

[image: image]





Frontiers eBook Copyright Statement

The copyright in the text of individual articles in this eBook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers.

The compilation of articles constituting this eBook is the property of Frontiers.

Each article within this eBook, and the eBook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this eBook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version.

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or eBook, as applicable.

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with.

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question.

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers’ Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.



ISSN 1664-8714
ISBN 978-2-88974-777-1
DOI 10.3389/978-2-88974-777-1

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers Journal Series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world’s best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact





COMPUTATIONAL EPIGENETICS IN HUMAN DISEASES, CELL DIFFERENTIATION, AND CELL REPROGRAMMING, VOLUME II

Topic Editors: 

Yongchun Zuo, Inner Mongolia University, China

Meng Zhou, Wenzhou Medical University, China

Jianzhong Su, Wenzhou Medical University, China

Xiaotian Zhang, The University of Michigan, United States

Citation: Zuo, Y., Zhou, M., Su, J., Zhang, X., eds. (2022). Today’s Nutrition and Tomorrow’s Public Health: Challenges and Opportunities. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88974-777-1





Table of Contents




Expression of m6A Regulators Correlated With Immune Microenvironment Predicts Therapeutic Efficacy and Prognosis in Gliomas

Shengchao Xu, Lu Tang, Gan Dai, Chengke Luo and Zhixiong Liu

Integrated Analysis of a Competing Endogenous RNA Network Reveals a Prognostic Signature in Kidney Renal Papillary Cell Carcinoma

Ruyi He, Longyu Wang, Juan Li, Lixin Ma, Fei Wang and Yang Wang

Deform-nu: A DNA Deformation Energy-Based Predictor for Nucleosome Positioning

Guoqing Liu, Hongyu Zhao, Hu Meng, Yongqiang Xing, Hui Yang and Hao Lin

A Novel Early-Stage Lung Adenocarcinoma Prognostic Model Based on Feature Selection With Orthogonal Regression

Binhua Tang, Yuqi Wang, Yu Chen, Ming Li and Yongfeng Tao

An Eight-CpG-based Methylation Classifier for Preoperative Discriminating Early and Advanced-Late Stage of Colorectal Cancer

Ji Hu, Fu-ying Zhao, Bin Huang, Jing Ran, Mei-yuan Chen, Hai-lin Liu, You-song Deng, Xia Zhao and Xiao-fan Han

Integrated Bioinformatical Analysis Identifies GIMAP4 as an Immune-Related Prognostic Biomarker Associated With Remodeling in Cervical Cancer Tumor Microenvironment

Fangfang Xu, Jiacheng Shen and Shaohua Xu

Integrated Profiles Analysis Identified a Coding-Non-Coding Signature for Predicting Lymph Node Metastasis and Prognosis in Cervical Cancer

Yu Zhang, Di Sun, Jiayu Song, Nan Yang and Yunyan Zhang

Dynamic Expression of m6A Regulators During Multiple Human Tissue Development and Cancers

Ya Zhang, Sicong Xu, Gang Xu, Yueying Gao, Si Li, Ke Zhang, Zhanyu Tian, Jing Guo, Xia Li, Juan Xu and Yongsheng Li

Network and Pathway-Based Integrated Analysis Identified a Novel “rs28457673–miR-15/16/195/424/497 Family–IGF1R–MAPK Signaling Pathway” Axis Associated With Post-stroke Depression

Yan Li, Zhi-chao Wang, Ming-xi Zhu, Gui-bo Fan, Gao-shuo Xu, Tian-yang Zhao, A-yang Zhao, Shang-wei Ning and Si-hua Qi

Hypoxia-Induced LIN28A mRNA Promotes the Metastasis of Colon Cancer in a Protein-Coding-Independent Manner

Mingjiao Weng, Yukuan Feng, Yan He, Weiwei Yang, Jing Li, Yuanyuan Zhu, Tianzhen Wang, Chuhan Wang, Xiao Zhang, Yu Qiao, Qi Li, Lingyu Zhao, Shuangshu Gao, Lei Zhang, Yiqi Wu, Ran Zhao, Guangyu Wang, Zhiwei Li, Xiaoming Jin, Tongsen Zheng and Xiaobo Li

Identification and Analysis of An Epigenetically Regulated Five-lncRNA Signature Associated With Outcome and Chemotherapy Response in Ovarian Cancer

Hao Yang, Lin Gao, Meiling Zhang, Ning Ning, Yan Wang, Di Wu and Xiaomei Li

Effects of DNA Methylation on TFs in Human Embryonic Stem Cells

Ximei Luo, Tianjiao Zhang, Yixiao Zhai, Fang Wang, Shumei Zhang and Guohua Wang

Revisiting the Relationship Between Alzheimer’s Disease and Cancer With a circRNA Perspective

Danze Chen, Shijia Hao and Jianzhen Xu

Inflammatory Markers Predict Survival in Patients With Advanced Gastric and Colorectal Cancers Receiving Anti–PD-1 Therapy

Xiaona Fan, Dan Wang, Wenjing Zhang, Jinshuang Liu, Chao Liu, Qingwei Li, Zhigang Ma, Hengzhen Li, Xin Guan, Yibing Bai, Jiani Yang, Changjie Lou, Xiaobo Li, Guangyu Wang and Zhiwei Li

Integrative Analysis of DNA Methylation Data and Transcriptome Data Identified a DNA Methylation-Dysregulated Four-LncRNA Signature for Predicting Prognosis in Head and Neck Squamous Cell Carcinoma

Qiuxu Wang, Weiwei Yang, Wei Peng, Xuemei Qian, Minghui Zhang and Tianzhen Wang

Study on the Influence of mRNA, the Genetic Language, on Protein Folding Rates

Ruifang Li, Hong Li, Xue Feng, Ruifeng Zhao and Yongxia Cheng

Combination of Immune-Related Genomic Alterations Reveals Immune Characterization and Prediction of Different Prognostic Risks in Ovarian Cancer

Xibo Zhao, Shanshan Cong, Qiuyan Guo, Yan Cheng, Tian Liang, Jing Wang and Guangmei Zhang

Association of Myopia and Genetic Variants of TGFB2-AS1 and TGFBR1 in the TGF-β Signaling Pathway: A Longitudinal Study in Chinese School-Aged Children

Linjie Liu, Juan He, Xiaoyan Lu, Yimin Yuan, Dandan Jiang, Haishao Xiao, Shudan Lin, Liangde Xu and Yanyan Chen

Evaluating the Consistency of Gene Methylation in Liver Cancer Using Bisulfite Sequencing Data

Xubin Zheng, Qiong Wu, Haonan Wu, Kwong-Sak Leung, Man-Hon Wong, Xueyan Liu and Lixin Cheng

4mCPred-MTL: Accurate Identification of DNA 4mC Sites in Multiple Species Using Multi-Task Deep Learning Based on Multi-Head Attention Mechanism

Rao Zeng, Song Cheng and Minghong Liao

Accurate Prediction of Prognosis by Integrating Clinical and Molecular Characteristics in Colon Cancer

Liru Wang, Mu Su, Mengyan Zhang, Hongyan Zhao, Hongli Wang, Jie Xing, Chenyu Guo, Dianshuang Zhou, Wenhui Xue, Haibo Lu and Yan Zhang

Characterization of DNA Methylation and Screening of Epigenetic Markers in Polycystic Ovary Syndrome

Pengbo Cao, Wanting Yang, Peijun Wang, Xihe Li and Buhe Nashun

LINC02678 as a Novel Prognostic Marker Promotes Aggressive Non-small-cell Lung Cancer

Dexin Jia, Ying Xing, Yuning Zhan, Mengru Cao, Fanglin Tian, Weina Fan, Jian Huang, Yimeng Cui, Ruixue Gu, Yaowen Cui, Yuechao Liu, Shuai Zhang, Li Cai and Xiaomei Li

A MicroRNA-Based Network Provides Potential Predictive Signatures and Reveals the Crucial Role of PI3K/AKT Signaling for Hepatic Lineage Maturation

Xicheng Wang, Wencheng Zhang, Yong Yang, Jiansong Wang, Hua Qiu, Lijun Liao, Tsunekazu Oikawa, Eliane Wauthier, Praveen Sethupathy, Lola M. Reid, Zhongmin Liu and Zhiying He

The Biological Function Delineated Across Pan-Cancer Levels Through lncRNA-Based Prognostic Risk Assessment Factors for Pancreatic Cancer

Xudong Tang, Mengyan Zhang, Liang Sun, Fengyan Xu, Xin Peng, Yan Zhang, Ying Deng and Shuliang Wu

The Functional Characterization of Epigenetically Related lncRNAs Involved in Dysregulated CeRNA–CeRNA Networks Across Eight Cancer Types

Dahua Xu, Liqiang Wang, Sainan Pang, Meng Cao, Wenxiang Wang, Xiaorong Yu, Zhizhou Xu, Jiankai Xu, Hong Wang, Jianping Lu and Kongning Li

Integrative Epigenome Map of the Normal Human Prostate Provides Insights Into Prostate Cancer Predisposition

Tao Wang, Juan Song, Min Qu, Xu Gao, Wenhui Zhang, Ziwei Wang, Lin Zhao, Yan Wang, Bing Li, Jing Li and Jinjian Yang

Development and Validation of a Prognostic Nomogram Based on DNA Methylation-Driven Genes for Patients With Ovarian Cancer

Min Zhou, Shasha Hong, Bingshu Li, Cheng Liu, Ming Hu, Jie Min, Jianming Tang and Li Hong

Deciphering the Intercellular Communication Network of Peripartum Decidua that Orchestrates Delivery

Jingrui Huang, Weishe Zhang, Yanhua Zhao, Jingzhi Li, Mingkun Xie, Yang Lu, Qiaozhen Peng, Jiejie Zhang, Ping Li and Lei Dai

Multiplex-Heterogeneous Network-Based Capturing Potential SNP “Switches” of Pathways Associating With Diverse Disease Characteristics of Asthma

Ming-Yu Ran, Zhang Yuan, Chui-Ting Fan, Zhou Ke, Xin-Xing Wang, Jia-Yuan Sun and Dong-Ju Su












	 
	ORIGINAL RESEARCH
published: 10 November 2020
doi: 10.3389/fcell.2020.594112





[image: image]

Expression of m6A Regulators Correlated With Immune Microenvironment Predicts Therapeutic Efficacy and Prognosis in Gliomas

Shengchao Xu1†, Lu Tang2†, Gan Dai3, Chengke Luo1* and Zhixiong Liu1*

1Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China

2Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, China

3Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, China

Edited by:
Yongchun Zuo, Inner Mongolia University, China

Reviewed by:
Lei Yang, Harbin Medical University, China
Sarah Ashley, Murdoch Childrens Research Institute, Royal Children’s Hospital, Australia

*Correspondence: Zhixiong Liu, zhixiongliu@csu.edu.cn; Chengke Luo, ck_luo@csu.edu.cn

†These authors have contributed equally to this work

Specialty section: This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology

Received: 12 August 2020
Accepted: 22 October 2020
Published: 10 November 2020

Citation: Xu S, Tang L, Dai G, Luo C and Liu Z (2020) Expression of m6A Regulators Correlated With Immune Microenvironment Predicts Therapeutic Efficacy and Prognosis in Gliomas. Front. Cell Dev. Biol. 8:594112. doi: 10.3389/fcell.2020.594112

Background: N6-methyladenosine (m6A) RNA methylation and tumor immune microenvironment played crucial roles in cancer development. However, their association in gliomas remains to be fully elucidated.

Methods: A total of 2144 glioma patients from CGGA, TCGA, and Rembrandt databases were extracted in our study, in which 325 were set as the training cohort and 1819 were defined as the validation cohort. Survival differences evaluated by Kaplan–Meier analysis between groups. Patients were clustered into subgroups by consensus clustering. ESTIMATE algorithm was applied to calculate immune and stroma scores. The infiltration of immune cells was characterized by TIMER algorithm. The risk signature was constructed by multivariate Cox regression analysis.

Results: Nineteen m6A regulators were highly expressed in glioma tissues. The expression of m6A regulators was associated with prognoses, grade, isocitrate dehydrogenase (IDH) status, and 1p19q status of gliomas. Two subgroups were identified by consensus clustering, in which cluster 1 was associated with favorable prognosis, high stroma and immune scores, and high immune infiltration. When the patients were divided into high risk and low risk groups based on their risk scores, we found that patients in the high risk group had poor prognoses. Besides, patients in the high risk group had a higher stroma and immune scores, and higher abundance of immune infiltration. These results were further verified in the validation cohort, which contained three independent datasets. Moreover, patients in the low risk group enjoyed better prognoses without chemoradiotherapy or single chemotherapy.

Conclusion: Our study revealed that m6A regulators could predict the prognosis and therapeutic efficacy, and were also associated with the immune microenvironment in gliomas.

Keywords: glioma, brain tumor, N6-methyladenosine methylation, immune microenvironment, immune infiltration, chemoradiotherapy


INTRODUCTION

Gliomas are the most common primary malignancies in the central nervous system. The morbidity of gliomas is approximately 7 cases per 100,000 people, which accounts for the majority of primary brain tumors (Ostrom et al., 2019). Based on the World Health Organization (WHO) classification, gliomas are classified into four grades, in which grade 1 and grade 2 gliomas are defined as low-grade glioma whereas grade 3 and grade 4 gliomas are termed as high-grade glioma (Louis et al., 2016). Typically, patients with a higher grade glioma suffer from a worse prognosis. The 10-year survival rate of patients with low-grade glioma is 47% with a median survival time of 11.6 years (Ohgaki and Kleihues, 2005; Smoll et al., 2012). Although the low-grade glioma is relatively more optimistic compared to high-grade glioma, almost 70% of low-grade glioma will progress to high-grade one in a few years (Maher et al., 2001). The median survival time of patients with grade 3 glioma is approximately 3 years and that of patients with grade 4 glioma is about 13 months (Bleeker et al., 2012). Since patients with gliomas have such a poor prognosis, there is a clear urgent to find novel biomarkers to predict the prognosis. Previous studies have found that gliomas with isocitrate dehydrogenase (IDH) mutation and 1p19q codeletion indicate a relatively favorable survival (Eckel-Passow et al., 2015). Besides, O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation has been found to increase the chemosensitivity of temozolomide treatment, and it is a strong prognostic biomarker in patients with glioblastoma (Wick et al., 2014). However, additional studies are needed to explore novel biomarkers to predict the prognosis of glioma patients.

N6-methyladenosine (m6A) methylation is the most common type of RNA modification that mainly occurs in the messenger RNA (mRNA) of eukaryotes (Huisman et al., 2017). The dynamic modification of m6A is regulated by “writers” (methyltransferases), “readers” (binding proteins), and “erasers” (demethylases) (Yang et al., 2018). The biological functions of m6A are mediated by the “readers” that specifically recognize the methylated adenosine on mRNA. The “writers” mainly include methyltransferase like (METTL) family (METTL3, METTL5, METTL14, and METTL16), KIAA1429, WTAP, RNA-binding motif (RBM) family (RBM15 and RBM15B), and ZC3H13, which stimulate the methylation of m6A on RNA (Meyer and Jaffrey, 2017; Wang et al., 2017). The “readers” are composed of YTH domain-containing (YTHDC) family (YTHDC1 and YTHDC2), YTH domain family (YTHDF) family (YTHDF1, YTHDF2, and YTHDF3), HNRNPC, FMR1, EIF3A, and insulin-like growth factor-2 mRNA-binding proteins (IGF2BP) family (IGF2BP1, IGF2BP2, and IGF2BP3) (Zaccara et al., 2019). Besides, the “erasers” comprise fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5) (Jia et al., 2011; Zheng et al., 2013). Various studies have revealed that m6A regulators can be used as novel prognostic biomarkers in different types of cancer (Chen et al., 2019; Fang and Chen, 2020; Huang et al., 2020a; Li Z. et al., 2020; Lu et al., 2020). METTL3 was shown to promote the proliferation and migration of hepatocellular carcinoma via the YTHDF2-dependent pathway and its knockdown could inhibit tumor progression (Chen et al., 2018). Moreover, YTHDF1 was found to be highly expressed in colorectal cancer and the knockdown of YTHDF1 could significantly suppress the tumor growth both in vitro and in vivo (Bai et al., 2019). Additionally, the low expression of FTO was found to indicate poor prognosis in patients with intrahepatic cholangiocarcinoma (Rong et al., 2019). These findings indicate that m6A regulators are highly involved in cancer development with promising prognostic values.

In recent years, numerous studies have proved that tumor immune microenvironment plays a crucial role in cancer progression and therapeutic efficacy (Quail and Joyce, 2017). The brain was long considered to be an “immune privileged” organ. However, this viewpoint was challenged when the lymphatic vessels were discovered along with the dural sinuses in mice (Louveau et al., 2015). Immune cells could infiltrate into the brain and form the immune microenvironment with other components. Multiple studies have identified the immunosuppressive status in gliomas, in which tumor-associated macrophages and regulatory T (Treg) cells in glioma microenvironment suppress the activities of T cells, mediating the immune escape of gliomas (Colombo and Piconese, 2007). Besides, glioma cells increase the expression of immunosuppressive factors such as programmed cell death 1 ligand (PD-L1) to reduce the presentation of antigens (Bloch et al., 2013; Xu et al., 2020). Therefore, the content of the immune microenvironment was closely associated with the efficacy of immunotherapy.

A previous study has revealed that m6A regulators are associated with glioma progression and prognosis (Chai et al., 2019). However, the relationship between m6A regulators and the immune microenvironment in gliomas remains unclear. In this study, we extracted data from the Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and the Rembrandt datasets to explore the expression pattern and prognostic value of m6A regulators in gliomas. Besides, clustering subgroups and risk models were established based on the expression of m6A regulators to validate the predictive value of m6A regulators in risk stratification and prognosis. Moreover, the association between m6A regulators and the immune microenvironment was explored using the constructed signature. Additionally, the predictive value of m6A signature in the efficacy of chemotherapy and radiotherapy was also investigated. Our study aims to comprehensively assess the correlation of m6A regulators with prognosis, immune microenvironment, and therapeutic efficacy in gliomas.



MATERIALS AND METHODS


Data Extraction

All RNA-seq data and clinical characteristics of enrolled samples were extracted from CGGA 1, TCGA2, and Rembrandt databases. A total of 2144 glioma samples were enrolled in our study, in which 325 samples extracted from the CGGA database (CGGA325) were defined as the training cohort; 693 samples extracted from the CGGA database (CGGA693), 651 samples extracted from the TCGA database, and 475 samples extracted from the Rembrandt database were defined as the validation cohort; 20 normal tissues extracted from the CGGA database were termed as the control group. Data of CGGA325 and CGGA693 datasets were obtained in fragments per kilobase of exon model per million mapped fragments (FPKM) format. Data of TCGA dataset were batch normalized counts format, whereas that of Rembrandt dataset was normalized microarray format. The characteristics of patients in the training and validation cohorts were summarized in Table 1.


TABLE 1. Characteristics of patients in training cohort and validation cohorts.
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Identification of m6A Regulators

A total of 22 m6A regulators were identified according to previous studies (Wang et al., 2017; Yang et al., 2018; Yi et al., 2020). The expression level of these genes was assessed between glioma samples and normal pairs.



Consensus Clustering

The consensus clustering was performed using “ConsensusClusterPlus” R package to categorize patients with gliomas into subgroups. The clustering algorithm was partitioning around medoids and the distance was measured by the euclidean metric.



Stroma and Immune Scores Calculation

The stroma and immune scores were measured by Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) analysis using “estimate” R package (Yoshihara et al., 2013). Tumor purity was calculated according to the algorithm.



Immune Cells Infiltration Analysis

The abundance of six immune cells including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells was calculated by Tumor Immune Estimation Resource (TIMER) algorithm (Li et al., 2017). The role of copy number alternations (CNAs) of m6A regulators on immune cell infiltration was evaluated using TIMER algorithm3.



Construction of Risk Signature

The selection of candidate risk m6A regulators was performed by the least absolute shrinkage and selection operator (LASSO) analysis. Multivariate Cox regression analysis was used to profile independent prognostic genes. Variance inflation factor (Vif) and hypothesis testing were used to filter out genes with high collinearity. Risk score for each patient in the training and validation cohort was calculated by the following algorithm: Risk score = 0.052 × YTHDF2 + 0.025 × ALKBH5 + 0.029 × KIAA1429 + 0.023 × IGF2BP3. The patients were divided into high risk and low risk groups based on the mean value of the risk score.



Statistical Analysis

Statistical analyses and visualization were mainly performed using R version 4.0.2, GraphPad Prism version 8.0.1, and TBtools (Chen et al., 2020). Kaplan–Meier and log-rank analysis were used to evaluate the survival differences between grouped patients. Subgroup analysis was used to assess the stability of the risk signature, in which patients were divided into two subgroups based on their age (≤41 and >41 years old) and gender (female and male). Time-dependent receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive value of constructed risk model using “survivalROC” R package. Student’s t-test and one-way ANOVA analysis were used to estimate the differences between two groups and more than two groups. The correlation of gene expression was calculated using “spearman” method. Two-sided p < 0.05 was regarded as statistically significant.



RESULTS


Expression of m6A Regulators Was Involved in the Progression and Development of Gliomas

According to previous studies, we selected 22 m6A regulators for further investigation. The RNA expression of these genes was extracted from the training cohort. Results showed that 19 m6A regulators were significantly higher in gliomas compared with normal brain tissue (p < 0.05) (Figure 1A); whereas no significant difference was detected between gliomas and normal tissue regarding the expression of METTL16, ALKBH5, and METTL5 (p > 0.05). Besides, Kaplan–Meier analysis revealed that 15 m6A regulators were independent prognostic genes and the other regulators including YTHDC1, FMR1, ZC3H13, METTL14, EIF3A, METTL3, METTL16, and IGF2BP1 were not associated the prognosis of glioma patients. Generally, patients with low expression of m6A regulators enjoyed favorable prognoses (p < 0.05); whereas patients with low expression of FTO had a less survival time compared to those with high expression of FTO (p < 0.05) (Figure 1B). These results indicated that m6A regulators were highly involved in the progression and development of gliomas.
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FIGURE 1. Expression and survival analysis of m6A regulators in gliomas. (A) Expression of m6A regulators in glioma and normal tissues. (B) Survival analysis of m6A regulators in gliomas. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, no significance.




Expression of m6A Regulators Was Associated With Current Glioma Prognostic Markers

To further investigate the role of m6A regulators in gliomas, we explored the expression of m6A regulators in different subgroups of gliomas. Results showed that the expression of 15 m6A regulators, which had independent prognostic value, was significantly different in different grades of gliomas (Figure 2A). Generally, the high expression of m6A regulators indicated a higher grade of glioma; whereas the high expression of FTO indicated a lower grade of glioma. Additionally, the expression of 16 m6A regulators was significantly different in IDH mutant and IDH wild-type gliomas (p < 0.05), in which 6 genes were down-regulated and 10 genes were up-regulated in IDH mutant gliomas compared with IDH wild-type gliomas (Figure 2B). Moreover, the expression of 14 m6A regulators in 1p19q codeletion and non-codeletion gliomas was evident (p < 0.05), in which 11 genes were down-regulated and 3 genes were up-regulated in 1p19q codeletion gliomas compared with non-codeletion gliomas (Figure 2C). A total of 11 m6A regulators had a consistent expression pattern in IDH and 1p19q subgroups, in which four genes were up-regulated (FTO, FMR1, EIF3A, and ZC3H13) and seven genes were down-regulated (ALKBH5, IGF2BP2, IGF2BP3, RBM15, WTAP, YTHDF1, and YTHDF3) in IDH mutant and 1p19q codeletion gliomas. Given that patients with the lower grade, IDH mutant, and 1p19q codeletion gliomas had better prognoses, our findings suggested that m6A regulators had promising values in predicting the prognosis of glioma patients.
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FIGURE 2. Association between m6A regulator expressions and glioma features. (A) Expression pattern of m6A regulators in different grades of glioma. (B) Expression of m6A regulators in IDH mutant and IDH wild-type gliomas. (C) Expression of m6A regulators in 1p19q codeletion and 1p19q non-codeletion gliomas. IDH, isocitrate dehydrogenase. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.




Consensus Clustering for m6A Regulators Correlated With Glioma Prognosis and Immune Microenvironment

The unsupervised clustering method, consensus clustering, was performed to classify patients in the training cohort into subgroups based on the expression of m6A regulators. K = 2 was identified with optimal clustering stability (Figure 3A–C). A total of 325 patients in the training cohort were clustered into two subgroups, 181 patients in cluster 1 and 144 patients in cluster 2. The expression pattern of m6A regulators in cluster 1 and cluster 2 was shown by the heatmap (Figure 3D). The expression level of m6A regulators (except FTO) were lower in cluster 1 compared with cluster 2. Besides, the stroma (p < 0.05), immune (p < 0.05), and ESTIMATE scores (p < 0.05) were significantly higher whereas the tumor purity was markedly lower (p < 0.05) in cluster 1 compared with cluster 2 (Figure 3E). Moreover, the overall survival of patients in cluster 1 was significantly longer than those in cluster 2 (p < 0.05) (Figure 3F). Additionally, the abundance of neutrophil, macrophage, and dendritic cell was significantly higher in cluster 1 compared with cluster 2 (p < 0.05), whereas no difference was detected regarding B cell, CD4+ T cell, and CD8+ T cell (Figure 3G). These results indicated that the clustering subgroups based on m6A regulators were closely related to prognosis and the immune microenvironment in gliomas.
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FIGURE 3. Prognosis and immune infiltrations in consensus clustering subgroups of gliomas. (A) Consensus clustering matrix for k = 2. (B,C) Consensus clustering cumulative distribution function for k = 2–6. (D) Expression pattern of m6A regulators in cluster 1 and cluster 2 subgroups. (E) Stroma, immune, and ESTIMATE scores and tumor purity in cluster 1 and cluster 2 subgroups. (F) Kaplan–Meier analysis of patients in cluster 1 and cluster 2 subgroups. (G) The abundance of six immune cells in cluster 1 and cluster 2 subgroups. *p < 0.05; **p < 0.01.




Construction of Risk Signature Based on m6A Regulators Expression in the Training Cohort

Then, the risk signature was established to evaluate the predictive value of m6A regulators. LASSO analysis filtered out seven m6A regulators with the minimum lambda value (Figure 4A). After hypothesis testing, four m6A regulators including ALKBH5, IGF2BP3, KIAA1429, and YTHDF2 were selected with p-value of less than 0.05 and Vif of less than 2. The risk signature was constructed by multivariate Cox analysis (Supplementary Figure 1). Patients in the training cohort were divided into high risk and low risk groups based on risk scores (Figure 4B). Multivariate Cox analysis revealed that risk score was the independent risk factor for patients in the training cohort (Table 2). Time-dependent ROC analysis revealed that the predictive accuracy of risk score was highest in predicting 5-year survival (Figure 4C). The area under curve (AUC) of 1-year, 3-year, and 5-year survival was 0.801, 0.871, and 0.887, respectively. Moreover, patients in the low risk group had a longer overall survival compared with those in the high risk group (p < 0.05) (Figure 4D); when patients were divided into subgroups based on their age and gender, those in the low risk group still had a longer survival time (p < 0.05) (Supplementary Figure 2A). The expression of four candidate m6A regulators was higher in high risk group compared with the low risk group (Figure 4E). The stroma, immune, and ESTIMATE scores were significantly higher (p < 0.05) whereas tumor purity was lower in the high risk group compared with the low risk group (p < 0.05) (Figure 4F). In cluster 1, which had a better prognosis, the risk score was notably lower than cluster 2 (p < 0.05) (Figure 4G). Besides, the risk score was elevated in the higher grade, IDH wild-type, and 1p19q non-codeletion subtype of glioma (p < 0.05) (Figures 4H–J). As for the histological subtype of glioma, the risk score was increased in the relatively malignant glioma (e.g., anaplastic astrocytoma vs astrocytoma; anaplastic oligodendroglioma/oligoastrocytoma vs oligodendroglioma/oligoastrocytoma); the glioblastoma, which was the most malignant glioma, had the highest risk score (Figure 4K). Moreover, the abundance of CD8+ T cell, neutrophil, macrophage, and dendritic cell was significantly higher in the high risk group compared with the low risk group (p < 0.05) (Figure 4L). These results indicated that the constructed risk signature exhibited a potent value in predicting the prognosis of glioma patients. The risk score was closely related with the immune microenvironment in gliomas.
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FIGURE 4. Construction and analysis of risk signature based on m6A regulator expression in the training cohort. (A) LASSO analysis with minimal lambda value. (B) Risk score of each patient in the training cohort. (C) Time-dependent ROC analysis of risk score in predicting prognoses. (D) Kaplan–Meier analysis of patients in the high risk and low risk groups. (E) Expression pattern of four candidate m6A regulators in the high risk and low risk groups. (F) Stroma, immune, and ESTIMATE scores and tumor purity in the high risk and low risk groups. (G) Risk score of cluster 1 and cluster 2 subgroups. (H) Risk score of different grades of glioma. (I) Risk score of IDH wild-type and IDH mutant gliomas. (J) Risk score of 1p19q codeletion and non-codeletion gliomas. (K) Risk score of different histological subtypes of glioma. (L) The abundance of six immune cells in the high risk and low risk groups. ROC, receiver operating characteristic; IDH, isocitrate dehydrogenase. **p < 0.01; ****p < 0.0001.



TABLE 2. Multivariate analyses of risk score and clinical features in training cohort.
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Risk Signature Was Associated With Glioma Prognosis and Immune Microenvironment in the Validation Cohort

To further verify the predictive value of risk signature, we applied the risk score algorithm in the validation cohort. The risk score of patients in the validation cohort was calculated. All patients were divided into high risk and low risk groups based on the mean value of risk score (Figures 5A–C). Multivariate Cox analysis revealed that risk score was the independent risk factor for patients in the validation cohort (Supplementary Table 1). Besides, Kaplan–Meier analysis revealed that patients in the low risk group had a better prognosis compared with those in the high risk group (p < 0.05) (Figures 5D–F); when patients were divided into subgroups based on their age and gender, those in the low risk group still had a better prognosis (p < 0.05) (Supplementary Figure 2B–D). Time-dependent ROC analysis showed that predictive accuracy of risk score was highest in predicting long-term survival (Figures 5G–I). The AUC of 1-year, 3-year, and 5-year survival in CGGA693 dataset was 0.596, 0.659, and 0.682, respectively; that in TCGA dataset was 0.719, 0.762, and 0.787, respectively; that in Rembrandt dataset was 0.620, 0.704, and 0.727, respectively. Besides, the risk score was elevated in the high-grade, IDH wild-type, and 1p19q non-codeletion subtype of glioma in the validation cohort (p < 0.05), which was consistent with the training cohort (Figures 5J–L). Moreover, the risk score was relatively high in the malignant subtype of glioma and glioblastoma had the highest risk score, which was consistent with the training cohort (p < 0.05) (Figure 5M).
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FIGURE 5. Verification of risk signature of glioma features in the validation cohort. (A–C) Risk score of each patient in the three datasets. (D–F) Kaplan–Meier analysis of patients in the high risk and low risk groups in the three datasets. (G–I) Time-dependent ROC analysis of risk score in predicting prognoses in the three datasets. (J) Risk score of different grades of glioma in the three datasets. (K) Risk score of 1p19q codeletion and non-codeletion gliomas in the three datasets. (L) Risk score of IDH wild-type and IDH mutant gliomas in CGGA693 and TCGA datasets. (M) Risk score of different histological subtypes of glioma in the three datasets. ROC, receiver operating characteristic. *p < 0.05; ****p < 0.0001.


As for the immune microenvironment of gliomas, the stroma, immune, and ESTIMATE scores were significantly higher whereas the tumor purity was lower in the high risk group compared with the low risk group in the validation cohort (p < 0.05) (Figures 6A–C), which was consistent with the training cohort. Moreover, the abundance of CD8+ T cell, neutrophil, macrophage, and dendritic cell was significantly higher in the high risk group compared with the low risk group in the validation cohort (p < 0.05), which was consistent with the training cohort (Figures 6D–F). These results confirmed the establishment of the risk signature and its association with the prognosis and immune microenvironment of gliomas.
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FIGURE 6. Verification of risk signature of glioma immune microenvironment in the validation cohort. (A–C) Stroma, immune, and ESTIMATE scores and tumor purity in the high risk and low risk groups in CGGA693 (A), TCGA (B), and Rembrandt (C) datasets. (D–F) The abundance of six immune cells in the high risk and low risk groups in CGGA693 (D), TCGA (E), and Rembrandt (F) datasets. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.


Additionally, the effect of CNAs of four candidate m6A regulators in risk signature on immune cell infiltration was further investigated to provide a novel insight into the association between risk score and immune cell infiltration. The arm-level gain of ALKBH5 and IGF2BP3 was closely associated with the infiltration of six types of immune cells (Supplementary Figures 3A,B); whereas CNAs of KIAA1429 did not exhibit an association with immune cell infiltration (Supplementary Figure 3C). Besides, the high amplication and arm-level deletion of YTHDF2 were significantly related to immune cell infiltration (Supplementary Figure 3D). These results suggested that the four candidate genes of the risk signature were closely associated with the infiltration of immune cells.



Risk Stratification Was Associated With the Efficacy of Chemoradiotherapy and Immunotherapy

The association between therapeutic efficacy and risk stratification was also explored. In the training cohort, patients in the high risk group who received chemoradiotherapy had longer survival compared with those receiving other therapies (p = 0.0006), and radiotherapy exhibited a potent efficacy (p = 0.0006) (Figure 7A); patients in the low risk group who received single radiotherapy had better prognoses compared with those without radiotherapy (p = 0.0028), and chemotherapy did harm to the survival rates (p = 0.0007) (Figure 7B). In the validation cohort, monotherapy of chemotherapy and radiotherapy had no significant effect on improving the survival rate of patients in the high risk group (Figure 7C); however, patients in the low risk group who received single chemotherapy or radiotherapy had better prognoses compared with those receiving other therapies (p = 0.0074), and chemotherapy decreased the survival rates (p = 0.0244) (Figure 7D). Besides, the risk score was correlated with the expression of immune checkpoints (i.e., PD-1, PD-L1, CTLA-4, and B7H3) in the training and validation cohorts, in which the risk score had a notable relationship with the expression of B7H3 (Figures 7E–H). These results showed that for patients in the low risk group, radiotherapy exhibited a potent efficacy whereas chemotherapy even decreased the survival rates. Therefore, the risk stratification was associated with the efficacy of chemoradiotherapy and might predict the efficacy of immunotherapy in gliomas.
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FIGURE 7. Exploration of the association between risk signature and therapeutic efficacy. (A,B) Kaplan–Meier analysis of therapeutic efficacy of patients in the high risk and low risk groups in the training cohort. (C,D) Kaplan–Meier analysis of therapeutic efficacy of patients in the high risk and low risk groups in the validation cohort. (E–H) The correlation between risk score and immune checkpoints expression in CGGA325 (E), CGGA693 (F), TCGA (G), and Rembrandt (H) datasets.




DISCUSSION

According to WHO grade classification of gliomas, glioma was categorized into four grades, in which a higher grade indicated a worse survival. The past 30 years of research into glioma biology led to the discovery of hundreds of molecular alterations in grade II, III, and IV gliomas. Molecular exploration is in need of improved outcomes and the value of prognosis. Turkalp et al. (2014) found that IDH1/2, as an early event in the development of glioma, provided some reference in predicting glioma. Akagi et al. (2018) also showed that oligodendroglioma patients with IDH-mutant and 1p/19q co-deleted, rather than the WHO grade, demonstrated a better overall survival.

The previous studies inspired us to explore the changes in the expression of other genes and proteins in relation to the occurrence and development of glioma and to guide our intensive study on the role of glioma genes. With the booming development of high-throughput sequencing, various databases about genomic profiles have been established by researchers, which makes us to clearly acknowledge the genomic changes. Previous studies have revealed that immune-related gene signature was associated with prognosis and immune infiltration in gliomas (Qin et al., 2020; Zhang et al., 2020). Their risk scores exhibited potent predictive values in the diagnosis and prognosis of gliomas. Huang et al. (2020c) found that ATP metabolism-related signature was associated with prognosis and immune microenvironment in gliomas. Besides, the risk score had a potent predictive accuracy identifying mesenchymal subtype glioma. Tao et al. (2020) revealed that epithelial-mesenchymal transition (EMT) based signature was also correlated with prognosis and clinicopathological features of glioma. However, few research explored the signature based on m6A regulators in gliomas.

Our study would fill the blank of m6A-related signature in the prediction of gliomas. The m6A regulator-based signature was closely associated with the immune microenvironment of glioma. Consensus clustering based on m6A regulator expressions was performed to divide the training cohort into two clusters. Survival analysis revealed that patients in cluster 1 had a favorable survival. Besides, the immune and stroma scores and immune cell infiltration was higher in cluster1. However, previous studies revealed that high immune and stroma scores as well as high infiltration of macrophages were associated with poor prognosis, which was reversed with our results in consensus clustering (Deng et al., 2020; Ni et al., 2020; Tian et al., 2020). Therefore, we further constructed a risk model to explore and validate the association between m6A regulators and the immune microenvironment. This study constructed the risk signature based on the expression of m6A regulators and also revealed that risk score was associated with prognosis and immune infiltration, which was similar to other studies. The risk stratification based on risk signature might be used to predict the efficacy of chemoradiotherapy and immunotherapy.

The risk signature correlates with glioma types, instead of other factors such as age and gender. In different histological subtypes of glioma, the risk score had a elevated tendency in the relatively malignant subtype. For example, the risk score was significantly higher in anaplastic astrocytoma compared to astrocytoma. Although the risk score of anaplastic oligodendroglioma or oligoastrocytoma was not significantly higher than astrocytoma, it is notably higher than oligodendroglioma or oligoastrocytoma. Moreover, the most malignant glioma, glioblastoma, had the highest risk score. Therefore, the risk score was closely associated with the histological subtype of glioma. In order to exclude the interference of other factors such as age and gender, we conducted subgroup analysis to further validate the predictive value of risk score. Results showed that patients with high risk score in the age and gender subgroups still had poor prognoses in four datasets. Besides, multivariate Cox analysis confirmed that the risk score was independent risk factor for glioma patients in four datasets. These results suggested that the risk signature was not affected by other factors such as age and gender.

This risk signature in compliance with current molecular pathology based survival prediction. IDH mutation, MGMT promoter methylation, and 1p19q codeletion in gliomas were associated with more favorable prognoses. A total of 11 m6A regulators had similar expression patterns in IDH and 1p19q subgroups, in which four were up-regulated and seven were down-regulated in IDH mutant and 1p19q codeletion gliomas. Unexpectedly, FMR1, EIF3A, and ZC3H13, whose high expressions indicated poor prognosis, were up-regulated in the IDH mutant and 1p19q codeletion gliomas since the two genomic mutations indicated favorable prognoses. However, IDH mutant and 1p19q codeletion only stand for a large proportion of patients with relatively good prognoses but not absolutely all patients have longer survival time. Therefore, those genes up-regulated in the IDH mutant and 1p19q codeletion subgroups may indicate worse prognoses within the subgroup. By the combination of the risk score and current indicators, we can predict the prognosis of glioma patients more accurately and efficiently.

The risk signature was established in multiple types of cancers with potent predictive values (Huang et al., 2020d; Wang et al., 2020; Zhang et al., 2020). On one hand, the risk score was calculated based on the coefficient and expression of candidate genes. Typically, a higher risk score indicated a poor survival. In our study, four candidate genes (ALKBH5, IGF2BP3, KIAA1429, and YTHDF2) were selected to construct the risk signature. The risk score exhibited promising value in predicting 5-year survival in the training and validation cohorts (AUC = 0.887, 0.682, 0.787, and 0.727). Although the predictive value in CGGA693 dataset was relatively low, its value was further validated by the other two datasets. Therefore, we believed that the risk score could predict long-term survival with a relatively high accuracy. On the other, the immune and stroma scores, as well as immune cell infiltration, were significantly higher in the high risk group. Moreover, the risk score was notably lower in cluster 1 compared with cluster 2, indicating the risk signature could replace the consensus clustering with a better evaluation efficiency. Further, the constructed risk signature was verified in the validation cohort, which exhibited consistent results with the training cohort. Four candidate genes were highly expressed in the high risk group and exhibited as risk factors for glioma patients. ALKBH5 was found to play an oncogenic role in epithelial ovarian cancer (Zhu et al., 2019). Besides, the inhibition of ALKBH5 could reduce the proliferation of glioblastoma stem-like cells via FOXM1 axis (Zhang et al., 2017). Previous studies revealed that IGF2BP3 promoted tumor proliferation and progression in colorectal cancer, gastric cancer, and glioblastoma (Suvasini et al., 2011; Zhou et al., 2017; Xu et al., 2019). In the end, KIAA1429 was proved to facilitate cancer progression in breast and live cancer (Lan et al., 2019; Qian et al., 2019). Similarly, YTHDF2 was shown to be involved in the progression and angiogenesis in hepatocellular carcinoma, and its inhibition exhibited promising efficacy in acute myeloid leukemia (Chen et al., 2018; Li et al., 2018; Hou et al., 2019; Paris et al., 2019). These findings revealed that the dysregulation of candidate m6A regulators was involved in the tumor progression in various kinds of cancer.

The low expression of FTO were associated with poor prognosis in gliomas, although there have been a contentious and divisive. Among 22 m6A regulators, 19 were highly expressed in glioma tissues compared with normal tissues, indicating that these m6A regulators might play crucial roles in gliomas. Survival analysis revealed that 15 m6A regulators were identified as prognostic indicators, in which the high expression of 14 m6A regulators and the low expression of FTO were associated with poor prognosis, whereas the high expression of FTO indicated a favorable prognosis. These results suggested that although FTO was highly expressed in glioma tissues, it might play a protective role for patients with gliomas. Li J. et al. (2020) found that the expression of m6A regulators was dysregulated in osteosarcoma, and low expression of FTO and high expression of YTHDF3 was associated with poor prognosis, which was consistent with our findings. Besides, FTO could suppress the self-renewal of ovarian cancer stem cells via inhibiting cyclic adenosine monophosphate (cAMP) signaling pathway (Huang et al., 2020b). However, Su et al. (2020) revealed that the inhibition of FTO also exhibited potent anti-tumor effects in multiple types of cancers. FTO inhibition enhanced the cytotoxicity of T cell and reduced immune evasion by suppressing the expression of immune checkpoint genes. These findings suggested that FTO played a complicated role in different types of cancer, and its role in glioma needed further investigation.

Those m6A regulators were involved in the immune microenvironment of gliomas. When patients in the training and validation cohorts were divided into high risk and low risk groups based on the risk score, the high risk group had a higher stroma and immune scores and a lower tumor purity. Previous studies found that stroma and immune scores calculated by ESTIMATE algorithm were meaningful for the classification and prognosis of glioblastoma and lower-grade gliomas (Jia et al., 2018; Deng et al., 2020). Besides, the abundance of immune cells such as CD8 + T cell, neutrophil, macrophage, and dendritic cell was highly infiltrated in the high risk group. Further, we identified that CNAs (i.e., arm-level gain, arm-level deletion, and high amplication) of four candidate genes were markedly associated with immune cell infiltrations.

The risk stratification could facilitate the determination of therapeutic options to improve prognoses. Current management for gliomas includes surgery, chemotherapy, and radiotherapy, which cannot reach optimal remission although great advancement has been achieved. In our study, patients in the high risk group who received chemoradiotherapy exhibited the most favorable survival, whereas radiotherapy showed great efficacy. However, this result was not consistent in the validation cohort. Notably, patients in the low risk group who received chemoradiotherapy showed worse prognosis compared with those receiving chemotherapy or radiotherapy. In contrast, single radiotherapy exhibited promising efficacy in the training and validation cohorts although radiotherapy had no effect in improving the survival rates of patients. However, it should be noted that a part of patients with or without radiotherapy would receive chemotherapy, which was demonstrated to impair the survival rate of patients. Therefore, single radiotherapy should be considered for patients in the low risk group. Although patients received single chemotherapy exhibited favorable prognosis in the validation cohort, the finding was not consistent with the training cohort. Since chemotherapy was found to impair the survival rates of patients with low risk in training and validation cohorts, chemotherapy should be deliberated for patients in the low risk group. Additionally, the risk score was positively correlated with the expression of B7H3. The novel chimeric antigen receptor T (CAR-T) product targeting B7H3 exhibited promising efficacy in the treatment of glioblastoma both in vitro and in vivo. Currently, the clinical studies were undergoing to evaluate the efficacy of B7H3 CAR-T cell in the treatment of glioblastoma (NCT04077866) and pediatric gliomas (NCT04185038) (Xu et al., 2020). The risk stratification based on the risk score might help predict the efficacy of B7H3 CAR-T therapy.

There are still limitations in our study. Firstly, our findings are based on open accessed databases without our cohort. Secondly, the interactions between m6A regulators and immune cells were not validated by experiments. Last but not least, the regulatory mechanism of m6A regulators in glioma immune microenvironment is not elucidated, which warrants further investigation to provide a better understanding.



CONCLUSION

To sum up, our study comprehensively assessed the expression pattern and prognostic value of m6A regulators in gliomas. The expression of m6A regulators was associated with the classification of glioma subtypes. Besides, the consensus clustering and risk signature based on m6A regulator expressions could be used to predict prognosis and were associated with the immune microenvironment in gliomas. Additionally, the risk stratification could facilitate the prediction of the efficacy of chemoradiotherapy and might be associated with the efficacy of immunotherapy. These findings indicated that m6A regulators might be potential biomarkers indicating the prognosis and therapeutic efficacy for patients with gliomas and were associated with glioma immune microenvironment. Further studies are needed to explore regulatory mechanisms of m6A regulators in glioma progression and therapeutic efficacy.
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The kidney renal papillary cell carcinoma (KIRP) is a relatively rare type of renal cell carcinoma (RCC). Currently, most kidney cancer studies primarily focus on RCC, and there has been no investigation to find a robust signature to predict the survival outcome of KIRP patients. In this study, we constructed a competing endogenous RNA (ceRNA) network, including 1,251 lncRNA–miRNA–mRNA interactions. Eight differentially expressed genes (IGF2BP3, PLK1, LINC00200, NCAPG, CENPF, miR-217, GAS6-As1, and LRRC4) based on the TCGA database were selected. The prognostic signature was established by combining the univariate Cox regression method and a stepwise regression method, with its predictive value validated by time-dependent receiver operating characteristic (ROC) curves. In conclusion, we identified eight prognostic signatures with using ceRNA networks. Our study provided a global view and a systematic dissection on KIRP prognosis biomarkers, and the eight identified genes might be used as new and important prognostic factors involved in KIRP pathogenesis.
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INTRODUCTION

Kidney cancer has gradually become a commonly diagnosed cancer type worldwide. For years, people diagnosed with kidney cancer had few options for treatment beyond surgery, and survival time rarely exceeded 1 year (Owens, 2016). Kidney renal papillary cell carcinoma (KIRP) is regarded as the second histological type renal cell carcinoma (RCC) with a frequency of about 15–20% (Rhoades Smith and Bilen, 2019). Few investigations have been performed to determine robust signatures for predicting the survival outcomes of KIRP patients with regards to tumor type (Antonelli et al., 2010). According to histologic features, KIRP has been further divided into type 1 and type 2, and type 2 KIRP has been characterized by a high grade, late-stage, and poor prognosis (Pignot et al., 2007). Moreover, type 2 KIRP has more aggressive clinical–pathological characteristics and worse external outcomes (Balakrishnan, 2015). Although molecularly targeted therapies, such as vascular endothelial growth factor (VEGF) receptor and inhibitor and mammalian target of rapamycin (mTOR) inhibitor have been developed for patients, the responses to treatment are varied. However, for patients with metastasis, the benefits provided are modest (Motzer et al., 2014; Engel et al., 2019). Additionally, feasible biomarkers for the prediction of KIRP prognosis and possible new therapeutic targets for KIRP treatment are lacking. Therefore, it is essential to find a robust prognostic predictor for the guidance of clinical therapy of KIRP.

Cancer biomarkers are substances or processes that provide robust prognostic predictors for the risk of developing cancer or measure the risk of cancer progression or potential response to therapy. Long-chain non-coding RNAs (lncRNAs) are seen as the new cancer diagnostic markers and therapeutic targets. They have been observed in oncogenic and tumor-suppressive pathways and are involved in the pathogenesis of cancer and processes, such as unmanageable proliferation or metastasis (Zhu et al., 2013, 2018). Additionally, in the competing endogenous RNA (ceRNA) hypothesis, lncRNAs can bind miRNAs and act as ceRNAs, resulting in the modulation of the mRNA levels targeted by the sponged miRNA (Salmena et al., 2011). Increasing evidence indicates that regulatory networks serve essential roles in the occurrence, development, and regulation of tumors. HAND2-AS1 was shown to function as a competitive RNA that binds with miR-590-3p to influence the expression of potassium sodium-activated channel subfamily T member 2 (KCNT2) (Yu et al., 2020). However, these observations mainly focused on clear cell renal carcinoma, feasible biomarkers for the prediction of KIRP prognosis, and possible new therapeutic targets for KIRP treatment are still lacking. Therefore, a robust signature for KIRP urgently needs to be investigated.

As biomarkers and potential therapeutic targets, ceRNAs have demonstrated their great values for research and clinical applications with regards to tumor pathogenesis. In the present study, we analyzed differentially expressed genes, including mRNA, miRNA, and lncRNA, and constructed a risk score model to predict the overall survival with KIRP patients. Finally, we identified eight biomarkers, including PLK1, IGF2BP3, LINC00200, NCAPG, CENPF, GAS6-AS1, miR-217, and LRRC4, which can serve as predictors for KIRP survival and may become targets for KIRP therapies. This study provides a ceRNA network of KIRP to understand the molecular molecular mechanisms of KIRP progression and provide new targets of the molecular therapy for KIRP.



MATERIALS AND METHODS


Data Preparation and Differentially Expressed Gene Analysis

All primitive data of TCGA-KIRP, including transcriptome data (including RNA-seq and miRNA-seq), and clinical inforsectionmation were acquired from the Genomic Data Commons of the National Cancer Institute1. LncRNA and mRNA were commented by EnsDb.Hsapiens.v75 package using R software. In addition, to avoid a low abundance impact on the next procedure, RNAs with TPM-value < 1 and sum(value) < 10 were excluded. The deferentially expressed RNAs (DERNAs; including DEmRNAs and DElncRNAs) and differentially expressed microRNA (DEmiRNAs) were analyzed by DEseq2 package (1.20.0 version) (Love et al., 2014) using R with thresholds of |log2FoldChange| > 2.0 and p < 0.01, which were considered statistically different between cancer and normal groups. The heatmap and volcano plot were constructed using the ggplot2 package in R software (Ginestet, 2011).



Functional Enrichment Analysis

Yu et al. (2012) was used to perform the Gene Ontology (GO) enrichment analysis, including biological process (BP), the cellular component (CC), and molecular function (MF) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Pathview (Luo and Brouwer, 2013) and enrich plot packages were used to visualize the enrichment results. The cutoff criteria with a value of p < 0.05 was considered statistically significant.



Construction of the ceRNA Network

It is important to match the differentially expressed mRNAs, miRNAs, and lncRNAs according to the ceRNA hypothesis (Thomson and Dinger, 2016). The interactions between miRNAs and mRNAs were evaluated based on the miRTarBase (Release 7.0), and the interactions annotated in this database were supported by strong experimental evidence (reporter assay or western blot). Furthermore, the candidate lncRNA–miRNA interactions were selected based on highly conserved microRNA family data in the miRcode database (miRcode 11). Here, all the miRNAs, lncRNAs, and mRNAs differentially expressed between the tumor and normal tissue. The interactions between DElncRNA-associated DEmiRNAs and DEmRNAs were evaluated to construct the ceRNA network. Cytoscape v3.8 software was used to demonstrate this network visually.



Protein–Protein Interaction Network Analysis

Protein–protein interaction (PPI) network analysis of the DEmRNAs involved in the ceRNA network were constructed using STRING (version 11.0) with the confidence score > 0.7. The interaction types among proteins were based only on physical interaction and co-expression (Wang et al., 2020).



Identification of a Prognostic Signature Based on ceRNA Network

The status and survival times of KIRP patients were extracted from the TCGA clinical dataset. Prognostic data were created on the matrix of DEmRNAs, DElncRNAs, and DEmiRNAs identified in ceRNAs. In survival outcomes analysis, patients were classified according to the median expression of RNAs (DElncRNAs, DEmiRNAs, and DEmRNAs) into high or low expression groups. By univariate Cox regression with a logrank test analysis, genes with p < 0.01 were selected as primitive biomarkers. Subsequently, we performed stepwise regression to identify the prognostic signatures, and predicted the outcome of the patients with papillary cell carcinoma. The risk score was calculated as the sum of the product of each gene and its coefficient. Patients were divided into high and low-risk groups according to the median of their risk score. Finally, Kaplan–Meier survival curves and receiver operating characteristic (ROC) analysis were applied to validate its accuracy. The 3, 5, and 10 years survival outcomes demonstrated the predictive power of the biomarkers. The expression differences of prognostic signatures in different pathological stages (stage i, stage ii, stage iii, and stage iv) and different tumor types (tumor types 1 and 2) were analyzed in R software.



RESULTS


The Identification of Differentially Expressed mRNAs, miRNAs, and lncRNAs

From the TCGA database, a total of 322 raw RNA expression profiles (including 290 cohort KIRP samples and 32 normal samples), 326 raw miRNA-seq data (including 292 cohort KIRP samples and 34 normal samples), and 291 corresponding clinical data of KIRP patients were downloaded. In total, 60,488 transcripts and 1,881 miRNAs were obtained. After selecting the appropriate mRNAs and lncRNA, and removing low abundance RNAs, 18,505 mRNAs, 9,644 lncRNAs, and 869 miRNAs were selected for the differential expression analysis.

Finally, compared with normal samples, 1,832 DEmRNA (853 up-regulated and 979 down-regulated, Supplementary Figure 1A),1,036 DElncRNA (458 up-regulated and 578 down-regulated, Supplementary Figure 1B) and 93 DEmiRNA (42 up-regulated and 51 down-regulated, Supplementary Figure 1C) were sorted out with the thresholds of |log2FoldChange| > 2.0 and p < 0.01. The heatmap showed the expression tendency of these differential expressed genes in each groups were listed asSupplementary Figures 1D–F).



Functional Enrichment Analysis of DEmRNAs

To discover the potential biological function of these dysregulated genes, GO and KEGG function enrichment analysis were performed separately on dysregulated mRNAs. Terms with a p < 0.05 were considered as statistically significant. In the GO analysis, the up-regulated mRNAs were mainly enriched in the extracellular matrix, receptor–ligand activity, and neutrophil activation (Figure 1A). The down-regulated mRNAs were mainly enriched in the apical part of the cell, metal ion transmembrane transporter activity, and divalent inorganic cation homeostasis (Figure 1B). In KEGG analysis, the up-regulated mRNAs were mainly enriched in staphylococcus aureus infection and cytokine–cytokine receptor interaction (Figure 1C). Meanwhile, the down-regulated mRNAs were mainly enriched in neuroactive ligand–receptor interaction and calcium signaling pathway (Figure 1D). The pathway–pathway interaction network (PPIN) based on the DEmRNAs enriched in the same pathway were constructed. All up-regulated mRNAs were enriched in six pathways. Among which five pathways were connected, including the estrogen signaling pathway, complement, and coagulation cascades, staphylococcus aureus infection, osteoclast differentiation, and cytokine–cytokine receptor interaction (Figure 1E).
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FIGURE 1. Functional enrichment analysis of DEmRNAs. (A) Gene Ontology enrichment analysis of up-regulated mRNAs. (B) Gene Ontology enrichment analysis of down-regulated mRNAs. (C) KEGG pathway analysis of up-regulated mRNAs. (D) KEGG pathway analysis of down-regulated mRNAs. (E) The netplot of KEGG pathways means the enrichment of up-regulated mRNAs in different pathways. (F) The netplot of KEGG pathways means the enrichment of down-regulated mRNAs in different pathways. The color bar represents the fold change of genes in different pathways. The y-axis represents the gene count. The x-axis represents the enrichment analysis terms. Each plot’s color represents the p-value, while the size represents the gene number in this term.


The staphylococcus aureus infection pathway is the central pathway that connected all others. Gene FCGR1A, FCGR3A, and FCGR3B were enriched in both the staphylococcus aureus infection and osteoclast differentiation pathways, and belong to the Fc gamma receptor (FcγR), a receptor for the Fc portion of IgG (Bournazos and Ravetch, 2017). Fc gamma receptor is an essential participant in many immune system effector functions, such as opsonized cell phagocytosis, inflammatory mediator release, and antibody-dependent cellular cytotoxicity (Dahan et al., 2015). KRT17, KRT25, KRT33A, KRT33B, KRT20, KRT23, KRT34, KRT12, KRT15, KRT32, and KRT27 were enriched in both the staphylococcus aureus infection and estrogen signaling pathway. These genes encoded for keratins, which could modulate multiple processes including cell migration, tumor growth/metastasis, and development of infections (Toivola et al., 2015). C1Q3, C1QB, and C1QA were enriched in both the staphylococcus aureus infection, complement, and coagulation cascades pathway. These genes encoded for the C1 complement protein, which has anti-cancer effects via immune surveillance and may participate in the aging process (Cho, 2019). All down-regulated mRNAs were enriched in the calcium signaling pathway, collecting duct and secretion, gastric acid secretion, mineral absorption, neuroactive ligand–receptor interaction, and PPAR signaling pathways. Except for the PPAR signaling pathway, the other five pathways are related to each other by some co-expression of genes (Figure 1F).



Construction of lncRNA–miRNA–mRNA ceRNA Network in KIRP

To explore the underlying interactions among DEmRNAs, DElncRNAs, and DEmiRNAs in KIRP, a ceRNA network was constructed using Cytoscape v3.8. A total of 1,251 lncRNA–miRNA–mRNA interactions were enrolled in the network, including 21 DEmiRNAs (6 up-regulated, 15 down-regulated), 52 DElncRNAs (21 up-regulated, 31 down-regulated) and 66 DEmRNAs (29 up-regulated, 37 down-regulated) (Figure 2 and Supplementary Table 1). We only selected miRNA–mRNA pairs, whose interactions were supported by strong experimental evidence (reporter assay or western blot) and data from highly conserved microRNA families in the miRcode database (miRcode 11). Detailed information about the expression and association with overall survival outcomes is listed in Supplementary Table 2.
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FIGURE 2. CeRNA network of KIRP. The diamonds indicate miRNAs, oval mean lncRNAs, and square represent mRNAs. Red means up-regulated, and green means down-regulated. The arrow indicates the eight biomarkers of KIRP screened in this study, and the interactions they involved in are shown in blue lines.




Protein–Proteome Network Analysis

A total of 66 DEmRNAs in the ceRNA network were used for protein–protein interaction (PPI) network analysis through STRING (version 11.0) with a confidence score > 0.7. The interaction types among proteins were assessed using only physical interaction and co-expression. Finally, seven proteins were selected in PPI, including NCAPG, PBK, ASF1B, CENPF, BIRC5, FOXM1, and PLK1 (Figure 3A). We noticed that seven RNA expression levels were significantly associated with overall survival outcomes except for ASF1B (Figures 3B,C).
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FIGURE 3. Protein–protein interaction (PPI) network analysis of mRNAs in ceRNA network. (A) Seven genes interaction network. Circles indicate the genes in the PPI network, and the connection indicates the potential interaction between different mRNAs. The red line means physical interaction, and the black line means co-expression. (B) Overall survival curves of the seven genes in KIRP. *p < 0.05. (C) Gene expression of seven hub genes between KIRP tumor and normal tissues.




Screen Biomarkers and Construction Risk Model

All RNAs involved in the ceRNA network were selected for the next step analysis. By univariate Cox regression with a logrank test analysis and a p < 0.01, 21 candidates were selected as primitive biomarkers (IGF2BP3, PLK1, IL11, LINC00200, FOXM1, TRIB3, EN2, GPC5-AS1, NCAPG, CENPF, PBK, ROS1, LINC00277, GAS6-AS1, hsa-mir-217, LRRC4, BIRC5, MSLN, HMGA2, SFTA1P, LINC0031). Then a stepwise regression was applied to determine the best signature to predict the outcome of KIRP patients. Eight variables were harvested in the Cox regression model, which had the lowest Akaike information characteristic (AIC). The risk assessment score for the prediction of overall survival was calculated as follows: risk score = 0.320∗GF2BP3 + 0.624∗PLK1 + 0.356∗LINC00200 − 0.817∗NCAPG + 0.484∗CENPF − 0.332∗GAS6_AS1 + 0.130∗ miR_217 − 0.241∗LRRC4, and the expression of eight genes in KIRP is significantly related to survival (p < 0.01) (Figure 4A).
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FIGURE 4. Predictive gene signature analysis. (A) Overall survival curves of eight predictive genes in KIRP. (B) Kaplan–Meier survival analysis of the risk score for overall survival. Log-rank test was used to compare the survival distribution of these two groups. (C) ROC for the prediction of the 3, 5, and 10 years survival based on risk score. Area under the curve is 0.855, 0.824, and 0.681, respectively. (D) Forest map based on the risk score model. Left vertical dotted line indicates protective genes and right risk genes. (E) Survival status and survival time of each individual. Color of each plot represents the survival status of each patient. (F) Risk score of each individual. (G) Differentially expressed predictive genes that were enrolled in the risk model heatmap.


Next, the KIRP patients were divided into a high-risk and low-risk groups using the cutoff value from the median risk score. Kaplan–Meier survival curve analysis demonstrated significant differences in survival time between the high-risk and the low-risk group. The 5 years survival rates for low-risk groups were more than 0.9, and high-risk groups were lower than 0.5 (p < 0.001) (Figure 4B). The area under the curve (AUC) in ROC analysis for the 3, 5, and 10 years intervals were 0.855, 0.824, and 0.681, respectively, suggesting that this signature has a high potential for predicting the clinical outcomes of patients with renal papillary cell carcinoma (Figure 4C). The distribution of the risk score, along with the corresponding survival data, demonstrated that the high-risk KIRP patients tended to experience shorter survival times, but low-risk KIRP patients had opposite outcomes (Figure 4D). Overall, the results show that the expression levels of GPC5-AS1 and LRRC4 in the high-risk group were lower, while others were higher, suggesting that the result was consistent with the overall survival analysis (Figures 4E–G).

Cancer staging and grading are used to predict the clinical behavior of malignancies, establish appropriate therapies, and facilitate the exchange of precise information between clinicians (Telloni, 2017). Overall survival analysis indicated that the tumor stage is closely related to the survival of the KIRP patients. The patients at the early stage (stage i and ii) have longer survival times than late-stage (stage iii and iv) (Figure 5). By analyzing the expression of eight signatures in different tumor stages using R software, it was found that the expression of IGF2BP3, PLK1, LINC00200, NCAPG, CENPF, and miR_217 in the early stage of the tumor were lower than that in the late stage, while GAS6_AS1 and LRRC4 were opposite, and the result was consistent with the above survival analysis.
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FIGURE 5. Overall survival curves of tumor stage in KIRP and the expression of eight predictive genes in different tumor stages of KIRP.


Another important indicator of KIRP is the tumor type; type 2 papillary RCC (pRCC) is associated with poorer Eastern Cooperative Oncology Group (ECOG) performance status, higher stage, and grade, and necrosis, leading to worse prognosis compared with type 1 KIRP. Survival analysis indicated that tumor type was closely related to the survival of KIRP patients and that patients with tumor type 2 had shorter survival times compared with tumor type 1 (Figure 6). We analyzed the expression of eight signatures in different tumor types using R software. The results showed that IGF2BP3, NCAPG, miR_217 had significantly higher expression in type 2 KIRP, compared with type 1 KIRP (p < 0.05).
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FIGURE 6. Overall survival curves of tumor type in KIRP and the expression of eight predictive genes in type1 KIRP and type2 KIRP.




DISCUSSION

Regarding renal cancer, KIRP is generally less well studied than the clear cell type; due to its low incidence, which prevents in-depth investigations of KIRP treatment strategies and prognostic prediction (Wang et al., 2019). In this study, a total of 1,251 lncRNA–miRNA–mRNA interactions were constructed in the ceRNA network, eight genes were identified as prognostic biomarkers in KIRP, including IGF2BP3, PLK1, LINC00200, NCAPG, CENPF, GAS6-AS1, miR217, and LRRC4.

Upon searching for these genes on PubMed, we found that they had been studied for their association with tumor progression as well as their mechanisms, if action with the exception of LINC00200. As an RNA-binding protein (RBP), IGF2BP3 is of particular interest in tumorigenesis and tumor progression because of its over-expression in many tumors and regulation of cell growth and migration, as well as its response to drug (Mancarella and Scotlandi, 2019). Similarly, PLK1 is overexpressed in a large variety of tumors, and this overexpression often confers poor prognosis to the patients (de Carcer, 2019). Furthermore, NCAPG acts as an oncogene in liver hepatocellular carcinoma (LIHC) and plays a role in promoting cell proliferation and anti-apoptosis through the activation of the PI3K/AKT/FOXO4 pathway (Gong et al., 2019). Centromere Protein F (CENPF) also associates with the centromere-kinetochore complex and influences cell proliferation and metastasis in several cancers (Alghamdi et al., 2020). It promotes breast cancer (BC) bone metastasis by activating PI3K-AKT-mTORC1 signaling. CENPF can also be considered as a biomarker of fetal intestinal atresia for prenatal diagnosis (Sun et al., 2019). Many studies reported that miR-217 participated in carcinogenesis and tumor progression in several cancers (Qin et al., 2012). It acts as a tumor suppressor by targeting the oncogene SirT1 in endothelial cells or act as an oncogene by targeting PTEN in kidney cells (Zhang et al., 2016).

The expression of IGF2BP3, PLK1, NCAPG, CENPF, and miR-217 was significantly higher in late-stage (stage i and ii) KIRP compared with the early stage, and overall survival analysis showed that high expression of those genes predicted poor survival and high mortality in KIRP patients. Another prognostic biomarker, GAS6-AS1, is a potential target for therapeutic approaches in hepatocellular carcinoma (HCC), where knock-down of GAS6-AS1 decreased tumor growth in vivo (Ai et al., 2020). Similarly, we found that the expression of GAS6-AS1 was also up-regulated in kidney cancer; however, KIRP patients within the high-expression group of GAS6-AS1 had better overall survival compared with the low-expression group.

Analysis of tumor stages showed that the expression levels of GAS6-AS1 decreased in stage IV, which was associated with high mortality. This result indicated that GAS6-AS1 was a critical signature for KIRP and could be used to identify the tumor stage. Consistent with GAS6-AS1, the KIRP patients with high expression of LRRC4 were also associated with higher overall survival. In kidney cancer cells, LRRC4 was under-expressed, and identified as a tumor suppressor gene for gliomas. Moreover, overexpression of LRRC4 suppressed glioma cell growth, angiogenesis, and invasion (Li et al., 2014). Indeed, in our ceRNA network, GAS6-AS1 and LRRC4 both interacted with miR182; thus, we predicted that GAS6-AS1 could bind miR182 and act as a ceRNA, therefore modulating the levels of the LRRC4 in KIRP. Using PubMed, we found that the only report on the function and mechanism of LINC00200, was from Lou et al. (2019). They reported that LINC00200 played a critical part in early stage hepatocellular carcinoma (HCC) after analyzing RNA-sequencing expression data of liver cancer from the TCGA and GEO database (Lou et al., 2019). In our study, high expression of LINC00200 was associated with poor survival outcomes in KIRP patients and higher expression of LINC00200 at later tumor stages, which indicated that LINC00200 may have been an oncogene in renal clear cell carcinoma.

After analyzing the expression of these genes in different tumor types, we observed that IGF2BP3, NCAPG, and miR217 demonstrated higher expression in type 2 compared with type 1 KIRP (p < 0.05). The histological characteristics and common mutations were different between type 1 and 2 KIRP. Type 1 KIRP patients have a 5 years survival rate of 95%. In comparison, type 2 papillary RCCs patients are more aggressive, with a 5 years survival rate of 66%. Differing prognoses has prompted the search for a simple, non-invasive means of differentiating type 1 from type 2 KIRP to help guide further management (Young et al., 2017). Differential expression of IGF2BP3, NCAPG, and miR_217 in these two types of KIRP might suggest that these three genes can be used as biomarkers to distinguish the KIRP subtypes, as well as to develop diagnostic methods.

Although this study has some limitations, the findings also provide some direction for future research. The biomarkers identified could be promising therapeutic targets that can lay the groundwork for future experimental research design.



CONCLUSION

This work established the disordered ceRNA network of KIRP and identified that IGF2BP3, PLK1, LINC00200, NCAPG, CENPF, GAS6-AS1, and miR217 might be new and important prognostic factors involved in KIRP pathogenesis. The risk score model we developed is helpful in studying the overall survival outcome in KIRP. Additionally, we proposed that GAS6-AS1 can be used as a competitive endogenous RNA for miR-182 to regulate LRRC4 in kidney cells, and IGF2BP3, NCAPG, and miR217 are associated with various types of renal papillary cell carcinoma, which provides us with efficient strategies for subsequent functional studies.
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The structure and function of chromatin can be regulated through positioning patterns of nucleosomes. DNA-based processes are regulated via nucleosomes. Therefore, it is significant to determine nucleosome positions in DNA-based processes. A deformation energy model was proposed to predict nucleosome positions in our previous study. A free web server based on the model (http://lin-group.cn/server/deform-nu/) was firstly established to estimate the occupancy and rotational positioning of nucleosomes in the study. Then, the performance of the model was verified by several examples. The results indicated that nucleosome positioning relied on the physical properties of DNA, such as deformation energy.
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INTRODUCTION

A nucleosome is a histone-DNA complex, in which the histone octamer is wrapped with a ∼147-bp DNA (Kornberg and Lorch, 1999; Richmond and Davey, 2003). A nucleosome regulates DNA-based processes via influencing the proteins’ access to genomic sequences. Thus, it is significant to accurately predict nucleosome positioning. Due to the uncertainty in experimentally determined nucleosome positions caused from cleavage bias in the micrococcal nuclease digestion of chromatin fiber, the precise prediction of nucleosome positioning is extremely important (Flores et al., 2014). Numerous models for predicting nucleosome positions (De Santis et al., 2010; Teif, 2016) are mainly sequence-dependent models. Sequence-based models roughly include two categories of models (De Santis et al., 2010): bioinformatics models and biophysical models. Both have successful application in predicting nucleosome positions. However, the latter is much more interpretable.

We proposed a deformation energy model and successfully predicted occupancy and rotational positioning of nucleosomes with the model (Liu et al., 2016). Based on the model, we also found that bending energy could be used to predict the free energy in nucleosome reconstitution and revealed various patterns of bending energy profile corresponding to different organized chromatin structures, including well-positioned nucleosomes, linker regions, and fuzzy nucleosomes (Liu et al., 2018). In addition, the nucleosome stability was positively correlated with the strength of the bending anisotropy of DNA segment, and directionality and accessibility of nucleosome sliding might be regulated via various patterns of DNA bending energy profile (Liu et al., 2018). In another study, with a machine-learning model, we confirmed that the physical parameters used in the deformation energy model could successfully differentiate nucleosome-enriched regions from nucleosome-depleted regions (Liu et al., 2019). Here, we presented a web server for the deformation energy-based model.



DEFORMATION ENERGY MODEL

We gave a brief introduction to the deformation energy-based model (Liu et al., 2016). Two forms of global deformation of nucleosomal DNA (bending and shear) were considered in the study. We used a 129-bp window in deformation energy calculation for a DNA sequence. In the description of DNA geometry with six degrees of freedom (roll, tilt, twist, shift, slide, and rise) (Dickerson, 1989), elastic energies corresponding to DNA bending and shear are, respectively, formulated as follows:
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where ρ0 (i), τ0 (i), sh0, and sl0 are equilibrium parameters estimated from crystal structures of DNA-protein complexes; ρ(i),τ(i),sh(i), and sl(i) are parameters estimated with two structural constraints (e.g., global curvature and pitch) derived from crystal structures of nucleosomal DNA (Richmond and Davey, 2003); kρ (i), kτ (i), ksh (i), and ksl(i) are dinucleotide-dependent force constants estimated with the structures of protein-DNA complexes by inverting the covariance matrix of the six degrees of freedom. The unit of deformation energy is kT, where k is Boltzmann constant and T is effective temperature. After the deformation energy is divided by 128, the number of base-pair steps of the sequence segment, average deformation energy per base-pair step is obtained, whose unit is kT/bps, where bps denotes base-pair step.

After the DNA deformation energy is obtained, the probability that a nucleosome dyad is at a site along underlying DNA can be estimated with a grand canonical model (Morozov et al., 2009; Liu et al., 2016), and nucleosome occupancy at a site is the summation of the dyad probabilities of possible nucleosomes covering the site. Nucleosome rotational positioning is predicted with bending energy, whereas the nucleosome occupancy is estimated with shearing energy. Generally, a local minimum of bending energy implicates a high nucleosome dyad probability and the rotational positioning of a nucleosome. In other words, in a nucleosome, the major groove side of DNA at the position with a local deformation energy minimum preferentially faces the histone octamer.

The model differs from previously published models from other groups in the following two aspects: (Richmond and Davey, 2003) global structural constraints (curvature and pitch of the nucleosome super-helix measured from crystal structure) rather than a template nucleosome structure were used in deformation energy calculation; and (Kornberg and Lorch, 1999) because the bending of DNA around histone is largely contributed from roll and tilt and their strong 10-bp oscillation along the nucleosome DNA enables the accurate estimation of bending energy profile with base-pair resolution, only bending energy term is used to predict nucleosome center or rotational positioning.



IMPLEMENTATION OF THE WEB SERVER

A free web server (see text foot note 1) was established for our model. Users can obtain DNA deformation energy and nucleosome occupancy after typing or pasting their Fasta formatted sequences in the input box (Figure 1) and clicking the “Submit” button.
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FIGURE 1. A screenshot of the Deform-nu web server interface.


Some points of the web server are described below. Firstly, in the reported output for submitted sequences, 147 calculated values of nucleosome occupancy for each end of the sequences are unreliable due to boundary effect. Secondly, in the server, the prediction is carried out by using a pre-defined 129-bp window with a sliding step of 1 bp along the submitted sequence, and all sequences to be predicted should not be shorter than 129 bp. Thirdly, in each submission, it is required that at most 50 sequences are shorter than 50,000 bp. Fourthly, the bending energy and the roll component can be used to predict nucleosome rotational positioning, and the shearing energy is used to calculate nucleosome occupancy. For more details of the web server, see the web server page (see text foot note 1).



APPLICATIONS

The web server presented here has two applications: prediction of nucleosome rotational positioning and nucleosome occupancy. The agreement of the estimated nucleosome occupancy with the in vitro nucleosome map (Kaplan et al., 2009) had been demonstrated (Liu et al., 2016) (R = ∼0.8, p < 0.00001). A nucleosome occupancy landscape estimated for a genomic region is shown along with the experimental nucleosome occupancy, the corresponding bending energy profile, and shearing energy profile in Figure 2. It is evident that our prediction results are highly consistent with an experimental in vitro map. The average variation trend of the shearing energy shows a strong negative correlation with the nucleosome occupancy.
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FIGURE 2. Landscape of estimated nucleosome occupancy, experimental nucleosome occupancy (Kaplan et al., 2009), and corresponding bending energy and shearing energy for a genomic region in budding yeast. The estimated occupancy shows a good agreement with the experimental map. Shearing energy was negatively correlated with the nucleosome occupancy, and the 10-bp oscillated bending energy profile can indicate the rotational positioning of a nucleosome.


After testing the model with 20 nucleosomes assembled in vitro, we achieved a high prediction performance in nucleosome rotational positioning. Bending energy successfully predicted 19 out of 20 nucleosomes with the uncertainty of no more than 2 bp (Supplementary Figure 1). The prediction performance of the model was better than that of W/S model developed by Cui et al. (2014), the state of the art model. The W/S model failed to predict five nucleosome positions (Cui et al., 2014; Liu et al., 2016), whereas our model successfully predicted four of them (Supplementary Figures 1A–C) and only failed to predict one out-phased nucleosome (position 135 on oocyte 5S rDNA, Supplementary Figure 1I). W/S model precisely predicted (with 0-bp prediction error) more nucleosome positions than bending energy (10 vs. 6). After testing the relative importance of roll and tilt components in bending energy, we found that the roll component precisely predicted 10 out of 20 positions (Figure 3 and Supplementary Figure 1), which equals that of W/S model. Furthermore, the prediction error distribution showed that our prediction model based on bending energy and roll component outperformed W/S model (Figure 3A). Comparing with in vivo nucleosome map (Brogaard et al., 2012), we successfully predicted the rotational positioning of ∼77% nucleosomes with the uncertainty of no more than 2 bp, which was better than W/S model (∼70%, Figure 3B). In other words, the rotational positioning of ∼23% nucleosomes in yeasts was not successfully predicted. However, as discussed previously (Liu et al., 2018), it is also possible that at least part of the unsuccessfully predicted nucleosomes might adopt a non-canonical positioning mode in vivo in which the major groove side at the dyad position does not face the histones.
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FIGURE 3. Error distribution for the prediction models. (A) Test results of 20 nucleosomes assembled in vitro (Cui et al., 2014); (B) test results of the in vivo map with base-pair resolution (Brogaard et al., 2012). Similar to Cui et al. (2014), the abscissa denotes the prediction error measured by the distance between the experimental nucleosome position and the predicted position with the lowest deformation energy in the interval [-5, +5] around the real nucleosome position. The ordinate denotes the percentage of the error class in the total predicted nucleosome positions.


We also tested our model on mouse nucleosomes (Voong et al., 2016), and found that both our model and Cui’s model (W/S model) are able to indicate the rotational positioning of nucleosomes in mouse embryonic stem cells (Figures 4A,B), and our model is better than Cui’s model in prediction accuracy (Figure 4C).
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FIGURE 4. Prediction of nucleosome dyad positions (or rotational positioning) in mouse embryonic stem cells. Non-overlapping nucleosomes with NCP score >2 were analyzed (Voong et al., 2016). (A) Local bending energy minima coincide with the experimentally identified nucleosome dyad positions (Voong et al., 2016); (B) prediction based on W/S model (Cui et al., 2014); (C) comparison of prediction performance between the two models.


Furthermore, local bending energy minima coincide with the experimentally identified nucleosome dyad positions around gene upstream nucleosome-depleted regions (NDRs) (Figure 5; Chereji et al., 2018), which differ by multiples of the helical turn and have the same rotational setting. The result further demonstrated the performance of the model in predicting rotational positioning of nucleosomes. The number of experimentally determined dyad signals around dominant +1/-1 nucleosomes was smaller than the number of local bending energy minima observed around the nucleosomes (Figure 5), implicating that although DNA sequence determined the rotational positioning of nucleosome, it was not enough to determine the distribution probability of nucleosomes along the sequence. In addition, we found that although the genomic regions enriched with MNase-sensitive nucleosomes and MNase-sensitive non-histone particles in budding yeast (Chereji et al., 2017) had lower predicted nucleosome occupancy, the regions underlying MNase-sensitive non-histone particles which were located preferentially at promoters were more likely to be occupied by nucleosomes than MNase-sensitive nucleosome regions (Figure 6A). Surprisingly, MNase-sensitive nucleosome regions preferentially located at Transcription Termination Site (TTS) had stronger bending energy oscillation amplitude than MNase-sensitive non-nucleosome molecules (Figure 6B), suggesting that MNase-sensitive nucleosomes had a stronger rotationally locking signal encoded in the DNA sequence. This might be useful in understanding the dynamics and functions of the two kinds of MNase-sensitive complexes.
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FIGURE 5. Local bending energy minima coincide with the experimentally identified nucleosome positions around NDRs (Chereji et al., 2018), which differ by multiples of the helical turn and have the same rotational setting.
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FIGURE 6. MNase-sensitive nucleosomes have lower predicted nucleosome occupancy than MNase-sensitive non-histone molecules (A) but are rotationally more locked than the latter (B). Genomic positions of MNase-sensitive particles were provided by the author of the literature (Chereji et al., 2017).


DNA N6-adenine methylation (6 mA) has recently been described in diverse eukaryotes and plays roles in gene regulation and chromatin organization (Beh et al., 2019). Because of its special site on the DNA base pair, it is conceivable that 6 mA is likely to affect DNA bending and rotational positioning of nucleosomes. Therefore, whether the association between 6 mA and nucleosome rotational positioning can be studied by using our deformation energy model awaits further investigation. In addition, it has been reported that RNAP II pausing signal is stronger at highly phased and highly occupied nucleosomes in mouse embryonic stem cells (Voong et al., 2016), and whether RNAP II pausing also depends on DNA deformation energy profile needs further study. Cancer-related nucleosome alteration (Arimura et al., 2018) is also a possible area where deformation energy modeling may be helpful.

In summary, shearing energy can be used to estimate nucleosome occupancy. The bending energy and its roll component largely guide the rotational positioning of nucleosome: the major groove side of the DNA located at the local energy minima separated with multiples of 10 bp faces the histones. The energy minima also indicated possible dyad positions of the nucleosome. The web server developed here could assist users to infer nucleosome rotational positioning and nucleosome occupancy.
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Carcinoma diagnosis and prognosis are still hindered by the lack of effective prediction model and integration methodology. We proposed a novel feature selection with orthogonal regression (FSOR) method to resolve predictor selection and performance optimization. Functional enrichment and clinical outcome analyses with multi-omics information validated the method's robustness in the early-stage prognosis of lung adenocarcinoma. Furthermore, compared with the classic least absolute shrinkage and selection operator (LASSO) regression method [the averaged 1- to 4-years predictive area under the receiver operating characteristic curve (AUC) measure, 0.6998], the proposed one outperforms more accurately by 0.7208 with fewer predictors, particularly its averaged 1- to 3-years AUC reaches 0.723, vs. classic 0.6917 on The Cancer Genome Atlas (TCGA). In sum, the proposed method can deliver better prediction performance for early-stage prognosis and improve therapy strategy but with less predictor consideration and computation burden. The self-composed running scripts, together with the processed results, are available at https://github.com/gladex/PM-FSOR.
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INTRODUCTION

Lung adenocarcinoma (LUAD), an important subtype in lung carcinoma (Chen et al., 2020), is one of the most malignant and widely spread cancers in the world (Jemal et al., 2011), with its incidence increased considerably in recent years (Xu et al., 2020). SEER Cancer Statistics Review suggests that the survival rate of LUAD is extremely low; specifically, the 1-year survival rate is lower than 50%, and the 5-years survival rate is around 18% (Siegel et al., 2020).

In the last decades, high-throughput sequencing technologies in cancer genomics and epigenomics have created ever greatest possibilities to improve clinical diagnosis and prognosis (Gao et al., 2018; Li S. et al., 2018). Recently, Li T. et al. (2018) constructed a protein–protein interaction (PPI) network with differentially expressed genes (DEGs) to determine hub genes. Wang et al. (2020) combined independent-sample and paired-sample experiments to determine prognostic markers in LUAD. Guo et al. (2019) integrated PPI network and enrichment analysis to screen functional DEGs.

However, due to the relatively small sample size and different profiling platforms utilized, the analysis results in those studies may not be invariably consistent. The meta-analysis has been demonstrated as a feasible approach to integrate and explore such multi-source information. Silva et al. (2019) performed a meta-analysis of transcriptomics to investigate Schwann cell reprogramming and lung cancer progression. Selvaraj et al. (2018) conducted meta-analysis on three LUAD gene profiling datasets and identified target genes related to poor overall prognosis.

Besides, survival prediction from high-dimensional gene profiling and clinical information poses challenges in cancer studies (Tang et al., 2019), the key of which is the collinearity in high-dimensional profiling data. Thus, several feature selection methods were developed and utilized so far. Tibshirani (1997) proposed a penalized least absolute shrinkage and selection operator (LASSO) regression method in a Cox model, which is already a classic method of constructing survival models for high-dimensional data in the past decades. Simon et al. (2013) proposed a sparse group LASSO. Mittal et al. (2013) applied regularized parametric regression in survival analysis. In most methods, least-square regression was adopted to classify the correlation between feature and prediction. Recently Zhang et al. (2018) retained more statistical and structural information by restricting least-square regression into orthogonal regression. Then Wu et al. proposed a feature selection method with orthogonal regression and applied it to the image feature extraction.

Here, we carried out a meta-analysis to identify potential biomarkers of survival-related genes in LUAD. Based on the four LUAD gene profiling datasets retrieved from Gene Expression Omnibus (GEO), a total of 1,208 up-regulated DEGs were identified. The method based on feature selection with orthogonal regression (FSOR) was proposed to rank all feature genes with a weighted matrix. PPI network analysis was conducted to further screen genes with molecular function (MF) and mechanism. The gene profiling and clinical information from The Cancer Genome Atlas (TCGA) were finally retrieved to construct a prognostic model with a stepwise multivariate Cox regression method. A total of eight hub genes specific to the poor LUAD prognosis were identified in this study. Together, a performance comparison between the proposed FSOR and classic LASSO methods was deployed in feature selection.



MATERIALS AND METHODS


A Novel Approach Proposed for Meta-Analysis and Model Construction

To systematically determine prognostic signatures in LUAD, we firstly conducted a meta-analysis based on gene expression profiling data to identify candidate DEGs before further integrating with clinical information.

Generally, the pipeline contains four major procedures as illustrated in Figure 1, ranging from pre-processing raw GEO data to constructing an orthogonal regression-based prognosis model and its performance validation. Namely, Step 1 retrieved the four GEO expression profiling datasets and filtered out candidate DEGs with the preset Combined Effective Size (CombinedES) and false discovery rate (FDR); Step 2 proposed the method to filter candidate gene predictors based on FSOR; in Step 3, functional pathway and network analysis eventually identified 32 candidate predictors for the prognosis model. Step 4 involved univariate and multivariate Cox regression, and further performance comparison with classic LASSO was also implemented based on predicted survival rate and its corresponding area under the receiver operating characteristic (ROC) curve (AUC) measure. The statistical comparison validated the effectiveness of the proposed method.


[image: Figure 1]
FIGURE 1. The flowchart to screen candidate genes and construct a prognostic model based on the proposed feature selection with orthogonal regression (FSOR) approach. It ranges from retrieving Gene Expression Omnibus (GEO) profiling information, gene filtering, proposing the FSOR method in predictor selection, and univariate and multivariate Cox regression to performance validation via survival prediction and receiver operating characteristic (ROC) measures.


We used NetworkAnalyst (Zhou et al., 2019) to find DEGs through combined effect size model. To further screen these genes, we utilized and PPI network to examine the DEGs on the underlying association among gene expression, clinical information, and molecular mechanism.

A total of 32 up-regulated DEGs were screened as candidate genes to construct the prognostic model. With gene expression and clinical data from TCGA (Weinstein et al., 2013), we further performed a multivariate Cox regression on the candidate genes, and we finally confirm eight gene predictors to construct the prognostic model, together with the corresponding risk score information.



Data Source

The gene expression profiles for LUAD were downloaded from GEO. We searched the profiling data using the combined strategy, such as “LUAD” and “lung adenocarcinoma” [key words], “homo sapiens” [organism], and “expression profiling by array” [study type]. A total of four LUAD expression profiles (GSE32036, GSE32867, GSE33532, and GSE75037) were retrieved from GEO. And the corresponding accession number, platform, and sample information are listed in Table 1.


Table 1. Summary information of the GEO datasets in the analysis.

[image: Table 1]



Adjustment of Batch Effect and Identification of Differentially Expressed Genes

Raw GEO data retrieved were preprocessed with grouping samples and annotating probe IDs, according to the clinical information and platform information. The web-tool NetworkAnalyst was utilized to remove the batch effect and identify the DEGs between normal and tumor samples. Expression level in each dataset was normalized by the log2 transformation.

Due to the raw datasets from different profiling platforms, the underlying batch effect was initially removed, and then the datasets were calculated for the combined effect sizes (CombinedES). Effect size represents the difference between group means divided by standard deviation, considered as combinable and comparable across different studies. We chose a random effects model (REM) to calculate the CombinedES of each annotated gene. In REM, each study contains a random effect that can incorporate alien cross-study heterogeneity caused by diverse platforms. With the FDR set at 0.05 and the cutoff at |CombinedES| > 1.0, 2,320 DEGs were filtered, specifically, 1,208 up-regulated DEGs with CombinedES > 1.0 and 1,112 down-regulated DEGs with CombinedES < −1.0. Figure 2 depicts the principal component analysis (PCA) on the combined samples from the four LUAD studies.


[image: Figure 2]
FIGURE 2. Principal component analysis (PCA) result for the combined samples of the four lung adenocarcinoma (LUAD) studies from Gene Expression Omnibus (GEO), which explicitly brought out emphasized variation and separation pattern between tumor and normal samples.




Supervised Feature Selection With Orthogonal Regression

To determine survival predictors from the up-regulated DEGs, we proposed a novel orthogonal regression method for feature extraction, different from classic least-square-based linear regression approaches.

To measure the feature's importance level, a weighted projection matrix was introduced to the orthogonal regression method. Thus, features can be ranked according to the respective weights by minimizing the below regression equation:

[image: image]

where W ∈ Rd×k denotes an orthogonal projection matrix, namely, [image: image], Φ ∈ Rd×d a weighted diagonal matrix with ϕ in the diagonal, X ∈ Rd×n the input matrix, b ∈ Rk×1 the bias vector, 1n=[1,1,...,1]T ∈ Rn×1, Y ∈ Rk×n the label matrix, and ||·||F the Frobenius norm of a matrix, defined as [image: image]; and d, n, and k represent the counts of features, samples, and labels categories, respectively.

In this study, the log2-transformed expression data for a total of 1,060 up-regulated genes across 479 samples were utilized as the input matrix X; and one-hot encoding of clinical survival status, together with survival time information, was combined into the label matrix Y. For the limit solution, the partial derivative of Equation (1) concerning b is as follows:

[image: image]

and then [image: image], and Equation (1) can be reformatted as

[image: image]

where [image: image]. Thus, we approximate this optimization problem by tuning two parameters separately. When Φ is fixed, we can update W by the following:

[image: image]

where C = ΦXMXTΦT and D = ΦXMYT.

Equation (4) is referred to a quadratic problem on the Stiefel manifold. Nie et al. (2017) proposed a novel generalized power iteration (GPI) method for solving this problem (see Supplementary Material); thus, it can be reformatted as

[image: image]

where [image: image], and α is a relaxation parameter to guarantee [image: image] positive definite. We set α as the dominant eigenvalue of C.

When W fixed, Φ is updated as below:

[image: image]

Following the diagonal matrix lemma, there exists Tr(ABAC) = aT(BT ° C)a for a diagonal A, where α denotes the leading diagonal vector in A, BT ° C the Hadamard product of two matrixes. Thus, Equation (6) can be reformed as

[image: image]

where H = (XMTXT) ° (WWT) and r = diag(2XMYTWT).

The constrained minimization problem can be solved by an augmented Lagrangian multiplier (ALM) method (Hu et al., 2019); see Supplementary Material. The ALM function for Equation (7) is

[image: image]

where ν and λ1 are column vectors, and μ and λ2 are variables of the Lagrangian function.

When ν fixed, Equation (7) is converted as

[image: image]

where and g = μv + μ1d − λ21d − λ1 + r. And ϕ is estimated as [image: image].

When ϕ fixed, Equation (7) can be reformulated as

[image: image]

Then, ν is estimated as

[image: image]

By combining the two methods, we can get the optimal solution for the orthogonal projection matrix W ∈ Rd×k and the weighted diagonal matrix Φ ∈ Rd×d. The pseudocode for solving the optimization problem in Equation (4) is depicted as below,

[image: image]

The features with higher weights will be filtered out through sorting the obtained ϕ. Thus, the number of screened features can be further customized to facilitate subsequent analysis.



Functional Evaluation via Protein–Protein Interaction Network

To evaluate the underlying biological function, PPIs among the FSOR-filtered genes were further predicted with STRING (Szklarczyk et al., 2018). We chose gene nodes with at least one edge connected in the PPI network as candidates for further analysis. Connectivity within the PPI network nodes is adopted to evaluate the underlying function and further screen for prognostic genes (Li S. et al., 2018). In this study, cytoHubba in Cytoscape is utilized to detect nodes with a high degree, namely, central nodes in a PPI network, where maximal clique centrality (MCC) is adopted to rank the identified central nodes.



Multivariate Cox Regression and Prognostic Model Construction

We adopted the survival package to construct a multivariate Cox regression model. The covariate count in the model was optimized by stepwise regression, and specifically, the Bayesian information criterion (BIC) was chosen to refine the covariate combination.

A total of eight candidate genes were finally screened as predictors to construct the prognostic model, where risks of a specific endpoint from the predictors can be calculated for an individual patient.

Furthermore, to explore the relationship between candidate gene predictors and clinical survival information in LUAD, a risk score function h(t) is introduced with multiple covariates from the Cox regression prognostic model, depicted as

[image: image]

where h(t) denotes a risk score of mortality at time t, h0(t) the base value of risk score, βm the coefficient of gene m, and exprm the expression data of gene m. Based on risk score, samples are to segmented into two or more groups, namely, the high-risk group and low-risk group, etc. The risk score of the derived prognostic model can be depicted as;

[image: image]




RESULTS


Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Analysis of Differentially Expressed Genes

We performed the Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses on the identified DEGs, including biological process (BP), MF, and cellular component (CC). The BP analysis showed that the DEGs were enriched in chromosome segregation, nuclear division, organelle fission, and sister chromatid segregation. The CC analysis showed that the DEGs were enriched in chromosomal region, chromosome, centromeric region, condensed chromosome, and kinetochore. The MF analysis showed that the DEGs were enriched in catalytic activity, ATPase activity, and chromatin binding, as listed in Figure 3.


[image: Figure 3]
FIGURE 3. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. (A) The biological process (BP); (B) the molecular function (MF); (C) the cellular component (CC) terms; (D) the enrichment of the KEGG pathways.


Furthermore, in Figure 3D, the KEGG pathway analysis showed that DEGs were enriched in such procedures as cell cycle, DNA replication, oocyte meiosis, and progesterone-mediated oocyte maturation, closely related to carcinoma development.

Table 2 lists the detailed information for the top four items in each category, filtered from the GO and KEGG enrichment analyses results for the DEGs in LUAD.


Table 2. Result of GO and KEGG enrichment analyses.

[image: Table 2]



Identifying the Candidate Genes With Both Feature Selection With Orthogonal Regression and Protein–Protein Interaction Approaches

We performed the FSOR analysis to weight features on all 1,208 up-regulated genes across 479 LUAD samples from TCGA, with the convergence condition between two FSOR consecutive iterations set ≤ 0.1.

Figure 4 depicts the detailed FSOR analysis results. The Pearson correlation test was performed on the weight and combined effect size of genes in Figure 4B. LOESS regression was used to fit these points, and the shaded area represents a 95% confidence interval of the regression fitting curve. Figure 4D represents the univariate Cox regression results of top-weighted genes.


[image: Figure 4]
FIGURE 4. The feature selection with orthogonal regression (FSOR) analysis results on the differentially expressed genes (DEGs). (A) The optimization procedure convergences to 13.01 after 477 iterations. (B) Top 50 genes manifesting the statistical concordance between their derived FSOR weights and corresponding Combined Effective Size (CombinedES) values. (C) The derived weight distribution for the top 50 genes. (D) The initial univariate Cox regression on the top 50 DEGs revealed 17 among them that were statistically significant (p-value ≤ 0.05).


Based on the FSOR analysis, the top 50 genes were chosen from its output weighted matrix. To ensure the underlying functional association among the selected genes, PPIs were further predicted with STRING (Szklarczyk et al., 2018), listed in Supplementary Material. From the derived PPI network, we chose the gene nodes with at least one edge connected within the network; thus, a total of 32 genes were identified as candidate genes; see details in Supplementary Material.



Univariate and Multivariate Cox Regression of the Candidate Genes

The validation data for the Cox regression were retrieved from TCGA. In Cox regression modeling, the coxph function in the survival package was adopted to calculate the bias coefficient (β), hazard ratio (HR), and p-value.

The genes with HR ≥ 1 in univariate Cox regression were filtered out for further multivariate Cox regression. With the step function, we optimize the number of covariates based on c-index in the Cox regression model. Thus, eight genes were determined as the candidate predictors in formulating the prognostic model, as depicted in Table 3.


Table 3. Summary of the univariate and multivariate Cox regression.

[image: Table 3]



Cross-Validation by the Protein–Protein Interaction Network and Clique Centrality Analyses

To determine whether there exist the protein-level functional associations among the candidate gene predictors, the PPI network analysis was conducted on 32 candidate genes subsequently. Among them, the eight genes were selected for constructing the prognostic model after univariate and multivariate regression analyses.

Research on prognosis-related genes in recent years usually took the gene connectivity in a PPI network into consideration (Guo and Li, 2019; Li et al., 2020). Here, all up-regulated genes were firstly calculated for their MCC values (Chin et al., 2014), and then the top 100 genes based on the sorted MCC values were defined as central nodes to cross-validate the functional association among these prognostic genes, together with the PPI network. Figure 5 depicts the identified PPI network of 32 candidate genes, marked with central and prognostic genes.


[image: Figure 5]
FIGURE 5. The protein–protein interaction (PPI) network of 32 candidate genes, where eight genes were selected as predictors in the prognostic model. Among them, five genes were defined as central genes by maximal clique centrality (MCC). The node size denotes the fold-change level of each differentially expressed gene, and the edge width denotes the combined score, a statistical confidence level calculated with STRING (Szklarczyk et al., 2018).


From the cross-validation diagram in Figure 5, it is evident that the identified predictors have a significant concordance in their biological function and network clique centrality property; namely, five out of eight predictors are both prognostic and central genes.



Validation of the Prognostic Model With Clinical Survival Analyses

To determine and validate the statistical association between the risk model predictor and clinical outcome, survival analyses on the identified gene predictors were carried out. Based on survival information from a total of 479 LUAD samples, the risk score was stratified into high and low groups.

The Kaplan–Meier survival estimation with the log-rank test, a typical non-parametric method (Murray and Tsiatis, 1996; Royston et al., 2008), was adopted to predict the survival probability on all corresponding LUAD samples from TCGA.

Furthermore, we validated the eight gene predictors in the prognostic model, and we examined whether these genes were capable of independently predicting prognostic survival. The analysis results are illustrated in Figure 6.


[image: Figure 6]
FIGURE 6. Survival analysis of the prognostic model and gene predictors. (A) On the prognostic model, where the high-risk group marked as red line had a significantly lower survival rate than the low-risk group marked as blue (log-rank test p-value < 0.0001). (B) On the predictor, RACGAP1 (log-rank test p-value = 0.018). (C) On the predictor, ALG3 (log-rank test p-value = 0.00094). (D) On the predictor, CHAF1B (log-rank test p-value = 0.032). (E) On the predictor, KIF20B (log-rank test p-value = 0.026). (F) On the predictor, PLK1 (log-rank test p-value = 0.0026).


From the survival analysis results, the prognostic model was statistically significantly correlated with the clinical outcomes in LUAD (log-rank test p-value < 0.0001); together, 5/8 of the prognostic predictors have statistically significant clinical importance (log-rank test p-values ranging from 0.032 to 0.00094). For the other predictors, due to the p-value > 0.05, the survival analyses are given in Supplementary Material.



Performance Comparison With Classic Least Absolute Shrinkage and Selection Operator Methods

To validate the method efficiency, the proposed FSOR method was compared in feature selection and prediction capability with classic LASSO regression, in terms of the ROC curve and corresponding AUC measure, respectively.

Figure 7 depicts the performance comparison results based on the measure AUC by FSOR-Cox and LASSO-Cox methods.


[image: Figure 7]
FIGURE 7. Performance comparison on risk score survival analysis with the feature selection with orthogonal regression (FSOR) and classic least absolute shrinkage and selection operator (LASSO)–Cox regression models. (A) Comparative receiver operating characteristic (ROC) for the 1-year term. (B) Comparative ROC for the 2-years term. (C) Comparative ROC for the 3-years term. (D) Comparative ROC for the 4-years term.


From the above comparisons on the averaged 1- to 4-years AUC measure, we found that the proposed FSOR outperforms the classic LASSO methods, namely, 0.7208 vs. 0.6998. Specifically, for the 1- to 3-years AUC measure, it has significant advantages over the classic ones in the enhanced prediction performance, indicating that the former has a certain potential in the early-stage prognosis application.




DISCUSSION AND CONCLUSION

Till now, carcinoma diagnosis and prognosis are facing substantial difficulties in acquiring effective clinical model and enhanced prediction performance. To address the key problem in feature screening and to improve the prognostic model performance, we proposed a novel FSOR method in this study.

The method is primarily to solve a constrained minimization problem by an ALM approach and, thus, to optimize feature selection and LASSO regression from gene profiling data.

Together with integrative analyses on the biological function (PPI) and physical network property, it revealed that the identified candidate predictors had a significant concordance in their biological function and network clique centrality property, partially proving the reliability of the candidate predictors.

Furthermore, clinical outcome prediction and robustness evaluation were conducted on the constructed prognostic model and individual gene predictor, respectively. The results on multi-omics data of LUAD demonstrated the proposed FSOR method outperformed more accurately by 0.7208 with fewer predictors than classic LASSO regression models (the averaged 1- to 4-years predictive AUC measure, 0.6998, on TCGA clinical data). Particularly, its averaged 1- to 3-years AUC reaches 0.723, vs. classic 0.6917.

From the ROC curve distribution, it is obvious that the prediction performance of the proposed FSOR prognostic model is significantly higher than that of classic LASSO approaches; from the clinical outcome perspective, the results validated the feasibility of the FSOR method to screen candidate predictors with better prognostic performance.

For clinical research and application, the proposed FSOR is easily utilized and adopted due to its consolidated methodology and open-sourced scripts. We thoroughly tested and validated on the real experiment and cohort data sources from GEO and TCGA. Furthermore, to a broader perspective, the proposed method has the potential scalability to other cancer and disease types.

In conclusion, the proposed FSOR method can deliver better prediction performance for the early-stage prognosis and has the potential to improve therapy strategy, but with few predictor consideration and computation burden. The future work should focus on integrating multi-omics and multi-scale profiling information (Tang et al., 2017), together with proposing novel analytical approaches (Liu et al., 2020; Qi et al., 2020), thus to optimize therapy targets and boost precision medicine.
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Aim: To develop and validate a CpG-based classifier for preoperative discrimination of early and advanced-late stage colorectal cancer (CRC).

Methods: We identified an epigenetic signature based on methylation status of multiple CpG sites (CpGs) from 372 subjects in The Cancer Genome Atlas (TCGA) CRC cohort, and an external cohort (GSE48684) with 64 subjects by LASSO regression algorithm. A classifier derived from the methylation signature was used to establish a multivariable logistic regression model to predict the advanced-late stage of CRC. A nomogram was further developed by incorporating the classifier and some independent clinical risk factors, and its performance was evaluated by discrimination and calibration analysis. The prognostic value of the classifier was determined by survival analysis. Furthermore, the diagnostic performance of several CpGs in the methylation signature was evaluated.

Results: The eight-CpG-based methylation signature discriminated early stage from advanced-late stage CRC, with a satisfactory AUC of more than 0.700 in both the training and validation sets. This methylation classifier was identified as an independent predictor for CRC staging. The nomogram showed favorable predictive power for preoperative staging, and the C-index reached 0.817 (95% CI: 0.753–0.881) and 0.817 (95% CI: 0.721–0.913) in another training set and validation set respectively, with good calibration. The patients stratified in the high-risk group by the methylation classifier had significantly worse survival outcome than those in the low-risk group. Combination diagnosis utilizing only four of the eight specific CpGs performed well, even in CRC patients with low CEA level or at early stage.

Conclusions: Our classifier is a valuable predictive indicator that can supplement established methods for more accurate preoperative staging and also provides prognostic information for CRC patients. Besides, the combination of multiple CpGs has a high value in the diagnosis of CRC.

Keywords: DNA methylation, CpG site, colorectal cancer, stage, classifier


INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignancies, and ranks third in terms of both incidence and mortality rates. Around 1,47,950 new cases and 53,200 CRC-related deaths are projected for 2020 in the United States alone (Siegel et al., 2020). The incidence of CRC has increased by 38% between 2007 and 2017 (Global Burden of Disease Cancer Collaboration et al., 2019), and is therefore a critical public health concern.

Tumor node metastases (TNM) staging is currently the “gold standard” for tumor classification, and accurate diagnosis of the tumor stage provides valuable prognostic information for guiding treatment decisions (De Rosa et al., 2016). 5-year relative survival for CRC patients was 90⋅1% with localized stage, while it fell to 69⋅2% in patients with regional spread and to 11⋅7% in patients with distant metastasis (Brenner et al., 2014). For colon cancer and upper rectal cancer (defined as tumors arising above 10 cm of the anal verge), radical resection is the most common treatment for patients with stage I or those stage II without high-risk relapse. Preoperative lymph node status assessment and prediction contain instructive information for the surgical extent between stage I/II and stage III cases (lymph-node positive) (Hashiguchi et al., 2020). Postoperative adjuvant chemotherapy is recommended for all stage III CRC without contraindications after curative resection (Brenner et al., 2014). Except for adjuvant chemotherapy, preoperative neoadjuvant therapy, surgical resection and targeted therapies should be taken into consideration according to multidisciplinary team decisions for stage IV CRC (Diagnosis And Treatment Guidelines For Colorectal Cancer Working Group Csococ, 2019). Currently, computed tomography (CT) and magnetic resonance imaging (MRI) are commonly used for the preoperative assessment of CRC stages, although such imaging modalities have low accuracy due to some potential limitations (Tezcan et al., 2013; Kijima et al., 2014). Pathological stage is generally conducted after radical surgical resection rather than by preoperative biopsy. However, incomplete resection of tumor tissues or nodes missed by the surgeon may result in inaccurate pathological stage diagnosis (Mekenkamp et al., 2009). Therefore, it is essential to develop a reliable and efficient tool for preoperative CRC staging in order to devise the optimum personalized therapeutic strategy (De Rosa et al., 2016).

DNA methylation is an epigenetic modification that may regulate gene expression by altering the spatial conformation of DNA, and therefore controls a wide range of biological processes. Furthermore, studies increasingly show a close association between abnormal DNA methylation and pathological conditions, especially cancers (Portela and Esteller, 2010). Thus, aberrantly methylated CpGs are promising biomarkers for early diagnosis, molecular classification and prognosis in multiple cancers (Kaur et al., 2019). Previous studies mainly focused on identifying differentially methylated CpG sites with diagnostic and prognostic relevance in CRC. To the best of our knowledge, no study has investigated the predictive ability of preoperative staging using the methylation profiles of primary CRC samples. The aim of this study was to develop and validate a novel methylation classifier coupled with clinical features for preoperative classification of early stage and advanced-late stage in CRC patients.



MATERIALS AND METHODS


Data Collection and Preprocessing

The methylation array data of 443 samples from TCGA Colon and Rectal Cancer cohort (TCGA cohort) was downloaded by UCSC Cancer Browser1. In addition, the genomic methylation microarray dataset GSE48684 including 105 samples was downloaded from Gene Expression Omnibus (GEO, 2) (Luo et al., 2014). The clinicopathological characteristics and follow-up information were also extracted for all patients. The criteria for excluding samples were as follows: (a) non-primary tumors, (b) any history of neoadjuvant treatment, (c) unclear pathological stage information, or (d) with more than 5% missing values. In addition, for duplicated samples, only the sample with the highest average methylation levels was retained. Since both datasets had been generated using the Illumina Infinium HumanMethylation450 platform, the microarray probes were mapped onto the human genome coordinates using Illumina official annotation file derived from GEO GPL13534 platform. For each specimen, DNA methylation was quantified in terms of beta values for 485,577 individual CpGs. The CpGs probes i) with beta values undetectable in more than 5% of the specimens, ii) corresponding to cross-reactive probes in human reference genome (hg19) (Price et al., 2013) or single-nucleotide polymorphisms (SNPs) (Zhou et al., 2017), or iii) located on sex chromosomes (Chen et al., 2013), iv) or beta values with low variation among samples (the median absolute deviation < 25%) (Wang et al., 2012; Czamara et al., 2019) were removed from the analysis. The k-nearest neighbor (KNN) imputation algorithm implanted in the “DMwR” R package was used to estimate beta values of the other unidentified probes (Zhang et al., 2018). All methylation data were normalized, and then correction for batch effects was performed using “ComBat” function in R “sva” package before further analysis (Leek et al., 2012). The overall strategy was outlined in Figure 1.
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FIGURE 1. Flow chart showing the steps involved in systematical analysis.




Candidate CpGs Screening

The methylation status of each CpG site in each sample was defined according to beta values, labeled as low methylation (beta value ≤ 0.2), intermediate methylation (0.2 < beta value < 0.6) and high methylation (beta value ≥ 0.6) (Novakovic et al., 2011; Yang et al., 2016). And then, those CpGs with three categories of methylation statuses simultaneously in all CRC samples were retained. Subsequently, all CRC cases with definite TNM stage information were then categorized into the early stage (stage I and stage II) and advanced-late stage (stage III and stage IV) groups in both cohorts. Finally, the predictive value of each CpG site methylation status for advanced-late stage CRC was determined by univariable logistic regression analysis, and those with both P values (for intermediate methylation versus low methylation; for high methylation versus low methylation) < 0.1 were retained.



Features Selection and Methylation Signature Building

The TCGA CRC cohort was split into training set I and test set I in a 70/30 ratio, and the patients from GEO cohort (validation set I) were used for external validation. The most significant predictive CpGs were screened from the training set I using the least absolute shrinkage and selection operator method (LASSO) logistic regression algorithm (Friedman et al., 2010), and the candidate CpGs with penalty parameter tuning were selected by 10-fold cross-validation using the “glmnet” R package. The features with non-zero coefficients were identified based on the optimal lambda value, and considered the most significant predictive variables for further modeling. The methylation signature was developed on the basis of a methylation score that was calculated for each sample through a linear combination of selected CpGs weighted by their respective coefficients. The discriminating ability of the methylation signature was evaluated by plotting the receiver operation characteristic (ROC) curves in three cohorts. The areas under ROC (AUC) were calculated and their confidence intervals (CI) were estimated using bootstrap resampling method. Finally, the areas under the ROC curves in test set I and validation set I were compared by the bootstrap test.



Construction and Validation for an Individualized Nomogram

An optimal methylation signature score cutoff was identified by the maximum Youden index based on the ROC curve, and a multiple-CpG-based classifier was constructed. The CRC cases in TCGA cohort were then categorized into the low- and high-risk groups according to the classifier. The samples with incomplete clinical information, including age, gender, personal history of polyps, preoperative carcinoembryonic antigen (CEA) and tumor location, etc. were further eliminated from TCGA cohort. Univariable regression analyses were initially performed to determine clinical risk factors associated with advanced-late stage in the remaining samples. Then, clinical factors with p ≤ 0.1 on univariable analyses along with the methylation classifier were tested in multivariable analyses in order to identify independent predictors of staging. Subsequently, we randomly divided the remaining cases into training set II and validation set II in a 70/30 ratio. A multivariable logistic regression model was constructed using those independent risk factors identified by multivariable analysis in training set II. Accordingly, a clinical epigenetic nomogram incorporating these predictors was then constructed based on this model.

The predictive performance of the nomogram was evaluated with respect to discrimination and calibration. Discrimination was evaluated with the area under the ROC curve in training set II and its confidence intervals were estimated employing bootstrap resampling method. Calibration curves were plotted with the Hosmer-Lemeshow goodness-of-fit test to assess calibration. For nomogram validation, we used 1,000 resampled bootstrapping method to relatively correct AUC in the development set. In validation set II, the nomogram was also validated by using AUC and calibration curve.



Prognostic Values of the Classifier and Diagnostic Values of Multiple CpGs

Survival analysis was conducted on TGCA cohort after excluding cases with incomplete follow-up data or survival duration shorter than 30 days. Kaplan-Meier curves for overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI) were plotted for the risk subgroups, and compared with the log-rank test. In addition, the Mann-Whitney U test was used to analyze differences in the methylation levels of the above selected CpGs and the false discovery rate (FDR) was calculated to adjust the P values of each CpG site (Huang et al., 2017; Guo et al., 2018). To fully exploit the methylation status of those CpGs, a diagnostic model was constructed using LASSO logistic regression algorithm to distinguish tumors from normal tissues in a random 70% of samples selected from TCGA cohort (training set III), the performance of the model was estimated in the remaining 30% (test set III) and then externally validated using GEO cohort. Finally, ROC curve was applied to examine the diagnostic capability of the model in the cases with low CEA levels or at early tumor stage.



Statistical Analysis

All statistical analyses were conducted using R software (version3.6.3; 3). Mann-Whitney U test was performed to compare beta values of the CpGs between CRC and normal controls. The Chi-square test or Fisher exact probability test was used for comparing categorical variables. The “glmnet” package was used for LASSO logistic regression analysis (Friedman et al., 2010), the “rms” package for logistic regression analysis and nomogram calibration, the “regplot” package for nomogram plots, and the “pROC” package for ROC plots (Robin et al., 2011). A two-sided P value less than 0.05 was considered statistically significant.



RESULTS


Candidate Sites

A total of 372 CRC samples with well-defined pathological stages and 45 normal samples from TCGA cohort, and 64 CRC specimens with detailed stage information and 41 controls from the GEO cohort were included after applying the exclusion criteria. The TGCA CRC samples were randomly divided into the training set I (n = 260) and test set I (n = 112), and the GEO CRC cases were used as the validation set I (n = 64) as detailed in the methods. Furthermore, 192,366 CpGs were extracted from the DNA methylation dataset of TCGA COADREAD based on the screening criteria, of which 80,691 CpGs with three categories of methylation statuses in all CRC samples were examined in univariable logistic regression. Then, according to the previously described the criteria of P values (see “Materials and Methods”), 1590 CpGs remained strongly associated with the advanced-late stage.



Methylation Signature Construction and Validation

After the initial screening of 1590 CpGs by LASSO logistic regression algorithm in the training set I, the optimal tuning parameter value of 0.1013 with log (λ) of −2.290 based on the 1 standard error of the minimum criteria (the 1-SE criteria) was selected using 10-fold cross-validation (Figure 2A). Accordingly, eight CpGs were identified as the most significantly correlated with CRC staging (Figure 2B), and the methylation score was calculated for each case as follows: (0.0104 × cg19922435 methylation status) − (0.0845 × cg10368049 methylation status) − (0.0901 × cg14931884 methylation status) − (0.0032 × cg23023937 methylation status) + (0.0841 × cg05817709 methylation status) − (0.0834 × cg27284627 methylation status) + (0.1529 × cg03124318 methylation status) + (0.0056 × cg19330334 methylation status). The annotations for these CpGs are shown in Supplementary Table S1. A methylation signature was then developed using the individual methylation scores, and its respective AUC values for the training set I, test set I and validation set I were 0.788 (95% CI: 0.733-0.844), 0.730 (95% CI: 0.630-0.830) and 0.702 (95% CI: 0.553-0.850). The bootstrap test further indicated similar discrimination performance of methylation signature between training set I and test set I (P = 0.308; Figure 2C). The clinical and pathological information are summarized in Supplementary Table S2.
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FIGURE 2. (A) Selection of tuning parameter (λ) in the LASSO model used 10-fold cross-validation in training set I by the 1 standard error of the minimum criteria (the 1-SE criteria). The AUC curve was plotted vs. log(λ). Dotted vertical lines were drawn at the optimal values using the minimum criteria and the 1-SE criteria. A λ value of 0.1013 with log (λ) of –2.290 was chosen. (B) LASSO coefficient profiles of the 1,590 CpGs. A coefficient profile plot was produced against the log (λ) sequence. (C) ROC curves showing discrimination ability of the methylation signature in training set I, test set I and validation set I.




A Clinical Eepigenetic Nomogram Development and Corresponding Classification Performance

To construct an individualized nomogram, an eight-CpG-based classifier was developed with 0.496 as the optimal cutoff value of the methylation signature score. Next, according to this optimal cutoff value, 372 CRC cases were divided into the low-risk and high-risk groups. After exclusions, leaving 244 cases with essential clinical information for further analyses. Univariable logistic regression analyses identified age, CEA levels and the classifier as the potential risk factors (all P < 0.05). After adjustment for age and CEA levels, multivariable analysis indicated a 3.882-fold higher risk of advanced-late stage CRC in the high-risk compared to the low-risk group (95% CI: 2.510-6.164, P < 0.001, Table 1). In addition, age and CEA levels were also identified as independent factors for CRC staging (both P < 0.05). The 244 patients were randomly further split into training set II and validation set II, which were similar in all aspects (Supplementary Table S3). A multivariable logistic model was then established in training set II using the identified risk factors, and an inclusive nomogram was derived for preoperative staging in CRC patients (Figure 3A). The AUC of the nomogram for stage discrimination was 0.817 (95% CI: 0.753-0.881) in training set II (Figure 3B), which was corrected to 0.818 via bootstrapping validation (95% CI: 0.750-0.879), and 0.817 (95% CI: 0.721- 0.913) in validation set II. The bootstrap test indicated no significant differences between the two sets (P = 0.996). However, a statistically difference was observed for predictive performance between nomogram and methylation signature in 244 samples (P < 0.05; Figure 3B). Furthermore, the calibration curves of the nomogram showed good consistency between predicted and observed probability both in the training and validation cohorts, and the Hosmer-Lemeshow goodness-of-fit test also indicated statistical similarity (P = 0.884 and 0.579, respectively; Figures 3C, 3D). Taken together, the nomogram was fairly accurate in classifying CRC staging.


TABLE 1. Logistic regression analysis of clinical characteristics and methylation classifier.
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FIGURE 3. (A) The clinical epigenetic nomogram was developed in the training set II incorporating age, preoperative CEA levels and methylation classifier. (B) ROC curves showing the predictive performance of the nomogram in training set II and validation set II. Calibration curves of the nomogram with Hosmer-Lemeshow test in training set II (C) and validation set II (D). The x-axis represents the predicted and y-axis the actual probability of late stage. The yellow solid line represents the performance of the nomogram, of which a closer fit to the dashed diagonal blue line indicates ideal prediction.




Additional Diagnostic and Prognostic Values

Furthermore, Violin plots for both TCGA (45 normal and 372 tumor samples, Figure 4A) and GEO (41 normal and 64 tumor samples, Figure 4B) datasets indicated that four of the CpGs signature had higher methylation levels (FDR-adjusted P < 0.01), while cg05817709, cg14931884, cg19922435 and cg27284627 had lower methylation levels in CRC compared to the normal samples (FDR-adjusted P < 0.001). To improve the stability and performance of diagnostic model and prevent overfitting, the LASSO logistic regression model was trained on the selected 8 CpGs. As a result, the optimal tuning parameter of 0.0640, with log(λ) = −2.749, obtained by performing 10-fold cross validation via the 1-SE criteria (Figure 4C), we identified another predictive methylation signature of four CpGs (Figure 4D). A diagnostic score for each sample based on individualized methylation status of the four CpGs was calculated as follows: Diagnostic score = (0.5077 × cg23023937methylation status) – (0.6461 × cg05817709methylation status) + (0.6302 × cg03124318methylation status) + (0.3378 × cg19330334 methylation status). The combination of these four sites showed high predictive accuracy for CRC, with a calculated AUC of 0.949 (95% CI: 0.924-0.973), 0.916 (95% CI: 0.864-0.967) and 0.940 (95% CI: 0.917-0.962) in training set III, test set III, and TCGA cohort, respectively (Figure 4E). The AUC of GEO cohort reached 0.917 (95% CI: 0.864-0.970; Figure 4E). Furthermore, the diagnostic ability of this model was also satisfactory in patients with CEA within the normal range (< 5ng/ml) (n = 235, AUC = 0.937, 95% CI: 0.906-0.968; Figure 4F). In patients at early stage of CRC, it achieved AUC of 0.947 (95% CI: 0.922-0.973) and 0.881 (95% CI: 0.793-0.969), respectively. Finally, Kaplan-Meier analysis showed that the OS (n = 361) and DSS (n = 340) of low-risk group were significantly higher than those of the high-risk group (both log-rank P < 0.01, Figures 4G, 4H). In addition, patients in the low risk group had significantly longer progression-free interval (PFI) compared to the high-risk group (log-rank P < 0.01; Figure 4I).
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FIGURE 4. The violin plot diagrams depicting the differential methylation pattern of the CpGs in CRC versus normal samples using Mann-Whitney U-test in TCGA cohort (A) and GEO cohort (B). **representing a P-value < 0.01; ***representing a P-value < 0.001. (C) 10-fold cross validation for tuning parameter selection via the 1-SE criteria. The optimal λ value of 0.0640 with log (λ) = –2.749 was selected. (D) LASSO coefficient profiles of the Eight specific CpGs in the screening process. (E) ROC curves demonstrating the ability of four-CpGs combination to identify CRC from normal samples in training set III, test set III, TCGA cohort and GEO cohort. (F) ROC curves indicating the differentiating ability of four-CpGs combination in CRC patients with low CEA levels or at early tumor stage from the normal samples in the TCGA and GEO cohorts, respectively. Kaplan-Meier curves showing OS (G), DSS (H) and PFI (I) in the low- and high-risk subgroups. OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval, and PFI, progression-free interval.




DISCUSSION

CRC is a global public health concern due to its high morbidity and mortality. The TNM stage of CRC remains an important determinant of therapy since it affects patient prognosis, recurrence and survival (Kawakami et al., 2015). Therefore, accurate stage classification is crucial for individualized treatment decisions at diagnosis, as well as improved outcomes. Preoperative staging currently relies on MRI and CT, instead of biopsy. However, the efficacy of imaging modalities is limited due to high costs, time and inaccuracy in T or N staging (Tezcan et al., 2013; Kijima et al., 2014). In addition, the established tumor markers CEA and CA19-9 also cannot accurately differentiate between CRC stages at diagnosis. Therefore, it is essential to build accurate predictive tools for preoperative staging. Studies have previously utilized differential -omics information to identify novel predictors associated with CRC development, such as nucleic acids, cytokines and proteins (de Wit et al., 2013; Abdulla et al., 2017; Nikolaou et al., 2018). However, small sample sizes, lack of further validation, and poor reproducibility in discriminating CRC stages have limited their potential clinical application.

CRC is characterized by significant molecular heterogeneity throughout its development (Koncina et al., 2020). Studies increasingly show that alterations in DNA methylation patterns are an important factor in CRC onset, progression and metastasis. As one of the earliest molecular events in cancer, aberrant DNA methylation is both stable and widespread (Klutstein et al., 2016; Lasseigne and Brooks, 2018). It is not unexpected that abnormal DNA methylation can serve as powerful biomarkers for diagnosis and prognosis, as well as promising targets for precision medicine in CRC (Liang and Weisenberger, 2017; Weisenberger et al., 2018). The bisulfite treatment-based methylation microarray (Illumina 450K Infinium) is commonly used for detecting cancer-related changes in individual CpGs and regions (Liang et al., 2019; Maros et al., 2020). In genome-wide methylation studies, the Illumina450k array covers more than 485,000 CpG sites across the entire genome, and allows high-throughput and relatively cost-effective bioinformatics analysis (Chen et al., 2016). To the best of our knowledge, the capacity of CRC methylation signature to differentiate between the early and late stages of cancer has not been explored so far. Therefore, the primary objective of this study was to develop an epigenetic signature with a minimum number of CpGs for CRC stage prediction.

Classification of cancer stages through epigenomics profiling is highly challenging compared to simply differentiating the normal tissues from malignant tissues (Kaur et al., 2019). Nevertheless, we systematically analyzed the DNA methylation data of CRC patients by multiple statistic methods, including LASSO logistic regression algorithm, univariable and multivariable logistic regression analysis, differential methylation analysis etc., which helped screen a set of CpGs related to tumor stage. Four of these CpGs – cg05817709, cg14931884, cg19922435 and cg27284627 – had lower methylation levels in CRC samples compared to normal tissues, and were mapped to the RARRES3, DIP2C, LOC285419 and NTM genes respectively. The four remaining CpGs had higher methylation levels in CRC specimens, and were mapped to the DPYSL4, COL1A2, USP30 and IQGAP1 genes. As previously reported, most of the aforementioned genes are involved in tumor genesis and progression in multiple human malignancies, especially CRC (Jiang et al., 2005; Morales et al., 2014; Jin et al., 2015; Wang et al., 2015; Larsson et al., 2017; Ma et al., 2018). For instance, COL1A2 encodes the pro-alpha2 chain of type I collagen, which is significantly associated with the pathological stage in CRC and correlates to patient OS and disease-free survival (DFS) (Ma et al., 2018; Zhou et al., 2018). In addition, the absence of DIP2C expression in CRC cells led to DNA methylation changes associated with gene expression and promoted cellular senescence and epithelial-mesenchymal transition (Larsson et al., 2017). RARRES3 downregulation has been proven in multiple tumor types, including CRC tissues and re-expression of RARRES3 exerted tumor-suppressive effects (Jiang et al., 2005; Morales et al., 2014; Wang et al., 2015). IQGAP1 overexpression resulted in increased cell proliferation and migration via interaction with β-catenin in hepatocellular carcinoma cells (Jin et al., 2015).

Serum CEA level is the most accurate indicator of CRC recurrence following primary curative treatment (Duffy, 2001), and the positive association of elevated serum CEA with more advanced TNM stage and worse prognosis in CRC patients has been documented previously (Nicholson et al., 2015; Saito et al., 2016; Huang et al., 2018). Huang et al. reported preoperative CEA level ≥ 10 ng/mL as an independent predictive factor of OS (Huang et al., 2018). Likewise, Nicholson et al. recommended a CEA threshold of 10 μg/L for monitoring CRC recurrence following a systematic review of 52 studies (Nicholson et al., 2015). Not surprisingly therefore, patients with elevated serum CEA are more likely to be diagnosed at a more advanced stage. Indeed, patients both in the high CEA group (≥ 20 ng/mL) and in the median CEA group (2-20 ng/mL) in our cohort presented a statistically higher risk of late-stage disease compared to those with low CEA levels (≤ 2 ng/mL). Interestingly however, the younger CRC patients had higher scores in our nomogram. Andrew et al. analyzed possible risk factors for diagnosing late-stage CRC in a population-based study, and found that patients with early-onset CRC (< 50 years old) were more likely to be diagnosed at a later stage compared to those with late-onset CRC (≥ 50 years of age; OR 1.81, 95% CI: 1.27-2.58) (Andrew et al., 2018). This finding was also consistent with the report of Burnett-Hartman et al. (Burnett-Hartman et al., 2019). Compared to older patients with sporadic cancer, early-onset CRC has a higher incidence of adverse histological features (Chang et al., 2012), frequent absence of methylator phenotype and constitutively active oncogenic pathways (Kirzin et al., 2014), suggesting a more aggressive behavior (Meyer et al., 2016; Burnett-Hartman et al., 2019). Consistent with a previous study, we found that gender and race were not significantly related to CRC stage at the time of initial presentation (Andrew et al., 2018). In contrast to previous reports, however, we did not observe an association between history of polyps and lower risk of late-stage diagnosis (data not shown).

We established a predictive methylation signature using a panel of multiple CpGs to predict the risk of advanced-late stage CRC. Liang et al. had developed a 16-feature-based radiomics signature to preoperatively categorize CRC into stage I-II and III-IV, which was validated with an AUC of 0.708 (95% CI: 0.698-0.718) (Liang et al., 2016). Our methylation signature exhibits moderate predictive ability with AUC values greater than 0.700, which raises the possibility of combining two clinical predictors into a novel predictive model resulting in a greater accuracy. In addition, the classifier based on this methylation signature was an independent predictor of advanced-late stage CRC, and significantly improved the predictive ability of the nomogram.

The methylation signature-based predictive tool can supplement the currently established imaging modalities and biopsies in assessing CRC stages, and is particularly suitable for batch analysis of CRC samples. The methylation status based on beta values of the multiple CpGs can also provide additional diagnostic and prognostic information, and augment the clinical evidence in terms of selecting the most appropriate treatment strategy. However, our study has several limitations that ought to be considered. Firstly, absence of preoperative CEA levels and other clinical data in the GSE48684 dataset precluded a more rigid validation of the nomogram in an independent dataset. Secondly, insufficient preoperative indices, such as histological grade, family history and carbohydrate antigen 19-9 levels, limited other potential stage-related variables to be incorporated into our model. Thirdly, our nomogram still lacks experimental confirmation, and its reliability and reproducibility need to be verified by empirical methods. Fourthly, several prognostic models in CRC have been reported based on the methylation level of multiple sites, previously (Gündert et al., 2019; Wang et al., 2020). As an example, Melanie et al. developed a methylation-based classifier consisting of 20 CpG sites, which could improve the ability to predict survival in patients with non-metastatic CRC (Gündert et al., 2019). Regrettably, no overlap was found between the 8 CpGs and previously reported ones. Future analyses should further investigate whether our classifier might also serve as an independent predictor of survival, and whether it might be involved in a valuable prognosis model for CRC patients. In addition, even though our method requires a small amount of tissue, it is still invasive since it relies on biopsy samples. Finally, it is unclear whether the methylation changes in tumor tissues are consistent with those in the peripheral blood samples, and has to be clarified in future studies.



CONCLUSION

We identified an eight-CpG-based methylation signature that classified CRC stages with considerable accuracy and then derivatized a methylation classifier. The nomogram incorporating the CpG classifier and clinical features had a satisfactory predictive power, and can potentially augment imaging and biopsy findings for accurate preoperative staging and expedited therapy. In addition, the combination of four CpGs showed a good diagnostic value in CRC patients, even in those with low serum CEA level or at early tumor stage, indicating a novel biomarker for early CRC diagnosis. Our strategy can be further applied to identify methylation signatures for lymphatic infiltration or distant metastasis of CRC.
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Tumor microenvironment (TME) is emerging as an essential part of cervical cancer (CC) tumorigenesis and development, becoming a hotspot of research these years. However, comprehending the specific composition of TME is still facing enormous challenges, especially the immune and stromal components. In this study, we downloaded the RNA-seq profiles and somatic mutation data of 309 CC cases from The Cancer Genome Atlas (TCGA) database, which were analyzed by integrative bioinformatical methods. Initially, ESTIMATE computational method was employed to calculate the amount of immune and stromal components. Then, based on the high- and low-immunity cohorts, we recognized the differentially expressed genes (DEGs) as well as the differentially mutated genes (DMGs). Additionally, we conducted an intersection analysis of DEGs and DMGs, ultimately determining an immune-related prognostic signature, GTPase, IMAP Family Member 4 (GIMAP4). Moreover, sequential analyses demonstrated that GIMAP4 was a protective factor in CC, positively correlated with the overall survival (OS) and negatively with distant metastasis. Besides, we utilized the Gene Set Enrichment Analysis (GSEA) to explore the enrichment-pathways in high and low-expression cohorts of GIMAP4. The results indicated that the genes of the high-expression cohort had a high enrichment in immune-related biological processes and metabolic activities in the low one. Furthermore, CIBERSORT analysis was applied to evaluate the proportion of tumor-infiltrating immune cells (TICs), illustrating that several activated TICs were strongly associated with GIMAP4 expression, which suggested that GIMAP4 had the potential to be an indicator for the immune state in TME of CC. Hence, GIMAP4 contributed to predicting the CC patients’ clinical outcomes, such as survival rate, distant metastasis and immunotherapy response. Moreover, GIMAP4 could serve as a promising biomarker for TME remodeling, suggesting the possible underlying mechanisms of tumorigenesis and CC progression, which may provide different therapeutic perceptions of CC, and therefore improve treatment.

Keywords: GIMAP4, tumor microenvironment, somatic mutation, cervical cancer, ESTIMATE, CIBERSORT


INTRODUCTION

Cervical cancer (CC) is the fourth malignancy worldwide in the female reproductive system, representing a major global health challenge. There are more than 500,000 women diagnosed with CC and over 300,000 deaths worldwide each year, of which about 84 percent occurs in economically underdeveloped areas, and the proportion is expected to grow to 98 percent by 2030; additionally, the overall prognosis remains poor for women with metastatic or recurrent disease (Cohen et al., 2019; Pesola and Sasieni, 2019). The increasing CC morbidity is closely linked to human papillomavirus (HPV) infection, chronic cervical lesions, genetic modification, and many other factors. The currently known genetic alterations associated with CC involve the ErbB-3 (Di et al., 2015; Cancer Genome Atlas Research Network et al., 2017), epidermal growth factor receptor (EGFR) (Wei et al., 2018), Serine/Threonine Kinase 11 (STK11) (Hirose et al., 2020), transforming growth factor-beta receptor 2 (TGFBR2) (Cai et al., 2018), phosphatase and tensin homolog (PTEN) (Nero et al., 2019), etc. Nevertheless, the underlying mechanisms of CC carcinogenesis and progression still remain elusive so far. The treatments for CC have remained unchanged for several decades, such as surgical treatment, cytotoxic chemotherapy, and radiotherapy, etc. These therapy approaches can hardly prevent the metastasis and recurrence in CC patients; thus, new therapeutic strategies are urgently required to improve the poor prognosis. Despite checkpoint inhibitor-based immunotherapy is emerging as a novel therapeutic approach and has achieved enormous success in various kinds of cancer currently, the response of CC patients remains low, which restricts the development and application of immunotherapy in CC (Di et al., 2015; Herbst et al., 2016; Schachter et al., 2017). Besides, although continuous development in these conventional and newly generated therapeutic methods have been achieved and are gradually applied clinically for CC these years, the 5-year disease-free survival (DFS) rates are merely 45% for CC patients with advanced-stage (Chopra et al., 2018). Therefore, there is an impendency to explore and identify the molecular aberrations to investigate the carcinogenesis mechanisms and therapeutic strategies of CC.

These years, the tumor environment (TME) is attracting growing attention and becoming a research hotspot since its complicated composition and fluctuating status played a vital role in tumorigenesis and cancer progression (Zhou et al., 2018). Besides, the increasing evidence indicates that tumor-infiltrating immune cells (TICs) and stromal components have a tight connection to the development of CC (Zhou et al., 2017; De Nola et al., 2019). Among them, the immune component seems to contribute more to immunotherapy-response of CC, including the T cells, macrophages, and neutrophils (Langers et al., 2014; Krishnan et al., 2018; Chen X. J. et al., 2019; Ohno et al., 2020). Many researchers have currently investigated the correlation of the prognosis in CC patients with the critical immunological biomarkers (De Jaeghere et al., 2020; Yuan et al., 2020; Zhao et al., 2020). These studies showed significant heterogeneity of the immune component and immune response in CC patients, which might play a decisive role in the ultimate clinical outcomes of patients. However, it is still challenging to understand and clarify the biological characteristics and effects of TME in CC patients. Hence, carrying out a detailed analysis of the genetic layer to properly illustrate the dynamic transition of TME is becoming more and more indispensable, which might help demonstrate the underlying mechanisms of carcinogenesis and progression in CC patients.

We downloaded the transcriptome RNA-seq profiles and somatic mutation information from The Cancer Genome Atlas (TCGA) database for this study, aiming to discern some prognostic immune-related biomarkers in TME of CC using integrative bioinformatics methods. Firstly, the ESTIMATE computational method was applied to calculate the respective proportion of immune and stromal ingredients of CC cases, and further analyses were conducted based on the high- and low-immunity groups since we found that the immune component was more likely to forecast the overall survival (OS) rate of CC patients. Secondly, the somatic mutation data was also analyzed by comparing the high- and low-immunity groups, revealing some significant differences in these two groups’ genetic mutation level. Thirdly, 1,067 differentially expressed genes (DEGs) and 32 differentially mutated genes (DMGs) were recognized using the above analyses. The intersection analysis of DEGs and DMGs revealed an immune-related predictive biomarker, GTPase, IMAP Family Member 4 (GIMAP4). GIMAP4 was reported to be closely connected with the immune biological process of T helper (Th) cell differentiation by regulating some specific cytokines like interleukin-4 (IL-4), interferon-γ (INF-γ), and interleukin-12 (IL-12) (Filen et al., 2009; Filen and Lahesmaa, 2010; Heinonen et al., 2015), demonstrating that GIMAP4 might play an essential part in TME. Therefore, the immune-related biological characteristics of GIMAP4 were further analyzed using Gene Set Enrichment Analysis (GSEA) and CIBERSORT. Finally, the correlation of GIMAP4 with common inhibitory checkpoint molecules (I) was analyzed to evaluate the immunotherapy response targeting immune checkpoint inhibitors (ICIs) of CC patients. The present results demonstrated GIMAP4 as an immune-related predictive biomarker, suggesting it might occupy an important place in different TME status of CC patients. Here we embarked from DEGs and DMGs generated by comparison between the immune component in CC cases and indicated that the GIMAP4 might serve as a potential immune-related predictive biomarker and an indicator for remodeling TME in CC, suggesting the possible underlying mechanisms of the tumorigenesis and progression of CC, and therefore improve treatment.



MATERIALS AND METHODS


Raw Data

Transcriptome profiles and somatic mutation information of 309 CC cases (normal samples, 3 cases; tumor samples, 306 cases) were retrieved from the TCGA database1 and the corresponding clinical data from cBioportal2.



Estimation for ImmuneScore, StromalScore, and ESTIMATEScore

ImmuneScore (proportion of immune ingredient), StromalScore (proportion of stromal ingredient), and ESTIMATEScore (sum of the above two scores) of each CC sample were calculated using ESTIMATE package by R software (version: 3.6.3) (Yoshihara et al., 2013), which means that the higher score represents the more considerable amount of the corresponding component (immune, stromal, and tumor purity) in TME.



Survival Analysis

Survival analysis was carried out using both survminer and survival packages by R software. We screened out 232 tumor samples out of 309 CC cases considering the following conditions: I. Remove samples whose survival time shorter than 1 month, II. Remove normal samples, III. Remove samples with uncompleted clinical information. Survival curve was drawn through Kaplan–Meier method. The statistical significance was tested via log-rank with the significant threshold of p-value set as 0.05.



Correlation Analysis of Scores With Clinicopathological Characteristics

Package ggpubr was loaded to perform the correlation analysis of each score with clinicopathological characteristics. The statistical significance was tested by Wilcoxon rank sum test or Kruskal-Wallis rank sum test.



Somatic Mutation Analysis and Identification of DMGs in High- and Low-Immunity Cohorts Regarding ImmuneScore

Somatic mutation information of CC was retrieved from the TCGA database. The data which included somatic variants were reserved in the Mutation Annotation Format (MAF) form. 306 tumor samples were equally sectionalized into high- and low-immunity cohorts depending on the median level of ImmuneScore. DMGs were identified by comparing the high- and the low-immunity cohorts using R package maftools (Mayakonda et al., 2018), and p < 0.05 served as the significant threshold.



Identification of DEGs in High- and Low-Immunity Cohorts

Differentially expressed genes were similarly identified by comparing between the high- and the low-immunity samples by differentiation analysis using package limma. DEGs that met the following criteria were considered significant: I. false discovery rate (FDR) <0.05; II. absolute value of log2 fold change (FC) > 1 (high-immunity cohort/low-immunity cohort).



Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis and Heatmaps of DEGs

Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses of 1067 DEGs were conducted using R packages clusterProfiler, enrichplot, and ggplot2 to explore the biological functions and signaling pathways. The significantly enriched terms should be up to the following standards simultaneously: I. p-value < 0.05; II. q-value < 0.05. Heatmaps of DEGs were drawn using pheatmap package.



Gene Set Enrichment Analysis

C2. CP. KEGG.v7.2 gene sets and Hallmark collections were acquired from Molecular Signatures Database (MSigDB), which were analyzed by GSEA via the GSEA software (version: 4.0.3). The significant gene sets were up to following standards: I. NOM p-value < 0.05; II. FDR q-value < 0.25.



Analysis of TICs

CIBERSORT was utilized to approximately evaluate the proportion of TICs profile in the whole CC cases. Only cases with p-value < 0.05 were picked out for the follow-up analyses.



RESULTS


Analysis Workflow of the Study

The presented study was carried out by the following analysis process (Figure 1). We employed CIBERSORT and ESTIMATE algorithms to separately calculate the ratio of TICs and the proportion of immune and stromal components in 309 CC cases after downloading the RNA-seq profiles from the TCGA database and the corresponding clinical information from cBioportal. Simultaneously, somatic mutation data was downloaded to identify the DMGs between high- and low-immunity cohorts according to the median ImmuneScore. Besides, DEGs were also identified based on the median ImmuneScore and we further conducted GO and KEGG analyses on these genes. Then, GIMAP4, HLA-B, and MAP2 were obtained using intersection analysis of DEGs and DMGs by ImmuneScore. We concentrated on GIMAP4 for further analyses, including correlation analysis of OS and clinicopathological characteristics, GSEA, correlation with TICs, etc.
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FIGURE 1. The analysis workflow of this study.




Characteristics of CC Patients From TCGA and CBioportal

We downloaded the RNA-seq expression data and corresponding clinical information for 309 CC cases from the TCGA and cBioportal. Then, 232 CC patients met the defined criteria, whose clinicopathological characteristics were listed in Table 1.


TABLE 1. Clinicopathological characteristics statistics of CC patients.
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Identification of DEGs in CC Patients


Scores Were Connected With the Prognosis of CC Patients

After generating ImmuneScore, StromalScore, and ESTIMATEScore, we utilized the Kaplan–Meier survival analysis for these three scores, respectively. A higher ImmuneScore and StromalScore were represented for a greater proportion of the immune and stromal ingredients. ESTIMATEScore was reported to serve as the summation of ImmuneScore and StromalScore, meaning the tumor purity. The results revealed the correlation of the immune and stromal proportion with OS, indicating that ImmuneScore and ESTIMATEScore were positively correlated with OS (Figures 2A,C), despite no significant association in StromalScore (Figure 2B). Consequently, these results demonstrated that the immune component was more likely to indicate the prognosis of CC patients. Then, the clinical information of CC cases was analyzed to find the correlation between these three scores with the clinicopathological characteristics (Figures 2D–O), showing that ImmuneScore, StromalScore, and ESTIMATEScore were notably declined along with the progression of M classification (Figures 2J–L, p = 0.015, 0.014, 0.004, respectively, by Wilcoxon rank sum test). These findings clarified that both the immune and stromal components played a crucial part in the progression of CC, especially invasion and metastasis.
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FIGURE 2. Correlation analyses of scores with survival and clinicopathological characteristics of CC patients. (A–C) Kaplan–Meier survival analysis for CC patients grouped into high or low scores in ImmuneScore, StromalScore, and ESTIMATEScore determined by comparing them with the median. p = 0.020, 0.186, and 0.006, respectively, by log-rank test. (D–F) Distribution of ImmuneScore, StromalScore, and ESTIMATEScore in the stage classification. The p = 0.45, 0.43, and 0.49, respectively, by Kruskal–Wallis rank sum test. (G–I) Distribution of three kinds of scores in the T classification (p = 0.5, 0.84, 0.55 by Kruskal–Wallis rank sum test for ImmuneScore, StromalScore, and ESTIMATEScore, respectively). (J–L) Distribution of scores in the M classification (p = 0.015, 0.014, 0.004 by Wilcoxon rank sum test for ImmuneScore, StromalScore, and ESTIMATEScore separately). (M–O) Distribution of scores in N classification. Similar to the preceding, p = 0.56, 0.27, 0.40, respectively, with Wilcoxon rank sum test.




The DEGs Were Identified by ImmuneScore

Since the immune component was more likely to forbade the prognosis of CC patients, we further conducted a comparison analysis between high- and low-immunity samples regarding the median level of ImmuneScore. A total of 1067 DEGs were obtained from ImmuneScore compared to the median, appearing up-regulation of 643 genes and down-regulation of 424 genes (Figure 3A). Then, the top 20 genes with up-regulation and down-regulation were respectively identified by the absolute values of log2 FC, and the heatmap was illustrated in Figure 3B. Moreover, GO analysis demonstrated that the DEGs were mainly linked to the immune functions, like T-cell activation and lymphocyte activation regulation (Figure 3C). Similarly, KEGG enrichment analysis results also revealed a high enrichment of immune-related biological processes, taking the cytokine–cytokine receptor interaction, cell adhesion molecules, and chemokine signaling pathway for instance (Figure 3D). Consequently, immune-related biological processes tended to represent DEGs’ main functions, demonstrating the immune component as an essential ingredient in the TME of CC patients.
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FIGURE 3. Volcano plot, Heatmap, and enrichment analysis of GO and KEGG for DEGs. (A) Volcano plot for DEGs. The blue and red dots represented the significantly downregulated and upregulated genes, respectively; and the gray dots represented the genes without differential expression. FDR < 0.05, | log2 FC | > 1 and p < 0.05 (B) Heatmap for DEGs generated by comparison of the high score group vs. the low score group in ImmuneScore. The row name of heatmap is the gene name, and the column name is the ID of samples which not shown in the plot. DEGs were determined by Wilcoxon rank sum test with FDR < 0.05 and | log2 FC | > 1 as the significance threshold. (C,D) GO and KEGG enrichment analysis for 1067 DEGs, terms with p and q < 0.05 were believed to be enriched significantly.




Identification of DMGs in CC Patients

Accumulating evidence has shown tumor-specific mutations could generate neoantigens, activate immunological recognition, and kill the tumor cells (Turajlic et al., 2017; Smith et al., 2019). To determine the correlation of gene mutation with the immune component in TME, we launched a further investigation to explore whether there existed differences in the genetic layer between the high- and low-immunity cohorts according to the median level of ImmuneScore. Somatic mutation data was analyzed and visualized in these two groups. The top 30 most frequently mutated genes of these two cohorts were displayed in Figures 4A,B. Interestingly, TTN, PIK3CA, MUC4, KMT2C, and MUC16 were the top mutations in both cohorts, which were reported to regulate various tumor biological processes in CC (Xu et al., 2017; Jiang et al., 2018; Shen et al., 2020), indicating that they are less participated in the process of immune infiltration but mainly involved in tumorigenesis and progression. Besides, there appeared a larger percentage of mutated genes in the high immunity group comparing to the low one, suggesting patients with more gene mutation tended to have higher immune infiltration. More interestingly, there were 32 DMGs between the two cohorts, ranked by order of p-value (Figures 4C,D and Supplementary Table 1). In addition, the following three factors, GIMAP4, HLA-B, and MAP2, were overlapped from the intersection analysis of DEGs and DMGs (Figure 4E). Among them, GIMAP4 of the high-immunity group expressed and mutated more by comparison with the low one, showing that the larger amount of GIMAP4 was likely to have more immune infiltration cells and thus enhanced the immunological responses of CC.
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FIGURE 4. Somatic mutation analyses between high- and low-immunity groups and identification of common genes in DEGs and DMGs. (A,B) Waterfall plot shows the mutation distribution of the top 30 most frequently mutated genes. The central panel shows the types of mutations in each CC sample. The upper panel shows the mutation frequency of each CC sample. The bar plots on the right side show the frequency and mutation type of genes mutated in the high- and low-immunity cohort, respectively. The bottom panel is the legend for mutation types. (C) Forest plot displays the significant differentially mutated genes between two cohorts and GIMAP4 is marked out with a red rectangle. **p < 0.01, *p < 0.05. (D) Oncoplot shows the 32 DMGs between high- and low-immunity groups and GIAMP4 is marked out with a red rectangle. The central panel shows the types of mutations in each CC sample. The bottom panel is the legend for mutation types. (E) Venn plot showing the common factors of DEGs and DMGs.




GIMAP4 Expression Was Related to the Survival and Clinicopathological Characteristics in CC Patients

Th1/Th2 drifting effect was a common phenomenon in cancer development, under which circumstance the amount of Th2 was more massive than Th1, thus suppressing the anti-tumor immunity (Yang et al., 2010; Xu, 2014; Chen X. et al., 2019). GIMAP4 played an essential role in regulating lymphocyte apoptosis and was reported to be closely connected with the immune biological process of Th1/Th2 differentiation, and there appeared upregulation and downregulation of GIMAP4 under Th1- and Th2-promoting circumstance, respectively (Filen et al., 2009; Filen and Lahesmaa, 2010). Increasing evidence had revealed that GIMAP4 seemed to serve as a protective factor in several kinds of cancer, including lung cancer (Krucken et al., 2004; Lan et al., 2020). However, there were few available studies of GIMAP4 in CC until now. In our study, we divided all CC samples into GIMAP4 high- and low-expression groups on the basis of the GIMAP4 median expression. The phenomenon was observed using the survival analysis that CC patients in the GIMAP4 high expression group possessed a relatively longer OS than low expression (Figure 5A). Additionally, the further results indicated that the GIMAP4 expression in the normal cases was remarkably higher than the tumor samples by the Wilcoxon rank sum test (Figure 5B). After that, we conducted an analysis of GIMAP4 combined with clinicopathological characteristics, revealing that GIMAP4 expression decreased gradually following the advanced M classification (Figures 5C–F). The above comprehensive analyses brought out the results that GIMAP4 expression was a protective factor of CC patients, which was strongly associated with the prognosis, including survival and metastasis.
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FIGURE 5. The differentiated expression of GIMAP4 in samples and correlation with survival and clinicopathological staging characteristics of CC patients. (A) Survival analysis for CC patients with different GIMAP4 expression. Patients were marked with high expression or low expression depending on comparing with the median expression level. p = 0.041 by log-rank test. (B) Differentiated expression of GIMAP4 in the normal and tumor sample. Analyses were conducted across all normal and tumor samples with p = 0.008 by Wilcoxon rank sum test. (C–F) The correlation of GIMAP4 expression with clinicopathological characteristics. Wilcoxon rank sum or Kruskal–Wallis rank sum test acted as the statistical significance test.




GIMAP4 Might Serve as a Promising Indicator for Remodeling TME

According to the above results, we finally concluded that GIMAP4 expression had a significant positive correlation with OS and clinicopathological characteristics, especially the M classification of CC patients. Besides, GSEA was ulteriorly conducted in the GIMAP4 high- and low-expression cohorts, respectively. On the one hand, for C2 collection defined by MSigDB, the GIMAP4 high-expression group genes had principal enrichment in immune biological processes, taking the B cell receptor signaling pathway, chemokine signaling pathway, and JAK-STAT signaling pathway for example (Figure 6A and Supplementary Table 2). Synchronously, the genes in the GIMAP4 low-expression cohort were mainly enriched in metabolic-related pathways, including biosynthesis of unsaturated fatty acids, terpenoid backbone biosynthesis, and pentose phosphate pathway (Figure 6B and Supplementary Table 2). On the other hand, similarly, multiple immune activities and metabolic functions were respectively enriched in the GIMAP4 high- and low-expression group for HALLMARK gene sets (Figures 6C,D and Supplementary Table 2). The above results illustrated that GIMAP4 might serve as a promising indicator for different TME status of CC.
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FIGURE 6. GSEA for samples with high GIMAP4 expression and low expression. (A) Enriched gene sets in C2 collection, the KEGG gene sets, by samples of high GIMAP4 expression. Each line is represented one particular gene set with unique color, and up-regulated genes are located on the left which approach the origin of the coordinates; by contrast, the down-regulated ones lay on the right of the x-axis. Only gene sets both with NOM p < 0.05 and FDR q < 0.25 were considered significant. Only several top gene sets are shown in the plot. (B) Enriched gene sets in C2 by the low BTK expression. (C) The enriched gene sets in HALLMARK collection by samples with high GIMAP4 expression sample. (D) The enriched gene sets in HALLMARK in the low GIMAP4 expression.




Relationship Between GIMAP4 With the Proportion of TICs

We applied the CIBERSORT method to further confirm the relationship between GIMAP4 expression and the immune component, constructing 21 types of immune cell profiles in CC cases and analyzing the proportion of tumor-infiltrating immune subtypes (Figures 7A,B). Then, a total of 12 kinds of TICs were found to have a strong association with the GIMAP4 expression from the correlation and difference analyses (Figures 7C–E and Supplementary Table 3). The results revealed that seven TICs had a positive relationship with GIMAP4 expression, including macrophage M1, macrophage M2, CD8 + T cells, gamma delta T cells, CD4 + activated memory T cells, resting mast cells, and regulatory T cells; five kinds of TICs had a negative correlation with GIMAP4 expression, including macrophage M0, eosinophils, activated Dendritic cells, activated NK cells and activated mast cells. We could further confirm that GIMAP4 expression significantly influenced the immune activity in TME from the above results.
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FIGURE 7. TIC profile in CC samples and correlation analysis, and correlation of TICs proportion and common ICPs with GIMAP4 expression. (A) Barplot shows the proportion of 21 types of TICs in CC tumor samples. The column names of the plot were sample ID. (B) Heatmap shows the correlation between 21 kinds of TICs and numeric in each tiny box, indicating the p-value of the correlation between two cells. The shadow of each tiny color box represented a corresponding correlation value between two cells, and the Pearson coefficient was used for the significance test. (C) Violin plot showed the ratio differentiation of 21 types of immune cells between CC tumor samples with low or high GIMAP4 expression relative to the median of GIMAP4 expression level, and Wilcoxon rank sum was applied for the significance test. (D) The Scatter plot showed the correlation of 13 kinds of TICs proportion with the GIMAP4 expression (p < 0.05). The blue line in each plot was a fitted linear model indicating the proportion tropism of the immune cell along with GIMAP4 expression, and the Pearson coefficient was used for the correlation test. (E) Venn plot displayed 12 kinds of TICs correlated with GIMAP4 expression codetermined by difference and correlation tests displayed in the violin and scatter plots, respectively. (F) The results showed that the expression of ICPs was significantly higher in the high GIMAP4 expression group than in the low one. ***p < 0.001.




Correlation of GIMAP4 With the Common ICPs

To evaluate the immunotherapy responses through GIMAP4 expression, we explored the correlation of GIMAP4 levels with common ICPs. The correlation between GIMAP4 expression and ICPs [programmed cell death 1 (PD1), programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte antigen 4 (CTLA4), T Cell Immunoglobulin Mucin 3 (TIM-3), lymphocyte activation gene-3 (LAG3), and T Cell Immunoreceptor With Ig And ITIM Domains (TIGIT), etc.] was performed, indicating the high expression of ICPs was observed in high GIMAP4 expression group (Figure 7F). The results demonstrated that patients with high GIMAP4 expression tended to have a better immunotherapy response because of the high levels of ICPs.



DISCUSSION

This study aimed to determine immune-related genes that were both differentially mutated and expressed in TME, which also conduced to the prognosis of CC patients, including OS and clinicopathological characteristics from the TCGA database and cBioportal. Then, a series of integrative bioinformatics analysis ultimately revealed that GIMAP4 met the above criteria, which was recognized to occupy an important position in immune-related biological functions and correlated with ICPs, demonstrating that GIMAP4 could serve as a promising indicator for remodeling TME and a potential predictor for prognosis and immunotherapy responses of CC patients.

Tumor microenvironment, especially the immune component, contributed a lot to the carcinogenesis and development of cancer. Transiting TME from tumor-friendly to tumor-suppressed was proved to be a beneficial strategy to improve the treatment of cancer (Duan et al., 2020; Zhang Z. et al., 2020). Therefore, it is urgently needed to determine the potential therapeutic targets that contribute to the above process. We came to a conclusion that the immune component in TME seemed to play a more critical part in the clinical outcomes of CC patients, including survival rate and M classification, illustrating that the immune component was closely related to the prognosis and the progression of CC, especially invasion and distant metastasis. Therefore, it is of great importance to investigate and clarify the interaction and cross-talk between immune infiltrating cells and tumor cells, thus developing a new idea for establishing much more effective therapeutic strategies to improve the CC treatments. Recently, many studies indicated that TICs, including T cells, macrophages, and natural killer cells, were promising prognostic biomarkers and had a tight connection to the development and prognosis of CC (De Nola et al., 2019; Wang et al., 2019; Zhang Y. et al., 2020). Besides, accumulating evidence has indicated that tumor-specific mutations could generate neoantigens, thus activating the immunological recognition and killing the tumor cells, indicating that modification of some specific genes could influence the status of TME (Turajlic et al., 2017; Smith et al., 2019). In addition, immunotherapy targeting ICPs had achieved tremendous success in multiple human cancers worldwide (Sun et al., 2020), including CC (Kagabu et al., 2020). However, the responses to immunotherapy using ICIs were relatively low in CC patients, and we could not ignore its immune-related adverse reactions (Frenel et al., 2017; Rischin et al., 2020). Therefore, we face a significant challenge to explore some novel candidates in TME to enhance the immunotherapy response of CC and decrease the immune-related adverse events. Moreover, most previously published studies focused only on the gene expression profiles or just on the somatic mutation data, which had limitations to reveal the potential mechanisms comprehensively in TME of CC. Hence, there is an urgent need for discovering the potential therapeutic targets using multi-layered data analysis. Here, we conducted an integrative bioinformatics analysis using transcriptomic RNA-seq data and somatic mutation data, revealing that the reduced GIMAP4 expression was significantly related to poor prognosis and advanced M classification. Meanwhile, our results also showed that GIMAP4 mutated more in the high-immunity group, confirming that its mutation could generate tumor-specific neoantigens and an activated immune system in CC. Further analysis of GSEA and CIBERSORT demonstrated that the high GIMAP4 expression group was in close connection with immune-related biological processes and activated immune infiltrating cells. Moreover, we also concluded that the expression of ICPs was higher in the GIMAP4 high expression group. Consequently, this present study indicated that GIMAP4 might be a potential prognostic signature for survival and immunotherapy response and an indicator for remodeling TME; most importantly, it is a therapeutic target for TME in CC.

The GIMAP genes are mapped on a chromosomal region within 7q35–7q36.1, coding for proteins primarily expressed in the immune system, which are closely correlated with the immune-related biological process such as Th cell differentiation, apoptosis of peripheral lymphocytes, and thymocyte development (Dion et al., 2005; Nitta et al., 2006; Filen et al., 2009). Additionally, except for their contribution to regulating the immune system, GIMAPs were also researched to serve as tumor suppressor genes, influencing the initiation and development of various cancers (Taniwaki et al., 2006; Shiao et al., 2008; Lan et al., 2020; Megarbane et al., 2020), whose expression was at deficient levels in various cancer tissues and cell lines (Krucken et al., 2004). GIMAP4 is the sole gene investigated to possess real GTPase activity among the GIMAP family (Heinonen et al., 2015), but its biological characteristics in CC are still far from clear. Our results illustrated that higher expression of GIMAP4 foreboded a better prognosis, and the expression of GIMAP4 was declining along with the advancing M classification of CC, indicating that GIMAP4 was a protective factor of CC patients in TME. Furthermore, GIMAP4 was known to have an apparent relationship with immune-related biological processes, taking the development and survival of T- and B-cell and apoptosis of T-cell for example (Heinonen et al., 2015). Various studies revealed that the immunobiological process of Th1/Th2 differentiation was vitally important in the development of tumor, during which process the amount of Th2 preponderated over Th1 in the advanced tumor patients, inhibiting the anti-tumor immunity (Neurath et al., 2002; Knutson and Disis, 2005). More critically, increasing evidence showed that GIMAP4 was closely connected with CD4 + Th lymphocytes differentiation by regulating the cytokines such as IL-12, IL-4, and INF-γ, which was up-regulated and down-regulated under Th1- and Th2-dominant circumstance, respectively (Filen et al., 2009; Filen and Lahesmaa, 2010; Heinonen et al., 2015). Thus, we concluded that GIMAP4 might reverse the Th1/Th2 drifting effect and increase the immunity of Th1, which might provide a new clue to enhance anti-tumor immunotherapy and improve treatment. However, the correlation of GIMAP4 with TME in CC remains unclear. Therefore, we further conducted GSEA to explore the relationship between GIMAP4 expression and TME, revealing that genes in GIMAP4 high-expression group had a high enrichment in immune biological processes, like chemokine signaling pathway, B cell receptor signaling pathway, and JAK-STAT signaling pathway. Interestingly, the GIMAP4 low-expression group genes were enriched most in metabolic-related activities, including biosynthesis of unsaturated fatty acids, terpenoid backbone biosynthesis, and pentose phosphate pathway. These results revealed that GIMAP4 might act as a satisfactory indicator for remodeling TME between immune and metabolism. Further CIBERSORT analysis for the ratio of TICs confirmed the effect of GIMAP4 on TME, especially the immune component, and the results revealed that CD8 + T cells and CD4 + activated memory T cells were positively correlated with GIMAP4 expression in CC patients. Besides, the expression of common ICPs was observed higher in the GIMAP4 high-expression group, demonstrating that GIMAP4 might have the potential to predict the immunotherapy responses in CC. Generally, GIMAP4 might act as an anti-tumor biomarker, a predictor for survival and immunotherapy response, and make contributions to representing the immune-dominant state in TME of CC according to the following facts that the upregulation of GIMAP4 along with the higher survival rate, early M classification of CC, the status conversion of TME from metabolism to immune, and the increment of anti-tumor TICs and ICPs.

Using integrated bioinformatics analysis, we identified GIMAP4 as an indicator for remodeling TME status, which could also serve as a promising predictor for clinical outcomes such as survival rate, distant metastasis, and immunotherapy response of CC. Therefore, further investigation should focus on clarifying the accuracy of an integrative analysis of GIMAP4 expression and confirming the specific correlation of GIMAP4 with Th1 and Th2, respectively. GIMAP4 also need to be tested in basic experiment and clinical trials.



CONCLUSION

In this study, GIMAP4 was identified as a promising indicator for remodeling TME status for the first time by integrated bioinformatical analysis, which could also serve as a potential predictor for clinical outcomes such as overall survival rate, distant metastasis, and immunotherapy response of CC. Further studies were needed to explore the correlation of GIMAP4 with Th1/Th2 and to reveal the underlying mechanisms of the GIMAP4-related immunobiological process, which may improve the treatment of CC patients.
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Accumulating evidence has shown that lymph node metastasis (LNM) is not only an important prognostic factor but also an indicator of the need for postoperative chemoradiotherapy. Therefore, identifying risk factors or molecular markers related to LNM is critical for predicting the prognosis and guiding individualized treatment of patients with cervical cancer. In this study, we used the machine learning-based feature selection approach to identify eight optimal biomarkers from the list of 250 differentially expressed protein-coding genes and long non-coding RNAs (lncRNAs) in the TCGA cohort. Then a coding-non-coding signature (named CNC8SIG) was developed using the elastic-net logistic regression approach based on the expression levels of eight optimal biomarkers, which is useful in discriminating patients with LNM from those without LNM in the discovery cohort. The predictive performance of the CNC8SIG was further validated in two independent patient cohorts. Moreover, the CNC8SIG was significantly associated with patient’s survival in different patient cohorts. In silico functional analysis suggested that the CNC8SIG-associated mRNAs are enriched in known cancer-related biological pathways such as the Wnt signaling pathway, the Ras signaling pathway, Rap1 signaling pathway, and PI3K-Akt signaling pathway.
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INTRODUCTION

Cervical cancer is the second leading cause of cancer death in women aged 20 to 39 years. There was an estimated new cervical cancer case of 13800 and an estimated death of 4290 in the United States in 2020 (Siegel et al., 2020). Lymph node metastasis (LNM) status has been reported to be one of the most important prognostic factors and is significantly related to the clinic-pathologic characters (Du et al., 2018). Although radical hysterectomy followed by pelvic lymphadenectomy is the standard surgical management for patients with early-stage cervical cancer, pelvic lymphadenectomy may be unnecessary for most patients with early-stage cervical cancer with low risk of LNM. Furthermore, LNM status also is an indicator of the need for postoperative radiotherapy. Therefore, identifying risk factors or molecular markers related to LNM is critical for predicting the prognosis and guiding individualized radiotherapy of patients with cervical cancer.

With the development and advances in high throughput sequencing such as microarray and RNA sequencing (RNA-Seq) technologies, gene expression-based markers have been widely identified and applied in a variety of cancers. In cervical cancer, gene expression profiles have been analyzed to identify critical genes and pathways involved in cancer development and progression in many previous studies (Wong et al., 2006; Wu et al., 2018; Yang et al., 2020). Some gene signatures were also developed to predict prognosis and recurrence for aiding clinical decisions. For example, Xie et al. (2019) identified an 8-gene signature to predict the prognosis of patients with cervical cancer following radiotherapy by analyzing matched gene expression profiles and DNA methylation profiles. Recently, Nguyen identified a 70-gene signature for predicting the therapy outcome and choosing patients who benefit from molecular-targeted therapy in advanced-stage cervical cancer (Nguyen et al., 2020). Zhao et al. (2020) developed a 5-gene prognostic model to predict a patient’s overall survival. Although several gene signatures have been developed to predict LNM status, these existing predictive signatures mainly focused on protein-coding genes. Increasing evidence has suggested that long non-coding RNAs (lncRNAs) play crucial roles in the progression, invasion, and metastasis of cervical cancer (He et al., 2020; Zhong et al., 2020), therefore implying the potential of dysregulated lncRNAs as novel biomarkers in predicting LNM status and prognosis.

In this study, we performed integrative analysis for mRNA expression profiles and lncRNA expression profiles in a large cohort of patients with cervical cancer and used a machine learning approach to identify novel coding-non-coding RNA signature for predicting LNM status and prognosis.



MATERIALS AND METHODS


Cervical Cancer Patient Datasets

Level-3 RNA-sequencing data (HTSeq-Counts and HTSeq-FPKM) and clinical information of 193 cervical cancer patients with lymph node metastasis information were obtained from UCSC Xena1. The microarray data (Affymetrix Human Genome U133 Plus 2.0 Array) and clinical information of 39 cervical cancer patients with lymph node metastasis information were downloaded from the Gene Expression Omnibus (GEO) database2. Another independent cohort of 300 cervical cancer patients with survival information was obtained from the GEO database3.



Acquisition and Analysis of lncRNA and mRNA Expression Profiles

GTF files (GRCH38) were downloaded from The Encyclopedia of DNA Elements (GENCODE)4. For the TCGA cohort, according to the GTF files and previously described, we obtained 14212 lncRNAs with biotype of 3prime_overlapping_ ncRNA, antisense, bidirectional_promoter_ lncRNA, lincRNA, macro_ lncRNA, non_coding, processed_transcript, sense_ intronic, sense_ overlapping, and 19645 mRNAs with the “protein_ coding” biotype. For the GEO cohort, raw microarray data (CEL files) profiled from Affymetrix Human Genome U133 Plus 2.0 Array were obtained from the GSE26511 and were processed and normalized using the Robust Multichip Average (RMA) algorithm for background subtraction, quantile normalization and summarization. By repurposing array probes into the human genome (GRCh 38) and GENCODE database, a total of 6254 lncRNAs and 18652 mRNAs were obtained. To perform cross-validation analysis among different cohorts based on different platforms, 6254 overlapped lncRNA and 18652 overlapped mRNAs among different platforms were kept for further analysis.

Differential expression analyses of lncRNAs and mRNAs between cervical cancer patients with and without lymph node metastasis were performed using the R package “DESeq2” (version 1.24.0) (Ritchie et al., 2015). Those lncRNAs and mRNAs with |log2(fold change)| > 1 and false discovery rate (FDR) p-value < 0.05 were identified as differentially expressed lncRNAs and mRNA.



Construction of the Predictive Model

Because of the imbalance of the samples with and without lymph node metastasis, we first used Synthetic Minority Over-sampling TEchnique (SMOTE) method with R package “DMwR” to overcome imbalances by generating artificial data based on feature space similarities from minority samples in the original training cohort (Alghamdi et al., 2017). Then we used random forest-recursive feature elimination (RF-RFE) approach with 10-fold cross-validation and five re-sampling as the feature selection method for differentially expressed mRNAs and lncRNAs to identify significant features associated with lymph node metastasis and for further use in the predictive model. Finally, an elastic-net logistic regression approach was used to generate a classifier for predicting lymph node metastasis.



Functional Enrichment Analysis

Functional enrichment analysis was performed on Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway to infer possible biological function in the Database for Annotation, Visualization, and Integrated Discovery (DAVID)5 are limited in the GO biological biology (BP) terms and KEGG pathways (Huang da et al., 2009a, b). Those GO terms and KEGG pathways with p < 0.05 significantly enriched GO terms and KEGG pathways using functional annotation chart options with the whole human genome as background as described in previous studies (Zhou et al., 2018; Bao et al., 2020).



Statistical Analysis

Kaplan-Meier survival curves and log-rank tests were used to assess the differences in survival time between different patient groups with the R packages “survival” (v2.44-1.1) and “survminer” (v0.4.6). Hierarchical clustering was performed with Euclidean distance and complete linkage (Sun et al., 2020; Zhou et al., 2020). The predictive performance of the signature was evaluated using the receiver operating characteristic (ROC) analysis and the area under the curve (AUC) value was calculated with the R package “pROC.” All statistical analyses were performed using R software and Bio-conductor.




RESULTS


Identification of Key mRNAs and lncRNAs Associated With Lymph Node Metastasis

One hundred ninety-three cervical cancer patients with lymph node metastasis information were divided into the training cohort (n = 129; 89 patients without LNM and 40 patients with LNM) and testing cohort (n = 64; 44 patients with LNM and 20 patients without LNM) according to a 2:1 ratio. To identify key mRNAs and lncRNAs associated with lymph node metastasis, we first compared the mRNA and lncRNA expression profiles obtained from 40 patients that were metastatic to lymph nodes (N+) to 89 patients that were not (N−) in the training cohort. A total of 224 mRNAs and 26 lncRNAs were identified as differently expressed mRNAs and lncRNAs (| log2(fold change)| > 1 and FDR p-value < 0.05) (Figure 1A). Among them, 28 mRNAs and two lncRNAs were observed to be upregulated, and 196 mRNAs and 24 lncRNAs were downregulated in cervical cancer patients with lymph node metastasis compared to those that were not (Supplementary Table 1).
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FIGURE 1. Identification of candidate biomarkers related to lymph node metastasis. (A) Volcano plot displaying differentially expressed mRNAs and lncRNAs between cervical cancer patients with and without lymph node metastasis. (B) Unsupervised clustering of patients based on the expression levels of differentially expressed mRNAs and lncRNAs. (C) Kaplan-Meier survival curves of patients in cluster 1 and cluster 2.


Hierarchical clustering of the expression values of differentially expressed mRNAs and lncRNAs for 89 patients in the training cohort produced two distinctive patients’ clusters with significantly different lymph node metastasis status (Figure 1B). Furthermore, there was a significant difference in overall survival time between the LNM-like group and the non-LNM-like group (log-rank p = 0.044) (Figure 1C). Patients in the LNM-like group tended to have a significantly poor prognosis compared to those in the non-LNM-like group (median 7.83 years vs. NA) (Figure 1C).



Construction of an Integrative Coding-Non-Coding Signature for Predicting Lymph Node Metastasis

To construct an integrative coding-non-coding signature for predicting lymph node metastasis, we performed machine learning-based feature selection for differently expressed 224 mRNAs and 26 lncRNAs using RF-RFE approach with 10-fold cross-validation and five re-sampling (Figure 2A). Finally, eight optimal features, including seven mRNAs (EPLG3, TMEM151A, EFCAB1, MAPT, ART3, BRDT, and HRG) and one lncRNAs (AC073320.1), were selected for constructing predictive model when considering the balance between performance and number of the signature (Table 1). Then, a coding-non-coding signature (CNC8SIG) was developed based on the expression levels of seven mRNAs and one lncRNA using the elastic-net logistic regression approach. Among the CNC8SIG, four genes, including EPLG3, TMEM151A, MAPT, and HRG were up-regulated in patients with LNM, whereas the other four genes (AC073320.1, EFCAB1, ART3, and BRDT) tended to be down-regulated in patients with LNM (Figures 2B,C). When the CNC8SIG was tested in the training cohort, ROC analysis revealed that the CNC8SIG achieved an AUC value of 0.931 (0.904–0.958) with an accuracy of 83.6%, sensitivity of 79.2% and specificity of 86.9%, as showed in Figure 2D.
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FIGURE 2. Development of the coding-non-coding RNA signature in the discovery cohort. (A) The predicted accuracy of each combination is constructed by a specific number of candidate biomarkers. (B) Boxplots displaying expression pattern of eight biomarkers. (C) Unsupervised clustering of patients based on the expression levels of eight biomarkers. (D) Receiver operating characteristic (ROC) curves for the coding-non-coding RNA signature in predicting lymph node metastasis.



TABLE 1. Detailed information of eight biomarkers in the coding-non-coding RNA signature.
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Independent Validation of the Predictive Performance of the CNC8SIG in Different Cohorts

To examine the robustness and reproducibility of the CNC8SIG for predicting lymph node metastasis, we further tested the CNC8SIG in the other two patient cohorts. We first applied the CNC8SIG to 64 patients in the testing cohort. As showed in Figure 3A, ROC analysis revealed that the CNC8SIG achieved an AUC value of 0.713 (0.574–0.851) with an accuracy of 68.8%, sensitivity of 45% and specificity of 79.6%. Further validation of the CNC8SIG was performed on the completely independent GEO GSE26511 cohort. As shown in Figure 3B, the CNC8SIG also revealed well-predicted performance for lymph node metastasis with an AUC value of 0.66 (0.483–0.853) (Figure 3B). The above results from different patient cohorts confirmed the robustness and reproducibility of the CNC8SIG for predicting lymph node metastasis.
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FIGURE 3. Independent validation in different patient cohorts. Receiver operating characteristic (ROC) curves for the coding-non-coding RNA signature in predicting lymph node metastasis in the testing cohort (A) and GSE26511 cohort (B).




Association of the CNC8SIG With Patients’ Prognosis

We further examine the association between the CNC8SIG and patients’ prognosis by comparing the survival time between the non-LNM-like patient group and LNM-like patient group predicted by the CNC8SIG using the Kaplan-Meier curves and log-rank test. In the training cohort, as shown in Figure 4A, the non-LNM-like patient group predicted by the CNC8SIG had a significantly better prognosis than the predicted LNM-like patient group (median NA vs. 6.9 years; log-rank p = 0.053) (Figure 4A). In the testing cohort, survival analysis revealed that the non-LNM-like patient group predicted by the CNC8SIG tended to have a long good prognosis compared to the predicted LNM-like patient group (median NA vs. 5.57 years; log-rank p = 0.095) (Figure 4B). When the CNC8SIG was tested in the GSE44001, the CNC8SIG stratified 300 patients into a high-risk group and low-risk group with significantly different survival times. As shown in Figure 4C, patients in the high-risk group have a poor prognosis compared to those in the low-risk group (log-rank p = 0.019) (Figure 4C). These results demonstrated the association of the CNC8SIG with a patient’s prognosis.
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FIGURE 4. Association of the coding-non-coding RNA signature with prognosis. Kaplan-Meier survival curves of patients between different patient groups in the discovery cohort (A), testing cohort (B), and GSE44001 (C).




In silico Functional Analysis for the CNC8SIG

We first measured the expression levels of lncRNA AC073320.1 with other mRNAs using the Pearson correlation coefficient and identified 253 mRNAs correlated with AC073320.1 (Pearson correlation coefficient > 0.3 and p < 0.05). Then we performed functional enrichment analysis for AC073320.1-associated 253 mRNAs and other seven mRNAs in the CNC8SIG. GO analysis identified seven enriched biological processes mainly involved in transcription regulation, organism development and differentiation (Figure 5A). KEGG enrichment analysis revealed that the CNC8SIG-associated mRNAs are enriched in known cancer-related biological pathways such as the Wnt signaling pathway, Ras signaling pathway, Rap1 signaling pathway and PI3K-Akt signaling pathway (Figure 5B).
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FIGURE 5. In silico functional analysis of the coding-non-coding RNA signature. (A) Enriched GO terms. (B) Enriched KEGG pathways.





DISCUSSION

Cervical cancer is the second leading cause of cancer death in women. LNM is well known as one of the important factors in the International Federation of Gynecology and Obstetrics (FIGO) staging system for guiding precision treatment and management of cervical cancer. Furthermore, it was also reported that LNM was not only closely associated with prognosis but also with treatment planning. Patients with LNM may benefit from chemoradiotherapy rather than surgery as their first choice (Wu et al., 2020). Therefore, the diagnosis of LNM in cervical cancer is critical for guiding individualized treatment and avoiding unnecessary surgical intervention. However, the traditional methods, such as magnetic resonance imaging (MRI), have limited sensitivity in diagnosing LNM in cervical cancer. Therefore, it is urgently needed to identify novel molecular markers related to LNM for predicting the prognosis and guiding individualized treatment of patients with cervical cancer.

In this study, we performed integrative analysis for mRNA expression profiles and lncRNA expression profiles in a large cohort of cervical cancer patients with and without LNM, and identified 224 mRNAs and 26 lncRNAs as candidate biomarkers. Then we applied a machine learning approach for feature selection for these candidate biomarkers and identified eight optimal biomarkers, including seven mRNAs and one lncRNAs. To accelerate clinical application, we used an elastic-net logistic regression approach to develop a predictive signature based on the expression levels of eight optimal biomarkers (named CNC8SIG). The CNC8SIG revealed very well predictive performance in discriminating patients with LNM from those without LNM in the discovery cohort. The CNC8SIG also exhibited differentiated performance in determining the LNM status in other independent patient cohorts. Furthermore, survival analysis revealed that different risk patient groups have significantly different survival outcomes in different patient cohorts. These results suggested that the CNC8SIG not only has very well predictive performance for lymph node metastasis but also is associated with patients ‘prognosis.

In the CNC8SIG, several predictive genes have been reported to be associated with cancer development and progression. Previous studies have reported that overexpression of ART3 could increase cell proliferation, invasion of triple-negative breast cancer cells via activation of Akt and ERK pathways, and the dysregulation of ART3 was significantly associated with survival (ART3 regulates triple-negative breast cancer cell (Tan et al., 2016). BRDT is an important member of Bromodomain and extraterminal domain (BET) family (Wan et al., 2020). Histidine-rich glycoprotein (HRG) has been reported to have a wide array of functions, such as immunity, cell adhesion, angiogenesis, and thrombosis (Johnson et al., 2014). Aberrant expression of HRG has been implicated in several cancers. For example, decreased expression of HRG was observed in advanced lung cancer and is associated with the disease stage (Winiarska et al., 2019). Another study has reported that HRG suppresses glioma growth by modulating antitumor immunity through regulating leukocyte differentiation (Roche et al., 2018).

In order to further elucidate the potential function of the CNC8SIG, we performed functional enrichment analysis for genes co-expressed the CNC8SIG. Functional enrichment analysis suggested that genes co-expressed the CNC8SIG are enriched in known cancer-related biological pathways. For example, the dysregulated Wingless-type (Wnt)/β-catenin pathway involved the multistep process of cervical carcinogenesis and could be a candidate as potential biomarker or therapeutic target (Bahrami et al., 2017). The altered expression of genes in the PI3K-Akt signaling pathway has critical roles in tumor initiation, progression and outcomes, including cervical cancer (Zhang et al., 2015). These results indicated that the altered expression of the CNC8SIG participated in broad biological functions associated with metastasis of cervical cancer.

Some limitations of this study existed. First, although predictive performances of the CNC8SIG have been validated in several patients’ cohorts, more independent datasets were needed to validate our findings. Second, the molecular mechanism of the CNC8SIG in the lymph node metastasis and prognosis in cervical cancer should be made in further experimental studies, although in silico prediction for the CNC8SIG was performed in this study. Third, our study focused on only mRNAs and lncRNAs. Other non-coding RNA types, such as miRNAs and circRNAs, should be considered in further study.
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N6-methyladenosine (m6A) plays critical roles in human development and cancer progression. However, our knowledge regarding the dynamic expression of m6A regulators during human tissue development is still lacking. Here, we comprehensively analyzed the dynamic expression alterations of m6A regulators during seven tissue development and eight cancer types. We found that m6A regulators globally exhibited decreased expression during development. In addition, IGF2BP1/2/3 (insulinlike growth factor 2 MRNA-binding protein 1/2/3) exhibited reverse expression pattern in cancer progression, suggesting an oncofetal reprogramming in cancer. The expressions of IGF2BP1/2/3 were regulated by genome alterations, particularly copy number amplification in cancer. Clinical association analysis revealed that higher expressions of IGF2BP1/2/3 were associated with worse survival of cancer patients. Finally, we found that genes significantly correlated with IGF2BP1/2/3 were significantly enriched in cancer hallmark-related pathways. In summary, dynamic expression analysis will guide both mechanistic and therapeutic roles of m6A regulators during tissue development and cancer progression.
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INTRODUCTION

N6-methyladenosine (m6A) is the most abundant RNA modification and has been shown to play important roles in development and cancer (Dominissini et al., 2012; Meyer et al., 2012). RNA methylation has been shown to be catalyzed by a multicomponent methyltransferase complex, including METTL13/14 and WTAP (Liu et al., 2014). RNA methylation has been found in thousands of coding and non-coding genes. However, we still lack knowledge about the functions of m6A regulators in development and cancer.

Numerous studies have shown that m6A regulators were widely perturbed in various types of cancer. METTL3 and IGF2BP2 (insulinlike growth factor 2 MRNA-binding protein 2) were overexpressed in colorectal cancer and promote the cancer progression (Li et al., 2019). WTAP was also shown to lead to suppression of ETS1 and contribute to the proliferation of liver cancer (Chen et al., 2019b). Xu et al. found that 19 m6A regulators were highly expressed in glioma tissues, and the expression of regulators was associated with prognoses and grade (Xu et al., 2020b). One recent study has revealed an essential role of YTHDF1 in the progression of hepatocellular carcinoma (Liu et al., 2020). RNA methyltransferase METTL3 has been found to facilitate colorectal cancer by activating m6A-GLUT1-mTORC1 axis and is a therapeutic target (Chen et al., 2020). Moreover, we recently performed comprehensive characterization of m6A regulators in 33 cancer types and found that there were widespread expression perturbation of m6A regulators in cancer (Li et al., 2019a). However, there has been no research that comprehensively explored the expression landscape of m6A regulators during human tissue development.

In this study, we performed a comprehensive evaluation of the expression of m6A regulators across multiple human tissues development and cancer. We found that the m6A regulators exhibited decreased expression after born. Moreover, m6A regulators were up-regulated in cancer, which suggests an oncofetal reprogramming mechanism in cancer. Moreover, we investigated the association between the expression of m6A regulators and patient survival. Our comprehensive analysis of the dynamic expression of m6A regulators provided novel insights into their function in development and cancer.



MATERIALS AND METHODS


Transcriptome During Human Tissue Development

Gene expression data across human tissue development were downloaded from ArrayExpress with the accession code E-MTAB-6814 (Cardoso-Moreira et al., 2019). The samples were started from prenatal development at 4 weeks postconception (WPC) to 20 WPC. Moreover, postnatal samples were also sampled, including infants, toddlers, school, teenagers, and adults from each decade until 65 years of age. There were seven human tissues analyzed, including brain, cerebellum, heart, kidney, liver, ovary, and testis. In total, 297 human samples were sequenced by RNA-Seq. Gene expression levels were calculated as reads per kilobase of exon model per million mapped reads.



Gene Expression in Human Cancers

We downloaded the gene expression across human cancer types from The Cancer Genome Atlas (TCGA) project (Cancer Genome Atlas Research et al., 2013). According to the tissues in human development, we considered eight cancer types, including kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), kidney chromophobe (KICH), brain lower grade glioma, glioblastoma multiforme, ovarian serous cystadenocarcinoma, liver hepatocellular carcinoma (LIHC), and testicular germ cell tumors. Gene expression levels were calculated as fragments per kilobase of exon model per million mapped fragments. Moreover, we downloaded the clinical information of patients, including the survival time, survival status from TCGA project.

To validate the expression of IGF2BPs regulators across cancer types, we collected gene expression data across ~7,400 samples representing 11 cancers. Gene expression data were collected from Gene Expression Omnibus. To minimize interplatform variation, only datasets generated from the Affymetrix Human Genome U133 Plus 2.0 Array were processed to develop the meta-dataset (Bin Lim et al., 2019). Each dataset was preprocessed with RMA normalization, merged, and batch effect–corrected via Combat method (Leek et al., 2012).



Collection of m6A Regulators

The gene list of m6A regulators was obtained from one of our studies (Li et al., 2019b), which curated a catalog of 20 genes that function mainly as regulators of RNA methylation. In total, there were 11 readers, 7 writers, and 2 erasers. All these gene symbols were converted into Ensemble gene IDs and HGNC symbols based on annotation from GeneCards (https://www.genecards.org/).



Differential Expression Analysis

To evaluate whether the expression of m6A regulators exhibits differential expression between normal and cancer, we used the Wilcoxon rank sum test to compare the expression levels. Here, only cancer types with more than five normal samples were analyzed. The gene expression of m6A regulators across normal or cancer samples was shown by box plots.



Genome Alteration of m6A Regulators

To explore the genome alteration of m6A regulators, we used the cBioPortal tool (Gao et al., 2013), which provided a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomic data. The gene symbols of m6A regulators were used as input, and TCGA pan-cancer datasets were used. The genome alteration frequency of m6A regulators was calculated and plotted as bar plot. Here, genetic mutations and copy number variation were considered.



Survival Analysis

To explore whether the expression of m6A regulators was associated with patient survival, we divided all the patients into two groups based on the median expression of each m6A regulator. The log-rank test was used to test the difference survival rates between two groups. This process was performed by the survival package in R program (https://cran.r-project.org/web/packages/survival/index.html). The p < 0.05 was considered as significant. The odds ratios and 95% confidence levels were also calculated and shown by ggplot2 package in R program (Wickham, 2009).



Function Prediction of Regulators

To predict the function of m6A regulators in human development and cancer, we first calculated the Spearman correlation coefficient (SPCC) between the expression of m6A regulators and other protein coding genes. All the genes were ranked by SPCC and subjected to preranked Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003; Subramanian et al., 2005). The cancer hallmark-related functions were considered (Liberzon et al., 2011, 2015). Gene sets with more than 5 genes and fewer than 1,500 genes were considered. We performed 1,000 times randomization. The normalized enrichment scores of GSEA were shown by “pheatmap” function in R program (https://cran.r-project.org/web/packages/pheatmap/index.html).




RESULTS


Dynamic Expression of m6A Regulators During Tissue Development

RNA methylation is the most abundant modification and play important roles in various types of biological processes, including tissue development and cancer. We first characterized the dynamic expression m6A regulators across multiple human tissue development (Figure 1A). In total, 297 samples in seven tissues were collected and sequenced by RNA-Seq. We first divided the samples into two main groups: prenatal vs. postnatal. Next, we collected 20 m6A regulators from literature. These regulators were classified into reads, writers, and erasers (Figure 1B).


[image: Figure 1]
FIGURE 1. Dynamic expression of m6A regulators during tissue development. (A) Heat map showing the number of samples in different development stages of multiple tissues. (B) Pie chart for the number of m6A regulators, including 11 readers, 7 writers, and 2 erasers. (C) Heat maps showing the expression of m6A regulators in different tissues. The prenatal and postnatal samples were indicated with red and blue colors.


Next, we clustered the samples in different tissues based on the expression of m6A regulators. We found that the prenatal and postnatal samples were clearly distinguished from each other (Figure 1C). Globally, the m6A regulators exhibited higher expression in prenatal samples than postnatal across all tissues. These results suggest that m6A exhibited decreased expression after birth. Particular, this trend was much clearer in brain and heart tissues (Figure 1C). Moreover, we found that ALKBH5 exhibited lower expression in prenatal samples. All these results suggest that there might be great changes of RNA methylation during tissue development.



IGF2BP1/2/3 Exhibit High Expression in Prenatal Tissues

Based on global heat map of the expression of m6A regulators, we found that they exhibited higher expression in prenatal samples. Particularly, we revealed that three readers IGF2BP1, IGF2BP2, and IGF2BP3 showed higher expression in prenatal samples across all tissues. Next, we comprehensively compared the expression levels of three IGF2BPs across seven tissues. We found that all three genes exhibited significantly higher expression in prenatal samples in all tissues (Figure 2). IGF2BP1 overexpression had been found to cause fetal-like hemoglobin expression patterns in cultured human adult erythroblasts (de Vasconcellos et al., 2017). We found that IGF2BP1 were with significantly lower expression in postnatal samples in brain and cerebellum tissues. We next queried PubMed for exploring the function of IGF2BP1, IGF2BP2, and IGF2BP3 in tissue development. A number of studies have investigated their function in cancer; however, there were limited number of literature were retrieved for tissue development. Taken together, all these results suggest that IGF2BPs exhibit decreased expression pattern during development.


[image: Figure 2]
FIGURE 2. Box plots showing the expression of IGF2BP1/2/3 in prenatal and postnatal samples of different tissues. (A) Expression of IGF2BPs in brain tissues. (B) Expression of IGF2BPs in cerebellum tissues. (C) Expression of IGF2BPs in heart tissues. (D) Expression of IGF2BPs in kidney tissues. (E) Expression of IGF2BPs in testis tissues. (F) Expression of IGF2BPs in liver tissues. ***P < 0.001 for Wilcoxon rank sum test.




Reverse Expression of IGF2BP1/2/3 in Cancer

As evidence has shown important roles of IGF2BP1, IGF2BP2, and IGF2BP3 in cancer, we next explored their expression in various types of cancer. Here, we analyzed four cancer types with more than five normal samples. In contrast to tissue development, we found that these three genes exhibited significantly higher expression in cancer samples (Figure 3). These results suggest oncofetal reprogramming of the m6A regulators in cancer. This is consistent with one recent study, which revealed an oncofetal reprogramming of the tumor ecosystem in hepatocellular carcinoma (Sharma et al., 2020).


[image: Figure 3]
FIGURE 3. Box plots showing the expression of IGF2BP1/2/3 in cancer and normal samples. (A) Expression of IGF2BPs in KIRC. (B) Expression of IGF2BPs in KIRP. (C) Expression of IGF2BPs in KICH. (D) Expression of IGF2BPs in LIHC. ***P < 0.001 for Wilcoxon rank sum test. N.G. indicates not significant.


Particularly, we found that IGF2BP3 exhibited significantly higher expression in three kidney cancers and liver cancer (Figure 3). Several studies have shown that IGF2BP3 promote the stability and storage of target mRNAs, for example, MYC, and therefore affect gene expression output (Huang et al., 2020). They play critical oncogenic functions in cancer. Moreover, the depletion of IGF2BP1 had been shown to lead to an increased HULC half-life and expression, which is a long non-coding RNA highly up-regulated in liver cancer (Hammerle et al., 2013). Next, we validated the expression of IGF2BPs in another 11 cancer types. We found that IGF2BPs generally exhibited higher expression in cancer (Supplementary Figures 1–3). Taken together, these results indicated the IGF2BPs exhibited higher expression in prenatal samples and cancer patients, which might play important roles in oncofetal reprogramming in cancer.



Clinical Associations of IGF2BP1/2/3

Our analysis reveals higher expression of IGF2BP1/2/3 across cancer types; however, we still lack knowledge about their regulatory mechanisms in cancer. We next explored the genome alterations of IGF2BPs across cancer type. We found that there were wide genome alterations of IGF2BPs in cancer (Figure 4A). Particularly, the alteration frequencies were higher in lung cancer, ovarian cancer, and uterine cancer. Moreover, these genes exhibited higher frequency of copy number amplification than mutations. Particular, there were more mutations that occurred in the KH_1 domain in IGF2BP1. The R452C mutation exhibited the highest frequency across all TCGA cancer patients (Supplementary Figure 4). Mutually exclusive or co-occurring somatic alterations across genes suggest functional interactions in cancer (Canisius et al., 2016). We thus investigated the mutual exclusiveness and co-occurrence of m6A regulators in cancer. We found that the majority (179/190) of the regulator pairs were mutually exclusive or co-occurred (Supplementary Table 1), suggesting the functional cross-talk among regulators.


[image: Figure 4]
FIGURE 4. Genetic alterations and clinical association of IGF2BPs in cancer. (A) Bar plots showing the genetic alterations of IGF2BPs across cancer types. (B) Kaplan–Meier analysis of cancer patients in the IGF2BPs altered and unaltered groups. (C) Odds ratios of IGF2BPs across cancer types. (D) Kaplan–Meier analysis of KIRC cancer patients in the IGF2BP1 high expression and low expression groups. (E) Kaplan–Meier analysis of KIRC cancer patients in the IGF2BP2 high expression and low expression groups. (F) Kaplan–Meier analysis of KIRC cancer patients in the IGF2BP3 high expression and low expression groups.


Next, we explored whether the genomic or transcriptome alterations of IGF2BPs were associated with clinical survival. We found that the patients with genomic mutations or copy number alterations exhibited worse survival that the unaltered patients (Figure 4B, log-rank test p = 0.0302). Moreover, we used the log-rank test to evaluate the association between IGF2BPs and patient survival. We found that patients with higher expression of IGF2BPs showed worse survival in multiple cancer types (Figure 4C, Supplementary Figure 5). Particularly, patients with higher expression of IGF2BPs were with higher risk in KIRC (Figures 4D–F, log-rank test p = 0.002, 0.0006, and 2.11E-7). All these results suggest that IGF2BPs play oncogenic roles in cancer and are potential risky prognostic factors.



Potential Functions of IGF2BP1/2/3 in Development and Cancer

Integration of transcriptome during tissue development, we revealed the dynamic expression of IGF2BPs. However, their functions are still less investigated in development and cancer. Thus, we next predicted the potential functions of IGF2BPs in development. We first calculated the correlation between the expression of IGF2BPs and other protein coding genes. Genes were ranked and subjected into GSEA analysis. Here, 50 cancer hallmark-related gene sets were considered. We found that genes positively correlated with IGF2BPs were significantly enriched in mitotic spindle, G2M, checkpoint, and E2F targets across tissues (Figure 5A and Supplementary Figures 6, 7). In addition, genes negatively correlated with IGF2BPs were significantly enriched in oxidative phosphorylation in kidney and liver tissues (Figure 5A).


[image: Figure 5]
FIGURE 5. Gene set enrichment analysis of genes correlated with IGF2BPs in different tissues. (A) Heat map showing the normalized enrichment scores of GSEA. Functional pathways with FDR <0.05 were indicated with red stars. Each row represents one cancer hallmark-related pathway and each three column corresponding to one tissue. The first column is for IGF2BP1, second column is for IGF2BP2, and third column is for IGF2BP3. (B) GSEA plots showing genes correlated with IGF2BP1 in kidney development enriched in G2M checkpoint pathway. (C) GSEA plots showing genes correlated with IGF2BP2 in kidney development enriched in G2M checkpoint pathway. (D) GSEA plots showing genes correlated with IGF2BP3 in kidney development enriched in G2M checkpoint pathway. **p < 0.05 for GSEA.


Next, we explored the G2M checkpoint pathway in detail. We found that the expression of IGF2BP1 was positively correlated with MEIS1, MTF2, and EZH2, which were significantly enriched in G2M checkpoint (Figure 5B, p < 0.001). Moreover, the expression of IGF2BP2 was positively correlated with PAFAH1B1, CDC7, RPS6KA5, BARD1, and RBL1, which were enriched in G2M checkpoint (Figure 5C, p < 0.001). For IGF2BP3 regulator, the top positively correlated genes included SMAD3, ODC1, SLC7A1, and YTHDC1 (Supplementary Figures 8, 9). These genes were also enriched in G2M checkpoint pathway (Figure 5D, p < 0.001). We next compared the top 10 leading edges for IGF2BP1/2/3 and found that there was no overlapping gene. These results suggest that IGF2BP1/2/3 might regulate different genes in the same pathway and play important roles in tissue development and cancer.

To further understand the clinical implications of IGF2BPs in cancer, we next examined the correlation between IGF2BPs and 150 clinically actionable genes (Liberzon et al., 2015) and observed that IGF2BPs frequently interacted with actionable genes (Supplementary Figure 10). For example, IGF2BP1 interacts with PTEN, MYC, CDH1, and CTNNB1. IGF2BP2 interacts with CDKN2A, CDKN2B, and EGFR. Together, these results suggest a diverse potential of IGF2BPs in the development of novel treatment strategies.




DISCUSSION

The importance of m6A as a posttranscriptional modification in regulating RNA expression has been well-appreciated (Meyer and Jaffrey, 2014), but its global function and regulation in development remain largely unknown. This might be in part because of insufficient data of m6A regulation in human tissue development. Evidence has shown that the m6A modification is mainly determined by the expression of regulators, such as readers, writers, and erasers (Huang et al., 2018). Here, we comprehensively characterized the expression of m6A regulators during tissue development and cancer. We found that m6A regulators globally exhibited decreased expression during development in multiple tissues. However, they reversed their expression in cancer, suggesting an oncofetal reprogramming pattern. Moreover, we revealed IGF2BPs in development and cancer, providing potential therapy targets for cancer.

Given that m6A regulators exhibited widespread perturbations in expression, we explored the potential mechanism for regulating their expression. We found that IGF2BPs were with higher frequency of genomic alterations, particular copy number amplification across cancer types. This is consistent with one of recent studies (Li et al., 2019b). Although we revealed the expression perturbation of m6A regulators during tissue development and cancer, we cannot evaluate their direct function in downstream targets. This is mainly because we still lack paired m6A modification data in tissue development. Xia et al. had generated 21 whole transcriptome m6A methylomes across major fetal tissues (Xiao et al., 2019); however, no adult tissues were included. Moreover, Zhang et al. generated 27 m6A methylomes across major adult tissues (Zhang et al., 2020a). Besides of protein coding genes, noncoding RNAs have been found to play important roles in development and cancer (Li et al., 2020; Xu et al., 2020a; Zhang et al., 2020b). Integration of these data in future will provide novel insights into the roles of m6A regulators in development and cancer.

Moreover, we found that IGF2BPs might regulate the same pathway through different genes, suggesting their cooperative regulation. Cooperative regulation has been revealed for number of regulators, such as enhancer (Chen et al., 2019a), miRNA (Xu et al., 2011; Shao et al., 2019), and RBPs (Li et al., 2019a). Investigation of the cooperative regulation between m6A regulators will identify novel regulatory modules that play important roles in tissue development and cancer. For example, Rao et al. have revealed that cross-talk among writers, readers, and erasers can regulate cancer growth and progression (Panneerdoss et al., 2018). Despite these recent developments, much effort needs to be done to understand the downstream targets of the altered m6A regulators. With the increase of m6A methylome and functional datasets, we will get much more insights into the cooperative regulation among regulators, as well as their regulation to RNA methylation.

In summary, our comprehensive analysis of the dynamic expression of m6A regulators during human tissue development and cancer reveals their important roles. Particularly, IGF2BPs exhibited decreased expression in tissue development and reversed expression in cancer. Expression perturbation of IGF2BPs was correlated with cancer-related functions and associated with clinical survival in cancer.
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Single-nucleotide polymorphisms (SNPs) of microRNA (miRNA) (miRSNP) are SNPs located on miRNA genes or miRNA target sites, which have been supposed to be involved in the development of central nervous system diseases by interfering with miRNA-mediated regulatory functions. However, the association of miRSNP with post-stroke depression (PSD) has not been well-investigated. In this study, we collected 54 PSD risk genes via manual literature-mining and integrated PSD-related risk pathways based on multiple public databases. Furthermore, we systematically screened candidate functional miRSNPs for PSD and integrated a miRSNP-based PSD-associated pathway network, which included 99 miRNAs that target 12 PSD risk pathways. We also reviewed the association between three risk pathways and PSD pathogenetic mechanism thoroughly. Combining literature mining and network analysis, our results proposed an underlying mechanism of “miRSNP → miRNA → risk gene → pathway” axis effects on PSD pathogenesis, especially for rs28457673 (miR-15/16/195/424/497 family) → IGF1R → hsa04010 (MAPK signaling pathway). Our studies revealed a functional role in genetic modifier at the system level in the pathogenesis of PSD, which might provide further information for the miRSNP studies in PSD.

Keywords: post-stroke depression (PSD), pathway, network, risk gene, miRSNP


INTRODUCTION

Globally, stroke is the second leading cause of mortality and has been identified as the third-most leading factor accounting for subsequent disability (Mboi et al., 2018). Post-stroke depression (PSD) has been noted to occur in nearly 30% of survivors of stroke and is one of the most frequent complications. PSD often leads to greater incidence and degree of disability, increased recurrence of stroke, and increased mortality, all of which pose significant challenges for clinicians tasked with treating patients (Hackett et al., 2005). Emerging experiments have demonstrated that genetic risk plays an important role in the dynamics underlying the progress of PSD. Further, many types of single-nucleotide polymorphisms (SNPs) are considered as likely role players in the dynamics and mechanistics underlying the pathogenesis of PSD (Kim et al., 2012; Zhiming Zhou et al., 2015; Liang et al., 2018), which includes SNP variants in inflammatory cytokine genes (Kim et al., 2012) and for genes in the nerve growth factor family (Liang et al., 2018). Recently, molecular biology and genetic factors have facilitated insights into PSD; however, the exact mechanisms and dynamics underlying the onset, development, and progression of PSD remain unclear.

MicroRNAs (miRNAs) are a type of single-stranded RNA composed of 18–25 nucleotides and play key roles in post-transcriptional gene expression, regulation of brain function, and disease occurrence (Bhalala et al., 2013). In recent years, research has found a close relationship between miRNAs and stroke incidence. For example, miR-124, miR-140-5p, miR-210, and other miRNAs have been identified as potentially important role players. Furthermore, previous research has also indicated that abnormally expressed miRNA may facilitate or induce the onset of and may foster the progression of PSD. For instance, results from microarray-based assays indicated the presence of 54 miRNAs and 10 miRNAs that were significantly dysregulated and were indicative of early- and late-onset PSD, respectively (Liang et al., 2019). Moreover, findings have indicated that miR-140-5p was up-regulated in PSD, and receiver operating characteristic (ROC) curves indicated that miR-140-5p predicted the occurrence of late-onset PSD with a highest sensitivity of 83.3% and a high specificity of 72.6% [Area Under the Curve (AUC) = 0.813, P < 0.0001]. Furthermore, overexpression of miR-140-5p in PSD also induced the inhibition of neurogenesis and capillary density. Altogether, these and other similar findings indicated that miRNAs play an important role and may significantly affect the dynamics underlying the pathogenesis of PSD.

MiRNAs are thought to mainly exert their functionality through complementarity base pair binding with the 3′ regulatory region of mRNA transcripts (Bartel, 2009). Thus, it is feasible that miRNA-associated SNPs (miRSNPs) might affect the expression of miRNA and dynamics of its processing. Based on their locales, the classification of miRSNPs into SNPs within miRNA producing genes and within miRNA target sites has been made (Saunders et al., 2007). Accumulating evidence has suggested that miRSNPs are significant role players in the pathogenic dynamics of the central nervous system (CNS), such as stroke, depression, and so forth. For instance, SNP rs3735590, located within the site of binding for miR-616 and the 3′-UTR of PON1, has been identified to induce an increase in the levels of expression of PON1 and has been significantly associated with high risk for ischemic stroke (Liu et al., 2013). Additionally, SNP rs2682818 of miR-618, is known to induce a higher level of expression of target genes that have correspondingly been associated with the recurrence of ischemic stroke (Zhang et al., 2017). Another SNP, BDNF Val66Met, by way of affecting the expression of miR-146b, induced increases in the levels of Per1 mRNA, Npas4 mRNA, and Irak1 proteins, which have been associated with greater risk for depression (Hsu et al., 2015). However, thus far, the miRSNPs potentially associated with individual genes or which could influence the dynamics of molecular pathways involved in PSD are not fully elucidated.

Herein, we sought to identify a potentially interesting set of candidate functional miRSNPs and to integrate them into a miRSNP-based PSD-associated pathway network. We expected that our findings could contribute explanations of the potential mechanisms and functional roles that miRSNPs play in PSD pathogenesis.



MATERIALS AND METHODS


Collection of Human Genes Indicative of the Risk of PSD

We acquired data for human genes from the GeneCard databases (www.genecards.org). We next systematically searched publicly available data in PubMed (www.ncbi.nlm.nih.gov/pubmed) with a focus upon PSD-related genes and PSD-related literature published before July 1, 2019. We used the following search terms and criteria “((“Depression”[Mesh]) AND “Stroke”[Mesh]) OR by using the search term post-stroke depression OR by using post stroke depression).” In all cases, we applied the “AND” setting to filter results only for English (language). Then, we carefully read the abstract and full text and collected information for genes that had indicated a risk for PSD. We filtered results for inclusion based upon the following criteria: (i) the sum total of PSD samples exceeded five (including for samples of peripheral blood, or cerebrospinal fluid, and/or brain tissue), (ii) differences between PSD afflicted patient samples and unaffiliated control patient samples were considered significant at a P-value of <0.05 (for measures of the levels of mRNA or proteins), and (iii) genes documented and selected were composed of SNPs known to be significantly associated with PSD afflicted patients or similar subgroups. All genes that were selected were further assessed through typical and standardized methods, such as by the use of PCR, Western blotting, and others, and were statistically significant compared with results for controls.



Functional Enrichment Analyses of PSD Risk-Related Genes

In order to assess the possible functions of PSD risk-related genes, we used the Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment in conjunction with the clusterProfiler package in R software. We assessed measures of statistical significance by using the Benjamini and Hochberg false discovery rate (FDR) (adjusted P < 0.01 was considered as the level of significance).



miRNA and miRNA Target Gene Data

We downloaded human miRNA annotations from MirBase (http://www.mirbase.org/). We obtained human miRNA target gene pairs using 10 publicly available informatics-based tools, including from TargetScan, RNAhybrid, mirSVR, RNA22, DIANA-microT, TargetMiner, PicTar5, MirTarget2, PITA, and miRanda. We selected gene pairs for target miRNA, as well as selected those predicted at least 4 of the 10 informatics tools. Then, we applied the KEGG pathway enrichment analysis to identify pathways significantly enriched with miRNA respective of individual target genes.



Data Analysis for miRSNPs

We used information from databases, including PolymiRTS (version 3.0), miRNASNP (version 3.0), MirSNP, and MSDD (http://www.bio-bigdata.com/msdd/), to predict miRSNPs within target sites of miRNA. We also selected miRSNPs located within miRNA genes determined from three databases [miRNASNP (version 3.0), PolymiRTS (version 3.0), and MSDD]. Concerning the above types of mentioned miRSNPs, we selected potential miRSNPs validated by experiments or that we had data that indicated they may potentially affect miRNA–mRNA interactions and required that these predictions were confirmed by at least two databases.



Cumulative Hypergeometric Distribution

We used a cumulative hypergeometric test to analyze the crosstalk of relationships between PSD risk pathways. We calculated measures for P-values based upon the following equation:
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When we analyzed pathways for measures of crosstalk, we considered that the entire human genome had m genes, one risk pathway had j genes, that another risk pathway had N genes, and lastly, x was a numerical representation of shared genes between each of these two pathways. We analyzed measures of significance for correlations between different pathways for PSD risk and for all remaining pathways. Likewise, in order to identify miRNA targeting pathways, we considered that the entire human genome had m genes, given pathways had j genes, given miRNA had N target genes, and lastly denoted x to represent the total number of target genes confirmed as being involved in the pathway. For assessments of measures of crosstalk among PSD risk pathways or miRNA targeting pathways, we used the Benjamini and Hochberg FDR (adjusted P < 0.01 was considered significant).




RESULTS


Manually Derived Human PSD Risk-Related Genes

We collected 54 PSD risk genes via a systematic search of published literature and through manual data mining (detailed information of risk-related genes is listed within Supplementary Table 1). Results from analyses of GO indicated that PSD risk-related genes were enriched significantly with respect to: inflammatory response, serotonin receptor-based signaling pathways, and apoptosis regulation (Supplementary Table 2), which coincided with already existent knowledge about the dynamics of the pathogenesis of PSD.



Identifying Human PSD Risk Pathways

Results from pathway enrichment analyses based upon the PSD risk-related genes indicated that there were 22 PSD risk-related pathways (Table 1). Approximately 57.4% of the risk-related genes (31/54) were statistically significantly associated with these pathways (value of FDR <0.01), which provided an overview of PSD pathogenesis. In addition, we found that most pathways were included in categories defined within “Environmental information processing → signal transduction,” which highlighted fundamental characteristics of signal transduction PSD. Likewise, most pathways were included within categories for “Organismal Systems → aging,” which highlighted the fundamental characteristics of age and its relationship in PSD.


Table 1. Enriched KEGG pathway of PSD risk genes.
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We also examined measures of crosstalk, examined relationships among PSD risk-related pathways, and constructed a network of pathways that had crosstalk (Supplementary Table 3, Figure 1A). The resultant network indicated crosstalk and significant interactions for most biological pathways. There were 11 pathways that each had interactions with greater than three other pathways. Biological pathways involved in signal transduction for hsa04151 (PI3K-Akt signaling pathway) had widely interactions with five other pathways. We found that both hsa04015 (Rap1 signaling pathway) and hsa04014 (Ras signaling pathway) were themselves widely correlated with four other different pathways (Figure 1B). Collectively, our novel results indicated that the PSD risk-related pathways we identified and assessed may act synergistically and affect the dynamics of the pathogenesis of PSD, especially in regard to pathways that function in signal transduction.


[image: Figure 1]
FIGURE 1. Analysis of crosstalk among PSD-related network pathways. (A) We analyzed crosstalk networks by cumulative hypergeometric tests and visualized results by using the Cytoscape software. Ellipses represent the pathways, lines are representative of measures of the correlation between two pathways, and the thickness of the line is representative of the strength of associations. (B) Bars represent the distribution of pathway crosstalk for each pathway.




Construction of the Network for miRNA-Mediated SNP Switching Pathways

An accumulating body of evidence has indicated that miRNAs play a crucial role in the dynamics underlying the pathogenesis of PSD. Thus, to better understand miRNAs' roles in PSD dynamics, we constructed a pathway network, which included 99 miRNAs, 12 PSD risk pathways, and 253 significant miRNA pathway pairs (Supplementary Table 4). Due to the possible roles of miRSNPs with respect to increasing the susceptibility and incidences of PSD, we constructed a pathway-based miRSNP switching network (PMSN), which we used to help us to assess measures of the impact of miRSNPs on PSD at a level corresponding to pathways (Figure 2A). Based upon resultant data from four relevant miRSNP databases, we retrieved candidate functional miRSNPs corresponding to 99 miRNAs. As a result, we gained an additional 42 miRSNPs located within target sites of miRNA and identified 12 miRSNPs within genes coding for miRNA and which might be consequently targeted in future research such as to assess if the targeting could affect the functions and dynamics of the pathways.


[image: Figure 2]
FIGURE 2. The pathway-based miRSNP switching network (PMSN) and respective topological properties. (A) The network of PMSN. The orange-colored rhombus is representative of the pathways, the violet circles represent the miRNA, and the differences in sizes of the node were used to represent the degree of the node. We used red lines to represent the miRSNPs within miRNA target genes for relationships between miRNAs and respective pathways containing target genes, whereas we used red circles placed around violet circles to represent the miRSNPs within miRNA genes. (B) The bars represent the distribution of miRNAs' degree. (C) The bars represent the distributions of the degrees of the pathways. (D) Distribution of the degrees of the nodes of PMSN and of the representative fitted curve. (E) Measures of distributions of betweenness centrality of PMSN and of the representative fitted curve.


Next, we completed in-depth analyses of the PMSN. In order to first calculate the degree of risk, we assessed PSD-related pathways (Figure 2B) and miRNA (Figure 2C) and identified particular miRNAs or pathways with the highest linkages. Four pathways including for (1) hsa04010: MAPK signaling pathway, (2) hsa04151: PI3K-Akt signaling pathway, (3) hsa01521: EGFR tyrosine kinase inhibitor resistance, and (4) hsa05215: prostate cancer were in sum found to have accounted for ~79% (78 out of 99) of the total miRNAs. These results indicated that the above four pathways were increasingly susceptible to regulation by the associated miRNAs. The miRNA degree analyses (Figure 2B) indicated that 38 miRNAs interacted with greater than 3 PSD risk pathways. An interesting finding was that miR-15b regulated 10 PSD risk-related pathways (Figure 2A), which indicated that they may have potential prominent roles as genetic regulators influencing measures of the pathogenesis of PSD. Furthermore, we assessed topological properties resultant from network-based analyses of PMSN. Distribution of degrees (Figure 2D) and betweenness centrality distributions (Figure 2E) both indicated that the PMSN had characteristic features of both small-scaled networks and scale-free networks. This signifies that hub nodes, including miRNA and risk-related pathways, had higher degrees and betweenness of centrality as well as had significant roles in the dynamics of the PMSN. These results suggested that the hsa04010: MAPK signaling pathway played a potentially important role in the dynamics related to PSD as this factor had the highest measures of betweenness centrality in our network.



Analyses of the Potential Mechanisms Underlying a Polymorphic “Switch” Influencing the Regulation of miRNAs' in PSD Risk-Related Pathways
 
Hsa04010 Pathway in PSD

Based upon the above analyses, the hsa04010: MAPK signaling pathway had extremely important significance in the dynamics underlying the pathogenesis of PSD. As it was regulated by maximum numbers of miRNA, of which ~47% of the whole sum were found to have been predictive of miRNAs, the result highlighted its potential effects upon PMSN topological analyses. Therefore, we conducted a thorough analysis of this pathway, as well as investigated the locations of miRSNPs in the map for the KEGG pathway (Figure 3A).


[image: Figure 3]
FIGURE 3. A depiction of the MAPK signaling pathway in the KEGG database. (A) We represented proteins or associated complexes that were encoded by PSD risk-related genes with a blue background, whereas we used red characters to represent the respective genes that encode them and that also contained miRNA target genes composed of miRSNPs located within their 3′-UTR regions. (B) Diagram of the schematics of the miRSNP–miRNA–gene–pathway axis. We used red lettering to represent high-risk genes and used blue circle to indicate their respectively identified regulatory miRNAs. We identified links between them seen in the connecting lines and which are indicative of the dynamics of regulatory influences of miRNAs upon the genes. The symbol representative of the switch is located upon the line showing the trend for mean values of the miRSNPs. We used the relatively large-sized circles on the peripheral in order to help denote the pathways miRSNPs that may have had important influences by way of their observed effects upon the ability of miRNAs to regulate target genes. We used orange-colored stars placed below miRNAs in order to represent the literature that reported miRNAs that have been characterized to significantly influence the regulation of target genes.




IGF1R, BNDF, and NTRK2 in PSD

From analyses of hsa04010 (MAPK signaling pathway), we identified three PSD high-risk genes, including IGF1R, BNDF, and NTRK2 that concurrently contained miRSNPs in their respective 3′-UTR regions (Figure 3A). We further characterized measures of the potential mechanisms of the miRSNP → gene → pathway effect because the miRSNPs might impact PSD pathway by way of regulating functions of specific genes (Figure 3B). The three high-risk genes were found to be regulated by nine miRNAs, whereas five of those miRNA target gene pairs were reported through experimental validation (Figure 3B). Meanwhile, we identified seven miRSNPs within target sites for miRNA that might have affected the levels of expression of respective target genes and biological functions, which would further influence the status of hsa04010 (MAPK signaling pathway) in PSD. However, hsa04010 (MAPK signaling pathway) might not be the only signaling pathway that was influenced in such a manner, especially since the hsa04151 (PI3K-Akt signaling pathway) and the hsa01521 (EGFR tyrosine kinase inhibitor resistance) might have also been affected by IGF1R (via miR-15a, −15b, −16, −195, and −497 and their miRSNPs) and BNDF (via miR-15a, −15b, −424, and −497 and their miRSNPs). Overall, IGF1R, BNDF, and NTRK2 might have played a relatively critical role in the dynamics underlying the pathogenesis of PSD and may have been regulated by various types of miRNAs and miRSNPs, thereby consequently influencing several important PSD risk-related pathways.




miRSNPs' Roles in the Dynamics of PSD

Interestingly, after further in-depth analysis of these miRSNPs, we found that rs28457673 is one such variant located in the 3′-UTR of the IGF1R gene, which could affect the binding ability of IGF1R mRNA as well as affect several different miRNAs (including miR-15a/b, −16, −195, and −497) (Figure 4). We found it to be noteworthy that these miRNAs are members in a class of the family of miRNAs, including for the miR-15/16/195/424/497 family. Also noteworthy is that members of this family contain highly similar seed sequences that act so as to recognize the 3′-UTR of the target genes. Moreover, members in this family also have been reported to act in synergy such that they regulate multiple downstream target genes (Linsley et al., 2007). For instance, miR-497 is known to be able to target the 3′-UTR of IGF1R and induce the down-regulation of the levels of expression of IGF1R (Guo et al., 2013; Henghui Cheng et al., 2017); in addition, a study reported that miR-16-5p targeting IGF1R resulted in a significant induction of neutrophil apoptosis (Guo et al., 2013). Based on the above evidence, we have reason to speculate that the other three miRNAs could be able to down-regulate IGF1R. Altogether, these findings suggested that the underlying mechanism: rs28457673 (miR-15/16/195/424/497 family) → IGF1R → PSD risk-related pathways could be key role players influencing the dynamics underlying the pathogenesis of PSD.
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FIGURE 4. A depiction of MAPK signaling pathway dysregulation and miRNAs in the KEGG database. (A) The green-colored background and miRNAs are representative of miRNA target genes that are known to contain miRSNPs located within their 3′-UTR regions. (B) A model illustrating the potential underlying mechanisms of rs28457673 that likely played an important role in influencing the levels of expression of IGF1R via associated interactions with members of the miR-15/16/195/497 family.


Another important gene indicative of high-risk in CNS is BNDF, which encodes for a member of the nerve growth factor family of proteins. Meta-analyses have indicated that PSD afflicted patients had lower levels of BDNF in serum samples (Xu et al., 2018). As has been documented in the literature, several miRNAs are able to regulate the levels of expression of BDNF. Of note, miR-124 is the most understood and characterized of such types of miRNA and is known to induce the down-regulation of BDNF in human neuronal cell lines (Wang et al., 2019). Additionally, previous research has indicated that miR-124 can serve as a biomarker to diagnose depression, and that the inhibition of miR-124 may help relieve depression by way of regulating the BDNF-TrkB signaling pathway (Wang et al., 2017). rs531564 is known to be a functional SNP in MIR124-1, and known targets of miR-124 (e.g., BDNF and DRD4 genes) were able to explain measures of the effects of this miRNA upon consequent behavior (Gonzalez-Giraldo et al., 2015). Altogether, the above information enhances our understanding of the possible dynamics underlying the fundamental mechanisms and effects of the miRSNP-miR-124 → BDNF → PSD risk-related pathways.

NTRK2 is neurotrophic receptor tyrosine kinase 2; when neurotrophin binds to this receptor, it induces protein kinase-based phosphorylation including of itself and including additional members that are integral parts of the MAPK pathway. MiRSNP rs72739915 variant is within the high-risk gene TrkB (aliases for NTRK2 gene) and might affect the binding of both miR-20b and miR-93 and their target genes and then could influence the hsa04151 (PI3K-Akt signaling pathway). Research has identified miR-93 as a candidate reference miRNA gene useful for the analysis of major depressive disorder (Liu et al., 2014). Furthermore, miR-93 can regulate neurological function, edema, and apoptosis via its effects upon the TLR4/NF-κB signaling pathway based upon a study of rats with intracerebral hemorrhaging (Shang et al., 2019). Findings have also suggested that miRNA-93 can be effectively used as an indicator from blood samples to help diagnose and predict the expected functional recovery of patients at risk from and recovering from acute stroke (Ma et al., 2019). Altogether, our findings in combination with results from similarly oriented previous research help to strengthen the understanding of the underlying molecular mechanisms playing key roles and having important effects in the miRSNP-miR-20b/93 → NTRK2 → PSD risk pathways.




DISCUSSION

PSD is a complex disease with a typically bad prognosis and high mortality, and the dynamics underlying its pathogenesis remain unclear. Thus, in this study, we compiled a catalog of genes related to the risk of PSD, assessed pathways that were found to be enriched in PSD, and identified miRNAs that appeared to target pathways related to PSD risk. Furthermore, by way of using miRSNP as the breakthrough point and by screening reliable miRSNP databases, our novel findings revealed the dynamics underlying the “miRSNP–miRNA–mRNA–risk pathway” axis (Figure 5). For the first time, we performed a novel systematically-based screening for potential functionally oriented miRSNPs and constructed the PMSN. These steps allowed us to elaborate upon their possible mechanisms and add to the current knowledge of PSD. To increase the depth of our study, we also analyzed the correlation with hsa04010 (MAPK signaling pathway) and PSD development, assessed measures of the significance of three genes known to be high-risk indicators for PSD, and finally examined the potentiality of mechanisms of specific miRSNPs as “switches” acting to regulate miRNAs of the PSD risk pathways.


[image: Figure 5]
FIGURE 5. A model illustrating the miRSNP → miRNA → risk gene → pathway effect PSD.


In total, we identified 22 PSD risk pathways, including those related to the MAPK signaling pathway, serotonergic synapses, and mediators and regulators of inflammation related to TRP channels, and identified other important findings and measures, which contributed to the pathogenesis of PSD. The results may have also helped to inform latent inter-relationships between PSD and various other types of disorders, such as “hsa04610 (complement and coagulation cascades),” which was demonstrated to have had a close connection with PSD at a level corresponding to biological pathways. These findings are in agreement with reports documenting that patients with more significant measures of mean platelet volumes at the time of admission for medical care had a corresponding later onset of PSD 30 days post-stroke (Qiu et al., 2018). The clinical manifestations of PSD are diverse and heterogeneous. The novel pathway-based genetic analyses we used may help to facilitate the comprehension of how PSD evolves and progresses, may help to recognize different and even irrelevant biological processes, and may help to identify pathways responsible for pathogenesis in similar types of diseases. Our findings have broad implications and should help to facilitate the development of new target-based therapies and new individualized therapeutic approaches.

It is well-established that miRNAs facilitate the regulation of gene expression, largely at posttranscriptional levels. A single type of miRNA has the capacity to target a variety of genes, and as a result, miRNA may be involved in regulating various biological pathways, whereas a pathway can be targeted by several miRNAs (Xu et al., 2011). We were able to identify 99 miRNAs, which hold the potential for use in helping to regulate risk pathways for PSD and which we documented to have been more significant than were miRNAs targeting individual genes related to PSD risk. This is also consistent with the results for expression of circulating microRNA profiles in post-stroke patients with early onset of PSD and for target genes of these miRNAs that were found to have been enriched with respect to MAPK-related signaling pathways (Zhang et al., 2016). Accumulating evidence has also indicated that genetic variation in 3′-UTR contributes to the etiology of human diseases (Latini et al., 2017; Wigner et al., 2019; Vad et al., 2020). In recent years, miRSNPs have been recognized as potential genetic risk factors that have been rapidly identified and investigated. However, the frequency of SNPs located in miRNAs is very low. Hence, a study linking miRSNPs to disease that provides a convincing result requires a large sample size and underscores the need to detect low frequencies of variation in genetic-based research (Schizophrenia Psychiatric Genome-Wide Association Study Consortium, 2011). Furthermore, while preliminary dual-luciferase reporter assays have proven useful, clearly, increasingly thorough in vivo and in vitro experiments and approaches are needed in order to confirm the biological function of miRSNPs and their potential roles in PSD.

We analyzed the topological properties of PMSN and identified relatively novel potential significant roles of hsa04010 (MAPK signaling pathway) and for three high-risk genes (IGF1R, BNDF, and NTRK2). Further, we determined measures of associations of miRSNPs in cases of PSD. By searching for mechanisms underlying the dynamics of miRSNPs in genes identified as corresponding to high PSD risk, we were able to identify the three most potentially influential mechanisms related to the effects from the miRSNP → miRNA → risk gene → pathway. These three mechanisms were as follows: (i) rs28457673 (miR-15/16/195/424/497 family) → IGF1R → hsa04010 (MAPK signaling pathway)/hsa04151 (signaling pathway related to PI3K-Akt)/hsa01521 (resistance related to EGFR tyrosine kinase inhibitors), (ii) rs531564 (miR-124) → BDNF → hsa01521 (resistance related to EGFR tyrosine kinase inhibitors), and (iii) rs72739915 → (miR-20b/93) → NTRK2 → hsa04010 (MAPK signaling pathway)/hsa04151 (PI3K-Akt signaling pathway). Especially in relation to the rs28457673 (miR-15/16/195/424/497 family) → IGF1R → hsa04010 (MAPK signaling pathway), rs28457673 is located in the 3′-UTR of the IGF1R gene, which could affect the binding ability of IGF1R mRNA with miR-15/16/195/424/497 family. The activated IGF1R has been implicated in causing the activation of the Ras-MAPK pathway, thus inducing the inhibition of apoptosis and increasing protein synthesis. Previous research has indicated that abnormal IGF1R-mediated signaling in the brain may cause neurological sequelae. Findings also indicated that the inhibition of IGF1R in experimental models led to the partial improvement of neurogenesis and supported that there could be a potentially reversible nature of hippocampal-related changes (Andersson et al., 2018). These information strengthen our understanding of the potential mechanisms and functional roles that miRSNPs play in PSD pathogenesis. However, a lack of concrete and definitive experimental evidence for many of the steps we completed in our research means that the findings should be interpreted with some measures of caution. Regardless, we are certain that our novel approach has helped to demonstrate the value of multi-tiered studies and which has used the availability of richly populated and perhaps otherwise underutilized resources already existent in databases.



CONCLUSIONS

In summary, we developed a catalog of risk based upon genes indicative of a high risk of PSD. We obtained information for PSD risk-related pathways and identified functionally oriented miRNAs and miRSNPs that appeared to have played important roles in the regulation of PSD risk-related pathways. Further, we built the PMSN and helped to elucidate the significant roles that the hsa04010 (MAPK signaling pathway), three high-risk genes, and related miRSNPs may play in PSD by way of examining the potential molecular mechanisms of miRSNPs that could have affected miRNA–mRNA interaction in PSD pathogenesis. The important next steps should include experiments both in vitro and in vivo in order to further confirm the possible roles of miRNAs and miRSNPs and how they may influence the dynamics and mechanisms underlying the onset, progression, and pathogenesis of PSD.
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The hypoxic microenvironment is beneficial to the metastasis but not to the proliferation of cancer cells. However, the mechanisms regarding to hypoxia differentially regulating cancer metastasis and proliferation are largely unknown. In this study, we revealed that hypoxia induced the expression of LIN28A at mRNA level but segregated LIN28A mRNAs in the P-bodies and thus inhibits the production of LIN28A protein. This unexpected finding suggests that there may be non-coding role for LIN28A mRNA in the progression of colon cancer. We further showed that the non-coding LIN28A mRNA promotes the metastasis but not proliferation of colon cancer cells in vitro and in vivo. Mechanistically, we revealed that methionyl aminopeptidase 2 (METAP2) is one of the up-regulated metastasis regulators upon over-expression of non-coding LIN28A identified by mass spectrum, and confirmed that it is non-coding LIN28A mRNA instead of LIN28A protein promotes the expression of METAP2. Moreover, we demonstrated that knockdown of DICER abolished the promotional effects of non-coding LIN28A on the metastasis and METAP2 expression. Conclusively, we showed that hypoxia induces the production of LIN28A mRNAs but segregated them into the P-bodies together with miRNAs targeting both LIN28A and METAP2, and then promotes the metastasis by positively regulating the expression of METAP2. This study uncovered a distinctive role of hypoxia in manipulating the metastasis and proliferation by differently regulating the expression of LIN28A at mRNA and protein level.
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INTRODUCTION

Recent studies demonstrated that hypoxia is a common characteristic of solid malignant tumors and the hypoxic microenvironment is beneficial to cancer metastasis (Dhani et al., 2015). The RNA-binding protein LIN28A has been reported to be associated with poor prognosis and often up-regulated in a variety of malignant tumors (Viswanathan et al., 2009; Salmena et al., 2011; Li et al., 2012b; Wang et al., 2016a) and facilitate cancer metastasis (Wang et al., 2016b). However, it is undetermined if hypoxia promotes cancer metastasis by means of regulating the expression of LIN28A.

It has been demonstrated that gene expression at the mRNA level and the protein level is not parallel in cells (Gedeon and Bokes, 2012; Mertins et al., 2016) and that the post-transcriptional and translational regulations contribute to the different expressional patterns of genes at the mRNA and protein levels (Liu et al., 2016). Hypoxia and other cellular stresses induce the accumulation of the mRNA-processing bodies (P-bodies) in the cytoplasm, the cytoplasmic granules containing non-translating mRNAs toward degradation or translation repression (Andrei et al., 2005; Ferraiuolo et al., 2005; Liu et al., 2005; Teixeira et al., 2005). It is also undetected if the expression of LIN28A gene at the mRNA level and the protein level is parallel in cancer cells under hypoxia.

Additionally, it has been widely acknowledged that LIN28A promotes tumor progression by regulating the translation of its target mRNA and inhibiting the production of let-7 at the post-transcriptional level, a microRNA suppressing tumor progression potently, both mechanisms relying upon the RNA binding motif of LIN28A protein (Wang et al., 2015). The human LIN28A mRNA contains around 4000 nt, and the coding region only takes up about 15% of the full length of the mRNA, it is therefore possible if the human LIN28A mRNA served its functions in a protein-coding-independent manner. However, there have been no such reports documenting the non-coding function of LIN28A mRNA at the moment.

In this study, we examined the roles and molecular mechanisms of hypoxia in regulating the expression of LIN28A in colon cancer and explored the non-coding function and potential mechanisms of LIN28A mRNA in the progression of colon cancer.



MATERIALS AND METHODS


Cell Lines and Colon Cancer Tissues

The human colon cancer cell lines HTC116, SW1116, and HCT15 were purchased from the Cell Lines Service (Cellcook Biotech Co., Ltd., Guangzhou, China) and authenticated by STR. The cells were cultured in 1640 and DMEM (Gibico, NY, United States) containing 10% fetal bovine serum (Gibico) with 100 IU/ml penicillin and 100 μ g/ml streptomycin at 37°C in a 5% CO2 humidified atmosphere. Cells were cultured under 1% O2 or treated with DFO at a final concentration of 130 μ mol/L to mimic the hypoxic environment (Wang and Semenza, 1993).

A total of 46 fresh colon cancer tissue samples were obtained from the Affiliated Tumor Hospital of Harbin Medical University between May 2015 and June 2016. The informed consent was signed by all patients enrolled in this study. This study was approved by the Harbin Medical University Institutional Ethnic Committee.



Lentiviral Vector Construction

The pseudo lentiviruses were prepared and packaged as previously described (Li et al., 2012b). Briefly, the shRNA sequences targeting Dicer were synthesized and inserted into pLKO plasmid (Okada et al., 2019). The ORF of LIN28A was amplified by PCR and inserted into pLVX plasmid (Li et al., 2019). To over-express non-coding LIN28A mRNA, the full length of LIN28A cDNA was synthesis with translation initiation codon replacement (from ATG to TGA) and inserted into the 3′UTR of GFP in the pLVX-GFP plasmid. Then the constructed plasmid was co-transfected into the 293TN cells with packaging plasmids pMD2.G and pSPAX2. The supernatants were collected and used to infect colon cancer cells as previously described (Li et al., 2012b). The PCR primers and shRNA sequences were included in Supplementary Table 1.



Transfection of siRNAs and miRNAs

The siRNAs targeting METAP2 and LIN28A, miR181a mimic, let-7 mimic, and negative control were synthesized by GenePharma (Suzhou, Zhejiang, China). The sequences of these miRNAs and siRNAs were included in Supplementary Table 1. The transfection was mediated by Lipofectamine 2000 (Invitrogen, United States) according to the manufacturer’s protocol.



Mass Spectrum Assay

The proteins were digested with trypsin after quantified and mixed with the same amount of standard proteins (GST and MBP). The resulting peptides were dissolved in 0.1% formic acid and loaded into EASY-nLC 1000 system (Thermo Scientific, Waltham, MA, United States) and chromatographed by elution with a linear gradient of 6% to 80% of acetonitrile in 0.1% formic acid for 40 min. The separated peptides were analyzed in a Q ExactiveTM Plus mass spectrometer (Thermo Scientific, MA, United States) and searched in the Swiss-Prot database using the MASCOT 2.3 search engines.



Total RNA Extraction and Real-Time qPCR Assays

Total RNA was extracted from tissues or cells with Trizol reagent (Invitrogen, United States). RNA was reverse-transcribed into cDNA using reverse Transcriptase M-MLV (Takara, Dalian, China). The relative expression of genes was detected with SYBR Green PCR Mix (Bioresearcher, Beijing, China). Primer sequences were summarized in Supplementary Table 1.



Western Blot Analysis

Total protein was extracted from tissues or cells using RIPA buffer. 40 μg of total protein were separated by SDS-PAGE and then transferred onto PVDF membranes (Bio-Rad, Hercules, CA, United States). Membranes were blocked and then incubated with rabbit anti-HIF1 alpha (GeneTex Inc., CA, United States); rabbit anti-LIN28A (Abcam, Cambridge, United Kingdom); rabbit anti-METAP2 (Abcam); mouse anti-β-actin (ZSGB-BIO, Beijing, China) or mouse anti-GAPDH (Proteintech, IL, United States) antibodies at 4°C overnight. After incubated with secondary antibody, the detected proteins were visualized by ECL enhanced chemiluminescence detection system (Thermo Scientific, Rockford, IL, United States).



Cell Proliferation Assay

Colorectal cancer cells were plated in 96-well plates at a density of 2 × 104 cells/well. At 0, 24, 48, and 72 h, 150 μl CellTiter-Glo reagent (Biofroxx, Germany) was added into each well and mixed thoroughly. Following incubation for 10 min at room temperature, the luminometer was used to assess the luminescence signal according to the manufacturer’s protocol.



Invasion and Migration Assay

Invasion and migration of colon cancer cells were detected by using trans-well chambers with and without matrigel (Corning Incorporated, Corning, NY, United States), respectively. Briefly, 8 × 104 cells/ml of tumor cell suspension was prepared separately in serum-free medium, and 0.5 ml cell suspension was inoculated separately to a pore size of 8.0 μm chamber. Then 0.75 ml of complete culture was added into each 24-well plate containing the chamber. After 24 h, the chamber was removed, wiped off the cells on the filter, and fixed with crystal violet. The number of cells across the filter was counted. Wound healing experiment was also used for assessing the migration of cancer cells. Briefly, the HCT116 or SW1116 cells were seed in 6-well plate and cultured until confluent. A pipette tip was used to make a straight scratch on the confluent cells in each well. The cells were continued to culture after changed the medium and the scratch wound healing were recorded at the designed time points.



Immunofluorescence Assay

HCT116 and SW1116 cells were seeded in a 24-well plate and cultured under normoxia and hypoxia for 24 h. The cells were fixed with 4% paraformaldehyde for 30 min, permeabilized with 0.1% Triton X-100 for 10 min at RT, blocked with goat serum for 30 min and incubated with mouse anti-RAP55 antibody (Santa Cruz Biotechnology, CA, United States) at 4°C overnight to detect the P-bodies. After washing with PBS, the cells were incubated with the phycoerythrin-conjugated secondary antibody (Santa Cruz Biotechnology) at 37°C for 1 h.



Dual-Luciferase Reporter Assay

Fragment of the promoter of LIN28A and promoter of EPO were amplified by using PCR (primer sequences are provided in Supplementary Table 1) and then cloned into PGL3-control vector (Promega, Madison, WI, United States), respectively. Then the renilla luciferase plasmid (as an internal control) and PGL3-LIN28A promoter or PGL3-EPO promoter were co-transfected into HEK293T cells. 24 h after transfection, cells were lysed, and then renilla and firefly luciferase activities were measured by Dual-Luciferase Reporter Assay System (Promega).



Chromatin Immunoprecipitation (ChIP) Assay

Chromatin immunoprecipitation analysis was performed with the ChIP kit (Millipore Corporation, Billerica, MA, United States) as previously described (Li et al., 2012a). Briefly, 1 × 107 colon cancer cells cultured in normoxia or hypoxia were collected and lysed with denaturing buffer after crosslinking by using 1% formaldehyde (Sigma-Aldrich). The chromatin was subsequently sheared by sonication, and the chromatin fraction immunoprecipitated overnight at 4°C with the anti-HIF1α antibody and the homotype antibody. The DNA was extracted for PCR amplification. The PCR amplification was performed for 30 cycles under standard reaction conditions with pre-designed primers, and the sequences of primers were listed in Supplementary Table 1.



Extraction of P-Bodies

The P-bodies extraction was performed as previously described (Hubstenberger et al., 2017). Briefly, the colon cancer cells cultured under normoxia or hypoxia were scrapped in cold PBS. After centrifuge, the pellets were suspended in cold lysis buffer containing 65 U/mL RNaseOut ribonuclease inhibitor (Promega) and EDTA-free protease inhibitor cocktail (Roche Diagnostics, Meylan, France), and then lysates were spun at 200 × g for 5 min to remove nuclei. Supernatants were centrifuged at 10,000 × g for 7 min, and pellets were resuspended into 100 ul of lysis buffer with 80 Units of RNaseOut. 20 μl primary antibody against RAP55 (Santa Cruz Biotechnology) was added to supernatants and incubated for 2 h at 4°C before 20 μl of resuspended Protein A/G PLUS-Agarose (Santa Cruz Biotechnology) was added for an additional overnight incubation at 4°C on a rotating device. Finally, immunoprecipitations were collected by centrifugation at 3,000 rpm for 5 min and resuspended in 0.5 ml Trizol reagent after washed with cold PBS.



Animal Experiments

Four-week-old male athymic nude mice were purchased from Vital River Laboratory (Beijing, China). For tumor growth assay, 1 × 106 cells were injected subcutaneously into each nude mouse, and five mice were injected for each cell line. The animals were sacrificed at the end of the experiment, the tumor weight measured. For tumor metastasis assay, 1.5 × 106 cancer cells were injected into the tail vein of each nude mouse, and eight mice were injected for each cell line. After the nude mice were sacrificed at the end of the experiment, the lungs were examined and fixed. Then the micrometastasis in lungs were detected by H&E staining. All proposals were approved and supervised by the institutional animal care and use committee of Harbin Medical University.



Immunohistochemistry

The expression of HIF1A and Ki67 at protein level in the experimental lung metastatic colon cancer tissues was detected by immunohistochemistry. Briefly, 5-μm-thick tissue sections were prepared. After deparaffinization, rehydration, antigen retrieval and blocking with H2O2 and 5% bovine serum albumin, respectively, the sections were incubated with primary antibodies against HIF1α (GeneTex Inc.) or Ki67 (Daco, Glostrup, Denmark) at 4°C overnight. After incubation with secondary antibody for 1 h at room temperature, DAB substrate (ZSGB Bio, Beijing, China) was used for staining. The staining score was given and calculated by allying intensity with extent as previously described (Wang et al., 2016b).



Statistical Analysis

Data are expressed as the mean ± standard deviation. Data were analyzed with Student’s t-test or one-way analysis of variance using GraphPad Prism (GraphPad Software, Inc., CA, United States). P < 0.05 was considered to indicate a statistically significant difference.



RESULTS


Hypoxia Induces the Expression of LIN28A at the mRNA Level Rather Than the Protein Level

To determine the effect of hypoxia on LIN28A expression, we first examined the changes of LIN28A expression in colon cancer cells treated with DFO (Jung et al., 2017) or cultured in 1% O2. Real time PCR results showed that LIN28A mRNA was elevated in all cell lines detected upon DFO treatment or cultured in 1% O2 (Figures 1A,B). In contrast, detected by Western Blot, the expression of LIN28A protein was not altered (in HCT116 cells) accordingly or even decreased (in SW1116 and HCT15 cells) under both hypoxia models (Figures 1C,D). These results indicate that hypoxia induces LIN28A expression at the mRNA level rather than the protein level in colon cancer cells.
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FIGURE 1. Hypoxia induces the expression of LIN28A mRNA but segregates LIN28A mRNA in the P-bodies. LIN28A mRNA level increased significantly in colon cancer cells treated with DFO (A) or cultured in 1% O2 (B). LIN28A expression decreased at protein level when cells were treated with DFO (C) or cultured in 1% O2 (D). (E) The promoter region of LIN28A gene contains functional HIF1α binding sites detected by dual-luciferase assay. (F) HIF1α directly binds to LIN28A promoter in T47D cell line based on the ChIP sequence data. (G) ChIP assay showed that HIF1α directly binds to LIN28A promoter in HCT116 cells (VEGF as positive control, LIN28A-2 as negative control). (H) Representative images of P-bodies in HCT116 and SW1116 cells by LSM14A staining with immunofluorescence (magnification: 400×; nucleus stained in blue with DAPI and P-bodies stained in green). (I) The number of P-bodies in HCT116 and SW1116 cells was counted by using ImageJ software, and the relative amount of P-bodies in colon cancer cells under hypoxia to normoxia was calculated. (J) The relative abundance of LIN28A mRNA in the P-bodies of colon cancer cells under hypoxia was detected by real time PCR. The data in the bar graphs in panels (A,B,J) were calculated as the mean ± SD from three independent experiments. Statistical significance was represented by *P < 0.05.




Hypoxia Induces LIN28A Transcription but Segregates LIN28A mRNA in the P-Bodies

To explore the mechanism of hypoxia regulating LIN28A expression in colon cancer cells, we analyzed the promoter sequence of LIN28A gene and found several potential HIF1α binding sites (Figure 1E). Then we confirmed that there are functional HIF1α binding sites (5′-RCGTG-3′, R representing A or G) (Salvi and Thanabalu, 2017) within the 2500 bp region upstream of LIN28A transcriptional starting site by using luciferase reporter assay (Figure 1E). Moreover, by analyzing the published ChIP sequence data from breast cancer T47D cell line in Cistrome database1 (Schörg et al., 2015; Zhang et al., 2015), we found that HIF1α indeed binds to LIN28A in vivo (Figure 1F). Furthermore, we demonstrated that HIF1α binds to LIN28A in the colon cancer cells by ChIP assay (Figure 1G). These results indicate that the transcription factor HIF1α directly binds to the promoter of LIN28A and induces its transcription.

Having confirmed that HIF1α could promote LIN28A transcription, we turned our attention to the problem emerged next: why didn’t LIN28A protein elevate in synchronism with its mRNA under hypoxia? Upon cellular stresses such as hypoxia and infection, certain mRNAs are sequestered into P-bodies, their translations being suppressed or shut down (Teixeira et al., 2005; Tkach et al., 2012; Jain and Parker, 2013). Therefore, we detected and confirmed that hypoxia increased the number of P-bodies in colon cancer cells by immunofluorescence assay using LSM14A as the marker of P-bodies (Hubstenberger et al., 2017) (Figures 1H,I). Meanwhile, we examined the abundance of LIN28A mRNA in P-bodies and showed that hypoxia promoted the segregation of LIN28A mRNAs in P-bodies (Figure 1J). This observation may explain why LIN28A protein level was decreased in hypoxic conditions even though the transcription was elevated.



LIN28A mRNA Promotes the Metastasis of Colon Cancer Cells in a Protein-Coding-Independent Manner

In view of the fact that hypoxia only induced the mRNA expression of LIN28A, we hypothesized that the elevated LIN28A mRNA might promote the progression of colon cancer independent of its protein-coding function. To explore this hypothesis, we established stable colon cancer cell lines exogenously expressing the full length LIN28A mRNA lacking coding function by inserting it into the 3′UTR of GFP and replacing the translation initiation codon ATG with termination codon TGA. As a control, we also established stable cells exogenously expressing the ORF of LIN28A mRNA. We confirmed that the mRNA of LIN28A is over-expressed (Figure 2A), whereas LIN28A protein level is not altered (Figure 2B) in cancer cells exogenously expressing the full length of LIN28A mRNA. As expected, the over-expression of LIN28A ORF enhanced the production of LIN28A protein (Figure 2C) and thus suppressed the maturation of the let-7 family miRNAs (Figure 2D). By contrast, over-expression of the full length of LIN28A mRNA did not cause the decrease of let-7 family miRNAs (Figure 2D). These results suggest that we successfully over-expressed non-coding LIN28A mRNA in colon cancer cells.
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FIGURE 2. Non-coding LIN28A mRNA has no effect on the proliferation of colon cancer cells. (A) The over-expression of LIN28A mRNA in HCT116 cells and SW1116 cells was confirmed by qPCR. (B) LIN28A protein was detected by western blot in the full-length LIN28A mRNA exogenously over-expressing cells. (C) The over-expression of LIN28A protein was confirmed in HCT116 and SW1116 cells with LIN28A ORF over-expression by using western blot assay. (D) The expressional change of mature let-7 family miRNAs was detected by qPCR upon over-expression of LIN28A protein or non-coding LIN28A mRNA in HCT116 and SW1116 cells. (E) The effect of non-coding LIN28A mRNA on the proliferation of HCT116 and SW1116 cells in vitro detected by growth curve assay. (F) The effect of LIN28A protein on the proliferation of HCT116 and SW1116 cells in vitro detected by growth curve assay. (G,H) The effect of non-coding LIN28A mRNA on the growth of colon cancer cells in xenograft mice model by evaluating the weight and volume of tumor, respectively. (I,J) The effect of LIN28A protein on the growth of colon cancer cells in xenograft mice model by evaluating the weight and volume of tumor, respectively. The data in panels (A,D) were calculated as the mean ± SD from three independent experiments, and data in panels (G–J) are presented as the mean ± SD for each group. Statistical significance was represented by *P < 0.05.


Next, we investigated the effect of the exogenous over-expressed non-coding LIN28A mRNA on the growth of colon cancer cells. The results revealed that non-coding LIN28A mRNA had no effect on colon cancer growth in vitro (Figure 2E) and in vivo (Figures 2G,H). As a control, elevated LIN28A protein evidently promoted cancer growth both in vitro (Figure 2F) and in vivo (Figures 2I,J). Then we assessed the role of non-coding LIN28A mRNA in colon cancer metastasis. By using the wound healing assay and trans-well assay, we found that non-coding LIN28A mRNA promoted the migration and invasion of colon cancer cells in vitro significantly (Figures 3A,C,E). The non-coding LIN28A mRNA also enhanced the lung metastasis of colon cancer cells in a tail vein injection model (Figure 4A). As a control, enforced expression of LIN28A protein also accelerated tumor metastasis both in vitro and in vivo (Figures 3B,D,F, 4B). Moreover, we showed that LIN28A protein (Figure 4B) but not LIN28A mRNA (Figure 4A) increased the Ki67 level in experimental metastatic colon cancer tissues, which is consistent with that LIN28A mRNA does not affect the proliferation of colon cancer cells (Figures 2E,G,H). Collectively, we demonstrated that LIN28A mRNA facilitates colon cancer metastasis in a protein-coding-independent manner.


[image: image]

FIGURE 3. Non-coding LIN28A mRNA promotes migration and invasion of colon cancer cells. (A) Over-expression of non-coding LIN28A mRNA enhances the wound healing of HCT116 and SW1116 cells (Scale bars, 500 μm). (B) Over-expression of LIN28A protein promotes the wound healing of HCT116 and SW1116 cells (Scale bars, 500 μm). (C) Over-expression of non-coding LIN28A mRNA enhances the migration of HCT116 and SW1116 cells detected by transwell assay (magnification, 100×; Scale bars, 200 μm). (D) Over-expression of LIN28A protein promotes the migration of HCT116 and SW1116 cells detected by transwell assay (magnification, 100×; Scale bars, 200 μm). (E) The over-expression of non-coding LIN28A mRNA enhances the invasion of HCT116 and SW1116 cells detected by transwell assay (magnification, 100×; Scale bars, 200 μm). (F) The over-expression of LIN28A protein enhances the invasion of HCT116 and SW1116 cells detected by transwell assay (magnification, 100×; Scale bars, 200 μm). The data were based on the mean ± SD from three independent experiments, and the statistical significance was represented by *P < 0.05.
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FIGURE 4. Non-coding LIN28A mRNA promotes lung metastasis of colon cancer. (A) Over-expression of non-coding LIN28A mRNA promotes lung metastasis of colon cancer cells in vivo by using tail vein injection model (magnification, 20×; Scale bars, 500 μm; the black arrow represents the location of the metastasis). The expression of HIF1α and Ki67 in metastatic cancer tissues was evaluated by using immunohistochemistry (Scale bars, 200 μm for low-power field; 50 μm for high-power field). (B) LIN28A protein promotes metastasis of colon cancer cells in vivo (magnification, 20×; Scale bars, 500 μm; the black arrow represents the location of the metastasis.). The expression of HIF1α and Ki67 in metastatic cancer tissues was evaluated by using immunohistochemistry (Scale bars, 200 μm for low-power field; 50 μm for high-power field). The statistical significance was represented by *P < 0.05.




Non-coding LIN28A mRNA Enhances the Expression of METAP2 in Colon Cancer Cells

To investigate the underlying mechanism by which the non-coding LIN28A mRNA accelerates the colon cancer metastasis, we detected the expression change of protein profiles using MS after the over-expression of non-coding LIN28A mRNA in SW1116 cells. We identified 5171 proteins in total (Supplementary Table 2) and found that 30 of them significantly changed their expression levels upon the over-expression of non-coding LIN28A. Functional enrichment assay showed that these proteins with altered expressions are in the majority involved in metabolism and metastasis processes (Figure 5A). We next searched for the potential metastasis regulators among the top 10 up-regulated proteins and identified three candidates that could potentially promote cancer metastasis (Figure 5B). Seeing that METAP2 was the top candidate (Figure 5B), then we confirmed that over-expression of non-coding LIN28A mRNA significantly elevated the expression of METAP2 in both HCT116 and SW1116 cells (Figure 5C), whereas knockdown of LIN28A significantly down-regulated the expression of METAP2 (Figure 5D). However, over-expression of LIN28A protein did not change the METAP2 protein level in both cell lines (Figure 5E). These results confirmed that LIN28A promotes the expression of METAP2 in a protein-coding-independent manner. Considering that hypoxia induced the production of LIN28A mRNA, we also evaluated the impact of hypoxia on the METAP2 expression. As expected, both METAP2 mRNA and protein levels were increased upon hypoxia in either DFO treatment or 1% O2 culture condition (Figures 5F,G).
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FIGURE 5. Non-coding LIN28A mRNA increases the expression of METAP2 in colon cancer cells. (A) Functional enrichment analysis of the proteins with altered expression corresponding to over-expression of non-coding LIN28A mRNA in SW1116 cells detected by MS. (B) The top 10 up-regulated proteins in LIN28A mRNA over-expressing cells are shown, and the potential metastasis regulators are highlighted. (C) The expression of METAP2 increased after over-expression of LIN28A mRNA, validated by Western blot assay. (D) The expression of METAP2 decreased after knockdown LIN28A, detected by Western Blot assay. (E) The over-expression of LIN28A protein does not affect the expression of METAP2 in colon cancer cells. The expression of METAP2 elevated under hypoxia at both the mRNA level (F) and the protein level (G). (H) Knockdown of METAP2 was confirmed by Western blot assay. (I) The migration of colon cancer cells decreased upon METAP2 knockdown detected by using transwell assay (magnification, 100×; Scale bars, 200 μm). (J) The invasion of colon cancer cells decreased upon METAP2 knockdown detected by using transwell assay (magnification, 100×; Scale bars, 200 μm). The statistical significance was represented by *P < 0.05.


We further determined whether the roles of METAP2 in colon cancer are consistent with those of the non-coding LIN28A mRNA by assessing the effects of METAP2 on the migration and invasion of colon cancer cells. The results showed that METAP2 knockdown by siRNA in HCT116 and SW1116 cells (Figure 5H) significantly suppressed the invasion and migration of both cell lines (Figures 5I,J).



Non-coding LIN28A mRNA Promotes the Expression of METAP2 Depending on miRNAs

Previous studies suggested that mRNAs bind to miRNAs and are segregated into P-bodies upon stresses, and then promote the expressions of other mRNAs targeted by those miRNAs (Liu et al., 2005; Saito et al., 2011; Cui et al., 2012). These observations offer a potential explanation for the interaction between LIN28A and METAP2. To find out if non-coding LIN28A mRNA regulates the expression of METAP2 through sponging miRNAs in colon cancer, we established Dicer knockdown cell lines (Figure 6A,B) and then evaluated the impact of over-expressed non-coding LIN28A mRNA on the expression of METAP2. We showed that the non-coding LIN28A mRNA failed to enhance the expression of METAP2 upon Dicer knockdown (Figure 6C). Consistently, the expression of LIN28A decreased upon knockdown of METAP2 in colon cancer cells (Figure 6D), whereas this phenomenon was also abolished upon knockdown of Dicer (Figure 6E). Moreover, we detected the mRNA expression of LIN28A and METAP2 by using RT-PCR and revealed that the two were positively correlated with each other in 46 colon cancer tissues (r = 0.533, Figure 6F). These results suggest that non-coding LIN28A promotes the expression of METAP2 depending on miRNAs.
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FIGURE 6. Non-coding LIN28A mRNA promotes the expression of METAP2 depending on miRNAs. (A) Knockdown of Dicer in HCT116 and SW1116 cells was confirmed by qPCR. (B) Knockdown of Dicer in HCT116 and SW1116 cells was detected by western blot. (C) LIN28A mRNA fails to promote the expression of METAP2 upon Dicer knockdown. (D) Knockdown of METAP2 decreases the expression of LIN28A. (E) Knockdown of METAP2 does not affect the expression of LIN28A upon Dicer knockdown. (F) The mRNA expression of LIN28A and METAP2 are positively correlated to each other (r = 0.533). (G) miRNAs target LIN28A mRNA and METAP2 mRNA. (H) miR-181 and let-7 inhibit the expression of LIN28A and METAP2 in colon cancer cell lines, respectively. (I) The relative abundance of let-7 and miR-181 in the p-bodies of colon cancer cells under hypoxia. The date in panels (A,I) were based on the mean ± SD from three independent experiments. The statistical significance was represented by *P < 0.05.


Considering the fact that both of LIN28A mRNA and METAP2 mRNA contain a long 3′UTR (2030 nt length for METAP2 and 3270 nt length for LIN28A), both mRNAs could be targeted by various miRNAs simultaneously. To identify miRNAs bridging these two mRNAs, we searched the TargetScan and identified 66 conserved miRNAs targeting LIN28A mRNA and 23 conserved miRNAs targeting METAP2 mRNA, respectively (Supplementary Table 3), among which 14 miRNAs can potentially target both LIN28A and METAP2 simultaneously. Among these miRNAs, let-7-5p, miR-181-5p and miR-30-5p are experimentally validated for their ability to target both of LIN28A and METAP2 (Yi et al., 2017; Chou et al., 2018) (Figure 6G). In this study, we chose let-7-5p and miR-181-5p for further validations in the colon cancer cells. As expected, we showed that both miRNAs significantly targeted the expression of LIN28A and METAP2 in two colon cancer cell lines (Figure 6H). Moreover, we detected the abundance of let-7 and miR-181 in the P-bodies upon hypoxia treatment and showed that hypoxia also induced the segregation of both miRNAs into P-bodies (Figure 6I). These results suggest that let-7 and miR-181 could mediate the regulation of METAP2 expression by non-coding LIN28A mRNA in colon cancer.

Finally, we detected the impact of Dicer knockdown on the function of non-coding LIN28A mRNA in colon cancer cells. The trans-well assay results showed that knockdown of Dicer also abolished the promotional roles of non-coding LIN28A mRNA in terms of migration and invasion of colon cancer cells (Figures 7A–D). Additionally, we noticed that, contrary to non-coding LIN28A and METAP2, let-7 and miR-181 inhibited the migration and invasion of colon cancer cells (Figures 7E,F). These results suggest that the function of LIN28A facilitating colon cancer metastasis is also dependent on the presence of miRNAs, such as miR-181 and let-7.
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FIGURE 7. Non-coding LIN28A mRNA promotes the metastasis of colon cancer cells depending on miRNAs. (A,B) Knockdown of Dicer abolishes the promotion role of non-coding LIN28A mRNA in the migration of colon cancer cells detected by using transwell assay (magnification, 100×; Scale bars, 200 μm). (C,D) Knockdown of Dicer abolishes the promotion role of non-coding LIN28A mRNA in the invasion of colon cancer cells detected by using transwell assay (magnification, 100×; Scale bars, 200 μm). (E) miR-181 and let-7 inhibit the migration of colon cancer cells detected by using transwell assay (magnification, 100×; Scale bars, 200 μm). (F) miR-181 and let-7 suppress the invasion of colon cancer cells detected by using transwell assay (magnification, 100×; Scale bars, 200 μm).




DISCUSSION

RNA-binding protein LIN28A is often elevated in various cancer types. However, few studies investigated the mechanisms concerning LIN28A over-expression in cancers. In this study, we were able to demonstrate for the first time that hypoxia induced the expression of LIN28A in cancers. Unexpectedly, we also discovered that hypoxia only induced the expression of LIN28A at the transcriptional level. How hypoxia differentially regulates the expression of LIN28A at different levels is a fascinating question, and the significance of this regulation in cancer progression is an attractive topic. In this study, we confirmed that hypoxia increased the number and size of P-bodies in the colon cancer cells and that the relevant abundance of LIN28A mRNA in the P-bodies was also increased. These observations suggest that, though not exclusively, the segregation of LIN28A mRNA in the P-bodies was responsible for hypoxia differentially regulating the expression of LIN28A at the mRNA and the protein levels.

A previous study reported that epithelial morphology maintaining factor E-cadherin did not express in HCCs at the protein level, yet it abundantly expressed at the mRNA level (Ghafoory et al., 2015). By analyzing the expression of E-cadherin mRNA with in situ hybridization (ISH), Ghafoory et al. (2015) found that E-cadherin mRNA was located in the nuclei of HCCs, yet it was present in the cytoplasm of adjacent normal cells. By using immunohistochemistry staining, they revealed that E-cadherin protein is aberrant in HCCs but detected in the cell membrane of normal cells, suggesting that segregation of E-cadherin in the nuclei contributes to the loss of E-cadherin in HCCs (Ghafoory et al., 2015). A rich body of studies suggests that hypoxia induces the loss of E-cadherin in the cell membrane of some cancer cells (Howard et al., 2005; Sun et al., 2009; Hongo et al., 2013). Interestingly, they revealed that a higher level of HIF1α mRNA in the cancerous tissues is associated with stronger E-cadherin mRNA in the nuclei detected by ISH co-staining (Ghafoory et al., 2015), suggesting that hypoxia may suppress the expression of E-cadherin protein in HCCs by inducing the segregation of E-cadherin mRNA in the nuclei. However, the detailed molecular mechanisms underlying this phenomenon are not investigated. In this study, we showed that hypoxia induces the segregation of LIN28A mRNA in the P-bodies instead of in the nuclei, but the consequent effects of hypoxia on the protein expression of E-cadherin and LIN28A are similar. We proposed that translocation of RNA binding proteins under hypoxia may contribute to hypoxia inducing different mRNAs to be sequestered into different organelle of the cells.

Hypoxia suppresses the expression of E-cadherin protein in cancer cells and enhances the survival of cancer cells (Chu et al., 2013). On the other hand, hypoxia also promotes the epithelial-mesenchymal transition (EMT) and then facilitates cancer metastasis (Sun et al., 2016; Wigerup et al., 2016). LIN28A is a master oncogene and promotes both metastasis and proliferation of cancer cells (Wang et al., 2015; Zhang et al., 2018). In this study, we also confirmed the positive roles of LIN28A protein in the proliferation and metastasis of colon cancer cells. However, we established that non-coding LIN28A mRNA only promotes the metastasis and has no noticeable effect on the proliferation of colon cancer cells. Consequently, the fact that hypoxia only induces the production of LIN28A mRNA in colon cancer cells is consistent with the observation that the hypoxic microenvironment is beneficial to the metastasis but not to the proliferation of cancer cells (Sprague et al., 2006; Wigerup et al., 2016).

It has been well acknowledged that the miRNAs play important roles in regulating gene expression at the post-transcriptional and/or translational levels. It has been believed that the miRNAs regulate gene expression in a simple “miRNA→mRNA→protein” pattern. However, recent studies suggest that miRNA activity can be regulated by “target mimics,” and miRNA–mRNA interactions are bilateral instead of unilateral (Ebert et al., 2007; Franco-Zorrilla et al., 2007; Salmena et al., 2011; Yang et al., 2016). By knocking down the expression of the Dicer-1 gene and subsequently abolishing the miRNA maturation, we demonstrated that non-coding LIN28A mRNA functions as “miRNA sponges” to promote the metastasis of colon cancer cells. We then used MS to identify the target genes regulated by LIN28A mRNA, and confirmed that METAP2 is one of the target genes of LIN28A mRNA at both the expressional and the functional levels. In spite of the fact that only two well-validated miRNAs (let-7 and miR-181) were selected as representatives in this study, there must be other miRNAs mediating the interactions between LIN28A and METAP2, considering that hundreds of miRNAs are predicted to simultaneously target both LIN28A and METAP2.

Conclusively, we showed that hypoxia differentially regulates the expression of LIN28A at both the mRNA and the protein levels in colon cancer, and revealed that non-coding LIN28A mRNA promotes the metastasis of colon cancer cells by positively regulating the expression of METAP2 as “miRNA sponges.”
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The deregulation of long non-coding RNAs (lncRNAs) by epigenetic alterations has been implicated in cancer initiation and progression. However, the epigenetically regulated lncRNAs and their association with clinical outcome and therapeutic response in ovarian cancer (OV) remain poorly investigated. This study performed an integrative analysis of DNA methylation data and transcriptome data and identified 419 lncRNAs as potential epigenetically regulated lncRNAs. Using machine-learning and multivariate Cox regression analysis methods, we identified and developed an epigenetically regulated lncRNA expression signature (EpiLncRNASig) consisting of five lncRNAs from the list of 17 epigenetically regulated lncRNAs significantly associated with outcome. The EpiLncRNASig could stratify patients into high-risk groups and low-risk groups with significantly different survival and chemotherapy response in different patient cohorts. Multivariate Cox regression analyses, after adjusted by other clinical features and treatment response, demonstrated the independence of the DEpiLncSig in predicting survival. Functional analysis for relevant protein-coding genes of the DEpiLncSig indicated enrichment of known immune-related or cancer-related biological pathways. Taken together, our study not only provides a promising prognostic biomarker for predicting outcome and chemotherapy response but also will improve our understanding of lncRNA epigenetic regulation mechanisms in OV.
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INTRODUCTION

Ovarian cancer (OV) is one of the most lethal gynecologic cancers and is the eighth leading cause of cancer-related deaths in women (Coburn et al., 2017; Momenimovahed et al., 2019). According to the American Cancer Society, approximately 21,750 new cases and 13,940 estimated deaths occur in 2020 in the United States (Siegel et al., 2020). Surgery followed by chemo-based treatments (platinum-based or taxane-based) is the first-line treatment, and approximately 80% of OV patients initially respond to treatment. However, most patients with advanced disease still experienced recurrent disease after a period of chemotherapy, which has led to poor outcomes with five survival rates of less than 50%, even if significant advances have been made in surgical and chemo-based treatments for OV patients. Therefore, it is critical to identify reliable and useful biomarkers for improving outcomes of OV patients.

Increasing efforts in studying molecular omics have improved our understanding of the molecular mechanisms of OV carcinogenesis and progression and contributed to the identification and development of novel molecular biomarkers and specific therapies (Cancer Genome Atlas Research Network, 2011; Lu et al., 2014; Clifford et al., 2018; Li et al., 2020). Molecular profiles have been extensively investigated and characterized during the past years, leading to the identification of a number of dysregulated molecules associated with development, progression, recurrence, metastasis, and therapeutic response of OV (Adib et al., 2004; Barrett et al., 2015; Sallinen et al., 2019; Wang et al., 2019; Zhao H. et al., 2020). Long non-coding RNAs (lncRNAs) are a significant class of non-coding RNAs (ncRNAs) that have been discovered in the last 10 years. The accumulated evidence has shown that lncRNAs are essential regulators in gene expression networks and performed a variety of functional roles in almost all biological processes through diverse mechanisms at transcriptional, post-transcriptional, and epigenetic levels (Mercer et al., 2009; Marchese et al., 2017; Yao et al., 2019). Dysregulated lncRNAs have been observed in various cancers and have also been implicated as novel biomarkers in cancer diagnosis, prognosis, and therapeutic response (Zhou et al., 2016a, 2020; Hosseini et al., 2017; Huo et al., 2017; Tian et al., 2018; Bao et al., 2020; Sun et al., 2020). Previous studies have reported that the expression of some lncRNAs can be regulated by epigenetic modification similar to protein-coding genes (Zhao et al., 2015; Wang et al., 2018; Li et al., 2019). However, the epigenetically regulated lncRNAs and their association with clinical outcome and therapeutic response in OV remain poorly investigated.

In this study, we performed an integrative analysis of DNA methylation data and transcriptome data to identify epigenetically regulated lncRNAs associated with OV carcinogenesis. Together with clinical data, we further investigated the clinical value of these epigenetically regulated lncRNAs in predicting outcome and chemotherapy response. Finally, we used the relevant genes of epigenetically regulated lncRNAs to infer their potential functions.



MATERIALS AND METHODS


Acquisition and Analysis of DNA Methylation Data for OV Patients

DNA methylation data profiled by Illumina 27k methylation array for 583 OV tumor tissues and 12 non-cancer tissues were obtained from the UCSC Xena Browser1. Then probes were filtered and prepossessed as follows: (i) SNP-enriched probes were removed; (ii) those probes with missing values in more than 10% samples were removed; and (iii) imputation was performed to replace missing values by calculating the median methylation level for each sample across all CpG sites. Finally, 24793 CpG probes were kept for further analysis. Differential methylation analysis on the site level between OV tumor tissues and non-cancer tissues was conducted using the limma package. Differentially methylated CpG sites were determined based on FDR adjusted p-value < 0.05 and absolute mean methylation difference >0.3.



Acquisition and Analysis of lncRNA Data of OV Patient

RNA-seq data of OV tumor tissues and non-cancer tissues were obtained from the UCSC Xena Browser (see text footnote 1). A total of 14,614 were obtained from the RNA-seq data based on GENCODE annotations2. The epigenetically regulated lncRNAs were identified by measuring the association between lncRNA expression and CpG levels through the Pearson correlation coefficient. Those lncRNAs correlated with CpG sites with | r| > 0.4 and p < 0.001 were considered as epigenetically regulated lncRNAs (DEpiLncRNAs). Hierarchical clustering analysis was conducted using the R package “pheatmap” with “ward.D2” method.



Development of an Epigenetically Regulated Five-lncRNA Signature (EpiLncRNASig)

Univariate Cox regression analysis of DEpiLncRNAs with OS was performed to identify candidate DEpiLncRNAs with prognostic roles. Using a bidirectional elimination strategy, the stepwise regression was performed to select optimal lncRNA biomarkers from the list of candidate prognostic DEpiLncRNAs by an automatic procedure. Specifically, at each step, we added variables whose inclusion gave the most significant improvement and removed variables whose exclusion gave the most insignificant deterioration to the quality of the prediction model, which is assessed by the Akaike information criterion (AIC). Then, we repeated this process until none of them improved the model to a statistically significant extent (Zhou et al., 2020). Then a prognostic lncRNA-focused score model (EpiLncRNASig) was constructed based on the linear combination of the expression of optimal DEpiLncRNAs biomarkers, weighted by their coefficients from the multivariate regression analysis as in previous studies (Bao et al., 2020, 2021; Sun et al., 2020).



Statistical Analysis

Univariate and multivariate Cox regression analyses were performed on the individual clinical variables with and without the EpiLncRNASig. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated. Kaplan-Meier survival plots and log-rank tests were applied to compare the differences in survival time between different patient groups using the R package “survival.” All statistical analyses were performed using R Statistical Software (version 3.6.3).



Function Enrichment Analysis

The association between expression levels of lncRNAs and mRNAs was measured by calculating the Pearson correlation coefficient, and the top 100 mRNAs were considered as lncRNA-related mRNAs. Then function enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed to infer possible functional roles of lncRNA biomarkers using the R package “clusterProfiler” (Yu et al., 2012). GO terms or KEGG pathways with adjusted p-value < 0.05 were considered to be significantly enriched.



RESULTS


Identification of Dysregulated Epigenetically Regulated lncRNAs (DEpiLncRNAs) Associated With OV Development

To identify potential GpG sites associated with OV development, we performed compared analysis for GpG levels between OV tumor tissues and non-cancer tissues and identified 605 differentially methylated sites (FDR adjusted p-value < 0.05 and absolute mean methylation difference >0.3) using the R package “RnBeads.” Hierarchical clustering analysis showed that these 605 differentially methylated sites could discriminate between OV patients with and healthy controls, as shown in Figure 1A. To identify DEpiLncRNAs in OV, we calculated the Pearson correlation coefficient to evaluate the association between lncRNA expression and CpG levels and identified 1,497 lncRNA-CpG pairs, including 419 lncRNAs, which were defined as DEpiLncRNAs. The network between lncRNA and CpG sites were visualized using the Cytoscape software (Figure 1B).
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FIGURE 1. Identification of dysregulated epigenetically regulated lncRNAs (DEpiLncRNAs) associated with OV development. (A) Heatmap of differentially methylated sites could discriminate between OV patients with and healthy controls. (B) Interaction network of dysregulated epigenetically regulated lncRNAs and CpG.




Development of an Epigenetically Regulated lncRNA Signature (DEpiLncSig) for Predicting the Outcome

All TCGA-OV patients with survival information were split equally into the discovery cohort (n = 187) and validation cohort (n = 186). We first conducted the univariate analysis for 419 lncRNAs with OS and identified 17 lncRNAs that were significantly associated with OS (p < 0.01). Then we used a stepwise regression model and identified five optimal lncRNA biomarkers from the list of 17 lncRNAs significantly associated with OS (Table 1). Of them, three lncRNAs (LINC00189, CACNA1G-AS1, and AC105384.1) seem to be risk factors, and the remaining two lncRNAs (AL133467.1 and CHRM3-AS2) are protective factors. The five optimal lncRNA biomarkers and their CpGs were listed in Supplementary Table 1. Finally, we performed multivariate Cox regression analysis for five optimal lncRNA biomarkers and constructed a lncRNA-based risk score model based on the linear combination of the expression of five optimal lncRNA biomarkers, weighted by their coefficients from the multivariate regression analysis as follows: EpiLncRNASig = (0.197)∗expression (LINC00189) + (0.167)∗ expression (CACNA1G-AS1) + (−0.432)∗ expression (AL133467.1) + (−0.374)∗ expression (CHRM3-AS2) + (0.395)∗ expression (AC105384.1). Each patient in the discovery cohort was assigned a risk score and was subsequently defined as high-risk with higher EpiLncRNASig or low-risk with lower EpiLncRNASig according to the median value of the risk score (0.0538). Survival analysis showed that patients in the low-risk group have significantly improved OS (median time 1,742 days) compared to those in the high-risk group (median time 1,039 days) (log-rank test p < 0.0001) (Figure 2A). The 3- and 5-year survival rates of patients in the low-risk group are 75 and 48%, respectively, whereas the corresponding rates are 45 and 11%, respectively, in the high-risk group. Furthermore, there were significant differences in disease-free survival (median time 678 vs. 500 days), disease-specific survival (median time 1,933 vs. 1,039 days), and progression-free survival (median time 690 vs. 427 days) (Figure 2A). As shown in Figure 2B, three lncRNAs (LINC00189, CACNA1G-AS1, and AC105384.1) revealed significantly higher expression in the high-risk group compared to those in the low-risk group, and two lncRNAs (AL133467.1 and CHRM3-AS2) are significantly upregulated in the low-risk group and down-regulated in the high-risk group (Figure 2B).


TABLE 1. Detailed information of lncRNAs in the DEpiLncSig.
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FIGURE 2. Prognostic performance of epigenetically regulated lncRNA signature (DEpiLncSig) in the discovery cohort. (A) Kaplan-Meier survival curves of survival times between the high-risk group and low-risk group. (B) Boxplots of expression levels of prognostic lncRNAs in the high-risk group and low-risk group, respectively.




Further Validation of the DEpiLncSig in the Independent Patient Cohort

To test the robustness of the DEpiLncSig, the DEpiLncSig was applied to 186 OV patients in the validation cohort. The DEpiLncSig classified 186 OV patients of the validation cohort into the high-risk group (n = 92) and low-risk group (n = 94) according to the risk cutoff derived from the discovery cohort. As observed in the training group, the OS time of the low-risk group patients (median 1,736 days) was significantly better than that of high-risk group patients (median 1,264 days) (log-rank test p = 0.021) (Figure 3A). The 3- and 5-year survival rates of patients in the low-risk group were 70 and 41%, respectively, whereas the corresponding rates are 62 and 28% in the high-risk group, respectively. Furthermore, the high-risk patients have significantly shorter disease-free survival (median time 554 vs. 1,042 days, log-rank test p = 0.0087), disease-specific survival (median time 1,319 vs. 1,767 days, log-rank test p = 0.032), and progression-free survival (median time 454 vs. 553 days, log-rank test p = 0.042) compared to those in the low-risk group (Figures 3B–D). When the DEpiLncSig was further tested in the entire TCGA-OV patients, all TCGA-OV patients were divided into the high-risk group and low-risk group with significantly different overall survival (median time 1,163 vs. 1,736 days, log-rank test p < 0.0001), disease-free survival (median time 535 vs. 818 days, log-rank test p < 0.0001), disease-specific survival (median time 1,199 vs. 1,784 days, log-rank test p < 0.0001) and progression-free survival (median time 447 vs. 628 days, log-rank test p = 0.00011) (Figures 3E–H). These results demonstrated the stable and reliable prognostic performance of the DEpiLncSig in predicting the outcome of OV patients.
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FIGURE 3. Independent validation of prognostic performance of epigenetically regulated lncRNA signature. Kaplan-Meier survival curves between the high-risk group and low-risk group for overall survival (A), progression-free survival (B), disease-specific survival (C), and disease-free survival (D) in the independent patient cohort. Kaplan-Meier survival curves between the high-risk group and low-risk group for overall survival (E), disease-free survival (F), disease-specific survival (G), and progression-free survival (H) in the entire TCGA-OV patient cohort.




The Prognostic Performance of the DEpiLncSig Is Independent of Other Clinical Features

To test whether the prognostic performance of the DEpiLncSig is independent of other clinical features, we conducted univariate and multivariate Cox regression analyses for the individual clinical variables (age, stage, grade, and treatment response) with and without the EpiLncRNASig. As shown in Table 2, the EpiLncRNASig and treatment response were all significantly associated with overall survival in the univariate and multivariate analysis in the discovery cohort. In the validation cohort, although the EpiLncRNASig (HR = 1.56, 95% CI = 1.07–2.28, p = 0.022), age (HR = 1.59, 95% CI = 1.09–2.31, p = 0.015) and treatment response (HR = 0.2, 95% CI = 0.13–0.33, p = 4.50E-11) were all significantly associated with overall survival in the univariate analysis, only the EpiLncRNASig (HR = 1.71, 95% CI = 1.09–2.67, p = 0.019) and treatment response (HR = 0.19, 95% CI = 0.12–0.31, p = 3.80E-11) were significant in the multivariate analysis. In the entire TCGA-OV cohort, univariate analysis showed that the EpiLncRNASig (HR = 2.09, 95% CI = 1.6–2.74, p = 6.80E-08), age (HR = 1.35, 95% CI = 1.04–1.75, p = 0.022), and treatment response (HR = 0.23, 95% CI = 0.17–0.32, p = 1.70E-18) were significantly associated with overall survival in the univariate analysis. However, the EpiLncRNASig (HR = 2.21, 95% CI = 1.61–3.05, p = 1.20E-06) still maintained a significant association with overall survival when after adjusted by other clinical features (Table 2). Results from multivariate Cox regression analyses suggested that the prognostic performance of the DEpiLncSig is independent of other clinical features and treatment response.


TABLE 2. Univariate and Multivariate Cox regression analysis with overall survival in different patient cohorts.
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Association of the EpiLncRNASig With Chemotherapy Response

To further examine the association of the EpiLncRNASig with a chemotherapy response, we first compared the distribution of the risk score of the EpiLncRNASig for patients with complete response (CR) and non-CR, and we found that patients with CR have significantly lower risk scores than those with non-CR (Wilcoxon rank-sum test p = 0.0011) (Figure 4A). We then assessed the relationship between the EpiLncRNASig and the likelihood of CR by plotting the percentage of OV patients achieving CR as a function of the risk score and found that there was a significant association between risk score and the likelihood of CR (Pearson correlation coefficient r = −0.77, p = 0.0085) (Figure 4B). As shown in Figure 4C, patients with low EpiLncRNASig seem to have a higher likelihood of CR than those with high EpiLncRNASig. To further examine whether the EpiLncRNASig is predictive for both patients achieving CR and non-CR, we performed a stratification analysis. The results of the stratification analysis showed that the EpiLncRNASig could further subdivide patients achieving CR into the high-risk group and low-risk group with significantly different survival times (log-rank p < 0.0001) (Figure 4D). Similar results were observed for patients achieving non-CR (log-rank p = 0.011) (Figure 4E).


[image: image]

FIGURE 4. Association of the EpiLncRNASig with chemotherapy response. (A) Boxplots of EpiLncRNASig scores for patients with CR and non-CR. (B) Correlation of the EpiLncRNASig with complete response. (C) The percentage of patients achieving CR in the high-risk group and low-risk group. Kaplan-Meier survival curves of overall survival times between the high-risk group and low-risk group for patients with CR (D) and non-CR (E).




In silico Analysis for lncRNA Biomarker Function

To infer potential biological roles of these epigenetically regulated lncRNA biomarkers, we calculated the Pearson correlation coefficient between expression levels of lncRNAs and mRNAs, and selected top 100 mRNAs were considered as lncRNA-related mRNAs (Supplementary Table 2). Then we performed GO and KEGG function enrichment analysis for 471 lncRNA-related mRNAs. Results of GO analysis showed that lncRNA-related mRNAs were enriched in the extracellular matrix organization, connective tissue development, lymphocyte differentiation, and T cell differentiation and activation (Figure 5A). Results of KEGG analysis showed that lncRNA-related mRNAs were enriched in immune-related or cancer-related biological pathways, including primary immunodeficiency, cell adhesion molecules, proteoglycans in cancer, cytoline-cytokine receptor interaction and the T cell receptor signaling pathway, Th17 cell differentiation, Th1, and Th2 cell differentiation (Figure 5B).
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FIGURE 5. Functional prediction of the EpiLncRNASig. (A) Functional enrichment analysis for GO terms. (B) Functional enrichment analysis for KEGG pathways.




DISCUSSION

Accumulating evidence has shown that altered molecular profiles are an indispensable laboratory tool to improve cancer diagnosis, prognosis and therapeutic response (Malone et al., 2020), and overcome the limitations of typical clinical and imaging characteristics owing to the genetic and molecular heterogeneity of cancers. During the past years, lncRNAs have become a rising star in the field of biomarker research and were extensively studied and characterized in various cancers. Aberrant lncRNA expressions have also been observed in OV development, progression, recurrence, metastasis, and therapeutic response, indicating the potential roles as biomarkers for precision medicine of OV. Several lncRNA-focused expression signatures have been proposed for the prediction and monitoring of disease status, prognosis, and chemotherapeutic sensitivity. For example, Pan et al. (2020) proposed two lncRNA signatures to predict the prognosis and efficiency of chemotherapy. Zhou et al. (2016b) constructed progression-related lncRNA-associated ceRNA networks based on the “ceRNA hypothesis” and subsequently identified a 10-lncRNA signature associated with the outcome of OV patients. However, further investigation is needed to identify epigenetically regulated lncRNAs and explore their potential function and clinical application in OV.

For the above purpose, we performed an integrative analysis of DNA methylation data and transcriptome data and identified 419 lncRNAs as potential epigenetically regulated lncRNAs. These predicted epigenetically regulated lncRNAs in this study would provide an available resource for studying the interplay between lncRNAs and epigenetic regulation. A recent study performed by Li et al. (2019) has characterized the crosstalk between DNA methylation and lncRNA expression in thyroid Cancer (THCA) and methylation-driven 5-lncRNA-based signature (EpiLncPM) with potential clinical application in predicting the prognosis of THCA. Therefore, to further investigate whether epigenetically regulated lncRNAs identified here also have potential clinical value, we performed univariate Cox regression analysis with OS and found that only 17 of 419 epigenetically regulated lncRNAs identified here were significantly associated with patients’ outcome. By using machine-learning and multivariate Cox regression analysis methods, we identified and developed an epigenetically regulated lncRNA expression signature (EpiLncRNASig) consisting of five lncRNAs from the list of 17 epigenetically regulated lncRNAs associated with outcome. Furthermore, we tested and validated these in different patient cohorts, demonstrating a similar effective predictive performance in predicting OS. Moreover, multivariate Cox regression analyses after adjusted by other clinical features and treatment response demonstrated the independence of the DEpiLncSig in predicting OS. Further examination of the association of the EpiLncRNASig with chemotherapy response provided evidence supporting that the DEpiLncSig is not only a prognostic factor but may also be an indicator for chemotherapy response.

Compared to the huge number of lncRNAs identified and recorded in the public database, the number of functionally well-characterized lncRNAs is relatively small. Among five lncRNAs in the EpiLncRNASig, several lncRNAs have been well studied in some cancers. For example, LINC00189 has been reported to be associated with several cancers, including ovarian cancer, cervical cancer (Zhang et al., 2020), clear cell renal cell carcinoma (Xu et al., 2020), and urinary bladder cancer (Zhang et al., 2016). By analyzing CACNA1G-AS1 expression levels in 122 pairs of non-small cell lung cancer (NSCLC) and normal tissue samples as well as in NSCLC cell lines, Yu et al. (2018) identified CACNA1G-AS1 as an oncogene to promote cell migration, invasion, and epithelial-mesenchymal transition via regulating HNRNPA2B1. A recent study performed by Wei revealed higher expression of CACNA1G-AS1 in colorectal cancer (CRC) tissues compared to adjacent normal tissues and found that CACNA1G-AS1 was able to enhance proliferative and invasive abilities of CRC cells by downregulating p53 via forming a carcinogenic complex with EZH2 (Wei et al., 2020). Another recent study has reported that lncRNA CACNA1G-AS1 can act as competing endogenous RNAs (ceRNAs) to regulate miR-205 expression, and it promotes proliferation and invasion in human keloid fibroblasts (Zhao X. et al., 2020). To further gain novel insights into the functional roles of the EpiLncRNASig in OV, we performed functional enrichment analysis for relevant protein-coding genes of epigenetically regulated lncRNAs by considering their co-expression relation relationships and found that the EpiLncRNASig was involved in known immune-related or cancer-related biological pathways.

In conclusion, we reported and provided a knowledge base of novel epigenetically regulated lncRNAs in OV, which will improve our understanding of lncRNA epigenetic regulation mechanisms in OV. Finally, we proposed an epigenetically regulated five-lncRNA signature as promising prognostic biomarkers for predicting outcome and chemotherapy response with further validation in prospective cohort studies.
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DNA methylation is an important epigenetic mechanism for gene regulation. The conventional view of DNA methylation is that DNA methylation could disrupt protein-DNA interactions and repress gene expression. Several recent studies reported that DNA methylation could alter transcription factors (TFs) binding sequence specificity in vitro. Here, we took advantage of the large sets of ChIP-seq data for TFs and whole-genome bisulfite sequencing data in many cell types to perform a systematic analysis of the protein-DNA methylation in vivo. We observed that many TFs could bind methylated DNA regions, especially in H1-hESC cells. By locating binding sites, we confirmed that some TFs could bind to methylated CpGs directly. The different proportion of CpGs at TF binding specificity motifs in different methylation statuses shows that some TFs are sensitive to methylation and some could bind to the methylated DNA with different motifs, such as CEBPB and CTCF. At the same time, TF binding could interactively alter local DNA methylation. The TF hypermethylation binding sites extensively overlap with enhancers. And we also found that some DNase I hypersensitive sites were specifically hypermethylated in H1-hESC cells. At last, compared with TFs’ binding regions in multiple cell types, we observed that CTCF binding to high methylated regions in H1-hESC were not conservative. These pieces of evidence indicate that TFs that bind to hypermethylation DNA in H1-hESC cells may associate with enhancers to regulate special biological functions.
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INTRODUCTION

DNA methylation is one type of epigenetic modification that plays an important role in many biological processes, including development, and disease progression (Das and Singal, 2004; Schübeler, 2015; Ambrosi et al., 2017; Horvath and Raj, 2018; Koch et al., 2018; Ando et al., 2019). Due to a recent technological development, mapping DNA methylation on a whole genome-wide scale has become less costly and more timesaving. While many genome-wide methylation patterns (methylomes) have been obtained in many physiological conditions, the mechanistic connections between DNA methylation changes and phenotypes are often missing.

The conventional view of the biological consequence of cytosine methylation is that it inhibits transcription factor (TF) occupancy to disrupt the protein-DNA interactions and thus represses the expression of the target genes (Lister et al., 2009; Neph et al., 2012; Thurman et al., 2012; Ambrosi et al., 2017). Many research groups have demonstrated that methylation on the binding sequence of a TF often abolished the in vitro interactions between the TF and its recognized DNA sequence (Hu et al., 2013; Zhu et al., 2016; Kribelbauer et al., 2017; Wang et al., 2018). However, in recent years, Kribelbauer et al. (2017) found that DNA methylation could increase p35 binding affinity in vivo. Hu et al. (2013) found that 47 proteins could bind to methylated CpG sites, with the majority showing a preference for specific DNA sequences. A recent large-scale in vitro survey on the interactions between proteins and methylated DNA sequences suggested that transcription factors (TFs) could change the sequence specificity with or without DNA methylation (Yin et al., 2017). In other words, a TF that recognizes an unmethylated DNA sequence could bind to another methylated DNA sequence. These new studies indicated that the previous studies of the effects of DNA methylation on protein-DNA interactions might have missed the correct methylated DNA sequences that could be recognized by TFs. Similarly, many previous studies suggested that TFs always interact with methylated DNA in vivo (Zhu et al., 2016; Wang et al., 2018). There are two possible explanations for the observation that TFs do not interact with methylated DNA sequences consistent with the conventional motif in vivo in the previous studies. One possibility is the intrinsic property of TFs which avoid methylated DNA sequences in vivo. The other possibility is that TFs are insensitive to the methylation status of the binding sequences. They do not interact with the methylated sequence in cells since there are no accessible methylated DNA sequences in most cells.

In this work, we performed a systematic analysis of the DNA methylation status at TF binding sites in vivo. This analysis took advantage of the availability of the large set of ChIP-seq data for TFs and WGBS for methylome in many cell types. By overlapping the in vivo TF binding sites and methylation levels in the same cell types, we obtained the methylation levels for each TF binding peak. According to whether the methylation level was greater than 0.6, we parted the peaks into two groups, one was hi-methyl and the other was low-methyl. Then two motifs were called for the two groups.

Using the two motifs, we located the binding site accurately. We further obtained the methylation level of the TF binding site. Interestingly, we observed that many TFs could bind to methylated CpG sites in different cells. We also observed that DNA methylation could alter the motifs slightly. We found that DNA methylation had a two-way effect, promoting some TF binding, and inhibiting other TF binding.

Interactively, TF binding could change the local DNA methylation. For example, the methylation near the CTCF binding sites showed an obvious reduction, indicating that CTCF may be involved in demethylation. In contrast, CEBPB and MAFK may maintain and even promote DNA methylation. Motivated by the distinct effects of TF binding on DNA methylation, we obtained the chromatin states of each TF binding peak. We found that TF hi-methyl binding always occurred at the enhancers, except for CTCF. Additionally, we systematically surveyed the DNA methylation-dependent CTCF and CEBPB binding in a variety of cell types. We found that the hi-methyl CTCF binding was unconservative. And we found that some DNase I hypersensitive sites, considered to be “open” and with high transcriptional activity regions, were also methylated in H1-hESC cells. This evidence indicated that TFs binding to hypermethylation DNA in H1-hESC cells may associate with enhancers to regulate special biological functions. We performed a deep analysis of two well-studied proteins, CTCF and CEBPB. It is widely considered that CTCF does not bind to methylated DNA, and the functions of CTCF are often DNA methylation dependent (Wang et al., 2012; Teif et al., 2014; Viner et al., 2016; Hashimoto et al., 2017). In our research, we found that CTCF could prevent methylation of CTCF target sites and was involved in passive demethylation. The methylated DNase I hypersensitive sites in H1-hESC, TF hi-methyl binding extensively at enhancers, and the unconservative hi-methyl bindings indicated that the protein-DNA methylation in vivo in H1-hESC cells may associate with enhancers to regulate special biological functions.



MATERIALS AND METHODS


Data Access and Profiling

The WGBS datasets, ChIP-seq datasets, and DNase-seq datasets were download from the Encyclopedia of DNA Elements (ENCODE) project (Inoue et al., 2017; Kazachenka et al., 2018a,b). For the WGBS datasets, we retrieved two repetitions for each cell line. We downloaded the “bed” files which were produced with Bismark (Krueger and Andrews, 2011). Firstly, we merged two repetitions by summing up the count of reads in every loci. DNA methylation level was the ratio of the methylated reads covering the loci. For the ChIP-seq data, we downloaded “bed narrowPeak” files from ENCODE. The annotation of the datasets can be found in Supplementary Data 1. We filtered out the TFs with peak counts less than 500. For multiple experiments of one TF in the same cell, we took the one with the most peak counts for analysis. Our study included 1,200 TF ChIP-seq datasets and five WGBS datasets in five cell lines. The chromatin state segmentation annotations on four cell lines were download from the UCSC Genome Browser (Ernst and Kellis, 2017).



WGBS and ChIP-Seq Data Integration

The analysis method is shown in Supplementary Figure 1. The average methylation level of the CpG sites aligning into a peak was calculated as the peak’s methylation level in each TF. Based on the distribution of peak methylation levels, it was found that many TFs could bind to methylated DNA regions. Then the peaks were classified into two groups based on whether the DNA methylation level was higher than 0.6. HOMER was used to call motifs from two groups, respectively (Heinz et al., 2010). It is worth noting that we only called the motifs of TFs which contained motifs and could bind hi-methyl DNA. Since DNA methylation may change the motif, the motifs obtained from the two sets of peaks may be different. We calculated the match score by using two motifs to scan the two group’s peaks, respectively. The position with the highest match score in the peak was the most likely binding site. We regarded it as the TF binding site. According to the methylation level on the relocated binding site, we could reconstruct a more accurate motif that directly binds to the methylation site.



RESULTS


TFs Could Bind to Highly Methylated DNA in H1-hESC Cells

Previous studies suggested that some TFs could bind to methylated DNA in vitro. We wondered whether these TFs could bind to methylated DNA in vivo. For this purpose, we investigated the DNA methylation status of the DNA bound by the TFs. We superimposed the TF ChIP-seq and DNA methylome data from the same cell type. The average methylation level of all CpG sites within a ChIP-seq peak was calculated as the peak’s average methylation level. Then the distribution of the peaks’ average methylation levels for every TF was obtained. We performed the analysis of 1,200 ChIP-seq datasets on 786 TFs in five normal cell lines (GM12878, HepG2, HeLa, K562, and H1-hESC). Our results generalized the ability of 68 TFs to bind methylated DNA at the genome-scale though many TFs only bind to unmethylated sequences. For examples, as shown in Figure 1A, the far majority (98.89%) of SP1’s binding peaks’ average methylation level was less than 0.6 in GM12878.
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FIGURE 1. Some TFs could bind to highly methylated DNA regions and CpG sites. (A) The distribution of average DNA methylation levels for four TF peaks. (B) The heatmap of TF binding high methylated regions in five cell lines. The color represents the proportion of hi-methylated (methylation levels >0.6) peaks.


It was sensitive to DNA methylation. On the other hand, some TFs (e.g., CEBPB, CTCF, and MAFK) could bind to methylated DNA. There were many peaks of these TFs with average methylation levels greater than 0.6. This observation was confirmed widely in multiple cell lines.

The peak with an average methylation level greater than 0.6 was considered as a hi-methylation binding region. The proportion of hi-methylation binding peaks to TF binding peaks was calculated. As Figure 1B shows, a substantial fraction of TF binding peaks were in hi-methylated regions. A total of 68 TFs showed clear tendency to bind to hi-methylated DNA regions among 786 TFs, and the fractions of these TF hi-methylation peaks were greater than 20%. The ratios of hi-methylated peaks to all 786 TFs are shown in Supplementary Figure 2. For example, CEBPB is known to bind methylated sequences based on in vitro binding assay. A total of 57.18% of CEBPB binding peaks were located in highly methylated regions in H1-hESC cells.

Interestingly, we found that DNA methylation patterns within TFBS can be cell specific. For instance, CEBPB, predominately binds to low methylated regions in the GM12878 cell line, while more than half of the CEBPB binding regions were hi-methylated in H1-hESC. In H1-hESC, we found that 15 TFs bind to hi-methylated DNA. These 15 genes may have great potential mediated by DNA methylation in the gene regulation of H1-hESC.



DNA Methylation Has an Impact on TF Binding Motifs

Several pieces of evidence suggest that DNA methylation could affect TF binding motifs (Zhu et al., 2016; Yin et al., 2017). Therefore, we scanned TF peaks to locate the binding sites and rebuild the motifs by using E to represent methylated C. As shown in Figure 2A, in H1-hESC cell lines, the two motifs of CTCF were similar. By comparing the proportion of peaks with CpGs on binding sites in the two peaks groups, there was still a significant difference. A total of 48.73% had low CTCF methylated peaks with CpGs, but only 25.34% had highly methylated peaks with CpGs. The opposite phenomenon appeared on the two motifs for CEBPB. We found that 59.20% had highly methylated peaks with CpG dinucleotides on the binding sites. However, only 35.13% had low methylation peaks with CpG dinucleotides on binding sites. MAFK had 18.41 and 15.47% peaks with CpGs in low and highly methylated regions, respectively. USF2 showed a significant increase in CpG ratio on binding sites between hi-methyl and low-methyl peaks, and the CpG ratios were 32.28 and 76.31%. The contradictory changes on CpG proportions give a hint about the two different mechanisms in DNA methylation affecting TF binding.
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FIGURE 2. DNA methylation affects DNA binding sequences. *E indicates the methylated C. (A) TF binding motifs called from peaks with different DNA methylation states. (B) TF binding motifs in H1-hESC cell lines are rebuilt from binding sites with different DNA methylation states.


To further confirm that DNA methylation could affect the TF motifs in different ways, we calculated the methylation levels of each CpG site and the TF binding sites in H1-hESC cell lines (see Figure 2B). Here we only considered binding sites that contained CpG sites. Some binding sites may have contained multiple CpG sites. The maximum methylation levels at the CpG on the binding site were taken as the methylation level at the binding site. The binding sites were grouped based on the binding sites’ methylation level, >0.6 is high, <0.2 is low, and others are middle. Here we found the ratio of CpG at some sites increased as the methylation level decreased. For example, CTCF and USF2. There were also some sites where the proportion of CG decreased as the methylation level decreased. For instance, CEBPB and MAFK. Inconsistent with much research, DNA methylation had two different effects on the binding sites.



TFs Bind to Hi-Methylation Related to the Whole Genome Methylation Level in H1-hESC

We found that the DNA methylation levels of CTCF peaks in H1-hESC cell lines were significantly high. However, this phenomenon was absent in the other three cell lines. Then we calculated the distribution of DNA methylation levels in DHSs. As shown in Figure 3A, the methylation levels of CTCF peaks decreased synchronously with the methylation levels of DNase I regions in GM12878, HepG2, and K562. For further research, we calculated the ratio of methylated regions (>0.6) of DHSs and TF binding peaks in four cell lines. Unexpectedly, 50% of DNase I regions had been methylated in the H1-hESC cell line, while only 8, 12, and 14% had in K562, GM12787, and HepG2 cell lines, respectively. Then we checked the correlations of methylation levels of 10 TFs and DHSs in four cell types. As shown in Figure 3B, the ratio of methylated regions of TF peaks increased with the ratio of methylated regions (>0.6) of DHSs. When the DNase I methylation levels increased in H1-hESC cell lines, the TF’s methylation levels all increased synchronously. It was found that the methylation level of the TF binding site was associated with an increase in overall methylation levels.


[image: image]

FIGURE 3. Methylation levels of TFs and DNase I region. (A) Distribution of methylation levels of CTCF and DNase I regions in four cell lines. (B) The ratio of highly methylated binding peaks and DNase I regions in four cell lines. (C) Matching score of CTCF in high methyl and low methyl peaks in H1-hESC cells. (D) DNA methylation level around CTCF binding sites.


We checked whether there was a difference between the binding sequence in high methyl and low methyl peaks. The match scores of known CTCF binding sequences to these peak regions were very similar (Figure 3C), suggesting that sequence difference was not the determinant of CTCF binding methylated DNA. Then the methylation level of 1600 bp upstream and downstream of the CTCF binding site were calculated (see Figure 3D). We found that the more CpGs on the binding sites, the lower methylation levels around the binding sites. This phenomenon is due to the fact that a higher level of CpG binding encourages more binding in the CpG island region. CpG-rich regions are thought to be probably never or only transiently methylated. We also found when CTCF binds to high methylation regions, there were periodic ripples in peripheral DNA methylation. Literature studies have shown that CTCF-PARP-1 interaction is related to demethylation. The presence of PARP-1 may protect CTCF-bound DNA sequences from being methylated by Dnmt1. These periodic ripples are associated with the interaction of PARP1 (Guastafierro et al., 2008; Kraus, 2008; Stadler et al., 2011; Thurman et al., 2012; Jubin et al., 2017). It suggests that CTCF can block methylation of a bound region and initiate passive demethylation binding in the highly methylated regions. As CTCF binding to methylated DNA was not due to the binding sequences, and the methylation levels of CTCF peaks increased with the overall methylation levels synchronously, the methylation may have hindered CTCF binding. We concluded that CTCF bound to methylated DNA in vivo for other reasons.



TF Binding Promotes DNA Methylation and Triggers Demethylation

Some TFs could serve as readers of DNA methylation and changes to the DNA methylation states (Zhu et al., 2016; Yin et al., 2017). To explore the impact of TF binding on DNA methylation, we investigated the methylation level on both sides of the binding site. Here we used the two motifs to scan the hi-methyl and low-methyl peaks of the loci of the binding site. Then we calculated the methylation levels of 1600 bp upstream and downstream of the binding site.

We were pleasantly surprised to find that the binding of TF had a two-way effect on the DNA methylation level. As Figure 4A shows, the methylation levels of the CTCF and ZNF143 binding sites in hi-methyl peaks showed a significant drop compared to the flank of the binding sites. Consistent with many studies, this observation indicated that CTCF may be involved in demethylation (Zheng et al., 2017; Ren and Zhao, 2019; Wiehle et al., 2019). ZNF143 also contributed to demethylation. In contrast, the methylation of ZBTB33 and the methylation of the binding sites showedd a huge increase. This observation shows that ZBTB33 is involved in de novo methylation, suggesting a potential role for ZBTB33 in heterochromatin priming (Hudson and Buck-Koehntop, 2018). And we also found that TF combined with different methylation levels had different effects. The methylation of the MAFF and ZBTB33 binding sites increased in hi-methylation peaks but decreased in the low-methyl peaks. Other TF profiles can be found in Supplementary Data 2.
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FIGURE 4. Investigation of the effect of TF binding on DNA methylation. (A) Distributions of DNA methylation level in the region of 1,600 bp away from the central of TF binding sites. TF binding could reduce the methylation level on the binding sites. While some could increase the methylation level on the binding sites. (B) The chromatin states of TF hi-methylation bindings are most at enhancers.


Different effects of TF binding on methylation motivated us to find the function of the hi-methyl binding. We overlapped the TF binding to the chromatin states and found that almost all TF hi-methyl binding occurred at enhancers, not at promoters, except for CTCF (Figure 4B, Supplementary Data 3). Promoter DNA methylation has been associated with the stable silencing of gene expression. In comparison, enhancer methylation’s role in transcription is less well characterized.

This analysis confirmed that dynamic DNA methylation is driven by the balance between DNA methyltransferases and TF binding. And that TF methylation-dependent binding regulating the enhancer has great research potential.



Conservation of CTCF and CEBPB Binding High Methylated Regions in H1-hESC

Motivated by the TF motifs effect on local DNA methylation profiles, we further investigated the conservation of TF binding across different cell types. As DNA methylation plays an essential role in embryonic development and methylation is relatively high at the whole genome level compared to other cells (Felsenfeld and Bell, 2000; Altun et al., 2010; Singer et al., 2014; Yizhar-Barnea et al., 2018), we used h1-hESC as the control group. Then we ordered the methylation levels of TF bound regions in H1-hESC cells and overlapped the regions in other cell lines. The conservatives of the bound regions across different cell types were found to be different between high methylated bound regions and low methylated bound regions. As Figure 5A shows, many CTCF high methylated bound regions were found in H1-hESC cells, while CTCF no longer binds in other cells. Low methylated bound regions had more conservatives than high methylated bound regions. We considered binding peaks in more than 80% of occupied cells to be conserved. A total of 18.73% of CTCF hi-methyl peaks were conserved. While in CTCF low-methyl peaks, 67.15% was conserved. It hinted that CTCF bound to DNA regions with different methylation have different biological functions. We extracted overlapped genes upstream and downstream of unconservative CTCF high methylated binding regions (methylation level >0.6) and low methylated binding regions (methylation level = 0.6) in 1000 bp separately. A total of 2,063 and 1,075 genes related to these two different methylated unconservative regions were obtained. GO enrichment analysis was performed on these genes, and we identified enriched biological processes related to these two gene groups. The five highest fold enrichment terms are shown in Table 1. The genes related to CTCF’s low methylated binding regions were enriched in calcium ion binding. While for CTCF’s high methylated binding regions, the genes were enriched to ATP binding, suggesting that in H1-hESC cells the methylated-dependent CTCF may be involved in regulating ATP binding.
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FIGURE 5. TF binding regions in H1-hESC show different conservatives in different methylation context. (A) Conservative of CTCF binding regions in H1-hESC. (B) Conservative of CEBPB binding regions in H1-hESC.



TABLE 1. GO term enrichment for different methylation binding regions bound by CTCF and CEBPB.

[image: Table 1]As opposed to CTCF and CEBPB showed a different phenomenon (Figure 5B). We studied CEBPB binding across six cells. In contrast with CTCF, 41.91% of CEBPB hi-methyl peaks were conserved and 36.88% of CEBPB low-methyl peaks were conserved. The conservation levels in different methylation groups were similar. The hi-methyl bound regions in H1-hESC were always bound by CEBPB in other cell lines. We also carried out GO enrichment analysis as with CTCF. We observed that the gene related to methylated-dependent binding was regulating the extracellular-glutamate-gated ion channel activity in H1-hESC. Other TF profiles can be found in Supplementary Data 4.



DISCUSSION

Previous in vitro experiments found that TFs can bind to methylated sites. In this study, we analyzed the binding of TF to methylated DNA in vivo by integrating data from existing WGBS and ChIP-seq datasets. Many TFs were found that could bind to closed chromatin structure in vivo. Some of them could bind to methylated CpG directly. This phenomenon has not been discovered before because the phenomenon of TF binding to methylation mostly occurs in H1-hESC cell lines. In H1-hESC cells, the overall methylation level is higher than that of cell lines such as GM12878, HepG2, HeLa, and K562. We also found that some TFs bind to the methylated regions with the depletion of CpG at its binding site, such as CTCF. However, CEBPB is accompanied by the appearance of methylated CpG when it binds to methylated regions. So, DNA methylation affecting TF binding is bidirectional in vivo. Interactively, TF binding could change the local methylation bidirectionally. Such as ZBTB33 which involves de novo methylation. But CTCF and ZNF143, they could reduce the methylation levels on the flank of the binding sites. On regulation function analyses, TF hi-methylation binding sites were extensively located at enhancers. And the CTCF hi-methyl binding in H1-hESC was depleted in other cells. These pieces of evidence mean that DNA methylation may be involved in special gene regulation by the enhancer in H1-hESC.

Transcription factors with ChIP-seq data were studied in five cell lines. We found limitations when analyzing methylation at the TF binding site. In the follow-up analysis, we can only study the TFs with motifs. We ignored some TFs, such as Homez, without any binding motif. We only studied the TFs in which motifs could be identified, and focused on the analysis of CTCF and CEBPB in H1-hESC cells.
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Background: Increasing evidence indicates an association between the incidence of Alzheimer’s disease (AD) and cancer development. Despite advances being made by comparisons from epidemiological studies, common pathways and molecular mechanisms, little is known about the identities of the circular RNAs (circRNAs) involved in the development and progression of these two pathologies and their possible correlations. The aim of this study was to explore the circRNA relationship between AD and cancer.

Materials and Methods: In this investigation, circRNAs that were significantly dysregulated in AD or associated with AD diagnosis, clinical dementia severity, and neuropathological severity, were examined in a large panel of 28 cancer types. On the basis of shared abnormal circRNAs in AD and cancers, we constructed a circRNA-micro RNA (miRNA)-messenger RNA (mRNA) network by leveraging experimentally identified miRNA-circRNA and miRNA-mRNA interactions from crosslinking-immunoprecipitation sequencing data.

Results: An inverse correlation of expression pattern was found in acute myeloid leukemia, juvenile myelomonocytic leukemia, renal cell carcinoma, and myelofibrosis. CircRNAs associated with AD diagnosis and clinical severity demonstrated negative correlation in more cancer types. Notably, differentially expressed candidate circRNAs in temporal lobe epilepsy were not associated with any cancers. Gene Ontology and KEGG pathway analysis suggested the circRNA-regulated genes are significantly associated with interleukin-12-mediated signaling and viral response. CircPICALM, circRTN4 and circMAN2A1 are the hub nodes in the circRNA-miRNA-target network.

Conclusion: Our results indicated the relevance of inflammation signaling as a common pathogenesis shared by cancer and AD and provided novel insight for therapeutics targeting circRNAs.
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease that affects millions of people worldwide (Lane et al., 2018). Accumulating evidence suggests a biological link between cancer and AD neuropathology (Snyder et al., 2017). Both are age-associated diseases; although one is degenerative and other is over-proliferative, the risks of both increase significantly with age (Childs et al., 2015; Xia et al., 2018). Furthermore, both diseases are complex and heterogeneous, which greatly challenges accurate diagnosis and efficient treatment (Dagogo-Jack and Shaw, 2018; Nikolac Perkovic and Pivac, 2019). Several epidemiological investigations and meta-analyses suggested a possible inverse relationship between the incidences of these pathologies (Musicco et al., 2013; Zhang et al., 2015). Consistent with this observation, AD is associated with increased cellular death and decreased proliferative signaling, whereas uncontrolled proliferation and apoptosis inhibition are the hallmarks in cancers (Hanahan and Weinberg, 2011; Nudelman et al., 2019). Therefore, AD and cancer may potentially share some regulatory factors, but with opposite regulation direction. In addition, Feng et al. (2017) detected significant genetic correlations between AD and certain types of cancer from genome-wide association study datasets, which indicates the presence of shared genetic variants and disease mechanisms.

Supporting evidence also emerged from molecular studies. For example, several systemic reviews proposed sets of protein-coding genes and mechanistic links among them that play an important role in both cancer and AD (Shafi, 2016; Snyder et al., 2017). Holohan et al., reviewed the functional microRNAs (miRNAs) in both diseases and identified eight (miR-9,-29a/b,-101,-107,-125b,-146a,-153,and-195) that interconnect the two conditions (Holohan et al., 2012). Recently, Battaglia et al. (2019) integrated text mining resources, protein-protein interactions, and gene-miRNA interactions to reveal the complex regulatory mechanisms of gene expression in AD and cancer.

Circular RNA (circRNA) is a circular form of the non-coding RNA family that has been widely implicated in neurodegenerative disorders, cardiovascular diseases, and carcinogenesis (Aufiero et al., 2019; Dube et al., 2019; Zhao et al., 2019). For example, we recently reported that circTADA2A can act as a miRNA decoy, thus affecting its effector SOCS3 to suppress cell migration, invasion, and clonogenicity in breast cancer (Xu et al., 2019). Another study found that one highly represented circRNA in the human brain (CDR1as) mutually interacted with miRNAs such as miRNA-7 and miRNA-671, to establish a sophisticated regulatory network (Kleaveland et al., 2018). Interestingly, mice without the CDR1as locus displayed neuropsychiatric disorder-like symptoms (Piwecka et al., 2017).

Although circRNA is intimately connected with both AD and cancers, there have been few studies on circRNA expression until now. Recent large-scale circRNA deep sequencing studies in AD and a variety of cancers provide strong data to rigorously assess their relationship. Here, we developed a quantitative approach to inspect the expression patterns of the AD-associated circRNAs in 28 cancer types. Temporal lobe epilepsy (TLE) is another common chronic neurological disorder and was examined for comparison. In order to deeply understand the biological mechanisms, we constructed a circRNA-miRNA-target network to identify common changed pathologies underlying AD and cancer.



MATERIALS AND METHODS


RNA-Seq Data

Cancer circRNA sequencing data was downloaded from the MiOncoCirc project, which characterized circRNAs expression across > 2,000 tumor tissues (Vo et al., 2019). CircRNA reads of control tissue and multiple cancer tissues were used for differential expression analysis. Cortical circRNA expression datasets from the Knight Alzheimer Disease Research Center (Knight ADRC) and the independent Mount Sinai Brain Bank (MSBB) were generated from individuals with and without AD and used in this study (Wang et al., 2018; Dube et al., 2019). TLE-associated circRNA datasets termed TLE1 and TLE2 were from Li et al. (2018) and Mills et al. (2020), respecttively.



Correlation Analysis

CircRNAs that are differentially expressed in neuropathological AD case–control, or correlated with two clinical traits: Braak score and Clinical Dementia Rating (CDR) were adopted from the above-mentioned AD datasets, respectively. Similarly, the corresponding log2 fold change (Log2FC) values were derived from the two TLE datasets. For the MiOncoCirc cancer dataset, we filtered the cancer samples with a minimum of 5 tumor samples and combined them with 25 normal controls to form 28 comparison groups corresponding to different cancer types (Supplementary Table 1). Log2FC for each circRNA was computed by DESeq2 software with the same parameters used for AD and TLE analysis (Love et al., 2014). Finally, Spearman’s correlation tests were performed to identify associations between AD and each types of different cancer based on log2 FC. Similar correlations were also calculated for TLE-associated circRNAs with cancer data.



Construction of circRNA-miRNA-Target Network

Seventeen circRNAs that were significantly associated with all the three AD traits such as Braak score, CDR and differential expressed were included in the follow-up analysis. To identify mRNAs potentially regulated by circRNAs through miRNAs, the ENCORI Argonaut (AGO)-crosslinking-immunoprecipitation sequencing data (CLIP-seq) database was queried (Li et al., 2014). ENCORI is an open-source platform for studying the miRNA-ncRNA and miRNA-mRNA interactions from CLIP-seq, degradome-seq, and RNA-RNA interactome data. Using curl commands to access ENCORI API, the miRNA-mRNA and miRNA-mRNA interaction data were collected. For the reliability of the circRNA-miRNA-target network, a CLIP-seq experimental evidence > 1 threshold was used to filter out spurious interactions.



Gene Ontology (GO) Enrichment Analysis and Network Analysis

The Python package gseapy was applied on mRNAs regulated by 17 circRNAs for identifying GO biological processes and KEGG pathways1. GO and KEGG enrichment analysis results were plotted with R package ggplot22. Gene annotated in interleukin (IL)-12 signaling pathway and viral process, together with the associated miRNAs and circRNAs are used to construct the circRNA-miRNA-mRNA interaction network. This network was plotted with Cytoscape (Shannon et al., 2003). To assess the centrality of each node in this network, four global parameters (Closeness, Betweenness, Stress and BottleNeck) and one local parameter (Degree), were computed in Cytoscape plugin cytoHubba. For the definitions and methods to compute these network topological scores, please refer to (Chin et al., 2014).



RESULTS


circRNA Expression Is Inversely Correlated Between AD and Some Cancers

Dube et al. (2019) previously conducted a cortical circRNA expression survey in 83 AD patients and 13 healthy controls. Using the RNA-seq dataset (Knight ADRC), they identified a set of differentially expressed circRNAs (Dube et al., 2019). They also used the same methods to analyze published, independent RNA-seq data (MSBB) on AD and non-AD groups (Wang et al., 2018). As presented in Supplementary Table 2, 39 and 75 differentially expressed circRNAs were identified from the Knight ADRC and MSBB datasets. For Knight ADRC data, comparing their expression pattern with that in cancer datasets indicated inverse correlations with nine cancer subtypes (Table 1). These correlations were confirmed in acute myeloid leukemia (AML), juvenile myelomonocytic leukemia (JMML), renal cell carcinoma (KDNY), and myelofibrosis (MPN) datasets from the MSBB (Table 1). Braak score is a neurofibrillary pathological measure of AD severity. Clinical Dementia Rating (CDR) is a clinical dementia severity parameter. These two AD quantitative traits were also used to identify associations between circRNA expression and AD diagnosis (Morris, 1993; Braak et al., 2006). When utilizing 33 candidate circRNAs associated with Braak score from the MSBB data (Supplementary Table 3), significant negative correlations were found in more cancer types (17 of 28), and most were replicate using the Knight ADRC data (Table 1). Similarly, when using CDR to select circRNAs (Supplementary Table 4), inverse associations were still found in 11 cancers (Table 1). Interestingly, stable negative correlations were retained in AML, JMML, KDNY, and MPN, when simultaneously considering circRNAs either differentially expressed or associated with Braak score, and CDR. The circRNA expression pattern was negatively correlated in six cancers, namely, acute lymphoblastic leukemia (ALL), intrahepatic cholangiocarcinoma (CHOL), rectal adenocarcinoma (COLO), esophageal adenocarcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), and non-Hodgkin lymphoma (NHL), if both Braak score and CDR were considered for associated circRNA selection (Table 1). Collectively, these results support a consistent, replicable, and significant association in circRNA expression changes between cancer and AD.


TABLE 1. CircRNA expression patterns are negatively correlated in AD and some cancers.
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Candidate circRNAs in TLE Are Not Correlated With Any Cancers

Since the identified correlations may be due to brain disease in general rather than AD specifically, we leveraged additional two TLE sequencing datasets to rule out this possibility (Li et al., 2018; Mills et al., 2020). In the original TLE RNA-seq projects, there were no quantitative indices to reflect the clinical features, so only differentially expressed circRNAs were identified in the TLE patients. Thirty two and nine DE circRNAs were selected from the TLE1 and TLE 2 datasets, respectively (Supplementary Table 5). As shown in Supplementary Table 6, no associations were found in any cancer types from either TLE dataset when similar correlation analyses were performed.



Systems Biology Approaches to Identify Common circRNAs and Shared Mechanisms in AD and Cancer

Seventeen circRNAs (circHOMER1, circST18, circMAN2A1, circRTN4, circPICALM, circMAP7, circCORO1C, circDOCK1, circFMN1, circDGKB, circDNAJC6, circERBIN, circRIMS1, circWDR78, circL3MBTL4, circEPB41L5, and circYY1AP1) were significantly associated with all of the three traits (DE, Braak score, and CDR) and were therefore used in the following investigation (False discovery rate < 0.05). Upon examining the CLIP-seq data from the ENCORI database, six circRNAs had direct experimental support for binding with at least one miRNA. These circRNAs target a total of 167 miRNAs that are further linked with 419 mRNAs. The biological consequences of these circRNA-regulated mRNAs were analyzed based on GO annotations and KEGG pathways. Supplementary Table 7 lists all significant GO functional categories and KEGG pathways (adjusted p < 0.05). The top five significant functional categories are shown in Figure 1. It can be seen that the most significant GO category is “cellular response to interleukin (IL)-12.“Viral process” is another specific functional category indicated by enrichment analysis. Similarly, circRNA targeting mRNAs are significantly enriched in several KEGG pathways such as “Herpes simplex infection” and “pathogenic Escherichia coli infection.”


[image: image]

FIGURE 1. The top five GO biological processes and KEGG pathways that enriched with circRNA-regulated mRNAs (left) GO biological processes categories and (right) KEGG pathways, which enriched with circRNA-regulated mRNAs. x-axis represents the -log10 (Adjusted P value).


For clarity, we extracted the genes annotated in cellular response to interleukin (IL)-12 and viral process categories, and constructed the circRNA-miRNA-mRNA interaction network. As shown in Figure 2, these circRNAs, miRNAs, and mRNAs are highly connected with each other, with only a few outliers. We computed several network parameters to assess the centrality and importance of each node in this network (Supplementary Table 8). circRTN4 and circMAN2A1 are among the top scoring nodes according to all the five parameters. CircPICALM ranks high according to global network properties, but its degree is lower than another circRNA, circCORO1C. This is because both hsa-miR-205-5p and hsa-miR-155-5p are its nearest neighbors. These two miRNAs immediately connected with many inflammation related genes. On the contrary, circCORO1C embedded in a cluster that is away from the inflammation related genes (Figure 2). Generally speaking, the higher score a node has, the more critical position it takes up in the whole network. Thus CircPICALM, circRTN4 and circMAN2A1 were identified as hub nodes in the circRNA-miRNA-target network. In one cluster, hsa-miR-92a-3p links circMAN2A1 with a group of mRNAs (Figure 2A). In the circPICALM cluster, several inflammatory genes surround hsa-miR-155-5p, which is connected with circPICALM (Figure 2B); Finally two circRNAs (circRTN4 and circPICALM), four miRNA (hsa-miR-142-3p, hsa-miR-205-5p, hsa-miR-21-5p and hsa-miR-320a), and nine mRNAs (HNRNPA2B1,SOD1, B2M,RPL27, EIF3D, PDCD6IP, MIF, NUP93, and CDC42) form the last cluster (Figure 2C).
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FIGURE 2. circRNA-miRNA-mRNA interaction network constructed from shared aberrant circRNAs in AD and cancers. Brown triangular nodes represent genes annotated in IL-12 signaling pathways or viral response. circRNAs are colored in green. Edges represent the interactions derived from CLIP data. (A–C) Three key clusters that included three highly expressed circRNAs (circPICALM, circMAN2A1, and circRTN4).




DISCUSSION

Years of drug discovery for AD have not yielded meaningful success as the precise etiology of AD remains unclear. Elucidating the relationship between cancer and AD in terms of cellular pathways and molecular interactions will help to uncover factors that contribute to the pathogeneses of both diseases. These results may also guide novel therapeutic strategies and suggest potential repurposing of cancer drugs for AD treatment.

Using large-scale circRNA expression datasets from cancer patients, we verified the inverse correlation hypothesis for AD but not TLE. Among the enriched biological processes of genes shared by both diseases, the cellular responses to IL-12 and its mediated signaling pathways are the most significant and specific mechanisms.

The IL-12 cytokine family includes several cytokines such as IL-12, IL-23, IL-27, and IL-35. They play important roles in the development of appropriate immune responses in various disease conditions (Tugues et al., 2015; Yan et al., 2018). In cancer, IL-12 activates multiple antitumor immunity pathways. IL-12 also enhances differentiation of Th1 cells and promotes type II interferon (IFN)- g production. IL-12 and IFN-g can also regulate the tumor microenvironment. Many clinical trials conducted in the last decade with IL-12 alone or in combination with other therapies showed similar or better antitumor efficacy; however, they did not translate into clinical use. The majority of ongoing trials involving IL-12 treatment failed to show sustained antitumor responses, and was associated with toxic side effects. Currently researchers are studying gene therapy approaches to locally deliver IL-12 and avoid side effects (Lasek et al., 2014). On the other hand, the importance of the innate immune response in AD pathogenesis has become clear in recent years. For example, extracellular amyloid-β (Aβ) deposits are a prominent hallmark of AD. Inhibition of IL-12/IL-23 signaling by targeting IL12p40, the common subunit of both IL-12 and IL-23, using either genetic or pharmacological strategies reduced Aβ cerebral load in AD–like APPPS1 mice (Vom Berg et al., 2012). Collectively, our enrichment analysis is consistent with the above reports, suggesting the IL-12/IL-23 axis as a common mechanism in AD and cancer.

Based on both GO terms and KEGG pathway analysis, many circRNAs targeting mRNAs have virus infection related function. It highlights that AD shares a viral etiology with some cancers. While the infectious hypothesis of AD originated decades ago, it has steadily accumulated evidence in recent years. A consensus statement from leading AD experts claimed that herpes virus (HSV1) is the most likely culprit, but HSV2 may also contribute. Indeed, a clinical trial for valacyclovir, the most widely used generic antiviral drug, is actively being investigated in AD patients (Itzhaki et al., 2016).

It should be noted that both the IL-12 pathway and viral process are connected with inflammatory cascades, which are thought to have major impacts in AD. In the so-called inflammation-driven pathogenesis hypothesis of AD, inflammation damage signals such as viral infections activate nuclear factor-Kβ, synthesis and release of proinflammatory cytokines (Guzman-Martinez et al., 2019; Sochocka et al., 2019). Secretion of IL-12 and related cytokines affect neuronal receptors and ultimately lead to Aβ accumulation and tau hyperphosphorylation in neurons. Our results strongly indicated circRNAs participated in these processes. Thus, anti-neuroinflammation pathways, possibly via circRNA or associated miRNAs interfering, may be a good avenue to explore for drug discovery in AD (Guzman-Martinez et al., 2019).

We identified three circRNA (circPICALM, circMAN2A1, and circRTN4), connected with miRNAs and mRNAs to form three clusters in the circRNA-miRNA-mRNA network. All three circRNAs were previously found to be highly expressed in AD patients (Dube et al., 2019), but currently there is only functional study on CircPICALM in cancer. CircPICALM was downregulated in bladder cancer, and its’ low expression was associated with clinicopathological factors such as advanced T stage, high grade, and poor overall survival. Mechanistically, CircPICALM sponges to miR-1265, which further interfering with the miRNA target STEAP4. CircPICALM can inhibit bladder cancer metastasis and regulate epithelial to mesenchymal transition (Yan et al., 2019). In another cluster, circRTN4 connected with four miRNAs (Figure 2C). A report found that hsa-miR-142-3p in serum is lowly expressed thus can be used as biomarker to distinguish AD patients from normal controls (Kumar et al., 2013). Interestingly, two independent groups found elevated hsa-miR-142-3p level in acute leukemias and esophageal squamous cell carcinoma samples (Lin et al., 2012; Dahlhaus et al., 2013). The expression of hsa-miR-142-3p is also associated with clinical data such as overall survival and prognosis. Cholangiocarcinoma is a malignant tumor of bile duct epithelial cells. Similarly, profiling analysis of plasma extracellular vesicles associated miRNAs found hsa-miR-21-5p significantly down-regulated in AD samples respect to dementia with Lewy bodies patients (Gamez-Valero et al., 2019). On the other hand, hsa-miR-21-5p is markedly elevated in hepatocellular carcinoma and gastric cancer (Park et al., 2016; Pu et al., 2018). These results suggested this miRNA can possible use as biomarkers both in AD and cancers. miR-205-5p, another miRNA linked with circRTN4, is the most up-regulated miRNA in cholangiocarcinoma cell-derived exosomes. Inhibition of hsa-miR-205-5p reduced cell invasion and migration (Kitdumrongthum et al., 2018). Unfortunately there is no functional study on the fourth hsa-miR-320a both in cancer and AD. For the circMAN2A1related cluster, we noticed that MAN2A1 (mannosidase alpha class 2A member 1), the parental gene of circMAN2A1, play an important role in glycometabolism. In additional to the classic miRNA mediated functioning, circRNA can also interfere with its parental gene via a variety of mechanisms such as epigenetic control, splicing, transcription, or translation (Zhao et al., 2019). MAN2A1 encodes a glycosyl hydrolase that localizes to the Golgi and catalyzes the final hydrolytic step in the asparagine-linked oligosaccharide (N-glycan) maturation pathway (Moremen and Robbins, 1991). Variants in MAN2A1 have been associated to intelligence and general cognitive ability via GWAS (Savage et al., 2018). Indeed circMAN2A1 is also associated with dementia (Supplementary Table 4), further highlighting the importance of this gene locus in neurodegenerative phenotypes. A recent study found Man2a1-null cancer cells are more sensitive to T cell-mediated tumor killing. This finding has translational relevance since pharmacological inhibition of MAN2A1 by swainsonine synergized with anti-PD-L1 in the treatment of melanoma and lung cancer (Shi et al., 2020). In the future, it would be interesting to explore whether circMAN2A1 participates in MAN2A1regulation, and in which manners circMAN2A1 involves in the regulation.



CONCLUSION

Overall, our analysis reveals the negative associations between AD and some type of cancers from the circRNA perspective. Based on systems biology approach, we also identified three circRNAs clusters that potentially interconnect the two conditions. These findings should be validated when more AD omics datasets are available. It also needs to investigate the molecular mechanisms bridging AD and some cancers, with the ultimate goal of developing circRNA-based therapies for both diseases.
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There is a lack of useful biomarkers for predicting the efficacy of anti–programmed death-1 (PD-1) therapy for advanced gastric and colorectal cancer. To address this issue, in this study we investigated the correlation between inflammatory marker expression and survival in patients with advanced gastric and colorectal cancer. Data for 111 patients with advanced gastric and colorectal cancer treated with anti–PD-1 regimens were retrospectively analyzed. Neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), and clinical characteristics of each patient were selected as the main variables. Overall response rate, disease control rate, and progression-free survival were primary endpoints, and overall survival and immune-related adverse events (irAEs) were secondary endpoints. The chi-squared test and Fisher’s exact test were used to evaluate relationships between categorical variables. Uni- and multivariate Cox regression analyses were performed, and median progression-free survival and overall survival were estimated with the Kaplan–Meier method. The overall response rate and disease control rate of anti–PD-1therapy in advanced gastric and colorectal tumors were 12.61 and 66.66%, respectively. The patients with MLR < 0.31, NLR < 5, and PLR < 135 had a significantly higher disease control rate than those with MLR > 0.31, NLR > 5, and PLR > 135 (P < 0.05). The multivariate analysis revealed that MLR < 0.31, BMI > 18.5, and anti–PD-1 therapy in first-line were associated with prolonged PFS. MLR < 0.31 and BMI > 18.5 were associated with prolonged overall survival. The irAE rate differed significantly between PLR groups, and PLR < 135 was associated with an increased rate of irAEs (P = 0.028). These results indicate that the inflammatory markers NLR, MLR, and PLR have clinical utility for predicting survival or risk of irAEs in patients with advanced gastric cancer and colorectal cancer.

Keywords: anti–PD-1 therapy, inflammatory biomarker, advanced gastric and colorectal cancer, response, PFS


INTRODUCTION

Colorectal cancer (CRC) and gastric cancer (GC) rank first and fourth, respectively, in terms of incidence among digestive tract tumors (Siegel et al., 2020). Immune checkpoint inhibitors (ICIs) such as anti–programmed death-1 (PD-1) antibodies have dramatically altered the treatment landscape for several advanced malignancies. For example, anti–PD-1 monoclonal antibody has been shown to confer a survival advantage to patients with gastrointestinal tumors and is now a standard treatment.

Despite observable and lasting responses in many cases, not all cancer patients benefit from immunotherapy. The overall response rate (ORR) of GC to immunotherapy is approximately 11% (Kang et al., 2017; Fuchs et al., 2018). Microsatellite instability (MSI) status is the main predictor of whether patients with CRC will benefit from immunotherapy. However, in the Checkmate-016 trial, the ORR for MSI-high CRC patients was just 31.1% (95% confidence interval [CI]: 20.8-42.9). Responses to immunotherapy vary markedly, and there are currently no reliable predictive markers for selecting patients who are most likely to benefit from a treatment (Pavan et al., 2019). Therefore, there is an urgent need to identify useful and reliable biomarkers for routine clinical use.

Tumorigenesis and tumor progression are closely related to inflammation, as inflammatory cells promote cancer cell proliferation, angiogenesis, and tumor invasion and even influence the efficacy of some anticancer drugs (Qian et al., 2019). As such, inflammatory factors can potentially serve as biomarkers for predicting tumor recurrence and prognosis. The neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) are prognostic biomarkers (Chen et al., 2019; Imamura et al., 2019; Łochowski et al., 2019; Yang et al., 2019) that have been used to predict response to anti–PD-1 therapy in non-small cell lung cancer (NSCLC), renal cancer, and ovarian cancer, among other malignancies (Baert et al., 2018; Bilen et al., 2018; Cao et al., 2018; Bartlett et al., 2020). In the present study, we analyzed the correlation between NLR, MLR, and PLR and ORR, disease control rate (DCR), and progression-free survival (PFS) as primary endpoints and overall survival (OS) and immune-related adverse events (irAEs) as secondary endpoints in patients with advanced GC and CRC receiving anti–PD-1 therapy in order to determine whether these inflammatory markers have prognostic value in these cancer types.



MATERIALS AND METHODS


Study Design and Objectives

Patients with advanced GC or CRC with unknown MSI status who had received PD-1 inhibitor therapy at Cancer Hospital of Harbin Medical University between September 1, 2018 and July 10, 2020 were included in this retrospective cohort study. The pathologic type of all patients was adenocarcinoma with or without mucinous adenocarcinoma. The last follow-up date was October 27, 2020. Data for patients who received at least two infusions of drug and underwent peripheral blood examination within 2 weeks prior to treatment were analyzed. The samples were promptly centrifuged and processed within 2 h. The cell counting of peripheral blood was measured using the SYSMEX XN-9000 full-automated hematology analyzer (Sysmex, Tokyo, Japan).

Patients who received other anti-tumor therapy within 4 weeks before anti–PD-1 treatment to reduce the influence of previous treatments on peripheral blood index were excluded. Data obtained from electronic medical records and pharmacy databases included patient demographic information and clinical data, hematologic and biochemical parameters at baseline (before the first treatment cycle), concomitant treatments, treatment response, date of last follow-up, and date of death. To eliminate the influence of immunotherapy pseudo-progression, we selected ORR and DCR after 12 weeks of treatment as well as PFS as our primary endpoints; OS and irAE were secondary endpoints.

Progression-free survival was defined as the time from the first treatment cycle with anti–PD-1 agent to radiographically recorded disease progression or death (event) or the last follow-up (censored). OS was defined as the time from the first treatment with anti–PD-1 agent to death, or was censored at the date of last patient contact. To evaluate treatment response, scheduled computed tomography or magnetic resonance imaging was performed every 3 months according to RECIST 1.1 criteria or with clinical worsening of the patient’s condition. ORR was defined as the ratio of the sum of complete response (CR) plus partial response (PR). DCR was defined as the ratio of the sum of CR and PR and stable disease (SD). Treatment was continued until confirmation of disease progression, unacceptable toxicity, or voluntary termination of treatment. The vast majority of patients received anti–PD-1 preparation combined with chemotherapy, radiotherapy, or targeted therapy. This study was approved by the Ethics Review Board of the Cancer Hospital of Harbin Medical University.



Statistical Analysis

Descriptive statistics were used to summarize patients’ demographic and clinical data and treatment information. NLR was calculated as absolute neutrophil count/total lymphocyte count; MLR was calculated as monocyte count/total lymphocyte count; and PLR was calculated as platelet count/total lymphocyte count. The cutoff value for NLR was 5 in accordance with previous studies (Kartolo et al., 2020; Ueda et al., 2020); the optimal cutoff values for MLR and PLR were 0.31 and 135, respectively, which were determined using R-4.0.2 software (R Core Team, 2014). The chi-squared test and Fisher’s exact test were used to assess relationships among categorical variables. Cox proportional hazard models were used to evaluate the relationship between each variable and disease progression and patient survival, and median (m) PFS and median (m) OS were estimated by the Kaplan–Meier method. Statistical differences between each variable and the probability of mPFS and mOS were analyzed with the log-rank test; Cox multivariate regression analysis was performed via forward LR method; the results are expressed as hazard ratio (HR) 95% CI, and P values <0.05 were considered statistically significant. Statistical analyses were performed using SPSS v23.0 (IBM, Armonk, NY, United States) and R software programs.



RESULTS


Patient Characteristics

Patient demographic information and disease characteristics are presented in Table 1. A total of 111 patients with advanced GC or CRC treated with anti-PD-1therapy were enrolled in this study, including 55 women and (49.55%) and 56 men (50.45%). There were 23 patients (20.72%) aged ≥65 years and 88 (79.28%) aged <65 years; There were no differences between any inflammatory marker group and liver, lung, or peritoneal metastasis at baseline; There were no differences between any inflammatory marker and concomitant treatment including chemotherapy, targeted therapy, and radiotherapy. However, statistically significant differences were found between MLR and treatment line (P = 0.035).


TABLE 1. Characteristics of patients in this study.

[image: Table 1]


Treatment Response

Of the 111 patients with stage IV GC and CRC who received anti–PD-1 inhibitor therapy, DCR at 12 weeks was 66.66% and ORR was 12.61% (Figure 1). The patients with MLR < 0.31 had the highest ORR of 18.03%, whereas patients with MLR > 5 had the lowest ORR of only 6.0% (P = 0.057). There was no significant inter-group differences in the ORR (NLR < 5 vs. NLR > 5, P = 0.909, PLR < 135 vs. PLR > 135, P = 0.543). The patients with MLR < 0.31 had DCR of 79.66%, whereas patients with MLR > 5 had ORR of only 51.92%. Moreover, significant inter-group differences in the DCRs were observed (NLR < 5 vs. NLR > 5, P = 0.001, PLR < 135 vs. PLR > 135, P = 0.011) (Table 2). Patients with MLR < 0.31, NLR < 5, and PLR < 135 had a better DCR at 12 weeks than those with MLR > 0.31, NLR < 5, and PLR < 135, respectively (P < 0.05; Figure 1).
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FIGURE 1. Response rates corresponding to baseline NLR, PLR, and MLR. CR, complete response; MLR, monocyte-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; PR, partial response; SD, stable disease.



TABLE 2. Statistical associations between MLR, PLR, NLR, and treatment response.
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Association Between Patient Variables and PFS and OS

Uni- and multivariate analyses were carried out to identify variables associated with PFS and OS. As of October 26, 2020, 77 patients (69.37%) showed disease progression. In the univariate Cox regression analysis, there were no significant differences in PFS with regard to sex, age, and combination with chemotherapy/radiotherapy/targeted therapy; however, baseline MLR, NLR, PLR, BMI, treatment line, and liver metastasis were associated with PFS (P < 0.05; Table 3). The multivariate Cox analysis indicated that MLR, treatment line, and BMI were factors associated with PFS.


TABLE 3. Uni- and multivariate analyses of PFS and OS.
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Patients with baseline MLR < 0.31 had a longer PFS than those with MLR > 0.31 (mPFS, 7.5 months, 95% CI: 4.328–10.732 vs. 3.767 months, 95% CI: 2.635–4.899; P < 0.001) (Figure 2A). Patients with NLR < 5 had a significantly shorter PFS than those with NLR > 5 (mPFS, 7.0 months, 95% CI: 5.083–8.917 vs. 1.4 months, 95% CI: 0.504–2.296; P < 0.001) (Figure 2B). PFS was shorter in patients with BMI < 18.5 compared to those with BMI > 18.5 (mPFS, 1.80 months, 95% CI: 0.430–3.170 vs. 6.867 months, 95% CI: 4.924–8.810; P < 0.001) (Figure 2C). Patients who received anti–PD-1 inhibitor in the first-line setting had a longer PFS than those who had received prior treatments (mPFS, 7.60 months, 95% CI: 4.831–10.369 vs. 3.767 months, 95% CI: 2.770–4.763; P < 0.001) (Figure 2D). Pretreatment MLR (HR = 2.184, 95% CI: 1.140–4.183; P = 0.018) and BMI (HR = 0.176, 95%CI: 0.082–0.377; P < 0.001) were independent prognostic factor for OS (Figure 3).
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FIGURE 2. Kaplan–Meier curves of progression-free survival for patients with gastric cancer and colorectal cancer in relation to baseline clinical parameters. (A) MLR. (B) NLR. (C) BMI. (D) Number of treatment lines. BMI, body mass index; MLR, monocyte-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio.
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FIGURE 3. Kaplan–Meier curves of overall survival for patients with gastric cancer and colorectal cancer in relation to baseline clinical parameters. (A) MLR. (B) BMI. BMI, body mass index; MLR, monocyte-to-lymphocyte ratio.




Correlation Between Inflammatory Markers and irAEs

The majority of irAEs in our patient population were grade I, or II. A total of 30 patients (27.00%) had irAEs, including 15 (50.00%) endocrine-related, 6 (20.00%) skin-related, 4 (13.33%) diarrhea, 1 (3.33%) myocarditis, and 2 (6.66%) pneumonia events, and 2 (6.66%) cases of other events. The details and rate of irAEs were shown in Figure 4. The rate of irAEs was higher in the low PLR (<135) group compared to the high PLR (>135) group (36.36% vs. 17.85%; P = 0.028). There were no significant associations between MLR and NLR and risk of irAE; irAE rates were 26.93 and 27.11% in the high (>0.31) and low (<0.31) MLR groups, respectively (P = 0.810); and 26.60 and 29.41% in the high (>5) and low (<5) NLR groups, respectively (P = 0.107; Table 4).
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FIGURE 4. Rate of irAEs in NLR, MLR, and PLR groups. P values in bold indicate statistically significant differences (P < 0.05). irAE, immune-related adverse event; MLR, monocyte-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio.



TABLE 4. Statistical associations between MLR, PLR, NLR, and irAEs.
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Subgroup Analysis of the Relationship Between Inflammatory Indicators and PFS

Monocyte-to-lymphocyte ratio showed the same association with PFS in patients with GC and CRC who were treated with anti-PD-1 therapy. Compared to the MLR > 0.31 group, patients with MLR < 0.31 had a significantly longer PFS in both GC and CRC. PFS was shorter in GC patients with MLR > 0.31 compared to those with MLR < 0.31 (mPFS, 4.367 months, 95% CI: 1.632–7.102 vs. 9.4 months, 95% CI: 3.696–15.104; P = 0.0081); and was shorter in CRC patients with MLR > 0.31 than in those with MLR < 0.31 (mPFS, 3.733 months, 95% CI: 3.225–4.241 vs. 7.133 months, 95% CI: 3.750–10.516; P = 0.0077) (Figure 5A).
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FIGURE 5. Kaplan–Meier curves of progression-free survival in relation to baseline MLR according to cancer type and number of treatment lines. (A) GC and CRC. (B) Number of treatment lines. CRC, colorectal cancer; GC, gastric cancer; MLR, monocyte-to-lymphocyte ratio.


In patients who received anti-PD-1 therapy as second-line or later therapy, MLR < 0.31 was a predictor of longer PFS (mPFS, 5.113 months, 95% CI: 1.282–8.984 vs. 3.00 months, 95% CI: 0.462–5.538; P = 0.0034). However, MLR had no obvious predictive value for PFS in patients receiving anti–PD-1 inhibitor as first-line treatment. The mPFS in patients with MLR > 0.31 was 7.267 months (95% CI: 2.284–12.250), while the mPFS in patients with MLR < 0.31 was 9.40 months (95% CI: 5.098–13.702, P = 0.099; Figure 5B).



DISCUSSION

Despite the widespread application of immunotherapy in cancer treatment, there is a lack of biomarkers that can be used to evaluate therapeutic response and predict prognosis. At present, the evaluation indexes of immunotherapy are motley. It is reported that highly aneuploid tumors exhibit inherent resistance to anti-PD-1 therapy, which is associated with reduced the expression of genes specific for cytotoxic activities mediated by CD8 + T cells and altered genes in pathways related to ongoing immune response and microenvironment (Davoli et al., 2017). At the genetic level, tumor mutation burden (Cao et al., 2019) and alterations in DNA damage response and repair genes including ATM, ERCC2, BRAC-2, FANCA, MSH6, and POLE can to some extent predict the response of ICIs in specific cancer types (Teo et al., 2018; Fares et al., 2019). However, response rates to anti–PD-1 treatment can differ between tumors with a similar mutation burden, suggesting that other mechanisms play an important role (Riemann et al., 2019). Programmed death ligand-1 (PD-L1) expression in tumor tissue is the most relevant biomarker for gauging the efficacy of anti–PD-1 axis inhibitor therapy. There are no guidelines on the use of PD-L1 expression to predict response to immunotherapy in CRC, nor is there definitive evidence for the significance of PD-L1 expression in CRC (Shitara et al., 2020). The inefficiency, inconvenience and high cost of these methods make them impracticable for large-scale clinical application.

In the present study, we conducted a retrospective analysis of the association between peripheral blood inflammatory markers and clinical response to anti-PD-1 therapy in patients with advanced GC and CRC. Our findings highlight the prognostic value of NLR, PLR, and MLR for both cancer types. We also demonstrated a correlation between NLR, MLR, PLR, and irAEs, which has not been previously reported for GC and CRC immunotherapy.

In our study, MLR was found to be a biomarker for efficacy of DCR, and an independent prognostic factor for PFS and OS in GC and CRC patients who received anti–PD-1 therapy. Currently, the mechanisms underlying the efficacy of anti–PD-1 treatment by inflammatory indicators are not very explicit. On the one side, MLR values in peripheral circulating blood were significantly associated with prognosis in both metastatic GC and CRC (Basile et al., 2020; Zhou et al., 2020). On the other side, myeloid-derived suppressor cells (MDSCs) are a hallmark of tumor-associated inflammation that mediate the suppression of T cell responses in lymphomas (Raber et al., 2014). MDSCs are a heterogeneous population of cells at different stages of differentiation, and can be divided into polymorphonuclear and monocyte MDSCs, which are morphologically and phenotypically similar to neutrophils and monocytes, respectively (Wu et al., 2020). It was well documented that certain chemokines such as CCL2 and CSF-1 or CXCR2 ligands promoted the recruitment of MDSCs from the circulation to the tumor microenvironment (Abrams, 2020). Liu et al. (2019) found that accumulation of monocyte MDSCs leaded to decreased tumor infiltrating lymphocytes (TIL) and increased tumorigenicity, aggravating immunosuppression. Moreover, there is accumulating evidence that elevated lymphocyte counts are negatively correlated with tumor proliferation and invasion; CD4+ T cells mediate long-term response to anti–PD-1 therapy and antagonize acquired resistance (Liang et al., 2016; Kagamu et al., 2020). PD-1 predominantly regulates effector T cell activity within tissue and tumors, and ICIs enhance anti-tumor immunity by blocking negative regulators of T cell functions (Pardoll, 2012). Therefore, MLR, the ratio of two cells, can reflect the state of systemic inflammation and tumor microenvironment to a certain extent. However, it remains to be determined whether the efficacy of these agents can be enhanced by eliminating MDSC, which provides new insights for future research.

Neutrophil-to-lymphocyte ratio with cutoff of five is one of the most frequently reported peripheral blood inflammatory factor with efficacy or prognostic value for patients receiving anti-PD-1therapy in advanced urothelial and hepatocellular carcinoma, non-small cell lung cancer, head and neck cancer and Melanoma (Bartlett et al., 2020; Dharmapuri et al., 2020; Nassar et al., 2020; Peng et al., 2020; Ueda et al., 2020). Previous studies have shown that the increase of NLR value is positively correlated with the proportion of combined positive score of PD-L1 < 1 and the decrease of tumor infiltrating lymphocytes (Franz et al., 2020). In present study, NLR is only a factor affecting PFS and OS in univariate analysis, but it has no significant prognostic effect in multivariate analysis. It may be that different tumor and stage leads to different level of NLR value or different cutoff value due to different inflammatory condition.

Platelets induce epithelial-to-mesenchymal migration of circulating tumor cells and promote tumor cell extravasation and metastasis (Schumacher et al., 2013; Copija et al., 2020). It is reported high NLR and PLR are associated with poor outcome and are useful predictors of the efficacy of anti–PD-1 therapy in many cancers (Dharmapuri et al., 2020; Kartolo et al., 2020). In this study, we found that PLR only was the factor influencing PFS in univariate analysis for patients treated with anti-PD-1 therapy in GC and CRC. Interestingly, PLR < 135 was associated with a higher probability of irAEs (P = 0.028); this is the first study reporting a correlation between blood levels of an immune indicator and risk of irAEs in GC immunotherapy. It was previously demonstrated that PLR was significantly associated with immunotherapy in NSCLC (Pavan et al., 2019). This discovery may be used as a convenient way to identify irAEs timely, which is essential for improving quality of life and reducing the costs of treatment. We did not observe any correlation between NLR, MLR, and irAEs, although this may require validation in a larger cohort.

Body mass index predicted PFS in the Cox multivariate analysis. Marasmus (lower-than-normal BMI) was also a key factor influencing PFS in patients with GC. It was previously reported that BMI is associated with long-term survival and immunotherapy efficacy in patients with NSCLC, melanoma, and renal cancer (McQuade et al., 2018; Cortellini et al., 2019; De Giorgi et al., 2019) we observed that BMI > 18.5 was beneficial for both PFS and OS in patients with advanced GC receiving anti–PD-1 treatment. Moreover, the combination of BMI > 18.5 and MLR < 0.31 was associated with significantly longer PFS and OS (Figure 6). Patients with advanced GC and CRC are more likely to have a lower body fat percentage than those with non-gastrointestinal tumors, suggesting that our patients with cachexia (underweight) and high levels of inflammatory factors in the blood may not benefit from immunotherapy, which is an important consideration for treatment selection.
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FIGURE 6. Combinatorial effect of MLR and BMI on survival in GC and CRC. (A) Effect on PFS. (B) Effect on OS. BMI, body mass index; CRC, colorectal cancer; GC, gastric cancer; MLR, monocyte-to-lymphocyte ratio; PFS, progression-free survival; OS, overall survival.


In the subgroup analyses of GC and CRC patients, a higher MLR value was negatively correlated with shorter PFS. We also observed a shorter PFS with MLR > 0.31 in patients who received ICI therapy as second- or later-line treatment, which was in accordance with the overall trend. In patients who received ICIs as first-line treatment, MLR < 0.31 showed a tendency toward longer PFS, although this lacked statistical significance(P > 0.05).

Besides the small sample size, limitations of the present study were the retrospective design and the fact that the data were collected at a single institution. The precise mechanism underlying the relationship between immune markers and treatment response also requires clarification. Finally, it remains unclear whether inflammatory marker levels are associated with MSI status and PD-L1 expression.

In conclusion, the results of this study demonstrate that peripheral blood inflammatory markers can serve as predictors of treatment response and prognosis in patients with advanced GC and CRC receiving anti–PD-1 therapy. MLR, NLR, and PLR were significantly correlated with DCR; MLR, and BMI were significantly independent factors for PFS and OS. Additionally, PLR < 135 may indicate an increased risk of irAEs. These findings can guide the selection and optimization of ICI regimens for patients with advanced GC and CRC, which can lead to better therapeutic outcomes. Thus, our work can serve as a valuable reference for treatment decisions in clinical practice.
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Increasing evidence has demonstrated the crosstalk between DNA epigenetic alterations and aberrant expression of long non-coding RNAs (lncRNAs) during carcinogenesis. However, epigenetically dysregulated lncRNAs and their functional and clinical roles in Head and Neck Squamous Cell Carcinoma (HNSCC) are still not explored. In this study, we performed an integrative analysis of DNA methylation data and transcriptome data and identified a DNA methylation-dysregulated four-lncRNA signature (DNAMeFourLncSig) from 596 DNA methylation-dysregulated lncRNAs using a machine-learning-based feature selection method, which classified the patients of the discovery cohort into two risk groups with significantly different survival including overall survival, disease-specific survival, and progression-free survival. Then the DNAMeFourLncSig was implemented to another two HNSCC patient cohorts and showed similar prognostic values in both. Results from multivariable Cox regression analysis revealed that the DNAMeFourLncSig might be an independent prognostic factor. Furthermore, the DNAMeFourLncSig was substantially correlated with the complete response rate of chemotherapy and may predict chemotherapy response. Functional in silico analysis found that DNAMeFourLncSig-related mRNAs were mainly enriched in cell differentiation, tissue development and immune-related pathways. Overall, our study will improve our understanding of underlying transcriptional and epigenetic mechanisms in HNSCC carcinogenesis and provided a new potential biomarker for the prognosis of patients with HNSCC.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) represents a heterogeneous group of malignancies derived from the oral cavity, larynx and pharynx, and has become the sixth most common cancer worldwide (Johnson et al., 2020). HNSCC is an aggressive, life-threatening disease associated with low survival rates because of the failure of early diagnosis. Although multimodal treatment, including surgery and chemoradiotherapy, is generally used in clinical practice, HNSCC patients after diagnosis still experienced low survival rates because of regional and distant metastatic spreading and insufficient effectiveness of therapeutic modalities (Dahiya and Dhankhar, 2016). Therefore, biomarkers have become essential tools to provide critically useful and cost-effective information for improving diagnosis and prognosis.

Long non-coding RNAs (lncRNAs) are the primary type of non-coding RNAs (ncRNAs). They have been widely reported to be involved in various biological progress through epigenetic, transcriptional, and post-transcriptional regulation via crosstalk with other RNA species or proteins (Perry and Ulitsky, 2016; Marchese et al., 2017). Increasing evidence and studies have demonstrated the widespread dysregulation of lncRNAs in many human diseases, including cancers (Fang and Fullwood, 2016). These dysregulated lncRNAs play essential roles in cancer development, progression, metastasis and therapy, have widely been recognized as potential attractive biomarkers and therapeutic targets (Jiang M.C. et al., 2019; Bao et al., 2020; Sun et al., 2020; Yan et al., 2020; Zhou et al., 2020). Recent studies found that aberrant expression of lncRNAs could be caused by altered DNA methylation contributing to carcinogenesis. The relationship between epigenetic alterations and lncRNAs expression has been revealed in several cancers (Hadji et al., 2016; Li et al., 2019; Zhang et al., 2019; Hou et al., 2020; Zhang et al., 2020). However, epigenetically dysregulated lncRNAs and their functional and clinical roles in Head and Neck Squamous Cell Carcinoma (HNSCC) are still not explored.

In this study, we performed an integrative analysis of DNA methylation data and transcriptome data to explore the relationship between epigenetic alterations and lncRNAs expression, as well as their prognostic value in HNSCC.



MATERIALS AND METHODS


HNSCC Datasets

DNA methylation data (Illumina 27k methylation array), RNA-seq data and clinical data of 528 HNSC tumor tissues and 50 normal tissues were derived from the UCSC Xena Browser1. The DNA methylation data were preprocessed using the R package ‘‘RnBeads’’ as follows: (i) Removed SNP-enriched probes resulting in10131 probes with the last three bases of their sequences overlap with SNPs were removed; (ii) removed probes with missing values in more than 10% samples. (iii) Imputation was performed by calculating the median methylation level of each sample across all CpG sites and replacing all missing values for this sample at an individual CpG site with the median across all CpGs in the sample. Imputation replaced a median of 2 missing values per sample by estimation. Finally, a total of 392,302 probes of 578 samples were retained for further analysis. lncRNA expression profiles were obtained from RNA-seq data based on the GENCODE annotations2.



Identification of DNA Methylation-Dysregulated lncRNA Biomarkers

Differential CpG site methylation between HNSC tumor tissues and normal tissues was identified using the R package “limma,” and those with FDR adjusted p < 0.05 and absolute mean methylation difference > 0.4 were considered as differentially methylated CpG sites. Then we investigated the association between lncRNA and differentially methylated CpG sites by calculating the Pearson correlation coefficient (PCC) between lncRNA expression and methylation levels of differentially methylated CpG sites. Those lncRNAs significantly correlated with differentially methylated CpG sites with | r| > 0.4 and p < 0.01 were considered as DNA methylation-dysregulated lncRNAs. The univariate and multivariate Cox regression analyses were performed to evaluate the association of DNA methylation-dysregulated lncRNAs and overall survival, and those DNA methylation-dysregulated lncRNAs significantly associated with overall survival were considered as DNA methylation-dysregulated lncRNA biomarkers.



Development of DNA Methylation-Dysregulated lncRNA Signature (DNAMeLncSig)

We used the stepwise regression method by successively adding or removing variables for DNA methylation-dysregulated lncRNA biomarkers to identify the optimal combination of DNA methylation-dysregulated lncRNA biomarkers. Then a DNA methylation-dysregulated lncRNA signature (DNAMeLncSig) was developed by constructing a linear score model of expression levels of optimal DNA methylation-dysregulated lncRNA biomarkers, weighted by their estimated regression coefficients from the multivariate regression analysis as previous studies (Zhou et al., 2015a, b; Bao et al., 2021).



Statistical Analysis

Hierarchical clustering analysis was carried out using the R package “pheatmap” with “ward.D2” method. The median risk score of the DNAMeFourLncSig was selected as a risk cutoff point to divide patients into the high-risk group (>cutoff) and low-risk group (≤cutoff). The Kaplan-Meier estimate was used to compare survival differences between the low-risk and high-risk groups, and statistical significance was examined using the log-rank test. To test whether DNA methylation-dysregulated lncRNA signature was independent of other clinical factors, univariate and multivariable Cox regression analysis and data stratification analysis were conducted. The time-dependent receiver operating characteristic (ROC) curves were used to compare the sensitivity and specificity of the 3- and 5-year survival prediction based on the DNA methylation-dysregulated lncRNA signature and the area under the curve (AUC) was calculated.



In silico Analysis of Functional Roles of the DNA Methylation-Dysregulated lncRNA Signature

The PCC was calculated between expression levels of lncRNAs and mRNAs to identify the mRNAs (ranked top 10%) correlated with the DNA methylation-dysregulated lncRNA signature. The functional roles of the DNA methylation-dysregulated lncRNA signature were in silico predicted through function enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) using the R package “clusterProfiler” (Yu et al., 2012).




RESULTS


Identification of DNA Methylation-Dysregulated Prognostic lncRNAs

We first performed differential DNA methylation analysis between 528 HNSC tumor tissues and 50 normal tissues using the R package “limma,” and identified 780 differentially methylated sites with FDR adjusted p < 0.05 and absolute mean methylation difference > 0.4. Hierarchical clustering of 780 differentially methylated sites separated HNSC tumor tissues from normal tissues (Figure 1). Then we measured the relationship between 780 differentially methylated sites and 14,618 lncRNA expression by calculating the PCC and found that expression levels of 596 lncRNAs are significantly correlated with these differentially methylated sites, which could be considered as DNA methylation-dysregulated lncRNAs. Finally, we conducted the training-validation study by randomly and equally dividing TCGA patients into discovery cohort (n = 250) and validation cohort (n = 249). We then performed univariate Cox proportional hazards regression for 596 DNA methylation-dysregulated lncRNAs with overall survival and found that 6 of 596 DNA methylation-dysregulated lncRNAs are significantly associated with overall survival and were considered as candidate prognostic biomarkers.
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FIGURE 1. Unsupervised hierarchical clustering heatmap of 528 HNSCC tumor tissues and 50 normal tissues based on 780 differentially methylated sites.




Derivation of a DNA Methylation-Dysregulated lncRNA Signature From the Discovery Cohort

To construct a clinically usable lncRNA signature, we performed feature selection using the stepwise regression method by successively adding or removing prognostic lncRNA biomarkers and identified four lncRNAs (AC021188.1, AC024075.3, LINC00460, and AC015878.1) as an optimal combination using the Akaike information criterion (AIC) (Table 1). Then these four optimal lncRNAs biomarkers were fitted into multivariate Cox regression analysis to obtain their relative power in survival prediction. Finally, a DNA methylation-dysregulated four-lncRNA signature (DNAMeFourLncSig) was developed as a linear scoring of lncRNA expression values weighted by coefficients derived from multivariate Cox regression analysis as follows: DNAMeFourLncSig = (-0.29216)∗expression of AC021188.1 + (-0.24336)∗ expression of AC024075.3 + (0.17071)∗expression of LINC00460 + (0.30463)∗expression of AC015878.1. We then calculated the risk score based on the DNAMeFourLncSig for each patient in the discovery and ranked them according to their risk score. The median risk score (0.0127) of the DNAMeFourLncSig was selected as a risk cutoff point to divide patients into the high-risk group (>cutoff) and low-risk group (≤cutoff). As shown in Figure 2A, patients in the low-risk group had significantly improved overall survival than those in the high-risk group (median survival 1838 days vs. 606 days, log-rank p < 0.0001) (Figure 2A). The 3- and 5-year overall survival rates of patients in the low-risk group are 68 and 53%, respectively, higher than corresponding rates (37 and 35%). Furthermore, disease-specific and progression-free survival time of the low-risk group patients was significantly longer than those of high-risk group patients (median disease-specific survival 6,417 days vs. > 60 months, log-rank p < 0.0001, and median progression-free survival 1,859 days vs. 614 days, log-rank p = 0.00015) (Figures 2B,C). ROC analysis found that the DNAMeFourLncSig achieved an AUC value of 0.708 and 0.601 in survival prediction at 3 and 5 years (Figure 2D). The distribution of DNAMeFourLncSig risk score, survival status and expression heatmap of patients in the discovery cohort was shown in Figure 2E. Two lncRNAs (LINC00460 and AC015878.1) were found to have higher expression in a high-risk group that is significantly associated with poor overall survival (HR = 1.26, 95% CI = 1.07–1.48, p = 0.0056 for LINC00460, and HR = 1.26, 95% CI = 1.08–1.46, p = 0.003 for AC015878.1). Other two lncRNAs (AC021188.1 and AC024075.3) were over-expressed in the low-risk group that are significantly associated with proved overall survival (HR = 0.71, 95% CI = 0.57–0.89, p = 0.003 for AC021188.1, and HR = 0.76, 95% CI = 0.62–0.93, p = 0.0072 for AC024075.3).


TABLE 1. Detailed information of four prognostic lncRNA biomarkers.

[image: Table 1]

[image: image]

FIGURE 2. Performance evaluation of the DNAMeFourLncSig in the discovery cohort. (A–C) Kaplan-Meier survival curves of survival between low-risk and high-risk groups. (D) ROC analysis of the DNAMeFourLncSig at 3- and 5-years. (E) The distribution of DNAMeFourLncSig risk score, survival status and expression heatmap of patients. (F) Boxplots for expression levels of four lncRNA biomarkers between low-risk and high-risk groups.




Independent Validation of the DNAMeFourLncSig in the Validation Cohort

We further validated the DNAMeFourLncSig in an independent validation cohort to examine the robustness and reliability of the DNAMeFourLncSig in prognosis prediction. The same cutoff point from the discovery cohort was used to separate patients in the validation cohort into the high-risk group (n = 127) and low-risk group (n = 122). There was a significantly different prognosis between the high-risk group and the low-risk group. As shown in Figure 3A, the overall survival time of patients in the high-risk group was significantly shorter than that of the patient in the low-risk group (median survival 941 days vs. 2,166 days, log-rank p = 0.00068). The 3- and 5-year overall survival rates of patients in the low-risk group are 74 and 60%, respectively, higher than corresponding rates (50 and 39%). Similar differences also were observed for disease-specific survival (log-rank p = 0.0019) and progression-free survival (median survival 1671 days vs. 1,718 days, log-rank p = 0.047) (Figures 3B,C). The DNAMeFourLncSig achieved an AUC value of 0.642 and 0.635 in survival prediction at 3 and 5 years (Figure 3D).
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FIGURE 3. Performance validation of the DNAMeFourLncSig. (A–C) Kaplan-Meier survival curves of survival between low-risk and high-risk groups in the validation cohort. (D) ROC analysis of the DNAMeFourLncSig at 3- and 5-years in the validation cohort. (E–G) Kaplan-Meier survival curves of survival between low-risk and high-risk groups in the TCGA cohort. (H) ROC analysis of the DNAMeFourLncSig at 3- and 5-years in the TCGA cohort.


When the DNAMeFourLncSig was further tested in the entire TCGA cohort, all patients were classified as high-risk (n = 252) and low-risk (n = 247) according to their DNAMeFourLncSig. The two groups of patients differ significantly in overall survival (median survival 2,083 days vs. 763 days, log-rank p < 0.0001), disease-specific survival (median survival 6,417 days vs. 2,570 days, log-rank p < 0.0001) and progression-free survival (median survival 1,859 days vs. 1,064 days, log-rank p < 0.0001) (Figures 3E–G). Furthermore, DNAMeFourLncSig achieved an AUC value of 0.673 and 0.622 in survival prediction at 3 and 5 years (Figure 3H).



Independence of the DNAMeFourLncSig of Other Clinical Features

The results of univariate Cox regression analysis revealed that the DNAMeFourLncSig and treatment response are all significantly associated with overall survival in all three cohorts, as shown in Table 2. Therefore we further investigated whether the prognostic value of DNAMeFourLncSig was independent of other clinicopathological factors and treatment response using multivariate Cox regression. Results of multivariate analysis from the discovery cohort showed that the DNAMeFourLncSig (HR = 2.28, 95% CI = 1.31–3.97, p = 0.0038) and treatment response (HR = 0.25, 95% CI = 0.13–0.47, p = 2.4e-05) still maintained a significant association with overall survival after adjusted by other clinicopathological factors (Table 2). Similar associations from multivariate analysis also were observed in the validation cohort and TCGA cohort (Table 2). These results indicated that the DNAMeFourLncSig might be an independent prognostic factor in predicting survival.


TABLE 2. Univariable and multivariable Cox regression analyses in each patient cohort.
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Association of the DNAMeFourLncSig With Treatment Response

As shown in Table 2, treatment response is also a prognostic factor in the univariate and multivariate analysis. Therefore, we further examined the association of the DNAMeFourLncSig with treatment response. By comparing the distribution of DNAMeFourLncSig risk score, we found that DNAMeFourLncSig risk scores in patients achieving complete response (CR) are significantly lower than those in those achieving no complete response (non-CR) (Wilcoxon rank-sum test p < 0.001) (Figure 4A). Moreover, there is a significantly negative correlation between the DNAMeFourLncSig with CR rate (Pearson correlation r = 0.78, p = 0.00791) (Figure 4B). Patients achieving CR were enriched in the low-risk group and those non-CR patients were enriched in the high-risk group (Figure 4C). For patients with CR, the DNAMeFourLncSig still stratified patients into the high-risk and low-risk group with significantly different survival (median survival 2,002 days vs. 3,314 days, log-rank p < 0.0001) (Figure 4D). For non-CR patients, although it is no significant difference in survival between high-risk and risk groups, it still could be observed that non-CR patients in the low group have more prolonged survival than those in the high-risk group (median survival 584 days vs. 361 days) (Figure 4E).
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FIGURE 4. Association of the DNAMeFourLncSig with treatment response. (A) Boxplots for DNAMeFourLncSig risk score in patients with and without complete response. (B) Correlation between DNAMeFourLncSig risk score and complete response rate. (C) Boxplots for the probability of patients with and without complete response in the low-risk and high-risk groups. Kaplan-Meier survival curves of survival between low-risk and high-risk groups for CR patients (D) and non-CR patients (E).




Functional Analysis of the DNAMeFourLncSig

To further investigate the functional roles of the DNAMeFourLncSig in HNSC, we first evaluated the correlation between lncRNAs in the DNAMeFourLncSig and mRNAs by calculating the PCC and identified 400 mRNAs as DNAMeFourLncSig-related mRNAs. Then we performed KEGG and GO enrichment analysis for these DNAMeFourLncSig-related mRNAs, and found that DNAMeFourLncSig-related mRNAs were mainly enriched in cell differentiation, tissue development and immune-related pathways (Figures 5A,B).
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FIGURE 5. Function in silico analysis of the DNAMeFourLncSig. (A) The network of enriched GO terms. (B) Enriched KEGG pathways.





DISCUSSION

HNSCC is an aggressive, life-threatening disease associated with low survival rates. Although traditional tumor-node-metastasis (TNM) staging system in combination with some risk factors, such as exposure to environmental pollutants and infection with viral agents, tobacco and alcohol consumption, have widely been used in current clinical practice, early diagnosis and prognosis prediction remains highly challenging (Hsieh et al., 2019; Johnson et al., 2020). With the advance in high-throughput omics technology, improved understanding of molecular mechanisms of HNSCC has revealed molecular heterogeneity associated with different behaviors (Zhang et al., 2014; Leemans et al., 2018), implying the potential for molecular changes as novel biomarkers to additional information relevant to TNM staging.

Aberrant expression of lncRNAs has been observed in various cancers, including HNSCC (Zou et al., 2016; Guo et al., 2018; Ghafouri-Fard et al., 2020). However, epigenetically dysregulated lncRNAs and their functional and clinical roles in HNSCC are still not explored. In this study, we performed an integrative analysis of DNA methylation data and transcriptome data and identified 596 DNA methylation-dysregulated lncRNAs. Of them, six DNA methylation-dysregulated lncRNAs were significantly associated with patient outcomes. Therefore, we conducted a machine-learning feature selection analysis using a stepwise regression method to search for an optimal lncRNA combination from six prognostic DNA methylation-dysregulated lncRNAs. As a result, an optimal lncRNA combination consisting of four prognostic DNA methylation-dysregulated lncRNAs (AC021188.1, AC024075.3, LINC00460, and AC015878.1) was identified and subsequently were transformed into a scoring model (named DNAMeFourLncSig), which classified the patients of the discovery cohort into two risk groups with significantly different survival including overall survival, disease-specific survival, and progression-free survival. To examine the reliability and robustness of the DNAMeFourLncSig, we tested this DNAMeFourLncSig in the other two patient cohorts, which showed similar prognostic values in both. Results from multivariable Cox regression analysis indicated that the DNAMeFourLncSig is an independent prognostic factor. Furthermore, the DNAMeFourLncSig was significantly correlated with the complete response rate of chemotherapy and may predict chemotherapy response.

Of four lncRNA biomarkers in the DNAMeFourLncSig, the dysregulated expression of LINC00460 has recently been reported to affect cell proliferation and apoptosis and are closely associated with cancer development and metastasis. By comparing LINC00460 expression in 92 pairs of colorectal cancer and adjacent normal tissues, Wang et al. found that upregulated LINC00460 expression was associated with early-stage CRC and low disease-free survival (Wang et al., 2018). Further study In vitro and in vivo assays by Lian found that LINC00460 function as ceRNA to contribute to CRC tumorigenesis and progression by Regulating KLF2 and CUL4A Expression (Lian et al., 2018). Moreover, Jiang’s study in vitro and in vivo provided direct evidence supporting the association of the LINC00460 and HNSC progression. They found that LINC00460 enhanced HNSCC cell proliferation and metastasis by promoted EMT in HNSCC cells by facilitating PRDX1 entry into the nucleus to induce epithelial-mesenchymal transition (Jiang Y. et al., 2019). Another lncRNAs, AC021188.1, has also been found to be associated with prognosis and was included in a 5-disease prognostic signature lncRNAs in HNSCC in Liu’s study (Liu et al., 2018). It has been shown that lncRNA function could be inferred by studying the functional roles of lncRNA-related mRNAs (Liao et al., 2011; Zhou et al., 2018, 2019). As described in other studies, we first measured co-expression relationships between lncRNA biomarkers and mRNAs to identify DNAMeFourLncSig-related mRNAs. Then we performed functional enrichment analysis for these DNAMeFourLncSig-related mRNAs to identify over-represented GO terms and KEGG pathways. In silico functional analysis demonstrated that DNAMeFourLncSig might participate in cell differentiation, tissue development and immune-related pathways.

Although our study identified and validated this DNA methylation-dysregulated four-lncRNA signature for predicting the prognosis of patients with HNSCC, several limitations should be acknowledged. Firstly, the DNAMeFourLncSig should need to be further tested in other patient cohorts to confirm its possibility for clinical application. Second, although two lncRNAs of the DNAMeFourLncSig have been functionally studied in previous reports, the functional roles of the other two lncRNA should be studied through an experimental approach.
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Many works have reported that protein folding rates are influenced by the characteristics of amino acid sequences and protein structures. However, few reports on the problem of whether the corresponding mRNA sequences are related to the protein folding rates can be found. An mRNA sequence is regarded as a kind of genetic language, and its vocabulary and phraseology must provide influential information regarding the protein folding rate. In the present work, linear regressions on the parameters of the vocabulary and phraseology of mRNA sequences and the corresponding protein folding rates were analyzed. The results indicated that D2 (the adjacent base-related information redundancy) values and the GC content values of the corresponding mRNA sequences exhibit significant negative relations with the protein folding rates, but D1 (the single base information redundancy) values exhibit significant positive relations with the protein folding rates. In addition, the results show that the relationships between the parameters of the genetic language and the corresponding protein folding rates are obviously different for different protein groups. Some useful parameters that are related to protein folding rates were found. The results indicate that when predicting protein folding rates, the information from protein structures and their amino acid sequences is insufficient, and some information for regulating the protein folding rates must be derived from the mRNA sequences.

Keywords: protein folding rate, genetic language, single base information redundancy, adjacent base related information redundancy, mRNA sequence


INTRODUCTION

Proteins cannot function properly if they do not fold into their individual structures, and inactive proteins may be produced by misfolding (Price et al., 2018; Wangeline and Hampton, 2018; Jo et al., 2019). Cell deaths or tissue damage may be caused by misfolded proteins (Soto and Pritzkow, 2018; Lee et al., 2020), and misfolded proteins are related to fatal prion diseases (Eraña et al., 2017). It is a great challenge to discover the mechanism of protein folding, and a key step is to find useful factors that are related to protein folding rates. Since 1998, many studies (Plaxco et al., 1998; Mirny and Shakhnovich, 2001; Zhou and Zhou, 2002; Gong et al., 2003; Kuznetsov and Rackovsky, 2004; Punta and Rost, 2005; Choi, 2020; Li et al., 2020,b) have shown that protein folding rates are related to the corresponding protein structures. However, all the above studies required knowledge of the native structures of proteins. There have also been some investigations regarding the prediction of protein folding rates based on amino acid sequences, demonstrating that a protein folding rate depends substantially on the corresponding amino acid sequence (Ivankov and Finkelstein, 2004; Gromiha, 2005; Gromiha et al., 2006; Ouyang and Liang, 2008; Razban, 2019; Szczepaniak et al., 2019).

It is currently believed that many proteins start folding while they synthesize on the ribosome (Komar, 2009; Kemp et al., 2020; Liu, 2020; Walsh et al., 2020) and that mRNA sequences and structures influence the rate of ribosome appearances along mRNA; they then influence the emergence rates of proteins (Razban, 2019). We think that protein folding rates are influenced by the corresponding mRNA sequences in addition to the characteristics of protein structures and amino acid sequences (Li and Li, 2011; Li et al., 2020). mRNA is regarded as a kind of genetic language, and we think that its vocabulary and phraseology must provide some influential information related to protein folding rates. In the present work, we constructed a large dataset and analyzed the relationships between the parameters of genetic language and protein folding rates to determine the influence of mRNA. We determined that protein folding rate is also influenced by the corresponding mRNA sequence in addition to the characteristics of amino acid sequence and protein structure. If we can add the influential factors of mRNA sequences into the protein folding rate prediction, its accuracy would be greatly improved.



MATERIALS


Dataset

In recent years, some experimental data on protein folding rates had been reported, Ouyang and Liang (2008) developed a method that could predict the folding rates for proteins based on the amino acid sequences of 80 proteins. Ivankov et al. (2009) studied the coupling between properties of the protein shape and the rate of protein folding based on a dataset of 84 proteins. Guo et al. (2011) predicted folding rates of 99 proteins. But information on the corresponding mRNA sequences not contained within such datasets. In the present work, we collected these data, eliminated redundant data and found information regarding the corresponding mRNA sequence of each protein. Finally, we constructed a new dataset containing 100 proteins, of which 56 are two-state folders (proteins that could fold rapidly without populating any intermediate states) and 44 are multistate folders (proteins that fold to their native states via a populated intermediate state), and according to their structural classifications, they were divided into three groups (21 are all-α proteins, 39 are all-β proteins, and 40 are α-β proteins). It should be noted that the values of protein folding rates vary greatly from a few microseconds to several hours. So, in order to compare them in a table or a figure, the natural logarithm of protein folding rate [ln(kf)] was usually used to represent protein folding rate in previous studies. In the present study, we also defined the value of protein folding rate with its natural logarithm.



Amino Acid Sequences and Their Corresponding mRNA Sequences

The corresponding mRNA sequences of the proteins were taken from the European Molecular Biology Laboratory (EMBL) through cross-referencing with the Protein Data Bank (PDB). Some of the proteins were protein segments, so we intercepted these protein sequences and their corresponding mRNA sequences. Information about the 100 proteins and segments is given in Supplementary Appendix Table 1.



METHODS


mRNA Properties

From the related studies, we learned that the properties extracted from 3D structures and the primary sequences of proteins are very useful for predicting their folding rates. However, we think the above properties are not enough for such predictions; here, let us focus on the properties derived from mRNA sequences. The basic information of an mRNA sequence is its base composition and the base relations, which represent the vocabulary and phraseology of the genetic language, respectively. Luo observed that the base relations are mainly embodied in the adjacent relations and proposed some parameters (Luo et al., 1998), such as the single base information redundancy (D1), the adjacent base related information redundancy (D2), and two other parameters derived from, D1 and D2. All these parameters were proven to be related to evolution. In the present work, we selected the GC content of mRNA sequences, D1 and D2, which represent the information regarding the genetic language of the mRNA sequence to analyze the relations between mRNA sequence and protein folding rate. The parameters are described in detail as follows:



Single Base Information Redundancy

An RNA sequence is a kind of genetic language; D1is the single base information redundancy, which was introduced to describe the composition of the vocabulary of the genetic language, and it indicates the differences in the base distributions between the observed sequence and a random sequence. It can be calculated by equation (1).

[image: image]

where D1is the single base information redundancy and pi is the probability of base i (i = A, U, G or C).



Adjacent Base Related Information Redundancy

mRNA sequences contain much information, most of which is contained in the base correlation, especially in the adjacent base correlation. D2 is the adjacent base related information redundancy, which was introduced to describe the phraseology of the genetic language. D2 can be calculated by equation (2).

[image: image]
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where D2 is the adjacent base related information redundancy, pi is the probability of base i (i = A, U, G or C), pijis the probability of dinucleotide ij, and pj|i is conditional probability of base j occurred after base i.



GC Content

In the present work, another derived parameter is the GC content, which can be calculated by equation (4).

[image: image]

where CGC is the GC content of an mRNA sequence, NG and NC are the amounts of base G and base C, respectively, and N is the total base number of the mRNA sequence.



The Information Parameters of Subsequences

An increasing number of people are realizing the differences between the 3 positions of a codon. For the mRNA sequence of each protein, we picked out all the nucleotides in the first positions of the codons in the sequence and made a new sequence. The new sequence was named subsequence 1, and likewise, we obtained subsequence 2 and subsequence 3. Then, we defined the corresponding parameters of each subsequence according to equations (1), (2), (3) and (4). They are: [image: image], [image: image],[image: image], [image: image], [image: image], [image: image], [image: image], [image: image] and [image: image].

The values of the above parameters for each protein were calculated, and the values are shown in Supplementary Appendix Table 2.



Linear Regression Procedures

First, for all 100 proteins, we performed linear regression analysis on the values of each parameter (CGC, D1, D2, [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image], [image: image] and [image: image]) and the experimental protein folding rates. Second, we performed the same linear regression analysis separately for 56 two-state folders and 44 multistate folders. Finally, the same linear regression analysis was performed separately for 21 all-α proteins, 39 all-β proteins, and 40 α-β proteins. Then, we verified the statistical significance of the regression models with their p-values.



RESULTS


The Correlations of all the 100 Proteins

According to the above discussion, we selected 12 properties extracted from the mRNA sequences. Each of these properties may be correlated with protein folding rates. First, for all 100 proteins, linear regression analyses were performed on the values of each parameter and the protein folding rates. Previous related works demonstrated that two-state folders and multistate folders represent different features in terms of predicting protein folding rates. Second, we divided the proteins into two-state proteins and multistate proteins, and then, the same linear regression analyses were performed for each type of protein. The results are presented in Table 1.


TABLE 1. Results of linear regression between the protein folding rates and the parameters of the corresponding mRNA sequences of the 100 proteins.

[image: Table 1]To show the correlations between the parameters of the corresponding mRNA sequences and the protein folding rates clearly, we drew figures of the protein folding rates along with their corresponding parameters (see Figures 1–3).
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FIGURE 1. Changes of protein folding rates with the values of GC content in mRNA. (A) Changes of protein folding rates with the values of GC content (CGC, [image: image], [image: image] and [image: image]) in mRNA of all the 100 proteins. (B) Changes of protein folding rates with the values of GC content (CGC) in mRNA of the two-state folders and multistate folders.


As we can see from Table 1 and Figure 1, the parameter CGC is negatively correlated with the protein folding rates, and further analysis showed that the effect of GC content on the protein folding rates is mainly derived from the first and third positions of the codons. The parameter D1 is positively related to the protein folding rates, and we found that the parameters [image: image] is strongly and positively related to the protein folding rates, this phenomenon is shown in Table 1 and Figure 2. Parameter D2 is negatively correlated with the protein folding rates. In addition, parameter [image: image] exhibited significant negative relations with the protein folding rates. In addition, parameter [image: image] exhibited significant positive relations with the protein folding rates. Multistate folders yielded the highest correlation coefficients, reaching 0.44, as shown in Table 1 and Figure 3. At the same time, we noticed that the correlation was more significant for multistate folders than for two-state folders, and this can be seen in Table 1, Figures 1–3. Our results indicated that increasing the GC content and the D2 values may hinder the protein folding process, and increasing the D1 values may enhance the protein folding process; however, the influence of parameter D1 on the two-state folders is the opposite of its influence on the multistate folders. The results proved that the protein folding rates are also influenced by the vocabulary and phraseology of mRNA sequences.


[image: image]

FIGURE 2. Changes of protein folding rates with the values of the single base information redundancy in mRNA. (A) Changes of protein folding rates with the values of the single base information redundancy (D1, [image: image], [image: image] and [image: image]) in mRNA of all the 100 proteins. (B) Changes of protein folding rates with the values of the single base information redundancy (D1) in mRNA of the two-state folders and multistate folders.



[image: image]

FIGURE 3. Changes of protein folding rates with the values of the adjacent base related information redundancy in mRNA. (A) Changes of protein folding rates with the values of the adjacent base related information redundancy (D2, [image: image], [image: image] and [image: image]) in mRNA of all the 100 proteins. (B) Changes of protein folding rates with the values of the adjacent base related information redundancy (D2) in mRNA of the two-state folders and multistate folders.




The Correlations of Proteins in Different Structural Classes

In previously published related work, it was found that the valid parameters for predicting protein folding rates are distinct for different structural classes. Therefore, it is necessary to classify the proteins into different structural classes. In the present work, we divided the 100 proteins into groups of all-α proteins, all-β proteins, and α-β proteins. In each group, we performed the same regression analyses as in the above section, and the results are presented in Tables 2–4.


TABLE 2. Results of linear regression between the protein folding rates and the parameters of the corresponding mRNA sequences of the 21 all-αproteins.

[image: Table 2]
TABLE 3. Results of linear regression between the protein folding rates and the parameters of the corresponding mRNA sequences of the 39 all-β proteins.

[image: Table 3]
TABLE 4. Results of linear regression between the protein folding rates and the parameters of the corresponding mRNA sequences of the 40α-β proteins.

[image: Table 4]As we hypothesized, the results are different for different protein groups. For example, GC content has different influences on proteins in different structural classes. In detail, the influence of parameter CGC is mainly derived from the third positions of the codons for all-α proteins, but it is mainly derived from the first positions of the codons for α-β proteins, and parameter CGC has little influence on the protein folding rates for all-β proteins. In addition, we noticed that for all-α multistate folders, parameter [image: image] exhibited significant correlations with the protein folding rates, yielding the highest correlation coefficient (reaching 0.80). This indicates that this kind of effect mostly comes from synonymous codon usage and not from the information of amino acids.

Of course, some results were the same for different protein groups. For example, the parameter [image: image] exhibited an excellent positive relations with the folding rates of each structural class. Furthermore, parameter [image: image] exhibited significant negative relations with the folding rates of all-α proteins and β proteins. In addition, it is obvious that the correlations are more significant for multistate folders in each structural class than for two-state folders.

The mRNA sequence and its subsequences are regarded as genetic language. The above results indicate that both the vocabulary and phraseology of mRNA may influence the corresponding protein folding rate, and parameters such as [image: image], [image: image] and [image: image] may be influential parameters for protein folding rate prediction.



DISCUSSION

In theory, mRNA structures may be influenced by the vocabulary and phraseology of their mRNA sequences. In detail, the complexity and variability of mRNA secondary or higher structures are determined partly by the base relations in the mRNA sequence. We think that mRNA structures must influence the rate of ribosome appearances along mRNA; and then influence the emergence rates of proteins, and we also think that the base relations are mainly embodied in adjacent relations. Therefore, the two parameters (single base information redundancy and adjacent base related information redundancy) provide information regarding the variability and complexity of mRNA structures, and the results show that the above two parameters may be effective factors for predicting protein folding rates.

It is interesting that for the multistate folders, the influence of GC content is outstanding. In detail, for all-α proteins, the influence of parameter CGC is mainly derived from the third positions of the codons, but for α-β proteins, it is mainly derived from the first positions of the codons. The composition of the second codon position is incredibly stable, with very little deviation in composition across the species, but the composition of the third codon position has a large deviation because of the bias of the synonymous codon usage (Gibson et al., 2005). We think that the large deviation of base composition results in a large range of regulating, Therefore, the effect of GC content on the protein folding rates is mainly derived from the first and third positions of the codons.

The influence of the third positions of codons is inspiring because the third positions take information regarding synonymous codon bias but not amino acid bias. This means that this part of the information is only obtained from the mRNA sequence, not from amino acids. This additionally proves that the folding rates are also influenced by the non-random usage of synonymous codons.



CONCLUSION

To conclude, in this work, some parameters of the vocabulary and phraseology of mRNA sequences were selected, and then, the relationships of these parameters with protein folding rates were analyzed. The results showed that the vocabulary and phraseology of mRNA sequences are significantly correlated with protein folding rates to different degrees. This suggests that the evaluated mRNA sequence plays an important role in regulating protein folding.

Although our parameters are simple parameters for representing mRNA information, their influences are significant. If we can find better parameters to represent the mRNA information, we believe that more detailed and clearer relations between mRNA sequences and protein folding rates will be discovered.
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With the highest case-fatality rate among women, the molecular pathological alterations of ovarian cancer (OV) are complex, depending on the diversity of genomic alterations. Increasing evidence supports that immune infiltration in tumors is associated with prognosis. Therefore, we aim to assess infiltration in OV using multiple methods to capture genomic signatures regulating immune events to identify reliable predictions of different outcomes. A dataset of 309 ovarian serous cystadenocarcinoma patients with overall survival >90 days from The Cancer Genome Atlas (TCGA) was analyzed. Multiple estimations and clustering methods identified and verified two immune clusters with component differences. Functional analyses pointed out immune-related alterations underlying internal genomic variables potentially. After extracting immune genes from a public database, the LASSO Cox regression model with 10-fold cross-validation was used for selecting genes associated with overall survival rate significantly, and a risk score model was then constructed. Kaplan–Meier survival and Cox regression analyses among cohorts were performed systematically to evaluate prognostic efficiency among the risk score model and other clinical pathological parameters, establishing a predictive ability independently. Furthermore, this risk score model was compared among identified signatures in previous studies and applied to two external cohorts, showing better prediction performance and generalization ability, and also validated as robust in association with immune cell infiltration in bulk tissues. Besides, a transcription factor regulation network suggested upper regulatory mechanisms in OV. Our immune risk score model may provide gyneco-oncologists with predictive values for the prognosis and treatment management of patients with OV.
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INTRODUCTION

Ovarian cancer (OV) is the second leading cause of gynecological cancer and has the highest case-fatality rate among women, with 21,750 new cases and 13,940 deaths predicted for 2020 in the United States (Siegel et al., 2020). About 90% of patients suffering from OV have epithelial OV, which means it is of epithelial origin. High-grade serous ovarian cancer is the most common histological and the most aggressive subtype (Gloss and Samimi, 2014), with almost 80% of patients diagnosed as late stage and an approximately low 5-year survival rate of 30–40% due to concealing without effective characteristics (Dao et al., 2016; Torre et al., 2018). Despite the continuous progress in its diagnosis and treatment, the low sensitivity or specificity of the common OV biomarkers used for clinical diagnosis and recurrence surveillance, as well as the standard treatment that has no advanced improvement beyond cytoreductive surgery and platinum-based combination chemotherapy in decades, still makes it a significant threat to women’s lives. Therefore, it is of importance to understand the mechanisms of OV through its development and progression.

The development of OV is complex with several histopathological types and involves multiple alterations of oncogenes and tumor suppressor genes. Great efforts have been made to identify potential genomic alterations, either individually or jointly, many of which have been validated as major risk indicators for mortality; for instance, ERBB2 had been demonstrated as a poor prognostic predictor with elevated expression, and the combined expression of MANF and DOCK11 was identified as a novel risk factor (Qiu et al., 2014; Luo et al., 2018; Liu et al., 2020a; Tang et al., 2020). However, the functions of non-cancer cells such as stromal or immune cells and non-cellular components in a tumor microenvironment (TME) and their interactions are still poorly understood even though plenty of studies and clinical trials have been conducted for the purpose of improved survival rate and reduced chemotherapy resistance. Moreover, the TME has increasingly been shown to manipulate aberrant histological and cellular functions and plays a critical role in the subsequent evolution of malignancies, more progressive and resistant to chemotherapy (Mroue and Bissell, 2013). Accumulating evidence is uncovering the crucial roles of immunity in tumor immunosurveillance (Dunn et al., 2004; Koebel et al., 2007; Finn, 2008). Other studies of the TME during tumor development reveal multi-omics prognostic biomarkers that may be used for imaging or liquid biopsy analysis, both important to select the most suitable therapies and stratification of patients, including OV (Abadjian et al., 2017; Wu et al., 2017; Willumsen et al., 2018; Guo et al., 2019; Jiang et al., 2020). However, because of heterogeneity and developing drug resistance, consistent with low mutational burden, patients with OV often show a lower response to immunotherapy (Zhu et al., 2018). The lack of successful treatment leads us to measure comprehensive genomic and epigenomic alterations that affect outcomes and constitute therapeutic targets, and thus, further research studies are still needed urgently.

In this study, we employed high-throughput gene expression profiles with complete clinical pathological information offered in public databases to identify genes and features involved in immune-related processes and the prognosis of OV. Multiple machine-learning-based methods were employed to investigate and validate relative immune components and their interactions. An immune gene-based risk score model was constructed and verified using available clinical data. In summary, our findings may provide new ideas and targets for the precious medication of OV.



MATERIALS AND METHODS


Data Collection and Processing

The fragments per kilobase million (FPKM) expression profile of TCGA RNA-sequencing data (level 3) for OV and the corresponding clinical pathological parameters were downloaded from UCSC Xena genome browser1 (Goldman et al., 2020). Also, annotation information mapping probes to gene symbols was obtained from the GENCODE database2, using the version for human release 22 (Frankish et al., 2019). To normalize both gene size and library size, FPKM values were then transformed to transcripts per million (TPM) (Wagner et al., 2012). Duplicated genes with the same stable ensemble ID were merged by their average values. Clinical data with paired expression data were then abstracted and summarized by the following criteria: (i) duplicated samples with both formalin-fixed and paraffin-embedded and frozen tissues subjected to sequencing analysis were removed, retaining one; (ii) patients without well-annotated clinical information were removed; and (iii) patients with overall survival time <90 days were also removed from the current research. The whole cohort was then stratified for training and testing the risk models using the methods below.

Two additional datasets – GSE9891 and GSE14764 – were downloaded using ‘‘GEOquery’’ package from the Gene Expression Omnibus (GEO) for external validation3. Additionally, a comprehensive immune gene dataset was obtained from the ImmPort database4 to filter genes enrolling in immune or inflammatory response for a more specific inspection (Bhattacharya et al., 2018).



Investigation of Tumor Infiltration Lymphocyte Subpopulations, Dimensionality Reduction, and Cluster Analysis

In the current analysis, the single-sample gene set enrichment analysis (ssGSEA) algorithm was employed to comprehensively identify immune cell types that are overrepresented in the TME calculating individual enrichment score (ES) based on weighted difference of the empirical cumulative distribution for each pairing of a sample and gene set (Barbie et al., 2009). Immune marker gene panels were collected from a literature resource representative of 28 subpopulations of tumor infiltration lymphocytes (TILs) related to both innate and adaptive immunity, and these genes are expressed neither in cancer nor normal tissues (Charoentong et al., 2017). These TILs were further classified into three categories based on their functional orientations. The enrichment score was then normalized by the min–max algorithm:
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Here, x is the enrichment score calculated by ssGSEA.

Unsupervised hierarchical clustering was then performed on the basis of the Euclidean distance and complete linkage provided in “dist” and “hclust” functions, respectively, dividing OV patients into “Immune High” and “Immune Low” clusters for exploration of differentially expressed transcription patterns between these two clusters. t-Distributed stochastic neighbor embedding (t-SNE) is a popular nonlinear dimensionality reduction technique achieved via t-SNE modeling the probabilities as a Gaussian distribution computing low-dimensional coordinates of high-dimensional data embedding to a dimensionally reduced space using Cauchy distribution (Student’s t-distribution with 1 degree of freedom), often called a map (Belkina et al., 2019). These two clusters further confirmed the robustness using the “Rtsne” package.



Identification of Immune-Associated Components and Tumor Purity

We obtained the three scores of Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) described before to calculate the stromal and immune scores that represent the infiltration of stroma or immune cells in tumor tissues, as well as estimate scores, from which tumor purity can be inferred (Yoshihara et al., 2013). The algorithm was implemented based on “estimate” R package, and the Wilcoxon signed-rank test was used for comparisons between the two clusters.

The cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) uses a set of reference gene expression termed leukocyte gene signature matrix (LM22) containing 547 genes to normalize gene expression profiles, and quantifies either relative or absolute cell components with a support vector machine (Newman et al., 2015). An inference of 22 types of immune cell matrix following pairwise Pearson’s correlation coefficients and root mean square errors (RMSE) and empirical p values were also obtained at 1,000 permutations. These further determined the immune heterogeneity in different immune clusters and the correlation between genomic alterations and LM22.



Exploration of Differentially Expressed Patterns and Functional Enrichment Analysis

The “limma” package was used to screen out the differentially expressed genes (DEGs) between clusters. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out using the “clusterProfiler” package to obtain classified annotations and functional enrichment of DEGs (Yu et al., 2012). Additionally, gene set enrichment analysis for biological pathways was conducted by GSEA, a Java-based software (Subramanian et al., 2005). The annotated gene sets were specified by “hallmarker gene sets” and “c7 immunologic signature gene sets” downloaded from MSigDB as input files (Liberzon et al., 2015; Godec et al., 2016). The significance for the corresponding enriched terms was statistically set as p < 0.05 adjusted by the Benjamini–Hochberg (BH) method and visualized using the “enrichplot” package.



Least Absolute Shrinkage and Selection Operator Cox Regression

Based on the intersection of DEGs and genes offered in the ImmPort database, we explored the potential interactions among immune genes indicating prognosis. Least absolute shrinkage and selection operator (LASSO) Cox regression provided in “glmnet” package was used for a linear combination, performing continuous shrinkage and also feature selection (Tibshirani, 1997). Currently, LASSO is widely used for the survival analysis of high-dimensional data (Jiang et al., 2018). Ten-fold cross-validation was used in this study to derive the best-fit lambda value while minimizing the mean cross-validated error. A LASSO Cox model was constructed through the formula:
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Here, n represents the number of selected prognostic genes, and coefi is the coefficient of each non-zero genei, while expi represents the expression value of each screened genei contributing to the model. Each sample enrolled in the study was then calculated using the formula and grouped for subsequent analyses.



Survival Analysis and Model Judgment

Analyses were performed in each cohort independently. The patients in the two clusters and the whole TCGA cohort were then categorized into high group and low group, respectively, after calculating the optimal cutoff value provided in “surv_cutpoint” function based on the risk score model. The overall survival (OS) rates between each of the two subgroups were compared using Kaplan–Meier survival curves, and statistical significance was implemented by the log-rank test. Patients with censored values were marked as “+,” and their survival curves were also plotted. The univariate and multivariate Cox regression analyses were also implemented among clinical pathological variables, and the risk score model was also implemented using “ezcox” package (Wang et al., 2019). Finally, time-dependent receiver operating characteristic (ROC) curve analysis was performed to assess OS prediction of sensitivity and specificity. Additionally, patients’ risk scores and survival status, as well as expressed patterns of identified prognostic genes, were also explored to illustrate their distributions with different stratifications of clinical parameters.

Meanwhile, two external cohorts from GEO were employed to validate our risk score model. Samples only with the same pathological diagnoses consistent with the TCGA cohort remained, consisting of 251 and 68 samples, respectively. Besides, our risk score model was compared among several prognostic biomarkers identified previously, revealing stability and reliability in predicting OS.



Statistical Analysis

Statistical analyses were all performed on R software version 3.6.35. Comparisons between two variables were performed by the Wilcoxon signed-rank sum test. For comparisons of more than two variables, the Kruskal–Wallis test was performed. Hazard ratio (HR) and 95% confidence intervals (CI) for each variable were also calculated where needed. A two-sided, p value < 0.05 adjusted by the BH or false discovery rate (FDR) method and | log2-fold change (FC)| > 1 were regarded as statistically significant thresholds.




RESULTS


Summary of Expression and Clinical Pathological Data

After obtaining the expression of all probes as well as clinical pathological variables from the UCSC Xena database, we set up the criteria for more rigorous strength, as samples with OS < 90 days excluded meant more evidence about treatment and medication. Here, a total of 309 samples expressing 19,711 mRNAs were enrolled. An overview of the patients included in the whole TCGA cohort and of each cluster is shown in Table 1.


TABLE 1. Clinical pathological characteristics of OV patients in TCGA (n = 309).
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Construction of Immune-Related Clusters and Exploration Heterogeneity of Components

Using the ssGSEA method, we estimated 28 subpopulations of TILs including major types that participated in antitumor and promoted tumor procession closely linked with adaptive immunity and innate immunity functions or pathways, some of which are vital components of the tumor tissue. The whole TCGA cohort was split into two different clusters based on their normalized ES (NES) and unsupervised clustering analysis: “Immune High” (n = 194, 62.78%) and “Immune Low” (n = 115, 37.22%) (Figure 1A). Furthermore, we explored the expression of GZMA and PRF1, whose geometric mean value represents immune infiltration and immune cytolytic activity (Rooney et al., 2015). These two genes both showed higher expression in the “Immune High” cluster (Figures 1B,C). We also applied another unsupervised dimensionality reduction algorithm t-SNE confirming that two clusters possessed robust assignments, in accordance with former results (Supplementary Figures 1A,B). To further explore tumor purity and heterogeneity of components between two clusters, three scores according to the ESTIMATE algorithm were assessed. We found that immune scores, stromal scores, and estimate scores in the “Immune High” cluster were all significantly increased when compared with those in the “Immune Low” cluster, meaning higher infiltrations of immune and stromal cells in the “Immune High” cluster (Wilcoxon signed-rank test, p < 0.0001) (Figures 1D–F). However, tumor purity inferred from these three scores showed a significantly opposite trend between two clusters (Wilcoxon signed-rank test, p < 0.0001), indicating declined components of tumor cells comprised as integrated TME with non-tumor cells (Figure 1G). These results suggested the presence of intratumoral heterogeneity in OV, and stratification was observed even compared with different methods.
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FIGURE 1. Construction of immune-related clusters and exploration heterogeneity of components. (A) Clusters were constructed in The Cancer Genome Atlas (TCGA) cohort determined by ssGSEA and unsupervised hierarchical clustering analysis, and heterogeneity was explored by the ESTIMATE algorithm. Violin plots showed the immune cytolytic activity between the expression of GZMA (B) and PRF1 (C) between two clusters. Distribution of immune score (D), stromal score (E), ESTIMATE score (F), and tumor purity (G) in the “Immune High” cluster and the “Immune Low” cluster indicated heterogeneity between two clusters. NES, normalized enrichment score; ****p < 0.0001.




Differentially Expressed Genes and Potential Mechanisms Underlying Immune-Related Roles

To identify DEGs between the “Immune High” cluster and the “Immune Low” cluster, differential expression analysis was conducted, revealing and identifying a total of 381 DEGs, all of which were explored for functional analyses. The top 10 of the enriched GO terms significantly shown in the bar plot indicated that most of them were associated with immunological and tumor-associated processes, such as regulation of leukocyte activation, leukocyte migration, granulocyte activation, T-cell activation, and neutrophil activation in biological process (BP); receptor regulator activity, receptor-ligand activity, cytokine activity, and cytokine receptor binding in molecular function (MF); and extracellular matrix, plasma membrane protein complex, cytoplasmic vesicle lumen, and secretory granule membrane in cellular component (CC) (Figure 2A). The top 30 KEGG pathways enriched significantly also indicated immune-related terms such as cytokine–cytokine receptor interaction, phagosome, chemokine signaling pathway, cell adhesion molecules, NF-kappa B signaling pathway, Th17 cell differentiation, Th1 and Th2 cell differentiation and, unexpectedly, coronavirus disease 2019 (COVID-19) (Figure 2B). Recent studies have indicated that female cancer patients have an increased infection risk and develop more severe forms of COVID-19, and overexpression of CTSL pivotal for COVID-19 infection is a marker of invasion and metastasis in ovarian cancer (Sui et al., 2016; Liang et al., 2020; Rugge et al., 2020; Montopoli et al., 2021). These results may suggest a variety of coping strategies during a pandemic between inflammation and tumorigenesis. We also downloaded “hallmarker gene sets” and “c7 immunologic signature gene sets” as background gene sets for GSEA. These results indicated that immune signatures, such as “EPITHELIAL MESENCHYMAL TRANSITION” (p adjusted = 0.0044) and “INFLAMMATORY RESPONSE” (p adjusted = 0.0044), were most significantly enriched in patients in the “Immune High” cluster (Figures 3A,B and Supplementary Figures 2A–F). Additionally, a significant enrichment in the “Immune Low” cluster was “WNT_BETA_CATENIN_SIGNALING” (p adjusted = 0.0167) (Figure 3C). As for immunologic gene sets, we also found a positive enrichment in the “Immune High” cluster corresponding to immune cells and other relative terms (all p adjusted < 0.05) (Figures 3D–F and Supplementary Tables 1, 2). Importantly, these intimate relationships between clusters and immune-related gene sets were confirmed without a doubt. It could be suggested that exploration of pathways and signatures aforementioned in OV development and revealing inherent molecular mechanisms involved may be urgent.
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FIGURE 2. Functional analyses based on differentially expressed genes (DEGs). (A) Top 10 results of the GO enrichment analysis in BP, CC, and MF. The bright yellow-to-salmon pink chromatograms indicate the corresponding p values corrected by the BH method. (B) Top 30 results of the KEGG enrichment analyses. The bright yellow-to-salmon pink chromatograms indicate the corresponding p values corrected by the BH method. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological processes; CC, cell components; MF, molecular functions.
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FIGURE 3. Significant enrichment terms for GSEA in “hallmarker gene sets” (A–C) and in “c7 immunologic signature gene sets” (D–F). The significance of NES was all adjusted on behalf of the false discovery rate. NES, normalized enrichment score; FDR, false discovery rate.




Extraction of Differentially Expressed Immune Genes and Construction of a Prognostic Model

Focusing on functional analyses, we next intended to extract immune-related genes from DEGs, including 322 upregulated genes and 59 downregulated genes (Figure 4A and Supplementary Figure 3A). Based on the ImmPort database, 122 genes were extracted and their expression patterns were explored as differentially expressed immune genes (DEIGs), consisting of 117 upregulated and 5 downregulated genes, respectively (Figures 4B,C). To acquire genes with the greatest potential prognostic values, we used the “Immune High” cluster as the training set. LASSO Cox regression analysis was performed with 10-fold cross-validation to evaluate and eliminate variables which contributed less to the model. Finally, a total of 11 mRNAs, namely MSR1, FPR1, RNASE2, GBP2, CXCL9, CXCL11, C5AR1, CCL13, FGF17, CXCL14, and PI3, related to OS with non-zero coefficients were selected as candidate predictors contributing to a linear model, and then they were validated and assessed, and significant differences in OS were observed (Figures 4D,E; Supplementary Figure 3B; Supplementary Table 3). The expression levels and regression coefficients were integrated, and therefore, a risk score model was developed. For further survival analyses, a risk score based on the model was calculated for each sample.
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FIGURE 4. Screening immune-related genes and construction of a prognostic model. (A) A volcano plot of all DEGs was shown combined with | log2-FC| and adjusted p value. (B) Extraction of immune-related genes from DEGs. (C) The landscape of expression pattern for all DEIGs between two immune clusters. Ten-fold cross-validation for tuning parameter selection (D) and coefficients extraction (E) in the LASSO Cox model. DEGs, differentially expressed genes; DEIGs, differentially expressed immune genes.




Stratification of Samples and Verification of Independent Prognostic Model

The whole TCGA cohort and the “Immune Low” cluster were all enrolled for validation, and these three cohorts were stratified into high-risk group and low-risk group followed by the cutoff point. The Kaplan–Meier plot showed significant differences in terms of patients’ OS between the high- and low-risk groups: high-risk group (n = 124) versus low-risk group (n = 70) in the “Immune High” cluster (log-rank test, p < 1.0E-4) (Figure 5A); high-risk group (n = 21) versus low-risk group (n = 94) in the “Immune Low” cluster (log-rank test, p < 1.0E-4) (Figure 5B); and high-risk group (n = 122) versus low-risk group (n = 187) in the whole TCGA cohort (log-rank test, p < 1.0E-4) (Figure 5C). Though no significant difference in patients’ OS between two immune clusters was observed (log-rank test, p = 0.2, Figure 5D), we could also distinguish the significance stratified by the median cutoff point of each cluster, meaning that a higher risk score may more likely belong to the “Immune High” cluster and may predict a worse prognosis (log-rank test, p = 4.6E-5, Figure 5E).
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FIGURE 5. Assessment of candidate immune genes and prognostic capacity. A log-rank test was set up for statistics. Kaplan–Meier survival analysis based on the risk score model in the “Immune High” cluster (A), the “Immune Low” cluster (B), and the whole TCGA cohort (C). Patients grouped by best cutoff values were listed in the risk score chart below at different time points. (D) Kaplan–Meier survival analysis between two immune clusters. (E) Kaplan–Meier survival analysis based on the risk score model between two immune clusters. Patients were grouped by median value in each cluster. ROC and the corresponding AUC of the risk score model and other clinical pathological characteristics for the “Immune High” cluster (F) and the whole TCGA cohort (G). Time–ROC of the risk score model for the “Immune High” cluster (H) and the whole TCGA cohort (I). The ROC and AUC of the predictions for 1, 3, and 5 years are shown, respectively. (J) Correlation heatmap of immune genes extracted by LASSO, risk score model, and clinical pathological characteristics. The lower triangular was the correlation coefficients between two variables and the upper triangular matrix was the significant adjusted p values. RD, tumor residual disease; ROC, receiver operating characteristic; AUC, area under the curve; *p < 0.05, **p < 0.01, ***p < 0.001.


Univariate Cox regression analysis was performed for these studies. The risk score model was independently a negative prognostic factor for the training cohort (HR: 7.02, 95% CI: 4.06–12.12, p < 0.001). These results also showed that age (HR: 1.02, 95% CI: 1.01–1.04, p = 0.010), tumor residual disease (HR: 1.34, 95% CI: 1.10–1.63, p = 0.004), and stage (HR: 1.61, 95% CI: 1.05–2.46, p = 0.027) served as independent prognostic risk factors (Table 2A). Multivariate Cox regression analysis was performed using the significant prognostic factors identified in the univariate analysis. The risk score model was further indicated to possess predictive performance ability for OS, owning the most significant prediction (HR: 5.24, 95% CI: 2.92–9.43, p < 0.001). Similar results were also obtained in the whole cohort, as the risk score model performed best in both univariate analysis (HR: 3.90, 95% CI: 2.61–5.81, p < 0.001) and multivariate analysis (HR: 3.01, 95% CI: 1.98–4.57, p < 0.001, Table 2B). Time–ROC and area under the curve (AUC) of each factor and all combined were also presented, and our risk score model showed a high AUC (Figures 5F–I). Pairwise Pearson’s correlation analysis was employed, and an adjusted p value was set up for a threshold to derive the regulation of genes enrolled in the risk score model and clinical pathological characteristics (Figure 5J). Besides CXCL14 and PI3, the other nine genes showed significant positive or negative correlations, indicating co-expression patterns between them. A significant positive relationship between venous invasion and lymphatic invasion was also observed, indicating an underlying cooperation between them in the long-term survival period in patients suffering from OV.


TABLE 2. Univariate (A) and multivariate (B) Cox regression analysis of the risk score model and other clinical variables.

[image: Table 2]
Two independent cohorts – GSE9891 and GSE14764 – were then employed as external validations for the model to confirm prognostic accuracy, and each was grouped into high and low groups using the same algorithm aforementioned. Kaplan–Meier curves showed significant differences in GSE9891 (log-rank test, p = 0.0035) and GSE14764 (log-rank test, p = 0.042), similar to our previous results, and time–ROC indicated that our immune risk score model had high sensitivity and specificity to predict survival probability (Figures 6A–D). Also, we verified our model to possess stable and reliable ability compared with several biomarkers identified previously (Figure 6E). Hence, these results indicated that our model is reliable in making a precise prediction.
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FIGURE 6. Assessment of prognostic capacity using the two external cohorts GSE9891 (A,B) and GSE14764 (C,D), respectively. (E) ROC curves show the sensitivity and specificity of the immune risk model signature and other known biomarkers in predicting the OS of patients. ROC, receiver operating characteristic; AUC, area under the curve.




Stratification and Validation Among Clinical Pathological Factors as a Predicted Indicator

We explored the distribution of risk scores and survival time in the whole TCGA cohort, annotated with the distribution of expression pattern of immune genes between two immune clusters (Figure 7A). Patients with higher risk scores tended to have shorter survival time and more likely remained in the “Immune High” cluster, whereas patients with lower risk scores tended to have longer survival time and also more likely remained in the “Immune Low” cluster. Moreover, we specifically explored the distribution of risk scores and expression levels of each gene in the whole cohort stratified by different clinical characteristics. As previously described, risk scores in the older group (median age > 58 years old) gained higher levels, accompanied by higher expression levels of CXCL14 and FGF17 and lower expression levels of GBP2 (Wilcoxon signed-rank test, p < 0.05, Figure 7B). Patients with increasing tumor residual disease diameters similarly gained higher values of risk scores (Kruskal–Wallis test, p < 0.05, Figure 7C). While the number of patients in the current study with either venous invasion or lymphatic invasion was comparatively small, we did observe some notable and significant intergroup differences among immune genes using the prognostic model, indicating its potential prognostic role in diverse pathological situations (Wilcoxon signed-rank test, p < 0.05, Figures 7D,E).
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FIGURE 7. Risk score distribution and clinical stratification for the whole TCGA cohort. (A) The distribution of risk scores, survival status, and expression pattern of immune genes in the whole TCGA dataset. (B) OV patients were divided into two groups according to median age, and then the relationships among risk score distribution and expression levels of immune genes between age groups were explored. (C) Relationships among risk score distribution, expression levels of immune genes, and different status of tumor residual disease. (D) Relationships among risk score distribution, expression levels of immune genes, and different status of venous invasion. (E) Relationships among risk score distribution, expression levels of immune genes, and different status of lymphatic invasion. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ****p < 0.0001.




Tumor Immune Landscape and Upstream Regulatory Mechanisms

Three hundred and nine samples were further quantified for a view of tumor immune landscape using the CIBERSORT method, as well as the different identification between the two clusters, which pointed out proportion changes in the immune microenvironment (Supplementary Figure 4). We inspected the association between risk score distribution and each of the 22 leukocyte cells. Pairwise Pearson’s correlation analysis indicated that the risk score model had an intimate relationship with immune component changes, suggesting diversities of systematic antitumor treatment on changes derived from cell-mediated immune response prospectively. Among neutrophils (R = 0.39), M2 macrophages (R = 0.31) were positively associated with risk score (p < 0.05), indicating a worse prognosis, while M1 macrophages (R =−0.15) and CD8 T cells (R =−0.12) presented negative associations, hence, a relative better prognosis (p < 0.05) (Figures 8A–D and Supplementary Figure 5). Additionally, we examined the upstream regulatory mechanisms of the genes contributing to the prognostic model. Transcription factor (TF) datasets were downloaded from TRRUST (version 2) (Han et al., 2018) and LncMAP databases (Li et al., 2018). Combined with the expression of all the TFs and immune-related genes, Pearson’s correlation analysis was applied and then a Sankey plot was shown after integrating a significant pairwise comparison of the TF–immune gene regulatory network (Figure 8E). A total of 29 TF–gene pairs targeting 6 immune genes significantly were extracted from 63 pairs (Supplementary Table 4). While CXCL11 targeted by JUN owned a negative regulatory mechanism (R = −0.142, adjusted p = 0.0293), all the other TFs were observed to have positive relationships while targeting immune genes, respectively.
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FIGURE 8. (A–D) Pearson’s correlation analysis of the risk score distribution and immune cell infiltration significantly identified by CIBERSORT in OV patients. All p values were corrected by the BH method. (E) Upstream regulatory mechanisms revealed the network among TFs and immune genes using the Sankey plot. The width of each alluvial stripe in the TF column represents -log2 (p values) of pairwise Pearson’s correlation adjusted. TFs, transcription factors.





DISCUSSION

Using TCGA dataset in an unbiased manner, we systematically evaluated the TME in OV by multiple approaches to investigate immune activity and proposed prognostic analyses based on bulk immune genes. A risk score model was then constructed and further analyzed by machine learning through different immune clusters and clinical pathological variables. Association with the model-stratified groups identified a significant correlation with OS, suggesting that it provided an independent and reliable measurement for gyneco-oncologists to ensure appropriate pre- or post-surgery treatment and chemotherapy management which is, to some extent, crucial and urgent, due to increasing incidence, lower 5-year survival rate, higher rate of recurrence, and resistance to chemotherapy in OV (Dao et al., 2016; Torre et al., 2018; Siegel et al., 2020).

The unsupervised hierarchical clustering analysis based on ssGSEA identified two clusters that presented obvious differences of immune activity and TME heterogeneity estimated by the ESTIMATE algorithm. Inverse correlations with tumor purity were seen for most expression of immune genes (Li et al., 2016; Rhee et al., 2018), as stromal cells and immune cells are the main non-tumor components co-existing with malignant cells in bulk tumor specimen, by which the tumor purity is deduced. These non-tumor cells dilute the purity of OV cells in TME. The cytolytic activity defined as the geometric mean of GZMA and PRF1 confirmed this robust stratification for the two clusters, for their ultimate effect mechanisms in the cancer immunity cycle. However, no significant difference in overall survival time was observed between these two different clusters, suggesting that genomic alterations may play dominant roles in affecting the functionality of immune cells via modification of TME and, finally, the immunotherapy response (Abdalla et al., 2014). Genomic expression data were further utilized for expanding the depth of understanding. We identified 381 DEGs, followed by GO and KEGG analyses, and also GSEA utilizing two gene sets as genetic backgrounds revealed that significantly enriched terms were observed in immune or inflammatory pathways, underlying their associations with immune activation or inhibition mechanisms in the progression of OV. For instance, it has been proven that high levels of IL-6, a major immunoregulatory cytokine, are associated with TME alterations by binding to its specific receptor IL-6R, whose increased expression, as well as its soluble spliced variant, is regulated by tumor-associated inflammation, leading to death (Rath et al., 2010; Lane et al., 2011). Epithelial–mesenchymal transition (EMT) is a well-known mechanism involved in the biological process of tumorigenesis and resistance to adjuvant therapies, such as paclitaxel-resistant OV cells (Kajiyama et al., 2007; Savagner, 2010). It shed light on blocking the EMT pathways for preventing tumor migration and invasion, at the same time remodeling to chemotherapy and immunity therapy (Rosano et al., 2011; Du et al., 2013). By activating NF-κB, OV cells overexpressed Her2/neu to induce the expression of VEGF which substantially increases vascular permeability, suggesting its involvement in the formation of malignant ascites (Hsieh et al., 2004). Previous studies have already approved the immune-related mechanisms in pan-cancer through TCGA and GEO databases (Charoentong et al., 2017) and the immunotherapeutic strategy available for multiple cancer types such as melanoma (Pandolfi et al., 2008; Achkar and Tarhini, 2017) and non-small cell lung cancer (Herbst et al., 2018), narrowly but successfully, except for OV as a result of low mutational burden or other reasons. In the current study, aiming to genotype and immunophenotype relations involved in OV, we filtered the expression of immune genes from the ImmPort database. LASSO Cox regression analysis identified MSR1, FPR1, RNASE2, GBP2, CXCL9, CXCL11, C5AR1, CCL13, FGF17, CXCL14, and PI3 as hub genes. Among these, FPR1 participates in tumorigenicity of human cervical cancer cells via activation of immune cells induced by N-formyl peptide (Cao and Zhang, 2018; Minopoli et al., 2019). CXCL9 and CXCL11 have been associated with activation of Th1 immunity within TME and a favorable response to chemotherapy and immunotherapy in melanoma (Harlin et al., 2009; Hong et al., 2011). CCL13 can be expressed by M2 macrophages with both anti-inflammatory and tissue repair functions (Grage-Griebenow et al., 2001; Murray and Wynn, 2011). It could be speculated that these biomarkers might play vital roles in the carcinogenesis of OV. Here, we chose the parameter family = “cox” as a response type to filter genes associated with OS. Moreover, considering smaller variables, we also applied other methods to narrow target genes based on AIC or multivariable Cox regression. However, these results failed to reach higher AUCs, suggesting an optimum balance employing genes. Then, a risk score model was constructed as a linear fit form and validated on testing sets as well as on two GEO datasets. Our results predominantly indicated that the risk score model could predict prognosis, as a higher score accompanies a worse prognosis. Besides, focusing on the whole TCGA cohort, a higher risk score may more likely incline to the “Immune High” cluster with a truncated survival time. With more genome-wide annotations’ acquisition, bipartite regulation, especially TF-regulating networks, is highly specific to different cell types (Neph et al., 2012). Upstream regulatory mechanisms were then explored and more molecular interactions were gained, which means a complex co-regulation network exists while considering the immune-related events in OV that need further exploration.

Univariate and multivariate Cox regression analyses were explored and identified independent clinical predictors additionally. As a result, the risk score model performed well entirely, indicating a reverse association with prognosis. Unexpectedly, age was screened out as an independent predictor in the whole TCGA cohort. Various changes occur during aging, while aging stimulates senescence in vivo (Boulestreau et al., 2020). Accompanying senescence, hematopoietic and immune health both decline significantly, contributing to an impaired immune function in the elderly (Beerman et al., 2010). However, previous studies often prove age as a non-significant predictor in OV or other cancers (Liu et al., 2020b). In the current study, we filtered out OS < 90 days for the purpose of long-term influence on OS and treatment management. Tumor residual disease (RD), that is, lesion diameters after cytoreductive surgery, is a consistently important factor across molecular subtypes and disease patterns (Aletti et al., 2007; Chi et al., 2009; Wallace et al., 2017; Wang et al., 2017). Minimizing RD remains an important goal to improve OS when feasible. A multivariate analysis controlling for age, preoperative albumin, stage, disease dissemination pattern, molecular subtypes, and RD posed that RD is the only variable independently associated with OS (Torres et al., 2018). Here, we confirmed the above statements. We observed a significant positive relationship between venous invasion and lymphatic invasion, suggesting their roles involved in immune regulation for a long-term survival incidence. Tumoral lymphovascular space invasion (LVSI), defined as the presence of tumor cells inside capillary lumens of either a lymphatic or a microvascular system within OV, has been reported as a new biomarker of progression (Matsuo et al., 2012, 2014). Moreover, we have set up and proved an enlightening and independent method for gyneco-oncologists and pathologists detecting immune-related genes to stratify prognosis of patients with OV.

Again, we employed CIBERSORT inferring quantitatively infiltrating lymphocytes from tumor transcriptomes. These results not only demonstrated diversity between immune clusters but also showed significant Pearson’s correlations between the risk score model and leukocytes. Previous literature shows that the complexity of the TME determines the functions of immune cells, especially those, such as neutrophils, with dual functions (Medina-Echeverz et al., 2014). Polarizing from M0 macrophages, the distinct immunoregulatory functions of activated M1 and M2 macrophages are antitumoral and protumoral, respectively (Noy and Pollard, 2014). Moreover, lymphocytes can strengthen cancer immune surveillance to suppress tumor cell proliferation, invasion, and metastasis (Dunn et al., 2004). The levels of tumor-infiltrated CD8+ T cells in the HGSOC tumors reveal a positive correlation with the patients’ survival regardless of the extent of residual disease, therapy, or BRCA1 mutation (Ovarian Tumor Tissue Analysis Consortium et al., 2017). Combining all the results mentioned above, we characterized the immune landscape with a risk score model and introduced a novel biomarker to predict prognosis which can further guide treatment decisions in patients with OV.

To conclude, our study has proposed multiple methods to investigate the TME landscape. Genes and the risk score model based on immune clusters were analyzed. We found that the risk score model was significantly associated with OV prognosis. Further analyses indicated that the risk score model was independent and more sensitive and specific than other clinical characteristics. Thus, we strongly believe that the immune-related model represents an important contribution and will enhance the identification of complex mechanistic insights of heterogeneity in OV.
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Background: Myopia is a complex multifactorial condition which involves several overlapping signaling pathways mediated by distinct genes. This prospective cohort study evaluated the associations of two genetic variants in the TGF-β signaling pathway with the onset and progression of myopia and ocular biometric parameters in Chinese school-aged children.

Methods: A total of 556 second grade children were examined and followed up for 3.5 years. Non-cycloplegic refraction and ocular biometric parameters were measured annually. Multivariate regression analysis was used to assess the effect of the TGFBR1 rs10760673 and TGFB2-AS1 rs7550232 variants on the occurrence and progression of myopia. A 10,000 permutations test was used to correct for multiple testing. Functional annotation of single nucleotide polymorphisms (SNPs) was performed using RegulomeDB, HaploReg, and rVarBase.

Results: A total of 448 children were included in the analysis. After adjustments for gender, age, near work time and outdoor time with 10,000 permutations, the results indicated that the C allele and the AC or CC genotypes of rs7550232 adjacent to TGFB2-AS1 were associated with a significantly increased risk of the onset of myopia in two genetic models (additive: P’ = 0.022; dominant: P’ = 0.025). Additionally, the A allele and the AA or AG genotypes of rs10760673 of TGFBR1 were associated with a significant myopic shift (additive: P’ = 0.008; dominant: P’ = 0.028; recessive: P’ = 0.027). Furthermore, rs10760673 was associated with an increase in axial length (AL) (P’ = 0.013, β = 0.03) and a change in the ratio of AL to the corneal radius of curvature (AL/CRC) (P’ = 0.031, β = 0.003). Analysis using RegulomeDB, HaploReg, and rVarBase indicated that rs7550232 is likely to affect transcription factor binding, any motif, DNase footprint, and DNase peak.

Conclusion: The present study indicated that rs10760673 and rs7550232 may represent susceptibility loci for the progression and onset of myopia, respectively, in school-aged children. Associations of the variants of the TGFBR1 and TGFB2-AS1 genes with myopia may be mediated by the TGF-β signaling pathway; this hypothesis requires validation in functional studies. This trial was registered as ChiCTR1900020584 at www.Chictr.org.cn.

Keywords: myopia, children, TGF-β signaling pathway, genetic variant, TGFBR1, TGFB2-AS1


INTRODUCTION

Myopia is one of the most prevalent visual disorders and is very common in school-age children and adolescents, particularly in Asia (Grzybowski et al., 2020). Myopia is generally characterized by axial elongation of the eyeball accompanied with structural changes in the choroid, retina, and sclera. In addition to the economic costs associated with correcting myopia, uncorrected myopia might decrease the quality of life of individuals with associated pathological complications, including glaucoma, retinal detachment, and chorioretinal atrophy, and may lead to permanent loss of vision (Zheng et al., 2013; Ikuno, 2017; Pan et al., 2018; Qian et al., 2018).

The specific etiology of myopia remains unclear. It is generally considered that myopia is caused by a combination of genetic and environmental factors (Morgan et al., 2018; Tedja et al., 2019). The progression of spherical equivalent (SE) and elongation of axial length (AL) are faster in children of myopic parents (Liao et al., 2019). Thus, genetic components play important roles in the pathogenesis of myopia. Recent genome-wide association studies (GWAS) identified an increasing number of common single nucleotide polymorphisms (SNPs) associated with refractive error and myopia. Lin et al. (2009) demonstrated that rs7550232 is one of the susceptibility loci for high incidence of myopia in the Chinese Han population in Taiwan. A recent meta-analysis of GWAS involving 542,934 European participants identified 336 novel genetic loci associated with refractive error. The rs10760673 SNP is one of these genetic loci associated with myopia (Hysi et al., 2020). A study of the ratio of the axial length to corneal radius of curvature (AL/CRC) in subjects of various ages showed opposite effects of the BMP2 gene in children versus adults, indicating that certain genetic components of refractive error may differ between children and adults (Tideman et al., 2016). Thus, it is important to investigate the relationships between genetic loci identified in adults and myopia in school-aged children.

The rs10760673 variant is located in the intronic region of TGFBR1 on chromosome 9 (9q22). Transforming growth factor (TGF)-β receptor 1 (TGFBR1), is encoded by the TGFBR1 gene and participates in the TGF-β signaling pathway, which regulates various physiological and pathological processes, including the control of proliferation and differentiation of mesenchymal cells, wound healing, extracellular matrix (ECM) production, etc. All three TGF-β receptors are downregulated after 1 day of recovery in a tree shrew model of lens-induced myopia, suggesting that these receptors are involved in TGF-β signaling pathway in tree shrew sclera during lens compensation and recovery (Gao et al., 2011). Moreover, the TGF-β signaling pathway participates in ECM remodeling in the sclera and regulates the occurrence and development of myopia on the scleral tissue (Jiang et al., 2017). TGFBR1 polymorphisms are associated with many diseases, such as Marfan syndrome and cancers (Cario et al., 2018; He et al., 2018). Additionally, a GWAS demonstrated an association of alterations in TGFBR1 with adult myopia (Hysi et al., 2020). However, the relationships between TGFBR1 variants and myopia were not investigated in school-aged children.

The rs7550232 variant is located between the TGFB2 and TGFB2-AS1 genes. Several studies investigated whether the TGFB2 gene, which encodes TGF-β2, is associated with myopia (Lin et al., 2009; Jia et al., 2014, 2017). Jia et al. (2014) demonstrated that the concentration of TGF-β2 is positively correlated with AL, suggesting that TGF-β2 is likely to function as a critical factor in axial elongation and myopic shift. However, only a few studies investigated the role of TGFB2-AS1 in myopia. The TGFB2-AS1 gene, which encodes a long non-coding RNA (lnc-TGFB2-AS1), is located on chromosome 1 (1q41)1, 2, and its transcription is induced by TGF-β through the TGF-β signaling pathway (Papoutsoglou et al., 2019). Recent studies suggested that lncRNAs are differentially expressed in healthy ocular tissues versus eye pathologies, such as neovascularization, proliferative vitreoretinopathy, glaucoma, cataracts, ocular malignancy, or strabismus (Li et al., 2016). Moreover, lncRNA polymorphisms are related to cardiometabolic diseases (Dechamethakun and Muramatsu, 2017). However, the associations of myopia, which is one of the most frequent refractive errors, with mutations in the TGFB2-AS1 gene were not reported previously.

The present prospective cohort study evaluated the associations of two genetic variants within the TGF-β signaling pathway with the onset and progression of myopia and ocular biometric parameters in Chinese school-aged children.



MATERIALS AND METHODS


Study Population

We used random cluster sampling method to recruit a study population of second grade children at three primary schools in Wenzhou, Zhejiang, China. The participants were enrolled from September 2014 to May 2018. This 3.5-year school-based prospective longitudinal study was associated with the Wenzhou Epidemiology of Refractive Error project. The study protocol was approved by the Eye Hospital of Wenzhou Medical University. Written informed consents were obtained from the parents or guardians of the participants. All study procedures were performed in accordance with the guidelines of the Declaration of Helsinki. All participants underwent ophthalmic evaluations using automatic objective refractometry (non-cycloplegic, RM-800; Topcon Corp., Tokyo, Japan) and measurements of ocular biological structure parameters, including AL and CRC (IOL Master; Carl Zeiss Meditec, Oberkochen, Germany). Time spent on near work and outdoors was obtained from a questionnaire. The SE values were calculated using the following equation: SE = sphere + 0.5 × cylinder. Myopia was defined as a SE of at least −1.00 diopter (D) (Wu et al., 2015b; Ghorbani et al., 2018; Chiang et al., 2020). The definition of myopia is a SE of more than −1.00 D, because refractometry was performed without cycloplegia; hence, the results of refractive measurements could have been artificially decreased in some children due to involuntary accommodation. The CRC was calculated as the average of the steepest and flattest meridians. The AL/CRC ratio was defined as the ratio of the AL to the CRC. Incident myopia was defined as the proportion of children who were non-myopic (initial emmetropes and hyperopes) at baseline but subsequently developed myopia during the follow-up period. The remaining non-myopic children were not diagnosed with myopia at baseline and did not present with myopia at the final follow-up. The annual changes in the refractive error of each eye were determined by calculating the difference in mean SE values at baseline and at follow-up (follow-up value minus the original baseline value) divided by the mean follow-up time in years. A significant myopic shift was defined as a change in SE ≤ −0.50 D/year (Wu et al., 2015a; Hsu et al., 2017). A non-significant myopic shift was defined as a change in SE > −0.50 D/year. The refractive data from both eyes were strongly correlated with each other at all follow-up assessments (Spearman’s ρ = 0.86–0.91); thus, only the data from the right eyes were analyzed.



SNP Selection and Genotyping

Candidate SNPs were selected based on the database search results and published reports. First, the data on SNPs in the Chinese population were downloaded from the 1000 Genomes Project. Second, tag SNPs were selected using Haploview software from common genetic variations [minor allele frequency (MAF) ≥ 5%] with strong coverage [linkage disequilibrium (LD) R2 ≥ 0.8]. Finally, two SNPs in two candidate regions were selected for the present study. Details of the selected SNPs are presented in Table 1. We collected saliva to extract DNA and perform target SNP genotyping to avoid invasive blood testing. Genomic DNA was extracted with a DNA extraction kit (Tiangen Biotech Inc., Beijing, China) according to the manufacturer’s instructions.


TABLE 1. Information about the rs10760673 (TGFBR1) and rs7550232 (TGFB2-AS1) SNPs.

[image: Table 1]
Single nucleotide polymorphism genotyping was performed using a 48-Plex SNPscanTM kit (cat#: G0104; Genesky Biotechnologies Inc., Shanghai, China) based on double ligation and multiplex fluorescence PCR, as described by Wu in detail (Wu et al., 2019). PCR products were analyzed using an ABI3730XL sequencer. The case or control status of the subjects was masked throughout the analysis. Genotyping of a random duplicated sample was used as an internal control to ensure the quality of the genotyping data, and no genotyping errors were detected for all SNPs. The genotyping success rates were greater than 99%, and the concordance rates were 100% based on 3% duplicate samples.



Functional Annotation

Functional annotation of the two SNPs was obtained from three functional prediction websites: HaploReg3, RegulomeDB4, and rVarBase5.

RegulomeDB was initially used to identify and compare potential regulatory variants. RegulomeDB (Dong and Boyle, 2019) presents a classification scheme based on the strength of experimental evidence or computational predictions that a variant located in a functional region likely results in a functional consequence. The RegulomeDB provides a score that corresponds to the data available for each individual SNP; lower scores are associated with a wider range of the data supporting functional importance. HaploReg v4.1 was used to annotate the variants and facilitate identification of their potential causal links with disease pathogenesis. HaploReg (Ward and Kellis, 2016) provides functional predictions of potential causal variants and candidate risk loci by systematic mining of comparative, regulatory, and epigenomic annotations. The rVarBase database (version 2.0 of rSNPBase) (Guo et al., 2016) was used to describe the regulatory features of a variant in three dimensions: chromatin states of the surrounding regions, overlapping regulatory elements, and potential target genes.



Statistical Analysis

Clinical data were analyzed using Statistical Product and Service Solutions software (SPSS version 25, IBM, United States), and genetic data were evaluated using gPLINK version 1.07. Initially, we ensured that all SNPs in the control and case groups passed the Hardy-Weinberg equilibrium (HWE) test. Then, we performed a chi-squared test for three different genetic models (additive, dominant, and recessive models) to determine the distributions of different alleles and genotypes associated with the occurrence and progression of myopia, SE, and ocular parameters and with the corresponding potential genetic models. The additive, dominant, and recessive models were used in genetic analyses to compare the major allele homozygotes with heterozygotes and minor allele homozygotes, major allele homozygotes with heterozygotes + minor allele homozygotes, and major allele homozygotes + heterozygotes with minor allele homozygotes. Normally distributed data are reported as the mean ± standard deviation (SD), and the data that were not normally distributed are presented as the median (P50) and the lower and upper quartiles (P25, P75). Multivariate logistic regression was used to control confounding factors and was adjusted for age, gender, time spent on near work, and time spent outdoors; the results are reported as the estimated odds ratios (ORs) and 95% confidence intervals (CIs). Associations between the SNPs and ocular quantitative traits (including SE, AL, CRC, and AL/CRC) were analyzed using a linear regression model. A P-value of <0.05 was considered significant. The Bonferroni correction is too conservative and fails to consider the correlations between the SNPs, which may result in a high false negative rate. Therefore, we used 10,000 permutations test for multiple comparisons in each model, which is considered the gold standard of multiple testing correction in GWAS (Gao et al., 2010; Pahl and Schäfer, 2010). An adjusted P-value (P’) < 0.05 was considered significant. Finally, generalized multifactor dimensionality reduction (GMDR, GMDR software beta 0.9) was used to identify the genes with gene-gene interactions (GGIs) and to determine the effect of epistasis. The best GGI model was selected based on the trained balance accuracy (TRBA), test balance accuracy (TEBA), and cross-validation consistency (CVC) of the GMDR models.




RESULTS


Characteristics of the Study Population

A total of 556 second grade children were examined at baseline; children who did not have a complete ocular examination (n = 20), had ocular diseases or wore orthokeratology lenses (n = 31), and did not have the genotyping data due to loss of follow-up (n = 57) were excluded during the follow-up stage. Thus, 448 children were included in subsequent analyses. The flow chart of the inclusion and exclusion of the study population is shown in Figure 1. The demographic characteristics and ocular parameters of the participants are described in Table 2. The average age was 7.29 ± 0.46 years. The percentage of males was 54.70% (n = 245). As shown in Table 2, the SE of the subjects at baseline was −0.14 D (−0.46, 0.33), and the change in SE was −1.13 D (−2.07, 0.33) during 3.5-year follow-up. Additionally, the baseline AL was 22.96 ± 0.77 mm, with an increase in AL of 1.04 mm (0.70, 1.40). At baseline, the CRC was 7.80 ± 0.26 mm, and the change in CRC was −0.05 mm (−0.09, −0.02). The baseline AL/CRC was 2.95 (2.90, 2.99), and the change in AL/CRC was 0.15 (0.11, 0.21).


[image: image]

FIGURE 1. Flow chart of the inclusion and exclusion of the study population.



TABLE 2. Characteristics of the participants.
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Associations of the SNPs With the Risk of the Onset of Myopia

As shown in Table 1, the distributions of the two SNPs were consistent with HWE (P > 0.05). Table 3 lists the allelic and genotypic frequencies of two SNPs in the remaining non-myopic group (n = 186) and the incident myopia group (n = 212). After adjustment for gender, age, near work activity time, and outdoor time, the rs7550232 C allele variant was associated with increased susceptibility to the onset of myopia in two genetic models (additive: P = 0.024, OR = 1.938, 95% CI = 1.092–3.438; dominant: P = 0.029, OR = 1.917, 95% CI = 1.069–3.347). In the dominant model, the AC and CC genotypes of rs7550232 were associated with significantly higher risk of the onset of myopia compared with that for the AA genotype. The associations remained significant after 10,000 permutations (additive: P’ = 0.022; dominant: P’ = 0.025). Significant association of another SNP with incidence of myopia was not detected.


TABLE 3. Associations between genetic polymorphisms and the onset of myopia in various genetic models.
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Associations of the SNPs With Myopia Progression

The allele and genotype frequencies of SNPs in the significant myopic shift group (n = 145) and the non-significant myopic shift group (n = 282) are shown in Table 4. After correction for confounding factors (gender, age, near work time, and outdoor time), binary logistic regression analysis indicated that the TGFBR1 rs10760673 G > A variant was associated with positive myopia progression. Analysis of the genotype frequencies of the TGFBR1 rs10760673 G > A polymorphism indicated that a higher fraction of the subjects with the GA or AA genotypes was present in the significant myopic shift group (additive: P = 0.008, OR = 1.536, 95% CI = 1.121–2.106; dominant: P = 0.029, OR = 1.702, 95% CI = 1.057–2.738; recessive: P = 0.027, OR = 1.883, 95% CI = 1.075–3.300). Similar conclusions were achieved after 10,000 permutations (additive: P’ = 0.008; dominant: P’ = 0.028; recessive: P = 0.027). In contrast, no significant differences were observed for another SNP in any models after 10,000 permutations.


TABLE 4. Associations between genetic polymorphisms and myopia progression in various genetic models.
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Associations of Genetic Variants With Ocular Biometric Parameters

After adjustment for age, gender, near work activity time, and outdoor time, we performed multivariate linear regression analysis of genetic models. Table 5 and Figures 2–5 show the results of the quantitative trait locus (QTL) analysis. TGFBR1 rs10760673 was significantly associated with a change in AL (β = 0.03, P = 0.011) (Figure 3) and an increase in AL/CRC (β = 0.003, P = 0.032) (Figure 5), and was not associated with SE (Figure 2) and CRC (Figure 4). Significant associations of TGFBR1 rs10760673 with AL were detected in the additive, dominant, and recessive models (P = 0.011, P = 0.046, P = 0.027, respectively). These associations remained significant after 10,000 permutations (P’ = 0.013, P’ = 0.047, P’ = 0.027, respectively). Thus, the A allele and AA genotype were significantly associated with an increase in AL. Children with the AA genotype of rs10760673 had significantly greater AL (1.11 mm) than children carrying the GG (0.94 mm) or GA (1.06 mm) genotypes. Similarly, the AA genotype of TGFBR1 rs10760673 was associated with an increase in AL/CRC in the additive (P = 0.032) and recessive models (P = 0.034). Significant differences between the rs10760673 genotypes in these two models remained after 10,000 permutations (P’ = 0.031, P’ = 0.029, respectively). However, we did not detect any significant associations of TGFB2-AS1 rs7550232 with the risk for the changes in ocular biometric parameters.


TABLE 5. Associations between genetic polymorphisms and the changes in ocular biometric parameters in various genetic models.
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FIGURE 2. Correlations between the two SNPs and the changes in SE. rs10760673 [(A) additive model, p = 0.163; (B) dominant model, p = 0.087; (C) recessive model, p = 0.663]; rs7550232 [(D) additive model, p = 0.067; (E) dominant model, p = 0.058; (F) recessive model, p = 0.997].
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FIGURE 3. Correlations between the two SNPs and the changes in AL. rs10760673 [(A) additive model, p = 0.011; (B) dominant model, p = 0.046; (C) recessive model, p = 0.027]; rs7550232 [(D) additive model, p = 0.223; (E) dominant model, p = 0.188; (F) recessive model, p = 0.716].
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FIGURE 4. Correlations between the two SNPs and the changes in CRC. rs10760673 [(A) additive model, p = 0.872; (B) dominant model, p = 0.923; (C) recessive model, p = 0.774]; rs7550232 [(D) additive model, p = 0.369; (E) dominant model, p = 0.414; (F) recessive model, p = 0.482].
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FIGURE 5. Correlations between the two SNPs and an increase in AL/CRC. rs10760673 [(A) additive model, p = 0.032; (B) dominant model, p = 0.136; (C) recessive model, p = 0.034]; rs7550232 [(D) additive model, p = 0.472; (E) dominant model, p = 0.392; (F) recessive model, p = 0.472].




GGIs Between the Two SNPs

The GMDR model was used to detect the interactions between the two SNPs in the two genes associated with the myopia risk because this model can analyze all possible combinations of the studied polymorphisms. GMDR analysis of the two genetic variants identified the interactions of the genetic polymorphisms associated with incident myopia, which are shown in Table 6. Comparison between the remaining non-myopic group and incident myopia group indicated that rs7550232 adjacent to TGFB2-AS1 produced the best model with 53.64% TEBA and 10/10 CVC, and no GGIs were identified. The results of GMDR analysis of GGIs associated with significant myopic shift are presented in Table 7. Comparison between the significant myopic shift group and non-significant myopic shift group indicated that the rs10760673 of TGFBR1 produced the best model with 54.74% TEBA and 10/10 CVC. However, no significant GGIs were identified.


TABLE 6. The results of GMDR of multiple loci and genes related to incidence of myopia.
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TABLE 7. The results of GMDR of multiple loci and genes related to a significant myopic shift.
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Functional Annotation Using Bioinformatics Analysis

According to HaploReg v4.1, rs7550232 was predicted to be located within promoter histone marks in 23 tissues, enhancer histone marks in two tissues (blood and gastrointestinal tract), and 44 DNase hypersensitivity regions and to significantly alter the binding motifs of the EWSR1-FLI1, Irf, and Sp1 transcription factors. Moreover, rs7550232 is located within the binding site of the MAX transcription factor according to the data obtained from the ENCODE project. Additionally, the rs10760673 SNP is located within 17 DNase I hypersensitive regions reported in various cell types; however, histone marks were unavailable. Furthermore, the rs10760673 SNP was predicted to significantly alter the Hsf and TFIIA motifs. The score of rs10760673 provided by RegulomeDB was 4, suggesting that this SNP may be involved in transcription factor binding or DNase peaks. The rs7550232 SNP is likely to influence transcription factor binding any motifs, DNase footprint, and DNase peak; thus, the score equaled 2b, which was classified as having some binding evidence. Additional details are presented in Table 8.


TABLE 8. Functional annotation obtained using RegulomeDB, HaploReg, and rVarBase.
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DISCUSSION

Myopia is considered a complex multigenic condition involving several overlapping signaling pathways mediated by the corresponding groups of distinct genes. Therefore, studies of the genetic polymorphisms of myopia-related genes may clarify the mechanism underlying the onset and progression of myopia. Thus, the present study evaluated the associations of two genetic variants with the onset and progression of myopia and with changes in ocular biometric parameters in schoolchildren aged 7–8 years at baseline and during a 3.5-year follow-up and identified several notable patterns of genetic associations. First, the rs10760673 SNP of TGFBR1 was significantly associated with the progression of myopia (OR = 1.536, P = 0.008) and increases in AL and AL/CRC (β = 0.03, P = 0.011; β = 0.003, P = 0.032, respectively). Second, the rs7550232 SNP adjacent to TGFB2-AS1 was statistically significantly associated with the occurrence of myopia (OR = 1.938, P = 0.024).


The Association of rs10760673 (TGFBR1) With the Progression of Myopia

The results of the present study indicated that rs10760673 was associated with the progression of myopia. A previous GWAS demonstrated that rs10760673 is a susceptibility locus for myopia in adults (Hysi et al., 2020); however, the present study is the first to identify this SNP as a susceptibility locus for myopia progression in school-aged children. Participants with the AA or AG genotypes of rs10760673 tended to have a higher risk of myopia progression. AL is an important indicator of irreversible development of eyeballs in children and adolescents and is related to the formation of myopia (Li et al., 2019). An increase in AL by 1 mm was shown to be associated with 1.74 D and 1.83 D of myopia progression for incipient myopia and persistent myopia, respectively, in primary school-aged children (Ma et al., 2018). Another study showed a 10.72 D shift toward myopia for every 1 unit of an increase in the AL/CRC ratio in Chinese schoolchildren aged 6–12 years (He et al., 2015). Several genes were shown to be associated with AL and AL/CRC; however, previous studies did not report associations between TGFBR1 and AL or AL/CRC (Cheng et al., 2013; Miyake et al., 2015; Li et al., 2020; Lin et al., 2020; Tang et al., 2020). Therefore, the present 3.5-year cohort study demonstrated that the TGFBR1 polymorphism was significantly associated with an increase in AL and AL/CRC. The TGFBR1 polymorphism was not associated with SE in the present study. However, AL and AL/CRC measurements are more precise and less prone to errors than cycloplegic or non-cycloplegic assessments of refraction.

The TGFBR1 protein encoded by the TGFBR1 gene plays a key role in the TGF-β signaling pathway because the biological effects of TGF-β isoforms are mediated by type I and type II receptors (TGFBR1 and TGFBR2, respectively); the third receptor TGFBR3 functions as an accessory for ligand presentation to TGFBR2. In a tree shrew model of myopia, TGF-β plays an important role in the maintenance of normal morphology and function of the sclera, and the expression of TGF-β isoforms 1, 2, and 3 is downregulated during myopia progression (Jobling et al., 2004). In a tree shrew model of lens-induced myopia, the patterns of differential mRNA expression of TGF-β observed during minus lens compensation (hyperopia) and recovery (myopia) indicated that TGF-β is involved in scleral remodeling (Gao et al., 2011). Additionally, a previous study proposed that the concentrations of TGF-β mRNA and the active form of the TGF-β protein decrease in form-deprived myopic eyes compared with those in the control group. Consequently, TGF-β may mediate the retinal control of AL elongation and influence the progression of myopia (Honda et al., 1996). Thus, the TGFBR1 gene may influence the progression of myopia and an increase in AL and AL/CRC, which are likely mediated by the TGF-β signaling pathway. According to a previous study, a mutation of the TGFBR1 gene alters the activity of the TGF-β signaling pathway (Hara et al., 2019). Additionally, functional annotation showed that rs10760673 can change the Hsf motif, which is involved in the regulation of lens and retinal development (Fujimoto et al., 2004; Hawkes et al., 2004). However, specific mechanism of the relationship between the rs10760673 SNP and myopia progression requires additional functional study.



Association of rs7550232 (TGFB2-AS1) With the Occurrence of Myopia

Studies of the pathogenesis of myopia in animal models demonstrated that an increase in eye size facilitated by the remodeling of the sclera is one of the most important etiologies in the progression of myopia (McBrien and Gentle, 2003). The TGF-β signaling pathway was reported to participate in ECM remodeling in the sclera and to regulate the occurrence and development of myopia through the effects of the downstream factors of the pathway on the scleral tissue (Jiang et al., 2017).

The results of the present study demonstrated that the rs7550232 SNP adjacent to TGFB2-AS1 was significantly associated with the occurrence of myopia. The AA or AC genotypes of the rs7550232 SNP were associated with a higher incidence of myopia in agreement with the results of the previous study in a Han Chinese population in Taiwan (Lin et al., 2009). TGFB2-AS1 does not encode proteins and regulates transcription, chromatin remodeling, splicing and mRNA translation by scaffolding ribonucleoprotein complexes (Papoutsoglou et al., 2019). Lnc-TGFB2-AS1 counteracts the activity of TGF-β and cooperates with TGF-β signaling to induce or repress the expression of a subset of certain genes (Papoutsoglou et al., 2019). Lnc-TGFB2-AS1 was recently reported to promote ECM deposition via the TGF-β/Smad pathway in human trabecular meshwork cells (Lv et al., 2020). Therefore, we hypothesized that TGFB2-AS1 may be involved in the onset of myopia by regulating the TGF-β signaling pathway, which has been shown to participate in the ECM remodeling in the sclera during myopia (Gao et al., 2011; Jiang et al., 2017). A study reported that G→T transversion at position +5 of the donor splice site in intron 6 of the androgen receptor gene influences RNA splicing and leads to partial androgen insensitivity syndrome (Sammarco et al., 2000), indicating that intronic mutations located at the donor site of the intron may influence RNA splicing. Function annotation analysis performed in the present study indicated that rs7550232 can bind to transcription factor Sp1, which is a downstream target of TGF-β1, and Sp1 can be detected in human lens epithelial cells (Liu et al., 2016). Furthermore, the expression of Sp1 and collagen I in the scleral tissues decrease with the time of form deprivation myopia at the mRNA and protein levels, suggesting that Sp1 may be involved in the regulation of type I collagen synthesis/degradation during myopic remodeling of the sclera (Jiang et al., 2017). However, additional studies are needed to investigate the biological mechanisms of detected associations between rs7550232 and myopia risk.

The present longitudinal study is the first to investigate the associations of two SNPs with refraction and ocular parameters in Chinese school-aged children, which is the strength of the study. However, the study has some limitations. First, the sample size was relatively small and may be insufficient for the detection of a significant association. Therefore, further larger-scale studies are needed. Second, refractometry was performed without cycloplegia. This approach may lead to overestimation of myopia and under-estimation of hyperopia due to accommodation. However, we defined myopia as −1.00 D, which partially eliminated the errors caused by non-cycloplegic refractometry. Third, both SNPs examined in the study are located in the intronic regions. We annotated the functions of the two SNPs using three functional prediction databases available online; however, further functional studies are needed.

In summary, we demonstrated that the rs10760673 SNP of TGFBR1 and the rs7550232 SNP adjacent to TGFB2-AS1 may be new susceptibility loci for the progression and onset of myopia in Chinese school-aged children, respectively. The relationship between the variants of these two genes and myopia may be mediated by the TGF-β signaling pathway, which requires verification in subsequent functional studies.
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Bisulfite sequencing is considered as the gold standard approach for measuring DNA methylation, which acts as a pivotal part in regulating a variety of biological processes without changes in DNA sequences. In this study, we introduced the most prevalent methods for processing bisulfite sequencing data and evaluated the consistency of the data acquired from different measurements in liver cancer. Firstly, we introduced three commonly used bisulfite sequencing assays, i.e., reduced-representation bisulfite sequencing (RRBS), whole-genome bisulfite sequencing (WGBS), and targeted bisulfite sequencing (targeted BS). Next, we discussed the principles and compared different methods for alignment, quality assessment, methylation level scoring, and differentially methylated region identification. After that, we screened differential methylated genes in liver cancer through the three bisulfite sequencing assays and evaluated the consistency of their results. Ultimately, we compared bisulfite sequencing to 450 k beadchip and assessed the statistical similarity and functional association of differentially methylated genes (DMGs) among the four assays. Our results demonstrated that the DMGs measured by WGBS, RRBS, targeted BS and 450 k beadchip are consistently hypo-methylated in liver cancer with high functional similarity.
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INTRODUCTION

Epigenetics investigates the heritable changes of gene activity or function not caused by DNA sequences, such as mutations, deletions, insertions, and translocation. One of the major mechanisms in epigenetics is DNA methylation, which is a chemical transformation that happened in the DNA strand. DNA methylation, accounting for around 1.5% of human genomic DNA, usually refers to the addition of the methyl group to the fifth carbon of cytosine (C), forming 5-methylcytosine (5 mC). In human beings, DNA methylation mainly occurs at the site of a cytosine followed by a guanidine nucleotide, which is called the CpG site, but it may also happen in non-CpG contexts (Moore et al., 2013). CpG sites were revealed to be nonuniformly distributed and tend to cluster together. CpG island is defined as a cluster of CpG sites where the fraction of CG interstrand base pair is greater than 0.5 and the CpG ratio is greater than 0.6 within more than 200-bp regions. If methylation happens on CpG island in the promoter, the gene expression is repressed. Besides CpG site, DNA methylation is less-frequently found in non-CpG contexts (e.g., CHG and CHH, where H = A, T or C).

DNA methylation is of vital importance in numerous developmental, physiologic and pathologic processes (Moore et al., 2013). DNA methylation pattern is distinct between cell types, developmental states and different disease situations. Faults in DNA methylation may result in lesion in liver cancer, which is the third most fatal and the sixth commonly diagnosed cancer in 2020 with more than 905,600 new cases and 830,000 new deaths (Sung et al., 2021). Understanding the epigenetic phenomenon of liver cancer may contribute to the early diagnosis, which is vital for curing liver cancer via partial hepatectomy or liver transplantation (Villanueva et al., 2013). Aberrant p16 methylation was detected in both hepatocellular carcinoma tissues and plasma/serum samples by Wong et al. (1999) two decades ago. Yao et al. (2000) found that the methylation status of γ-glutamyl transferase gene altered and γ-glutamyl transferase expressed abnormally in hepatocellular carcinoma. Stefanska et al. (2011) identified around 3,700 hypomethylated promotors in liver cancer samples.

Many methods have been developed to measure DNA methylation including affinity enrichment and bisulfite-based ones. Bisulfite sequencing methods are usually considered as the golden standard, owing to its high resolution, flexibility across organisms, and low input requirements (Yong et al., 2016). By using sodium bisulfite treatment, the epigenetic information can be transformed into genetic information and therefore can be assessed by sequencing methods. The principle of bisulfite sequencing is a chemical reaction of bisulfite conversion that transforms the unmethylated cytosine residues to uracil residues, while the methylated cytosine remains unchanged. The DNA is fragmented after bisulfite conversion due to the chemical treatment. PCR amplification will then be applied and uracils will be replaced by thymines. When sequencing is performed, the methylated cytosines become thymines. Compared with the reference-unconverted sequence, the methylated cytosines can be distinguished.

Bisulfite sequencing methods include whole-genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), targeted bisulfite sequencing (targeted-BS), etc. In this study, we mainly focus on the computational data processing for the popular methods WGBS, RRBS and targeted-BS in liver cancer. WGBS sequences the whole genome and therefore covers all the cytosine information in theory (Lister et al., 2009). The genomic DNA is purified from tissue and cut into fragments. Bisulfite treatment is then performed on DNA fragments to convert unmethylated cytosine (C) into uracil (U). Bisulfite converted DNA fragments are primed randomly by polymerase to synthesize sequence tags. Resulting strands are selected to synthesize with another sequence tag at 3′ end and become di-tagged DNA with a known sequence at both ends. The tags can be combined with adapters for PCR amplification. After PCR amplification, the bisulfite-converted strand will be sequenced. WGBS has several advantages, such as high coverage of nearly every CpG site, detection of partially methylated domains, and acquirement of absolute DNA methylation level. Moreover, it can detect methylation in the non-CG context. However, WGBS is expensive and labor-intensive due to the process of the whole genome.

To measure methylome at a lower cost, RRBS (Meissner et al., 2005) was proposed to investigate the regions with high methylation probability. DNA is digested by Msp1 restriction enzyme, which cuts at CCGG sites. It improves the CpG enrichment in the fragments and covers 85% of the CpG islands, mostly in promoters. The fragment ends are then ligated by adapters and selected with sizes between 40 and 220 bps. Next, bisulfite treatment, PCR amplification and sequencing were applied. The digested and selected fragments only compose 1–3% of the genome and hence save the cost of sequencing. RRBS is more efficient than WGBS because it focuses on the CpG rich regions, but it loses information due to the lack of coverage at some less studied areas and cannot cover most of the non-CG methylation.

Targeted BS was developed to measure the methylome of more specific regions, such as exome and gene promotors. It may require a hybridization step to capture targeted methylated regions with pre-designed oligos. Targeted BS can obtain single-base resolution DNA methylation patterns and thus achieve enhanced accuracy and sensitivity with efficient cost. However, the oligos need to be designed for different targets. One of the targeted BS techniques developed in liver cancer is the liquid hybridization capture-based bisulfite sequencing (LHC-BS), which applied biotinylated RNA probes to capture target regions.

Other than bisulfite sequencing, microarrays such as the Infinium© HumanMethylation450 BeadChip (450 k) are widely used in methylation measurement for its high throughput and low cost. The 450 k covers 480,000 CpG sites via target-specific probes. Two types of probes are applied to CpG locus, one for methylated cytosine or converted thymine and the other for the complements of upstream. Methylation levels are obtained by comparing the two probe intensities.

In this study, we first introduced the procedures of processing bisulfite sequencing data, including alignment, quality control, methylation level scoring, and differentially methylated region identification. Then we compared the popular tools from different aspects. Next, we screened differential methylated genes in liver cancer through three bisulfite sequencing and compared their consistency. Lastly, we made a comparison of the results from bisulfite sequencing to 450 k microarray.



MATERIALS AND METHODS

A general bisulfite sequencing data process consists of adapter trimming, alignment, quality control, methylation level scoring, and differential methylation region identification. We details all the steps except the trimming step, which is simple and the normalization step is the same as DNA sequencing.


Aligning Bisulfite Sequencing Reads

Different from the alignment in DNA sequencing, aligning the bisulfite sequencing reads to the reference genome is challenging because the unmethylated cytosines (C) are converted to thymines (T) after bisulfite treatment. That means most of the T in the bisulfite sequence should be mapped to C in the reference genome.

Mostly two types of approaches, three-letter alignment and wildcard alignment, are applied. The most popular three-letter aligner in the past decade was Bismark (Krueger and Andrews, 2011). In Bismark, all the Cs in bisulfite reads and reference genome was converted into Ts to perform alignment and thereby only three letters, A, T and G were left. When C was converted to T after bisulfite treatment, in the opposite strand the G becomes A with PCR amplification. Therefore, in Bismark the alignment was run once again with all the G converted to A in both bisulfite sequence and reference sequence. As the sequence was converted into three-letter alignment, Bismark applied Bowtie (Langmead et al., 2009), which is a famous aligner for DNA sequence, to map the reads into a reference genome. In the end, a comparison between different strands was made to determine which part of the reference genome to map. Moreover, the methylated loci were pointed out by comparing the bisulfite sequence and the reference gene. Bismark toolbox keeps update till now and is available for WGBS, RRBS and targeted BS data. Although it may introduce error when converting C to T and G to A, it worked fast as compared to the BSMAP (Xi and Li, 2009), a wildcard aligner.

BSMAP (Xi and Li, 2009) was a representative wildcard aligner. Different from the three-letter aligner, wildcard aligner replaced Cs with Ys in the reference genome and allowed both Cs and Ts in bisulfite reads to align to Ys. For each part of the sequence in the reference genome, BSMAP built a seed table that listed all the possible reads. Then part of the reads was mapped to the potential references as key and checked whether the rest of the reads were matched. It was more accurate than Bismark because it enumerated all the possibilities, but on the other hand less efficient.

Most aligners proposed in recent years applied three-letter alignment due to its ability for large data size. BRAT-nova (Harris et al., 2016) applied hash table and concatenated two strands together to align to the reference genome instead of aligning two times, resulting in high efficiency than Bismark. It also supported single variable-length indel caused by mutation and hence had better map ability. BatMeth2 (Zhou et al., 2019) focused more on the indel during mapping. It allowed five variable length mismatch and achieved high accuracy and map ability. VAliBS (Li et al., 2017) discovered that some unmapped reads were due to introducing primer during the assay. Hence after aligning using Bismark, it trimmed the unmapped reads and ran alignment again so that more reads can be mapped to reference. Moreover, it provided a graphical user interface for non-programmers. Since alignment is computationally heavy, a natural way to improve efficiency is to compute in parallel. BiSpark (Soe et al., 2018) used Spark engine to execute the three-letter alignment parallelly on the distributed system with load balance. It only took 1/3 to half the time of Bismark according to their results. BS Seeker3 (Huang et al., 2018) combined the hash table and three-letter aligner and allowed longer reads to be aligned. Better accuracy was achieved by BS Seeker3. The features of the aligner mentioned were compared in Table 1.


TABLE 1. Aligners for bisulfite sequencing data.
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Quality Control

Quality control is applied to evaluate the assay quality and aligning quality aiming at finding out whether the results are trustworthy. Typical metrics include the number of mapped and unmapped reads, the read coverage at CpG sites, and the bisulfite conversion rate.

A (fire)cloud-based platform proposed in 2019 by Kangeyan et al. (2019) involved a lot of metrics for quality assessment including Read metrics, CpG Coverage, M-bias, Downsampling saturation curve, CpG discretization, Feature level coverage, Bisulfite conversion rate, CpG density distribution, and Methylation distribution. The pipeline RnBeads 2.0 (Muller et al., 2019) provided quality control, but only focused on the read coverage of each site. It also provided visualization of the quality results. BS Seeker3 (Huang et al., 2018) calculated the average rate of mismatch per read position for quality assessment. MethGo (Liao et al., 2015) provided visualization of metrics from different aspects including coverage distribution and methylation level distribution. GBSA (Benoukraf et al., 2013) assessed the quality with the depth of coverage for each cytosine site of interest, and the ratio of sequenced cytosine to the total amount of cytosine within the domain. It provided a graphical interface, which is more user-friendly. The features of quality control methods were summarized in Table 2.


TABLE 2. Quality control methods for bisulfite sequencing data.
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Methylation Level Scoring

If the quality of the alignment results is acceptable, the methylation level is calculated for each methylation site. The major principle is to calculate the fraction of methylated reads that cover the sites. The basic formula is

[image: image]

where C and T represent the number of cytosines and thymines among all reads in the site.

BatMeth2 (Zhou et al., 2019) divided the situations into high coverage which took SNP into consideration, and low coverage which used the original formula. It improved the accuracy for the high coverage situation. BS Seeker 3 (Huang et al., 2018) provided a visualization of the methylated level in the whole genome. GBSA (Benoukraf et al., 2013) offered a graphical interface for methylation level scoring. Besides the methylation level, the BSPAT (Hu et al., 2015) used Z-score to evaluate the significance based on read coverage. It output graphs to show the methylation levels and significance for the genome. Moreover, it is an online tool so that users can run it for a large quantity of data. The above methods were compared in Table 3.


TABLE 3. Methylation level scoring tools for bisulfite sequencing.
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Differentially Methylated Region Identification

To reveal the methylation patterns in different stages, differentially methylated region (DMR) identification/calling is performed by comparing the methylation levels between control and case samples with statistical methods. Classical hypothesis testing methods can be applied for DMR calling such as fisher’s exact test, chi-square test, t-test, Goeman’s global test and analysis of variance (ANOVA). These methods can be categorized into count-based hypothesis tests and ratio-based hypothesis tests.

Count-based hypothesis tests regard the methylation level within regions on each sample as categorical variable. By counting the number of methylated and unmethylated samples of control and case groups, a contingency table is built. Fisher’s exact test, which calculates whether the region is significantly differential, is the most commonly used. Besides Fisher’s exact test, Chi-square method can be applied to select differential region, but also for multiple groups. Logistic regression approaches assume the read counts follow a Poisson distribution and apply the Wald test to evaluate the difference between two Poisson means. Ratio-based hypothesis tests compare the methylation rate between groups by taking the ratio of methylated read counts and total read counts. T-test and moderate t-test are used for two classes, and ANOVA can be applied for multi-group comparison.

Most of the tools provide both count-based and ratio-based methods for different read coverage. A well-known tool kit methlKit (Akalin et al., 2012) provided logistic regression and Fisher’s exact test for users to choose. DMAP (Stockwell et al., 2014) implemented ANOVA, chi-square test for multiple groups other than Fisher’s exact test. RnBead2 (Muller et al., 2019) applied Fisher’s method but ranked the differential regions by adjusting p-value, difference in variance, and size effect. All these methods applied the false discovery rate (FDR) correction to adjust P-value for multiple tests.

Other than the classical hypothesis test, the hidden Markov model, which models the methylation level of the CpG sites as methylation states, was once applied such as ComMet (Li et al., 2013). DMRFusion (Yassi et al., 2018) integrated Information gain, Between versus within Class scatter ratio, Fisher ratio, Z-score, and Welch’s t-test by converting into rank and combining together. HOME (Srivastava et al., 2019) built a histogram of methylation reads region by region and selected DMR by support vector machine. MethCP (Gong and Purdom, 2020) was one of the latest papers for DMR. It included the spatial information of regions by circular binary segmentation and applied Fisher’s combined probability test for p-value. It took into account the weighted-sum effect size and variation for time-course study. These methods were compared in Table 4.


TABLE 4. DMR methods for bisulfite sequencing.
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Analysis of WGBS, RRBS, and Targeted BS Datasets

We collected three types of publicly available data sets (Table 5) from Gene Expression Omnibus (GEO) (Edgar et al., 2002) to analyze the consistency of WGBS, RRBS and targeted BS in liver cancer. Only one WGBS data set [GSE70090 (Li et al., 2016)], one RRBS data set [GSE112221 (Hlady et al., 2019)] and one targeted BS data set [GSE55752 (Gao et al., 2015)] measuring liver cancer tissue were found using keywords “liver cancer” / “Hepatocellular Carcinoma” and “bisulfite sequencing.” The GSE70090 data set detected three liver cancer samples and three normal controls using WGBS. The GSE112221 data set includes four hepatocellular carcinomas (HCC) and six controls containing four cirrhosis and two normals measured by RRBS. The GSE55752 captured methylation from eight pairs of HCC tumor and non-tumor liver samples using a type of targeted BS approach called liquid hybridization capture-based bisulfite sequencing (LHC-BS) (Wang et al., 2011).


TABLE 5. Statistic of datasets in experiment.

[image: Table 5]The methylation levels captured on CpG locus were assigned to gene references based on homo sapiens (human) genome assembly GRCh37 (hg19). As multiple CpG locus were mapped to the same gene, we took the average of methylation levels across the whole gene region to represent the gene methylation score. For every data set, differential methylated genes were extracted using fold change, which is the absolute value of the difference between the means of tumor and non-tumor samples. We further analyzed the differential methylated genes from three data sets using three different assays and filtered out the commonly methylated genes. Moreover, we compared the functional enrichment of the commonly methylated genes with gene ontology (GO) (Ashburner et al., 2000; Gene Ontology Consortium, 2021), the pathways and connections of differential methylated gene from three data sets using Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000).

Besides the three bisulfite sequencing methods, we also included Infinium Methylation 450 k Beadchip data from The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research Network et al., 2013) for comparison. The differential methylated genes filtering and functional analysis followed the same procedure as bisulfite sequencing data.



RESULTS


Procedures for Analyzing Bisulfite Sequencing Data

A general bisulfite sequencing data process includes adapter trimming, alignment, quality control, methylation level scoring, and differential methylation region identification (Figure 1). Trimming aims to remove the sequence of adapters from reads, which are known sequences. The most widely used trimming method is Trim Galore! for WGBS, RRBS and targeted BS (Babraham, 2012). Most of the commercial DNA methylation assay kits provide the trimming tool. Generally, aligners also perform trimming because it affects the alignment result. This procedure is relatively fixed compared with other steps, resulting in only a few studies focusing on trimming. Hence, we do not discuss it in detail.


[image: image]

FIGURE 1. Procedures for analyzing bisulfite sequencing data.


The bisulfite converted sequences require a specific aligner to map the reads to the reference genome. Quality control is applied for evaluating the quality of the assay and the alignment. By comparing the bisulfite sequence and the reference genome, the methylation level of loci or region can be calculated. Then differentially methylated regions (DMR) will be identified with statistical analysis according to the methylation level score. The normalization step is the same as gene expression (Cheng et al., 2016a,b; Liu et al., 2019) and hence not discussed in this paper. After that, researchers can perform downstream analysis depending on their research purposes, such as building machine learning classifiers for diagnosis or prognosis (Liu et al., 2020a,c; Wang et al., 2020a,b).

WGBS, RRBS and targeted BS have similar data format. Since RRBS focuses on a small partion of genomes, the read coverage of RRBS is higher than WGBS. Targeted BS has an even higher density of reads.



Differential Methylated Genes Between WGBS, RRBS, Targeted BS and 450 k Microarray

By WGBS, RRBS, targeted BS and 450 k microarray, the methylated levels of chromosome location in GSE70090, GSE112221, GSE55752, and TCGA were measured. We mapped methylation levels to genes and summarized as gene methylated levels. 4,071, 15,059, 29,326, and 3,745 genes’ methylation levels were obtained from the four datasets, respectively, and 3,139 genes were shared.

Then, we compared the tumor and non-tumor samples within each dataset from the common genes and identified 202, 237, 253, and 241 differential methylated genes (DMG) in GSE70090 (WGBS), GSE112221 (RRBS), GSE55752 (targeted BS) and TCGA (450 k), respectively, with the threshold of fold change > 0.15. Our result illustrated that most differentially methylated genes (DMGs) were hypo methylation (Figures 2A,C) while few were hyper methylation (Figures 2B,C). Specifically, 200, 191, 231, and 232 genes were hypo-methylated in GSE70090, GSE112221, GSE55752, and TCGA (Figure 2A). Nine differential genes were exclusively shared among the three bisulfite sequencing datasets and 18 genes were common across the four datasets.
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FIGURE 2. Hypo and hyper methylated genes in GSE70090, GSE112221, GSE55752, and TCGA (A–C). Heat map of 18 common hypo-methylated genes in four datasets (D–G).


The 18 differential methylated genes were ADARB2, AICDA, CASP14, CD207, CD5L, COL28A1, FCRL5, LAIR2, LILRA2, LILRA5, LILRA6, MNDA, NLRP12, NLRP3, PLA2G4A, PRKCQ, SLC1A6, and TARM1. These common differential genes were all hypo-methylated in the four liver cancer datasets (Figures 2D–G).



Functional Analysis of 18 Common Differential Methylated Genes

We explored the topological properties of the 18 common DMGs, including degree, betweenness and transitivity, which have been widely used in cancer and disease analysis (Cheng and Leung, 2018b; Cheng et al., 2019; Liu et al., 2020b). In the protein-protein interaction (PPI) network, TARM1, PRKCQ and MNDA are the top three genes with the highest network connectivity. PLA2G4A, PRKCQ, CD207, and MNDA have high betweenness, which measures the extent to which a gene lies on the shortest paths between other genes. The transitivity of COL28A1, CASP14, TARM1 and MNDA is over 0.2, indicating their interactors are prone to cluster together. Notably, Myeloid Cell Nuclear Differentiation Antigen (MNDA) is at a high level in all the three topological metrics, suggesting it is an important transcriptional regulator in liver cancer.

We further analyzed the 18 common DMGs using Gene Ontology (GO) (Gene Ontology Consortium, 2021). They are significantly involved in the 15 immune-related functions (Figure 3). 12 out of 15 belong to the regulation of interleukin-1, i.e., interleukin-1 production, interleukin-1 secretion, interleukin-1 beta production, interleukin-1 beta secretion, positive regulation of interleukin-1 beta secretion, regulation of interleukin-1 beta production, etc. Interleukin-1 is a family of cytokines related to liver diseases (Tsutsui et al., 2015; Barbier et al., 2019). They also overrepresented in three other functions, positive regulation of cytokine production, positive regulation of cytokine secretion and regulation of CD4-positive, and alpha-beta T cell activation, all of which are of importance in cancer development and progression.
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FIGURE 3. (A) Ranking of the 18 DMGs by topological importance. (B) Enrichment analysis of the 18 genes. (C) Enriched KEGG pathways for the DMGs of each of the four datasets. (D) Enriched KEGG pathways for the DMGs exclusive in each dataset.




Pathways of Differential Methylated Genes in Four Datasets

We applied Kyoto Encyclopedia of Genes and Genomes (KEGG) to study the biological pathways that the DMGs involved. 152, 124, 114, and 126 genes from GSE55752, GSE112221, GSE70090, and TCGA were included in the KEGG database. The methylated genes from the four datasets are consistently involved in B cell receptor signaling pathway and osteoclast differentiation (Figure 3C).

Moreover, we executed pathway enrichment analysis using the DMGs exclusively identified from the four datasets. 40, 83 and 32 genes were detected from GSE112221, GSE70090, and TCGA, respectively, which are enriched in the pathways of complement and coagulation cascades, small cell lung cancer, amoebiasis, etc. (Figure 3D). In comparison to the DMGs of each dataset, the exclusive ones are implemented in distinct pathways that are functionally inconsistent.

We also enriched the DMGs in functional categories of GO (Supplementary Figures 1, 2). Similarly, the results illustrated that the genes found in the four datasets have some terms in common.



Functional Correlation Between WGBS, RRBS, Targeted BS, and TCGA

Based on the semantic similarity of GO terms, we calculated the functional similarity of the DMGs across the four datasets. These DMGs are highly consistent with all the semantic similarity scores higher than 0.88 (Figure 4A). Importantly, the dataset-exclusive DMGs also obtain a high score (>0.74, Figure 4B), which is significantly higher than that of the simulated genes (Figure 4C).
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FIGURE 4. (A) Semantic similarity of all the differential methylated genes from four datasets. (B) Semantic similarity of the differential methylated genes unique in four datasets. (C) Density of semantic similarity of two genes randomly picked up from two datasets. (D) Protein-protein association network of four datasets. (E) Connection across the four datasets. (F) Functional association between four datasets.


Moreover, we retrieved the proteins regulated by the DMGs to compute the protein-protein association (Cheng et al., 2017; Cheng and Leung, 2018a; Li et al., 2020) and formed the protein-protein interaction (PPI) network using STRING v11 (Szklarczyk et al., 2019; Figure 4D). A high proportion of the methylated genes of the four datasets are closely interacted, revealing a high connection between methylated genes in the four methylation measuring methods. Furthermore, GSE55752 (blue) and GSE70090 (green) are connected most closely in the network followed by the connection between GSE70090 (green) and TCGA (red; Figure 4E). The connections were reorganized in Figure 4F and GSE70090 shows a strong correlation with other datasets.



DISCUSSION

This study introduced three types of bisulfite sequencing measurements for DNA methylation and compared different approaches for aligning bisulfite-converted reads, assessing quality, calculating methylation level, and calling differentially methylated regions. Datasets of liver cancer measured by WGBS, RRBS, and targeted BS were preprocessed and DMGs were screened. We observed that the common DMGs across different technologies are consistently hypo-methylated, which is consistent with our previous discoveries that genes tend to up-regulated in cancers (Cheng et al., 2016a,b; Liu et al., 2019). We further compared the functional enrichment analysis of the three datasets and found the DEMs of the three assays are functionally and semantically similar.

We compared the accuracy, efficiency, and mapping ability of the aligners according to the experimental results reported in other papers. For accuracy, the ranking is as follows, BathMeth2, VAliBS, BS-Seeker3 > BSMAP > Bismark, BiSpark > Brat-Nova. As for efficiency, the ranking is BiSaprk > BS-Seeker3 > BSMAP > Brat-Nova > Bismark > VAliBS. For map ability, the preference is BatMeth2, VAliBS > BiSpark, BS-Seeker3,Brat-Nova > BSMAP > Bismark. Some aligners are not implemented and compared by other papers, so we listed them in the same rank.

The choice of aligners depends on not only the research objectives but also the data and researchers’ situation. For a small amount of data, BatMeth2 (Zhou et al., 2019) is recommended because of its accuracy and map ability. On the other hand, BiSpark (Soe et al., 2018) is better for a large amount of data. For researchers not good at programming, ViAliBS (Li et al., 2017) is more user-friendly for its graphical user interface.

The features of quality control methods are summarized in Table 2. The cloud-based platform provides the most comprehensive metrics for quality control, while MethGo has better visualization of the results. GBSA can also be adopted for non-programmers.

As for methylation level scoring, Table 3 shows that BSPAT (Hu et al., 2015) outperforms other tools for its significance of scoring, visualization of results, capability for large data, and user friendliness.

For DMR identification, it depends on the research topics for the choice of methods. For the pairwise situation such as methylation in health and disease, DMRFusion can be chosen because it makes use of different types of models. If the spatial information is important for the study, MethCP may be a better choice as well as for time course problem.

When using bisulfite sequencing methods to detect methylation, WGBS has the highest coverage and resolution followed by RRBS, but targeted BS is cost-effective. The microarray technique (450 K in this paper) has the lowest coverage and resolution compared with bisulfite sequencing. Although WGBS, RRBS, and targeted BS have different coverage of CpG locus, the commonly detected DMGs have high similarity in functions and the common genes are consistently hypo-methylated in liver cancer. Besides, 450 K is also comparable in detecting DMGs in liver cancer without considering its low resolution.
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DNA methylation is one of the most extensive epigenetic modifications. DNA 4mC modification plays a key role in regulating chromatin structure and gene expression. In this study, we proposed a generic 4mC computational predictor, namely, 4mCPred-MTL using multi-task learning coupled with Transformer to predict 4mC sites in multiple species. In this predictor, we utilize a multi-task learning framework, in which each task is to train species-specific data based on Transformer. Extensive experimental results show that our multi-task predictive model can significantly improve the performance of the model based on single task and outperform existing methods on benchmarking comparison. Moreover, we found that our model can sufficiently capture better characteristics of 4mC sites as compared to existing commonly used feature descriptors, demonstrating the strong feature learning ability of our model. Therefore, based on the above results, it can be expected that our 4mCPred-MTL can be a useful tool for research communities of interest.
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INTRODUCTION

Epigenetics refers to the reversible and heritable changes in gene function when there is no change in the nuclear DNA sequence (Zuo et al., 2020). Epigenetic phenomena include DNA methylation, RNA interference, histone modification, etc. (Tang W. et al., 2018; Wang et al., 2018; Liu et al., 2019; Hong et al., 2020; Lv et al., 2020a; Zhang D. et al., 2020; Min et al., 2021). Among them, DNA methylation is one of the most extensive epigenetic modifications (Zhu et al., 2019). It is a form of DNA chemical modification that can change genetic performance without changing the DNA sequence. DNA methylation refers to the binding of a methyl group to the cytosine 5 carbon covalent bond of genomic CpG dinucleotides under the action of DNA methyltransferase (Jin et al., 2011; Lv et al., 2020b). A large number of studies have shown that DNA methylation can cause changes in chromatin structure, DNA conformation, DNA stability, and the way that DNA interacts with proteins, thereby controlling gene expression (Jin et al., 2011; Zeng et al., 2016; Zhang et al., 2019; Luo et al., 2020; Shen and Zou, 2020). DNA 4mC has been reported as an effective DNA modification, which can protect its own DNA from restriction enzyme-mediated degradation (Chen et al., 2017; Wei et al., 2019b). Currently, we have relatively little knowledge regarding 4mC modifications. In order to further study its regulatory mechanism and its biological impact on the organism, it is critical to identify the distribution of 4mC sites in the whole genome.

With the development of high-throughput sequencing technology, 4mC sites can be effectively identified through web-lab biochemical experiments (Flusberg et al., 2010), but this kind of method is time-consuming and labor-intensive. Therefore, it is necessary to develop a computational model that can efficiently and accurately predict and identify 4mC sites. Chen et al. (2017) first developed a tool, namely, iDNA4mC for predicting 4mC sites by establishing a feature set based on chemical properties and occurrence frequency of nucleotides and training a support vector machine (SVM)-based predicting model. In order to take into account more of the physical and chemical properties of DNA, He et al. (2018) proposed 4mCPred, also an SVM-based predictor that used position-specific trinucleotide propensity (PSTNP) and electron–ion interaction potential (EIIP) for feature extraction. In particular, they further optimize the features based on F-score to enhance the generalization ability of the model. Similarly, through four feature coding schemes and using two-step feature optimization method, Wei et al. (2019a) constructed a prediction model called 4mCPred-SVM, which is shown to perform better than previous methods on benchmarking comparison. Later, Manavalan et al. (2019b) first proposed the meta-predictor Meta-4mCpred for predicting 4mC sites. It used a variety of feature extraction methods to convert DNA sequences into a total of 14 feature descriptors and trained four different classifiers. Particularly, meta-4mCpred exhibits good performance with independent test, demonstrating the excellent generalization ability. To make full use of the advantages of each prediction method mentioned above, Tang et al. (2020) developed DNA4mC-LIP, which for the first time linearly integrated all the previous methods for the 4mC site prediction. In recent years, deep learning has been widely used in the field of bioinformatics. Xu et al. (2020) developed the first deep learning Deep4mC, which converted sequences into digital vectors through binary, enhanced nucleic acid composition (ENAC), EIIP, and nucleotide chemical property (NCP) feature encoding schemes and inputted them into two convolutional layers without pooling layers and the attention layers. The average area under the ROC (receiver operating characteristic) curve (AUC) values of its prediction for multiple species were greater than 0.9 in multiple cross-validations. In our previous work, we proposed a two-layer deep learning model called Deep4mcPred, which utilizes a hybrid network of ResNet and long short-term memory (LSTM) (Zeng and Liao, 2020).

Although much progress has been made by the methods mentioned above, the performance is still not satisfactory. Moreover, most existing predictors are designed for one specific species. Although they provide a cross-species model and validation test, the performance is always not that good as compared to the original species-specific model. Therefore, to address this problem, we established a generic 4mC predictor, namely, 4mCPred-MTL using multi-task learning coupled with Transformer, which is a widely used NLP (natural language processing) technique, to predict 4mC sites in multiple species. In this predictor, we utilize a multi-task learning framework, in which each task is to train species-specific data based on Transformer. Extensive experimental results show that our multi-task predictive model can significantly improve the performance of the model based on a single task and outperform existing methods. Moreover, we found that the feature representations learned from our model can capture better characteristics of 4mC sites as compared to the existing commonly used feature descriptors, demonstrating the strong feature learning ability. Therefore, based on the above results, it can be expected that our 4mCPred-MTL can be a useful tool for research communities of interest.



MATERIALS AND METHODS


Datasets

Previous studies have demonstrated that a stringent dataset is essential for building a robust predictive model (Liang et al., 2017; Zeng and Liao, 2020; Su et al., 2021). In our previous work (Zeng and Liao, 2020), we constructed large-scale datasets for three species, including Arabidopsis thaliana (A. thaliana), Caenorhabditis elegans (C. elegans), and Drosophila melanogaster (D. melanogaster). As for the positive samples, there are 20,000 positive samples, and each sample is a 41-bp-long sequence centered with true 4mC sites. Similarly, the dataset contains the same number of negative samples, which are cytosine-centered sequences with lengths of 41 bp but are not recognized by the single-molecule, real-time (SMRT) sequencing technology.


Training Set and Independent Test Set

Considering the performance, most of the existing predictors are evaluated by cross validation test, which might produce performance bias; we here randomly split the datasets into (Zuo et al., 2020) training set for model training and evaluation and (Liu et al., 2019) independent test set for model robustness validation. Thus, we randomly divided the dataset into training set and testing set with the ratio of 8:2, resulting in 16,000 samples in the training set and 4,000 samples in the testing set. The details of the datasets are presented in Table 1. Notably, for fair comparison, all the existing methods are evaluated on the test set.


TABLE 1. Summary of benchmark datasets in three species.
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Architecture of 4mCPred-MTL

The network architecture of our model is illustrated in Figure 1. This network architecture consists of three main components: (i) sequence processing module, (ii) sharing module, and (iii) task-specific output module. The sequence processing module is designed to encode the DNA sequences into feature matrices by one-hot encoding (Quang and Xie, 2016; Zou et al., 2019; Dao et al., 2020a). Next, the encoded matrix is passed through a Transformer, which is a popular technique for embedding different levels of dependency relationships between subsequences. Afterward, we used a max-pooling layer to automatically measure which feature plays a key role in the target task in each unit of the Transformer. Finally, the features derived from the max-pooling layer is fed to the task-specific output module to identify 4mC sites in three species, respectively. The task-specific output module contains three parts, and each part consists of fully connected layers that are designed in terms of the size of the training set for each species. The model is implemented using Pytorch. Each module of our model is described in detail as follows.


[image: image]

FIGURE 1. The flowchart of 4mCPred-MTL. The sequence processing module uses 2-gram to split an original DNA sequence into overlapping subsequences and converts them into feature vectors by one-hot encoding. Next, the feature vectors of subsequences are fed into the sharing module, containing a Transformer encoder and a max-pooling layer, to capture the sharing information among different species. Finally, the output of the sharing module is fed into the task-specific output module to predict the 4mC site of a certain species.



Sequence Processing Module

We first employed n-gram nucleobases to define “words” in DNA sequences (Dong et al., 2006; Zeng et al., 2018; Fu et al., 2020; Lin et al., 2020; Liu X. et al., 2020; Wang et al., 2020; Yang et al., 2020; Zhang Z. Y. et al., 2021). The n-grams are the set of all possible subsequences of nucleotides. Afterward, the DNA sequences are segmented into overlapping n-gram nucleotides. The number of possibilities is 4n, since there are four types of nucleotides. To prevent the sparsity in the encoding, the n-gram number n is set to 2. For example, we split a DNA sequence into overlapping 2-gram nucleotide sequences as follows: GTTGT…CTT→ “GT,” “TT,” “TG,” “GT,” …, “CT,” “TT.”

For a given DNA sequence P with length L, it can be denoted as follows:

[image: image]

where Ri is the ith word. These words are first randomly initialized and embedded by one-hot embedding, which is referred to as “word embeddings.” Here, we define the sequence of word embeddings as

[image: image]

where xi∈ℝd is the d-dimensional embedding of the ith word.



Sharing Module


Attention Mechanism

The attention mechanism was proposed by Bahdanau et al. (2014) in the application of neural machine translation. The Attention mechanism is somewhat similar to the idea of human translating articles, that is, paying attention to the corresponding context of our translation part. For example, we can get the hidden states of the recurrent neural network (RNN) encoder: (h1,h2,,ht). By assuming the current decoder hidden state is st–1, we can calculate the correlation between each input position j and the current output position:
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where a is a correlation operator, such as dot product. We can get the attention distribution by normalizing the [image: image]. The expanding form of the attention is

[image: image]

Therefore, attention is a weight vector. These weights represent which tokens the machine focuses on. When the attention distribution is obtained, the weight of the more important input position for the current output position is obtained, which accounts for a larger proportion when predicting the output. By introducing the attention mechanism, we can only use the final single vector result of the encoder, so that the model can focus on all the input information that is important for the next target word, and the model effect is greatly improved.



Transformer With Multi-Head Attention

The development of deep learning (Dao et al., 2020b; Liu Y. et al., 2020; Long et al., 2020; Naseer et al., 2020; Zhang T. et al., 2020; Zhang Y. et al., 2020) in NLP is filled with RNN and LSTM. Transformer models completely abandon the RNN and LSTM layers and only use the attention mechanism for feature extraction. After the input has been embedded to matrix form, we first use the position encoding layer. Since the model has no recurrent or convolutional layers, there is no clear relative or absolute information about the position of the word in the source sentence. In order to let the model learn the position information better, position encoding is added and superimposed on the word embedding. An encoding method using trigonometric functions maintains its position invariance.

The position encoding function can be presented as
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[image: image]

where pos is the position of each token; 2i and 2i1 are the even-numbered and odd-numbered dimensions of each token position vector of the cardinality, respectively, where all position subscripts start from 0; and dmodel is the dimensionality of word vector, the same as the dimensionality of encoding.

Diving into the encoder of Transformer, we will first meet the multi-head attention module. The multi-head attention is actually a combination of multiple self-attention structures. Each head learns its characteristics in different representation spaces. The first step in calculating self-attention is to construct three vectors based on the input vector of the encoder. In our task, it is the embedding of each sequence. So for each embedding, we need to create a Query matrix, a Key matrix, and a Value matrix. These three matrices are created during the training process, all from the same input. The self-attention function can be written as

[image: image]

First, we need to calculate the dot product between Q and K. To prevent the result from being too large, we will divide it by a scale of [image: image], which is the dimension of query and key vectors. Then a Softmax operation is implemented to normalize the result to a probability distribution, and then it is multiplied by the matrix V to get the weighted summation. Multi-head attention means that we can have different Qs, Ks, and Vs representations and finally combine the results. For the encoder, these basic units are concatenated, where the keys, queries, and values are all from the output of the previous layer of encoder; that is, every position of the encoder can notice all the positions of the previous layer of encoder.

After the attention is achieved, we come to the Add-and-Norm module. The “Add” in it stands for residual connection (He et al., 2016), which is designed to solve the problem of difficult training of multi-layer neural networks. By passing the information of the last layer to the next layer without difference, it can effectively focus on only the difference part. On the other hand, “Norm” is short for the layer normalization (Ba et al., 2016). It can speed up the training process and make the model converge faster by normalizing the activation value of the layer.



Max-Pooling Layer

The feature vector h of each subsequence is fed into a max-pooling layer to capture the most significant feature in identifying the DNA modification to represent this subsequence. Then, all the most significant features of subsequences are concatenated into a vector to represent a DNA sequence, which is shown in the following equation:

[image: image]

where i is the ith subsequence, n is the number of subsequences in a DNA sequence, and y is regarded as the feature vector of a target sequence. The max-pooling layer attempts to find the most important dependencies in subsequences.



Task-Specific Output Module

This module consists of four sets of fully connected layers corresponding to each task. In each fully connected layer with a relu activation function, its output is calculated by the following equation:
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where [image: image] is the output of the previous layer of jth task, [image: image] is the current layer output of jth task, [image: image] is the weight matrix, and [image: image] is the bias vector. In each layer, the “batch normalization” technique was used to improve generalization performance (Cheng and Baldi, 2006). Finally, a softmax layer is added on the top of final output fj to perform the final prediction. Note that the parameters of different sets of the fully connected layer are designed differently in terms of the amount of data of the corresponding task.



Training

The task-specific features, y, generated by the sharing module, are ultimately sent into one set of fully connected layers in terms of it belonging to which task. For classification tasks, we used binary cross-entropy loss function as the objective:
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where N denotes the number of training samples, yi denotes the label (i.e., 1 or 0) of sample i, and pi denotes the probability that sample i is predicted to be positive. Our global loss function is the linear combination of loss function for all tasks:
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where αk is the weight for task k.



Evaluation Metrics

Here, we adopted four commonly used metrics to measure the performance of the proposed method and existing methods, including sensitivity (SN), specificity (SP), overall accuracy (ACC), and Matthew’s correlation coefficient (MCC) (Wei et al., 2014, 2017a,c, 2018c, 2019a,c,d, 2020b; Feng et al., 2019; Jin et al., 2019; Zou et al., 2019; Hong et al., 2020; Qiang et al., 2020; Su et al., 2019a,b, 2020a; Zhao et al., 2020). They are formulated as follows:
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where TP, TN, FP, and FN represent the numbers of true positives, true negatives, false positives, and false negatives, respectively. MCC and ACC are two metrics used to evaluate the overall prediction ability of a predictive model. In addition, we used the ROC curve to intuitively validate the overall performance. The AUC is to quantitatively evaluate the overall prediction performance of the model (Tang H. et al., 2018; Jin et al., 2020; Zeng et al., 2020; Cai et al., 2021; Zhang D. et al., 2021). The AUC ranges from 0.5 to 1. The higher the AUC score, the better the performance of the model.



RESULTS AND DISCUSSION


Performance Comparison With Other Single-Task State-of-the-Art Methods

To demonstrate the effectiveness of the proposed method, we compared its performance with four other existing single-task state-of-the-art methods on the benchmark dataset, including 4mcPred-IFL (Wei et al., 2019b), 4mcPred_SVM (Wei et al., 2019a), and Deep4mcPred (Zeng and Liao, 2020). It is worth noting that among the three competing methods, except the method Deep4mcPred using deep learning technique, other methods all use traditional machine learning to train the respective models by hand-made features extracted from original DNA sequences. For a fair comparison, the source codes of these methods are used to carry out independent tests on our benchmark dataset.

The results of different methods are listed in Table 2. As shown in Table 2, we can see that for all species (i.e., A. thaliana, C. elegans, and D. melanogaster), our proposed method significantly outperform all other single-task competing methods in terms of SN, ACC, and MCC, with the only exception that the value of SP of our proposed method is lower than those of other methods. Specifically, for the species A. thaliana, when compared to the second-best method Deep4mcPred, our proposed method achieves an SN of 89.7%, an ACC of 86.5%, and an MCC of 0.728, yielding a relative improvement over Deep4mcPred of 10.33, 4.09, and 10.14%, respectively. However, Deep4mcPred does have a higher SP of 84.8, where our method only reaches an SP of 84.2. For the species C. elegans, compared to all competing methods, our proposed method achieves great improvement in terms of SN, ACC, and MCC, which are 6.06, 4.24, and 12.73% higher than that of the runner-up Deep4mcPred. For the species D. melanogaster, our proposed method also gets the best performance among all methods, achieving SN of 88.0%, ACC of 86.0%, and MCC of 0.722. Note that although the SP of our proposed methods is worse than those of other methods, the other three metrics are all higher than any competing single-task method. Therefore, we can conclude that our proposed method can achieve the best predictive performance for detecting 4mC sites in multiple species. The reason may be that in our method, we used the Transformer technique to learn more discriminative features based on multi-task learning that can leverage useful information among multiple related learning tasks to help learn a more accurate learner for each task, while the competing methods only use the information from one task. So the results are not surprising that our method achieves the best performance when using multi-task learning.


TABLE 2. Performance comparison of the proposed method and existing single-task 4mC predictors.
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Effect of Multi-Task Learning

To investigate the efficiency of the multi-task learning technique, we compared the method using multi-task learning, namely, our proposed method, with the method not using multi-task learning. The comparative results obtained are shown in Table 3. From Table 3, we can see that the method using multi-task learning outperforms the method not using multi-task learning in the species A. thaliana and D. melanogaster, with only one exception in the species C. elegans. in which the performance of the method using multi-task learning is slightly worse than the methods not using multi-task learning. To be specific, for the species A. thaliana, the SN, ACC, and MCC of the method using multi-task learning are 3.46, 1.29, and 2.82% higher than those of the method not using multi-task learning, while the SP of the method not using multi-task learning is lower. For D. melanogaster, the method using multi-task learning improves the performance from 85.7 to 88.0% in terms of SN, 84.0–84.1% in terms of SP, 84.9–86.0% in terms of ACC, and 69.8–72.2% in terms of MCC. For a more intuitive comparison, we further compared their ROC curve s and PR (precision-recall) curves, which are illustrated in Figure 2. We can observe that except in the species C. elegans, the method using multi-task learning achieves the best values of auROC and auPRC in the other species. When using multi-task learning, even if the performance of our method is not good in one species, the performance is improved in the other species. Therefore, we can conclude that employing the multi-task learning technique in a feature learning scheme can improve the feature representation ability and predictive performance because the multi-task learning technique aims to enhance the performance of each task by sharing information between related tasks so that they complement each other.


TABLE 3. Performance comparison with the model not using the multi-task learning.
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FIGURE 2. ROC curves and PR curves of the model using multi-task learning and the model not using multi-task. (A–C) The ROC curves of the two models in three species. (D–F) The PR curves of the two models in three species.




Analysis of Features Extracted From Multi-Task Learning Method on the Test Dataset

Discriminative features play a crucial role in developing a predictive tool with high accuracy. To investigate whether the features learning by our method is more discriminative, we compared them with five traditional hand-made feature descriptors, including ENAC, di-nucleotide composition (DNC), composition of k-spaced nucleic acid pairs (CKSNAP), electron–ion interaction pseudopotentials of trinucleotide (EIIP), and electron–ion interaction pseudopotentials of trinucleotide (PseEIIP). On the test dataset, all the features are evaluated with a 10-fold cross-validation technique by using three basic machine learning classifiers, including random forest (RF), SVM, and LightGBM.

The comparison results are illustrated in Figure 3. As shown in Figure 3, we can observe that for each species, the features extracted by our proposed method achieve the best performance among other traditional hand-made features in terms of the four metrics on every basic classifier, especially on the classifiers RF and SVM, indicating that the features generated by our proposed method are more effective for 4mC sites prediction in different species and are more suitable for most of the common classifiers.


[image: image]

FIGURE 3. The 10-fold cross-validation results of the Proposed, ENAC, DNC, CKSNAP, EIIP, and PreEIIP methods are based on the three basic classifiers for each species. (A–C) The results of the species A. thaliana. (D–F) The results of the species C. elegans. (G–I) The results of the species D. melanogaster.


In the feature learning scheme, we used the transformer network to learn the related information between DNA subsequences and added a max-pool layer to judge which feature plays a key role in detecting 4mC sites in each subsequence. Moreover, the multi-task learning technique was exploited to capture sharing information contained in multiple tasks to help learn a more discriminative and effective feature to represent DNA sequences for 4mC sites prediction. Therefore, the proposed method significantly outperforms other traditional handcraft features, which needs prior knowledge. Figures 4, 5 illustrate the ROC and PR curves of different features. It can be also seen that our learned features are more effective than existing handcraft features, further demonstrating that our model can capture more useful information than existing feature algorithms.
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FIGURE 4. ROC curves of the Proposed, ENAC, DNC, CKSNAP, EIIP, and PreEIIP methods are based on the three basic classifiers for each species. (A–C) The results of the species A. thaliana. (D–F) The results of the species C. elegans. (G–I) The results of the species D. melanogaster.



[image: image]

FIGURE 5. PR curves of the Proposed, ENAC, DNC, CKSNAP, EIIP, and PreEIIP methods are based on the three basic classifiers for each species. (A–C) The results of the species A. thaliana. (D–F) The results of the species C. elegans. (G–I) The results of the species D. melanogaster.




CONCLUSION

In this study, we have established a predictor called 4mcPred-MTL, using Transformer-based multi-task learning to predict DNA 4mC modifications in multiple species. To the best of our knowledge, this is the first 4mC predictor that can perform the prediction task for different species on a single run. Importantly, our predictor shows better performance as compared to state-of-the-art prediction tools on independent test, demonstrating the superiority of our model. In particular, via feature comparative analysis, we found that our model can sufficiently capture better characteristics of 4mC sites as compared to existing commonly used feature descriptors, demonstrating the strong feature learning ability of our model. We expect that our model can be a useful predictor for research communities of interest. In addition, we provide a new way to predict multi-species sequence prediction analysis, which can be extended to other bioinformatics fields (Ding et al., 2016a,b, 2019a,b,c,d, 2020a,b,c; Liu et al., 2017; Wei et al., 2017a,b,c, 2018a,b,c, 2020a; Jiang et al., 2018; Jin et al., 2019; Manavalan et al., 2019a,b; Su et al., 2019b, 2020b,c; Wang et al., 2019, 2021a,b; Dai et al., 2020; Guo et al., 2020a,b; Song et al., 2020; Zou et al., 2020; Yang et al., 2021).
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Various factors affect the prognosis of patients with colon cancer. Complicated factors are found to be conducive to accurate assessment of prognosis. In this study, we developed a series of prognostic prediction models for survival time of colon cancer patients after surgery. Analysis of nine clinical characteristics showed that the most important factor was the positive lymph node ratio (LNR). High LNR was the most important clinical factor affecting 1- and 3-year survival; M0&age < 70 was the most important feature for 5 years. The performance of the model was improved through the integration of clinical characteristics and four types of molecule features (mRNA, lncRNA, miRNA, DNA methylation). The model provides guidance for clinical practice. According to the high-risk molecular features combined with age ≥ 70&T3, poorly differentiated or undifferentiated, M0&well differentiated, M0&T2, LNR high, T4&poorly differentiated, or undifferentiated, the survival time may be less than 1 year; for patients with high risk of molecular features combined with M0&T2, M0&T4, LNR 0& M0, LNR median &T3, and LNR high, the survival is predicted less than 3 years; and the survival of patients with M1&T3, M0 and high risk molecular features is less than 5 years. Using multidimensional and complex patient information, this study establishes potential criteria for clinicians to evaluate the survival of patients for colon cancer.

Keywords: prognostic model, combination, conlon cancer, clinical feature, molecular characteristic


INTRODUCTION

Colon cancer is one of the most common malignancies worldwide. According to the CONCORD project’s latest survey of colon cancer in 65 countries around the world, the survival rate of colon cancer patients is approximately 50–70%, and in a small number of countries it is less than 50% for 5 years (Allemani et al., 2018). Early detection (Labianca et al., 2013), timely surgical resection, effective chemotherapy (Andre et al., 2015), and targeted therapy (Weeks et al., 1998; Robin et al., 2011) have prolonged the survival time of colon cancer patients to a certain extent (Brenner et al., 2014), but these strategies are costly. Therefore, early diagnosis and the identification of prognosis and predictive biomarkers are critically required.

Clinical features such as tumor stage and pathology have been used to guide the treatment and prognosis of colon cancer. However, on account of individual differences, establishing a standard criterion for prognostic evaluation has been difficult. With the advancement of molecular biology techniques, several prognostic-related tumor biomarkers in colon cancer have been found. Most studies on biomarkers for colon cancer have focused on somatic mutations (Eklof et al., 2013), but with the development of high-throughput sequencing, some new tumor markers have been discovered, including lncRNAs (Saus et al., 2016; Kita et al., 2017), mRNAs (Dalerba et al., 2016), miRNAs (Zhang et al., 2013; Perez-Carbonell et al., 2015), and DNA methylation events (Weisenberger et al., 2006). Most studies on the correlations are limited to a single molecular level, but many molecular changes are closely related to clinical features. For example, studies have found that miRNA biomarkers are associated with T1 colon cancer metastasis to lymph nodes (Ozawa et al., 2018). Therefore, a genome-wide analysis with a larger sample is required to construct a prognostic model to provide clinicians with tools to accurately predict the prognosis of colon cancer.

This study is based on machine learning and statistical methods to construct the prognosis model by the clinical characteristics from a large sample of the Surveillance, Epidemiology and End Results database (SEER)1 and the clinical/molecular features from the Cancer Genome Atlas database (TCGA)2 (Cancer Genome Atlas Research Network et al., 2013). After construction and validation, the results showed different survival times between high- and low-risk groups by combining clinical factors and molecular features. This study can help clinicians make decisions and improve the prognosis of colon cancer patients.



MATERIALS AND METHODS


Data Source

Patients diagnosed with adenocarcinoma who underwent surgery for colon cancer were selected from the SEER database from April 2000 to April 2013. Data on the following nine clinical characteristics were collected: Sex, age, degree of differentiation, number of lymph nodes, number of positive lymph nodes, tumor location, primary tumor (T), regional lymph nodes (N), and distant metastasis (M). We deleted the uncertain data such as T0, Tis, Tx, N3, Nx, Nxa, Nxr, and Mx. A total of 161,694 patients were finally selected. The training samples, test samples and additional test samples of colon cancer were randomly divided into three groups at a ratio of 70, 15, and 15%.

Molecular omics datasets were obtained from the TCGA database using UCSC Xena3, including RNA profiles quantified as fragments per kilobase of exon per million reads mapped (FPKM) (469 cancers and 41 normal), miRNA profiles quantified as Reads of exon model per Million mapped reads (RPM) (459 cancers and eight normal), and DNA methylation profiles generated by the Illumina Infinium Human Methylation 450 Bead Chip (307 cancers and 38 normal). lncRNA and mRNA were united as log2(fpkm+1) and miRNA was united as log2(RPM+1). The samples were randomly divided into training samples and test samples at a ratio of 70 and 30%.



Determination of Positive Lymph Node Ratio (LNR)

The positive LNR refers to the ratio of positive lymph nodes to the total number of lymph nodes. The Gain method was used to determine the positive LNR; the values range from 0 to 1 by incremental steps of 0.1 and are repeated 100,000 times. The positive LNR threshold was defined as the mean value, according to all values which were divided to four groups as 0, low, median, and high.

The method can be described in detail through the following six steps. Step1: Divide training samples and test samples according to the ratio of 2:1. Step2: Remove samples with 0 positive lymph nodes. Step3: From 0 to 1 in the set with a step size of 0.01, traverse and pick two values as the threshold of positive lymph node ratio to obtain the information gain. Step4: Obtain the maximum information gain of the threshold for positive lymph node ratio. Step5: Go back to Step1 until repeated 100,000 times. Step6: Obtain the average values of the best positive lymph node ratio threshold which are the final threshold values of the positive lymph node ratio. Therefore, the final thresholds were 0 and the other two thresholds which were gained by information gain method for the ratio of positive lymph nodes. Based on these three values, the samples were divided into four groups which were 0, low, median, and high.



Screening Clinical Characteristics

The positive LNR threshold was determined, and univariable and multivariable Cox regression models were used to analyze the relationship between clinical characteristics and survival time. The important rankings of clinical features were, respectively, obtained using Naive Bayes, Generalized linear model, Linear discriminate model, Glmnet, and Quadratic discriminate model by R packages ‘‘caret’’(version 4.0.1)4 (M Kuhn et al., 2016). The average values of the importance rankings of the five classifiers for these clinical features were selected as the final importance rankings of the clinical features. The top five clinical features were regarded as the most important clinical features. Although these five classifiers are based on the idea of probability or linear regression, they still have some differences. The Naive Bayes classifier is a conditional probability model based on Bayes’ theory. The generalized linear model is a more flexible linear model, and it has not very strict distribution requirements allowing error distribution. The linear discriminant model is linear discriminant analysis which finds a linear combination of the features for two objects. The glmnet of R package “caret” is a binomial logistic regression model, and it uses a logistic function to predict a binary variable. Quadratic discriminant analysis is similar to linear discriminant analysis, but it can form a non-linear boundary by Gaussian distribution. We hope that we can avoid some overfitting problems by using a variety of similar but different classifiers. Lasso Cox regression analysis (Gao et al., 2010) needed to be repeated 1,000 times; the clinical combinations with a higher frequency than average were selected. In this study, four machine learning methods were used as prognostic prediction models for the training set, test set and additional test set, and the final number of the clinical combinations was small and the best.



Screening Molecular Characteristics

lncRNA and mRNA were united as log2(fpkm+1), and miRNA was united as log2(RPM+1). Before gaining differentially expressed genes, we did some data preprocessing. For mRNA, miRNA, and lncRNA, the 0 values which were more than 70% of genes were removed and the remaining 0 values were replaced by the minimum value of the data set. For DNA methylation sites, the missing values which were more than 70% of genes were removed and missing values of remaining genes were recalculated. The function knnImputation, R package “DMwR,” and R function scale() were applied for normalization and standardization, when we integrated different types of molecules.

Univariable and multivariable Cox regression models were used to analyze the relationship between molecular features and survival time. The Boruta method (Shi et al., 2019) was used to select more important features for the mRNA, lncRNA, and DNA methylation sites.

Differentially expressed genes (mRNAs, miRNAs, lncRNAs) and differential DNA methylation sites between sets (cancer samples and paracancerous control samples) were identified using a two-sided t-test and the Benjamini–Hochberg method, which were performed to adjusted p-values by multiple tests. Significant differentially expressed mRNAs, miRNAs, and lncRNAs were defined when the P-value was less than 0.05 and fold change was greater than 2 or less than 1/2. Significant differential DNA methylation sites were defined when the adjusted p-value was less than 0.05 and the △β value was greater than 20 percentage points between sample pairs.



Relationship Between Molecular Features and Clinical Features

To explore the correlation between prognosis-related molecules and clinical features, each of the obtained prognosis-related molecules was integrated into clinical features independently, and the division effect was evaluated by the ROC curve area of the Generalized Linear Model, Linear Discriminant Model, Naive Bayes Model, Glmnet, and Quadratic Discriminate Model. We also explored whether each clinical feature showed a significant difference between the high- and low-risk groups. The log-rank test was used to compare differences in the survival curve. These were implemented using R packages “caret”, “survival”, and “survcomp”.



Model Evaluation Index

A variety of indicators were applied to test the strengths and weaknesses of the model. The R package pROC (Robin et al., 2011) was used to obtain the ROC curve area, the R package “survivalROC” (Heagerty and Zheng, 2005) was used for independent time ROC curve analysis, and concordance index (c-index) and the nomograms consisting of independent prognostic factors were also constructed based on multivariable progressive Cox regression results by employing “rms” R package.



Statistical Analysis

Survival analyses were performed by Kaplan--Meier survival plot. All risk scores were calculated by a step multivariable Cox regression model, and low-risk and high-risk groups were divided according to the median risk score. Statistical analysis was performed using R statistical software version 3.5 (version x64 3.5.1)5.




RESULTS


Constructing Colon Cancer Prognostic Prediction Models Based on Combinations of Clinical Characteristics

A total of 161,694 patients with complete data for nine clinical characteristics were obtained from SEER. Using the information gain method, cutoffs for the four groups are as listed in Methods (see comment in the above section); the positive LNR was defined as 0, 0.2, and 0.6 for 1 year or 3 years, and 0, 0.3, and 0.7 for 5 years, as described in section “Materials and Methods.” Patients divided into four groups according to LNR thresholds showed different survival outcomes by Kaplan–Meier survival curve analysis. Patients with a higher LNR showed poor survival (Supplementary Figures 1A–C, 2A–C, 3A–C). We evaluated survival and death rates according to the nine clinical characteristics. LNR high, M1, and N2 were three strong indicators of increased mortality at 1 and 3 years (Supplementary Figures 1D, 2D). LNR high, M1, and tumor location (left half of the intestine) were the top three characteristics of mortality at 5 years (Supplementary Figure 3D).

Using univariable and multivariable Cox regression analyses, we found that clinical characteristics including tumor location, sex, and N impacted the 1-year survival time. For the 3-year survival rate, sex, N, and number of acquired lymph nodes were not significant, while all clinical characteristics were markedly for the 5-year survival rate (Supplementary Figures 1–3E and Table 1). The top five important clinical features were obtained as described in section “Materials and Methods”; LNR, age, M, T, and tumor differentiation were the top five for 1-year and 3-year survival (Supplementary Figures 1F, 2F), while positive LNR, age, M, T, and N were the top five for 5-year survival (Supplementary Figure 3F). After permutation and combination of the five important clinical features, 899 feature sets were obtained and 22, 20, and 18 features were acquired by the dimension reduction of the classification model in 1, 3, or 5 years, respectively. In the training set, test set, and additional test set, the maximum AUC values of the 1-year model were 0.743, 0.748, and 0.747, respectively (Supplementary Figure 1G). The AUC values of the 3-year model were 0.718, 0.718, and 0.719, respectively (Supplementary Figure S2G). In the 5-year model, the AUC values were 0.7, 0.704, and 0.701, respectively (Supplementary Figure 3G). Age < 70 and M0 were the most significant factors with 1-, 3-, and 5-year survival.


TABLE 1. Multivariable analysis of nine clinical characteristics in the SEER database.

[image: Table 1]


Constructing Colon Cancer Prognostic Prediction Models Based on Molecular Features

Molecular markers have demonstrated potential power in the prognosis of colon cancer (Nosho et al., 2010; Carethers and Jung, 2015). Considering the close relationship between cancer and environmental factors, we focused on 512 RNA-seq datasets, 461 miRNA expression profiles, and 347 Infinium 450k methylation data sets in the TCGA database. A total of 2,492 differentially expressed lncRNAs, 2,967 differentially expressed mRNAs, 280 differentially expressed miRNAs, and 11,043 differentially expressed DNA methylation sites were identified in colon cancer samples compared with paracancerous control samples, as described in section “Materials and Methods.”

In the training set, 11, 7, and 6 lncRNAs showed a significant association with 1-, 3-, and 5-year survival, respectively, and the maximum classifiers AUC values were 0.788, 0.833, and 0.825, respectively (Supplementary Figures 4–6A,B); eight, eight, and four mRNAs showed a significant association with 1-, 3-, and 5-year survival and the AUC values were 0.793, 0.784, and 0.849, respectively (Supplementary Figures 7–9A,B); the miRNA numbers were 7, 10, and 9, and the AUC values were 0.826, 0.759, and 0.849, respectively (Supplementary Figures 10–12A,B). The DNA methylation sites were 5, 7, and 7, and the AUC values were 0.833, 0.894, and 0.876, respectively (Supplementary Figures 13–15A,B). The top three lncRNAs were AC133528, AC109927, and AL021707; the top three mRNAs were TMEM88B, GHRHR, and ZC3HAV1L; the top three miRNAs were hsa-mir-545, has-mir-548k, and hsa-mir-374a; and the top three DNA methylation sites were cg17863551, cg08491964, and cg04067612.

We further integrated different moleculars to construct prediction models due to molecular mutual regulation. In the training set, the combinations of molecular features consisting of 11, 13, and 11 features showed a significant association with 1-, 3-, and 5-year survival, respectively, and the maximum AUC values were 0.915, 0.884, and 0.869 (Supplementary Figures 16–18A). Among the molecular features, the most important were DNA methylation sites on cg01515427, cg03024587, and cg04067612. Of all the molecular models, “survivalROC” were achieved significant results (Supplementary Figures 16–18B), and the Kaplan–Meier survival curves showed significant difference for the training set and test set (Supplementary Figures 16–18C,E) (p < 0.05).

This study also integrated all molecules to construct a molecular predictive model for the overall prognosis of colon cancer. The molecular colon cancer overall prognosis prediction model contains 6 molecules (AC004080, AP000842, LINC02516, hsa-mir-891a, cg04727865, cg14234213). The maximum AUC areas of the training set and test set are 0.866 and 0.904, respectively (Figures 1A–B). The Kaplan-Meier survival curves of the high and low risk groups in the training set and the test set were significantly different (p < 0.05).’
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FIGURE 1. Important molecular features in overall survival based on the TCGA database. (A) ROC curves of the molecular-based overall prognosis model in the training set and test set. (B) Survival ROC curves in the two sets. (C,E) Kaplan–Meier survival curves of the two sets. (D,F) Distributions of molecular expressions in high- and low-risk groups of the two sets. **p < 0.05, ***p < 0.01.


Even in some models, the expression of a single molecule showed no difference but the combination of all molecules showed significant differences in the two sets (Figures 1D,F). These results indicate there are differences in the prognosis of colon cancer at both clinical and molecular levels, and therefore carrying out stratified prognostic analysis of colon cancer is valuable.



One-Year Prognostic Prediction Models Based on Both Molecular Features and Combinations of Clinical Characteristics

The relationship of the combinations of clinical characteristics and the molecular features were analyzed based on the survival time. The results showed that age ≥ 70&T3 and M0 were significantly different between the high- and low-risk groups of all molecular models in the two sets (Supplementary Figure 19). The following results indicate that combinations of clinical characteristics and molecular features may affect prognosis of colon cancer.

First, we developed a comprehensive prediction model based on the combination of clinical and molecular characteristics for 1-year survival. In the training set and test set, the maximum classifier AUC values were 0.713 and 0.825 based on a risk score that was calculated by five differential DNA methylation sites (cg17863551, cg01515427, cg01790269, cg14803765, cg15002294) and three combinations of clinical characteristics (age ≥ 70&T3, LNR median, T4&poorly differentiated, or undifferentiated) (Supplementary Figures 20A,B). “SurvivalROC” achieved AUC values of 0.868 and 0.819 in the two sets (Supplementary Figure 20C). The ability to evaluate the model can also be seen from the nomogram constructed by multivariable Cox regression analysis. According to the corresponding scores of each feature, if the cumulative score is less than 42, the survival probability at 1 year may be greater than 95% (Supplementary Figure 20D).

In the rest of the clinical and molecular composite models, a risk score was calculated by 11 lncRNAs (AC133528, AC097637, AL513327, LINC01675, AC018629, MIR31HG, AC008686, TSPEAR-AS2, AC125603, AC011603, AC119428) and four combinations of clinical factors (age < 70&moderately differentiated, LNR low&age < 70, LNR none&M0, LNR median&T3). AUC values were 0.805 and 0.763 in the two sets (Supplementary Figures 21A,B). The “survivalROC” values were 0.814 and 0.739 (Supplementary Figure 21C). If the cumulative score is less than 64, the 1-year survival probability will be greater than 95% according to the nomogram (Supplementary Figure 21D). For a risk score calculated by eight mRNAs (TMEM88B, PLCG2, PADI3, SH2D7, GABRD, PRSS1, RNF151, TMPRSS11E) and two combinations of clinical factors (age < 70&M0, LNR high), AUC values were 0.783 and 0.747 in two sets, and “survivalROC” values were 0.78 and 0.753. If the cumulative score is less than 28, the 1-year survival probability will be greater than 95% according to the nomogram (Supplementary Figures 22A–D). For a risk score calculated by seven miRNAs (hsa-mir-545, hsa-mir-3942, hsa-mir-641, hsa-mir-4632, hsa-mir-7641, hsa-mir-187, hsa-mir-3615) and two combinations of clinical factors (age ≥ 70&T3,M0), the AUC values were 0.786 and 0.72 in two sets. The “survival” ROC values were 0.746 and 0.739. If the cumulative score is less than 30, the 1-year probability will be greater than 95% according to the nomogram (Supplementary Figures 23A–D). The Kaplan–Meier survival curves were significantly different in training set and test set (p < 0.05) (Supplementary Figures 20–23E,G). The distribution of each combination of clinical characteristics and molecular feature can be seen from the heatmap, and the risk score is also significantly different (Supplementary Figures 20–23F,H).

The 1-year prognostic prediction model was based on the risk scores composed of 11 molecules (AC125603, AC133528, cg01790269, cg14803765, cg15002294, cg17863551, cg01515427, GABRD, ADI3, PRSS1, TMEM88B) and six combinations of clinical characteristics (T4&poorly differentiated or undifferentiated, poorly differentiated or undifferentiated, M0&moderately differentiated, age ≥ 70&T3, M0&T2,LNR high). The maximum AUC values of the two sets were 0.935 and 0.812 (Figures 2A,B). “SurvivalROC” values were 0.936 and 0.817 (Figure 2C). From the nomogram, if the cumulative score is less than 84, the 1-year survival rate will be greater than 95% (Figure 2D). The c-index is 0.901 (95% CI, 0.843–0.960). The Kaplan–Meier survival curves of the high- and low-risk groups were significantly different (p < 0.05) (Figures 2E,G), and the distribution of the expression of the high- and low-risk groups composed of clinical and molecular was also significantly different in the heat maps of two sets (Figures 2F,H). For 1-year survival, the most important feature was the molecular risk score, and the most important clinical combination feature is T4&poorly differentiated or undifferentiated.
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FIGURE 2. Important combinations of clinical characteristics and molecular features for 1-year survival time. (A,B) ROC curves of the training set and test set. (C) ROC survival curves of the two sets. (D) Nomogram of multivariate Cox regression based on molecular features and combinations of clinical characteristics. (E,G) Kaplan–Meier survival curves of the two sets. (F,H) Heat maps of the two sets used to compare the differences between high- and low-risk groups.




Mining of Eight Clinical Combination Characteristics and 13 Molecular Features From 3-Year Prognostic Prediction Models

Similar to the strategy of constructing the 1-year prognostic prediction model, the 3-year prognostic prediction model shows the complement of molecular features and clinical characteristics in predicting prognosis. Risk scores were calculated from seven methylation sites (cg03024587, cg03265268, cg03957898, cg04031361, cg04067612, cg0891964, cg13279566) and 11 combinations of clinical features (well differentiated, M0&age∘< 70, M0&T1, M0&T2, M0&T4, M1&T3, M0, LNR 0&age < 70, LNR 0&T3&age < 70, LNR median, T3&age ≥ 70). The maximum AUC values of the training set and test set were 0.839 and 0.783, respectively. “SurvivalROC” achieved AUC values of 0.83 and 0.84 (Supplementary Figures 24A–C). In accordance with each feature, if the cumulative score is less than 150, the patient’s 3-year survival rate is greater than 80% (Supplementary Figure 24D). The Kaplan–Meier survival curves were significantly different in the training set and test set (p < 0.05) (Supplementary Figures 24E,G). The distribution of the combination of clinical and molecular features can be seen from the heat map (Supplementary Figures 24F,H).

The risk score was calculated using seven lncRNAs (AC002091, AC025211, AC109927, AL159972, AL356124, LINC01807, PTPRJ-AS1) and nine combinations of clinical features (poorly differentiated or undifferentiated, M0&age < 70, M0&T2, M0T4, M1&T3, M0, LNR 0&age < 70, LNR median&age ≥ 70, LNR median), and the maximum AUC values in the two sets were 0.795 and 0.674. “SurvivalROC” values were 0.794 and 0.693 (Supplementary Figures 25A–C). According to the nomogram, if the cumulative score is less than 72, the 3-year survival rate will be greater than 95% (Supplementary Figure 25D). The Kaplan–Meier survival curves between the high- and low-risk groups were significantly different (p < 0.05) (Supplementary Figures 25E,G). The distribution of the expression of each combination of clinical features and molecules can be seen from the heat map; the risk scores significantly different in high- and low-risk groups (Supplementary Figures 25F,H).

The risk score was calculated using eight mRNAs (AP3B2, ATP2B3, CD300LG, DNAH14, GHRHR, OR1J4, PLGG2, SLC28A2) and five combinations of clinical characteristics (M0&T1, LNR 0&age < 70, LNR 0&T3&age < 70, LNR median, T4&poorly differentiated or undifferentiated), and the maximum AUC areas of the training set and test set were 0.747 and 0.751, respectively. “SurvivalROC” values were 0.77 and 0.744. If the cumulative score is less than 66, the 3-year survival rate will be greater than 95% (Supplementary Figures 26A–D). Kaplan–Meier survival curves of the high- and low-risk groups were significantly different (p < 0.05) (Supplementary Figures 26E,G). The expressions of each combination of clinical features and molecule were significantly different in risk score in the heat map (Supplementary Figures 26F,H).

The risk score was calculated using 10 miRNAs (hsa-miR-2114, hsa-miR-3926, hsa-miR-5001, hsa-miR-5091, hsa-miR-545, hsa-miR-548k, hsa-miR-605, hsa-miR-641, hsa-miR-6798, hsa-miR-765) and nine combinations of clinical features (poorly differentiated or undifferentiated, M0&age < 70, M0&T1, M0&T2, LNR 0&age < 70, LNR 0&M0, LNR median&T3, LNR high, T4&poorly differentiated or undifferentiated), and the maximum AUC values in the training set and test set were 0.804 and 0.744, respectively. “SurvivalROC” values were 0.804 and 0.716 (Supplementary Figures 27A–C). If the cumulative score is less than 92, the 3-year survival rate will be greater than 80% (Supplementary Figure 27D). The Kaplan–Meier survival curves were significantly different in the two sets (p < 0.05) (Supplementary Figures 27E,G). From the heat map, the expression of each combination of clinical feature and molecule was significantly different in risk score (Supplementary Figures 27F,H).

Finally, the 3-year prognostic prediction model was composed of 13 molecules (AC109927, AL159972, AL356124, cg03957898, cg04067612, cg13279566, cg03024587, GABRD, PLCG2, hsa-miR-3926, hsa-miR-5091, hsa-miR-605, hsa-miR-765) and eight combinations of clinical characteristics (M0, M0&T4, LNR 0&M0, M0&T2, M1&T3, LNR median&T3, LNR high, poorly differentiated, or undifferentiated). The maximum AUC values of the training set and test set were 0.919 and 0.744 (95% CI, 0.594–0.867) (Figures 3A,B). “SurvivalROC” values were 0.893 and 0.753, respectively (Figure 3C). As seen on the nomogram, if the cumulative score is less than 82, the 3-year survival rate will be greater than 95% (Figure 3D). The c-index is 0.773 (95% CI, 0.728–0.819). The Kaplan–Meier survival curves were significantly different in the high- and low-risk groups (p < 0.05) (Figures 3E,G), and the expressions of clinical and molecular combinations were also significantly different (Figures 3F,H). For 3-year survival, the most important feature is the risk score, and the most important clinical combination feature is M0.
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FIGURE 3. Important combinations of clinical characteristics and molecular features for 3-year survival time. (A,B) ROC curves of the training set and test set. (C) ROC survival curves of the two sets. (D) Nomogram of multivariate Cox regression based on molecular features and combinations of clinical characteristics. (E,G) Kaplan–Meier survival curves of the two sets. (F,H) Heat maps of the two sets used to compare the differences between high- and low-risk groups.




Evaluation of 5-Year Survival in Colon Cancer Using Three Combinations of Clinical Characteristics and 11 Molecular Features

We also evaluated the impact of different molecular and clinical features on the 5-year survival of patients (Supplementary Figures 28A–H, 29A–H, 30A–H, 31A–H). Molecular features from these four categories may be used to evaluate prognosis of colon cancer. The 5-year prognostic prediction model analysis for the combination of integrated molecular and clinical features was composed of 11 molecules (AC126365, AL355607, cg05470554, cg24199599, cg27097923, cg04067612, EPB41L4A-DT, EYA1, KRT31, hsa-miR-3690, hsa-miR-765) and three combinations of clinical characteristics (M0, M1&T3, N2). The 5-year prognostic prediction model analysis for the combination of integrated molecular and clinical features was composed of 11 molecules (AC126365, AL355607, cg05470554, cg24199599, cg27097923, cg04067612, EPB41L4A-DT, EYA1, KRT31, hsa-miR-3690, hsa-miR-765) and three combinations of clinical characteristics (M0, M1&T3, N2). The maximum AUC values of the training set and test set were 0.873 and 0.912, respectively (Figures 4A,B). “SurvivalROC” values were 0.873 and 0.91 (Figure 4C). From the nomogram, if the cumulative score is less than 16, the 5-year survival rate will be greater than 95% (Figure 4D). The c-index is 0.718 (95% CI, 0.671–0.765). Kaplan–Meier survival curves of the high- and low-risk groups were significantly different (p < 0.05) (Figures 4E,G), and the expression of clinical and molecular groups was also significantly different (Figures 4F,H). The most important feature is the risk score, and M0 is the most important clinical combination feature for 5-year survival.
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FIGURE 4. Important combinations of clinical characteristics and molecular features for 5-year survival time. (A,B) ROC curves of the training set and test set. (C) ROC survival curves of the two sets. (D) Nomogram of multivariate Cox regression based on molecular features and combinations of clinical characteristics. (E,G) Kaplan–Meier survival curves of the two sets. (F,H) Heat maps of the two sets used to compare the differences between high- and low-risk groups.




Constructing Multi-Type Colon Cancer Prediction Models With Survival Time

Multi-type overall survival prediction models for all colon cancer patients were also developed to take into account follow-up times (Supplementary Figures 32–39). The results showed that maximum AUC reached 0.916 and 0.948 in the training set and test set (Figures 5A,B). “SurvivalROC” values were 0.958 and 0.795, respectively, and the c-index is 0.921 (95% CI, 0.872–0.971) (Figure 5C). If the cumulative score is less than 224, the survival probability of 1 year may be greater than 95%; for 3 years, the cumulative score is less than 212, and for 5 years the cumulative score is less than 202 (Figure 5D). The survival curves of the high- and low-risk score groups were significantly different (Figures 5E,G), and the heat maps displayed the difference of the survival time model (Figures 5F,H).
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FIGURE 5. Important combinations of clinical characteristics and molecular features for overall survival. (A,B) ROC curves of the training set and test set. (C) ROC survival curves of the two sets. (D) Nomogram of multivariate Cox regression based on molecular features and combinations of clinical characteristics. (E,G) Kaplan–Meier survival curves of the two sets. (F,H) Heat maps of the two sets used to compare the differences between high- and low-risk groups.





DISCUSSION

The survival time of postoperative patients with colon cancer shows significant difference among patients. This leads to great difficulty in determining treatment decisions in clinical practice. This study showed that the prediction model may provide a tool for prognostic evaluation. For example, there may be a prognostic factor for a specific survival rate, and there may be a poor prognostic factor for patients whose lifetime is less than 1 year. Survival for more than 5 years is referred to as clinical cure. In this study, several prognostic prediction models for 1-, 3-, and 5-year survival time were determined based on a large number of samples with clinical information from SEER and clinical and molecular characteristics in TCGA. These models provide convenience for guiding clinical personalized treatment and can provide a strong treatment plan for patients with poor prognosis to improve the patient survival rate. Maximum AUC values were more than 0.8 by molecular and clinical features, which means great improvement of the prognostic prediction effect. In each predictive model, a nomogram was provided to determine the survival probability. For example, if the cumulative score is less than 84, the 1-year survival rate will be greater than 95%. The factor for 1-year prediction was based on six combinations of clinical characteristics (T4&poorly differentiated or undifferentiated, poorly differentiated or undifferentiated, M0&moderately differentiated, age ≥ 70&T3, M0&T2,LNR high) and a risk score based on a total of 11 molecular features (cg01515427, AC125603, AC133528, cg01790269, cg14803765, cg15002294, cg17863551, GABRD, PADI3, PRSS1, and TMEM88B). The factor for 3-year survival was based on eight combinations of clinical characteristics (M0, M0&T4, LNR none&M0, M0&T2, M1&T3, LNR median&T3, LNR high, poorly differentiated, or undifferentiated) and 13 molecular features (cg03024587, AC109927, AL159972, AL356124, cg03957898, cg04067612, cg13279566, GABRD, PLCG2, hsa-mir-3926, hsa-mir-5091, hsa-mir-605, and hsa-mir-765). The factor for 5-year survival was based on three combinations of clinical characteristics (M0, M1&T3, LNR median) and 11 molecular features (cg04067612, AC126365, AL355607, cg05470554, cg24199599, cg27097923, EPB41L4A-DT, EYA1, KRT31, hsa-mir-3690, and hsa-mir-765). Thus, the prognostic prediction of colon cancer is a complex process. Our analysis demonstrates the feasibility of combining molecular features and combinations of clinical characteristics for prognostic prediction of colon cancer patients.

Molecular factors play an important prognostic role in various cancers, and among these molecules, DNA methylation sites of the gene contribute the most power (Bird, 2002). For example, Huang et al. (2013) reported that ZIC1 promoter hypermethylation correlates with poor progression-free survival of ovarian cancer, and methylation of the ZIC1 gene, a putative tumor suppressor, may be a novel determinant of ovarian cancer outcome. Many molecular features in this study have been shown to be associated with the prognosis of colon cancer and are closely related to clinical pathological characteristics, For example, studies have found that miRNA-641 expression is strongly correlated with lymph node metastasis and stage in colon cancer (Yao et al., 2018).

In our study, we also focused on LNR. LNR is an important factor for prognostic prediction, but no cutoff threshold for LNR has been established. For example, Shinto et al. (2019) used the Akaike information criterion to categorize LNR by cutoffs of 0.16 and 0.22. Berger et al. used LNR quartiles to categorize LNR (LNR: < 0.05, 0.05–0.19, 0.2–0.39, and 0.4–1.0) (Berger et al., 2005). Therefore, an information gain method was developed to redefine the thresholds in this study. The thresholds were 0, 0.2, and 0.6 for 1 and 3 years and the thresholds were 0, 0.3, and 0.7 for 5 years. Our study also incorporated LNR into clinical factors to establish survival time. The impact of LNR on survival is more important and more effective than the N stage. Our results showed that the N stage was not significant in 1- and 3-year survival by multivariable Cox regression analysis. Therefore, we propose that LNR can replace N or that LNR should be added to TNM staging.



CONCLUSION

The study demonstrates that models such as these are in general reliable. The prediction model based on a combination of both clinical characteristics and molecular features may be suitable for the evaluation of specific survival probability in colon cancer.
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Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine and metabolic disorder in women, which is characterized by androgen excess, ovulation dysfunction, and polycystic ovary. Although the etiology of PCOS is largely unknown, many studies suggest that aberrant DNA methylation is an important contributing factor for its pathological changes. In this study, we investigated DNA methylation characteristics and their impact on gene expression in granulosa cells obtained from PCOS patients. Transcriptome analysis found that differentially expressed genes were mainly enriched in pathways of insulin resistance, fat cell differentiation, and steroid metabolism in PCOS. Overall DNA methylation level in granulosa cells was reduced in PCOS, and the first introns were found to be the major genomic regions that were hypomethylated in PCOS. Integrated analysis of transcriptome, DNA methylation, and miRNAs in ovarian granulosa cells revealed a DNA methylation and miRNA coregulated network and identified key candidate genes for pathogenesis of PCOS, including BMP4, ETS1, and IRS1. Our study shed more light on epigenetic mechanism of PCOS and provided valuable reference for its diagnosis and treatment.
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INTRODUCTION

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder. According to the Rotterdam or Androgen Excess and Polycystic Ovary Syndrome diagnosis criteria, PCOS is characterized primarily by hyperandrogenism and accompanied by hirsutism, androgenetic alopecia, and acne (Fauser et al., 2004; Azziz et al., 2009). Other features include polycystic ovarian morphology (PCOM) and ovulation dysfunction, such as oligo-ovulation and anovulation (Qi et al., 2019). PCOS affects approximately 5–20% of women of reproductive age (Fauser et al., 2004). Girls with hereditary PCOS begin to develop hyperinsulinemia as early as age 4 years, and premature pubarche and menstrual irregularity during adolescence affect their health. Postmenopausal women with PCOS have increased risk of cardiovascular and cerebrovascular diseases (Macut et al., 2017). Furthermore, long-term morbidity of PCOS is associated with various complications. Many patients suffer from metabolic syndrome, which increases the prevalence of type 2 diabetes mellitus (T2DM) (Moran et al., 2010; Gambineri et al., 2012) and gestational diabetes (Pan et al., 2015). Some studies also indicated that women with PCOS are more likely to suffer from depression and anxiety (Dokras et al., 2011). Moreover, recent studies have shown that the gut microbiota is changed in individuals with PCOS (Qi et al., 2019).

Genetic and lifestyle factors contribute to pathogenesis of PCOS (Edgar Ricardo et al., 2019). Maternal hyperandrogenism and insulin resistance can be transmitted to offspring, and obesity induced by imbalance of food intake and energy expenditure can lead to increased androgen and influence the severity of insulin resistance, which in turn contribute to the development of PCOS (Carmina, 2003; Merkin et al., 2016). However, no single gene has been identified as the common etiology of PCOS, and recent studies have turned attention to the epigenetic mechanism of PCOS. Multiple genome-wide studies suggested that epigenetic factors, such as non-coding RNAs and DNA methylation, are closely associated with PCOS (Yu Y.Y. et al., 2015; Mu et al., 2021). microRNA is involved in proliferation, apoptosis, and steroid production of ovarian cells (Sirotkin et al., 2010). The miR-513a-3p is expressed in human ovarian granulosa cells (GCs) and plays a central role in ovarian follicular maturation, ovulation, and maintenance of corpus luteum (Liu S. et al., 2015). However, in PCOS patients, miR-99a and miR-323 target insulin-like growth factor 1 receptor (IGF-1R) and IGF-1, respectively, to regulate GC apoptosis (Geng et al., 2019; Wang et al., 2019). In addition, hundreds of lncRNAs were aberrantly expressed in cumulus cells from PCOS patients (Huang et al., 2016), and CTBP1-AS was identified as an androgen-responsive lncRNA that promotes transcriptional activity of androgen receptor and cell cycle progression (Liu et al., 2017).

DNA methylation, as an important content of epigenetics, plays an important role in pathogenesis of PCOS. Studies showed that DNA methylation is increased in the promoter region of the peroxisome proliferator-activated receptor gamma 1 (PPARGC1A) and represses its expression. Reduced PPARGC1A expression is associated with insulin resistance, high serum androgen levels, and reduction of mitochondrial DNA content in women with PCOS (Zhao et al., 2017). Conversely, DNA methylation level of LHCGR gene promoter is reduced in PCOS, and its overexpression leads to increased LH in GCs, which in turn leads to gonadotropin disorder in PCOS women (Mutharasan et al., 2013). In addition, many studies reported that expression of genes involved in cellular processes, such as lipid and steroid synthesis and sugar metabolism, is altered by abnormal DNA methylation and also contributes to the pathogenesis of PCOS (Salehi Jahromi et al., 2018) (Huang et al., 2007; Kokosar et al., 2016).

In this study, we tried to elucidate the epigenetic regulatory mechanism of PCOS by integrating DNA methylation, transcriptome, and miRNA profile in GCs of PCOS. Our study depicted the DNA methylation characteristic of PCOS. Importantly, we predicted a DNA hypomethylation and miRNA coregulated network in PCOS and identified several marker genes using bioinformatics method. The findings of study provide valuable reference for diagnosis and treatment of PCOS.



MATERIALS AND METHODS


Dataset Collection

The data used in this study was downloaded from Gene Expression Omnibus (GEO) (Mao et al., 2021). The RNA-seq data were obtained under accession number GEO: GSE155489. The DNA methylation MBD-seq data were obtained under accession number GEO: GSE138573. The miRNA data sequenced by small RNA-seq were obtained under accession number GEO: GSE138572. The data were generated using GCs obtained from PCOS and normal ovaries. Four duplicate samples of PCOS and control GCs were included in RNA-seq data, respectively. Three duplicate samples of PCOS and control GCs were included in MDB-seq, respectively. Five duplicate samples of PCOS and control GCs were included in miRNA data, respectively.



Differentially Expressed Genes and Differentially Expressed miRNAs Analysis

Genes with averaged FPKM < 0.1 in all individual samples were removed, and the remaining genes were considered as expressed genes. Similarity, only miRNAs with averaged FPKM > 0.1 in all individual samples were used in the analysis (Cao et al., 2014). R package DEseq2 was used in differentially expressed gene (DEG) analysis and differentially expressed miRNA (DEmiR) analysis, and read count was used as input. Genes and miRNAs with absolute log2 fold change (FC) > 1 and q < 0.05 were defined as DEGs and DEmiRs, respectively, where q value is the result of p value correction (Cao et al., 2020; Ping et al., 2020).



Analysis of Differentially Methylated Regions

SMART2 package of Python was used for the differentially methylated region (DMR) analysis. The parameter setting was as follows: CpG Distance: 500, AbsMeanMethDiffer: 0.3, p_DMR: 0.05, Euclidean_Distance: 0.2, Segment_Length: 20, and Methylation_Specificity: 0.5 (Liu H. et al., 2015). DNA methylation level of the gene was represented by average DNA methylation level of CpG segments in gene promoters, and | Δβ| > 0.2 was used to define differentially methylated gene (Gao et al., 2018). Hypermethylation and hypomethylation marks of each group were determined by the one-sample t test in SMART2.



PPI Network Analysis

DNA hypomethylation-affected upregulated genes were identified by integrated analysis of transcriptome and DNA methylation. The human protein interaction pairs (9606.protein.links.v11.0) were downloaded from the STRING database1 and used as background network. The pairwise interaction genes in the DNA hypomethylation regulated gene modules were defined as seed nodes, and the Pearson correlation coefficient was used as the weight of the edges. By combining the background PPI network and the co-expression networks composed of the seed nodes, two gene co-expression networks of candidate markers were obtained (Mao et al., 2021). MCODE application was used for models mining. The parameters settings of MCODE application were as follows: degree cutoff: 2, node score cutoff: 0.2, K-Core: 2, and maximum depth: 100.



Construction of miRNAs Target Gene Network

The target genes of DEmiRs were identified using TarBase database (7.0)2 (Vlachos et al., 2015). The intersection of miRNA target genes and DEGs between PCOS and controls were considered as genes that were regulated by miRNA in PCOS.



Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Analysis

Functional annotation was performed with the DAVID database3 (Dennis et al., 2003; Sun et al., 2020). Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for each functional cluster were summarized to a representative term, and p values were plotted to show the significance (Bao et al., 2019, 2021).



Statistical Analysis and Data Visualization

The R/Bioconductor software packages4 and Python package were used in the statistical analysis (ChiPseeker, dplyr, psych add SMART2) (Yu G. et al., 2015; Reece and Hulse, 2020). All networks were visualized using the software Cytoscape (Shannon et al., 2003). R packages (pheatmap, UpSetR, CMplot, ggplot2, and GOplot) were used for data visualization [heatmap, upset plot, Manhattan plot, principal component analysis (PCA) plot, Go chord plot] (Conway et al., 2017; Ni et al., 2019; Cao et al., 2020; Zhou et al., 2020).



RESULTS


Transcriptional Profiles of GCs in Human PCOS

PCOS is a metabolic disease whose etiology has not been fully understood (Li S. et al., 2016). Accumulating evidences suggest that abnormal gene expression is one of the main contributing factors for the development of PCOS. In order to take a deeper insight into the potential molecular mechanism of PCOS, we conducted genome-wide transcriptome analysis based on RNA-seq data in GCs obtained from PCOS and normal ovaries.

PCA was first performed to investigate the transcriptional difference between GCs of PCOS and normal ovaries (Figure 1A). The PC1 axis contributed to the main difference between PCOS and normal GCs, accounting for 73%. On this axis, PCOS and normal GCs were split into two separate clusters showing distinct gene expression profiles. The control samples did not gather together on PC2 axis, which may due to the heterogeneity of normal individuals. This finding was consistent with the clustering of sample correlation coefficient analysis (Supplementary Figure 1A). We further identified 470 upregulated genes and 548 downregulated genes in GCs from PCOS (padj < 0.05 and |log2FC| > 1; Figure 1B). Among them, PCK1 is the rate-limiting enzyme that regulates gluconeogenesis, and CYP1B1 plays an important role in estrogen metabolism, probably corresponding to the phenotype of obesity and hormonal disturbance in PCOS patients, respectively.
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FIGURE 1. Transcriptional profile of human PCOS. (A) Principal component analysis (PCA) of global transcriptomes in GCs obtained from PCOS and control ovaries. The samples are represented by different colors as indicated in the right. (B) Volcano plot showing differentially expressed genes (DEGs) obtained by a pairwise comparison between PCOS and control GCs. Upregulated and downregulated genes were colored in red and blue, respectively. (C) Analysis of PCOS transcript profiles and genes function. (D) The GO chord showing the biological processes and genes that participate in PCOS. (E) KEGG analysis of differentially expressed genes between PCOS and control.


Then we performed unsupervised hierarchical clustering analysis of these DEGs and confirmed a significantly different gene expression pattern between PCOS and the controls (Figure 1C). We further conducted GO analysis and found the DEGs were significantly enriched in biological processes such as steroid metabolic process, response to insulin, female pregnancy, estrous cycle, response to lipopolysaccharide, and fat cell differentiation (Figure 1C), implying that abnormal transcriptional changes in these biological processes may contribute to the development of PCOS. In support of our hypothesis, some genes involved in these biological processes have already been reported to play important roles in PCOS pathogenesis. For example, nuclear receptor subfamily 4 group A member 1 (NR4A1) is upregulated in ovarian GCs and participates in upregulation of androgen in PCOS patients (Song et al., 2019). CEBPD is a leucine zipper transcription factor involved in inflammation and adipogenesis in PCOS (Ma et al., 2020; Figure 1D). Except for the reported findings, we found one set of genes including ID1, ID2, and ID3 was significantly enriched in biological processes of the circadian rhythm and speculated that insomnia in some PCOS patients may due to the abnormal expression of these genes. In order to take a closer look at the changes in signaling pathways, we carried out KEGG analysis and found that the DEGs were enriched in signaling pathways of tumor necrosis factor (TNF), transforming growth factor β (TGF-β), and metabolic and steroid hormone biosynthesis (Figure 1E). These results suggested that the biological processes and signaling pathways in which the DEGs are enriched could contribute to the development of PCOS.



The Methylome Profile of GCs in Human PCOS

Previous studies have shown that epigenetic changes including DNA methylation are crucial for the development of PCOS. To characterize the abnormal DNA methylation in PCOS, we evaluated overall DNA methylation levels and found remarkable hypomethylation in GCs from PCOS compared with the normal GCs (Figure 2A). In order to take a closer look at the potential regulatory mechanism of aberrant DNA methylation in PCOS, we performed DMR analysis using Python package “SMART2” (Figure 2B) and identified hyper-DMRs and hypo-DMRs, respectively (Figure 2C). The hypo-DMRs accounted for the majority of DMRs (n = 495), whereas there were only 25 hyper-DMRs that account for 5% of the DMRs. These results indicated that hypomethylation is a key characteristic of PCOS and prompted us to focus on it. GO analyses found that the hypo-DMRs genes were mainly enriched in GO terms of adipose tissue development, glucose homeostasis, and pancreas development, which correspond to the characteristics of acne, obesity, and insulin resistance in PCOS patients (Figures 3A,B). In the KEGG enrichment analysis, the hypo-DMRs genes were found to be mainly involved in insulin secretion, diabetes, dopaminergic synapse, and thyroid hormone signaling pathways, which may associate with the diabetes and hormonal disorders in PCOS patients. Taken together, hypo-DMR plays a critical role in PCOS by altering gene expression in important biological processes and signaling pathways.
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FIGURE 2. The methylome changes of human PCOS. (A) Violin plot of DNA methylation levels of PCOS and control GCs. (B) Heatmap of DMRs between PCOS and control GCs. Each row represents a DMR, and averaged CpG methylation levels are represented by different colors. (C) Chromosome distribution of DMRs. The number of dots represents the distribution of DMR across different chromosomes.
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FIGURE 3. Genomic region preference and functional analysis of DMRs. (A) GO term analysis of hypo DMRs in GCs obtained from PCOS and control ovaries. (B) KEGG analysis of hypo DMRs in GCs obtained from PCOS and control ovaries. (C,D) Genomic distribution of the hypo DMRs and hyper DMRs. Pie charts represent proportion of DMRs in different genomic contexts. Upset graphs represent the number of DMRs distributed in single or combined genomic regions.


In order to investigate the genomic regional preference, the DMRs were mapped to the whole genome. Distribution map of DMRs showed that hypo-DMRs were more prevalent in promoter region near TSS than hyper-DMRs (Supplementary Figures 1C,D). Interestingly, besides the longer genomic regions such as the distal intergenic regions and other intron regions, the DMRs were predominantly located in the first intron. This suggested that DNA hypomethylation in the first intron probably plays an important role in regulating gene expression in PCOS (Figures 3C,D).



Integrated Analysis of DNA Methylation and Transcriptome in PCOS

To further explore the role of aberrant DNA methylation in PCOS, we carried out an integrated analysis of the transcriptome and DNA methylome. The genes affected by abnormal DNA methylation were identified by comparing changes in gene expression and methylation levels between PCOS and the normal GCs. Genes with significant changes in DNA methylation levels (abs change >0.2) and expression levels (abs log2 FC > 1) were defined as “methylation-affected genes” (Figure 4A). All genes were divided into methylation-affected genes with either repressed or activated expression. As DNA hypomethylation is an important characteristic of GCs in PCOS and DNA methylation inversely associates with gene expression, we identified a subset of hypomethylation-affected upregulated genes (n = 94) and calculated the Pearson correlation coefficient between gene pairs and performed unsupervised hierarchical clustering (Figure 4A). Then, two closely related gene modules with strong correlations were generated for subsequent analysis (Figure 4B). Thus, our analysis identified a number of important PCOS-related genes whose expression level was regulated by DNA hypomethylation.
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FIGURE 4. Identification of the hub methylation marker genes in PCOS. (A) Scatterplots showing the comparison between transcriptome and the DNA methylome. Genes with significant changes in DNA methylation levels (abs change >0.2) and expression levels (abs log2 fold change >1) were defined as “methylation-affected genes.” Hypermethylation-affected downregulated genes were labeled in blue; Hypomethylation-affected upregulated genes were labeled in red. (B) Heatmap showing the module clustering of 94 methylation-affected upregulated genes by Pearson correlation coefficient. (C,D) Network diagrams showing interaction of genes in the two modules that were obtained in panel (B). Hub node genes were highlighted by yellow. The genes in the small networks are highly connected in the networks calculated by module mining.




Analysis of Gene Coexpression Network

Based on the pairwise interaction genes in the aforementioned two modules (Figure 4B) and human–protein interaction pairs (9606.protein.links.v11.0) downloaded from the STRING database, two-gene coexpression interaction networks were constructed by Cytoscape (Figures 4C,D). Based on topological properties of the networks, genes with high degree of node (hub node genes) were identified as candidate genes. Then, three small modules composed of 10 highly connected genes were extracted from the two networks using the Cytoscape application “MCODE” (Figures 4C,D). The genes in these modules were considered as marker genes regulated by hypomethylation, including BMP4, KLF5, PER1, EST1, CRY1, and FAT4. Some of the candidate genes have been reported to play key roles in PCOS such as ETS1 and NR4A1 (Kasch et al., 2018; Song et al., 2019). Among the other genes, BMP4 regulates conversion of white and brown fat and is closely related to the occurrence of T2DM (Hoffmann et al., 2017); the circadian gene PER1 senses progesterone signal during human endometrial decidualization (Zhang et al., 2019). These genes may be involved in the development of PCOS by regulating insulin metabolism, adipocyte differentiation, and circadian biological processes. In general, we constructed two-gene coexpressed networks of PCOS and identified several PCOS-related target markers regulated by DNA hypomethylation.



The miRNAs Profiles of GCs in Human PCOS

Abnormal expression of miRNAs in female reproductive organs such as uterus, fallopian tubes, and ovaries is involved in pathological changes of the organs (Bagga et al., 2005). To illustrate the regulatory functions of miRNAs in PCOS, we compared miRNA profiles of GCs in PCOS and normal ovaries. We identified 19 upregulated miRNAs and 10 downregulated miRNAs in PCOS, respectively (padj < 0.05 and |log2FC| > 1; Figure 5A). Unsupervised hierarchical clustering analysis of the DEmiRs showed distinct expression patterns in the PCOS and control GCs (Figure 5B). Of note, miR-141-3p was one of the key miRNA significantly downregulated in PCOS, which was reported to inhibit cell proliferation and promotes apoptosis (Lin et al., 2014). Consistent with previous report in cumulus cells (Liu S. et al., 2015), miR-508-3p was upregulated in GCs of PCOS patients. In order to further explore the function of miRNAs in PCOS, we performed GO and KEGG enrichment analysis on the target genes of the DEmiRs. The target genes of the DEmiRs were mainly enriched in GO terms of circadian rhythm, apoptotic process, cell proliferation, and lipopolysaccharide. In the KEGG enrichment analysis, the target genes were mainly involved in circadian rhythm, TGF-β signaling pathway, and TNF signaling pathway (Figures 5C,D). These results indicated that the DEmiRs contribute to the development of PCOS by regulating some key biological processes and signaling pathways.


[image: image]

FIGURE 5. The miRNA profiles of Human PCOS. (A) Volcano plot comparing miRNA expression profiles of PCOS and control GCs. Upregulated and downregulated miRNAs were colored in red and blue, respectively. (B) Heatmap of differentially expressed miRNAs between PCOS and control GCs. Each row represents a miRNA, and colors represent expression levels. (C,D) GO and KEGG analysis of differentially expressed miRNA target genes GCs obtained from PCOS and control ovaries. (E) Network diagram showing interaction between upregulated miRNAs and their target genes. (F) Network diagram showing interaction between downregulated miRNAs and their target genes. Colored nodes represent miRNA; gray nodes represent target genes; colored edges indicate miRNA-target interaction.


It is well known that miRNA can lead to the degradation or translational inhibition of mRNA (Bartel, 2004). Taking the intersection of miRNA target genes and DEGs between PCOS and controls, we identified genes that were most likely regulated by miRNA in PCOS, including upregulated miRNA target genes (n = 106) and downregulated miRNA target genes (n = 56), respectively (Supplementary Figure 1E). In order to elucidate possible regulatory function of miRNAs in gene expression, we performed miRNA–gene interaction networks analysis using Cytoscape (Figures 5E,F). Some of the genes in the networks, such as GDF15, INSIG2, have already been reported to be involved in PCOS. For example, GDF15 is closely related to insulin resistance, hyperandrogenemia, and menstrual disorder in PCOS (Berberoglu et al., 2015). Apart from the reported genes, we newly identified one set of genes that were represented by CD44, IRSI, CYP1B1, and HMGA1. These genes play important roles in ovarian function and androgen metabolism and are likely to be involved in pathogenesis of PCOS. For example, the deficiency of endometrial epithelial CD44 adhesion complex contributes to the endometrial infertility (Paravati et al., 2020) and likely to be involved in the pathogenesis of PCOS by affecting ovarian function. In conclusion, we constructed the miRNAs regulatory networks of PCOS and identified several important target genes regulated by aberrant miRNAs.

Importantly, we found 13 genes including BMP4, ETS1, IRS1, FGFR1, CYP1B1, and KLF5, which were coregulated by downregulated miRNAs and hypo-DNA methylation (Figure 6A). Some of the genes such as ETS1 and FGFR1 have been reported to participate in the development of PCOS (Song et al., 2019; Patil et al., 2020). Among the other genes, KLF5 is an important transcription factor that regulates androgen-AR signaling (Li et al., 2020); CYP1B1, a dioxin-inducible oxidoreductase, is involved in the metabolism of estradiol (Muneeb et al., 2014); IRS1 is an insulin receptor substrate gene that mediates the control of various cellular processes by insulin (Kasch et al., 2018; Park et al., 2018). These genes were significantly enriched in biological processes of adipocyte differentiation, insulin resistance, female pregnancy, and circadian rhythm, indicating they are likely to be involved in pathogenesis of PCOS. Taken together, our analysis predicted a DNA methylation and miRNA-mediated coregulation profile in PCOS (Figure 6B).
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FIGURE 6. The DNA methylation and miRNA coregulation profile in PCOS. (A) Venn diagram showing the genes that are coregulated by downregulated miRNAs and reduced DNA methylation in PCOS. (B) Coregulation of DNA methylation and miRNA in PCOS. The key molecular markers and pathways are labeled in different colors. The hollow box represents the signaling pathway where the marker genes are involved, and the solid box represents the genes that are coregulated by miRNA and DNA methylation.




DISCUSSION

Accumulating evidences indicated that epigenetic alterations occur in the peripheral and umbilical cord blood, as well as in ovary, adipose tissue, and skeletal muscle in women with PCOS (Sirotkin et al., 2010; Roth et al., 2014; Edgar Ricardo et al., 2019). These epigenetic alternations are correlated with systemic and tissue-specific dysfunctions in PCOS, highlighting their importance in PCOS pathogenesis (Edgar Ricardo et al., 2019). As GCs establish a very close relationship with the female gametes even before oogonia differentiation and better represent molecular characteristics of PCOS, we focused on ovarian GCs to investigate the epigenetic regulatory mechanism of PCOS.

Many previous studies suggested that lifestyle and genetic factors contribute to the development of PCOS (Li S. et al., 2016). However, the etiology of PCOS remains unclear. In this study, we investigated DNA methylation characteristics and screened potential epigenetic markers. We identified several key genes, such as IRS1, KLF5, CYP1B1, ETS1, and BMP4, and some signaling pathways including steroid metabolic process, response to insulin, female pregnancy, estrous cycle, and fat cell differentiation. The alternation of these genes’ expression and signaling pathways could contribute to the symptoms of PCOS, such as the type 2 diabetes, infertility, hormonal disorders, and obesity (Combs et al., 2021; Mao et al., 2021). Additionally, we found some DEGs were significantly enriched in circadian rhythm signaling pathway (Figure 1E), suggesting that insomnia observed in some of the PCOS patients might be due to the expression changes of these genes.

Change in DNA methylation is involved in various diseases processes, and aberrant DNA methylation of CYP17, CEBPB, PPARG, and SVEP1 genes has been reported in PCOS (Huang et al., 2007; Kokosar et al., 2016). Consistent with previous studies, we found that overall DNA methylation is reduced in GCs of PCOS (Liu et al., 2020) and further identified several marker genes that are regulated by the hypo-DNA methylation, including BMP4, KLF5, IRS1, LPIN1, and ABCC8. Among them, LPIN1 plays a critical role in adipocyte differentiation and lipid metabolism (Chang et al., 2010). Pathogenic variants of ABCC8 are the most common genetic cause of neonatal diabetes and hyperinsulinism (De Franco et al., 2020). Furthermore, these genes were enriched in biological processes of insulin and lipid metabolism, and dysregulation of these genes may contribute to the development of PCOS. Interestingly, the first intron was found to be the main genomic region where DNA hypomethylation happened. As DNA methylation of the first intron inversely associates with gene expression regardless of tissue and species (Anastasiadi et al., 2018), reduction of DNA methylation in the first intron could lead to upregulation in gene expression and disturb normal biological process. This indicated that the first intron was an important genomic functional region whose change in DNA methylation likely contributes to the pathogenesis of PCOS.

Abnormal activation or inhibition of signal pathway is closely related to the development of PCOS. TGF-β signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway have been reported to be involved in PCOS (Liu S. et al., 2015). In our study, we found the DEmiRs were enriched in TGF-β signaling pathway, MAPK signaling pathway, and circadian rhythm. These findings collectively suggested that TGF-β and MAPK signaling pathway are crucial for the development of PCOS and supported our proposal that miRNAs regulation is an important layer of regulatory machinery in PCOS. miR-141-3p was reported as an important DEmiR in the rat model of PCOS (Li D. et al., 2016) and found to regulate target genes such as KLF5, IRS1, and CYP1B1 in GCs of PCOS patients in our study (Figure 5F). Coincidentally, DNA hypomethylation happens on these target genes, and their expression was upregulated (Figure 6A), indicating a coregulatory mechanism of DNA hypomethylation and miRNA in the pathogenesis of PCOS.

In conclusion, our study indicated that DNA hypomethylation is one of the main characteristics of PCOS, and the first intron was found to be the key genomic elements where DNA hypomethylation was observed, indicating its active involvement in the pathogenesis of PCOS. Importantly, we predicted a DNA hypomethylation and miRNA coregulated network in PCOS and provided several candidate target genes including BMP4, CYP1B1, IRS1, ETS1, and LPIN1. These genes participate in important signaling pathways and biological process and potentially serve as molecular targets for diagnosis and treatment of PCOS. However, our findings are based on genome-wide data analysis and need further validation in experimental models. As developmental competence of oocyte is greatly impaired in PCOS (Alexandria and Jennifer, 2019), it is interesting to investigate the underlying molecular mechanism of oocyte dysfunction in PCOS and clarify its impact on offspring in the future.
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Non-small-cell lung carcinoma (NSCLC) is considered to be a fatal disease and characterized by a poor prognosis. Long non-coding RNAs (lncRNAs) have been reported to act as biomarkers and therapeutic targets in solid tumors. However, the expression of lncRNAs and their clinical relevance in NSCLC remain undetermined. The gene expression data profiled in The Cancer Genome Atlas and Gene Expression Omnibus (GSE81089) were employed to screen differentially expressed lncRNAs in NSCLC. LINC02678 was found to be upregulated in NSCLC and exhibited hypomethylation of the promoter region in NSCLC tissues. LINC02678 (also called RP11-336A10.5) was associated with poorer overall survival and relapse-free survival in NSCLC patients. In vitro models of gain- and loss-of-function demonstrated that LINC02678 promotes NSCLC progression by promoting NSCLC cell proliferation and cell cycle progression, as well as inducing NSCLC cell migration, invasion and epithelial-mesenchymal transition. LINC02678 was primarily located in the nucleus and could bind with the enhancer of zeste homolog 2 (EZH2). Moreover, we found that LINC02678 knockdown impaired the occupancy capacity of EZH2 and trimethylation of lysine 27 on histone 3 (H3K27me3) at the promoter region of cyclin dependent kinase inhibitor 1B (CDKN1B) and E-cadherin, as confirmed by ChIP-qPCR. A mouse transplantation model further demonstrated that LINC02678 could promote the tumorigenic and metastatic capacities of NSCLC cells. We identified LINC02678 as a tumor promoter in NSCLC, which enhanced the growth and metastasis of NSCLC cells by binding with EZH2, indicating that LINC02678 may serve as a potential biomarker for cancer diagnosis and treatment.

Keywords: LINC02678, enhancer of zeste homolog 2, non-small-cell lung cancer, proliferation, epithelial-mesenchymal transition


INTRODUCTION

Lung cancer is the most common malignancy and the leading cause of cancer-related deaths worldwide. It causes more than 1.76 million associated deaths, 18.4% of all cancer deaths (Bray et al., 2018). Non-small cell lung cancer (NSCLC) is the main histological type of lung cancer (over 85%). The 5-year survival rate of NSCLC patients is 19% (Siegel et al., 2020). Once the cancer has spread, it is often shown a limited survival (Zheng et al., 2020). Therefore, it is urgent to seek effective biomarkers for the early diagnosis and individualized treatment of NSCLC.

During the last decade, whole genome sequencing has identified a large number of long non-coding RNAs (lncRNAs) that are involved in multiple biological processes such as cancer development, embryonic stem cell pluripotency and cell cycle regulation through transcriptional interference, induction of intracellular chromatin remodeling and histone modifications within cells (Rinn and Chang, 2012). LncRNAs have been reported to act as oncogenes or cancer-suppressors across solid tumors (Bhan et al., 2017). For instance, HOX transcript antisense intergenic RNA is a lncRNA essential for the growth of breast cancer cells and is closely associated with the migration and invasion of breast cancer cells (Gupta et al., 2010). Urothelial cancer associated 1 is a promising urine biomarker for non-invasive diagnosis of bladder carcinoma (Huang et al., 2016). Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is upregulated in several cancers, including lung, bladder, breast, prostate and ovarian cancers, and serves as a potential biomarker and therapeutic target (Arun et al., 2016). Furthermore, recent studies have shown that lncRNAs can interact with enhancer regions, leading to increased activity of neighboring genes (Ørom and Shiekhattar, 2011). The focus on these lncRNAs may inspire developing new cancer therapeutic targets.

In this study, we aimed to identify lncRNAs that are upregulated in NSCLC tissues and affecting the prognosis of NSCLC patients, based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We observed that high level of LINC02678 (also called RP11-336A10.5) showed an association with poor survival of NSCLC patients. Based on in vitro experiments, we investigated and characterized the binding potential between LINC02678 and the enhancer zeste homolog 2 (EZH2) and its influence on the proliferation and migration ability of NSCLC cell lines. The effects of LINC02678 on tumorigenesis, cancer cell growth and metastasis were further investigated based on animal experiments. Our findings point to a role for LINC02678 as an oncogene in NSCLC and provide a theoretical basis for identifying and developing new diagnostic and therapeutic biomarkers.



MATERIALS AND METHODS


Bioinformatic Analysis

All bioinformatics analyses were completed using R v 3.6.3. One cohort was consisted of 199 human NSCLC samples and 19 normal samples from GEO.1 Other cohorts including transcriptome data of human LUAD, LUSC and normal samples were obtained from the TCGA2 database (Tomczak et al., 2015; Wang et al., 2016). According to the following criteria, differentially upregulated lncRNAs between NSCLC tissue samples and normal lung tissue samples based on TCGA and GEO datasets were selected: p-value <0.05 and fold change >1.5. In order to explore the impact of these up-regulated lncRNAs on survival of NSCLC patients, the Kaplan-Meier method was used to perform a survival analysis of OS and RFS using the “survival” package, and the log-rank test was applied to test the survival data. LncRNAs that had prognostic significance on both OS and RFS in LUAD and LUSC patients (p < 0.05) were retained, and all others were excluded. DNA methylation data for NSCLC tissues and normal tissues were retrieved from TCGA’s Illumina Infinium HumanMethylation450 Beadchip dataset, and the methylation levels of probes for LINC02678 in LUAD and LUSC was calculated as beta value and differential methylation was assessed and visualized by R.



Tumor Xenograft Implantation

For in vivo experiments, A549 cell lines stably transfected with negative control (NC) and shLINC02678-1 (shLINC02678) were first established. Four-to-five-week-old BALB/c mice were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. and raised at the Animal Center of the Second Affiliated Hospital of Harbin Medical University. For proliferation analysis (n = 5 mice/group), the cells were implanted into the right flank of the mice, and bioluminescence images were obtained at day 28 post-implantation. Tumor volumes were measured every three days. For metastasis analysis (n = 6 mice/group), the cells were injected into the tail vein of the mice. And bioluminescence images were obtained at day 60 post-implantation.



Cell Culture and Collection of NSCLC Samples

Human bronchial normal epithelial cell lines (HBE) and NSCLC cell lines (PC9, 95D, H292, A549, HCC827, H1299, and H1650) were cultured in RPMI-1640 or DMEM medium supplemented with 10% fetal bovine serum and maintained in an incubator set to 37°C and 5% CO2 conditions. Fresh frozen tumor and adjacent normal tissue samples were excised from eight NSCLC patients receiving pneumonectomy at the Affiliated Cancer Hospital of Harbin Medical University. Ethical clearance and approval were obtained from the Ethics Review Committee of Harbin Medical University.



Cell Transfection and Quantitative Real-Time PCR (RT-qPCR)

Cells were transfected with lentiviruses with overexpressed or knockdown sequences of LINC02678 purchased from GeneChem (Shanghai, China), and screened with puromycin. Knockdown of EZH2 was conducted by using small interfering RNA (siRNA; RiboBio, China). E.Z.N.A. Total RNA Kit I (R6834-01, Omega Bio-Tek, United States) was used to extract RNA from the cells and tissues. The expression level of RNA was determined by RT-qPCR with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene as the control. Primer sequences are presented in the Supplementary Table 4.



Cell Proliferation and Viability Assays

CCK-8 assays were conducted using CCK-8 kit (Dojindo, Japan) with absorbance detection at 450 nm. EdU incorporation assay was performed using Cell-Light TM EdU Apollo567 In Vitro Kit (Catalogue Number C10310–1, RiboBio, China) according to the manufacturer’s instructions, and images were captured by fluorescence microscopy. For colony formation assays, 1,000 cells were seeded into 6-well plates and cultured in complete medium for a fortnight. Colonies were then fixed in methanol and stained with 0.5% crystal violet.



Cell Cycle Analysis

Cells were treated with a Cell Cycle Staining Kit (70-CCS012, MultiSciences, China); the proportion of cells in different cell cycles was determined by the BD FACSCalibur flow cytometer.



Tumor Cell Migration and Invasion Assays

The wound-healing assay and Transwell assay for tumor cell migration and invasion were performed as previously described (Cui et al., 2020).



Western Blotting

Total protein from tissues or cells was extracted using radio-immunoprecipitation assay (RIPA) and was quantified by using the BCA Protein Assay Kit. Protein samples (30 μg) were separated by polyacrylamide electrophoresis, transferred onto polyvinylidene fluoride (PVDF) membranes and incubated with specific antibodies (listed in the Supplementary Table 4).



Subcellular Fractionation

The Cytoplasmic and Nuclear RNA Purification Kit (21000, Norgen Biotek, Canada) was used for subcellular fractionation of 95D and A549 cells to determine the subcellular localization of LINC02678. RT-qPCR was performed to quantify LINC02678 expression, and GAPDH and U1 genes were used as the reference for cytoplasmic and nuclear RNA, respectively.



Fluorescence in situ Hybridization

Fluorescence In Situ Hybridization Kit (10910, RiboBio Co., Ltd, China) was used to confirm the location of LINC02678 in the cells. According to the manufacturer’s instructions, cell suspensions were incubated on coverslips, followed by adding anti-LINC02678 and anti-U6 oligonucleotide probes into the suspensions for hybridization, and then DAPI staining was conducted. Finally, images were captured under a confocal laser scanning microscope (FV1200, Olympus, Japan).



RNA Immunoprecipitation (RIP) Assay

The RNA-Binding Protein Immunoprecipitation Kit (YXZX-006, Wuhan GeneCreate Biological Engineering Co., Ltd., China) and the anti-EZH2 antibody were used to detect the binding potential between EZH2 and LINC02678 according to the manufacturer’s instructions.



Chromatin Immunoprecipitation (ChIP)-PCR

Cells were collected and cleaved by sonication to generate DNA fragments. Antibodies and the SampleChIP® Enzymatic Chromatin IP Kit (9003S, CST, United States) were used for the ChIP experiments. The purified DNA was analyzed for enrichment efficiency by PCR.



Statistical Analysis

Data in this study were processed with GraphPad Prism 8.0.2. The means of normally distributed continuous data between two groups were analyzed by Student’s t-test. The differences in categorical variables among different groups were analyzed with χ2 tests. All data were determined in triplicate and are representative of at least two separate experiments. All data are shown as mean ± SEM. Differences were considered significant if p < 0.05. The survival distribution of the samples was assessed by the Kaplan-Meier method and analyzed using the log-rank test.



RESULTS


Identification of LINC02678 as a Potential Oncogenic Factor in NSCLC

In this study, we aimed to identify lncRNAs that play an oncogenic role in NSCLC. Compared to normal tissue, 1,346 lncRNAs were upregulated in GSE81089 dataset (Figure 1A and Supplementary Table 1), 3,048 lncRNAs were upregulated in TCGA-LUAD dataset (Figure 1B and Supplementary Table 2), and 2,710 lncRNAs were upregulated in TCGA-LUSC dataset (Figure 1C and Supplementary Table 3), of which 999 lncRNAs were shared among all these three datasets (Figure 1D). Among these 999 lncRNAs, LINC02678 appeared to be a unique prognostic factor for both overall survival (OS) and relapse-free survival (RFS) in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients by Kaplan-Meier analyses (Figure 1E).
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FIGURE 1. Identification of differentially expressed oncogenic lncRNAs in NSCLC. (A–C) Hierarchical clustering heat map of the upregulated lncRNAs of NSCLC samples compared with normal lung samples from TCGA (LUAD and LUSC) and GSE81089, with absolute fold changes >1.5 and p-value <0.05 as significant. (D) Venn diagram of the intersection of lncRNAs upregulated in TCGA (LUAD and LUSC) and GSE81089 databases. (E) Venn diagram of the intersection of OS and RFS in survival analysis of LUAD and LUSC patients expressing LINC02678 based on the TCGA database.


Promoter hypomethylation can mediate oncogene activation. We found that LINC02678 was highly expressed (Figure 2A) and exhibited promoter hypomethylation (Supplementary Figure 1A) in human NSCLC samples in TCGA datasets. We also found that LINC02678 had a higher expression in NSCLC tissues than in paired non-tumor lung tissues (Figure 2B); NSCLC cell lines had a higher transcript level of LINC02678 compared to the normal bronchial epithelial cell line HBE (Figure 2C). Survival distribution depicted by Kaplan-Meier method showed that patients with high LINC02678 expression had shorter OS and RFS than those with low LINC02678 expression (Figure 2D).
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FIGURE 2. LINC02678 acts as a differentially expressed tumor promotor lncRNA. (A) The expression level of LINC02678 in human LUAD, LUSC tissues and normal lung samples. (B) LINC02678 expression in the paired lung tissues measured by RT-qPCR. (C) LINC02678 expression in normal bronchial epithelial cell line HBE and NSCLC cell lines measured by RT-qPCR. (D) Kaplan-Meier analysis of OS and RFS of LINC02678 in LUAD and LUSC. (*p < 0.05; **p < 0.01; ***p < 0.001. Data were obtained from three independent experiments).




LINC02678 Promotes Proliferation and the G1/S Transition

To further explore the role of LINC02678 in NSCLC, 95D and A549 cells were used for loss-of-function assays while H292 and H1650 cells were used for gain-of-function assays considering the relative levels of LINC02678 in different NSCLC cell lines (Figure 2C).

Using lentiviral transfection, the cell line with over-expressed LINC02678 was efficiently established (Figure 3A). Sustainable cell proliferation is a hallmark of cancer progression (Hanahan and Weinberg, 2011). As demonstrated by the results of CCK-8 as well as the long-term colony formation and EdU incorporation assays, overexpression of LINC02678 significantly enhanced the proliferative capacity and viability of NSCLC cells compared to NC (Figures 3B–D). Furthermore, the proliferation of cancer cells was controlled by the cell cycle (Pack et al., 2019). Overexpression of LINC02678 significantly increased the proportion of S-phase cells compared to controls (Figure 3E), as well as upregulated the expression of the key cell cycle-related proteins cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 6 (CDK6) and Cyclin D1 in H292/H1650 cells (Figure 3F). On the contrary, knockdown of LINC02678 slowed cell proliferation and increased the proportion of G0/G1-phase cells (Supplementary Figures 2A–F). These results suggested that LINC02678 could accelerate cell cycle progression, resulting in the uncontrolled proliferation of NSCLC cells.
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FIGURE 3. LINC02678 promotes proliferation and G1/S transition of NSCLC cells. (A) RT-qPCR analysis showed the expression of LINC02678 in H292 and H1650 cells transfected with negative control (NC) or overexpressed LINC02678 (LINC02678) lentivirus. (B) CCK-8 analysis showed the proliferative ability of H292 and H1650 cells in NC and LINC02678. (C,D) Colony formation and EdU analysis showed the proliferative ability of H292 and H1650 cells in NC and LINC02678 groups. (E) Flow cytometry analysis showed the proportion of H292 and H1650 cells in G0/G1, S and G2/M phases in NC and LINC02678 groups. (F) Western blotting analysis showed the expression of key cell cycle-related protein (CDK4, CDK6 and CyclinD1) in NC and LINC02678 groups. (*p < 0.05; **p < 0.01; ***p < 0.001. Data were obtained from three independent experiments).




LINC02678 Promotes Migration, Invasion and Induces Epithelial-Mesenchymal Transition (EMT) in NSCLC Cells

Metastasis has been largely attributed to tumor recurrence and mortality of NSCLC patients (Wood et al., 2014). The invasive and migratory capacity of tumor cells reflects the metastatic potential of cancer (Hanahan and Weinberg, 2011). Through wound healing and Transwell assays, we explored the effect of LINC02678 on the migratory and invasive capacity of NSCLC cells. As expected, overexpression of LINC02678 increased the migration and invasion of H292 and H1650 cells compared to the NC (Figures 4A,B), while LINC02678 knockdown exhibited the opposite results (Supplementary Figures 3A,B). Besides, EMT is one of the essential steps for initiating cancer metastasis, and E-cadherin, N-cadherin, and vimentin are considered as important EMT-related proteins (Serrano-Gomez et al., 2016). Overexpression of LINC02678 induced a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal-associated proteins N-cadherin and vimentin, both at the transcriptional or translational level (Figure 4C), whereas knockdown of LINC02678 induced E-cadherin overexpression and decreased the expressions of N-cadherin and vimentin (Supplementary Figure 3C).
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FIGURE 4. Up-regulated LINC02678 expression promotes migration, invasion and EMT of NSCLC cells. (A,B) The effects of up-regulated LINC02678 expression on the migration and invasion of H292 and H1650 cells were evaluated by wound healing experiment and Transwell assay. (C) Evaluation of EMT-related markers was performed by RT-qPCR and western blotting. (*p < 0.05; **p < 0.01. Data were obtained from three independent experiments).




LINC02678 Binds With EZH2 and Modulates the Expression of CDKN1B and E-Cadherin

Consistent with other members of long non-coding RNAs, LINC02678 possesses no protein-coding capacity, as demonstrated by the Coding Potential Assessment Tool (CPAT)3 and the Coding Potential Calculator (CPC)4 (Figure 5A). To clarify the role of LINC02678 in NSCLC cells, subcellular localization assays of LINC02678 were performed through nuclear and cytoplasmic RNA fractionation analysis, RNA fluorescence in situ hybridization was conducted, which confirmed that LINC02678 was predominantly localized in the nucleus (Figures 5B,C).
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FIGURE 5. LINC02678 is a nuclear-localized transcript and knockdown of LINC02678 represses EZH2 expression and activity. (A) Protein-coding potential of LINC02678 analyzed through the CPAT database and the CPC database. (B) RT-qPCR analysis of the relative RNA expression levels after nuclear and cytoplasmic RNA separation. GAPDH was used as a cytoplasmic marker and U1 was used as a nuclear marker. (C) Representative FISH images of the subcellular location of LINC02678 in 95D and A549 cells (red). Nuclei were stained with DAPI (blue). U6 was used as a nuclear marker. (D) RIP and RT-qPCR analysis of endogenous EZH2 bound with LINC02678 in 95D and A549 cells. IgG was used as the control group. (E) Western blotting shows the protein expression of EZH2 and CDKN1B after knockdown or overexpression of LINC02678. (F) CHIP-qPCR analysis of EZH2 and H3K27me3 occupancy on the E-Cadherin (CDH1) and CDKN1B promoter region in A549 and 95D cells after transfected with NC, shLINCC02678-1 or shLINC02678-2. (*p < 0.05; **p < 0.01; ***p < 0.001. Data were obtained from three independent experiments).


Growing numbers of evidence has demonstrated that nuclear lncRNAs can regulate gene expression by binding with polycomb repressor complex 2 (PRC2), which is composed of EZH2 (Su et al., 2018). The binding potential between LINC02678 and EZH2 in 95D and A549 cells was confirmed by RIP experiments (Figure 5D). Furthermore, in vitro experiments showed that LINC02678 altered the expression of EZH2 downstream targets CDKN1B by regulating EZH2 expression and H3K27me3 mediated by EZH2 (Figure 5E). ChIP-qPCR analysis proved that LINC02678 knockdown decreased the occupancy capacity of EZH2 and H3K27me3 in the promoter regions of CDKN1B and E-cadherin (Figure 5F).



siEZH2 Reverses LINC02678 Overexpression-Induced Malignancy

EZH2 has been reported to be associated with the cell cycle, angiogenesis and the capacity of cancer cells to proliferate and migrate (Crea et al., 2012; Yoo and Hennighausen, 2012). To investigate whether EZH2 is required for cancer cell proliferation, migration and invasion that are mediated by LINC02678, NSCLC cells with over-expressed LINC02678 were transiently transfected with siRNA targeting EZH2 (Figure 6A). We observed that siEZH2 partially abrogated the proliferation (Figures 6B,C), migration and invasion (Figure 6D) of NSCLC cells induced by the overexpression of LINC02678.
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FIGURE 6. EZH2 is required for LINC02678-induced malignant phenotype. (A) RT-qPCR showed LINC02678 and EZH2 expression in H292 and H1650 cells transfected with NC, LINC02678 or LINC02678 + siEZH2. (B,C) CCK-8 and colony formation analysis showed the proliferation ability of H292 and H1650 cells after transfected with NC, LINC02678 or LINC02678 + siEZH2. (D) Transwell assays were used to estimate metastatic potential in H292 and H1650 cells transfected with NC, LINC02678 or LINC02678 + siEZH2. (*p < 0.05; **p < 0.01; ***p < 0.001. Data were obtained from three independent experiments).




LINC02678 Functions as a Potential Oncogenic Factor in vivo

Mouse transplantation tumor models were used to confirm the function of LINC02678 in tumor growth and metastasis. Aggressive A549 cells were selected to establish cell lines stably transfected with NC and LINC02678 knockdown (shLINC02678) virus for animal experiments. To verify our hypothesis that LINC02678 contributed to tumor growth in vivo, NC and shLINC02678 cells were subcutaneously injected into the right dorsal side of the BALB/c mice. Tumor burden in the nude mice was detected at day 28 post-implantation by D-fluorescein-based bioluminescence imaging (Figure 7A). The nude mice injected with shLINC02678 cells exhibited a reduced tumor burden, in comparison with those nude mice injected with NC cells (Figures 7B–E). For the metastasis assay, NC and shLINC02678 cells were injected into the BALB/c mice via the tail vein. The lung metastatic lesions and their bioluminescence images at day 60 after transplantation are shown in Figure 8A. The mice injected with shLINC02678 cells exhibited a significantly lower number of metastatic nodules on lung surface and lower luciferase activity, in comparison with those of the NC group (Figures 8B,C). Furthermore, strong positive immunohistochemical staining for E-cadherin while weak vimentin and EZH2 staining were observed in the shLINC02678 group (Figure 8D). Taken together, our data demonstrated that LINC02678 acts as a promoter of tumor progression in vivo by affecting the ability of cancer cells to proliferate and metastasize.
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FIGURE 7. Depletion of LINC02678 repressed tumor growth in vivo. (A) Representative bioluminescence images of nude mice bearing luciferase-labeled tumors via subcutaneous injection of NC and shLINC02678 groups. (B) Representative images of detached tumors from the NC and shLINC02678 groups. (C) Histogram of the final tumor weights from NC and shLINC02678 groups. (D) Tumor volumes from NC and shLINC02678 groups. (E) Representative images of the HE and immunohistochemical staining of EZH2 expression in nude mice xenograft tumor sections (magnification, × 100 and × 400). (*p < 0.05. Data were obtained from three independent experiments).
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FIGURE 8. Depletion of LINC02678 repressed tumor metastasis in vivo. (A) Representative bioluminescence images and lung images were monitored at 60 days after injection with luciferase-labeled cells from NC and shLINC02678 groups. (B) Scatter diagram of number of lung metastatic nodules from NC and shLINC02678 groups. (C) Histogram depiction of luciferase signal from NC and shLINC02678 groups. (D) Representative images of the HE and immunohistochemical staining of E-cadherin, vimentin and EZH2 in nude mice lung metastasis sections (magnification, × 100 and × 400). (**p < 0.01. Data were obtained from three independent experiments).




DISCUSSION

Despite the advances in early diagnosis and treatment for NSCLC, the overall survival rate of the patients with NSCLC remains less than 20% (Siegel et al., 2020). Therefore, it is urgent to explore new markers to guide clinical diagnosis and individualized treatment. In this study, a comprehensive identification and validation were conducted focusing on the upregulated lncRNAs through NSCLC by bioinformatic analysis of genome-wide expression data of LUAD and LUSC in TCGA and GEO. Given that several lncRNAs contribute neutrally or negatively to cancer cells and only a few lncRNAs were identified to regulate tumorigenesis and progression (Garraway and Lander, 2013; Marx, 2014; Pon and Marra, 2015), we conducted a survival analysis based on the screened lncRNAs and the clinical data of NSCLC patients. We found that LINC02678, a lncRNA located on chromosome 10p15.1, was over-expressed and hypomethylated in NSCLC, and it was associated with poor OS and RFS as well as the advanced TNM stages of NSCLC patients.

The sustained proliferation and stimulated invasion and migration are hallmarks of malignancy (Hanahan and Weinberg, 2011). Previous studies have demonstrated that migration, invasion and metastasis are key factors underlying the failure of NSCLC treatment (Wood et al., 2014). Through in vitro experiments, we first identified that LINC02678 was highly expressed in NSCLC tissues and regulated cell cycle progression, proliferation and viability of NSCLC cells. E-cadherin, N-cadherin and vimentin are well-recognized markers of EMT, a critical step in metastasis (Pastushenko and Blanpain, 2019). Therefore, we assessed the expression of these three marker proteins in NSCLC cells and confirmed that the overexpressed LINC02678 induced EMT in lung cancer cells, conferring greater aggressiveness to tumor cells. Consistent with these results, in vivo experimental animal models also demonstrated the effects of LINC02678 on promoting tumor growth and metastasis.

EZH2 represses gene transcription by catalyzing the trimethylation of lysine 27 of histone H3 (H3K27me3) (Di Croce and Helin, 2013; Grossniklaus and Paro, 2014). EZH2 is associated with the aggressiveness and advanced progression of several types of cancers (Kim and Roberts, 2016). EZH2 also participates in regulating the expression of CDK4/6-cyclin D, CDK2-cyclin E and CDKN1B, which is essential for the cell proliferation (Cao et al., 2012; Geng et al., 2015; Xu et al., 2019). Besides, EZH2 can inhibit the transcription of E-cadherin, thereby inducing EMT (Cao et al., 2008). Our study demonstrates that LINC02678 enhances the inhibitory effect of EZH2 on the downstream proteins CDKN1B and E-cadherin in NSCLC. Besides, EZH2 has been reported to activate signaling pathways associated with the maintenance of lung cancer stem cells, while inhibition of EZH2 could enhance the sensitivity of lung cancer toward chemotherapy (Hussain et al., 2009; Fillmore et al., 2015). However, whether LINC02678 is involved in the regulation of tumor cell stemness and therapeutic resistance through binding potential with EZH2 demands further investigation.

Here, we propose a working model of LINC02678 function in tumor progression in Figure 9. In summary, we identified the lncRNAs that are upregulated in NSCLC. LINC02678, as a novel lncRNA, inhibits the expression of CDKN1B and E-cadherin by binding with EZH2, and ultimately promotes the proliferation and metastasis of NSCLC. Our findings will provide new insights into the diagnostics and individualized treatment of NSCLC.
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FIGURE 9. The structural scheme and overall findings of this study. LINC02678 could interact with EZH2 to increase the expression level and activity of EZH2 mRNA and protein. Subsequently, activation of EZH2 epigenetically inhibited the expression of CDKN1B and E-cadherin in NSCLC cells, which promoted cell cycle progression and EMT, and ultimately the proliferation and metastasis of NSCLC cells.
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A MicroRNA-Based Network Provides Potential Predictive Signatures and Reveals the Crucial Role of PI3K/AKT Signaling for Hepatic Lineage Maturation

Xicheng Wang1,2,3†, Wencheng Zhang1,2,3†, Yong Yang4, Jiansong Wang5, Hua Qiu4, Lijun Liao6, Tsunekazu Oikawa7, Eliane Wauthier8, Praveen Sethupathy9‡, Lola M. Reid8‡, Zhongmin Liu1,2,3*‡ and Zhiying He1,2,3*‡

1Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai, China

2Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China

3Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China

4The First Affiliated Hospital of Nanchang University, Nanchang, China

5Department of Traumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China

6Department of Anesthesiology and Pain Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China

7Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan

8Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC, United States

9Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States

Edited by:
Yongchun Zuo, Inner Mongolia University, China

Reviewed by:
Cheng-Ran Xu, Peking University, China
Jinyan Huang, Shanghai Institute of Hematology, China

*Correspondence: Zhongmin Liu, liu.zhongmin@tongji.edu.cn; Zhiying He, zyhe@tongji.edu.cn

†These authors have contributed equally to this work

‡These authors share senior authorship

Specialty section: This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology

Received: 20 February 2021
Accepted: 07 April 2021
Published: 01 June 2021

Citation: Wang X, Zhang W, Yang Y, Wang J, Qiu H, Liao L, Oikawa T, Wauthier E, Sethupathy P, Reid LM, Liu Z and He Z (2021) A MicroRNA-Based Network Provides Potential Predictive Signatures and Reveals the Crucial Role of PI3K/AKT Signaling for Hepatic Lineage Maturation. Front. Cell Dev. Biol. 9:670059. doi: 10.3389/fcell.2021.670059

Background: Functions of miRNAs involved in tumorigenesis are well reported, yet, their roles in normal cell lineage commitment remain ambiguous. Here, we investigated a specific “transcription factor (TF)-miRNA-Target” regulatory network during the lineage maturation of biliary tree stem cells (BTSCs) into adult hepatocytes (hAHeps).

Method: Bioinformatic analysis was conducted based on our RNA-seq and microRNA-seq datasets with four human hepatic-lineage cell lines, including hBTSCs, hepatic stem cells (hHpSCs), hepatoblasts (hHBs), and hAHeps. Short time-series expression miner (STEM) analysis was performed to reveal the time-dependent dynamically changed miRNAs and mRNAs. GO and KEGG analyses were applied to reveal the potential function of key miRNAs and mRNAs. Then, the miRDB, miRTarBase, TargetScan, miRWalk, and DIANA-microT-CDS databases were adopted to predict the potential targets of miRNAs while the TransmiR v2.0 database was used to obtain the experimentally supported TFs that regulate miRNAs. The TCGA, Kaplan–Meier Plotter, and human protein atlas (HPA) databases and more than 10 sequencing data, including bulk RNA-seq, microRNA-seq, and scRNA-seq data related to hepatic development or lineage reprogramming, were obtained from both our or other published studies for validation.

Results: STEM analysis showed that during the maturation from hBTSCs to hAHeps, 52 miRNAs were downwardly expressed and 928 mRNA were upwardly expressed. Enrichment analyses revealed that those 52 miRNAs acted as pluripotency regulators for stem cells and participated in various novel signaling pathways, including PI3K/AKT, MAPK, and etc., while 928 mRNAs played important roles in liver-functional metabolism. With an extensive sorting of those key miRNAs and mRNAs based on the target prediction results, 23 genes were obtained which not only functioned as the targets of 17 miRNAs but were considered critical for the hepatic lineage commitment. A “TF-miRNA-Target” regulatory network for hepatic lineage commitment was therefore established and had been well validated by various datasets. The network revealed that the PI3K/AKT pathway was gradually suppressed during the hepatic commitment.

Conclusion: A total of 17 miRNAs act as suppressors during hepatic maturation mainly by regulating 23 targets and modulating the PI3K/AKT signaling pathway. The regulatory network uncovers possible signatures and guidelines enabling us to identify or obtain the functional hepatocytes for future study.

Keywords: microRNAs, PI3K/AKT signaling, biliary tree stem cells, hepatic lineage, let-7 family


INTRODUCTION

Human biliary tree stem cells, hBTSCs, are the stem cells located in the peribiliary glands in the biliary tract (Miyajima et al., 2014). The isolation of hBTSCs and their in vitro and in vivo characterization indicate that they are stem cells of mature hepatocytes, cholangiocytes, and pancreatic endocrine cells. hBTSCs are found throughout the major duct of the biliary tree in all ages of donors, with the potential of giving functional cell types during the organ injury (Kaneko et al., 2015). At the distal portion of the bile duct in the liver parenchyma, the so-called Canals of Hering are known as niches where human hepatic stem cells, hHpSCs, are located (Gupta, 2000; Deng et al., 2018). Both hBTSCs and hHpSCs are successfully applied to rescue animals with liver dysfunctional diseases, and patients with end-stage liver diseases. However, as what has been discovered in the studies of generating hepatocytes from pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), even under the precise stepwise differentiation strategies, cellular heterogeneity exists in stem cells derived hepatocytes, which often results in less functional hepatocytes compared to primary hepatocytes. Therefore, the urgency of understanding the mechanism underlying the hepatic maturation of hBTSCs and/or hHpSCs has been a fundamental task which enables the successful conduction of stem-cells-based liver disease therapies.

MicroRNAs (miRNAs), about 22 nucleotides long, regulate messenger RNA (mRNA) by either cleaving mRNA molecules or inhibiting their translation via binding to complementary regions in their 3′ untranslated regions (UTRs) to form RNA-induced silencing complexes. With these antisense mechanisms, miRNAs participate in diverse developmental and biological cellular processes, including stem cell differentiation and cell cycle regulation (Chen and Lodish, 2005; Chivukula and Mendell, 2008). Meanwhile, miRNAs exert their regulatory functions by targeting various genes pertaining to one or more signaling pathways, including the HIPPO, WNT/β-catenin, and PI3K/AKT signaling pathways. Taken what have been revealed in Li et al.’s (2020) study recently as example, miR-490-5p, an effective inhibitor of the metastasis of hepatocellular carcinoma, plays a negative role in the chondrogenic differentiation of human adipose-derived stem cells. This inhibition of miR-490-5p during chondrogenesis could promote the maintenance of cartilage phenotype mainly via the activation of PI3K/AKT signaling (Li et al., 2020).

Key regulatory functions of miRNAs in hepatocytes and in the liver formation during the embryonic development have also been partly studied (Hand et al., 2009; Laudadio et al., 2012). Knocking-down Dicer1, the enzyme essential for the processing of microRNAs, leads to miRNA depletion in the liver and, thereafter, results in an over-expression of fetal stage-specific genes and a promotion of hepatocyte proliferation (Sekine et al., 2009). On the other hand, the overexpression of miRNA-199a-5p negatively modulates the liver repopulation ability of ESC-derived hepatic cells strengthening the universal suppressing mechanism that miRNAs play (Mobus et al., 2015). Knocking-down of miR-23b in a fetal liver stem cell line not only inhibits their hepatocytic differentiation, but also promotes the expression of bile duct related genes, indicating a much more complicated regulatory function miRNAs play in liver cell fate determination (Rogler et al., 2009). However, the detailed regulatory network and how miRNAs manipulate the lineage maturation from stem cells at early lineage stages, including hBTSCs, toward hepatocytes remain to be unveiled.

In this study, we attempt to clarify the specific miRNA and mRNA regulatory network for determining the hepatic lineage maturation of hBTSCs into hAHeps. Although the hepatic differentiation of hBTSCs happens robotically when the requirements mechanism of functional hepatocytes is activated during the liver repair post-injury, the exact triggers and regulators to promote and persist the differentiation of hBTSCs remain uncovered. With the microRNA-seq and bulk RNA-seq data sequenced of four stages of hepatic lineage, including hBTSCs, hHpSCs, hHBs, and adult hepatocytes (hAHeps), it is possible for us to reveal the potential “TF-miRNA-target” orchestrated network that regulates the maturation of hepatocytes.



MATERIALS AND METHODS


Human Biliary Tree

Human fetal livers and biliary tree tissue were obtained by elective terminations of pregnancy and provided by an accredited agency, Advanced Biosciences Resources (ABR). Tissues used in the experiments were from fetuses between 17 and 19 weeks. The research protocol was reviewed and approved by the Institutional Review Board (IRB) for Human Research Studies at the University of North Carolina at Chapel Hill.

Human fetal liver extrahepatic biliary tree tissues (gall bladder, common duct, hepatic ducts) were detached from the liver parenchyma. These were washed with the “cell wash” buffer comprised of a sterile, serum-free basal medium supplemented with antibiotics, 0.1% serum albumin, and 1 nM of selenium (10–9 M). Biliary tree tissue and liver parenchyma were processed separately following the same protocol. After the mechanical dissociation with crossed scalpels, tissue aggregates were enzymatically dispersed into a cell suspension in RPMI-1640 supplemented with 0.1% bovine serum albumin (BSA), 1 nM of selenium, 300 U/ml of type IV collagenase, 0.3 mg/ml of deoxyribonuclease (DNAse), and antibiotics. Digestion was done at 32°C with frequent agitation for 30–60 min. Most tissues required two rounds of digestions followed by centrifugation at 1,100 rpm at 4°C. Cell pellets were combined and re-suspended in the cell wash. The cell suspension was centrifuged at 30 G for 5 min at 4°C to remove the red blood cells. The cell pellets were again re-suspended in the cell wash and filtered through a 40 μm nylon cell strainer (Becton Dickenson Falcon #352340) and with a fresh cell wash. The cell numbers were determined, and viability was assessed using Trypan Blue. Cell viability above 90–95% was routinely observed. Colonies used for RNA-seq with the typical hBTSCs or hHpSCs morphologies formed within 3 weeks under the serum free Kubota’s medium culture. hHBs could be distinguished by the expression of ICAM-1 versus NCAM.



MicroRNA-Sequencing and RNA-Sequencing Analysis

Total microRNA was isolated according to the Total RNA Purification Kit (Norgen Biotek, Thorold, ON, Canada) following the manufacturer’s instructions. microRNA integrity was quantified with the Agilent 2100 Bioanalyzer or 4200 Tapestation (Santa Clara, CA, United States). Libraries were generated utilizing the CleanTag Small RNA Library Prep kit produced by TriLink Biotechnologies (San Diego, CA, United States). In addition, sequencing was conducted on the platform of Illumina HiSeq2000 (San Diego, CA, United States).

Messenger RNA was purified using the Qiagen RNeasy Kit from the adult liver and biliary tree tissue and from isolated cell suspensions of hBTSCs, hHpSCs, hHBs, and hAHeps. RNA integrity analysis was performed using an Agilent 2000 Bioanalyzer. The cDNA libraries were prepared using the Illumina TruSeq Stranded mRNA preparation kit and sequenced on the Illumina HiSeq 2500 platform. More detailed information has also been shown in our previous published work (Oikawa et al., 2015; Dinh et al., 2019).



Data Source

All 15 datasets, including our and other bulk RNA-seq, scRNA-seq, and microRNA-seq data, were collected from the Gene Expression Omnibus (GEO) database with processed series matrix files1. Six of our previous published datasets were used, including GSE73114 (Oikawa et al., 2015), GSE114974 (Dinh et al., 2019; Dinh et al., 2020), GSE101133 (Yan et al., 2017), GSE75141 (Wu et al., 2017), GSE105019 (Fu et al., 2019), and GSE116113 (Fu et al., 2019). Nine datasets from other teams were all used to validate the results in this work. The datasets are as follows: GSE57833, GSE57878, GSE90047 (Yang et al., 2017), GSE132034 (Gong et al., 2020), GSE28892 (Shin et al., 2011), GSE56734 (Ito et al., 2014), GSE25048 (Kim et al., 2011), GSE112330 (Xie et al., 2019), and GSE124528 (Wang et al., 2019). All the data have been normalized and exhibited in a heatmap by using the pheatmap R package2. The rows of heatmap were all scaled to better visualize the difference and expression changing pattern. The detailed information about these datasets are in Table 1.


TABLE 1. Detailed information of 15 datasets analyzed in this work.
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The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA)

To explore the stemness of key miRNAs, we also downloaded the normalized microRNA-seq data and corresponding clinical information of HCC patients from TCGA3. The differential expression analysis and survival analysis were performed in R. “P < 0.05” was considered statistically significant. Meanwhile, the expression pattern of 23 genes in a normal liver tissue was also explored in the HPA database4 and only those with a moderate or high expression were shown.



Short Time-Series Expression Miner (STEM) Analysis

The bulk RNA-seq and microRNA-seq data of hBTSCs, hHpSCs, hHBs, and hAHeps were used to conduct STEM analysis using the STEM v1.3.13 (Ernst and Bar-Joseph, 2006). mRNAs and miRNAs were all stratified into different profiles based upon various expression patterns calculated by STEM analysis, respectively. The four stages of hepatic lineage, including hBTSCs, hHpSCs, hHBs, and hAHeps, were considered in different time points.



Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Analyses

To explore the biological function of the hepatic lineage-specific gene profiles, KEGG and GO enrichment analyses were performed using the clusterProfiler R package (Yu et al., 2012). To understand the potential function of miRNAs, the DIANA-miRPath v3.0 database, a miRNA pathway analysis web-server5, was also adopted in this work because it could quickly and efficiently predict the potential targets of miRNAs and run the KEGG pathway analysis (Vlachos et al., 2015).



miRNA-Related Databases

In our present work, we utilized three databases, including the microRNA target prediction database (miRDB) (Chen and Wang, 2020), the experimentally validated microRNA-target interactions database (miRTarBase) (Chou et al., 2018), and TargetScan (Lewis et al., 2003), to predict the targets of 52 miRNAs and only those targets overlapped by them could be used for further study. Subsequently, the predictive results were reassured by two comprehensive and integrative function microRNA databases, involving miRWalk (Sticht et al., 2018) and DIANA-microT-CDS (Paraskevopoulou et al., 2013). P < 0.05 was considered statistically significant.



Establishment of “TF-miRNA-Target” Regulatory Network

Experimentally supported interactions between lineage-related miRNAs and their regulating TFs were downloaded from the TransmiR v2.0 database, which contains 3,730 TF-miRNA regulations supported by experiments, covering ∼623 TFs, ∼785 miRNAs, and 1,349 publications (Tong et al., 2019). The construction of the “TF-miRNA-target” regulatory network for hepatic lineage was performed via the Cytoscape Java version 3.7.16 software (Shannon et al., 2003).



Principal Component Analysis (PCA) and 3 Dimension_PCA Analysis

3D_PCA analysis was performed on bulk RNA-seq, bulk microRNA-seq of hBTSCs, hHpSCs, hHBs, and hAHeps to examine the performance of the 23-gene signature. The scRNA-seq data of 251 hepatoblasts/hepatocytes was also exhibited by PCA analysis to show the time-course change of hepatic lineage.



Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA)

Gene set variation analysis (GSVA) was used to score the RNA-seq data of hBTSCs differentiation and bulk RNA-seq of Dlk + hepatoblasts/hepatocytes, and each sample/cell received a GSVA score (Hanzelmann et al., 2013). All the fetal liver development and cell reprogramming related datasets have been used to perform the GSVA score to validate the lineage-specific characteristics of the 23-gene signature. In addition, GSEA analysis was used to uncover the relationship between PTEN/PIK3R1 and stemness of liver-related single cells7. The number of random sample permutations was 1,000.



Correlation Analysis

The correlation between miRNA and targets or among the 23-gene signature, stemness, and PI3K/AKT signaling pathway was calculated to identify the regulatory relation of 23 targets, 17 miRNAs, and one signaling pathway. In our present study, P < 0.05 was considered statistically significant. Due to the various dataset sources and sample size, the threshold of correlation coefficient was not defined, and the specific data were all shown inside the corresponding figures.



Statistical Analysis

Statistically significant differences between samples are calculated by using the Student’s two-tailed t-test and results are presented in a heatmap, and asterisks were used to show the differential expression results. P values of less than 0.05, 0.01, 0.001, and 0.0001 were considered statistically significant and exhibited as “∗”, “∗∗”, “∗∗∗”, and “****”, respectively.



RESULTS


52 miRNAs Were Gradually Downregulated Following the Hepatic Maturation of hBTSCs via Its Involvement in the Stem Cells Pluripotency Signaling Pathway

Our previous study has achieved the RNA-seq and microRNA-seq of four stages during the maturation of hepatic lineage, including hBTSCs, hHpSCs, hHBs, and hAHeps (Oikawa et al., 2015; Dinh et al., 2019, 2020). In order to explore the key microRNAs and mRNAs during the development from hBTSCs to hAHeps, bioinformatic analyses were performed in both the RNA-seq and microRNA-seq, and validation of the results have been comprehensively performed following our work flowchart (Figure 1A). As shown in Figure 1B, the PCA analysis has vividly plotted the developmental trajectory of these four stages. Based on these reliable data, STEM analysis was conducted. The microRNA-seq data were classified into 50 profiles and the significant ones, including the weight profiles, were colored (Figure 1C). Interestingly, we found that Profile 9 with a pattern that is straightly descending shows significance (P = 6.9E-16) from hBTSCs to hAHeps, while Profile 42 with the ascending trend was not statistically significant (Figures 1C,D), indicating that these 52 miRNAs in Profile 9 might exert critical functions during the maturation of the “hBTSCs-hHpSCs-hHBs-hAHeps” lineage.
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FIGURE 1. Downwardly expressed miRNAs during hBTSCs differentiation. (A) Flowchart of this study. (B) PCA analysis of four hepatic stages. (C) STEM analysis of the microRNA-seq data. Significant profiles are colored, and the same color represents a similar expression pattern. The top left number of each grid is the profile name while the bottom left number is the total significant genes included in this profile. (D) Heatmap of 52 miRNAs which are gradually downregulated from hBTSCs to hAHeps. (E) KEGG enrichment analysis of 52 miRNAs performed by the DIANA-miRPath v3.0 online database (http://snf-515788.vm.okeanos.grnet.gr). (F) The miRNA-target relationship in the signaling pathway KEGG_hsa04550, termed as the “Signaling pathways regulating pluripotency of stem cell.”


To have a preliminary understanding of the function of these 52 descending miRNAs, the DIANA-miRPath v3.0 database, a miRNA pathway analysis web-server (see footnote five) was adopted (Vlachos et al., 2015). As shown in Figure 1E, the potentially involved signaling pathways of these 52 miRNAs were well-studied in stem cells, including the Hippo (Zhao et al., 2011), MAPK (Mossahebi-Mohammadi et al., 2020), Wnt (Sumi et al., 2008), and TGF-beta (Li and Wu, 2020) signaling pathways. Particularly, we noticed that the signaling pathway that regulates the pluripotency of stem cells (KEGG_hsa04550) was enriched (Figure 1E), with the involvement of 34 out of the 52 miRNAs (Figure 1F). Further evidences from bioinformatics or experiments with KEGG_hsa04550 indicated 79 genes participating in this pathway, including AKT3, IGF1, IGF1R, PIK3CA, PIK3CB, PIK3R3, WNT2, which are novel stem cells related genes that are important for the maintenance of stemness (Figure 1F and Supplementary Figure 1). As a result, the enrichment of the pluripotency of the stem cells (KEGG_hsa04550) signaling pathway enables us to confirm the indispensable role of these 52 miRNAs in hBTSCs (Figures 1E,F).



A Total of 928 Genes Were Gradually Upregulated During the Maturation of the Hepatic Lineage

Given that the expression pattern between mRNA and miRNA is usually negatively correlated (Chivukula and Mendell, 2008), we adopted the similar analytic strategy (STEM analysis) so that we could obtain the gradually ascending mRNAs, which might contain targets of the aforementioned 52 miRNAs. As shown in Figure 2A, the mRNA data were classified into 50 profiles and the only significant one, Profile 42, was colored. A total of 928 genes were obtained in Profile 42 with a trend of being gradually upregulated during the hepatic maturation (P = 6E-228, Figures 2A,B). KEGG and GO enrichment analyses were conducted to explore the functions of these 928 genes. Predictably, the results from the enrichment analyses all pointed to the metabolism-related pathways, which are critical for mature hepatocytes (Figures 2C,D).
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FIGURE 2. Upwardly expressed mRNAs during hBTSCs lineage commitment. (A) STEM analysis of the mRNA-seq data. Significant profiles are colored, and the same color represents a similar expression pattern. (B) Heatmap of 928 mRNAs which are gradually upregulated from hBTSCs to hAHeps. (C) KEGG enrichment analysis of 928 mRNAs using the package clusterProfier. Top 30 significant terms are shown. (D) GO enrichment analysis of 928 mRNAs using the package clusterProfier. Top 10 significant terms of biological process (BP), cell component (CC), and molecular function (MF) are shown, respectively.




23 Targets of miRNAs Were Focused Based on Several miRNA Target Predictive Databases

Provided that these 52 downwardly expressed miRNAs and 928 upwardly expressed mRNAs were lineage-specific during hBTSCs maturation into hAHeps, we then conducted more analyses to draw the possible interplay between them. Three traditional miRNA target prediction databases, including miRDB, miRTarBase, and TargetScan, were analyzed to explore the targets of these 52 miRNAs. Only those targets that were predicted by all of these three databases were selected for further analysis. With this stringent criteria, 882 targets were obtained (Figure 3A). After combining them with the 928 upwardly expressed mRNAs in Profile 42 from Figure 2A, 23 key targets, which were gradually upregulated with the “hBTSCs to hAHeps” development, were obtained. Then, we considered whether these 23 putative targets could be validated by two other comprehensive miRNA databases which also have a predictive function, miRWalk and DIANA-microT-CDS (Paraskevopoulou et al., 2013; Sticht et al., 2018). As a result, a total of 390 and 1,160 targets of our mentioned 52 miRNAs were predicted by the two databases, respectively (Figure 3A). As visualized in Figure 3A, two out of 23 targets (PTEN and ACSL1) were predicted by miRWalk and DIANA-microT-CDS. Another three out of 23 were found by the DIANA-microT-CDS database while five out of 23 were confirmed by the miRWalk database. In summary, PTEN and PIK3R1 were both included in these 10 genes, revealing them as reliable targets of miRNAs. PTEN and PIK3R1 were two critical genes involved in the PIK3/AKT signaling pathway, indicating a directly targeting signaling pathway regulation of those 52 miRNAs.
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FIGURE 3. Prediction and function analysis of upwardly expressed targets according to the key miRNAs. (A) Venn plot of potential targets from five miRNA-related databases and 928 lineage-specific mRNAs. (B) Correlation analysis among 23 targets. (C) 3D PCA analysis of four stages of hepatic lineage based on 23 targets. (D) KEGG analysis of 23 targets. (E) GO analysis of 23 targets.


Intriguingly, we also found that the correlation among these 23 targets were rather close (Figure 3B) and the PCA analysis of only 23 targets could distinctly separate the samples into four cell types. Moreover, the distribution of the four cell types along the principal component 1 (PC1) matches the maturational trajectory from hBTSCs to mature hepatocytes (Figure 3C). From the human protein atlas (HPA), 13 out of 23 targets showed a moderate or high expression in the normal liver tissue (Supplementary Figure 2). On the other hand, the KEGG and GO analyses indicated that the PI3K/AKT signaling pathway was not only enriched by 52 miRNAs but also by these 23 targets (Figures 1E, 3D,E). Moreover, other signaling pathways that are closely related to the PI3K/AKT pathway, the Ras, mTOR, and EGFR tyrosine kinase inhibitor resistance pathways were all enriched (Yu and Cui, 2016). In conclusion, an indispensable role of the PI3K/AKT pathway during the development of hepatocytes was revealed according to our analysis (Figures 3D,E).



A “TF-miRNA-Target” Regulatory Network of Hepatic Commitment Was Built Based Upon the TransmiR v2.0 Database and Cytoscape

According to the target prediction databases, we extensively filtered the result of 52 miRNAs and 928 key genes, and finally narrowed it down to 17 key miRNAs and 23 targets which were closely related to the hepatic maturation. Considering that transcriptional factors are important in regulating the cell differentiation and lineage commitment, we intended to confirm the transcription factors that regulate the expression of miRNAs which are related to these 23 targets. Thus, the TransmiR v2.0 database was used to collect the TFs which were experimentally validated and considered capable of modulating these miRNAs. As a result, 120 TFs related to the 17 miRNAs were achieved and thereafter, the “TF-miRNA-target” regulatory network was constructed (Figure 4). Intriguingly, five of let-7 family and four of mir-181 family were included in these miRNAs (Figure 4), consistent with their potential regulation of stem cell differentiation and complicated relationship between let-7 and mir-181 (Koh et al., 2010; Li et al., 2012).
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FIGURE 4. Construction of the “TF-miRNA-target” regulatory network based on 120 TFs, 17miRNAs, and 23 targets. Red and bold labels are the potential molecules included in the “PIK3/AKT” pathway. The line and arrow are the potential regulatory direction between linked nodes.


From other perspectives, various hepatic lineage-specific transcriptional factors, including HNF4A, FOXA3, STAT1, STAT3, GATA2, GATA3, and CEBPA, which have been applied in the studies of conversing other cell types into mature hepatocytes (Huang et al., 2011) or liver progenitor cells (Yu et al., 2013), were also able to modulate these 17 miRNAs (Figure 4). Therefore, the “TF-miRNA-target” regulatory network might indicate that these 17 miRNAs, especially the let-7 family and mir-181 family, were regulated by these lineage-specific TFs and affect the potential targets, thereby enhancing the maturation of the hepatic lineage. In addition, four TFs (AKT1, AKT2, TP53, PTEN) and two targets (PTEN and PIK3R1) were all included in the network, suggesting that these 17 miRNAs and 23 targets might affect the lineage commitment through the regulation of the PI3K/AKT pathway. Of note, PTEN not only served as a transcription factor for hsa-mir-25-3p, but also the target of hsa-mir-25-3p, hsa-mir-26a-5p, and hsa-mir-181b-5p, which implied a complicated feedback regulatory mechanism between mRNAs and miRNAs.



Validation of 17 Lineage-Specific miRNAs Was Conducted During Hepatic Maturation

To confirm the lineage-specific characteristics of these miRNAs, PCA analysis based upon these 17 miRNAs was conducted. As shown in Figure 5A, the 12 samples of hBTSCs, hHpSCs, hHBs, and hAHeps could be separated albeit one sample of hHpSCs were slightly mixed with hHBs. Following PC1, all the samples were well ordered and consistent with the maturation stages developing from hBTSCs and hHpSCs to hHBs and hAHeps, indicating the time-course features of the miRNAs. In parallel, according to the correlation analysis based on the RNA-seq and microRNA-seq data of our samples, most miRNAs were significantly correlated with these 23 targets. Additionally, considering that most of the 928 upwardly expressed mRNAs might serve as targets of these 17 miRNAs, we also performed a GSVA analysis of these 928 mRNAs to verify whether these 17 miRNAs could be fetched according to the expression of these 928 mRNAs. As shown in Supplementary Figure 3A and Figure 5C, 408 miRNA terms archived in the molecular signatures database (MSigDB8) were enriched and most of them had an upwardly expressed pattern during hepatic development, revealing that the targets of the miRNA terms were gradually upregulated. Interestingly, 17 miRNAs were intersected with the downwardly expressed miRNAs and 12 of these 17 intersected miRNAs were involved in the regulatory network, which reassured the important role of these miRNAs via the GSVA analysis (Figure 5B).
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FIGURE 5. Validating the lineage-specific role of 17 key miRNAs in hepatic maturation. (A) 3D PCA analysis of four stages of hepatic lineage based on 17 miRNAs. (B) Correlation analysis based on the microRNA-seq (GSE114974) and RNA-seq data (GSE73114). *P < 0.05, **P < 0.01, and ***P < 0.001. (C) Venn plot of miRNAs obtained from different bioinformatic methods. (D) Expression profiling of 17 GSVA-enriched miRNA terms, which were also involved in the downwardly expression miRNAs obtained from STEM analysis. (E) Expression of 17 key miRNAs in GSE57833 dataset. *P < 0.05, **P < 0.01, and ***P < 0.001. (F) Correlation analysis based on the microRNA-seq (GSE57833) and RNA-seq data (GSE57878). *P < 0.05, **P < 0.01, and ***P < 0.001.


The same GSVA analysis was conducted on another dataset (GSE90047) referred to as mouse embryonic hepatoblast to hepatocyte maturation, which had reported that 2,298 genes were gradually upregulated during the mouse fetal hepatoblasts differentiating to hepatocytes (Yang et al., 2017). Developed from the bulk RNA-seq data of these 2,298 genes, 1,403 miRNA terms from MSigDB were obtained by the GSVA analysis. Most of these GSVA-enriched miRNA terms were gradually upregulated from embryonic days 12.5 to 18.5 in spite of their high expression in embryonic days 10.5 to 11.5, indicating that the gene targets of miRNAs were gradually increased during the embryonic liver development (Supplementary Figure 3C). Intriguingly, all 408 GSVA-enriched terms found in our current study were included by the 1,403 terms of this dataset (GSE73114), affirming the potential lineage-dependence of our miRNAs (Supplementary Figure 3B). Herein, the same 17 GSVA-enriched miRNAs terms mentioned above (Figure 5D) were extracted for further study. These 17 miRNA terms were also gradually upregulated from embryonic days 13.5 to 18.5, though they were downregulated from embryonic days 10.5 to 13.5 (Supplementary Figure 3D).

Then, a microRNA-seq dataset (GSE57833) about fetal liver progenitor cells and mature hepatocytes was used to validate the results. Regardless of the distinct difference between our data and GSE57833 due to the batch effect, most of these 17 miRNAs were presented with an upregulated tendency in fetal liver progenitor cells rather than in mature hepatocytes (Figure 5E). With the combination analysis of its mRNA-seq dataset (GSE57878), most of the 17 miRNAs proved to be negatively correlated to the 23 targets (Figure 5F), which was in line with the correlation analysis results in Figure 5B. All in all, our study confirmed that these 17 key miRNAs were hepatic maturation-specific for hBTSCs.



The Lineage-Specific Signature of 23 Key Genes Also Exists in Fetal Liver Development

Various researches have comprehensively depicted the developmental biology of fetal liver (Yang et al., 2017; Gong et al., 2020). However, whether these 23 genes obtained from our study could show the lineage-specific characteristics during fetal liver development remains ambiguous. Here, we gathered two datasets studying the mouse embryonic liver development and five datasets focusing on the differentiation of mouse or human liver-related stem cells, thereby enabling us to unveil the expression pattern of these 23 genes which were upwardly expressed from along the maturation of hBTSCs to hAHeps. Figure 6A shows the RNA-seq data (GSE90047) of Dlk+ hepatoblasts/hepatocytes sorting from E10.5 to E17.5 mouse embryos, representing the hepatoblast-to-hepatocyte differentiation in the fetal liver (Yang et al., 2017). Within the development of Dlk+ cells from E10.5 to E17.5, most of these 23 genes were gradually upregulated and consistent with the expression pattern in the hBTSC-to-hAHep differentiation. As for another dataset (GSE132034) of fetal liver development from embryonic day 12.5 to postnatal days 1, 3, 5, and to weeks 1, 2, 3, 6, and 8, a similar result as GSE90047 was obtained for stages of E12.5 to E18.5. However, with stages going on after postnatal 1 or 3 weeks, genes began to be gradually downregulated (Figures 6B,H), showing a similar pattern as the metabolism-related module_3 and module_4 which was exhibited in the work of Gong et al.’s (2020) team. In addition, other cell types in the whole liver organ might contribute to this different peak of score with the weight of liver growing fast after the postnatal weeks as Gong et al. (2020) has reported. In addition, a similar result was obtained by analyzing the expression profiling between E13 hepatoblasts and adult hepatocytes in another dataset (GSE56734) (Figure 6D). The dataset (GSE28892) about adult mouse liver progenitor cells (LPCs) and primary hepatocytes was used in further investigating the expression pattern of these 23 targets in mouse. As vividly shown in Figure 6C, most of these 23 genes were highly expressed in primary hepatocytes compared to LPCs and the in vitro differentiated hepatocytes from the LPCs also have a high tendency of expressing these 23 genes.
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FIGURE 6. Expression pattern of 23 genes in fetal liver development. (A–G) LPC, liver progenitor cell; Diff, differentiated hepatocyte; Primary, primary hepatocyte; HpSC, hepatic stem cell; Hep, hepatocyte. (H) GSVA analysis of 23-gene signature across the datasets with enough samples. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.


Now that the lineage-specific characteristics of the 23 vital genes also existed in mouse hepatic maturation, we further verified these 23 gene signatures in the other three human datasets. Firstly, our study has recently noticed that the early stage of hBTSCs were rather similar to the endoderm progenitor cells (data not shown). Thereafter, the dataset (GSE25048) associated with endoderm progenitor cells and mature hepatocytes was analyzed (Kim et al., 2011). Unsurprisingly, 21 out of 23 genes had a higher expression trend in mature hepatocytes than in the endoderm progenitor cells, and 18 of them showed significant statistics and most of the P-value were even smaller than 0.001 (Figure 6E).

Secondly, we also analyzed the RNA-seq dataset (GSE101133), which contains four samples as follows: hHpSCs, hHBs, hepatic precursor cells, and hAHeps. Albeit the tendency seemed ambiguous due to the lack of enough replicate samples, we could still identify that more than half of the genes were highly expressed in the mature cells rather than the immature cells, including PIK3R1, PTEN, RORA, ACSL1, CSF1R and so on (Figure 6F). Finally, another dataset containing fetal LPCs and mature hepatocytes was achieved. In parallel with the other two human datasets, 18 out of 23 genes were markedly upregulated in mature hepatocytes (Figure 6G). Taken together, the aforementioned results demonstrated that 23 genes were lineage-dependent during hepatic maturation (Figure 6H).



23 Genes Tended to Be Upregulated in the Mature Hepatocytes Compared to the Liver Progenitor-Like Cells

Studies conducted by us and other teams have demonstrated the possibility of reprogramming different cell types into progenitor-liked cells (Yu et al., 2013; Wu et al., 2017; Deng et al., 2018; Cheng et al., 2019; Fu et al., 2019; Wang et al., 2019). Here, two datasets of our previous work and two of others were collected to study the expression profiling of 23 genes in progenitor-like cells versus mature hepatocytes. One of our previous work focused on producing mouse expandable hepatocytes by reprogramming mature hepatocytes, which closely resembled duct-like cells and therefore named hepatocyte-derived proliferative duct-like cells (hepPDCs) (Wu et al., 2017). As shown in Figure 7A, the expression of the 23 genes had a lower tendency in hepPDCs rather than either the induced mature hepatocytes or primary hepatocytes. The lack of enough statistical significance and heterogeneous expression inner or between these different groups might be due to the various strains including 129S1, 129S4, and C57B6 mice. The other work was conducted to harvest the liver progenitor-like cells (HepLPCs) that were reprogrammed by human primary hepatocytes (Fu et al., 2019). Distinctly, despite the utility of different culture conditions, different donor samples, and even different passages, most of the 23 genes were significantly upregulated in the primary hepatocytes and induced mature hepatocytes (Figure 7B).
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FIGURE 7. Highly expressed tendency of 23 genes in mature hepatocytes compared to liver progenitor-like cells. (A–D) hepPDC, hepatocyte-derived proliferative duct-like cell; hepPDC-Hep, hepPDC-derived hepatocyte; eHeps, expandable hepatocytes; heps, hepatocytes; HepLPCs, hepatocyte-derived liver progenitor-like cells; P, passage; hHPLCs, human progenitor-like cells; hiHeps, human induced hepatocytes; iHepLPCs, hepatocyte-induced liver progenitor cells. iHepLPCs-Hep3D, iHepLPCs organoid. (E) GSEA analysis of single cell datasets (GSE116113) based on PTEN expression. (F) GSEA analysis of single cell datasets (GSE90047) based on Pik3r1 expression. (G) GSVA analysis of 23-gene signature across the datasets with enough samples. *P < 0.05, **P < 0.01, ***P < 0.001, and ***P < 0.0001.


On the other hand, we also explored another research conducted by Xie et al. (2019), which uses a two-step lineage reprogramming strategy to generate functionally competent hepatocytes from fibroblasts. The RNA-seq data (GSE112330) of human hepatic progenitor-like cells (hHPLCs) and induced mature human hepatocytes (hiHeps) were obtained for further understanding the expression pattern of the 23 genes. Overall, the hiHeps were prone to express the 23 gene signature in contrast with hHPLCs, and 11 genes were significantly upregulated even with the various passages and donors (Figure 7C). Lastly, the dataset (GSE124528) containing the 3D culture of progenitor-like cells was also achieved (Wang et al., 2019). As displayed in Figure 7D, hepatic spheroids induced by the human hepatocyte-derived liver progenitor-like cells also highly expressed most of these 23 genes. As a result, our work demonstrated that the signature of these genes was lineage-specific (Figure 7G) and might be capable of serving as new markers for evaluating the efficiency and reliability of the reprogramming from somatic cells to LPCs.



PTEN and PIK3R1 Were Novel Targets for the Lineage-Dependent miRNAs

According to the KEGG results based upon the 52 miRNAs or only well-predicted 23 targets (Figures 1E, 3C), the PTEN/PI3K/AKT signaling pathway was both enriched by them, indicating its potential involvement in the maturation of the hepatic lineage. Then, the PIK3R1 and PTEN were underlined in most of the prediction databases (Figure 3A), and PTEN could both act as the TF and target in the “TF-miRNA-target” regulatory network (Figure 4). Of note, the lineage-specific characteristics of PTEN and PIK3R1 were reassured not only in the fetal liver development but also in the reprogrammed LPCs lineage commitment (Figures 6, 7).

To validate the relationship between lineage differentiation and PTEN or PIK3R1, two scRNA-seq datasets (GSE116113 and GSE90047), including mouse and human species, were collected and the GSEA analysis was performed (Figures 7E,F). For one thing, our previous scRNA-seq data (GSE116113) of 7,459 progenitor-like cells (HepLPCs) were collected to infer the potential role of PTEN and PIK3R1 during hepatic differentiation (Fu et al., 2019). Intriguingly, the GSEA result of PTEN shows that the downregulation of PTEN led to promote the stemness of ESCs (Figure 7E). In addition, the GSEA result of PIK3R1 failed to show enough significance with these two terms (“WONG_embryonic_stem_cell_core” and “BHATTACHARYA_ embryonic_stem_cell”) (data not shown). For another, the scRNA-seq (GSE90047) of mouse fetal liver hepatoblasts/hepatocytes were used (Yang et al., 2017). Conversely, among these 251 fetal liver-related cells, the GSEA analysis result revealed that the high expression of Pik3r1 could inhibit cell stemness during mouse liver development (Figure 7F) while the GSEA analysis of Pten was not so significant (data not shown). Collectively, it is possible that either PTEN or PIK3R1 independently exerts their suppressive role along the maturational lineage even without collaboration.



PI3K/AKT Pathway Was Gradually Suppressed With the Development of the Hepatic Maturational Trajectory

To validate the relationship among the PI3K/AKT pathway, hepatic differentiation, and 23-gene-based signature, the scRNA-seq (GSE90047) of fetal liver hepatoblasts/hepatocytes were analyzed again (Yang et al., 2017). As vividly exhibited in Figure 8A, 251 hepatoblasts/hepatocytes were distributed exactly following the embryonic days based on the PCA analysis. Then, the GSVA analysis were performed to investigate various signatures of these single cells. According to the GSVA results in Figure 8B, the signature of “RAMALHO_stemness_down” was gradually increased while the signatures of “RAMALHO_stemness_up” and “WONG_embryonic stem cell” were gradually decreased. Therefore, the stemness of these hepatoblasts or hepatocytes was gradually downregulated following the time trajectory of the embryonic liver development and gradual development of hepatoblasts into hepatocytes (Figure 8B). Then, we focused on the time-course change of signatures related to the PTEN/PI3K/AKT pathway during hepatoblast-hepatocyte commitment. As shown in Figure 8C, the PTEN-regulated signatures were activated in earlier fetal cells, indicating that the activation of the PTEN/PI3K/AKT pathway was more likely to be in the hepatoblasts rather than the hepatocytes. Likewise, Figure 8D also reveals the same suggestion that the earlier the stages of the embryonic liver cells, the more active the PTEN/PI3K/AKT pathway is. In addition, five out of 23 genes, which were not included in the PTEN/PI3K/AKT pathway, also showed the distinctly upward expression tendency in the single cell level following the fetal hepatic development (Supplementary Figure 4C). Then, the hepatic-lineage-dependent signature constructed by the 23 genes was gradually upregulated during the trajectory (Figure 8E). Meanwhile, the 23-gene signature was positively correlated with the signature of liver metabolism and liver specific gene and negatively correlated with the stemness-related and PI3K/AKT-related signature, which was consistent with the results we figured out in the data of bulk RNA-seq (Figure 8F and Supplementary Figures 4B,D).
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FIGURE 8. PTEN/PI3K/AKT signaling pathway is lineage-dependent activation following the hepatic maturational trajectory. (A–E) PCA analysis was used to exhibit the lineage trajectory of 251 hepatoblasts/hepatocytes. GSVA analysis was performed to understand various signature patterns of these scRNA-sea data. (F) Correlation analysis of 23-gene signature with others in 251 hepatoblasts/hepatocytes. (G) Correlation analysis of 23-gene signature with others in 7,459 hepLPCs.


Considering that the correlation analysis that was only based on 251 mouse single cells obtained from Smart-seq2 technology might not be reliable enough, the 7,459 human HepLPCs, harvested by our team and sequenced by 10X Genomics technology, were collected to confirm the correlation result mentioned above (Fu et al., 2019). Similarly, the 23-gene signature was also positively correlated with the “RAMALHO_stemness_down” and “HSIAO_liver_specific_genes” and negatively correlated with the “RAMALHO_stemnness_up,” “WONG_embryonic stem cell,” “BHATTACHARYA_embryonic_stem_cell,” and “PID_PI3KCI_AKT_pathway” (Figure 8G and Supplementary Figure 4A). Most of the 7,459 hepLPCs had a similar pattern of these signatures with each other, indicating that most of the hepLPCs were in a stable and identical stage as what had been reported (Fu et al., 2019), thereby leading to the small correlation coefficients (Figure 8G and Supplementary Figure 4A).

In conclusion, the scRNA-seq result shows that the gradual inactivation of the PTEN/PI3K/AKT signaling followed the trajectory of the hepatoblast-to-hepatocyte commitment, which was consistent with the aforementioned hypothesis inferred by the enrichment analyses.



DISCUSSION

In recent years, many efforts have been made to improve the efficiency and elucidate the mechanism of hepatic commitment. However, most studies required an extensive manipulation of cells for obtaining seed cells. hBTSCs, as somatic stem cells located in the biliary tree, provide a different sight. The mRNA and protein level of how hBTSCs differentiates to hAHeps have been explored for a long time (Cardinale et al., 2011; Semeraro et al., 2012). However, it is unclear whether and how miRNAs, as epigenomic factors, regulate the hBTSCs-to-hAHeps transition. During hepatic regeneration, hBTSCs have been identified as the stem cells of hHpSCs or hHBs that gave rise to mature hepatocytes. In this study, we focused on the lineage-associated gene and miRNA expression during hepatic maturation utilizing the comprehensive bioinformatics analyses. Considering that the conversely dynamic changes in the miRNA and mRNA expressions during hepatic maturation might be vital, STEM analysis was applied to identify and further characterize significant time-series profiles. The identified time-series profiles and clusters will help in determining the miRNAs and targets regulating hepatic differentiation.

Notably, the downwardly expressed miRNAs and upwardly expressed mRNAs were detected, providing hints to the mechanistic understanding of hBTSCs-to-hAHeps transition. Given that Tsang et al. (2007) demonstrated that miRNAs could modulate the self-renewal and differentiation of ESCs through an integral biological network with TFs, we further combined our key miRNAs and mRNAs with experimentally validated TFs from the TransmiR v2.0 database. Thus, after filtering these key molecules through identifying their relationship using five miRNA-related databases and validating their lineage-dependent characteristics by more than 10 datasets containing microRNA-seq, bulk RNA-seq, and scRNA-seq, the “120_TF-17_miRNA-23_target” network for hepatic lineage was constructed. With the GO, KEGG, GSEA, and GSVA enrichment analyses, we speculated that this “120_TF-17_miRNA-23_target” biological network could affect the maturation stage of lineage cells by affecting the PI3K/AKT pathway.

We previously demonstrated the direct induction of functional hepatocyte-like cells from mouse tail-tip fibroblasts by the transduction of Gata4, Hnf1a, and Foxa3, and inactivation of p19Arf (Huang et al., 2011) while human induced hepatocytes (hiHeps) were generated from fibroblasts by FOXA3, HNF1A, and HNF4A (Huang et al., 2014; Yang et al., 2018). Then, Hnf1b and Foxa3 are sufficient to reprogram MEFs into the induced hepatic stem cells (Yu et al., 2013). Moreover, we also recently have reported that the combination of HNF1A, HNF4A, and FOXA3 synergistically reprograms the hepatocellular carcinoma (HCC) cells to hepatocyte-like cells (Cheng et al., 2019). Intriguingly, we could find that most of these TFs used in cell reprogramming is involved in the constructed network, thereby underscoring the reliability and applicability of our network and partly explains the mechanism of how the cells are reprogrammed using these TFs.

MicroRNA families refer to miRNAs of a given family sharing the sequence of the ‘seed region’ from the nucleotides two to eight at the 5′ end of the miRNA. miRNAs of the same family are considered to be capable of regulating the overlapping sets of target genes as the ‘seed region’ is particularly important for target specificity. Two miRNA families were highlighted from 17 lineage-related and downwardly expressed miRNAs in our studies, the let-7 family and mi-181family. It is note-worthy that five of the let-7 family were included in the network: let-7i-5p, let-7a-5p, let-7e-3p, let-7f-2-3p, and mir-7-5p (Figure 4). let-7 is able to target Dicer, which is the protein in charge for miRNA maturation (Mayr et al., 2007; Forman et al., 2008). Hence, we speculated that the let-7 family possibly served as a master regulator of itself or other miRNAs in the network and have a close relation with other miRNAs, especially the mir-181 family (Li et al., 2012). Additionally, Koh et al. (2010) has reported that the let-7 family of miRNAs was predominant in both the intra and extra cellular samples for MSC. HNF4A is indirectly regulated by the let-7 family in the undifferentiated mesenchymal stem cells (MSC) and HEPG2 cells (Koh et al., 2010). Interestingly, Peng et al. (2020) has showed that the upregulation of miR-25-3p in cardiomyocytes was sufficient to exert cardio-protective effects via a directly targeted PTEN both in vitro and in vivo. In addition, a feedback loop between miR-122 and most of the liver-enriched transcription factors, including HNF6, plays an important role in hepatic differentiation (Laudadio et al., 2012). Therefore, these might indicate the existence of a close and reciprocal loop between PTEN and miR-25-3p proposed in our network (Figure 4). Although further validation needs to be done both in vitro and in vivo, we could speculate that these 17 miRNAs, especially the let-7 family, might confer a certain function during hepatic maturation.

On the other hand, 23 genes were considered crucial due to their dual function: lineage-specific mRNAs with an upwardly expression and well-predicted targets of key miRNAs. Several enrichment analyses made us focus on PTEN and PIK3R1, two PI3K/AKT pathway suppressor genes. From our KEGG enrichment results in Figure 3C, it also showed that these 23 putative targets, which were predicted as miRNAs targets in our study, were involved in the “microRNAs in cancer” pathway, demonstrating the robust relationship between these 23 targets and their corresponding 17 miRNAs (Figure 3D). These also triggered us to consider whether these 17 miRNAs might function as the “oncogene” in malignancies. Intriguingly, we found that eight of these miRNAs were upregulated in the tumor tissue of hepatocellular carcinoma (HCC) and 12 of these miRNAs led to a worse prognosis for HCC patients (Supplementary Figures 5, 6). For example, mir-222, mir-221, mir-181a, mir-25, mir-7, and mir-502 were upregulated in a tumor tissue as well as predictive of a worse prognosis for HCC patients. Interestingly, several studies have revealed that the PTEN deletion would cause hepatopancreatic ductal malignancy and cholangiocarcinoma (Lin et al., 2018; Jiang et al., 2020). In addition, microRNA-181 has been identified as a vital player in EpCAM positive hepatic cancer stem cells (Ji et al., 2009). Our former studies have also reported that fibrolamellar carcinoma (FLC) cells were quite similar to hBTSCs (Oikawa et al., 2015). Therefore, the low expression of PTEN in hBTSCs might be reasonable and intelligible based on the similarity between the FLC and hBTSCs cells. These also indicated that the key miRNAs and targets in our work had a close relationship with the biliary tree cells and liver cancer cells.

While it is well established that the MAPK and HIPPO signaling are crucial for liver development (Zhao et al., 2011; Yang et al., 2017), little is known about how the PTEN/PI3K/AKT signaling could influence the LPCs differentiation. It has been reported that both PTEN and PIK3R1 (also known as PI3K p85α), a regulatory subunit of PI3K, are capable of inactivating the PI3K/AKT signaling and inhibiting tumor progression (Luo et al., 2005; Taniguchi et al., 2010; Vallejo-Diaz et al., 2019; Kong et al., 2020; Coleman et al., 2021). The tumor suppressor role of PIK3R1 was also validated in hepatocellular carcinoma (HCC) patients in TCGA analyzed by the Gene Expression Profiling Interactive Analysis (GEPIA) databases (Data not shown). Therefore, we supposed that the inactivation of PI3K/AKT signaling by PTEN and PIK3R1 was vital during the maturation of the hBTSCs-to-hAHeps lineage. Moreover, Wang et al. (2020) has recently reported that miR-100-3p targets PIK3R1 and suppresses the adipogenic differentiation of MSCs via the PI3K/AKT pathway. Li et al.’s (2019) team also suggests that human amniotic MSCs promote wound healing by enhancing cell proliferation through activating the PI3K/AKT signaling pathway (Li et al., 2019), which was consistent with our hypothesis in the context of hBTSCs-to-hAHeps transition. Thus, the PI3K/AKT pathway might also be important to maintain the stemness of hBTSCs and its inhibition could lead to hepatic maturation.

Future studies are needed to not only identify the miRNA and gene functions but also dissect the regulatory network for the pancreatic and cystic development of hBTSCs. There are some subjects to be overcome, which include the biological impacts of inhibitors of PTEN and PIK3R1 on the efficiency of hepatic differentiation of hBTSCs. Due to the complicated direct or indirect effect between the miRNA and targets, many experimental explorations are also needed to be conducted in the future. In addition, in vitro and in vivo works are needed to identify the prerequisite to improve the efficiency of generating BTSC-derived hepatic and pancreatic products for regenerative medicine. These data will be especially important for a succeeding in vivo post-grafting hepatic maturation of hBTSCs, when the functional mature hepatocytes are required by patients with liver injury within a relatively short time.



CONCLUSION

We identified a group of potential miRNAs and putative targets associated with the hepatic differentiation of hBTSCs, thereby establishing the “TF-miRNA-target” regulatory network for better delineating the maturation of hepatic lineage. The well-defined biological features of hepatic-lineage cell types enabled the reliable bioinformatic analysis, while the published databases, from our or other studies referring to the hepatic maturation during fetal liver development and cell fate determination, provided sources for the validation. Diverse bioinformatic tools were applied to screen out a set of lineage-related miRNAs, especially the let-7 family, acting as suppressors during hepatic maturation mainly by regulating 23 targets and PI3K/AKT pathway. Further analysis revealed that among the 23-gene lineage-specific signature, PTEN and PIK3R1 might exert certain functions in regulating hepatic differentiation via the PI3K/AKT pathway. Our findings not only uncover the potential mechanism and functions of the regulatory network, but also discover possible strategies and factors which might predict or affect the functional maturation of hepatocytes both in vitro and in vivo.
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Long non-coding RNAs (lncRNAs) play key roles in tumors and function not only as important molecular markers for cancer prognosis, but also as molecular characteristics at the pan-cancer level. Because of the poor prognosis of pancreatic cancer, accurate assessment of prognosis is a key issue in the development of treatment plans for pancreatic cancer. Here we analyzed pancreatic cancer data from The Cancer Genome Atlas and The Genotype Tissue Expression database using Cox regression and lasso regression in analyses using a combination of the two databases as well as only The Cancer Genome Atlas database (Cancer Genome Atlas Research Network et al., 2013). A prognostic risk score model with significant correlation with pancreatic cancer survival was constructed, and two lncRNAs were investigated. Additional analysis of 33 cancers using the two lncRNAs showed that lncRNA TsPOAP1-AS1 was a prognostic marker of seven cancers, among which pancreatic cancer was the most significant, and lncRNA mi600hg was a prognostic marker of ovarian cancer and pancreatic cancer. LncRNA TsPOAP1-AS1 is associated with clinical stage and tumor mutation burden of some cancers as well as a strong degree of immune infiltration in many cancers, while a strong correlation between lncRNA mi600hg and microsatellite instability was observed in several cancers. The results of this study help further our understanding of the different functions of lncRNAs in cancer and may aid in the clinical application of lncRNAs as prognostic factors for cancer.
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INTRODUCTION

Early research on pancreatic cancer has made some progress, and several pancreatic cancer-related genes have been discovered (He et al., 2014; Wolpin et al., 2014). However, comprehensive understanding of the mechanisms underlying pancreatic cancer remains limited. Recent research has suggested that long non-coding RNAs (lncRNAs) may provide new insights and help further pancreatic cancer research.

LncRNAs are transcripts >200 nucleotides in length that are present in various locations in the genome, including between genes and in promoters, enhancers and introns. LncRNAs have been the subject of investigation in recent years, and studies have demonstrated that lncRNAs are involved in multiple biological activities. Although the lncRNAs studied so far account for only a small portion of the total number of lncRNAs in the genome, these lncRNAs have been linked to various diseases, especially tumors (Kung et al., 2013; Ren, 2020). Multiple studies have established that lncRNAs participate in tumorigenesis and development. Over recent years, research has shown that lncRNAs play important roles in the mechanism of the occurrence, evolution, invasion and metastasis of pancreatic cancer. LncRNAs have also shown great potential as diagnostic markers, drug targets and prognostic factors for survival analysis (Natoli and Andrau, 2012; Yu et al., 2012). Several studies have described the impact of some lncRNAs on the prognosis of patients with pancreatic cancer (Huang et al., 2016), and several prognostic risk models have been established. Zhou et al. established a prognostic model for pancreatic cancer containing five lncRNAs (RP11-159F24.5, RP11-744N12.2, RP11-388M20.1, RP11-356C4.5, and CTC-459F4.9) through analysis of The Cancer Genome Atlas (TCGA) data; this model provides the possibility for survival prediction of pancreatic cancer patients and selection of biological treatment targets (Zhou et al., 2019). Zhang et al. (2019) used TCGA data to construct a prognostic risk prediction model for pancreatic cancer patients containing 12 lncRNAs (CTC-429P9.3, CTD-2186M15.3, RP5-890O3.9, AP000254.8, RP5-1085F17. 3, LINC01089, lncRNAs: LINC00941, ABHD11-AS1, CASC8, CYTOR, MIR4435-2HG, and UCA1). This risk score model can be used as an independent predictor of the prognosis of pancreatic cancer patients (Zhang et al., 2019). Wei et al. (2019) also analyzed the sequencing and clinical data of pancreatic cancer patient samples in TCGA database and identified nine immune-related lncRNAs (AL138966.2, AL133520.1, AC142472.1, AC127024.5, AC116913.1, AC083880.1, AC124016.1, AC008443.5, and AC092171.5). The authors constructed a pancreatic cancer prognostic risk scoring model that can be used as a potential target for pancreatic cancer immunotherapy (Wei et al., 2019). However, these studies have several shortcomings, including limitations regarding data samples, algorithms and efficacy evaluations. Moreover, the studies did not apply their models to pan-cancer research or explore the function of the lncRNAs.

In this study, we aimed to construct a reliable prognostic lncRNA model for pancreatic cancer and a pan-cancer analysis. We analyzed the lncRNA expression profile of tumor tissues from 178 pancreatic cancer patients in TCGA data. Gene expression data from normal pancreas samples in the GTEx database were used to correct for the imbalance in the number of non-tumor and cancer samples. A pan-cancer analysis of important lncRNAs was carried out to explore the possibility of lncRNAs as prognostic molecular markers in multiple tumors.



MATERIALS AND METHODS


Data Sources and Data Preprocessing

We obtained gene expression profiles and related clinical documents of 177 pancreatic cancer tumor tissues and 4 adjacent tissues from TCGA database1 and downloaded and processed gene expression profiles of 180 non-cancerous human pancreatic tissues from the GTEx official website2. The TCGA and GTEx datasets were divided into a training set and test set at a 5:5 ratio. We also downloaded gene expression data of 33 cancers from the UCSC Xena official website3 and used the GRCh38 version of the genome annotation file4 from the Ensembl database to annotate lncRNAs. We obtained the immune gene set from the ImmPort database5 for subsequent analysis.



Prognostic Risk Scoring Model Construction

The expression data of candidate lncRNAs obtained after single-gene Cox proportional hazard analysis and optimization by lasso regression analysis. Then, multi-factor Cox regression analysis were used to construct a prognostic risk scoring model for lncRNA. The final formula is:
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Co-expression Analysis of Key lncRNAs

The most significant lncRNAs were screened out from the established Cox prognostic risk scoring model, and Pearson’s correlation analysis was performed in the normalized protein coding gene (PCG) expression dataset of pancreatic cancer patients and key lncRNAs. The screening threshold was defined as the absolute value of the correlation coefficient |Cor| > 0.4, P < 0.001. Based on these genes, gene function enrichment analysis was performed to predict the possible biological and cell signal transduction pathways of the candidate lncRNAs.



GO Function Enrichment and KEGG Signal Pathway Analysis

We used the clusterProfiler package (v.3.14.3), org.Hs.eg.db package (v.3.10.0), and pathview package (v.1.26.0) based on the R language for GO and KEGG gene regulation pathways to evaluate the potential function of lncRNAs.



Pan-Cancer Study of Key Prognostic-Related lncRNAs in PAAD Patients


Construct of Tissue Expression Pattern of lncRNA Genes

According lncRNA genes were identified from the Cox risk regression model. The normal human tissue gene expression data in the GTEx database and the phenotype file and key lncRNA expression levels in 33 tumor types were used to construct a healthy human body anatomical diagram of the target gene expression in the tissue. Among them, we categorize the organs and genders, and draw the medical anatomy diagrams of the expression of the target gene lncRNA in each organ. The Wilcox statistical test was used to calculate the differential expression of lncRNA genes in 33 cancers, and box plots were drawn based on the R language ggpubr package.



Pan-Cancer Survival Analysis

The median value of the lncRNA gene expression in each cancer type was used to divide cases into the high expression group and low expression group, and Kaplan–Meier curve analysis was performed to evaluate the survival between high and low expression groups. Survival analysis of pancreatic cancer patients was conducted for disease-related survival, disease-free interval and progression-free interval.



Correlation Analysis Between lncRNA Genes and Clinical Stage of Pan-Cancer

We used the non-parametric Kruskal–Wallis test to calculate the correlation between the expression of the lncRNA genes and the clinical stage in 33 cancers.



Analysis of the Correlation Between lncRNA Genes and Tumor Mutation Burden (TMB) in Pan-Cancer

Spearman correlation test was used to measure the correlation between the expression of the lncRNA gene and the mutation load of 33 tumors. We calculated the number of gene mutations in each tumor samples to obtain the tumor mutation load of each tumor sample. We set 0.3 < |r| < 0.5 for low correlation, 0.5 < |r| < 0.8 for medium correlation, and |r| > 0.8 for high correlation, with P ≤ 0.05. We used the R language fmsb package (version 0.7.0) to draw a radar chart of statistically significant cancer types.



Correlation Analysis Between lncRNA Genes and Microsatellite Instability (MSI)

We used Spearman’s method to analyze the correlation between the expression of the lncRNA genes and MSI in 33 tumors. MSI data were obtained from the results of the study by Bonneville et al. on pan-cancer MSI. This study calculated the MANTIS score for most tumor samples in TCGA database by calculating the distribution difference of the alleles of each microsatellite locus in the tumor-normal tissue paired sample and determining the average value as the MSI score value of the tumor-normal tissue paired sample.



Analysis of the Correlation Between lncRNA Genes and Pan-Cancer Tumor Microenvironment

Using the ESTIMATE algorithm, we estimated the content of stromal cells and immune cells in the tumor from tumor RNA-seq data. We analyzed and calculated the correlation between the expression of lncRNA genes in each cancer and the scores of ESTIMATE, and the correlation coefficient r > 0.4 and P < 0.001 were selected as the screening conditions.



Analysis of the Correlation Between lncRNA Genes and Pan-Cancer Immune Cell Infiltration

We used CIBERSORT to calculate the abundance of 22 types of infiltrating immune cells in tumor samples from 33 types of tumors in TCGA database. The correlation between the expression of the lncRNA genes and the 22 types of immune cells in each tumor was calculated based on the Spearman’s correlation analysis.



Analysis of the Correlation Between lncRNA Genes and Pan-Cancer Immune Genes

To examine the biological process and cell signal transduction pathways that the lncRNA genes may be involved in, we analyzed the relationship between the lncRNA genes and the immune genes based on Pearson’s correlation analysis and the immune gene set downloaded from the ImmPort database.



GSEA Function Enrichment Analysis of lncRNA Genes in Pan-Cancer

We downloaded the gene set file from the GSEA website and used the key lncRNA genes to GSEA to calculate the enrichment scores in the GO and KEGG pathways in 33 cancers.



RESULTS


The 6-lncRNA Prognostic Risk Scoring Model for Pancreatic Cancer

To examine potential lncRNAs related to the prognosis of pancreatic cancer patients, we used datasets from TCGA and GTEx databases as a combined dataset. We performed univariate Cox proportional hazard regression analysis for differential genes that analyzed from the combined dataset in the training data. A total of 112 lncRNAs that showed significant association with the prognosis of pancreatic cancer patients were obtained (P < 0.01). After lasso regression analysis, we deleted lncRNAs with high correlation or subordination candidates (Figures 1A,B), and 12 survival-related lncRNAs with high independence remained (P < 0.01) (Supplementary Table 1). Multi-factor Cox regression analysis based on the training dataset from the combined dataset screened out six prognostic lncRNAs. We constructed a prognostic risk scoring model based on the six survival-related lncRNAs.
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FIGURE 1. Screening of lncRNAs related to the prognosis of pancreatic cancer. (A) Results of lasso regression analysis of lncRNAs related to the prognosis of pancreatic cancer. (B) Cross-validation in lasso regression analysis of prognostic-related lncRNAs. (C) 6-lncRNA labeled risk ratio forest plot.


Among the six lncRNAs, lncRNA AP005264.1, and lncRNA AC093895.1 showed a hazard ratio (HR) greater than 1.0, indicating these as risk factors. The HR of lncRNA AL590438.1, lncRNA TSPOAP1-AS1, lncRNA AC005696.1, and lncRNA Z92544.2 was less than 1.0, indicating these as protective factors (AIC: 308.39; C-index: 0.8) (Figure 1C).



Construction of a Survival Prediction Model Based on the 6-lncRNA Model

We calculated scores for each pancreatic cancer patient in the training set according to the 6-lncRNA prognostic risk scoring model. Based on the median score of the patients in the training set (median = 3.85), we divided patients into the high-risk group (n = 44) and low-risk group (n = 45), a significant difference (p-value) between groups (P < 0.01). The average survival time of patients in the high-risk group was 1.03 years, which was significantly lower than the average survival time of patients in the low-risk group of 2.13 years (P < 0.001). Kaplan–Meier analysis demonstrated a significant difference in overall survival time (OS) between the two groups (P = 8.297E-10, log-rank test) (Figure 2A). The 3- and 5-year survival rates of the high-risk group were only 0.06 and 0%, while the 3- and 5-year survival rates of the low-risk group were 0.679 and 0.283%, respectively. At different time points, the survival rates of the high-risk and low-risk groups were relatively different (Supplementary Table 2). The area under the receiver operating characteristic (ROC) curve (AUC) of the 6-lncRNA model in the training group for 5 years reached 0.804 (Figure 2B), indicating that the prognostic risk scoring model predicted the 5-year survival rate of pancreatic cancer patients. The distribution of pancreatic cancer patient risk score, survival status and expression of the six lncRNAs in the high and low risk groups in the training set were shown in Figure 2C.
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FIGURE 2. Performance evaluation of 6-lncRNA labeling in training set and test set. (A) Survival curve analysis of high-risk and low-risk groups. (B) 5-year ROC evaluation curve of 6-lncRNA labeling. (C) Patient risk score, survival status and lncRNA labeling expression profile. (D) KM analysis of the high and low risk groups in the test set. (E) 5-year ROC evaluation curve of 6-lncRNA marker in the test set. (F) Patient risk score, survival status and lncRNA marker expression profile in the test set.


We next calculated the median score in the test set (n = 88) and divided the test dataset into a high-risk group (n = 42) and a low-risk group (n = 46). Kaplan–Meier analysis showed that there was a significant difference in the OS between the two groups (P = 1.099E-03, log-rank test) (Figure 2D), which is similar to the results in the training set. The 3- and 5-year survival rates of the high-risk group were only 0.07 and 0%, compared with 0.487 and 0.244% for the low-risk group. At different time points, the survival rates of the high-risk and low-risk groups were significant different (Supplementary Table 3). The 6-lncRNA the AUC of the model in the test set was 0.733 (Figure 2E). These results show that the prognostic risk scoring model is reliable in predicting the 5-year survival rate of pancreatic cancer patients in the test set. Figure 2F shows the risk score, survival time, number of deceased patients and the expression of the six lncRNAs in the high-risk group and the low-risk group.



The 2-lncRNA Prognostic Risk Scoring Model for Pancreatic Cancer Patients and Survival Prediction Analysis

We performed survival analysis on the overall dataset of TCGA pancreatic cancer patients without the GTEx dataset. A total of 46 lncRNAs were significantly related to the OS of pancreatic cancer patients (P < 0.05). After univariate Cox proportional hazard regression analysis, we obtained 7 lncRNAs, which were entered into the multivariate Cox ratio risk regression analysis (Supplementary Table 4). Finally, we obtained a prognostic risk score model for pancreatic cancer patients with two lncRNAs. The HR of lncRNA MIR600HG and TSPOAP1—AS1 were less than 1.0, indicating these as protective factors in the prognosis of pancreatic cancer (AIC: 782.96; C-index: 0.66) (Figure 3A).
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FIGURE 3. Survival analysis of 2-lncRNA. (A) 2-lncRNA labeled risk ratio forest plot. (B) KM survival curve of 2-lncRNAs high and low risk group. (C) ROC curve of 2-lncRNAs five-year survival rate. (D) Comparison of 2-lncRNA high and low risk groups.


Using the median value of the 2-lncRNA prognostic risk scoring model, TCGA pancreatic cancer patient samples were divided into high-risk and low-risk groups. Kaplan–Meier analysis showed that there was a significant difference in the OS between the high-risk and low-risk groups (P < 0.001) (Figure 3B). Moreover, AUC of the model in 5 years was 0.751 (Figure 3C), indicating that the 2-lncRNA marker had a reliable performance in predicting the 5-year survival rate of pancreatic cancer patients in the test set. Between the high-risk and low-risk groups, the two lncRNAs in the prognostic risk model were sorted and compared in terms of risk score, overall survival time and survival status (Figure 3D).



Genes Correlated With Key lncRNAs in the Prognostic Risk Scoring Model

From all gene expression profiles of pancreatic cancer, 19,658 PCGs and 14,142 non-protein coding lncRNA genes were obtained. After standardization, we obtained 16,988 PCGs. Among the lncRNAs from the two models, lncRNA TSPOAP1-AS1 and lncRNA MIR600HG genes were selected among all candidates. For these two key lncRNA genes, Pearson correlation analysis was performed one by one with the normalized PCG expression dataset of pancreatic cancer patients. A total of 1673 PCGs related to TSPOAP1-AS1 and 2,172 CGs related to MIR600HG were obtained (Supplementary Table 6).

PCGs related to lncRNA TSPOAP1-AS1 were enriched in 27 GO terms that were mostly involved in seven functions, including extracellular matrix, protein bridging, human major histocompatibility system MHC-II, G protein-coupled receptor-mediated signaling pathways and other functions. KEGG pathway analysis showed that PCGs were mainly enriched in five pathways including immune cell activation, anti-inflammatory response, JAK-STAT signaling pathway, protein secretion and glycogen synthesis (Figure 4A). The PCGs of lncRNA MIR600HG showed 28 enriched GO terms, mainly focused on five biological processes and functions: calcium ion-dependent cell adhesion, purine nucleoside metabolism, uridine cyclase activation, GTP hydrolase activation and binding to epidermal growth factor receptor. The KEGG pathways were related to cytoskeleton adjustment, leukocyte migration, cancer tissue proteoglycan regulation and bacterial invasion of endothelial cells (Figure 4B).
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FIGURE 4. lncRNA TSPOAP1-AS1 and MIR600HG related genes and functional enrichment. (A) GO enrichment and KEGG pathway enrichment of lncRNA TSPOAP1-AS1 related genes. (B) GO enrichment and KEGG pathway enrichment of lncRNA MIR600HG related genes.


The two lncRNA genes were also involved in a variety of cancer-related pathways in pan-cancer. We used GSEA analysis and found that in Cholangiocarcinoma (CHOL), TSPOAP1-AS1 is involved in biological processes such as lymphocyte activation, B cell activation, immune cell signal transduction receptor regulation and immune effect response regulation, while MIR600HG is involved cell signaling pathways such as methylated CpG protein regulation, DNA transcription factor binding and RNA polymerase binding, and lncRNA MIR600HG negatively regulates these functional pathways. Participate in gene silencing in DLBC, gene silencing under the action of non-coding RNA. Participate in gene silencing and non-coding RNA in GBM (Supplementary Figures 1, 2).



Analysis of lncRNA Genes in Non-cancerous Tissues and Pan-Cancer

Genes show differences in expression in tissues and between different sexes. We used the expression levels of the lncRNA TSPOAP1-AS1 and MIR600HG genes in each organ to draw the medical anatomy of normal human organs of both sexes. In general, the two lncRNAs gene expression were expressed at low levels in all examined tissues. LncRNA TSPOAP1-AS1 had the highest expression in the spleen and high expression in the brain and lung tissues. The intestinal system in men and the long bones in women had higher expression levels of lncRNA TSPOAP1-AS1. MIR600HG showed relatively high expression in kidney tissues and low expression levels in lung tissues, intestines of males and skeletal muscles of females (Figures 5A,B).
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FIGURE 5. Analysis of target genes in normal human organs and pan-cancer. (A) Expression of lncRNA TSPOAP1-AS1 in Male and female normal human organs. (B) Expression of lncRNA MIR600HG in Male and female normal human organs. (C) Difference in expression of TSPOAP1-AS1 and MIR600HG in 33 tumors. (D) Survival curve analysis of lncRNA TSPOAP1-AS1 and MIR600HG in multiple cancer patients. (E) lncRNA TSPOAP1-AS1 and MIR600HG risk ratio forest diagram. (F) The correlation between TSPOAP1-AS1 and MIR600HG and clinical stages in various cancers. (G) Correlation between TSPOAP1-AS1 and MIR600HG and pan-cancer TMB. The blue value is the scale of the correlation coefficient, “*,” “**,” and “***,” respectively, represent: P < 0.05, P < 0.01, P < 0.001. (H) Correlation between TSPOAP1-AS1, MIR600HG and pan-cancer MSI. The green value is the scale of correlation coefficient, “*,” “**,” and “***,” respectively, represent: P < 0.05, P < 0.01, P < 0.001.


We next examined gene expressions of the two lncRNAs in tumor tissues and normal tissues in 33 types of tumors (Supplementary Table 5). LncRNA TSPOAP1-AS1 was significantly higher or lower in bladder cancer (BLCA) and 10 types of cancer (P < 0.001). TSPOAP1-AS1 also showed significant differences (P < 0.01 or P < 0.05) in expression in cervical cancer (CESC) and lung adenocarcinoma (LUDA). We also detected significantly different expression of lncRNA MIR600HG in 10 cancers including breast cancer (BRCA) and colon cancer (COAD) (Figure 5C).

We divided patients into high- and low-expression groups according to the median expression of lncRNA TSPOAP1-AS1KM and MIR600HG and examined OS in the 33 cancers. Significant differences in OS between high- and low-expression groups were observed in PAAD, LUAD, READ, and THYM, among other cancers, with the most significant difference in PAAD. There was a significant prognostic difference between OV and PAAD patients in low and high expression of lncRNA MIR600HG groups (P < 0.01) (Figure 5D and Supplementary Figure 2A). Cox proportional hazard regression analysis was performed in 33 cancers using gene expression of the lncRNAs. LncRNA TSPOAP1-AS1 had a significant relationship with the prognosis of HNSC and PAAD patients (P < 0.001) and was a low-risk factor for prognosis. LncRNA MIR600HG had a significant correlation with the prognosis of PAAD patients (P < 0.001) and was also a low-risk factor (Figure 5E).

Significant differences in disease-related survival between high- and low-expression groups were detected in a variety of cancers (P < 0.05), with high significance observed with PAAD (Supplementary Figure 3B). The lncRNA TSPOAP1-AS1 was a high-risk factor for prognosis in KICH and a low-risk factor in other cancer types. The lncRNA MIR600HG was a high-risk factor for prognosis in PCPG and a low-risk factor for other cancers (Supplementary Figure 3C). A significant difference was detected in disease-free interval according to lncRNA TSPOAP1-AS1 expression in COAD, and lncRNA TSPOAP1-AS1 expression in COAD and KIRP both had a significant level of difference, and were high-risk factors for patient prognosis in the two cancers. A significant differences between the high and low lncRNA MIR600HG risk groups were observed in LUSC, PAAD, and PRAD, and a significant prognosis difference in many cancers such as PAAD, among which lncRNA MIR600HG were low risk factors in PAAD and THCA (Supplementary Figure 3D). In the examination of progression-free interval, both the high and low risk groups showed significant survival differences in a variety of cancers. The high and low risk groups of the two lncRNAs showed significant differences in survival in PAAD. LncRNA TSPOAP1-AS1 was a significant prognostic factor in a variety of cancers, among which TSPOAP1-AS1 was a high risk factor in UVM. LncRNA MIR600HG was a significant prognostic factor in many cancers such as PAAD and PRA, among which MIR600HG was a low risk factor in PAAD (Supplementary Figure 3E).

We next performed non-parametric Kruskal test analysis on the correlation between the two lncRNAs and the clinical stage of the patients in 33 cancer types. The expression of lncRNA TSPOAP1-AS1 in HNSC, KIRP, LIHC, LUAD, SKCM, TGCT, and THCA showed significant differences in clinical stages, among them, HNSC and LUAD had the most significant performance. The expression of lncRNA TSPOAP1-AS1 showed a significant difference between clinical stage I and II clinical pancreatic cancer samples (P < 0.05) and a greater significant difference between stage III and IV clinical pancreatic cancer samples in HNSC (P < 0.001). In LUAD, there was also a highly significant difference between stage I clinical pancreatic cancer samples and stages II and III clinical pancreatic cancer samples (P < 0.001), and stages I and IV clinical pancreatic cancer samples had a significant difference (P < 0.05) (Figure 5F and Supplementary Figure 4). A statistically significant correlation was observed between lncRNA MIR600HG and clinical stage in KIRC, PAAD and 10 kinds of cancers; the expression of MIR600HG was highly statistically significant in clinical stage III clinical pancreatic cancer samples and IV clinical pancreatic cancer samples in KIRC (P < 0.001).

We obtained the total number of mutations to obtain the TMB and calculated the Spearman correlation coefficient between TSPOAP1-AS1 and MIR600HG gene expression in each tumor and TMB. We found that lncRNA TSPOAP1-AS1 showed a negative correlation with TMB in THYM (r = −0.626) and PAAD (r = −0.435), and MIR600HG showed a low negative correlation with TMB in PAAD (r = −0.320) (Figure 5G). We also performed Spearman’s correlation analysis between the lncRNAs and MSI. The lncRNA TSPOAP1-AS1 had a negative or no correlation with MSI of most cancer types, while lncRNA MIR600HG had a higher correlation with MSI in more tumors (Figure 5H).



Correlation Analysis of lncRNA Genes and Tumor Immunity in Pan-Cancer

We next analyzed the relationship between the expression of lncRNA TSPOAP1-AS1 and MIR600HG and the levels of immune cells and stromal cells of 33 tumors. LncRNA TSPOAP1-AS1 showed a statistically markedly positive correlation with immune cell content and stromal cell content in KICH, LUAD, and STAD. TSPOAP1-AS1 showed a significant positive correlation with immune cell content in BLCA, HNSC, KIRC, LUSC, MESO, SKCM, and TGCT while it only showed a positive correlation with stromal cells in in UVM. LncRNA MIR600HG had a significant correlation with immune cells and stromal cell content in KICH, LGG, and SARC, but it had significant correlation with immune cells only in TGCT (|r| > 0.4, P < 0.001) (Figure 6A and Supplementary Figure 5).
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FIGURE 6. Correlation analysis of target genes and tumor immunity in pan cancer. (A) Correlation of lncRNA TSPOAP1-AS1, MIR600HG and the content of immune cells and stromal cells in pan-cancer. (B) The correlation between the expression of lncRNA TSPOAP1-AS1, MIR600HG and the infiltration of multiple cancer immune cells. (C) Results of co-expression of TSPOAP1-AS1, MIR600HG and immune genes in 33 tumors. Blue represents P-value and Red represents correlation coefficient.


The gene expression of lncRNA TSPOAP1-AS1 was significantly correlated with the infiltration ratio of 10 kinds of immune cells in seven cancers (r > 0.4, P < 0.001). Such as ESCA, it was related to naive B cells and regulatory T cells (Supplementary Figure 6). There was also a significant negative correlation of lncRNA TSPOAP1-AS1 with the content of memory B cells in PAAD, while the expression of lncRNA MIR600HG was significantly negatively correlated with the content of initial B cells in DLBC, LAML, and PAAD (r < −0.4, P < 0.001) and significantly positively correlated with the content of monocytes in LAML (r > 0.4, P < 0.001) (Figure 6B). LncRNA TSPOAP1-AS1 had immune genes (0.5 < |r| < 0.8) that were more than moderately related to it in 23 kinds of tumors, which were mainly distributed in, for example, PAAD (17 immune-related genes). LncRNA TSPOAP1-AS1 showed a significant correlation with the immune-related gene BTLA in 15 kinds of cancers, with a strong correlation in PAAD and CHOL (|r| > 0.8), and the other mainly significant immune genes included CD28 (in 18 types of cancer) and CD40LG (in 14 types of cancer) (Figure 6C). LncRNA MIR600HG showed a significant correlation with several immune genes in only eight tumors (CHOL, DLBC, GBD, LAML, LGG, PAAD, SARC, and THYM); This lncRNA was associated with fewer immune genes compared with TSPOAP1-AS1 and the degree of correlation was low.



DISCUSSION

Pancreatic cancer is characterized by high malignancy, rapid development, and strong invasiveness, and the prognosis of pancreatic cancer is very poor. The selection of pancreatic cancer cases suitable for surgical resection is strict, requiring no distant metastasis, superior mesenteric vein structure, uninvaded superior mesenteric artery, and normal peripheral space. Only 12–14% of patients are suitable for surgery, and the surgery is complicated. The surgical resection rate is only 40%, and surgery is associated with multiple postoperative complications. Notably, increasing the operation rate and expanding the scope of surgical resection have not improved patient prognosis. Therefore, early diagnosis and accurate prognosis of pancreatic cancer are very important.

The identification of pancreatic cancer–specific markers is critical but remains challenging. CA19-9 is widely used as a biomarker in patients with pancreatic cancer in clinical practice. It has relatively high sensitivity and good specificity for pancreatic cancer, with a positivity rate between 8 and 95%, and it decreases with the improvement of the condition after surgery (Liu et al., 2020). Some studies have suggested that CA19-9 has great value in predicting the prognosis of patients with pancreatic cancer (Humphris et al., 2012; Nakamura et al., 2019). However, CA19-9 also has a false negative rate in pancreatic cancer patients. CA19-9 is not expressed in the Lewis blood group population, which means that the serum CA19-9 level of these pancreatic cancer patients is not elevated (He et al., 2014; Ren, 2020). In patients with early pancreatic cancer (tumor < 3 cm), the sensitivity of CA19-9 detection is low, often less than 50% (Gruber and Zavolan, 2019). In terms of protein molecular markers, the combination of macrophage inhibitory factor (MIC-1) and alcohol dehydrogenase (ADH) has been used in the diagnosis of early pancreatic cancer patients, with a specificity and sensitivity reaching 94 and 45.8%, respectively. ADH alone can reach 83.3 and 62% specificity and sensitivity (Sun et al., 2019). MicroRNA biomarkers have also been widely studied in the diagnosis, pre- and post-operative evaluation and prognosis prediction of pancreatic cancer. A recent study of 372 patient samples based on biochips showed that miRNA-7 has great potential in predicting the survival of pancreatic cancer patients (Ye et al., 2014). In one study, a meta-analysis was used to screen several serum miRNAs that can indicate the prognosis of patients with pancreatic cancer (Chen et al., 2019). However, these miRNAs often need to be used in combination with other biomolecular examinations for screening. The process is cumbersome and the results are not satisfactory. Therefore, identifying new specific and sensitive biomarkers for pancreatic cancer patients is necessary.

LncRNAs have been highly valued in recent years as biomarkers, but the functions and mechanisms of action of most lncRNAs have not been fully elucidated (Spodzieja et al., 2017). Recently, 42 lncRNAs with clinical biomarker potential have been reported, and 3 lncRNAs with important prognostic significance have been identified and screened. Several studies have reported good prognostic models for pancreatic cancer, but these reports used pancreatic cancer data from TCGA and did not have equal numbers of positive and negative samples during data collection. Considering the lack of non-cancerous samples in the pancreatic cancer section of the TCGA database, here we introduced non-tumor pancreatic tissue samples from the GTEx database to construct an ideal pancreatic cancer prognosis prediction model.

In this study, we obtained two risk prognostic models of lncRNAs. The 2-lncRNA model was used for comparison to evaluate the advantages and disadvantages of the 6-lncRNA model. The working performance of the 6-lncRNA model was better than that of the 2-lncRNA model, indicating that the pancreatic tissue samples we introduced from the GTEx database were necessary. However, because the 2-lncRNA model contains only two lncRNAs, clinical practice may be convenient. We propose that the 2-lncRNA model is used to first screen surgical patients, and if the results are judged as short-lived, then the 6-lncRNA model risk score can be used to determine prognosis. We also selected the two most statistically significant lncRNAs, TSPOAP1-AS1 and MIR600HG, from the models as key genes for correlation research. Both lncRNAs were effective in predicting the prognosis of pancreatic cancer patients and showed a certain correlation with the tumor microenvironment. Both lncRNA genes showed a significant correlation with clinical staging in lung adenocarcinoma (LUAD). LncRNA TSPOAP1-AS1 is also a potential prognostic biomarker for HNSC in addition to PAAD. TSPOAP1-AS1 is a low-risk factor for ESCA patients and a high-risk factor for KICH patients. According to the phenomenon, we speculated that the content of CD8+ T cells in KICH patients may not be an independent prognosis risk factors. Notably, in two pathological types of kidney cancer (renal clear cell carcinoma and renal papillary cell carcinoma), MIR600HG showed a highly significant correlation with clinical stage, suggesting that two lncRNAs may promote tumor cell proliferation or de-inhibition in related tumors. The lncRNA MIR600HG had a significant negative correlation with the initial B cell content in diffuse large B-cell lymphoma (DLBC), acute myeloid leukemia (LAML) and pancreatic cancer (PAAD).

Our results suggest that TSPOAP1-AS1 is mainly involved in the regulation of cellular immune response, while MIR600HG is involved in the regulation of substance metabolism and regulation of cell signal transduction. This further illustrates the important roles of lncRNA TSPOAP1-AS1 and MIR600HG in the occurrence and development of various tumors. In conclusion, here we obtained two prognostic models of lncRNAs by combining two datasets, and our results suggest that lncRNAs TSPOAP1-AS1 and MIR600HG play important roles in the development and diagnosis of multiple cancers.
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Numerous studies have demonstrated that lncRNAs could compete with other RNAs to bind miRNAs, as competing endogenous RNAs (ceRNAs), to regulate each other. On the other hand, ceRNAs were found to be recurrently dysregulated in cancer status. However, limited studies considered the upstream epigenetic regulatory factors that disrupted the normal competing mechanism. In the present study, we constructed the lncRNA-associated dysregulated ceRNA networks across eight cancer types. lncRNAs in the individual dysregulated network and pan-cancer core dysregulated ceRNA subnetwork were found to play more important roles than mRNAs. Integrating lncRNA methylation profiles, we identified 49 epigenetically related (ER) lncRNAs involved in the dysregulated ceRNA networks, including 18 epigenetically activated (EA) lncRNAs, 18 epigenetically silenced (ES) lncRNAs, and 13 rewired ER lncRNAs across eight cancer types. Furthermore, we evaluated the epigenetic regulating patterns of these lncRNAs and screened nine pan-cancer ER lncRNAs (six EA and three ES lncRNAs). The nine lncRNAs were found to regulate the cancer hallmarks by competing with mRNAs. Moreover, we found that integrating the expression and methylation profiles of the nine lncRNAs could predict cancer incidence in eight cancer types robustly and the cancer outcome of several cancer types. These results provide an improved understanding of methylation regulation to ceRNA and offer novel potential molecular therapeutic targets for the diagnosis and prognosis across different cancer types.

Keywords: pan-cancer, dysregulated ceRNA, epigenetically related lncRNA, diagnostic, prognosis


INTRODUCTION

The competing endogenous RNA (ceRNA) network in tumor plays vital roles in the regulation of the biological function of pan-cancer. A growing number of researches have demonstrated that lncRNAs can act as endogenous molecular sponges to regulate the expression of mRNAs through communicating with miRNA response elements (Zhang G. et al., 2018; Qi et al., 2020; Wang W. et al., 2020). Further investigation of the ceRNA pairs in the dysregulated ceRNA network revealed more detailed biological functions related to the oncogenesis of malignant tumor (Yang et al., 2018; Zhang M. et al., 2020). Therefore, dysregulated ceRNA networks are involved in the key regulatory mechanism in the pathogenesis and development of cancer. However, the specific ceRNA dysregulated network in the pan-cancer remains to be elucidated.

As important ceRNA molecules of disease processes include cancer, lncRNAs have been implicated in biological, developmental, and pathological processes. Meanwhile, increasing evidences have indicated that DNA methylation is a key epigenetic signature implicated in the expression of lncRNAs. For instance, the alteration of DNA methylation status in the promoter region of lncRNA H19 during calcific aortic valve disease was associated with its upregulation (Hadji et al., 2016). In another case, Kumegawa et al. (2016) screened epigenetically silenced (ES) lncRNAs in colorectal cancer cells through a genome-wide analysis and found 20 dysregulated lncRNAs as targets of methylation. Moreover, the impact of DNA variation on the expression of lncRNA that influences ceRNA competition has been explored in a recent study. The aberrant promoter hypomethylation activated the lncRNA SNHG12, which leads to the upregulation of MAPK1 and E2F7 by binding to miR-129-5p in TMZ-resistant GBM cells and tissues (Lu et al., 2020). DNA methylation patterns implicated in the expression of protein-coding or non-coding transcripts across the pan-cancer were essential in the mechanisms of tumor development and cancer biology. However, the function of epigenetically related (ER) lncRNAs and the effect of lncRNAs alternations on relevant mRNAs in pan-cancer dysregulated ceRNA networks remain to be fully elucidated.

Here, we constructed the lncRNA-associated dysregulated ceRNA networks across eight cancer types by taking the advantage of RNA-sequencing and methylation data from TCGA (The Cancer Genome Atlas). We identified 49 ER lncRNAs involved in the dysregulated ceRNA networks. In addition, we excavated nine pan-cancer ER lncRNAs that regulate the cancer hallmarks [six epigenetically activated (EA) and three ES lncRNAs] through evaluating the epigenetic regulating patterns of these lncRNAs. Meanwhile, we found that these lncRNAs predict cancer incidence in eight cancer types robustly and predict the survival of these cancer patients by integrating molecular and clinical data. The findings are a coordinated effort to promote our understanding on regulatory mechanism of lncRNA-related ceRNA network governed by methylation in pan-cancer.



MATERIALS AND METHODS


Transcriptome Expression Data Across Cancer Types

The gene and miRNA expression profiles were downloaded from The Cancer Genome Atlas (TCGA1) database release 10.0, which provided miRNASeq and HTSeq data. The lncRNA and mRNA annotation were downloaded from GENCODE (V22, GRCh38). Only tumor types with sufficient adjacent normal samples were considered (N > 30), including breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), and thyroid carcinoma (THCA) (Supplementary Table 1). The expressed genes (FPKM ≥ 1 in >70% samples) were selected for subsequent analyses. All of the expression profiles were log2 transformed.



DNA Methylation Data Across Cancer Types

We also downloaded the HM450 DNA methylation profile of eight cancer types from TCGA (Supplementary Table 1). The probes with missing values in more than 30% of samples were removed, and other missing values were replaced by the mean value of the corresponding probe across samples.



External Validation Data Across Cancer Types

The independent datasets were downloaded from the GEO database2, including 15 datasets acquired by the Affymetrix Human Genome U133 plus 2.0 array and Illumina HumanMethylation450 BeadChip across eight cancer types (Supplementary Table 2).



miRNA–mRNA and miRNA–lncRNA Interaction Data

The experimental human miRNA–mRNA/lncRNA interactions were collected from four datasets, including miRTarBase 7.0 (Chou et al., 2018), miRecords 2013 (Xiao et al., 2009), starBase 2.0 (Li J. H et al., 2014), and lncRNASNP2 (Miao et al., 2018). Through redundancy analysis and standardization, 729,240 miRNA–mRNA pairs and 7092 miRNA–lncRNA pairs were obtained.



Cancer Hallmarks, Cancer-Related mRNA, miRNA, and lncRNA Data

The cancer hallmark-associated GO terms were derived from a previous study (Plaisier et al., 2012). Cancer-related lncRNAs/mRNAs were collected from several databases, including COSMIC v89 (Forbes et al., 2015), NCG 6.0 (Repana et al., 2019), LncRNADisease (Chen et al., 2013), and lnc2Cancer v2.0 (Gao et al., 2019). Besides, we searched miRCancer (Xie et al., 2013) and used the eight caner types as keywords to filter cancer-related miRNA. In total, we obtained cancer-related mRNAs, miRNAs, and lncRNAs for 2362, 461, and 756 separately.



Construction of the Dysregulated ceRNA Networks in Individual Cancer Type

To identify dysregulated ceRNA interactions, the miRNA-target regulations as well as expression associations among miRNA, lncRNA, and mRNA were considered. Then, we constructed the dysregulated ceRNA network according to the following three qualification rules (Figure 1).
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FIGURE 1. The pipeline of identification and construction of dysregulated ceRNA networks across eight cancer types. Step I: preprocessing of lncRNA, miRNA, and mRNA expression profiles from TCGA eight cancer types. Step II: identification of cancer and normal ceRNA networks using the method described in section “Materials and Methods.” Step III: extraction of ceRNA pairs that specifically existed in the cancer or normal samples. Step IV: filtration of common ceRNA pairs that occurred in both conditions using upper and lower quarters. Step V: assembling all the gain and loss interactions to construct dysregulated ceRNA networks.



Predicting Co-regulated Pairs

A hypergeometric test was used to compute the significance of shared miRNAs for each candidate lncRNA–mRNA pair. The P-value was calculated according to:
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where N represents the total number of human miRNAs, K and M represent the total number of miRNAs targeting the mRNA and lncRNA, and r represents the number of common miRNAs between the lncRNA and mRNA. All P-values were subjected to Bonferroni correction, and co-regulated lncRNA–mRNA pairs with adjusted P < 0.01 were considered as candidate ceRNA interaction pairs.



Identification of ceRNA Interactions in Cancer and Normal Samples

Next, we developed a modified mutual information method based on Hermes (Sumazin et al., 2011) to identify ceRNA interactions in cancer and normal samples, respectively. First, we measured the competitive intensity between lncRNAs and mRNAs in cancer or normal conditions according to the following formula:
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In the formula, miR represents the miRNA set shared by lncRNAs and mRNAs. For each miRNA, I[miR;mRNA] is the mutual information between miRNA and mRNA, and I[miR;mRNA| lncRNA] is the mutual information between miRNA and mRNA under the lncRNA condition. Then, we randomly permuted the sample labels 100 times and compared the real ΔI1 with random values. We repeated the flow for ΔI2 and collected the p-values for each triplet. For each miRk in the program, we converted the individual p-values, pk1 and pk2, to a χ2 test statistic using Fisher’s method:
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where N is the total number of miRNAs in the program and pk is the gather of pk1 and pk2. All the candidate ceRNA pairs with posteriori p-value < 0.01 and regulated by at least three common miRNAs were identified as ceRNA interactions in cancer or normal samples.



Construction of Dysregulated ceRNA Network

Finally, we reconstructed the dysregulated ceRNA network based on the acquired ceRNA interactions in cancer and normal samples. First, we defined the ceRNA pairs that specifically existed in cancer or normal samples as gain or loss interaction. Second, for each common interaction that occurred in both conditions, we computed the difference of ΔI in two status, defined as ΔΔI. The pairs with ΔΔI greater than 75% or less than 25% of all ΔΔI values in a specific cancer type were identified as gain or loss interaction, while other common pairs were abandoned considering their similar competitive capacity in both status. Assembling all the gain and loss interactions, we finally obtained the cancer-related dysregulated ceRNA networks. In total, eight dysregulated ceRNA networks (DysCeNets) for eight cancer types were constructed.




Identification of ER lncRNA in the Dysregulated ceRNA Network

Epigenetic regulation is one of the important mechanisms utilized to control lncRNA expression. To explore the association between lncRNA expression and methylation in the dysregulated ceRNA network, we identified ER lncRNA according to the method of Wang Z. et al. (2018). We first searched the probes in the promoter region of each lncRNA to acquire lncRNA–probe pairs. Then, Spearman correlation coefficient between the methylation and expression levels for each lncRNA–probe pair was calculated in each cancer type. The discrete categories included strongly negatively correlated (SNC, correlation coefficient: [−1, −0.5]), weakly negatively correlated (WNC, correlation coefficient: [−0.5, −0.25]), and no negative correlation (NNC, correlation coefficient: [−0.25, 1]), which were assigned based on the correlation coefficient. The probe with the highest coefficient was selected for the lncRNA if multiple probes were annotated to the same lncRNA promoter. Next, we defined lncRNA status according to the observed 30th and 70th beta values across tumor (T) and normal (N) samples. Then, we scored each lncRNA gene per cancer type according to the following rules:


(1)If percentile 70 < 0.25, the lncRNA was constitutively unmethylated in normal or tumor tissue; thus, we scored it as CUN or CUT.

(2)If percentile 30 > 0.75, the lncRNA was constitutively methylated in normal or tumor tissue; thus, we scored it as CMN or CMT.

(3)If percentile 30 > 0.25 and percentile 70 < 0.75, the lncRNA was intermediately methylated in normal or tumor tissue; thus, we score it as IMN or IMT.

(4)If it did not fall into any of the above categories, the lncRNA was variably methylated in normal or tumor tissue; thus, we score it as VMN or VMT.



Finally, we assigned a “call” for each of the possible combinations [3 (SNC, WNC, NNC) × 4 (CUN, CMN, VMN, IMN) × 4 (CUT, CMT, VMT, IMT)] per platform. In this way, the global trend of each lncRNA in one cancer type was acquired. Through combining the obtained pattern with the methylation level of this lncRNA in each cancer sample, we further determined the role of this lncRNA in a single sample. The epigenetic regulation types comprised EA and ES, and the other cases were not considered (Supplementary Table 3). According to the manually defined classifier, if the combination for the lncRNA and methylation probe was SNC × CMN × CUT and the beta value of the cancer sample at this probe was less than 0.25, we called the cancer sample EA at this probe or lncRNA. Next, epigenetic statuses of lncRNAs were characterized based on the percentage of regulated patients. If the number of EA samples was more than twice as the ES samples in a single cancer type, we determined it as EA lncRNA in this cancer type. Similarly, if the number of ES samples was more than twice as the EA samples in a single cancer type, we determined it as ES lncRNA in this cancer type. The others will be defined as multi-ER lncRNAs. The detailed information of these ER lncRNAs that occurred in a single cancer type is shown in Supplementary Table 4.

The characterizing process of ER lncRNAs in pan-cancer was similar as mentioned above. If the number of EA samples was more than twice as the ES samples in at least 75% of cancer types, we determined it as pan-cancer EA lncRNA. For example, the lncRNA was ER in four cancer types and the number of EA samples was twice greater than the ES sample in three cancer types; the percentage was 75%, and we considered this lncRNA as an EA lncRNA in pan-cancer. Next, if the number of ES samples was more than twice as the EA samples in at least 75% of cancer types, we determined it as an ES lncRNA in pan-cancer. The others will be defined as multi-ER lncRNAs, and these lncRNAs played different roles of epigenetic activation and epigenetic silencing in different cancer types. The detailed information of these ER lncRNAs that occurred in pan-cancer is shown in Supplementary Table 5.



Development of ER lncRNA-Based Scores in Cancer Diagnosis

To evaluate the potential diagnosis capacity of ER lncRNAs, the scoring classifier was constructed using two-dimensional data (expression and methylation, Figure 2). We first build four classifiers that separated tumor and normal samples using the mean value of expression and methylation of EA and ES lncRNA, respectively. Next, the four cutoffs acquired from the abovementioned receiver operating characteristic (ROC) curve were collected, and an ER lncRNA-based score was constructed for each sample. We will assign a point when the sample meets either of the following situations: (1) the sample showed higher expression than the EA expression cutoff; (2) the sample showed lower methylation than the EA methylation cutoff; (3) the sample showed lower expression than the ES expression cutoff; (4) the sample showed higher methylation than the ES methylation cutoff. Then, we summarized these points for each sample of the ER lncRNA-based score (range from 0 to 4). A higher score denoted that the sample was subjected to epigenetic regulation in cancer. Finally, the scores of all tumor and normal samples in each cancer type were collected, and ROC curve analyses were conducted to investigate the diagnosis performance of the classifier.
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FIGURE 2. The pipeline of developing ER lncRNA-based scores in cancer diagnosis. Step I: collection of four classifier cutoffs based on the expression and methylation of EA and ES lncRNA, respectively. Step II: construction of ER lncRNA-based scores for each sample. Step III: development of ER lncRNA classifier in cancer diagnosis.




Survival Analysis

The Cox regression was performed to evaluate the prognosis of each ER lncRNA based on its expression or methylation level. Then, the ER lncRNAs with potential prognosis (cox-P < 0.3) were combined to obtain the survival score for each cancer sample according to the following formula:
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where Xi is the expression or methylation level of lncRNA i in sample S, HRi is the overall hazard ratio of lncRNA i, se(HRi) is the standard estimates of HRi, and n is the number of ER lncRNAs.

The median score was used as the cutoff point to divide the patients into low-risk and high-risk groups. The overall survival (OS) of these groups was compared using log-rank test.




RESULTS


Global Properties of Dysregulated ceRNA Networks Across Eight Cancer Types

lncRNA has been found to act as ceRNA that indirectly regulates mRNA via shared miRNAs, and the dysregulation of the crosstalk between ceRNAs could promote the development of cancers (Zhang S. et al., 2018; Li P. et al., 2020). To assess dysregulated lncRNA-associated ceRNA patterns in cancer process, we identified the gain and loss ceRNA interactions and further constructed dysregulated ceRNA networks for eight cancer types (Figure 1). In total, we identified 6381 mRNAs and 154 lncRNAs participating in 47,714 dysregulated ceRNA interactions. In DysCeNets, there were 2807–4589 mRNA and 51–102 lncRNA involved in ceRNA dysregulation (Table 1 and Figure 3A). We then explored the distribution of gain and loss dysregulated patterns of ceRNA interaction across networks. As a result, there were 3360–7885 gain interactions and 1921–6846 loss interactions across eight cancer types (Figure 3B). These dysregulated ceRNA pairs were either specifically competing with miRNAs in cancer/normal context or significant differences in the intensity of competitive capacity between both statuses. These results suggest that ceRNA dysregulation was common in the cancer process.


TABLE 1. Statistics of nodes and edges in the ceRNA dysregulated network across eight cancer types.
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FIGURE 3. Property features of DysCeNets across eight cancer types. (A) The number of mRNA and lncRNA in DysCeNets. (B) The number of gain and loss interactions in DysCeNets. A purple column represents ceRNA pairs that specifically existed in cancer samples, a green column represents ceRNA pairs that specifically existed in normal samples, and blue and yellow columns represent upper and lower quarters of common ceRNA pairs. (C) The characteristic path length, average edge betweenness, and average node betweenness of DysCeNets compared to random networks are shown in the left panel. The distribution of node degree, the differences of node degree, and betweenness between mRNA and lncRNA are shown in the right panel. (Take BRCA as an example, the other cancer properties are shown in Supplementary Figure 1.) (D) The comparison of mRNAs, lncRNAs, and edges between any two cancer types. (E) The length, number of exons, and expression level of lncRNAs in the DysCeNets compared with lncRNAs not involved in the networks.


The global patterns of lncRNA-associated competing triplets and the characteristics of ceRNAs in the network across different cancer types have been revealed (Wang et al., 2015). However, few studies have focused on the dysregulated ceRNA interactions in pan-cancer. Through topological feature analysis, properties of DysCeNets were revealed (Figure 3C and Supplementary Figure 1). Firstly, the node degree distribution of the networks was investigated. We found that these DysCeNets revealed power-law distribution with R2 ranging from 0.57 to 0.62, suggesting that the networks displayed scale-free characteristics typical of biological networks. In each DysCeNet, most ceRNAs had few interacting dysregulated ceRNA partners, while a small subset of ceRNAs had a relatively large number of interacting dysregulated ceRNAs. In general, the characteristic path length, average node, and edge betweenness were significantly increased when compared with random networks (P-value < 0.001), implying that the DysCeNet had reduced global efficiency. In addition, we found that node degree and betweenness of lncRNAs were significantly higher than mRNAs (Wilcoxon test, P-value < 0.05), suggesting the leading roles of lncRNAs in the dysregulated networks.

Herein, we compared the attributes (including mRNAs, lncRNAs, and edges) of the DysCeNets and found that any two DysCeNet shared a large proportion of mRNA and lncRNA, implying that the lncRNA-associated ceRNA dysregulation was widespread in the cancer environment (Figure 3D). Besides, we found that the lncRNAs in the dysregulated ceRNA pairs were more consistent than mRNAs, suggesting that lncRNAs may play more crucial roles in ceRNA dysregulation. Moreover, DysCeNets obtained from similar original tissues tended to share more lncRNAs, which were consistent with previous studies (Xu et al., 2015; Zhang Y. et al., 2016). For instance, KIRC and KIRP are two types of kidney carcinomas, and approximately 88% of lncRNAs in KIRC also worked in KIRP. This analysis revealed that the molecular characterization of cancers with similar tissue of origin was more relevant than the others. Although there was a considerable mean of 1314 common pairs between any two cancer types, their Jaccard indexes ranged from 0.057 to 0.103, which were far less than the nodes’ indexes.

To explore the lncRNA properties as miRNA sponge in DysCeNets, the related characteristics including transcript length, number of exons, and expression level were compared to those lncRNAs that were not involved in DysCeNets. As a result, the lncRNAs in DysCeNets were found to have longer transcript length, own more exons, and express higher than other lncRNAs in eight cancer types (Wilcoxon test, P-value < 0.05, Figure 3E), suggesting that they are more adaptable to act as miRNA sponges. The detailed comparative information between lncRNA in and out networks was provided in Supplementary Table 6. Together, these results validated that lncRNAs are key components involved in ceRNA dysregulation.



The Core Dysregulated ceRNA Component Is Strongly Related to Cancer Processes

A common core of ceRNA regulatory interactions was defined as a component whose ceRNA triplets occurred in multiple cancer types. The core component could maintain the architecture of ceRNA networks across cancers and those ceRNAs in the component were found to be highly enriched in basic cellular processes to cancer (Xu et al., 2015). To determine the core component that exists in dysregulated ceRNA networks, we focused on the dysregulated ceRNA interactions that occurred in at least four cancer types. In total, 1713 edges were extracted to construct the core component, involving 1291 mRNAs and 43 lncRNAs (Figure 4A). We further defined the edges with consistent dysregulated type in more than 75% of cancers as gain or loss interactions and the others as multi-interactions in the pan-cancer dysregulated core component. We found that 57.62% of the edges in the core component showed the same dysregulated direction across multiple cancers. There were 590 gain interactions (59.78%) and 397 loss interactions (40.22%), indicating that a stable portion of RNA molecules tended to gain competitive relationships during cancer process. In addition, 42.38% of the edges showed different status among cancers, suggesting the complexity of ceRNA dysregulation.
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FIGURE 4. The property and functional analysis of the core component. (A) The largest component of the core dysregulated ceRNA interactions. (B) The property of edge linked to lncRNAs in the core component. The assignment of lncRNAs was sorted by node degree in the core component. Only show the lncRNAs with a degree of more than 10 in the core component. (C,D) The comparison of the percent of cancer-related ceRNAs and the number of common miRNAs between the core component ceRNAs and single dysregulated network. (E,F) The biological process and KEGG pathway enriched by the genes in the core component.


Next, the proportion of different dysregulated interactions that lncRNAs linked in the core component is explored in Figure 4B. We found that lncRNAs with coincident property in the core component may associate with multiple cancer processes. For example, the lncRNA MALAT1, which owned the largest subnetwork and largest loss proportion, was found to regulate cancer glucose metabolism by enhancing mTOR-mediated translation of TCF7L2 in hepatocellular carcinoma (Malakar et al., 2019). Moreover, the lncRNA MALAT1 could mediate cisplatin resistance via the miR-101-3p/VEGF-C pathway in bladder cancer (Liu et al., 2019) and promote cell proliferation and inhibit apoptosis by sponging miR-101 in colorectal cancer (Si et al., 2019). Another case is the lncRNA HCG18, possessing the most gain interactions, which could cooperate with NOTCH1 to regulate the proliferation and migration of bladder cancer cells (Xu et al., 2019). In addition, HCG18 was identified as an immune-related signature and showed prognostic efficacy for anaplastic gliomas (Wang W. et al., 2018). The NEAT1–MET axis was identified as gain interaction in our pan-cancer core component, suggesting that the competitive relation between NEAT1 and MET happened in cancer environment. Several studies have proved that NEAT1 can regulate c-met via ceRNA mechanism in different cancer types. For instance, NEAT1 suppressed sorafenib sensitivity of hepatocellular carcinoma cells via regulating miR-335/c-Met (Chen and Xia, 2019). NEAT1 was also found to regulate the growth, invasion, and migration of pancreatic cancer cells through microRNA-335-5p/c-met (Cao et al., 2016). These results further verified the validity of our study, and the utilization of the method could provide potential cancer biomarkers.

Using a cohort of publicly available datasets including COSMIC, NCG, LncRNADisease, and lnc2Cancer, cancer-related mRNAs and lncRNAs were collected. We found that each DysCeNet owned 17.24–18.47% cancer-related mRNAs and 28.43–42.03% cancer-related lncRNAs. Through comparing the core component with single DysCeNet, we found that the percent of cancer-related ceRNAs (especially lncRNAs) in the core component was higher than that in single dysregulated network (Figure 4C). The large proportion of cancer-related lncRNAs in dysregulated networks and core component further confirmed the crucial position of lncRNAs, which was consistent with previous results. A previous study has demonstrated the relationship between the number of common miRNAs and the intensity of ceRNA competitive capacity; co-expression of ceRNAs in the network could increase with the number of common miRNAs (Xu et al., 2015). In our study, we found that the numbers of common and cancer-related miRNAs that ceRNAs compete with in the core component were significantly increased than those in a single dysregulated network (Wilcoxon test, all P-value < 0.05, Figure 4D and Supplementary Figure 2). This result revealed that the stable ceRNA pairs were inclined to dysregulate in the pan-cancer level. Due to the limitation of annotated information for lncRNAs, lncRNA functions were frequently presumed based on known functions of related mRNAs (Wang et al., 2015, 2019; Song et al., 2017). Thus, the biological process and KEGG pathway enrichments were tested using mRNAs that occurred in the component. Processes for cell proliferation (such as cell death and cell cycle) and cancer-related pathways (such as TGF-beta signaling pathway, MAPK signaling pathway, and pathways in cancer) were highly enriched (Figures 4E,F). Overall, these observations suggest that the core dysregulated ceRNA component was strongly related to cancer processes and further proved the importance of lncRNAs.



Identification of ER lncRNAs Involved in ceRNA Dysregulation

Growing evidences suggest that DNA methylation, a fundamental feature of epigenomes, can affect lncRNA expression, and there are intricate regulatory relationships between DNA methylation and lncRNA (Hadji et al., 2016; Yang et al., 2017; Zhi et al., 2018). Among these studies, Wang et al. characterized the epigenetic landscape of lncRNAs and identified recurrent ER lncRNAs in 20 cancer types (Wang Z. et al., 2018). However, the function of ER lncRNAs and the effect of lncRNA alternations on relevant mRNAs have not yet been explored. Here, we combined expression and methylation data to identify ER lncRNA involved in a single-ceRNA dysregulated network. All ER lncRNAs showed a negative correlation between their expression and promoter DNA methylation status. For EA lncRNAs, they showed hypermethylation and low expression in normal samples, while their methylation level decreased and expression was upregulated in tumor samples. For ES lncRNAs, they showed hypomethylation and high expression in normal samples, while their methylation level increased and expression was downregulated in tumor samples. Based on these principles, we totally identified 49 ER lncRNAs with a rate of 31.82% (154 lncRNAs in total) involved in DysCeNets. Through analyzing the epigenetic status of each ER lncRNA in the different samples of single cancer type, it was found that the vast majority of ER lncRNAs in single cancer were either inclined to EA (EA/ES > 2) or ES (ES/EA > 2) (Figure 5A and Supplementary Table 4). Only SVIL-AS1 in HNSC and RP11-218M22.1 in PRAD were subjected to complex regulation. These results revealed that the epigenetic regulation of lncRNAs showed a tendency in a single cancer type. Next, we explored the role of each ER lncRNA across cancer types and found that there were 22 ER lncRNAs that occurred in unique cancer type (10 EA and 12 ES lncRNAs), while 27 ER lncRNAs were regulated by DNA methylation in multiple carcinomas (Figure 5A). We further investigated the regulatory tendency of ER lncRNAs in pan-cancer based on the status of ER lncRNAs in each cancer type. For ER lncRNAs that occurred in pan-cancer, we identified consistently EA and ES lncRNA in pan-cancer (at least 75% of cancer types), including eight EA lncRNAs and six ES lncRNAs. In addition, the function of some ER lncRNAs in different cancer types was rewired. We recorded these lncRNAs as multi-ER lncRNAs based on their epigenetic regulation across cancer types. In summary, there were 18 EA lncRNAs, 18 ES lncRNAs, and 13 multi-ER lncRNAs involved in DysCeNets. From the landscape of lncRNAs, we could clearly know their epigenetic status in different cancer types. For instance, lncRNA PVT1 was EA in BRCA, HNSC, KIRC, LUSC, and PRAD cancer types, while lncRNA HCG18 was ES in only KIRC carcinoma.
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FIGURE 5. The distribution and attribute of ER lncRNAs in DysCeNets. (A) Percentages of EA and ES lncRNAs in eight cancer types. Each pie chart indicates the percentage of each lncRNA epigenetic alteration in each cancer type. Red indicates EA lncRNAs, and green indicates ES lncRNAs. The symbol of lncRNAs with special color represents the lncRNA altered in a specific cancer type. Symbols below with A represented EA lncRNAs, S represented ES lncRNAs, and M represented multi-ER lncRNAs. The red frame represents the lncRNAs epigenetically activated in pan-cancer, and the green frame represents the lncRNAs epigenetically silenced in pan-cancer. (B) The property of edges linked to ER lncRNAs in DysCeNets. Each pie chart indicates the percentage of dysregulated status. Purple indicates gain interaction, and green indicates loss interaction. (C) The property of edge linked to EA and ES lncRNAs in DysCeNets. **P-value < 0.05, *P-value < 0.1. (D) The comparison of lncRNAs and related mRNAs between epigenetically related ceRNAs and core component. (E) The node degree distribution of top 100 ceRNAs in BRCA DysCeNet. The blue column represents the node degree of ER lncRNAs. The symbol colored red represents EA lncRNAs, and the symbol colored green represents ES lncRNAs.


To explore the effects of ER lncRNAs on ceRNA dysregulation, we next characterized the proportion of edges linked to ER lncRNAs. As shown in Figure 5B, a large scale of EA and ES lncRNAs were inclined to possess gain interaction while a small part of lncRNAs linked with loss interaction in each DysCeNet. We further compared the number of gain and loss interactions in which EA or ES lncRNAs regulated. The result showed that EA lncRNAs in KIRC, LIHC, and THCA DysCeNets owned more gain interactions than loss interactions, and ES lncRNAs in HNSC DysCeNet had the same phenomenon (Figure 5C and Supplementary Figure 3). Together, these results indicated that EA and ES lncRNAs were inclined to possess gain interaction in most cancer types (other cancers showed similar tendency but their P-values were not significant, which may be due to the limited number of ER lncRNAs in comparative groups). In addition, 17 ER lncRNAs and 945 related mRNAs were highly enriched in the core dysregulated ceRNA component above (Hypergeometric test, Figure 5D), which implied the vital function of ER lncRNAs in common cancer processes. Notably, the ER lncRNAs were also highly enriched in the top 100 nodes with the largest degree in each DysCeNet (Fisher test, Supplementary Figure 4). For example, 12 of 15 ER lncRNAs in BRCA DysCeNet were included in the top 100 of 3671 nodes (P-value = 2.87e−12, 12 of 15 vs. 100 of 3671, Fisher test, Figure 5E). All these observations suggest that the ER lncRNA might influence the stability of ceRNA interactions and further affect the cancer process.



Identification of Potential Diagnostic ER lncRNAs

Epigenetic alterations have been established as one of the hallmarks of tumorigenesis, and the ER lncRNAs may provide new insight into the cancer diagnosis. We first filtrated ER lncRNAs with continuous status in multiple cancers (EA samples/ES samples > 2 or <0.5 in at least three cancer types) and obtained six EA lncRNAs (PVT1, PSMD5-AS1, FAM83H-AS1, MIR4458HG, HCP5, and GAS5) and three ES lncRNAs (CTD-2201E18.3, HCG11, and AC016747.3) (Figure 6A and Table 2). The association between expression and DNA methylation of these lncRNAs has been revealed in several studies. For instance, the EA lncRNA PVT1 expression was strongly and negatively correlated with its methylation status in uveal melanoma (Xu et al., 2017). Hypomethylation within another EA lncRNA HCP5 involves a CpG site that contains a single-nucleotide polymorphism in linkage disequilibrium with HLA-B∗27 and that controls DNA methylation at this locus in an allele-specific manner in ankylosing spondylitis (Coit et al., 2019). Overall, these pan-cancer ER lncRNAs were associated with multiple complex diseases. Next, we developed a frame to understand the relation between ER lncRNAs and cancers by connecting ER lncRNAs with cancer hallmark associated GO terms derived from a previous study (Plaisier et al., 2012). In the hierarchical model, the ER lncRNAs were firstly linked to mRNAs through ceRNA dysregulation. Then, ER lncRNA-related mRNAs were associated with biological processes and finally connected to cancer hallmarks. Through mapping hallmark genes to the ER lncRNAs, four cancer hallmarks including sustained angiogenesis, self-sufficiency in growth signals, insensitivity to antigrowth signals, and tissue invasion and metastasis were found to be associated with six ER lncRNAs in eight cancer types (Figure 6B). These results can help us comprehend how pan-cancer ER lncRNAs regulate mRNAs through ceRNA dysregulation and further influence cancer biological processes.
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FIGURE 6. The performance of nine ER lncRNAs in distinguishing cancer patients from normal samples. (A) The layout of nine ER lncRNAs. The symbol of lncRNAs with red color represents the lncRNA epigenetically activated in pan-cancer, and the symbol of lncRNAs with green color represents the lncRNA epigenetically silenced in pan-cancer. (B) Summary of the hierarchical model to systematically understand the function of ER lncRNAs in DysCeNets. The model is laid out hierarchically with (from the top down) cancers, ER lncRNAs, mRNAs, annotated GO biological process terms, and hallmarks of cancers. (C) The ROC curve of ER lncRNAs based on two-dimensional datasets. (D) The performance of ER lncRNAs classifiers based on TCGA expression, TCGA methylation, and expression combined methylation levels. (E) The comparison of the classifiers among nine ER lncRNAs, nine lncRNAs randomly selected from DysCeNets, and nine lncRNAs randomly selected from expression/methylation profiles. (F) The ROC curve of ER lncRNAs based on the GEO methylation datasets. (G,H) The validated ER lncRNAs classifiers using external expression and methylation GEO datasets.



TABLE 2. Detailed information of nine epigenetically related lncRNAs.
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Cancer-related genes usually showed significant differences in cancer and normal tissues and thus could distinguish carcinoma and normal samples as biomarkers (Smolle et al., 2019; Yoon et al., 2020). We have previously discovered the important roles of ER lncRNAs in DysCeNet and their guidance on the dysregulation of ceRNA interactions. Next, we expected to predict the status of cancer through these important nodes involved in DysCeNets. To determine whether these ER lncRNAs have the diagnostic capacity in multiple cancer types, we developed a classifier based on these ER lncRNAs as described in section “Materials and Methods.” This method systematically integrated the methylation and expression levels of ER lncRNAs. If the EA lncRNAs showed hypomethylation and high expression and the ES lncRNAs showed hypermethylation and low expression in one sample (based on four cutoffs obtained by ROC curves), we would assign the maximal score to that sample (scores of samples ranged from 0 to 4). Based on the scoring principle, the cancer samples with ER status would get higher scores, while the normal samples would hold lower scores. To verify the predictive validity of the score, we calculated the areas under the curve (AUCs) of our method and found that the AUCs distributed in 0.7412–0.9917 across eight cancer types (Figure 6C). We then compared the AUCs of our method in eight cancer types with the method that simply considered methylation or expression level of the same ER lncRNAs. As shown in Figure 6D and Supplementary Table 7, the classifier performed better when two-dimensional data instead of single-platform data were considered, and the single methylation dimension-based classifier performed apparently better than the single expression dimension-based classifier. Furthermore, we randomly selected nine lncRNAs from DysCeNets and expression/methylation profiles and conducted two classifiers using our method based on these random lncRNAs for 1000 times. We found that the performance of nine ER signatures across eight cancer types was significantly higher than those nine lncRNAs randomly selected (Figure 6E). These results proved the validity of our classifier based on two-dimension data in distinguishing cancer and normal samples. To further test the predictive effect of these nine ER lncRNAs on cancer, we downloaded 15 sets of independent data from the GEO database. Due to the lack of a complete omics study like TCGA, we separately obtained eight sets of expression profiles and seven sets of methylation profiles (lacking the KIRP methylation dataset). Using these 15 external GEO datasets, we developed two classifiers that simply considered methylation or expression level of our pan-cancer ER lncRNAs as before. The AUCs of the classifiers based on the external methylation data of these ER lncRNAs ranged from 0.7124 to 1 (Figure 6F). Similar to the result of TCGA datasets, the lncRNA methylation status separated the tumor and normal sample better than expression data (Figures 6G,H). In conclusion, these nine ER lncRNAs could serve as predictive biomarkers for multiple cancers. Moreover, the prediction effect of ER lncRNAs would reach best when combining expression and methylation data. For cases of lacking paired omics data, it is better to utilize methylation level data than expression level data to construct the classifier.



The ER lncRNAs Predict the Prognosis of Cancer Patients

The ability of ER lncRNAs to cancer diagnosis has been examined herein before. We then evaluated the effect of these ER lncRNAs on cancer progression, that is, to determine whether patients with different OS could be distinguished based on expression or methylation data of these ER lncRNAs. As described in section “Materials and Methods,” the TCGA paired samples were regarded as a train set, and other TCGA samples were regarded as the test set. We first estimated the survival difference between high and low score groups in the train set and then validated the effectiveness of these ER lncRNAs in the test set using the parameters [including median score, HR, and se(HR)] of the train set. The low survival score based on ER lncRNAs predicted poor prognosis in most cancer train sets, and there were three test sets that performed well, including KIRC expression dataset, KIRP, and LIHC methylation datasets. The genome information and related CpG probes of the ER lncRNAs that occurred in three datasets are shown in Figure 7A. There are six ER lncRNAs whose methylation levels in the promoter region changed, thus affecting lncRNA expression in these three datasets, including four EA lncRNAs (FAM83H-AS1, MIR4458HG, HCP5, and GAS5) and two ES lncRNAs (HCG11 and AC016747.3). In particular, FAM83H-AS1, HCP5, GAS5, and HCG11 were identified in the pan-cancer core component mentioned above. As shown in the left panel of Figures 7B–D, the survival score based on ER lncRNAs could predict the prognosis of cancer patients. Next, the multivariate Cox regression model was used to verify the prognostic efficacy of multiple clinical factors. The survival score based on ER lncRNAs was found to be positive as a protective factor, and the stage conversely showed prognostic efficacy as a risk factor (all P-value < 0.05, Figures 7B–D, middle panel). Then, patients with stage I and II were merged into the low-stage group, and patients with stage III and IV were merged into the high-stage group. We integrated the score based on ER lncRNA and stage information and estimated the survival curves by the similar method above. It was found that the prognosis capacity was stronger than the method using molecular-level data alone. In particular, in the case of the high-stage group, the OS of patients with high scores showed significantly better than those with low scores (Figures 7B–D, right panel and Supplementary Figure 5). These results implied that the combination of molecular and clinical data could better predict the survival of these cancer patients. Collectively, the data suggest that ER lncRNAs involved in ceRNA dysregulated network could not only act as cancer diagnostic markers but also influence cancer progression and outcome in some cancer types.
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FIGURE 7. ER lncRNAs as prognostic factors in various tumors. (A) The locations of ER lncRNAs occurred in three datasets (blue), CpG islands (green), and HM450 probes (red) in GRCh38 reference human genome. The symbol colored red represents EA lncRNAs, and the symbol colored green represents ES lncRNAs. (B–D) Kaplan–Meier estimates of OS of patients with KIRC expression, KIRP methylation, and LIHC methylation levels according to the ER lncRNA signature. Kaplan–Meier estimates of the OS of patients in train, test, and all sets according to the ER lncRNAs are shown in the left panel. The hazard ratios of clinical factors using a multivariate Cox regression model are shown in the middle panel. Kaplan–Meier estimates of the OS between low-stage and high-stage patients according to the ER lncRNAs are shown in the right panel.





DISCUSSION

The dysregulation of ceRNA was both widespread and influential in cancer development (Karreth and Pandolfi, 2013; Sanchez-Mejias and Tay, 2015). Exploration of the mechanism in the ceRNA dysregulated process is therefore worthy of attention and may provide new insight into cancer diagnosis and treatment. In recent years, several researches had proved that the alternation of upstream factors had an impact on the downstream competitive relation between ceRNAs, which included somatic nucleotide variations (SNVs), copy number variations (CNVs), 3′UTR shortening, and transcription factors (TFs) (Li L. et al., 2014; Paci et al., 2014; Wang P. et al., 2020). Among them, Li et al. (2017) developed a comprehensive catalog and identified genetic variants that might be responsible for ceRNA dysregulation at the post-transcriptional level in human genome. Moreover, evidence had shown that the shortening in the 3′UTR region of ceRNA molecular could repress tumor-suppressor genes in trans in BRCA tissues (Park et al., 2018). However, whether another important upstream factor, DNA methylation, could disrupt ceRNA crosstalk is still unclear. Novel epigenetically diagnostic and prognostic biomarkers associated with ceRNA dysregulation should be further investigated.

In this study, we integrated the transcriptome expression and DNA methylation data to investigate the association between methylation and ceRNA dysregulation in multiple cancer types. Using modified mutual information-based method, we not only identified cancer or normal context-specific dysregulated lncRNA–mRNA interactions but also extracted triples with significant differences between both statuses. These data provided more comprehensive DysCeNets than those that care much about the cancer specificity dysregulated interactions. Through the topological properties analysis of each DysCeNet as well as the conservative attribute analysis at the pan-cancer level, it was found that lncRNAs played essential roles in the ceRNA dysregulation process. Furthermore, we illustrated the landscape of ER lncRNAs related to ceRNA dysregulation. The ER lncRNAs that occurred in single cancer type showed a regulatory tendency, while the pan-cancer ER lncRNAs were found to be affected in a complex pattern. We also investigated the attribute of interactions linked to ER lncRNAs and found that ER lncRNAs dominated vital positions in DysCeNets. Our study developed a novel strategy to interpret DNA methylation effect in ceRNA dysregulation and highlights the essential roles of ER lncRNAs in the cancer process.

It is important to determine the diagnostic and prognostic efficiency of pan-cancer ER lncRNAs since those lncRNAs were found to be associated with multiple cancer hallmarks. Multiple evidences have proved the capacity of ER lncRNAs in single cancer type. For instance, the transcriptional activity of EA lncRNA PVT1 was strongly upregulated and associated to promoter hypomethylation in KIRC (Posa et al., 2016), which was consistent with our result, and its misregulation could predict unfavorable prognosis in KIRC patients (Bao et al., 2017). As other examples, rs145204276 affected the methylation status of the EA lncRNA GAS5 promoter and subsequently upregulated its expression in Chinese HCC samples (Tao et al., 2015). Moreover, lncRNA GAS5 could promote tumor progression by targeting TP53INP1 in hepatocellular carcinoma (Zhang et al., 2019) and the GAS5/TP53INP1 axis was also identified as gain interaction in our LIHC DysCeNet. All these observations suggested the important roles of ER lncRNAs on carcinogenesis and tumor progression. Therefore, we developed a systematic strategy that considers both methylation status and expression level, and identified nine ER lncRNAs with pan-cancer diagnostic capacity. A recent study has proved that non-coding RNA could serve as a survival predictor of cancer (Bao et al., 2021). Therefore, the prognostic efficacy of the abovementioned ER lncRNAs had also been verified.

An increasing number of researches suggest that tumor microenvironment plays a crucial role in cancer therapy (Zhang Z. et al., 2020). As a critical immune regulator, lncRNA has been found to correlate with immune cell infiltration and immunotherapy response in different cancer types (Sun et al., 2020; Zhou et al., 2020). Therefore, we analyzed the relationship between pan-cancer ER lncRNAs and various immune cells through ImmLnc (Li Y. et al., 2020). We found that the expression of seven ER lncRNAs was significantly correlated with the immune cell infiltration (Supplementary Figure 6). Moreover, mostly ER lncRNAs showed the same correlation direction across multiple cancers. Regarding the high frequency of immune cell infiltration-related lncRNA HCP5, the lncRNA has been reported to sponge miR-150-5p and upregulated the expression of PD-L1/CD274, thus promoting tumor growth and affecting immunotherapy (Xu et al., 2020). These results suggest a potential role among DNA methylation, ceRNA mechanism, and immune regulation, and lncRNAs may be the key molecules in this process.



CONCLUSION

In summary, this work integrated multi-dimensional data to reconstruct the dysregulated ceRNA networks across eight cancer types and focused on lncRNA as the entry point to identify ER lncRNA that was involved in ceRNA dysregulation. The influence of the ER lncRNA on ceRNA dysregulation was deeply explored, and the possibility of the ER lncRNA as cancer diagnostic and prognostic biomarkers was verified. Along with the exploration on the relationship between ceRNA dysregulation and upstream regulators, this study will provide a novel insight for understanding the impact of DNA methylation on the post-transcriptional regulation and promote epigenetics research in cancer tumorigenesis and progression.
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Cells of all tissues in the human body share almost the exact same DNA sequence, but the epigenomic landscape can be drastically distinct. To improve our understanding of the epigenetic abnormalities in prostate-related diseases, it is important to use the epigenome of normal prostate as a reference. Although previous efforts have provided critical insights into the genetic and transcriptomic features of the normal prostate, a comprehensive epigenome map has been lacking. To address this need, we conducted a Roadmap Epigenomics legacy project integrating six histone marks (H3K4me1, H3K4me3, H3K9me3, H3K36me3, H3K27me3, and H3K27ac) with complete DNA methylome, transcriptome, and chromatin accessibility data to produce a comprehensive epigenome map of normal prostate tissue. Our epigenome map is composed of 18 chromatin states each with unique signatures of DNA methylation, chromatin accessibility, and gene expression. This map provides a high-resolution comprehensive annotation of regulatory regions of the prostate, including 105,593 enhancer and 70,481 promoter elements, which account for 5.3% of the genome. By comparing with other epigenomes, we identified 7,580 prostate-specific active enhancers associated with prostate development. Epigenomic annotation of GWAS SNPs associated with prostate cancers revealed that two out of nine SNPs within prostate enhancer regions destroyed putative androgen receptor (AR) binding motif. A notable SNP rs17694493, might decouple AR’s repressive effect on CDKN2B-AS1 and cell cycle regulation, thereby playing a causal role in predisposing cancer risk. The comprehensive epigenome map of the prostate is valuable for investigating prostate-related diseases.

Keywords: epigenetics, prostate, histone modification, ChIP-seq, WGBS, ATAC-seq, RNA-seq


INTRODUCTION

In the 1940s, the term epigenetics was first introduced to describe the interaction between a phenotype and the environment (Waddington, 2012). Interest in epigenetics has been fueled by accumulating evidence that the mechanisms are associated with various human diseases and developmental stages. This includes nearly all types of cancer, and autoimmune, cardiovascular, and hereditary disorders (van der Harst et al., 2017; Cavalli and Heard, 2019). The Human Genome Project provided a high-quality human genome assembly, a milestone in genomic and medical research (Collins et al., 2003). Although all cells and tissues in the human body share a nearly identical genome, the epigenomic landscape varies as a function of cell type, developmental stage, and environmental impact. To annotate regulatory regions of the genome, large-scale mapping of epigenomic modifications has been undertaken in recent years. The NIH Roadmap Epigenomics Consortium integrated epigenomic maps to develop a database of tissue-specific functional elements, with distinct chromatin states and generated reference epigenomes for 127 human tissues and primary cells (Roadmap Epigenomics Consortium et al., 2015). These maps have been extensively used to gain an in-depth understanding of the role of epigenomic modifications underlying diverse human traits, as well as gene regulation, cell differentiation, and tumorigenesis (Chen et al., 2016; Yu et al., 2016; Pomerantz et al., 2020). However, prostate tissues were not included in these initial studies.

The prostate gland is a male reproductive organ that produces seminal fluids to feed and protect sperm cells. It is also associated with hormone release and sexual health (Verze et al., 2016). On the contrary, adenocarcinoma of the prostate is one of the leading causes of cancer-related deaths among men (Cornford et al., 2021). Most studies have confirmed that prostate cancer is often associated with a variety of abnormal epigenetic modifications of the genome, such as the global loss of DNA methylation, reprogramming of histone modification marks, and abnormal activation of tissue-specific enhancers, among others (Stelloo et al., 2018; Zhao et al., 2020). To gain a clear understanding of the epigenetic abnormalities in prostate cancer, it is important to use the epigenome, including detailed maps of cis-regulatory elements and chromatin states, of the normal prostate tissue as a reference. However, the majority of epigenomic datasets available are from prostate cancer, instead of normal prostate tissue (Stelloo et al., 2018; Rhie et al., 2019).

To close this knowledge gap, we produced multiple omics datasets from the normal prostate, including histone modifications, DNA methylation, chromatin accessibility, and RNA transcripts. We generated a high-resolution reference epigenome map to facilitate investigation of the normal biology and pathophysiology of the prostate. These annotations were used to identify epigenome differences between the prostate and other tissues. Furthermore, by comparing with previously published Roadmap epigenomes, we defined prostate-specific regulatory elements and made these resources publicly and freely available. By applying the prostate reference epigenome to functionally annotate genetic variants associated with prostate cancer, we identified two GWAS SNPs in prostate enhancers that may disrupt androgen receptor (AR) binding and the target gene regulatory network, thereby providing a mechanistic hypothesis regarding genetic predisposition for the disease.



MATERIALS AND METHODS


Sample Collection

Prostate specimens were collected from radical cystectomies treating bladder cancer at the Urology Department of Changhai Hospital, Shanghai, China. Informed assent/consent was obtained in accordance with Chinese legislation. Ethical committee approval was secured from Changhai Hospital (CHEC2019-012). All samples were immediately frozen after collection in liquid nitrogen and stored at –80°C. Hematoxylin and eosin-stained (H&E) slides from each case were independently reviewed by two genitourinary pathologists. Samples enriched with normal prostate epithelium (> 70%) were used for the analyses. The clinical information of all cases is presented in Supplementary Table 1.



DNA and RNA Extraction

Genomic DNA was extracted using the DNeasy Tissue Kit (Qiagen) according to the manufacturer’s protocol. RNA was extracted using TRIzol reagent (Invitrogen). The total DNA/RNA concentration was measured using a Qubit fluorometer (Invitrogen). RNA purity was checked using a NanoPhotometer spectrophotometer (IMPLEN, München, Germany).



Chromatin Immunoprecipitation Sequencing (ChIP-Seq) Library Generation

Samples were cut into 2–3 mm 3 pieces, fixed in 1.5% formaldehyde for 10 min, and quenched with glycine. The tissues were mechanically extracted by applying 50–75 strokes using a Dounce homogenizer (Type B). Chromatin was sheared to 200–500 bp using a high-power Bioruptor Plus sonicator for 30 cycles (10 s ON, 10 s OFF). For each ChIP, 1–3 μg of antibodies were conjugated with 100 μL Protein G Dynabeads (Thermo Fisher Scientific, Cat. No. 10004D, 5 mL). Antibodies against the histone marks H3K4me3 (ab8580, Abcam), H3K4me1 (ab8895, Abcam), H3K9me3 (ab8898, Abcam), H3K36me3 (ab9050, Abcam), H3K27ac (ab177178, Abcam), and H3K27me3 (Cat. No: 39155, Active Motif) were used for immunoprecipitation. The immunoprecipitated and input DNA was purified with QIAquick Spin Columns (QIAGEN) and then subjected to library preparation using the ThruPLEX DNA-seq 48D Kit (Rubicon Genomics) according to the manufacturer’s instructions. The libraries were inspected with a Qubit fluorometer, Agilent Bioanalyzer 2100 system, and StepOnePlus Real-Time PCR.



mRNA Sequencing (RNA-Seq) Library Generation

The RNA-seq libraries were generated using the NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, United States) according to the manufacturer’s protocol. In total, 3 μg RNA was used for each sample. Briefly, mRNA was purified using oligo (dT) magnetic beads. Purified RNA was subjected to fragmentation, reverse transcription, end-repair, 3’-end adenylation, adaptor ligation, and polymerase chain reaction (PCR) amplification. The final product was purified using the AMPure XP system, and library quality was checked using the Agilent Bioanalyzer 2100 system.



Assay for Transpose Accessible Chromatin Using Sequencing (ATAC-Seq) Library Generation

The fresh-frozen samples were disassociated as previously described (Corces et al., 2017). A total of 50,000 isolated nuclei were used, and library preparation was performed using the Nextera DNA Library Preparation Kit (Illumina) according to the manufacturer’s protocol. Transposed DNA was then purified using the MinElute PCR Purification Kit (Qiagen), amplified using the NEBNext High-Fidelity PCR Master Mix (New England Biolabs, Ipswish, MA, United States), and purified using the MinElute PCR Purification Kit (Qiagen).



Whole-Genome Bisulfite Sequencing (WGBS) Library Generation

In total, 5.2 μg of genomic DNA and 26 ng lambda DNA were sheared to 200–500 bp using a Bioruptor Plus sonicator. Cytosine-methylated barcodes were ligated to DNA fragments. Lambda DNA was used to calculate the bisulfite conversion rate. These DNA fragments were treated twice with bisulfite using the EZ DNA Methylation-Gold Kit (Zymo Research) according to the manufacturer’s instructions. Subsequently, the single-strand DNA was PCR-amplified using KAPA HiFi HotStart Uracil + ReadyMix (2X), and the insert size was assayed on an Agilent Bioanalyzer 2100 system.



Generation of Sequencing Data

All libraries were subjected to sequencing on the Illumina NovaSeq 6000 platform, and 150 bp paired-end reads were generated. FastQC (v.0.11.8)1 was used to assess quality of the raw reads. The reads were pre-processed using Trimmomatic (v.0.39) (Bolger et al., 2014) using the following parameters: LEADING:3 TRAILING:3 adapter.fa:2:30:10 SLIDINGWINDOW:4:15 MINLEN:36. The clean reads that passed all the filtering steps were used for downstream analyses.



ChIP-Seq Processing

Clean reads were mapped to hg19 using BWA-MEM (v.0.7.17) (Li and Durbin, 2009). Multiple-mapped reads were filtered using Samtools (v.1.9) (Li et al., 2009), and PCR-duplicated reads were removed using Picard.2 Index of the bam files was generated using Samtools. The overall quality control of the ChIP-seq data was evaluated using the ChIPQC R package (v.4.0.2) (Carroll et al., 2014; Supplementary Table 1). To examine the reproducibility of the ChIP-seq experiments, correlation coefficients were calculated between replicates using the read coverages of 10 kb-binned matrices using deepTools 2.0 (Ramirez et al., 2016). DeepTools was also used to plot the gene body and flanking region heatmap graphs using the normalized signal intensity. The ChIP-seq signals over the input background were visualized on the WashU Epigenome Browser using the MACS2 (Zhang et al., 2008) bdgcmp function with the following parameter: -m FE. The MACS2 peak caller was used to identify narrow peaks for H3K4me3, and H3K27ac using a q-value threshold of 0.05 and broad domains for H3K4me1, H3K36me3, H3K9me3, and H3K27me3 using a q-value threshold of 0.1.



ATAC-Seq Processing

The clean reads were mapped to hg19, and the aligned reads were filtered in the same way as the ChIP-seq data processing. Reads mapped to blacklist regions or mitochondria were removed. All filtered reads mapped to the positive strand were offset by + 4 bp, and reads mapped to the negative strand were offset by -5 bp to reflect the actual binding sites of transposons using deepTools with the following command: Alignmentsieve –ATACshift. The Spearman correlation coefficient was calculated between replicates (Supplementary Table 1), and signals were calculated for visualization, similar to ChIP-seq. To evaluate the chromatin accessibility of each state, we calculated the -log10 (p-value) scores using the MACS2 bdgcmp function with the following parameter: -m ppois. The MACS2 peak caller was used to identify narrow ATAC peaks using a q-value threshold of 0.05. The peaks were merged to create a union set of sites. All merged peaks were separated into proximal ATAC-seq peaks (n = 13,553), which were defined as overlapping with promoters [regions as 2 kb upstream and 500 bp downstream of transcription start site (TSS)], and distal ATAC-seq peaks (n = 27,840) (Supplementary Table 2).



RNA-Seq Processing

Clean reads were mapped to hg19 using STAR (v.2.7.6a) (Dobin et al., 2013). Multiple-mapped reads were then removed, and the correlation coefficient was calculated between replicates (Supplementary Table 1), and normalized signals were calculated for visualization, similar to ChIP-seq. Filtered reads were assembled using StringTie (v.2.1.4) (Kovaka et al., 2019). Transcripts per million (TPM) were calculated for each gene. Genes were defined using the GENCODE release 29 (Harrow et al., 2012). We divided the genes into expressed and repressed prostate genes using a Gaussian mixture model. The R package mixtools (v.1.2.0) was used to perform this analysis (Scrucca et al., 2016). First, the average expression values (TPMs) of all protein-coding genes of the 3 samples in this study were taken as input. All genes were divided into 2 (k = 2) density functions of Gaussian distribution. In this manner, each gene was assigned to a Gaussian distribution model and received a posterior probability value. These genes defined as either expressed or repressed genes, respectively, using the cutoff value of the posterior probability of 0.9.



WGBS Processing

The clean reads were mapped to hg19 using Bismark (v.0.22.1) (Krueger and Andrews, 2011) with the following parameters: Bowtie2 –dovetail –score_min L,0,-0.2 –nucleotide_coverage. Duplicate reads from PCR amplification were removed using the deduplicatebismark command. Cytosine methylation levels were extracted from the de-duplicated reads using the bismark_methylation_extractor command from Bismark with the following parameters: –comprehensive –ignore_r2 18 –ignore 2 –bedGraph –no_overlap –report. The Coverage2cytosine command was used to calculate the methylation and total read counts per CpG. CpGs with coverage of at least five were used for downstream analyses. The bedgraph files generated by Bismark were converted to bigwig files, which were used for visualization using BedGraphToBigWig.



Gene Expression Omnibus (GEO) Data

The ChIP-seq data of H3K27ac with three biological replicates, FOXA1, AR, and HOXB13, and two biological replicates from NCBI’s GEO with GSE numbers GSE130408, GSE130408, and GSE70079 were downloaded from the SRA Toolkit (v.2.10.7).3 The downstream analysis of these datasets resembled the ChIP-seq data in this study.



Construction of Prostate Epigenome

We applied ChromHMM (v.1.22) (Ernst and Kellis, 2012), which is based on a multivariate hidden Markov model, to compute genome-wide 15 chromatin states using five histone marks (H3K4me1, H3K4me3, H3K36me3, H3K9me3, and H3K27me3) and 18 chromatin states using six histone marks (plus H3K27ac). For each one, read counts were calculated in non-overlapping 200-bp bins across the whole genome. Each bin was assigned 0 (no signal) or 1 (signal) using the BinarizeBam command with the input alignment files as the control. The joint models, which were trained by Roadmap using 60 (for 15-state) or 40 (for 18-state) epigenomes with the highest-quality data from diverse tissues and cell types, were applied to generate those states using the MakeSegmentation command. Enrichments for annotations, including all types of genomic features, TSS/TSS neighborhood, conserved GERP elements,4 LMRs/UMRs, distal/proximal ATAC peaks, and FOXA1/AR/HOXB13 peaks for the 18-state or 15-state model, were computed using the OverlapEnrichment command of ChromHMM. In this study, we also created an individual model using ChIP-seq datasets of the prostate.



Clustering Analysis and Identification of Prostate-Specific Active Enhancers

First, we downloaded the 18 states of 98 epigenomes from the Roadmap Epigenomics Project.5 We then extracted and merged all active enhancer states (EnhA1 and EnhA2) of the prostate and 98 epigenomes. All active enhancers were divided into non-overlapping 200-bp bins. For each tissue or cell type, each bin was assigned 0 (no enhancer) or 1 (enhancer). From this data matrix, we identified all prostate-specific enhancer bins, none of which were active enhancers in any of the other 98 epigenomes. These bins were merged to produce 7,580 prostate-specific active enhancers. The matrix was also used to calculate the pair-wise Pearson correlation coefficients among all 99 reference epigenomes. We then performed complete-linkage hierarchical clustering according to the resulting correlation matrix using the factoextra R package (v.1.0.7). We compared the active enhancers between the prostate and six other tissues or cell types as an example (E003, E034, E090, E091, E072, and E104). All active enhancer states of the samples were merged into a union set of regions. We calculated the read counts, which were then normalized to obtain reads per kilobase per million (RPKM) values of H3K27ac in these regions for each sample. We clustered all the regions into nine clusters based on the normalized intensity of H3K27ac using the k-means algorithm. Normalized H3K4me1 intensity for seven samples and ATAC-seq intensity for five samples in the corresponding enhancer clusters are also shown. GO term analysis of the top 1,000 prostate-specific active enhancers (ranked by intensity) was performed using GREAT (v.4.0.4) (McLean et al., 2010). Motif analysis of prostate-specific active enhancers was performed using HOMER2 (v.4.11) (Heinz et al., 2010).



Identification of Prostate-Specific Genes

To identify prostate-specific genes, we used the algorithm described by the Human Protein Atlas (HPA) (Uhlen et al., 2015) and obtained 120 genes from the HPA website.6 We filtered these genes (TPM > 1 in our RNA-seq data) and defined 103 prostate-specific genes (Supplementary Table 3), including the following three groups: (1) prostate-enriched genes with at least four-fold higher mRNA levels in the prostate compared to any other tissue; (2) group-enriched genes with at least fourfold higher average mRNA levels in a group of 2–5 tissues, including the prostate, compared to any other tissues; (3) prostate-enhanced genes with at least fourfold higher mRNA levels in the prostate compared to the average level in all other tissues. The other 55 human tissue transcriptomes were downloaded from the GTEx Consortium. To remove the batch effect between our and the public RNA-seq libraries of normal prostate samples, we used the limma R package (v.3.44.3). First, we downloaded the gene expression value (TPMs) matrix of multiple human normal tissues used for the GTEx project from the website.7 The gene expression values (TPMs) of three cases of normal prostate tissue in this study and prostate tissue in GTEx project were integrated into a matrix. The data on genes whose TPM expression value was less than 1 in all samples were removed, and then log2 (TPM + 0.01) conversion was performed for all genes. The removeBatchEffect function in the limma package was used to remove the batch effect using the default parameters. After removing the batch effect, we normalized the expression data using the quantile method, and the normalized data were used for subsequent analysis. A heatmap was used to show the expression of these 103 genes in all tissues using the pheatmap R package (v.1.0.12).



Identification of Unmethylated Regions (UMRs) and Lowly Methylated Regions (LMRs)

LMRs and unmethylated regions (UMRs) were identified for all samples using the MethylSeekR package (v.1.28.0) for R (Burger et al., 2013). First, partially methylated domains (PMDs) were identified and masked. We then ran MethylSeekR with default parameters: A coverage cutoff of 5 reads per CpG, at least 5 or 6 CpGs, FDRs of less than 0.05, and methylation level threshold set at 0.5.



Analysis of GWAS SNPs in Tissue-Associated Enhancers

To evaluate the enrichment of SNPs in enhancers, we adopted a previously described method (Ernst et al., 2011; Roadmap Epigenomics Consortium et al., 2015). Firstly, we obtained the NHGRI GWAS catalog through the UCSC Table Browser on April 23, 2021. The enrichment of GWAS SNPs for 99 epigenome references was calculated. We excluded chromosome Y but retained chromosome X for the enrichment analysis. To reduce dependencies between pairs of SNPs assigned to the same study, we pruned SNPs such that no two SNPs were within 1 Mb of each other on the same chromosome. The pruning procedure considered each SNP in the order of their genomic locations. We retained an SNP if there was not another SNP already retained within 1 Mb. We restricted our analysis to studies reporting two or more associated SNPs. The variants from each study were intersected with active enhancer states (states 9 and 10 for the 18-state model) of each of the cell type. Hypergeometric P-values for the enrichment of each pruned set of SNPs overlapping enhancer states were computed against the pruned GWAS catalog as the background. We obtained the location information of SNPs from the SNPlocs.Hsapiens.dbSNP144.GRCh37 database. Functional annotation of the GWAS SNPs was performed using motifbreakR Tool (Coetzee et al., 2015) by examining a 2-kb region centered on the SNP. We used the database for Homo sapiens and selected the method “ic” to calculate position probability matrix (PPM). The gain or loss of the motifs around nine prostate cancer-associated GWAS SNPs was predicted using a p-value cutoff of 1e-04 and presented in Supplementary Table 7. For the same transcription binding sites from different database, we chose the most recent versions. The germline information was obtained from the Chinese Prostate Genome and Epigenome Atlas (CPGEA) (Li et al., 2020) using GATK HaplotypeCaller (Van der Auwera et al., 2013). The RNA-seq data were obtained from the CPGEA. The raw count matrix was used by DESeq2 (Love et al., 2014) to quantify gene expression level as normalized counts. Transcripts with an adjusted P < 0.05 were considered differentially expressed. The AR ChIP-seq data of normal prostate epithelial and prostate cancer cells with two replicates were queried in the cistromeDB website8 (Zheng et al., 2019). Data passing all quality controls were selected to be visualized in the WashU epigenome browser (Zhou et al., 2011).



Data Availability

Epigenomic data generated in this study can be visualized in the WashU Epigenome Browser.9 Sequencing data in FastQ format are available at the Genome Sequence Archive (GSA) for Human at the BIG Data Center,10 Beijing Institute of Genomics (accession number PRJCA004460). The 18-state and 15-state epigenomic maps generated using ChromHMM can be downloaded from the BIG Data Center.11



Bioethics

The authors state that they obtained the approval from appropriate institutional review board and have followed the principles outlined in the Declaration of Helsinki for all human experimental research. In addition, for investigations involving human subjects, informed consent was obtained from the participants.



RESULTS


Reference Map of the Normal Prostate Epigenome

The first step in the construction of a high-resolution epigenome reference is to collect high-quality data. Qualified urological pathologists curated and selected five normal adult prostate tissues (Supplementary Table 1). Chromatin immunoprecipitation sequencing (ChIP-seq) of six histone modification marks (H3K4me3, H3K4me1, H3K27ac, H3K36me3, H3K27me3, and H3K9me3), whole-genome bisulfite sequencing (WGBS), total mRNA-seq, and assay for transpose accessible chromatin using sequencing (ATAC-seq) were performed on these normal prostate specimens. The ChIP-seq datasets of H3K27ac from public resources were also integrated into our study to better define active enhancers and promoters. In total, we generated 23whole-genome datasets, including 17 ChIP-seq, 2 ATAC-seq, 3 WGBS, and 3 RNA-seq datasets (Supplementary Figure 1A). Each experiment had at least two highly correlated biological replicates, illustrated in the correlation heatmap (Supplementary Figure 1B). For ChIP-seq quality assurance, we calculated the number of usable fragments, the fraction of reads in peaks (FRiP), percentage of reads marked as duplicates, percentage of reads within blacklist regions, and relative cross-coverage scores (Supplementary Table 1). As expected, the activation-associated signals (H3K4me1, H3K4me3, H3K27ac, and H3K36me3) were characterized as having a low correlation with the repression-associated marks (H3K9me3 and H3K27me3) (Supplementary Figure 1B; Xie et al., 2013; Matsumura et al., 2015; Zhuo et al., 2020). We also used ChIP followed by quantitative polymerase chain reaction (PCR) (ChIP-qPCR) to validate some of the target regions, further confirming the high quality of the ChIP-seq data (Supplementary Figure 1C and Supplementary Table 4). For WGBS, we generated more than 9 billion bases per sample, covering 91.2% of CpGs in the whole genome with an average of 22 × coverage (Supplementary Table 1). The majority (mean 80.1%) of CpGs was methylated (gene bodies, intergenic regions, and repeats). In contrast, a small fraction of CpGs was intermediately methylated or unmethylated (CpG islands and promoters) (Supplementary Figures 2A,B), reflecting the bimodal distribution of CpG methylation levels in normal somatic cells (Supplementary Figure 2C). RNA-seq data in this study detected a total of 72% (13,828 out of 19,327) protein-coding genes expressed (TPM > 1) in the normal prostate tissue, and captured over 89% (13,368 out of 14,928) of genes detected by HPA (TPM > 1) in prostate tissues. The normalized signals of all ChIP-seq, and ATAC-seq in the gene body and the neighboring regions showed high reproducibility between replicates (Supplementary Figure 2E).

To integrate our histone modification datasets, we first generated a stable 18-state model of the prostate epigenome using ChromHMM, following the guidelines of the Roadmap Project (Figures 1A,B). The 200-bp resolution epigenomic map of the prostate consisted of transcription signatures (1-Active TSS, 2-Flanking TSS, 3-Flanking TSS upstream, 4-Flanking TSS downstream, 5-Strong transcription, and 6-Weak transcription), enhancer signatures (7-Genic enhancer 1, 8-Genic enhancer 2, 9-Active enhancer 1, 10-Active enhancer 2, and 11-Weak enhancer), ZNF signature (12-ZNF genes and repeats), and repression signatures (13-Heterochromatin, 14-Bivalent/poised TSS, 15-Bivalent enhancer, 16-Repressed PolyComb, 17-Weak repressed PolyComb, and 18-Quiescent/Low), providing a functional annotation of the prostate genome. Simultaneously, a 15-state model of the prostate epigenome was generated with the same ChIP-seq datasets, excluding H3K27ac (Supplementary Figure 3). The biological significance of each state has been described in detail by Roadmap Epigenomics and follow-up studies (Matsumura et al., 2015; Roadmap Epigenomics Consortium et al., 2015; Pomerantz et al., 2020). We found that enhancers and promoters accounted for 5.3% (18-state) and 6.5% (15-state) of the prostate genome, respectively, and more than half of the genome was covered by the quiescent state, resembling other normal human tissues (Roadmap Epigenomics Consortium et al., 2015). To evaluate the relationship between chromatin states and genomic features, we computed the overlap and neighborhood enrichment of each state relative to specific genomic annotations (Figures 1A,C and Supplementary Figures 3A,B). We also evaluated the relationship between individual chromatin states and DNA methylation levels, as well as chromatin accessibility. Globally, the extent of activity of the regions negatively correlated with DNA methylation and positively correlated with DNA accessibility (Figure 1D and Supplementary Figure 3C). Additionally, we identified 13,565 UMRs and 65,800 LMRs using three WGBS datasets (Supplementary Table 5). We found that the enhancers were mainly enriched in the LMRs and distal ATAC peaks (Supplementary Table 2). Promoters were enriched primarily in the UMRs and proximal ATAC peaks (Figure 1E and Supplementary Figure 3D). These results underscored the chromatin signature differences between the enhancer and promoter states, which were defined by histone modifications. In addition, the enhancer states of the prostate were enriched for evolutionarily conserved non-exonic elements (Figure 1E and Supplementary Figure 3D). We found that some chromatin states showed distinct activities although they shared the same DNA accessibility patterns, such as TxFlnk, Enh, ZNF/Rpts, TssBiv, and BivFlnk. Moreover, the bivalent enhancer states (EnhBiv and BivFlnk) showed lower DNA methylation than the active enhancer states (Enh and EnhA), the biological significance of which requires future investigation (Song et al., 2019). Overall, these results demonstrate the complex relationship between DNA methylation, chromatin accessibility, and histone modifications in the prostate tissue. Studying DNA methylation or chromatin accessibility alone may have specific limitations, supporting the need for constructing a comprehensive prostate reference epigenome.
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FIGURE 1. Epigenomic 18-state map of the prostate epigenome based on six histone modification marks. (A) Epigenomic 18 states definitions, histone mark probabilities, average genome coverage, and genomic annotation enrichments. The 18-state joint model from the Roadmap was used to generate 18 states of the prostate whole genome with the same colors and mnemonics. Different annotations of hg19 were used for the enrichment analysis. (B) An example region of all datasets in this study, which shows the prostate 18/15-state epigenome, six histone marks, WGBS, ATAC-seq, and RNA-seq data using the WashU Epigenome Browser. Normalized intensity of the ChIP-seq, ATAC-seq, and RNA-seq signals is shown. The values on the y-axis for WGBS indicate the methylation level of each CpG site. (C) Enrichment of the18-state epigenome in the 4-kb neighboring regions of the transcription start site (TSS) and end site (TES). (D) Median DNA methylation level and ATAC-seq signal confidence -log10 (p-value) were calculated per state. (E) Enrichment of lowly methylated regions, unmethylated regions (left), distal ATAC peaks, proximal ATAC peaks (middle), and GERP evolutionarily conserved non-exonic nucleotides (right).




Significant Correlation Between Multiple Epigenetic Modifications and the Prostate Transcriptome

Having established the prostate epigenome map, we further explored the correlation between the epigenome and gene expression. Using a Gaussian mixture model (Lee, 2005), we categorized all genes into expressed and repressed genes based on RNA-seq data (Figure 2A and Supplementary Table 6). We evaluated the epigenomic patterns as a function of expression levels (Figure 2B). We found that the epigenetic signatures of the expressed and repressed genes were significantly different (Figure 2C). First, almost all the expressed genes were enriched with the active states in their bodies and regulatory regions (1_TssA, 5_Tx, 7/8_EnhG) (Figures 2D,F and Supplementary Figures 4A,B). Second, the promoters, enhancers, and gene bodies of the expressed genes showed high signals for activation-associated histone marks (H3K4me3, H3K36me3, H3K4me1, and H3K27ac), but low signals for repression-associated histone marks (H3K9me3 and H3K27me3) (Figure 2B). Third, the expressed genes displayed lower methylation levels in promoters and higher levels in gene bodies than the repressed genes (Figure 2E). In contrast, the repressed genes had unique histone marks. Two repressive signals (H3K27me3 and H3K9me3) were found with distinct distributions around the repressed genes, indicating different silencing mechanisms. For example, a small fraction of repressed genes showed high levels of H3K9me3, but low levels of H3K27me3 (Figure 2B). H3K9me3 is considered a permanent repression marker associated with heterochromatin, whereas H3K27me3 is considered a temporary repressive marker associated with PolyComb binding and CpG-rich regions (Wang et al., 2018; Jadhav et al., 2020). Therefore, the map of the prostate epigenome enables a more precise and comprehensive investigation of gene regulation in the prostate.
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FIGURE 2. Epigenomic characteristics of expressed and repressed genes. (A) Density histogram. All genes were divided into two clusters: Expressed (green line) and repressed genes (red line) using a Gaussian mixture model based on the mean log2 (TPM + 0.01) value of each gene in the prostate. (B) The normalized signals of all ChIP-seq and ATAC-seq datasets were calculated for the expressed and repressed genes, respectively. All rows of heatmaps (top: Expressed genes, bottom: Repressed genes) are in the same descending order according to the gene expression levels. (C) Snapshot of an example showing the dramatically distinct epigenomic landscapes of the expressed and repressed genes using WashU Epigenome Browser. Normalized intensity of the ChIP-seq, ATAC-seq, and RNA-seq signals is shown. The values on the y-axis for WGBS show the methylation level of each CpG site. (D) Enrichment of the expressed and repressed genes, at their transcription start site (TSS) and end site (TES). (E) Expressed and repressed genes showing different DNA methylation signatures in three replicates. (F) The neighborhood of TSS and TES enrichments for the expressed and repressed genes, respectively (± 2 kb).




Epigenome Comparison and Prostate-Specific Enhancer Modules

Epigenetic mechanisms are instrumental in maintaining cell identity and tissue diversity. A critical component is the enhancer module that orchestrates tissue specificity (Alvarez-Errico et al., 2015; Lee et al., 2017). We extracted all active enhancer states (EnhA1 and EnhA2) of the prostate and compared them with 98 Roadmap epigenomes of diverse tissues and cell types. Similar lineages, such as pluripotent stem cells, immune-associated cells, and brain-derived tissues, formed distinct clusters in the hierarchical clustering analysis (Figure 3A). We found that the prostate tissue clustered most closely with tissues from the digestive system. This clustering reflects that these tissues are derived from secretory organs comprising secretory epithelial and smooth muscle cells and have similar stromal components (Dedhia et al., 2016; Ikegami et al., 2020). Multidimensional scaling (MDS) analysis distinctly separated the prostate from immune cells, pluripotent stem cells, and brain tissues (Figure 3B). These results highlight that active enhancer states are a signature of specific cell types and tissue identity. Six high-quality epigenomes (E003, E034, E072, E090, E091, and E104), as representatives of distinct lineages, were selected for comparison with the prostate epigenome, and only 18.9% of active enhancers were shared across all seven tissues (Figure 3C). Moreover, we identified 7,580 prostate-specific active enhancers (see section “Materials and Methods”), which were confirmed by examining the signals of H3K27ac, H3K4me1, and ATAC (Figure 3D). Gene Ontology (GO) analysis revealed enhancer-target gene functions that were enriched in prostate gland development (Figure 3F). To construct the prostate-specific regulatory network, we defined 103 prostate-specific genes based on our RNA-seq data and GTEx project RNA-seq data (Supplementary Figure 5 and Supplementary Table 3). Of these, 89 (86%) genes had at least one active enhancer of the prostate (± 20 kb of TSS), and 77 (74.8%) genes had at least one prostate-specific active enhancer (± 20 kb of TSS) (Figure 3H and Supplementary Figures 5, 6), indicating that the active enhancers of the prostate were closely related to its identity. To identify putative master transcription factors in the prostate tissue, we performed motif enrichment analysis of prostate-specific active enhancers and found that most of them were known prostate-related master transcription factors (Figure 3G), such as FOXA1, HOXB13, and AR (Edwards et al., 2005; Hankey et al., 2020). To further study the interaction between master transcription factors and the prostate epigenome, we calculated the enrichment of FOXA1, HOXB13, and AR (ChIP-seq datasets from GSE70079 and GSE130408) in each state of the prostate epigenome. FOXA1 and AR binding was mainly enriched in enhancers, especially in active enhancers, whereas HOXB13 binding was primarily located in the promoter regions (Figure 3E and Supplementary Figures 7, 8). The global landscape of interactions among these master transcription factors and the prostate epigenome may provide valuable information for future research.
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FIGURE 3. Comparison of the prostate and other epigenomes. (A) Hierarchical clustering of prostate and other epigenomes using all active enhancers. The active enhancer states (EnhA1 and EnhA2) of 99 epigenomes were divided into non-overlapping 200-bp bins, which were then assigned 0 (no enhancers) or 1 (enhancers). The huge matrix was used to perform hierarchical clustering. (B) Multidimensional scaling (MDS) plot of all 99 epigenomes based on the same matrix used for hierarchical clustering. (C) Clustering analysis identified tissue-specific active enhancers across the prostate and six other tissues or cell types. All active enhancers were merged into a union set of regions. Values in the heatmap were normalized RPKM (reads per kilobase million) values of H3K27ac calculated from the merged regions in each sample. Normalized H3K4me1 RPKM values for seven samples and ATAC-seq RPKM values for five samples in the corresponding enhancer clusters are shown. (D) H3K27ac, H3K4me1, and ATAC-seq signals of 7,580 prostate-specific active enhancers over 10-kb regions centered on the prostate demonstrate strong signals, whereas other tissues show weak signals. (E) Enrichments for FOXA1, AR, and HOXB13 peaks of the 18-state epigenome. (F) Gene ontology (GO) terms associated with the top 1,000 prostate-specific active enhancer regions using the GREAT tool for this analysis. (G) Enriched known motifs in the prostate-specific active enhancer regions detected by HOMER2. (H) A fraction of 103 genes with active prostate enhancers.




Predicting Regulatory Functions of Disease-Associated Variants

To better understand the molecular mechanism underlying prostate-associated disease phenotype, we integrated the large epigenome references with trait-associated genetic variants. We obtained GWAS data for multiple diseases and traits from the University of California Santa Cruz (UCSC) Table Browser. Consistent with the results of the Roadmap Project, we confirmed that the prostate cancer-associated genetic variants were enriched in prostate-associated enhancer states (states 9 and 10 of the 18 states) (Figure 4). In the GWAS study (Conti et al., 2021), 19 out of the 186 SNPs were located in prostate enhancers. Furthermore, a substantial number of transcription factor-binding sites were created or destroyed by GWAS SNPs, including the binding sites of the androgen receptor (AR) (Supplementary Table 7). Of the 19 SNPs within the prostate enhancer regions, rs17321482 and rs17694493 were predicted to disrupt the binding of AR (Coetzee et al., 2015; Figure 5A and Supplementary Table 7). SNP rs17321482 was located in the intron of ARHGAP6 on the X chromosome. SNP rs17694493 was located on 9p21, in the intron of CDKN2B-AS1, which is a putative oncogene that encodes a long non-coding RNA, ANRIL (Walsh et al., 2014). Previous studies have predicted that the risk allele rs17694493 disrupts two transcription factor-binding motifs (STAT1 and RUNX1), which regulate the expression of the CDKN2B-CDKN2A gene cluster (Al Olama et al., 2014). However, we observed significant AR ChIP-seq signals in normal prostate epithelial and multiple prostate cancer cell lines, suggesting that the SNP overlaps a bona fide AR-binding site, and the risk allele potentially negatively influences AR binding (Figure 5A). Interestingly, when we examined data from a previously published prostate cancer cohort (Li et al., 2020), we found that AR expression negatively correlated with the expression of CDKN2B-AS1 in the normal prostate, and this correlation was completely dependent on the reference allele, but not the risk allele. This pattern was consistent with a model in which AR binding represses CDKN2B-AS1, and the disruption of the AR-binding site decouples CDKN2B-AS1 from AR control (Figure 5B). Consistent with this model, tumor samples with the risk allele rs17694493 (C > G) exhibited higher CDKN2B-AS1 expression (Figure 5C). Thus, rs17694493 might play a causal role in predisposing cancer risk.
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FIGURE 4. Epigenomic annotation of disease-associated variants. Enhancer states (states 8 and 9) of 18-state and prostate-specific enhancer enrichment (p-value < 0.05) for trait-associated genetic variants. The SNP number overlapped with the data of the prostate cancer study, and the enhancers are shown in the box. The findings of representative studies were consistent with those of the Roadmap Project.
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FIGURE 5. Potential mechanism of GWAS effects on tumor predisposition. (A) A representative GWAS locus associated with prostate cancer trait affects AR-binding motif predicted by motifbreakR in the enhancer regions. The high-quality AR ChIP-seq data from two independent studies of normal prostate epithelium and prostate cancer cell lines are shown around the representative GWAS locus. (B) rs17694493 is located in the intron of CDKN2B-AS1. AR binds to the SNP and inhibits CDKN2B-AS1. The Pearson correlation of CDKN2B-AS1 expression with AR in the normal prostate is demonstrated in the right panel. The groups harboring the SNP are indicated with a red dot. The anti-correlation was abolished. In the INK4b/ARF/INK4a locus, the effector genes of CDKN2B-AS1 are transcribed to control the cell cycle in the normal prostate tissue. (C) In tumor samples, SNP rs17694493 abolished AR binding and downstream CDKN2B-AS1 inhibition, supported by allelic expression in CPGEA prostate cancer cohorts (right panel). The upregulated expression of CDKN2B-AS1 affected INK4b/ARF/INK4a, gate guard genes of cell cycle.




DISCUSSION

International epigenomics consortia, such as the Encyclopedia of DNA Elements (ENCODE) Project (Maher, 2012), Roadmap Epigenomics Program (Roadmap Epigenomics Consortium et al., 2015), International Human Epigenome Consortium (IHEC) (Bujold et al., 2016), and Functional ANnoTation Of the Mammalian Genome 5 (FANTOM5) Consortium (Noguchi et al., 2017), have devoted great efforts to generate, analyze, and interpret epigenomics data to help understand gene regulation in development and disease. In this study, we focused on the prostate, whose complete epigenome map is lacking. Even in the most recent EpiMap (for epigenome integration across multiple projects), a compendium comprising epigenomic maps across 800 samples, a high-quality prostate epigenome is still missing (Boix et al., 2021). A complete epigenomic map of the normal prostate will likely make a significant contribution to the literature and advance research efforts on prostate cancer, the second most common cancer in men worldwide (Stelloo et al., 2018; Arap et al., 2020; Zhao et al., 2020). By integrating comprehensive histone modification ChIP-seq, WGBS, RNA-seq, and ATAC-seq data, we filled this gap, enabling comprehensive annotation of regulatory elements in normal prostate at a high resolution.

Here, we present an 18-state epigenome map of the normal prostate and analyzed the patterns of DNA methylation and chromatin accessibility in each state. In most cases, the analyses confirmed the general knowledge about DNA methylation and chromatin accessibility levels in relation to epigenome states; however, some interesting exceptions were observed. For instance, bivalent enhancers showed lower DNA methylation levels than active enhancers but had similar chromatin accessibility. Previous studies suggested that DNA methylation can be antagonistic to H3K27me3 in enhancer regions (Inoue et al., 2017; Chen et al., 2019). Therefore, chromatin accessibility and DNA methylation work in conjunction with other histone modifications rather than independently or redundantly, to control gene regulation (Gal-Yam et al., 2008; Bogdanovic et al., 2011; King et al., 2016). The complex relationship between chromatin accessibility, DNA methylation, and chromatin states in the prostate remains to be elucidated.

We also found that enhancer and promoter states accounted for 5.3% of the prostate genome, and they exhibited increased evolutionary conservation, underscoring the biological significance of these regions. We defined 5,625 prostate-specific active enhancers, demonstrated their potential to distinguish prostate tissue identity, and investigated their association with prostate-specific gene expression.

Furthermore, we examined the master transcription factors in the prostate, including FOXA1, AR, and HOXB13. Our previous study confirmed that FOXA1 was frequently mutated in prostate cancer in an Asian cohort (Li et al., 2020). Recent studies have also found that FOXA1 mutations affect the phenotype of prostate cancer and interfere with the differentiation of normal prostate epithelium (Adams et al., 2019; Parolia et al., 2019). By defining a global landscape of interactions between FOXA1 and prostate-specific regulatory elements, especially active enhancers, we provide a useful resource for future research. We also found the motifs of CTCF and BORIS (Zf) in prostate-specific enhancers, suggesting the existence of prostate-specific chromatin interactions (Rowley and Corces, 2018; Debruyne et al., 2019).

Finally, to illustrate the utility of our prostate epigenome map, we used this map to annotate genetic variants that are associated with disease traits. The current NHGRI GWAS catalog has collected over four thousand GWAS studies (Welter et al., 2014). However, functionalizing trait-associated genetic variants has been a major challenge. The majority of GWAS SNPs reside in non-coding regions, which are potentially regulatory elements. Integrating large epigenomic roadmaps holds promise to provide a principled approach to elucidate the functional consequences of GWAS SNPs. In our study, we used the prostate-specific enhancer to link a novel GWAS SNP with upstream AR binding and downstream disturbance of cell cycle regulation. We suggest that it is a promising paradigm to integrate the epigenome reference, public data, and large tumor consortium to interpret and identify possible causal variants.

In summary, our normal prostate epigenome map complements the current human reference epigenome and fills an important gap in the field. This is valuable for a better understanding of gene regulation, development, and tumorigenesis of the prostate. Further studies will be required to investigate the complex relationship between chromatin accessibility, DNA methylation, histone modifications, and chromatin states in the prostate, and to validate mechanistic predictions on the functional consequences of genetic variations.
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Background: DNA methylation affects the development, progression, and prognosis of various cancers. This study aimed to identify DNA methylated-differentially expressed genes (DEGs) and develop a methylation-driven gene model to evaluate the prognosis of ovarian cancer (OC).

Methods: DNA methylation and mRNA expression profiles of OC patients were downloaded from The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases. We used the R package MethylMix to identify DNA methylation-regulated DEGs and built a prognostic signature using LASSO Cox regression. A quantitative nomogram was then drawn based on the risk score and clinicopathological features.

Results: We identified 56 methylation-related DEGs and constructed a prognostic risk signature with four genes according to the LASSO Cox regression algorithm. A higher risk score not only predicted poor prognosis, but also was an independent poor prognostic indicator, which was validated by receiver operating characteristic (ROC) curves and the validation cohort. A nomogram consisting of the risk score, age, FIGO stage, and tumor status was generated to predict 3- and 5-year overall survival (OS) in the training cohort. The joint survival analysis of DNA methylation and mRNA expression demonstrated that the two genes may serve as independent prognostic biomarkers for OS in OC.

Conclusion: The established qualitative risk score model was found to be robust for evaluating individualized prognosis of OC and in guiding therapy.

Keywords: ovarian cancer, methylation, CpG sites, model, overall survival, biomarkers


INTRODUCTION

Ovarian cancer (OC), the most lethal gynecological cancer, is the seventh most common cancer and the fifth leading cause of cancer-related deaths in women, with a 5-year survival rate of 47.4% (Howlader et al., 2019). In the United States, over 22,000 new cases are diagnosed, and 14,000 patients die each year (Siegel et al., 2020). OC is a highly fatal malignancy with an insidious onset, and there is currently a lack of a definitive screening tool and diagnosis often occurs only at later stages. Most OCs originate from the epithelium, and surgery and cytoreduction are used as the main forms of treatment, followed by combined chemotherapy. Although progress has been made, curative and survival trends have not changed significantly. In addition, OC is heterogeneous and often prone to developing chemotherapy resistance (Cho and Shih, 2009). Therefore, exploring the pathogenesis of OC, formulating effective methods of early screening and diagnosis, and finding new prognostic biomarkers and treatment pathways for OC would help improve the therapeutic effect and survival rate of patients with OC.

DNA methylation, one of the main epigenetic alterations, has an important impact on the initiation and progression of cancer (Jones and Baylin, 2007). DNA hypermethylation silences gene expression by adding a methyl group to the promoter region of DNA, thereby regulating gene expression (Nervi et al., 2015). At the same time, cancer can promote global hypermethylation of CpG islands related to the promoter, thereby silencing important genes for cell homeostasis, such as tumor suppressor genes (TSGs). Moreover, demethylation mainly involves chromosomal instability, reactivation of transposons, and loss of genomic imprinting (Deng et al., 2020). Conversely, demethylation can promote expression of oncogenes. Abnormal DNA methylation and changes in chromatin structure can alter gene expression and promote tumorigenesis. Therefore, methylation-regulated gene expression, including oncogene and TSGs, plays a double-sided role in EOC development.

Dysregulation of DNA methylation has also been observed in OC (Ishak et al., 2019). Hypermethylation is associated with the inactivation of almost all pathways involved in the occurrence and development of EOC, such as DNA repair, cell apoptosis, and adhesion (Makarla et al., 2005; Natanzon et al., 2018). The promoters of certain tumor suppressors, such as ZNF671, BRCA1, and RASSF1A, are hypermethylated in OC as compared to those in non-neoplastic tissues (Ibanez de Caceres et al., 2004; Mase et al., 2019). It is generally believed that hypermethylation of TSGs or hypomethylation of oncogenes is an important mechanism of tumorigenesis (Pan et al., 2018). Furthermore, DNA methylation changes in circulating blood can be used to detect and predict early-stage OC (Barton et al., 2008). Numerous studies have performed a comprehensive multi-omics analysis of EOC genomics, epigenomics, and transcriptomics, and suggested that gene methylation plays an important role in OC development (Zheng et al., 2019). Hence, a comprehensive analyses of DNA methylation and mRNA expression are essential for understanding the biological processes of OC. In addition, only a few methylation markers of OC have been widely accepted and are being applied in clinical practice.

At present, numerous studies have used the R package MethylMix to screen methylation-driven genes, explore possible markers, establish related models, and predict the correlation between the target gene methylation level and diagnosis, survival, and recurrence of malignant tumors, which can help clarify the occurrence and development of malignant tumors (Bai et al., 2020; Peng et al., 2020; Zhang et al., 2020). In this study, we obtained DNA methylation and mRNA expression profiles of OC patients from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases. Then, we used the R package MethylMix to identify DNA methylation-regulated DEGs and built a prognostic signature using LASSO Cox regression analysis. Then, a quantitative nomogram was drawn based on the risk score and clinicopathological features, and the predictive ability of the signature was confirmed in different datasets.



MATERIALS AND METHODS


Dataset Acquisition and Pre-processing

The DNA methylation data of OC were downloaded from TCGA1 database. The mRNA expression profiles of normal ovarian and OC samples were downloaded from the GTEx and TCGA databases using the University of California Santa Cruz (UCSC) Xena browser (Chang et al., 2019). In addition, the microarray data of GSE9891 and GSE26712 were acquired from GEO2 to represent independent cohorts of OC. Patients without survival time or status were excluded from the study. To ensure that the established prognostic signature had better generalization, TCGA dataset was used as the training set, and GSE9891 and GSE26712 datasets were used as the validation set. Cases without a certain age, FIGO stage, and tumor grade were excluded. Finally, 358 OC patients were included in TCGA set, 273 patients in the GSE9891 set, and 193 patients in the GSE26712 set. Table 1 lists the clinical features of the patients in the training and validation sets.


TABLE 1. Clinicopathologic characteristics of ovarian cancer (OC) patients in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.
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Identification of Methylation-Related DEGs

The differential expression analysis was conducted using the R package limma. The criteria for identifying DEGs were |Log2(fold change)| >  0.585 and P value < 0.05, and the criteria for identifying differentially methylated genes (DMGs) were |Log2(fold change)| >  0 and adjusted P value < 0.05. Intersecting genes of DMGs and DEGs that had significantly different methylation levels and expression levels were retained. Pearson correlation coefficients between the methylation and expression levels of the intersecting genes were calculated using the MethylMix package in R (Pan et al., 2019). Intersecting genes with negative coefficients were used for the subsequent analyses. Pearson coefficient < −0.3 and P < 0.05 were set as criteria for identifying methylation-regulated DEGs.



Construction of Prognostic Risk Model

We conducted further analyses to determine the survival significance of methylation-regulated DEGs. Using P < 0.05 as the cutoff value, we conducted univariate Cox proportional hazard regression analysis for DEGs in the training set. Prognosis-related genes constructing a prognostic risk model in OC were further analyzed and selected by LASSO-penalized Cox regression analysis. Finally, a prognostic signature was built with the expression levels of methylation-regulated DEGs and their corresponding coefficients, as shown below.
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where Exp represents the expression value of each methylation-regulated DEG and Coef represents the regression coefficient. All samples were split into two subgroups using the median value: high- and low-risk. The distribution of patients with different risk scores was evaluated using principal component analysis (PCA). Kaplan–Meier (KM) survival curves were plotted to assess the difference in OS between the two subgroups, and receiver operating characteristic (ROC) curves were used to evaluate the accuracy of the model with area under curve (AUC) values. In addition, two independent GEO datasets (GSE26712 and GSE9891) were used to validate the performance of the signature.



Construction of Prognostic Nomogram

To explore whether the prognostic signature could be independent of other clinical variables (including age, tumor size, tumor status, and tumor stage), we conducted univariate and multivariate Cox regression analyses. A prognostic nomogram for OC patients was constructed based on the risk score and other independent prognostic parameters. The distinguishing ability of the nomogram was assessed using AUC. The calibration curves were plotted to compare the nomogram-predicted survival with the actual survival.



Joint Survival Analysis of DMGs and DEGs

We conducted a joint survival analysis of DNA methylation and mRNA expression levels of the same methylation-regulated gene to further identify key genes associated with prognosis in patients with OC.



Functional Enrichment Analysis

Functional enrichment analyses were conducted to explore the potential molecular mechanisms underlying the prognostic signatures. We used the R package limma to detect differentially expressed genes (DEGs) between the high- and low-risk groups (|Log2FC | >  1 and FDR <  0.05). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the differentially expressed FRGs were analyzed using the R package ClusterProfiler by setting p < 0.05 and q < 0.05.



Statistical Analysis

The predictive ability of the prognostic model was evaluated using the AUC values of the ROC curves. PCA was conducted using the “prcomp” function of the R package stats. A nomogram comprising the risk score and clinical variables was built to predict the 3- and 5-year OS using the rms package. All statistical analyses were performed using the R software (Version 3.5.3).



RESULTS


Identification of Methylation Related DEGs

The entire data processing flow is shown in Figure 1A. According to the screening criteria (| FC| > 1.5 and FDR < 0.01), we confirmed that the expression of 2,391 genes, with 1,195 up-regulated and 1,196 down-regulated genes, was significantly different between the normal control group and OC group. After calculating the Pearson correlation coefficients between the methylation and expression levels, 57 genes with negative correlation coefficients were identified as methylation-related DEGs (Figure 1B).
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FIGURE 1. Identification of methylated related genes and flowchart of the establishment of novel prognostic signature. (A) The flowchart of the establishment of novel prognostic risk model for patients with ovarian cancer (OC). (B) The heatmap plot of 57 methylation related differentially expressed genes (DEGs) in OC. The color change from blue to red in the heatmap illustrates the trend from low to high methylation.




Construction and Validation of Prognostic Signature

In the training group, four prognosis-related genes were selected using univariate Cox regression, and the optimal gene combination was identified using the Lasso Cox regression model. Finally, a signature consisting of four methylation-related DEGs was built as a prognostic model for patients with OC. Risk score = (−0.164 × expression level of PON3) + (0.0559 × expression level of MFAP4) + (0.1779 × expression level of AKAP12) + (0.3056 × expression level of BHMT2). All the four methylation-related DEGs were hypermethylated (Figure 2A). As shown in Figure 2B, there was a significant negative correlation between DNA methylation and gene expression levels. The distribution of risk scores and the relationship between risk scores and survival time of OC patients were visually analyzed (Figures 3A,B). Using the median score value, we divided all patients into two sub-populations, namely high- and low-risk groups. PCA demonstrated that the patients in the different risk groups were distributed in two directions (Figure 3C). The KM curves were plotted in the training cohort according to the risk score, and the high-risk group showed a poor OS compared to the low-risk group (Figure 3D). The tdROC curves revealed that the prognostic signature had superior predictive accuracy, with an AUC of 0.715 in the training set (Figure 3E). We then conducted a subgroup-level analysis of the OS of patients with different ages, grades, tumor sizes, tumor status, and FIGO stages. The results revealed that in subtype age, tumor status, and FIGO staging, the OS of OC patients with high-risk scores was shorter than that of OC patients with low-risk scores (Supplementary Figure 1).


[image: image]

FIGURE 2. Summary of four methylated related genes in the signature. (A) The distribution map of methylated status of four genes. The histogram demonstrates the distribution of methylation in tumor samples. Horizontal black bars show the distribution of methylation in normal samples. (B) The correlation between DNA methylation level and mRNA expression level in four genes.
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FIGURE 3. Construction of the methylated related gene signature in the Cancer Genome Atlas (TCGA) cohort. (A) Dot plot of risk score. Y axis represents risk score. Red and blue color dots represent, respectively, high and low risk score samples. (B) Dot plot of survival. Y axis represents survival times (years). Red and blue color dots represent, respectively, dead and living OC samples. (C) PCA plot of the TCGA cohort. (D) Kaplan–Meier (KM) estimate of the overall survival (OS) in the TCGA cohort. (E) The time-dependent ROC curves in the TCGA cohort.




External Validation of the Prognostic Signature

To validate the predictive ability of the signature in predicting OS, the risk score of each patient was calculated in two independent sets (GSE26712 and GSE9891; Figures 4, 5). The distribution of risk scores, the relationship between risk scores and survival time of OC patients, and PCA for the two independent sets are shown in Figures 4A–C, 5A–C. Consistent with the results in the training set, the KM analysis indicated that high-risk patients showed poorer OS (Figures 4D, 5D). The ROC curve showed that the signature had good accuracy, with AUC values of 0.639 and 0.673, respectively (Figures 4E, 5E).
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FIGURE 4. Validation of the methylated related gene signature in the GSE9891 cohort. (A) Dot plot of risk score. Y axis represents risk score. Red and blue color dots represent, respectively, high and low risk score samples. (B) Dot plot of survival. Y axis represents survival times (years). Red and blue color dots represent, respectively, dead and living OC samples. (C) PCA plot of the GSE9891 cohort. (D) KM estimate of the OS in the GSE9891 cohort. (E) The time-dependent ROC curves in the GSE9891 cohort.
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FIGURE 5. Validation of the methylated related gene signature in the GSE26712 cohort. (A) Dot plot of risk score. Y axis represents risk score. Red and blue color dots represent, respectively, high and low risk score samples. (B) Dot plot of survival. Y axis represents survival times (years). Red and blue color dots represent, respectively, dead and living OC samples. (C) PCA plot of the GSE26712 cohort. (D) KM estimate of the OS in the GSE26712 cohort. (E) The time-dependent ROC curves in the GSE26712 cohort.




Construction of Prognostic Nomogram

Univariate Cox regression analysis demonstrated that age, stage, tumor status, and risk score were associated with the prognosis of OC patients (Figure 6A, P < 0.05), and were confirmed as independent predictors of OS using the multivariate Cox regression analysis (Figure 6B, P < 0.05). We then established a prognostic nomogram by quantifying these clinical factors (Figure 6C). The AUCs of the nomogram predicting the 3- and 5-year OS rates were 0.742 and 0.788, respectively (Figure 6D). The calibration curves demonstrated that the predicted 3- and 5-year OS rates closely corresponded with the actual survival rates with a 10% error margin, represented by the dotted lines (Figures 6E,F).


[image: image]

FIGURE 6. Construction and validation of nomogram. (A) Univariate Cox analysis. (B) Multivariate Cox analysis. (C) Nomogram for predicting 3- and 5-year overall survival of OC patients. (D) Time-dependent ROCs for 3- and 5-year OS of the nomogram. (E,F) Calibration curves of the nomogram prediction of 3-and 5-year OS of patients with OC.




Joint Survival Analysis

The joint survival analysis demonstrated that the combination of methylation and expression of the two genes was correlated with patient prognosis (P < 0.05). The OS associated with hypomethylation and high expression of CIDEB and SLC52A3 was lower (Supplementary Figure 2).



Functional Enrichment Analysis

Gene Ontology functional enrichment analysis revealed that the DEGs between the high- and low-risk groups were enriched in immune-related biological processes, including humoral immune response mediated by circulating immunoglobulin, regulation of humoral immune response, and B cell-mediated immunity (Supplementary Figure 3A). The KEGG pathway revealed that the differential gene pathway included cell adhesion molecules, cell cycle, Ras signaling pathway, and Th1 and Th2 cell differentiation (Supplementary Figure 3B).



DISCUSSION

The OC is the most lethal gynecological cancer with a poor prognosis. It is insidious, difficult to diagnose early, and prone to relapse and developing chemoresistance. In addition, the clinical outcomes of advanced OC remain unsatisfactory (Lheureux et al., 2019). Thus, there is a need to formulate a new quantitative prediction method to accurately assess the prognosis of patients with OC. In the present study, the methylation and gene expression data of OC samples were analyzed to construct a qualitative risk score system for predicting the OS of patients with OC. A total of 56 methylation-related DEGs were obtained, and a prognostic signature with four genes was constructed in the training set. We validated its predictive accuracy in two independent GEO sets and confirmed that the model was reliable, regardless of the dataset used in the independent validation set. The OS of patients with high-risk scores was poorer than that of patients with low-risk scores. Subgroup analysis revealed that the subgroups based on age, stage, and tumor status were equally meaningful. Multivariate analysis indicated that the model could be an independent risk predictor of OC. We then constructed a quantitative nomogram that integrated the risk score and clinical features. The joint survival analysis revealed that the combination of methylation and expression of two genes is an independent predictor of OS in OC. Hence, the signature not only served as an independent risk predictor of OC, but also helped identify high-risk patients and guide individualized treatment. This has significance in clinical applications.

Our study has several advantages. The high-throughput “omics” data combined with bioinformatic analysis provided valid and economical methods to depict the prognostic value of model. Owing to the clinical heterogeneity among OC patients, single prognostic biomarkers could not be enough to accurately predict the patient’s prognosis. Integrating multiple biomarkers into a single prediction model may maximize the advantages of single biomarkers and the accuracy of prognostic prediction value across data sets. In present study, we integrated methylomes and transcriptomes profiles to identify methylation-related DEGs, and integrated multiple biomarkers into a single model that would substantially improve prognostic value compared with a single biomarker. This model is found to be good in two validated cohorts. In many studies, inappropriate statistical methods were used to mine microarray data. In the planning of survival analysis to model covariate information, Cox proportional hazards regression analysis is the most popular method; however, it is not suitable for high-dimensional microarray data when the ratio of sample size to variable is too low. LASSO Cox regression analysis can perform dimensional analysis more effectively to construct more accurate genetic (Ternès et al., 2016). The lambda value with the minimum average error obtained from the cross-validation method was fitted into the LASSO regression analysis to filter genes. In present study, we used LASSO Cox regression to select markers in the prognostic signature. Therefore, the predictive ability of the signature is more reliable and accurate. Furthermore, the nomogram combining risk score and clinical parameters can provide a visual method for predicting individual OS in OC patients.

Aberrant DNA methylation in the promoter region is usually considered a hallmark of tumors, which usually leads to the abnormal activation of oncogenes and the transcriptional silencing of TSGs (Cruickshanks et al., 2013). Studies have shown that aberrant DNA methylation often occurs in early tumors and that epigenetic changes are relatively stable (Ibrahim et al., 2011). The methylation profile of the gene promoter varies with cancer type, which indicates that the detection of aberrant methylation may serve as a potential molecular biomarker for cancers. In addition, as epigenetic changes are reversible, they are expected to be therapeutic targets (Baylin and Jones, 2011). Therefore, dysregulation of DNA methylation may serve as a biomarker for clinical diagnostic and prognostic evaluation, and clinical decision-making of tumors.

Aberrant DNA methylation has been reported to influence the development and progression of OC. Dysregulated DNA methylation-related genes can promote malignant transformation through the silencing of TSGs or overexpression of oncogenes, which constitutes a new balance in the tumor microenvironment and may become a predictive biomarker of prognosis. TSGs usually show promoter hypermethylation and inhibit its expression, thereby promoting the pathogenesis of OC (Chen et al., 2018; Rezk et al., 2018). The promoter of TSGs (BRCA1 and RASSF1A) is hypermethylated in OC tissues (Ibanez de Caceres et al., 2004). Hypermethylation silences expression to inhibit BRCA1 function, driving genomic instability in OC (Rezk et al., 2018). Silencing of RASSF1A promotes cell cycle progression and uncontrolled cell growth. Deng et al. (2017) revealed that expression of the tumor suppressor miR-199a-3p was significantly down-regulated in OC cells, and its promoter was hypermethylated in OC cells. Overexpression of miR-199a-3p can inhibit the migration, invasion, and tumorigenic capabilities of OC cells as well as enhance cisplatin resistance by inhibiting targeted DDR1 expression. Similarly, expression of the miR-424/503 cluster is inhibited by DNA hypermethylation in the promoter regions, which promotes the expression of KIF23, thereby improving the oncogenic performance of OC cells (Li et al., 2019).

Among the four methylation-driven DEGs, paraoxonase 3 (PON3), a member of the lipolactonases family, regulates mitochondrial function and reduces the release of superoxide anion free radicals in the inner mitochondrial membrane (Schweikert et al., 2012). In addition to its antioxidant effect, PON3 may also have an anti-apoptotic effect, which may be related to the physiology and pathology of tumor cells (Witte et al., 2012). Promoter hypermethylation of PON3 and/or decreased mRNA expression has been reported in several types of cancers, including OC (Kitchen et al., 2016; Shui et al., 2016; Wouters et al., 2017; Song et al., 2020). Song et al. (2020) used reduced representation bisulfite sequencing to investigate OC-specific DNA methylation and gene expression in 21 OC tissues and adjacent normal tissues, and revealed that 11 differentially methylated regions in CAPS, FZD7, CDKN2A, PON3, and KLF4 genes were significantly hypermethylated and down-regulated. They then confirmed their methylated levels in another 41 pairs of OC tumors and normal tissues. PON3 was down-regulation and hypermethylated in the TP53 mutant OC. Similar patterns of epigenetic regulation have also been reported in DNA methylation studies of several other cancers (Baharudin et al., 2017; Huang et al., 2018), indicating that PON3 may be a tumor suppressor in OC. Shui et al. (2016) identified two differentially methylated regions in the gene PON3, whose promoter hypermethylation was correlated with decreased mRNA expression. Reduced PON3 expression in the presence of promoter methylation was confirmed in another study (Kitchen et al., 2016). Microfibrillar-associated protein 4 (MFAP4), known as 36-kDa microfibril-associated glycoprotein (MAGP36), is ubiquitously distributed in the extracellular matrix of the human body (Toyoshima et al., 2005; Schlosser et al., 2006). MFAP4 has been associated with immune response (Niu et al., 2011), liver fibrosis (Madsen et al., 2020), renal fibrosis (Pan et al., 2020), atherosclerosis (Wulf-Johansson et al., 2013), pulmonary airspace enlargement (Holm et al., 2015), and abdominal aortic aneurysms (Lindholt et al., 2020). MFAP4 was also found to be involved in human cancers, such as pancreatic adenocarcinoma (Guerrero et al., 2021), serous OC (Zhao et al., 2019), breast cancer (Yang et al., 2019), and lung cancer (Feng et al., 2020). Yang et al. (2019) found that MFAP4 was down-regulated and may function as a tumor suppressor in breast cancer. Elevated MFAP4 levels are associated with better overall survival (OS). Promoter hypermethylation of MFAP4 results in the down-regulation of its mRNA expression. Similarly, a significant negative correlation between DNA methylation values and mRNA expression of MFAP4 was observed in serous OC (Zhao et al., 2019). Patients with high MFAP4 levels were associated with poorer OS and recurrence-free survival. This finding was consistent with our results. A kinase anchoring protein 12 (AKAP12) is a scaffolding protein that can bind to protein kinase A and protein kinase C to regulate signal transduction (Gelman, 2012; Wu et al., 2018). AKAP12 can also control cell adhesion, mitogenesis, and differentiation and has tumor suppressing properties. AKAP12 promoter CpG island hypermethylation and low expression have been reported in various cancers, including colorectal cancer (Mori et al., 2006), juvenile myelomonocytic leukemia (Wilhelm et al., 2016), and prostate cancer (Gelman, 2012). 5-aza-2′-deoxycytidine can reverse AKAP12 promoter hypermethylation and restore AKAP12 expression. Wilhelm et al. (2016) found that the AKAP12α promoter was hypermethylated in juvenile myelomonocytic leukemia tissues, which was associated with decreased AKAP12α expression. Hypermethylation of the AKAP12α promoter is linked to delayed diagnosis, elevated levels of fetal hemoglobin, and poor prognosis. Qian et al. (2020) indicated that AKAP12 was down-regulated in myelodysplastic syndrome tissues, and up-regulation of AKAP12 prolonged the cell cycle, inhibited cell proliferation, and induced apoptosis by activating the ERK1/2 signaling pathway. BHMT2 was reported to be down-regulated in hepatocellular carcinoma tissues compared with adjacent normal tissues (Pellanda et al., 2012), but it has not been reported to be related to OC biology.

This study has some limitations that require further research. First, although the signature based on methylation-driven genes has been validated in TCGA dataset and the two GEO datasets using different technology platforms, more independent datasets are still needed to verify the signature to ensure its robustness and repeatability. In addition, the signature was established using our own computational framework. Therefore, further functional studies are required to validate our results. Second, although the nomogram incorporates age, stage, tumor status, and risk score to predict the OS rates, the clinicopathological variables were considered insufficient due to limited data. Third, although our quantitative prognostic model is promising, it is too early to assert that our two-dimensional model (epigenetic and transcriptional signatures) is superior to traditional examinations.

In conclusion, we established a prognostic risk model consisting of four methylation-driven genes in OC and validated the results using different datasets. We also confirmed that the signature as an independent predictor was significantly associated with prognosis. The nomogram integrating the risk score and clinicopathological features was found to be robust in predicting the OS of patients with OC. The qualitative model described herein may serve as a reliable and reproducible tool for prognostic prediction in individual cases.
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Intercellular communication in the decidua plays important roles in relaying information between the maternal and fetal systems in the maintenance of pregnancy and the transition to labor. To date, several studies have explored cell-cell communications in the decidua during different periods of pregnancy, but studies systematically decoding the intercellular communication network, its internal cascades, and their involvement in labor are still lacking. In this study, we reconstructed a decidual cell-cell communication network based on scRNA-seq of peripartum decidua via the CellCall method. The results showed that endometrial cells (EECs) and extravillous trophoblasts relayed most of the common intercellular signals in the decidua both before delivery (DBD) and after delivery (DAD). Endothelial cells and EECs controlled many WNT-signaling-related intercellular communication factors that differed between DBD and DAD, some of which could be candidate biomarkers for the diagnosis of labor. Analysis of intercellular communications related to T cells identified abundant maternal-fetal immune-tolerance-related communication, such as TNFSF14-TNFRSF14/LTBR and FASLG-FAS signalings. We further explored the characteristics of the B cell receptor (BCR) and T cell receptor (TCR) repertoires by single-cell BCR/TCR sequencing. The results showed no significant differences in clonal expansion of B/T cells between DAD and DBD, indicating there was no significant change to adaptive immunity at the maternal-fetal interface during delivery. In summary, the findings provide a comprehensive view of the intercellular communication landscape in the peripartum decidua and identified some key intercellular communications involved in labor and maternal-fetal immune tolerance. We believe that our study provides valuable clues for understanding the mechanisms of pregnancy and provides possible diagnostic strategies for the onset of labor.
Keywords: decidua, delivery, intercellular communication, B cell receptor repertoire, T cell receptor repertoire, single-cell RNA sequencing
1 INTRODUCTION
Labor is triggered by a series of complex communications via fetal and maternal factors that act upon the uterus to trigger intercellular pathways, leading gradually to coordinated cervical ripening and myometrial contractility (Kniss and Iams, 1998). However, the exact mechanisms and communication cascades involved in delivery remain uncertain. The maternal-fetal interface, which is composed of cells of both maternal and fetal origin, is a key heterogeneous organ connecting the maternal and fetal systems during pregnancy and plays key roles in delivery (Ishida et al., 2011; Maltepe and Fisher, 2015). The decidua, an important tissue found within the maternal-fetal interface, is the site of the intercellular crosstalk that plays important roles in connecting the maternal and fetal systems, the maintenance of pregnancy, and the transition to labor (Areia et al., 2017). Despite advances in technology, our understanding of the highly integrated and extremely dynamic nature of the decidua and its functions during pregnancy and labor is still far from clear (Mori et al., 2016).
Recently, with the rapid development of single-cell RNA sequencing (scRNA-seq) technologies, many research groups have begun to investigate the cellular composition of the maternal-fetal interface and/or decidua at different stages of pregnancy and have obtained a comprehensive understanding of the cellular organization, homeostasis, dynamics, and differentiation of the placenta (Tsang et al., 2017; Liu et al., 2018; Suryawanshi et al., 2018; Vento-Tormo et al., 2018). For example, Vento-Tormo et al. (Vento-Tormo et al., 2018) developed an atlas of the first-trimester human placenta by scRNA-seq and identified an array of cell types unique to the early maternal-fetal interface. Moreover, scRNA-seq of sorted placental cells from first- and second-trimester human placentae identified several new trophoblast subtypes and human placental trophoblast differentiation during the early stage of pregnancy (Liu et al., 2018). In our previous study, we characterized the single-cell landscape of the peripartum decidua, identified the major cell populations and subpopulations of the decidua, and revealed decidual cell changes during labor (Huang et al., 2021). These cell atlas studies have provided important resources for future explorations of pregnancy and its complications (Rajagopalan and Long, 2018).
To data, there are few specialized histomorphological studies on decidua during peripartumperiod. Elfayomy and Almasry (2014) has evaluated the histomorphology of the peripartum fetal membranes and found that the apoptotic bodies differentially expressed in different cell types, and the proinflammatory cytokines including tumor necrosis factor-alpha and vascular endothelial growth factor significantly increased with onset of labor. Osman et al. (2006) has reported that all regions of fetal membrane and decidua contribute to the inflammatory process of human parturition. After labor onset, the decidual tissue may have different histomorphological changes which are related to various cell types and cytokines. Therefore, the study of interplay among various decidual cells and the cytokines would be helpful for a more detailed evaluation for decidua and delivery.
The decidua mediates communication between two semiallogenic individuals, the mother and the fetus, which is the epitome of intercellular communication (Iliodromiti et al., 2012; Pavličev et al., 2017). Therefore, the further elucidation of the intercellular communication in the decidua could facilitate our understanding of the fundamental basis of pregnancy and help to reveal pathogenic mechanisms of pregnancy-related disorders (Zhang et al., 2021b; Chen et al., 2021). Intercellular communication network analysis using scRNA-seq of human term placenta has found that the decidua is the center of intercellular signal transduction and has indicated the dominant role of growth factors and immune signals in the intercellular crosstalk (Tsang et al., 2017). Cell-cell communication analysis of first-trimester placentas identified many regulatory interactions that prevent harmful innate or adaptive immune responses in the maternal-fetal interface environment (Vento-Tormo et al., 2018). Suryawanshi et al. (2018) also reported many putative intercellular communications in the fetal-maternal microenvironment. However, with the exception of the above studies, research attempting to systematically decode the network and internal cascades of the cell-cell communication involved in labor is still lacking.
In this study, we aimed to visualize the intercellular communication that occurs during the perinatal period and identify key intercellular transduction signaling pathways related to the onset of labor. We collated the scRNA-seq data for term decidua before delivery (DBD) and after delivery (DAD) obtained in our previous study (Huang et al., 2021) and reconstructed the cell-cell crosstalk via the CellCall method (Zhang et al., 2021a). We then investigated the shared and differential intercellular signals between DBD and DAD and explored the intercellular crosstalk between T cells and other decidual cells. Lastly, to reveal the dynamic changes in the maternal-fetal immune system during delivery, we further explored the characteristics of the B cell receptor (BCR) and T cell receptor (TCR) repertoire between DBD and DAD through single-cell BCR/TCR sequencing (scBCR/TCR seq).
2 MATERIALS AND METHODS
2.1 scRNA-Seq Data Collection
The processed scRNA-seq data of 29,231 peripartum decidual cells from our previous study were collated (including 17,149 DBD cells and 12,082 DAD cells) (Huang et al., 2021). There were eight main types of peripartum cells, including 10,004 endothelial cells (ECs), 6,422 decidual stromal cells (DSCs), 5,277 extravillous trophoblasts (EVTs), 1,194 T cells (TCs), 3,720 smooth muscle cells (SMCs), 1,312 Dendritic cells (DCs), 1,133 fibroblasts (FBs), and 169 endometrial cells (EECs). The gene expression levels were normalized by log2 [TPM/10 + 1] (transcripts per million, TPM).
2.2 Inferring Cell-Cell Communication by CellCall
Intercellular and internal signaling among different cell types of the decidua was inferred by CellCall (Zhang et al., 2021a), which is a toolkit for researching intercellular communication networks and internal regulatory signals by combining the expression of ligands/receptors with downstream transcription factor (TF) activities for certain ligand-receptor (L-R) pairs. The technique also has an embedded pathway-activity analysis method to help explore the main pathways involved in communication between certain cells. Genes that were expressed in less than 10% of the cells of a certain cell type were excluded in this study.
2.3 Ethics Statement, Informed Consent, and Sample Preparation
A total of six peripartum decidua samples (three DBD samples and three DAD samples) were obtained from Xiangya Hospital Central South University or Changsha Hospital for Maternal and Child Health Care. Informed consent was obtained from all patients prior to data collection, which are the same samples as our previous study (Huang et al., 2021). The processing of tissue dissociation can be seen in our previous report (Huang et al., 2021). Then the cell suspension was prepared for the scRNA-seq cDNA library and scBCR/TCR cDNA library preparation and sequencing, respectively. The study protocol was approved by the Medical Ethics Committee of the Xiangya Hospital Central South University (2018081027) and Changsha Hospital for Maternal and Child Health Care Ethics Committee (2018810).
2.4 scBCR-Seq and Analysis
Full-length BCR V(D)J segments were enriched from cDNA amplified from 5′ libraries using a Chromium Single-Cell V(D)J Enrichment kit in accordance with the manufacturer’s protocol. BCR sequences for each single B cell were assembled by Cell Ranger vdj pipeline (v.3.0.2). Only those cells with both productive immunoglobulin heavy chains (IGH) and productive immunoglobulin light chains kappa (IGK) or lambda (IGL) were kept. If more than one heavy chain or light chain was detected in a single cell, the cell with the chain with the highest amount of unique molecular identifiers (UMI) was retained (Zheng et al., 2017). A clonotype was defined as a unique pairwise combination of IGH/IGK/IGL. A cell was considered to be clonally expanded if its clonotype was shared by at least two cells. The clonality of a clonotype was indicated by the number of cells with the same clonotype (performed by CapitalBio Technology, Beijing). Based on the scBCR-seq data, a total of 8,755 B cells were detected.
2.5 scTCR-Seq and Analysis
VDJ segments were generated using the Chromium Single-Cell V(D)J Enrichment kit following the manufacturer’s protocol. The Cell Ranger vdj pipeline was applied to assemble the TCR sequences and identify the CDR3 sequence and TCR genes. Then, the cells were filtered according to the following steps: 1) Cells annotated as T cell clusters in scRNA-seq were kept, and 2) cells that possessed productive TCR α and β chains were incorporated into the analysis. If more than one α or β chain was detected in a cell, we retained the chain with the highest UMIs (Zheng et al., 2017). We defined the expanded clonal cells as those having a pair of TCR α and β chains that appeared in at least two cells. (performed by CapitalBio Technology, Beijing). Based on the scTCR-seq data,a total of 4,745 T cells were detected.
2.6 Clonal Diversity and Evenness Analysis
The clonal diversity of BCR/TCR was estimated by Shannon Entropy and the D50 index (Al Khabouri et al., 2021). Shannon entropy (H) estimated both richness (number of clonotypes) and diversity (evenness of distribution) (Sims et al., 2016). The formula used was as follows:
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where HVJ is the entropy of the distribution of VJ cassette combinations, and HΔ is the entropy from the VJ-independent component. D50 is defined as the smallest percentage of different clonotypes that make up at least half of the total clonotypes in a population or subpopulation of B/T cells (Wang et al., 2021). The clonal evenness of BCR/TCR was estimated by the Gini coefficient.
3 RESULTS
3.1 General Picture of Intercellular Communication in Peripartum Decidua
Initially, to comprehensively investigate the crosstalk in the peripartum decidua during delivery, we investigated the intercellular communications among the eight cell types of the decidua by CellCall. As shown in Figure 1A, various intercellular communication signals were widely distributed among the different cell types in both DBD and DAD. Compared to the other cell types, EECs and DSCs relayed significantly more signals to and from other cells, indicating the dominant role of EECs and DSCs in the intercellular crosstalk in the maternal-fetal interface during delivery. We further investigated the differential intercellular signals between DBD and DAD (Figure 1B) and found that the differential signals relating to ECs and EVTs were significantly increased after delivery and were mainly involved in BMP-BMPR signaling. In contrast, the differential intercellular communications related to EECs and two immune cells (TCs and DCs) were significantly decreased after delivery and were mainly involved in CCL-CCR signalings.
[image: Figure 1]FIGURE 1 | General picture of intercellular communication in peripartum decidua. (A) Circos plot of intercellular communication among different cell types in DBD and DAD. (B) Heatmap of differential intercellular signals between DBD and DAD; red represents significantly increased intercellular communication in DAD; blue represents significantly decreased intercellular communication in DAD.
3.2 Common Intercellular Communications in DBD and DAD
To investigate the essential intercellular signals during delivery, we identified the intercellular communications (with a score larger than 0.5) common to both DBD and DAD. As shown in Figures 2A,B, compared to other cells, EECs and EVTs relayed more common intercellular communications. The key common intercellular communication between EECs and other cells was DCN-MET signaling. DCN is an important molecule for maintaining the homeostatic balance between the naturally invasive human placenta and the maternal uterus in pregnancy (Lala and Nandi, 2016); its actions at the fetal-maternal interface include the restraint of trophoblast migration and invasion and uterine angiogenesis by binding to multiple TKRs, including MET (Chen, 2014). In EVTs, LIF- LIFR (including IL6ST) signaling has been shown to play an important role in trophoblast invasion in vivo and may facilitate trophoblast decidual immune cell crosstalk to enable adequate spiral artery remodeling (Winship et al., 2015). CXCL16/CXCR6 interaction promotes endometrial decidualization via the PI3K/AKT pathway (Mei et al., 2019). PGF/VEGFC-FLT1 signals have also been demonstrated to enhance embryo development, improve endometrial receptivity, and facilitate interactions between the developing embryo and the endometrium (Guo X. et al., 2021). Moreover, pathway activity analysis showed that these common intercellular communications were mainly enriched in the PI3K-Akt signaling pathway, Jak-STAT signaling pathway, focal adhesion, and proteoglycans in cancer (Figure 2C). These pathways have been reported to be critical for the implantation, decidualization, and aging of the placenta (Gupta et al., 2016; Menon, 2016; Sharma et al., 2016).
[image: Figure 2]FIGURE 2 | Common forms of intercellular communications in DBD and DAD. (A) Heatmap of common intercellular signals among different cell types in DBD and DAD; red represents the score of intercellular communication. (B) Expression of ligands and receptors of common intercellular signals. (C) Pathway activity analysis of common intercellular communication in DBD and DAD.
3.3 Differential Intercellular Communication Between DAD and DBD
We further investigated the differential intercellular communications between the DBD and DAD, and found many of these signals were relayed by the two representative decidual tissue cells ECs and EECs (Figure 3A). Many distinct intercellular signals in the DAD were related to communication between EC and other cells (Figure 3B). For example, many WNT signals have been identified as being relayed by ECs, which are very important signaling cells in implantation and decidualization, and changes in Wnt signaling components have been recorded in cancers of reproductive tissues, endometriosis, and gestational diseases (Zhang and Yan, 2016). BMPs-BMPRs have also been proven to regulate uterine decidualization via the Wnt signaling pathway (Li et al., 2007). Pathway activity analysis showed that these differential intercellular communications were mainly enriched in the Wnt signaling pathway, Hippo signaling pathway, and focal adhesion, among others (Figure 3C). In contrast to ECs, numerous differential intercellular communications between EECs and other cells occurred in the DBD, in which WNT signals also play an important role in intercellular crosstalk between EEC and other cells. Pathway activity analysis showed that the expression of intercellular communications was enriched mainly in the Wnt signaling pathway, proteoglycans in cancer, and prostate cancer etc. (Figure 3C).
[image: Figure 3]FIGURE 3 | Differential intercellular communication between DAD and DBD. (A) Heatmap of differential intercellular signals related to ECs and EECs; red represents significantly increased intercellular communication in DAD; blue represents significantly decreased intercellular communication in DAD. (B) Details of differential intercellular communication related to ECs and EECs; red represents the score of intercellular communication. (C) Pathway activity analysis of differential intercellular communication related to ECs and EECs.
3.4 Differential Intercellular Communication Related to TCs
Contemporary studies have shown that T cells play key roles in the decidua during human pregnancy (Powell et al., 2017). Hence, we further investigated the aspects of intercellular communication between TCs and other decidual cells. As shown in Figures 4A,B, compared to the DBD, intercellular signals from TCs to other cells were obviously increased in the DAD. Contrastingly, the intercellular communication between TCs and other cells obviously decreased. Some of the differential intercellular signals between TCs and other cells in the DAD are reportedly related to the physiological and/or pathological processes of pregnancy, of which TNFSF14-TNFRSF14/LTBR signals have been reported to be significantly increased in patients with recurrent pregnancy loss (Guo C. et al., 2021). FASLG-FAS signaling from TCs to the decidua was demonstrated to be related to mother-fetal immune tolerance (Guller and Lachapelle, 1999). Pathway activity analysis showed that these differential intercellular communications were mainly enriched in the Notch signaling pathway and PI3K/AKT pathway, etc. (Figure 4C). Further analysis of the TFs downstream of the TNFSF14-TNFRSF14/LTBR and FASLG-FAS pathways revealed that most were involved in immune tolerance in pregnancy (Figure 4D) (Rackaityte and Halkias, 2020; Gómez-Chávez et al., 2021). For example, NFκB family members NFKB1, NFKB2, and NFKBIA occupy central roles in the immune microenvironment (Rackaityte and Halkias, 2020; Gómez-Chávez et al., 2021). Enrichment analysis indicated that all these TFs were distinctly activated (see Figure 4E), and most target genes (TGs) had fold change (FC) values greater than 1 (Figure 4F). Furthermore, most of the intercellular communications between TCs and cells in the DBD are also reportedly related to pregnancy (Mincheva-Nilsson et al., 2000). Studies have reported that various decidua cells, such as EVTs, DSCs, and EECs, regulate mother-fetal immune tolerance and the microenvironment by targeting T cells via the chemokine network (Ramhorst et al., 2016). Pathway activity analysis revealed that these intercellular signals were mainly enriched in the chemokine signaling and Jak-STAT signaling pathways, etc. (Figure 4C).
[image: Figure 4]FIGURE 4 | Intercellular communication related to TCs. (A) Circos plot of intercellular communication related to TCs in DBD and DAD. (B) Differential intercellular communication related to TCs; red represents significantly increased intercellular communication in DAD; blue represents significantly decreased intercellular communication in DAD. (C) Pathway activity analysis of differential intercellular communication related to TCs. (D) Sankey plot of three intercellular signals related to TCs. (E) Enrichment analysis of six TFs (the target gene set of the TF) downstream of the three intercellular signal pathways. (F) Ridge plot of the density distribution of FC of TGs for the six TFs.
3.5 scBCR/TCR-Seq Profiling of Decidua
To reveal the dynamic changes that occur in the maternal-fetal immune system during delivery, we further explored the characteristics of the BCR and TCR repertoires in the DBD and DAD using scBCR/TCR seq. As shown in Figures 5A,B, the frequencies of clonal B cells and clonal T cells seemed to be higher in the DAD than the DBD. However, the Shannon Entropy and D50 indexes of the six samples suggested that the clonal diversity of BCR/TCR did not markedly change between the DBD and DAD (Figure 5C). The Gini coefficient across the samples indicated that the clonal evenness of BCR/TCR also did not markedly change between the DBD and DAD. Moreover, the top IGH, IGL, and IGK recombinations of BCRs were often observed in a large percentage of DBD samples (Figure 6), but the T cell receptor α (TRA) and T cell receptor β (TRB) recombinations of TCRs did not differ remarkably between the DAD and DBD (Figure 6).
[image: Figure 5]FIGURE 5 | Characterization of BCR/TCR repertoires in six decidua samples. (A) Proportion of the top N most frequently occurring clones. (B) Proportion of unique and non-unique BCR/TCR clones. (C) D50, Shannon entropy, and Gini-coefficient scores of the BCR/TCR clones in six samples.
[image: Figure 6]FIGURE 6 | Circos plots of IGH, IGL, and IGK recombinations of BCRs and TRA and TRB recombinations of TCRs.
4 DISCUSSION
The decidua is a key intrauterine source of bioactive molecules that are pivotal in pregnancy and parturition and crucial to the crosstalk between maternal and fetal compartments (Liu et al., 2003; Pavličev et al., 2017; Yang et al., 2019). Therefore, decoding the intercellular signaling network in the decidua involved in the onset of labor could not only help to elucidate the exact mechanisms of labor but also reveal candidate biomarkers for the diagnosis of labor onset. Our previous study revealed the communication landscape in the decidua before and after delivery (Huang et al., 2021), but the similarities and differences in the intercellular signals involved in delivery have not been fully characterized (Zhao et al., 2019). Here, we comprehensively analyzed an intercellular communication network involving multiple cell types in the peripartum decidua and found that EECs and DSCs sent and received significantly more signals than other cells. The communication lines related to ECs and EVTs were significantly increased after delivery, and the signals relayed to EECs and two immune cells (TCs and DCs) were significantly decreased after delivery. We further investigated the TC-related communications between the DBD and DAD, and the findings indicated that TCs play key roles in full-term delivery. Finally, the results of scTCR/BCR-seq showed no significant differences in the clonal expansion of B/T cells between the DAD and DBD, which indicated there were no significant changes to adaptive immunity at the maternal-fetal interface during delivery.
When we investigated the intercellular communication common to both the DBD and DAD, we found that EECs and EVTs were prominent receivers of signals from other cells. DSCs constitute the main cellular component of human decidua and show activities that appear to play important roles in embryo implantation, the development of pregnancy, and maternal-fetal immune tolerance (Macklon and Brosens, 2014; Muñoz-Fernández et al., 2019). EVTs at the end of the placental villi invade and implant into the maternal decidua, establishing critical tissue connections at the maternal-fetal interface (Chen et al., 2009). The communications related to these cells, such as DCN-MET, LIF-LIFR, and CXCL16/CXCR6 signaling, have exhibited key roles in the maintenance and development of pregnancy (Chen, 2014; Winship et al., 2015; Mei et al., 2019), and the enriched pathways, such as PI3K-Akt signaling pathway, Jak-STAT signaling pathway, and focal adhesion, have also been reported to be critical in the development of pregnancy (Gupta et al., 2016; Menon, 2016; Sharma et al., 2016). Our results revealed comprehensive details of the essential intercellular signal cascade during peripartum.
We further compared the intercellular communication occurring in the DBD and DAD. ECs were prominent receivers of differential signals from other cells in the DAD, mainly including Wnt and BMP-BMPR signaling. In contrast, EECs were the important receivers of cell signaling in the DBD, and Wnt signals also play an important role in intercellular crosstalk from other cells to EECs. Some studies reported that the Wnt signaling pathway is not just involved in early pregnancy but also takes part in the cascade events that lead to labor (Pereyra et al., 2019). Therefore, future studies on the Wnt signaling pathway are hoped to provide deeper insights into the pathophysiological significance of these proteins in pregnancy events. The diagnosis of labor onset has been described as one of the most difficult and important judgments made by providers of maternity care (Hanley et al., 2016). Our results also implicate these ligands/receptors of distinct intercellular communications as factors governing labor onset and, ultimately, candidate biomarkers for labor prediction.
T cells that populate the decidua have important roles in both normal and pathological pregnancies (Mincheva-Nilsson et al., 2000), but understanding the functions of T cells at the maternal-fetal interface remains one of the most difficult problems in reproductive immunology (Nancy and Erlebacher, 2014). We investigated the intercellular communication between TCs and other decidual cells and found that signals relayed from TCs to other cells were distinctly increased in the DAD, some of which, e.g. TNFSF14-TNFRSF14/LTBR and FASLG-FAS, are involved in mother-fetal immune tolerance and facilitating the onset of labor (Guller and Lachapelle, 1999; Guo C. et al., 2021). In comparison, the intercellular communications between TCs and other cells were noticeably decreased, indicating that, when delivery occurs, the maintenance of mother-fetal immune tolerance is no longer unnecessary in the uterine microenvironment; therefore, the chemokine network targeting T cells is shut down.
To further explore the dynamic changes to the maternal-fetal immune system during delivery, we investigated the characteristics of the BCR and TCR repertoires in the DBD and DAD by scBCR/TCR seq. The results showed that the frequency of clonal B cells increased and that of T cells decreased in the DAD. Although, the clonal diversity and evenness analysis of BCRs/TCRs showed no significant differences in the clonal expansion of B/T cells between the DAD and DBD. These results indicate that adaptive immunity does not significantly change at the maternal-fetal interface during normal labor. Accumulating evidence suggests that innate immune cells (neutrophils, macrophages, and mast cells) mediate the process of labor by releasing pro-inflammatory factors. However, adaptive immune cells (B/T cells) participate in the maintenance of feto-maternal tolerance during pregnancy, and alterations in their function or abundance may lead to labor at term or preterm (Gomez-Lopez et al., 2014). Therefore, all these results indicate that adaptive immunity must remain stable to maintain maternal-fetal tolerance via intercellular communication during normal labor.
In this report, we have described a comprehensive cell-cell communication network active in the peripartum decidua during delivery and found many common and differential intercellular signaling pathways among the different decidual cells between DBD and DAD, some of which represent candidate biomarkers for the diagnosis of labor. We further investigated the TC-related communications between the DBD and DAD and discovered that T cells may play key roles in full-term delivery. The results of scTCR/BCR-seq showed no significant differences in the clonal expansion of B/T cells between DAD and DBD, suggesting that adaptive immunity at the maternal-fetal interface does not change significantly during delivery. In summary, this study provided a comprehensive overview of the landscape of intercellular communication in the peripartum decidua and identified some key intercellular signals involved in labor and maternal-fetal immune tolerance. We believe that our study provides clues to understanding the mechanisms of pregnancy and possible diagnostic strategies for the onset of labor.
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Asthma is a complex heterogeneous respiratory disorder. In recent years nubbly regions of the role of genetic variants and transcriptome including mRNAs, microRNAs, and long non-coding RNAs in the pathogenesis of asthma have been separately excavated and reported. However, how to systematically integrate and decode this scattered information remains unclear. Further exploration would improve understanding of the internal communication of asthma. To excavate new insights into the pathogenesis of asthma, we ascertained three asthma characteristics according to reviews, airway inflammation, airway hyperresponsiveness, and airway remodeling. We manually created a contemporary catalog of corresponding risk transcriptome, including mRNAs, miRNAs, and lncRNAs. MIMP is a multiplex-heterogeneous networks-based approach, measuring the relevance of disease characteristics to the pathway by examining the similarity between the determined vectors of risk transcriptome and pathways in the same low-dimensional vector space. It was developed to enable a more concentrated and in-depth exploration of potential pathways. We integrated experimentally validated competing endogenous RNA regulatory information and the SNPs with significant pathways into the ceRNA-mediated SNP switching pathway network (CSSPN) to analyze ceRNA regulation of pathways and the role of SNP in these dysfunctions. We discovered 11 crucial ceRNA regulations concerning asthma disease feature pathway and propose a potential mechanism of ceRNA regulatory SNP → gene → pathway → disease feature effecting asthma pathogenesis, especially for MALAT1 (rs765499057/rs764699354/rs189435941) → hsa-miR-155 → IL13 (rs201185816/rs1000978586/rs202101165) → Interleukin-4 and Interleukin-13 signaling → inflammation/airway remodeling and MALAT1 (rs765499057/rs764699354/rs189435941) → hsa-miR-155 → IL17RB (rs948046241) → Interleukin-17 signaling (airway remodeling)/Cytokine-cytokine receptor interaction (inflammation). This study showed a systematic and propagable workflow for capturing the potential SNP “switch” of asthma through text and database mining and provides further information on the pathogenesis of asthma.
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1 INTRODUCTION
Asthma is a chronic inflammatory disease of the airways. It is a physiological hyperreactivity that causes recurrent wheezing, chest tightness, or coughing in patients. The contribution of genetic variants, especially single nucleotide polymorphisms (SNPs) to asthma has become the subject of widespread research and gratifying results have been achieved in some independent studies. A case-control study containing 96 asthma children and 86 healthy children showed that ADAM33 rs678881 polymorphism is significantly correlated with increased susceptibility to asthma in Chinese Han children (Ning et al., 2019).
Long non-coding RNAs (lncRNA), a type of RNA defined as non-protein coding transcripts with a length exceeding 200 nucleotides, is universally acknowledged to be the main participant of functional ceRNA mechanism. MicroRNA (miRNA), a 20–22 nucleotide conserved non-coding RNA molecule that functions in RNA silencing and the post-transcriptional regulation of gene expression by targeting the 3′ untranslated region (3′UTR) of specific messenger RNAs (mRNAs) for degradation or translational repression, has been shown to participate in varieties of biology progresses such as signaling transduction pathways, cell cycle, differentiation, and apoptosis. The significant roles of lncRNAs and miRNAs in the pathogenesis of asthma have been broadly demonstrated in many studies. The distinct change of expression of lncRNA PVT1 was observed in patients with corticosteroid-sensitive severe asthma. Subsequent targeting studies in ASMCs from patients with severe asthma showed that inhibition of lncRNA PVT1 with siRNAs increases FCS plus TGF-β–induced cellular proliferation through targeting of the transcription factor c-MYC, revealing its importance in controlling both proliferation and IL-6 release in ASMCs (Austin et al., 2017). MicroRNA 638 is a primate-specific miRNA that plays crucial roles in development, DNA damage repair, hematopoiesis, and tumorigenesis. Researchers have found that the expression of miR-638 is significantly downregulated in proliferative human ASM cells in response to various mitogenic stimuli, including PDGF-BB, FBS, and TGF-β1. Adenovirus-mediated miR-638 overexpression markedly inhibits ASMC proliferation and migration, while ablation of miR-638 by anti-miR-638 increases cell proliferation and migration. A series of experiments have demonstrated that miR-638 overexpression significantly reduces the expression of downstream targets cyclin D1 and NOR1, both of which have been proven to be essential in cell proliferation and migration (Wang et al., 2018).
In molecular biology, competing endogenous RNAs (abbreviated ceRNAs) regulate other RNA transcripts by competing for shared microRNAs (miRNAs), and new mechanisms of interaction between RNAs have been revealed. LncRNA-miRNA-mRNA regulation is one such example. LncRNA molecules sequester shared microRNAs (miRNAs), thereby affecting the expression of other targets of the miRNAs. Individual ceRNA mechanisms have been broadly researched in asthma. Treg/Th17 imbalance plays an essential role in the pathogenesis of asthma. A study found that alternation of LncRNA-MEG3 can change the function and result in increasing the percentage of Th17. Subsequent experiments indicate that LncRNA-MEG3 could inhibit the level of microRNA-17 as a competing endogenous RNA (ceRNA) and the microRNA-17 suppressed Th17 though targeting RORγt directly (Qiu et al., 2019). The sequence complementarity and thermodynamics of miRNA-lncRNA and miRNA-mRNA binding play crucial roles in their interactions. Hence, it is conceivable that lncRNA-associated or miRNA-associated single nucleotide polymorphisms (lncSNPs or miRSNPs) could influence the regulation of lncRNAs or miRNAs (Wilk and Braun, 2018; Gebert et al., 2020).
LncSNPs located in lncRNA genes could influence the biogenesis of lncRNA. The lncSNPs located in the miRNA binding sites could also alter the structure to affect the function of binding miRNA and render them the primary causative genetic variant. MiRSNPs have been divided into two categories depending on their locations, i.e., SNPs within the miRNA target site and SNPs within miRNA genes. SNPs within miRNAs genes could influence all states of miRNAs synthesis (pri-, pre-, and mature) and alter the expression level or function of miRNAs. SNPs within miRNA target sites may undermine, weaken or produce the interactions between miRNA and miRNA target and issue in a corresponding decrease or increase in protein translation. In bladder cancer, the lncRNA TINCR rs2288947 A > G variation was associated with increased expression of lncRNA TINCR in cancer tissues, and the rs8113645 C  >  T was associated with decreased expression (Xu et al., 2021).
The biological pathway, which comprises a cluster of interacting genes, is a useful construct for gaining insight into the underlying biological mechanism of genes and proteins. Reducing complexity and increasing explanatory power are the advantages of analysis at the pathway level (Khatri et al., 2012). Therefore, disease pathogenesis analysis in terms of the pathway is a widely used method in many studies. As mentioned above, lncRNA and miRNA play significant roles in regulating gene expression as post-transcriptional regulators. Thus, the weakness or destruction of lncRNA-miRNA or miRNA-mRNA binding could exert a tremendous influence on target-associated pathway regular functions.
Recently, a case-control study evaluated the association of SNP (rs140618127) in lncRNA LOC146880 with non-small cell lung cancer (NSCLC) in 2,707 individuals. Lab experiments in vitro and in vivo, which were designed to explore the mechanism of the SNP’s biologic influence, indicate that SNP rs140618127 contained a binding site for miR-539-5p, and that the binding between miR-539-5p and LOC146880 results in declined phosphorylation of an oncogene, ENO1. The reduced phosphorylation of ENO1 leads to decreased phosphorylation of the PI3K and Akt pathways, which is further linked to a decline in cell proliferation and tumor progression (Feng et al., 2020). Nevertheless, to date, little research has elaborated the effects of lncSNPs or miRSNPs in asthma. The present study aimed to construct a comprehensive catalog of the typical features of asthma-associated lncSNPs and miRSNPs and analyze the potential SNP-mediated dysfunctions of disease feature pathways.
This study generates new insights into the pathogenesis of asthma by integrating disease characteristics, pathways, and SNPs information. Three typical disease characteristics were scrupulously determined according to the summary of asthma characteristics in classic retrospective articles (Papi et al., 2018; Zhu et al., 2020b), i.e., airway inflammation, airway hyperresponsiveness, and airway remodeling, etc. A contemporary catalog of corresponding risk transcriptome including mRNAs, miRNAs, and lncRNAs was manually established. This contributes to analyses of specific parts and the overlapping characteristics of asthma disease in terms of gene function and related pathways and a more detailed and comprehensive understanding of the pathogenesis of asthma. In consideration of the limitations of the current method of pathway identification when thoroughly applying to our gathered information, a novel algorithm MIMP was developed, which accurately and comprehensively identifies pathways while exploiting suboptimal networks and can take account of current and closely pathway-associated transcriptomics and proteomics information. The MMIP can be used to identify the pathway association for a disease feature-related blended miRNA-mRNA molecular set. We then construct a ceRNA network for each recognized disease feature pathway and systematically identify candidate functional lncSNPs and miRSNPs and their potential mechanisms on the pathway, based on current genetic findings for asthma, which can help to further elucidate their potential roles in the pathogenesis of asthma both in genetic variant and at the post-transcriptional regulation level.
2 MATERIALS AND METHODS
2.1 Human Asthma Risk Transcriptome Data Collection
Asthma risk transcriptome was defined for biomolecules including the mRNA, miRNA, and lncRNA involved in the pathogenesis of asthma, rather than simply showing differential expression in asthma. We examined literature on the features of asthma disease published before March 3, 2021, by searching PubMed (https://pubmed.ncbi.nlm.nih.gov/). The search used the terms “{[asthma (MeSH Terms)] AND [(hyperresponsiveness) OR (inflammation) OR (remodeling)]} AND [English (Language)]”, which were thoroughly reviewed manually by reading the full text or abstract carefully. We documented the risk biomolecules exactly implicated in airway inflammation, airway hyperresponsiveness, or airway remodeling in asthma. Only biomolecule sets supported by information from typical biological methods (Western blotting, PCR, ELISA, TaqMan assays, et al.) and statistical significance were considered and curated.
2.2 Go Ontology Analysis
To measure the functional similarities and differences in cellular components, biological process, and the molecular function of the disease feature-associated genes, GOSemSim (Yu et al., 2010), an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters, was applied.
2.3 MiRNA Data and miRNA Target Genes
Human miRNA information was obtained from miRBase v22 (http://www.mirbase.org/) (Kozomara et al., 2019). Human miRNA target data was acquired from DIANA-TarBase v8 (http://www.microrna.gr/tarbase/) (Karagkouni et al., 2018), DIANA-LncBase Experimental v2 (https://diana.e-ce.uth.gr/lncbasev3) (Paraskevopoulou et al., 2016), and miRTarBase v8 (http://miRTarBase.cuhk.edu.cn/) (Huang et al., 2020). Some were also derived from recently published research. (Supplementary Table S1).
2.4 MISIM-Based miRNA Functional Similarity Network and STRING-Based Protein–Protein Interaction Network
MISIM v2 (http://www.lirmed.com/misim/) (Li et al., 2019), a widely cited server for inferring miRNA functional similarity based on miRNA-disease associations and the expression level of miRNA, was applied to obtain miRNA-miRNA network weighted by functional similarity.
A synthetic network supported by six distinct evidence types was acquired from STRING v11 (https://string-db.org/) (Szklarczyk et al., 2019). These types comprised manually collected and consolidated protein-protein interactions, experimentally validated protein-protein interactions, and protein-protein interaction derived from an orthology-based model organism and computational association prediction based upon the whole-genome comparisons on fusion events, gene proximity, and expression profiles for each feature of asthma. We chose all of the STRING channels besides “text-mining” and adopted the Bayesian network approach provided by STRING for integration.
2.5 Pathway Collection
Pathway data was retrieved from several databases, including KEGG (updated on April 1, 2021, https://www.kegg.jp/) (Kanehisa and Goto, 2000), a database resource for understanding high-level functions and utilities of the biological system; Reactome (updated in September 2018, https://reactome.org/download-data/) (Fabregat et al., 2018), a free, open-source, curated and peer-reviewed pathway database; and the public Wikipathway (updated in September 2021, https://www.wikipathways.org) (Martens et al., 2021) resource.
2.6 Single Nucleotide Polymorphism Data Collection
The miRSNPs within miRNA target sites and miRNA gene were acquired in miRNASNP v3 (updated in 2020, http://bioinfo.life.hust.edu.cn/miRNASNP#!/) (Liu et al., 2021) and MSDD (updated in 2017) (Yue et al., 2018). The lncSNPs within lncRNA and the miRNA binding sites of lncRNAs were obtained from lncRNASNP2 (updated in 2018, http://bioinfo.life.hust.edu.cn/lncRNASNP#!/) (Miao et al., 2018) and LnCeVar (updated in 2020, http://www.bio-bigdata.net/LnCeVar/) (Wang et al., 2020).
2.7 MIMP Algorithm
In this study, MIMP was developed to prioritize the pathway through decoding the multiplex-heterogeneous network containing the mutual and internal relationships of mRNAs, miRNAs, and pathways. It proceeded in three steps: firstly, the multiplex-heterogeneous network was constructed and transformed into a commixture matrix. Secondly, random walk with a restart in the multiplex-heterogeneous network and singular value decomposition (SVD) was applied to the output. Thirdly, the relevance of mRNA’s and miRNA’s pathways were measured using the similarity between determined vectors in the same low-dimensional vector space with cosine similarity (Supplementary Material). The code sources and data were packaged into an R package called MIMP (which can be downloaded https://github.com/rmyhandsome/MIMP).
3 RESULTS
3.1 Compiling the Asthma Risk Transcriptome Catalog
In total, 505 asthma risk biomolecules were identified by manual literature-mining, including 17 lncRNAs (two of them have not yet been validated in human tissues or cells), 94 miRNAs, 394 mRNAs (Figure 1A). We displayed their spatial distribution on chromosomes (Figure 1B). Interestingly, the risk transcriptome associated with the same disease characteristic is always inclined to clustering property, which may be the impetus of regulating disease progression. The go annotations applied to three disease characteristic-related gene sets revealed that the inflammation-associated genes were predominantly grouped into categories such as cytokine activity and chemokine receptor binding. The hyperresponsive-associated genes were mainly grouped into growth factor activity, protein tyrosine kinase activity, and NF-kappa-B binding. The remodeling-associated genes principally contained smooth muscle cell proliferation, cytokine activity, and growth factor receptor binding, in concert with current knowledge of asthma pathogenesis. Furthermore, we measured the similarity of three Go annotation sets in terms of biological process (BP), cellular components (CC), and molecular function (MF) with GoSemSim (Figure 1C). The details of these long tails in Figure 1C are shown in Supplementary Figure S1. The results revealed that inflammation-associated Go annotations were closer to remodeling-Go annotations than hyperresponsive-Go annotations at the level of BP, CC, and MF. However, we did not observe any particular differences, which may preliminarily indicate the existence of associations between the disease characteristics of asthma.
[image: Figure 1]FIGURE 1 | Compiling the disease feature risk transcriptome. (A) The distribution of disease characteristics-associated genes. (B) Spatial distribution of disease characteristics-related genes on chromosomes. (C) The top five statistically significant Go term annotations of disease characteristics-associated genes and the similarity measuring.
3.2 Pathway Prioritization in Disease Characteristics
We built a complex multiplex-heterogeneous network for each disease characteristic, encoding luxuriant biological information (Figure 2A). Relying on the output of this network structure, we calculated a correlation score for each pathway. Then ranking score was defined to correct the bias caused by pathway data set size derived from different databases. (Supplementary Material).
[image: Figure 2]FIGURE 2 | The structure of MIMP and pathway result exhibition. (A) The structure illustration of complex multiplex-heterogeneous network embedding in MIMP. (B) Robust risk pathways of disease characteristics. The number of genes mapping to pathways was directly labeled and the distribution of diverse gene types was color-coded. Pathways that were statistically significant in multiple disease features are highlighted via colored names and linked to the pie plot. The vertical axis from bottom to top shows the ordering of the empirical p-values from large to small, that statistical significance tends to increase.
The present study aimed to locate the most significant disease feature pathway and thus explored the ceRNA-SNP-mediated dysfunction. We found that a ranking score of six is a significant indicator that can distinguish the high from the low score. In total, 12 pathways were eventually identified in asthma by MIMP, of which 3, 5, and 4 were associated with inflammation, hyperresponsiveness, and remodeling respectively (Figure 2B). The complete results are shown in Supplementary Table S2. There were multiple directionalities of the pathways, indicating that interleukin-17 signaling was concerned with both hyperresponsiveness and remodeling, interleukin-9 signaling was concerned with both inflammation and hyperresponsiveness, and interleukin-4 and Interleukin-13 signaled that all three features were related to the subtle difference of Go annotations of disease characteristics-related risk genes. Through mapping genes to pathways (Figure 2B), we correlated the scores of risk pathways that are usually irrelevant to overlapping parts. The pathways that overlapped with the feature risk genes did not show a better score than the identified feature pathways. Even when the same pathway was associated with different disease features, the larger overlapping part did not mean higher statistical significance. For example, interleukin-4 and Interleukin-13 signaling contained fewer overlapping genes but contrary to expectations, exhibited a higher statistical significance. The same phenomenon appeared in interleukin-17 signaling. We preliminarily concentrated on the effectiveness of statistically significant pathways with few overlapping genes. Some pathways had been reported and validated in previous studies such as interleukin-17 signaling and airway remodeling (overlapping mRNAs number is 5) (Evasovic and Singer, 2019; Camargo et al., 2020) and the regulation of sphingolipid (overlapping size is 2) to airway remodeling (Petrache and Petrusca, 2013; Yu et al., 2017). An individual pathway, TET 1,2,3 and TDG demethylate DNA (remodeling) had not been suggested to be associated with corresponding asthma characteristics before. Yet, the description of biological function and corresponding articles in the present study, indicated that it might relate to airway remodeling because of the quarried association between DNA methylation and airway remodeling (Clifford et al., 2012; Lin et al., 2016). Previous studies also revealed the difference in TET activity between nonasthmatic cells and asthmatic ASM cells (Somineni et al., 2016; Yeung et al., 2020).
In addition, we undertook enrichment analysis of feature risk genes using the traditional method based on the overlap among pathway members, the p-value was cut off by 0.05 (Raudvere et al., 2019). In total, 69 pathways were found in KEGG, 34 pathways in Reactome, and 80 pathways in Wikipathway. Then, 127 pathways in KEGG, 156 pathways in Reactome, and 181 pathways in Wikipathway, 114 pathways in KEGG, 105 pathways in Reactome, and 156 pathways in Wikipathway were found to be associated with hyperresponsiveness, remodeling, and inflammation respectively (see Supplementary Table S3). Such a huge quantity of statistically significant results made it hard to determine the center of research. Some notable phenomena were revealed when we compared them with former results from MIMP. These revealed 3, 4, and 2 pathways respectively that were concerned with inflammation (total 3), hyperresponsiveness (total 5), and remodeling (total 4) from MIMP results, which overlapped with the traditional results. The overlap occupied the relatively forward position of the ordered p-value of traditional results from small to large. The Sphingolipid de novo biosynthesis (remodeling), TET1,2,3, TDG demethylate DNA (remodeling), and Stimuli-sensing channels (hyperresponsiveness), which preliminarily revealed the non-negligible associations with their corresponding disease features, tend to be ignored in traditional gene pathway enrichment methods. However, in contrast to previous studies, our MIMP captured them. Combining pathways with genetic information, the Sphingolipid de novo biosynthesis also showed remarkable importance in the following analysis. To gather evidence relating to these results, we took the first ten pathway correlation scores from KEGG, Reactome, and Wikipathway, for each disease feature (total 90 pathways, all pathways were statistically significant) and compared them with the traditional pathway enrichment method. The large overlapping (64/90, approximately 71.1%) examples indicated that it was well-directed in detecting disease feature pathways. Even more remarkable is the fact that this was also the case for the specific pathways detected by MIMP. We searched PubMed for research on the relationship between asthma disease features and corresponding pathways (Supplementary Figure S2). The search revealed that only three pathways (3/26, approximately 11.5%) that corresponding publications did not been found but they were all possibly correlated with asthma after consideration of their biological functions. In the rest of the selected pathways, each pathway had at least four associated publications, exhibiting the reliability of the results produced by MIMP. This indicates that MIMP possesses great ability in excavating potential pathways with abundant and reliable results. It provided quantitative criteria for the distance of the disease and pathway rather than just generally observing whether the p value was less than 0.05/0.01 or not. MIMP reduced the resulting redundancy and overlapping-dependency on traditional pathway enrichment as part of the significance measure, which made it a preeminent supplementary method of examining extensive pathway enrichments. The MIMP algorithm could thus provide reliable and vital support for our future research.
3.3 Constructing ceRNA-Mediated SNP Switching Pathway Network
We generated a network-based dissection of the regulation to the pathway of ceRNA and ceRNASNPs. In total, 9 ceRNA regulatory networks composed of risk transcriptome were excavated from 7 risk pathways, of which 2, 4, and 3 were concerned with hyperresponsiveness, remodeling, and inflammation respectively. Then, we searched and exhibited the lncSNPs and miRSNPs in the ceRNA network while concentrating on three types (called regulatory SNPs), i.e., the 3′UTR, seed region of mature miRNA and miRNA binding site on lncRNA, which directly affects ceRNA regulation. We show the complete information of ceRNASNPs in Supplementary Table S4.
The CSSPN (ceRNA-mediated SNP switching pathway network) was constructed to elaborate on the regulatory role of ceRNA and the potential influence of SNPs on asthma features at the pathway level. Consequently, we obtained a comprehensive disease regulatory network partitioned for diverse disease features (Figure 3A). To gain detailed information on networks, we figured that the distribution of biomolecule types and SNP types (Figure 3B). A salient pathway, which is Interleukin-4 and Interleukin-13 signaling, possesses the largest proportion in risk biomolecules or SNPs in hyperresponsiveness, inflammation, and remodeling. This pathway has excellent potential as a bridge for these three disease characteristics. To measure the extent of the ceRNA network affected by regulatory SNPs, we further defined the average regulatory SNP density as the number ratio of regulatory SNPs to the total number of ceRNA regulations containing them in the network. We also calculated the proportion of ceRNA regulation containing regulatory SNPs in all ceRNA regulations (Figure 3C). As a result, a ceRNA network concerned with remodeling called “Sphingolipid de novo biosynthesis” possessed the largest average of regulatory SNP density. The highest SNP-mediated ceRNA regulation ratio belonged to Interleukin-17 signaling (remodeling), followed by the Interleukin-4 and interleukin-13 signaling and Sphingolipid de novo biosynthesis (over 75%).
[image: Figure 3]FIGURE 3 | The comprehensive disease regulatory network and information decoding. (A) CSSPN. Green circle, orange rhombuses, and blue inverted triangles represent mRNAs, miRNAs, and lncRNAs respectively. The SNPs located in lncRNA, pri-/pre-miRNA, and the 3′UTR of mRNA were shown with the red circle around the mRNAs, miRNAs, and lncRNAs. The SNPs within the 3′UTR of mRNA, the seed region of mature miRNA, and the miRNA binding site on lncRNA were exhibited with green, orange, and blue dash lines respectively. The red dash line indicates the seed region of mature miRNA and 3′UTR of mRNA contain SNPs, which could affect miRNA-mRNA binding. (B) The multi-bar plot shows gene mapping and SNP mapping information pathways. The top and bottom axis represented the number of mapping genes and mapping SNPs respectively. (C) The dot plot of regulatory SNPs density and ceRNA regulation with SNP ratio. The top axis showed the density of regulatory SNPs. The percentage represented by the bottom axis reflects the proportion of ceRNA regulation with SNP in the total ceRNA regulations.
3.4 Dissection of Potential Mechanisms of Polymorphic “Switch” Influencing ceRNA Regulation to Asthma Risk Pathway
3.4.1 Comprehensive Feature Pathway Map of Asthma
Although there has been a large amount of research conducted on SNPs embedding in disease feature ceRNA networks to date, the significant role of SNPs in biological progress needs to be combined with pathway data for analysis. Thus, we carried out an in-depth dissection of these crucial pathways and identified the location of those genes of the classified ceRNA network in the pathway map (Figure 4). This consequently revealed that some risk genes occupy crucial places located on the upstream pathways, controlling origination of the whole pathway regulation as “switch”. For instance, for IL-17RA and IL-17RB (remodeling) in the Interleukin-17 signaling pathway, encoding the receptor proteins located on the cytomembrance is the first stage of entering into the cell to play its biological role in IL-17 family cytokines. In other words, the regulatory SNPs concerning these genes could directly affect the whole function of pathways.
[image: Figure 4]FIGURE 4 | A depiction of the disease features of the ceRNA network-involved pathway. Proteins encoded by risk genes concerning inflammation, hyperresponsiveness, and remodeling and related complexes are indicated in orange, green, and blue respectively, while those in red character represented encoding genes indicate the ceRNA regulation-containing genes with regulatory SNPs. Yellow represents the significant elements related to all disease features in a pathway.
3.4.2 The Regulation of Regulatory SNP of Focused ceRNA Over the Pathway
According to the characteristics of gene distribution in the comprehensive pathway diagram mentioned above, we thoroughly searched for the genes simultaneously obeying the property of “switch” and containing the regulatory SNPs on corresponding ceRNA regulations. ORMDL3 (remodeling) of Sphingolipid de novo biosynthesis, JAK2 (remodeling), JAK3, IL13RA1, TYK2 (inflammation), and IL13, STAT3 (inflammation/remodeling) of Interleukin-4 and Interleukin-13 signaling, IL17RA of Interleukin-17 signaling, and IL17RB of both Cytokine-cytokine receptor interaction and Interleukin-17 signaling were finally locked. Two genes, CXCL10 (hyperresponsiveness) of Interleukin-17 signaling and IL1B (inflammation/remodeling/hyperresponsiveness) of Interleukin-4 and Interleukin-13 signaling were taken into consideration because the former was the only gene containing regulatory SNPs on ceRNA regulation in the hyperresponsiveness-associated network and the other one correlated with all disease features. We selected the ceRNA regulations of these genes, which contained regulatory SNPs both on lncRNA-miRNA and miRNA-mRNA regulation, and characteristically visualized them (Figure 5). We finally discovered 11 ceRNA regulations, which contained eight disease risk genes of four pathways involving two disease features, i.e., inflammation and remodeling. We noticed two arresting ceRNA regulations. As described above, Interleukin-4 and Interleukin-13 signaling is simultaneously associated with hyperresponsiveness, inflammation, and remodeling. After searching this pathway, we found that MALAT1 → hsa-miR-155 → IL13 participated in both remodeling and inflammation. The MALAT1 → hsa-miR-155 → IL17RB was discovered as an overlapping of two different disease feature pathways, Interleukin-17 signaling (remodeling) and Cytokine-cytokine receptor interaction (inflammation). The significant role of MALAT1 and miR-155 in asthma has been universally demonstrated. Overall, they could alter the Th1/Th2 balance of asthma and induce proliferation and migration of airway smooth muscle cells (Shi et al., 2018; Lin et al., 2019; Liang and Tang, 2020). Earlier research also revealed the expression dysregulation of miR-155 (Karam and Abd Elrahman, 2019). IL-17 and IL-13, two types of interleukin family, are common research subjects in the pathogenesis of asthma and are often studied as therapeutic targets for asthma (Ntontsi et al., 2018; Ramakrishnan et al., 2019). They also occupied vital locations in their pathway, which almost controlled the whole pathway as a “switch”.
[image: Figure 5]FIGURE 5 | The schematic diagram of regulatory SNPs → gene → pathway effect of focused genes. The green and blue represented the genes in the risk pathways concerning inflammation and remodeling respectively. The diamond, circle, and rectangle represent lncRNA, miRNA, and mRNA respectively. The line between them shows the regulation of ceRNA. The “on-off” symbol sited on line between lncRNA and miRNA or miRNA and mRNA indicate the regulatory SNP within the miRNA binding site on lncRNA or within the mature miRNA seed region (character colored in deep grey) or the 3′UTR region (character colored in black). The peripheral large circles or rectangles denoted the pathways that regulatory SNPs may influence through their effects on ceRNA regulations to target genes.
We further exhibited how the regulatory SNPs altered the balanced regulation of ceRNA, inspecting the potential molecular mechanism involved in the characteristic pathways of asthma diseases. (Figure 6). Our analysis showed the crucial influence of rs765499057/rs764699354/rs189435941 on the miRNA binding site of lncRNA MALAT1→hsa-miR-155 and rs201185816/rs1000978586/rs202101165 on the 3′UTR of the IL13 regulated Interleukin-4 and Interleukin-13 signaling pathway via destroying or weakening ceRNA regulations. Another biological pathway, Interleukin-17 signaling was revealed to also be under the impact of regulatory SNPs, i.e., rs765499057/rs764699354/rs189435941 on the miRNA binding site of lncRNA MALAT1→hsa-miR-155 and rs948046241 on the 3′UTR of IL17RB. The momentous significance of these two disease feature pathways in asthma has been widely discussed above. The regulatory SNPs we have excavated could play a crucial role in asthma by disturbing the balance of ceRNA regulation.
[image: Figure 6]FIGURE 6 | The potential mechanisms of regulatory SNPs influence IL13 and IL17RB via ceRNA regulation.
4 DISCUSSION
The dissection of regulatory SNPs in ceRNA regulation would help to elucidate their potential roles in asthma pathogenesis both as genetic variants and at the post-transcriptional regulation level. In this study, we identified asthma disease feature pathways with a novel algorithm called MIMP for the first time. We systematically excavated candidate functional regulatory SNPs in the associated ceRNA regulations and their potential mechanisms of switching the pathways based on current genetic findings. We manually compiled the comprehensive catalog of asthma disease feature transcriptome, which was categorized into three types, inflammation, airway hyperresponsiveness, and airway remodeling. The similarity of Go term annotation was measured by a common graphic method. Since current traditional gene pathway enrichment methods could only make fractional use of the genetic information obtained from our text mining, we developed a novel algorithm based on a complex heterogeneous network for excavating pathways via decoding the mutual and internal relationships of mRNA, miRNA, and pathways. We next established the ceRNA network of each pathway with the risk transcriptome and experimentally supported miRNA-target information. By constructing CSSPN, searching and screening reliable database information, we have further revealed the candidate functional regulatory SNP “switches” in ceRNA regulation that regulate the disease feature pathways of asthma. Furthermore, several significant genes at the crucial location of disease feature pathways were confirmed. We filtered the curated ceRNA regulations related to these elite genes, which contain regulatory SNPs on the binding sites of both lncRNA-miRNA and miRNA-lncRNA, and then mapped them to the asthma feature pathways. In addition, we carried out an in-depth dissection of the correlation between these ceRNA regulations and mapped pathways, elaborated the significance of two high-risk ceRNA regulations, and proposed the potential mechanisms of particular regulatory SNPs as “switches” in ceRNA regulation of the asthma disease feature pathways.
Our disease feature pathway analysis simultaneously captured the specific pathway regulation of individual features and the overlap of pathway regulation of diverse disease features, thus expounding the association of asthma in terms of biological pathways. Upregulation of ORMDL3 disrupts homeostatic levels of ceramides and sphingolipid metabolite within the endoplasmic reticulum, later promoting airway smooth muscle remodeling (James et al., 2019). Our analysis and database mining revealed that ORMDL3 played a key role as a “switch” to the airway remodeling risk pathway of Sphingolipid de novo biosynthesis and contained regulatory SNPs which might influence its functions via breaking the related ceRNA regulation, i.e., H19 → miR-20b/miR-200a → ORMDL3. rs772197020 and rs763940725 were the genetic variants in the binding site of lncRNA H19-hsa-miR-20b-5p and lncRNA H19-hsa-miR-200a. A previous study has reported the expression dysregulation of miR-20b/miR-200a in asthma airway remodeling (Tang and Luo, 2018; Zhu et al., 2020a). rs1468131979 in 3′UTR and rs767346918/rs747729219 in the seed region of miR-20b, rs927350036/rs96742334 in 3′UTR and rs1377467792 in seed region of miR-200a could naturally disturb the normal biological function of ORMDL3 by affecting the biogenesis of ORMDL3. The accumulated analysis supports the potential mechanism, suggesting regulatory SNPs → ORMDL3 → Sphingolipid de novo biosynthesis → airway remodeling in asthma. We also captured some significant overlaps of asthma disease features in the terms of pathways, of which the overlapping regulation of inflammation and airway remodeling in Interleukin-4 and Interleukin-13 signaling was especially elaborated. The association between the two disease features of asthma from a clinical perspective has been noticed in previous research (Holgate, 2002; Zhou-Suckow et al., 2017; Banno et al., 2020). Our findings could provide support for the further study of these perspectives as a media connecting the clinical features with the molecular mechanism.
There were a total 182 regulatory SNP-mediated ceRNA regulations in the asthma disease feature pathways, of which 87, 10, and 85 were concerned with inflammation, airway hyperresponsiveness, and airway remodeling respectively. Some of them have been reported to be significantly relevant to asthma such as NEAT1 → hsa-miR-139→ JAK3 (Zhu et al., 2021). According to the “switch” role of elite genes to their pathways, 11 crucial ceRNA regulations were naturally captured, of which 2, i.e., MALAT1 (rs765499057/rs764699354/rs189435941) → hsa-miR-155 → IL13 (rs201185816/rs1000978586/rs202101165) → Interleukin-4 and Interleukin-13 signaling → inflammation/airway remodeling and MALAT1 (rs765499057/rs764699354/rs189435941) → hsa-miR-155 → IL17RB (rs948046241) → Interleukin-17 signaling (airway remodeling)/Cytokine-cytokine receptor interaction (inflammation) were further explored, examining the disturbance of regulatory SNPs in the pathway in terms of molecular mechanism. Although the effective excavation of asthma disease feature pathways in the early stages of our work was based on experimentally supported biological information, these potential mechanisms should be interpreted with caution due to the temporary lack of definite experimental evidence. The MIMP was also limited by incomplete data, which has been a universal objective reason beyond control, including disease-associated transcriptome, miRNA-mRNA, and lncRNA-miRNA regulation and pathway completeness. More valuable work can be progressed in the future. Gene expression patterns in a specific disease may be integrated into the mRNA-mRNA similarity network. Transcription factor regulatory network and lncRNA regulation could also contribute to excavating potential disease risk pathways. We will also focus on the downstream dysfunction mediated by SNP located in transcription factors, which could be comprehensively analyzed through but not limited to the network method. Nonetheless, our approach has created a new perspective to explore the pathogenesis of asthma, capturing diverse characteristics that divide the whole into different main parts for more delicate observation at the level of the pathway, contributing to capturing the primary and specific parts.
In addition to serving the asthmatic signature pathway mining, our novel algorithm MIMP could be applied with enrichment pathway prioritization for any characteristic sets consisting of miRNAs and mRNAs. It showed an impressive ability to reduce the resulting redundancy and overlapping-dependency of the traditional pathway enrichment method while keeping the result in a strong connection with known biological information and developing the continuous renewal of the biological information demanded. The algorithm is recommended as a widely applicable auxiliary supplement to gene pathway enrichment methods, contributing to the deep excavation of potential pathways. Our research shows the potential to contribute to future experimental studies of ceRNA regulation or SNPs in asthma, especially in consideration of the lack of exploration in this field at present.
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N HR (95% CI) p value N HR (95% ClI) p value
A
Age 194 1.02 (1.01-1.04) 0.01 309 1.02 (1.01-1.04) 0.002
Stage 194 1.61 (1.05-2.46) 0.027 309 1.37 (0.98-1.92) 0.062
Grade 194 1.25 (0.67-2.32) 0.491 309 1.30 (0.83-2.02) 0.255
Lymphatic invasion 75 1.96 (0.66-5.85) 0.226 115 1.23 (0.63-2.42) 0.539
Tumor RD 173 1.34 (1.10-1.63) 0.004 278 1.33 (1.14-1.54) <0.001
Venous invasion 54 0.75 (0.24-2.29) 0.611 84 0.69 (0.32-1.47) 0.334
Risk score model 194 7.02 (4.06-12.12) <0.001 309 3.90 (2.61-5.81) <0.001
B
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252 (81.6) 156 (80.4)
39 (12.6) 24 (12.4)
1(0.3) 1(0.5)
36 (11.7) 22 (11.3)
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p adjusted

0.6975

0.725625

0.6975

0.7256252

0.6975

0.6935

0.1935

0.891

0.1935

ap and adjusted p values were determined using Fisher’s exact test when appropriate.
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Dataset ID

GSE32036
GSE32867
GSEB3532
GSE75087

Profiling platform information

GPL6844; lllumina HumanWG-6 v3.0 expression bead chip
GPL6844; lllumina HumanWG-6 v3.0 expression bead chip
GPL570; Affymetrix Human Genome U133 Plus 2.0 Array

GPL6844; lllumina HumanWG-6 v3.0 expression bead chip

*Numbers of Normal and Tumor (LUAD) samples retrieved from GEO.
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T
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40
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Category

BP term
BP term
BP term
BP term
CCterm
CCterm
cC term
CC term
MF term
MF term
MF term
MF term
KEGG Pathway
KEGG Pathway
KEGG Pathway
KEGG Pathway

Term

GO:0007059
GO:0000280
GO:0048285
GO:0000819
GO:0098687
GO:0000793
GO:0000775
GO:0000776
GO:0140097
GO:0008094
GO:0005509
GO:0003682
hsa04110

hsa03030

hsa04114

hsa04914

Description

Chromosome segregation
Nuclear division

Organelle fission

Sister chromatid segregation
Chromosomal region

Condensed chromosome

Chromosome, centromeric region
Kinetochore

Catalytic activity, acting on DNA
DNA-dependent ATPase activity

ATPase activity

chromatin binding

Cell cycle

DNA replication

Oocyte meiosis

Progesterone-mediated oocyte maturation

Count

39
43
44
29
4
27
2
20
13

16
21
21

1

P-value

1.77€-23
6.33E-23
4.59E-22
6.50E-21
8.77E-22
6.79E-16
9.96E-16
4.46E-13
9.59E-06
1.11E-058
1.39E-04
1.67E-04
2.36E-13
1.01E-08
3.42E-05
5.81E-04
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Gene symbol

CPSF3
UNG
CDCA8
RCC2
PLK1
DDX23
TACO1
COPB2
STX1A
POU2F1
SF3B3
STT3A
KAT2A
PSMD4
MTA3
KIF20B
KIFC1
Clorfi12
RACGAP1
BRCC3
DONSON
GTF2IRD1
ALG3
CHAF1B
LING
BCL9
PUST
HDAC10
CHD7
FOXRED1
BRCA1
BOLA3

Univariate analysis

HR (95% CI)

1.1262 (0.7638-1.6605)
1.4095 (1.0675-1.8611)
1.1656 (1.0017-1.3563)
1.2477 (0.9487-1.6408)
1.2994 (1.1257-1.4999)
1.6505 (1.050-2.5723)
1.1627 (0.7785-1.7069)
1.8559 (0.9071-2.0268)
0.9996 (0.8782-1.1379)
1.0808 (0.8968-1.3026)
1.2231 (0.8769-1.7061)
1.1578 (0.8355-1.6043)
08785 (0.6924-1.1146)
1.1897 (0.7998-1.6241)
0.9545 (0.7245-1.2576)
1.477 (1.1979-1.8212)
1.1626 (1.0113-1.3365)
1.8575 (1.0682-1.7252)
1.2801 (1.0688-1.5331)
1.0651 (0.7323-1.549)
1.2907 (1.0357-1.6085)
0.8124 (0.6071-1.087)
1.3626 (1.0362-1.7917)
1.2906 (1.0603-1.5709)
1.2842 (1.0129-1.6282)
1.0935 (0.8659-1.3800)
1.0632 (0.8169-1.3837)
0.8455 (0.65-1.0998)
1.106 (0.9273-1.3191)
08799 (0.6521-1.1874)
11587 (0.9857-1.3622)
1.0905 (0.8617-1.3802)

P-value

0.5485
0.0155
0.0475
0.1133
0.0003
0.0269
0.4779
0.1376
0.9953
0.4143
0.2356
0.3787
0.2861
0.4692
0.7408
0.0003
0.0342
0.0124
0.0073
0.7416
0.0231
0.1619
0.0268
0011
0.0388
0.4527
0.6485
02111
0.2623
0.4029
0.0742
0.4708

Multivariate analysis

HR (95% CI)

0.474 (0.305-0.737)
1.443 (0.978-2.141)
1.746 (1.230-2.476)

1.697 (1.201-2.397)

1.117 (0.747-1.670)

1.115 (0.817-1.523)
1.309 (0.940-1.824)

0.678 (0.483-0.952)

P-value

0.0009
0.0684
0.0018

0.0027

0.5903

0.4919
01114

0.0249
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THCA 3241 102 3292 3164 68 68
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Variable

Number

Age (years), mean + SD

Gender (boys), N (%)

Baseline SE (D), median (Q1, Q3)

Baseline AL (mm), mean + SD

Baseline CRC (mm), mean + SD

Baseline AL/CRC, median (Q1, Q3)

ASE (D), median (Q1, Q3)

AAL (mm), median (Q1, Q3)

ACRC (mm), median (Q1, Q3)

AAL/CRC, median (Q1, Q3)

Near work time (hours/day), median (Q1, Q3)
Outdoor time (hours/day), median (Q1, Q3)

448
7.29 + 0.46
245 (54.70%)
—0.14 (~0.46, 0.33)
22.96 £ 0.77
7.80+0.26
2.95 (2.90, 2.99)
—1.13(=2.07, 0.33)
1.04 (0.70, 1.40)
—0.05 (~0.09, 0.02)
0.15(0.11, 0.21)
2.09 (.00, 3.00)
2.12 (1.00, 3.00)

SE, spherical equivalent refraction; D, diopter; AL, axial length; CRC, corneal

radius of curvature.

A indicates the changes in SE, AL, CRC, and AL/CRC during 3.5-year follow-up.
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SNP Gene Chromosome (hg19) Position Alleles MAF Variant position HWE P-value

rs10760673 TGFBR1 9 99116340 G>A 0.394
rs7550232 TGFB2-AS1 1 218345173 A>C 0.084

Intronic variant 0.555
Intronic variant 0.497

MAF, minor allele frequency; information about MAF in East Asian cohorts was obtained from the 1000 Genomes Database. HWE, Hardy-Weinberg equilibrium.
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Variables TCGA cohort GSE9891 GSE26712

(n = 358) (n =273) (n =193)
N (%) N (%) N (%)

Age (M £ SD, 59.4 +11.39 59.60 + 10.55 57.66 +11.82
years)
Tumor size 0.90 + 0.40 i /
(M £ SD, cm)
Grade
1and?2 43 (12.0) 112 (41.1) 50 (25.9)
3and 4 315(88.0) 161 (58.9) 143 (74.1)
Tumor status
Tumor free 80 (22.3) / /
With tumor 236 (65.8) / /
Unknown 42 (11.7) / /
Lymphatic invasion
No 46 (12.8)
Yes 97 (27.1)
Unknown 215 (60.1)
Venous invasion
No 38 (10.6) / /
Yes 60 (16.8) / /
Unknown 260 (72.6) / /
Stage
Il 20 (5.6) 41 (15.0) 94.7)
l 284 (79.3) 209 (76.6) 154 (79.8)
\% 54 (15.1) 23(8.4) 30 (156.5)
Primary therapy outcome
Complete 202 (56.4) / /
remission/response
Partial 42 (11.7) /' /
remission/response
Stable disease 21(56.9) / /
Progressive disease 25(7.0) / /

Unknown 68 (19.0) / /
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Marker Polymorphisms Significant myopic shift Non-significant myopic shift OR (95% CI) P P’
No. % No. %
rs10760673 (TGFBR1)
G 155 53.5 348 62.0
A 135 46.5 214 38.0
Dominant GG 42 29.0 109 38.8 Reference
GA or AA 103 71.0 172 61.2 1.702 (1.057, 2.738) 0.029* 0.028"
Recessive GG or GA 113 78.0 239 85.1 Reference
AA 32 22.0 42 14.9 1.883 (1.075, 3.300) 0.027* 0.027*
Additive - - - - - 1.536 (1.121, 2.106) 0.008* 0.008*
rs7550232 (TGFB2-AS1)
A 262 91.0 525 93.7
C 26 9.0 35 6.3
Dominant AA 118 81.9 246 87.9 Reference
AC or CC 26 18.1 34 121 1.461 (0.759, 2.816) 0.257 0.256
Recessive AA or AC 144 100 279 99.6 Reference
CC 0 0 1 0.4 - - -
Additive - - - - - 1.382 (0.732, 2.609) 0.318 0.318

OR, odds ratio; Cl, confidence interval; P, P-value; P’, P-value adjusted by 10,000 permutations. A significant myopic shift was defined as ASE < —0.50 D/year. Adjusted

for gender, age, near work time, and outdoor time.

*Statistically significant at P < 0.05.





OPS/images/fcell-09-628182/fcell-09-628182-t003.jpg
Marker Polymorphisms Remaining non-myopic Incident myopia OR (95% CI) P P
No. % No. %
rs10760673 (TGFBR1)
G 223 60.3 251 59.56
A 147 39.7 171 40.5
Dominant GG 66 35.7 75 358 Reference
GA or AA 119 64.3 136 64.5 1.007 (0.664, 1.527) 0.974 0.999
Recessive GG or GA 157 84.9 176 83.4 Reference
AA 28 151 35 16.6 1.115 (0.645, 1.928) 0.696 0.704
Additive - - - - - 1.034 (0.774, 1.382) 0.819 0.822
rs7550232 (TGFB2-AS1)
A 348 94.5 380 805
C 20 5.5 40 95
Dominant AA 164 89.1 171 81.4 Reference
AC or CC 20 10.9 39 18.6 1.917 (1.069, 3.347) 0.029* 0.025*
Recessive AA or AC 184 100 209 99.56 Reference
CcC 0 0 1 0.5 - - -
Additive - - - - - 1.938 (1.092, 3.438) 0.024* 0.022*

OR, odds ratio; Cl, confidence interval; P, P-value; P’, P-value adjusted by 10,000 permutations. Adjusted for gender, age, near work time, and outdoor time.

*Statistically significant at P < 0.05.
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Methods

MethCP (Gong and Purdom, 2020)

RnBead?2 (Muller et al., 2019)

HOME (Srivastava et al., 2019)
DMRFusion (Yassi et al., 2018)

DMAP (Stockwell et al., 2014)
ComMet (Li et al., 2013)
methlKit (Akalin et al., 2012)

Modeling

Circular Binary Segmentation (segment with significantly different mean), Fisher’s
combined probability test

Combined ranking of 1.absolute difference in mean DNA methylation levels
2.relative difference 3. p-value (Fisher’'s method)

Histogram, Support Vector Machine

Information gain, Between versus within Class scatter ratio, Fisher ratio, Z-score
and Welch's t-test

Fisher’s Exact test, ANOVA, chi-square test
Hidden Markov model
logistic regression, Fisher’s Exact Test

Features

weight sum effect size and variation, time
course

GUI, parallelization and automatic
distribution

Learning methods for prediction
rank the metrics and combine together
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Methods Year

BatMeth2 (Zhou 2019
etal., 2019)

BS Seeker3 (Huang 2018
etal., 2018)

BSPAT (Huetal., 2015
2015)

GBSA (Benoukraf 2013
etal, 2013)

Features

divide high coverage and low coverage
genome-wide view of methylation levels
3 types of visualization, Z-score for

significance, online
results visualization

GUI

No

No

Yes

Yes
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Methods

(Fire)cloud-based platform (Kangeyan et al., 2019)
RnBeads2 (Muller et al., 2019)

BS Seeker3 (Huang et al., 2018)

MethGo (Liao et al., 2015)

GBSA (Benoukraf et al., 2013)

GUI: Graph user interface.

Year

2019
2019
2018
2015
2013

Features

Read metrics, CpG Coverage. . ., Fast

based on read coverage, visualization

average rate of mismatch per read position

coverage distribution of methylation sites, other metrics for analysis, visualization

depth of coverage for each cytosine site of interest, the ratio of sequenced cytosine
to the total amount of cytosine within the domain

GUI

No
Yes
No
No
Yes
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Methods Years Types Features GUI
BatMeth2 (Zhou et al., 2019) 2019  Three-letter aligner indel sensitive No
BS Seeker3 (Huang et al., 2018) 2018  Three-letter aligner hase table with greater length No
BiSpark (Soe et al., 2018) 2018  Three-letter aligner distributed system, load-balanced No
VAIIBS (Li et al., 2017) 2017  Three-letter aligner improve accuracy by timming unmapped read Yes
BRAT-nova (Harris et al., 2016) 2016  Three-letter aligner hash table with concatenate two strands, supports a single variable-length indel No
Bismark (Krueger and Andrews, 2011) 2011 Three-letter aligner methylated visualization in command line No
BSMAP (Xi and Li, 2009) 2009  Wildcard hase table, mismatch counting No
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Ensembl id Gene name
ENSG00000215533 LINC00189
ENSG00000250107 CACNA1G-AS1
ENSG00000258572 AL133467.1
ENSG00000233355 CHRM3-AS2
ENSG00000249706 AC105384.1

Genomic location

Chr21: 29,193,480-29,288,205(+
Chr17: 50,556,207-50,562,108(—
Chr14: 95,516,136-95,517,911(+
Chr1: 239,703,381-239,770,130(-
Chr4: 53,899,871-53,916,835(+)

HR?

1.33 (1.11-1.59)
1.28 (1.11-1.48)
0.65 (0.5-0.83)
0.7 (0.54-0.9)
1.34 (1.11-1.61)

p-value?

0.0016
0.00082
0.00062

0.0054

0.002

aderived from univariate Cox regression analysis.
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SNP Annotated gene RegulomeDB HaploReg v4.1 rVarBase
Score Promoter Enhancer DNase* Proteins Motifs Chromatin  TF binding Regulatory

histone histone bound changed state** SNPs

marks marks
rs10760673 TGFBR1 4 = = 17 = Hsf, TFIIA 104 - 60
rs7550232 TGFB2-AS1 2b 23 tissue BLD, Gl 44 9 EWSR1- 121 192 75

FLIT, Irf,
SP1

RegulomeDB score: 2b, TF blinding + any motif + DNase footprint + DNase peak; 4, TF blinding + DNase peak.
*: number of tissues with reported DNase evidence of the targeted SNP,
*** number of reported evidence about the chromatin state of the surrounding region, e.g., strong/weak transcription, enhancers, and flanking active transcription start sites.

—: No available data.
TF, transcription factor; SNP single nucleotide polymorphism.
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Model TRBA TEBA Sign test (P) cvC

1. TGFBR1 rs10760673 0.5494 0.5474 7(0.1719) 10/10

2. Model 1 plus 0.5586 0.5231 4(0.8281) 10/10
TGFB2-AS1 rs7550232

GMDR, generalized multifactor dimensionality reduction; TEBA, test balance
accuracy; TRBA, trained balanced accuracy; CVC, cross-validation consistency.
GMDR was performed to identify genetic variants with gene-gene interactions
(GGls) associated with a significant myopic shift after adjustment for the covari-
ates (age, gender, time spent on near work and time spent on outdoors).

Sign test results show P-value for the significance of the GMDR model.
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Model TRBA TEBA Sign test (P) cvC

1. TGFB2-AS1 rs7550232 0.5396 0.5364 6(0.3770) 10/10
2. Model 1 plus TGFBR1 0.5446 0.56220 5(0.6230) 10/10
rs10760673

GMDR, generalized multifactor dimensionality reduction; TEBA, test balance
accuracy; TRBA, trained balanced accuracy; CVC, cross-validation consistency.
GMDR was performed to identify genetic variants with gene-gene interactions
(GGls) associated with incident myopia after adjustment for the covariates (age,
gender, time spent on near work, and time spent on outdoors).

Sign test results show P-value for the significance of the GMDR model.
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Marker

rs10760673 (TGFBR1)
Dominant

Recessive

Additive

rs7550232 (TGFB2-AS1)
Dominant

Recessive

Additive

Polymorphisms

GG
GA or AA
GG or GA

AA

AA
AC or CC
AA or AC

CC

N (%)

163 (36.30)
180 (63.70)
272 (82.90)
71(17.10)

380 (85.60)

64 (14.40)

443 (99.80)
1(0.20)

AAL (mm)

0.94 (0.65, 1.32)
1.04 (0.71, 1.37)
0.94 (0.66, 1.31)
1.11 (0.75, 1.57)

1.01 ( )
1.19 (0.71, 1.37)
0.98 (0.67, 1.39)
0.92 (0.92, 0.92)

0.68, 1.40

0.046*

0.027*

0.011*

0.188

0.716
0.223

P’

0.047*

0.027*

0.013*

0.184

0.752
0.223

AAL/CRC
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0.032*

0.392

0.472
0.472

P

0.139

0.029*

0.031*

0.386
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AL, axial length; CRC, corneal radius of curvature; A is the change in AL or AL/CRC during 3.5-year follow-up; P, P-value; P’, P-value adjusted by 10,000 permutations.
Adjusted for gender, age, near work time, and outdoor time.
*Statistically significant at P < 0.05.
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Characteristic Total (N = 111) <5.0 (n =94, >5.0 (n = 17, 15.3%) P value <1835 (n =55, >135 (n = 56, P value <0.31 (n =61, >0.31(n =50, P value
N (%) 84.7%) 49.5%) 50.5%) 55.0%) 45.0%)
Sex
Female 55 (49.5%) 47 8 0.823 31 28 0.502 28 27 0.396
Male 56 (50.5%) 47 9 24 28 33 23
Age
> 65 23 (20.7%) 20 3 0.767 12 11 0.777 12 11 0.763
< 65 88 (79.2%) 74 14 43 45 49 39
Cancer type
Gastric cancer 50 (42.6%) 45 5 0.159 21 29 0.150 28 22 0.841
Colorectal cancer 61 (57.6%) 49 12 34 27 33 28
Treatment line
First line 51 (45.9%) 46 5 0.137 29 22 0.155 34 17 0.035
> First line 60 (54.1%) 48 12 26 34 27 33
Liver metastasis
No 55 (49.5%) 49 6 0.210 27 28 0.924 34 21 0.150
Yes 56 (50.5%) 45 11 28 28 27 29
Lung metastasis
No 84 (75.6%) 70 14 0.486 43 4 0.542 48 36 0.414
Yes 27 (24.4%) 24 3 12 15 13 14
Peritoneal metastasis
No 90 (81.1%) 76 14 0.884 48 42 0.099 51 39 0.453
Yes 21 (18.9%) 18 3 7 14 10 11
With chemotherapy
No 37 (33.3%) 30 7 0.456 19 18 0.788 17 20 0177
Yes 74 (66.7%) 64 10 36 38 44 30
With Targeted therapy
No 67 (60.4%) 60 7 0.079 36 31 0.277 4 26 0.108
Yes 44 (39.6%) 34 10 19 25 20 24
With Radiotherapy
No 104 (93.7%) 89 15 0.314 51 53 0.678 58 46 0.506
Yes 7 (6.3%) 5 2 4 3 3 4

P values in bold indicate statistically significant differences (P < 0.05).
MLR, monocyte-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio.
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Category Term Benjamini Count

CTCF binding in hi-methy! MF ATP binding 1.10E-05 220
CC Cytoskeleton 6.70E-06 73
MF Calcium ion binding 3.10E-05 120
BP Calcium ion transmembrane transport 1.40E-04 34
MF Rho guanyl-nucleotide exchange factor activity 4.00E-05 26
MF Actin binding 7.10E-05 58
BP Regulation of Rho protein signal transduction 3.00E-04 26
MF Calmodulin binding 8.60E-0b 44
CTCF binding in low-methyl BP Homophilic cell adhesion via plasma membrane adhesion molecules 2.60E-10 37
MF Calcium ion binding 2.10E-07 80
BP Axon guidance 1.40E-04 28
BP Chemical synaptic transmission 3.80E-04 34
MF Extracellular-glutamate-gated ion channel activity 6.40E-04 9
CC Dendrite 3.30E-04 40
MF lonotropic glutamate receptor activity 1.10E-03 8
CEBPB binding in hi-methyl CcC Synapse 1.80E-04 26
BP Synapse assembly 7.30E-03 14
BP lonotropic glutamate receptor signaling pathway 9.80E-03 g
MF Extracellular-glutamate-gated ion channel activity 4.60E-03 8
CC Plasma membrane 1.70E-03 245
CEBPB binding in low-methyl BP Nervous system development 1.50E-06 40
BP Cell adhesion 5.70E-04 46
CcC Postsynaptic density 2.30E-04 25

BP Axon guidance 1.60E-03 23






OPS/images/fcell-09-664669/fcell-09-664669-e012.jpg
N3

__IN
~ TN+ FP





OPS/images/fgene-12-639461/fgene-12-639461-g005.jpg
Methyl Multiple cells Methyl  Multiple cells
Binding I No Binding





OPS/images/fcell-09-664669/fcell-09-664669-e011.jpg
SN

e
" TP+ FN





OPS/images/fgene-12-639461/fgene-12-639461-g004.jpg





OPS/images/fcell-09-664669/fcell-09-664669-e010.jpg
k
Lo = " ale an
k=1





OPS/images/fgene-12-639461/fgene-12-639461-g003.jpg
>

Frequency Frequency Frequency

Frequency

DNasel
02 02
01 | human ES 01 Human ES
0 0
0O 02 04 06 08 10 O 02 04 06 08 1.0
Methylation levels Methylation levels
06 06
04 04
GM12878 GM12878
02 0.2
0 T T r » 0 3
0 0. 2 04 06 08 1.0 0.2 06 08 1.0
Methylation levels Methylatlon levels
06 06
04 04
K562 K562
02 02
0 r T r » 0 T "
0 02 04 06 08 1.0 0.2 08 1.0
Methylation levels Methylat|on Ievels
06 06
04 04
HepG2 HepG2
02 02
0 T T r " 0 T ]
0 02 04 06 08 1.0 2 06 08 10

Methylation levels

Methylatlon levels

TF Frequency

(9]

Frequency

DNA methylation O

0.8 - K562 GM12878 HepG2 H1-hESC
0.6 4
04
0.2 -
0 v
0 0.08 0.12 0.14 0.50

DNasel Frequency

--#---CEBPB --#--- CTCF

--#---KDM1A ---#--- MAFK

Percentage

---@---RAD21 --#---REST --#---RFX5 ---@---USF1
--@--USF2  —-@---YY1
— High methyl —— Low methyl
0.12 1
0.8
0.08 06
0.04 04
0.2
0 0

5 0 5 10 15 20 25
Matching Score

1|— Total — No CpG — 1 CpG

2CpGs  3CpGs

0.8
0.6
0.4
0.2
0
-1600 -800 bindsite 800 1600
Position





OPS/images/fcell-09-664669/fcell-09-664669-e009.jpg
=5 3 -logpi1 =il =)l (10





OPS/images/fgene-12-639461/fgene-12-639461-g002.jpg
ol T P AT ST T
e L ) EO
N - [Tl
i O e s s
i) [Elaaral-
S [T~
e i e I e Y
o (TR o | = [ LT =






OPS/images/fcell-09-664669/fcell-09-664669-e008.jpg
£ = relu(

WiE,

ifi1

b))

©)





OPS/images/fgene-12-639461/fgene-12-639461-g001.jpg
A GM12878.5P1

Density

- n

o o o
e T

0.25 05 0.75 1

Methylation level
K562.CEBPB

Density
o n £ [}

0 0.25 05 0.75
Methylation level

HelLa.CTCF

Density

f

8
6
4
2
0

0 0.25 0.5 0.75
Methylation level

H1-hESC.REST

Density
O = NDWhHO

0.25 0.5 0.75
Methylation level

0S3Y-1H
eeH
Z2odeH
295M
8/82LND

eoH
ZgodeH
295

2S3u-tH |
8/8ZLIND

[ | SP2
SRF
1] SRSF4
SSRP1
I STATH
SUPT5H
Suz12
TAF1
TARDBP
TBL1XR1
TBP
TCF12
TCF3
TCF7
TCF7L2
TEAD4
TSC22D4
UBTF

IITIAXRNG
—*('D(DU'lg
=R
T NG
poRTB
o} &

e o o o o
O T 7 T S Y

o

syead |Ayjaw-y Jo uonoeld N B
o
(o))

elep ON





OPS/images/fcell-09-664669/fcell-09-664669-e007.jpg
= max"
y = max_, h;

®)





OPS/images/fgene-12-639461/cross.jpg
3,

i





OPS/images/fcell-09-664669/fcell-09-664669-e006.jpg
SA (Q. K, V) = softm %
(Q.K, V) = soft (
ax| —

@)





OPS/images/fcell-09-644940/fcell-09-644940-t002.jpg
Variables

Univariate analysis

Multivariate analysis

HR 95% CI p-value HR 95% CI p-value
Discovery cohort
Score High vs. Low 2.83 1.93-4.16 1.10E-07 2.97 1.864.75 5.60E-06
Age >60 vs. <60 1.14 0.8-1.64 0.47 1.08 0.71-1.65 0.72
Stage AV vs. 11l 3.11 0.77-12.62 0.11 16310394 0-Inf 1
Grade 3/4 vs. 1/2 1.13 0.67-1.89 0.65 1.1 0.62-1.98 0.73
Treatment response CRvs. non-CR 0.26 0.16-0.41 5.70E-09 0.33 0.2-0.53 3.80E-06
Validation cohort
Score High vs. Low 1.56 1.07-2.28 0.022 1.71 1.09-2.67 0.019
Age >60 vs. <60 1.88 1.09-2.31 0.015 1.41 0.91-2.17 0.12
Stage AV vs. 1l 1.44 0.63-3.92 0.48 1.08 0.33-3.56 0.89
Grade 3/4vs. 1/2 1.42 0.74-2.72 0.3 1.47 0.7-3.07 0.31
Treatment response CRvs. non-CR 0.2 0.13-0.33 4.50E-11 0.19 0.12-0.31 3.80E-11
TCGA-OV cohort
Score High vs. Low 2.09 1.6-2.74 6.80E-08 2.21 1.61-3.05 1.20E-06
Age >60 vs. <60 1.35 1.04-1.75 0.022 1.25 0.92-1.69 0.15
Stage AV vs. 11l 2.01 0.89-4.53 0.092 1.64 0.51-5.28 0.41
Grade 3/4 vs. 1/2 128 0.82-1.84 0.32 1.3 0.83-2.05 0.25
Treatment response CRvs. non-CR 0.23 0.17-0.32 1.70E-18 0.24 0.17-0.33 1.10E-16
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Variables

Univariate analysis

Multivariate analysis

HR 95%CI p-value HR 95%ClI p-value
Discovery cohort
DNAMeFourl.ncSig High vs. Low 2.45 1.69-3.56 2.3e—06 2.28 1.31-3.97 0.0038
Age >60 vs. =60 1.05 0.73-1.5 0.8 1.13 0.7-1.83 0.62
Stage AV vs. 1/l 1 0.63-1.57 0.99 1.07 0.58-1.95 0.84
Grade (/N vs. I/1) 1.08 0.73-1.62 0.69 1.65 0.96-2.84 0.068
Treatment response CRvs. non-CR 0.16 0.09-0.29 6.6e—10 0.25 0.13-0.47 2.4e—05
Validation cohort
DNAMeFourl.ncSig High vs. Low 2.06 1.35-3.16 0.00089 3.21 1.72-5.97 0.00024
Age >60 vs. =60 1.51 1-2.28 0.049 213 1.2-3.79 0.01
Stage AV vs. 1/ 1.41 0.88-2.26 0.15 1.74 0.87-3.5 0.12
Grade (/I vs. I/1) 0.79 0.51-1.23 0.3 1.07 0.569-1.96 0.82
Treatment response CRvs. non-CR 0.2 0.1-0.4 3.8e—06 0.27 0.14-0.53 0.00015
TCGA cohort
DNAMeFourL.ncSig High vs. Low 2.22 1.68-2.94 2e-08 2.53 1.68-8.79 5.9e—06
Age >60 vs. =60 1.23 0.94-1.61 0.14 1.49 1.04-2.13 0.03
Stage AV vs. 1/ 1.22 0.88-1.69 0.23 1.43 0.91-2.25 0.12
Grade (/N vs. I/1) 0.9 0.67-1.22 0.5 1.26 0.85-1.88 0.25
Treatment response CRvs. non-CR 0.18 0.11-0.27 8e-15 0.24 0.15-0.37 5.9e—10
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One year Three years Five years
Character Hazard ratio (CI195) P-value Hazard ratio (CI195) P-value Hazard ratio (CI195) P-value
Sex 0.98 (0.94-1.02) 0.241 NA (NA) NA 0.94 (0.92-0.96) <0.01
Lateral NA (NA) NA 1.38 (1.24-1.54) <0.01 1.6 (1.47-1.75) <0.01
T 1.47 (1.42-1.51) <0.01 1.36 (1.33-1.38) <0.01 1.28 (1.26-1.3) <0.01
N 0.95 (0.9-1.01) 0.082 1.01 (0.98-1.05) 0.461 1.03 (1-1.06) 0.027
M 2.55 (2.43-2.67) <0.01 2.67 (2.59-2.76) <0.01 2.67 (2.6-2.75) <0.01
Age 2.79 (2.68-2.91) <0.01 1.94 (1.9-1.99) <0.01 1.73(1.7-1.77) <0.01
LNR 1.35(1.3-1.41) <0.01 1.3(1.26-1.34) <0.01 1.28 (1.25-1.31) <0.01
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A. thaliana Single-task
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The bold denotes the best performance.
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Characteristic NLR P value
NLR <5 NLR > 5
(N =94, %) (N=17,%)
irAEs 0.810
Yes 25 (26.60) 5(29.41)
No 69 (73.40) 12 (70.59)

PLR
PLR < 135 PLR >135
(N =55, %) (N =56, %)
20 (36.36) 10 (17.86)
35 (63.64) 46 (82.14)

P value

0.028

MLR

MLR <0.31 MLR >0.31
(N =59, %) (N =52, %)

16 (27.12) 14 (26.92)
43 (72.88) 38(73.09)

P value

0.107

P values in bold indicate statistically significant differences (P < 0.05).

MLR, monocyte-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; irAEs, immune-related adverse events.
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Species Method SN (%)

A. thaliana 4mcPred-IFL
4mcPred_SVM
Deep4mcPred
Proposed
C. elegans 4mcPred-IFL
4mcPred_SVM
Deep4mcPred
Proposed
D. melanogaster 4mcPred-IFL
4mcPred_SVM
Deep4mcPred
Proposed

The bold denotes the best performance.

70.4
72.3
81.3
89.7
45.4
43.7
75.6
83.8
65.5
65.8
84.6
88.0

SP (%)

84.9
81.1
84.8
83.6
79.4
75.4
88.5
83.2
87.6
84.5
84.8
84.1

ACC (%)

7
76.7
83.1
86.5
62.4
59.5
82.0
83.3
76.5
751
84.7
86.0

McC

0.559
0.536
0.661
0.728
0.263
0.201
0.646

0.544
0.511
0.693
0.722
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PFS 0s

Univariate Multivariate Univariate Multivariate
HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value
Sex (male vs. female) 0.845 (0.536-1.332) 0.469 = s 0.532 (0.290-0.987) 0.042 0.392 (0.210-0.731) 0.003
Age (<65 vs. >65 years) 1.114 (0.650-1.910) 0.659 = s 1.649 (0.763-3.5606) 0.204 = s
Treatment line (first vs. >first) 1.939 (1.228-3.064) 0.005 1.639 (1.018-2.639) 0.042 2.109 (1.146-3.882) 0.016 - =
BMI (< 18.5 vs. >18.5) 0.246 (0.129-0.471) 0.001 2.074 (1.043-4.127) 0.025 0.159 (0.780-0.326) (0.001 0.176 (0.082-0.377) <0.001
LR (<0.31 vs. >0.31) 2.405 (1.506-3.839) 0.001 1.813 (1.076-3.055) 0.025 2.630 (1.437-4.814) 0.001 2.184 (1.140-4.183) 0.018
PLR (<135 vs. >135) 1.184 (1.196-2.968) 0.006 - - 1.768 (0.966-3.235) 0.065 - -
NLR (< 5.0 vs. 5.0) 3.425 (1.951-6.014) (0.001 1.887 (0.968-3.677) 0.062 2.343 (1.165-4.753) 0.015 - -
Liver metastasis (no vs. yes) 1.648 (1.047-2.595) 0.031 = — 1.525 (0.850-2.739) 0.154 = -
Chemotherapy (yes vs. no) 1.529 (0.959-2.438) 0.074 = i 1.233 (0.662-2.296) 0.509 = =
Targeted therapy (yes vs. no) 1.343 (0.847-2.132) 0.210 - - 1.091 (0.602-1.978) 0.774 - -
Radiotherapy (yes vs. no) 1.044 (0.421-2.588) 0.926 - - 1.232 (0.381-3.989) 0.727 - -

P values in bold indicate statistically significant differences (P < 0.05).
BMI, body mass index; Cl, confidence interval; HR, hazard ratio; MLR, monocyte-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio.
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Species Training set Testing set
Positives Negatives Positives Negatives
A. thaliana 16,000 16,000 4,000 4,000
C. elegans 16,000 16,000 4,000 4,000
D. melanogaster 16,000 16,000 4,000 4,000
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CR+PR (n =14, PD +SD (n =97, P value CR +PR + SD PR (n = 37, P value
12.61%) 87.39%) (n = 74, 66.66%) 33.34%)
MLR < 0.31 (0 = 61) 11 50 0.057 49 12 0.001
MLR > 0.31 (1 = 50) 3 47 25 25
PLR < 135 (n = 55) 47 0.543 43 12 0.011
PLR > 135 (n = 56) 6 50 31 25
NLR < 5 (0 = 94) 12 82 0.909 69 25 0.001
NLR > 5 (n = 17) 2 15 5 12

P values in bold indicate statistically significant differences (P < 0.05).
CR, complete response; MLR, monocyte-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; PR, partial response;

SD, stable disease.
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Dataset Year Species Platform Data type Team
GSE73114 2015 Homo GPL16791 Bulk Oikawa
sapiens lllumina HiSeq RNA-seq etal., 2015
2500
GSE114974 2019 Homo GPL11154 MicroRNA-  Dinh et al.,
sapiens lllumina HiSeq seq 2019
2000
GSE57833 2014 Homo GPL18712 MicroRNA-  Gallagher
sapiens miRCURY LNA seq etal., 2014
microRNA
Array
GSE57878 2014 Homo GPL14877 mRNA-seq Gallagher
sapiens etal., 2014
GSEQ0047 2017 Mus GPL13112 Bulk Yang et al.,
musculus  GPL17021 RNA-seq 2017
ScRNA-seq
GSE132034 2020 Mus GPL13112 RNA-seq  Gongetal.,
musculus  lllumina HiSeq 2020
2000
GSE28892 2011 Mus GPL10333 Microarray Shin et al.,
musculus  Agilent-026655 2011
GSE56734 2014 Mus GPL7202 Microarray lto et al.,
musculus  Agilent-014868 2014
GSE25048 2011 Homo GPL6947 Bulk Kim et al.,
sapiens lllumina RNA-seq 2011
HumanHT-12
V3.0
GSE101133 2017 Homo GPL20795 Bulk Yan et al.,
sapiens HiSeq X Ten RNA-seq 2017
GSE75141 2017 Mus GPL7202 Microarray Wu et al.,
musculus  Agilent-014868 2017
GSE105019 2019 Homo GPL16791 Bulk Fuetal.,
sapiens llumina HiSeq RNA-seq 2019
2500
GSE112330 2019 Homo GPL16791 Bulk Xie et al.,
sapiens llumina HiSeq RNA-seq 2019
2500
GSE124528 2019 Homo GPL16791 Bulk Wang et al.,
sapiens llumina HiSeq RNA-seq 2019
2500
GSE116113 2019 Homo GPL20795 scRNA-seq Fu et al.,
sapiens HiSeq X Ten 2019
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