humc.2015.068
https://doi.org/10.1177/096120330501400102
https://doi.org/10.1089/hum.2010.222
https://doi.org/10.1089/hum.2010.222
https://doi.org/10.4049/jimmunol.1390055
https://doi.org/10.4049/jimmunol.1390055
https://doi.org/10.1038/gt.2012.43
https://doi.org/10.3389/fimmu.2014.00082
https://doi.org/10.1097/TP.0b013e3182590d8f
https://doi.org/10.1111/j.1600-6143.2012.04269.x
https://doi.org/10.1038/sj.onc.1206939
https://doi.org/10.1038/sj.onc.1206939
https://doi.org/10.1111/ajt.14733
https://doi.org/10.1146/annurev-pharmtox-010919-023603
https://doi.org/10.1016/j.molmed.2020.09.010
https://doi.org/10.1038/s41573-019-0012-9
https://doi.org/10.1111/j.1365-2567.2006.02487.x
https://doi.org/10.1038/mt.2009.257
https://doi.org/10.1038/gt.2014.7
https://doi.org/10.1128/jvi.70.5.3227-3234.1996
https://doi.org/10.4161/cbt.23761
https://doi.org/10.1073/pnas.92.12.5719
https://doi.org/10.1242/jcs.003632
https://doi.org/10.1006/mthe.2001.0441
https://doi.org/10.1128/jvi.02953-15
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chu and Ng Adjuvant Pharmacotherapies for rAAV Administration
Prevent Immune Responses Induced by Gene Transfer. Mol Ther - Methods
Clin Dev (2019) 14:285–99. doi: 10.1016/j.omtm.2019.06.011

96. Milo R. The efficacy and safety of daclizumab and its potential role in
thetreatment of multiple sclerosis. Ther Adv Neurol Disord (2014) 7(1):7–21.
doi: 10.1177/1756285613504021

97. Biswas M, Kumar SRP, Terhorst C, Herzog RW. Gene therapy with
regulatory T cells: A beneficial alliance. Front Immunol (2018) 9:554.
doi: 10.3389/fimmu.2018.00554

98. Mohty M. Mechanisms of action of antithymocyte globulin: T-cell depletion
andbeyond. Leukemia (2007) 21:1387–94. doi: 10.1038/sj.leu.2404683

99. Unzu C, Hervás-Stubbs S, Sampedro A, Mauleón I, Mancheño U, Alfaro C,
et al. Transient and intensive pharmacological immunosuppression fails to
improve AAV-based liver gene transfer in non-human primates. J Transl
Med (2012) 10:122. doi: 10.1186/1479-5876-10-122

100. George LA, Ragni MV, Rasko JEJ, Raffini LJ, Samelson-Jones BJ, Ozelo M,
et al. Long-Term Follow-Up of the First in Human Intravascular Delivery
ofAAV for Gene Transfer: AAV2-hFIX16 for Severe Hemophilia B.Mol Ther
(2020) 28(9):2073–82. doi: 10.1016/j.ymthe.2020.06.001

101. Mueller C, Gernoux G, Gruntman AM, Borel F, Reeves EP, Calcedo R, et al. 5
Year Expression and Neutrophil Defect Repair after Gene Therapy in
Alpha-1 Antitrypsin Deficiency. Mol Ther (2017) 25:1387–94.
doi: 10.1016/j.ymthe.2017.03.029

102. Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ, Hui DJ, et al.
Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci
Transl Med (2013) 5:194ra92. doi: 10.1126/scitranslmed.3005795

103. Tse LV, Klinc KA, Madigan VJ, Rivera RMC, Wells LF, Havlik LP, et al.
Structure-guided evolution of antigenically distinctadeno-associated virus
variants for immune evasion. Proc Natl Acad Sci USA (2017) 114(24):E4812–
21. doi: 10.1073/pnas.1704766114

104. Monteilhet V, Saheb S, Boutin S, Leborgne C, Veron P, Montus MF, et al. A
10 patient case report on the impact of plasmapheresis uponneutralizing
factors against adeno-associated virus (AAV) types 1, 2, 6, and 8. Mol Ther
(2011) 19(11):2084–91. doi: 10.1038/mt.2011.108

105. Pasi KJ, Rangarajan S, Mitchell N, Lester W, Symington E, Madan B, et al.
Multiyear Follow-up of AAV5-hFVIII-SQ Gene Therapy for Hemophilia A.
N Engl J Med (2020) 382:29–40. doi: 10.1056/NEJMoa1908490

106. Poupiot J, Costa Verdera H, Hardet R, Colella P, Collaud F, Bartolo L, et al.
Role of Regulatory T Cell and Effector T Cell Exhaustion in Liver-Mediated
Transgene Tolerance in Muscle.Mol Ther - Methods Clin Dev (2019) 15:83–
100. doi: 10.1016/j.omtm.2019.08.012
Frontiers in Immunology | www.frontiersin.org 1022
107. Fitzpatrick Z, Leborgne C, Barbon E, Masat E, Ronzitti G, vanWittenberghe L,
et al. Influence of Pre-existing Anti-capsid Neutralizing and Binding
Antibodies on AAV Vector Transduction. Mol Ther - Methods Clin Dev
(2018) 9:119–29. doi: 10.1016/j.omtm.2018.02.003

108. Shao W, Earley LF, Chai Z, Chen X, Sun J, He T, et al. Double-stranded RNA
innate immune response activation from long-term adeno-associated virus
vector transduction. JCI Insight (2018) 3:1–15. doi: 10.1172/
jci.insight.120474

109. Martino AT, Markusic DM. Immune Response Mechanisms against AAV
Vectors in Animal Models.Mol Ther - Methods Clin Dev (2020) 17:198–208.
doi: 10.1016/j.omtm.2019.12.008

110. Hordeaux J, Buza EL, Jeffrey B, Song C, Jahan T, Yuan Y, et al. MicroRNA-
mediated inhibition of transgene expression reduces dorsalroot ganglion
toxicity by AAV vectors in primates. Sci Transl Med (2020) 12:569.
doi: 10.1126/scitranslmed.aba9188

111. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT,
Cromer MK, et al. Identification of preexisting adaptive immunity to Cas9
proteins in humans. Nat Med (2019) 25:249–54. doi: 10.1038/s41591-018-
0326-x

112. Li A, Tanner MR, Lee CM, Hurley AE, De Giorgi M, Jarrett KE, et al. AAV-
CRISPR Gene Editing Is Negated by Pre-existing Immunity to Cas9. Mol
Ther (2020) 28:1432–41. doi: 10.1016/j.ymthe.2020.04.017

113. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS,
et al. Development of a gene-editing approach to restore vision loss in Leber
congenital amaurosis type 10. Nat Med (2019) 25:229–33. doi: 10.1038/
s41591-018-0327-9

Conflict of Interest: JN has sponsored research agreements with AskBio Europe
and Rocket Pharma.

The remaining author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Chu and Ng. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
April 2021 | Volume 12 | Article 658038

https://doi.org/10.1016/j.omtm.2019.06.011
https://doi.org/10.1177/1756285613504021
https://doi.org/10.3389/fimmu.2018.00554
https://doi.org/10.1038/sj.leu.2404683
https://doi.org/10.1186/1479-5876-10-122
https://doi.org/10.1016/j.ymthe.2020.06.001
https://doi.org/10.1016/j.ymthe.2017.03.029
https://doi.org/10.1126/scitranslmed.3005795
https://doi.org/10.1073/pnas.1704766114
https://doi.org/10.1038/mt.2011.108
https://doi.org/10.1056/NEJMoa1908490
https://doi.org/10.1016/j.omtm.2019.08.012
https://doi.org/10.1016/j.omtm.2018.02.003
https://doi.org/10.1172/jci.insight.120474
https://doi.org/10.1172/jci.insight.120474
https://doi.org/10.1016/j.omtm.2019.12.008
https://doi.org/10.1126/scitranslmed.aba9188
https://doi.org/10.1038/s41591-018-0326-x
https://doi.org/10.1038/s41591-018-0326-x
https://doi.org/10.1016/j.ymthe.2020.04.017
https://doi.org/10.1038/s41591-018-0327-9
https://doi.org/10.1038/s41591-018-0327-9
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Fabio Bagnoli,

GlaxoSmithKline, Italy

Reviewed by:
Ronzitti Giuseppe,
Genethon, France
Arun Srivastava,

University of Florida, United States

*Correspondence:
Nicole K. Paulk

Nicole.Paulk@ucsf.edu
Stacy A. Malaker

Stacy.Malaker@yale.edu

†These authors share last authorship

Specialty section:
This article was submitted to

Vaccines and Molecular Therapeutics,
a section of the journal

Frontiers in Immunology

Received: 24 January 2021
Accepted: 03 March 2021
Published: 01 April 2021

Citation:
Rumachik NG,

Malaker SA and Paulk NK (2021)
VectorMOD: Method for Bottom-Up

Proteomic Characterization
of rAAV Capsid Post-Translational

Modifications and Vector Impurities.
Front. Immunol. 12:657795.

doi: 10.3389/fimmu.2021.657795

METHODS
published: 01 April 2021

doi: 10.3389/fimmu.2021.657795
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Proteomic Characterization
of rAAV Capsid Post-Translational
Modifications and Vector Impurities
Neil G. Rumachik1, Stacy A. Malaker2*† and Nicole K. Paulk3*†

1 Ion Chromatography and Sample Preparation, Thermo Fisher Scientific, Sunnyvale, CA, United States, 2 Department
of Chemistry, Yale University, New Haven, CT, United States, 3 Department of Biochemistry & Biophysics, University of
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Progress in recombinant AAV gene therapy product and process development has
advanced our understanding of the basic biology of this critical delivery vector. The
discovery of rAAV capsid post-translational modifications (PTMs) has spurred interest in
the field for detailed rAAV-specific methods for vector lot characterization by mass
spectrometry given the unique challenges presented by this viral macromolecular
complex. Recent concerns regarding immunogenic responses to systemically
administered rAAV at high doses has highlighted the need for investigators to catalog
and track potentially immunogenic vector lot components including capsid PTMs and
PTMs on host cell protein impurities. Here we present a simple step-by-step guide for
academic rAAV laboratories and Chemistry, Manufacturing and Control (CMC) groups in
industry to perform an in-house or outsourced bottom-up mass spectrometry workflow to
characterize capsid PTMs and process impurities.

Keywords: AAV (adeno-associated virus), PTM (post-translational modification), proteomics, mass spectrometry -
LC-MS/MS, bottom-up approach, glycosylation, immunogenicity, adverse drug reaction
INTRODUCTION

Recombinant adeno-associated virus (rAAV) is becoming the most widely used viral vector for gene
delivery and genome editing, as it is naturally replication-incompetent, non-lytic, non-pathogenic, and
largely non-immunogenic. It exhibits high transduction efficiency in nearly all tissues in vivo and can
express payloads stably from unintegrated episomes in non-dividing tissues (1). Additionally, it can
target integration in actively dividing tissues when homology arms are included in the payload construct
(2). Despite decades of use in the clinic, new basic biology of this virus continues to be uncovered. In the
last two years alone, we have seen two dogma-changing papers re-shape the AAV textbooks. First,
despite the genome’s notoriously small size, yet another new rAAV gene, MAAP, has been found using
machine learning (3). MAAP codes for a protein that appears to be involved in rapid extracellular
secretion from host cells during production. Second, we reported that during vector production, rAAV
genomes are methylated and capsids acquire PTMs (4, 5). These PTMs include acetylation, O-linked
glycosylation, phosphorylation, and methylation (in addition to potential degradation products like
org April 2021 | Volume 12 | Article 657795123
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deamidation and oxidation). Numerous groups have now also
independently identified and validated our AAV capsid PTM
discoveries (6, 7).

It is known that PTMs on any therapeutic protein can elicit
immune responses by inducing aggregates (8) (a known problem
with high concentration rAAV), altering stability or functional
activity, or by altering antigen processing and presentation.
Despite historically being considered largely non-immunogenic,
recent systemically-administered rAAVs at high doses have led to
various unwanted immunogenic responses (9–12). It remains
unclear what critical quality attributes of rAAV vectors may be
contributing to these effects; thus, additional product
characterization and preclinical modeling is warranted. Among
PTMs, glycosylation specifically can act as a strong modulator of
immunogenicity (13). A concern for the rAAV manufacturing
space is the potential risk for immunotoxicity from producing
vector within insect cells like Spodoptera frugiperda in the
baculovirus-Sf9 platform. Humans can have acute allergic
responses to non-mammalian N-glycans (14), as well as any
N-glycan with an a1,3-fucose or b1,2-xylose linkage on the basal
N-acetyl glucosamine (GlcNAc), both of which are modifications
found on insect glycoproteins (15). Thus, insect glycoprotein
process impurities in baculovirus-Sf9 produced rAAV vector lots
could pose potential immunogenicity risks. As we demonstrated
previously (4, 5), rAAV vectors produced in human cells are more
potent than vectors produced in insect cells, allowing for lower,
potentially safer, doses to be administered. Interestingly, while
insect glycoforms can trigger negative human immune responses,
conserved mammalian glycoforms (like those that would occur
when producing vector in HEK293, HeLa, Vero, or BHK cells)
generally enhance product solubility and reduce undesirable
immune reactions and aggregation. Glycosylation can also
shield potentially immunogenic protein epitopes from the
immune system (16). The FDA has existing guidance on what
Frontiers in Immunology | www.frontiersin.org 224
protein PTMs they focus on when reviewing other therapeutic
protein products (8, 17, 18), and while these do not yet apply to
rAAV, they suggest where the agency may focus as we learn more
about the impact these chemical modifications have on rAAV. At
present, the FDA lists rAAV capsid PTM assessment as a
recommended extended characterization assay (19). Thus, here
we provide a detailed protocol for assessing rAAV vector lot
PTMs on capsids and host protein impurities (Figure 1) based on
our years of developing these methods.
MATERIALS AND EQUIPMENT

Reagent List (Vendor, Catalog #)

Protein LoBind 1.5 mL microcentrifuge tubes (Eppendorf
Cat#0030108116)

Acetone, liquid chromatography (LC) grade (Thermo Fisher
Scientific Cat#AA22928)

Protease Max trypsin enhancer, 1 mg (Promega Cat#V2071)

Ammonium bicarbonate (ABC) (Sigma Cat#09830-500G)

Dithiothreitol (DTT) (Thermo Fisher Scientific Cat#R0861)

Iodoacetamide (Sigma Cat#87-51-4)

Endoglycosidase-H (Endo-H) (Promega Cat#PRV4875)

Sequencing Grade Modified Trypsin (Promega Cat#V5111)

Formic acid, 1 mL ampules (Thermo Fisher Cat#A11710X1-AMP)

C18 MonoSpin SPE columns (GL Sciences Cat#5010-21701)

Acetonitrile (Fisher Scientific Cat#A955-4)

BCA protein assay kit (Pierce Cat#23227)

Bovine serum albumin standard ampules, 2 mg/mL (Pierce
Cat#23209)
FIGURE 1 | Bottom-up rAAV proteomic workflow. Schematic of key steps in the vector preparation for LC-MS/MS and subsequent data analysis steps.
April 2021 | Volume 12 | Article 657795

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rumachik et al. Proteomic Characterization of rAAV Capsids
Millex-GP syringe filter unit 0.22 µm (EMD Millipore
Cat#SLGP033RS)

Parafilm (Fisher Scientific Cat#S37441)

Amicon ultra centrifugal filter units, 50 kDa MWCO, 0.5 mL
(MilliporeSigma Cat#UFC505008)

Angiotensin I Human Acetate Hydrate (Sigma Aldrich
Cat#A9650-1MG)

Vasoactive intestinal peptides fragment VIP 1-12 MS standard
(Anaspec Cat#AS-24217)
Software List

Preview™ and Byonic™ software (Protein Metrics)

XCalibur™ software (Thermo)

Windows-based PC with multi-core processors (8-core AMD)
and 8GB of RAM minimum
Equipment List

Refrigerated benchtop centrifuge (any manufacturer)

Centrifugal vacuum concentrator (SpeedVac or any
manufacturer)

Microcentrifuge (any manufacturer)

ACQUITY UPLC M-Class System (Waters Corporation)

Orbitrap Fusion™ Tribrid™Mass Spectrometer (Thermo Fisher
Scientific)

Dionex Ultimate 3000 HPLC (Thermo Fisher Scientific)

75 µm x 150 mm EASY-Spray™ column 2 µM C18 beads
(Thermo Scientific Cat#ES904)

Autosampler (Thermo Fisher Scientific)

Vortexer (any manufacturer)

Thermomixer (Eppendorf)
Solution Formulations
Solutions to Prepare in Advance and Store
100 mM ammonium bicarbonate (ABC)

Combine all reagents listed and bring to a final volume of 200mL.
Sterile filter with a 0.22 µm filter and store at room temp.

Reagent [Final] Amount needed

NH4HCO3 (MW: 79.06 g/mol) 100 mM 1.58 g
Distilled water – As needed (~198 mL)
Total Volume – 200 mL
Frontiers in Immunology | www.frontiers
in.org
Solutions to Prepare Fresh
100-mM dithiothreitol (DTT)

Combine all reagents listed and bring to a final volume of 100mL.
Sterile filter with a 0.22 µm filter and store at 4°C.
325
Reagent [Final] Amount needed

C4H10O2S2 (MW: 154.25 g/mol) 100 mM 1.54 g
Distilled water – As needed (~98 mL)
Total Volume – 100 mL
A
pril 2021 | Volume
*CAUTION: Dithiothreitol (DTT) is a harmful chemical
and should be handled with appropriate safety precautions in
a chemical fume hood. When handling DTT stock,
wear appropriate PPE including a lab coat, goggles/face shield,
closed toe shoes and gloves. Dispose of materials that contact
DTT in a labeled solid waste container (weigh boats, pipette
tips, etc.).
METHODS

Proteolytic Digests of rAAV Samples
for LC-MS/MS
Time Required: 2.5 Days

1. Determine the protein concentration of your rAAV samples.
We strongly recommend using the colorimetric
bicinchoninic acid (BCA) assay as it is fast, accurate, and
has the largest relevant dynamic range (20-2,000 µg/ml)
suitable for AAV concentrations compared to other
common assays like Bradford, Lowry, and NanoOrange.
We prefer the Pierce BCA kit and recommend following
the manufacturer ’s instructions for the ‘Standard’
assay rather than the ‘Enhanced’ assay for a more relevant
working range of the bovine serum albumin controls. Read
all assay results simultaneously on a microplate reader, rather
than one-by-one on a spectrophotometer, given the
rapid colorimetric change and large number of controls,
samples, and replicates.

*Stop point: you can keep your thawed AAV at 4°C until
you are ready to continue. Although AAV is stable at 4°C
short term, we recommend preparing your samples for
digestion as soon as possible after thawing and performing
the BCA assay.

2. The desired amount of total protein per rAAV sample is 50 mg,
but we’ve successfully run samples with as little as 10 mg.
Whatever concentration you choose, if you are running
multiple rAAV samples with the intention of comparing the
results, prepare an equal amount of total protein for each
sample and place each in a labeled protein low-binding 1.5 mL
microcentrifuge tube.

3. Precipitate each rAAV sample in 4X the volume of LC-grade
acetone overnight at -80°C with the tube wrapped in
parafilm.

4. To separate out the precipitated rAAV proteins, centrifuge at
12,500 x g for 15 min at 4°C. Decant and discard the
supernatant and dry the rAAV protein pellet within a
chemical safety hood for 30 min with the tube lid open.
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5. Resuspend the dried pellet in 100 mL of 0.2% Protease Max
surfactant trypsin enhancer*, 50 mM ammonium
bicarbonate, and reduce the disulfide bonds with
dithiothreitol to a final concentration of 10 mM at 55°C for
30 min in a thermomixer. This step loosens the protein
secondary structure to make the full-length polypeptide
accessible for enzymolysis in the next step.

* Note: Protease Max surfactant helps solubilize proteins.
This will help your AAV stay in solution, but it is not strictly
necessary for digestion, should it be difficult to acquire.

Reagent [Stock] [Final] Volume needed (µL)

Dried total protein pellet with rAAV – 10-50 mg Dried pellet
Protease Max trypsin enhancer 1% 0.2% 20
Ammonium bicarbonate (ABC) 100 mM 50 mM 50
Dithiothreitol (DTT) 100 mM 10 mM 10
Distilled water As needed (~20)
Total volume – – 100
Frontiers in Immunology | www.fron
tiersin.org
*CAUTION: Dithiothreitol (DTT) is a harmful chemical
and should be handled with appropriate safety precautions
in a chemical fume hood. When handling DTT stock, wear
appropriate PPE including a lab coat, goggles/face shield,
closed toe shoes and gloves. Dispose of materials that contact
DTT in a labeled solid waste container (weigh boats, pipette
tips, etc.).

6. Following reduction of the disulfide bonds, alkylate the
now-free sulfhydryl groups with an alkylating agent (e.g.
20 mM propionamide or iodoacetamide) at 25°C for
30 min in the dark. This step permanently prevents the
reformation of disulfide bonds, keeping the polypeptide
accessible.

7. To digest full-length rAAV polypeptides into short peptides,
add 500 ng of Trypsin, wrap the tubes in parafilm to prevent
evaporation, and allow the solution to digest overnight for
~18 h at 37°C in a thermomixer. Other digestion enzymes
can be used in place of or in combination with Trypsin for
varied digestion specificity (e.g. Chymotrypsin, etc.).

8. To stop the protease activity, add 1% total volume formic acid
to the reaction in a chemical fume hood.

*CAUTION: Formic acid is a harmful chemical and
should be handled with appropriate safety precautions in
a chemical fume hood. When handling formic acid at any
concentration, wear appropriate PPE including a lab coat,
goggles/face shield, closed toe shoes and gloves. Dispose
of materials that contact formic acid in a labeled solid
waste container (weigh boats, pipette tips, etc.). Store
formic acid at 4°C.

*Stop point: you can keep your quenched AAV peptides at
-20°C for long term storage or 4°C for clean up the next day.

9. Purify the digested peptides by running the solution
through a C18 MonoSpin SPE column, and then dry the
peptides to completion in a speed vac. The speed vac time
needed will vary with the elution volume. For example, a
300 mL solution with 80% acetonitrile can take 4-6 h.
426
Liquid Chromatography Tandem
Mass Spectrometry
Time Required: 1.5 h

1. Reconstitute your dried rAAV peptides in 0.1% formic acid
in ultrapure water and then inject onto an HPLC system
such as a Dionex Ultimate 3000.

*CAUTION: Formic acid is a harmful chemical and
should be handled with appropriate safety precautions in a
chemical fume hood. When handling formic acid at any
concentration, wear appropriate PPE including a lab coat,
goggles/face shield, closed toe shoes and gloves. Dispose of
materials that contact formic acid in a labeled solid waste
container (eppendorf tubes, pipette tips, etc.).

*CAUTION: Acetonitrile is a highly dangerous
chemical that is flammable in both liquid and vapor
phases and can ignite with moist air or water. Is harmful
if swallowed, inhaled, or absorbed through the skin. May
cause skin and respiratory tract irritation. It is metabolized
to cyanide in the body, which may cause headache,
dizziness, weakness, unconsciousness, convulsions, coma
and possibly death. Use only in explosion-proof chemical
fume hoods equipped with proper grounding procedures
to avoid static electricity.

2. We recommend running rAAV samples on a Thermo Fisher
Fusion™ Tribrid™ Series or Q-Exactive™ mass
spectrometer to improve proteome coverage, detection
limits, peptide spectra acquisition, and identification rates.
Unlike a linear hybrid model, which combines an ion trap
and an Orbitrap, a parallelized tribrid combines a
quadrupole, Orbitrap, and linear ion trap. We prefer the
Orbitrap Fusion™ Tribrid™ or the Orbitrap Fusion™
Lumos™ Tribrid™ to acquire PTM data. Set up the
instrument to acquire data in a dependent fashion using
higher-energy collisional dissociation (HCD). If you are
going to be analyzing labile modifications such as
phosphorylation or glycosylation, we recommend also using
electron-transfer dissociation (ETD) (20). The instrument
parameters we suggest are as described below.

3. Generate HCD data with the precursor mass resolution set to
60,000 at full width at half maximum 400 m/z, a mass range
of 350-1,500 m/z, and sample charge states 2-6. Set the
precursor automated gain control (AGC) settings to 3e5
ions, and use the “fastest” mode in the MS/MS ion trap. Set
the isolation window for HCD to 1.6 Da and the collision
energy to 30. Enable dynamic exclusion with a repeat count
of 3, repeat duration of 10 sec, and an exclusion duration of
10 sec. MS2 spectra should be generated at top speed for
3 sec.

4. If you are analyzing labile PTMs such as glycosylation, set up
a product-dependent HCD-triggered-ETD method. Here,
perform ETD if: (a) the precursor mass is between 300 and
1000 m/z and (b) in the HCD spectrum, 3 of 7 glyco-
fingerprint ions (126.055, 138.055, 144.07, 168.065, 186.076,
204.086, 274.092, 292.103) are present at +/- 0.1 m/z and
greater than 5% relative intensity. Set ETD parameters as
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follows: calibrated charge-dependent ETD times, 2e5 reagent
target, and precursor AGC target 1e4. Read out fragment ions
in the ion trap in a centroid fashion.

5. Prior to running your rAAV samples, we recommend running
calibration standards to ensure the instrument is within
mass tolerance. We prefer to use Angiotensin I and Anaspec
VIP (1–12) MS standards. Reconstitute to 500 fmol/µL and
inject 1 µl to assure that calibration is within 5 ppm prior to
injecting your rAAV samples.
Frontier
Angiotensin I standard: monoisotopic molecular weight of
1296.6848 Da

VIP (1-12) standard: monoisotopic molecular weight of
1425.6393 Da
6. Load samples via autosampler and inject using a flow rate of
0.3 µL/min onto a 75 µm x 150 mm EASY-Spray column
containing 2 µm C18 beads. Hold columns at 40°C using a
column heater in the EASY-Spray ionization source.

Note: This setup can be variable and tailored to fit your
rAAV sample. The exact HPLC and column type can be
adjusted and optimized for your sample separation.

7. Chromatographically separate the sample using a 90 min
gradient and a 140 min instrument method. Solvent A should
be 0.1% formic acid in ultrapure water, and Solvent B should
be 0.1% formic acid in acetonitrile. Setup the gradient profile
as follows: (minute:%B):

Minute % Solvent B

0 3
3 3
93 35
103 42
104 98
109 98
110 3
140 3
s in Immunology | www.frontiersin.org
8. Following your final rAAV sample, re-run your calibration
standards as before (see Step #1) to ensure the instrument
is still within tolerance at the end of your rAAV sample
run.
ANTICIPATED RESULTS

Mass Spectra Data Analysis Using Byonic

1. Prepare a concatenated FASTA file containing the relevant
protein sequences for your rAAV capsid serotype and host
proteome(s): Homo sapiens for HEK293 and HeLa cells,
Spodoptera frugiperda for Sf9 cells, Chlorocebus aethiops for
Vero cel ls , Mesocricetus auratus for BHK cel ls ,
Autographa californica multiple nuclepolyhedrovirus for
baculovirus, and Adenoviridae or Herpesviridae if using
Adenovirus or HSV-1 to rescue stable lines, etc. You can
also prepare an exclusion list for common contaminants
527
(21, 22) that typically originate from the user (e.g. keratin
from hair and skin), and from common reagents (e.g.
Trypsin) used in sample preparation.

2. Search your raw files with 10–12 ppm mass tolerances for
precursor mass ions, with 10–12 ppm or 0.1–0.4 Da fragment
mass tolerances for HCD and ETD fragmentation,
respectively. Allow up to two missed cleavages per peptide
and semi-specific, N-ragged tryptic digestion. Use a 1% false
discovery rate using standard reverse-decoy techniques.
Methionine oxidation (common 2), asparagine deamidation
(common 2), and N-term acetylation (rare 1) should be set as
variable modifications with a total common max of 3, rare
max of 1. Depending on the goals of your experiment, you
may also want to add phosphorylation, methylation,
acetylation, and/or glycosylation as variable modifications.
Note that the search time will increase exponentially with
additional modifications, so it may be advantageous to search
these modifications separately.

3. After the search is complete, open the.RAW file in the
ProteinMetrics Preview software to view the trypsin
digestion efficiency (Figure 2). The resulting identified
peptide spectral matches and assigned proteins should then
be exported for further analysis and validated using custom
tools to provide visualization and statistical characterization.

4. PTMmass spectra should be manually validated by an expert.
Do not simply trust PTM reports produced by the software. If
you are not skilled in MS analysis of PTMs, seek help from an
expert. Here we refer readers to an excellent manuscript
summarizing common errors (23) we’ve seen among groups
incorrectly interpreting PTMs in rAAV vector lots:
a. Assigning the wrong PTM to a peptide
b. Assigning the correct PTM to the wrong protein
c. Assigning a PTM to the wrong residue on a correctly

identified peptide
d. Missing modified peptides because of a flawed database

search strategy
De Novo Glycan Identification

1. All potential glycopeptide sequences should be validated by
de novo manual interpretation of HCD and ETD mass
spectra. For a thorough guide on this subject, please see
Malaker et a l . (24) . Br iefly, generate extracted
chromatograms for all MS2 spectra containing the
“HexNAc fingerprint,” which consists of a 204.0867 m/z
ion and 5 additional fragment ions.

2. First, use the HCD spectrum containing the HexNAc
fingerprint to identify glycan structures. Distinguish
whether the glycopeptide is modified by an N- or O-glycan
by analyzing the ratio of 138 m/z to 144 m/z ions (Figure 3).
Then, calculate the intact mass of the glycopeptide using the
high-resolution MS1 spectrum. From the intact mass, you
will see sequential glycan losses that will lead to the largest
peak in the spectrum. For N-glycopeptides, this will be the
mass of the peptide modified by one HexNAc. For O-
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glycopeptides, this will be the mass of the naked peptide
backbone. From this, you can calculate the glycan
monosaccharide composition. Finally, sequence the peptide
backbone using techniques described in detail elsewhere (25).

3. Next, use the ETD spectrum to site-localize glycan
modifications. This is especially important for O-
glycopeptides, due to the labile nature of this modification.
A detailed tutorial for manual interpretation of ETD spectra
is available here (26).
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TROUBLESHOOTING

1. Your purified input rAAV is not sufficiently concentrated
to achieve 10-50 mg in 50 mL volume.
If your purified rAAV production has a low titer, below
~1e12 vg/mL, you will likely not have sufficient rAAV capsid
protein concentration for the initial digestion and subsequent
steps. You can concentrate your rAAV vector with an
Amicon™ 50 kDa spin column. We recommend a 20-30
A B

FIGURE 3 | Representative HexNAc fingerprints. (A) GlcNAc-containing glycopeptides will have a higher abundance of the ion at 138 m/z than the ion at 144 m/z.
This fingerprint will be present in peptides with N-glycans, O-GlcNAc, and/or GlcNAc-containing core 2 O-glycans. (B) GalNAc-containing glycopeptides will have
nearly equal abundance of 138 m/z and 144 m/z ions. This fingerprint will be present in mucin-type glycopeptides that do not contain GlcNAc.
FIGURE 2 | Example Digestion Efficiency Validation. Trypsin cleaves peptides on the C-terminal side of lysine and arginine residues (unless followed by a proline).
All rAAV capsid serotypes have regular Lys and Arg amino acids throughout VP1 so you should see regular cleavage that produces peptides ~10-45 amino acids in
length (shown in Preview as green bars with PTMs noted in red) throughout the entire length of VP1. Good digestion efficiency and MS/MS runs should exhibit
>90% sequence coverage of rAAV VP1. This screenshot highlights typical results for the first 100 amino acids of a prototypical rAAV8 run.
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minute spin at 1,500 x g for ~10-20X concentration as
suggested by the manufacturer for purified AAV (27). You
will need to remeasure your protein concentration by BCA
assay after completing the spin concentration, do not assume
you will get a certain fold improvement. Make sure to use the
50 kDa Amicon™ columns for optimal rAAV retention as
intact rAAV capsids are 20-24 nm in diameter (28), as shown
below.

MWCO (kDa) Pore Size (nm) Min Retention
Diameter (nm)

Max Retention
Diameter (nm)

3 0.3 1 1.5
10 1 3 9
30 3 9 15
50 5 15 30
100 10 30 90
Frontiers in Immuno
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2. Difficulty re-solubilizing your rAAV proteins.
As noted above, surfactant may not be necessary for protein
resolubilization; however, if rAAV protein samples are
insoluble in ABC buffer, two distinct steps can be followed
to improve sample solubility. First, add a mass spectrometry
friendly surfactant, such as Protease Max, to the samples and
gently mix by pipette action. Incubate the samples at room
temperature for 20 min before re-mixing. If this does not
solve the problem, samples can be heated using a heating
block set to 95°C for up to 5 min.

3. AAV sample degradation from freeze/thaw.
For long term native AAV storage, samples should be kept at
-80°C, however digested rAAV peptides can be stored at
-80°C. This will prevent rAAV VP1/2/3 peptide degradation
and help to retain labile PTMs. For short-term storage once
thawed, samples can be kept at 4°C; however, it is important
to avoid repeated freeze/thaw cycles, as the extreme
temperature fluctuation can lead to more rapid sample
degradation. We typically avoid more than 1-2 freeze/thaw
cycles per sample prior to analysis.

4. Contaminating peptides obscuring your results.
Perhaps one of the biggest complicating factors in analyzing
rAAV samples is the potential presence of contaminating
peptides in your sample. Notably, these peptides might also
have PTMs that can interfere with the analysis of your rAAV
sample. Contaminant peptides can come from a variety of
sources, including sample handling, host cell impurities, and
vector purification inefficiencies. Therefore, it is crucial to
manually validate all search results to ensure the correct site-
localization of PTMs on the proper protein. We recommend
searching for not only the sequence of interest (i.e. rAAV of
the appropriate serotype), but also the proteomes of
potentially contaminating species, such as Sf9 or other
sources involved in vector production. In our hands, upon
manual validation we found several hundred N-
glycopeptides from ferritin proteins that were initially
assigned as N-glycopeptides of rAAV. This underscores the
729
importance of carefully manually validating automated
search results by the methods outlined above.

5. If you think your sample has glycopeptides but you are
having trouble detecting them.
Following the reduction of disulfide bonds in Step 6,
treat with Endo-H. Heat your reduced rAAV sample to
95°C for 5 min, then briefly chill on ice to reduce the
temperature and add 5 mL of the supplied Endo-H reaction
buffer and 5 mL Endo-H. Deglycosylate for 4 h at 37°C in
a thermomixer.

*Note: Endo-H is a recombinant glycosidase which
hydrolyses the bond connecting the two GlcNAc groups
modifying Asn within the chitobiose core, leaving a single
GlcNAc covalently bound to Asn for mass spectrometry
detection.

6. Sample analysis challenges and limitations.
With all PTM assignments using LC-MS/MS, it is important
to remember that absence of a peptide with a PTM does
not mean that no PTM was present. Labile modifications
like phosphorylation and glycosylation can be lost during
sample preparation or ionization prior to detection. It is
also important to note that quantifying PTM frequency
is challenging. In many cases, PTMs are not site-
localizable, which can dramatically alter the accuracy of
quantitative site occupancy evaluations. Additionally,
different peptides from an individual protein can differ in
cleavage efficiency.
DISCUSSION

Preclinical investigators and existing clinical stage gene therapy
companies should catalog and track potentially immunogenic
vector lot components. These include capsid PTMs and PTMs on
host cell protein impurities, especially given the recent concerns
around immunogenicity with systemic high dose rAAV. The
FDA currently lists rAAV capsid PTM assessment as a
recommended extended characterization assay (19). The
methods detailed above provide a powerful platform to easily
interrogate the proteomic and PTM landscapes of rAAV vectors.
As improvements to both vector process/product development
and analysis by mass spectrometry continue, the quality,
complexity, and utility of these data will continue to grow.
These methods can be extended to other viral gene therapy
vectors by changing the appropriate search parameters and
optimizing the initial proteolytic digest conditions (for
example, enveloped viruses will need a detergent step to
remove the envelope to allow proteases to digest the capsid
proteins). While we regularly detect common PTMs on rAAV
capsids and host impurities (N-terminal start methionine
acetylation, serine/threonine/tyrosine phosphorylation, lysine
acetylation, arginine methylation, O-linked glycosylation, and
asparagine deamidation), other modifications, if present, can also
be detected with this method.
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T Cell-Mediated Immune Responses
to AAV and AAV Vectors
Hildegund C. J. Ertl*
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Adeno-associated virus (AAV)-mediated gene transfer has benefited patients with
inherited diseases, such as hemophilia B, by achieving long-term expression of the
therapeutic transgene. Nevertheless, challenges remain due to rejection of AAV-
transduced cells, which in some, but not all, patients can be prevented by
immunosuppression. It is assumed that CD8+ T cells induced by natural infections with
AAVs are recalled by the AAV vector’s capsid and upon activation eliminate cells
expressing the degraded capsid antigens. Alternatively, it is feasible that AAV vectors,
especially if given at high doses, induce de novo capsid- or transgene product-specific T
cell responses. This chapter discusses CD8+ T cell responses to AAV infections and AAV
gene transfer and avenues to prevent their activation or block their effector functions.

Keywords: CD8+ T cells, memory, immunosuppression, effector functions, animal models, clinical trials
INTRODUCTION

The goal of gene therapy is to permanently replace a missing or faulty gene and thereby through
sustained production of the transgene product achieve a functional cure. Various methods have
been explored to insert genes in situ into specific cells (1, 2). One of the most promising gene
transfer vectors are AAV vectors, which in initial preclinical studies achieved sustained expression
of their transgene product in mice (3), dogs (4), and nonhuman primates (5) without any overt
serious adverse events. In humans clinical trials targeting Leber’s congenital amaurosis, a congenital
form of blindness, by small doses of AAV injected into the subretinal space reported long-term
improvement of vision (6, 7). In contrast, the first clinical trial for hepatic AAV-mediated transfer of
factor (F)IX for correction of hemophilia B accomplished initial increases in F.IX levels, which were
followed a few weeks later by a subclinical transaminitis and loss of F.IX (8). Additional studies
showed that patients developed concomitantly with rises in liver enzymes circulating CD8+ T cells
to AAV capsid antigens (9). This led to the still valid but nevertheless unproven hypothesis that
patients had AAV-capsid-specific memory CD8+ T cells, which were reactivated by the gene
transfer and then eliminated the vector-transduced hepatocytes (10).

This opened a slurry of pre-clinical experiments that aimed to recapitulate the findings of the
clinical trial. Although the animal experiments allowed the field to gain valuable knowledge of the
intricacies of anti-AAV capsid T and B cell responses (11–13), in the end the studies confirmed what
we have known for long –mice are not humans (14) and neither mice nor larger animals are overly
informative about the presumably immune-mediated rejection of AAV-transduced cells.

Clinical AAV-mediated gene transfer trials by reducing vector doses and using various
immunosuppressive regimens at least in part overcame immunological barriers and achieved
treatment benefits or even cures for their patients (15, 16). Nevertheless, transfer of genes with high
org April 2021 | Volume 12 | Article 666666132
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doses of AAV remains a crapshoot especially in 2020/21 during a
global pandemic with a potentially fatal virus that is especially
dangerous for immunocompromised humans (17). Immune
responses to AAV gene transfer are complex involving both
the innate and adaptive immune systems. Here we discuss what
is known from pre-clinical models as well as clinical trials about
CD8+ T cells to AAV gene transfer.
AAV VIRUS AND IMMUNE RESPONSES
TO NATURAL INFECTIONS

AAVs are single-stranded DNA viruses of the parvovirus family.
As dependoviruses they only replicate in presence of a helper
virus such as an adenovirus. AAVs do not cause any known
disease. The ~4,700 base pair long AAV genome, which is
flanked by inverse terminal repeats (ITRs), has two open
reading frames, one for rep proteins needed for viral
replication, and the other for the capsid proteins vp1, vp2 and
vp3, which are produced by differential splicing and therefore
only differ in their N-terminus (18). Capsid proteins distinguish
serotypes of AAV. Thus far 12 human serotypes of AAV have
been identified (19). They differ in their tropism (20) and in the
prevalence, with which they circulate in humans (21). AAV
genomes persist mainly episomally in the nucleus of infected
cells although they can integrate into a specific site of human
chromosome 19 (22).

Humans, who become naturally infected with AAVs, mount
adaptive immune responses, which presumably are in part
driven by innate responses to the helper virus (23). Prevalence
rates of neutralizing antibodies to different serotypes of AAVs,
which serve as indicators for previous infections, vary in part
depending on age and country of residency (21, 24–31). Some
studies report strikingly different prevalence rates even when
they tested similar populations. This likely reflects that AAV
neutralization assays are not standardized and therefore differ in
their sensitivity. Overall trends are similar. Prevalence rates of
neutralizing antibodies to AAV increase with age and they are
higher for AAV2 or AAV8 than for example AAV5 or AAV6.

T cell responses have been studied less well. We reported that
about 50% of healthy human adults have detectable frequencies
of circulating AAV capsid-specific CD8+ and/or CD4+ T cells
when tested by intracellular cytokine staining (ICS); 50% of these
CD8+ T cells belong to the central memory subsets and 25% each
to the effector and effector memory subsets. AAV capsid-specific
CD4+ T cells belong mainly to the central memory subset (32).
Non-human primates tested by the same method showed that 5
out of 6 have AAV capsid-specific CD8+ T cells while 6/6 have
CD4+ T cells of that specificity. In monkeys, CD8+ T cells are
strongly biased towards effector cells (32). For these assays we
used a peptide panel that reflected the capsid sequence of AAV2
but would like to point out that many of the T cell epitopes are
highly conserved. Nevertheless, unlike in humans AAV-
mediated gene transfer achieves long-lasting transgene product
expression in nonhuman primates, which may reflect that their T
cells potentially due to high levels of persisting AAVs are
Frontiers in Immunology | www.frontiersin.org 233
functionally exhausted (32). Overall, not only prevalence but
also frequencies of AAV capsid-specific T cells are higher in non-
human primates than in humans. Testing additional non-human
primates by an ELISPOT assay, which is the assay that is
primarily being used by gene therapists to monitor T cell
responses to AAV capsid upon AAV-mediated gene transfer,
showed lower prevalence rates of AAV capsid-specific T cells
of ~50% (32).

Using a proliferation and cytokine secretion assays another
group reported that peripheral blood mononuclear cells
(PBMCs) of less than 10% of humans mount a response (29)
although it should be pointed out that these assays lack
sensitivity. Another group using ELISPOT assays as well as ICS
showed with either assay that ~30% of health human adults
respond to AAV1 capsid (33). A study using a very sensitive
method based on pre-selection of AAV8-specific CD8+ T cells
with a specific tetramer showed that all tested humans have
circulating effector memory CD8+ T cells against AAV8 capsid
(34). Human circulating AAV capsid-specific CD8+ T cells are
functional, they secrete cytokines (32, 34) and lyse target cells
expressing their cognate antigen (33). T cell epitopes are
conserved between several AAV serotypes (9) and several
studies reported no correlations between antibody and CD8+ T
cell responses (32, 35). One study showed that peripheral blood
mononuclear cells from AAV2 seronegative donors mount a
robust IFN-g-secreting natural killer cell response to in vitro
culture with an AAV capsid peptides while those from
seropositive individuals showed activation of tumor necrosis
factor-a producing CD8+ T cells (36).

Overall, these data demonstrate that AAV infections are
highly prevalent and cause sustained immunological memory
that can presumably be recalled upon re-infection or transfer of
an AAV vector.
AAV VECTORS

Production and purification methods for AAV vectors are well
established (37). In AAV vectors the viral genes but for the
inverted terminal repeats (ITRs) are replaced with an expression
cassette for a therapeutic protein. A variety of promoters have
been used, some of which drive ubiquitous expression while
others are specific for selected cell types. For some applications,
such as hemophilia B, a variant transgene with improved
functions compared to protein encoded by the wild-type gene
has been used to allow for dose-sparing.

AAV vectors are in general generated by triple transfection of
a cell line, such as HEK 293 cells, which carry the E1 gene of
adenovirus. One plasmid expresses additional adenoviral genes
to promote AAV production. A second plasmid carries the AAV
cap and rep genes. The AAV2 rep gene is used for most AAV
vectors while the cap gene determines the serotype of the vector.
The third plasmid carries the transgene expression cassette
flanked by the ITRs, again most commonly of AAV2. Vectors
are then released from the transfected cells and purified by
various methods such as gradient centrifugation, column
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purification and others (38). The type of purification may affect
levels of empty AAV particles within the preparation, which in
turn can influence the induction of immune responses or reduce
the inhibitory effects of AAV neutralizing antibodies.

AAV vectors can also be produced in the baculovirus
expression system, which is more amenable for scale-up than
mammalian expression systems (39). AAVs produced in
mammalian cells or insect cells show differences in post-
translational modification, genome methylation and levels and
types of host cell contaminations which affect their
immunogenicity and their performance in clinical trials (40, 41).
CD8+ T CELLS

CD8+ T cells are uniquely capable to eliminate virus-infected or
vector-transduced cells by direct lysis mediated by the release of
perforin and granzyme. They also secrete anti-viral cytokines
such as interferon (IFN)-g. Activation of naïve CD8+ T cells,
which reside in lymphatic tissues and circulate in blood, requires
presentation of antigen-derived peptides bound to major
histocompatibility complex (MHC) class I molecules by
professional mature antigen-presenting cells. Peptides can be
generated from de novo synthesized misfolded proteins that
upon degradation by proteasomes are transported by the
transporter associated with antigen presentation (TAP) into
the endoplasmic reticulum (ER), where they bind to MHC
class I molecules, which are then transported to the cell
surface. This classical presentation pathway would apply to
vector-encoded transgene products. Antigen-presenting cells
are able to cross-present protein such as those of the AAV
capsid that are taken up by pinocytosis, phagocytosis or
endocytosis. In the so-called cytosolic pathway, the particles
are degraded in phagosomes and peptides are released into the
cytoplasm from where they can be transported into the ER; there
they can bind to MHC molecules (42). In the vacuolic pathway,
proteins are degraded within endosomes. They escape into the
cytoplasm upon acidification of the endosomes or upon reactive
oxygen species-mediated lipid peroxidation of endosomal
membranes (43).

The antigenic peptides displayed by MHC class I antigens on
the cell surface bind to T cell receptors, which triggers a signaling
cascade that through the adaptor molecule zeta-chain-associated
protein kinase 70 (ZAP70) induces activation of calcineurin
leading to the activation of nuclear factor of activated T-cells
(NFAT). Full activation of T cells furthermore requires
interactions with co-stimulators most commonly CD80 and
CD86 or CD40 on antigen-presenting cells, which interact with
CD28 or CD40L on T cells, respectively. This amplifies T cell
receptor signaling and through phosphoinositide 3-kinase
(PI3K) induces the mechanistic target of rapamycin (mTOR)/
protein kinase B (Akt) pathway which modifies the T cells’
metabolism to provide energy and building blocks for rapid
proliferation. Dendritic cells, the main cell type that presents
antigens to naïve T cells, are immature when they are released
from bone marrow. At this stage they do not express co-
Frontiers in Immunology | www.frontiersin.org 334
stimulators and are therefore unable to activate an effector
CD8+ T cell response but rather induce tolerance. Maturation
of dendritic cells into profession antigen-presenting cells is
driven by pathogen-associated molecular patterns (PAMPs),
such as CpG motifs within the genome, which are common in
bacteria and viruses but largely absent in mammalian cells.
PAMPs interact with pathogen recognition receptors (PRR)
such as Toll-like receptors (TLRs) and others expressed in
different cellular compartments (44). Binding of a PAMP to a
PRR causes activation of numerous pathways, such as the nuclear
factor kappa B (NK-kB) and interferon regulatory factor (IRF)3
pathways. Induction of these pathways, which can also be
activated by type I interferons (IFN) or members of the tumor
necrosis factor (TNF) family, involves a number of molecules
such as TIR domain containing adaptor protein (TIRAP),
myeloid differentiation primary response 88 (MyD88),
inhibitor of NF-kB kinase (IKK)-g, or interleukin-1 receptor-
associated kinase (IRAK)-4, all of which can be targeted by drugs
to block inflammatory responses. Once NF-kB or IRF-3 are
activated they induce pro-inflammatory cytokine responses,
which initiate or increase production of molecules that are
essential for antigen processing and presentation. Upon
stimulation, CD8+ T cell proliferate very rapidly and then
migrate to sites of infection where they assume effector
functions. Recognition of foreign antigen is exquisitely sensitive
and can be triggered by as few as 2-3MHC-peptide complexes on
the surface of a cell (45). CD8+ T cell differentiation requires help
from CD4+ T cells (46) belonging to the T helper (Th)1 subset.
Once the antigen has been removed most of the effector CD8+ T
cells die, some will differentiate into memory cells, which can be
recalled rapidly. Re-activation of memory CD8+ T cells does not
require professional antigen presenting cells and is less
dependent on co-stimulation. Effector CD8+ T cells can
differentiate into different type of memory cells, i.e., effector,
central memory or tissue resident memory T cells. Effector
memory CD8+ T cells circulate. They do not proliferate
extensively after re-exposure to antigen and can assume
functions instantly. Over time in absence of antigen they
differentiate into central memory cells or die. Central memory
CD8+ T cells reside in lymphatic tissues. They do not exhibit
functions. Upon reencounter of their antigen they proliferate
vigorously before they assume effector functions; this may take
several days. Central memory CD8+ T cells are maintained at
steady numbers potentially throughout the lifespan of an
individual. Tissue resident memory CD8+ T cells are also very
long-lived but they remain at sites of previous infections. Upon
local reinfection they can immediately release cytolytic enzymes
and initiate an inflammatory reaction. If the antigen is not
removed but continues to persist at high levels, T cells will
differentiate towards exhaustion by gradually losing function,
increasing expression of co-inhibitors such as programmed cell
death protein 1(PD-1) and eventually undergoing apoptosis (47).

How does this apply to AAV vectors? To activate naïve CD8+

T cells one would expect that the vector would be phagocytosed
by immature dendritic cells. PAMPs within the vector genome or
on the capsid would interact with PRRs on or within the cells.
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This would trigger an inflammatory reaction and maturation of
the dendritic cells, which would then migrate to draining lymph
nodes. Within cells antigens encoded by the AAV vector would
enter the classical presentation pathway while antigens of the
AAV capsid would be processed and presented by either the
cytosolic or vacuolic pathway. Dendritic cells presenting antigen
bound to MHC class II molecules would activate specific CD4+ T
cells which would then facilitate stimulation followed by
expansion of CD8+ T cells by antigen displayed by MHC class
I antigen. Subsequently T cells would migrate out of lymph nodes
and circulate till they find their cognate antigen. Cells displaying
this antigen would be killed rapidly within minutes and then the
T cell would find its next target. This process would continue till
all of the antigen is removed, which in case of AAV particles may
take months. Memory CD8+ T cells generated in response to a
natural infection can be stimulated by cells other than dendritic
cells and depending on subset they can act immediately once
they see their antigen displayed on MHC class I. If they belong to
the tissue resident memory CD8+ T cell subset they may not even
proliferate, which raises the question if screening for increases in
circulating T cells is adequate to predict immune-mediated
rejection of AAV-transduced cells. Due to higher numbers of
precursors memory T cell responses are more potent and come
up more rapidly.

It is assumed that the increases of circulating AAV capsid
specific CD8+ T cells reflect recall of memory cells that had
initially been activated by a natural infection. This may be the
case for some patients but activation of naïve CD8+ T cells
should not be ruled out. The very slow increases of AAV capsid-
specific T cells in some AAV vector recipients would be more
typical for primary than secondary responses. As stimulation
requirements and thereby sensitivity to immunosuppressive
drugs differ for naïve and memory CD8+ T cells further studies
are needed to elucidate what T cell subsets respond to AAV
gene transfer.
CD8+ T CELL RESPONSES TO
AAV VECTORS

Viral vectors can induce CD8+ T cell responses to their own
antigens as well as to a transgene product. In the case of AAV
vectors, which have been stripped of genes that encode AAV
proteins, any effector T cell response to the viral proteins would
be limited to the time frame till all the vector particles have been
completely degraded. T cell responses to the transgene product
on the other hand could continue till all antigen-producing cells
have been removed or till immunosuppressive mechanisms such
as T cell exhaustion or regulatory T cells turn off the T cells.

Initial studies reported that AAV vectors did not induced
CD8+ T cell responses to the transgene product and this was
attributed to lack of activation of innate responses, which
resulted in immunological ignorance (48). Additional studies
contradicted these results and reported that AAV vectors can
induce transgene product-specific CD8+ T cell responses in
experimental animals (49–51). It was also shown that AAV
Frontiers in Immunology | www.frontiersin.org 435
vectors elicit albeit weak and transient innate responses that
are largely driven by TLR9 activation through CpG motifs within
the vector genome (52) or TLR2 activation by capsid
components (53). Naturally immunogenic transgene products,
such as antigens from another pathogens, induce depending on
the vector’s serotype and it’s genome structure such robust
immune responses that AAV vectors were explored as vaccine
carriers (50, 51). The magnitude of the immune responses
depends on vector dose, the AAV serotype, the transgene, the
type of promoter, the target tissue and the vectors’ genome
structure (54). Self-antigens, such as F. IX with point mutations,
are non-immunogenic while the same mutant F.IX in a mouse
with a genetic F.IX deletion induces cellular and humeral
responses (55). Comparing vectors with single-stranded and
double-stranded DNA genomes, showed that the latter are
more immunogenic presumably by inducing more potent
innate responses (56). Some studies showed that CD8+ T cell
responses induced by an AAV vector-encoded transgene are
defective in mice: T cells do not proliferate upon re-exposure to
their antigen in vivo, they only produce low levels of cytokines
and they fail to protect against a surrogate pathogen (57, 58).
Others showed that the effectiveness of transgene product-
specific hepatic CD8+ T cell responses is dependent on vector
dose; intermediate doses of vector lead to a delayed CD8+ T cell
response that eliminates antigen-producing hepatocytes. High
doses of vector induce multiple immunosuppressive pathways
that block induction of transgene product-specific CD8+ T
cells (59).

AAV vectors can induce capsid-specific CD8+ T cell
responses, especially if highly immunogenic T cell epitopes are
incorporated into the capsid (60, 61). This process is likely driven
by cross-presentation of capsid proteins and not only requires
plasmacytoid and conventional dendritic cells but also help from
CD4+ T cells (62, 63). Nevertheless, in mice specific CD8+ T cells
induced by AAV gene transfer fail to eliminate AAV-transduced
cells (64), which can be achieved by adaptive transfer of ex vivo
expanded capsid-specific CD8+ T cells suggesting defects at the
level of T cell differentiation in vivo that could be overcome in
tissue culture (65).

Although they fail to reject AAV-transduced cells, mice have
been useful to study the duration of capsid degradation, which in
the end dictates how long gene transfer recipients are at risk to
lose treatment benefit due to AAV capsid-specific CD8+ T cells.
Experiments using proliferation of capsid-specific CD8+ T cells,
which were adoptively transferred into AAV-injected mice as a
read-out, showed that T cells proliferated in their hosts even if
transferred 6 months after AAV injection, which is reflective of
the very slow degradation of AAV capsid (66).

Clinical trials using different serotypes of AAV vectors over a
large range of doses have been completed, are ongoing or
planned for a number of diseases. For ocular diseases such as
choroiderma, an X-linked form of progressive vision loss (67),
achromatopsia or color blindness (68), X-linked retinitis
pigmentosa (69), or Leber’s congenital amaurosis (70) AAV
vectors encoding the therapeutic protein are injected at modest
doses into the subretinal space, which similar to the central
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nervous system is an immunoprivileged site (71) that contains
high levels of transforming growth factor (TGF)-ß and is
shielded by a physical barrier from blood. In addition, parts of
the eye, such as the ocular chamber, actively induce immune
tolerance through a process called anterior chamber-associated
immune deviation (ACAID) (72). It should be noted though that
this pathway does not induce systemic tolerance after subretinal
injection of an AAV vector (73). While some trials for correction
of ocular diseases reported stable transgene product expression
for years without evidence for induction of T cell responses (74,
75), others observed stimulation of adaptive immune responses
combined in some cases with loss of therapeutic benefits (76).
Pre-clinical studies indicate that induction of immune responses
to ocular injection of AAV vectors depends on vector dose, the
promoter, route of application and the transgene (77), which
may in part explain discrepancies of results.

Many AAV-mediated gene transfer trials focus on hemophilia
where circulating coagulation factors offer an easy read-out for
transgene product expression. Vectors that were or are being
explored for hemophilia B include AAV8, AAV5, AAVrh10 or
AAVs with genetically engineered capsids expressing either wild-
type F.IX or the 5 time more potent F. IX Padua variant. Vectors
either contain a single-stranded or self-complementary genome.
They were or are given at doses ranging from 2x1011 to 2 x 1012

vg/kg achieving post-infusion levels of F.IX depending on the
trial and the vector dose from ~1-40% of normal. Many trials use
codon-optimized vectors to increase expression and/or vectors in
which most CpG motifs are modified to minimize TLR9
activation. Some trials, such as one using AAV5 expressing the
Padua variant of F.IX failed to observe any post-infusion
transaminitis (78), which would be indicative of an anti-AAV
immune response while others using the same vector reported
transient increases in liver enzymes, which were not
accompanied by detectible T cell responses (79). Using an
AAV vector with a bioengineered capsid expressing F.IX Padua
or a self-complementary AAV8 vector expressing wild-type F.IX
other groups reported in some patients increases in
transaminases combined with increases of circulating AAV
capsid-specific T cells (80, 81). Data have been published for
one hemophilia A trials, which used a baculovirus-derived AAV5
vector. The study reported increases in liver enzymes but failed
to detect concomitant rises in capsid-specific circulating T cells
(80). Circulating FVIII levels tended to decrease gradually by 2-3
years after gene transfer most likely reflecting hepatocyte turn-
over rather than an immune-mediated rejection (16). A number
of additional trials that are ongoing for correction of hemophilia
A have reported therapeutic benefits (82) but not yet released
potential problems with immune-mediated rejection.

Overall transfer to the liver, a unique microenvironment that
favors immunosuppression (83), can induce in a dose-dependent
manner capsid-specific CD8+ T cell responses, which have been
implicated to eliminate AAV-transduced cells. Thus far
transgene product-specific CD8+ T cells have not yet been
observed upon hepatic transfer of AAV vectors. This may in
part reflect that trials mainly enrolled patients with point
mutations in their coagulation factors, which destroy their
Frontiers in Immunology | www.frontiersin.org 536
biological activity but fail to prevent induction of
immunological tolerance. Most patients had also received
factor replacement therapy, which would further promote
tolerance. It would be expected that AAV vectors will induce
F.VIII- or F.IX-specific T cell responses in patients with large
deletion mutations although such responses might potentially be
dampened or blocked by concomitant induction of regulatory T
cells (59).

For treatment of other diseases AAV vectors are given into
the muscle. For example, for treatment of Pompe disease, caused
by glycogen storage in muscle and motor neurons due to lack of
lysosomal alpha-glucosidase, an AAV9 vector was injected at a
high dose into the diaphragm in children with progressive
respiratory failure requiring ventilation and enzyme
replacement therapy (84). T cell responses to the vector or
transgene product were not detected. Several trials are
exploring intramuscular injection of AAV vectors expressing
dystrophin for treatment of Duchenne’s muscular dystrophy (85,
86) or a1-antitrypsin (AAT) deficiency (87, 88). An AAT trial
using an AAV-1 vector reported that vector-derived AAT levels
were sustained for several months although all treatment
recipients developed T cell responses to the capsid proteins of
AAV1 and 1 of the 9 patients had at one timepoint a positive T
cell response to AAT. A follow-up study conducted about a year
later showed sustained presence of the AAV genome in the
injected muscle and a marked reduction in inflammatory cells in
year 1 compared to months 3 biopsy samples. A substantial
portion of the muscle infiltrating lymphocytes were regulatory T
cells suggesting that they had suppressed vector-induced effector
T cell responses and thereby prevented loss of AAV-transduced
muscle cells (87, 88). A further follow-up study conducted 5
years after gene transfer detected Tregs and AAV capsid-specific
CD8+ T cells within the injected muscle (89).

For AAV-mediated correction of Duchenne’s muscular
dystrophy one trial reported that patients developed no or only
very weak T cell responses to the viral capsid but instead some
generated robust transgene product-specific CD8+ T cell
responses (90, 91). AAV1-mediated transfer of the alpha-
sarcoglycan gene for correction of limb-girdle muscular
dystrophy reported a detectable AAV capsid-specific T cell
response in 3 patients. In one patient this response came up
very rapidly on day 2 after gene transfer and may have
contributed to his loss of AAV-transduced muscle cells (92).
Additional studies are needed to further determine the risk
induction of T cells upon intramuscular injection of AAV
vectors. It will be especially important to further elucidate the
role of regulatory T cells in preventing immune-mediated
destruction of AAV-transduced muscle cells.

AAV vectors are directly infused into the central nervous
system to treat neurological diseases such as Alzheimer (93),
Parkinson’s disease (94–97), infantile neuronal ceroid
lipofuscinosis (98), Canavan disease, a N-acetylaspartate
storage disease of the brain caused by mutations of the
aspartoacylase gene (99) and others. Studies did not assess
AAV capsid or transgene product-specific T cell responses
following AAV gene transfer. Some trials analyzed serum
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antibody responses to AAV and reported that they increased in
some patients suggesting that enough vectors had leaked from
the injection sites to trigger a peripheral B cell response.

Considering that the central nervous system is an
immunoprivileged site that lacks the lymphatic structures
needed for activation of immune responses it is unlikely that
enough vector will leak into the periphery to activate AAV capsid
or transgene-product-specific CD8+ T cells which could then
cross the blood brain barriers and attack vector-transduced cells.
Nevertheless, it would be prudent to monitor patients for AAV-
induced T cell responses.

Intracoronary application of an AAV vector expressing
SERCA2a to modulate calcium metabolism reported transient
increases in AAV capsid-specific T cell frequencies in 1 out of 9
patients without any clinical consequences or further changes in
blood chemistry (100). Intravenous application of an AAV9 vector
expressing the survival motor neuron 1 gene for treatment of spinal
muscular atrophy reported increases in liver enzymes in some of
their patients (101). As T cell responses were not analyzed, the
etiology of this observation remains uncertain.

As one would expect, AAV vectors induce adaptive immune
responses especially if given at high doses to peripheral sites. It
remains unclear how common T cells to AAV capsid or the
encoded transgene product interfere with sustained therapeutic
benefits as many trials still fail to test for T cell responses.
Injections of even large doses of AAV does not inevitably lead to
detectable T cell responses with the obvious caveat that T cell assays
have sensitivity limits and may not reveal small responses.
Furthermore, the activity of tissue resident memory CD8+ T cells
may not be spotted by monitoring increases in circulating AAV
capsid- or transgene product-specific T. cells. It will be important
for gene therapist that base their therapeutics on AAV to further
define factors that promote CD8+ T cell responses. Vector dose and
route of administration clearly play roles. CpG content within the
vector genome may affect responses as was shown in mice (98). The
capsid itself may have an effect. Age can have an effect; younger
people tend to mount better immune responses, but older people
are more likely to have immunological memory to AAVs. The
underlying disease especially if it causes local inflammatory reaction
can affect treatment outcome. The HLA type of the gene therapy
recipient will affect if and how many epitopes of the capsid can be
recognized by T cells. The type of the transgene and its similarity to
endogenous proteins will determine if the host is tolerant
or responsive.

After the initial AAV gene transfer trials for hemophilia B
indicated that AAV-induced CD8+ T cells may cause loss of cells
producing F.IX (8), one of the next trials very carefully monitored
serum F.IX and transaminase levels following AAV gene transfer.
The two patients that received the highest vector dose showed by
weeks 7 or 9 modest subclinical increases in aspartate
aminotransferase and alanine aminotransferase and decreases in
F.IX. They were treated for 9 or 4 weeks, respectively with
prednisolone, which reduced transaminase levels and stopped
further declines in F.IX (5). Steroids, such as prednisolone, are in
general well tolerated if given for a short period of time. They are
widely used in transplantation medicine, to treat auto-immune
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diseases or conditions caused by overwhelming inflammatory
responses. They affect multiple aspects of T cell responses
resulting in reduced cytokine production and decreased
proliferation. Specifically, they dampen T cell activation by
reducing phosphorylation of key signaling molecules of the T cell
receptor (102). They induced production of anti-inflammatory
cytokines and they promote proliferation of regulatory T cells
(103). Although steroids are not suitable as a monotherapy to
prevent transplant rejection they have been used successfully by
Nathwani (5) and others (79, 104, 105) to prevent loss of AAV-
transduced cells upon hepatic gene transfer. Nevertheless, in other
trials steroids did not avert gradual loss of the transgene product
(106–108). The optimal regimen for steroid therapy remains to be
established (109). While most trials carefully monitored serum
enzyme levels and started steroid treatment once transaminases
increased others gave steroids to all patients immediately or shortly
after treatment. The former approach is not only cumbersome as it
requires weekly testing but also carries the risk that treatment could
be initiated too late. The latter approach has the disadvantage that
patients, who would not mount immune-mediated rejection are
treated unnecessarily. It also remains unclear how long steroids
should be given and if this time frame depends on the type of vector
or differs for each patient. As steroids have not always prevented loss
of transgene-expressing cells additional immunosuppressives need
to be explored. In a trial with an AAV1 vector for correction of
l ipoprotein lipase deficiency, a 12 week course of
methylprednisolone together with cyclosporin and mycophenolate
mofetil was started shortly before AAV transfer; the drugs did not
prevent increases in AAV capsid-specific T cells, but T cells
appeared to be functionally impaired and failed to achieve
removal of vector-transduced muscle cells (110). Cyclosporin
inhibits T cell activation by blocking signaling through NFAT
transcription factors, which are regulators of CD8+ T cell
functions (111) as well as the NF-kB and activator protein 1 (AP-
1) pathways. Cyclosporin is also being explored in pre-clinical
models for dampening of AAV capsid-specific neutralizing
antibody responses (112). Nevertheless, cyclosporin depending of
timing of antigen exposure versus drug treatment was shown in a
cardiac allograft rat model to prevent activation of regulatory T cells
(113), while in other systems cyclosporin augmented the activity of
this immunosuppressive cell subset (112, 113). Mycophenolate
mofetil inhibits inosine monophosphate dehydrogenase, the rate-
limiting enzyme for synthesis of guanosine nucleotides which are
essential for cell cycle progression of proliferating
lymphocytes (114).

Other drugs that are being considered are TLR antagonists or
drugs that target downstream molecules of PRR signaling to inhibit
activation of the inflammatory responses that are essential to drive
activation of naïve T cells (115). Such drugs could block numerous
steps of PRR activation pathways such as TIRAP, MyD88, IKK-g,
NF-kB, or IRAK-4. Inflammatory responses could also be
dampened by blocking TNF-a signaling through monoclonal
antibodies such as Remicade, Humira, Cimzia, the receptor fusion
protein Enbre or the small molecule inhibitor pentoxifylline (116).
Drugs are also available to block type I IFN signaling by inhibiting
IRF-3 or JAK1 which would affect T cell maturation (117). All of
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these drugs would impair primary T cell responses but may not
block recall responses. Induction of CD4+ T cells could be inhibited
by preventing antigen presentation through the MHC class II
pathway through chloroquine, which prevents acidification of
endosomes (118), cyclosporin A and tacrolimus, which both
inhibit calcineurin (119) or blockers of the lysosomal protease
cathepsin S, such as morpholinurea-leucine-homophenylalanine-
vinylsulfone-phenyl (120). Some of the drugs such as cyclosporin A
and tacrolimus also block MHC class I antigen presentation, which
can also be inhibited by proteasome inhibitors such as lactacystin
(121) or inhibitors of TAP (122). T cell activation is inhibited by
some of the drugs that are already being used such as steroids,
cyclosporin A and mycophenolate mofetil. Others could be tried.
These include belatacept, a fusion protein of CTLA-4 and the Fc
portion of IgG-1, which binds CD80 and CD86 and thereby blocks
CD28 signaling (123). Dapirolizumab pegol is an antibody against
CD40L, which blocks another co-stimulatory pathway. This drug is
currently undergoing phase III trials for treatment of systemic lupus
erythematosus (124, 125). Rapamycin was tested preclinically and
was shown to block humoral and cellular immune responses to
AAV and to increase induction of regulatory CD4+ T cells (126–
128). Rapamycin is an mTOR inhibitor that blocks cell cycle
progression. When used during T cell activation it prevents
generation of effector CD8+ T cells but promotes memory
formation (129).

Immunosuppression although potentially essential for some
patients to ensure therapeutic benefits of AAV-mediate gene
transfer comes at a cost. Immunosuppressive drugs have side
effects that are unrelated to inhibition of immune responses. To
name a few, prednisolone can cause intestinal ulcers, tacrolimus
can result in headaches and muscle pain, belatacept has been
linked to intestinal problems as has mycophenolate mofetil.
Immunosuppression by its very nature robs an individual of its
ability to fight off pathogens thus heightening the risks of more
serious infections associated with more severe disease and
increased shedding of the pathogen.
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SUMMARY

The immune system evolved to respond to components of
pathogens including those of viral vectors. This system, which
is essential for survival of an organism, is built on redundancy to
counter rapidly mutating pathogens that have come up with
multiple ways to dodge immune-mediated destruction.
Modifying AAV vectors by removing parts that induce
inflammatory responses or provide epitopes for T cell
recognition may at best blunt responses. Nevertheless, modern
medicine has developed a multitude of drugs that prevent
activation of the immune system to overcome rejection of
organ transplants. This in turn provides blueprints for drugs
that can effectively block destructive T cell responses. Organs
have been transplanted successfully since 1954 while AAV was
not discovered until the mid-1960s. It then took another 30 years
before an AAV vector was tried in a human gene therapy trial. By
2008, AAV-mediated gene therapy reported clinical benefits for a
congenital blindness and then by 2011 systemic AAV transfer to
the liver showed clinical benefits for hemophilia B patients.
AAV-mediated gene transfer has thus progressed from its
infancy to a stage of adolescence where hopefully remaining
problems such as immune-mediated rejection can be solved in
the near future.
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A key hurdle to making adeno-associated virus (AAV) capsid mediated gene therapy
broadly beneficial to all patients is overcoming pre-existing and therapy-induced immune
responses to these vectors. Recent advances in high-throughput DNA synthesis,
multiplexing and sequencing technologies have accelerated engineering of improved
capsid properties such as production yield, packaging efficiency, biodistribution and
transduction efficiency. Here we outline how machine learning, advances in viral
immunology, and high-throughput measurements can enable engineering of a new
generation of de-immunized capsids beyond the antigenic landscape of natural AAVs,
towards expanding the therapeutic reach of gene therapy.

Keywords: gene therapy, protein engineering, immune evasion, machine learning, AAV capsid design
INTRODUCTION

Recently approved AAV-based therapeutics and numerous therapeutic candidates in advanced
clinical development (1) have demonstrated the transformative and life-saving potential of viral
capsids as vectors for gene therapy (GT). The demands on viral capsids to deliver gene replacement
and gene editing tools will continue to increase as our understanding of genetic diseases reveals new
therapeutic opportunities. Development of next generation capsids that enable more precise,
efficient, and durable gene delivery will be key to improving the effectiveness and safety of such
therapies. In this perspective, we explore how high throughput (HT) measurement and
characterization methods can be combined with machine learning (ML) approaches to identify
such capsids by efficiently optimizing capsid sequences for both improved transduction and reduced
immunogenicity. Combining these technologies will generate capsid-mediated gene therapies with
broader therapeutic uses that are accessible to all individuals in need.
THE NEED TO OPTIMIZE NATURAL AAV CAPSIDS FOR
THERAPEUTIC DELIVERY

Most recombinant AAV capsids used clinically today are closely related, or even identical, to
naturally occurring AAVs in their amino acid sequences and biological properties. As natural
selection did not optimize such capsids for therapeutic use, they display limited specificity of cell
org April 2021 | Volume 12 | Article 674021143
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targeting and low overall in vivo transduction efficiency in many
target tissues, particularly following intravenous administration.
Improving in vivo transduction of target cells and organs would
enable gene therapies to more effectively treat diseases, to
perdure, and to address new therapeutic applications.
Importantly, pre-existing humoral and cellular immunity
against natural AAV capsids limits patient eligibility for
therapies as well as their therapeutic efficacy (2). Furthermore,
capsids possess inherent immunogenicity — the propensity to
activate immune responses — which can impact safety and
efficacy, as well as the potential for redose. The challenges of
evading both pre-existing immunity and de novo adaptive
immune responses against AAV vectors are made especially
difficult by the heterogeneous nature of patient immune
responses and immune histories. Thus, discovering capsids
that circumvent the immune system is a significant hurdle
facing developers of next generation GT vectors (2).

Established approaches for obtaining novel capsids include
mining the naturally-occurring sequence diversity of capsids,
rational design and directed evolution (3–5). Each methodology
Frontiers in Immunology | www.frontiersin.org 244
has contributed valuable capsids to the available catalog of GT
vectors, but limitations related to speed and throughput of
discovery persist because the total number of possible capsids
far exceeds the capacity of current screening approaches.
Directed evolution methods often take advantage of ultra-high
diversity generated by random mutagenesis in an attempt to
overcome the barrier of low discovery yield (i.e. success per
individual design). In contrast, rational design approaches rely
on expert knowledge and focus on a higher likelihood of success
per design, but are relatively low throughput (and overall low
yield) as a result. ML approaches offer a promising new option
that may mitigate the trade-off between yield and throughput
(Figure 1A). ML can be used in combination with these
established approaches, or as a stand-alone technique to open
new avenues of discovery through high-throughput direct
synthesis (6).

The set of desired properties that a capsid should possess in
order to be therapeutically transformative can collectively be termed
a capsid profile, in other words the target of optimization efforts.
Capsids that embody every therapeutically desirable property
A

D

B C

FIGURE 1 | (A) A comparison of throughput (number of samples) and yield (fraction of successful samples generated per attempt) for multiple protein design
approaches. Rational design increases yield, directed evolution leverages throughput, and ML methods increase the likelihood of success by balancing yield and
throughput. (B) Predictive ML models map sequences to their functional properties, while Generative methods can turn an internal data representation back into
sequences, producing desirable samples. (C) An example of transfer learning whereby a model transfers information across cell types and experimental contexts: a
model learns based on in vitro capsid performance in diverse cell transduction experiments (including neurons), then is applied to predict the result of in vivo
transduction in the brain neurons, when such experimental data is sparse or missing. Information from in vivo validation of the predicted capsid performance is used
to refine model performance and understand the relationship between in vivo and in vitro assays. Right grey arrows illustrate the iterative power of this approach,
which refines predictive and generative models over time. (D) The design cycle starts with HT screening and measurements of several AAV capsid variant properties.
These properties are then used to train predictive models that can impute the property for unseen sequences (predictor model) and can be used to build helpful
representations (embeddings), which can then be integrated with auxiliary input (e.g., domain knowledge) to propose a batch of new sequences (generator model).
The design process can be repeated in multiple iterations until desired capsids are discovered.
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outlined above have eluded discovery despite years of effort. Despite
the vast number of possible capsid sequences, it is reasonable to
assume capsids which achieve these desired profiles, if they exist, are
extremely rare in sequence space (7, 8). Reducing the number of
required properties in the context of a particular therapeutic
application may increase the chance of finding a candidate capsid,
but this may come at the cost of failure in later stages of clinical
development. The therapeutic usefulness of a given capsid and our
ability to find it are therefore fundamentally in tension. In this
perspective, we share how new approaches to immunological data
gathering, combined with analysis and design approaches powered
by ML, are overcoming this tension towards discovery of capsids
that are more therapeutically useful.
KEY CONCEPTS FOR APPLYING
MACHINE LEARNING TO ENGINEER
NOVEL CAPSIDS

Recent advances in ML enable new solutions to problems
inherent to designing immune-evasive capsids. ML is a
collection of algorithmic approaches that allow for automatic
learning. These approaches are capable of learning rules for
predicting the outcome of complex processes directly from input
data. Larger and richer datasets pose a challenge for traditional
methods of rational design but are the environment in which ML
methods thrive (9). ML models can be considered mathematical
approximators of physical processes we have measured, and
oftentimes have yet to understand mechanistically (10–12). In
the context of biological design, ML models can replace labor- or
resource-intensive experiments with in silico screening. With
increasing amounts of data, these approximations can become
very accurate, and their rapid and cost-effective application
enables the identification of biological designs which would not
be accessible by experimentation alone. Importantly, mechanistic
knowledge need not be wasted in this approach — biological
insights can be incorporated into ML architectures in a way that
bolsters model robustness, allowing for more accurate models
trained by less data. Additionally, ML can simplify how we
represent and understand high-dimensional and high-
throughput data, allowing us to substantially improve the
experiments themselves. Finally, while many mechanistic
details of AAV gene therapy remain poorly understood, ML
models trained on empirical data that can predict capsid
functions are sufficiently useful for engineering better capsids
despite the models being agnostic to mechanism, and in some
cases querying such models can guide or improve our
mechanistic understanding.

Key ML concepts illustrate the potential for this approach to
transform capsid engineering. First, ML algorithms can learn
arbitrary sequence-to-function relationships. These relationships
can be learned automatically from large datasets of capsid
sequences and their measured properties. A model can predict
one or multiple properties at once. For instance, models can be
trained to learn the relationship between the capsid sequence
and its ability to produce a viable capsid (6) or its tropism to the
Frontiers in Immunology | www.frontiersin.org 345
liver (13). These training schemes, termed supervised, require
collecting data labels (measurements) of the kind we are
intending to predict. However, it is also possible to train
models solely based on a set of good examples without
additional measurements. For instance, training models on the
rapidly growing set of publicly available protein sequences to
learn relationships among them has shown promise in protein
structure and function prediction (12, 14–17). This type of
training is known as unsupervised. Both supervised and
unsupervised training schemes can yield predictive models that
output property values given an input sequence, or alternatively
generative models that produce novel sequences given desirable
property values as inputs (Figure 1B). It is noteworthy that
building models with good generalization ability, i.e. ability to
predict accurately on samples far from those in the training data,
requires care in experimental design and training schemes.
Otherwise, models may overfit to the training data available,
where they perform well on samples similar to their training
data, but unexpectedly poorly in novel settings.

Second, effective machine learning methods often make use of
internal latent representations, also known as embeddings, which
attempt to represent the information contained in raw inputs in a
way that is more amenable to human understanding. One such
simple and widely applied method is principal component
analysis (PCA), in which a linear transformation of input data
allows for the identification of data elements that contribute
most to the variance in the data set. PCA and other more
complex non-linear dimensionality reduction methods
transform high-dimensional raw input data to a lower-
dimensional representation (a latent space) that is easier to
interpret, visualize, and optimize (14, 18–21). If these and
other methods can be applied to the problem of AAV capsid
engineering, AAV variant sequences with similar properties to
each other would be close together in latent space after being
transformed into their latent representations, even if they are far
apart in sequence space. A similar strategy was recently used to
predict the emergence of escape mutations in multiple
viruses (22).

Finally, modern ML can utilize auxiliary data to make
inference about domains where information is sparse, a
process known as transfer learning (Figure 1C) (23, 24). An
illustrative conceptual example for this technique in machine
vision involves “style-transfer” where particular painting styles
are learned from an artist’s work, and can then be applied to any
new image, converting the style to that of the original artist (25).
This type of learning can be used in many contexts in biology
(23, 26). For instance, predictive models around AAV serotypes
for which little data is available could be improved by training
them on data available from other related serotypes or even a
larger set of related proteins. Similarly, population level data for
immunity profiles of specific patient groups could be used to
reduce the amount of data required to make inferences for
individual patients. Along with the ability to integrate
information from multiple modalities, transfer learning can
rapidly accelerate the application of ML models in areas where
data is limited, and open new domains for prediction and design.
April 2021 | Volume 12 | Article 674021
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An example of a ML-driven design pipeline is illustrated in
Figure 1D. These concepts will be useful for designing immune-
evasive capsids, as we explain below.
SAFE AND EFFECTIVE TREATMENT AT
LOWER DOSES

Among all capsid properties that could be improved, increased
tissue-specific transduction is key to enabling safe and effective
gene therapies. Improving this attribute would allow for a higher
proportion of injected capsids to deliver their payloads to the
intended cells, reducing the dose needed for effective treatment.
This in turn would make treatment safer by reducing activation
of the innate immune responses and of B and T cell responses,
which increase in magnitude relative to the amount of antigenic
stimulus (vector dose) delivered (27).

Making viral vectors safer and more effective will require
optimization towards multi-property capsid profiles. However,
many capsid properties are intrinsically coupled to one another
and efforts to optimize or re-direct any single attribute often
result in capsids that fail basic tests of functionality, such as
capsid assembly and genome packaging. ML models can greatly
reduce the burden of multi-property optimization through in
silico screening of variants (28), ensuring that optimization
toward one property does not break other desired functions
(29, 30), shifting the engineering burden away from experimental
approaches (28). For instance, four supervised models can be
trained to learn sequence-to-function maps between capsid
sequences and their ability to (i) transduce the liver, (ii) bypass
off-target organs, (iii) evade neutralization, and (iv) produce at
high yield. The first model can be used in an in silico search for
variants with better transduction, and the other models can be
used to eliminate sequences proposed by the first model that do
not meet the specificity, immune evasion and capsid production
requirements. A significant body of work in the interface of ML
and biology is focused on algorithms that use such supervised
models to optimally design protein sequences (31). Notably,
while non-human primates are at present the industry-preferred
model for measuring transduction, the ability for ML to integrate
diverse sources of information may increase the utility of data
from other animal models (including transgenic animals with
humanized immune systems), as well as human cell culture
models, for predicting transduction patterns in human patients
and lead to better rates of clinical translation. Capsids optimized
towards a profile of improved and specific transduction, reduced
immunogenicity, and production efficiencies equivalent to
natural AAV capsids would already be transformative relative
to currently available vectors.
PERDURING GENE THERAPY

In an ideal therapeutic scenario, a single dose of GT would
provide a durable, curative effect throughout a recipient’s
lifetime. In practice, this goal has been difficult to realize as
Frontiers in Immunology | www.frontiersin.org 446
therapeutic transgene expression from current vectors decays
over time (32). Waning transgene expression can result from
silencing of the viral genome through epigenetic mechanisms,
from cell division, or from transduced cell death, among other
factors. One mechanism underlying the loss of transduced cells
observed in a number of clinical studies (33–35) was the
induction of cytotoxic CD8+ T lymphocyte (CTL) responses
against cells presenting capsid antigens, for which
immunosuppression is the primary clinically viable remedy.

Engineering capsids that reduce or even eliminate CTL
responses will facilitate perduring therapeutic gene expression.
Transduced cells process viral capsids through the intracellular
proteolytic machinery and present capsid-derived peptides on
their surface though the major histocompatibility (MHC) class I
molecules (33, 34). CD8+ T cells recognize presented peptides via
their highly specific T cell receptors, which in turn determines
cell stimulation, proliferation and cytotoxic activity. CTL
activation results in killing of transduced cells as well as
generation of immunologic memory that poses a barrier for
vector redosing. Unlike B cells, which interact with surface
exposed capsid epitopes, T cells can in theory sample the full
peptidome of an AAV capsid, including buried capsid sequences
that drive assembly or disassembly, and which may be more
difficult to alter by conventional engineering approaches.
Extensive mapping of CD8+ T cell epitopes within AAV capsid
proteins and evaluation of their propensity to activate T cell
responses would identify the key sequences which must be
modified to de-immunize AAV capsids. The large diversity of
HLA alleles among people and distinct patterns of peptide
presentation and recognition determined by them makes this
challenging. While it is currently not possible to exhaustively
assess peptide presentation by all variants of MHC class I found
in humans, emerging ML methods in peptide presentation and
immunogenicity prediction (36, 37) will increase the accuracy of
these predictions compared to tools available today. Recently
developed strategies of experimental immunopeptidome
characterization using mass spectrometry (38, 39) will provide
a rich source of data for training such models.

Understanding the determinants of capsid antigen
presentation (40) and their effect on CTL activation will
provide the foundations for ML models to engineer capsids
that evade them. The rules of peptide presentation are shared
across the entire proteome based upon an individual patient’s
HLA alleles (41). This means that MLmodels can benefit from all
existing datasets that catalog CD8+ T cell epitopes and learn
general properties that influence which peptides tend to be
presented in particular genetic backgrounds (17). Through
transfer learning, such general models could be tuned toward
more accurate models that predict CD8+ T cell epitopes for AAV
capsid variants specifically. This would require relatively small
amounts of additional data that is specific to AAV capsids and
would enable engineering of capsids depleted of T cell-activating
peptides. While predictions of MHC class I presentation have
advanced significantly, meaningful annotation of peptide
immunogenicity that enables more accurate models for
immunogenicity prediction will require development of HT
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functional assays and remains an open challenge for the field of
T cell biology.
GENE THERAPY FOR ALL: OVERCOMING
PRE-EXISTING ANTI-CAPSID ANTIBODIES

A majority of prospective GT recipients have pre-existing
antibodies against one or more natural AAV serotypes, often
excluding them from treatment (42–44). Pre-existing antibodies
accelerate vector clearance, redirect vector biodistribution, and
can directly inhibit capsid-mediated cell entry (33). To overcome
these activities of antibodies, it is critical to identify capsids that
cannot be efficiently bound and neutralized by them – in other
words, capsids with surface-exposed sequence and structural
features not previously encountered by the adaptive immune
response. Altering antibody recognition of capsids in a
therapeutically meaningful way is challenging because serum
antibody responses are highly diverse and can target the entire
capsid surface (45, 46). Antibodies bind both linear and
discontinuous epitopes on the capsid exterior surface,
sometimes spanning across neighboring capsid subunits,
making rational approaches to altering these sites challenging.
Moreover, neutralizing antibodies often target capsid regions
involved in critical functions such as cell receptor recognition,
meaning that mutations which prevent antibody binding can
also adversely affect vector transduction (47).

Much remains to be learned about how human antibodies
bind to and neutralize capsids, however several technologies now
enable high-throughput mapping of antibody responses at the
monoclonal level. The study of both serum antibodies and
antibodies encoded by memory B cells in donors with recent
AAV exposures can reveal key characteristics of human anti-
capsid antibody responses and provide a more complete picture
of anti-capsid antibody immunity. While serum antibodies are
maintained at steady state by long lived plasma cells, the memory
B cell repertoire approximates the antibody repertoire that will
be mobilized on AAV re-encounter and their characterization is
methodologically useful as a means of identifying anti-capsid
antibody sequences for in depth functional studies. For example,
efforts in the infectious diseases therapeutic space have yielded
multiple approaches to fine mapping of de novo and memory B
cell responses, where hundreds or even thousands of virus-
specific antibodies encoded by B cells can now be routinely
sequenced, cloned and produced (48). Epitopes of such
antibodies can be characterized using HT competition assays
(49, 50) and correlations can be derived between binding site
location and neutralization activity. Recently developed
approaches utilizing cryo-electron microscopy (51, 52) and
high resolution, quantitative, proteomics-based approaches
(53–55) enable serum antibody specificities to be characterized
in unprecedented detail, to inform their identities and their
binding sites. These and other studies revealed for a number of
pathogens that just one class of antibodies can contribute the
majority of neutralizing activity in the serum despite the overall
high diversity of antibody responses (56–58). Identifying any
Frontiers in Immunology | www.frontiersin.org 547
dominant human neutralizing antibody types against AAVs
would inform the sites where capsid engineering can be most
effectively applied.

Data with resolution at the individual antibody level would
enable ML models to learn how antibody responses target a
particular capsid and how to predict their effect on other
(designed) capsids. Models can serve as in silico evaluators of
capsids before they are administered to patients with pre-existing
antibodies based on characterization using the methods
described above. Through sequencing of capsid-specific B cells
and characterization of serum antibodies, a personal
‘immunological fingerprint’ can be created with the aid of ML
models, which could also be used to find general patterns in
human anti-capsid antibody responses (59). For instance,
unsupervised models can directly learn from genetic data to
predict immune profile responses. Supervised models could use
patient serum data together with other measurements [e.g.
sequencing of immune repertoires (59) or genome scanning
antibody profiling (60)] to predict likelihood of therapeutic
success, or to help select vector administration options. With
such models in hand, panels of antibody-evading AAV capsids
could be recommended based on a patients’ pre-existing
antibody repertoire to maximize the chance of effective
antibody evasion.

Many gaps remain in our understanding of how anti-capsid
antibodies can be evaded. Serology studies with naturally
occurring AAVs have been useful in defining population-level
prevalence of anti-AAV immunity but such bulk-level
measurements have had limited value for engineering
antibody-evading capsids. Some monoclonal antibodies
isolated from mice have been characterized in detail (46, 61)
providing important insights about the antigenic sites on AAV
capsids targeted by neutralizing antibodies. However, it remains
a challenge to generalize these results to human antibody
responses, which are encoded by distinct germline genes, are
more diverse (62), and are shaped in response to a distinct set of
natural AAVs endemic in humans. An in-depth large-scale
characterization of human antibodies targeting capsids would
facilitate our ability to engineer capsids with maximal
therapeutic impact.

One such promising approach would be to measure the
activity of serum antibodies against highly diverse libraries of
capsid variants using immune human serum samples. Such data
would enable ML models to learn the quantitative relationship
between AAV capsid sequences and their abilities to evade pre-
existing antibodies, and to learn commonalities in anti-capsid
antibody responses among people. Similarly, intravenous
immunoglobulin (IVIg) preparations containing antibodies
from thousands of donors may be useful in such screens for
identifying the predominant patterns in human antibody
responses. Recent work characterizing B cell and antibody
responses to a number of important human pathogens (56,
63–65) reveal common features of antibody responses elicited
by a given pathogen across donors. If similar shared antibody
types arise against AAV capsids, resurfacing the epitopes they
target would allow engineering of capsids that more broadly
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evade antibody activity, towards the goal of creating universal
capsids capable of treating all patients.
FUTURE DIRECTIONS

ML-powered capsid design and engineering will transform the
landscape of GT delivery modalities, however non-capsid
improvements are also relevant from an immunological
perspective and can also increase therapeutic effectiveness.
Reducing the activation of innate immunity by engineering the
vector genome (66, 67), co-administration with targeted
immune-modulators to induce tolerance toward the vector
(68) or depletion of pre-existing anti-capsid antibodies (69)
should work in synergy with engineered capsids to pave a path
for repeat vector administration, while further increasing the
safety and tolerability of next generation GTs.

As we have outlined, ML approaches to engineer improved
AAV capsids have multiple applications: enabling gene therapies
that are effective in a lower dose regimen, removing capsid
peptides which elicit cytotoxic T cell responses thereby leading
to longer lasting gene expression, and resurfacing capsid
exteriors allowing potentially universal treatment of all
patients. While these goals are ambitious and each individually
worthy of study, combining all such properties in a single capsid
would be transformative for the field. ML approaches will
facilitate this goal by incorporating information from diverse
experimental systems and improving the efficiency of multi-trait
capsid optimization. We are optimistic that safe, efficient, target-
Frontiers in Immunology | www.frontiersin.org 648
specific, non-immunogenic and universal capsids will one day
enable gene therapy to reach its full potential by delivering
therapeutic DNA to cure, treat and prevent disease and even to
improve overall health for all patients. Interdisciplinary
collaborations focused on combining HT measurements with
ML-powered sequence design algorithms will dramatically
accelerate progress towards achieving these goals.
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Transduction
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Recombinant adeno-associated virus (rAAV) platforms hold promise for in vivo gene
therapy but are undermined by the undesirable transduction of antigen presenting cells
(APCs), which in turn can trigger host immunity towards rAAV-expressed transgene
products. In light of recent adverse events in patients receiving high systemic AAV vector
doses that were speculated to be related to host immune responses, development of
strategies to mute innate and adaptive immunity is imperative. The use of miRNA binding
sites (miR-BSs) to confer endogenous miRNA-mediated regulation to detarget transgene
expression from APCs has shown promise for reducing transgene immunity. Studies have
shown that designing miR-142BSs into rAAV1 vectors were able to repress costimulatory
signals in dendritic cells (DCs), blunt the cytotoxic T cell response, and attenuate clearance
of transduced muscle cells in mice to allow sustained transgene expression in myofibers
with negligible anti-transgene IgG production. In this study, we screened individual and
combinatorial miR-BS designs against 26 miRNAs that are abundantly expressed in
APCs, but not in skeletal muscle. The highly immunogenic ovalbumin (OVA) transgene
was used as a proxy for foreign antigens. In vitro screening in myoblasts, mouse DCs, and
macrophages revealed that the combination of miR-142BS and miR-652-5pBS strongly
mutes transgene expression in APCs but maintains high myoblast and myocyte
expression. Importantly, rAAV1 vectors carrying this novel miR-142/652-5pBS cassette
achieve higher transgene levels following intramuscular injections in mice than previous
detargeting designs. The cassette strongly inhibits cytotoxic CTL activation and
org April 2021 | Volume 12 | Article 674242151
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suppresses the Th17 response in vivo. Our approach, thus, advances the efficiency of
miRNA-mediated detargeting to achieve synergistic reduction of transgene-specific
immune responses and the development of safe and efficient delivery vehicles for
gene therapy.
Keywords: adeno-associated virus vectors, microRNA, miR-BS, miR-142, miR-652-5p, miR-223-3p, antigen
presenting cells, gene therapy
INTRODUCTION

Adeno associated virus (AAV) vector-mediated gene therapies
have emerged as the platforms of choice for the treatment of
monogenic diseases. First isolated from adenovirus preparations
in the 1960s (1, 2), AAV is a non-pathogenic dependoparvovirus
that is able to transduce a wide range of cell types. Recombinant
AAVs (rAAVs) have been proven to confer long-lasting and safe
transgene expression in a variety of human tissues (3–6). rAAVs
have also achieved sustained therapeutic effect for a variety of
inherited diseases, including Leber’s congenital amaurosis type 2
(7, 8), hemophilia B (9), M-type a-1 antitrypsin deficiency (10,
11), and lipoprotein lipase deficiency (12, 13). Two AAV-based
drugs (Luxturna and Zolgensma) to date have been approved by
the FDA, and >100 clinical trials using AAV-based therapies are
in progress (5, 6, 14, 15).

AAV vectors are known to possess a weak immunological
footprint, in part, because of their relative inability to transduce
antigen presenting cells (APCs). However, there have been
multiple reports of vector-related toxicities that have
compromised transgene product expression (3, 16, 17). Human
clinical trials have also demonstrated how B and T cell immune
responses directed against the AAV capsid, likely arising after
natural infection with wild-type AAV, might potentially impact
gene transfer safety and efficacy in patients (3). Moreover, AAV-
delivered transgene products are often presented as foreign
antigens that can stimulate host immune responses, and can
lead to the generation of transgene-specific antibodies and
cytotoxic T lymphocytes (CTL) (18, 19). The quality and
intensity of humoral and cellular immune responses can vary
depending on the transgene DNA composition, vector tropism
to APCs, route of administration, and the tissue target.

Skeletal muscle is considered an important target tissue for
AAV-mediated vector gene transfer . Intramuscular
administration of rAAV-encoding therapeutic transgenes
enables muscle to serve as a bio-factory for the sustained
production of secreted proteins (20–25). Notably, AAV
serotype 1 (AAV1) is known for its tropism to skeletal muscle
cells and also has a limited system-wide biodistribution profile.
Intramuscular administration of rAAV1 in humans has been
used previously for the exogenous expression of therapeutic
proteins (26–28). However, targeting muscle tissues can result
in immune reactions, and anti-transgene responses have been
mostly documented in gene therapy trials involving
intramuscular delivery of rAAV vectors (28, 29). One of the
primary reasons attributed to anti-transgene toxicity is the
unwanted transduction of APCs. rAAV transduction of
org 252
professional APCs, like dendritic cells (DCs), macrophages,
and B cells leads to the presentation of transgenic peptides on
MHC class I molecules, culminating in cytotoxic T cell-mediated
clearance of transfected cells. Importantly, rAAV1 has also been
shown to transduce APCs to elicit transgene immunity (30). The
use of muscle-specific promoters in rAAV expression cassettes
have shown limited success in controlling leaky expression in
DCs (31, 32). Alternatively, microRNA (miRNA)-mediated
detargeting via posttranscriptional control has been successfully
demonstrated to restrict cell type-specific transgene expression
with lentiviral gene transfer to the mouse liver (33, 34).

Detargeting transgenes from specific cell types via
endogenously expressed miRNAs can also be used to enhance
tissue-specificity by excluding spurious transgene expression
from non-target cells (35–39). miR-142 is regarded as a
hematopoietic-specific miRNA and is expressed at high levels
in APCs (33, 40). In the absence of miR-142, DCs show reduced
production of proinflammatory cytokines and the ability to
activate T cells in mice (41). We have previously shown that
miR-142-mediated APC detargeting boosts transgene levels and
inhibits antibody formation and blunts the cytotoxic T cell
response (42). Incorporation of two or three miR-142 binding
sites achieved detargeting from APCs to levels that enable
sufficient stable transgene expression (30, 42) following
intramuscular injections. However, CD8+ T cell infiltrates were
still observed at early treatment timepoints (two weeks post-
injection), suggesting that full APC detargeting and maximal
transgene expression may not have been achieved with miR-
142BS cassettes alone.

In this study, we have identified two miRNAs, miR-223-3p
and miR-652-5p, whose expression is enriched in immune cell
populations in mice. miR-652 and miR-223 are expressed in cells
of the myeloid lineage, including monocytes and granulocytes
(43). Incorporation of binding sites for miR-223-3p and miR-
652-5p, in combination with miR-142, can effectively detarget
expression of the chicken ovalbumin (OVA) transgene from
APCs following intramuscular administration. The novel
combinatorial microRNA-binding site (miR-BS) designs
effectively improve transgene expression, blunt antibody
response against the transgene, and reduce the activation of T
cells. Furthermore, the miR-142/652-5pBS cassette confers the
lowest capacity for triggering OVA-specific cytotoxic CTL
activation and inhibits the activation of Th1 and Th17 cells
more effectively than miR-142BS on its own. This unique miR-
BS design therefore confers a global immunosuppressive milieu
that is specific to the transgene. Our findings not only reiterate
the therapeutic potential of miRNA-mediated detargeting
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cassettes, but also demonstrate that a combination of different
miR-BSs might have an additive or synergistic effect on
inhibition of transgene immunity.
MATERIALS AND METHODS

Vector Plasmid Construction and
rAAV Production
rAAV expression cassette was made by inserting full-length
OVA cDNA between the chicken b-actin (CB) promoter and
rabbit b-globin (RBG) polyA signal to generate the
pAAV.CB.OVA cis plasmid (42). For pAAV.CB.OVA.miR-BS
constructs, two copies of the miR-BS sequence, individually or in
combination with miR-142BS, were inserted between the OVA
cDNA and RBG polyA signal. The sequences of the miR-BS are
listed in Table 1. All expression cassettes were verified by Sanger
sequencing. rAAV1 vectors were produced by the Viral Vector
Core at the University of Massachusetts Medical School as
previously described (42, 65, 66).

In Vitro Screening of OVA Constructs
OVA expression plasmids with or without the miR-142BS
elements were transfected into mouse myoblast C2C12 cells
(ATCC, CRL-1772) and the macrophage cell line RAW264.7
(ATCC, TIB-71) using jetPRIME transfection reagents
(Polyplus-transfection SA) according to the manufacturer’s
instructions. C2C12 and RAW264.7 cells were cultured in
Dulbecco’s modified Eagle medium (Hyclone, SH30022) with
20% and 10% fetal bovine serum, respectively (FBS, Hyclone,
Frontiers in Immunology | www.frontiersin.org 353
SH30071), and 1% penicillin/streptomycin (Hyclone, SV30010).
C2C12 cells were differentiated by culturing the cells in DMEM
containing 2% horse serum (HyClone) and 1 mM insulin (Sigma-
Aldrich). Mouse dendritic cells (JAWS II; ATCC, CRL-11904)
were cultured in aminimum essential medium (MilliporeSigma,
M8042) with ribonucleosides, deoxyribonucleosides, 4 mM L-
glutamine, 1 mM sodium pyruvate, and 20% FBS with 5 ng/mL
murine GM-CSF. JAWS II were transfected by Nucleofection.
Briefly, 2.0 × 106 cells were collected and resuspended in 100 mL
Nucleofector Solution (Lonza, V4XP-4024) at room
temperature. Plasmids were then added, mixed, and transferred
into Nucleocuvette Vessels. The P4 HF program for immature
mouse DCs was selected and ran. Then, 2 mL of medium was
added, and cells were split into a 24-well plate (500 mL/well)
(Corning, CLS3527). Three days after transfection, supernatants
were collected for OVA ELISA. A Gaussia luciferase expression
plasmid was transfected along with OVA expression plasmids to
account for transfection variabilities. Transfections were done in
triplicate for each round.

Mice
C57BL/6 mice were purchased from The Jackson Laboratory and
maintained at the University of Massachusetts Medical School.
Mice were housed under specific pathogen-free conditions. Six-
to eight-week-old male mice were injected unilaterally into
tibialis anterior (TA) muscles with 1.0 × 1011 genome copies
(GCs) of rAAV1 diluted in sterile phosphate-buffered saline
(PBS). Blood samples were collected via facial vein by using an
animal lancet (Goldenrod) and BDMicrotainer tubes with serum
separator additive (Becton Dickinson and Company). All animal
TABLE 1 | List of candidate miRNA binding sites shortlisted for in vitro screening.

miRNA Cell types enriched with miRNAs Sequences of binding sites References

miR-106 Monocyte (CTACCTGCACTGTTAGCACTTTG)2 (44, 45)
miR-126a pDC (CGCATTATTACTCACGGTACGA)2 (46, 47)
miR-142 DC (TCCATAAAGTAGGAAACACTACA)2 (40, 41, 48)
miR-16 B (CGCCAATATTTACGTGCTGCTA)2 (49, 50)
miR-17 B, T, Monocyte (CTACCTGCACTGTAAGCACTTTG)2 (45)
miR-18 B, T, Monocyte (CTATCTGCACTAGATGCACCTTA)2 (44, 51)
miR-19a B, T, Monocyte (TCAGTTTTGCATAGATTTGCACA)2 (44, 51)
miR-19b B, T, Monocyte (TCAGTTTTGCATGGATTTGCACA)2 (44, 51)
miR-20 B, T, Monocyte (CTACCTGCACTATAAGCACTTTA)2 (44, 52)
miR-21a B, Monocyte, MF (TCAACATCAGTCTGATAAGCTA)2 (53)
miR-223 Myeloid (TGGGGTATTTGACAAACTGACA)2 (43, 54)
miR-24-3p DC (CTGTTCCTGCTGAACTGAGCCA)2 (48)
miR-29a T (TAACCGATTTCAGATGGTGCTA)2 (55, 56)
miR-29b T (AACACTGATTTCAAATGGTGCTA)2 (55)
miR-29c T (TAACCGATTTCAAATGGTGCTA)2 (55)
miR-302a-3p MF (TCACCAAAACATGGAAGCACTTA)2 (57, 58)
miR-30b DC (AGCTGAGTGTAGGATGTTTACA)2 (48)
miR-33-5p MF (TGCAATGCAACTACAATGCAC)2 (59)
miR-34a B, DC (ACAACCAGCTAAGACACTGCCA)2 (53)
miR-424 Monocyte (TTCAAAACATGAATTGCTGCTG)2 (60, 61)
miR-652-3p DC (AATGGCGCCACTAGGGTTGTG)2 (43)
miR-652-5p DC (GAATGGCACCCCCTCCTAGGGTTG)2 (43)
miR-9-3p MF (ACTTTCGGTTATCTAGCTTTAT)2 (62, 63)
miR-9-5p MF (TCATACAGCTAGATAACCAAAGA)2 (61, 62)
miR-92a B, T, Monocyte (CAGGCCGGGACAAGTGCAATA)2 (45)
miR-99b-5p MF, DC (CGCAAGGTCGGTTCTACGGGTG)2 (52, 64)
April 2021 | Volume 12 | A
rticle 674242

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Muhuri et al. Combinatorial miR-BSs Detargets APC Transduction
procedures were approved by the Institutional Animal Care and
Use Committee of the University of Massachusetts Medical
School. Experiments were conducted in accordance with
relevant guidelines and regulations.

ELISAs
Serum levels of OVA and anti-OVA IgG were determined by
ELISA. Briefly, 96-well Nunc Maxisorp Immunoplates (Thermo
Fisher Scientific) were coated with 2 mg/mL of rabbit anti-OVA
polyclonal antibodies (AB1225, MilliporeSigma) or OVA protein
(MilliporeSigma) in 100 mL coating buffer (KPL) per well. After
an overnight incubation at 4°C, plates were washed with 0.05%
Tween-20 in PBS, followed by incubation with blocking buffer
(KPL) for two hours at room temperature. For OVA detection,
the samples were diluted 100-fold with ELISA diluent (KPL), and
OVA protein standards (Bioworld) were two-fold serially diluted
with 1% normal mouse serum starting from 50 ng/mL. Then, 100
mL of sample or standard was added to plates and incubated for
one hour at room temperature. After washing four times,
peroxidase-conjugated rabbit anti-OVA polyclonal antibody
(200-4333-0100, Rockland Immunochemicals) (1:5,000 diluted)
was added and incubated for one hour at room temperature. For
anti-OVA IgG1 detection, samples were diluted 1:200, and the
mouse anti-OVA IgG1 (sc-80589, Santa Cruz Biotechnology)
was used as the standard. After a one-hour incubation in OVA-
coated plates, wells were washed, HRP-conjugated goat anti-
mouse IgG1 (sc-2060, Santa Cruz Biotechnology) was added, and
plates were incubated for another hour at room temperature.
Plates were then washed four times and incubated with 100 mL of
ABTS HRP Substrate (KPL). Optical density at 410 nm was
measured using a Synergy HT microplate reader (BioTek).
Standard curves for OVA and IgG1 were generated by using
the 4-parameter logistic regression with Gen5 software (BioTek).

ELISA quantification of secreted cytokine levels was performed
using customized ProcartaPlex Immunoassays (Thermo Fisher
Scientific) following manufacturer’s instructions. Briefly, the
samples were incubated in a 96-well plate (Corning) with
magnetic beads conjugated to antibodies against desired cytokines
for two hours at room temperature with shaking. Wells were then
washed thrice with wash buffer, using a magnetic plate washer (Bio-
Rad). This step was followed by incubation with detection antibody
for one hour at room temperature with shaking. Following three
washes, the samples were incubated with Streptavidin-PE for 30
mins at room temperature with shaking. The samples were finally
resuspended in 1X reading buffer after three washes. Plates were
read in a MAGPIX® System instrument (Luminex Corporation).
Standard curves were generated, and the levels of each cytokine
were calculated using the 4-parameter logistic regression using
GraphPad Prism 8.

Isolation of Immune Cells From Liver and
TA Muscle
Mice were anesthetized and perfused with PBS by transcardial
perfusion. Livers and injected TA muscles were harvested from
perfused mice and stored temporarily in RPMI media on
ice. Tissues were minced with a razor blade followed by
enzymatic digestion (0.4% Collagenase type II (Sigma-Aldrich)
Frontiers in Immunology | www.frontiersin.org 454
and 300 mg/mL DNase I (Millipore Sigma) for 30 min at 37°C.
Dissociated livers were strained through a 70 mm cell strainer
(Falcon) and washed twice with 1X processing buffer (5% FBS in
PBS). Cell pellets were resuspended in 40% Percoll (GE
Healthcare) and carefully overlaid onto 70% Percoll followed
by centrifugation for 25 mins at 400 g, with the brakes off.
Leukocytes that band at the 40-70% interphase are removed with
a pipette onto a fresh tube and washed thrice with 1X processing
buffer to prepare them for staining.

Minced TAs were incubated with 0.5 mg/mL DNase I and
0.25 mg/mL Liberase TL (Roche) in processing buffer for two
hours at 37°C. The digested pieces were pooled and strained
through a 70 mm cell strainer. Cell suspensions were washed at
1,500 rpm for 7 min in complete RPMI followed by resuspension
of the cell pellet in processing buffer for staining.

Flow Cytometry
Cells were suspended in 100 mL PBS with 5% FBS and washed once
in PBS. For live/dead staining, cells were resuspended in PBS
containing Fixable viability dye eFluor 506 (Thermo Fisher
Scientific; 1:1000 dilution) and incubated for 30 min at 4°C in the
dark. Following one wash with FACS buffer (2% FBS in PBS), the
cells were blocked with anti-CD16/32 (2.4G2) mAb (BD
Biosciences, catalog 553141; 1:100 dilution) for 15 min at 4°C.
After blocking, the corresponding antibodies were added at 1:100
dilution for 30 min at 4°C in the dark. Following antibody staining,
cells were washed twice in FACS buffer. Flow cytometry analyses
were performed on an Attune NxT FlowCytometer (Thermo Fisher
Scientific). Data were analyzed using FlowJo (Tree Star).

For intracellular staining, cells were permeabilized in a 1X
solution of fixation/permeabilization solution (BD Biosciences)
for 30 min at 4°C after blocking/cell surface staining. Thereafter,
the cells were washed thrice in 1X Perm/Wash buffer (BD
Biosciences). Antibody dilutions (1:100) are prepared in 1X
Perm/Wash buffer and cells were resuspended in the antibody
containing solution and incubated for 30 min at 4°C. Following
antibody staining, cells were washed once in 1X Perm/Wash
buffer and resuspended in FACS buffer for analyses by flow
cytometry. The list of antibodies used for staining are provided in
Supplementary Table 3.

qPCR and RT-qPCR
Mouse tissue DNA was isolated using the QIAamp genomic
DNA kit (QIAGEN) following manufacturer’s instructions.
Detection and quantification of vector genomes in extracted
DNA were performed by real-time qPCR as described
previously (67, 68). Total RNA was isolated from mouse
tissues or cells using Trizol (Life Technologies). cDNA
preparation for miRNA quantification was done using
TaqMan™ MicroRNA Reverse Transcription Kit (Thermo
Fisher Scientific) following manufacturer’s instructions. qPCR
to quantify expression levels of miR-142-3p, miR-652-3p, miR-
652-5p, miR-223-3p, and miR-33-5p were done using
TaqMan™ Fast Advanced Master Mix (Thermo Fisher
Scientific). Real-time qPCR was performed using the ViiA 7
real-time PCR system (Life Technologies). All other reagents,
primers, and probes were purchased from Life Technologies.
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Immunohistochemistry
Mouse tissues were fixed in 10% buffered formalin (Fisher
Scientific, catalog SF100-20) overnight and embedded in
paraffin. Sections (8 mm thick) were stained with H&E. Images
were acquired on a TissueFAXS Whole Slide Scanning System
(TissueGnostics) using a 20x objective. Nuclei quantification was
performed with Image J.

For immunofluorescence staining, muscle sections were de-
paraffinized in xylene and rehydrated using a graded ethanol
series culminating with PBS. Following antigen retrieval using a
programmable pressure cooker with “target retrieval solution”,
pH 6.0 (Dako), tissue sections were blocked with 10% goat serum
in PBS. The slides were then stained for CD8 (1:500, D4W2Z,
Cell Signaling Technology), granzyme B (1:40, AF1865, R&D
Systems), F4/80 (1:100, MCA497R, Bio-Rad), and OVA (1:500,
AB1225, Millipore Sigma) for 16 hours at 4°C. Species-specific
secondary antibodies conjugated to Cy5 or Cy7 fluorophores
were used and incubated for one hour at room temperature in
the dark. Sections were washed, counterstained with DAPI
(100 ng/ml) and mounted using FluorSave (Calbiochem)
mounting medium. Images were acquired on a Leica SP8 laser
scanning confocal microscope using a 40x oil-immersion
objective. Quantification of the fluorescent signals of the
respective markers was performed using QuPath (69).

Statistics
All data are shown as mean ± SD. Unpaired Student’s t tests
(two-tailed), one-way ANOVA and two-way ANOVA, with or
without post hoc testing, were calculated using GraphPad Prism
8. Differences were considered significant when p values were less
than 0.05.
RESULTS

In Vitro Screening of Candidate miR-BSs
in DCs, Macrophages, and Muscle Cells
To perform functional validation of miR-BS-mediated
detargeting, two copies of miR-BSs were engineered into the
3′-UTR of the highly immunogenic chicken OVA cDNA. OVA
is used as a model immunogen for studying antigen-specific
immune responses in mice. The occurrence of immune
responses against the OVA transgene, and the resulting loss of
OVA protein expression, following intramuscular delivery by
rAAVs have been described previously by us and others (30, 42).
Transgene expression is driven by the strong and ubiquitous
CMV enhancer/chicken b-actin promoter to achieve ubiquitous
transcription, irrespective of cell type (70). These expression
cassettes were then subcloned into rAAV vectors (Figure 1A). In
the absence of publicly available databases that display cell type-
specific miRNA expression, a list of candidate miRNAs whose
expression levels were reported in the literature to be enriched in
hematopoietic lineage cells (DCs, monocytes, B and T cells) was
generated. Two copies of binding sites for these miRNAs were
individually cloned into the rAAV expression cassettes to
generate a library of 26 vectors (Table 1).
Frontiers in Immunology | www.frontiersin.org 555
The inhibitory effects of individual miR-BSs on OVA expression
was first evaluated in mouse immature DCs (JAWS II),
mouse macrophage cells (RAW264.7), and the mouse C2C12
skeletal myoblast cell line. Expression plasmids were transfected
into the aforementioned cell types along with a Gaussia luciferase
(GLuc) expressing plasmid to account for transfection variability.
The conditioned media from the transfected cells were harvested
72 hours post-transfection for measuring secreted OVA levels by
ELISA. The levels of OVA were then normalized to GLuc levels
for each transfection. Transfected C2C12s were also differentiated
under serum starvation conditions to examine the effects of the
miR-BS in myocytes (dC2C12). An ideal miR-BS candidate is
expected to retain high OVA expression in myoblasts and
myocytes indicating specific transgene expression in muscle cell
types, but exhibit reduced expression in DCs and macrophages,
reflecting translational inhibition in APCs (Figure 1B). The
results of the in vitro screen revealed that the miR-142BS
element in dC2C12s conferred levels of OVA expression that
were equal to those conferred by the construct that lacks miR-BSs,
and significantly reduced OVA levels in JAWSII and RAW264.7
cells (Figure 1C). This is consistent with previously reported
studies where miR-142BSs were shown to successfully detarget
rAAV-delivered transgenes from APCs and to suppress anti-
transgene immunity in mice (30, 42). We also note that despite
the fact that APCs are enriched with these miRNAs as described
in the literature, the design of some cognate miR-BS, namely
miR-126aBS and miR-19aBS, failed to reduce transcript
expression in JAWSII and RAW264.7 cells. These results
demonstrate that not all 3’-UTR modifications were capable of
reducing transcript stability.

Combinatorial miR-BS Designs in
rAAV-OVA Vectors Increase Transgene
Expression With Negligible Anti-OVA
Antibody Responses
Several miR-BS candidates maintained high muscle expression of
OVA while conferring detargeting from immune cells, albeit to
slightly lesser degrees than what was achieved by miR-142BS.
Three of these: miR-223-3pBS, miR-652-5pBS, and miR-33-
5pBS were further selected for combinatorial designs with
miR-142BS. Two copies of each miR-BS were cloned along
with two copies of miR-142BS in the 3’-UTR of the OVA
transgene. The resulting miR-BS expression vectors were then
screened for OVA expression in JAWSII, RAW264.7, and C2C12
cells. The most promising miR-BS combinations to emerge from
this round of screening were miR-142/223-3pBS and miR-142/
652-5pBS (Figure 1D).

To provide support for the notion that the miR-BS cassettes
are operating through endogenously expressed cognate miRNAs,
we quantified the levels of these miRNAs in cells from
immunological and non-immunological l ineages to
demonstrate their levels of enrichment in APCs. Interestingly,
miR-223-3p was found to be approximately 500- to 15,000-fold
higher in cell types of the immunological lineage (RAW264.7,
JAWSII, bone marrow derived macrophages (BMDM), and
Kupffer cells) than in C2C12 and differentiated C2C12 cells
April 2021 | Volume 12 | Article 674242
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(Figure 2A). Expression of miR-652-5p in RAW264.7 and
JAWSII cells was about 2- and 8-fold higher than levels
observed in C2C12 cells, respectively. On the other hand, no
significant enrichment of miR-652-3p and miR-33-5p was seen
in immune cell types (Figure 2A).

We next aimed to assess the function of miR-223-3p and miR-
652-5p binding sites in vivo. We therefore packaged the rAAV-
OVA expression cassettes into AAV1 capsids with or without the
individual miR-223-3p or miR-652-5p binding sites, or in
combination with miR-142BS elements. Produced vectors were
then injected into TA muscles of adult mice. Mice administered
with rAAV1 empty capsids or PBS (mock) were used as controls.
Frontiers in Immunology | www.frontiersin.org 656
Animals injected with rAAV1.OVA.miR-BS vectors generated
increasingly high and sustained levels of OVA expression in
circulation, with a negligible anti-OVA antibody response (IgG1).
In contrast, animals treated with rAAV1.OVA without miR-BSs
showed baseline levels of OVA after eight weeks (Figures 2B, C).
These animals also generated the highest levels of anti-OVA
antibodies, which were substantially greater than the anti-OVA
IgG levels produced in mice injected with rAAV1.OVA.miR-BS
vectors (Figures 2B, C and Supplementary Tables 1, 2).
Interestingly, the combination of miR-142 and 652-5p binding
sites (miR-142/652-5pBS), or miR-652-5pBS alone, conferred the
highest serumOVA levels. The differences in OVA expression levels
A

B

D

C

FIGURE 1 | Selection and in vitro screening of candidate miRNA binding sites (miR-BS). (A) Schematic illustration of rAAV.OVA expression vectors. The expression
of the OVA transgene is driven by the CB6 promoter. Two copies of miR-BSs are cloned between the transgene and the rabbit b-globin poly A (RBG pA). The OVA
expression cassette is flanked by inverted terminal repeats (ITRs) at both ends. (B) An ideal miR-BS candidate, upon delivery to myocytes and myoblasts, which do
not express the corresponding miRNA, is expected to undergo transcription and translation to produce high levels of transgene. In contrast, when this vector is
delivered to miRNA-expressing immune cells, like macrophages and DCs, miRNA binding to the transgene mRNA leads to translational inhibition and transcript
degradation, resulting in minimal transgene protein production. (C) Summary of the in vitro screening of individual miR-BS candidates represented as a heat map
with OVA expression denoted as fold change (log2) with respect to expression vectors lacking any miR-BS. (D) The in vitro screening of miR-BS combinations
summarized as a heat map with relative OVA levels represented as fold change (log2) (n = 5). C2C12, mouse myoblasts; dC2C12, mouse myocytes; RAW264.7,
mouse macrophages; JAWSII, mouse DCs.
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FIGURE 2 | Incorporation of miR-223BSs and miR-652BSs boosts in vivo OVA production and suppresses antibody development. (A) Endogenous miRNA
expression levels in cultured mouse myoblasts (C2C12), myocytes (dC2C12), macrophages (RAW264.7), DCs (JAWSII), bone marrow derived macrophages
(BMDM), primary mouse hepatocytes, and Kupffer cells as quantified by reverse transcription quantitative PCR (RT-qPCR) (n = 3). rAAV1 expression vectors were
injected by i.m. on day 0 followed by serum collection every week for an eight-week period. (B, C) ELISA quantification of circulating OVA expression (B) and anti-
OVA IgG1 (C) (1 × 1011 GCs/mouse, n = 10). Single gradient heat map representing respective analyte levels (n = 5). (D–F) ddPCR detection of rAAV vector
genome copies in injected skeletal muscle (D), spleen (E), and liver (F) at eight weeks post-injection (n = 5). Values represent mean ±SD. *p < 0.05, ***p < 0.001,
one-way ANOVA with Tukey’s post hoc test.
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between this combination and other miR-BS designs were most
pronounced at eight weeks post-injection (p <0.001)
(Supplementary Figure 1A and Supplementary Table 1).
However, anti-OVA antibody production in mice injected with
any of the miR-BS expressing vectors was not significantly different
from each other, indicating that incorporation of any individual or
combination of the tested miR-BSs led to similar levels of anti-
transgene antibody suppression (Supplementary Figure 1B and
Supplementary Table 2). With the exception of miR-223-3pBS, the
levels of vector genomes detected in TAs eight weeks after injection
were high (Figure 2D). Interestingly, there was a greater than five-
fold increase in the abundance of vector genomes in muscles treated
with miR-BS-containing vectors, than in muscles treated with the
rAAV-OVA construct that lacks miR-BSs (Figure 2D). Consistent
with immune clearance of transduced muscle fibers and loss of
vector genomes, rAAV1.OVA.miR-142/652-5pBS-transduced
muscle tissues showed at least a six-fold increase in vector
genomes at eight weeks as compared to rAAV-OVA with no
miR-BSs (Figure 2D). As expected, vector genome counts in the
spleen and liver were at near background levels of detection
(Figures 2E, F).

miR-142BS and Other Novel miR-BS
Designs Downregulate Macrophage
Activation and Costimulatory Signals
in DCs
Although there were no clear differences in the anti-OVA
antibody levels conferred between the miR-BSs cassette
designs, we wondered whether any underlying immune
responses against the vector and/or the transgene product
might still preclude efficient OVA transduction, which can be
overcome by optimizing APC detargeting. To address this
notion, we analyzed immune effector cell activation following
vector treatment. Mice injected intramuscularly with rAAV1
vectors with or without miR-BSs were sacrificed at four weeks
post-injection and cells were isolated from injected TAs.

The antigen-specific T cell receptor (TCR) binds foreign peptide
antigen-MHC complexes, and the CD28 receptor binds to B7
(CD80/CD86) costimulatory molecules expressed on the surface of
APCs, a process that is vital to initiating and maintaining the
proliferation of T cells (71). Immunophenotyping of isolated cells
by flow cytometry revealed an overall depletion of macrophages
and CD80/CD86-positive DCs (CD11c+ cells) in mice injected
with vectors carrying miR-BS at the four-week time point (Figures
3A, E). The greatest repression was achieved with vectors harboring
the miR-652-5pBS or miR-142/652-5pBS cassettes. Notably, there
was also a remarkable decrease in overall activated DCs in TA
muscles across different vectors (Supplementary Figure 2A).

Lymph nodes are secondary lymphoid organs where different
immune cell populations coordinate both the innate and
adaptive arms of the immune response. Therefore, we also
examined the number of CD80/CD86-positive DCs in draining
lymph nodes of the injected limb at two and four weeks post-
injection. We observed a significant reduction in the population
of activated macrophages, CD80/CD86-positive DCs in the
animals treated with vectors carrying miR-BSs (Figures 3B, F
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and Supplementary Figure 2B, Supplementary Figures 3A–C).
However, the suppression in macrophage and DC activation did
not significantly vary among the different miR-BS designs.

In our previous report, we demonstrated that miR-142BS-
mediated APC detargeting leads to a reduction of co-stimulatory
molecule expression in isolated splenocytes (42). To further
confirm this effect, we isolated splenocytes from injected mice
and stained them for macrophage, DC, and DC co-stimulatory
markers. All miR-BS-containing vectors significantly suppressed
DC activation, macrophage activation, and CD80/86-positive DCs
in splenocytes (Figures 3C, G and Supplementary Figure 2C).
While most miR-BS designs mediated weak suppression at two
weeks post-injection, indicating no change in the activation state
of macrophages and DCs, miR-142BS-, miR-652-5pBS-, and miR-
142/652-5pBS-containing vectors inhibited CD80/86 expression
as early as two weeks following administration (Supplementary
Figures 4A–C).

We also isolated immune cells from the livers of injected mice
and found that miR-142/652-5pBS-containing vectors mediated
the strongest reduction of activated macrophages, DCs, and
CD80/86-positive DCs (Figures 3D, H and Supplementary
Figure 2D).

Finally, to determine the activation status of circulating
immune cells, we immunophenotyped peripheral blood
lymphocytes (PBLs) isolated from the blood of treated mice four
weeks post-injection. We did not observe any differences in the
levels of activated macrophages, DCs, and CD80/86-positive DCs
in the presence of miR-BSs (Supplementary Figures 5A–C);
indicating that immune cell activation occurred within different
tissue compartments, not systemically.

miR-BS-Mediated APC Detargeting
Downregulates OVA-Specific T Cell
Activation
We previously established that miR-142BS-mediated APC
detargeting achieves circumvention of adaptive immunity by
blunting OVA-specific CD8+ T cell response, resulting in
sustained transgene expression (42). To assay the ability of
rAAV1.OVA-miR-BS vectors to engage the adaptive immune
response, recruitment of CD4+ and CD8+ T cells was measured
four weeks following vector administration in the injected TA
muscles, lymph nodes proximal to the injection site, the spleen,
and the liver. Analyses of the overall CD8+ T cell populations
showed that all of the tested miR-BS designs significantly repressed
CD8+ T cell response to the vector in all tissues (Figures 4A–D).

Although CD8+ T cell responses in tissues were significantly
repressed with groups treated with vectors harboring miR-BS
cassettes, they were not indicative of the transgene-specific CD8
+ T cell activation status. We therefore assessed whether there was
any reduction in CD8+ T cell response specific to OVA protein.
The ovalbumin SIINFEKL peptide fragment is recognized by the
MHC class I molecule (H-2Kb) of T cells in mice. Therefore,
OVA-specific CD8+ T cells can be identified by staining cells with
H-2Kb/SIINFEKL MHC Tetramers and quantified by flow
cytometry. At four weeks post-injection, we observed that the
levels of activated OVA-specific CD8+ T cells were reduced by all
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miR-BS designs. Notably, vectors carrying miR-652-5pBS and
miR-142/652-5pBS appeared to confer the strongest reduction
(Figures 4E–H). The extent of reduction in lymph nodes and
splenocytes were nearly equal to those conferred by PBS and
empty capsid treatments. Interestingly, the miR-142BS and miR-
223-3pBS cassettes were not as sufficient as other miR-BS designs
in reducing OVA-specific CD8+ T cell responses in the liver
(Figure 4H). Furthermore, reduced activation of CD8+ T cells and
OVA-specific CD8+ T cells was observed in lymph nodes and
spleens as early as two weeks post-injection (Supplementary
Figures 3D, E and Supplementary Figures 4D, E), but not in
TA muscle and liver (data not shown). Significant differences in
OVA-specific CD8+ T cells were not observed between
the different miR-BS combinations, except in lymph nodes at
two weeks post-injection (Supplementary Figure 3E).
Immunophenotyping of PBLs at four weeks post-injection
revealed a significant reduction in circulating OVA-specific CD8+
T cells, but not overall CD8+ T cells for vectors containing miR-
652-5pBS, miR-142/223-3pBS, and miR-142/652-5pBS
combinations as compared to the vector without miR-BSs
(Supplementary Figures 5A, B).

We next tested the effect of vector injection on the CD4+ T
cell population. A significant reduction in CD4+ T cell counts
Frontiers in Immunology | www.frontiersin.org 959
was seen in the injected TAs across all vectors containing miR-
BSs. Consistent with other cell types, miR-652-5pBS and miR-
142/652-5pBS cassettes were the most efficient in suppressing
CD4+ T cell activation (Supplementary Figure 6A). A similar
decrease in CD4+ T cell numbers was also observed in lymph
nodes, the spleen, and the liver (Supplementary Figures 6B–D).
An overall reduction in the CD4+ T cell population in PBLs was
also seen in treatment groups receiving vectors containing any
combination of miR-BSs with no notable differences when
compared to each other (Supplementary Figure 5C). Taken
together, we were able to ascertain that incorporation of miR-
652-5pBS in the rAAV expression cassette mediated efficient
suppression of macrophage, DC, CD4+, and CD8+ T cell
activation and a decrease in the expression of co-stimulatory
markers. In certain cases, this effect was enhanced when miR-
652-5pBS was combined with miR-142BS.

miRBS-Mediated APC Detargeting
Downregulates OVA-Specific Th1
Response, Inflammatory Cytokine
Production, and Memory T Cells
Previous studies have shown that TNF-a and IFN-g are two
principal pro-inflammatory cytokines produced in response to
A B C D
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FIGURE 3 | Incorporation of miR-142BS, miR-223BS, and miR-652BS into rAAV1.OVA transgene vectors reduces macrophage and DC activation. rAAV1.OVA
expressing vectors with or without miR-BSs (1 × 1011 GCs/mouse) were delivered by i.m. injections into C57BL/6 mice. Four weeks after injection, cells were
isolated from TAs, lymph nodes, spleens, and livers and stained for macrophage markers (CD11b+, F4/80+) and activated DCs (CD11c+, CD80+, CD86+) followed
by flow cytometry analysis. Relative frequencies of macrophage populations (A–D) and activated DCs (E–H) are represented as box plots with means, first and third
quartile boundaries, and whiskers indicating max and min values. (n = 5). Mock = AAV1.empty capsid. p values were determined by one-way ANOVA with Tukey’s
post hoc test. *p < 0.05, **p < 0.01, ***p < 0.001.
April 2021 | Volume 12 | Article 674242

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Muhuri et al. Combinatorial miR-BSs Detargets APC Transduction
rAAV transduction (72). TNF-a is produced by DCs and other
immune cells and is involved in both innate and adaptive
immune responses (71, 73). IFN-g is the classic cytokine
secreted by Th1 cells and promotes phagocytosis and
upregulates microbial killing. We therefore sought to
determine TNF-a and IFN-g response to APC-detargeted
vectors. We isolated and cultured splenocytes from mice that
were injected with rAAV1.OVA vectors with or without miR-BSs
at both two- and four-week timepoints. Upon OVA stimulation,
splenocytes frommice treated with rAAV1.OVA with no binding
sites secreted high levels of TNF-a and IFN-g. In contrast,
vectors carrying miR-BSs attenuated cytokine responses to
levels that were on average greater than two-fold reduced,
which is comparable to cytokines secreted by the splenocytes
from mice that received PBS and empty capsids (Figures 5A, B).
To further validate the suppression of Th1 response, the OVA
stimulated splenocytes were stained for IFN-g producing CD4 T
cells and analyzed by flow cytometry. OVA-specific Th1 cell
counts were high in rAAV1.OVA splenocytes as early as two
weeks post-injection (Figures 5C, D). However, the reductions
in the Th1 response became significant at two and four weeks
post-injection only when miR-142BS, miR-652-5pBS, or both
elements were incorporated into vectors. Interestingly,
splenocytes from rAAV1.OVA.miR-223-3pBS-treated mice
showed no change at week 2 in IFN-g-producing Th1 cells as
compared to splenocytes from rAAV1.OVA-treated animals.
Frontiers in Immunology | www.frontiersin.org 1060
Addition of miR-142BS to these vectors reduced responses to
an extent at week 2 (Figure 5C). Interestingly, miR-223-3pBS-
containing vectors (in combination with or without miR-142BS)
seems to completely suppress Th1 activation by week 4 (Figure 5D).
This may suggest a possibility that the suppression of immune cell
activation mediated by miR-223-3pBS incorporation follows
kinetics that are slower than those conferred by miR-652-5pBS-
mediated suppression.

The effects of miR-BS APC detargeting was also gauged by the
activation of CD4+ and CD8+ memory T cells. In mice, CD4 and
CD8 T cells can be further categorized into memory and naïve
phenotypes, based on CD62L (L-selectin) and CD44 expression.
CD44lowCD62L+ populations are considered naïve (TN) cells,
CD44highCD62L+ populations are considered central memory
(TCM) cells, and the CD44highCD62Lneg populations are
considered effector and/or effector memory (TE/EM) cells. It is
known that CD4 and CD8 T cells differ in their distribution of
these subsets in lymphoid and peripheral organs (74, 75). We
therefore evaluated OVA-stimulated splenocytes for CD4 and
CD8 memory T cell activation (both TCM and TEM) at two weeks
post-rAAV injection. While there was a substantial reduction in
TCM and TEM populations among CD4+ and CD8+ T cells, with
incorporation of miR-652-5pBS and miR-142/652-5pBS
elements, no differences were noticed in the naïve T cell
population. This may suggest that the phenotypic changes
observed in T cell populations can be attributed to the different
A B C D
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FIGURE 4 | miR-142BS-, miR-223BS-, and miR-652-mediated detargeting suppresses OVA specific CD8 T cell response. C57BL/6 male mice, six weeks old,
were i.m. injected with mock, empty capsid, or rAAV1.OVA vectors with or without miR-BSs (1 × 1011 GCs/mouse). Mice were sacrificed four weeks after treatment
and cells were isolated from TAs, lymph nodes, spleens and livers. Cells were then stained for CD8 T cell markers or with anti-CD8a/H-2Kb SIINFEKL tetramer and
quantified by flow cytometry (n = 5). Relative frequencies of CD8+ T cells (A–D) and OVA-specific CD8+ T cells (E–H) are depicted as box plots with means, first
and third quartile boundaries, and whiskers indicating max and min values (n = 5). p values were estimated by one-way ANOVA with Tukey’s post hoc test. *p <
0.05, **p < 0.01, ***p < 0.001.
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FIGURE 5 | miR-BS incorporation diminishes transgene-specific Th1 and Th17 inflammatory responses. (A, B) Estimation of IFN-g and TNF-a response to OVA
stimulation (5 mg/mL) by splenocytes isolated from mice four weeks after vector injection. Three days after treatment, supernatants were collected and quantitated by
ELISA (mean ± SD, n = 5). p values were determined by ANOVA with Tukey’s post hoc test. Splenocytes isolated two and four weeks post-AAV1 injection were
stimulated for 24 hours with OVA (5 mg/mL) and stained for detecting either Th1 population (CD4+) (C, D) or Th17 cell population (CD4+IL-17A+) (E, F) and
analyzed by flow cytometry (Box plots with means, first and third quartile boundaries, and whiskers indicating max and min values; n = 5). (E, F) Levels of secreted
Th17-specific cytokines, IL-17 and IL-21- were assessed after stimulation of splenocytes (harvested four weeks post-injection) for 72 hours with OVA (5 mg/mL) by
ELISA (mean ± SD, n = 5). *p < 0.05, **p < 0.01, ***p < 0.001. p values were estimated by one-way ANOVA with Tukey’s post hoc test.
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extents of OVA-specific activation by different vector designs,
and not due to the naïve T cell populations that were not
stimulated by OVA (Supplementary Figure 7). However, the
reduction in TCM and TEM populations was not maintained at
four weeks post-injection (data not shown).

The miR-142/652-5pBS Combination
Effectively Suppresses Th17 Response
One pathway that lacks study with respect to rAAV transgene
immunogenicity is the involvement of Th17 cells. Th17 cells are
a recently discovered cell type that secrete IL-17 as their primary
effector cytokine and belong to the CD4+ T cell family (76, 77).
We hypothesized that these pro-inflammatory cells might be
involved in mounting an anti-transgene immune response (78,
79). To investigate their contribution towards anti-transgene
immunity, OVA-stimulated splenocytes at two and four weeks
post-injection were quantified for IL-17A expressing CD4+ T
cells by flow cytometry. While no OVA-specific Th17 response
was observed at two weeks, rAAV1.OVA splenocytes showed
elevation in the number of Th17 cells at four weeks (Figures 5E, F).
With the exception of miR-223-3pBS, inclusion of the candidate
miR-BSs in vectors significantly downregulated Th17 activation,
with maximal repression imparted by miR-652-5pBS andmiR-142/
652-5pBS. This outcome was similar in fashion to Th1 responses
under these treatments. Both IL-17 and IL-21 are Th17 cell-secreted
cytokines that accentuate the protective effects of Th17-mediated
immune response. Therefore, Th17 activation was further
confirmed by measuring IL-17 and IL-21 production from OVA-
stimulated splenocytes. Consistent with the flow cytometry data,
splenocytes from mice treated with rAAV1.OVA lacking miR-BSs
produced high levels of IL-17. In contrast, vectors carrying miR-BSs
conferred a significant reduction in Th17 activation, and hence a
concomitant decrease in IL-17 production (Figure 5G).
Incorporation of miR-652-5pBS and miR-142/652-5pBS seemed
to significantly suppress IL-21 secretion in stimulated splenocytes as
well (Figure 5H). Our data thus suggests that transgene-specific
Th17 response might play a critical role in the suppression of
transgene expression over time. Incorporation of miR-BSs in
expression cassettes blunts this response, and in turn, boosts the
levels of transgene expression.

miRNA-Mediated Detargeting Does Not
Activate Regulatory T Cells to Enable
Immunosuppression
The use of miR-142BS elements in lentiviral vectors induces
immunologic tolerance and activates regulatory T cells (Tregs)
(80). To investigate if this effect is reproduced in rAAV-delivered
transgenes containing miR-BSs, we isolated immune cells from
TAs, lymph nodes, and spleens at two and four weeks post-
injection and stained them for Treg-specific markers. The Treg
population can be identified as CD4+ T cells that are also double-
positive for CD25 and FOXP3. None of the miR-BS containing
vectors lead to an increase in the Treg cell numbers in any of the
analyzed tissues (Figures 6A–C and Supplementary Figures
8A, B). Additionally, stimulated splenocytes from treated
animals did not reveal any elevation of the anti-inflammatory
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cytokines IL-10 and TGF-b (Supplementary Figures 8C, D).
Therefore, the incorporation of miR-BSs into AAV vectors does
not induce Treg activation nor induce tolerance by the suppression
of other immune cell types as observed with lentiviral vectors.

miRBS-Mediated Suppression of CD8+ T
Cell Response Reduces Clearance of
Transduced Cells and Boosts
Transgene Expression
Our previous study demonstrated that inclusion of miR-142BS
elements in the rAAV transgene cassette reduced infiltration of
CD8+ T cells and subsequent clearance of transduced muscle
fibers (42). We aimed to determine whether our novel miR-BS
cassettes have the same capacity to repress cytotoxic T cell
recruitment and tissue clearance. Histopathology and
immunohistopathology analyses of the injected TA muscle
tissue was performed two weeks after rAAV treatment. H & E
imaging showed that rAAV1.OVA-injected TAs had a high
degree of cellular infiltration. Tissues injected with AAV
vectors containing miR-BSs showed reductions in infiltrates
(Figure 6D; top panels). Quantification of the number of
nuclei in TA cross-sections showed significant decreases in
cellular infiltration in mice treated with vectors carrying miR-
BSs. Notably, the miR-142/652-5pBS cassette conferred the
lowest abundance of immune cell infiltrates (Figure 6E).
Moreover, H&E-stained cross-sections of TA muscles from
animals treated with rAAV1.OVA and rAAV1.OVA.miR-223-
3pBS vectors revealed a high degree of centrally located
myonuclei. In healthy muscle fibers, myonuclei are located at
the periphery of the muscle fiber. Centrally located myonuclei
are indicators of myofiber regeneration following damage (81).
These results are thus indicative of active clearance of transduced
myofibers and muscle turnover. Notably, centrally located nuclei
are absent in the TAs of mice treated with vectors carrying the
miR-652-5pBS element (Figure 6E).

We also performed immunohistochemical staining of the
treated muscle sections for CD8+ T cells, granzyme B, F4/80,
and OVA. Granzyme B is a marker for activated cytotoxic T cells
and F4/80 is a cell surface marker for macrophages. We observed
robust CD8+ T cell (CTL) infiltration in muscle samples from
rAAV1.OVA-injected animals, and about one-third of infiltrates
were positive for granzyme B (Figure 6D; bottom panels and
Figures 6F, G). A significantly lower degree of CTL infiltration
was observed among muscles injected with vectors bearing miR-
142BS, miR-652-5pBS, miR-142/223-3pBS, and miR-142/652-
5pBS elements, of which a very small portion expressed
granzyme B. While the number of CD8+ T cells was reduced
at least three-fold, there was a two-fold reduction observed in
granzyme B expression with the incorporation of these miR-BSs
(Figures 6F, G). Although miR-223-3pBS-containing vectors
showed relatively higher numbers of CD8+ T cells, granzyme B
expression was considerably lower, indicating reduced CTL
activity. CTL infiltration was also accompanied by macrophage
infiltration in the injected muscle tissues of rAAV1.OVA-treated
mice (Supplementary Figures 9A, B). Tissues with a high
abundance of CTLs and macrophages also have relatively low
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FIGURE 6 | miRNA-mediated detargeting acts independent of Treg immunosuppression and reduces tissue clearance by downregulation of OVA-specific CTL
response. (A–C) Cells from TA muscle, lymph nodes and spleen were harvested from rAAV1 injected C57BL/6 mice four weeks after treatment and stained for Treg
markers (CD4+, CD25+, FOXP3+). The frequencies of Tregs were quantified by flow cytometry and displayed as box and whisker plots (n = 5). (D) C57BL/6 male
mice, six weeks old, were i.m. injected with rAAV1.OVA vectors with or without miRBS (1 × 1011 GCs/mouse, n = 5) and sacrificed two weeks after injection to
harvest muscles. Tissue sections were stained for H&E (upper panels, original magnification: 20x), CD8 and granzyme B (lower panels: DAPI, blue; red, granzyme B,
red; and CD8, green; original magnification: 40x). Scale bars = 200 mm (H&E images), 50 mm (fluorescence images). (E) Quantification of H&E images for nuclear
infiltrates in whole tissue section at original magnification of ×20. (F, G) Quantification of CD8 (F) and granzyme B (G) images in four fields at original magnification of
40x. p values were estimated by one-way ANOVA with Tukey’s post hoc test. *p < 0.05, **p < 0.01, ***p < 0.001.
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OVA expression (Supplementary Figures 9A, B). Tissues of
mice treated with OVA vectors that harbor miR-BS elements
express high levels of OVA and confer reduced levels of
macrophage activation (~two-fold reduction). Consistent with
CTL infiltration, miR-652-5pBS-bearing vectors showed the
lowest degree of infiltration into injected TAs (more than four-
fold reduction) by macrophages. These findings indicate that
inclusion of miR-BS elements in the OVA transgene led to a
reduction in cytotoxic CD8+ T cell and macrophage infiltration,
resulting in reduced clearance of transduced muscle fibers, and
ultimately efficient and stable transgene expression in the tissue.
DISCUSSION

Owing to their safety and efficacy in preclinical and clinical
studies, rAAVs are promising gene therapy vectors for a variety
of genetic diseases (5, 6, 82–84). Skeletal muscle is an attractive
target tissue for rAAV-mediated gene therapy for neuromuscular
diseases, metabolic disorders, and hemophilia (8, 82, 85–87). The
easy accessibility of skeletal muscles makes them ideal for vector
administration and the extensive vascular blood supply provides
an efficient transport system for secreted therapeutic proteins.
However, host immune responses against rAAV1-encoded
transgene products after intramuscular delivery have been
reported to cause the clearance of transduced fibers and loss of
transgene expression (88–91). The induction of these immune
responses can be attributed to the undesirable transduction of
APCs, such as DCs, which lead to transgene expression and
antigen presentation on these cell types. These events, in turn,
activate T and B cells (31, 92–94). Therefore, the prevention of
transgene-specific immune responses is particularly crucial to
the success of rAAV gene therapy in muscles.

miRNA-mediated regulation of transgene expression by
engineering miR-BSs in rAAV expression cassettes has proven
to reduce transgene-specific immune responses. Binding sites
against miR-122, miR-199, miR-1, miR-183, and miR-206 can
successfully detarget transgene expression from tissues like liver,
heart, dorsal root ganglia and skeletal muscles (35, 36, 95–98).
We previously demonstrated that miR-142BS elements can blunt
CTL activation and can confer sustained transgene expression in
transduced mouse TA muscle (42). miR-142 is a hematopoietic-
specific miRNA whose expression levels are high in APCs, which
is central to the effectiveness of miR-142BS-mediated
detargeting. Little attempt has been made to identify additional
miRNAs that can be utilized to repress transgene expression in
APCs and restrain immune response activation. In this study, we
identified two miRNAs, miR-223-3p and miR-652-5p that are
enriched in macrophages and DCs and have the potential for
enhancing APC detargeting. Through in vitro and in vivo
screening of individual miR-BSs and in combination with miR-
142BS across several cell types, miR-142/223-3pBS and miR-142/
652-5pBS were determined to be potent elements in transgene
detargeting from APCs.

DCs are the most potent professional APCs that form an
essential link between the innate and adaptive immune
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responses. Due to their unique aptitude for stimulating T cells,
activated DCs play a major role in determining immunological
outcome (99, 100). Activation of DCs leads to a significant
upregulation of MHC and expression of costimulatory
molecules, which play crucial roles in initiating or promoting
T cell priming and proliferation. These responses are needed for
effective immunity (99). Following AAV infection, both
conventional dendritic cells (cDCs) and plasmacytoid DCs
(pDCs) are required for the cross-priming of CD8+ T cells,
while the other APCs seem to be dispensable for this process
(101). miR-BS-mediated detargeting hinders MHC-dependent
presentation of the transgenic peptides on the surface of DCs by
degradation of the mRNA transcript. In the absence of antigen
presentation, the ensuing T and B cell activation and the
inflammatory responses are suppressed. Our findings with
respect to the efficacy of these novel miR-BSs in promoting
transgene detargeting would provide flexibility and alternatives
in vector design strategies and increase the safety profile of
rAAV-based therapeutics.

Durability and memory are important hallmarks of the
adaptive immune system that arise from clonal expansion and
differentiation of antigen-specific lymphocytes. Memory CD4+
and CD8+ T cells have low activation thresholds and confer
protection in peripheral tissues by responding to antigens upon
re-encountering them in secondary lymphoid organs (102, 103).
Effector memory T cells (TEM) migrate to inflamed peripheral
tissues and display immediate effector functions. TEM can be
stimulated by antigen presented by nonprofessional APCs in a
milieu that does not favor stable cell-cell interactions (104, 105).
On the other hand, central memory T cells (TCM) have no
effector function but readily migrate, proliferate, and
differentiate into TEM upon antigenic challenge (106). TCM are
more sensitive to antigenic stimulation and less dependent on
co-stimulation when compared to naïve T cells and thus provide
more effective feedback to stimulation from DCs and B cells (75).
Here, we have demonstrated for the first time that rAAV-
delivered transgenes can increase both CD4+ and CD8+
memory T cell populations (TCM and TEM) in spleen.
Importantly, we show that the addition of miR-BSs, specifically
miR-652-5pBS and miR-142/652-5pBS significantly suppress
memory T cell activation. We previously reported that miR-
142BS-mediated detargeting can suppress anti-transgene
responses following a second dose of vector to enable
successful vector re-administration (42). Further research to
determine if redosing of rAAV-delivered transgenes can be
enhanced by the inclusion of miR-223-3pBS and miR-652-
5pBS elements is warranted.

Another frequently overlooked and under-explored cell type
of the CD4+ family are Th17 cells. Th17 cells have been
implicated in anti-transgene immune responses in certain
preclinical and clinical trials (107, 108). An increase in pro-
inflammatory Th17 cells was also observed in non-human
primates treated with rAAV-delivered human factor IX (hF.IX)
(109). It has been hypothesized that a skewed Th17/Treg balance
towards increased Th17 values results in higher intensities of
anti-transgene immune responses (109). Consistent with this
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idea, an increase in OVA-specific Th17 cell population was seen
in rAAV1.OVA vectors, but not in vectors containing miR-652-
5pBS or miR-142/652-5pBS cassettes in our present study. To
investigate the hypothesis that sufficient Treg activity might be
induced to offset the pro-inflammatory Th17 activity by miR-BS
inclusion, we quantified the Treg population in TA muscle,
lymph nodes, and liver. However, we did not find any
difference in the activation status of Tregs, nor an increase in
anti-inflammatory cytokine secretion. This finding indicated that
tolerance to the transgene protein is likely not mediated by Treg
activation, but rather by blunting OVA-specific Th1 and Th17
responses, and inhibition of CTL response.

Taken together, we have provided additional lines of evidence
and novel mechanistic insights into the immune cell populations
involved in rAAV transgene-specific immune responses. The
effect of rAAV administration on Th17 population and memory
T cells had yet to be documented. Inclusion of miR-BSs seems to
inhibit the activation of these immune cell types. miRNA-
mediated detargeting is an approach that has been successfully
employed to achieve tissue-and cell type-specific expression by
restricting spurious transcription conferred by the wide-tropism
profiles inherent to contemporary rAAV platforms. miR-223-3p
and miR-652-5p are enriched in cells of the myeloid lineage and
hence serve as ideal candidates for miRNA-mediated regulation.
Synergistic action of two miR-BSs has been shown for hepatocyte
detargeting (110). Our present study is the first attempt at
identifying, screening, and investigating the combinatorial
effects of miRNAs for transgene detargeting from APCs
following intramuscular injections. Although miR-652-5p-
mediated transgene regulation seems to be more effective from
our findings, miR-223-3pBS incorporation is also effective at
transgene detargeting. Interestingly, our results indicate that the
kinetics of immune cell suppression by miR-223-3pBS elements
is slower and starts becoming evident usually four weeks after
vector injection. Additional investigation into whether miR-223-
3pBS elements can contribute to immunological suppression in
later stages of the therapeutic window may further improve
APC-detargeting cassette designs. Finally, in the course of this
study, we revealed that some miR-BS cassette designs conferred
increases in transgene expression in a cell type-specific manner.
Unfortunately, the mechanisms by which these elements
increased transgene expression in vitro was not investigated.
Whether some of these 3’-UTR modifications can act to stabilize
transcripts is indeed intriguing and begs further investigation.

The safety of these design elements also need to be closely
investigated. miR‐652‐5p has been identified as a disease‐
associated miRNA that is dysregulated in various pathological
processes like esophageal cancer, bladder cancer, osteosarcoma,
gastric cancer, and breast cancer (111–116). miR-223-3p
expression has also been shown to be aberrant in gastric cancers,
osteosarcoma, glioblastoma, squamous cell carcinoma, breast
cancer, neuroblastoma, and myocardial infarction (117–123).
Their function as cancer-related miRNAs warrants caution
as these elements might trigger unintended consequences
in related cell types. Nevertheless, it is worth noting that in
an earlier report, miR-BS-mediated post-transcriptional
Frontiers in Immunology | www.frontiersin.org 1565
detargeting by AAV vectors did not disturb endogenous
miRNA profiles (35).

Importantly, combinatorial miR-BS designs is not just used to
alleviate the immunogenic effects, they may also be used for
multi-tissue detargeting. The expression profiles of multiple
microRNAs can be exploited concomitantly to reshape rAAV
tropism to achieve tissue specific expression. Given the small size
of these miR-BS elements, they can be combined with other
targeting strategies to overcome other roadblocks in rAAV
transduction. However, transgene immunogenicity represents a
major hurdle in the efficacy of rAAV gene therapy. Continued
vector engineering efforts are key to expanding rAAV gene
therapy to a wider set of human conditions. In conclusion, we
report a post-transcriptionally regulated transgene delivery
system where the transgene expression is selectively eliminated
from APCs by three miRNAs whose expression is enriched in
these cell types. We demonstrate that these miRNAs individually
or synergistically are capable of blunting transgene-specific
immune response and enable sustained transgene expression
over time.
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Conventional vaccinations and immunotherapies have encountered major roadblocks in
preventing infectious diseases like HIV, influenza, and malaria. These challenges are due
to the high genomic variation and immunomodulatory mechanisms inherent to these
diseases. Passive transfer of broadly neutralizing antibodies may offer partial protection,
but these treatments require repeated dosing. Some recombinant viral vectors, such as
those based on lentiviruses and adeno-associated viruses (AAVs), can confer long-term
transgene expression in the host after a single dose. Particularly, recombinant (r)AAVs
have emerged as favorable vectors, given their high in vivo transduction efficiency, proven
clinical efficacy, and low immunogenicity profiles. Hence, rAAVs are being explored to
deliver recombinant antibodies to confer immunity against infections or to diminish the
severity of disease. When used as a vaccination vector for the delivery of antigens, rAAVs
enable de novo synthesis of foreign proteins with the conformation and topology that
resemble those of natural pathogens. However, technical hurdles like pre-existing
immunity to the rAAV capsid and production of anti-drug antibodies can reduce the
efficacy of rAAV-vectored immunotherapies. This review summarizes rAAV-based
prophylactic and therapeutic strategies developed against infectious diseases that are
currently being tested in pre-clinical and clinical studies. Technical challenges and
potential solutions will also be discussed.

Keywords: adeno-associated virus, vectors, immunotherapy, gene therapy, vaccines
INTRODUCTION

Infectious diseases are among the biggest threats to our society. They range from ancient maladies,
such as malaria and influenza, to modern illnesses, such as human immunodeficiency virus (HIV)-1
and the coronavirus disease of 2019 (COVID-19) pandemic. Many strategies have been developed
to cure patients with these diseases and to eradicate the related pathogens. Most vaccines today
function by introducing either an inactivated form of the pathogen, a live-attenuated strain, or a
protein subunit of the pathogen into the body. This exposure stimulates antigen-specific adaptive
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immune responses and immunological memory, which can
protect the host or mitigate the severity of the infection (1).
Vaccines have led to the eradication of small pox and have
reduced the global incidence of many other diseases (2).
However, certain pathogens have been able to evade vaccine-
induced sterilizing immunity via various mechanisms. RNA
viruses, such as HIV, hepatitis C virus (HCV), and influenza
exhibit high genetic variation among diverse strains across
different geographical locations. Viral polymorphism can
persist even within the same infected individual, thus limiting
the utility of vaccines that are based on a single strain (3, 4). In
addition, retroviruses have rapidly mutating genomes that
permit their escape from adaptive immunity (5). Many
pathogens actively suppress inflammation and immunological
memory by infecting immune cells and inducing T cell
exhaustion, further preventing the formation of sterilizing
immunity (5, 6). Broadly neutralizing antibodies (bNAbs) can
offer protection against multiple strains. Alternatively, blocking
the essential primary host cell receptor with monoclonal
antibodies (mAbs) can limit infection by multiple strains. For
example, ibalizumab, a CD4-targeting mAb, has received United
States Food and Drug Administration (FDA) approval for use in
multidrug-resistant HIV-1 infections (7). In addition, many
mAbs are under development for the targeted treatment of
Ebola, Zika, and COVID-19, among others (8). However, these
drugs typically require repeated dosing through intravenous
injections and have high production costs (9). Therefore, their
practical value is limited, especially in underdeveloped areas of
the world. Moreover, the processes involved in generating
inactivated virus might damage the native conformation of the
antigen; while in the case of subunit vaccines, the antigen is often
produced using cell lines of non-human origin, which may have
distinctive post-translational modification patterns not native to
the virus (10, 11). Collectively, these issues may create antigens
with altered conformations, resulting in antibodies that are
produced which do not neutralize the real pathogen. These
low-potency antibodies also run the risk of enhancing virus entry
by assisting viral attachment to the host cell in a phenomenon
termed antibody-dependent enhancement (ADE). One of the
biggest concerns with the recent COVID-19 pandemic, which is
caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), is the possibility of vaccine-mediated ADE effect,
since similar outcomes have been observed with other coronavirus
infections (12). To counter this, Pfizer/BioNTech and Moderna
have each developed a vectored strategy, in which mRNA encoding
the coronavirus spike (S) protein packaged in lipid nanoparticles
(LNPs) is delivered to the body to mediate de novo synthesis of the S
protein, so that the conformation and topology of the antigen best
resembles the native protein that is decorated on SARS-CoV-2 (13,
14). This strategy achieved astounding efficacies of 94% or more in
phase III trials (ClinicalTrials.gov Identifier NCT04368728
and NCT04470427).

The ability of viral gene transfer systems to deliver functional
genes in the host greatly expands the number of strategies that
can be used to fight infectious diseases. One such strategy is to
use a recombinant virus as a vector to deliver genes encoding
Frontiers in Immunology | www.frontiersin.org 271
therapeutic molecules, such as neutralizing antibodies (NAbs),
bNAbs, therapeutic mAbs, and immunoglobulin (Ig)-related
derivatives, for direct expression from the host’s tissues, thus
negating the necessity of repeated dosing. Viral vectors may also
be used to deliver antigen-encoding genes for vaccination against
the antigen. Vectors based on adeno-associated viruses (AAVs)
are by far the most popular choice for in vivo gene delivery, as a
result of their relatively low immunogenicity, high safety profile,
broad tropism to a range of tissue types, and their propensity to
maintain long-term gene expression. This review will cover
recombinant (r)AAV-based immunotherapeutic strategies used
to combat infectious diseases. An overview of other viral vectors
used in vaccines and immunotherapeutics will be introduced,
followed by a general biology of AAV. Subsequently, we will
discuss technical challenges and potential solutions to rAAV-
vector approaches. Finally, the numerous prophylactic and
therapeutic strategies that have been developed over the years
for various infectious diseases will be highlighted.

Overview of Viral Vector Gene Delivery
Systems
Viral gene delivery systems take advantage of natural viruses’
inherent ability to evade host defense mechanisms and to transfer
genetic cargos inside the cell. In general, viral systems offer better
delivery efficiencies to the nucleus than non-viral systems, such as
LNPs, naked DNAs, or various polymeric complexes. At the same
time, viral vectors are more immunogenic, which can be desirable
or unwanted, depending on the specific application (15). Many
viral vector platforms based on adenovirus, lentivirus, AAV,
Sendai virus, poxvirus, measles virus, baculovirus, and herpes
simplex virus vectors, to name a few, have been explored for
gene delivery, with the first three being the current most common
(16–20).

Adenoviral vectors (AdVs) have a packaging capacity of up to
34 kb, mediate rapid gene expression, can potently activate innate
immune responses, and can induce strong Th1-polarized
adaptive immunity against transgene products (21–23). These
features make AdVs attractive for vaccination against infectious
disease outbreaks. Human adenovirus type 5 (Ad5), type 26
(Ad26), and chimpanzee adenovirus ChAdOX1 have been
explored as delivery vectors for the coronavirus S gene, with the
latter achieving 70% efficacy in a phase III trial (NCT04400838)
(24–26). The SARS-CoV2-Ad26 vaccine developed by Johnson &
Johnson, recently received from the FDA an emergency use
authorization approval. At the same time, the strong
immunogenicity of AdVs, as well as pre-existing immunity
against Ad5 among various human populations, can negatively
affect transduction efficacy, transgene longevity, and can cause
untoward side effects (27). Ad5 vectors encoding mAbs or Ig
derivatives against respiratory syncytial virus (RSV) and H5N1
influenza A virus hemagglutinin (HA) demonstrated short-term
(4 to 14 days) protection in mice against these respective viruses
(28, 29). Ad5 delivery of mAbs against anthrax (Bacillus
anthracis) showed initial protection from a bacterial toxin
challenge, but was lost within six months (30). Recombinant
AdVs that express HIV-1 proteins to elicit vaccination of patients
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against HIV-1 infection have been explored, but lacked efficacy in
human trials (31–33).

Lentiviral vectors (LVs) utilize the capacity of lentiviruses,
most notably HIV-1, to mediate semi-random integration of
DNA into the host cell genome to enable long-term transgene
expression (34, 35). By deleting the genes that are non-essential
to vector production or expressing them in trans, LVs can
accommodate up to 10 kb of sequence and have the potential
to transduce both mitotic and postmitotic cells (23, 36). LVs are
commonly used for ex vivo gene delivery, most prominently in
hematopoietic stem cells (HSCs) and T cells, and are an essential
production component in the two FDA-approved chimeric
antigen receptor (CAR)-T cell therapies (37). Current LVs
have limited tropism profiles, which is a bottleneck for in vivo
gene delivery in preclinical trials (23, 38–41). However,
pseudotyping with envelope proteins from other viruses can
enhance tissue targeting (42). Other issues for LVs are their
potential for genotoxicity and immunogenicity. Integrase-
defective LVs may reduce genotoxicity and have been used for
episomal delivery with varying degrees of success (43, 44).
Alternatively, packaging LVs with nucleases as protein cargos
Frontiers in Immunology | www.frontiersin.org 372
inside the virion might reduce long-term genotoxicity concerns
(45, 46).

Characteristics of AAV and Their
Recombinant Vector Counterparts
Wild-type (wt)AAVs are non-enveloped dependoparvoviruses
with a relatively simple architecture (Figure 1). Each virion
consists of a total of 60 monomers of the capsid proteins (cap),
VP1, VP2, and VP3. These proteins respectively assemble at a
roughly 1:1:10 ratio into an icosahedral virion that is
approximately 25 nm in diameter and 3.9 MDa in size. Multiple
AAV serotypes, that differ in cap proteins, are being tested as gene
therapy vectors in numerous clinical trials; with each serotype
characterized by their unique tissue tropism profiles. Thirteen
different AAV serotypes (AAV1-13) and more than 100 natural
variants have been reported so far, and more are being discovered.
AAV1, AAV2, and AAV9 have been approved for clinical use by
the FDA or European Medicines Agency (EMA), and more are
being tested in phase I and phase II trials (23, 47, 48). Additionally,
the AAV capsid can accommodate various modifications, such as
amino acid substitutions, post-translational processing, and
A B

D
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C

FIGURE 1 | Overview of AAV vectors harnessed for vectored immunoprophylaxis and therapeutics. (A) AAVs are small (~25 nm), non-enveloped viruses and have a
4.7-kb, single-stranded, linear DNA (ssDNA) genome encoding four open reading frames. (B) rep encodes the four genes required for genome replication (Rep78,
Rep68, Rep52, and Rep40) and cap encodes the structural proteins of the viral capsid (VP1, VP2 and VP3). A third gene, which encodes assembly activating protein
(AAP), is embedded within the cap coding sequence in a different reading frame and has been shown to promote virion assembly. The fourth ORF encodes for the
recently discovered membrane associated accessory protein (MAAP). The role of MAAP is yet to be clearly defined. (C) Providing rep and cap in trans enables a
transgene of interest to be packaged inside the capsid to generate a replication-incompetent vector (recombinant AAV; rAAV). (D) rAAVs may be delivered via
intramuscnular (IM), intranasal (IN), intracerebral (IC), and intravenous (IV) routes. (E) rAAVs expressing mAbs, eCD4-Ig and pathogenic antigens can be administered
via different routes for therapeutics and immunization against infectious diseases. Created with BioRender.com.
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chemical alterations (38). This versatility enables the selection of
AAV vectors that are better at avoiding pre-existing immunity,
targeting the desired tissue, or modulating immune responses.

The encapsidated AAV genome consists of a 4.7-kb linear,
single-stranded (ss)DNA that harbors four known open reading
frames: rep, which encodes for the replication proteins; cap,
which encodes VP1-3; assembly-activating protein (AAP), which
promotes capsid assembly within the host cell nucleus; and
membrane-associated accessory protein (MAAP), whose
function is not completely known. The genome is flanked by
two T-shaped hairpin structures called inverted terminal repeats
(ITRs) (23, 48, 49).

To create rAAV vectors, the genome of wtAAV, save for the
ITRs, can be deleted to free up to 4.6 kb of space for transgene
cassette packaging (Figure 1). Following rAAV transduction, the
linear ssDNA genome is converted into circular double-stranded
(ds)DNA episomes that reside within the nucleus and are
shielded from exonucleases. These episomes are thus highly
stable, non-genotoxic, and can be continuously transcribed to
enable long-term transgene expression (50–52). For instance, the
transgene for the blood coagulation factor IX (F.IX) in one
clinical trial patient persisted for more than ten years (53).
Alternatively, integration of the rAAV-delivered DNA into the
host genome may occur at low frequencies (54, 55). Self-
complementary (sc)AAV vectors, in which the sense and the
anti-sense sequences of the transgene are packaged inside the
vector, can bypass the ssDNA to dsDNA conversion step (23,
48). This allows faster transgene transcription and higher
transduction efficiency, but reduces the cargo size by half.

On their own, wtAAVs are non-replicating and require helper
viruses, such as adenovirus or herpesvirus to complete their life
cycle, while rAAV vectors as a single formulation can deliver
transgenes to cells both in vitro and in vivo. In vitro, rAAV is able
to transduce many types of primary human and animal cells, as
well as cell lines. This ability is highly dependent on the AAV
serotype and the cell type (56). Multiple studies have used rAAV
vectors to modify cells ex vivo, whereby the cells are isolated
from a patient, modified by vectors, and then transplanted back
to the host (57, 58). Natural AAV infections are typically
asymptomatic in humans. Nonetheless, several recent reports
and clinical trials have demonstrated that immune responses
were mounted by the host against rAAV vectors and their
transgene products. These findings have been covered by
multiple comprehensive reviews describing the known immune
pathways triggered by rAAV administration (59–61). But overall,
rAAV vectors are non-pathogenic with relatively low
immunogenicity profiles, making them attractive for in vivo
transgene delivery. In the context of infectious diseases, rAAV
vectors have been used to deliver mAbs and Ig derivatives to
achieve prophylactic and therapeutic benefits. Additionally,
rAAV vectors have been used as antigenic gene delivery
vehicles; because unlike adenoviruses, rAAVs can confer strong
immune response against the transgene with minimal response
towards the delivery vehicle (62, 63). In certain cases, rAAVs can
induce greater and more sustained antibody responses than
other vaccination approaches (62). The different modalities for
Frontiers in Immunology | www.frontiersin.org 473
immunotherapeutics, including non-vectored, vectored, and
rAAV-vectored approaches, are summarized in Figure 2.

Using rAAVs for De Novo Antigen
Expression and Induction of Active
Immunity
Unlike inactivated, live-attenuated, or subunit vaccines, all of
which deliver foreign immunogens in the form of proteinaceous
antigens directly to the host, nucleic acids-based vaccines deliver
the gene that encodes the antigen for de novo synthesis in the
host’s cells (1, 2). This strategy simulates the antigen expression
process during a natural infection, thus preserving the
conformation, topology, multimerization, and glycosylation
features of the natural antigen. Conceptually, this should allow
the generation of high-quality antibodies that are highly specific to
the functional target antigen, and reduce the risk of cross-reactivity
and ADE (12). If mutations were to arise during an ongoing
infection, the genetic sequence carried by the vaccine vector can be
quickly modified without dramatic changes in the manufacturing
process; while in the case of inactivated vaccines, the production of
variants usually requires many more steps of re-optimization.
Despite these advantages, nucleic acids-based vaccines do come
with an important concern: the delivery of exogenous antigens
into the host may lead to inflammation-mediated toxicity against
the transduced tissue. In such cases, vectors can be specifically
engineered to target only select tissues without affecting others, via
cell type-specific expression cassette designs.

Nucleic acids-based vaccine strategies can be broadly
categorized into DNA- and RNA-based vaccines. DNA-based
vaccines tend to allow longer and more stable antigen expression,
but present risks for host genome integration and genotoxicity. In
contrast, RNA-based vaccines do not interfere with the genome,
but are less stable and may require additional support for optimal
function, such as cold-chain storage and booster shots (2, 13, 14).
rAAVs are DNA vectors that exhibit relatively low genotoxicity and
high stability (64). The first use of an rAAV as a vaccine carrier was
in an intramuscular delivery of the herpes simplex virus (HSV)-2
glycoprotein B (gB) or glycoprotein D (gD) antigen to induce active
immunity against HSV-2 in mice (65). This treatment resulted in
antigen-specific cytotoxic T lymphocyte (CTL) responses and
induction of humoral immunity that was more effective than
treatments with protein subunits of the antigen or antigen-
encoding plasmid DNA. This proof-of-concept study opened a
new avenue for rAAV-based genetic vaccines.

Using rAAVs for Enhancing Humoral
Immunity
Strategies for rAAV vectors to deliver therapeutic antibodies or Ig-
derivatives to enhance humoral immunity are under development.
Humoral immunity is mediated by antibodies, which are highly
functional molecules that play critical roles in the host defense
against pathogens (66, 67). Each antibody monomer is a Y-shaped
molecule with two antigen-binding fragment (Fab) arms and one
Fc tail that is capable of host cell ligation via Fc receptors (FcR).
Upon first encounter with the pathogen, antibodies of the IgM
isotype are released from activated B cells. This isotype has a
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pentameric structure with a total of ten antigen-binding sites that
enables high-avidity, low-affinity binding for quick antigen
recognition. Activated B cells then undergo clonal selection and
somatic hypermutation to release antibodies of the IgG isotype,
which exhibit high-affinity binding of the invading pathogen. The
vast majority of prophylactic and therapeutic mAbs developed to
date are IgG antibodies (68).

Under ideal situations, the above processes eventually lead to
the production of potent IgGs that are capable of neutralizing the
pathogen, targeting it for processing and degradation in antigen-
presenting cells (APCs). In addition, certain IgG-producing B
cells gain a memory phenotype that confers long-term immunity
against reinfections (69). However, this ideal situation is not
always achievable in certain infections, as a result of various
pathogen-specific issues. In some cases, the pathogen has highly
variable antigens, which may be due to their rapid mutation rates
or large geographical distributions. For these pathogens, such as
HIV-1 and influenza, rAAV vectors can be used to mediate long-
term expression of therapeutic recombinant bNAbs (70, 71). If
successful, these approaches would be especially useful for the
protection of elderly and immunocompromised people, whose
humoral response is impaired.
Frontiers in Immunology | www.frontiersin.org 574
PRACTICAL CONSIDERATIONS IN
DEVELOPING rAAV-VECTORED
IMMUNOTHERAPIES

rAAV vectors are showing great potential for treating patients
with genetic diseases, but if rAAVs are to be deployed for the
prevention and treatment of infectious diseases, additional factors
need to be considered. Namely, animal studies of current rAAV-
based immunotherapeutics have also revealed many issues to be
solved before deployment in a clinical setting. Some of these issues,
such as rAAV packaging size and pre-existing immunity against
the rAAV capsid, are limitations that are inherent with rAAV-
based gene delivery systems. Other challenges, such as anti-drug
antibodies (ADAs), mAb-mediated toxicity, and issues related to
long-term antigen expression in non-target tissues, are unique
challenges for rAAV-based immunotherapy platforms.
Advancements in AAV vectorology and virology research may
help overcome some of these concerns.

rAAV Cargo Size
Using rAAVs to deliver mAbs is a well-explored rAAV-mediated
immunotherapy modality. A full-length mAb, which is
A

B D

C

FIGURE 2 | Comparisons between non-vectored and vectored immunotherapeutic strategies. (A) Most vaccines today function by delivering antigen in the form of
live-attenuated or inactivated pathogens or antigen subunits. This induces polyclonal humoral and cellular responses and immunological memory that protect the
host from infections. (B) In rapidly mutating pathogens that evade normal vaccine-induced immunity, protective mAbs may be directly delivered to the blood stream
via passive infusion to mediate protective function. (C) Alternatively, genetic material may be delivered in LNPs or viral vectors, such as AdV or LV. This mediates de
novo synthesis of the antigen in the natural conformation, or allows the modification of immune cells into stronger effector cells. (D) rAAV vectors deliver the genetic
material of the encoded antigen or therapeutic molecule putatively to the nucleus, as persistent episomes for gene expression. This enables long-term expression of
the antigen or therapeutic molecule in a native conformation and topology, and reduces the need for drug redosing. Created with BioRender.com.
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composed of two identical heavy chains (~450 aa) and two
identical light chains (~220 aa), requires a ~2-kb packaging
space minimum for the cDNA alone. Together with promoter
sequences, cis-regulatory elements, and other components, each
rAAV vector may only accommodate one full-length mAb (72).
This may present a therapeutic challenge, since pathogens like
HIV-1 optimally require co-delivery of several bNAbs to better
suppress escape mutants (73, 74). Regarding rAAV-vectored
bNAb delivery, co-injection of three rAAV1 vectors, each
encoding a distinctive bNAb, was explored in rhesus macaques
(71). Sustained expression of two out of three bNAbs was
observed in one rhesus macaque with low ADA.

If scAAV vectors are used for faster mAb generation, the heavy
and light chains of the mAb would need to be packaged into more
than one rAAV vector (75). When dealing with cargoes that
exceed the packaging capacity of AAV vectors, several strategies
can be used (76, 77): 1) once inside the cell nucleus, the vector
DNAs may reconstitute into the full-length transgene through
homologous recombination; 2) the mRNAs from each cargo can
be engineered to undergo trans-splicing into a single mRNA
transcript for full-length transgene expression; and 3) the
polypeptide products of the cargos can be joined into full-
length proteins via intein-mediated trans-splicing. The DNA
and mRNA recombination-based methods would require co-
transduction of the same cell by two rAAV vectors, which can
be efficiency-limiting. Intein-mediated protein trans-splicing can
presumably work extracellularly and eliminates the need for co-
transduction of the same cell (78). Given that mAbs are secreted,
intein-based methods may be more appropriate in the context of
rAAV-mediated immunotherapy. Alternatively, smaller Ig-
derivatives, such as bivalent single-chain variable fragments
(scFvs), immunoadhesins, or chimeric Ig-like molecules that
combine the functional domain with the Fc domain, may suffice
as therapeutic surrogates for full-length mAbs (79–82).

ADAs
Passively administered mAbs and AAV-delivered mAbs are
subject to reduced potencies by ADAs, which come in the form
of host antibodies that target exogenous mAbs (83–85). The
clinical sequela of ADAs developed against infused mAbs tend
be mild. Patients with ADAs may require higher therapeutic mAb
doses. But in extremely rare cases, ADA may be associated with
anaphylactic shock (85, 86). For AAV-vectored mAb delivery,
ADAs are almost universally detected in preclinical studies that
looked for them and are considered the main reason for declining
therapeutic mAb titers over time. ADAs can appear as early as two
weeks post-AAV transduction and animals with higher levels of
ADAs usually present with lower levels of therapeutic mAbs in the
blood stream (71, 87, 88). On the plus side, no severe adverse
events have been documented in preclinical and clinical studies
when ADAs against rAAV-delivered mAbs were detected (89).

Developing a generic solution to ADAs is challenging because
ADA development is still an enigmatic process. Therapeutic mAbs
might be prone to inducing ADAs, as they are large proteinaceous
foreign antigens. However, not all hosts receiving the same mAbs
develop ADA. This phenomenon is true for passively
administered mAbs and rAAV-delivered mAbs in humans
Frontiers in Immunology | www.frontiersin.org 675
(NCT01937455) (71, 87, 89, 90). Also, new mAbs are constantly
generated via V(D)J recombination and somatic hypermutation
during natural immune responses, but no ADAs against
endogenous mAbs have been documented. One important
difference among endogenous mAbs and rAAV-delivered mAbs
is that their site of production is vastly different. The former is
endogenously produced in B cells, while the latter is exogenously
expressed in other tissues, most commonly the muscle (Table 1).
Differences in post-translational processing, like the glycosylation
of mAbs with non-native cell types might introduce novel epitopes
that can potentiate the development of ADAs (125). One study
demonstrated that rAAV8-delivered mAbs presented different
glycosylation patterns than mAbs derived from infection of cells
in vitro (88). If these findings hold true in clinical settings, then
one possibility of reducing ADAs is to use B cell-targeting rAAV
vectors, such as those based on AAV6, for preferential mAb
expression via gene-edited B cells (126, 127).

However, several lines of evidence suggests that ADA
development, to a large extent, is dependent on the primary
sequence of the rAAV-delivered mAb. First, ADA responses are
not broad-spectrum, but selective (71). In a triple vector system in
which rAAV encoding three different mAbs were delivered to the
same non-human primates (NHPs), animals with low ADA
response to one mAb can have high ADA response towards the
other mAb (71). Second, eCD4-Ig, a modified fusion of CD4 and
human IgG Fc, was markedly less immunogenic compared to
rhesus-optimized anti-HIV bNAbs (95, 96). ADA responses
against eCD4-Ig appeared around four weeks post-transduction
and quickly reverted to baseline levels in three out of four NHPs
by week 14, while ADA responses against bNAbs persisted until
the bNAbs were cleared from the serum. And third, the
magnitude of ADA responses in rhesus macaques was positively
associated with the degree of sequence divergence from germline
V-genes and J-genes (87).

The Fc portion in therapeutic mAbs from non-human origin is
thought to drive immunogenicity in human patients (128).
However, humanized or fully human mAbs are also
immunogenic during passive infusion. Similarly, rAAV-delivered
rhesus-optimized anti-HIV bNAbs are immunogenic in rhesus
macaques (95, 96). In one study, two murine mAb clones and
one human mAb clone were packaged into the same rAAV
construct and expressed by the same promoter (116). In recipient
mice, the humanmAb was expressed at much higher levels than the
murine mAbs. While the reason for this observation is unclear, it is
possible that the murine mAb-Fc portion might have caused an
immune activation against itself, while the human mAb-Fc portion
was not as reactive. Alternatively, the Fc portion of an mAB may
also potentially lead to complement activation and lysis of the
rAAV-transduced cell (93, 129, 130). Nevertheless, there is no
experimental evidence that such events happen in vivo.

To mediate better bNAb expression, cyclosporin A, an
immunosuppressant commonly used during transplantation,
was administered to NHPs from 9 days to 28 days after rAAV8-
bNAb administration (94). This approach significantly increased
average peak bNAb expression from 5 µg/mL to 38 µg/mL, while
preserving the capacity of bNAbs to prevent HIV-1 infection.
Another method may be to take advantage of liver-induced
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tolerance of the transgene (131), which primarily results from
nonconventional antigen presentation in the liver, causing T cell
anergy, apoptosis, and T regulatory (Treg) cell expansion (132). A
circumstantial piece of evidence that this strategy may work is that
mAb delivery using rAAV8, a serotype with strong tropism in
liver, demonstrated less frequent ADA formation than mAb
delivery using rAAV1 (~20% ADA-positive in rAAV8 vectors
vs. > 50% ADA-positive in rAAV1 vectors) (87, 88). However,
there are too many experimental variables between the two studies
and direct comparisons are not meaningful.

Transgene Toxicity
The delivery of antigens in the form of codon-optimized genes via
a vectored approach will undeniably result in foreign antigen
expression in injected or target tissues. Hypothetically, this may
lead to inflammation-mediated immunotoxicity against the
transduced host tissue. For LNP-vectored mRNAs, this concern
is alleviated because mRNAs are inherently unstable and rapidly
degraded (2). However, rAAVs are DNA vectors that are capable
Frontiers in Immunology | www.frontiersin.org 776
of mediating long-term antigen expression. To prevent potentially
undesirable toxicity, the rAAV vector may be engineered to target
specific cell types, such as muscle, without affecting others.

Another major risk is that mAbs are immunologically active
molecules with the propensity to activate multiple inflammatory
pathways that can mediate tissue damage. When they bind non-
specifically, they may cause unanticipated adverse events.
Preclinical testing, such as passive administration and human
tissue binding studies, can help to avert most of these issues.
However, if off-target effects do occur in vivo, there is currently
no effective method to control antibody transgene expression. As
implicated in animal studies, rAAV-mediated mAb expression
can persist for life following a single administration of rAAVs
(71). In the event that rAAV-mediated mAb is causing off-target
toxicity, designing transgene expression cassettes with regulatory
elements that can act as on/off switches might solve this problem.
Several studies in mice and monkeys demonstrated that rAAV
transgene expression levels may be controlled via small-molecule
drugs (133–135). For example, the mAb may be placed under a
TABLE 1 | List of AAV-vectored immunotherapeutic strategies.

Pathogen AAV serotype Animal Injection route Therapeutic mode References

HIV Mouse IM bNAb Lewis 2002 (91)
AAV2/8 Mouse IM bNAb Balazs 2011 (92)
AAV1 Rh.M. IM bNAb-derived immunoadhesins Johnson 2009 (93)
AAV1 Rh.M. IM bNAb Fuchs 2015 (70); Martinez-Navio 2019 (71)
AAV8 Rh.M IM bNAb Welles 2018 (88); Saunders 2015 (94)
AAV1 Human IM bNAb Priddy 2019 (89)
AAV1 Rh.M. IM eCD4-Ig Gardner 2015 (95); 2019 (96)

Flu AAV2/8 Mouse IM bNAb Balazs 2013 (97)
AAV9 Mouse, Ferret IN bNAb Limberis 2013a (98), 2013b (99); Adam 2014 (100)
AAV9 Mouse IN Multi-domain Ab Laursen 2018 (101)
AAV8 Mouse IM Nanobody Del Rosario 2020 (102)
AAV8 Mouse IV 2CARD-MAVS Nistal-Villán 2015 (103)
AAV9 Mouse IN HA/antigen Demminger 2020 (104)

SARS-CoV-1/2 AAV2 Mouse IM RBD/antigen Du 2006 (63)
AAV2 Mouse IN RBD/antigen Du 2008 (105)
AAVrh32.33 IM Spike/antigen Vandenberghe and Freeman
Undisclosed IN bNAb Wilson

Malaria AAV1, AAV3 Mouse IM MSP4/5/antigen Logan 2007 (106)
AAV8 Mouse IM mAb Deal 2014 (107)
AdHu5/AAV1 Mouse IM PfCSP/Pfs25/antigen Yusuf 2019a (108), 2019b (109)
AAV8 Mouse IV miR-155 Hentzschel 2014 (110)

HCV AAV8 Mouse IV NS5B/antigen Mekonnen 2020 (111)
AAVrh32.33 Mouse IM NS3/4/antigen Zhu 2015 (112)
AAV8, AAVrh32.33 Mouse IM E2/antigen Zhu 2019 (113)

HPV/Cervical cancer AAV1 Mouse IM E7/antigen Zhou 2010 (114)
AAV5, AAV9 Rh.M. IN L1/antigen Nieto 2012 (115)

Ebola AAV9 Mouse IM, IN mAb Limberis 2016 (116)
AAV9 Mouse IV, IM, IN mAb Robert 2017 (117)
AAV6.2FF Mouse IM mAb van Lieshout 2018 (118)

Dengue AAV1 Rh.M. IM mAb Magnani 2017 (119)
AAVrh32.33, AAV8 Mouse IM 79E/antigen Li 2012 (120)
AAV6, AAV9 Mouse SC, IM EDIII/antigen Slon-Campos 2020 (121)

Prion AAV2 Mouse IC mAb-derived scFv Wuertzer 2008 (82)
AAV2 Mouse IC mAb-derived scFv Zuber 2008 (122)
AAV9 Mouse IC mAb-derived scFv Moda 2012 (123)

Rabies Mouse IM G/antigen Liu 2020 (124)

Anthrax Ad5/AAVrh.10 Mouse IV/Intrapleural mAb De 2008 (30)
RSV Ad5/AAVrh.10 Mouse IV/Intrapleural mAb Skaricic 2008 (28)
IM, intramuscular; IN, intranasal; IV, intravenous; SC, subcutaneous; IC, intracerebral; Rh.M., rhesus macaques.
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rapamycin-regulated promoter (133). Another possibility is to
inactivate rAAV-delivered transgenes by destroying the vector
DNA. This has been explored in the context of rAAV-mediated
CRISPR-Cas9 delivery, in which a second rAAV encoding anti-
Cas9 gRNA was able to reduce Cas9 expression (136).

Pre-Existing Anti-rAAV Immunity
In the context of infectious diseases, successful prevention
programs rely on the establishment of herd immunity,
whereby a large enough proportion of the population is
immunized to cut off the spread of infections. However, pre-
existing immunity against AAV capsids significantly limits the
pool of eligible recipients (137). Circulating NAbs against AAV
serotypes can occur immediately following the disappearance of
maternal antibodies (138, 139). Even low titers of pre-existing
NAbs can negatively impact vector transduction (140–142).
Capsid-specific T cell responses represent another major
obstacle for rAAV vector transduction. Prior AAV infections
have been proposed to elicit memory T cell responses against the
virus (143, 144). These memory CD8+ T cell responses are more
easily triggered than naïve CD8+ T cells and were shown to
eliminate host hepatocytes that were successfully transduced by
rAAV vectors (141), resulting in reduced or absent transgene
expression in clinical trials of rAAV gene therapies for muscle
and liver-related genetic diseases (143, 145, 146).

Some direct immunity-inhibiting strategies have been
developed to overcome pre-existing immunity against the rAAV
capsid, such as using plasmapheresis or IgG-degrading enzymes to
remove pre-existing anti-AAV antibodies, or using rapamycin
nanoparticles to reduce rAAV immunogenicity (147–149).
Unfortunately, these strategies may not be suitable for rAAV-
mediated immunotherapy for infectious diseases, because these
platforms require an intact immune system. Alternatively,
structural modification of NAb recognition sites, directed
evolution or rational engineering to generate novel capsids,
rAAV epitope masking, chemical modifications, and injecting
empty AAV capsids to act as decoys, may be viable evasion
strategies against pre-existing immunity. These strategies have
been described and reviewed elsewhere (23, 150–163). One
potential complication is that, antigen-specific CD8+ T cells do
not recognize the whole virion but only a short peptide sequence
(typically 8 to 14 amino acids in length) presented by major
histocompatibility molecule class I (164). Thus, a memory CD8+

T cell clone that was induced by one AAV capsid might be cross-
reactive against another AAV capsid, if both capsids share the same
peptide antigen recognized by the CD8+ T clone. Such possibilities,
however, have only been demonstrated ex vivo (143). Lastly,
administration of rAAV vectors via intramuscular, intranasal, or
intracerebral routes might be able to reduce or prevent vector
encounter with anti-capsid NAbs and T cells (Table 1).

Immune Activation Against
rAAV Transgenes
In addition to the anti-AAV NAb and ADA mechanisms
discussed above, adaptive immunity against rAAV-vectored
immunotherapies can also be encountered in the form of anti-
transgene CD4+ and CD8+ T cell responses, which may result in
Frontiers in Immunology | www.frontiersin.org 877
inflammatory toxicities and other adverse events (165–173). On
the other hand, immune activation might be a prerequisite if
rAAV vectors are used as a delivery vehicle for vaccination
against the delivered antigen.

Innate immunity against rAAVs is remarkably subdued as
compared to other viral vectors, but the transgene cargo can be
recognized by various pattern-recognition receptors (PRRs) (61).
Toll-like receptor (TLR)9 recognizes unmethylated CpG DNA
motifs in the genome cargo of rAAV vectors when they are
exposed in endosomes and lysosomes, while TLR2 recognizes the
AAV capsid. Both of these sensors lead to the activation of type 1
interferons via the MyD88 signaling pathway and play vital roles
in shaping immune responses (174–182). To reduce TLR9
detection, CpG motifs may be removed from the rAAV cargo
(176). More recently, short-noncoding DNA sequences that
antagonize TLR9 activation were engineered into the vector
genome to prevent the detection of the transgene DNA (183).

To control transgene-specific T cell responses, miRNA-
mediated regulation may be exploited to prevent transgene
expression from antigen-presenting cells (APCs). For example,
binding sites for myeloid-specific miRNA-142 can be engineered
into the 3’-untranslated region of the transgene, so that its
transcript is destroyed in APCs but not in other cell types
(184, 185). Conversely, vectors based on AAVrh.32.33 can
induce a robust CD8 T cell response to the transgene product
and has been used to express antigens for vaccination purposes
(112, 113, 120, 186). Additionally, scAAV vectors induce
stronger CD8 T cell responses and humoral responses against
the transgene compared to corresponding ssAAV vectors (187).

Manufacturing and Storage
When deploying rAAV vectors to combat infectious diseases in a
large portion of the world’s total population, large production
pipelines that can yield consistent quality will be required (188,
189). In addition, current manufacturing processes are prone to
introducing empty and partially packaged vectors, thus reducing
the purity and efficacy of the rAAV drug, while running the risk
of causing deleterious immune activation (190). A standard for
rAAV purity should be established, while major innovations in
rAAV manufacturing is required. Once rAAV vectors are
manufactured, they need to be properly stored to ensure their
stabilities. Compared to LNP-mRNA vectors, which currently
require stringent storage conditions (-20°C to -80°C) (13, 14),
rAAV vectors are generally stable for short periods at room
temperature under typical laboratory conditions (64, 186). When
distributed as vaccines or mAb carriers, rAAV vectors must
confront shipment and handling hazards. Nevertheless, the
stability of rAAV vectors might confer an advantage in areas
of the world where cold-chain transport facilities are lacking.
rAAV-BASED IMMUNOTHERAPIES
IN DEVELOPMENT

HIV-1
Despite the advent of antiretroviral therapies, HIV-1 continues
to be a major threat to public health, with an estimated 38 million
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people living with HIV-1 infection and an additional 33 million
deceased to date (191). HIV-1 is a lentivirus belonging to the
Retroviridae family. It harbors two copies of its single-stranded
RNA genome, enclosed inside an inner capsid structure and an
outer lipid bilayer (192). This lipid bilayer is decorated with HIV
envelope glycoproteins gp120/gp41, which use human CD4 as
the main receptor, and either CCR5 or CXCR4 as coreceptors for
virion attachment and membrane fusion (193). The error-prone
nature of reverse transcription, coupled with host-restriction
factor APOBEC3-mediated guanosine-to-adenosine mutations,
and genomic recombination with other HIV strains, numerous
mutations can be introduce into the HIV genome, resulting in
antigenic drift, with the potential to evade immune recognition
and impart drug resistance (194, 195). No vaccination regimen
for HIV has been able to successfully induce bNAb responses.
Additionally, HIV specifically targets CD4 T cells and CD4-
expressing monocytes, macrophages, dendritic cells, and
microglial cells via its use of CD4, CCR5, and CXCR4 as
receptors/coreceptors. The loss of these essential immune cell
populations greatly impairs antiviral response. Finally, HIV can
lay dormant inside the host genome without active gene
transcription, thus, evading peptide presentation on MHC
molecules and detection by T cells (192).

Developing protective humoral immunity against HIV-1 has
been particularly challenging. Only bNAbs or antibody clones
that recognize multiple strains of HIV-1 have the potential to
overcome their high genomic variability (196). Second, each
HIV-1 virion has only 4 to 35 glycoprotein Gp120/Gp41 trimer
spikes on its surface, while a similarly sized influenza virus has
~450 spikes per virion (197). This means that the monomeric
IgG may likely only binds to a single Gp120/Gp41 molecule via
one of its two Fab arms (197). Thus, the bound IgG is easily
detached as a result of its low avidity (197). To stabilize IgG-
Gp120/Gp41 binding, the unbound Fab arm must bind to
another molecule, usually the virion lipid bilayer or a host
transmembrane protein that is incorporated into the envelop
during budding and viral egress. This requires the HIV-1-bound
IgG to be polyreactive, and in fact, many bNAbs do exhibit a
certain degree of polyreactivity and self-reactivity (196). And
third, HIV-1 directly impairs CD4 T cells, whose help is critical
to proper B cell and antibody development (198). As a result,
bNAbs only occur in a minority of HIV-1-infected individuals
and only after several years into the infection. Passive infusion
using a combination of bNAbs has been able to suppress viremia
in HIV-infected patients and offers prophylaxis in simian models
(199–201). However, different bNAbs have varied circulatory
half-lives and repeated dosing is required, which is impractical.
With combinatorial treatments using two bNAbs, the
diminishing titer of one bNAb can drive virus evolution
towards resistance to the other bNAb (200, 202).

The development of rAAV-based HIV immunotherapies has
had mixed, yet promising success. For example, to achieve
sustained HIV-1/SIV inhibition in a rhesus macaques model,
simian Gp120-specific chimeric immunoadhesins 4L6 and 5L7
(made by fusing select Fabs to the Fc portion of simian IgG2)
were packaged into rAAV1 vectors, and tested by IM delivery (93).
Frontiers in Immunology | www.frontiersin.org 978
Four weeks after rAAV transduction, the macaques were
challenged intravenously with a lethal dose of SIVmac316. Three
out of three with rAAV1-4L6 and one out of three with rAAV1-5L7
were completely protected from infection. In another study,
macaques were dosed with rAAV1 packaged with 4L6-IgG1 or
5L7-IgG1 transgenes, and then received six intravenous challenges
at escalating doses with another SIV strain, SIVmac239 (70).
Interestingly, one rAAV1-5L7-IgG1-tranduced animal resisted all
six challenges, while the other animals presented lower viral loads
and slower progression to peak viral loads, indicating that rAAV1-
5L7-IgG1 was partially protective against SIVmac239. This partial
efficacy could be explained by the fact that 5L7 conferred strong
NK-dependent and antibody-dependent cellular cytotoxicity
(ADCC) (70). In another study, rAAV8 vectors carrying anti-SIV
mAbs ITS01 and ITS06.02 transgenes were co-administered into
macaques by intramuscular injection in a dual vector approach.
Animals later received repeated low-dose intrarectal challenge with
SIVsmE660 (88). Approximately 90% protection was achieved by
these vectors. In a groundbreaking study, a cocktail of three
different AAV1 vectors, each encoding a human HIV bNAb
(10E8, 3BNC117, or 10-1074), was given to four macaques with
preexisting SHIV (SIV-HIV amalgamation) viremia (71).
Remarkably, this led to the complete suppression of viremia in a
single animal within weeks of rAAV administration. This outcome
was maintained throughout the course of the 240-week study,
suggesting that a functional cure was achievable. These partial or
complete successes in animal models have led to a phase I trial
(NCT01937455), in which the HIV-1 bNAb PG9 was packaged
into the AAV1 capsid and given to healthy humans at 4 × 1012 to
1.2 × 1014 vector genomes per subject (89). This approach was well-
tolerated, with only mild to moderate side effects that resolved
without intervention. However, PG9 could not be detected in the
volunteer sera, while anti-PG9 ADA was readily detected in 10 out
of 16 volunteers. Only 2 out of 16 volunteers demonstrated
neutralization activity against a small number of HIV-1 isolates.

Since CD4 is the universal host receptor for all Gp120/Gp41
variants, one potential solution to counter all HIV-1 strains is to
overexpress soluble forms of CD4, which act as decoys to
saturate the CD4-binding site of Gp120/Gp41. One such
attempt combined parts of CD4 to CCR5mim1, a sulfopeptide
that binds CCR5- and CXCR4-tropic viruses. These domains are
then fused to the human IgG1 Fc (95). This fusion protein, named
eCD4-Ig, or its variants can neutralize a wide panel of HIV isolates,
as well as several SIV isolates in vitro. The rhesus form of the
transgene (rh-eCD4-Ig) was delivered intramuscularly by anAAV1
vector (AAV1-rh-eCD4-Ig) into macaques. Upon repeated IV
challenge with SHIV-AD8, none of the vector-transduced
animals became infected, even at the highest dose (95). AAV1-rh-
eCD4-Ig-transduced macaques were also protected from infection
by SIVmac239, of which the gp120/gp41 complex is highly
divergent from SHIV-AD8 (96). Escalating doses of SIVmac239
eventually infected all AAV-rh-eCD4-Ig-transducedmacaques, but
the viruses also developed escape mutations that came with fitness
costs. Nonetheless, the research for rAAV-based HIV vaccines is
ongoing and further advancements are necessary to ensure these
therapies are more efficacious.
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Influenza
Influenza infections are the seventh leading cause of death in the
United States, with more than 20,000 fatalities recorded in the
last year (203). Illnesses range from mild to severe, and even
death. Hospitalization and death occur mainly among high risk
groups. Individuals with a reduced capacity to mount an
immune response upon infection have an increased
susceptibility to influenza infections and complications, which
include fatal pneumonia and acute respiratory distress syndrome
(ARDS) (204). Vaccines are pivotal for influenza prevention, but
their efficacies are substantially reduced in the elderly (205–207).

Unlike HIV-1, protective humoral immunity is easily
generated against the flu virus by vaccination. However, the flu
genome can undergo antigenic shift, a unique influenza virus-
associated phenomena that poses additional difficulties (208).
The influenza virus is made up of eight segmented negative-sense
RNA strands enclosed inside a lipid bilayer that is studded by
glycoproteins hemagglutinin (HA) and neuraminidase (NA).
When the same organism is infected by multiple influenza
subtypes, the RNA segments can be reshuffled to produce
novel subtypes in a process called antigenic shift. In addition,
influenza RNA polymerase is also highly error-prone, leading to
the accumulation of mutations via antigenic drift (209).

Most antibodies produced in response to seasonal flu vaccines
target the receptor binding site (RBS) within the globular HA-head
region (210). Although functional against the vaccinated subtype,
they can be rendered less effective byHAmutations and reshuffling.
High-affinitybNAbs that canbindabroad arrayof influenzaviruses
have been isolated (211–214). They can offer protection by
inhibiting fusion of the viral and cellular membranes (215–217),
or by Fc receptor (FcR)-mediated mechanisms via ADCC (218).
However, bNAbs usually target the more conserved regions of HA,
which are less accessible than the globular head region and are thus
more difficult to vaccinate against (215–217).Variable regions from
the heavy and light chains of F10 andCR6261 bNAbspackaged into
rAAV2/8 have been tested by administration into mice by
intramuscular injection (97, 214, 217, 219). This treatment led to
bNAbexpression inmicewithin oneweekof rAAVadministration,
andprotectedmice against lethal influenza challengeswith different
H1N1 strains (97). Another study made a recombinant antibody-
like molecule by fusing alpaca-derived single domain antibody
(nanobody) to Fc domains (102). This construct named R1a-B6-
Fc was delivered using an rAAV8 vector via intramuscular
injection, resulting in high-level transgene expression in sera for
at least sixmonths, andconferred completeprotectionagainst lethal
H1N1 and H5N1 challenges.

Given that the respiratory tract is the primary target of influenza
virus, the possibility of applying rAAV vectors intranasally has also
been explored (104, 220). This administration route is thought to be
superior. Intranasal delivery of rAAVsand its transgeneproduct are
targeted to nasal epithelia, and has the ability to circumvent pre-
existing anti-AAV immune responses, while providing passive
immunization. As a proof-of-concept, a potent bNAb against
various influenza A subtypes (FI6) (98, 99), was designed into an
rAAV9 vector and delivered into mice and ferrets via intranasal
distillation (98, 100). This afforded protection against several
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clinical isolates of H5N1 and H1N1, and provided partial
protection in mice against clinical isolates of H7N9 (99). An
alternative design packaging a humanized, multidomain
recombinant antibody (MD3606) into an rAAV9 vector,
protected mice against mouse-adapted influenza H1N1, H3N2,
and B viruses following intranasal instillation (101). Investigation
withNHPs andhumans in clinical trials should provide insight into
whether these approacheswill be efficacious andmore effective than
conventional vaccines.

Dengue
Dengue viruses (DENVs) are members of the Flaviviridae family
and are comprised of four distinct serotypes (DENV1-4) (221, 222).
DENVs are enveloped and have a plus-stranded RNA genome.
DENV infections may be asymptomatic or characterized as dengue
fever (DF), dengue hemorrhagic fever (DHF), and dengue shock
syndrome (DSS). There are approximately 3.9 billion people who
are at risk of dengue virus infection around the world. Up to 390
million people are infected with dengue virus annually in over 100
endemic countries, with 70% of the actual burden being in Asia
(223, 224). DENV is primarily caused by the spread of mosquito
vectors and the growth of worldwide travel, and represents a
significant global public health problem. Development of safe
and effective immunotherapeutics and vaccines are thus a top
priority that have yet to be met.

The major challenge for humoral immunity against dengue
viruses (DENVs) is avoiding ADE, where the presence of specific
antibodies actually enhances DENV pathogenesis (225). The
DENV coat is decorated with viral envelope (E) and
membrane (M) proteins (221, 222). Without pre-existing
DENV antibodies, DENV E proteins bind to specific host cell
receptors, leading to virus uncoating and genome release.
Infection by one DENV serotype leads to production of
antibodies that are cross-reactive with other serotypes. These
cross-reactive antibodies do not neutralize DENV, but instead
tag the virion for FcR-mediated endocytosis and productive
infection (226). Several lines of evidence suggest that these
cross-reactive antibodies can increase DENV disease severity.
First, mAbs induced by DENVs can increase virus infection of
FcR-bearing cells (227). Second, passive immunization of mice
with DENV antibodies produced higher viremia following
DENV infection, resulting in the death of the infected animals
(228). And third, in human populations with high rates of DENV
re-infections, the presence of low-titer DENV-specific antibodies
is associated with a higher risk of severe disease when patients are
infected with a different serotype (229, 230). These outcomes
pose significant challenges to DENV vaccine development. As a
matter of fact, Dengvaxia, the only licensed DENV vaccine, is
only recommended in populations with prior DENV infections,
as it is thought to increase dengue disease severity in naïve
individuals (231). On the other hand, re-infection with the same
DENV serotype leads to efficient neutralization by pre-existing
antibodies (232–235).

Given the nature of ADE in DENV immunotherapy, it may
be feasible that a cocktail consisting of four AAV-mAb
constructs, each encoding a recombinant antibody that can
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specifically neutralize one of the four DENV serotypes, may
protect the host against all serotypes. In addition, the mAbs
inside AAV-mAb constructs may be selected a priori, for those
that lack ADE capacity. This precise strategy has not been
attempted. Instead, anti-DENV3 NAb P3D05 was packaged in
rAAV1 and delivered to macaques via intramuscular injection
(119). Despite the high P3D05 expression that lasted for months,
DENV3 infection, replication, and the development escape
mutants were unaffected. Better understanding of the
interactions between NAbs and DENVs, and screening of
stronger NAbs are necessary to improve vector design and
transduction outcomes.

SARS-CoV-2
COVID-19 emerged during the fall and winter of 2019 and was
declared a global pandemic by the World Health Organization on
March 11, 2020 (236, 237). As of February 27th, 2021, more than
100 million people worldwide have been infected with SARS-CoV-
2 and more than two million deaths have been reported (238).
SARS-CoV-2 is a coronavirus composed of a positive-sense RNA
genome that is enclosed inside a lipid membrane, which is heavily
studded by transmembrane S proteins (239). The S protein
contains the receptor binding domain (RBD) and directly
interacts with the host angiotensin-converting enzyme 2 (ACE2)
receptor, which is essential for virus attachment and cell invasion
(239, 240). Current vaccine development has focused on inducing
antibody responses against the S protein. However, previous
studies on SARS-CoV, a virus with ~80% sequence identity with
SARS-CoV2, suggests that ADE induction may be a concern.
Some studies have demonstrated that anti-S antibodies, or certain
vaccine compositions, could increase virus uptake in
macrophages, elevate pulmonary infiltration of proinflammatory
cells, and exacerbate lung injury. Other studies have shown that
immunization reduces viral load and protects the lung from severe
damage (241–244).

After examining the available evidence from SARS-CoV and
DENV studies, it appears that the key to avoiding ADE, while
achieving antibody-mediated protection, is to generate highly
specific NAbs at high doses without inducing low-potency
antibodies that bind, but do not neutralize (12). To achieve this
outcome, the vaccinating antigen must resemble the native
antigen; hence, the majority of COVID-19 vaccine designs use
the S-2P recombinant protein that contains two proline insertions
to stabilize the vaccinating antigen (240). Two such designs, one
by Pfizer/BioNTech and another by Moderna, demonstrated
greater than 94% efficacy in phase III trials and are currently
being distributed in the United States under emergency use (13,
14). The underlying mechanisms for achieving such high efficacies
in these two vaccine compositions are still being investigated, but
NAbs against SARS-CoV-2 are thought to play an important role
(245–247).

Recently, an rAAV platform called AAVCOVID, which
borrows from the same principle of expressing the S protein
antigen by packaging the SARS-CoV-2 S gene within an AAV
capsid called AAVrh32.33 is being explored as an experimental
vaccine (186, 248). The basis of the strategy relies on two previous
findings. First, AAVrh32.33, a hybrid of two AAV natural capsid
Frontiers in Immunology | www.frontiersin.org 1180
sequences isolated from rhesus macaque, has been shown to induce
high antibody titers and potent CD8+ T cell responses in mice and
non-human primates (249–251). And second, rAAV2 vector
expressing the RBD of SARS-CoV, the virus responsible for the
2002 SARS epidemic, can induced sufficient neutralizing antibody
against SARS-CoV infection with a single intramuscular injection
(63). In addition, intranasal instillation can induce a strong local
humoral response, and elicited stronger systemic and local specific
cytotoxic T cell responses than intramuscular injections.
Nevertheless, the protection against SARS-CoV challenge was
comparable for both modes of administration (105).

Another immunotherapy strategy is to directly deliver a
cocktail of neutralizing mAbs (casirivimab and imdevimab) that
target different regions of the RBD, in order to prevent further
viral spread in patients (252–254). This method was recently
granted an emergency use authorization by the FDA in certain
high-risk patients with mild to moderate COVID-19 (255), and a
phase I-III trial is ongoing to analyze its safety and efficacy
(NCT04425629). The interim results suggest that intravenous
and subcutaneous administration of the cocktail resulted in
mAb presence for a month or more, was generally safe, and
reduced viral loads in COVID-19 patients. Based on these
preliminary results, research is underway to investigate whether
intranasal administration of rAAVs carrying casirivimab and
imdevimab can confer long-term mAb expression in the nasal
mucosa for prophylaxis against COVID-19 (256).

Prion Disease
Prion diseases, or transmissible spongiform encephalopathies
(TSEs), are caused by the misfolding of the normal cellular
prion protein (PrPC) into the abnormal pathogenic scrapie
isoform (PrPSc), or simply prions (257). Unlike PrPC, prions are
resistant to protease digestion and are capable of converting
normal PrPC into more prions. Prion accumulation primarily
affects the central nervous system (CNS) and leads to a series of
neurological degenerative disorders that inexorably ends in death.
Drug development for prion diseases is challenging, because in
order to gain access to prions, the drugs must cross the blood brain
barrier to efficiently reach the CNS. It has been demonstrated that
anti-PrPC mAbs could protect the normal PrPC from interacting
with the pathogenic prion and slow disease progression (258, 259).
However, these antibodies and other compounds typically show
limited efficacy in long-term animal studies. This failure is likely
due to host tolerance to endogenous PrPC and poor antibody
diffusion into neuronal tissues (260–264).

The natural tropism of certain AAV serotypes towards the
CNS presents a huge advantage for rAAV-vectored mAb delivery
(265). To this end, several studies have tested rAAV vectors that
deliver scFv proteins via the intracerebral route (82, 122, 123,
266). These scFvs were made by fusing the variable regions of the
heavy and light chains of an mAb clone, which preserved the
antigen-recognition capacity of the original mAb, but lacks Fc-
mediated function. Intracerebral delivery of rAAV2 or rAAV9-
packaged scFvs that binds to PrPC can delay prion disease onset
in mice (82, 123). An rAAV2 vector that delivers scFvs against
the laminin receptor, which interacts with both PrPC and prions,
also delayed onset of prion pathogenesis and decreased PrPSc
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burden in the CNS of mice (82, 122, 123, 266). Further studies
are needed to assess the translatability of the platform in humans.

Filoviruses
Filoviruses, which include Ebola virus, Marburg virus, and
others, are notable for their capacity to cause highly lethal
infections in humans (267). A live attenuated vaccine, trade-
named Ervebo, is available for Zaire ebolavirus, a highly
pathogenic strain of Ebola (268). This vaccine consists of a
pseudotyped vesicular-stomatitis virus (VSV) that expresses
Zaire ebolavirus glycoprotein (GP) and has near 100% efficacy.
However, no vaccines are yet available for other filoviruses,
which tend to cause sporadic outbreaks and lack exhaustive
study (269). Furthermore, no targeted treatments are available
for patients with symptomatic infections.

Several studies have demonstrated that mAbs raised against
the surface glycoprotein (GP) of Zaire ebolavirus are capable of
protecting experimental animals from lethal Ebola virus
infections within a therapeutic window of three days pre-
challenge to five days post-challenge (270–273). In light of
these findings, several groups examined whether rAAV vectors
can be used to deliver long-lasting Ebola-specific mAbs for
durable prophylaxis and therapeutics. Zaire ebolavirus GP-
recognizing mAbs were designed into rAAV9 vectors and
delivered into mice via intramuscular, intravenous, or
intranasal routes. Vector-treated animals showed rescue and
longer survival from lethal Ebola challenges than animals
subjected to mAb infusion (116, 117). Injection by intravenous
and intramuscular routes offered better protection against Ebola
virus as compared to intranasal administration, and the level of
protection significantly increased with vector dose. Notably, an
AAV6 variant, called AAV6.2FF, was used to package Ebola-
specific mAbs (118). In this study, treatment with a single vector
rAAV6.2FF-mAb clone presented 83% to 100% efficiency, while
a dual therapy using two vectored mAb clones resulted in
complete protection. The protective effect lasted for at least five
months after a single rAAV6.2FF-mAb administration.
However, treatment with a seven-day lead time was required
for complete protection, suggesting that this method of mAb
delivery may be too delayed for treating patients with symptoms,
since the entire disease course spans only 14 to 21 days (274).

Anthrax and RSV
Some pathogens require a rapid response to block progression of
the disease. To promote rapid transgene expression, one strategy
is to use a dual-vector approach with an initial AdV treatment to
mediate rapid expression, followed by an rAAV vector to
mediate long-lasting expression. This formulation is explored
in treating infections by B. anthracis, a potential bioweapon in
terrorist attacks (275), and in RSV, a common cause of
respiratory disease in infants and adults (276).

Antibodies against anthrax protective antigen (PA) are effective
at inhibiting anthrax lethal toxin (LT)-mediated damage (277). To
achieve rapid inhibition of toxin, a dual-vector platform
comprising of recombinant anti-PA antibody packaged into Ad5
and AAVrh.10 vectors was developed (30). The Ad5-anti-PA and
AAVrh.10-anti-PA vectors were then administered into mice via
Frontiers in Immunology | www.frontiersin.org 1281
intravenous and intrapleural injection routes, respectively. While
Ad5-anti-PA conferred complete protection against LT challenge
between one day and eight weeks post-injection, the AAVrh.10-
anti-PA conferred complete protection against LT challenge from
two weeks to 26 weeks. When both vectors were given together,
complete protection was observed from day 1 to week 26
post-injection.

The dual-vector strategy for RSV utilizes the murine form of the
anti-RSV drug palivizumab (28). While intravenous injection of
Ad5-anti-RSV mAb produced high mAb titers at three days post-
administration, intrapleural injection of AAVrh.10-anti-RSV mAb
took four to eight weeks to reach high mAb titers in the serum, but
reduced RSV viral load for at least 21 weeks post-injection.

Malaria
Malaria presents many unique challenges for vaccine
development (278). Malaria is caused by many species of
parasites within the genus Plasmodium. These parasites,
particularly P. falciparum, undergo complex life cycles that
transmit between humans and mosquitos, and between
different host tissue types (279). All of these features increase
antigen diversity and pose difficulties for vaccine target selection.
For reasons not completely understood, memory B cells against
malaria do not persist very long in either natural infections or in
vaccination attempts, resulting in the lack of persistent humoral
immunity and repeated infections (280–282).

To overcome the inability for humans to retain humoral
immunity towards P. falciparum, rAAV vectors can be used to
mediate long-term expression of the malarial antigens, thus
enabling continued stimulation of the immune system. Given
that AAVs naturally have low immunogenicity, AdV formulations
may be added to improve the immune response raised against the
parasite. For example, in a dual-vector strategy, Ad5 and rAAV1
were co-packaged with the P. falciparum circumsporozoite protein
(PfCSP) and its sexual stage P25 protein (Pfs25). PfCSP is
relatively conserved across different Plasmodium species, while
immunity against Pfs25 is thought to block transmission (283).
The Ad5-Pfs25-PfCSP vector was given to mice via intramuscular
injection, followed by AAV1-Pfs25-PfCSP vector six weeks later
(108). The dual-vectored Ad5-prime/AAV1-boost regimen was
highly effective in mice for both full protection and transmission-
blocking activity against transgenic P. berghei parasites expressing
the corresponding P. falciparum antigens (108). Remarkably,
antibody responses raised in this manner were sustained for
over nine months after boosting, and maintained high levels of
transmission-reducing activity (108, 109).

Alternatively, rAAV vectors are capable of mediating mAb
expression outside of B cells, thus escaping malaria-mediated B
cell suppression. To show this ability, rAAV2 vectors expressing
human mAbs against PfCSP were delivered to mice via
intramuscular injection (107). This method offered sterile
immunity against the rodent Plasmodium berghei strain via
mosquito bites in all mice that expressed 1 mg/mL or more of
the mAb. Expression of mAb also lasted for 8 to 11 weeks, or at
the end points of the experiment. It remains to be determined
whether rAAV-delivered recombinant mAbs can persist longer
than naturally formed anti-malaria mAbs.
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HCV
HCV is a single-stranded, positive-sense RNA virus that uses an
error-prone RNA polymerase for genome replication (284). This
feature results in high inter-host and intra-host genetic variability
that limits the effectiveness of humoral immunity. The non-
structural proteins of HCV contain several highly conserved
regions with potential to act as vaccine epitopes (285).
Intravenous injections of rAAV expressing NS5B in mice elicit
strong and durable intrahepatic, NS5B-specific, CD8 T cell
activation (111). Additionally, rAAVrh32.33 packaged with the
HCV E2 envelope protein can elicit a strong antibody response,
while rAAVrh32.33 packaged with HCV NS3 or NS3/4 can elicit
both antibody and cellular responses (112, 113). Further studies are
needed to assess whether these strategies are effective in protecting
against HCV infection in NHP models and human subjects.

Rabies
Rabies is a severe infection of the CNS that is always nearly fatal. It
is caused by zoonotic viruses that belong to the Lyssavirus genus,
the most common member being rabies virus (RABV). RABV is
responsible for the majority of rabies infections in humans (286).
Vaccines and antisera are effective at preventing disease onset
following RABV exposure (287). However, in areas where rabies is
still endemic, awareness and accessibility to these preventative
measures are limited (288). Furthermore, no cure is available once
symptoms start to appear. Hence, there is an urgent need to
develop prophylactic and treatment regimen against RABV.

Hypothetically, the strong tropism of certain rAAV serotypes
toward the nervous system might allow rAAV-mediated delivery of
therapeutic mAbs to the RABV-affected tissues. This possibility has
not been extensively explored for the treatment of rabies. An
attempt to use rAAVs for immunization against RABV was
performed in mice (124). In this work, rAAVs containing
glycoproteins from various strains of RABV (rAAV-G) were
administered via intramuscular injection. All rAAV-G treatments
induced higher neutralizing antibody titers and cytokine responses
than the attenuated RABV vaccine LBNSE-GMCSF. Furthermore,
rAAV-G protected mice from intracerebral challenges of RABV for
nine months post-administration. It is unclear whether rAAV-G
can offer protection against RABV post-exposure.

Human Papillomavirus (HPV)
Chronic infection by HPV subtypes 16 and 18 are the strongest
risk factors for cervical cancer development (289, 290). While
vaccines are available to prevent new infections, no cure is
present for existing infections. HPV-mediated oncogenesis is
driven by the viral proteins E6 and E7. They inhibit tumor
suppressor proteins p53 and Rb, leading to the arrest of
proliferating cells at the DNA synthesis and growth phases of
the cell cycle (291–293). This action increases the risk of genomic
instability and malignant transformation of host cells (290).
Thus, HPV E6 and E7 are being used as vaccination targets.
Intramuscular administration of rAAV1 packaged with the E7
and heat shock protein 70 (hsp70) fusion protein (rAAV1-
1618E7hsp70) completely protected mice from challenge by
E7-expressing tumor cell lines at 5, 12, and 24 weeks post-
treatment (114). In addition, when the rAAV1-E7 vector was
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given eight to ten days after tumor inoculation, the size of the
pre-established tumor was significantly reduced. An alternative
strategy is to target the HPV major capsid protein L1. rAAV5
and rAAV9 packaged with HPV16 L1 was administered to
rhesus macaques via intranasal delivery (115). By using
rAAV5-HPV16-L1 as the prime vector and rAAV9-HPV16-L1
as the boosting vector, neutralizing antibodies were elicited in
four out of six animals and mediated protection for seven
months post-immunization. This effect was achieved even in
the presence of pre-existing anti-AAV9 antibodies.
CONCLUDING REMARKS
AND FUTURE DIRECTIONS

The ability to deliver gene expression cassettes in vivo has greatly
expanded the toolbox to combat infectious diseases. With rAAV-
mediated gene delivery, expression of antigens or therapeutic
molecules may be achieved and maintained for long periods.
Current studies demonstrated that this approach could
prophylactically prevent new infections, with the additional
possibility of eliminating existing infections in animal models.
However, rAAV-mediated immunotherapy is still in its infancy,
with many issues to be solved. Future studies are warranted to
address several key questions. First, ADAs toward therapeutic
mAbs and Ig derivatives are currently the biggest obstacle to
long-term mAb expression from the host, but the underlying
mechanisms of ADA development are largely a mystery.
Elucidating these mechanisms will be critical to the design of
rAAV immunotherapeutics that are capable of overcoming
ADAs. Second, pre-existing immunity to the rAAV capsid and
the transgene prevents a large portion of the world’s population
from gaining access to AAV-vectored immunotherapies.
Strategies to evade pre-existing anti-rAAV immunity without
compromising anti-pathogen immunity need to be devised.
Third, given the fact that rAAV can mediate long-term
transgene expression, even when the transgene is no longer
desired, regulatable immunotherapies ought to be developed to
further ensure patient safety. Fourth, novel capsids should be
explored in the context of immunotherapy. And finally, the
manufacturing process requires major improvement for
deploying rAAV vectors in global distributions efforts.
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Host immune responses that limit durable therapeutic gene expression and cause
clinically significant inflammation remain a major barrier to broadly successful
development of adeno-associated virus (AAV)-based human gene therapies. In this
article, mechanisms of humoral and cellular immune responses to the viral vector are
discussed. A perspective is provided that removal of pathogen-associated molecular
patterns in AAV vector genomes to prevent the generation of innate immune danger
signals following administration is a key strategy to overcome immunological barriers.

Keywords: AAV, gene therapy, immunogenicity, PAMPS, TLR9, CpG
INTRODUCTION

Human gene therapies using recombinant adeno-associated virus (rAAV) vectors have
demonstrated enormous promise. While rAAVs lack many characteristics of the wild-type
viruses from which they are derived, they nevertheless retain legacy immunogenic features that
affect their safety and efficacy. Marked inflammatory toxicities that have recently been observed as
vector dosing has increased, including complement activation, cytopenias and severe hepatotoxicity
(1), likely represent part of the continuum of diverse aspects of clinical immune responses that have
emerged over the last two decades. Accurate identification and removal where possible of the
immunogenic features in the vector design process, in conjunction with the optimization of
immunomodulation protocols, will minimize rAAV-associated immunotoxicities and enhance
therapeutic benefit. Process and product-related impurities are known to contribute to unwanted
immune responses in biologics generally, and even highly purified rAAV vectors contain unique
product-related impurities that present immunogenic risks (2). However, rAAV vectors comprising
the viral capsid proteins (VP1, 2, 3), the vector DNA expression cassette, and the products generated
by its transcription and translation are themselves immunogenic. Several comprehensive reviews of
host immune responses to AAV gene therapy have been recently published (3–7). This article
focuses on the inherent immunogenic features of rAAV vectors and provides a perspective that the
removal of pathogen associated molecular patterns (PAMPs) from vector genomes is key to
preventing pre-requisite innate immune signals that lead to deleterious adaptive immune responses.

Recombinant AAV capsids and their transgene products can provide targets for humoral and
cellular immunity. Conceptually, immune responses to rAAV can be categorized into the quadrants
shown in Figure 1, which summarizes innate immune triggers, adaptive effector functions, and
clinical sequelae.
org May 2021 | Volume 12 | Article 675897191
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Innate Immune Signals as Key Triggers for
Deleterious Immune Responses

Robust immune responses require three signals (8). A pre-
requisite innate immune danger signal (Signal 0) generated by
binding of pathogen-associated and/or danger-associated
molecular patterns (PAMPs and DAMPs) to host pattern
recognition receptors (PRRs) results in pro-inflammatory
cytokine release. An antigen-specific signal (Signal 1),
generated by binding of non-self antigens or peptide/MHC
complexes to antigen-specific receptors on B or T cells,
respectively, then leads to clonal expansion of antigen-specific
effector antibodies and cytotoxic T-lymphocytes (CTLs). Co-
stimulatory signals (Signal 2), generated by additional receptor/
ligand interactions between antigen-specific effector lymphocytes
and helper T cells or professional antigen presenting cells,
Frontiers in Immunology | www.frontiersin.org 292
amplify effector functions and prevent anergy. Preventing
generation of the initial danger signals by removal of PAMPs
is a root cause-focused strategy to prevent immune responses to
rAAV vectors. Three rAAV-associated PAMPs have been
described: i) ligands present on rAAV viral capsids that bind
toll-like receptor 2 (TLR2), a cell-surface PRR on non-
parenchymal cells in the liver (9); ii) unmethylated CpG
dinucleotides in viral DNA that bind TLR9, an endosomal
PRR in plasmacytoid dendritic cells (pDCs) and B cells (10,
11); and iii) double-stranded RNA formed as a result of the bi-
directional promoter activity associated with AAV inverted
terminal repeats (ITRs), which binds melanoma differentiation-
associated protein 5 (MDA5), a cytoplasmic PRR (12). Removal
of these PAMPs by vector design optimization to avoid
generation of the initial danger signal is predicted to markedly
reduce immune responses to AAV.
FIGURE 1 | Proposed root cause triggers, effector functions and clinical outcomes of humoral and cellular immune responses to AAV vectors.
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HUMORAL IMMUNE RESPONSES TO AAV

AAV Capsid Antibodies
The generation of antibodies to the rAAV capsid is an expected
outcome following challenge of the immune response with a
non-self-i.e., viral protein, and generation of high titer capsid
antibodies has been consistently reported following vector
administration to human subjects. Tissue macrophages take up
rAAV non-specifically by phagocytosis, process the capsid, and
following migration to a draining lymph node, present capsid-
derived peptides to effector lymphocytes. The presentation of
AAV peptides on MHC class II molecules, with co-stimulatory
signals, activates capsid-specific CD4+ helper T cells and B cells
(10). Th2 cells produce interleukins that stimulate B cell
proliferation and antibody class switching, leading to increased
neutralizing antibody production. A robust humoral immune
response requires engagement of TFH cell CD154 with CD40 on
B cells. After germinal center formation, B cells differentiate into
affinity matured plasma cells, antibody class switching from IgM
to IgG occurs, and B memory cells are generated (13).

Prior exposure to wild-type AAV by natural infection or to
rAAV by prior in vivo gene therapy results in neutralizing
antibodies in serum that efficiently block target cell
transduction and thereby therapeutic efficacy of systemically
administered rAAV (14, 15). Potential participants are
excluded from rAAV clinical trials if significant titers of
neutralizing antibodies are measured in their sera during
screening. Natural infections are common, and 70% of human
sera contain antibodies against rAAV1 and rAAV2, 45% against
rAAV6 and rAAV9, and 38% against rAAV8 (16). Children as
young as two years of age are often seroconverted, with
antibodies against multiple AAV serotypes (17), and antibodies
have been shown to cross react between rAAV serotypes (18).
Administration of rAAV to seronegative individuals resulting in
high titer antibody formation will similarly block the option of
systemic re-administration of AAV-based gene therapy vectors
for many years. Capsid antibodies can also contribute to
inflammation and cytotoxicity by activating the classical
pathway of complement, and by mediating uptake by FcR-
expressing immune cells such as dendritic cells and
macrophages, potentiating AAV specific adaptive immune
response and generation of proinflammatory cytokines (19).

Overcoming Challenges Posed by AAV
Capsid Antibodies
To facilitate rAAV-mediated gene therapy in a broader patient
population, several strategies are being developed to circumvent
the barrier posed by capsid antibodies. Capsid modification by
rational design or screening of capsid variant libraries to identify
those that avoid recognition by AAV antibodies prevalent in
human sera are two approaches (20). Novel capsids identified by
modification of AAV2 following antibody epitope mapping and
targeted disruption of epitopes by mutagenesis were reported to
reduce neutralization by high titer individual human sera up to
42-fold and by pooled human serum IgG (IVIG) up to 10-fold
(21). Developing AAV capsids in which the epitopes to prevalent
human antibodies have been eliminated is an important strategy,
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but will not enable vector re-administration if needed due to
waning or loss of expression following a first administration. If
feasible, the development of stealth vectors with surface viral
epitopes masked by non-antigenic features that do not interfere
with target cell transduction (20) would be transformative to
enable AAV administration in the presence of capsid antibodies.
Alternative approaches to transiently remove antibodies in
subjects prior to vector administration include in vivo enzymatic
digestion to degrade total IgG (22) and plasmapheresis (23, 24) to
remove total (23) or capsid-specific (24) IgG. Maneuvers to
deplete antibodies present risks that need to be balanced with
the potential benefits of gene transfer.

Complement Activation
Complement activation following high dose systemic
administration is a recently described inflammatory toxicity
associated with high dose rAAV administration (1). The
complement system is comprised of over 30 proteins mainly
synthesized in the liver and circulating in serum and interstitial
fluid (25) that collectively play an important role in the
recognition and elimination of pathogens (25). Complement acts
by opsonizing pathogens and antigens for phagocytosis, co-
stimulating B cell activation and antibody production, and by
forming a membrane attack complex (MAC) for direct killing,
among other functions. Complement can be triggered by the lectin
pathway, the classical pathway, and the alternative pathway. The
classical pathway is initiated when the antibody Fc regions of
immune complexes composed of antigen-bound IgM or IgG bind
complement component C1 causing confirmational changes
activating C3 convertase, which cleaves C3 into fragments C3a
and C3b. Soluble C3a recruits macrophages and neutrophils to the
site of infection, and TNFa, IL-1, and IL-6 secretion by these
leukocytes amplify the production of complement proteins (25).
Membrane-bound C3b opsonizes antigens to facilitate their
removal and propagates the formation of the MAC. Immune
complexes composed of rAAV bound by IgM or IgG, formed
when high doses of rAAV vector are administered to individuals
with pre-existing or rapidly formed capsid antibodies, if deposited
within recipient tissues would be predicted to cause complement
activation-associated host cell damage. Covalent deposition of
complement component C3b on AAV particles mediated uptake
of the vector in a human monocyte cell line leading to production
of pro-inflammatory cytokines (26). This highlights that AAV
immune complexes involving pre-existing or newly formed capsid
antibodies have the potential to activate complement and amplify
capsid immune responses after AAV-mediated in vivo human
gene transfer. Complement inhibitors are being investigated for
their ability to modulate immune responses to AAV gene therapy
vectors, including APL-9 as a C3 inhibitor, and Eculizumab as a
C5 inhibitor (27).
CELLULAR IMMUNE RESPONSES TO AAV

Cytotoxic T Lymphocytes
As a central feature of immune responses to viruses, the
generation of CD8+ capsid specific cytotoxic T lymphocytes
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(CTLs) is an expected outcome following infection with wild type
AAV. Capsid CTLs were not anticipated in early clinical trials
using rAAV because vectors do not encode viral antigens in their
genomes. However, capsid CTLs have been frequently reported
following rAAV vector administration in humans and associated
with the elimination of transduced cells. Both transduced target
cells and professional antigen presenting cells (APCs) present
capsid-derived peptide epitopes on MHC class 1 molecules to
CD8+ T cells (28–30). After activation and expansion, the
resulting CTLs have the potential to destroy rAAV-transduced
cells, inducing inflammation in the target organ and adversely
affecting the gene transfer outcome (14, 31). Herzog’s group (29,
32), described the dendritic cell-dependent mechanism of
CD8+T cell response against the AAV capsid. After
endocytosis and partial degradation of rAAV particles in their
lysosomal compartment, plasmacytoid dendritic cells (pDCs)
present in lymph nodes or the spleen will generate type 1
interferons as a danger signal if CpG PAMP DNA is detected
by TLR9. Conventional dendritic cells (cDCs) in the vicinity that
have also taken up rAAV particles present capsid peptides on
MHC class 2 molecules to CD4+ helper T cells, resulting in the
generation of an antigen specific signal. These signals together
promote maturation of the cDC, presentation of capsid peptides
by MHC class 1 molecules to and activation of capsid-specific
CD8+ CTLs that can then migrate to other tissues and eliminate
transduced cells.

Systemic AAV Administration: Experience
in Hemophilia Clinical Trials
In the first hemophilia B gene therapy clinical trial that reported
therapeutic but transient levels of the FIX transgene product,
elimination of vector-transduced hepatocytes by capsid-specific
CTLs began four weeks after vector administration (14). Since
that initial trial, several additional hemophilia B gene therapy
trials have been reported, some achieving long-term efficacy, but
others recapitulating the loss of transgene expression associated
with immune-mediated loss of transduced cells (33). This failed
outcome was recently reported in a trial using an AAV8 vector
(34), demonstrating that consensus strategies to effectively
minimize and manage deleterious capsid CTL response have
not yet been fully established. The targeted nature of these
efficacy-limiting responses when they are observed is evidenced
by liver enzyme elevation concomitant with loss of therapeutic
transgene expression. The timeframe of CTL effector
manifestation after rAAV administration is delayed compared
the kinetics following wild-type virus infection. One explanation
is that, in contrast to the direct processing for MHC class I
presentation of viral antigens following their transcription and
translation during natural virus infections, the capsid protein
component of the rAAV dose must be processed via the indirect
pathway (14, 28), which is less efficient. Furthermore, the high
stability of AAV capsids would be predicted to contribute to slow
capsid processing by the indirect pathway (35). Alternatively, a
delayed innate signal from dsRNA generated following vector
transduction has been proposed to contribute to the delayed
formation of capsid CTLs (12). In any case, the vector dose
Frontiers in Immunology | www.frontiersin.org 494
inoculum as the sole source of capsid antigen predicts that
peptide presentation by MHC class I on transduced cells will
be transient.

Intramuscular Administration: Experience
in AAT-Deficiency Clinical Trials
Brantly and colleagues reported the occurrence of cellular
immune responses in a clinical trial for alpha-1-antitrypsin
(AAT) deficiency, including IFN-gamma ELISPOT responses
to AAV capsid, that did not completely eliminate transduced
cells (36). Capsid-specific T cells were detected at day 14 and
remained present at day 90, yet subjects in the high dose
cohort demonstrated sustained expression of AAT. Biopsy
samples taken at three months post vector administration
demonstrated inflammatory cells that were still present,
although at a lower level at 1 year. Phenotyping revealed a
substantial portion of the T cells present were regulatory T
cells (Tregs), supporting that following intramuscular
administration, rAAV induces Treg responses that allow
ongoing transgene expression (37). The development of Tregs
that provide immune tolerance to the therapeutic transgene
product has also been shown to be induced by gene transfer to
the liver by AAV (38), supporting that some level of liver
transduction even when the primary target for gene expression
is a different tissue may be beneficial (39).

Overcoming Immune Responses by
Immune-Suppression
The inhibition of both capsid peptide presentation by MHC
class I molecules and expansion of capsid-specific CTLs, each
required for transduced cell lysis, have been proposed or used to
prevent the elimination of vector-transduced cells and
thereby enable long-term transgene expression. Proteosome
inhibitors have been shown to prevent capsid processing by
the indirect pathway (40, 41). Transient immune suppression
with prednisone was used to block CTLs in subjects that
experienced elevated liver enzymes in the first AAV gene
therapy trial that reported therapeutic and durable expression of
FIX (42). Prednisone initiated prior to vector administration and
continued for at least 30 days is part of the administration protocol
for Zolgensma, the first licensed AAV product approved for
systemic administration, and similar protocols are used for
many AAV products currently in clinical development. While
prophylactic corticosteroids have improved outcomes in AAV
clinical trials, they have failed to prevent loss of transgene
expression in others (34), and present risks (34, 43). Additional
novel immunomodulatory approaches have shown promise. The
co-administration of polylactic acid nanoparticles containing
rapamycin (sirolimus) can tolerize the non-human primate
(NHP) immune system to the transgene product (44). However,
blocking the interleukin-2 receptor with daclizumab to inhibit
effector T cell activation in NHPs increased immunity against the
transgene (45). Preclinical studies of rituximab-mediated B cell
depletion (46), and mycophenolate mofetil depletion of guanosine
nucleotides to arrest T cells and B cells (45), prevented anti-capsid
humoral and cell-mediated responses. The standardization of
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clinical immunomodulatory protocols has been complicated by
the absence of an animal model in which vector immunogenicity
can be reliably studied and predicted. The risks presented by
immunomodulation, such as nosocomial and opportunistic
infections, must be weighed against the potential benefits of
gene therapy for each disease indication.

Overcoming Immune Responses by
Improved Vector Design
Vector dose, serotype, genome configuration and method of
manufacture have all been proposed as important factors
contributing to prednisone-resistant loss of transgene
expression. However, none of these factors consistently
correlate with clinical observations, suggesting a different
vector attribute(s) is key. Compelling evidence for a key role of
unmethylated CpG motifs in efficacy-limiting immunotoxicity
in AAV clinical trials has emerged. The recognition of
unmethylated CpG motifs by TLR9 leads to its dimerization
and downstream activation viaMyD88 in professional APCs (11,
47, 48). The frequency of CpG dinucleotides in most microbial
genomes approximates 6.25%, the frequency based on random
nucleotide utilization, and most microorganisms do not
methylate CpG dinucleotides. In contrast, the 0.97% frequency
of CpGs in the human genome is markedly suppressed, and CpG
dinucleotides in human DNA are predominantly methylated so
that the frequency of unmethylated CpGs in human DNA is
> 20-fold lower than in bacterial DNA. This difference provides
the basis for discrimination between human and microbial DNA
by TLR9. AAV expression cassettes that include components
derived from viral or microbial sources such as AAV ITRs, viral
promoters, and enhancers such as WPRE will therefore contain
PAMP CpG motifs from these sources.

Increasing the number of CpG motifs in plasmid DNA
vaccines is an effective way to increase both cellular and
humoral immune responses (49–51), and plasmid methylation
markedly reduces those responses (50, 51). These findings
establish a key role for unmethylated CpG-triggered TLR9-
MyD88 pathway activation in strong cellular and humoral
immune responses. The well-established role of unmethylated
CpG motifs as adjuvants in DNA vaccines further highlights the
need, by vector genome and production process design, to reduce
the frequency of unmethylated CpGs in AAV vector genomes to
a level below the threshold that activates human TLR9.

Innate immunostimulatory CpG motifs (CpG PAMPs) are
unexpectedly abundant in AAV vectors because of their
hypomethylation. Using BrdU labeling to assess the origin of
rAAV genomes, Hauck and colleagues reported that a large
percentage of AAV2 vectors generated by transient transfection
of HEK293 cells contain expression cassettes rescued directly
from plasmid DNA (52). The authors proposed that the
consequent high frequency of unmethylated CpG dinucleotides
in AAV vector genomes contributed to clinical efficacy-limiting
immune responses. The hypomethylation of CpGs in AAV
vector genomes was further characterized by direct
biochemical analysis (53, 54) supporting that, in addition to
vector genome rescue from plasmid DNA, the kinetics of vector
genome packaging leads to low methylation even in mammalian
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production cells that would normally achieve human levels of
CpG methylation. CpG hypomethylation is a non-human
epigenetic feature that explains why even wild-type human
DNA sequences that do not bind TLR9 when they are
predominantly methylated i.e., in the human genome, become
TLR9-activating CpG PAMPs in AAV vector genomes.

Validation of the deleterious effect of CpG motifs in AAV
vector genomes has been clearly demonstrated in animal models
(10, 55–57), including demonstration that CpG-depleted AAV
vectors evade immune responses (56), and human clinical trials
(33, 34). The use of higher CpG content vectors correlated with
hepatoxicity and absence of durable transgene expression in
multiple hemophilia B gene therapy trials (33).

Synonymous codon substitutions to replace native CpG
dinucleotides, and CpG methylation to ‘humanize’ the AAV
genome are two approaches to remove TLR9-recognized
PAMPs in AAV expression cassettes. The reduction of CpG
dinucleotides within AAV vector genomes, especially those
within motifs known to be strong activators of the TLR9
pathway, is supported as a key practical strategy to reduce
adaptive immune response to AAV gene therapy vectors.
Concerns with synonymous codon substitutions include
deviations from naturally evolved codon usage patterns that may
result in transgene product misfolding (58, 59). Components of
the AAV genomes outside of the ORF, such as ITRs and
promoters, are equally ‘visible’ to TLR9 receptors, and are often
rich in CpG dinucleotides. Table 1 lists calculated TLR9 activation
risk factors for non-ORF components of AAV vector expression
cassettes. If achievable, methylation of CpG motifs to ‘humanize’
this epigenic attribute is predicted to reduce TLR9 activation.
Another approach is the incorporation of TLR9 inhibitory
nucleotides sequences into the AAV expression cassette (60).
THE PATIENT PERSPECTIVE

The importance of effectively reducing the immunogenicity and
potential for inflammatory toxicities during AAV-mediated gene
therapies is emphasized by patient considerations. The weight
participants bear in participating in rAAV clinical trials is
compounded by the fact that failure to achieve efficacy after one
administration is likely to preclude benefit from future improved
AAV vectors. This long-term adverse outcome emphasizes the
moral imperative towards scientific communication and data
sharing to validate the vector attributes involved and to develop
effective management of AAV immune responses towards the
goals of low immunotoxicity and durable therapeutic
transgene expression.
CONCLUSION

In order for potentially curative and definitive AAV-based gene
therapies to be applicable to a broader range of indications and
reach more patients, immune responses to rAAVmust be reduced
and better controlled. The formation of anti-capsid antibodies
restricts rAAV gene therapy to a single administration at least for
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the commonly used systemic route of administration. Therefore,
trials that seroconvert human subjects without a reasonable
expectation of clinical benefit, in particular those using vectors
containing known significant innate immunogenic features,
should not be performed. Furthermore, while capsid-specific
CTL responses can sometimes be controlled by immune
suppression, many diseases necessitate systemic administration
of rAAV at high doses where immunomodulation is less effective,
and inflammatory toxicities such as complement activation are
likely to be worsened by strong innate immunogenic features of
the vector. An effective strategy must combine immune-
modulation with better design of vectors – ‘humanized vectors’
with reduced potential to trigger efficacy-limiting immune
responses. The role of TLR9 activation as a seminal potentiator
of cellular and humoral immune responses to rAAV is under-
appreciated, and reducing TLR9 signaling by reducing the
frequency of unmethylated CpG motifs in vector genomes is an
important key to realizing the enormous promise of rAAV
mediated gene therapy.
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Adeno-associated virus is a highly efficient DNA delivery vehicle for genome editing
strategies that employ CRISPR/Cas9 and a DNA donor for homology-directed repair.
Many groups have used this strategy in development of therapies for blood and immune
disorders such as sickle-cell anemia and severe-combined immunodeficiency. However,
recent events have called into question the immunogenicity of AAV as a gene therapy
vector and the safety profile dictated by the immune response to this vector. The target
cells dictating this response and the molecular mechanisms dictating cellular response to
AAV are poorly understood. Here, we will investigate the current known AAV capsid and
genome interactions with cellular proteins during early stage vector transduction and how
these interactions may influence innate cellular responses. We will discuss the current
understanding of innate immune activation and DNA damage response to AAV, and the
limitations of what is currently known. In particular, we will focus on pathway differences in
cell line verses primary cells, with a focus on hematopoietic stem and progenitor cells
(HSPCs) in the context of ex-vivo gene editing, and what we can learn from HSPC
infection by other parvoviruses. Finally, we will discuss how innate immune and DNA
damage response pathway activation in these highly sensitive stem cell populations may
impact long-term engraftment and clinical outcomes as these gene-editing strategies
move towards the clinic, with the aim to propose pathways relevant for improved
hematopoietic stem cell survival and long-term engraftment after AAV-mediated
genome editing.

Keywords: AAV (adeno-associated virus), genome-edited cells, hematopoietic stem cell, toxicity, hematopoietic
stem cell (HSC) transplantation, viral vector, DNA damage response (DDR), parvovirus
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INTRODUCTION

The Efficacy of AAV in Genome Editing
Recombinant Adeno-associated virus (AAV) has been highly
successful in gene-replacement therapy for monogenetic
disorders. It has shown effectiveness in slowly or non-dividing
cells such as the liver, retina or central nervous system because
the extra-chromosomal non-replicative AAV genome is not
diluted by cell division. However, for genetic diseases which
manifest in cells that are highly proliferative such as the
hematopoietic system, gene replacement therapy using AAV is
not likely to be successful because of the dilutional effect. For
highly replicative cells, such as hematopoietic stem and
progenitor cells (HSPCs), long-term modification needs to
occur by integrating into the genome. Permanent genetic
modification of HSPCs then becomes a way to alter the
function of the entire hematopoietic system because all cells of
the blood and immune system are derived from HSPCs. While
retroviral gene replacement has been curative in some gene-
replacement strategies such as for treatment of X-linked SCID,
malignant transformation due to the semi-random nature of
retroviral integration (1–3) remains a concern. An alternative to
semi-random integration by retroviral vectors is to use genome
editing to integrate the transgene at a specific genomic location.
The development of the highly-specific Cas9 endonuclease has
catalyzed the development of highly efficient targeted integration
strategies in HSPCs using genome editing and homology
directed repair (HDR). Using Cas9 endonuclease to induce a
double-strand break (DSB) by sequence-specific recognition
through a guide RNA (4), we can force the cells to activate
DSB repair, including by homologous recombination (an essential
cellular repair pathway). In cases of homozygous genetic disorders,
where both alleles of a gene contain a disease-causing mutation, by
providing a DNA template to the cell which contains the corrective
sequence flanked by regions of sequence homology in the presence
of Cas9/guide RNA ribonucleoprotein complex (RNP) the cell will
use the exogenous DNA donor as a template for homologous
recombination, in a method termed HDR (5). The cell only uses
the provided donor template (“donor”) if sufficient quantities are
provided, on the order of hundreds-thousands. While early studies
showed successful HDR using plasmid or DNA fragments as a
DNA donor template (6), the highly sensitive nature of many cell
types, especially stem cells, to naked DNA in the cytoplasm causes
significant Type I interferon toxicity and precludes using naked
DNA plasmids from being an efficient option as a DNA donor for
development of clinical therapies. AAV vectors however, as
relatively simple replication-defective parvoviruses containing only
Abbreviation: AAV, Adeno-associated virus; AAVR, AAV receptor; CLP,
common lymphoid progenitor; CMP, common myeloid progenitor; DAMP,
damage-associated molecular pattern; DDR, DNA damage response; DSB,
double-strand break; GMP, granulocyte monocyte progenitor; HDR, homology
directed repair; HR, homologous recombination; HSPC, hematopoietic stem and
progenitor cell; ITR, inverted terminal repeat; LT-HSC, long-term repopulating
hematopoietic stem cell; MEP, myeloid erythroid progenitor; NHEJ, non-
homologous end-joining; NPC, pnuclear pore complex; PAMP, pathogen-
associated molecular pattern; PRR, pattern recognition receptor; RNP,
ribonucleoprotein complex; TGN, Trans-golgi network.
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capsid proteins VP1, VP2, VP3 and an ITR-flanked transgene have
proved to be ideal DNA delivery vehicles because they do not
significantly activate the anti-viral response like naked DNA does.
Themechanism is from the non-pathogenic AAV evolving to shield
its encapsidated DNA from detection such that it efficiently is
delivered to the nucleus and can serve as the template for HDR.

What Cell Types Have Successfully
Undergone HDR and What Are the
Clinical Applications?
Using this method of AAV-mediated genome editing by AAV
delivery of a DNA donor for HDR (Figure 1), multiple groups
have demonstrated high levels of gene targeting (the targeted
insertion of a gene into a specific location in the genome,
including single nucleotide gene changes) in many clinically
relevant cell types, including HSPCs (5, 7–9), T-cells (10, 11),
IPSCs (12, 13), mesenchymal stromal cells (14), and airway basal
cells (15). Highly efficient (often >60%) allele targeting occurs in
CD34+ HSPCs for blood disorders such as sickle cell anemia and
beta-thalassemia (16, 17), immune disorders such as X-linked
severe-combined immunodeficiency and chronic granulomatous
disease (18–20), and lysosomal storage disorders such as
mucopolysaccharidoses and Gaucher disease (21, 22). The
transition from using plasmid DNA to AAV as a DNA donor
was crucial for these genome editing therapies to reach high
efficiency allele correction, due to the high toxicity associated
with plasmid DNA in these highly sensitive primary cell types.

What Are the Major Considerations for
Continued Success of AAV-Mediated
Gene Editing?
Successful development of AAV-mediated genome targeting is
dependent on genome editing efficiency, genotoxicity, cell
potency (including transplantability), and durability of the
therapy. There have been many optimizations including cell
culture conditions, nucleofection protocol, homology arm
length in the DNA donor, guideRNA specificity, length of cell
culture time, and the timing of the transduction of the AAV
vector itself (23, 24). These optimizations have allowed highly
efficient gene correction, demonstrated by as high as 90% allele
targeting of the TRAC locus in human primary T cells (11).
However, genotoxicity, transplantability, and durability of the
gene-corrected cells after transplant are areas for continued
improvement of these therapies to increase the probability of
long-term safety and efficacy.

While AAV as a virus has evolved to avoid detection, data
suggests that there can still be a residual detrimental effect in
response to the AAV vector itself. Evidence that the AAV vector
has toxicity is demonstrated by both measuring the response to
the vector and by data showing that the toxicity increases as the
amount of AAV used (multiplicity of infection or MOI) increases
(24). While often genotoxicity is used to refer to aberrant DNA
damage or mutations caused by the Cas9 endonuclease, the AAV
genome burden within these cells can also be considered a type of
genotoxicity. Single-stranded DNA (as in the AAV genome)
normally only occurs in the cell in the context of viral infection
May 2021 | Volume 12 | Article 660302
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or DNA damage, as revealed during the DNA repair process.
When using anywhere between 5,000 and as much as 100,000
AAV vector genomes per cell for gene-targeting, these genomes
can persist long past when targeted integration takes place.
Although cells that have undergone AAV-mediated HDR can
maintain their transplantability as shown by serial HSPC
engraftment into NSG mice (16), we and others have shown
that there is a significant drop in the efficiency of engraftment of
gene-targeted cells compared to mock treated or RNP-only
treated cells. This deficiency can be overcome through
transplantation of 4-5 times as many cells (23), yet this is not
always feasible when considering both the number of cells
available to undergo editing, as well as from a manufacturing
perspective. Therefore increasing/restoring the potency of
engraftment after gene targeting would allow improvement in
the successful implementation of this class of gene and cell
therapies. In addition to transplantability, the durability of
engraftment is an important consideration. Though bone
marrow and peripheral blood HSPC transplants have shown
long-term (life-time) durability and graft maintenance in human
patients, loss of the overall proportion of gene-corrected cells
over the course of the transplant in NSG mice suggests that there
Frontiers in Immunology | www.frontiersin.org 3101
may be some type of defect related to AAV-mediated genome
editing that either prevents efficient correction of the “true”
hematopoietic stem cells (LT-HSCs), causes a loss of fitness of
gene targeted progenitors, a defect in self-renewal of LT-HSCs,
or a combination of these effects (Figure 2). As these therapies
progress from pre-clinical animal models to clinical trials,
monitoring the durability of gene targeted cells over time is
essential in patients even if the initial gene correction and
transplantation are successful. Because AAV-mediated genome
correction and transplantation are the most advanced in HSPCs
as compared to other stem cell types such as airway and induced
pluripotent stem cells, this review will primarily focus on what
we have learned from HSPC gene targeting and transplantation,
potential areas of improvement, and the unanswered questions
related to how the AAV vector interacts with the HSPCs and
influences the long term success of gene-targeting therapies.

What Are the Major Considerations for
Successful Gene Editing Therapies
in HSPCs?
When considering gene editing in HSPCs it is important to
consider the functional and phenotypic differences in the HSPC
A B

D

C

FIGURE 1 | Overview of AAV-based hematopoietic stem and progenitor cell gene editing. Purified Cas9 protein complexed with chemically modified guide RNA as a
ribo-nucleoprotein complex (RNP) induces a double strand break at a specific locus (A), at which site flanking regions of homology within the recombinant AAV
genome serve as templates for homology directed repair and incorporation of the corrective sequence [green] after DNA delivery by the AAV vector (B). The genome
editing components are delivered simultaneously ex-vivo via nucleofection the CD34+ hematopoietic stem and progenitor cells which have been stimulated to enter
the cell cycle through treatment with a cytokine cocktail including SCF, TPO, Ftl3, and IL-6 (C). The CD34+ subset of cells is comprised of both long term
hematopoietic stem cells (LT-HSCs) which can self-renew and maintain full differentiation potential to reconstitute the entire hematopoietic system, as well as
multipotent and oligopotent progenitors which have limited or no self-renewal capacity and are lineage restricted (D).
May 2021 | Volume 12 | Article 660302
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populations. By definition, true long-term hematopoietic stem
cells (LT-HSCs) have self-renewal capacity and have multi-lineage
potential to reconstitute every cell-type of the hematopoietic
system, including immune system cells (25). The LT-HSCs are
primarily in a quiescent state in vivo, with the tremendous
hematopoietic output (approximately 200 billion each of red
blood cells, platelets, and neutrophils are made each day)
deriving from progenitor cells. Progenitor cells have a limited
self-renewal capacity, proliferate much more frequently, and
become committed to a particular cell-type lineage within the
hematopoietic system, the two predominant lineages being the
myeloid and the lymphoid lineage. Immunophenotypically, LT-
HSCs are currently defined by their cell surface markers (Figure
1D) as being Lin-, CD34+, CD90+, CD45RA+, and CD38-, while
progenitors are defined as CD90-, CD34+, and CD38+ (26).
Although immunophenotypic characterization is routinely done
to define the HSPC subpopulations [for review see (27)], the
current experimental gold-standard for determining LT-HSC
Frontiers in Immunology | www.frontiersin.org 4102
function is through serial (2+) transplantation and multilineage
hematopoietic reconstitution in immunodeficient mice with
durability of engraftment shown for greater than 16-20 weeks
and the true gold standard is engraftment and reconstitution in
humans. For successful long term gene correction of cells in the
hematopoietic system, correction of both LT-HSCs and
progenitors is necessary as the progenitors are responsible for
short-term blood and immune reconstitution early after
transplantation, and correction of LT-HSCs is required for long-
term correction as the shorter-lived progenitor cells are lost. While
gene edited LT-HSCs have been maintained through sequential
isolation and transplantation of human HSPCs and gene targeting
of LT-HSCs has been confirmed through clonal tracking (28, 29),
there is almost always a decrease in the proportion of corrected vs
uncorrected alleles over course of the 16-20 week transplantation
studies. This suggests that either true LT-HSCs are edited at a
lower efficiency than progenitors, that edited cells are lost over
time, or a combination of these possibilities.
A

B

C

FIGURE 2 | Potential mechanisms for loss of gene-edited HSPCs over time after engraftment. (A) LT-HSCs may be less permissive to HSC transduction than
committed progenitors due to differential expression of AAV attachment, entry, or restriction factors. This potential progenitor-biased transduction would lead to
dilution of the proportion of edited hematopoietic cells over time over time, as shorter-lived progenitor cells reach the end of their lifespan. (B) Toxicity within the LT-
HSC or progenitor cell population in response to AAV causes a loss of differentiation potential or cell death leading to incomplete reconstitution of gene edited cells
over time. (C) Decrease in the self-renewal capacity of LT-HSCs over time causes a loss of gene-edited LT-HSCs over time, eventually causing loss or near
complete loss of the HSC population contributing to hematopoiesis that contains the genetic correction.
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This review will focus on what is currently known about the
entry pathway and innate immune and DNA damage response
activation in response to AAV, and what is known about how these
effects may alter the viability of HSPCs in AAV-based ex-vivo gene
editing therapies. We will focus on specific cellular mechanisms that
have been implicated, and the perturbations thereof that have been
shown to improve gene editing and/or cell survival outcomes with
the hope of opening doors to decreasing cellular toxicity and
improving clinical success in the stem cell gene editing field
moving forward. This review complements the excellent review
written by Kajaste-Rudnitski describing other aspects of the cellular
response of HSPCs to genetic engineering (30).
BODY

Does Entry Mechanism Influence Toxicity
in Gene Editing of HSPCs?
What Is the Canonical AAV Entry Pathway?
AAV first comes into contact with the cell through serotype-
specific glycans that facilitate attachment of the external surface of
the VP3 portion of capsid to the cell (31–33) (Figure 3A).
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After attachment, the vector undergoes endocytosis and
trafficking within the endosome towards the perinuclear region
via microtubules (34), although the exact endocytosis mechanism
(eg: clathrin dependent, clathrin independent, micropinocytosis)
is still debated and may be cell-type and vector dose dependent
(35–38). In addition to glycan attachment factors, the external
surface of most AAV capsids aside from the unique AAV4 and
AAVrh32.3 serotypes (39) engage with the AAV receptor, AAVR,
one of the only required AAV entry factors conserved across
different capsid serotypes and shown to be required in vivo (40).
While AAVR can be observed at the surface of cell lines in culture,
steady state subcellular localization and endocytosis time-course
experiments suggest that a major function of AAVR as a receptor
is to traffic the endocytosed AAV particle to the appropriate
cellular compartment. After attachment and receptor binding,
the capsid is known to undergo a conformational change in
acidified endosomes in which the internalized VP1unique
portion of capsid is extruded through the intact capsid exposing
the phospholipase domain (41, 42) within this region thought to
facilitate endosomal escape through cleavage of the lipid
membrane. Recent identification of GPR108 as the second
cellular entry factor highly conserved across capsid serotypes
FIGURE 3 | AAV entry mechanism and points at which genome release may trigger DNA-specific pattern recognition receptors. (A) After glycan attachment, the
AAV capsid is endocytosed and binds the conserved cellular receptor AAVR, is trafficked along microtubules for productive infection through the endosomal system
and TGN (below), or non-productive infection and degradation through the proteasome. Endosomal acidification and potentially other ions such as calcium facilitate a
conformational change in capsid which releases the VP1 portion of capsid for interaction with the conserved entry factor GPR108 prior to nuclear import. (B) Where
the genome is first sensed in the cell may dictate the cellular response and alter viability of HSPCs. Non-productive infection and capsid degradation through the
proteasome may leave cytoplasmic AAV genomes available for recognition by AIM2 leading to apoptosis, or cGAS leading to NF-kB signaling via the adaptor protein
STING. Genome extrusion in endosomes may activate TLR2 and/or TLR9 causing NF-kB activation via MyD88 signaling, and aberrant endosomal escape may also
allow sensing by AIM2 or cGAS. Nuclear AAV genomes may be sensed by the nuclear DNA sensor IFI16 causing subsequent NF-kB signaling. (C) Nuclear DNA
damage response proteins known to interact with the AAV genome during second-strand synthesis or expressed in response to AAV transduction.
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(43, 44) and required in vivo demonstrates an additional function
for the VP1/2 unique region of the capsid in the entry pathway, as
chimeric capsids and structural studies have demonstrated that
while AAVR usage is dependent on the VP3 portion of capsid (45–
49), GPR108 usage is dependent on the VP1/2 portion of capsid
(44). Additional cellular factors may influence transduction
efficiency either directly or indirectly such as the golgi-resident
calcium transporter SPCA1, knockout of which demonstrates
aberrant trafficking patterns within the cell (50). The recent
identification and characterization of these golgi-resident factors
over the past few years in addition to studies demonstrating that
microinjection of AAV vectors into either the cytoplasm or
nucleus does not facilitate transduction (51), highlight the
importance of trafficking AAV through the endolysosomal
system for productive and efficient transduction. While it is
thought that AAV enters through the nuclear pore complex (52,
53), no nuclear pore proteins have been shown to interact directly
with AAV capsid proteins as would be expected from a NPC-
specific nuclear import mechanism and as seen with other NPC-
using viruses, so questions remain about the exact nuclear import
mechanism. Perhaps the most important and elusive question in
the AAV entry pathway is at what point the AAV capsid
disassembles and allows genome release. While we know the
capsid must undergo conformational changes described above
for transduction, and we know the capsid contains pores at the
five-fold axes of symmetry large enough for the genome to fit
through, it is unclear whether or not full capsid disassembly is
required for genome release and if not where in the cell does the
release occur.

What Is Special About AAV6?
Because AAV6 uses the same canonical factors AAVR and
GPR108 as well as attachment factors shared by other AAV
serotypes it is curious that AAV6 appears to transduce HSPCs
for Cas9 mediated gene targeting so much more efficiently than
other AAVs. Although there are reports that AAV capsid
variants isolated from human HSPCs, termed AAVHSCs, can
facilitate genome editing at higher frequencies than AAV6 in the
absence of a specific DNA break (54, 55), this review is focused
solely on AAV-based genome editing in the context of a Cas9-
induced DSB so these capsids will not be reviewed at length
there. Several groups have reported that AAV6 transduces
HSPCs and other stem cell types higher than most other
serotypes (56, 57), including the highly similar capsid AAV1
which differs by only 6 of the 737 capsid amino acids, for a
sequence similarity of 99.2%. Indeed, we have reported that
Cas9/AAV targeted integration at the HBB locus in HSPCs is
40% higher from AAV6 than from AAV1, while both episomal
expression and targeted integration are 30-fold and 300-fold
greater, respectively, from AAV6 than AAVHSC (58). The
increased activity of AAV6 compared to AAVHSC in
facilitating gene targeting in HSPCs following a DSB was also
shown by the Cannon group (59). These 6 differential amino
acids exist spread throughout the capsid as single amino acid
substitutions, and these do not appear to come together to form
any sort of unique domain in the fully assembled capsid (60).
With the recent identification of the conserved AAVR and
Frontiers in Immunology | www.frontiersin.org 6104
GPR108, it is possible that there are other entry or restriction
factors specific to AAV6 in HSPCs that have yet to be discovered.
It is also possible that in the absence of specific proteinaceous
factors the capsid is inherently more efficient at uncoating or
genome release in HSPCs therefore facilitating higher genome
editing. In a sypro-orange thermostability assay, AAV6.2, the
AAV6 capsid in which the unique amino acid in VP1 was
reverted to the amino acid present in AAV1 (61), AAV6.2
demonstrates a significantly lower melting temperature than
AAV1 suggesting it may be less stable than AAV1 (62).
Interestingly, these capsids have the same melting temperature
at very low pH of 3, yet the largest melting temperature difference
is observed at neutral pH, so it is unclear how this melting data
translates to the biological stability of these AAV capsids within
the acidified endosome. While these details of AAV6
transduction in HSPCs may seem inconsequential as long as
the genome reaches the nucleus, the process of how these AAV
genomes reach the nucleus is of great interest both for improving
genome editing efficiency, and in order to understand how and
when the cell “see’s” the AAV and alters the cellular function
within this highly sensitive, highly specific cell type. During the
next portion of this review we will discuss points at which the
HSPCs may sense the AAV vector and potential impacts this
may have on the HSPCs based on what is known about innate
immune and DNA damage responses in HSPCs. Although there
have been many studies and reviews aimed at addressing how
transgene products can cause immune recognition in genetic
diseases which cause a complete loss of protein and destruction
of transduced cells through CD8+ T cell reactivity to the AAV
capsid in vivo (63), this review is focused on aspects inherent to
the AAV vector (capsid proteins and AAV genome ITRs) in an
ex-vivo genome editing context.

How Might the AAV Genome Be Sensed
as a PAMP in HSPCs?
Innate cellular responses are activated by pattern recognition
receptors (PRRs) that sense cellular stress through pathogen-
associated or damage-associated molecular patterns (PAMPS or
DAMPS). For an extended review of PAMP and DAMP
recognition by PRRs, we refer readers to (64, 65), and this
review will only discuss the pathways relevant to cellular
damage caused by intracellular sensing of AAV vector
components, namely the AAV ITRs. Additionally, while vector
quality and purity from production is of extreme importance to
minimize cellular contaminants that could be recognized as
pathogen or damage associated, we will only discuss aspects
inherent to the vector itself and not the production process. AAV
as a minimal vector comprised of three capsid proteins and only
~145 bases of inverted terminal repeat AAV genome on either
side of the transgene for packaging leaves little to be recognized
by innate cellular responses. However, it is known that TLR9
which exists in the endosome of antigen presenting cells and
recognizes dsDNA can be activated by AAV, signaling through
the MyD88 pathway and causing amplification of CD8 T cell
responses (66, 67) (Figure 3B). TLR2 has also been implicated in
innate activation in response to AAV vectors (68). While TLRs
are classically thought of as PRRs specific to antigen presenting
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cells such as macrophages and dendritic cells, several reports
have demonstrated TLR expression on human HSPCs (69–71).
In HSPCs, TLR-specific agonists induce cell cycle entry and
lineage-specific differentiation. While several studies have
demonstrated the importance of TLR signaling in vivo for
hematopoiesis in response to microbial infection, ex vivo
studies highlight the innate TLR functionality present in
HSPCs. Ex vivo TLR9 activation by CpG DNA can induce
mouse common lymphoid progenitors (CLPs) to differentiate
to dendritic cells in response to herpesvirus infection (72).
Additionally, TLR2 activation of human CD34+ cells in vitro
with Pam3CSK4 pushes cells towards a myeloid-biased lineage,
generating CD11c+ monocytes and dendritic cells (71, 73, 74).
CpG depleted AAV vectors are in development to decrease TLR9
activation by vector genome CpG di-nucleotides in vivo (75–77).
Recent incorporation of TLR9-inhibitory sequences derived
from human telomeric DNA sequence have additionally been
used to counteract TLR9 sensing in vivo (78). If AAV vectors are
able to activate TLR9 in HSPCs ex-vivo, CpG depletion or
incorporation of TLR9 inhibitory sequences may be a useful
strategy for both in vivo AAV-mediated gene delivery as well as
ex-vivo AAV-mediated gene editing.

In addition to TLR activation, the palindromic ITR hairpin
DNA sequences could be sensed by cellular DNA sensors such as
cGAS, IFI16, or AIM2. cGAS was originally described as a
cytoplasmic DNA sensor which binds to short stretches of
dsDNA and DNA/RNA hybrids and catalyzes the synthesis of
cyclic GMP-AMP, a second messenger which activates STING to
induce interferon through IRF3 dimerization and NF-kB
signaling. However, recent immunofluorescent experiments
have demonstrated that endogenous levels of cGAS can be
found in the nucleus of LT-HSCs and it is kept silent through
a small circular RNA called cia-cGAS to prevent activation in
quiescent cells, yet this circular RNA does not exist in committed
progenitors (79). In contrast, IFI16 is thought to be nuclear
localized (80) and has multiple reported functions including
regulation of transcription in hematopoiesis, as well as
recruitment and activation of STING in the presence of viral
infection (80). Expression of IFI16 has been shown in CD34+
cells from human bone marrow, which upon induction of
differentiation was only preserved in cells of the monocytoid
lineage as determined by expression of CD14 (81). Additionally,
IFI16 expression has been shown to be 4-fold higher in quiescent
HSCs compared to more proliferative progenitors (82). While
cGAS and IFI16 are most commonly associated with induction
of an interferon response, they have additionally been shown to
induce non-canonical cellular responses such as cell cycle arrest
(83, 84) and apoptosis or pyroptosis (85) in certain cell types. In
contrast to cGAS and IFI16, the canonical activation of AIM2
causes induction of the AIM2-inflammasome (86) resulting in
maturation of IL-1b and IL-18 as well as a type of programmed
cell death called pyroptosis (87). Interestingly, mice deficient in
AIM2 are protected from bone marrow failure after total body
irradiation (88), demonstrating that AIM2 plays a role in
apoptosis induction in the hematopoietic system. While some
of these DNA sensing proteins have similar canonical
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downstream effector proteins involved in IFN activation,
protein complex differences in unique cell types can greatly
influence the cellular outcome from activation. There have
been reports that activation of certain IFI16 isoforms can
inhibit AIM2 inflammasome formation (89), and AIM2 can
inhibit cGAS by cleavage through caspase-1 (90). DNA virus
induced caspase-3 has also been shown to cleave cGAS, MAVS,
and IRF3 to prevent overproduction of inflammatory cytokines
(91), demonstrating that there is cross-talk between DNA
sensing pathways and suggesting that aspects of the cellular
response can be post-transcriptionally regulated. It is currently
unclear if the AAV ITRs activate these cytoplasmic DNA sensors
and how differential activation may influence the outcome of
gene-editing therapies in HSPCs, yet observed toxicity from the
vector in vitro suggests there is an inherent response which may
influence cell survival after editing and transplant.

Where Is the Genome First Sensed in the Cell?
When considering potential cellular responses to the AAV vector
it is important to consider where the genome is first sensed in the
cell, as the most likely component to be sensed as a danger signal.
Herein lies the important distinction of entry pathway usage, as
endocytosis is not synonymous with true viral vector entry (ie:
breach of a membrane barrier to the internal cytoplasm or
nucleus) and may differ in cell types which have differential
cellular responses to the vector. It has been demonstrated by
other viral vectors such as adenovirus that capsids which traffic
through and accumulate in the perinuclear region in late
endosomes (as demonstrated through co-localization with
LAMP1 and M6P) induce inflammatory cytokines while Ad5
which traffics directly to the nucleus does not (92), presumably
due to increased recognition by intracellular viral DNA sensors.
A variety of AAV serotypes have shown similar peri-nuclear
accumulation during the entry pathway and co-localization with
Rab7 and Rab11 suggest trafficking through late and/or recycling
endosomes (93), as well as through the Trans-Golgi network
(TGN) (94). The AAV receptor AAVR has demonstrated
functional necessity for trafficking to these compartments late
in the endolysosomal system, as domain swap chimeras
containing the AAV binding and transmembrane domains
with the cytoplasmic tails of well-defined trafficking domains
demonstrates that trafficking to the TGN maintains full AAVR
function yet chimeras containing c-tails that traffic to early or late
endosomes but not TGN have drastically reduced functionality
(40). In addition to trafficking considerations, the GPR108
protein has been implicated in regulation of NF-kB signaling,
with knock-out mice demonstrating higher cytokine production
(95), yet it is unclear whether AAV association with GPR108
triggers its functionality within the NF-kB pathway or if it solely
takes advantage of the protein to gain access to the cell without
triggering its activity. It is well-known that AAV can be degraded
through the proteasome (96), and decreased efficiency of
trafficking in some cell types may increase the amount
of proteosomal degradation leading to increased availability of
AAV genomes for intracellular recognition and a magnified
cellular stress response. Additionally, when considering that
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vector copy numbers of 5,000 to 100,000 genomes per cell are
used for transduction and genome targeting, with hundreds or
thousands of vector genomes per cell isolated from cytoplasmic
extracts of transduced cells in order to achieve a functional
multiplicity of infection (MOI) of 1 (meaning on average 1
functional transduction event per cell for all cells to have
undergone successful gene replacement or gene targeting) a
major question remains about what happens during non-
productive infection and how are these extra hundreds/
thousands of genomes being sensed and responded to within
the cell. While there is great focus on genotoxicity caused by
DNA break induction from Cas9 during genome editing, a
source of genotoxicity especially in sensitive stem cell
populations is likely caused by the genotoxicity of lingering
AAV genomes from non-productive transduction events after
uncoating or capsid degradation.

How Might the AAV Genome Be Sensed
as a DAMP in HSPCs?
While lingering non-productive vector genomes may be
detrimental the cell, an additional source of cellular stress may
be during productive transduction when the genome is sensed in
the nucleus. As a DNA hairpin with a free DNA end, the ITRs
can also be sensed by DNA damage response (DDR) proteins in
the nucleus (97). It has been demonstrated through co-
localization experiments that a variety of DDR proteins co-
localize with nascent vector genomes upon nuclear entry as
they undergo second-strand synthesis in discrete nuclear foci.
These proteins include Nbs1, phosphorylated NBS1 (p-S343-
Nbs1), Mre11, Rad50, and Mdc1 (Figure 3C). The Mre11-
Rad50-Nbs1 complex is responsible for recognizing dsDNA
nicks near the 5’end of a DSB to facilitate end resection
required for DSB repair through homologous recombination.
The co-localization of these proteins within the nucleus is
interesting, as it begs the question whether this recognition is
harmful as the sensing of a DNA break, or helpful by recruitment
of HR machinery during AAV-mediated HDR. Because the
choice of HDR compared to the error prone non-homologous
end joining (NHEJ) pathway is dictated by successful end
resection (98) it is possible that presence of these proteins may
be helpful for skewing the repair pathway post-break towards the
HDR pathway in the presence of AAV. Exposure of cells to
DNA-damaging agents which upregulate DDR proteins has been
shown to increase recombinant AAV vector transduction in the
absence of Adenovirus co-infection (99–101), yet the mechanism
is not fully understood and it is unclear whether a similar effect
would be observed in gene editing applications where transgene
expression is driven after targeted integration rather than from
the episomal genome. Although gene expression can be observed
from episomal AAV through either inherent promoter activity in
the ITRs or concatemeric AAV genomes (102–105), the highly
proliferative nature of HSPCs causes a quick loss of this
expression through a dilutional effect of unintegrated AAV
genomes (5) and transcriptional activity may be regulated
differently from episomal AAV compared to integrated DNA
sequence after HDR. It has also been demonstrated that AAV
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transduction in HSPCs and other cell types upregulates p21
expression (24, 106, 107), and addition of the ATM-kinase
inhibitor KU55933 has been shown to decrease the number of
apoptotic HSPCs after AAV transduction (107). Addition of
GSE56, a p53 dominant negative mRNA rescues engraftment
defects after AAV/Cas9 gene editing when co-electroporated
with the genome editing components (24), yet it is unclear if
this inhibitor would counteract the loss of engraftment potential
seen in HSPCs from AAV alone. Because the p53/p21 pathway
influences many aspects of cell function including cell-cycle
arrest, apoptosis, senescence, and suppression of HR, this
activation could be affecting HSPC function in many different
ways. Interestingly, it has been shown that p53-null cells undergo
apoptosis after transduction with AAV (108), so it is clear there
are aspects of the cellular response to AAV that are caused by p53
activation. While it is clear that there are many interactions of the
AAV genome with cellular replication and DNA damage
response proteins, it is unclear how AAV genome recognition
dictates the cellular response after recognition.

While presented here as separate cellular responses, the
innate immune and DNA-damage response pathways are
inextricably linked. A major function of cellular DNA sensors
is to prevent cellular replication in response to not only viral
infection but to DNA damage as well and the cellular outcomes
are determined by the mechanism and magnitude of the cellular
response. The cGAS/STING pathway gets activated as a response
to genotoxic stress due to DNA damage, and the magnitude
determines whether cells will repair, go into senescence, or
undergo cell death (109–111). In addition, IFI16 has been
reported to negatively regulate p53 and p21 to influence p53-
mediated cell cycle arrest (83, 112). In the following section we
will discuss what can be learned from replication of other
parvoviruses within the hematopoietic compartment, as well as
what has been learned so far from initial investigations into
pathways activated by AAV transduction in HSPCs

What Cell Intrinsic Effects Are Known to Occur
in Response to Parvoviral Infection in HSPCs?
The HSPC population must undergo strict regulation to mobilize
blood and immune cells in response to a variety of infectious
agents, yet few viruses affect them directly. Parvoviruses, of
which AAV is part of the dependoparvovirus subfamily, are
one of the few types of viruses which can actually infect cells of
the HSPC lineage. Human Parvovirus B19 has a selective
preference for cells of the erythroid lineage within the bone
marrow and can cause both transient and persistent erythroid
aplasia, anemia, and bone marrow failure. B19 can cause
apoptosis, G1 cell-cycle arrest, and G2 cell cycle arrest in target
cells (Figure 4) and apoptosis and G1 arrest are a result of toxic
genomic NS1 expression after entry (113). AAV Rep protein
exerts analogous functions in virus replication to NS1, yet is
provided in trans during vector production and is not present in
the AAV vector after purification or encoded in the vector
genome. Rare packaging of rep-containing DNA sequences
have been observed in vector preparations (114, 115), yet
packaging of undesirable genome elements such as rep-
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containing plasmid sequence or human sequence are rare (116)
and prevalence of aberrant genome packaging likely is influenced
by transgene sequence (117). However, it has been demonstrated
that G2 cell-cycle arrest can be induced by both live and UV-
inactivated B19, AAV, and bocavirus (118) suggesting that a major
cause of cellular toxicity is simply the presence of parvovirus
genome even in the absence of replication. This toxicity was shown
to be caused by the bocavirus terminal repeats (119), and the AAV
ITRs through nuclear injection of the AAV ITR sequence in
human embryonic stem cells which causes apoptosis (120).
Importantly for AAV vector considerations, this toxicity was
observed in response to purified full but not empty capsids,
demonstrating that toxicity in stem cells is due to the presence
of encapsidated vector genomes, not cellular contaminants from
the production process or from the capsid itself. While the
replication competent B19 causes extreme hematopoietic toxicity
and WT AAV infection has no known human pathology despite
anti-capsid antibodies demonstrating common infection in
humans (121–123), by investigating commonalities within this
virus family we may identify points of intervention at which the
health and survival of HSPCs after AAV-mediated gene editing
can be improved.

Preliminary studies have aimed to identify transcriptional
changes induced in HSPCs after editing by microarray gene
expression profiles after treatment of cells with the individual
gene editing components including AAV treatment (124). 24
hours after electroporation and AAV transduction HSPCs
upregulate apoptosis factors DHRS2, GZMB, GDF15, and
Frontiers in Immunology | www.frontiersin.org 9107
CCL2, as well as stress response genes RAP1GAP and BICC1.
Transduction alone specifically upregulates DDR proteins RPA4
and PHLDA3, stress response proteins RAP1GAP and BICC1,
and the immune molecule CD86. Of note, RPA has previously
been implicated in AAV genome replication (125) and PHLDA3 is
a p53-regulated Akt suppressor, deletion of which decreases p53-
dependent apoptosis (126). These data are suggestive that AAV
transduction of HSPCs induces an apoptosis program in some
cells. Additionally, upregulation of CD86 which is normally
expressed on antigen presenting cells such as dendritic cells and
monocytes but not HSPCs suggests that AAV transduction pushes
cells toward a lineage committed state and decreases regenerative
potential. While it remains to be determined the mechanism by
which AAV is altering hematopoietic stem cell fate, it is clear that
there is a transcriptional response occurring that may alter
HSPC function.

What Cell Extrinsic Effects Are Known to Occur in
Response to Parvoviral Infection in HSPCs?
The tight regulation dictating hematopoiesis is determined by
cytokines in the blood and bone marrow niche which determine
the proliferative, regenerative, and differentiation fate of the stem
and progenitor cells in response to a variety of stimuli including
infection. The bone marrow niche plays a huge role in this
regulation, but cytokines in ex vivo culture play a major role in
the survival and function of HSPCs as well. In culture, a
combination of cytokines usually including stem cell factor (SCF),
thrombopoietin (TPO), Fms-related tyrosine kinase 3 ligand
FIGURE 4 | Intrinsic and Extrinsic parvoviral effects which may influence CD34+ cell survival and functionality. Intrinsic cellular effects (left) observed from AAV or
other parvoviruses include apoptosis, G1 cell cycle arrest through B19 parvovirus NS1 expression, or G2 cell cycle block from AAV, B19, and bocavirus genomes.
Extrinsic effects (right) observed from parvovirus B19 infection include expression of cytokines which promote CD34+ cell differentiation including IL6, which are
expressed from various cell types in vivo during acute and chronic infection.
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(Flt-3 ligand), and interleukin-6 (IL-6) are used to both maintain
HSPC survival as well as push quiescent HSCs into the cell cycle in
order to express the genes required for successful homologous
recombination. Studies of parvovirus B19 infection in vivo have
demonstrated increased levels of cytokines known to influence
HSPC survival and differentiation including interferon-g, tumor
necrosis factor-a, IL-6, and IL-8 (127). Early infection at the initial
peak viral load during acute infection has also demonstrated
elevated IL-2, IL12, IL-15 levels in the absence of IFN-g, while
persistent infection was associated with elevated IFN-g (128).
Because these data were collected from patients it is presumed
these cytokines were produced from B19 responsive CD8+ T cells
(129, 130). However, it has been shown that LSK cells have the
ability to produce a variety of cytokines including IFN-g, IL-6, IL-2,
IL-12 at high levels in response to danger signals (131). Single-cell
analysis ofmultipotent progenitors (MPPs) demonstrated that 69%
of cells produced at least one and up to 12 different cytokines in
response to TLR stimulation by LPS and Pam3CSK4 (131), a TLR-2
ligand previously shown to activate TLR-2 in human CD34+ cells
(71, 74). It is unclear ifHSPCsdirectly express cytokines in response
to parvoviral infection with B19 or AAV transduction during gene
editing, but if so then paracrine functions on neighboring cells in
culture may influence the engraftability of cells after editing.

Inflammatory cytokines are well known to modulate the
hematopoietic compartment, and play important roles in
mobilization from the bone marrow (132–134). Tight regulation of
HSC response to inflammatory cytokines through cellular factors
such as interferon regulatory factor-2 (IRF2) and ADAR1 are
essential for the suppression of HSC exhaustion due to interferon
signaling (135, 136). Factors such as TGF-b differentially regulate
distinct hematopoietic stem cell subtypes; even true LT-HSCs are
thought to be a somewhat diverse cellular populationwith individual
cells being biased towards the myeloid or lymphoid lineage, and this
differentiation is thought to be regulated through TGF-b (137).
Conflicting reports on the effect of IFN-g demonstrate an obvious
but poorly understood effect of IFN-g on hematopoiesis (138). Some
reportshave suggested that treatment ofHSPCswith IFN-g in culture
causes expression of pro-apoptotic genes and reduced progenitor
survival in a colony forming assay, yet a conflicting report suggests
that IFN-g exposure increases cell viability and colony formation. In
vivo, IFN-g injection has been shown to increase progenitor
proliferation and activate dormant hematopoietic cells. Based on
these experiments, it is suggestive that low cytokine levels leading to
low levels of immune activation may increase survival of HSPCs,
while high levels of activation are detrimental and lead to exhaustion
of the hematopoietic compartment.
DISCUSSION

How Do These Cellular Responses to AAV
Alter the Long Term Potential and
Engraftment of HSPCs?
The DNA damage and innate immune response pathways have
integral interactions within them that influence cellular responses
(139). This leads us to a chicken and egg problem about what
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cellular response comes first in response to AAV transduction of
HSPCs and what is the rotten egg that is detrimental to HSPC
engraftment after AAV-mediated gene editing. A variety of
advances have been made to improve gene-editing efficiency and
specificity inHSPCs including transition fromusingCas9mRNAto
purified Cas9 RNP complex, chemical modification of gRNAs to
decrease immune sensing (140), optimizationofhomology armand
guide RNA specificity, engineering of high fidelity Cas9 nucleases
(141), increasing thepurity ofAAVvectorpreps, anddecreasing the
amount ofAAVused. In addition, a variety of smallmolecules have
been used to try to boost HDR efficiency during genome editing
(142). These advances have led to extremely specific and efficient
AAV-mediated genome targeting in many primary cells, and now
the major area for improvement is increasing cell potency and
viability during editing and engraftment after AAV transduction.

How Do DDR and Innate Immune
Pathway Activation Alter Engraftment
Efficiency of HSPCs?
A lot can be learned about HSPC function from examining genetic
diseases which cause a defect in components of the DDR pathway.
Patients with defects in DNA damage signaling and repair [such as
in ataxia-telangiectasia (A-T) and Fanconi-anemia (FA),
respectively] highlight the importance of these pathways in HSCs
as these patients have a high incidence of bone marrow failure and
hematological malignancies. Competitive reconstitution
experiments in mice demonstrate that deletion of a variety of
different DDR pathway proteins cause a defect in hematopoietic
reconstitution. Cells transplanted from knock-out mice
demonstrate a decrease in progenitor cell reconstitution relative
to WT cells, while young mice have no defect in overall HSC
number suggesting this defect is a proliferative or regenerative
defect, not aHSCdevelopmental defect. Additionally,macrophages
deficient in FA proteins have an increased production of
inflammatory cytokines in response to TLR ligands, while the
progenitor cells are hypersensitive to these cytokines which
include IFN-g, TGF-b, and IL-1. Though the mechanisms are still
debated it is clear that these pathways are intricately related and
greatly influenceHSPC functionand survival in vivo. There appears
to be a balancing act for the level of innate immune activation to
promote HSC quiescence and self-renewal compared to activation
and differentiation (143). The proposed mechanism of the self-
renewal improving small-molecule UM171 is through low level
activation of inflammation but high concentrations of UM171 are
detrimental to cell survival (144, 145), supporting this balancing act
model. Several reports have demonstrated that low-level NF-kB
activation promotes quiescence and self-renewal of LT-HSCs,
suggesting that some level of innate response is beneficial to the
survival and function of these cells.

What Methods Have Been Used to
Improve Engraftment After AAV-Mediated
Genome Editing, and Where Do We Go
From Here?
There are currently no specific targets known to increase efficiency
of engraftment specifically after AAV transduction. During in vivo
May 2021 | Volume 12 | Article 660302
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engraftment experiments, the main method to increase
engraftment is by transplanting more cells but as these studies
move from small animal (NSG mouse) to human studies the
feasibility of transplanting higher numbers of edited cells
becomes limiting. In addition to transplanting more cells,
inclusion of several cytokines and small molecules such as
UM171 in culture throughout the course of editing are known to
improve engraftment (23, 144, 146). Factors which support stem
cell survival such as stem cell factor (SCF) and thrombopoietin
(TPO) greatly enhance the engraftment potential of HSPCs when
maintained in culture. However, the benefit of including these
cytokines occurs in all transplant groups, not just when
transplanting AAV-transduced cells. While the incorporation of
GSE56 during AAV-mediated genome-editing has been shown to
preserve engraftment efficiency and increase clonality of
transplanted cells (24), it is of great importance to further
understand specific pathways which can be safely manipulated in
the absence of potential unwanted cellular responses. Over 50 years
ofhematopoietic stemcell researchhas taughtusmuchaboutHSPC
biology, yet we have little understanding of howAAV transduction
alters the functionofHSPCsand their health andsurvival during ex-
vivo AAV-mediated genome editing. It is likely that the first-in-
human clinical trials using AAV6 as a donor for gene correction,
Frontiers in Immunology | www.frontiersin.org 11109
will teach us even more about the potency of gene-targeted HSCs
and serve as the basis for further optimization. Nonetheless, as this
novel classof geneticmedicinesmoves towards the clinic, continued
rigorous studyof thebasic biology inprimary cells such asHSPCs to
determinepathways activatedandalteredbyAAVtransductionwill
allow for the improved success of AAV-mediated gene editing in
the future.
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Adeno associated viral (AAV) vectors have emerged as a preferred platform for in vivo
gene replacement therapy and represent one of the most promising strategies to treat
monogenetic disorders such as hemophilia. However, immune responses to gene transfer
have hampered human gene therapy in clinical trials. Over the past decade, it has become
clear that innate immune recognition provides signals for the induction of antigen-specific
responses against vector or transgene product. In particular, TLR9 recognition of the
vector’s DNA genome in plasmacytoid dendritic cells (pDCs) has been identified as a key
factor. Data from clinical trials and pre-clinical studies implement CpG motifs in the vector
genome as drivers of immune responses, especially of CD8+ T cell activation. Here, we
demonstrate that cross-priming of AAV capsid-specific CD8+ T cells depends on XCR1+

dendritic cells (which are likely the main cross-presenting cell that cooperates with pDCs
to activate CD8+ T cells) and can be minimized by the elimination of CpG motifs in the
vector genome. Further, a CpG-depleted vector expressing human coagulation factor IX
showed markedly reduced (albeit not entirely eliminated) CD8+ T cell infiltration upon
intramuscular gene transfer in hemophilia B mice when compared to conventional CpG+

vector (comprised of native sequences), resulting in better preservation of transduced
muscle fibers. Therefore, this deimmunization strategy is helpful in reducing the potential
for CD8+ T cell responses to capsid or transgene product. However, CpG depletion had
minimal effects on antibody responses against capsid or transgene product, which appear
to be largely independent of CpG motifs.

Keywords: CD8+ T cell, dendritic cells, CpG, adeno-associated virus, TLR9, gene therapy, hemophilia
INTRODUCTION

Adeno associated virus (AAV) has emerged as the preferred platform for in vivo gene replacement
therapy and represents one of the most promising strategies to treat monogenetic disorders such as
hemophilia. Two AAV-based gene therapies have received regulatory approval and many more are
currently under investigation in late-stage clinical trials (1, 2). However, adaptive immune responses
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directed against the AAV capsid and the transgene product
continue to limit long-term clinical success (3–6). These
include cytotoxic T lymphocytes (CTLs) that eliminate
transduced cells by recognizing peptides derived from the
AAV capsid and activated B cells that produce antibodies
capable of neutralizing the therapeutic transgene product. In
clinical trials, immunosuppressive drugs are frequently
administered to mitigate immune mediated rejection of AAV
and preserve therapeutic gene expression. However, these drugs
come with significant safety concerns and inadequately address
AAV-associated immune responses and immunotoxicities. Thus,
there is a growing interest in developing AAV vectors that are
devoid of immunogenic features and can escape immune
detection all together.

Innate immune sensing is critical for the initial detection of
microbes and conditions downstream adaptive immune
responses. Antigen presenting cells like macrophages and
dendritic cells (DCs), express a diverse repertoire of pattern
recognition receptors such as toll-like receptors (TLRs) that each
recognize distinct, evolutionarily conserved, pathogen associated
molecular patterns (PAMPs). Signaling through these receptors
triggers a cascade of immunoregulatory events that balance the
decision to respond with tolerance or immunity. Initial innate
immune detection of AAV vectors occurs via toll-like receptor 9
(TLR9) (7, 8). TLR9 is an endosomal DNA sensor that recognizes
unmethylated cytosine-phosphate-guanine (CpG) motifs
commonly present in viral and bacterial DNA genomes.
Importantly, TLR9 sensing of AAV vector genomes has been
shown to be required for anti-capsid CD8+ T cell responses (9–
14). Specifically, TLR9 signaling in plasmacytoid dendritic cells
(pDCs) is required for adaptive immune responses to AAV. Type
I interferons (T1 IFN) produced downstream of TLR9 in pDCs
are necessary to activate conventional DCs (cDCs) which process
and present AAV capsid derived antigens on MHC class I
(MHC I) to prime anti-capsid CD8+ T cells. Indeed, both
TLR9 and T1 IFNs (and also CD4+ T help) are requisite for
anti-capsid CD8+ T cell priming (9, 15). Thus, CpG motifs
present in the DNA genome of AAV gene therapy vectors are
key determinants of vector immunogenicity.

Evidence from early clinical trials, along with subsequent
laboratory studies, suggest that CD8+ T cell responses against
AAV capsid target transduced hepatocytes (16–18). Moreover, a
recent meta-analysis of clinical trials using hepatic AAV gene
transfer concluded that vectors rich in CpG motifs results in
failure to achieve sustained expression, owing to activation of
capsid specific CD8+ T cells (19–22). Therefore, elimination of
CpG motifs has become a feature of more recent vector designs.
Additionally, Faust et al. demonstrated that use of a CpG
depleted expression cassette ablated CTL responses to the b-
galactosidase transgene upon AAV gene transfer in mice (23),
suggesting this strategy may reduce the risk of immune response
directed against the transgene product.

Here, we demonstrate that depletion of CpG motifs from the
AAV expression cassette substantially reduces cross-priming of
capsid specific CD8+ T cells in mice. We further show in
hemophilia B mice that CD8+ T cell responses against the
Frontiers in Immunology | www.frontiersin.org 2115
therapeutic transgene product, coagulation factor IX (FIX), are
dramatically reduced using the CpG-depleted vector construct
compared to native sequences. Interestingly, this approach was
not useful to prevent antibody formation against capsid or
transgene product.
MATERIALS AND METHODS

Mice
Wild type (WT) C57BL/6 mice were purchased from Jackson
Laboratories (Bar Harbor, ME). XCR1+/DTRvenus mice were
obtained from RIKEN Center for Integrative Medical Sciences.
In XCR1+/DTRvenus mice, coding region of the Xcr1 gene was
replaced with a genetic cassette encoding diphtheria toxin
receptor (DTR) and reporter protein “Venus” (a yellow
fluorescent protein) (24, 25). Expression of DTR under XCR1
promoter allowed specific depletion of XCR1+ DCs by
administration of diphtheria toxin (DT) whereas expression of
fluorescent protein allowed their easy detection and tracking.
Hemophilia B (C3H/HeJ-F9-/Y) mice with a targeted deletion of
murine F9 gene had been bred on the C3H/HeJ background as
published (24–26). All animals were maintained at laboratory
animal resource center facility at Indiana University–Purdue
University, Indianapolis (IUPUI). All animal experiments were
performed as per the guidelines of Institutional Animal Care and
Use Committee (IACUC). Male mice, 6 to 8 weeks of age were
used. The specific number of mice in each cohort is indicated in
each figure with a minimum of four mice per group.

AAV Vector
AAV1 and AAV2 serotype were used to perform these studies.
To assess capsid specific CD8+ T cells a surrogate epitope
SIINFEKL (a dominant CD8+ T cell epitope derived from
ovalbumin) was cloned into the AAV2 capsid HI loop (9).
Two gene cassettes [one with native CpG sequence (27) and
other with CpG-depleted sequence] of human coagulation factor
IX (hFIX) containing Padua mutation were used in these studies.
CpG depleted sequence of hFIX with Padua mutation was
custom synthesized by Invivogen (San Diego, CA, USA) and is
provided in Supplementary Figure 1. Both cassettes were under
the transcriptional control of a cytomegalovirus (CMV)
immediate early gene 1 enhancer/human elongation factor-1a
(EF1a) promoter combination and had SV40 polyadenylation
sequence (Invivogen). The naturally occurring Padua mutation
represents a single amino acid change (R338L) in human FIX
that results in a ~1 log increased specific activity, resulting for
higher efficacy in gene therapy per FIX antigen level (28). All
AAV vectors used in this study were single stranded (ss) and
were produced by triple transfection of HEK-293 cells. All AAV
vectors were purified by double iodixanol gradient centrifugation
and titers determined by quantitative PCR (29).

Animal Procedures
XCR1+ DCs were depleted by administering 1 µg of DT
(Millipore, Massachusetts, USA) to XCR1+/DTRvenus mice.
May 2021 | Volume 12 | Article 672449
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CD103+ DCs were neutralized by administration of 150 µg of
anti-CD103 antibody (BioXCell, Lebanon, NH) to C57BL6 wild
type (WT) mice. In order to maintain the depletion of XCR1+

DCs and neutralization of CD103+ DCs, DT was administered
on day −1, 3, and 7, and anti-CD103 antibody was administered
on day −1, 3, 7, and 10, both via intraperitoneal (i.p) route. For
all experiments, mice were injected intramuscularly (i.m) into
the quadricep muscle with 50 µL of AAV containing 1 × 1011 vg.
Post AAV administration mice were bled at different time points
via retro-orbital plexus using heparinized capillaries. Blood from
hemophilia B mice was collected using untreated capillaries in to
0.38% sodium citrate buffer. Hemophilia B mice were euthanized
at the end of experiment (28 days post AAV administration) and
quadricep anterior muscle was harvested. Excised muscles were
cryo-protected in optimal cutting temperature media using
liquid N2-cooled 2-methylbutane (30).

Flow Cytometry
To quantify capsid specific CD8+ T cells, flow cytometry was
performed on peripheral blood mononuclear cells (PBMC) using
antibodies to CD3 (17A2), CD8a (53–6.7) and MHC I tetramer
(H-2Kb-SIINFEKL, MBL International, Woburn, MA, USA)
(15). To assess depletion of XCR1+ DCs, spleens were
pretreated with collagenase D (Roche, Basel, Switzerland) at 2
mg/mL for 20 min at 37°C. Single cell suspension of splenocytes
were prepared and stained with CD11c (N418), XCR1 (ZET),
and CD8a (53–6.7) antibodies (BioLegend, San Diego, CA). Flow
cytometry data was acquired on the Fortessa flow cytometer (BD
Biosciences) and analyzed using FCS express 7 (DeNovo
Software, Los Angeles, CA).

Immunohistochemistry
Immunohistochemistry was performed on cryo-sections of
quadricep muscle, as previously described (30). Briefly,
cryosections (10 mm) of muscle were fixed in pre-cooled
acetone at −20°C, blocked with 5% donkey serum (Sigma, St.
Louis, MO) and stained with rat anti-CD8a (eBioscience) and
goat anti-hFIX (Affinity Biologicals, Ontario, CA) antibodies at
room temperature. Secondary antibodies, donkey anti-rat
conjugated to Alexa Fluor 488 and donkey anti-goat
conjugated to Alexa Fluor 568 (Life Technologies, Carlsbad,
CA, USA) were used for detection. Sections were mounted
using Prolong Diamond antifade with DAPI mounting media
(Invitrogen, Carlsbad, CA). Mounted sections were stored
protected from light at 4°C until visualization and
image acquisition.

Image Acquisition and Analyses
Slides were scanned and digitized using an Axio observer 7 Zeiss
microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY).
Whole muscle sections were captured with a 40× objective,
using the tiles option. Infiltrating CD8+ T cell were quantified
on whole muscle sections (area average 612.2519) using Fiji-
ImageJ software after generating a grid (area per point, 1200
square pixels). Fluorescent signal for hFIX was quantified as
mean gray value with Fiji-ImageJ software.
Frontiers in Immunology | www.frontiersin.org 3116
Analyses of Plasma Samples
Plasma samples from hemophilia B mice were collected by retro-
orbital bleed into 0.38% sodium citrate buffer. Inhibitory
antibodies to hFIX were measured by Bethesda assay as
described (26). One Bethesda Unit (BU) is defined as the
reciprocal of the dilution of test plasma at which 50% of FIX
activity is inhibited. Measurements were carried out in a
Diagnostica Stago STart Hemostasis Analyzer (Parsippany, NJ,
USA). The activity of the expressed hFIX was assessed by ROX
FIX chromogenic assay (Diapharma, Louisville, KY) following
the manufacturer’s protocol. Enzyme-linked immunosorbent
assay (ELISA)-based measurements of anti-AAV2 IgG2c,
AAV1 IgG2a, and anti-FIX IgG1 antibodies were carried out as
described (12, 26).

Statistical Analysis
Results are reported as means ± standard error of the mean
(SEM). Statistical significance between groups was determined
by either unpaired Student’s t test or two-way ANOVA using
GraphPad Prism 7 software (San Diego, CA, USA). P value
of <0.05 was considered significant. Differences are indicated
as *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
RESULTS

Capsid-Specific CD8+ T Cell Responses
Depend on XCR1+ Dendritic Cells
We have previously shown that cross-priming of AAV capsid
specific CD8+ T cells requires cooperation of pDCs, which sense
the AAV genome via TLR9 and produce T1 IFN, and cDCs,
which sense T1 IFN and present antigen (9, 15). The cDC
compartment can be divided into two main subsets, cDC1s
and cDC2s which are XCR1+ and CD11b+, respectively. The
cDC1 compartment can be further broken down into tissue
resident CD8a+ DCs and migratory CD103+ DCs (31–35). To
determine whether XCR1+ DCs are required for CD8+ T cell
responses to capsid, we used XCR1+/DTRvenus mice, in which
XCR1+ resident DC can be depleted upon administration of
diphtheria toxin (DT) (36). We also evaluated whether CD103+

DCs are necessary for anti-capsid CD8+ T cell responses by
neutralizing CD103+ DCs in WT C57BL/6 mice using an anti-
CD103 antibody (37). To quantify capsid specific CD8+ T cells,
we used an AAV2 capsid containing SIINFEKL (AAV2-
SIINFEKL), the immunodominant epitope of ovalbumin
recognized by CD8+ T cells (9). AAV-capsid specific CD8+

T cells in peripheral blood were quantitated over time by
flow cytometry using an H-2Kb SIINFEKL tetramer (9).
XCR1+/DTRvenus mice (on C57BL/6 genetic background) were
treated with 1 µg of DT i.p. on day −1, 3, and 7. Mice not
receiving DT served as positive control for the T cell response.
On days 0, animals received an i.m. injection into the quadriceps
with 1 × 1011 viral genomes (vg) of AAV2-SIINFEKL (Figure
1A). Upon DT injection to XCR1+/DTRvenus mice, XCR1+ DCs
(expressing the YFP “venus” reporter) and CD8a+CD11chi DCs
(which represent the majority of XCR1+ DCs) were efficiently
May 2021 | Volume 12 | Article 672449
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ablated as shown in Figure 1B. Importantly, XCR1+ cell
depletion significantly hampered development of capsid
specific CD8+ T cells (Figure 1C). In another experiment, WT
C57BL/6 mice were treated with 150 µg of a-CD103 i.p. on days
−1, 3, 7, and 10 to neutralize CD103+ DCs (Figure 1D). Mice
treated with anti-CD103 exhibited a significantly lower
frequency of tetramer+ CD8+ T cells compared with control
mice (Figure 1E). Thus, while CD103+ DC neutralization
produced a partial decrease of CD8+ T cell responses,
depletion of XCR1+ DCs led to a complete abolishment of
capsid-specific CD8+ T cell responses. Therefore, cross-priming
of capsid-specific CD8+ T cells strictly relies on XCR1+ DCs, with
the CD103+XCR1+ DC subset partially contributing.

Depletion of Immune Stimulatory CpG
Motifs Prevent AAV Capsid-Specific CD8+

T Cells
Because depleting CpG motifs from the transgene gene has been
shown to mitigate AAV-immune responses (23), we
hypothesized that depletion of CpG motifs from the vector
genome may “deimmunize” AAV vectors and reduce the CD8+

T cell response. To test our hypothesis, we constructed a vector
Frontiers in Immunology | www.frontiersin.org 4117
using a CpG-free expression cassette. This cassette contains a
CpG-free edited sequence of the coding region for human
coagulation factor IX (hFIX) and the following CpG-free
elements: a CMV enhancer/EF1a promoter combination, a
synthetic intron, and an SV40 polyA signal. The assembled
cassette was inserted in between AAV2 ITRs and packaged
into AAV2-SIINFEKL (Figure 2A). While this cassette
contains 0 CpG motifs, the control vector with native
sequences contains 41 CpG motifs (while the ITRs were
unaltered in both vectors, each containing 16 CpG motifs per
ITR). On day 0, WT C57BL/6 mice received 1 × 1011 vg of
AAV2-SIINFEKL vector containing either hFIX cassette
depleted of CpG motifs (AAV2-SIINFEKL-CpG−) or hFIX
cassette containing CpG motifs (AAV2-SIINFEKL-CpG+;
containing native sequence) via i.m. injection into the
quadriceps muscle (Figure 2B). Anti-capsid CD8+ T cells were
quantified in peripheral blood on days 7, 10 and 14. Mice injected
with AAV-SIINFEKL-CpG− vector had a substantially reduced
frequency of tetramer+ CD8+ T cells compared to mice injected
with AAV2-SIINFEKL-CpG at 7 and 10 days after vector
injection (Figures 2C, D). Low induction of anti-capsid CD8+

T cells by the CpG− vector was also observed in a similar second
A

B

D E

C

FIGURE 1 | XCR1+ DCs required for cross-priming of capsid specific CD8+ T cells. (A) Experimental timeline showing treatment of XCR1+/DTRvenus mice with DT to
ablate XCR1+ DCs. (B) Representative flow cytometry plots showing CD8a+CD11chi DCs and XCR1+YFP+ DCs (“venus” reporter) from DT treated and untreated
mice. (C) Anti-capsid CD8+ T cell response reported as percent tetramer+CD8+ T cells at 7-, 10- and 14-day time points. (D) Experimental timeline showing
treatment of C57BL/6 WT mice with anti-CD103 antibody to neutralize CD103+ DCs. (E) Percentage of tetramer+CD8+ T cells over time in anti-CD103 antibody
treated and untreated mice. Data are average ± SEM of at least five animals per group. Each circle represents an individual animal. Statistically significant differences
are indicated. ***P < 0.001, ****P < 0.0001.
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experiment (Supplementary Figure 2). However, CpG depletion
failed to prevent capsid-specific antibody formation as there was
no difference in anti-AAV2 IgG2c titers between mice injected
with AAV2-SIINFEKL-CpG− and AAV2-SIINFEKL-CpG+

vector (Figure 2E). Thus, CpG motifs represent a critical
activation signal for the generation of a CD8+ T cell response
but not an antibody response against capsid.

The Effect of CpG Motifs on Immune
Responses to Gene Transfer in
Hemophilia B Mice
After confirming that CpG depletion reduces AAV capsid specific
CD8+ T cell responses, we asked whether depleting CpG motifs
from hFIX expression cassette improves the outcome of gene
transfer in hemophilia B mice. For that, we evaluated adaptive
immune responses to hFIX in male hemophilia B (C3H/HeJ F9−/Y)
mice injected with 1 × 1011 vg of AAV1-CpG− or AAV1-CpG+ into
the quadriceps (Figure 3A). These hemophilia B mice have a
deletion of endogenous F9 gene and therefore lack tolerance to
FIX antigen (26). The immunogenic i.m. route was chosen for these
experiments, as hepatic gene transfer typically results in tolerance
induction to FIX (24, 38). Because the serotype AAV1, shows a
superior efficiency for muscles gene transfer, AAV1 capsid was used
(39). Blood samples were collected at day 14 and 28 after vector
Frontiers in Immunology | www.frontiersin.org 5118
injection and antibody titers measured by ELISA. IgG2a titers (the
dominant anti-capsid immunoglobulin) against AAV1 capsid were
similar between groups at both time points suggesting that CpG
content is less critical for anti-capsid antibody formation (Figure
3B). On the other hand, AAV1-CpG− group showed >10-fold lower
IgG1 formation against hFIX (the main IgG subclass against FIX as
we had identified in our published studies) at day 14 but only ~2.5-
fold lower at day 28 compared to AAV1-CpG+ (Figure 3C). Thus,
CpG depletion did not impact capsid specific antibody formation,
but initially reduced IgG1 formation against hFIX.

To further characterize the antibodies against hFIX, inhibitor
titers were measured by Bethesda assay. At day 14, AAV1-CpG−

treated mice showed modestly higher incidence of inhibitor
development (antibodies that inhibit FIX coagulation activity
as determined by Bethesda assay); 58.3% (7 of 12) of AAV1-
CpG− treated mice, compared to 33.3% (3 of 9) in the AAV1-
CpG+ injected mice (Figure 3D). In contrast, AAV1-CpG+

treated mice had increased inhibitor titers by day 28, which
now were somewhat higher compared to the AAV1-CpG− group
(Figure 3D). Interestingly, when comparing the BU titers for
different time points within the same group, we observed that at
day 28, AAV1-CpG− treated mice showed a decrease in the
inhibitor formation compared to earlier time point. In contrast,
AAV1-CpG+ mice showed an increase of inhibitor formation
A B

D

E

C

FIGURE 2 | Absence of CpG motifs significantly reduce the percentage of AAV capsid specific CD8+ T cells but does not impact capsid-specific antibody formation.
(A) Schematic representation of CpG-free expression cassette encoding hFIX with padua mutation. This cassette was packaged into AAV2-SIINFEKL capsid.
(B) Experimental timeline of WT C57BL/6 mice injected with either AAV2-SIINFEKL-CpG+ or AAV2-SIINFEKL-CpG− vector. (C) Representative flow plots showing
AAV capsid-specific CD8+ T cells at different time points in mice injected with AAV2-SIINFEKL-CpG+ and AAV2-SIINFEKL-CpG− vector. (D) Percentages of capsid
specific CD8+ T cell in mice injected with AAV2-SIINFEKL-CpG+ and AAV2-SIINFEKL-CpG− vector. The dotted line at 0.045% represents the limit of detection of
capsid specific CD8+ T cells using the tetramer. (E) Anti-AAV2 IgG2c antibody titers in plasma samples from mice injected with AAV2-SIINFEKL-CpG+ or AAV2-
SIINFEKL-CpG− vector. Samples were collected at days 14 and 28 post vector injection. Data are average ± SEM of at least five animals per group. Each circle
represents an individual animal. Statistically significant differences are indicated. *P < 0.05, ****P < 0.0001.
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FIGURE 3 | CpG depletion has no effect on antibody formation against capsid but changes the dynamics of the anti-hFIX response in hemophilia B mice. (A) Experimental
timeline of hemophilia B (C3H/HeJ F9−/Y) mice injected with AAV1-CpG+ or AAV1-CpG− vector. (B) Anti-AAV1 IgG2a antibody titers in plasma samples of hemophilia B mice
injected with AAV1-CpG+ or AAV1-CpG− vector. Samples were collected at day 14 and 28 post vector injection. (C) anti-hFIX IgG1 antibody titers anti-AAV1 IgG2a antibody
titers in plasma samples of hemophilia B mice injected with AAV1-CpG+ or AAV1-CpG− vector. (D) Bethesda inhibitor titers (BU/ml) in plasma samples of hemophilia B mice
injected with AAV1-CpG+ or AAV1-CpG− vector. (E) Correlation between inhibitor titer at different time points within the same group. (F) Percent hFIX coagulation activity as
assessed by Rossix ROX Factor IX chromogenic assay. Data are average ± SEM of at least four animals per group and is representative of two independent experiments.
Each circle represents an individual animal. Statistically significant differences are indicated. **P < 0.01.
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over time (Figure 3E). Although no FIX antigen was detectable
in circulation (likely owing to the antibody formation), low hFIX
activity of 0.3% of normal was initially detected in mice treated
with AAV1-CpG− (Figure 3F). In order to rule out that CpG
depletion affected transgene expression, we also compared both
vectors in a setting of immune tolerance. Hepatic gene transfer
in C57BL/6 mice resulted in nearly identical levels of
hFIX expression from CpG+ and CpG− vectors, indicating that
these were equally potent in hFIX transgene expression
(Supplementary Figure 3). In conclusion, CpG motifs merely
modify the time course and potency of antibody formation
against the transgene product but are ultimately not required.
Therefore, CpG depletion has little utility in prevention of
antibody formation.
CpG Depletion Substantially Decreased
But Did Not Entirely Eliminate CD8+

T Cells Infiltration in Skeletal Muscle
Next, we studied the effect of CpG depletion on CD8+ T cell
infiltration in injected muscle. We know from prior experiments,
that CD8+ T cell infiltrating AAV-hFIX transduced muscle are
directed against hFIX in this strain of mouse, since hemophilic
C3H/HeJ mice transgenically expressing non-functional forms of
hFIX do not show this response (13, 26). We evaluated CD8+ T
cells infiltration and hFIX expression in skeletal muscles tissue
using immunofluorescence staining. Transduced quadriceps
muscles of hemophilia B were harvested 28 days after gene
transfer, cryosectioned, and immunostained for CD8 and
hFIX. CD8+ T cell infiltration was consistently low in skeletal
muscle of all 5 AAV1-CpG− injected mice (Figures 4A, B). In
contrast, 3 of 5 AAV1-CpG+ injected mice showed robust CD8+

T cell infiltration and substantial tissue damage (Figure 4A and
Supplementary Figure 4). CD8+ T cell infiltration in AAV1-
CpG+ transduced muscle was on average 8-fold higher compared
to AAV1-CpG−. This difference did not reach statistical
significance because of variability in the AAV1-CpG+ group,
where 2 of 5 animals had low levels of infiltrates. In agreement
with the increased tissue damage caused by the AAV1-CpG+

vector, the areas of hFIX expression in cross sections of skeletal
muscles was lower in AAV1-CpG+ injected compared to AAV1-
CpG− injected mice (Figure 4C). To confirm that CpG depletion
reduced rather than merely delayed a CD8+ T cell response, we
performed gene transfer in an additional cohort of hemophilia B
mice and analyzed transduced muscles 8 weeks later. For both
vectors we observed minimal CD8+ T cell infiltration in muscles
at 8 weeks (Figures 4A, B and Supplementary Figure 4) and a
reduction in hFIX expression compared to the 4-week time
point (Figure 4C). However, AAV1-CpG− vector had a
significantly greater FIX expression in the muscle at 8 weeks
time point compared with AAV1-CpG− vector (Figure 4C). In
summary, CpG-rich vectors were prone to causing inflammatory
CD8+ T cell responses during the first month in transduced
muscle, while CpG-depleted vectors consistently caused only
mild responses. As a result, muscles transduced with CpG−

vector showed less tissue destruction and better preservation of
transgene expression.
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DISCUSSION

Development of immune response to the viral vector or the
transgene product, particularly CD8+ T cell responses,
represents a significant challenge for long-term success of gene
therapy. DCs are responsible for the crosstalk between innate
and adaptative immune systems. In case of AAV vectors, the
immune response initiates with pDC sensing of hypomethylated
CpG motifs in the AAV genome by TLR9. This sensing leads to
T1 IFN production by pDCs. T1 IFN along with CD4+ T cell help
contributes to licensing of cDCs, which then prime capsid
specific CD8+ T cells (9, 15). Our new data strongly suggest
that among cDCs, the XCR1+ subset is primarily responsible for
the priming of CD8+ T cells. This result is consistent with the
known biology of XCR1+ DCs, which are specialized in cross-
presentation of antigen. XCR1+ DCs consist of CD8a+ and
CD103+ DCs; and it is likely that both subsets contribute, as
neutralization of the CD103+ subset only partially blocked the
response (albeit that we cannot rule out that the antibody against
CD103 was only partially effective). Others have shown that
pDC-derived T1 IFN induces expression of XCR1+ in cDCs,
optimizing their maturation, costimulatory capacity, and ability
to cross-present (40). XCR1+ cDCs are able to present antigen on
both class I and II MHC molecules, serving as a platform for
simultaneous interactions between CD4+ and CD8+ T cell (41).
CD4+ T help via CD40L/CD40 co-stimulation is also required
for an effective CD8+ T cell response against AAV capsid (15).
Thus, XCR1+ DCs, besides cross-presenting antigen to CD8+

T cells, establish a platform to orchestrate the cooperation
between CD8+ T cells and CD4+ T help, resulting in optimal
CD8+ T cell activation, as summarized in the proposed model in
Supplementary Figure 5.

Pre-clinical studies have applied immunosuppression as an
alternative to control anti-capsid cellular immune response (42–
44). However, this may not be sufficient to prevent the loss of
transgene expression, in particular if the vector is too
immunogenic. In vitro studies showed TLR9-dependent
induction of IFN I production in human pDCs pulsed with
AAV vectors (8). Clinical experience with hepatic AAV gene
transfer for hemophilia suggests that CpG motifs contribute to
the loss of therapeutic expression and that immune suppression,
when still needed, is more effective when using CpG depleted
vectors (45–47). Low CpG level correlates strongly with long-
term transgene expression (20). Conversely, CpG enrichment
negatively affected the outcome of gene therapy for hemophilia
(47, 48). Therefore, genome editing to eliminate CpG motifs and
thus decrease immunogenicity of AAV vectors is a promising
approach. In a proof-of-principle study, others have shown that
absence of CpG sequences in the lacZ reporter transgene
minimized CD8+ T cell infiltration and prolonged expression
of a reporter transgene upon AAV gene transfer in mice (23).
Curiously, Xiang et al. found that capsid-specific memory CD8+

T cells showed strong in vivo proliferative responses to AAV
vectors with CpG-depleted genomes, while naive CD8+ T cells
responded much more vigorously to CpG+ vectors, which
provide stronger TLR9 stimulation (49). Given the above-
mentioned clinical experience with these vectors, the authors
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concluded that responses seen in humans may mostly reflect
primary responses.

Both pre-clinical studies in animal models and clinical trial
data support that CD8+ T cell activation is linked to innate
immune sensing, which serve to provide activation or “danger”
signals. Here, we have refined our model for cross-priming of
capsid specific CD8+ T cells. Sensing of CpG motifs by TLR9 in
pDCs leads to T1 IFN production and activation of cross-
presenting XCR1+ cDCs. Thus, depletion of CpG motifs lead
Frontiers in Immunology | www.frontiersin.org 8121
to substantially reduced CD8+ T cell responses against the viral
capsid and against a therapeutic transgene product. For instance,
CD8+ T cell responses were significantly reduced in CpG−

transduced muscle of hemophilia B mice, thereby avoiding
muscle damage and better preserving hFIX transgene
expression. CpG depletion did not much affect the kinetics of
the CD8+ T cell response but rather substantially reduced the
magnitude. The reason why hFIX expression was not entirely lost
in muscle of CpG+ treated mice may have related to the use of
A

B C

FIGURE 4 | hFIX expression and CD8+ T cell infiltration in transduced muscles. Skeletal muscles from hemophilia B (C3H/HeJ F9−/Y) mice were harvested,
cryosectioned, and stained for hFIX (red) and CD8 (green) 4 weeks after AAV1-CpG− or AAV1-CpG+ injection, as described in Figure 3A. Muscles section was
entirely scan and images were taken for both channels using a 40× objective with ZEISS Microscopy. (A) Sequential scan image of transduced muscle from AAV1-
CpG+ (left) or AAV1-CpG− (right) injected mice shown for individual channel or merge image. (B) Numbers of infiltrating CD8+ T cells in transduced muscle as
quantified by Fiji-ImageJ software after generating a grid (area per point, 1200 square pixels). Whole muscle sections were quantified. (C) Fluorescent signal for hFIX
quantified as mean gray value with Fiji-ImageJ software. Representative images from five mice are shown for each condition. The scale bar represents 100 mm. Data
are average ± SEM of at least five animals per group. Each circle represents an individual animal. Statistically significant differences are indicated. *P < 0.05.
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single-stranded AAV (ssAAV) vector. These often induce
functionally impaired CD8+ T cells against the transgene
product with a reduced cytotoxic and proliferative capacity
(50), ultimately undergoing apoptosis (51). This is also the case
in AAV-hFIX gene transfer to hemophilia B mice, while use of
self-complementary AAV (scAAV) results in a more destructive
CD8+ T cell response that rapidly eliminates of hFIX expressing
muscles fibers (13). While we have not tested CpG depletion in
scAAV vectors in this study, clinical trial results support that
such a vector is also less prone to CD8+ T cell activation, at least
against capsid (47, 52).

Our prior study in mice showed a substantial reduction in
CD8+ T cell responses against a transgene product encoded by
scAAV vector in TLR9-deficient mice (13). A quantitative
method to evaluate TLR9 activation risk factors in candidate
expression cassettes may be helpful to reduce AAV vector
immunogenicity (22). This method has predictive potential for
selected DNA sequences, thus increasing the chances for long-
term clinical benefits.

However, the approach also has limitations. We still detected
a residual CD8+ T cell response and partial loss of transduced
cells. Since we only eliminated CpG motifs in the expression
cassette, it is possible that CpG motifs in the inverted terminal
repeats (ITRs) contributed. Also, TLR9 signaling is not entirely
CpG dependent (53). For other expression cassettes, it may not
be possible to remove all CpG motifs. In case of editing the
promoter, one would have to empirically determine which
sequences can be changed and what to change them to without
altering promoter strength or specificity. An alternative
approach to eliminate TLR9 signaling is to include TLR9
inhibitory DNA sequences in the vector construct, as recently
been shown by Chan et al. (54). However, it should be pointed
out that even TLR9 deficient mice do not show complete
abolishment of CD8+ T cell responses, as our current and
published studies have shown (7–9). Therefore, additional
pathways may exist that result in CD8+ T cell activation. In
clinical trials, CD8+ T cell responses have been observed against
dystrophin and a1-antitrypsin in treatment of Duchenne’s
muscular dystrophy and a1-antitrypsin (AAT) deficiency,
respectively (55, 56). Interestingly, pre-existing cellular
immunity to dystrophin may occur in some patients with
Duchene’s muscular dystrophy, a disease characterized by
muscle regeneration and some level inflammation (55). One
should therefore caution that the underlying disease may
contribute additional inflammatory signals in the target tissue
of gene transfer.

Another limitation is that CpG depletion does not
eliminate antibody formation against the capsid or
transgene product, which can be modified by but does not
depend on the TLR9-MyD88 pathway (9, 12, 15). In this new
study, CpG depletion had no effect on antibody formation
against capsid but changed the dynamics of the anti-hFIX
response. CpG+ vector rapidly induced high-titer mostly non-
inhibitory antibodies, which evolved into a more neutralizing
response over time. CpG− vector showed a lower-titer IgG1
but more focused response by day 14, with higher inhibitory
Frontiers in Immunology | www.frontiersin.org 9122
titers that modestly decreased afterwards. Antibody formation
against capsid was also not impacted by CpG depletion in
clinical trials (19, 57).

In conclusion, our results support CpG depletion as a strategy
to limit CD8+ T cell activation against capsid and transgene
product while also pointing to limitations such as minimal
impact on antibody formation and a minimized but still
detectable CD8+ T cell response.
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Hepatocyte infection by malaria sporozoites is a bottleneck in the life-cycle of Plasmodium
spp. including P. falciparum, which causes the most lethal form of malaria. Therefore,
developing an effective vaccine capable of inducing the strong humoral and cellular
immune responses necessary to block the pre-erythrocytic stage has potential to
overcome the spatiotemporal hindrances pertaining to parasite biology and hepatic
microanatomy. We recently showed that when combined with a human adenovirus
type 5 (AdHu5)-priming vaccine, adeno-associated virus serotype 1 (AAV1) is a potent
booster malaria vaccine vector capable of inducing strong and long-lasting protective
immune responses in a rodent malaria model. Here, we evaluated the protective efficacy
of a hepatotropic virus, adeno-associated virus serotype 8 (AAV8), as a booster vector
because it can deliver a transgene potently and rapidly to the liver, the organ malaria
sporozoites initially infect and multiply in following sporozoite injection by the bite of an
infected mosquito. We first generated an AAV8-vectored vaccine expressing P.
falciparum circumsporozoite protein (PfCSP). Intravenous (i.v.) administration of AAV8-
PfCSP to mice initially primed with AdHu5-PfCSP resulted in a hepatocyte transduction
rate ~2.5 times above that seen with intramuscular (i.m.) administration. This immunization
regimen provided a better protection rate (100% sterile protection) than that of the i.m.
AdHu5-prime/i.m. AAV8-boost regimen (60%, p < 0.05), i.m. AdHu5-prime/i.v. AAV1-
boost (78%), or i.m. AdHu5-prime/i.m. AAV1-boost (80%) against challenge with
transgenic PfCSP-expressing P. berghei sporozoites. Compared with the i.m. AdHu5-
prime/i.v. AAV1-boost regimen, three other regimens induced higher levels of PfCSP-
specific humoral immune responses. Importantly, a single i.v. dose of AAV8-PfCSP
recruited CD8+ T cells, especially resident memory CD8+ T cells, in the liver. These data
org June 2021 | Volume 12 | Article 6129101125
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suggest that boost with i.v. AAV8-PfCSP can improve humoral and cellular immune
responses in BALB/c mice. Therefore, this regimen holds great promise as a next-
generation platform for the development of an effective malaria vaccine.
Keywords: human adenovirus serotype 5, adeno-assoicated virus, AAV8, Plasmodium falciparum circumsporozoite
protein, malaria, vaccine
INTRODUCTION

Malaria remains an important cause of global morbidity and
mortality, predominantly in infants and young children in sub-
Saharan Africa. Numerous efforts have been made to develop an
effective malaria vaccine. The most clinically advanced malaria
vaccine to date, RTS,S/AS01 (also known as Mosquirix™), is a
protein-in-adjuvant component vaccine based on the Plasmodium
falciparum circumsporozoite protein (PfCSP), which targets the
pre-erythrocytic parasite stage and has been partially successful in
human clinical trials. However, a phase III clinical trial in sub-
Saharan Africa found that RTS,S/AS01 has limited efficacy (18%–
26% in infants) in the first year after vaccination, and that its
protection level wanes rapidly, dropping to almost zero in the
fourth year after vaccination (1, 2).

The development of an effective malaria vaccine has been
impeded by two major spatiotemporal factors: liver
microanatomy and parasite biology. Within 30 minutes of
Plasmodium sporozoites entering a new host after it has been
bitten by a Plasmodium-infected female mosquito, the parasites
reaching the liver invade hepatocytes. Later it undergo
exoerythrocytic schizogony, and are subsequently released into
the circulation as thousands of blood-stage merozoites. Therefore,
to be effective, a pre-erythrocytic vaccine should induce a robust
cell-mediated immune response in the liver, and this response
must clear the parasites or infected hepatocytes within a narrow
window of 5 to 7 days after liver infection (3). CD8+ T cells are
necessary for protection against intrahepatic malaria parasites, and
viral-vectored vaccines are better at inducing CD8+ T cells than
protein-in-adjuvant regimens (4). Recombinant adeno-associated
virus (AAV) has emerged as a promising viral vector for use in the
development of effective and safe vaccines due to its broad tissue
tropism, non-pathogenicity, and ability to induce efficient and
long-term gene expression without causing toxicity in vivo (5).
Moreover, the low prevalence of neutralizing antibodies against
the viral capsid in human sera, rapid viral uncoating, and excellent
safety profile in human clinical trials underpins the position of
AAVs as viral vector-based vaccination tools (6).

We recently reported that AAV1 has the potential to induce
specific antibodies targeting malaria vaccine candidate antigens
(e.g., PfCSP and Pfs25). It also affords durable protection in a
rodent model when administered following intramuscular (i.m.)
injection of an adenovirus-vectored vaccine, but only when
AAV1 is administered as the booster, not as the prime (7, 8).
Differences in cell entry, tissue tropism, and/or interactions with
host innate immune factors among the AAV serotypes can
dictate the adaptive immune responses in the host following
administration of recombinant AAV (rAAV) (9). Consequently,
org 2126
the administration of rAAV encoding different pathogenic
antigens by various delivery methods can induce immunized
animals to produce varying immune responses (10–12). The
strategy behind the immunization regimen tested in the present
study was to generate and maintain the level of T cell-mediated
immune responses in the liver to confer adequate protection by
efficiently delivering the pfcsp gene into hepatocytes using a liver-
directed AAV serotype 8 (AAV8) vaccine construct.

Thus, we performed a comparative study in BALB/c mice to
evaluate the immune responses and protective efficacy induced
by immunization regimens each consisting of a prime with the
i.m.-delivered human adenovirus type 5 (AdHu5) vaccine and an
AAV1 or AAV8 booster vaccine delivered by i.m. or intravenous
(i.v.) injection. Together with the induction of strong humoral
and cellular immune responses from the AAV-based booster
vaccine, the introduction of a pre-erythrocytic antigen into the
liver by a hepatotropic AAV8 vaccine may result in the direct
induction of liver-specific cellular immune responses capable of
killing malaria parasites in the liver, the organ where they develop
into their exoerythrocytic form and multiply by schizogony.
MATERIALS AND METHODS

Ethics Statement
All animal care and handling procedures were performed under
the approved guidelines of the Animal Care and Ethical Review
Committee of Kanazawa University (No. 22118–1) and Jichi
Medical University (No. 17086-01), Japan. All efforts were made
to minimize animal suffering during the experiments.

Parasites and Animals
Female inbred BALB/c and ddY mice were obtained from Japan
SLC (Hamamatsu, Shizuoka, Japan). BALB/c mice were used to
assess tissue tropism, cellular immune responses, and protection
from challenge infections. A transgenic P. berghei parasite
expressing full-length PfCSP in place of PbCSP (PfCSP-Tc/Pb)
was used for the protective efficacy experiments as described
previously (13–15). This transgenic parasite was maintained in
the Laboratory of Vaccinology and Applied Immunology,
Kanazawa University. Anopheles stephensi mosquitoes (SDA
500 strain) were infected with the parasites by allowing them
to feed on parasitized 6-week-old ddY mice.

Recombinant Viral-Vectored Vaccines
AAV1 and AAV8 expressing luciferase (AAV1-Luc or AAV8-Luc,
respectively) were generated as described previously (16, 17).
AdHu5-PfCSP-G, AAV1-PfCSP-G, and AAV8-PfCSP-G were
June 2021 | Volume 12 | Article 612910
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also generated as described previously (7, 16). Briefly, the codon-
optimized gene cassette encoding a GPI anchor-lacking full-length
PfCSP (Leu19-Val377) gene from P. falciparum 3D7 strain was
fused between the mouse IgGk signal peptide and the membrane
anchor sequence of the vesicular stomatitis virus (VSV)-G protein
to direct localization and efficient translocation of the antigen to
the cell membrane, respectively. The posttranscriptional
regulatory element from woodchuck hepatitis virus (wpre) was
then inserted into the gene cassette to enhance the expression of
PfCSP protein in mammalian cells. The resulting gene construct
was inserted into pAd/PL-DEST (Invitrogen, Carlsbad, CA, USA)
under the control of a strong synthetic CAG promoter sequence.
The adenovirus was produced (15), purified, and titrated using the
Fast-Trap Adenovirus Purification and Concentration Kit
(Millipore, Temecula, CA, USA) and the Adeno-X™ Rapid
Titer Kit (Clontech, Palo Alto, CA, USA) according to the
manufacturers’ protocols.

In the case of the AAV vectors, the gene construct was
introduced into pAAV-MCS under the control of a universal
cytomegalovirus (CMV) promoter sequence to construct pAAV-
CMV-sPfCSP2-G(+). These plasmids were used to produce the
AAV1-PfCSP-G and AAV8-PfCSP-G constructs by transfecting
HEK293 cells, as described elsewhere (11, 12). AdHu5-PfCSP-G,
AAV1-PfCSP-G, and AAV8-PfCSP-G were re-named AdHu5-
PfCSP, AAV1-PfCSP, and AAV8-PfCSP, respectively, in the
present study.

In Vivo Bioluminescent Imaging
AAV1-Luc and AAV8-Luc were injected into the right tibialis
anterior muscles or tail veins of the BALB/c mice (n = 3; 1.0 ×
1011 plaque-forming units (pfu)/mouse) on day 0. The animals
were anesthetized with a ketamine (100 mg/kg)/xylazine (10 mg/
kg) mixture and, after 10 minutes, D-Luciferin (15mg/ml; OZ
Biosciences, Marseille, France) was administered intraperitoneally
(i.p.) (150 µl/mouse) at the appropriate time points. On days 8 or
224, the sacrificed mice from this experiment were dissected to
measure liver bioluminescence. Luciferase expression in their
livers (and whole bodies) was detected using the IVIS® Lumina
LT in vivo imaging system (PerkinElmer, Waltham, MA, USA) as
described previously (15, 16). The accumulated emissions were
calculated, and a color heatmap was used to show the expression
intensities. The visible in vivo luminescent images in the mice
represent the total flux of photons in photons/second/cm2 (p/s/
cm2) in the region of interest (ROI). The measured signal intensities
are represented by radiance (p/s/cm2/sr), a value that refers to the
number of photons per second that leave a square centimeter of
tissue and radiate into a solid angle of one steradian (sr).

Immunoblotting
HEK293T or Hepa1-6 cells (4.0 × 104 cells/well) were transduced
with AdHu5-PfCSP at a multiplicity of infection (MOI) of 3, with
AAV1-PfCSP (MOI = 105), or with AAV8-PfCSP (MOI = 105)
after seeding onto 48-well plates. The cell lysates collected using
Laemmli buffer at 48 h post-infection were electrophoresed on
10% sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gels
under reducing conditions. Proteins were transferred onto
Immobilon FL® PVDF membranes (Merck Millipore, Tokyo,
Frontiers in Immunology | www.frontiersin.org 3127
Japan). The resulting blots were blocked in 5% skim milk (Wako
Chemical Inc., Tokyo, Japan) in PBS containing 0.1% Tween 20
(PBS-T). Blots were probed with the anti-PfCSP 2A10
monoclonal antibody (mAb) in 5% skim milk/PBS-T. After
PBS-T washing, each membrane was probed with goat anti-mouse
IgG conjugated to IRDye 800cw (Rockland Immunochemicals,
Limerick, PA, USA) diluted in 5% skim milk. The membrane was
visualized using an Odyssey infrared imager (LI-COR, Lincoln,
NE, USA).

Immunofluorescence Assay
HEK293T cells were transduced with AdHu5-PfCSP (MOI = 3),
AAV1-PfCSP (MOI = 105), or AAV8-PfCSP (MOI = 105) on an
8-well chamber slide. At 48 h post-infection, the samples were
treated with ice-cold 100% methanol (permeabilized) or 4%
paraformaldehyde (non-permeabilized) for 15 min. The
samples were then blocked with 10% normal goat serum
(NGS) in PBS and incubated with 2A10 mAb in 10% NGS/
PBS at room temperature. After three PBS washes, the samples
were incubated with fluorescein isothiocyanate (FITC)-conjugated
goat anti-mouse IgG (Invitrogen, Carlsbad, CA, USA). After PBS
washing, the slide was mounted with a drop of VECTASHIELD™

containing 4′, 6-diamidino-2-phenylindole (DAPI; Vector
Laboratories, Burlingame, CA, USA). All micrographs were
acquired by BZ-X710 fluorescence microscopy (Keyence Corp.,
Tokyo, Japan).

Immunization and Parasite Challenge
Mice were immunized with an i.m. injection of 5 × 107 pfu
AdHu5-PfCSP into the musculus tibialis followed by a booster
with 1 × 1011 vector genome (vg) per mouse of either AAV1- or
AAV8-PfCSP administered i.m. or i.v. into the tail vein with a 6-
week interval. Control mice received 100 µl of endotoxin-free
PBS. Six weeks after the last immunization, the mice were
challenged with an i.v. dose of 500 PfCSP-Tc/Pb sporozoites
per mouse suspended in RPMI-1640 media (Gibco, Life
Technologies, Tokyo, Japan). Infections were monitored (on
days 4 to 14) using the Giemsa-stained thin blood smears
obtained from the tail. At least 20 fields (magnification: ×1,000)
were examined before a mouse was deemed to be malaria-
infection negative. Protection was defined as the complete
absence of blood-stage parasitemia on day 14 after challenge.

Enzyme-Linked Immunosorbent Assay
The PfCSP-specific antibody titers in the sera collected from the
tail vein blood samples of the immunized mice, which were taken
1 day before the booster dose and sporozoite challenge, were
measured by ELISA as previously described (7). Briefly, Costar®

EIA/RIA polystyrene plates (Corning Inc., NY, USA) pre-coated
with Escherichia coli-produced recombinant PfCSP (400 ng/well)
were blocked with 1% bovine serum albumin (BSA) in PBS and
then incubated with the serially diluted serum samples or with
the negative or the positive controls (2A10 mAb). An anti-mouse
IgG conjugated with horseradish peroxidase (HRP) (Bio-Rad
Lab Inc., Tokyo, Japan) was used as the secondary antibody. The
endpoint titer was expressed as the reciprocal of the last dilution
that produced an optical density (O.D.) at 414 nm of 0.15 U
June 2021 | Volume 12 | Article 612910
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above the values of the negative controls (<0.1). All mice used in
the experiments were seronegative before immunization.

Liver DNA Isolation and Quantitation
Whole livers were obtained from the vaccine-protected mice in
the challenge study promptly after the animals were sacrificed.
Each liver was placed in a 5-ml plastic tube containing 4.0 ml of
ALT buffer (Qiagen, Valencia, CA, USA), and then homogenized
at 2,500 rpm for 3.5 min using a mT-12 bead crusher (Tatitec,
Saitama, Japan). Total DNA was isolated from 100-µl aliquots of
the resulting homogenates using a DNA isolation kit (Qiagen) in
accordance with the manufacturer’s instructions. A quantitative
analysis of the DNA was performed by qPCR with SYBR Green
Premix Ex Taq (Takara, Tokyo, Japan). The oligonucleotide
primers used for qPCR are shown in Supplemental Table 1.
pAAV-CMV-sPfCSP2-G(+) plasmid DNA was used to generate
a standard curve for the qPCR assays targeting the pfcsp gene
sequences. A Ct cutoff was determined for each assay, whereby
any well with a Ct value ≥ the mean Cq of the 10

3 standard was
omitted from the analysis because it would lie outside of the
linear range of the assay. The fit-points method for absolute
quantification was used for the analysis, and the noise band and
threshold were set to Auto (18).

Immunohistochemistry on the
Liver Sections
Whole livers from the vaccine-protected mice in the challenge
experiments were obtained after perfusion with 4%
paraformaldehyde in 0.1M phosphate buffer under anesthesia.
The liver tissues were subsequently immersed in the same
fixatives, and 8-µm-thick cryosections were obtained following
infiltration with 30% sucrose in PBS. The sections were heated at
95°C for 10 min in 0.5% Immunosaver (Nisshin EM, Tokyo,
Japan), treated with 100% methanol for 10 min, and incubated
overnight at 4°C in PBS containing 2.5% BSA and the 2A10
mAb. Some sections from the same mice were incubated in 2.5%
BSA in PBS without 2A10 mAb for use as negative controls. After
washing, all the sections were incubated in PBS containing Alexa
488-conjugated donkey anti-mouse IgG and 2.5% BSA for 3 h at
room temperature. Sections were observed by light microscopy
after coverslipping with VECTASHIELD™ mounting medium
(Vector Laboratories, Burlingame, CA, USA) containing 4’,6-
diamidino-2-phenylindole (DAPI).

Liver-Resident Memory CD8+ T Cells
Mice were sacrificed 2 weeks after the i.v. administration of
AAV8-PfCSP (1.0 × 109, 1.0 × 1010, or 1.0 × 1011 vg) or PBS into
their tail veins. After being perfused with buffer 2 (66.74 mM
NaCl, 6.71 mM KCl, 6.31 mM CaCl2, 100 mM HEPES, 0.226 mM
BSA) containing collagenase type IV (0.53 mg/ml, Sigma-Aldrich,
St. Louis, UK), the livers were harvested and homogenized using
frosted glass to generate single-cell suspensions. The cells were
passed through a 100-µm mesh, resuspended in 35% Percoll/PBS,
and centrifuged at 500 ×g for 20 min at room temperature. The red
blood cells were subsequently lysed. Spleen cells were filtered
through a 40-µm mesh and the buffy coat layer resulting from
density gradient centrifugation with Histopaque®-1083 (Sigma-
Frontiers in Immunology | www.frontiersin.org 4128
Aldrich) was collected. After the number of cells in the pellets and
supernatants, excluding debris, was counted, the cells were
antibody-stained in the presence of TruStain FcX™ Ab. The
following antibodies and tetramer were used to stain the liver
TRM cells: CD45-FITC, CD8b-PerCP-Cy5.5, CD44-Brilliant
Violet 510™, CD62L-APC, CD69-Brilliant Violet 421™, CXCR6
(CD186)-PE-Cy7, KLRG1 (MAFA)-APC-Cy7, and PE-conjugated
PfCSP tetramer (the H-2Kd-restricted PfCSP NYDNAGTNL
epitope was provided by the National Institutes of Health
Tetramer Core). The cells were washed and flow cytometrically
analyzed using BD FACSVerse (the gating strategy is shown in
Figure S1). The number of leukocytes per gram of tissue was
calculated based on the percentage of CD45+ cells.

Statistical Analyses
Statistical analyses were performed in Prism version 7.0a
(GraphPad Software Inc., La Jolla, CA, USA) and RStudio.
Depending on the data distribution, a Student’s t-test or
Mann–Whitney rank test was used for comparing two groups.
To assess the differences among the immunization groups, a
Kruskal–Wallis test with Dunn’s correction for multiple
comparisons or Tukey’s multiple comparison was used. All
ELISA end-point titers were log10-transformed before analysis.
The infection protection level was analyzed using Fisher’s exact
test. A p-value of <0.05 was considered statistically significant.
RESULTS

AAV8 Exhibits a Stronger Luciferase
Expression Profile Than AAV1
Among the wide range of AAV serotypes, AAV1 and AAV8 are
the two best options for producing an efficient, durable transfer
and expression of the transgene in the desired tissue (19, 20).
Previous in vivo bioluminescence imaging system (IVIS) studies
have revealed that the AAV8 vector is highly hepatotropic after
i.v. administration, whereas AAV1 produces an intense
expression in skeletal muscle after its i.m. administration (21,
22). Therefore, we compared the expression profiles of these two
promising serotypes following either i.m. or i.v. administration of
a standard dose of 1011 vg/mouse. The resulting luminescence
was robust; it gradually increased from day 0 to day 7, plateaued
within 10 days, and persisted for over 224 days. The i.m.
administration of AAV1-Luc or AAV8-Luc induced extensive
luciferase expression (1011 p/s/cm2/sr) in the right medial thigh
muscles (Figure 1A). When AAV1 or AAV8 were i.m.
administered, the luciferase activity levels did not significantly
differ between them. Conversely, following i.v. administration of
these vectors, the luciferase expression level transduced by AAV8
was ~100 times higher than that transduced by AAV1
(Figures 1B, C). Consistent with the results from a previous
study, luciferase expression (108 p/s/cm2/sr) was also observed in
the liver after i.m. administration of AAV8-Luc although the
intensity was not as higher as i.v. route of delivery. Unlike in
C57BL/6 mice, where it was reported that after luciferase was
initially expressed in the livers of mice receiving i.m. AAV8-Luc,
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the luciferase levels gradually became undetectable (23), we
found that luciferase expression in our BALB/c mice persisted
for more than 224 days post-administration (Figures 1, 2).

Moreover, the IVIS imaging results for the livers collected from
mice on day 8 or day 224 post-administration of AAV-Luc showed
that systemic administration of AAV8 induced ~24–43 times better
liver luciferase enzyme activity when compared with i.m.
administration (Figure 2). In the cases of i.v. or i.m. administration
of AAV1, no trace of luciferase activity (detection limit ~6.0 × 103 p/
s/cm2/sr) was observed in the liver. The high levels of hepatic- and
muscular-directed transgene transduction and expression we
observed after a single dose of the AAV vector was administered
support the superiority of AAV8 over AAV1.

AAV Construction and In Vitro
Transduction Efficiency in Mammalian
Cell Lines
In the liver-directed vaccine delivery experiments, we constructed
an AAV8 similar to that of the AAV1-PfCSP vaccine described in
Frontiers in Immunology | www.frontiersin.org 5129
our previous study (7). This construct expresses the full-length
PfCSP, whereby PfCSP is anchored on the surfaces of the infected
cells via the VSV-G protein membrane anchor, followed by the
wpre sequence, under the control of the CMV promoter. While the
CMV promoter-controlled transgene construct ensures the strong
and constitutive expression of PfCSP, wpre enhances PfCSP gene
expression. We also included VSV glycoprotein G because antigen
display on the transduced cells will be more efficient in its
presence. The immunofluorescence analysis of HEK293T cells
transduced with AdHu5-PfCSP, AAV1-PfCSP or AAV8-PfCSP
vectors revealed that PfCSP had accumulated in both the cell
cytoplasmic regions and on the cell surfaces (Figure 3A). We next
evaluated the transduction efficacy and resulting transgene
expression of the virus-vectored vaccines in immortalized cell
lines (HEK293T or Hepa1-6) using immunoblotting assays.
Compared with AAV8-PfCSP, an identical infection dose
(MOI = 105) of AAV1 transduced more efficient expression in
the HEK293T cell line (Figure 3B). This IVIS result led us to expect
greater transduction and expression efficiency with AAV8-PfCSP
A

B C

FIGURE 1 | Comparison of long-term transgene expression between AAV1-Luc and AAV8-Luc. (A) AAV1-Luc or AAV8-Luc was injected into the right medial thigh
muscles or tail veins of mice (n = 2; 1.0 × 1011 vg/mouse) on day 0. Luciferase expression at different time points was detected using the IVIS Lumina LT Series III
in vivo imaging system. The heatmap images visible in the mice represent the total flux of photons (p/s/cm2) in the area of interest. Rainbow scale ranges are
expressed in radiance (p/s/cm2/sr. (B, C) The mean total flux of photons is shown as the region of interest (ROI) from day 0 to day 224 after i.m. (B) or i.v.
administration (C) AAV-Luc administration.
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than with the AAV1 vector in the Hepa1-6 immortalized mouse
hepatic cell line. However, similar to that observed with the
HEK293T cell results, a lower level of PfCSP expression was
observed following AAV8-PfCSP transduction in the Hepa1-6
cell line (Figure 3C). This result may be explained by an
improved ability of the liver tissue to take up AAV8 virus in a
living organism unlike that which occurs in hepatic cell cultures.

Administering AAV8-PfCSP by the I.V.
Route After I.M. Administration of AdHu5-
PfCSP Confers Complete Protection
Against Transgenic P. berghei
Expressing PfCSP
To investigate the protective efficacy of the prime-boost regimens,
mice primed by i.m. injection with the AdHu5-PfCSP vaccine
followed by an i.m. or i.v. booster vaccine dose of AAV1 or AAV8
were challenged with i.v. administration of 500 transgenic PfCSP-
Tc/Pb sporozoites. Consistent with our previous results (7), the
i.m. AdHu5-PfCSP/i.m. AAV1-PfCSP regimen elicited an 80%
protection rate. A similar level of protection (78%) was observed
in mice receiving the i.m. AdHu5-PfCSP/i.v. AAV1-PfCSP
regimen (Table 1). The immunization regimen of i.m. AdHu5-
PfCSP/i.v. AAV8-PfCSP induced significantly better protection
against challenge than did the immunization regimen of i.m.
AdHu5-PfCSP/i.m. AAV8-PfCSP (100% vs 60%, p < 0.05)
(Figure 4). The strong protective efficacy of i.m. AdHu5-
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PfCSP/i.v. AAV8-PfCSP against sporozoite challenge indicates
that the successful elimination of sporozoites by PfCSP-specific
immune responses was not only dependent on the AAV serotype
but also on the administration route.

Induction of a Potent Humoral Immune
Response in Mice Immunized With
AdHu5-PfCSP/AAV8-PfCSP
To compare the immunogenicity of the different vaccine regimens,
we first assessed the PfCSP-specific humoral immune responses
among the mouse groups receiving the various booster
immunization regimens and administration routes (i.e., the PBS-
treated control mice and the four groups of mice that received a
booster dose with i.m. or i.v. AAV1-PfCSP or AAV8-PfCSP. All
booster doses were administered 6 weeks after the mice were
primed with i.m. AdHu5-PfCSP. We collected sera from tail veins
1 day before the booster injections were given and the sporozoite
challenge infections commenced, and the samples were assessed
by ELISA to measure the induction of PfCSP-specific humoral
immune responses. All four groups of immunized mice had
similar anti-PfCSP antibody levels after i.m. priming with
AdHu5-PfCSP (Figure 5). Six weeks after the booster
immunization, significant increases in the anti-PfCSP antibody
titers were observed in all the test groups. Overall, the results
indicate that after transduction with the booster dose, all the
regimens induced high-level, PfCSP-specific humoral immune
FIGURE 2 | Comparison of luciferase expression in the liver between AAV1-Luc and AAV8-Luc. Luciferase expression in the liver on day 8 or day 224 was detected
using the IVIS Lumina LT Series III in vivo imaging system. AAV1-Luc or AAV8-Luc was injected into the right medial thigh muscles or tail veins of mice (n = 2; 1.0 ×
1011 vg/mouse) on day 0. On days 8 and 224, mice were dissected 15 min after D-luciferin was administered i.p. and luciferase expression in the liver was
measured. The heatmap images in the mice represent the total flux of photons (p/s/cm2) in the area of interest. Rainbow scale ranges are expressed in radiance (p/
s/cm2/sr). The mean total flux of photons is shown as the region of interest on days 8 and 224 after AAV-Luc administration with the indicated serotype and route.
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responses. A similar high-level antibody response was observed
with the i.m. AAV1-PfCSP booster, a finding consistent with that
reported in our previous study (7), but the immunity induced with
the i.v. AAV1-PfCSP booster was significantly lower (p<0.01).
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However, the reduced humoral immune responses did not
interfere with the vaccine’s protective efficacy (80% i.v. vs 78%
i.m.). This finding is similar to that of the i.v. AAV8-boosted
mouse group in that although a high anti-PfCSP response was
A

B C

FIGURE 3 | PfCSP expression in cells transduced with AAV-PfCSP. (A) Cellular localization of PfCSP expression in transduced cells as assessed by an
immunofluorescence assay. HEK293T cells were transduced with AdHu5-PfCSP (MOI = 3), AAV1-PfCSP (MOI = 105), or AAV8-PfCSP (MOI = 105). After 48 h, the
cells were fixed with methanol (permeabilized) or paraformaldehyde (non-permeabilized), and then treated with 2A10 mAb followed by FITC-conjugated anti-mouse
secondary antibody and simultaneous staining with 4′, 6-diamidino-2-phenylindole (DAPI; blue). Original magnification, 1,000. Bars = 20 µm. (B, C) Detection of
PfCSP in HEK293T (B) or Hepa1-6 (C) cells transduced with AdHu5-PfCSP (MOI = 3, lane 3), AAV1-PfCSP (MOI = 105, lane 4), or AAV8-PfCSP (MOI = 105, lane 5).
Cell lysate proteins were separated by 10% SDS-PAGE and immunoblotted with 2A10 mAb.
TABLE 1 | Protective efficacies against sporozoite challenge by immunization with heterologous prime-boost regimens in micea.

Prime (route) Boost (route) Protected/challenged (% protection)b,c

PBS PBS 0/10 (0)
AdHu5-PfCSP (i.m.) AAV1-PfCSP (i.m.) 7/9 (78)****
AdHu5-PfCSP (i.m.) AAV1-PfCSP (i.v.) 8/10 (80)****
AdHu5-PfCSP (i.m.) AAV8-PfCSP (i.m.) 6/10 (60)****
AdHu5-PfCSP (i.m.) AAV8-PfCSP (i.v.) 10/10 (100)****
aMice were immunized with an i.m. injection of 5 × 107 pfu AdHu5-PfCSP followed by a booster with 1 × 1011 vg per mouse of either AAV1- or AAV8-PfCSP administered i.m. or i.v. into the
tail vein at a 6-week interval. The immunized mice were challenged by i.v. administration of 500 PfCSP-Tc/Pb sporozoites. They were then screened for blood-stage infections by
microscopic examination of Giemsa-stained thin smears of tail blood. Protection was defined as the complete absence of blood-stage parasitemia on day 14 post-challenge.
bProtective efficacy was calculated as described in the Materials and Methods.
cSignificant difference from the control/PBS group as determined using Fisher’s exact probability test (****p < 0.0001).
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observed (i.v. AAV1 vs i.v. AAV8, p<0.01), the AAV1 vaccines
failed to elicit complete protection. Moreover, no significant
difference in the total IgG level was observed between the
protected and non-protected subgroups of the vaccinated mouse
groups (Figure S2). Interestingly, i.m. AdHu5-PfCSP/i.m. AAV8-
PfCSP and i.m. AdHu5-PfCSP/i.v. AAV8-PfCSP regimens
produced similar total IgG levels against PfCSP with varying
protective efficacies (60% i.v. vs 100% i.m., p<0.05).

AAV8 Induces Superior Liver-Directed
Gene Transfer Compared With AAV1
The ability of i.m. AdHu5-PfCSP/i.v. AAV8-PfCSP immunization to
transduce pfcsp gene expression in the liver was confirmed by
immunohistochemistry (Figure 6A). Therefore, we performed
Frontiers in Immunology | www.frontiersin.org 8132
qPCR to quantify the DNA transduction levels in the livers
dissected from the mice that were protected against sporozoite
challenge (Figure 6B). The qPCR results indicated that the i.m.
AdHu5-PfCSP/i.v. AAV8-PfCSP regimen was ~2.5 times better at
transducing hepatocytes in the liver compared with the i.m. AdHu5-
PfCSP/i.m. AAV8-PfCSP regimen. No traceable signal was detected
in the liver DNA from the AAV1-immunized mouse groups.

AAV8-PfCSP I.V. Administration Induces
Liver-Resident Memory CD8+ T Cells
Antigen-expressing hepatocytes can promote the development of
cytotoxic T cells in the liver (24). CD8+ T cell populations and
their subsets were quantified to examine an immunological
indicator of protection after i.v. administration of AAV8-
FIGURE 4 | Protective efficacy of AdHu5-PfCSP prime/AAV-PfCSP boost in immunized mice. Mice (n = 9–10 per group) were immunized with an AdHu5-PfCSP
prime (5 × 107 pfu/mouse)/AAV-PfCSP boost (1 × 1011 vg/mouse) administered with a 6-week interval via the indicated administration routes. Six weeks after
receiving booster immunizations, the mice that were challenged with 500 intravenously administered PfCSP-Tc/Pb sporozoites were checked for blood-stage
infections by microscopic examination of Giemsa-stained thin smears of tail blood. Protection was defined as the complete absence of blood-stage parasitemia on
day 14 post-challenge. The resulting data were statistically analyzed using the Kaplan–Meier log-rank (Mantel–Cox) test. Differences from the PBS group was
assessed by a two-way ANOVA. ****p < 0.0001, and *p < 0.05.
FIGURE 5 | Anti-PfCSP antibody levels in mice immunized with heterologous prime-boost regimens. After immunization with i.m. AdHu5-PfCSP prime (5.0 × 107

pfu/mouse)/AAV-PfCSP boost (1.0 × 1011 vg/mouse), mice were challenged with 500 PfCSP-Tc/Pb sporozoites. Sera were collected one day before the boost and
before the sporozoite challenge from the mice used in the challenge study. Anti-PfCSP antibody titers were determined by ELISA. Bars and error bars indicate the
means and SDs of the values, respectively. Between-group differences were assessed with the Kruskal–Wallis test and Dunn’s correction for multiple comparisons.
***p < 0.001 and **p < 0.01.
June 2021 | Volume 12 | Article 612910

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shahnaij et al. Sterile Protection With AdHu5/AAV8-Vectored Vaccine
PfCSP. Liver-resident memory T (TRM) cells were extensively
investigated because these cells may act as sentinels against
invading pathogens (25, 26). TRM cells are defined as CD69+/
KLRG1lo or CD69+/CXCR6+ effector memory T (TEM) cells
(CD8+CD62LloCD44hi cells). Two weeks after administering
i.v. AAV8 to each mouse in a dose-dependent manner, the
number of liver CD8+ T cells, especially those belonging to the
TEM cell population, was increased at a dose of 1011 vg per
mouse, whereas these cells were gradually decreased in the spleen
(Figure 7A). PfCSP-specific CD8+ liver TRM cells (both KLRG1lo

and highly efficient CXCR6+ TRM cells) were significantly
induced by immunization with the standard dose of 1011 vg
compared with the non-immunized group (Figure 7B). These
results suggest that vaccine doses below 1.0 × 1011 vg/mouse are
unable to efficiently recruit T cells to the liver, particularly
antigen-specific CD8+ TRM cells, 2 weeks after immunization
with AAV8. This result is noteworthy because such cells may
play an important role in eliminating sporozoite and/or infected
hepatic cells upon parasite challenge.
DISCUSSION

Our recent study showed that a heterologous AdHu5-PfCSP-prime
and AAV1-PfCSP-boost immunization regimen administered by
the i.m. route in a murine model can elicit 80% protection against
sporozoite challenge with a strong and durable PfCSP-specific
humoral and cellular immune response (7). We hypothesized that
the induction of local immunity in the liver could be important for
preventing the exoerythrocytic stages of malaria and subsequent
blood infection. Therefore, we investigated whether hepatotropic
AAV8 was capable of stimulating intense transgene expression and
effective T cell recruitment in the liver. We also compared the
protective efficacies of i.m. or i.v. AAV1-PfCSP and AAV8-PfCSP
boost regimens administered 6 weeks after i.m. AdHu5-PfCSP
priming. Notably, immunization with the i.m. AdHu5-PfCSP-prime/
Frontiers in Immunology | www.frontiersin.org 9133
i.v. AAV8-PfCSP-boost regimen elicited 100% protection against
sporozoite challenge.

Vaccines aimed at inducing humoral and cell-mediated
immunity against malaria parasites have been hindered by
parasite biology and liver microanatomy (3). Successful parasite
clearance in the short window of time (5 to 7 days) during the
asymptomatic pre-erythrocytic malarial infection stage requires
the generation and maintenance of an adequate amount of
Plasmodium-specific humoral and cellular immune responses to
confer protection (24, 27, 28). Our heterologous prime/boost
immunization regimens generated a high level of PfCSP-specific
antibodies in our mouse model (Figure 5), although the anti-
PfCSP antibody titers were not correlated with protective efficacy
against sporozoites (Figure S2). However, it has been suggested
that anti-CSP antibody titers can be used as surrogate markers of
protection. Therefore, such titers were previously employed to
study the magnitude and duration of RTS,S/AS01 efficacy (29).
Thus, the strong PfCSP-specific antibody titer induced by our two-
dose AdHu5/AAV immunization strategy, especially by the i.m.
AdHu5-PfCSP-prime/i.v. AAV8-PfCSP-boost regimen, is a
crucial feature of translatable vaccines. Similarly, we investigated
the recruitment and proliferation of CD8+ T cells in the liver
following i.v. AAV8 administration because induced CD8+ T cells
are reportedly required for sterile protection and are correlated
with efficacy against challenge with malaria parasites (3, 30, 31).
However, our current evaluation system did not address whether
the protection rate was correlated with the anti-PfCSP IgG level
and/or with liver-resident T cells. To elucidate the mechanism(s)
underlying the protective efficacy of the i.m. AdHu5-PfCSP-
prime/i.v. AAV8-PfCSP-boost regimen will require further
experiments to clarify how immune responses operate in the
protected and non-protected mice.

Because of the high abundance of a laminin co-receptor and a
possible unknown receptor in the liver, AAV8-based vectors are
very efficiently taken up by the parenchymal cells in the liver (32).
Consistent with other reports, our results confirm the rapid and
A B

FIGURE 6 | PfCSP expression profiles in the livers of the protected mice. Mice were primed with i.m. AdHu5-PfCSP (5.0 × 107 pfu/mouse) and boosted with AAV-
PfCSP (1.0 × 1011 vg/mouse) followed by a challenge with 500 PfCSP-Tc/Pb sporozoites. Whole livers were obtained from the protected mice in the challenge
study. (A) Immunohistochemistry was performed on the liver microsections with 2A10 mAb followed by Alexa 488-conjugated anti-mouse secondary antibody
(green). (A, left panel) Arrows show PfCSP-expressing hepatocytes. (A, right panel) As a negative control, a liver section from the same mouse was incubated with
the solution without the mAb. Nuclei were simultaneously stained with DAPI (blue). (B) Quantitation of the pfcsp gene in the livers collected from the protected mice
in the challenge experiments. The pAAV-CMV-sPfCSP2-(G+) plasmid was used to generate a standard curve with which to determine the pfcsp copy number in the
liver. The mouse gapdh gene was used for normalization. ‘i.m.’ and ‘i.v.’ indicate the route of booster immunization with AAV1 or AAV8 following AdHu5 i.m. prime.
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efficient in vivo transgene expression transduced by AAV8; thus, an
AAV8-based vector is an attractive vector to choose for transgene
delivery to the liver (3, 6, 22, 33). We found that, depending on the
dose used, AAV8 could transduce as much as 90%–95% of
hepatocytes in the mouse liver following its i.v. administration
(34), which delivered ~2.5 timesmore DNA into the liver compared
with i.m. administration (Figure 6B). Antigen expression by
hepatocytes may modulate the T-cell immune response, thereby
improving the clinical efficacy of rAAV (3). Our flow cytometric
experiment revealed that, in a dose-dependent manner, CD8+ T
cells, particularly TEM cells and TRM cells, were generated and
recruited to the liver following a single dose of i.v. AAV8 (Figure 7).
Higher efficacy against P. falciparum malaria is correlated with
higher numbers of CXC6 TRM cells in an animal model and
circulating IFN-g secreting TEM cells in human recipients after
immunization with attenuated P. falciparum sporozoites (35, 36).

We investigated the capability of i.v. AAV8-PfCSP to recruit
and induce PfCSP-specific TRM cells in the liver. Because liver-
resident TRM cells are capable of providing protection against a
malaria sporozoite challenge (3, 33, 37), the observed significant
increase in the number of TRM cells may act to improve the
Frontiers in Immunology | www.frontiersin.org 10134
protection rate. TRM cells migrate to and patrol the liver sinusoids
using a crawling motion and by scanning for the cognate antigen
on the cell surfaces of the hepatocytes and/or the invading malaria
sporozoites (37). Cytokine production (e.g., interferon-g, IFN-g;
tumor necrosis factor a, TNF-a) and cytotoxicity marker
production [e.g., granzyme B and CD107a (33)], are associated
with TRM cell-mediated protection against malaria, indicating that
these cells may be poised to respond to immediate threats (37).

The use of both adenovirus and AAV as vaccine vehicles has
been shown to be safe in human trials (38, 39). However, capsid-
specific T-cell responses and pre-existing natural antibodies
against these vectors from previous exposure to natural
infections with them, particularly adenovirus transduction, are
important considerations for their clinical application. AAV8, a
relatively new isolate, has been cloned from nonhuman primate
tissues, and experience with vectors based on this serotype is
limited (40). However, the seroprevalence of anti-AAV8 capsid
protein antibodies and cross-reactions with natural antibodies
against other AAV serotypes were found to be low in human sera
and, when present, they were found to have low activities (41,
42). Because a high prevalence of AdHu5 viral capsid-specific
A

B

FIGURE 7 | T-cell responses in the liver and spleen after i.v. immunization with AAV8. Mice were immunized with AAV8-PfCSP (n = 3 per group; 1.0 × 109, 1.0 ×
1010, or 1.0 × 1011 vg) or PBS via i.v. administration into their tail veins. After 2 weeks, the CD8+ T cells collected from the livers and spleens were stained as
described in the Materials and Methods. Gated CD45+CD8+T-cells in livers (A, lower panels) or spleens (A, upper panels) were analyzed for CD62L and CD44
expression. The mean absolute numbers of the spleen or liver CD8+T cells are shown in the right-hand graphs. (B) Flow cytometric measurement of CD69 + and
KLRG1lo (B, upper panels) or CXCR6+ (B, lower panels) tetramer-stained, CSP-specific liver TRM cells in the CD45+CD8+CD62LloCD44hi TEM population. Mean
absolute numbers of the spleen or liver PfCSP-specific CD8+TRM cells are shown in the right-hand graphs. *p < 0.05 by one-way nonparametric ANOVA (Kruskal–
Wallis) followed by the Dunn multiple comparisons test.
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antibody was detected in African countries where malaria
prevalence is high, administrating an AAV8 booster may help
with maintaining the magnitude of the humoral immune
response against the encoded antigen. A better priming vaccine
might be achieved by the application of a different clinically
tested non-immunogenic human or chimpanzee adenoviral
vector [i.e., serotype 26 or serotype 63 (16)].

In summary, we exploited hepatotropic AAV8 as the booster
component in a promising immunization regimen beginning with
an AdHu5 priming vaccine targeting the PfCSP antigen against
the malaria parasite’s liver stage in preclinical settings. AAV8 is
intensely hepatotropic, and its i.v. administration induces robust
expression of the pfcsp gene after its liver-directed delivery.
Consequently, strong PfCSP-specific humoral immune responses
along with high levels of CD8+ T cells, particularly TRM cells, were
generated and recruited in adequate amounts to the liver through
its use. Although further studies are required to assess the
involvement and durability of the T cells conferring the type of
sterile protection we observed, the i.m. AdHu5-PfCSP/i.v. AAV8-
PfCSP immunization regime successfully eliminated transgenic P.
berghei parasites in sporozoite challenge infections and achieved
100% sterile protection in our BALB/c mouse model. Therefore,
we propose that the i.m. AdHu5-PfCSP/i.v. AAV8-PfCSP
immunization regimen has great potential for use in the
development of an effective malaria vaccine.
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Engineered variants of recombinant adeno-associated viruses (rAAVs) are being
developed rapidly to meet the need for gene-therapy delivery vehicles with particular
cell-type and tissue tropisms. While high-throughput AAV engineering and selection
methods have generated numerous variants, subsequent tropism and response
characterization have remained low throughput and lack resolution across the many
relevant cell and tissue types. To fully leverage the output of these large screening
paradigms across multiple targets, we have developed an experimental and
computational single-cell RNA sequencing (scRNA-seq) pipeline for in vivo
characterization of barcoded rAAV pools at high resolution. Using this platform, we
have both corroborated previously reported viral tropisms and discovered unidentified
AAV capsid targeting biases. As expected, we observed that the tropism profile of
AAV.CAP-B10 in mice was shifted toward neurons and away from astrocytes when
compared with AAV-PHP.eB. Transcriptomic analysis revealed that this neuronal bias is
due mainly to increased targeting efficiency for glutamatergic neurons, which we
confirmed by RNA fluorescence in situ hybridization. We further uncovered cell subtype
tropisms of AAV variants in vascular and glial cells, such as low transduction of pericytes
and Myoc+ astrocytes. Additionally, we have observed cell-type-specific transitory
responses to systemic AAV-PHP.eB administration, such as upregulation of genes
involved in p53 signaling in endothelial cells three days post-injection, which return to
control levels by day twenty-five. The presented experimental and computational
approaches for parallel characterization of AAV tropism will facilitate the advancement
of safe and precise gene delivery vehicles, and showcase the power of understanding
responses to gene therapies at the single-cell level.
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1 INTRODUCTION

Recombinant AAVs (rAAVs) have become the preferred gene
delivery vehicles for many clinical and research applications (1, 2)
owing to their broad viral tropism, ability to transduce dividing
and non-dividing cells, low immunogenicity, and stable
persistence as episomal DNA ensuring long-term transgene
expression (3–8). However, current systemic gene therapies
using AAVs have a relatively low therapeutic index (9). High
doses are necessary to achieve sufficient transgene expression in
target cell populations, which can lead to severe adverse effects
from off-target expression (10–12). Increased target specificity of
rAAVs would reduce both the necessary viral dose and off-target
effects; thus, there is an urgent need for AAV gene delivery vectors
that are optimized for cell-type-specific delivery (13). Lower viral
doses would also alleviate demands on vector manufacturing and
minimize the chances of undesirable immunological responses
(14–16). Capsid-specific T-cell activation was reported to be dose-
dependent in vitro (17, 18) and in humans (19, 20). Shaping the
tropism of existing AAVs to the needs of a specific disease has the
potential to reduce activation of the immune system by
detargeting cell types, such as dendritic cells, that have an
increased ability to activate T-cells (21–26).

Several studies have demonstrated that the transduction
efficiency and specificity of natural AAVs can be improved by
engineering their capsids using rational design (27–31) or
directed evolution (32–47). These engineering methods yield
diverse candidates that require thorough, preferably high-
throughput, in vivo vector characterization to identify optimal
candidates for a particular clinical or research application.
Toward this end, conventional immunohistochemistry (IHC)
and various in situ hybridization (ISH) techniques are commonly
employed to profile viral tropism by labeling proteins expressed
by the viral transgene or viral nucleic acids, respectively (10, 32,
34, 45, 48–59).

Although these histological approaches preserve spatial
information, current technical challenges limit their application
to profiling the viral tropism of just one or two AAV variants
across a few gene markers, thus falling short of efficiently
characterizing multiple AAVs across many complex cell types
characteristic of tissues in the central nervous system (CNS). The
reliance on known marker genes also prevents the unbiased
discovery of tropisms since such marker genes need to be chosen
a priori. Choosing marker genes is particularly challenging for
supporting cell types, such as pericytes in the CNS
microvasculature and oligodendrocytes, which often have less
established cell type identification strategies (60, 61). The advent
of single-cell RNA sequencing (scRNA-seq) has enabled
comprehensive transcriptomic analysis of entire cell-type
hierarchies, and brought new appreciation to the role of cell
subtypes in disease (62–66). However, experimental and
computational challenges, such as the sparsity of RNA capture
and detection, strong batch effects between samples, and the
presence of ambient RNA in droplets, reduce the statistical
confidence of claims about individual gene expression (67–69).
Computational methods have been developed to address some of
Frontiers in Immunology | www.frontiersin.org 2138
these challenges, such as identifying contaminating RNA (68),
accounting for or removing batch effects (70–72), and
distinguishing intact cells from empty droplets (69, 73, 74).
However, strategies for simultaneously processing transcripts
from multiple delivery vehicles and overcoming the
computational challenges of confidently detecting individual
transcripts have not yet been developed for probing the
tropism of AAVs in complex, heterogeneous cell populations.

Collecting the entire transcriptome of injected and non-
injected animals also offers an opportunity to study the effects
of AAV transduction on the host cell transcriptome. A similar
investigation has been conducted with G-deleted rabies virus
(75). This study demonstrated that virus infection led to the
downregulation of genes involved in metabolic processes and
neurotransmission in host cells, whereas genes related to
cytokine signaling and the adaptive immune system were
upregulated. At present, no such detailed examination of
transcriptome changes upon systemic AAV injection has been
conducted. High-throughput single-cell transcriptomic analysis
could provide further insight into the ramifications of AAV
capsid and transgene modifications with regard to innate (76–
80) and adaptive immune recognition (20, 81–84). Innate and
adaptive immune responses to AAV gene delivery vectors and
transgene products constitute substantial hurdles to their clinical
development (85, 86). The study of brain immune response to
viral gene therapy has been limited to antibody staining and
observation of brain tissue slices post direct injection. In
particular, prior studies have shown that intracerebral injection
of rAAV vectors in rat brains does not induce leukocytic
infiltration or gliosis (87, 88); however, innate inflammatory
responses were observed (89). Results reported by these methods
are rooted in single-marker staining and thus prevent the
discovery of unexpected cell-type-specific responses. A
comprehensive understanding of the processes underlying viral
vector or transgene-mediated responses is critical for further
optimizing AAV gene delivery vectors and treatment modalities
that mitigate such immune responses.

Here, we introduce an experimental and bioinformatics
workflow capable of profiling the viral tropism and response of
multiple barcoded AAV variants in a single animal across
numerous complex cell types by taking advantage of the
transcriptomic resolution of scRNA-seq techniques
(Figure 1A). For this proof-of-concept study, we profile the
tropism of previously-characterized AAV variants that emerged
from directed evolution with the CREATE (AAV-PHP.B, AAV-
PHP.eB) (32, 34) or M-CREATE (AAV-PHP.C1, AAV-PHP.C2,
AAV-PHP.V1, AAV.CAP-B10) (45, 90) platforms. We selected
the AAV variants based on their unique CNS tropism following
intravenous injection. AAV-PHP.B and AAV-PHP.eB are known
to exhibit overall increased targeting of the CNS compared with
AAV9 and preferential targeting of neurons and astrocytes.
Despite its sequence similarity to AAV-PHP.B, the tropism of
AAV-PHP.V1 is known to be biased toward transducing brain
vascular cells. AAV-PHP.C1 and AAV-PHP.C2 have both
demonstrated enhanced blood–brain barrier (BBB) crossing
relative to AAV9 across two mouse strains (C57BL/6J and
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BALB/cJ). Finally, AAV.CAP-B10 is a recently-developed variant
with a bias toward neurons compared to AAV-PHP.eB (90).

In the initial validation experiment, we quantify the
transduction biases of AAV-PHP.eB and AAV.CAP-B10 across
major cell types using scRNA-seq, and demonstrate results
which correlate well with both published results and
conventional IHC-based quantification. We then demonstrate
the power of the transcriptomic approach by going beyond the
major cell types to reveal significant differences in cell-subtype
transduction specificity. Compared with AAV.CAP-B10, AAV-
PHP.eB displays biased targeting of inhibitory neurons, and both
variants transduce Sst+ or Pvalb+ inhibitory neurons more
efficiently than Vip+ inhibitory neurons. We validate these
results with fluorescent in situ hybridization – hybridization
chain reaction (FISH-HCR). We then develop and validate a
barcoding strategy to investigate the tropism of AAV-PHP.V1
relative to AAV-PHP.eB in non-neuronal cells and reveal that
pericytes, a subclass of vascular cells, evade transduction by this
Frontiers in Immunology | www.frontiersin.org 3139
and other variants. We further use scRNA-seq to profile cell-
type-specific responses to AAV-PHP.eB at 3 and 25 days post-
injection (DPI), finding numerous genes implicated in the p53
pathway in endothelial cells to be upregulated at 3 DPI and
returning back to control levels at 25 DPI. Finally, we showcase
the capabilities of parallel characterization by verifying the
preceding findings in a single animal with seven co-injected
AAV variants and revealing their respective cell-type biases.
2 RESULTS

2.1 Multiplexed Single-Cell RNA
Sequencing-Based AAV Profiling Pipeline
To address the current bottleneck in AAV tropism profiling, we
devised an experimental and computational workflow
(Figure 1A) that exploits the transcriptomic resolution of
scRNA-seq to profile the tropism of multiple AAV variants
FIGURE 1 | Workflow of AAV tropism characterization by scRNA-seq. (A) (I) Injection of a single AAV variant or multiple barcoded AAV variants into the retro-orbital
sinus. (II) After 3–4 weeks post-injection, the brain region of interest is extracted and the tissue is dissociated into a single-cell suspension. (III) The droplet-based 10x
Genomics Chromium system is used to isolate cells and build transcriptomic libraries [see (B)]. (IV) Cells are assigned a cell-type annotation and a viral transcript
count. (V) AAV tropism profiling across numerous cell types. (B) The full length cDNA library is fragmented for sequencing as part of the single-cell sequencing
protocol (top). To enable viral tropism characterization of multiple rAAVs in parallel, an aliquot of the intact cDNA library undergoes further PCR amplification of viral
transcripts (bottom). During cDNA amplification, Illumina sequencing primer targets are added to the viral transcripts such that the sequence in between the Illumina
primer targets contains the AAV capsid barcode sequence. Viral cargo in the cell transcriptome is converted to variant barcodes by matching the corresponding cell
barcode + UMI in the amplified viral transcript library (right).
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across complex cell-type hierarchies. In this workflow, single or
multiple barcoded rAAVs are injected into the retro-orbital sinus
of mice followed by tissue dissociation, single-cell library
construction using the 10X Genomics Chromium system, and
sequencing with multiplexed Illumina next-generation
sequencing (NGS) (69). The standard mRNA library
construction procedure includes an enzymatic fragmentation
step that truncates the cDNA amplicon such that its final size
falls within the bounds of NGS platforms (Figure 1B). These
cDNA fragments are only approximately 450 bp in length and,
due to the stochastic nature of the fragmentation, sequencing
from their 5’ end does not consistently capture any particular
region. The fragment length limit and heterogeneity pose a
problem for parallelizing AAV tropism profiling, which
requires reliable recovery of regions of the transgene that
identify the originating AAV capsid. For example,
posttranscriptional regulatory elements, such as the 600 bp
Woodchuck hepatitis virus posttranscriptional regulatory
element (WPRE), are commonly placed at the 3’ end of viral
transgenes to modulate transgene expression. The insertion of
such elements pushes any uniquely identifying cargo outside the
Frontiers in Immunology | www.frontiersin.org 4140
450 bp capture range, making them indistinguishable based on
the cDNA library alone (Supplemental Figure 1A). An
al ternat ive st ra tegy of adding barcodes in the 3 ’
polyadenylation site also places the barcode too distant for a 5’
sequencing read, and reading from the 3’ end would require
sequencing through the homopolymeric polyA tail, which is
believed to be unreliable in NGS platforms (91, 92).

We circumvented these limitations in viral cargo
identification by taking an aliquot of the intact cDNA library
and adding standard Illumina sequencing primer recognition
sites to the viral transcripts using PCR amplification such that
the identifying region is within the two Illumina primer target
sequences (e.g. Figure 2B). The cell transcriptome aliquots
undergoing the standard library construction protocol and the
amplified viral transcripts are then sequenced as separate NGS
libraries. We sequence shorter viral transcripts in the same flow
cell as the cell transcriptomes and longer viral transcripts on the
Illumina MiSeq, which we found to be successful at sequencing
cDNAs up to 890 bp long. The sequencing data undergoes a
comprehensive data processing pipeline (see Methods). Using a
custom genome reference, reads from the cell transcriptome that
A B

C

D

FIGURE 2 | Comparison of viral tropism profiling with traditional IHC and scRNA-seq. (A) Overview of the experiment. Four animals were injected with 1.5 × 1011 viral
genomes (vg) packaged in AAV-PHP.eB and/or AAV.CAP-B10. The bottom panels show a representative dataset collected from an animal that was co-injected with
AAV-PHP.eB and AAV.CAP-B10. The left side displays the scRNA-seq dataset in the lower dimensional t-SNE space, with cells colored according to presence of viral
transcripts. The shaded areas indicate clusters with high expression of the corresponding gene marker. The right side shows representative confocal images of cortical
tissue labeled with IHC. Scale bar, 50 µm. (B) Viral transcript recovery strategy. The shaded areas highlight sequences added during library construction. (C) The fraction
of the total number of transduced cells labeled as expressing the corresponding marker gene. For each AAV variant, the results of a two-way ANOVA with correction for
multiple comparisons using Sidak’s test are reported with adjusted P-values (****P ≤ 0.0001, ***P ≤ 0.001, and **P ≤ 0.01, and *P ≤ 0.05 are shown; P > 0.05 is not
shown). (D) Comparison of transduction rates based on quantification via scRNA-seq or IHC. Transduction rate in IHC was calculated as (number of transduced cells in
the group)/(total number of cells in the group). Transduction rate in scRNA-seq is based on an estimate of the fraaction of cells containing transcripts above background
(see Methods). Each dot represents the transduction rate of neurons/Rbfox3+, astrocytes/S100b+, or oligodendrocytes/Olig2+ by AAV-PHP.eB or AAV.CAP-B10 in one
animal. Histology data are averages across three brain slices per gene marker and animal. r indicates the Pearson correlation coefficient.
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align to the viral cargo plasmid sequences are counted as part of
the standard 10X Cell Ranger count pipeline (see Methods and
Supplemental Figure 1C). In parallel, reads from the amplified
viral transcripts are used to count the abundance of each viral
barcode associated with each cell barcode and unique molecular
identifier (UMI). The most abundant viral barcode for each cell
barcode and UMI is assumed to be the correct viral barcode, and
is used to construct a variant lookup table. This lookup table
approach identifies an originating capsid in 65.7 ± 2.3% of viral
transcripts detected in the cell transcriptome aliquots
(Supplemental Table 4).

For determining viral cell-type tropism, we developed a
method to estimate the fraction of cells within a cell type that
express viral transcripts. Viral RNA expression levels depend on
both the multiplicity of infection and the transcription rate of the
delivered cargo. Thus, directly using viral RNA counts to
determine tropism is confounded by differences in
transcription rate between cell types, limiting comparison with
imaging-based tropism quantification methods. As evidence of
this, we detected that viral RNA expression levels can vary by cell
type but are not perfectly rank correlated with the percent of cells
detected as expressing that transcript (Supplemental Figure 2B).
An additional confound arises from the ambient RNA from
cellular debris co-encapsulated with cell-containing droplets,
which can lead to false positives, i.e., detecting viral RNA in
droplets containing a cell that was not expressing viral RNA. For
example, we detected low levels of viral transcripts in large
percentages of cells, even in cell types suspected to evade
transduction, such as immune cells (Supplemental Figure 2A).
To reduce the effect of both variability in expression and ambient
RNA, we developed an empirical method to estimate the
percentage of cells expressing transcripts above the noise,
wherein the distribution of viral transcript counts in a set of
cells of interest is compared to a background distribution of cell-
free (empty) droplets (see Methods, Supplemental Figure 2C).
In simulation, this method accurately recovers the estimated
number of cells expressing transcripts above background across a
wide range of parameterizations of negative binomial
distributions (see Methods, Supplemental Figure 2D).
Importantly, this method can yield a different ranking of viral
tropism as compared to mean transcript expression rate
(Supplemental Figure 2E).

To address several additional technical problems in default
single-cell pipelines, we developed a simultaneous quality control
(QC) and droplet identification pipeline. Our viral transduction
rate estimation method described above relies on having an
empirical background distribution of viral transcript counts in
empty droplets to compare against the cell type of interest.
However, the default cell vs. empty droplet identification
method provided by the 10X Cell Ranger software, which is
based on the EmptyDrops method (73), yielded unexpectedly
high numbers of cells and clusters with no recognizable marker
genes, suggesting they may consist of empty droplets of ambient
RNA or cellular debris (Supplemental Figures 3A, B).
Additionally, we sought to remove droplets containing
multiple cells (multiplets) from our data due to the risk of
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falsely attributing viral tropism of one cell type to another.
However, using Scrublet (93), an established method for
identifying droplets containing multiplets, failed to identify
multiplets in some of our samples and only identified small
proportions of clusters positive for known non-overlapping
marker genes, such as Cldn5 and Cx3cr1 (Supplemental
Figure 3C). To address both the empty droplet and multiplet
detection issues, we built a droplet classification pipeline based
on scANVI, a framework for classifying single-cell data via
neural-network-based generative models (94). Using clusters
with a high percentage of predicted multiplets from Scrublet as
training examples of multiplets, and clusters positive for known
neuronal and non-neuronal marker genes as training examples
of neurons and non-neuronal cells, we trained a predictive model
to classify each droplet as a neuron, non-neuron, multiplet, or
empty droplet (see Methods, Supplemental Figure 4A). This
model performed with 97.4% accuracy on 10% of cells held out
for testing, and yielded a database of 334,151 cortical cells
(Supplemental Figure 4B). Inspection of the cells classified as
empty droplets reveals that these droplets have lower transcript
counts and higher mitochondrial gene ratios, consistent with
other single-cell quality control pipelines (Supplemental
Figure 4D). Critically, we discovered that non-neuronal
clusters contained significantly more cells that had been
previously removed by the Cell Ranger filtering method as
compared to neuronal clusters (P = 0.025, 2-sided student t-
test). In some clusters within cell subtypes, such as mature
oligodendrocytes and endothelial cells, we identified up to 67%
more cells than what were recovered via Cell Ranger.

Using our combined experimental and computational
pipeline for viral transcript recovery and droplet identification,
we can recover a lower bound on the expected number of cells
expressing each unique viral cargo within groups of cells in
heterogeneous samples.

2.2 Single-Cell RNA Sequencing
Recapitulates AAV Capsid Cell-Type-
Specific Tropisms
As a first step, we validated our method by comparing the
quantification of AAV transduction of major cell types via
scRNA-seq to conventional IHC. For this purpose, we
characterized the tropism of two previously reported AAV
variants, AAV-PHP.eB (32) and AAV.CAP-B10 (90)
(Figure 2A). In total, four animals received single or dual
retro-orbital injections of AAV-PHP.eB and/or AAV.CAP-B10
with 1.5 × 1011 viral genomes (vg) per variant. Co-injection of
both variants served to test the ability of our approach to
parallelize tropism profiling. By having each variant package a
distinct fluorophore, tropism could be simultaneously assessed
via multi-channel fluorescence and mRNA expression of the
distinct transgene. After 3–4 weeks of expression, we harvested
the brains and used one hemisphere for IHC and one hemisphere
for scRNA-seq. To recover viral transcripts, we chose primers
such that enough of the XFP sequence was contained within the
Illumina primer target sequences to differentiate the two variants
(Figure 2B, Supplemental Table 1). For this comparison, we
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focused on the transduction rate for neurons (Rbfox3), astrocytes
(S100b), and oligodendrocytes (Olig2). For IHC, a cell was
classified as positive for the marker gene on the basis of
antibody staining, and was classified as transduced on the basis
of expression of the delivered fluorophore. For scRNA-seq, all
cells that passed our QC pipeline were projected into a joint scVI
latent space and clustered. To most closely match our imaging
quantification, we considered all clusters that were determined to
be positive for the respective marker gene as belonging to the
corresponding cell type (see Methods). All clusters of the same
marker gene were grouped together, and the transduction rate of
the combined group of cells was determined using our viral
transduction rate estimation method.

Our analysis of the scRNA-seq data demonstrates that the
viral tropism biases across the three canonical marker genes are
consistent with previous reports (Figure 2C) (32, 90). In contrast
to AAV-PHP.eB, AAV.CAP-B10 preferentially targets neurons
over astrocytes and oligodendrocytes. No marked discrepancies
in viral tropism characterization were observed with single versus
dual injections.

To quantify the similar i ty of the AAV tropism
characterizations obtained with IHC and scRNA-seq, we
directly compared the transduction rate of each AAV variant
for every cell type and its corresponding marker gene (i.e.,
Rbfox3, S100b, or Olig2) as determined by each technique and
noticed a good correlation (Figure 2D). Despite the different
underlying biological readouts–protein expression in IHC and
RNA molecules in labeled cell types for scRNA-seq–the two
techniques reveal similar viral tropisms.

2.3 Tropism Profiling at Transcriptomic
Resolution Reveals AAV Variant Biases for
Neuronal Subtypes
After validating our approach against the current standard of
AAV tropism characterization (IHC imaging), we scrutinized the
tropism of AAV-PHP.eB and AAV.CAP-B10 beyond the major
cell types (Figure 3). Since AAV.CAP-B10 has increased
neuronal bias relative to AAV-PHP.eB, we first sought to
understand if there were neuronal subtypes that were
differentially responsible for this bias. However, in-depth cell
typing of transcriptomes collected from tissues with numerous
and complex cell types, such as neurons in the brain, requires
expert knowledge of the tissue composition, time to manually
curate the data, and the availability of large datasets (66). To
minimize the burden of manual annotation, computational tools
have been developed that use previously-annotated single-cell
databases to predict the cell type of cells in new, unannotated
single-cell experiments, even across single-cell platforms (94, 96,
97). We decided to leverage these tools and expanded our marker
gene-based cell typing approach by having more complicated or
well-established cell types be assigned based on annotations in a
reference dataset (Supplemental Figure 4A). To this end, we
again employed scANVI to construct a joint model of cells from
our samples and cells from an annotated reference database. For
this model, we used the Mouse Whole Cortex and Hippocampus
10x v2 dataset available from the Allen Brain Institute (95).
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Since this is a neuron-enriched dataset, we constructed the model
using only the 125,341 cells in our dataset classified as neurons
from our marker-based QC pipeline combined with the 561,543
neuronal cells from cortical regions from the reference database.
We trained this model to predict to which of 14 neuron subtype
groupings each cell belonged. We held out 10% of the data for
testing: the model performed with 97.9% classification accuracy
on the held-out data. We then applied the model to predict the
neuron subtypes of our cells.

During our in-depth characterization, we discovered several
previously unnoticed cell-subtype biases for AAV-PHP.eB and
AAV.CAP-B10 (Figure 3A). Starting at the top of our neuronal
hierarchy, the fraction of transduced cells that were
glutamatergic neurons was markedly reduced for AAV-PHP.eB
compared with AAV.CAP-B10 (P = 0.03, 2-sided student t-test,
corrected for 2 neuron subtype comparisons). Furthermore,
Pvalb+ and Sst+ inhibitory neurons both represented a larger
fraction of transduced cells than Vip+ inhibitory neurons
(adjusted P = 0.0009, P = 0.045, respectively, two-way ANOVA
with multiple comparison correction for inhibitory neuron
subtypes using Tukey’s method).

To confirm these tropism biases in neuronal subtypes with a
traditional technique, we performed FISH-HCR for glutamatergic
and GABAergic gene markers (Figure 3B) (98, 99). As indicated by
our scRNA-seq data, AAV.CAP-B10, when compared with AAV-
PHP.eB, has increased transduction efficiency of glutamatergic
neurons (SLC17A7). Furthermore, FISH-HCR verified the
downward trend in transduction efficiency from Pvalb+, to Sst+,
to Vip+ neurons in both AAV variants (Figure 3C).

2.4 Pooled AAVs Packaging Barcoded
Cargo Recapitulate the Non-Neuronal
Tropism Bias of PHP.V1
To enable profiling viral variants in parallel without needing distinct
transgenes per variant, we established a barcoding strategy whereby
we package AAV variants with the same transgene and regulatory
elements but with short, distinguishing nucleotide sequences within
the 3’ UTR (Figure 4A). To verify that this barcoding strategy can
recover tropisms consistent with our previous transgene-based
capsid-identification strategy, we performed a set of experiments
to re-characterize the tropism of AAV-PHP.eB in parallel with that
of the recently developed AAV-PHP.V1, which has increased
specificity for vascular cells over AAV-PHP.eB (45).

We produced AAV-PHP.eB carrying CAG-mNeonGreen and
AAV-PHP.V1 carrying either CAG-mRuby2 or CAG-tdTomato.
Additionally, we produced AAV-PHP.eB and AAV-PHP.V1
both carrying CAG-mNeonGreen with 7-nucleotide barcodes
89 bp upstream of the polyadenylation start site such that they
did not interfere with the WPRE. We ensured each barcode had
equal G/C content, and that all barcodes were Hamming distance
3 from each other (Supplemental Table 5). Each of the barcoded
variants was packaged with multiple barcodes that were pooled
together during virus production. Four animals received a retro-
orbital co-injection of 1.5 x 1011 vg/each of AAV-PHP.V1 and
AAV-PHP.eB. Two animals received viruses carrying separate
fluorophores (cargo-based), and two animals received viruses
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carrying the barcoded cargo (barcode-based). For amplification
of the viral cDNA in the animals receiving the barcoded cargo,
we used primers closer to the polyA region such that the
sequencing read covered the barcoded region (Supplemental
Frontiers in Immunology | www.frontiersin.org 7143
Table 1). During the single-cell sequencing dissociation and
recovery, one of our dissociations resulted in low recovery of
neurons (Supplemental Figure 4C); thus, we investigated only
non-neuronal cells for this experiment.
A

B C

FIGURE 3 | In-depth AAV tropism characterization of neuronal subtypes at transcriptomic resolution. (A) Viral tropism profiling across neuronal subtypes. Neuronal
subtype annotations are predicted by a model learned from the Allen Institute reference dataset using scANVI (94, 95). Each dot represents data from one animal
injected with AAV-PHP.eB and/or AAV.CAP-B10. Bar width indicates the total number of cells of a particular cell type present in our dataset. (B) Representative
confocal images of cortical tissue from an animal injected with 1.5 × 1011 vg of AAV-PHP.eB. Tissue was labeled with FISH-HCR for gene markers of glutamatergic
neurons (Slc17a7) and GABAergic neurons (Gad1, Pvalb, Sst, Vip). AAV-PHP.eB shows the endogenous fluorescence of mNeonGreen. Scale bar, 50 µm.
(C) Confirmation of viral tropism biases across neuronal subtypes using FISH-HCR (3 mice per AAV variant, 1.5 × 1011 vg dose). Dots represent the average values
across three brain slices from one animal. Results from a two-way ANOVA with correction for multiple comparisons using Tukey’s test is reported with adjusted P-
values (****P ≤ 0.0001; and P > 0.05 is not shown on the plot).
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Despite variability in the total transgene RNA content between
barcodes of the same variant (Supplemental Figure 5A), the
estimated percent of cells expressing the transgene within each cell
type was consistent between barcodes within a single animal, with
standard deviations ranging from 0.002 to 0.056 (Supplemental
Figure 6A). Our analysis of both the barcode-based animals and
cargo-based animals shows the same bias in non-neuronal tropism,
with AAV-PHP.eB significantly preferring astrocytes over
oligodendrocytes, vascular cells, and immune cells (Figure 4D).
Interestingly, our analysis also revealed that the variance between
barcodes within an animal was less than the variance between
animals, even when controlling for cargo and dosage (P = 0.030,
Bartlett’s test, P-values combined across all variants and cell types
using Stouffer’s method, weighted by transduced cell type
Frontiers in Immunology | www.frontiersin.org 8144
distribution). This is not surprising, since we found differences in
cell type distribution alone can account for up to 58% of the
perceived variability in tropism bias (Supplemental Figure 6B).

Next, we investigated the distribution of cells transduced by
AAV-PHP.eB vs AAV-PHP.V1 in the major non-neuronal cell
types across both barcode-based and cargo-based paradigms
(Figure 4E). The single-cell tropism data confirms the
previously-established finding that AAV-PHP.V1 has a bias
toward vascular cells relative to AAV-PHP.eB. Additionally, we
uncovered that this is coupled with a bias away from astrocytes
relative to AAV-PHP.eB, but that transduction bias of
oligodendrocytes and immune cells did not differ between the
variants. To investigate for a specific effect of the barcoding
strategy, we performed a three-way ANOVA across the variant,
A B C

D E F

FIGURE 4 | Barcoded co-injected rAAVs reveal the non-neuronal tropism bias of AAV-PHP.V1. (A) Experimental design for comparing barcode vs cargo-based
tropism profiling. Animals received dual injections of AAV-PHP.eB and AAV-PHP.V1, carrying either distinct fluorophores (cargo) or the same fluorophore with distinct
barcodes. (B) t-SNE projection of the single-cell Variational Inference (scVI) latent space of cells and their cell type classification of the 176,724 labeled non-neuronal
cells across all our samples. Each number corresponds to the cell type labeled in (C). (C) Marker genes used to identify non-neuronal cell types. Darker colors
indicate higher mean expression, and dot size correlates with the abundance of the gene in that cell type. (D) The distribution of non-neuronal cells expressing
transcripts from AAV-PHP.eB across 4 barcodes within one animal (blue) and across 5 animals (red). All animals received dual injections, with one of the vectors
being 1.5 x 1011 vg of PHP.eB carrying CAG-mNeonGreen. The y-axis represents the fraction of transduced non-neuronal cells that are of the specified cell type.
(***P≤ 0.001 and P > 0.05 (n.s.) is shown; all other cell-type comparisons within a paradigm were significant at P ≤ 0.0001). (E) The distribution of non-neuronal
cells expressing transcripts from AAV-PHP.eB (black) and AAV-PHP.V1 (gray). Results from the different experimental paradigms are combined. Results shown
are from a two-way ANOVA with correction for multiple comparisons using Sidak’s test comparing transduction by AAV-PHP.eB to AAV-PHP.V1 for each cell
type, with adjusted P-values (****P ≤ 0.0001, ***P ≤ 0.001 is shown; P > 0.05 is not shown). (F) Within-animal difference in the fraction of cells transduced with
AAV-PHP.V1 relative to AAV-PHP.eB across four animals, two from each experimental paradigm. For each cell type in each sample, the combined 2-proportion
z score for the proportion of that cell type transduced by AAV-PHP.V1 vs AAV-PHP.eB is reported. Cell types with fewer than 2 cells transduced by both variants
were discarded. Z scores were combined across multiple animals using Stouffer’s method and corrected for multiple comparisons. Cell-type differences with an
adjusted P-value below 0.05 are indicated with *.
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cell type, and experimental paradigm factors. We found that
the cell type factor accounted for 87.80% of the total variation,
the combined cell type + variant factor accounted for 8.39% of
the total variation, and the combined cell type + experimental
paradigm factor accounted for only 2.36% of the total variation,
confirming our hypothesis that barcoded pools can recover
tropism with minimal effect.

2.5 Relative Tropism Biases Reveal Non-
Neuronal Subtypes With Reduced
AAV Transduction
To further characterize the tropism biases of AAV-PHP.V1 and
expand our method to less well-established cell hierarchies, we
explored the non-neuronal cell types in our dataset. Since the
Allen Brain Institute reference database that we used to
investigate neuronal tropism was enriched for neurons, it does
not contain enough non-neuronal cells to form a robust non-
neuronal cell atlas. Our combined dataset consists of 203,661
non-neuronal cells, making it large enough to establish our own
non-neuronal cell clustering. Thus, we performed an additional
round of automatic clustering on the cells classified as non-
neuronal in our combined dataset, and identified 13 non-
neuronal cell subtypes based on previously established marker
genes (Figures 4B, C and Supplemental Table 2).

Most cell subtypes had multiple clusters assigned to them,
which suggested there may be additional subtypes of cells for
which we did not find established marker genes. To determine
whether any of these clusters delineated cell types with distinct
transcriptional profiles, we investigated the probability of gene
expression in each cluster compared to the other clusters of the
same cell subtype (see Methods). Our approach determined two
subclusters of pericytes and astrocytes. Both clusters of pericytes
had strong expression of canonical pericytes marker genes Rgs5,
Abcc9, and Higd1b. However, one of the clusters had no marker
genes that made it distinct from the other pericyte cluster, nor
from endothelial cells. Consistent with previous reports, this
suggests that this cluster could be pericytes contaminated with
endothelial cell fragments, and thus was not considered for
further analysis (100–102). Two distinct groups of astrocytes
were detected, one of which had unique expression of Myoc and
Fxyd6. Using these new marker genes, we expanded our non-
neuronal cell taxonomy to 13 cell types, now including Myoc+
and Myoc- astrocytes.

Given our finding that inter-sample variability exceeds intra-
sample variability, we established a normalization method for
comparing transduction biases between variants co-injected into
the same animal. This normalization–calculating the difference
in the fraction of transduced cells between variants–captures the
relative bias between variants, instead of the absolute tropism of a
single variant (see Methods). By considering the relative bias
between variants, we are able to interrogate tropism in a way that
is more robust to inter-sample variability that arises from
different distributions of recovered cells, expression rate of
delivered cargo, and success of the injection. Using this
normalization method, we evaluated the non-neuronal cell
type bias of AAV-PHP.V1 relative to AAV-PHP.eB in both the
cargo-based animals and the barcode-based animals across our
Frontiers in Immunology | www.frontiersin.org 9145
non-neuronal cell-type taxonomy (Figure 4F). We discovered
that the bias of AAV-PHP.V1 for vascular cells is driven by an
increase in transduction of endothelial cells, but not pericytes.
Similarly, AAV-PHP.V1’s bias away from astrocytes is driven by
a decrease in transduction of Myoc- astrocytes, but not Myoc+
astrocytes. Further inspection of the transduction of pericytes
and Myoc+ astrocytes revealed that pericytes are not highly
transduced by any of the AAVs tested in this work, and that
Myoc+ astrocytes have both lower viral transcript expression and
lower abundance than Myoc- astrocytes, and thus do not
contribute significantly to tropism (Supplemental Figures 4,
7A, B).

2.6 Single-Cell RNA Sequencing Reveals
Early Cell-Type-Specific Responses to IV
Administration of AAV-PHP.eB That Return
to Baseline by 3.5 Weeks
To investigate the temporal cell-type-specific transcriptional
effects of systemic AAV delivery and cargo expression, we
performed a single-cell profiling experiment comparing
animals injected with AAV to saline controls. We injected six
male mice with AAV-PHP.eB (1.5 x 1011 vg) carrying
mNeonGreen, and performed single-cell sequencing on three
mice three days post-injection (3 DPI) and three mice twenty-
five days post-injection (25 DPI). These time points were chosen
based on previous work showing MHC presentation response
peaking around day seven and transgene response peaking
around day 30 (89). Three saline control mice were processed
3 DPI. We then analyzed differential gene expression for each cell
type between injected animals and controls using DESeq2
(Supplemental Table 8). Of note, we excluded cell types with
less than 50 cells in each sample, and excluded leukocytes and red
blood cells given the risk of their presence due to dissociation
rather than chemokine mediated infiltration. Additionally, we
collapsed subtypes of excitatory neurons, inhibitory neurons, and
OPCs to have greater than 50 cells for differential expression
analysis. We estimated viral transduction rate of AAV-PHP.eB
using its delivered cargo, mNeonGreen, across cell types and
time points. We identified that Myoc- astrocytes have
significantly higher estimated transduction rate at 25 DPI
compared to 3 DPI (adjusted P-value = 0.0438, two-way
ANOVA with multiple comparison correction using Sidak’s
method). It is also worth noting that endothelial cells have a
similar transduction rate between the time points in all animals,
while one of the animals at 25 DPI exhibited higher transduction
in neurons (Figure 5A). The number of statistically relevant
genes between the injected and control group (adjusted P-value <
0.05, DESeq2) were highest in endothelial cells (41 genes) at 3
DPI, followed by inhibitory neurons (9 genes) at 25 DPI
(Figure 5B) (adjusted P-value < 0.05, DESeq2).

We found that endothelial cells had the most acute response
at 3 DPI with p53 signaling pathway notably impacted. A
significant upregulation of Phlda3 and its effectors Bax, Aen,
Mdm2, and Cdkn1a, all involved in the p53/Akt signaling
pathway, was present (Figures 5C, E) (103, 104). Of relevance,
we also detected Trp53cor1/LincRNA-p21, responsible for
negative regulation of gene expression (105), upregulated in
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FIGURE 5 | Single-cell gene expression profiling finds cell-type-specific responses to AAV transduction in endothelial cells. (A) Estimated transduction rate (%) of
mNeonGreen cargo at three and twenty-five days post-injection (DPI). Results from a two-way ANOVA with correction for multiple comparisons using Sidak’s
method is reported with adjusted P-values (*P ≤ 0.05 is shown; and P > 0.05 is not shown on the plot). (B) Number of differentially expressed genes (adjusted P-
value < 0.05, DESeq2) at 3 DPI and 25 DPI across 3 animals. (C) Differentially expressed genes across the two time points in endothelial cells, pericytes, microglia,
perivascular macrophages, inhibitory neurons, and excitatory neurons. Color indicates DESeq2 test statistic with red representing downregulation and blue
representing upregulation. Genes outlined by a black rectangle are determined to have statistically significant differential expression compared to controls (adjusted
P-value < 0.05, DESeq2, after Benjamini/Hochberg multiple comparison correction across all cell types and conditions). Colored circles adjacent to each gene
indicate the corresponding pathway presented in (D). (D) A summary of corresponding pathways in which the differentially regulated genes in (C) are involved across
the time points. (E) Distribution of p53 signaling transcripts in endothelial cells (3 animals are combined) and an example of an MHC-I gene upregulated in microglia
at 3 DPI.
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endothelial cells at 3 DPI. Another example of an upregulated
gene relevant to inflammation and stress response in endothelial
cells is Mmrn2, responsible for regulating angiogenesis in
endothelial cells (106).

In brain immune cells, we observe a few substantial changes
in genes pertaining to immune regulation at 3 DPI for microglia
and at 25 DPI for perivascular macrophages. For example, we
observe an upregulation of MHC-I gene H2-K1 at 3 DPI in
microglia, which then stabilizes back to control levels at 25 DPI
(Figure 5C). Ifitm3 and Slfn2, genes implicated in type I
interferon response (107, 108), also show upregulation at 3
DPI in microglia. Cd74, a chaperon responsible for regulating
antigen presentation during immune response, was upregulated
in perivascular macrophages at 3 DPI (109). We did not observe
significant differences in pro-inflammatory chemokines, Ccl2
and Ccl5, which are related to breakdown of the blood-brain
barrier via regulation of tight-junction proteins and recruitment
of peripheral leukocytes (110). Ccl3, responsible for infiltration
of leukocytes and CNS inflammation (111), was upregulated in
perivascular macrophages in 25 DPI (Figure 5C).

We found that neurons had only a few differentially expressed
genes at 25 DPI. Immediate early genes, such as Fos and Junb
were upregulated in inhibitory neurons, while genes involved in
modulating cell proliferation, such as Tafa1 and S1pr1, were
downregulated at 25 DPI (79, 112).

By investigating the gene expression differences in
subpopulations of cells post-injection, we found that
endothelial cells upregulate genes linked to p53 signaling at 3
DPI (Figure 5D) which all return to control levels at 25 DPI.
Immune cells such as microglia and perivascular macrophages
upregulate genes involved in type I interferon response, MHC-I
antigen processing, and chemokine signaling (Figure 5D).
Inhibitory neurons display a subtle effect, consisting of
differential expression of genes involved in stress response and
cell proliferation at 25 DPI.

2.7 Larger Pools of Barcoded AAVs
Recapitulate Complex Tropism Within a
Single Animal
To showcase the capabilities of parallel characterization, we next
designed a 7-variant barcoded pool that included the three
previously characterized variants (AAV-PHP.eB, AAV-CAP-
B10, and AAV-PHP.V1), AAV9 and AAV-PHP.B controls,
and two additional variants, AAV-PHP.C1 and AAV-PHP.C2.
For simplification of cloning and virus production, we designed a
plasmid, UBC-mCherry-AAV-cap-in-cis, that contained both
the barcoded cargo, UBC-mCherry, and the AAV9 capsid
DNA (Supplemental Figure 1B). We assigned three distinct
24 bp barcodes to each variant (Supplemental Table 5). Each
virus was produced separately to control the dosage, and 1.5 x
1011 vg of each variant was pooled and injected into a
single animal.

After 3 weeks of expression, we performed single-cell
sequencing on extracted cortical tissue. To increase the number
of cells available for profiling, we processed two aliquots of cells,
for a total of 36,413 recovered cells. To amplify the viral
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transcripts, we used primers that bind near the 3’ end of
mCherry such that the barcode was captured in sequencing
(Supplemental Table 1).

Using our cell typing and viral transcript counting methods, we
investigated the transcript counts and transduction bias of the
variants in the pool. Compared with our previous profiling
experiments, the log-transformed transcript abundance of UBC-
mCherry detected per cell was lower than CAG-mNeonGreen-
WPRE and CAG-tdTomato (adjusted P < 0.0001, P=0.0767,
respectively, two-way ANOVA with multiple comparison
correction using Tukey’s method) and shifted towards vascular
cells (adjusted P < 0.0001, P=0.0004, respectively, two-way
ANOVA with multiple comparison correction using Tukey’s
method) (Supplemental Figures 5B, C). Next, we looked at the
transduction rate difference for each variant compared with the
rest of the variants in the pool for each cell type in our taxonomy
(Figures 6A, B). Despite the lower expression rate and bias shift,
the transduction rate difference metric captured the same tropism
biases for AAV.CAP-B10 and AAV-PHP.V1 as determined from
our previous experiments. AAV.CAP-B10 showed enhanced
neuronal targeting relative to other variants in the pool, with this
bias coming specifically from an increase in the transduction of
glutamatergic neurons. All five variants with transcripts detected in
neurons showed a decreased transduction rate in Vip+ neurons
relative to other GABAergic neuronal subtypes (Supplemental
Figure 7C). AAV-PHP.eB showed enhanced targeting of
astrocytes (+5.9%, P = 3.0 x 10-10, 2-proportion z-test, multiple
comparison corrected with Benjamini/Hochberg correction), and
AAV-PHP.V1 showed strong bias for vascular cells (+49.7%, p =
1.7 x 10-45). In addition to confirming all our existing hypotheses,
we were able to identify biases for the previously reported AAV-
PHP.C2, which has not been characterized in depth. This variant,
which was reported as having a non-neuronal bias similar to
AAV-PHP.V1, showed significant transduction bias not only
toward vascular cells (+15.7%, P = 1.5 x 10-7), but also toward
astrocytes (+21.5%, P = 3.0-28), and a bias away from neurons
(−38%, p = 4.5 x 10-32).
3 DISCUSSION

The advent of NGS has enabled screening of large libraries of
AAV capsids in vivo by extracting viral DNA from relevant tissue
followed by sequencing of capsid gene inserts or DNA barcodes
corresponding to defined capsids. To date, NGS-based screening
has been successfully applied to libraries created by peptide
insertions (28, 113), DNA shuffling of capsids (114–116), and
site-directed mutagenesis (117). Although these NGS-based
strategies allow the evolution of new AAV variants with
diverse tissue tropisms, it has been difficult to obtain a
comprehensive profiling for multiple variants across cell types,
which is of utmost importance in organs with complex cell-type
compositions, such as the brain (34, 45, 64–66). Towards this
end, techniques such as IHC, fluorescent in situ RNA
hybridization (98, 118–122) or in situ RNA sequencing
(123–125) can be employed. Several limitations make it
October 2021 | Volume 12 | Article 730825

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Brown et al. Single-Cell AAV Characterization
challenging to apply these techniques as high-throughput, post-
selection AAV tropism profiling methods. First, the limits of
optical resolution and the density of transcripts in single cells
pose challenges for full in situ transcriptome analysis and, until
recently, have restricted the total number of simultaneously
measured genes in single cells within tissue to several hundred
(121, 123–126). By contrast, scRNA-seq with the 10x Genomics
Chromium system enables detection of over 4000 genes per cell
(95), fast transcriptomic analysis, and multiplexing across
different tissue types (127, 128). Furthermore, the method is
already widely used by the research community which can help
with adoption of our proposed pipelines. Although droplet-based
scRNA-seq methods lose spatial information during the
dissociation procedure, analysis packages have been developed
that can infer single-cell localization by combining scRNA-seq
data with pre-existing information from ISH-based labeling for
specific marker genes (129–134). Therefore, scRNA-seq
techniques have great potential to rapidly profile the tropism
of multiple AAV variants in parallel across several thousand cells
defined by their entire transcriptome.

Here, we established an experimental and data-analysis
pipeline that leverages the capabilities of scRNA-seq to achieve
simultaneous characterization of several AAV variants across
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multiplexed tissue cell types within a single animal. To
differentiate multiple AAV capsid variants in the sequencing
data, we packaged variants with unique transgenes or the same
transgene with unique barcodes incorporated at the 3’ end. We
added standard Illumina sequencing primer recognition sites
(Read 2) to the viral transcripts using PCR amplification such
that the barcoded region could be consistently read out from the
Illumina sequencing data. Our computational pipeline
demultiplexes viral reads found in the transcriptome according
to which matching sequence is most abundant in a separate
amplified viral transgene library. Comparing the distribution of
viral transcripts by cell type to a null model of empty droplets, we
could then determine the cell-type biases.

Our platform has corroborated the tropism of several
previously characterized AAV variants and has provided more
detailed tropism information beyond the major cell types. The
fraction of transduced cells that are glutamatergic neurons was
found to be markedly reduced for AAV-PHP.eB when compared
with AAV.CAP-B10. Furthermore, within all the variants we
tested, both Pvalb+ and Sst+ inhibitory neurons have greater
transduction rates than Vip+ neurons. This bodes well for
delivery to Pvalb+ neurons, which have been implicated in a
wide range of neuro-psychiatric disorders (135), and suggests
A B

FIGURE 6 | Single animal injections of multiple barcoded rAAVs enables deep, parallel characterization. (A, B) Relative cell type tropism of 7 co-injected rAAVs for
neuronal (A) and non-neuronal (B) cell types. The color scale indicates the difference in transduction bias of a variant relative to all other variants in the pool. The area
of each circle scales linearly with the fraction of cells of that type with viral transcripts above background. For each variant and cell type, a 2-proportion z score was
calculated to compare the number of cells of that type transduced by that variant relative to all other variants combined. Z scores were combined across two single-
cell sequencing aliquots using Stouffer’s method and corrected for multiple comparisons. Cell types with fewer than 10 transduced cells in either the variant or
variants compared against were discarded. Only cell-type biases at an adjusted P-value < 0.05 are colored; otherwise they are grayed out.
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Vip+ interneurons, which have recently been identified as being
a sufficient delivery target for induction of Rett syndrome-like
symptoms, as a target for optimization (136). Awareness of
neuronal subtype biases in delivery vectors is critical both for
neuroscience researchers and for clinical applications. Dissection
of neural circuit function requires understanding the roles of
neuronal subtypes in behavior and disease and relies on
successful and sometimes specific delivery of transgenes to the
neuronal types under study (1).

We further discovered that the vascular bias of AAV-PHP.V1
originates from its transduction bias towards endothelial cells.
Interestingly, this is the only cell type we detected expressing
Ly6a (Supplemental Figure 8), a known surface receptor for
AAV variants in the PHP.B family (137–139). Given AAV-
PHP.V1’s sequence similarity to AAV-PHP.B and its tropism
across mouse strains, this pattern suggests that AAV-PHP.V1
transduction may also be Ly6a-mediated. Finding such
associations between viral tropism and cell-surface membrane
proteins also suggests that full transcriptome sequencing data
may hold a treasure trove of information on possible
mechanisms of transduction of viral vectors.

We also revealed that AAV-PHP.C2 has a strong, broad non-
neuronal bias toward both vascular cells and astrocytes. AAV-
PHP.C2 also transduces BALB/cJ mice, which do not contain the
Ly6a variant that mediates transduction by PHP.B family
variants (137–139). This suggests that PHP.C2 may be the
most promising candidate from this pool for researchers
interested in delivery to non-neuronal cells with minimal
neuronal transduction both in C57BL/6J mice and in strains
and organisms that do not have the Ly6a variant.

All our tested variants with non-neuronal transduction have
lower expression in Myoc+ astrocytes and pericytes. Astrocytes
expressing Myoc and Gfap, which intersect in our data
(Supplemental Figure 8), have been previously identified as
having reactive behavior in disease contexts, making them a
target of interest for research on neurological diseases (140, 141).
Similarly, pericytes, whose dysfunction has been shown to
contribute to multiple neurological diseases, may be an
important therapeutic target (60, 142, 143). Both of these cell
types may be good candidates for further AAV optimization but
may have been missed with marker gene-based approaches. In
both AAV characterization and neuroscience research efforts,
different marker genes are often used for astrocyte classification –
sometimes more restrictive genes such as Gfap, and other times
more broadly expressing genes such as S100b or Aldh1l1 (144,
145). Similarly, defining marker genes for pericytes is still an
active field (100, 102). Given the constraints of having to choose
specific marker genes, it is difficult for staining-based
characterizations to provide tropism profiles that are relevant
for diverse and changing research needs. This highlights the
importance of using unbiased, full transcriptome profiling for
vector characterization.

We have shown that our combined experimental and
computational platform is able to recover transduction biases
and profile multiple variants in a single animal, even amidst the
noise of ambient RNA. We have further shown that our method
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is robust to the variability inherent in delivery and extraction
from different animals, with different transgenes, and with
different regulatory elements. For example, we discovered
lower overall expression from vectors carrying UBC-mCherry
compared with CAG-mNeonGreen-WPRE. Such differences
are not surprising since the WPRE is known to increase
RNA stability and therefore transcript abundance (146).
Furthermore, the shift in cell-type bias may come from the
UBC promoter, as even ubiquitous promoters such as CAG
and UBC have been shown to have variable levels of expression
in different cell types (147). Despite these biases, looking at the
differences in transduction between variants delivering the same
construct within an individual animal reveals the strongest
candidate vectors for on-target and off-target cell types of
interest. While we show that our method can profile AAVs
carrying standard fluorescent cargo, caution is needed when
linking differences in absolute viral tropism to changes in capsid
composition alone without considering the contribution of the
transgene, regulatory elements, and distribution of cell types in
recovered tissue. Therefore, for more robust and relative tropism
between variants, we found it beneficial to use small barcodes
and co-injections of pools of vectors. Our scRNA-seq-based
approach is not restricted to profiling capsid variants but can
be expanded in the future to screen promoters (148–150),
enhancers (151, 152), or transgenes (86, 153), all of which are
essential elements requiring optimization to improve
gene therapy.

Finally, we have used scRNA-seq to understand how intra-
orbital administration of AAV-PHP.eB affects the host cell
transcriptome across distinct time points. Results from our
study show genes pertaining to the p53 pathway in endothelial
cells are differentially expressed 3 days after injection, an effect
which vanishes at a later time point of 25 DPI. Though other cell
types such as immune cells and neurons had a few differentially
expressed genes pertaining to antigen presentation and cell
differentiation, respectively, endothelial cells at 3 DPI are the
only cells with a profound response signature. The highest
number of differentially expressed genes being in endothelial
cells suggests that vascular cells could be the initial responders to
viral transduction and expression of the transgene. This is
supported by Kodali et al., who have shown that endothelial
cells are the first to elicit a response to peripheral inflammatory
stimulation by transcribing genes for proinflammatory
mediators and cytokines (154). With regards to p53
differentially expressed genes, Ghouzzi, et al. have also shown
that the genes Phdla3, Aen, and Cdkn1a were upregulated in cells
infected with ZIKA virus, signifying genotoxic stress and
apoptosis induction (104). Upregulation of genes such as Bax
and Cdkn1a could be a response to cellular stress induced by
viral transduction (103, 155). However, the initial inflammatory
responses did not escalate as shown by the low number of
differential expressed genes across all cells (Figure 5B) at day
twenty-five. Additionally, antigen presenting genes, such as Cd74
and H2-K1, returning back to control expression levels in
microglia and a lack of proinflammatory cytokines being
upregulated support that the event of infiltration of peripheral
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leukocytes is unlikely, in agreement with prior studies (87, 88).
Based on prior studies, the few genes that are differentially
expressed at day 25 in excitatory and inhibitory neurons could
also be due to transgene expression rather than the virion (89).
Upregulation of immediate early genes such as Fos, Junb, and
Ier2 in inhibitory neurons could indicate that the cells which are
transduced and expressing viral transcripts could be under
increased stress and metabolic demands, either directly in
response to transgene expression, or in combination with the
stresses of dissociation. For example, c-jun and c-fos were found
to be upregulated by lung epithelial cells as part of the response
to measles virus (156). Given that scRNA-seq is a sensitive
technique, it can be prone to high false discovery rates if not
properly controlled. To account for this, we used a highly
conservative pseudo-bulk differential expression procedure,
which has been shown to minimize false discovery rates
compared to other batch correction methods (157). This
conservative procedure, however, has lower relative power, and
thus there may be additional effects in cell subtypes to AAV
transduction. The confidence and statistical power of future
scRNA-seq studies looking at AAV-related immune responses
could be improved with increased sample size, such as via sample
multiplexing strategies to pool multiple animals (127), or by
increasing the sensitivity and specificity of viral transcript
detection and performing differential expression within
animals. It is also important to note that the findings discussed
here are specific to the rAAV, transgene, and dosage.
Nonetheless, our results highlight the power of single-cell
profiling in being able to ascertain cell-type-specific responses
at an early time point post-injection.

As shown throughout this work, there are several challenges
we had to overcome to gain valuable insights from our droplet-
based single-cell RNA sequencing approach. While we were able
to overcome these in the context of our study, they hint at some
important limitations of this method. First, droplet-based single-
cell sequencing of tissues that are difficult to dissociate, such as
brain, can lead to substantial background noise from debris.
Alternative methods, such as single-nucleus RNA sequencing
(158, 159), could potentially overcome this debris problem.
Exploratory work would need to be performed to determine
whether single-nucleus RNA sequencing captures a sufficient
amount of immature viral transcripts, but, if effective, may
obviate the need for computational detection of transduction
above a background level. Another potential challenge of our
method is scaling up to much larger numbers of variants. In
order to establish high statistical confidence in tropism, many
cells need to be transduced. However, given restrictions on the
total dosage an animal can receive, adding more variants would
require a lower dosage per variant. In simulation, we found that
subsampling our 2-variant pool by 10-fold did not change the
major tropism findings (Supplemental Figure 9). Given our
current injections are 8-fold lower than the maximum allowed
dosage, this suggests this method could scale up to 80 variants;
however, further work would need to be done to validate whether
this holds for a diversity of variants that may be competing for
binding. Scaling higher would be challenging with current
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droplet-based single-cell RNA sequencing pipelines that
process on the order of 104 cells per reaction. Alternative
approaches, such as split-pool strategies, which can profile
many more cells (160), may thus be appealing for larger
variant pools.

In summary, our platform enables thorough tropism
characterization of existing and emerging recombinant AAVs
and helps uncover cellular responses to rAAV-mediated gene
therapy, thus further guiding the engineering and use of gene
delivery vehicles.
4 MATERIALS AND METHODS

4.1 Animals
Male C57BL/6J mice (Stock No: 000664) used in this study were
purchased from the Jackson Laboratory (JAX). AAV variants
were injected i.v. into the retro-orbital sinus of 6–7 week
old mice.

4.2 Plasmids
In vivo vector characterization of AAV variant capsids was
conducted using single-stranded (ss) rAAV genomes. pAAV :
CAG-NLS-mNeonGreen, pAAV : CAG-NLS-mRuby2, pAAV :
CAG-tdTomato, and pAAV : CAG-NLS-tdTomato constructs
were adapted from previous publications (32, 45). To introduce
barcodes into the polyA region of CAG-NLS-mNeonGreen, we
digested the plasmid with BglII and EcoRI, and performed
Gibson assembly (E2611, NEB) to insert synthesized fragments
with 7bp degenerate nucleotide sequences 89 bp upstream of the
polyadenylation site. We then seeded bacterial colonies and
selected and performed Sanger sequencing on the resulting
plasmids to determine the corresponding barcode.

The UBC-mCherry-AAV-cap-in-cis plasmid was adapted
from the rAAV-Cap-in-cis-lox plasmid from a previous
publication (34). We performed a restriction digest on the
plasmid with BsmbI and SpeI to remove UBC-mCherry and
retain the AAV9 cap gene and remaining backbone. We then
circularized the digested plasmid using a gblock joint fragment to
get a plasmid containing AAV2-Rep, AAV9-Cap, and the
remaining backbone via T4 ligation. In order to insert UBC-
mCherry with the desired orientation and location, we amplified
its linear segment from the original rAAV-Cap-in-cis-lox
plasmid. The linear UBC-mCherry-polyA segment and
circularized AAV2-Rep,AAV9-cap plasmid were then both
digested with HindIII and ligated using T4 ligation. In order to
get the SV40 PolyA element in the proper orientation with
respect to the inserted UBC-mCherry, we removed the original
segment from the plasmid using AvrII and AccI enzymes and
inserted AvrII, AccI treated SV40 gblock using T4 ligation to get
the final plasmid.

To insert barcodes into UBC-mCherry-AAV-cap-in-cis, we
obtained 300 bp DNA fragments containing the two desired
capsid mutation regions for each variant and the variant barcode,
flanked by BsrGI and XbaI cut sites. The three segments of
the fragment were separated by BsaI Type I restriction sites.
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We digested the UBC-mCherry-AAV-cap-in-cis plasmid with
BsrGI and XbaI, and ligated each variant insert to this backbone.
Then, to reinsert the missing regions, we performed Golden Gate
assembly with two inserts and BsaI-HF.

4.3 Viral Production
To produce viruses carrying in trans constructs, we followed
established protocols for the production of rAAVs (161). In
short, HEK293T cells were triple transfected using
polyethylenimine (PEI) with three plasmids: pAAV (see
Plasmids), pUCmini-iCAP-PHP.eB (32), pUCmini-iCAP-CAP-
B10 (90), or pUCmini-iCAP-PHP.V1 (45), and pHelper. After
120 h, virus was harvested and purified using an iodixanol
gradient (Optiprep, Sigma). For our 7-variant pool, we
modified the protocol to be a double transfection using PEI
with two plasmids: UBC-mCherry-AAV-cap-in-cis and pHelper.

4.4 Tissue Processing for Single-Cell
Suspension
Three to four weeks after the injection, mice (9-10 weeks old)
were briefly anesthetized with isoflurane (5%) in an isolated
plexiglass chamber followed by i.p. injection of euthasol (100 mg/
kg). The following dissociation procedure of cortical tissue into a
single-cell suspension was adapted with modifications from a
previous report (162). Animals were transcardially perfused with
ice-cold carbogenated (95% O2 and 5% CO2) NMDG-HEPES-
ACSF (93 mM NMDG, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM
NaHCO3, 20 mM HEPES, 25 mM glucose, 5 mM Na L-
ascorbate, 2 mM thiourea, 3 mM Na-pyruvate, 10 mM MgSO4,
1 mM CaCl2, 1 mM kynurenic acid Na salt, pH adjusted to 7.35
with 10N HCl, osmolarity range 300–310 mOsm). Brains were
rapidly extracted and cut in half along the anterior-posterior axis
with a razor blade. Half of the brain was used for IHC histology
while the second half of the brain was used for scRNA-seq.
Tissue used for scRNA-seq was immersed in ice-cold NMDG-
HEPES-ACSF saturated with carbogen. The brain was sectioned
into 300-mm slices using a vibratome (VT-1200, Leica
Biosystems, IL, USA). Coronal sections from Bregma −0.94
mm to −2.80 mm were collected in a dissection dish on ice
containing NMDG-HEPES-ACSF. Cortical tissue from the
dorsal surface of the brain to ~3.5 mm ventral was cut out and
further sliced into small tissue pieces. NMDG-HEPES-ACSF was
replaced by trehalose-HEPES-ACSF (92 mM NaCl, 2.5 mM KCl,
1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM
glucose, 2 mM MgSO4, 2 mM CaCl2, 1 mM kynurenic acid Na
salt, 0.025 mM D-(+)-trehalose dihydrate*2H2O, pH adjusted to
7.35, osmolarity ranging 320–330 mOsm) containing papain (60
U/ml; P3125, Sigma Aldrich, pre-activated with 2.5 mM cysteine
and a 0.5–1 h incubation at 34°C, supplemented with 0.5 mM
EDTA) for the enzymatic digestion. Under gentle carbogenation,
cortical tissue was incubated at 34°C for 50 min with soft
agitation by pipetting every 10 min. 5 ml 2500 U/ml DNase I
(04716728001 Roche, Sigma Aldrich) was added to the single-cell
suspension 10 min before the end of the digestion. The solution
was replaced with 200 ml trehalose-HEPES-ACSF containing 3
mg/ml ovomucoid inhibitor (OI-BSA, Worthington) and 1 ml
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DNase I. At room temperature, the digested cortical tissue was
gently triturated with fire-polished glass Pasteur pipettes for
three consecutive rounds with decreasing pipette diameters of
600, 300, and 150 mm. 800 ml of trehalose-HEPES-ACSF with 3
mg/ml ovomucoid inhibitor was added. The uniform single-cell
suspension was pipetted through a 40 mm cell strainer (352340,
Falcon) into a new microcentrifuge tube followed by
centrifugation at 300 g for 5 min at 4°C. The supernatant was
discarded and cell pellet was resuspended in 1 ml of trehalose-
HEPES-ACSF. After mixing using a Pasteur pipette with a
150 mm tip diameter, the single-cell suspension was centrifuged
again. Supernatant was replaced with fresh trehalose-HEPES-
ACSF and the resuspended cell pellet was strained with a 20 mm
nylon net filter (NY2004700, Millipore). After resuspension in
trehalose-HEPES-ACSF, cells were pelleted again and resuspended
in 100 ml of ice-cold resuspension-ACSF (117 mM NaCl, 2.5 mM
KCl, 1.2 mMNaH2PO4, 30mMNaHCO3, 20mMHEPES, 25mM
glucose, 1 mMMgSO4, 2 mMCaCl2, 1 mM kynurenic acid Na salt
and 0.05% BSA, pH adjusted to 7.35 with Tris base, osmolarity
range 320–330 mOsm). Cells were counted with a hemocytometer
and the final cell densities were verified to be in the range of 400–
2,500 cells/ml. The density of single-cell suspension was adjusted
with resuspension-ACSF if necessary.

4.5 Transcriptomic Library Construction
Cell suspension volumes containing 16,000 cells–expected to
retrieve an estimated 10,000 single-cell transcriptomes–were
added to the 10x Genomics RT reaction mix and loaded to the
10x Single Cell Chip A (230027, 10x Genomics) for 10x v2
chemistry or B (2000168, 10x Genomics) for 10x v3 chemistry
per the manufacturer’s protocol (Document CG00052, Revision
F, Document CG000183, Revision C, respectively). We used the
Chromium Single Cell 3’ GEM and Library Kit v2 (120237, 10x
genomics) or v3 (1000075, 10x Genomics) to recover and
amplify cDNA, applying 11 rounds of amplification. We took
70 ng to prepare Illumina sequencing libraries downstream of
reverse transcription following the manufacturer’s protocol,
applying 13 rounds of sequencing library amplification.

4.6 Viral Library Construction
We selectively amplified viral transcripts from 15 ng of cDNA
using a cargo-specific primer binding to the target of interest and
a primer binding the partial Illumina Read 1 sequence present on
the 10x capture oligos (Supplemental Table 1). For animals
injected with a single cargo, amplification was performed only
once using the primer for the delivered cargo; for animals with
distinct cargo sequences per variant, amplification was
performed in parallel reactions from the same cDNA library
using different cargo-specific primers for each reaction. We
performed the amplification using 2x KAPA HiFi HotStart
ReadyMix (KK2600) for 28 cycles at an annealing temperature
of 53°C. Afterwards, we performed a left-sided SPRI cleanup
with a concentration dependent on the target amplicon length, in
accordance with the manufacturer’s protocol (SPRISelect,
Beckman Coulter B23318). We then performed an overhang
PCR on 100 ng of product with 15 cycles using primers that bind
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the cargo and the partial Illumina Read 1 sequence and
appending the P5/P7 sequences and Illumina sample indices.
We performed another SPRI cleanup, and analyzed the results
via an Agilent High Sensitivity DNA Chip (Agilent 5067-4626).

4.7 Sequencing
Transcriptome libraries were pooled together in equal molar
ratios according to their DNA mass concentration and their
mean transcript size as determined via bioanalyzer. Sequencing
libraries were processed on Novaseq 6000 S4 300-cycle lanes. The
run was configured to read 150 bp from each end. Sequencing
was outsourced to Fulgent Genetics and the UCSF Center for
Advanced Technology.

All viral transcript libraries except barcoded UBC-mCherry
were pooled together in equal molar ratios into a 4 nM sequencing
library, then diluted and denatured into a 12 pM library as per the
manufacturer’s protocol (Illumina Document #15039740v10). The
resulting library was sequenced using a MiSeq v3 150-cycle
reagent kit (MS-102-3001), configured to read 91 base pairs for
Read 2 and 28 base pairs for Read 1. To characterize the effect of
sequencing depth, one viral transcript library was additionally
processed independently on a separate MiSeq run.

The UBC-mCherry viral transcript library, which was
recovered with primers near the polyadenylation site, consisted
of fragments ~307 bp long. Since this length is within the
common range for an Illumina NovaSeq run, this viral
transcript library was pooled and included with the
corresponding transcriptome library.

4.8 Transcriptome Read Alignment
For transcriptome read alignment and gene expression
quantification, we used 10x Cell Ranger v5.0.1 with default
options to process the FASTQ files from the transcriptome
sequencing library. The reads were aligned against the mus
musculus reference provided by Cell Ranger (mm10 v2020-A,
based on Ensembl release 98).

To detect viral transcripts in the transcriptome, we ran an
additional alignment using 10x Cell Ranger v5.0. 1 with a custom
reference genome based on mm10 v2020-A. We followed the
protocol for constructing a custom Cell Ranger reference as
provided by 10x Genomics. This custom reference adds a single
gene containing all the unique sequences from our delivered
plasmids in the study, delineated as separate exons. Sequences
that are common between different cargo are provided only once,
and annotated as alternative splicings.

4.9 Viral Transcript Read Alignment
For viral read alignment, we aligned each Read 2 to a template
derived from the plasmid, excluding barcodes. The template
sequence was determined by starting at the ATG start site of the
XFP cargo and ending at the AATAAA polyadenylation stop site.
We used a Python implementation of the Striped Smith-
Waterman algorithm from scikit-bio to calculate an alignment
score for each read, and normalized the score by dividing by the
maximum possible alignment score for a sequence of that length,
minus the length of the barcode region. For each Read 2 that had
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a normalized alignment score of greater than 0.7, we extracted
the corresponding cell barcode and UMI from Read 1, and any
insertions into the template from Read 2.

4.10 Constructing the Variant
Lookup Table
For co-injections with multiple templates and injections of
barcoded templates, we constructed a lookup table to identify
which variant belongs to each cell barcode/UMI. For each
template, we counted the number of reads for each cell
barcode/UMI. For reads of barcoded cargo, we only counted
reads where the detected insertion in the barcode region
unambiguously aligned to one of the pre-defined variant
barcodes. Due to sequencing and PCR amplification errors,
most cell barcode/UMI combinations had reads associated
with multiple variants. Thus, we identified the variant with the
largest count for each cell barcode/UMI. We discarded any cell
barcode/UMIs that had more than one variant tied for the largest
count. Finally, each cell barcode/UMI that was classified as a viral
transcript in the transcriptome (see Transcriptome Read
Alignment) was converted into the virus detected in the variant
lookup table, or was discarded if it did not exist in the variant
lookup table.

4.11 Estimating Transduction Rate
To determine an estimate of the percent of cells within a group
expressing viral cargo above background, we compared the viral
transcript counts in that group of cells to a background
distribution of viral transcript counts in debris (see Droplet
Type Classification). First, we obtained the empirical
distribution of viral transcript counts by extracting the viral
counts for that variant in cell barcodes classified as the target cell
type as well as cell barcodes classified as debris. Next, we assumed
a percentage of cells containing debris. For each viral transcript
count, starting at 0, we calculated the number of cells that would
contain this transcript count, if the assumed debris percentage
was correct. We then calculated an error between this estimate
and the number of cells with this transcript count in the cell type
of interest. We tallied this error over all the integer bins in the
histogram, allowing the error in a previous bin to roll over to the
next bin. We repeated this for all possible values of percentage of
debris from 0 to 100 in increments of 0.25, and the value that
minimized the error was the estimated percentage of cells whose
viral transcript count could be accounted for by debris. The
inverse of this was our estimate of the number of cells expressing
viral transcripts above background.

To validate that this method reliably recovers an estimate of
transduction rate, we performed a series of simulations using
models of debris viral transcript counts added to proposed cell
type transcript count distributions across a range of
parameterizations. To get estimates of the background
distribution of debris, we used diffxpy (https://github.com/
theislab/diffxpy) to fit the parameters of a negative binomial
distribution to the viral transcript counts in debris droplets
within a sample. We then postulated 1,000 different
parameterizations of the negative binomial representing
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transcript counts in groups of cells, with 40 values of r ranging
from 0.1 to 10, spaced evenly apart, and 25 values of p ranging
from 0.001 to 0.99, spaced evenly apart. For each proposed
negative binomial model, we drew 1,000 random samples of viral
counts from the learned background distribution, and 1,000
random samples from the proposed cell distribution, and
summed the two vectors. This summed vector was then used
in our transduction rate estimation function, along with a
separate 1,000 random samples of background viral transcripts
for the function to use as an estimate of the background signal.
We calculated the true probability of non-zero expression in our
proposed cell negative binomial model (1 – P(X = 0)), and
compared this value with the estimated value from the
transduction rate estimation method.

4.12 Calculating Viral Tropism
For each variant vn and cell type of interest ci, we estimated the
percentage of cells expressing viral cargo. To calculate tropism
bias, we used this estimated expression rate, tci ,vn , to estimate the
number of cells expressing viral transcripts in that cell type, Tci ,vn
out of the total number of cells of that type, Nci :  Tci ,vn = tci ,vnNci .
Cell type bias, bci ,vn , within a sample was then calculated as the
ratio of the number of cells of interest divided by the total
number of transduced cells, bci ,vn =

Tci ,vn

SjTcj ,vn
. Finally, to calculate the

difference in transduction bias for a particular variant relative to
other variants in the sample, dci ,vn , we subtracted the bias of the
variant from the mean bias across all other variants, dci ,vn =Tci ,vn

SjTcj ,vn
−

Sm≠nTci ,vm

Sm≠nSjTcj ,vm
.

4.13 Histology
4.13.1 Immunohistochemistry
The immunohistochemistry procedure was adapted from a
previous publication (163). Brain tissue was fixed in 4%
paraformaldehyde (PFA) at 4°C overnight on a shaker.
Samples were immersed in 30% sucrose in 1x phosphate
buffered saline (PBS) solution for >2 days and then embedded
in Tissue-Tek O.C.T. Compound (102094-104, VWR) before
freezing in dry ice for 1 h. Samples were sectioned into 50 mm
coronal slices on a cryostat (Leica Biosystems). Brain slices were
washed once with 1x phosphate buffered saline (PBS) to remove
O.C.T. Compound. Samples were then incubated overnight at 4°
C on a shaker in a 1x PBS solution containing 0.1% Triton X-100,
10% normal goat serum (NGS; Jackson ImmunoResearch, PA,
USA), and primary antibodies. Sections were washed three times
for 15 min each in 1x PBS. Next, brain slices were incubated at 4°
C overnight on a shaker in a 1x PBS solution containing 0.1%
Triton X-100, 10% NGS, and secondary antibodies. Sections
were washed again three times for 15 min each in 1x PBS. Finally,
slices were mounted on glass microscope slides (Adhesion
Superfrost Plus Glass Slides, #5075-Plus, Brain Research
Laboratories, MA, USA). After the brain slices dried, DAPI-
containing mounting media (Fluoromount G with DAPI, 00-
4959-52, eBioscience, CA, USA) was added before protecting the
slices with a cover glass (Cover glass, #4860-1, Brain Research
Laboratories, MA, USA). Confocal images were acquired on a
Zeiss LSM 880 confocal microscope (Zeiss, Oberkochen,
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Germany). The following primary antibodies were used: rabbit
monoclonal to NeuN (Rbfox3) (1:500; ab177487; Abcam, MA,
USA), rabbit monoclonal to S100 beta (1:500; ab52642; Abcam,
MA, USA), and rabbit monoclonal to Olig2 (1:500; ab109186;
Abcam, MA, USA). The following secondary antibody was used:
goat anti-rabbit IgG H&L Alexa Fluor 647 (1:500; ab150079;
Abcam, MA, USA).

4.13.2 Fluorescent In Situ Hybridization Chain
Reaction
FISH-HCR was conducted as previously reported (99). Probes
targeting neuronal markers were designed using custom-written
software (https://github.com/GradinaruLab/HCRprobe). Probes
contained a target sequence of 20 nucleotides, a spacer of 2
nucleotides, and an initiator sequence of 18 nucleotides. Criteria
for the target sequences were: (1) a GC content between 45%–60%,
(2) no nucleotide repeats more than three times, (3) no more than
20 hits when blasted, and (4) the DG had to be above –9 kcal/mol
to avoid self-dimers. Last, the full probe sequence was blasted and
the Smith-Waterman alignment score was calculated between all
possible pairs to prevent the formation of cross-dimers. In total,
we designed 26 probes for Gad1, 20 probes for Vip, 22 probes for
Pvalb, 18 probes for Sst, and 28 probes for Slc17a7. Probes were
synthesized by Integrated DNA Technologies.

4.14 Droplet Type Identification
scRNA-seq datasets were analyzed with custom-written scripts
in Python 3.7.4 using a custom fork off of scVI v0.8.1, and scanpy
v1.6.0. To generate a training dataset for classifying a droplet as
debris, multiplets, neuronal, or non-neuronal cells, we randomly
sampled cells from all 27 cortical tissue samples. We sampled a
total of 200,000 cells, taking cells from each tissue sample
proportional to the expected number of cells loaded into the
single-cell sequencing reaction. Within each sample, cells were
drawn randomly, without replacement, weighted proportionally
by their total number of detected UMIs. For each sample, we
determined a lower bound on the cutoff between cells and empty
droplets by constructing a histogram of UMI counts per cell from
the raw, unfiltered gene count matrix. We then found the most
prominent trough preceding the first prominent peak, as
implemented by the scipy peak_prominences function. We
only sampled from cells above this lower bound. Using these
sampled cells, we trained a generative neural network model via
scVI with the following parameters: 20 latent features, 2 layers,
and 256 hidden units. These parameters were chosen from a
coarse hyperparameter optimization centered around the scVI
default values (Supplemental Table 3). We included the sample
identifier as the batch key so that the model learned a latent
representation with batch correction.

After training, Leiden clustering was performed on the
learned latent space as implemented by scanpy. We used
default parameters except for the resolution, which we
increased to 2 to ensure isolation of small clusters of cell
multiplets. Using the learned generative model, we draw 5000
cells from the posterior distribution based on random seed cells
in each cluster. We draw an equal number conditioned on each
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batch. From these samples, we then calculated a batch-corrected
probability of each cluster expressing a given marker gene (see
Cluster Marker Gene Determination). For this coarse cell typing,
we chose a single marker gene for major cell types expected in the
cortex (Supplemental Table 2). If a cluster was expressing the
neuron marker gene Rbfox3, it was labeled as “Neurons”. If a
cluster was expressing any of the other non-neuronal marker
genes, it was labelled as “Non-neurons”. Next, we ran Scrublet on
the training cells to identify potential multiplets. Scrublet was
run on each sample independently, since it is not designed to
operate on combined datasets with potential batch-specific
confounds. We then calculated the percentage of droplets in
each cluster of the combined data that were identified as
multiplets by Scrublet. We found a percentage threshold for
identifying a cluster as containing predominantly multiplets by
using Otsu’s threshold, as implemented by scikit-image. All
droplets in any cluster above the multiplet percentage
threshold were labelled as “Multiplets”. All other clusters were
labelled as “Debris”.

Next, we trained a cell-type classifier using scANVI on the
droplets labeled as training data. We used the weights from the
previously trained scVI model as the starting weights for
scANVI. Rather than using all cells for every epoch of the
trainer, we implemented an alternative sampling scheme that
presented each cell type to the classifier in equal proportions.
Once the model was trained, all cells above the UMI lower noise
bound were run through the classifier to obtain their cell-type
classification. Droplets classified as “Neurons” or “Non-neurons”
were additionally filtered by their scANVI-assigned probability.
We retained only cells above an FDR threshold of 0.05, corrected
for multiple comparisons using the Benjamini-Hochberg
procedure. Finally, since the original run of Scrublet for
multiplet detection was performed on only the training data,
and thus did not take advantage of all the cells available, we ran
Scrublet on all droplets classified as cells, and removed any
identified multiplets.

4.15 Cluster Marker Gene Determination
To identify which clusters are expressing marker genes, we
determined an estimated probability of a marker gene being
expressed by a random cell in that cluster. For each cluster, we
randomly sampled 5,000 cells, with replacement. We used scVI
to project each cell into its learned latent space, and then used
scVI’s posterior predictive sampling function to generate an
example cell from this latent representation, and tallied how
many times the gene is expressed. We repeated this for each
batch, conditioning the posterior sample on that batch, to
account for technical artifacts such as sequencing depth. Once
we obtained a probability of expression of a marker gene for each
cluster, we find a threshold for expression using Otsu’s method,
as implemented by scikit-image. Clusters that have a probability
of expression above the threshold are considered positive for that
marker gene.

4.16 Neuronal Subtype Classification
Cells classified as neurons were further subtyped using
annotations from a well-curated reference dataset. We used the
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Mouse Whole Cortex and Hippocampus 10x dataset from the
Allen Institute for Brain Science as our reference dataset (95).
First, we filtered the reference dataset to contain only cell types
that are found within the brain regions collected for our
experiments. To ensure that, overall, enough cells per cell type
were present in our datasets, we merged cell types with common
characteristics, such as expression of key marker genes. We re-
aligned our cell transcriptome reads to the same pre-mRNA
reference used to construct the reference dataset, so that the gene
count matrices had a 1:1 mapping. We then trained a joint
scANVI model with all cells identified as neurons from our
samples and the reference database to learn a common latent
space between them. The model was trained to classify cells
based on the labels provided in the reference dataset. Cells were
sampled from each class in equal proportions during training.
After the model was trained, all neurons from our sample were
run through the model to obtain their cell type classification.

4.17 Non-Neuronal Subtype Classification
Cells classified as non-neuronal were further subtyped using
automatic clustering and marker gene identification. We trained
an scVI model using only the non-neuronal cells and performed
Leiden clustering as implemented by scanpy on the latent space.
We determined which clusters were expressing each of 31
marker genes across 13 cell subtypes. Marker genes were
identified from a review of existing scRNA-seq, bulk RNA-seq,
or IHC studies of mouse brain non-neuronal subtypes
(Supplemental Table 2). Each cluster was assigned to a cell
subtype if it was determined positive for all the marker genes for
that cell subtype (see Cluster Marker Gene Determination). If a
cluster contained all the marker genes for multiple cell subtypes,
the cluster was assigned to the cell subtype with the greatest
number of marker genes. Clusters that did not express all the
marker genes for any cell subtype were labeled as “Unknown”.
Clusters that expressed all the marker genes for multiple cell
subtypes with the same total number of marker genes were
labeled as “Multiplets”. For cell types that contained multiple
clusters, we then calculated the probability of every gene being
zero in each cluster (see Cluster Marker Gene Determination).
We then compared gene presence between clusters of the same
cell type to see if there were any subclusters that had a dominant
marker gene (present in > 50% of samples), that was not present
in any of the other clusters (< 10% of samples). For the three cell
types that had unique marker genes, we named the cluster after
the gene with the highest 2-proportion z-score between the
sampled gene counts in that cluster vs the rest.

4.18 Quantification of Images
Quantitative data analysis of confocal images was performed
blind with regard to AAV capsid variant. Manual quantification
was performed using the Cell Counter plugin, present in the Fiji
distribution of ImageJ (National Institutes of Health, Bethesda,
MD) (164). Transduction rate was calculated as the total number
of double positive cells (i.e. viral transgene and cell type marker)
divided by the total number of cell type marker labeled cells. For
each brain slice, at least 100 cells positive for the gene markers of
interest were counted in the cortex.
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4.19 Differential Expression
To calculate differential expression within cell types between
groups of animals, we used the DESeq2 R package (165). For
each cell type, the gene counts are summed across all cells of that
type and treated as a pseudo-bulk sample. The summed gene
counts from each animal are then included as individual columns
for a DESeq2 differential expression analysis. We performed DE
for 3 DPI and 25 DPI separately, testing each sample against
saline-injected controls. For each cell type, only genes that were
present in all samples of at least one condition are included.

4.20 Marker Gene Dot Plots
To generate dot plots for marker genes, we used scanpy’s dotplot
function (166). Gene counts were normalized to the sum of the
total transcript counts per cell using scanpy’s normalize_total
function. Normalized gene expression values are log-
transformed as part of the plotting function.

4.21 Statistics
Statistical analyses comparing the fraction of transduced cells
and transduction rate in different cell types for Figures 2, 3, 4D, E
and 5A were conducted using GraphPad Prism 9. Statistical
analyses comparing proportions of transduced cells within an
animal in Figures 4F and Figure 6 were performed using the
Python statsmodels library v0.12.1. No statistical methods were
used to predetermine sample sizes. The statistical test applied,
sample sizes, and statistical significant effects are reported in each
figure legend. The significance threshold was defined as a = 0.05.
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Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form
the basis for several approved gene therapies for human diseases, mainly owing to their
ability to sustain robust and long-term in vivo transgene expression, their amenability to
genetic engineering of cargo and capsid, as well as their moderate toxicity and
immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular
disease, although linked to an exceptionally high vector dose, have raised new caution
about the safety of recombinant AAVs. Moreover, concerns linger about the presence of
pre-existing anti-AAV antibodies in the human population, which precludes a significant
percentage of patients from receiving, and benefitting from, AAV gene therapies. These
concerns are exacerbated by observations of cellular immune responses and other
adverse events, including detrimental off-target transgene expression in dorsal root
ganglia. Here, we provide an update on our knowledge of the immunological and
molecular race between AAV (the “hedgehog”) and its human host (the “hare”),
together with a compendium of state-of-the-art technologies which provide an
advantage to AAV and which, thus, promise safer and more broadly applicable AAV
gene therapies in the future.

Keywords: AAV, antibody response, cellular response, capsid, engineering, immune evasion, pre-existing immunity,
neutralizing antibodies
1 INTRODUCTION

The hallmark of gene therapy is the delivery of exogenous nucleic acids to cells with the aim to
replace missing or defective genes, or to suppress (RNA interference technology) or correct (genome
editing) deleterious ones, in order to ultimately ameliorate genetic causes of disease. The ideal
delivery vehicle or vector should safely, specifically and efficiently transport the therapeutic cargo
and allow expression for the desired duration. Although the delivery of “naked DNA” has
progressed all the way to clinical trials, the use of non-viral and viral vectors continues to
dominate the field [reviewed in (1–3)]. Viral vectors rely on natural, evolutionary evolved
properties of viruses to efficiently evade an organism’s immune surveillance while delivering their
cargo to specific cells. Several types of viral vectors are used in gene therapy today, mostly
org October 2021 | Volume 12 | Article 7534671161
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adenoviruses, retroviruses and adeno-associated viruses (AAVs),
of which the latter have emerged over the past 20 years as the
leading platform for a myriad of applications (1, 2).

AAVs are small, non-enveloped, non-pathogenic viruses
endemic in humans and multiple vertebrate species. They
belong to the genus Dependoparvovirus within the family
Parvoviridae and are amongst the smallest animal DNA
viruses [(4), reviewed in (5–7)]. They carry a ~4.7 kb single-
stranded genome that is flanked by two 145 bp ITRs (inverted
terminal repeats) forming a characteristic T-shaped hairpin and
is packaged in a capsid of T=1 icosahedral symmetry and ~26 nm
diameter. Their genome consists of two main open reading
frames (ORFs), rep and cap [reviewed in (7)], and two
additional ones encoding the assembly-activating protein
(AAP) (8) and the recently discovered membrane-associated
accessory protein (MAAP) (9). While the three viral capsid
proteins VP1-3 share their C-terminal region, it is VP3, the
shortest and most abundant of the three, that determines tissue
tropism through receptor binding and interaction with factors in
the circulation and interstitial tissue, including but not limited to
antibodies [(10–12), reviewed in (2)]. These properties are
mainly attributed to nine variable regions (VRI-IX) within
VP3 (13).

So far, at least 13 naturally occurring primate serotypes and
hundreds of variants have been identified, and countless
engineered AAVs with specialized properties are constantly
generated [(14–18), reviewed in (1, 2, 19)]. AAVs infect cells
by binding to cell surface molecules, identified either as
receptors, attachment or viral entry factors, and typically
glycans or proteinaceous in nature. Some of these are serotype-
specific while others are not, such as AAVR [(20–23), reviewed in
(19)]. Binding to these factors is followed by receptor-mediated
endocytosis, intracellular trafficking, endosomal escape, nuclear
transport, capsid uncoating and finally second-strand genome
conversion in the nucleus [reviewed in (19, 24)].

Reasons for the attraction of AAVs as vectors include their
broad tropism, low immunogenicity as compared to other
vectors, and apathogenicity. Moreover, they are easily
engineered as gene delivery vector, by replacing the viral
genome with a therapeutic expression cassette, yielding a
recombinant AAV (rAAV) with the ITRs as the only essential
cis elements. Recombinant AAVs transduce cells akin to an
infection with their parental wild-type (wt)AAVs, but they
cannot integrate into the host cell chromosome in a site-
specific manner or integrate at very low frequency, due to the
lack of the rep gene (25). Still, they can establish long-term
transgene expression in both, animals and humans (26–29).
Encouraging data in preclinical animal models and in clinical
trials [reviewed in (30)] have led to the approval of several gene
therapies in recent years, starting with Glybera, a rAAV1
carrying the lipoprotein lipase gene, whose intramuscular
delivery aimed at the treatment of lipoprotein lipase deficiency.
However, due to the high cost, the scarcity of the disease and the
lack of approval in the US, it was withdrawn five years later
(2017), despite its therapeutic efficacy (1, 2, 19, 31, 32). The first
AAV gene therapy approved by the US Food and Drug
Frontiers in Immunology | www.frontiersin.org 2162
Administration (FDA) in 2017 was Luxturna™ or voretigene
neparvovec, followed by its approval in Europe end of 2018.
Luxturna is an AAV2 vector carrying the RPE65 gene, which is
delivered to the retina to treat an inherited form of blindness
caused by a mutation in this gene (1, 2, 19, 31). The second gene
therapy approved in the US in 2019 was ZOLGENSMA®

(onasemnogene abeparvovec-xioi), i.e., an AAV9 vector
carrying the human survival motor neuron (SMN) gene and
used for the one-time treatment of children under the age of 2
who suffer from spinal muscular atrophy (SMA) (1, 2, 19, 31).
Overall, the future of the field is bright, with a 2019 FDA report
estimating the yearly approval of 10-20 new cell and gene
therapy products by 2025 (2, 33).

Despite the three approved AAV gene therapies and the
success of numerous clinical trials with AAVs (1, 2, 30, 31),
challenges or impediments remain. This is exemplified by the
first clinical trials for the treatment of severe hemophilia B, using
an AAV2 vector carrying the gene for coagulation Factor IX
(FIX) that was delivered either intramuscularly (34) or infused
through the hepatic artery (35). While the first trial was
hampered by low-level, short-term expression of <1% of FIX
(34), immune responses against the AAV vector were noted in a
second trial (35), which were not predicted by any of the
preclinical studies in small or large animals (36). No long-
lasting systemic toxicity was observed and therapeutic levels of
FIX were obtained, but they rapidly declined to background
levels, accompanied by a transient increase in liver
transaminases. It was later determined that this was due to
cytotoxic T-cell (CTL) responses from memory CD8+ T-cells
against hepatocytes presenting AAV epitopes via major
histocompatibility complex (MHC) class I (36–39). In another
clinical trial using AAV8 to deliver a codon-optimized fIX gene, a
short-term supply of immunosuppressants sufficed to block
cellular immune responses and enabled long-term expression
(27). In additional clinical trials, the presence of pre-existing
anti-AAV antibodies governed the efficiency of the gene transfer
(40, 41), as will be discussed in more detail below.

The experience and knowledge from these initial clinical trials
shaped subsequent efforts to create new generations of AAV
vectors that would perform better in humans. In particular, it
quickly became evident that immune responses are a major
roadblock and require thorough investigation, in order to
develop novel, urgently needed strategies to evade or alleviate
them. This review will first explore the mechanisms of anti-AAV
immune responses and methods to measure them, before
focusing on the multifaceted approaches to escape them in a
(pre)clinical setting.
2 IMMUNE RESPONSES AGAINST AAV

Immunity is the ability of higher organisms to protect themselves
from pathogenic invaders, such as viruses or bacteria. Although
AAVs are non-pathogenic and vectors derived thereof no longer
express any viral proteins, their viral nature renders them a target
for the immune system. On top, the fact that AAVs were
October 2021 | Volume 12 | Article 753467
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discovered in human tissues explains why humans carry
immunologic memory against them (3, 30, 42, 43).

Generally, the immune system consists of two major arms, the
innate and adaptive immunity, which are intertwined and closely
regulate one another (44). Adaptive immunity, also called
acquired immunity, includes humoral immunity (B-cells,
neutralizing antibodies) and cell-mediated immunity (T-
lymphocytes, macrophages, natural killer cells).

The following chapters briefly summarize the current
knowledge of the role of these arms in anti-AAV immune
response in humans before we focus on clinical ly
relevant countermeasures.

2.1 Innate Immunity Against AAVs
The innate system is the first line of defense against invaders and,
therefore, is relatively non-specific. Professional antigen-
presenting cells (APCs), which are present in most tissues,
express pattern recognition receptors (PRRs). These recognize
structural features on molecules, such as glycans and viral nucleic
acids, which are shared between microorganisms and named
pathogen-associated molecular patterns (PAMPs) (45). Toll-like
receptors (TLRs) are PRRs that are critically involved in immune
responses against AAVs together with myeloid differentiation
primary response 88 (MyD88), i.e., their universal adaptor
[reviewed in detail in (42)]. They are type I transmembrane
proteins, which contain leucine-rich repeats and which are
located on the cell surface (TLR1, 2, 4-6 and 10) or the
endosome (TLR3, 7-9) (46), where they recognize the AAV
capsid or the viral nucleic acid (CpG-containing viral genomes
and double-stranded (ds)RNA), respectively [reviewed in (42, 45,
47)]. Triggering of PRRs results in nuclear translocation of
nuclear factor kB (NF-kB) and interferon regulatory
transcription factors (IRFs), which subsequently induce
expression of pro-inflammatory cytokines and type I
interferons [IFN, reviewed in (3, 42)]. Type I IFNs are the
essential link between innate and adaptive immunity [(48–51),
reviewed in (3, 47)].

The importance of innate immune responses in AAV gene
transfer is subject to intense ongoing investigation. Early studies
in mice showed low levels of chemokine induction, at least
compared to adenoviral vectors, and the duration was also
transient and did not lead to liver necrosis (52). One of the
first factors identified to play a role in inhibiting AAV
transduction is apolipoprotein B mRNA editing complex 3A
(APOBEC3A) (53), a component of the intrinsic immunity.
However, the link to innate immunity remains unclear (54).
Further studies, mostly performed in the liver, revealed
important roles for TLR2 and, most prominently, TLR9
receptors in the early-phase activation of the innate immune
system, involving different cell types. TLR2 can sense the capsid
of rAAVs (serotypes 2 and 8) on the surface of human non-
parenchymal liver cells, such as Kupffer and liver sinusoidal
endothelial cells (LSECs). This results in NFkB-mediated
immune responses and activation of several interleukins and
tumor necrosis factor a (TNFa), but not type I IFN (55).
Extensive studies support the role of the viral genome and in
particular of the presence of unmethylated CpGs in triggering
Frontiers in Immunology | www.frontiersin.org 3163
the innate immune system through the TLR9-MyD88 pathway
in different cell types (56, 57), not only in Kupffer cells (58), but
also in dendritic cells (DCs) including plasmacytoid (59–61),
conventional (59) and monocyte-derived DCs (59, 62). Different
TLRs appear to be activated and have distinct effects on different
DCs, all of which participate in linking innate and adaptive
immunity (45). Still, TLR9 seems to be the most efficient in
perpetrating downstream events, such as humoral responses (59)
(see below for the link to the adaptive immunity).

Unmethylated CpGs, which are present in the ITRs but also
in vector expression cassettes, were shown early on to play a
central and enhancing role in the aforementioned TLR9-MyD88
activation (48, 52, 57, 61, 63) [reviewed in (56)]. The detrimental
role of CpGs in expression cassettes became evident in clinical
trials by the stronger immune responses triggered by codon-
optimized transgenes that contained higher CpG levels
compared to the wild-type sequences (57), which highlights the
importance of the encapsidated nucleic acid. Similarly, the
presence of self-complementary rather than single-stranded
AAV vector DNA (scAAV vs ssAAV) also results in stronger
induction of the innate immune system through TLR9 (58).

In addition to the role of the DNA, the role of double-
stranded (ds)RNA produced from AAV vectors has most
recently been identified as a factor governing the success of
AAV gene therapy (64). Late rather than early innate immune
responses are likely to explain the decline in transgene expression
that is often observed in patients weeks after AAV delivery. In a
recent study, it was hypothesized that the dsRNA produced by
the inherent promoter activity of the AAV ITRs was sensed by
the PRR melanoma differentiation-associated protein 5 (MDA5).
Together with the signaling adaptor mitochondrial antiviral
signaling protein (MAVS), MDA5 induces expression of IFN-b,
a type I IFN. This induction was seen in different cell lines but,
more importantly, also in vivo in the humanized liver of mice
(64). However, another dsRNA PRR, TLR7, did not show a
similar effect (59). Hence, the role and the mechanisms of
dsRNA sensing in the innate immune responses require
further study (42).

The aforementioned studies of innate immune responses
against AAVs yield insights into the connection to the adaptive
immunity arm. Indeed, the innate system is considered the key
player in the induction of the adaptive responses, which is
further corroborated by the fact that transient immune
suppression of inflammatory cytokines in clinical trials also
suppressed the adaptive immune responses (30). The TLR9-
MyD88 pathway is central in this association with both, humoral
(51, 59, 62, 65) and cellular immunity (48, 51, 56, 60, 61, 63, 65).
In particular, the role of MyD88 in neutralizing antibody
induction against the capsid was underlined (51), as well as its
role in B-cell induction (59, 65), T helper 1 induction (3, 51, 65),
or the shift from Th1 to Th2 (51). In contrast, TLRs are involved
in the induction of CD8+ T-cells against the transgene product
(51). B-cell induction can also be mediated by cytokines from
monocyte-derived DCs (moDCs) (66). The role of TLRs in cell-
mediated responses is strongly corroborated by multiple studies.
CpG DNA in AAV vectors can induce CD8+ T-cell responses
(63), and TLR9 was implicated in capsid antigen presentation
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through MHCI (51, 60, 63). This process was also shown to
require type I IFN (60, 67), next to TLR9, which is secreted by
plasmacytoid DCs (pDCs) and binds to its receptor on
conventional DCs (cDCs). Subsequently, licensing of the latter
activates CD8+ T-cells. Inhibition of this pathway reduced
antibody production against the capsid (47, 48). Intramuscular
AAV injection, with or without a TLR9 agonist depending on the
mouse strain, elicited T-cell responses against the transgene
product (59, 62). Similar effects were also observed following
systemic administration (68). Finally, at lower doses, AAVs can
interact directly with members of the complement system,
especially iC3b, which can enhance humoral responses through
the classical pathway. Yet, they also bind the complement
regulatory protein factor H, which hinders the onset and
intensity of antibody formation. At higher doses, AAVs can
activate the complement and macrophages, in an antibody-
dependent manner (69) [reviewed in (70)].

Together, a wealth of data supports the role of the innate
immune system in animals or humans and especially in the
induction of adaptive immune responses, as discussed in more
detail below.

2.2 Adaptive Immunity Against AAVs
Adaptive immune responses follow, and are activated by, the
innate system. The adaptive immune system is sophisticated and
highly specific to the pathogens. The main actors of the two
major branches of adaptive immunity, humoral and cellular, are
the B- and T-cells. During development, they produce a vast
amount of receptors by rearranging their DNA that recognize the
pathogens in an initial encounter. Subsequently, this system
generates the so-called immunological memory, which is more
robust and is maintained for years after the first invasion (45).
The key steps towards immunity include antigen capture and
presentation by APCs to lymphocytes, which are in turn
activated, clonally expanded and differentiated to effector cells.
The effector functions include (1) activation of B-cells and
production of antibodies against the pathogen, (2) activation of
inflammation, of macrophages as well as of B- and T-cells by
helper T-cells, (3) CTL responses to eliminate the pathogen, and
(4) induction of regulatory T-lymphocytes to suppress immune
responses. The effector phase is followed by contraction of
lymphocytes by apoptosis that restores homeostasis and by
survival of antigen-specific cells to yield immunologic memory
(44, 45).

AAV vectors that are presently in clinical evaluation or used
as basis for gene therapeutics are typically derived from wild-type
AAVs with no or minimal modifications to the capsid, such as
peptide insertions or point mutations. As humans are exposed to
these viruses early in life, it comes as no surprise that adaptive
immunity is a major challenge for gene therapy, as discussed
below. Adaptive immune responses against AAVs (overview in
Figure 1, Table 1) have been well documented in clinical trials
and investigated in animal models [reviewed in (3, 30, 43, 95,
113)]. The next chapter will explore both, humoral and cellular
immune responses against the capsid or the transgene product,
as well as methodologies for their detection.
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2.2.1 Humoral Immune Responses
Humoral immunity against AAVs, either exhibited by the
prevalence of anti-AAV antibodies in the human population
(71, 114, 115) but also in animals (116–118), or triggered by
AAV vector administration, has been investigated since the early
days of AAV vector engineering (119), and it has since been
viewed and intensively discussed as a major impediment and
exclusion criterion in AAV gene therapy clinical trials.
Exacerbating this challenge is that not only up to 90% of
individuals in certain areas of the world are seropositive for
AAV and that 30-70% are believed to carry neutralizing anti-
AAV antibodies (nAbs), but there is also significant cross-
reactivity among the known naturally occurring AAV
serotypes as well as their synthetic derivatives (115, 120, 121).
As the topic of human seroprevalence against AAVs, induced by
natural infection or by gene therapy, has already been covered
extensively in a flurry of previous reviews including an excellent
recent article by Weber in this journal (122) (also references
therein), we kindly refer the reader to this literature for more
background information. Below, we will instead focus on
methodologies for the detection of humoral immune responses
against AAVs and then later (chapter 3) discuss experimental
strategies to circumvent these.

There are two major in vitro methodologies, i.e., cell-based
assays and ELISAs (enzyme-linked immunosorbent assay),
which are used for screening of anti-AAV nAbs and each
exhibiting distinctive advantages (123–125). Cell-based assays
are more widely used as they are robust and fast. Furthermore,
they can distinguish between neutralizing and non-neutralizing,
binding antibodies (123, 126). Recently, a variation of these
assays has been reported, i.e., a cell-binding assay. This assay,
albeit being fast, cannot make this distinction and can only detect
neutralization at the level of receptor binding (127). ELISAs, on
the other hand, are easy, relatively sensitive and highly useful for
determining the immunoglobulin subclasses (114). However,
they are typically used to measure binding, not necessarily
neutralizing antibodies. There is a high but not absolute degree
of correlation between the two assays (121, 128). In cell-based
assays, serial dilutions of blood serum or plasma are mixed with
equal amounts of an AAV vector, preincubated and then
transferred to cells. Transduction efficiency is determined at a
distinct time point and expressed as percent to a no-serum/
plasma control. The titer is determined as the first dilution at
which inhibition exceeds 50% (123, 124, 129, 130), which makes
this assay similar to a half-maximal inhibitory concentration
(IC50) assay. These assays have been performed in numerous
variations, using different transgenes (green fluorescent protein
(GFP), LacZ and luciferase), cell types (HEK293T or Huh7),
serum or plasma, heat-inactivation or not, with adenovirus
superinfection or not etc. The sensitivity of the assay was
found to decrease with lower cell densities or with GFP
[reviewed in (123, 131)]. Of these options, luciferase and
HEK293T cells are the most widely used (123, 124, 131),
although a need for optimization remains (132). It should also
be noted that different AAV purification methods produce
different full/empty capsid ratios, which could also impact data
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transferability efforts (133). Several studies have also attempted
to determine the correlation between in vitro and in vivo assays,
but this proved to be challenging and tedious (129, 131, 134).
Despite the fact that humoral immunogenicity remains a major
impediment for gene therapy in humans and in animal models
(3, 30, 47, 116, 135, 136), an international standard assay that
takes into consideration key parameters, such as sensitivity and
specificity, has yet to be established (135). This underscores the
importance of reporting these assays in sufficient detail to allow
comparisons between studies and provides the opportunity for a
call to the community for additional standardization efforts (78,
122, 137).
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2.2.2 Cellular Immune Responses
2.2.2.1 Cellular Immune Responses Against the Capsid
Intriguingly, even though the challenges posed by humoral
immunity, predominantly against the AAV capsid, were well
established in larger animal models and screened for in patients
in clinical trials, the detected cellular immune responses were not as
anticipated [reviewed in (3, 30, 43, 137, 138)]. In the first liver-
directed clinical trial to treat hemophilia B, hepatic intra-arterial
delivery of a recombinant AAV2 vector expressing the human
blood-coagulation factor IX resulted in a limited duration of
transgene expression and a transient, asymptomatic elevation of
liver transaminases in the high-dose group. This was attributed to
FIGURE 1 | Immune responses against AAVs. AAVs delivered systemically can be neutralized by pre-existing antibodies prior to entering the cells. If they evade nAb
binding, they enter the cells through endocytosis and can then be degraded in the endosomes. In certain cell types, such as DCs, their genome or capsid can be sensed
by TLR9 and TLR2, respectively, which induces the innate immune response. Alternatively, AAVs can successfully escape the endosome and traffic in the cytoplasm,
where they can be ubiquitinated, resulting in capsid degradation. The ensuing peptides can next be loaded to MHC class I molecules and presented on the surface
of the cells, which are then targeted and possibly eliminated by CD8+ T-cells (CTL response). After endosomal escape, AAVs can also successfully transduce the cell
and deliver their viral genome to the nucleus, where the transgene is expressed. Any misfolded protein encoded by the transgene can be degraded by the proteasome
and the ensuing peptides can be loaded onto MHCI and also provoke a CTL response. Sensing of AAV vector components in plasmacytoid DCs (pDCs) by the innate
immune system leads to the activation of conventional DCs (cDCs). cDCs employ antigen presentation to cross-prime CD8+ T-cells towards an effector type (Teff) and
to activate CD4+ T-cells. The latter can activate B cells, which in turn produce the nAbs against the capsid and transgene product. After prolonged or inadequate
stimulation, the CD8+ T-cells can be eliminated by different mechanisms including T-cell exhaustion, anergy or apoptosis. The tolerogenic environment in the liver can
also stimulate the production of regulatory T-cells (Tregs), which can suppress the aforementioned immune responses at different stages.
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cellular immune responses towards the capsid that were targeting
transduced hepatocytes, as the rise of transaminases was
accompanied by a rise in capsid-specific CD8+ T-cells (35). In a
subsequent trial using rAAV8 to systemically deliver a self-
complementary genome encoding a codon-optimized FIX variant
(scAAV2/8-LP1-hFIXco), an asymptomatic increase in serum
transaminases or liver-enzyme levels was also observed in the
medium- and high-dose groups, together with an increase in
capsid-specific CD8+ T-cells in peripheral blood. Still, in patients
Frontiers in Immunology | www.frontiersin.org 6166
treated with glucocorticoids, FIX expression was maintained years
after vector application (27, 101). It was further established that
humans carry capsid-specific T-cells against AAVs (38, 139), and
that the elicited immune response is dose-dependent (35, 101).
However, immune suppression strategies seem capable of obviating
this obstacle, at least to some extent (27, 38, 98, 140–142) [reviewed
in (43, 72, 143, 144)]. Besides dose, the route of administration may
also play a role in the induction of T-cell immune responses.
Intramuscular delivery typically induces stronger cellular
TABLE 1 | Summary of immune responses to AAV gene therapy and evasion/prevention strategies.

Response Strategy to evade them

Pre-existing nAbs against the capsid (35, 71, 72)
• previous exposure to wtAAVs

Host
• exclusion from clinical trials (71)
• route of administration (73), saline flushing (74)
• immune-privileged organ (75, 76)
• nAb depletion [plasmapheresis (77), immunoadsorption (78), (IgG)-degrading enzymes (79)]

Vector
• novel serotype selection (80)
• AAV capsid engineering (81, 82)
• chemical modification of the capsid (83)

Pre-existing nAbs against the transgene
• previous exposure to recombinant or truncated protein (84)

Host
• targeting of tolerogenic organs (85)

Activation of the innate system
• vector capsid (55)/genome (51, 58)/dsRNA (64) sensing
• CpG containing vector genome (57, 59, 63)

Vector
• CpG depletion (67)
• TLR9-inhibitory sequences addition (86)
• suppression of ITR promoter activity (70)

nAbs against the capsid after gene therapy (79, 87) Host
• targeting of tolerogenic organs (88)
• induction of tolerance (89)
• B-cell depletion (90)

Vector
• vector engineering to avoid antigen presentation (91)

nAbs against the transgene after gene therapy (59, 62, 87)
• null or missense mutations (92–94)
• route of administration (92)

Host
• targeting of tolerogenic organs (37, 95–97)
• immune suppression (98)
• B-cell depletion (90)

Vector
• tissue-specific expression (promoter, miRs) (99, 100)

Cellular immune responses against the capsid (39, 101)
• route of administration (102, 103)
• vector dose (101)

Host
• immune suppression (27, 98, 101)
• targeting of immune-privileged organs (102, 103)
• targeting of tolerogenic organs (104), induction of tolerance (89, 105)
• cell-type specific expression (promoter, miRs)

Vector
• vector selection/engineering to avoid antigen presentation (106–108)

Cellular immune responses against the transgene
• route of administration (92, 109)
• vector dose (110)

Host
• immune suppression (98, 111)
• targeting of immune-privileged organs (37)
• targeting of tolerogenic organs (104), induction of tolerance (97)
• restriction of transgene expression (promoter, miRs) (100)

Vector
• vector engineering to avoid antigen presentation (112)

Vector dose (toxicity) Host
• lower vector dose
• capsid/transgene optimization for increased expression
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responses, although these seem to only account for a reduction of
transgene expression, but not for vector elimination (72, 102, 103).
They are concomitant with the infiltration of T-cells that do not
have a cytolytic (CTLs) but rather a regulatory phenotype, Tregs
(145). The latter are formerly known as suppressor T-cells, which
are responsible for tolerance to self-antigens. These results once
again highlight the complexities of immune responses
against AAVs.

The experience gained by the early clinical trials has motivated
significant research on the characterization of these immune cells
and the mechanisms underlying their induction, stimulation and
regulation. APCs are professional, such as DCs, or non-professional,
with the former expressing MHC class II molecules and the latter
MHCI. Class I MHC molecules, expressed by almost all nucleated
cells, mostly present antigens to cytotoxic T-cells, as opposed to
MHCII that trigger helper (CD4+) and regulatory T-cells (45). After
AAV administration, APCs intracellularly process transgene
peptides or proteolytic products through proteasomal degradation
of the AAV capsid (146) in the cytosol and cross-present them onto
MHCI (60, 147, 148). This, in turn, flags the transduced cells for
destruction (39, 149–151). Presentation on MHCII molecules
facilitates humoral and cellular immune responses (48, 87, 105).
The epitopes on the AAV capsid that are recognized by CD8+ cells
are conserved across serotypes (38, 147). These cells are limited in
peripheral blood mononuclear cells (PBMCs) (41, 147), which are
typically screened during clinical trials, but are more abundant in
lymphoid organs, such as the spleen, and recognize epitopes
presented via major MHCI (147). Capsid-specific T-cells have
been found in splenocytes from children (38, 147), which points
to the induction of not only humoral, but also cellular immunity
early in life after AAV infection and to the maintenance of memory
T-cells in secondary lymphoid organs [reviewed in (3, 43)]. These
cells express IFNg, TNFa, IL-2, perforin and the degranulation
marker CD107a (66, 147, 152), which equips themwith a T-effector
phenotype and the ability to exhibit cytolytic activity [reviewed in
(3, 43)]. From the aforementioned research, it was long thought that
the cellular immune responses against the capsid are mediated by
memory CD8+ T-cells generated during childhood after natural
infections. Recently, however, the presence of CpG motifs has been
linked to the expansion of naïve T-cells directed against epitopes on
the capsid. In contrast, memory T-cells react more vigorously to
AAV vectors largely depleted of the CpG motifs as well as to empty
capsids (63).

Another key aspect is the linkage of humoral to cellular
immunity (48, 66). Typically, T-cells are identified by their
ability to produce IFNg upon stimulation with capsid peptides.
One notable study that went a step further provided a link
between seroprevalence and T-cell reactivity. Seropositive
individuals had TNFa-secreting memory CD8+ cells, whereas
seronegative individuals showed transient activation not of naïve
T-cells, but of natural killer (NK) cells that secrete both, IFNg
and TNFa (66). Additionally, antibody formation requires the
CD40-CD40L axis in CD4+ cells (48) and IL-1b and IL-6 in
moDCs (66).

Finally, a contribution of the capsid itself in the induction of
the cellular immune responses has been reported (87, 153, 154).
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In more detail, it was shown that AAVrh32.33 can induce
stronger humoral and cellular immune responses than AAV8
(87) or other commonly used serotypes. This can be attributed to
structural differences and, in particular, to the surface-exposed
variable regions, mainly IV (153). This serotype is of particular
interest for vaccine applications, due to its low seroprevalence.
AAVs as a vaccine have multiple advantages: a single
intramuscular application suffices for long-term expression,
immunogenicity and protection, and their high thermal
stability reduces the thermal-chain requirements, as shown
recently for the AAVCOVID vaccine. However, even though
large-scale production is feasible, it is challenging to meet the
needs of a pandemic (155, 156). The capsid tropism, trafficking
and transduction efficiency of APCs also seem to be factors
contributing to vector immunogenicity (106–108, 154).

Several studies explored the cellular immune mechanisms in
non-human primates (NHPs) and revealed that natural
infections with AAVs also produce cellular and humoral
responses. Capsid-specific CD4+ and CD8+ cells in rhesus
macaques display distinctive differentiation status and
function, as well as cell-subset frequencies, with higher
proportions of T-effector (Teff) cells as compared to humans
(139). Furthermore, unlike chimpanzees, human immune cells
do not express CD33-related Siglecs (sialic acid-binding
immunoglobulin-type lectins), which are inhibitory signaling
molecules thought to downregulate immune cell activation (157).

Cellular immunity against AAV is predominantly evaluated
by determining the frequency of capsid-specific T-cells. Two
major assays are currently in use, namely, IFNg enzyme-linked
immune absorbent spot (ELISpot) assay and, more recently, flow
cytometry combined with intracellular cytokine staining (ICS)
(3, 158). ELISpot measures the frequency of T-cells that produce
a cytokine, such as IFNg or, as recently suggested, also TNFa
(66), upon stimulation with the appropriate antigen. As a first
step, peripheral blood mononuclear cells or splenocytes (usually
from humans or from animals, respectively) are isolated,
cultured and plated on ELISpot plates that contain membrane
bottom wells pre-coated with antibodies against the target
cytokine. Afterwards, the cells are stimulated with peptide
pools from different AAV capsids. Upon stimulation, the
immune cells, granted they have receptors recognizing the
antigen, produce cytokines that are captured by the underlying
antibodies. Cells are then removed and the cytokine is detected
with another antibody, producing spots on the membranes
corresponding to each cell that produced cytokines. Use of
serial dilutions allows to determine the number of positive cells
in a population (139, 147) [reviewed in (3, 113)]. For higher
sensitivity, ICS of these immune cells after stimulation with AAV
capsid peptide pools can be quantified using flow cytometry
(66, 147) [reviewed in (3, 113)], which also allows for
multifunctional analysis of T-cells (147). Additionally, because
AAV-specific circulating T-cells are rare, an enrichment step
based on MHCI tetramers or pentamers and magnetic beads can
enhance the detection sensitivity for both assays (41, 66, 147).

As noted initially, the cellular immune responses observed in
the first clinical trials, which led to rejection of AAV-transduced
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cells, were not predicted in any of the small or preclinical animal
studies (36). Over time, multiple explanations have been
proposed, such as the primate/human source of AAVs,
immunological memory in humans, or differences in the
immune system [reviewed in (3, 36, 43, 47, 113)]. Extended
efforts were then dedicated to develop suitable animal models
[reviewed in (113)], including incorporation of a highly
immunogenic peptide (SIINFEKL) of ovalbumin in the AAV
capsid. To study primary or secondary responses, AAV capsid-
specific CD8+ T-cells, derived either from OT-1-transgenic
animals (they carry the T-cell receptor for this peptide), or
from mice immunized using adenoviral gene transfer of this
peptide, are adoptively transferred to recipient mice that are
injected with AAVs (60, 63, 159). The adoptive transfer can also
be performed without the presence of the peptide or by including
an in vitro expansion step and further stimulation of the immune
system. However, these methods still fail to fully recapitulate the
CTL responses [reviewed in (42, 113)].

2.2.2.2 Cellular Immune Responses Against the
Transgene Product
Immune responses to the transgene products are influenced by
multiple factors, which can be divided into (1) host-specific, such
as the underlying mutations (missense, stop codon), the genetic
background, disease-related inflammation and pre-existing
immunity and (2) vector-specific, such as the AAV capsid and
genome, delivery route, tissue-restricted promoters, vector dose,
or transgene [reviewed in (30, 42, 95)]. Gene therapy in patients
that lack a given protein, due to e.g., a stop codon, is likely to
induce a transgene product-specific response. However,
underlying mutations (92), even single-amino acid
substitutions or transgene-derived cryptic epitopes (84, 93) can
induce transgene product-specific cellular responses restricted to
tissue-resident T-cells (109). Another determining factor is the
genetic background of the patient (37, 94, 160). Disease-specific
conditions, such as the dystrophic environment characterized by
inflammation, contribute to transgene rejection (161). Pre-
existing immunity against the transgene due to protein
replacement therapy is also a limiting factor (84). Regarding
vector-specific responses, the contribution of the capsid (107,
162, 163) and the vector genome (64, 67, 164) has already been
elaborated on in the previous sections. Additionally, the route of
administration and promoter-restricted expression are major
determinants of immune responses to transgene products.
Intravenous delivery results in concurrent expression in the
liver and induction of immune tolerance (37, 95), as detailed
in the next section. However, intramuscular injection or
restriction to this tissue via muscle-specific promoters typically
results in a stronger immune response (37, 88, 92, 162, 165). This
example again highlights the critical role of the promoter in AAV
vector constructs and concurrently illustrates the possibilities to
reduce immune responses through a meticulous selection of
promoters and other regulatory elements. Ideally, this results
in the detargeting of vector gene expression from APCs and,
thus, avoids presentation of transgene peptides on MHCI and
subsequent CTL-mediated clearance of the transduced cells.
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Such regulatory elements also comprise binding sites for
tissue- or cell-specific mi(cro)RNAs, which can be easily
included in the 3’ untranslated region of an AAV vector
expression cassette and which will shut down unwanted gene
expression in cells expressing the selected miRNA(s). For
instance, this strategy has been exploited in the past to
purposely detarget AAV transgene expression from the liver,
by incorporating binding sites for the liver-specific miR-122 into
the recombinant AAV genome (166–168). Most relevant in the
context of anti-AAV immune responses are miRNAs that are
abundantly expressed in professional APCs, especially miR-142
(169) or, as reported most recently, miR-652-5p (99). As shown
repeatedly, inclusion of binding sites for these miRNAs can
diminish both, antibody formation and CTL responses, in turn
boosting transgene expression and extending its persistence in
mice. Impressively, combination of binding sites for miR142 and
miR652-5p even enabled robust expression of the highly
immunogenic ovalbumin in vivo, through detargeting from
APCs, inhibition of CTL activation and suppression of Th17
responses (99). The fact that incorporation of miRNA binding
sites into AAV vectors is technically simple and that saturation of
the endogenous miRNA/RNAi pathway is unlikely (due to the
artifical design of these sites that bind miRNAs with perfect
complementarity) makes this strategy very appealing and
versatile. Finally, vector dose also plays a significant role in
defining the T-cell immune response (110) against the capsid
and the transgene (84, 170, 171).

Despite the possibility of immune responses against the
transgene product, there are few reports of clinical trials
encountering this limitation. This could be attributed to residual
natural protein expression, to the type of application (e.g., gene
replacement therapy), to the preconditions of the individuals, to
vector delivery to immune-privileged organs, to the induction of
immune tolerance and/or exhaustion, or to the application of
immune suppression [reviewed in (3)]. Nonetheless, some
transgene product-specific immune responses were observed in
vector-treated individuals. In a phase I/II clinical trial, six
Duchenne muscular dystrophy patients received the mini-
dystrophin transgene intramuscularly. Dystrophin-specific
cytolytic CD8+ T-cells were observed in all patients after
treatment and in two before (84). T-cell responses were also
observed in a separate clinical trial to treat another monogenic
disorder, a-1-antitrypsin (AAT) deficiency. Intramuscular delivery
resulted in AAT-specific T-cell responses in two participants as well
as in a reduction in expression in one of them (172). Finally, in a
phase I/II clinical trial to treat mucopolysaccharidosis type IIIB
syndrome (Sanfilippo type B syndrome), an rAAV2/5 vector
carrying the human a-N-acetylglucosaminidase (NAGLU) was
delivered intracerebrally. In three of the four patients, circulating
T-cells that produced TNFa upon stimulation with NAGLU
peptides were detected but later subsided, indicative of the
development of tolerance (173).

2.2.3 Immune Tolerance and Exhaustion
Immune tolerance is a vital part of the immune system, which
encompasses a broad spectrum of processes that result in a state of
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non-reactivity towards antigens or immune homeostasis. This
ensures protection from harmful, excessive immune responses
inside the host, such as against self-antigens or against chronic
infections and the ensuing inflammation that can cause significant
tissue damage. The major mediators of immune tolerance are the
regulatory T-cells, which include the natural and the induced, also
called adaptive, Tregs (nTreg and iTreg), located in the thymus and
in the periphery, respectively [reviewed in (143, 174)]. Tregs are the
major actors involved in inducing systemic tolerance through liver-
directed gene transfer, with the liver being a long recognized
tolerogenic organ (175). Different markers are used to identify
Tregs, most frequently CD4 and CD25 extracellularly and FoxP3
(forkhead box P3) intracellularly (CD4+CD25+FoxP3+ T-cells)
(143, 175). The transcription factor FoxP3 is central to
establishing the regulatory lineage. iTregs have a transient
expression of FoxP3, whereas it is stable in nTregs (176). Tregs
mediate tolerance via interaction with CD8+ T-effector cells,
whereby they can either inhibit proliferation and IFNg secretion,
or induce cell death through granzyme or perforin (177–179).
Tolerance through Tregs is also mediated in the liver draining
lymph nodes via secretion of immunosuppressive cytokines, such as
IL2 or IL10 that cause Teff anergy, exhaustion or suppression (88,
180–182), or differentiation of naïve CD4+CD25- T-cells into Tregs
(182) [reviewed in (138)].

Different APCs in the liver are critical for the induction of
tolerance (96, 110). Kupffer cells (KCs), i.e., liver-resident
macrophages, have a less mature phenotype and can induce
expansion of Tregs or the conversion of Teff to Tregs, via
programmed death ligand-1 (PD-L1) expression and IL-10
production (180, 182, 183). Liver sinusoidal endothelial cells
(LSECs) are one of the first liver cells to recruit lymphocytes. Yet,
due to high levels of IL-10, priming of T-cells is inefficient,
thereby promoting Tregs (175, 184) [reviewed in (3, 95, 143,
175)]. Hepatic DCs also have the capacity to induce and
maintain tolerance [reviewed in (175)]. Defective antigen
presentation in the liver lymph nodes also results in T-cell
exhaustion (110). T-cell exhaustion, that is CD8+ T-cells
without effector functions, can be caused by interactions with
Tregs, cytokines or by activation of inhibitory receptors, such as
PD-1, and can also mediate long-term transgene expression (88,
185, 186). Remarkably, these cells persisted in human muscle
biopsies even five years post-vector delivery (185).
3 STRATEGIES TO EVADE IMMUNE
RESPONSES AGAINST AAVS

AAV vectors have been used successfully in numerous clinical
trials and in gene therapies. Still, as detailed above, the host
immune system poses a substantial barrier to their broad
and effective application. A major but unsatisfactory solution
thus far has been the identification of patients with pre-existing,
typically humoral immunity and their exclusion from
participation. Importantly, several additional approaches were
also widely explored to include more patients for whom gene
therapy might be a preferred, if not the only therapy available.
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These can be classified into two major categories, i.e.,
modulation/suppression of the immune system or engineering
of the AAV vector on the level of capsid and/or transgene
(Figure 2, Table 1).

Below, we will discuss a selection of these approaches that
have been published in a large body of work and that range from
basic research all the way to the clinic.

3.1 Modulation/Suppression of the
Immune System
3.1.1 Route of Administration
The route of administration has been strongly implicated in the
inhibition by, and the induction of, immune responses. The exact
choice is usually determined by the type of disease. Examples for
administration routes include intravenous for hemophilia or
liver/heart diseases, intramuscular or intravenous for muscle
diseases, or intracerebral, intraparenchymal, intrathecal, or
intravenous for neurological diseases [reviewed in (1)]. Direct
injection into the target organ, such as intramuscular injection
(73), is the most straightforward method to avoid circulating
antibodies. Additionally, saline flushing to avoid contact with
nAbs in combination with direct or balloon catheter-guided
vector injection has shown promise (74). Nonetheless, this
does not obviate the generation of immune responses after
gene therapy (187), which could eliminate transgene
expression later on, as explained in detail before. Fortuitously,
several delivery methods exist today that facilitate the evasion of
these responses (immune-privileged organs) or their
manipulation (immune tolerance or T-cell exhaustion).

3.1.2 Immune-Privileged Organs
The intravascular or intravenous route of administration has been
predominantly associated with inactivation of AAVs by nAbs in the
circulation and interstitial tissues (35, 40, 116, 117, 135, 188). Thus,
it is encouraging, albeit not a panacea, that certain tissues provide
shelter from the immune system. Three organs are considered
immune-privileged, namely, the brain, the eye and the liver.

3.1.2.1 Brain
The CNS, and in particular the brain, have long been considered
to be isolated from the immune system by the physical blood-
brain barrier (BBB). Moreover, the brain lacks classical draining
lymph nodes and APCs in the parenchyma. While these concepts
have been challenged (189), CNS gene transfer, either to the
cerebrospinal fluid (CSF) (75, 190) and, to a lesser extent, after
intraparenchymal injection (191–193), remains comparatively
successful notwithstanding the presence of circulating nAbs. Still,
in patients with high titers of circulating antibodies, even CNS
gene transfer is inhibited (134, 194). This was exemplified in a
study in which preimmunization of mice after intramuscular
injection hindered subsequent brain delivery. On the other hand,
passive transfer of NHP serum containing nAb to mice did not
impact gene transfer to the hippocampus or the thalamus (134).

3.1.2.2 Eye
The ocular immune privilege, akin to the one in the brain, was
first described in the middle of last century. It is mediated by a
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FIGURE 2 | Strategies to evade immune responses. Several approaches to evade immune responses have been applied in the clinic or explored on a basic research
level. They can be roughly divided into two main classes, i.e., 1) modulation or suppression of the subject’s immune system and 2) AAV vector engineering. 1) Modulation/
suppression of the immune system. The route of administration is decisive in evading pre-existing immunity. Targeting immune-privileged organs, when possible, provides
protection not only by evading immune responses, but also by inducing regulatory responses. The latter can also be induced through multiple exogenous interventions.
Additionally, pharmacological immune suppression has been used extensively in the clinic. Pre-existing immunity (nAbs) is particularly difficult to evade or suppress.
Promising approaches include plasmapheresis or the use of immunoadsorption columns ex vivo after separation from the cellular parts of the blood. Furthermore,
recent studies have used IgG-degrading enzymes in vivo. 2) AAV vector engineering. The use of native serotypes from species other than humans or NHPs, or engineering
the capsid of existing serotypes (predominantly from primate species) are advantageous strategies to evade immunity. The current serotypes can be modified in defined
positions (rational design) based on acquired knowledge about sequence-structure-function relationships. To increase variability, the rational design strategy can be
used to generate libraries, which then can be evolved/selected ex or in vivo. Libraries can also be fully randomized and interrogated for multiple properties, not only
immune evasion. Moreover, the viral genome can be optimized to minimize antigen presentation (e.g., via cell-type specific promoters, miRNAs to prevent expression
in APCs or peptides to inhibit antigen presentation) or immune system induction (CpG depletion). Finally, the capsid can be protected from the immune system by
coating with molecules, such as PEG, engulfment in exosomes, or display of immune evasion peptides on its surface.
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blood-retina barrier (195), absence of efferent lymphatics,
presence of elevated concentrations of immunomodulatory
molecules and immunoinhibitory factors, and finally the
ACAID system (anterior chamber-associated immune
deviation), which is typically stimulated after perturbation of
the ocular integrity. ACAID induction by intraocular antigens
results in induction of Tregs, immunomodulators in the aqueous
humor, anti-inflammatory cytokines and F4/80 macrophages
that present the antigen to clusters of immune cells in the
spleen (196, 197). The induction of a deviant immune response
has already been reported for adenoviral and AAV gene transfer
to the subretinal space (198). In combination with other
mitigating factors, such as the low effective dosage and hence
minimal toxicity and low manufacturing burden, this well-
characterized immune privilege has catapulted ocular gene
therapy to the forefront of the field [reviewed in (30)], with
multiple clinical trials concluded or underway, culminating in
the approval of Luxturna™ (199). There are two major delivery
methods, subretinal and intravitreal, of which the latter is slightly
more immunogenic (76). Although pre-existing immunity can
pose a challenge to intravitreal delivery (200, 201), several clinical
trials were successful due to the immune-privileged status of the
eye (202) [reviewed in (30)].

In contrast to pre-existing immunity, induction of the
immune system after gene therapy in the eye was observed
more frequently (203), albeit not to the same extent reported
for other delivery routes (detailed in previous sections).
Induction of a dose-dependent inflammatory response was
observed in animal models (204–207) and in humans (208–
212). In several clinical trials using either of the two delivery
methods (subretinal or intravitreal), inflammation occurred but
could be treated with immune suppression regimes. Likewise,
transient antibody response against the capsid and cellular
immune responses were also noted [reviewed in (30, 76, 213)].
The low to mild and transient immune responses allowed
repeated administration of AAV vectors, either contralateral or
in one eye (214, 215) or the delivery of two boluses in the same
eye (216). Finally, long-term expression could be achieved in
most clinical trials, with a decline observed in some after a few
years (202, 210) [reviewed in (30, 76, 213)].

3.1.2.3 Liver
Liver is the largest organ in the body, whose sinusoids filter an
antigen-rich blood. In order to protect itself from the antigenic
overload of nutritional components, chemicals and drugs, liver
promotes immune tolerance rather than reaction (217). Even
though systemically-delivered liver-targeted gene therapy cannot
evade pre-existing immunity which challenges the immune-
privileged status of the liver, the ability to harness the
tolerogenic hepatic microenvironment has encouraged
substantial research in the gene therapy field (145), especially
regarding the expression of transgenes that are absent in subjects
prior to the injection (187) [reviewed in (95, 175)]. Tolerance is
dose-dependent, with higher dosage ensuring immune tolerance
through Tregs, IL-10 expression, Fas-L and depletion of Teff cells
as enabling factors (88, 110, 218). Another important
consideration is whether the transgene product is secreted or
Frontiers in Immunology | www.frontiersin.org 11171
not. Secreted proteins are presented in multiple organs and thus
need a much lower threshold to produce Tregs. Interestingly,
intracellularly restricted expression, e.g., using proteins located
in the cytoplasm, results in antigen presentation by liver-
draining lymph nodes (celiac and portal) and production of
Tregs that are then disseminated to the periphery (96). This
tolerance can be harnessed even with gene therapy targeted to
other organs. Simultaneous expression of the transgene in the
liver can induce expression of Tregs and tolerance to the
transgene product expressed in muscle (104, 186). Most
interestingly, the induction of immune tolerance through liver
can be achieved despite the established presence of inhibitors
(219) or even after gene delivery to another organ (88), hence
reversing existing immunity [reviewed in (3, 30, 85, 138)].

3.1.3 Induction of Immune Tolerance
Induction of immune tolerance can be achieved by targeting the
liver, even at a later timepoint, as elaborated on in previous
sections. Alternatively, Tregs can be ex vivo reprogrammed and
adoptively transferred (97), or they can be induced through
molecules (Tregitopes) or chemically (rapamycin). Tregitopes
(Treg epitopes) are peptides found within human IgGs and
exhibit high-affinity binding to MHCII. They were initially
identified in humans (220) and are conserved in mammalian
species (221). Via a mechanism requiring cell-to-cell contact,
Tregitopes can trigger the proliferation of Tregs. Fusion of
Tregitopes to the capsid proteins could also reduce CD8+ T-cell
reactivity by fostering proliferation of Tregs in vivo (105).
Alternatively, immunomodulatory drugs, such as rapamycin, can
be used to induce Tregs. The phosphatidylinositol 3-kinase/protein
kinase B/mammalian target of rapamycin (PI3K-Akt-mTOR)
pathway regulates thymic and peripheral Treg generation (222).
Rapamycin, an immunosuppressing compound used in graft
rejection, can expand CD4+CD25+FoxP3+ Tregs (223). A
hallmark study showed that simultaneous administration of
synthetic vaccine particles encapsulating rapamycin [SVP(Rapa)]
with AAV vectors alleviated anti-capsid humoral and cellular
immune responses, thus enabling vector re-administration.
Adoptive transfer of splenocytes to naïve mice transferred this
immunomodulatory property while depletion of CD25+ cells
neutralized this effect (89). Gene transfer to seropositive rhesus
macaques after rapamycin treatment was only successful using
subcutaneous, but not intravenous delivery (224), implying that
route and dosing schedule may be key to success (225). Further
studies in preclinical models are necessary to assess the efficacy of
these treatments in the clinic as well as their safety, as they
compromise the immune system and make the host vulnerable
to infections [reviewed in (85, 138)].

3.1.4 Immune Suppression
Immune modulation involves a broad range of approaches, of
which the earliest and most widely applied in human clinical
trials is transient immune suppression predominantly of T-cells
with corticosteroids, such as prednisolone (188) [reviewed in (30,
85, 98, 226)]. Immune suppression can also be mediated using
alternatives to steroids, such as mycophenolate mofetil (MMF)
and tacrolimus (227), or MMF and rapamycin (98). Immune
October 2021 | Volume 12 | Article 753467

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rapti and Grimm AAV and Host Immunity
suppression has had varying effects in studies and clinical trials.
Despite positive results (27, 101, 142, 228, 229), it often did not
sustain long-term expression of the transgene (88, 230). Of note,
sustained immune suppression with daclizumab is associated
with a reduction in Tregs (111). Therefore, a recent study
proposed new protocols using a meticulously timed T-cell-
directed IS, with an early administration of MMF and
rapamycin and a delayed delivery of anti-thymocyte globulin
(ATG), to determine the balance between immunogenicity and
tolerance (98). Immune suppression regimens were also used to
deplete B-cells and thereby nAbs, such as rituximab with
cyclosporine (231), rituximab with sirolimus (90), or rituximab
alone (232), rapamycin without or with prednisolone (89, 233),
and anti-CD20 with rapamycin (234). However, one should be
aware that such regimens target the immune system of the host
as a whole and are not specifically tailored to the gene therapy.
Finally, another intriguing approach that has shown great
promise but requires further studies is inhibition of
proteasomal processing of internalized capsids, which is
necessary for antigen presentation and part of the immune
reaction process, using a variety of molecules (146, 148) some
of which are also approved for use in humans (146) [reviewed
in (138)].

3.1.5 Depletion of Neutralizing Antibodies
Immune suppression offers only moderate capabilities to evade
pre-existing immunity, which would otherwise disqualify 15-
50% of the population from clinical trials. Accordingly,
additional approaches are urgently needed (235). Recently, a
hallmark study illustrated the potential of Imlifidase (IdeS), a
cysteine endopeptidase derived from the immunoglobulin G
(IgG)-degrading enzyme of Streptococcus pyogenes. IdeS cleaves
human IgG into F(ab’)2 and Fc fragments, thus eliminating its
Fc-dependent effector functions. In this study, the authors
successfully showed the cleavage of human intravenous
immunoglobulin (IVIg, a cocktail of serum from thousands of
human individuals) in vitro, as well as in pre-immunized mice
and seropositive NHPs in vivo. IdeS administration prior to AAV
gene transfer in vivo reduces the levels of IgGs, thereby allowing
efficient transduction. Treatment with IdeS also enabled
readministration of AAVs. Finally, the efficiency of IdeS was
also successfully validated with human sera (236). In a similar
study, IdeZ, an IdeS homolog isolated from S. equi ssp.
zooepidemicus, showed efficient IgG cleavage of dog, monkey
and human sera and facilitated in vivo gene transfer in passively
immunized mice and macaques (237). Moreover, a large protein,
protein M, was identified in Mycoplasma that binds Igs with
broad reactivity by using a different mechanism. In vitro and in
vivo studies showed the efficiency of this approach to protect
AAVs from nAbs and to allow readministration (235, 238).

Removal of anti-AAV nAbs has also been attempted through
plasmapheresis, an extracorporeal method in which a device
separates plasma from the cellular component of the blood.
Afterwards, the plasma is filtered through various techniques,
remixed with the blood cells and returned to the subject.
Alternatively, the plasma can be substituted by a replacement
solution. Plasmapheresis was used to remove immunoglobulins
Frontiers in Immunology | www.frontiersin.org 12172
against the capsid in humans (239) and in NHPs (77). In the
latter study, AAV gene transfer after plasmapheresis resulted in
efficient transduction (77). While promising, this approach has
several limitations including that multiple rounds are needed. A
further concern is the so-called “antibody rebound” effect, which
means that the antibody pool is readily replaced. Also, certain
patients with weak physical conditions might be more adversely
affected by the procedure, and the complete removal of
immunoglobulins leaves the patients vulnerable to infections
(77, 239) [reviewed in (47, 138)]. Recently, elegant studies have
thus combined plasmapheresis with immunoadsorption
columns loaded with empty AAV capsids, in order to
selectively deplete nAbs against the AAV capsid (78, 79). In a
similar manner, a prior study exploited empty AAV capsids that
were injected to mice together with the AAV vectors to act as
decoys for AAV-specific nAb (240). However, a concern is that
excess AAV capsids could elicit stronger cellular immune
responses or immunotoxicities (151) [reviewed in (42)]. It
should also be noted that these procedures non-discriminately
remove all AAV-binding antibodies, some of which do not
neutralize but actually enhance transduction or alter
distribution (126, 241).

3.2 AAV Vector Engineering
3.2.1 Novel Serotype Isolation
The majority of the AAV serotypes that are currently in clinical
use are human or NHP isolates from liver or spleen [reviewed in
(1, 2)]. However, a concern with their use is that epidemiological
studies show a high seroprevalence of those serotypes in the
human population (114, 115, 121, 242, 243). A rational approach
to overcome this concern is to isolate novel natural AAV
serotypes from other species, which are expected to exhibit
lower seroprevalence in humans but may also display lower
transduction efficiencies. To this end, novel native AAVs have
already been isolated from avian (244), rat and mouse (14),
caprine (245), porcine (246, 247) and bat (80, 248) species. Some
of these showed promise in in vivo biodistribution studies where
they were found capable of targeting multiple tissues (246), such
as heart (246), muscle (246, 247, 249), lung (245) or retina (247).
Despite these promising results, further studies are necessary in
larger, preclinical animal models to better characterize and
ideally validate their potential for clinical application.

3.2.2 AAV Capsid and Transgene Engineering
3.2.2.1 Rational Capsid Design
There is a growing amount of information on immunogenic
epitopes on the AAV capsid, based on cryo-EM structural
mapping studies (250–255) [reviewed in (253)], single point
mutants (256–258), or barcoded (9, 259) or not (260, 261)
libraries of pooled vectors carrying point mutations. For the
cryo-EM studies, monoclonal antibodies (mAbs) predominantly
from hybridoma screens have been used, although recently, the
isolation of human mAbs that are more clinically relevant has
also been pursued (262). These studies facilitate the rational
design of vector capsids or the engineering of libraries directed at
the immunogenic epitopes, in order to render the complexity of
the library technically attainable and to concurrently circumvent
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unwarranted changes to essential properties, such as tropism.
Such information was applied to enhance nAb evasion by
mutagenizing single [V719M (263), S671A (264), 265T (256)]
or multiple positions (265, 266). A similar approach was used to
modify surface tyrosines to avoid ubiquitination (267),
proteasomal degradation and antigen presentation (149, 268,
269). This can be extended to other amino acids (serine,
threonine, and lysine) (270, 271) and serotypes (272).
Polyploid vectors, also called mosaic, combine capsid subunits
from different serotypes and are formed by simply mixing the
production plasmids at different ratios. This methodology
identified a triploid AAV2/8/9 vector that could evade
immunity more than the parental vectors (273).

A conceptually different approach is to display peptides on
the surface of the capsid to evade or quench the immune system.
Display on the AAV capsid of a self-peptide (SP), a 21-amino-
acid long truncated bioactive form of CD47, whose binding to
SIRPa (Signal regulatory protein a) on macrophages acts as a
“don’t-eat-me” signal for macrophages, was shown to reduce
macrophage uptake (91). Likewise, fusion of Tregitopes on the
AAV capsid protein VP1 reduced CD8+ T-cell responses and
increased Tregs (105).

3.2.2.2 Rationally Designed Capsid Libraries and
Directed Evolution
The wealth of knowledge regarding the immunogenic epitopes
on the AAV capsid has been mostly implemented in rational
engineering and directed evolution of viral libraries, to create
novel, engineered immune evading AAVs. In an early study, five
immunogenic amino acid positions (449, 458, 459, 493, 551)
were randomized on AAV and the library was evolved under
negative selection pressure using IVIg, producing immune-
escaping variants (260). By studying the AAV1 complexed
with four different Fabs of mouse anti-AAV1 mAbs, the cryo-
reconstructed structures revealed three capsid antigenic
footprints: region IV (456-AQNK-459), region V (492-
TKTDNNNS-499), and region VIII (588-STDPATGDVH-
597). Each region was separately randomized, and the libraries
subjected to iterative rounds of evolution on vascular endothelial
cells that are highly permissible to AAV1, in order to evolve the
library for properties other than efficient transduction. The top
variants were then combined albeit some could not be
juxtaposed, as observed previously (274). In this case, the
variant was combined with a library based on another
footprint and a new evolution was applied. One of the evolved
CAMs (Capsid Antigenic Motifs), CAM130, was significantly
enhanced compared to the parent vector and, whilst maintaining
tropism, showed an advantageous, immune-evading serological
profile (81). A similar study evolved an AAV8-based variant,
AAVhum.8, that exhibits mouse and human hepatocyte tropism
and sera-evading properties (275). Another group harnessed a
mAb PAV9.1 selected from a panel of hybridoma clones to
identify a conformational epitope on AAV9 for further
mutagenesis that comprises 494-TQNNN-498 and 586-
SAQAQ-590. These Fab complementary determining regions
(CDRs) were mutated using serotype swapping, alanine
replacement, and additional point mutations. The resulting
Frontiers in Immunology | www.frontiersin.org 13173
CDRs were efficient at evading the mAb binding, but they
could not evade binding or neutralization by polyclonal serum
or plasma from mice, macaques, or human donors (276).
Another recent rational approach focused on residues
identified to be different among 150 AAV3B variants, selected
the surface-exposed ones and mutagenized them only to
naturally occurring residues in this position. The library was
evolved in human hepatocarcinoma spheroid cultures and the
top variant, AAV3B-DE5, was further evaluated. It exhibited
reduced seroreactivity against IVIg and individual human
samples as well as tropism towards human, but not mouse
hepatocytes in chimeric livers, similar to the parental serotype
(277). Rational design strategies have contributed significantly to
the field. However, screening of completely randomized libraries
without a priori knowledge of immunogenic epitopes also offers
valuable solutions, as discussed next.

3.2.2.3 Randomized Capsid Libraries and Directed
Evolution
Complementing the efforts outlined in the prior chapter that rely
on limited antecedent knowledge to facilitate some degree of
rational design followed by further AAV evolution, many groups
have devised and applied experimental forward-oriented
strategies in order to identify immunoevasive AAV variants.
To this end, comprehensive libraries of synthetically engineered
AAV capsid variants are first generated and then subjected to a
negative selection pressure, which ideally eliminates all
candidates that cross-react with, and are neutralized by, anti-
AAV antibodies. The methodologies to create such diverse
capsids libraries are manifold and have been extensively
reviewed in the past by us and others (2, 278), hence it may
suffice below to name some of the most widely used approaches
including DNA family shuffling, peptide display, error-prone
PCR and ancestral reconstruction.

One of the first studies to illustrate the power of directed AAV
library screens and antibody-mediated selection was reported by
the Kay lab in 2008 (279), which exploited the fact that IVIg
contains a mixture of anti-AAV antibodies that is a good proxy
for the human population. Accordingly, the group first created a
library of ~7×105 shuffled AAV capsid variants from eight
parental viral serotypes and then iteratively amplified this
capsid pool on human liver cells in the presence of IVIg, with
the aim to eliminate all variants that were recognized by the anti-
AAV antibodies. Indeed, this strategy enabled the isolation of a
single chimeric AAV variant, called AAV-DJ, that at least
partially resisted antibody neutralization in vitro and in vivo to
a much greater extent than AAV2, which is one of its dominant
parental serotypes and which has been used extensively in
humans to date. The ability of shuffled AAV capsids to
partially evade IVIg neutralization was later also confirmed by
several other groups including notable work from Koerber et al.,
albeit this group only used IVIg during the stratification of
already isolated chimeric AAVs and not for selection (280).

Similarly, in another representative example from the Schaffer
lab (261), negative selection via a neutralizing anti-AAV2 rabbit
serum was harnessed to enrich antibody-resistant AAV capsid
variants from libraries that had been created through error-
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prone PCR amplification of the entire AAV2 cap gene.
Interestingly, their lead candidate had not only become more
antibody-resistant than wild-type AAV2 but had also acquired
additional properties, such as altered DNA packaging efficiency,
heparin affinity or cell specificity, likely explained by the well-
known pleiotropic roles of many residues within the AAV
capsid proteins.

These conclusions were confirmed in a flurry of more recent
work from several labs , which cannot be covered
comprehensively here; hence we will only highlight examples
below that are representative for numerous other studies. One
such example is another pivotal study by the Kay lab (82) in
which Paulk and co-workers performed a multiplexed AAV
library screen combining iterative in vivo selection of a shuffled
library in “humanized” mice (i.e., mice xenotransplanted with
human hepatocytes), followed by two rounds of ex vivo AAV
capsid depletion on IVIg-coated beads. Of the shuffled capsid
variants enriched by this procedure, NP59 is remarkable as it
combines robust and specific in vivo transduction of human
hepatocytes with good performance in seroreactivity and
transduction neutralization assays, including the use of
individual serum samples from macaques or humans (healthy
or hemophilia B patients), or again IVIg. A very similar approach
has also been reported more recently by the Li lab (281), using a
different starting library and resulting in unique shuffled AAV
variants. As a last example in this category, a study by the
Samulski lab should be pointed out, which is remarkable for the
fact that Li et al. selected a shuffled AAV capsid library in
the presence of neutralizing sera not only in cultured cells, but
directly in the muscle of mice (282, 283). Furthermore, rather
than using an IVIg pool for selection, the group harnessed
individual sera from human patients who had participated in a
clinical trial for Duchenne muscular dystrophy with an AAV2.5
vector. A particularly notable conclusion in this work was such a
stringent selection strategy may be beneficial, since pools such as
IVIg are a mixture comprising sera without neutralizing anti-
AAV antibodies, hence AAV capsid variants emerging from IVIg
selection may only escape neutralization in subjects with high
individual antibody titers, whereas those selected with a stringent
serum may be more broadly resistant.

Similar conclusions were also drawn in parallel work in which
capsids were diversified not via DNA shuffling, but rather via
insertion of short peptides (typically 7 to 14 amino acids long) on
the capsid surface. While the primary purpose of these peptides
is binding to (usually unknown) receptors on target cells, several
groups have reported that display of these short additional
peptides on the AAV shell can also modulate its recognition by
neutralizing antibodies. As a representative example, one of the
first studies reporting this finding should be highlighted (284), in
which Huttner and colleagues found that insertion of peptides
selected in previous screens in AAV2 amino acid positions 534
and 573 substantially reduced capsid affinity for neutralizing
anti-AAV2 antibodies in human sera.

In general, it should be an interesting goal for future work to
compare the lead candidates from these and other studies side-
by-side in genuine or humanized mouse livers in the presence of
anti-AAV antibodies, ideally using a vector DNA/RNA
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barcoding strategy (285) to enable a fair comparative analysis
in the same animal(s). Besides, the aforementioned research,
along with the rational design studies, further corroborates the
notion that antigenic, tropism and potency determinants overlap
in the structural context of the AAV capsid and thus perfectly
complements the alternative strategies noted above, not only on
a technical but also on the biological level.

3.2.2.4 Chemical Capsid Modifications
Rather than engineering the capsid itself, either via directed
evolution or rational design, numerous groups have pursued an
alternative and complementary strategy to mask AAV from
neutralizing antibodies, by either chemically modifying the
shell or encapsulating the particles in extracellular vesicles
(exosome). As with the capsid engineering approaches, the
diversity of strategies is so substantial and the literature so
complex that we can only highlight a few representative
examples below, and we apologize to all colleagues whose work
we had to omit for space reasons.

One particular strategy that has been reported frequently is
AAV modification via chemical conjugation with polyethylene
glycol (PEG), which is a simple, cheap and effective means to
cover and protect the capsid from neutralization, but which may
also come at the cost of (steric) interference with AAV
transduction and tropism. This dilemma was exemplified, for
instance, in one of the first reports of AAV PEGylation by Lee
and co-workers (286) who found that there is only a small
window of PEGylation, i.e., PEG:lysine conjugation ratio and
PEG molecular weight, that enables effective antibody protection
while maintaining infectivity. Subsequently, other used various
alternative strategies for AAV PEGylation, such as AAV2
modification with a series of activated PEGs, some of which
yielded protection from neutralization without severely
impeding transduction efficiency (287), or use of genetic code
expansion for insertion of a lysine mimic into the AAV2 capsid
that enabled site-specific PEGylation and escape from
neutralization (288).

Instead of coating the AAV particle via chemical
modification, other groups, most notably the one of Casey
Maguire, rather encapsulate the vector particles in naturally
occurring cellular vesicles, resulting in what was originally
called “vexosomes” and later exo-AAVs. As, for instance,
demonstrated by György et al. in 2014 (83), exosome-
encapsulated AAV9 vectors were significantly more resistant to
both, pooled human serum as well as IVIg, and they also
performed better than naked AAV9 in passively IVIg-
immunized mice. Importantly, this method is not restricted to
a particular serotype, since escape from neutralization in
cultured cells was also observed for AAV1 and AAV2. These
encouraging results were corroborated and extended in a series
of more recent studies, including a notable piece of work from
Meliani et al. who showed that exo-AAV8 vectors (and also exo-
AAV5) performed better than the wild-type counterpart at liver-
directed human factor IX expression in mice, perhaps owing to a
faster nuclear translocation rate and autophagy-independent
trafficking. Remarkably, in turn, the higher expression was also
correlated with an increased frequency of Tregs in lymph nodes
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of exo-AAV8-treated mice, suggesting that improved induction
of immunological tolerance may be an additional benefit of
exosome-encapsulated AAVs. Moreover, exo-AAV8 was also
more resistant to neutralizing anti-AAV8 antibodies in human
sera and in a passive immunization mouse model of liver gene
transfer, further illustrating the potential of this strategy to
expand the proportion of human subjects who are eligible for
AAV gene therapies.

Finally, another intriguing approach worth mentioning has
recently been reported by Katrekar and colleagues (289), who
combined genetic code expansion and click-labeling to precisely
tether oligonucleotides to the surface of the chimeric AAV-DJ
capsid (279). When incubated with lipofectamine, this resulted
in so-called “cloaked” AAVs that were much more resistant to
neutralizing anti-AAV antibodies and concurrently yielded
higher CRISPR gene editing efficiencies than an unconjugated
AAV-DJ control, reminiscent of the dual benefit observed with
the exo-AAV strategy (see above).

While these and other, equally compelling studies that could
unfortunately not be mentioned here are very promising, it is
also clear that additional, meticulous work is needed and that a
number of challenges have to be overcome before chemically
modified AAVs can be used more broadly and even clinically.
This includes the need to optimize and standardize large-scale
production and purification protocols, as well as the requirement
of a thorough characterization of possible impurities and
contaminations especially in cell-derived exo-AAVs. In
addition, immune responses against PEG or lipofectamine will
have to be studied and, if detected, may limit the widespread
application of certain formulations. Last but not least, cloaking or
coating the viral shell may inadvertently and negatively impact in
vivo features such as biodistribution, kinetics and blood
clearance, which would be particularly detrimental for
synthetic capsids that have been genetically engineered to have
a more defined tropism or other advantageous properties.

3.2.2.5 Vector Genome Optimization
Next to the viral capsid, also the cargo, i.e., the recombinant
genome consisting of the transgene expression cassette flanked
by the ITRs, offers multiple opportunities for engineering and
alleviation of immune responses, including its structure
and components.

Regarding structure, a favorable design with respect to efficiency
are self-complementary (sc) or double-stranded AAV vector
genomes, which―after replication and encapsidation―carry
two inverted copies of a transgene that rapidly and effectively self-
anneal in the transduced cell. Thereby, scAAV genomes alleviate the
rate-limiting step of second-strand DNA conversion that normally
restricts transduction with conventional single-stranded AAV
vectors and that explains their slow kinetics of transgene
expression that is typically observed in vivo. While beneficial in
this aspect, a drawback of scAAV vector genomes that has become
apparent over the last decade is their higher propensity to trigger an
innate immune response via the endosomal DNA receptor TLR9, as
observed in several tissues including the liver and the muscle. This
includes early data in mice where scAAV vectors led to increased
expression of various innate immune-related genes and induced
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innate responses in a dose-dependent manner via TLR9 signaling.
This, in turn, enhanced adaptive immune responses to the capsid
but not the transgene product, probably due to the short-lived and
self-limiting nature of the innate response (58).

Still, in independent work, the Ertl lab showed that scAAV
vectors, as a result of their faster transgene expression kinetics,
are also more prone than ssAAV to induce transgene product-
specific CD8+ T-cell and B-cell/antibody responses in mice
(164). The extent of these responses depended on the capsid
serotype, with AAV7 yielding much stronger effects than AAV2,
probably owing to the higher efficiency of AAV7 in the muscle.

While both studies unanimously concluded that AAV
genome configuration governs the immunogenicity of AAV
particles, the authors also concurred that lowering doses may
allow scAAV vectors to dodge the immune system. Alternatively,
or in addition, as demonstrated consistently by the Wilson, Ertl
and Church labs, innate immune responses can also be blunted
by directly engineering the vector genome. First, Faust and
colleagues reported that vector genomes depleted of CpG
islands, which are typically sensed by TLR9, evade the innate
and adaptive immune response and establish persistent
transgene expression in skeletal muscle in mice in the absence
of T-cell infiltrates, even when delivered by a highly
immunogenic AAVrh32.33 capsid (67). Concurrent with this,
and as already noted above in chapter 2.2.2.1, the Ertl lab found
that CpG depletion in AAV vector genomes can diminish a
primary, de novo T-cell response, by reducing expansion of naïve
CD8+ T-cells against AAV capsid epitopes (63). In contrast,
these engineered vectors triggered a secondary response, by
driving proliferation of anti-AAV capsid-specific memory CD8+
T-cells, a phenomenon that was also observed with empty AAV
capsids. The latter is particularly relevant in view of the fact that
spiking in empty capsids into AAV vector preparations has
previously been shown to dampen the humoral immune
response to the viral particles, implying that the empty capsids
acted as antibody sponges. Hence, the findings by Xiang et al.
(63), that empty capsids do not stimulate a primary T-cell
response to antigenic capsid epitopes and also do not boost T-
cell activation triggered by full AAV particles, are pivotal for our
understanding of the role of full versus empty capsids and for the
future optimization of strategies to circumvent humoral and
cellular anti-AAV immune responses.

Most recently, Chan and co-workers moreover showed that
TLR9 activation can also be dampened through incorporation of
short oligonucleotides that antagonize TLR9 activation, dubbed
TLR9i (i for inhibitory) (86). Such TLR9i sequences were found
to cloak the AAV vectors in multiple, but not all tested animal
models and tissues, confirming the pivotal role of TLR9 sensing
but concurrently implying the existence of other, TLR9-
independent immune mechanisms. The latter may also have
contributed to the results of clinical trials using AAV8 for
expression of the human blood coagulation factor IX in
hemophilia B patients, in which capsid-specific CD8+ T-cell
responses were observed despite the use of CpG-reduced vector
genomes (101). In this context, another original hypothesis that
is noteworthy and that was presented by Li and Samulski (1)
suggests that the intrinsic promoter activity of the AAV ITRs
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might drive the generation of dsRNA at later stages of
transduction, in turn activating cellular RNA sensors and thus
stimulating an innate immune response. If true, this would imply
a solution whereby this promoter activity is diminished or
blocked, by deliberately engineering the ITRs and/or insulating
the expression cassette from the ITRs (1).

Interestingly, the authors of the latest work on TLR9i
postulated that these sequences may act by outcompeting CpG
islands in the vector genome for TLR9 binding, potentially via
their higher TLR9 affinity and their ability to prevent TLR9
dimerization and activation upon binding (86). While not tested
in this work, this raises the intriguing question whether
combining TLR9i with the aforementioned depletion of CpG
islands may synergize and further dampen innate immune
responses to the AAV vector genome. Additional topics for
future work should include the persistence of the effect and the
impact on vector transgene expression, as well as on clinically
relevant immune responses, including humoral or cellular
immunity to the capsid proteins or the transgene product.
Furthermore, it will be prudent and informative to assess this
strategy in more animal models and with other targets, using
different clinically applicable administration routes. Until then,
the fact that Chan et al. noted beneficial effects on the anti-AAV
immune response in a variety of experimental settings and
largely independent of the other vector components, such as
capsid or promoter, is already highly encouraging as it suggests a
large degree of versatility, modularity and translatability.
4 TOXICITY

Despite the success of AAV-based gene therapeutics and the
prevailing view that AAV is less immunogenic than other
recombinant virus platforms, rapidly mounting evidence from
preclinical work in large animals and clinical studies in humans
implies that AAV vectors can cause inflammatory and immune
responses as well as other dose-dependent toxicities and
pathologies. This includes observations of severe adverse events,
possibly related to innate and cellular immune responses, in patients
suffering from Duchenne muscular dystrophy (DMD) or spinal
muscular atrophy type 1 who had been treated with high AAV
vector doses (290, 291). In the DMD trial (IGNITE), treatment of a
boy with a high dose (2x1014 vg/kg) of the therapeutic vector (SGT-
001, encoding micro-dystrophin) resulted in lower red blood cell
and platelet counts (thrombocytopenia), caused kidney damage,
and activated the complement system. Fortunately, these
complications were all resolved and the sponsoring company
(SOLID) improved their manufacturing protocol (to reduce the
number of empty capsids), eventually allowing the FDA to lift their
initial ban on this trial.

Similar findings were reported in a phase I trial (sponsored by
Rocket Pharmaceuticals) for treatment of Danon disease, a
devastating and rare X-linked autophagic vacuolar myopathy that
results from mutations in the LAMP-2 gene and that can cause
dysfunction of the musculature and other organs, frequently
triggering early mortality. In this trial, one patient treated with the
Frontiers in Immunology | www.frontiersin.org 16176
high dose (1x1014 vg/kg) and who had a pre-existing anti-AAV9
immunity, experienced adverse events that were presumably
immune-related and that also comprised thrombocytopenia and
acute kidney injury. Luckily, also this patient ultimately recovered
and regained normal organ function. Still, the serious and consistent
adverse events in these two trials clearly raise a warning flag about
possible toxicity from in vivo application of excessive AAV
vector doses.

In addition, AAV dose-dependent pathology was observed in
dorsal root ganglia (DRG) in vector-treated non-human
primates that seemed to be largely independent of capsid or
cargo (292, 293). The effects were only mild to moderate and not
associated with fatalities; moreover, a possible mitigation has
recently been proposed in which the inclusion of binding sites for
miR-183 a miRNA largely restricted to DRG neurons, can
alleviate DRG toxicity (294). Nonetheless, the possible link
between AAV delivery and sensory neuropathies in DRGs
requires further investigation and careful monitoring in
ongoing or future clinical studies.

However,mostdire andmost alarming is the outcomeof the recent
ASPIRO trial, inwhich three children affected byX-linkedmyotubular
myopathy (XLMTM) and given a very high dose of 3x1014 AAV8 vg/
kg bodyweight developed progressive liver dysfunction, bacterial
infection and sepsis (two of the three patients), eventually resulting
in death of all three individuals (295–298). Also here, a critical role of
the immune systemhasbeen suspected, including the presence of anti-
AAV antibodies in these patients that could have triggered an innate
response or activated the classical arm of the complement system.
Notably, none of the patients in this trial who had received a lower
vector dose developed liver-related adverse events. Instead, several
children regained the ability to sit, stand orwalk and no longer needed
ventilator support, clearly illustrating the great potential of this gene
therapy approach and of the vector used. Of note is that no such
toxicities hadpreviously beenobservedwith the samevector inmice or
non-human primates, even using higher doses of 8x1014 AAV8 vg/kg,
and that very encouraging efficacy data had been obtained in murine
and canine XLMTM models (299, 300). This highlights the species-
specific differences in AAV-host interactions and the urgent need for
better characterization including a possible contribution by immune
mechanisms, with the clinically highly relevant aim to control and
overcome,or ideally altogetherprevent, suchadverse events inpatients.

Last but not least, we note another very recent, serious adverse
event in an AAV gene therapy clinical trial (INFINITY, company
sponsor Adverum), this time the loss of sight in a patient with
diabetic macular edema who was treated with a high dose (6x1011

vg/eye) of a vector based on a synthetic AAV capsid (AAV2.7m8).
The fact that the eye is more immunoprivileged than other organs
(see also chapter 3.12.2.) and that the effect occurred long (30 weeks)
after dosing may argue at least against an acute anti-AAV immune
response, but the mechanisms are still unclear.
5 CONCLUSIONS

The historic fable “The race between the hare and the hedgehog”,
originally published by the Brothers Grimm in 1843, describes
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the race of two animals, one fast (hare) and one slow (hedgehog),
of which the latter has no chance of winning the contest. Still, the
hedgehog seemingly outcompetes the hare through cheating, as
he places his lookalike wife at the finish line and thereby
ultimately frustrates the hare to an extent that it dies. For
many reasons, one can readily apply the same image and draw
comparisons to the incessant arms race between AAV and its
human host, starting with natural infections and nowadays
significantly accelerated by the growing clinical use of
recombinant AAV vectors. Akin to the fable, there is
substantial hope that the hedgehog in this analogy, i.e., the
AAVs, will eventually win this race against the host (the hare),
assisted by a little cheating in the form of our ever expanding
understanding of AAV-host interactions and the concurrent
advent of powerful new technologies to blunt or alleviate anti-
AAV immune responses, a collection of which has been
highlighted and discussed in this article. It is also evident that
this looming happy ending requires a considerable body of
additional, concerted work from the field, aimed at a better
characterization of the new, genetically engineered, evolved or
designed, and/or chemically modified AAV particles along with
improvements in the technology for their clinical-grade
manufacturing including production, purification, quality
control and batch release. Still, in view of the remarkable pace
Frontiers in Immunology | www.frontiersin.org 17177
which the race between AAV and the host has picked up in
recent years, there is every reason to hope and believe that the
fairy tale of AAV gene therapies in the absence of adverse
immune responses will eventually become a reality.
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