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Editorial on the Research Topic

Machine Learning in Action: StrokeDiagnosis andOutcomePrediction

Machine learning—the ability of computers to “learn” to perform a task rather than

being explicitly programmed for the purpose—has seen significant developments in

recent years. Biomedical research is no exception to its far-reaching impact and has

seen more than a ten-fold increase in the number of publications related to machine

learning in the last decade (1). In this Research Topic, we present recent advances

in developing machine learning algorithms in the context of cerebrovascular diseases

to highlight promising approaches that represent various areas of potential clinical

utility in stroke care. The focus is on applications with high clinical value and a solid

technical foundation.

Deployment of machine learning algorithms in the clinic principally involves four

stages of the care workflow: primary prevention, acute-phase treatment, post-diagnosis

prediction, and secondary prevention (2). Primary prevention includes personalized or

stratified patient risk prediction and identification of gaps in care, whereas integration

into acute phase treatment aims to aid physician diagnosis and referrals. Machine

learning algorithms for post-diagnosis and secondary prediction can provide predicted

outcomes that allow the identification of patients who would be responsive to treatment

or require careful monitoring due to a higher risk of recurrent disease. Together,

machine learning algorithms can aid clinical decision-making in each step by providing

recommendations and pointing to possible missed cases for critical conditions. As

suggested by Mainali et al., machine learning algorithms can have particular utility

in alleviating two of the clinical challenges of stroke: the time-sensitive nature of

the acute-phase treatment and the difficulty of predicting outcomes, especially in
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the acute phase. Given these potential benefits, calibrating the

algorithms to prevent excessive alerts and supporting physician

autonomy through careful assessment of human-computer

interaction is key to maximizing adoption (3).

Electronic health records (EHR) are one of the principal

sources of standardized clinical information on a patient and

can serve as a valuable starting point for algorithm development.

The results of Rana et al. are encouraging, demonstrating

that models trained on EHR data outperformed models

trained on a limited number of features clinically associated

with stroke, confirming the benefits of additional information

obtained by data extraction from EHR. Using EHR data,

Darabi et al. compared the performance of multiple machine

learning models in predicting 30-day hospital readmission.

Their models improved upon previous predictive models based

on logistic regression and provided promising results that could

direct targeted intervention for high-risk patients. Notably,

features that their best predictive model indicated as being

key predictors of 30-day readmission agree with results from

independent studies (4, 5) and clinical intuition, underscoring

the interpretability of their model.

Complementation of EHR data with additional modalities

of clinical investigations holds promise in further improving

prediction accuracy. Herein, Lineback et al. employ Natural

Language Processing (NLP) to glean freeform textual data. In

contrast, Rajashekar et al. combines MRI and CT imaging data

to improve prediction models trained solely on EHR data.

Multimodal approaches can require more sophisticated models

to extract information from various data types but more closely

approximate decision-making by physicians and better integrate

multifaceted information collected via clinical investigations

and examinations.

Imaging is a rich source of information. Imaging has

critical clinical relevance in neurology and a high affinity

for sophisticated deep learning models, such as convolutional

neural networks. Indeed, many of the recent advances in

machine learning in healthcare have centered on image

analysis, including the use of retinal images for cardiometabolic

disease prediction (6–9) and analysis of histopathological slides

(10–15). Models focus on cerebrovascular disease, however,

have been comparatively scant. McLouth et al. validate the

performance of a commercially available deep learning software

in assessing intracranial hemorrhage and large vessel occlusion

using CT images. Implementing analysis software within the

imaging workflow can provide venues where machine learning

algorithms can seamlessly integrate into clinical decision-

making. Furthermore, incorporating features from MRI scans,

such as in the study by Xiao et al. predicting hypoperfusion

in ischemic stroke patients, could define a clinically relevant

threshold that directs decision-making in a facile manner.

Integration of images in machine learning algorithms provides

several benefits, including higher accuracy of diagnosis and

improved objectivity compared to physical examinations. Given

that imaging is routinely performed for stroke patients and is

uniquely capable of providing functionally relevant anatomical

information, image analysis models are promising candidates for

clinical deployment in stroke care.

Machine learning can be an invaluable asset, especially

in cases where diagnosis requires extensive examination or

training or when the diagnosis is based on subtle features

and are thus inherently prone to misdiagnosis. The algorithms

described by Kim et al. to identify acute central dizziness and

by Lin et al. to identify mild stroke patients at risk of disability

exemplify the possibilities—supporting physicians in making

challenging clinical decisions. Both models closely approximate

or outperform existing risk scores without requiring extensive

neurological examinations, allowing more patients to be

screened and thus reducing the chances of a deteriorating patient

escaping notice.

While machine learning holds promises, several challenges

persist in implementing these technologies in healthcare.

First, technical limitations can stem from the type and

quality of the datasets available. EHR data can often be

poorly standardized and sparse, posing problems in model

generalizability. Investigators such as Rana et al. and Darabi

et al. have only used administrative data from EHR with

additional clinical variables such as NIHSS. By contrast, mining

the free text in the patient chart (such as provider note, triage

notes, discharge note, etc.) pose significant challenges. The free

text is written by multiple clinicians, often with successive

clinicians copying and pasting the written comments by the

previous clinicians (16) in addition to auto-generated text that

populate the patient chart. In addition, the tabular nature of

clinical data extracted from EHR can often pose a difficulty

even for advanced deep learning modalities, which often fail

to surpass performances on simpler tree-based architectures

(17). However, performance can be improved by extensive

regularization (18). Sophisticated machine learning algorithms

have had better success when applied to image datasets;

however, even these complex deep learning algorithms can

suffer from confounding factors, partially due to variation

amongst institutions. Indeed, a recent study demonstrated

that deep neural nets trained to predict SARS-CoV2 infection

from X-ray images tend to select confounding “shortcuts” over

signals in generating predictions (19). Attributes of datasets

can limit the accuracy and generalizability of models, especially

for external cohorts with different demographics and dataset

characteristics. The development of standardized data protocols

can aid the implementation of machine learning models that

are more accurate and generalizable across multiple institutions.

In addition to curating better datasets, models can also be

adjusted for better generalizability; fine-tuning of pre-trained

algorithms via transfer learning using site-specific data achieved

superior results for external cohorts (20), and continuous

domain adaptation has been explored to tackle temporal drifts

in data (21, 22). It is essential to take all possible precautions
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to ensure that the machine learning algorithms provide reliable,

relevant, and interpretable results free from systemic biases.

To achieve that, care must be taken to minimize confounding

variations in the datasets that might affect generalizability

and ensure fine-tuning approaches are integrated to allow the

models to more closely approximate results for the underlying

patient distribution.

Secondly, more complicated machine learning models can

often be challenging to interpret, hindering the translation from

prognosis to patient management. High-performing “black box”

models lacking interpretability are of limited use in the clinic

as they do little to inform physicians of actionable points. In

particular, identifying modifiable risk factors is essential in the

primary and secondary prevention of cerebrovascular events.

To this end, Cui et al. used feature importance metrics to rank

specific features mainly associated with predictive capability in

each machine learning model. Analyses of feature importance

could prove helpful in guiding intervention, especially if a

factor is consistently listed as important across multiple models.

For image analysis models, localization maps generated by

methods such as Grad-CAM (23) could provide a limited level

of interpretability. Separating interpretation from the prediction

modeling to provide more flexibility is a strategy that has been

getting more traction in recent years. Still, the usefulness of

the algorithms can be diminished by confounding “shortcuts,”

as mentioned earlier. Since model depth is generally associated

with better predictive capability, efforts must be made to create

models that predict and inform. Desirable models should also

consider workflow disruption or the possibility of causing “alert

fatigue” before planning for implementation. Designing and

training models so that interpretable features can be gleaned

from model parameters and incorporating feedback from

healthcare providers can improve the interpretability of models.

In this respect, theoretical advances in model architecture

and interpretation, combined with enhancing training data

robustness, could prove fruitful.

Finally, ethical considerations must not be ignored. Model

predictions can often be influenced by the socioeconomic, racial,

and gender composition of the training datasets, the awareness

of which is necessary to mitigate potential biases in models. For

example, machine learning models were found to consistently

underdiagnose patients in disadvantaged populations across

three large chest X-ray datasets, especially where a patient

was a member of more than one underserved group (24).

The precedent of undertreatment in disadvantaged populations

can further exacerbate biases by making it less likely for

the algorithm to recommend treatment for members of the

underprivileged sub-group of the population if similar patients

were not provided treatment in the past. The performance of

machine learning models must thus be thoroughly evaluated

in different cohorts to assess the presence of systematic bias,

which must be rectified before deployment. Further, while it

is often possible to impute information that a patient declined

to provide (e.g., smoking, HIV status, etc.), doing so can

have ethical implications (25). Implementing machine learning

algorithms in the clinic should proceed with special care to avoid

unwittingly perpetuating health care inequalities in the training

cohort. Finally, it is essential to reflect that algorithms are and

will continue to be part of our medical system, including our

medical education system. Thus, as a two-way street, we have

to consider how such recommendations influence physicians’

decisions and how this decision-making process potentially

shifts with continued interaction.

In conclusion, recent developments in machine learning

present ample opportunities for automated models that guide

clinical decision-making and improve patient outcomes. The

studies included herein represent selections of advances

employing machine learning in various contexts in

stroke care in our collective efforts to promote improved

patient health through effective prevention, diagnosis,

and intervention.
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Background and Purpose: Hospital readmissions impose a substantial burden on

the healthcare system. Reducing readmissions after stroke could lead to improved

quality of care especially since stroke is associated with a high rate of readmission.

The goal of this study is to enhance our understanding of the predictors of 30-day

readmission after ischemic stroke and develop models to identify high-risk individuals

for targeted interventions.

Methods: We used patient-level data from electronic health records (EHR), five machine

learning algorithms (random forest, gradient boosting machine, extreme gradient

boosting–XGBoost, support vector machine, and logistic regression-LR), data-driven

feature selection strategy, and adaptive sampling to develop 15 models of 30-day

readmission after ischemic stroke. We further identified important clinical variables.

Results: We included 3,184 patients with ischemic stroke (mean age: 71 ± 13.90

years, men: 51.06%). Among the 61 clinical variables included in the model, the National

Institutes of Health Stroke Scale score above 24, insert indwelling urinary catheter,

hypercoagulable state, and percutaneous gastrostomy had the highest importance

score. The Model’s AUC (area under the curve) for predicting 30-day readmission was

0.74 (95%CI: 0.64–0.78) with PPV of 0.43 when the XGBoost algorithm was used with

ROSE-sampling. The balance between specificity and sensitivity improved through the

sampling strategy. The best sensitivity was achieved with LR when optimized with feature

selection and ROSE-sampling (AUC: 0.64, sensitivity: 0.53, specificity: 0.69).

Conclusions: Machine learning-based models can be designed to predict 30-day

readmission after stroke using structured data from EHR. Among the algorithms

analyzed, XGBoost with ROSE-sampling had the best performance in terms of AUC

while LR with ROSE-sampling and feature selection had the best sensitivity. Clinical

variables highly associated with 30-day readmission could be targeted for personalized

interventions. Depending on healthcare systems’ resources and criteria, models with

optimized performance metrics can be implemented to improve outcomes.

Keywords: ischemic stroke, 30-day readmissions, machine learning, statistical analysis, patient readmission

8

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.638267
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.638267&domain=pdf&date_stamp=2021-03-31
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vidaabedi@gmail.com
mailto:vabedi@geisinger.edu
mailto:niyousha@vt.edu
https://doi.org/10.3389/fneur.2021.638267
https://www.frontiersin.org/articles/10.3389/fneur.2021.638267/full


Darabi et al. Machine Learning for 30-Day Readmission

INTRODUCTION

Hospital readmissions impose a substantial financial burden,
costing Medicare about $26 billion annually (1). Centers for
Medicare and Medicaid Services (CMS) has made reducing 30-
day readmission rates a national healthcare reform goal (2) as a
way to improve hospital care. Reducing readmissions after stroke
could lead to improved quality of care especially since stroke is
associated with a high rate of readmission (3).

Studies have found that stroke severity (3, 4), being
discharged to skilled nursing, intermediate care facility, hospice,
or left against doctor’s advice (2, 3, 5–7), being enrolled in
Medicaid/Medicare (4, 6, 8, 9), and being married (5) were
associated with higher readmissions. A longer length of hospital
stay was associated with lower readmissions among stroke
patients (5). Heart failure (2, 6, 9), coronary artery disease
(10, 11), and dysphagia (4) were also correlated with stroke
readmissions. Additionally, patients with anemia, dementia,
malnutrition, and diabetes were more likely to be readmitted
within 30-day (2, 5, 6, 9).

However, previous studies [Supplementary Table I (12)]
included a limited number of variables and used logistic
regression which restricts the number of included interactions
among the variables (13, 14), thus limiting the model
performance. Machine learning (ML), more appropriate for
high-dimensional datasets (15, 16), has been successfully applied
for predicting readmissions after heart failure (17–19), heart
attack (20), and other causes of readmissions (21, 22). The
goal of this study was to develop prediction models of 30-
day readmission among patients with ischemic stroke and
identify associated predictors for the development of a more
targeted intervention.

METHODS

Study Population
This study was based on the retrospective analysis of
prospectively collected data from acute ischemic stroke
(AIS) patients at two tertiary centers in Geisinger Health System
between January 1, 2015, and October 7, 2018 (23). The data were
extracted from electronic health records and de-identified. As a
part of the de-identification process, the age of patients older than
89 years old was masked. Patients younger than 18 years of age
were excluded from this study. Patients with transient ischemic
attack were not included in this study due to the high rate of
overdiagnosis (24). The study was reviewed and approved by
the Geisinger Institutional Review Board to meet “Non-human
subject research,” for using de-identified information.

Data Elements
The outcome measure was hospital readmission within 30-
day after discharge among patients with AIS. Independent
variables included patient age, length of stay (LOS), gender,
marital status (married, single, and previously married), and the
National Institutes of Health Stroke Scale (NIHSS). The types
of health insurance at the time of first admission (Medicare,
Medicaid, private, direct employer contract, self-pay, worker

compensation, and other government payers) were also included.
Other variables in this study were six discharge destinations
(discharged to the home health organizations; discharged to
home, court, or against medical advice; discharged to hospice-
home/hospice-medical facility; discharged or transferred to other
facilities; discharged or transferred to Skilled Nursing Facility,
SNF; discharged or transferred to another rehab facility), and
five clinical interventions (intravenous thrombolysis; insert
indwelling urinary catheter; endotracheal tube; percutaneous
gastrostomy; and hemodialysis). In addition, a total of 47
comorbidities were included (see Table 1).

Data Processing, Feature Selection, and
Sampling
Pearson’s correlation coefficient was applied to continuous
variables to identify those with high collinearity. The correlation
matrix between all the predictors along with a list of correlations
above 30 and 50% is provided in Supplementary Figure I and
Supplementary Table II (12), respectively. The complete list
of variables along with their descriptive statistics and level of
missingness was provided in Table 1. Student’s t-test was applied
to identify the significant difference between two groups of
patients (i.e., readmitted and not readmitted) for each predictor
and the test statistics and P-values were reported in Table 1.

Some of the variables were suffering from missing
observations (see Table 1). Imputation, using Multivariate
Imputation by Chained Equations (MICE) package in R (25),
was performed separately on the training and testing sets to
ensure an unbiased evaluation of the final model. For the
variables with high missingness, we performed an assessment
of the distribution of the variable before and after imputation.
We used two sets of variables, set one was the comprehensive
set including all the variables, and set two included variables
selected based on data-driven feature selection, where variables
with high collinearity were removed. We used the random
forest classification algorithm by Boruta package in RStudio
(26) for our data-driven feature selection. Further, to avoid
the poor performance of the minority class compared to the
dominant class, we applied an adaptive sampling strategy, where
we balanced the dataset by applying the Random Over-Sampling
Examples (ROSE) algorithm on the minority class (27). The data
cleaning and preparation were performed in STATA 14.0 (28)
and the analyses were performed using R 3.6.0 (29) in R studio.
Figure 1 shows the processing and modeling pipeline.

Model Development
The de-identified dataset was randomly split into the train set
(80%) and test set (20%). We developed models to predict 30-
day readmission of ischemic stroke using the training dataset
and used ten-fold cross-validation to select the best performing
model. Overall, we built fifteen models – based on five different
algorithms – following three study designs (Design 1, 2, and 3, see
Figure 1). The five algorithms included logistic regression (LR),
random forest (RF), gradient boosting machine (GBM), extreme
gradient boosting (XGBoost), and support vector machines
(SVM). Parameter tuning was performed by an automatic grid
search with ten different values to randomly try for each

Frontiers in Neurology | www.frontiersin.org 2 March 2021 | Volume 12 | Article 6382679

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Darabi et al. Machine Learning for 30-Day Readmission

TABLE 1 | Descriptive statistics of variables.

Variables Missing Not Readmitted

(n = 2883)

Readmitted

(n = 301)

t statistics P-value

Age (y), Mean (SD) 12 71.10(13.90) 71.50(12.90) −0.52 0.60

LOSa (d), Median (IQR) 319 3 (1, 76) 4 (1, 24) −4.03 0.00

All gender 12 2873 299 – –

Gender, n (%) Female 1406 (48.80) 155 (51.50) −0.90 0.39

Male 1467 (50.90) 144 (47.80) 1.00 0.31

Total 12 2873 299

Marital Status, n (%) Married 1349 (46.80) 124 (41.20) 1.85 0.06

Single 425 (14.70) 45 (15.00) −010 0.92

Previously married 1099 (38.10) 130 (43.20) −1.72 0.08

0 to above 24 2545 580 59 – –

NIHSS Score, n (%) 0 to 4 330 (11.40) 31 (10.30) 0.60 0.55

5 to 11 150 (5.20) 17 (5.60) −0.33 0.74

12 to 23 75 (2.60) 10 (3.30) −0.74 0.46

Above 24 25 (0.90) 1 (0.30) 0.98 0.33

Total - 291 36 – –

Procedures, n (%) Intravenous thrombolysis 71 (3.00) 2 (0.80) 2.06 0.04

Insert indwelling urinary catheters 3 (0.10) 1 (0.30) −1.07 0.28

Insert endotracheal tube 148 (5.10) 10 (3.30) 1.35 0.17

Percutaneous gastrostomy 42 (1.50) 16 (5.40) −4.81 0.00

Hemodialysis 27 (0.90) 7 (2.30) −2.25 0.02

All centers - 2883 301 – –

Hospital, n (%) GMCb 1784 (61.90) 176 (58.50) 1.08 0.27

GWVc 1099 (38.10) 125 (41.50) −1.16 0.25

Total 492 2418 274 – –

Discharge Status, n (%) Discharged to home health organization 346 (12.00) 37 (12.30) −0.15 0.88

Discharged to home, court, or against

medical advice

902 (31.30) 57 (18.90) 4.46 0.00

Discharged to

hospice-home/hospice-medical facility

82 (2.80) 4 (1.30) 1.54 0.12

Discharged/transferred to other facilities 27 (0.90) 2 (0.70) 0.47 0.63

Discharged/transferred to SNFd 447 (15.50) 91 (30.20) −6.53 0.00

Discharged/transferred to another rehab

facility

614 (21.30) 83 (27.60) −2.51 0.01

Total 51 2836 297 – –

Payer, n (%) Direct employer contract 65 (2.30) 9 (3.00) −0.80 0.42

Medicaid 216 (7.50) 22 (7.30) 0.11 0.91

Medicare 2037 (70.70) 230 (76.40) −2.10 0.03

Other government payers 58 (2.00) 4 (1.30) 0.81 0.41

Private 425 (14.70) 30 (1.00) 2.25 0.02

Self-pay 32 (1.10) 1 (0.30) 1.27 0.20

Workers compensation 3 (0.10) 1 (0.30) −1.06 0.29

Diagnoses, n (%) Anemia - 319 (13.70) 67 (26.40) −5.42 0.00

Atrial fibrillation 691 (29.40) 93 (36.30) −2.29 0.02

Anxiety disorders 328 (14.00) 53 (20.70) −2.90 0.00

Cerebral arterial dissection 23 (1.00) 6 (2.30) −1.98 0.05

Coronary artery disease 684 (29.10) 77 (30.10) −0.32 0.75

Delirium 44 (1.90) 12 (4.70) −2.95 0.00

Dementia 222 (9.50) 35 (13.70) −2.15 0.03

Diabetes 642 (27.50) 86 (33.90) −2.13 0.03

Dysphagia 150 (6.40) 29 (11.30) −2.97 0.00

Heart failure 426 (18.30) 64 (25.20) −2.67 0.00

(Continued)
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TABLE 1 | Continued

Variables Missing Not Readmitted

(n = 2883)

Readmitted

(n = 301)

t statistics P-value

Hypercoagulable state 17 (0.70) 7 (2.70) −3.20 0.00

Hypertension 1308 (56.10) 131 (51.60) 1.38 0.17

Hypotension 55 (2.30) 13 (5.10) −2.61 0.00

Kidney disease 670 (28.50) 101 (39.50) −3.65 0.00

Malignancy 286 (12.20) 47 (18.40) −2.82 0.00

Malnutrition 105 (4.50) 32 (12.50) −5.49 0.00

Migraine 69 (2.90) 13 (5.10) −1.86 0.06

Overweight 58 (2.50) 16 (6.20) −3.46 0.00

Tobacco use 1171 (49.90) 143 (55.90) −1.83 0.07

Venous thrombosis 81 (3.40) 18 (7.00) −2.85 0.00

Acute myocardial infarction 36 (1.50) 9 (3.50) −2.31 0.02

Alcohol use 95 (4.00) 10(3.90) 0.11 0.91

Arrhythmias 99 (4.20) 15 (5.90) −1.22 0.22

Blindness 14 (0.60) 1 (0.40) 0.41 0.68

Cardiac valvular disease 159 (6.80) 22 (8.60) −1.09 0.27

Cardiomyopathy 131 (5.60) 23 (9.00) −2.20 0.03

Cerebral atherosclerosis 93 (4.00) 13 (5.10) −0.86 0.39

Chronic kidney disease 583 (25.00) 89 (35.00) −3.47 0.00

Chronic liver disease 49 (2.10) 2 (0.80) 1.43 0.15

Chronic lung disease 476 (20.30) 69 (27.00) −2.50 0.01

Dysautonomia 16 (0.70) 2 (0.80) −0.18 0.85

Hyperlipidemia 1537 (65.40) 177 (69.10) −1.19 0.23

Intracerebral hemorrhage 521 (22.20) 51 (19.90) 0.83 0.41

Inflammatory disorders 66 (2.80) 5 (2.00) 0.80 0.42

Mood disorders 372 (15.80) 58 (22.70) −2.79 0.00

Non-compliance 107 (4.60) 12 (4.70) −0.09 0.92

Normal weight 44 (1.90) 11 (4.30) −2.56 0.01

Obese 466 (19.80) 62 (24.20) −1.65 0.09

Palliative care on board 254 (10.80) 12 (4.70) 3.08 0.00

Peripheral vascular disease 125 (5.30) 17 (6.60) −0.88 0.38

Respiratory failure 164 (7.00) 19 (7.40) −0.26 0.79

Seizure disorders 96 (4.10) 15 (5.90) −1.33 0.18

Sleep apnea 216 (9.20) 25 (9.80) −0.30 0.76

Systemic infection 63 (2.70) 16 (6.20) −3.17 0.00

Thyroid disease 445 (18.90) 54 (21.10) −0.83 0.41

Underweight 34 (1.40) 9 (3.50) −2.47 0.01

Use of steroids 72 (3.10) 11 (4.30) −1.06 0.29

Year, Median (IQR) – 2016 (2015, 2018) 2016 (2015, 2018) −0.36 0.72

a, length of stay; b, geisinger medical center, c, Geisinger wyoming valley, d , skilled nursing facility.

algorithm parameter. All the hyperparameter evaluation and

model development were performed using the Caret package in

R Studio (30). We ran the SVM with and without normalization

of the dataset. In normalization, we scaled the data to calculate
the standard deviation for an attribute and divided each value by
that standard deviation. Then we centered the data to calculate
the mean for an attribute and subtracted it from each value. The
performance measures of the models were evaluated using the
20% test set. To compare the performance of the applied models,
we calculated the area under the receiver operating characteristic
curve (AUC). We also used other performance measures such

as sensitivity or recall, specificity, and positive predictive value
(PPV) as well as training time.

RESULTS

Study Design and Population
Characteristics
A total number of 3,184 AIS patients [1,960 patients from
Geisinger Medical Center (GMC) and 1,224 from Geisinger
Wyoming Valley Medical Center (GWV)] were included in
this study.
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FIGURE 1 | Data processing flowchart.

Among 3,184 patients with ischemic stroke, 301(9.40%)
were readmitted within 30-day. The train set and test set
included 2,548 (80%) and 636 (20%) patient-level observations,
respectively. In Table 1, the patients were compared based on
diverse characteristics including demographic characteristics,
medical history prior to the ischemic stroke event, and stroke
severity using the NIHSS score. Continuous variables were
presented as mean and standard deviation and as median with
interquartile range (IQR). The average age of patients was 71
(interquartile range, IQR: 18–89) and 1,611(50.60%) patients
were men. There was a significant difference between patients
who were readmitted and those who were not in terms of
median LOS, being married or previously married, discharged
to SNF or against medical advice, and having Medicare or
private insurance.

Models Can Be Trained to Predict 30-Day
Readmission Using EHR
The performance metrics—AUC and its 95% confidence interval
(CI), sensitivity, specificity, PPV, and the training time —for
all the 15 models with and without ROSE-sampling (Design
2, and 1), and with feature selection and ROSE-sampling
(Design 3) were reported in Table 2. The CIs for the test
sets were calculated using bootstrapping. We also provided the
confusion matrices of all 15 models in Supplementary Table V.
The results showed that applying ROSE for addressing class
imbalance during the model training improved the AUC, PPV,
and specificity of models during the testing phase. However,
feature selection did not improve the results [see Table 2,

and Supplementary Figures II, III (12)]. Feature selection
was performed using the Boruta package which reduced the
number of features from 52 to 14 [see green variables in
Supplementary Figure IV (12)]. These 14 attributes were used
in the third design while all features were included in the
other designs.

The ROC curves for LR, RF, GBM, XGBoost, and SVM
without feature selection and sampling (Design 1) and with
ROSE-sampling (Design 2) were shown in the top and
bottom side of Figure 2 accordingly. In the absence of
sampling and feature selection, GBM provided the highest
AUC (0.68), specificity (0.95), and PPV (0.33) when compared
to the other models (Figure 2 and Table 2). However, the
best AUC (0.74), PPV (0.43), and specificity (0.98) were
reached when ROSE-sampling was applied. The optimal model
parameters for ROSE-sampled XGBoost were max-depth =

4, subsample = 0.50, colsample_bytree = 0.80, gamma = 0,
and min_child_weight = 10. In terms of AUC, specificity, and
PPV, the LR in Design 2 had poor performance compared
to XGBoost and GBM models. However, LR with feature
selection and ROSE-sampling (Design 3) provided the highest
sensitivity (0.53) relative to other models. We also performed
SVM with normalized data and the results are provided
in Supplementary Table IV.

The training times for LR, RF, and GBM were faster when
compared to models based on XGBoost and SVM (see Table 2).
The model training was performed using MacBook Pro14,2, four
thunderbolt 3 ports with 3.1 GHz Dual-Core Intel Core i5, and 8
GB memory. Overall, the addition of the sampling step increased
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TABLE 2 | Performance metrics for machine learning models.

Train set Test set

Method AUC Training Time (s) AUC 95% CI for AUC Sensitivity Specificity PPV

No feature selection and sampling (Design 1)

LR 0.76 3 0.60 (0.52, 0.67) 0.32 0.86 0.19

RF 0.82 42 0.57 (0.50, 0.64) 0.09 0.93 0.12

GBM 0.70 48 0.68 (0.52, 0.76) 0.23 0.95 0.33

XGBoost 0.76 1,752 0.62 (0.56, 0.69) 0.30 0.88 0.21

SVM 0.98 990 0.62 (0.56, 0.70) 0.30 0.86 0.18

With ROSE-sampling (Design 2)

LR 0.74 3 0.63 (0.55, 0.70) 0.38 0.72 0.12

RF 0.74 33 0.67 (0.51, 0.76) 0.09 0.97 0.26

GBM 0.74 48 0.70 (0.61, 0.75) 0.09 0.98 0.45

XGBoost 0.76 2,340 0.74 (0.64, 0.78) 0.20 0.98 0.43

SVM 0.83 1,689 0.67 (0.59, 0.74) 0.38 0.89 0.27

With feature selection and ROSE-sampling (Design 3)

LR 0.70 3 0.64 (0.56, 0.72) 0.53 0.69 0.15

RF 0.70 12 0.65 (0.56, 0.70) 0.30 0.89 0.24

GBM 0.69 30 0.66 (0.58, 0.74) 0.17 0.95 0.26

XGBoost 0.70 2,130 0.65 (0.56, 0.73) 0.17 0.95 0.27

SVM 0.72 960 0.64 (0.56, 0.72) 0.42 0.77 0.16

FIGURE 2 | ROC curves for machine learning models with (bottom) and without (top) ROSE-sampling. GBM, gradient boosting machine; XGBoost, extreme gradient

boosting; SVM, support vector machines; RF, random forest; and GLM, generalized linear model with logit link which is logistic regression in our study.

the training time, while having fewer features resulted in faster
training as expected.

NIHSS, Insert Indwelling Urinary Catheter,
Hypercoagulable State, and Percutaneous
Gastrostomy Are the Top Predictors of
30-Day Readmission
Using XGBoost in Design 2, the best predictive model, we
identified the most important predictors of 30-day readmission.

According to the variable importance scores for XGBoost in
Design 2 (Table 3), the top 10 predictors of 30-day readmission
were NIHSS above 24, insert indwelling urinary catheter,
hypercoagulable state, percutaneous gastrostomy, using workers
compensation as insurance, hemodialysis, overweight, cerebral
arterial dissection, malnutrition, intravenous thrombolysis, and
venous thrombosis.

We also reported the result of LR in the third design.
In the latter, the multicollinearity was addressed by feature
selection (Table 4). The odds ratios (OR), log odds, 95% CI,
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TABLE 3 | Variable importance scores of the XGBoost model with

ROSE-sampling (Design 2).

No. Variable Importance

Score

(out of 100)

1 NIHSS above 24 100.00

2 Insert Indwelling Urinary Catheter 89.94

3 Hypercoagulable State 61.95

4 Percutaneous Gastrostomy 40.04

5 Payer Workers Compensation 37.78

6 Hemodialysis 35.13

7 Overweight 33.35

8 Cerebral Arterial Dissection 30.61

9 Malnutrition 25.74

10 intravenous thrombolysis 24.15

11 Venous Thrombosis 22.94

12 Discharged to Hospice-Home or Hospice-Medical Facility 17.15

13 Palliative Care on Board 14.92

14 Delirium 14.54

15 Payer Self-Pay 14.42

and P-values were reported in this table. This analysis revealed
that being discharged to SNF, malignancy, and malnutrition were
significantly associated with stroke readmission within 30-day (p-
value< 0.0001). Also, being discharged to a rehabilitation facility
and stroke severity above twelve were significantly associated
with 30-day readmission at 0.001 significance level.

DISCUSSION

We have taken a comprehensive approach to identify and
prioritize factors associated with 30-day readmissions after
ischemic stroke. We aimed to find the most effective predictive
model by comparing the results of different ML techniques and
LR. There have been multiple readmission studies that developed
predictive models for the chances of 30-day readmission in stroke
patients. However, most of these models used LR (31) which
limits the inclusion of higher-order interactions among variables
and does not perform well in the presence of collinearity.
Also, many studies considered readmission after 90 days or
1 year as a dependent variable which is a long follow-up
period, as CMS penalizes healthcare systems for readmission
under 30 days. In this study, we addressed these gaps and
improved the prediction performance of readmissions in stroke
patients using a wide range of potential risk factors and the
proper ML techniques. Our results show that depending on the
resources and criteria of healthcare systems, a predictive model
with optimized performance metrics can be used to improve
decision making.

Machine Learning-Based Models Can Be
Trained to Predict 30-Day Readmission
The results of this study indicate that ML-based models can
be designed to predict 30-day readmission after stroke using

TABLE 4 | Logistic regression results for predictors of 30-day readmission in

ischemic stroke patients (Design 3).

Variables OR Log

Odds

95% CI

(2.5%, 97.5%)

P-value

(Intercept) 0.25 −1.39 −2.55 −0.30 0.01

Age 0.99 −0.01 −0.03 0.00 0.07

Discharged to home health

organization

1.61 0.47 −0.01 0.94 0.05

Discharged to hospice-home or

hospice-medical facility

0.44 −0.83 −2.04 0.28 0.16

Discharged/transferred to other

facilities

0.49 −0.70 −2.62 0.66 0.38

Discharged/transferred to another

rehab facility

1.79 0.58 0.17 0.99 0.01

Discharged/transferred to SNF 2.77 1.02 0.56 1.48 0.00

Medicaid 0.41 −0.89 −1.79 0.07 0.06

Medicare 0.57 −0.55 −1.31 0.30 0.17

Other government payers 0.39 −0.93 −2.33 0.32 0.16

Private insurance 0.40 −0.91 −1.75 −0.00 0.04

Self-pay 0.29 −1.23 −4.21 0.59 0.27

Workers compensation 1.82 0.60 −2.59 3.04 0.65

Chronic kidney disease 1.28 0.24 −0.36 0.89 0.44

Hypercoagulable state 3.09 1.13 0.18 1.99 0.01

Kidney disease 1.15 0.14 −0.49 0.72 0.65

Malignancy 2.10 0.74 0.37 1.09 0.00

Malnutrition 2.51 0.92 0.39 1.42 0.00

Palliative care on board 1.13 0.13 −0.73 0.90 0.76

Respiratory failure 0.74 −0.30 −1.06 0.39 0.41

Underweight 1.00 0.00 −1.01 0.91 0.99

Insert endotracheal tube 0.86 −0.15 −1.11 0.74 0.76

Percutaneous gastrostomy 1.39 0.33 −0.51 1.09 0.42

NIHSS 12 to 23 1.76 0.57 0.14 0.99 0.01

NIHSS 5 to 11 0.65 −0.43 −0.79 −0.08 0.02

NIHSS above 24 0.17 −1.77 −3.25 −0.65 0.01

structured data from EHR. ML algorithms can include higher-
order interactions among variables, handle multicollinearity, and
improve readmission predictions when applied to large and high-
dimensional datasets (15). This study was the first in predicting
the associated variables of 30-day ischemic stroke readmission
using ML techniques. Our findings indicated that the best
performance in terms of AUC, specificity, and PPV was obtained
when XGBoost was used with ROSE-sampling.

Past studies that used ML techniques to improve the
prediction power, either performed their analysis on readmission
more than 30-day or studied other causes of readmission such as
heart failure (17, 18, 21). However, our best performing model
(XGBoost in Design 2) provides higher AUC and PPV compared
to these studies [See Supplementary Table III (12)].

Clinical Features Highly Associated With
30-Day Readmission
The results of our best performing model (XGBoost in Design
2) showed that NIHSS score above 24, insert indwelling urinary
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catheter, hypercoagulable state, percutaneous gastrostomy, and
insurance type are among factors with the highest importance.
The common significant predictors of the 30-day readmission in
both XGBoost in Design 2 and LR in Design 3 included NIHSS
score above 24, hypercoagulable state, and malnutrition. Since
NIHSS is an important variable and this variable also suffered
from high missingness, we assessed its distribution before and
after imputation for both train and test sets. Our results
corroborate that the distribution of this variable remains the
same after applying imputation (see Supplementary Table VI,
Supplementary Figures V, VI).

Additionally, malignancy, NIHSS scores between 5 and 23,
private insurance type, and being discharged to a rehabilitation
facility or SNF were only significant in the LR, and they
had low importance scores in the XGBoost model. Among all
variables, stroke severity and malnutrition were found significant
predictors of 30-day readmission in ischemic stroke patients in
past studies and our results corroborated the previous findings
(2–6, 9).

It has been shown in previous studies that heart failure and
being Medicare or Medicaid user were significantly correlated
with 30-day readmission (2, 4, 6, 8, 9). However, we found no
evidence in favor of these assertions. Past studies provided mixed
results on the importance of age, hypertension, and gender; some
studies found that patients of older age were more likely to
be readmitted (2, 5) while others showed that age was not a
significant predictor (3, 32). Also, hypertension was found as a
significant risk factor of readmission in a study (8) while in other
works authors claimed that hypertension was not significantly
associated with 30-day readmission (13, 32). Several studies
conducted on data from Taipei, China, and Western Australia
found that gender of patients was not significantly associated
with the chances of being readmitted (3, 5, 32); however, studies
based on U.S. data have found women were significantly at
higher risk of readmission (2, 8, 13). The results of the ROSE-
sampled XGBoost model indicated that age, hypertension, and
gender–in this specific cohort–were not significantly associated
with 30-day readmission after ischemic stroke. We have also
performed a detailed analysis of our Geisinger cohort and
identified that sex was not an independent risk factor for all-
cause mortality and ischemic stroke recurrence (33). Finally, the
identification of malnutrition provides potential new venues to
improve secondary prevention and outcome (34).

Model Performance Metrics Optimized
Based on the Target Goals
According to our results, the best performing predictive model,
which was ROSE-sampled XGBoost, had a 17.5% improvement
in AUC compared to LR. This XGBoost performed better in
comparison with other models of 30-day readmission in the
literature (17, 18, 21). We improved the AUC up to 0.74 (95%
CI: 0.64, 0.78) for the test set with 0.43 PPV (see Design 2
in Table 2). In the absence of sampling and feature selection,
GBM returned very close AUC for the training and testing sets,
corroborating that the models did not suffer from overfitting
(Design 1 in Table 2). XGBoost and GBM with ROSE-sampling

achieved comparable AUC for the testing and training sets,
confirming that these models did not suffer from overfitting
(Design 2 in Table 2). However, the SVM-based models had the
largest difference between testing and training AUC, leading to
the possibility of overfitting given this dataset. Overall, ML-based
models such as GBM and XGBoost improved the prediction of
30-day readmission in stroke patients compared to traditional
LR [see Table 2, Supplementary Figures II, III (12)]. However,
LR with feature selection and ROSE-sampling provided the best
sensitivity which implies that healthcare systems can choose their
decision models based on their resources and criteria.

LIMITATIONS

One of the important strengths of this study was that we analyzed
a diverse list of potential predictors including an extensive
number of clinical interventions and patient’s comorbidities. To
the best of our knowledge, this was the first attempt to apply
ML techniques to predict the 30-day readmission for ischemic
stroke patients. Considering a large number of included variables
in our dataset, these ML techniques could include higher-order
interactions among variables, and improve the prediction power
when compared to LR.

Our analysis had several limitations. Although our dataset
was rich in the number of variables, the number of patients was
relatively small compared to the included independent variables.
Therefore, the small number of observations might result in
overfitting in the models. However, comparable AUC measures
provided by XGBoost for the testing and training sets rule out the
possibility of overfitting in this model. Another limitation of this
work was missing data specifically for the NIHSS score. The most
missing data points belonged to the NIHSS score before 2016
and we applied imputation to not lose any observation or cause
sampling bias. Additionally, due to the unique demographic
characteristics of this dataset (the majority of patients were white
and from non-urban areas), the results may not be generalizable
to other health systems.

FUTURE DIRECTIONS

In this study, we only considered ischemic stroke as the cause
of readmission. Therefore, future avenues of research can be
done by considering other stroke types and subtypes. However,
considering the size of our dataset which came from two
health centers from central Pennsylvania, further work needs
to focus on a larger population with diverse demographics to
introduce a generalizable model. Additionally, to improve the
prediction power, future studies may include the application of
deep learning techniques (35) as well as the integration of features
from unstructured sources such as clinical notes and imaging
reports. Finally, improvement in parameter optimization, by
using sensitivity analysis (SA)-based approaches (36, 37) and
improving the imputation for laboratory values for EHR-mining
(38) can lead to an improvement in outcome prediction models
using administrative datasets. These strategies will help in model
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generalizability, improve patient representation, and reduce
algorithmic bias.

CONCLUSION

Our results showed that machine learning-based predictive
models perform better than traditional logistic regression,
enabling the inclusion of a more comprehensive set of variables
into the model. The insights from this work can assist with
the identification of ischemic stroke patients who are at higher
risk of readmission for more targeted preventive strategies.
Our study also indicated the importance of including multiple
performance metrics for empowering the healthcare system to
choose a predictive model for implementation as an assistive
decision support tool into their EHR based on their resources
and criteria.
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Purpose: Recently developed machine-learning algorithms have demonstrated strong

performance in the detection of intracranial hemorrhage (ICH) and large vessel occlusion

(LVO). However, their generalizability is often limited by geographic bias of studies. The

aim of this study was to validate a commercially available deep learning-based tool in the

detection of both ICH and LVO across multiple hospital sites and vendors throughout

the U.S.

Materials and Methods: This was a retrospective and multicenter study using

anonymized data from two institutions. Eight hundred fourteen non-contrast CT cases

and 378 CT angiography cases were analyzed to evaluate ICH and LVO, respectively. The

tool’s ability to detect and quantify ICH, LVO, and their various subtypes was assessed

among multiple CT vendors and hospitals across the United States. Ground truth was

based off imaging interpretations from two board-certified neuroradiologists.

Results: There were 255 positive and 559 negative ICH cases. Accuracy was

95.6%, sensitivity was 91.4%, and specificity was 97.5% for the ICH tool. ICH

was further stratified into the following subtypes: intraparenchymal, intraventricular,

epidural/subdural, and subarachnoid with true positive rates of 92.9, 100, 94.3, and

89.9%, respectively. ICH true positive rates by volume [small (<5mL), medium (5–25mL),

and large (>25mL)] were 71.8, 100, and 100%, respectively. There were 156 positive and

222 negative LVO cases. The LVO tool demonstrated an accuracy of 98.1%, sensitivity

of 98.1%, and specificity of 98.2%. A subset of 55 randomly selected cases were also

assessed for LVO detection at various sites, including the distal internal carotid artery,

middle cerebral artery M1 segment, proximal middle cerebral artery M2 segment, and

distal middle cerebral artery M2 segment with an accuracy of 97.0%, sensitivity of 94.3%,

and specificity of 97.4%.
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Conclusion: Deep learning tools can be effective in the detection of both ICH and

LVO across a wide variety of hospital systems. While some limitations were identified,

specifically in the detection of small ICH and distal M2 occlusion, this study highlights a

deep learning tool that can assist radiologists in the detection of emergent findings in a

variety of practice settings.

Keywords: deep learning, artificial intelligence, radiology, large vessel occlusion, neuroradiology, intracranial

hemorrhage

INTRODUCTION

Timely diagnosis of acute cerebrovascular disease is critical to
reduce patient mortality and morbidity. Two forms of stroke,
intracranial hemorrhage (ICH) and ischemic stroke due to large
vessel occlusion (LVO) are especially devastating. ICH 28-day
mortality has been reported at 50.6% and 6-month mortality due
to LVO at 26.2% (1, 2).

Prompt intervention of these entities is critical in achieving
improved outcomes. For example, ICH hematoma expansion
was significantly reduced with early blood pressure control (3).
Regarding LVO, functional independence decreased with every
hour delay to endovascular thrombectomy (4).

Deep learning, a subset of artificial intelligence, has recently
emerged as a means to aid clinicians in the timely diagnosis
of both ICH and LVO. Newly developed algorithms have
demonstrated strong performance in the detection of each (5–
12). However, limitations of most of these studies are that they
are often performed at a single institution and have not been
validated in different settings.

Given the potential for deep learning tools to aid physicians
in the timely and accurate diagnosis of these emergencies, it
is important to validate their uses across a variety of facilities.
Prior studies examining the relationship between deep-learning
based algorithms and imaging assessment have been limited by
geographic bias introduced from their cohorts, with the majority
of U.S. states lacking representation (13). The specific aim of
this study is to validate a commercially available deep learning-
based tool, CINA R© v1.0 device (Avicenna.ai, La Ciotat, France)
in the detection of both ICH and LVO from multiple hospital
sites and vendors through a collaboration between the University
of California, Irvine (UCI) and vRAD (Minneapolis, USA). In
doing so, the goal was to evaluate the generalizability of this
tool to eliminate possible geographic bias introduced in other
similar studies.

MATERIALS AND METHODS

This was a retrospective study using anonymized data from
UCI and vRAD. A waiver of consent was obtained from the
local Institutional Review Board (IRB) at UCI for the UCI cases
and the Western IRB for the vRAD cases. The CINA R© v1.0
device (Avicenna.ai, La Ciotat, France) was used for standalone
performance assessment in both the ICH and LVO validation
studies. The statistics provided in this manuscript are derived

from an external test set (the validation cohort) and are
completely independent from a prior cohort used to train the
CINA R© v1.0 device. Specifically, the cohort used to train the tool
was based off of 8,994 ICH cases acquired between November
2014–May 2018 and 566 LVO cases acquired between May 2018–
November 2018. All of the training data was acquired from
vRAD data only. No UCI data was used for the training cohort.
Additionally, all vRAD cases used for the validation cohort were
acquired in 2019 only.

Intracranial Hemorrhage
Patient Selection
A cohort of patients with suspected acute ICH on clinical
grounds in whom non-contrast CT (NCCT) head studies had
been performed from UCI and an American teleradiology
service (vRAD) were assessed. In both UCI and vRAD cases,
suspected acute ICH cases were identified with keywords such
as “hemorrhage,” “NCCT,” and “head” in the clinical indication
or Digital Imaging and Communications in Medicine (DICOM)
header information of the NCCT studies. Only the initial scan
obtained for ICH evaluation was assessed for patients in this
validation cohort. vRAD cases were acquired in 2019 only, and
UCI data from 2017 to 2019. Inclusion criteria for NCCT scans
required a strict axial acquisition, 512 x 512matrix, slice thickness
of <5mm, soft tissue reconstruction kernel, and kVp ranging
between 100 and 160.

ICH cases were divided into intraparenchymal (IPH),
intraventricular (IVH), subarachnoid (SAH), subdural
(SDH), and epidural (EDH) subtypes. Multiple cases
contained a combination of these subtypes and were
categorized accordingly. Intracranial hemorrhages were
further categorized into small (<5mL), medium (5–
25mL), and large (>25mL) volumes. Positive cases for
acute ICH (“ground truths”) were assessed by two board-
certified neuroradiologists, with consensus determined by
a third board-certified neuroradiologist. The two board-
certified neuroradiologists also determined ICH subtype and
volume information.

Scanning Parameters
GE Healthcare, Philips, Siemens, and Canon (Formerly Toshiba)
scanners were used among this cohort with 16, 7, 13, and 5
various scanner models, respectively. The number of detector
rows (NDR) were divided into eight categories: 4 < NDR ≤

8, 8 < NDR ≤ 16, 16 < NDR ≤ 32, 32 < NDR ≤ 64, 64
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FIGURE 1 | Example of a positive ICH identified by CINA®. There is an acute subdural hemorrhage along the right cerebral convexity on non-contrast CT

(green arrow).

< NDR ≤ 128, 128 < NDR ≤ 256, 256 < NDR ≤ 320,
and not available (NA) if this information was not attached to
the case. Slice thickness (ST) was categorized as being < 2.5
and 2.5mm ≤ ST ≤ 5mm. Radiation dose parameters were
measured in kilovoltage peak (kVp) and milliampere-seconds
(mAs). kVp was categorized as kVp < 120, 120 ≤ kVp ≤ 140,
and >140. mAs was categorized as <150, 150 ≤ mAs ≤ 400,
and >400.

Large Vessel Occlusion
Patient Selection
A cohort of patients with suspected LVO on clinical grounds in
whom CT angiography (CTA) head studies had been performed
from UCI and vRAD were assessed. For both UCI and vRAD
cases, suspected LVO cases were identified with keywords such

TABLE 1 | Performance metrics for overall cases of CINA-ICH application.

Statistical findings for ICH detection Values [95% CI]

Sensitivity (%) [95% CI] 91.4% [87.2–94.5%]

Specificity (%) [95% CI] 97.5% [95.8–98.6%]

as, “CTA,” “head,” and “large vessel occlusion” in the clinical
indication or DICOM header information of the CTA studies.
Only the initial scan obtained for LVO evaluation was assessed
for patients in this validation cohort. vRAD cases were acquired
in 2019 only and UCI cases from 2015 to 2019. Inclusion
criteria for CTA scans included a strict axial acquisition, 512
x 512 matrix, slice thickness ≤1.25mm, kVp to range between
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80 and 140, arterial phase timing of contrast bolus confirmed
by mini test bolus or automatic bolus tracking software, and
arterial (or other sharp) reconstruction kernel. Positive cases for
LVO (“ground truths”) were assessed by two U.S. board-certified
neuroradiologists, with consensus determined by a third board-
certified neuroradiologist. Positive LVO cases were divided based
on location into Distal Internal Carotid Artery (ICA), Middle
Cerebral Artery (MCA)-M1, MCA-M2 Proximal, and MCA-
M2 Distal.

Scanning Parameters
GE Medical Systems, Philips, Siemens, Canon (Formerly
Toshiba), and NMS with 13, 4, 12, 4, and 1 various scanner
models were included, respectively. The NDR were divided into
the same eight categories as for the ICH cases. Slice thickness
(ST) was ≤ 1.25mm. Radiation dose parameters were measured
in kilovoltage peak (kVp) and milliampere-seconds (mAs). kVp
was categorized as <100, 100≤ kVp≤ 120, and >120. mAs were
categorized as <100, 100 ≤mAs ≤ 400, and >400.

Statistical Analysis
Data was compared from the CINA R© v1.0 device (Avicenna.ai,
La Ciotat, France) to the ground truths determined by the
board-certified neuroradiologists via a confusion matrix in
order to obtain sensitivity, specificity, and accuracy. Positive
predictive values (PPV) and negative predictive values (NPV)
were computed with varying prevalence values (from 10 to 50%,
increments of 5%). All of these statistics were performed using
Excel and MedCalc version 19.7.2.

These statistics were performed for the total cases in both
the ICH and LVO groups in addition to stratifications based on
scanner models, NDR, slice thickness, radiation dose parameters,
age, and sex, as well as ICH subtypes and volumes and LVO
locations. The CINA R© v1.0 device is not intended to discern
ICH subtype or volume and only detects whether hemorrhage is
present or not. Therefore, ICH subtypes and volume information
were only assessed in positive cases by the two board-certified
neuroradiologists. Only true positives and false negative values
could be calculated and only true positive rate was provided for
these classifications.

PASS sample size software was used to calculate the minimum
number of cases needed to achieve a 95% CI lower bound of
at least 80% assuming a point estimate of 90% (for sensitivity

and specificity, separately). Using the binomial dichotomous
endpoint for a one sample study, at least 137 positive and 137
negative anonymized cases were required (for ICH and LVO).

RESULTS

Intracranial Hemorrhage
Patient Selection
824 cases were selected for analysis from a pool of 400
retrospective anonymized cases from vRAD and 424 from UCI.
10 cases were excluded for the following reasons: 1 because slice
thickness was not identical among the volume, 3 because the
matrix was not 512 x 512, 1 because it contained a post-contrast
series, 2 lacked a full field of view, 2 were uninterpretable due
to significant motion artifact, and 1 was uninterpretable due to
significant metal artifact. After exclusion, case distribution was
395 from vRAD and 419 from UCI for a total of 814 cases.

Overall Cases
ICH ground-truths were as follows: 204 positive ICH cases from
vRAD and 51 fromUCI. There were 191 negative ICH cases from
vRAD and 368 from UCI. There was initial disagreement on 21
cases between the two neuroradiologists. However, a consensus
was eventually reached for each of these cases.

The CINA R© v1.0 algorithm identified 233 true positive ICH
(Figure 1), 14 false positive ICH, 545 true negative ICH, and 22
false negative ICH. Accuracy was calculated as 95.6%. Sensitivity
was 91.4 % [95% CI, 87.2–94.5%] and specificity was 97.5% [95%
CI, 95.8–98.6%]. Performance metrics can be found in Table 1.

TABLE 3 | Performance metrics for ICH cases by geographic distribution in the

United States.

Region category Positive ICH Negative ICH Sensitivity (%) Specificity (%)

Continental (n = 55) 29 26 93.1 100

Northeast (n = 187) 83 104 91.6 95.2

Pacific (n = 450) 67 383 89.5 97.6

Southeast (n = 96) 50 46 88 100

NA (n = 26) 26 0 – –

NA, not available.

TABLE 2 | Performance metrics for ICH cases based on demographics.

Demographic Positive ICH Negative ICH Sensitivity (%) Specificity (%)

Age 18 ≤ Age < 40 (n = 168) 37 131 89.2 100

40 ≤ Age ≤ 70 (n = 316) 112 204 91.1 96.1

Age > 70 (n = 249) 98 151 92.9 97.4

Age NA (n = 81) 8 73 – –

Sex Male (n = 206) 101 95 93.6 96.8

Female (n = 188) 93 95 91.4 97.9

NA (n = 421) 52 359 – –

NA, Not Available.

Frontiers in Neurology | www.frontiersin.org 4 April 2021 | Volume 12 | Article 65611221

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


McLouth et al. AI ICH/LVO Detection Tool Validation

Positive predictive values (PPV) and negative predictive
values (NPV) were also assessed based on varying prevalence.
PPV ranged from 80.2% (10% prevalence) to 97.3% (50%
prevalence). NPV ranged from 99.0% (10% prevalence) to 91.9
% (50% prevalence).

Demographics
Performance metrics for age and sex can be found in Table 2. For
age, sensitivity ranged from 89.2% (18 ≤ Age < 40, n = 168) to
92.9% (Age > 70; n = 249). Specificity ranged from 96.1% (40
≤ Age ≤ 70, n=316) to 100% (18 ≤ Age < 40, n=168). For
sex, sensitivity was 91.4% for females (n = 188) and 93.6% for
males (n = 206). Specificity was 97.9% for females and 96.8%
for males.

TABLE 4 | True positive rates for ICH cases based on subtype and volume.

ICH classification True positive rate (%)

Subtype IPH (n = 99) 92.9

IVH (n = 23) 100

EDH/SDH (n = 122) 94.3

SAH (n = 79) 89.9

Volume Small: <5mL (n = 78) 71.8

Medium: 5–25mL (n = 100) 100

Large: >25mL (n = 77) 100

Site
The distribution, sensitivity, and specificity of the ICH tool based
on geographic U.S. regions are shown in Table 3. Sensitivity
ranged from 88% (Southeast U.S., n= 96) to 93.1% (Continental
U.S., n = 55). Specificity ranged from 95.2% (Northeast U.S., n
=187) to 100% (Continental and Southeast U.S.).

ICH Subtypes
ICH cases were additionally categorized based on subtypes:
Intraparenchymal (IPH), Intraventricular (IVH), Subarachnoid
(SAH), Subdural (SDH), and Epidural (EDH). The SDH
and EDH subtypes were combined into one group for
stratification purposes. In addition, some patients are represented
across multiple categories (IPH, IVH, EDH/SDH, and SAH).
Distribution is seen in Table 4. CINA R© demonstrated a true
positive rate of 92.9% for IPH, 100% for IVH, 94.3% for
EDH/SDH, and 89.9% for SAH. ICH size distribution is also seen
in Table 4. CINA R© demonstrated a true positive rate of 71.8% for
small (<5mL) ICH, 100% for medium (5–25mL), and 100% for
large (>25mL) ICH.

Scanner Models
Case distribution among the various scanner models are found
in Table 5. Note that there were 41 different scanner models for
the ICH data set with 16, 7, 13, and 5 different models for GE,
Philips, Siemens, and Canon (Formerly Toshiba), respectively.
Sensitivity for GE, Philips, Siemens, and Canon was 91.8, 84.4,
96.7, and 94.1%, respectively. Specificity was 98.1, 97.7, 90.0, and
100%, respectively.

TABLE 5 | Performance metrics and distribution for ICH cases based on different scanning parameters.

Scanning parameter Positive ICH Negative ICH Sensitivity (%) Specificity (%)

Scanner model GE Healthcare (n = 203) 97 106 91.8 98.1

Philips (n = 461) 64 397 84.4 97.7

Siemens (n =90) 60 30 96.7 90

Canon (Formerly Toshiba) (n = 60) 34 26 94.1 100

Detector rows 4 < NDR ≤ 8 (n = 2) 2 0 100 –

8 < NDR ≤ 16 (n = 46) 14 32 78.6 100

16 < NDR ≤ 32 (n = 185) 91 94 94.5 96.8

32 < NDR ≤ 64 (n = 518) 111 407 91 97.5

64 < NDR ≤ 128 (n = 6) 5 1 100 100

128 < NDR ≤ 256 (n = 12) 8 4 87.5 100

256 < NDR ≤ 320 (n = 14) 12 2 100 100

NA (n = 31) 12 19 – –

Slice Thickness ST < 2.5mm (n = 39) 23 16 100 100

2.5 ≤ ST ≤ 5mm (n = 775) 232 543 90.5 97.4

kVp kVp < 120 (n = 8) 6 2 100 100

120 ≤ kVp ≤ 140 (n = 806) 249 557 91.2 97.5

kVp >140 (n = 0) 0 0 – –

mAs mAs < 150 (n = 23) 12 11 100 90.9

150 ≤ mAs ≤ 400 (n = 765) 231 534 90.9 97.8

mAs > 400 (n = 26) 12 14 91.7 92.9

NA, not available.
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FIGURE 2 | Example of a positive LVO identified by CINA®. There is a large vessel occlusion in the distal right MCA-M1 branch on CTA (green arrow).

Scanning Parameters
Case distribution and performance metrics among the various
scanning parameters can be found in Table 5. The number of
detector rows’ sensitivity ranged from 78.6% (8 < NDR ≤ 16,
n = 46) to 100% (4 < NDR ≤ 8, n = 2; 64 < NDR ≤ 128, n =

6; 256 < NDR ≤ 320, n = 14). Specificity ranged from 96.8%
(16 < NDR ≤ 32, n = 185) to 100% (8 < NDR ≤ 16; 64 <

NDR ≤ 128; 128 < NDR ≤ 256, n = 12; 256 < NDR ≤ 320).
Slice thickness sensitivity and specificity was 100% when slice
thickness was<2.5mm. Sensitivity was 90.5% and specificity was
97.4% when slice thickness was 2.5≤ ST≤ 5mm. Sensitivity and
specificity for kilovoltage peaks was 100% when kVp was <120.
Sensitivity was 91.2% and specificity was 97.5% when kVp was

TABLE 6 | Performance metrics for overall cases of CINA-LVO application.

Statistical findings for LVO detection Values [95% CI]

Sensitivity (%) [95% CI] 98.1% [94–99.5%]

Specificity (%) [95% CI] 98.2% [95.1–99.4%]

120 ≤ kVp ≤ 140. Sensitivity for milliampere-seconds was 100%
and specificity was 90.9% whenmAs< 150. Sensitivity was 90.9%
and specificity was 97.8% when 150≤mAs≤ 400. Sensitivity was
91.7% and specificity was 92.9% when mAs was >400.
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TABLE 7 | Performance metrics for LVO cases among different demographic parameters.

Demographic Positive LVO Negative LVO Sensitivity (%) Specificity (%)

Age 18 ≤ Age < 40 (n = 26) 5 21 83.3 100

40 ≤ Age ≤ 70 (n = 176) 65 111 100 97.3

Age > 70 (n = 176) 85 91 97.7 98.9

Sex Male (n = 185) 74 111 98.7 98.2

Female (n = 186) 80 106 97.5 98.1

NA (n = 7) 2 5 – –

NA, not available.

Large Vessel Occlusion
Patient Selection
406 anonymized CT angiography (CTA) cases were assessed; 93
from UCI and 313 from vRAD. 28 of these were excluded for the
following reasons: 11 were not CTAs, 2 had no contrast, 7 did not
have enough contrast, 2 were uninterpretable due to significant
motion artifact, 2 were uninterpretable due to significant metal
artifact, 3 did not have a full field of view, and 1 had an acquisition
issue (z-spacing variability).

Overall Cases
LVO ground-truths (determined by two board-certified
neuroradiologists) were as follows: 156 positive LVO cases and
222 negative LVO cases. There was initial disagreement on 19
cases between the two neuroradiologists. However, a consensus
was eventually reached for each of these cases.

The CINA R© v1.0 algorithm identified 153 true positive LVO
(Figure 2), 4 false positive LVO, 218 true negative LVO, and 3
false negative LVO. Sensitivity was 98.1 % [95% CI, 94.0–99.5%]
and specificity was 98.2% [95% CI, 95.1–99.4%]. Performance
metrics can be found in Table 6.

Positive predictive values (PPV) and negative predictive values
(NPV) were also assessed based on varying prevalence (from
10 to 50%, increments of 5%). PPV ranged from 85.8% (10%
prevalence) to 98.2% (50% prevalence). NPV ranged from 99.8%
(10% prevalence) to 98.1% (50% prevalence).

Demographics
Performance metrics for patient demographics can be found in
Table 7. For age, sensitivity ranged from 83.3% (18 ≤ Age < 40,
n = 26) to 100% (40 ≤ Age ≤ 70, n = 176). Specificity ranged
from 97.3% (40 ≤ Age ≤ 70) to 100% (18 ≤ Age < 40). For sex,
sensitivity was 97.5% for females (n = 186) and 98.7% for males
(n= 185). Specificity was 98.1% for females and 98.2% for males.

Site
The distribution, sensitivity, and specificity of the LVO tool based
on geographic U.S. regions are shown in Table 8. Sensitivity
ranged from 97.4% (Southeast U.S., n= 75) to 100% (Continental
U.S., n = 27). Specificity ranged from 97.3% (Southeast U.S.) to
100% (Continental U.S.).

LVO Subtypes
A subset of 55 patients were randomly selected to evaluate
performance metrics of the tool in evaluating LVO subtypes (4

TABLE 8 | Performance metrics for LVO cases by geographic distributions in the

United States.

Region category Positive LVONegative LVOSensitivity (%)Specificity (%)

Continental (n = 27) 8 19 100 100

Northeast (n = 155) 50 105 98 98.1

Pacific (n = 120) 59 61 98.3 98.4

Southeast (n = 75) 38 37 97.4 97.3

NA (n = 1) 1 0 – –

NA, not available.

Distal ICA, 26 MCA-M1, 20 Proximal MCA-M2, and 3 Distal
MCA-M2). Accuracy was 97.0%, sensitivity 94.3% [95% CI, 83.4–
98.5%], and specificity 97.4% [95% CI, 95.1–98.7%].

Scanner Models
Case distribution among the various scanner models can be
found in Table 9. Sensitivity for Siemens, Canon (formerly
Toshiba), GE Medical Systems and Philips was 96.7, 94.1, 91.8,
and 84.4%, respectively. Specificity for GE Healthcare, Philips,
Siemens, Canon, and NMS was 90.0, 100, 98.1, 97.7, and
100%, respectively.

Scanning Parameters
Case distribution and performance metrics among the various
scanning parameters can be found in Table 9. Sensitivity for the
number of detector rows ranged from 96.2% (32 < NDR ≤ 64,
n = 146) to 100% (8 < NDR ≤ 16, n = 15; 16 < NDR ≤ 32,
n = 63; 256 < NDR ≤ 320, n = 5). Specificity ranged from
90.0% (8 < NDR ≤ 16) to 100% (16 < NDR ≤ 32; 64 < NDR
≤ 128, n = 126; 256 < NDR ≤ 320). Sensitivity and specificity
for slice thickness ≤1.25mm was 98.1 and 98.2%, respectively.
Sensitivity for kilovoltage peak ranged from 98% (100 ≤ kVp ≤

120, n = 359) to 100% (kVp < 100, n = 8; kVp > 120, n = 11).
Specificity ranged from 83.3% (kVp> 120) to 100% (kVp< 100).
Sensitivity for milliampere-seconds ranged from 97.8% (100 ≤

mAs ≤ 400, n =314) to 100% (mAs < 100, n=43; mAs >400, n
= 21). Specificity ranged from 97.7% (100≤mAs≤ 400) to 100%
(mAs < 100; mAs > 400).
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TABLE 9 | Performance metrics for LVO cases based on different scanning parameters.

Scanning parameter Positive LVO Negative LVO Sensitivity (%) Specificity (%)

Scanner model GE healthcare (n = 129) 50 79 91.8 98.1

Philips (n = 137) 62 75 84.4 97.7

Siemens (n = 73) 30 43 96.7 90.0

Canon (Formerly Toshiba) (n = 37) 14 23 94.1 100

NMS (n = 2) 0 2 – 100

Detector rows 4 < NDR ≤ 8 (n = 0) 0 0 – –

8 < NDR ≤ 16 (n = 15) 5 10 100 90

16 < NDR ≤ 32 (n = 63) 27 36 100 100

32 < NDR ≤ 64 (n = 146) 52 94 96.2 96.8

64 < NDR ≤ 128 (n = 126) 65 61 98.5 100

128 < NDR ≤ 256 (n = 0) 0 0 – –

256 < NDR ≤ 320 (n = 5) 1 4 100 100

NA (n=23) 6 17 – –

Slice thickness ST ≤ 1.25mm (n = 378) 156 222 98.1 98.2

kVp kVp < 100 (n = 8) 1 7 100 100

100 ≤ kVp ≤ 120 (n = 359) 150 209 98 98.6

kVp > 120 (n = 11) 5 6 100 83.3

mAs mAs < 100 (n = 43) 11 32 100 100

100 ≤ mAs ≤ 400 (n = 314) 138 176 97.8 97.7

mAs > 400 (n = 21) 7 14 100 100

NA, not available.

DISCUSSION

This retrospective, multicenter study aimed to demonstrate
the generalizability of a commercially available deep-learning
based tool, CINA R© v1.0, in the detection of ICH and LVO
across multiple hospital settings. The algorithm performed
well in the ICH cohort, with an overall accuracy of 95.6%,
sensitivity of 91.4%, and specificity of 97.5%. Of the ICH
subtypes, it achieved the highest sensitivity in the detection
of intraventricular hemorrhage with a true positive rate of
100%, followed by epidural/subdural, intraparenchymal, and
subarachnoid subtypes which all had sensitivity of at least 90%.
When stratified by ICH size, it performed best for medium and
large volumes with sensitivities of 100%, but demonstrated lower
sensitivity in the detection of small volumes with a sensitivity
of 71.8%.

The tool also performed well in the LVO cohort, with an
accuracy of 98.1%, sensitivity of 98.1%, and specificity of 98.2%.
The algorithm showed robust performance in detecting LVO
location in a smaller subset of cases with an accuracy of 97.0%,
sensitivity of 94.3%, and specificity of 97.4%.

These results corroborate previous studies analyzing the
ability for deep-learning tools to detect intracranial emergencies.
For example, Chilamkurthy et al. used a deep-learning algorithm
to detect and classify ICH on large and diverse cohorts in
India (6). Another study obtained an AUC of 0.99 in the
detection of ICH via deep-learning algorithms; however, this
was based off of a single institution using relatively uniform
scanning parameters on two scanner models (9). Similar

studies have been performed with respect to AI detection of
LVO. For example, a commercially available deep learning
software for LVO detection achieved an AUC of 0.86 using
a cohort derived from three tertiary stroke centers (11).
Our work expands on these previous studies by showing
similar robust performance of deep learning tools across
a diverse population regardless of scanner parameters and
geographic distribution.

Ultimately, given the robust nature of deep learning tools
such as CINA R© v1.0, the goal of these tools is to streamline
the radiologists’ workflow by triaging studies to alert physicians
to the most time-sensitive findings, and to act as a second set
of eyes when studies are more ambiguous. Studies evaluating
the effectiveness of such systems have already begun. For
example, when a deep-learning tool was prospectively integrated
to prioritize studies in a radiologist’s workflow based on the
presence of ICH, one study found that time to diagnosis
was significantly reduced (14). Future studies with CINA R©

v1.0 could mirror this type of work and evaluate patient
outcomes as influenced by the integration of deep-learning tools
into a radiologist’s workflow. For example, both inpatient and
outpatient settings could be evaluated with regards to these
neurologic emergencies and how these tools impact efficiency
and ultimately clinical outcomes.

Our software had some limitations that warrant further
investigation. Perhaps the greatest limitation was in the detection
of small bleeds, with false negatives occurring predominantly
in very small ICH (<1.5mL). The false negatives that occurred
in larger bleeds (1.5–5mL), were often located within chronic
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pathology such as old hematomas, areas of gliosis, or extra-
parenchymal structures such as along the falx cerebri. On the
other hand, ICH false positives predominantly occurred in the
setting of significant streak or motion artifact. Similar limitations
were identified in the LVO cohort with respect to imaging artifact
and small size. For example, the LVO false negatives all occurred
in the setting of small occlusions <1.3mm in length (Note that
LVO lengths were only retrospectively measured for the three
false negative cases in order to understand why the application
failed to detect them and were not measured for the remaining
LVO cases). A false positive LVO case also occurred in the
setting of significant streak artifact. Another false positive case
misdiagnosed an area of stenosis as a complete occlusion. Two
false positive cases misidentified the sphenoparietal sinus venous
structure as an area of occlusion, likely secondary to its close
proximity to the MCA. As a result, caution should be used when
relying solely on the software in these settings. However, the
limitations discussed above often occurred in settings that would
likely pose similar challenges to radiologists and result in a similar
distribution of false negatives and positives.

CINA R© v1.0 was only trained to identify acute blood based
off of hyperdense components. Thus, chronic hemorrhages
cannot be identified by the algorithm unless they contain more
acute hyperdense components. However, given that low density
hemorrhages (e.g., chronic SDH) are often not emergencies,
we believe this distinction is actually clinically useful and not
necessarily a limitation in order to prevent the tool from flooding
the radiologist with alerts for non-emergent cases. The tool did
not differentiate between acute and non-acute LVO etiologies
such as chronic ICA occlusion, and these may have been included
as positive LVO cases. Lastly, the tool was not trained to
evaluate occlusions in the anterior cerebral arteries or posterior
circulation. While further work is needed for future tools to
better identify more distal occlusions and subtle hemorrhages,
the primary goal of CINA in its current state is to identify
obvious findings that need to be assessed urgently for emergent
triage and prioritization of the worklist. This is reflected in
a separate standalone effectiveness assessment demonstrating a

mean “time-to-notification” of 21.6 and 34.7 s for ICH and LVO
detection, respectively.

Despite these limitations, CINA R© v1.0 demonstrates robust
generalizability in the detection of ICH and LVO. For example, in
a study examining the geographic distribution of various cohorts
evaluated by deep learning based algorithms in various medical
specialties, 34 states were not represented among 56 studies (13).
Our ICH data spans 44 states and 204U.S. cities, while LVO
data reflects scans from 40 states and 158U.S. cities. To our
knowledge, this is the most heterogeneous population cohort
ever studied in the U.S. using a deep learning tool for ICH
and LVO detection. This study demonstrates the potential for
greater application of deep-learning tools across a wide variety
of clinical settings.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by University of California, Irvine Institutional
Review Board, and Western Institutional Review Board. Written
informed consent for participation was not required for this
study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

JM and SE: manuscript preparation, data gathering,
analysis. YC: manuscript revision, data gathering and
analysis. SQ: data gathering and analysis. PC: data analysis,
software programming. DC: data analysis. JS: manuscript
revision, study design, data gathering and analysis. All
authors contributed to the article and approved the
submitted version.

REFERENCES

1. Fogelholm R, Murros K, Rissanen A, Avikainen, S. Long term

survival after primary intracerebral haemorrhage: a retrospective

population based study. J Neurol Neurosurg Psychiatry. (2005)

76:1534–8. doi: 10.1136/jnnp.2004.055145

2. Malhotra K, Gornbein J, Saver JL. Ischemic strokes due to large-vessel

occlusions contribute disproportionately to stroke-related dependence and

death: a review. Front Neurol. (2017) 8:651. doi: 10.3389/fneur.2017.

00651

3. Arima H, Anderson CS, Wang JG, Huang Y, Heeley E, Neal B,

et al. Lower treatment blood pressure is associated with greatest

reduction in hematoma growth after acute intracerebral hemorrhage.

Hypertension. (2010) 56:852–8. doi: 10.1161/HYPERTENSIONAHA.110.1

54328

4. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel

DW, et al. Time to treatment with endovascular thrombectomy and

outcomes from ischemic stroke: a meta-analysis. JAMA. (2016) 316:1279–

88. doi: 10.1001/jama.2016.13647

5. Ginat DT. Analysis of head CT scans flagged by deep learning

software for acute intracranial hemorrhage. Neuroradiology. (2020)

62:335–40. doi: 10.1007/s00234-019-02330-w

6. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal

VK, et al. Deep learning algorithms for detection of critical findings

in head CT scans: a retrospective study. Lancet. (2018) 392:2388–

96. doi: 10.1016/S0140-6736(18)31645-3

7. Chang PD, Kuoy E, Grinband J, Weinberg BD, Thompson M, Homo R, et al.

Hybrid 3D/2D convolutional neural network for hemorrhage evaluation on

head CT.AJNRAm JNeuroradiol. (2018) 39:1609–16. doi: 10.3174/ajnr.A5742

8. Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, et

al. An explainable deep-learning algorithm for the detection of acute

intracranial haemorrhage from small datasets. Nat Biomed Eng. (2019) 3:173–

82. doi: 10.1038/s41551-018-0324-9

9. KuoW, Häne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute

intracranial hemorrhage on head computed tomography using deep learning.

Proc Natl Acad Sci USA. (2019) 116:22737–45. doi: 10.1073/pnas.1908021116

10. Chatterjee A, Somayaji Nayana R, Kabakis Ismail M. Abstract

WMP16: artificial intelligence detection of cerebrovascular large vessel

Frontiers in Neurology | www.frontiersin.org 9 April 2021 | Volume 12 | Article 65611226

https://doi.org/10.1136/jnnp.2004.055145
https://doi.org/10.3389/fneur.2017.00651
https://doi.org/10.1161/HYPERTENSIONAHA.110.154328
https://doi.org/10.1001/jama.2016.13647
https://doi.org/10.1007/s00234-019-02330-w
https://doi.org/10.1016/S0140-6736(18)31645-3
https://doi.org/10.3174/ajnr.A5742
https://doi.org/10.1038/s41551-018-0324-9
https://doi.org/10.1073/pnas.1908021116
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


McLouth et al. AI ICH/LVO Detection Tool Validation

occlusion - nine month, 650 patient evaluation of the diagnostic

accuracy and performance of the viz.ai LVO algorithm. Stroke. (2018)

50:AWMP16. doi: 10.1161/str.50.suppl_1.WMP16

11. Barreira C, Bouslama M, Lim J, Al-Bayati A, Saleem Y, Devlin T, et al. E-108

Aladin study: automated large artery occlusion detection in stroke imaging

study – a multicenter analysis. J Neurointervent Surg. (2018) 10:A101–

2. doi: 10.1136/neurintsurg-2018-SNIS.184

12. Yahav-Dovrat A, Saban M, Merhav G, Lankri I, Abergel E, Eran A, et

al. Evaluation of artificial intelligence–powered identification of large-vessel

occlusions in a comprehensive stroke center. Am J Neuroradiol. (2020)

42:247–54. doi: 10.3174/ajnr.A6923

13. Kaushal A, Altman R, Langlotz C. Geographic distribution of US

cohorts used to train deep learning algorithms. JAMA. (2020) 324:1212–

3. doi: 10.1001/jama.2020.12067

14. Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, Suever JD, Geise BD,

Patel AA, et al. Advanced machine learning in action: identification

of intracranial hemorrhage on computed tomography scans of the

head with clinical workflow integration. NPJ Digit Med. (2018)

1:9. doi: 10.1038/s41746-017-0015-z

Conflict of Interest: YC and SQ are employees of Avicenna.ai. PC is co-founder

of and owns stock in Avicenna.ai, has past and current research funding from and

is a paid consultant for Canon Medical, has current research funding from GE,

and is a paid consultant and speaker for Siemens. DC has a grant with Avicenna.ai

(money paid to institution), has done consultancy for Canon Medical, has done

expert testimony for Cullins & Grandy, has grants/grants pending with Canon

Medical and Novocure, and has stock/stock options with Avicenna.ai.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 McLouth, Elstrott, Chaibi, Quenet, Chang, Chow and Soun. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neurology | www.frontiersin.org 10 April 2021 | Volume 12 | Article 65611227

https://doi.org/10.1161/str.50.suppl_1.WMP16
https://doi.org/10.1136/neurintsurg-2018-SNIS.184
https://doi.org/10.3174/ajnr.A6923
https://doi.org/10.1001/jama.2020.12067
https://doi.org/10.1038/s41746-017-0015-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


BRIEF RESEARCH REPORT
published: 06 May 2021

doi: 10.3389/fneur.2021.663899

Frontiers in Neurology | www.frontiersin.org 1 May 2021 | Volume 12 | Article 663899

Edited by:

Vida Abedi,

Geisinger Health System,

United States

Reviewed by:

Mohammad Adibuzzaman,

Purdue University, United States

Ghasem Farahmand,

Tehran University of Medical

Sciences, Iran

Durgesh Prasad Chaudhary,

Geisinger Health System,

United States

*Correspondence:

Deepthi Rajashekar

deepthi.rajasheka1@ucalgary.ca

Specialty section:

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

Received: 03 February 2021

Accepted: 09 April 2021

Published: 06 May 2021

Citation:

Rajashekar D, Hill MD, Demchuk AM,

Goyal M, Fiehler J and Forkert ND

(2021) Prediction of Clinical Outcomes

in Acute Ischaemic Stroke Patients: A

Comparative Study.

Front. Neurol. 12:663899.

doi: 10.3389/fneur.2021.663899

Prediction of Clinical Outcomes in
Acute Ischaemic Stroke Patients: A
Comparative Study
Deepthi Rajashekar 1,2,3*, Michael D. Hill 2,3,4,5,6, Andrew M. Demchuk 2,5, Mayank Goyal 2,5,

Jens Fiehler 7 and Nils D. Forkert 2,3,4,8

1 Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada, 2Depertment of Radiology,

Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, 3Hotchkiss Brain Institute, University of Calgary,

Calgary, AB, Canada, 4Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary,

AB, Canada, 5Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada,
6Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada, 7Department of Diagnostic and

Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 8 Alberta Children’s

Hospital Research Institute, University of Calgary, Calgary, AB, Canada

Background: Clinical stroke rehabilitation decision making relies on multi-modal data,

including imaging and other clinical assessments. However, most previously described

methods for predicting long-term stroke outcomes do not make use of the full

multi-modal data available. The aim of this work was to develop and evaluate the benefit

of nested regression models that utilise clinical assessments as well as image-based

biomarkers to model 30-day NIHSS.

Method: 221 subjects were pooled from two prospective trials with follow-up MRI or CT

scans, and NIHSS assessed at baseline, as well as 48-hours and 30 days after symptom

onset. Three prediction models for 30-day NIHSS were developed using a support

vector regression model: one clinical model based on modifiable and non-modifiable

risk factors (MCLINICAL) and two nested regression models that aggregate clinical and

image-based features that differed with respect to the method used for selection of

important brain regions for the modelling task. The first model used the widely accepted

RreliefF (MRELIEF) machine learning method for this purpose, while the second model

employed a lesion-symptom mapping technique (MLSM) often used in neuroscience to

investigate structure-function relationships and identify eloquent regions in the brain.

Results: The two nested models achieved a similar performance while

considerably outperforming the clinical model. However, MRELIEF required fewer

brain regions and achieved a lower mean absolute error than MLSM while being less

computationally expensive.

Conclusion: Aggregating clinical and imaging information leads to considerably

better outcome prediction models. While lesion-symptom mapping is a useful tool to

investigate structure-function relationships of the brain, it does not lead to better outcome

predictions compared to a simple data-driven feature selection approach, which is less

computationally expensive and easier to implement.

Keywords: support vector machine, lesion symptom mapping, NIHSS (National Institue of Health Stroke Scale),

nested regression, ischemic stroke
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INTRODUCTION

The prognosis of clinical and functional outcome in acute
ischemic stroke patients is typically made based on multi-
modal information such as demographic, clinical, laboratory, and
radiological data. Theoretically, machine learning models can
identify patterns in high-dimensional data that can be used to
make data-driven and reproducible stroke outcome predictions
in new patients and support patient management. However,
despite the ability to integrate multimodal information, recent
machine learning models have mostly utilized clinical data or
image-based biomarkers alone (1) to predict stroke outcome. So
far, the benefit of using true multi-modal data for stroke outcome
prediction has not been investigated comprehensively. One of
the few multi-modal predictive models of stroke outcome is
described by Brugnara et al. (2). However, clinical assessments at
various timepoints are used as input features without addressing
the issue of feature collinearity. Furthermore, previous studies
often predict the stroke outcome in a binary classification scheme
(good vs. bad), which ignores the incremental, yet relevant non-
linear differences in stroke severity scores.

Integration of image-based biomarkers for stroke outcome
prediction is more complex than using other clinical assessments
(in most cases), but has the potential to add considerable
predictive power. A key aspect to consider within this context is
the selection of regions-of-interest (ROIs) in the brain that are
critically associated with the clinical deficit of interest since non-
informative and redundant feature can downgrade the prediction
accuracy considerably (3). Lesion-symptom mapping (LSM) (4)
is able to identify brain regions that are important for a clinical
outcome score of interest but has been used rarely for selection
of brain regions for stroke outcome prediction (5). The more
common ROI selection approach is to use classical feature
selection methods during the training process. However, these
two general approaches have never been compared to date with
respect to stroke outcome prediction.

The aim of this work is to compare different setups of nested
machine learning models using clinical information only and a
combination of clinical and radiological features selected using
lesion-symptommapping and classical feature selection methods
to predict the 30-days NIH stroke scale (NIHSS).

METHODS

Data
The datasets used in this study were pooled from the ESCAPE
(6) and iKNOW (7) trials. Patients with remote hemorrhages,
bilateral lesions, and severe white matter hyperintensities were
excluded from this secondary analysis, and only patients with
a follow-up MRI or CT scan (18-hours to one week from
baseline) with complete clinical information (obtained after
stroke and upto 6-hours post randomization) were included,
leading to a final sample of 221 patients. The clinical outcome
of interest in this study is the NIHSS assessed at 30 days
after stroke symptom onset. The patient characteristics are
summarized in Table 1. The measurable clinical and laboratory
features used in the nested regression model include age, sex,

TABLE 1 | Characteristics of patients pooled (N = 221) from the ESCAPE6 and

iKNOW7 datasets.

Variable ESCAPE

(N = 143)

iKNOW

(N = 78)

Dataset

(N = 221)

Median Age (IQR) 68 (19.5) 70.5 (15) 69 (19)

Sex—Females 75 31 106

Treatment—Alteplase 66 46 112

Median Onset to

randomization time (IQR)

160min (149) 126.5min

(118.05)

152min (137)

Median Baseline NIHSS (IQR) 16 (7) 12 (10) 15 (8)

modifiable and non-modifiable risk factors suggested in the
evidence-based review of stroke rehabilitation (8). These include
blood pressure, glucose, hematocrit, hypertension, diabetes,
smoking status, hyperlipidemia, and atrial fibrillation (see
Supplementary Table 1). Additionally, the baseline NIHSS score
(pre-treatment) was also included as part of the clinical data to
model stroke outcome (5, 9).

All lesions were manually delineated by an expert observer
using the ITKSNAP tool. Each image sequence was skull stripped
and non-linearly registered to the common FLAIR-NCCT (10)
atlas of the elderly using the ANTs toolkit. The grey matter (GM)
and white matter (WM) parcellations from the probabilistic BNA
atlas (11) and the JHU atlas (12), respectively, were fused and
transformed to the FLAIR-NCCT atlas. All image-based features
were computed in the FLAIR-NCCT atlas space.

Model Design
Nested regression models were developed to predict the 30-
days NIHSS outcome based on clinical data and image-based
biomarkers. Here, the first model predicts the 48-hours NIHSS
using imaging features alone whereas the result of this model
is then used together with clinical features to predict the 30-
days NIHSS.

NIHSS30−days ∼ (FeaturesClinical

+
(

NIHSS48−hours ∼ FeaturesImaging

)

)

For bothmodels, epsilon-regression was used implemented using
in a radial kernel support vector regression (SVR) framework.
Using follow-up imaging acquired between 18-hours and 5-
days from symptom onset to identify regions-of-interest (ROIs)
that maximally correlate with a long-term assessment might
introduce confounding effects and bias the results. Therefore,
the ROIs included in the predictive models were identified with
respect to the 48-hours NIHSS to ensure that the identified
structure-function relationships are related to the primary
stroke-induced deficits alone. This also ensures that the identified
ROIs are not selected because of post-secondary comorbidities
(not directly related to the primary stroke) developed either in-
hospital or post-discharge. The two approaches for ROI selection
are: (i) the LSM method using Brunner-Munzel test (13) and
(ii) a widely accepted machine learning-based feature selection
method that accounts for collinearity known as RreliefF (14).
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The LSMmethod was implemented using the LESYMAP package
(15) using the default parameters employing a p-value threshold
at 0.05, discarding voxels not injured in at least 10% of the
sample data, and using false discovery rate (FDR, the rate of
Type 1 errors) to correct for multiple comparisons. For ease
of comparison, brain regions that were not affected in at least
10% of the sample data were also removed prior to the RreliefF
feature selection. The RreliefF feature selector was also employed
using default parameters from the Fselector package (16) with the
sample size of 10 and a neighbor count set to five. The result
of the LSM is a statistical map of clusters of significant voxels
that survive the FDR correction with non-zero voxel weights.
Regions in the BNA-JHU parcellation that were assigned non-
zero voxel weights by the LSM analysis were included as ROIs
in the proposed regression analyses.

For each brain region identified by LSM as being important
in the training set, the relative lesion overlap was computed and
used as image-based features. Moreover, in case of WM tracts,
the cross-sectional width of the tract spared after the lesion was
also calculated and used as additional features (17). Therefore,
the final set of image-derived input features used in this study
include GM overlap, WM overlap, and WM tract integrity for all
the selected ROIs.

For RreliefF feature selection, the lesion overlap (GM and
WM) and tract integrity (only WM) was calculated for each
atlas region and used for feature selection based on the
training set.

Model Evaluation
For the sake of being able to compare brain regions selected
for stroke outcome prediction qualitatively between the two
models, the data was randomly split into completely independent
training and test sets. This resulted in only one set of
features selected for each method, which greatly enhances
the interpretability and comparison of the models. Therefore,
the entire dataset was partitioned into two mutually exclusive
subsets for model training (80%) and testing (20%) using
a stratified split that preserves the representation of stroke
severity across both groups. Three models were evaluated in
this framework: (i) un-nested SVR model with clinical features
alone (MCLINICAL) selected using RreliefF; (ii) nested model
using clinical and imaging data with RreliefF as feature selector
(MRELIEF); and (iii) nested model using clinical and image data
with LSM as feature selector (MLSM). The resulting models
were compared for predictive performance with respect to
the model’s mean absolute error (MAE) and coefficient of
determination (R2).

RESULTS

The overlap of all individual patient lesions in the atlas space
shows that maximum incidence of stroke in this dataset occurs
in the brain regions supplied by the middle cerebral artery
(see Supplementary Figure 1). The median recovery profile of
patients in this database is shown in Supplementary Figure 2.

The model using clinical features only resulted in a rather
poor predictive performance (R2 = 0.13). The optimal

TABLE 2 | Model performances for each setup.

Model MAE RMSE R2 p-value

MCLINICAL 4.33 5.53 0.13 0.0184

MRELIEF 3.55 4.34 0.43 1.89e-06

MLSM 3.50 4.54 0.40 6.22e-06

MAE, mean absolute error; RMSE, Root mean squared error; R2, coefficient of

determination; MCLINICAL, model with clinical features alone; MRELIEF , ROIs selected by

RreliefF and nested with clinical features; MLSM, ROIs selected using lesion-symptom

mapping and nested with clinical features.

FIGURE 1 | Selected regions of interest (ROIs) for the RreliefF-based (red) and

LSM-based (blue) feature selection. The LSM-based ROIs are hemispherically

asymmetrical and include regions outside of the subcortical nuclei.

prediction results were achieved using age, baseline NIHSS,
blood glucose and hematocrit levels, sex, presence of atrial
fibrillation, hypertension, and hyperlipidemia, treatment
decision (endovascular thrombectomy or tissue plasminogen
activator), symptom onset to admission time, and blood pressure
as features. However, the iterative feature selection procedure
using RreliefF did not select presence of diabetes and smoking
status, which are usually considered important predictors. Only
the clinical features selected in this model were included in the
two nested models to enable a direct comparison.

Compared to the simple predictive model using clinical
features only, the two nested (MRELIEF and MLSM) models
performed better and resulted in comparable R2 and MAEs
(see Table 2). No statistically significant MAE differences (p
> 0.05) were found comparing the two nested models.
However, MRELIEF used only 44 ROIs in comparison to the
106 ROIs selected in MLSM (see Figure 1). The plots of the
predicted and ground truth scores for both models are shown
in Supplementary Figure 3.
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DISCUSSION

This study demonstrates that conventional machine learning
feature selectionmethods (MRELIEF) can identify important brain
regions for stroke outcome prediction as well as the conventional
lesion-symptom mapping methods (MLSM).

The advantage of theMRELIEF model over theMLSM model are
two-fold. First, the MRELIEF model is simpler since it uses <50%
of features compared to the MLSM model and results in similar
predictive performance. Second, the MRELIEF setup does not
require extensive LSM computations to derive structure-function
relationships and identify eloquent brain regions. Specifically,
despite using a fewer number of regions, the ROIs chosen by
the MRELIEF model are largely in the left hemisphere and include
regions that correspond to the dominance of left-hemispheric
functions assessed by NIHSS.

Importantly, using LSM for ROI selection has additional
limitations that the RreliefF feature selection overcomes. First,
LSM analyses suffer from low statistical power due to the
corrections for multiple comparisons and do not account for
violating assumptions of normality in the outcome score. Second,
the LSM analysis results in individual voxel weights, which are
not really needed to compute region-level inferences of critical
brain regions that are associated with a deficit. While LSM is
a powerful tool to investigate the neural correlates of stroke
induced clinical deficit, its usefulness to select ROIs for stroke
outcome prediction tasks seems rather limited. For these reasons,
and by applying the Occam’s razor principle in model selection,
traditional feature selection methods seem to be better suited for
future research in stroke outcome prediction.

The proposed framework has a design advantage in
comparison to the existing prognostic models of stroke outcome.
A recent review on predictive models of stroke outcome (18)
reports that: (i) the target outcome of the predictive model
is usually a categorized version of functional outcome1; (ii)
the variables used to model this score include prognostic
parameters2, stroke risk factors, and baseline stroke severity
measured by the NIHSS scale. An obvious limitation is that
classification models predicting binarized functional outcome
likely ignore the gradation of stroke severity, which is relevant
information for stroke prognostication. Furthermore, the
functional outcomes, prognostic parameters, and the baseline
severity measures may be strongly correlated resulting in inflated
classification accuracies. In the proposed work, both of these
limitations (loss of relevant information and collinearity) are
addressed by employing the nested regression model. For
instance, since the 48-hours NIHSS is highly correlated with the
30-day NIHSS, it might bias the regression model. Therefore,
having a nested model that utilizes the short-term outcome to
derive image-based ROIs that in turn predict the long-term
outcomes seems to be a promising way to reduce the affects
of collinearity. Furthermore, it is important to note that the
results of different studies describing predictive models are

1Examples include: the modified Ranking Scale (mRS), NIHSS, Barthel Index, etc.
2Examples include: Preadmission Comorbidities, Level of Consciousness, Age,

and Neurological Deficit (PLAN); Stroke Prognostication Using Age and National

Institutes of Health Stroke Scale (SPAN); Totaled Health Risks in Vascular Events

(THRIVE), etc.

not comparable because of different sample sizes, different
evaluation methods, different assessment time points, and
different imaging time points. For this reason, the predictive
model using clinical data only was included in this study as a
means of baseline comparison.

One of the limitations of the proposed work is that the
findings are population-specific and are likely to change with
the stroke cohort used (type of stroke and sample size), choice
of parcellation atlas, LSM technique, and/or training scheme
employed. This study is also exploratory in the sense that,
subject to availability, the clinical descriptors included are
a subset of all potential stroke risk factors reported in the
literature. The power calculations for using LSM in predictive
analysis has not been explored in this study. Additionally, the
burden of preprocessing each patient scan for registration, lesion
segmentation, and feature computation is extensive. State-of-the-
art deep learning methods have the potential to use 3D MRI
or CT scans (without lesion definitions) and do not demand
handcrafted image-based features and might not even need
manual lesion segmentations. Furthermore, the results of this
study can be considered a relevant first step toward building
a computer-aided prognosis support tool using explainable
machine learning methods. However, the predictive accuracy of
the models generated in this study need to be further improved
using additional datasets and should be evaluated prospectively
using a completely independent dataset.

An important recommendation for future work is to model
stroke outcomes using ordinal regression models, which can
account for the relative ordering between two values in
the NIHSS scale. However, ordinal regression models are
more complex and typically require the definition of interval
thresholds, which can either be derived from the training data
or based on domain knowledge. That said, the results described
in this paper will generally hold true for ordinal regression
models as well. Confirmatory research in this direction may
also benefit from investigating the utility of convolutional neural
networks without requiring lesion segmentation to predict long-
term stroke outcome as an ordinal regression problem.

CONCLUSIONS

In summary, this study shows that combining clinical and
imaging data leads to better stroke outcome predictions
compared to using clinical data alone. While lesion-symptom
mapping is a powerful neuroscience tool to investigate structure-
function relationships in stroke patients, these methods do not
appear to have an additional benefit for selecting brain regions
important for stroke outcome prediction compared to rather
simple and data-driven feature selection methods.
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Objective: Hypoperfusion is an important factor determining the prognosis of ischemic

stroke patients. The present study aimed to investigate possible predictors of

hypoperfusion on MRI of ischemic stroke patients within 7 days of stroke onset.

Methods: Ischemic stroke patients, admitted to the comprehensive Stroke Center

of Shanghai Fourth People’s Hospital affiliated to Tongji University within 7 days of

onset between January 2016 and June 2017, were recruited to the present study.

Magnetic resonance imaging (MRI), including both diffusion-weighted imaging (DWI) and

perfusion-weighted imaging (PWI), was performed within 7 days of the symptom onset.

Time to maximum of the residue function (Tmax) maps were automatically evaluated using

the RAPID software. The volume of hypoperfusion was measured outside the infarct area

based on ADC < 620 × 10−6 mm2/s. The 90 d mRS score was assessed through

either clinic visits or telephone calls. Multivariate step-wise analysis was used to assess

the correlation between MR findings and clinical variables, including the demographic

information, cardio-metabolic characteristics, and functional outcomes.

Results: Among 635 patients admitted due to acute ischemic stroke within 7 days of

onset, 241 met the inclusion criteria. Hypoperfusion volume of 38ml was the best cut-off

value for predicting poor prognosis of patients with cerebral infarction (90 d-mRS score

≥ 2). The incidences of MR perfusion Tmax > 4–6 s maps with a volume of 0–38mL

or >38mL were 51.9% (125/241) and 48.1% (116/241), respectively. Prior stroke and

vascular stenosis (≥70%) were associated withMR hypoperfusion. Multivariate step-wise

analysis showed that prior stroke and vascular stenosis (≥70%) were risk factors of Tmax

> 4–6 s maps, and the odds ratios (OR) were 3.418 (adjusted OR 95% CI: 1.537–7.600),

and 2.265 (adjusted OR, 95% CI: 1.199–4.278), respectively.

Conclusion: Our results suggest that prior stroke and vascular stenosis (≥70%) are

strong predictors of hypoperfusion in patients with acute ischemic stroke within 7 days

of stroke onset.

Keywords: ischemic stroke, magnetic resonance imaging, time to maximum of the residue function, risk factors,

correlation analysis
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INTRODUCTION

Intravenous thrombolysis and endovascular therapy are effective
methods for the treatment of acute ischemic stroke (1, 2).
However, due to time window restrictions, only a small number
of people receive timely treatment, and over 70% of stroke
patients still have disabilities (modified Rankin classification,
mRS2-6) due to the presence of hypoperfused tissues (3, 4).
Quantitative assessment of hemodynamic indices of acute stroke
patients will facilitate the discovery of potential predictors of
hypoperfusion, which will reveal new targets for early and
effective intervention. Currently, a number of factors have been
reported to influence functional outcomes of acute ischemic
stroke patients, including blood glucose, blood pressure, history
of atrial fibrillation, baseline NIHSS, volume of core infarction,
blood perfusion, and vascular lesions (5–12). Previous studies
have shown that abnormal brain perfusion is closely related to
stroke recurrence and functional outcome, but there are few
studies on risk factors impacting brain perfusion.

Tmax is a widely used parameter of magnetic resonance
perfusion for patients with acute ischemic stroke and has
been used in clinical trials (13, 14). Different Tmax thresholds
reflect different degrees of hypoperfused volumes, with a
high threshold reflecting a low degree of hypoperfusion (15).
Changes of Tmax may reflect the microvascular integrity of
collaterals and the perfusion status of brain tissue (16). In
view of the fact that perfusion imaging is closely related to
the status of collateral circulation, the cerebral perfusion
parameters on MRI may be a good biomarker of collateral
circulation. Therefore, it is reasonable to use Tmax to
evaluate the status of tissue hypoperfusion and facilitate
decision-making on the choice of treatments for patients with
AIS (17–19).

It is well-known that the penumbra is the area surrounding
the ischemic core, which has a high risk of progressing to infarct.
Tmax > 6 s can accurately define the penumbra (20). Albers et al.
screened patients with salvageable penumbra for endovascular
thrombectomy using Tmax > 6 s with the assistance of the RAPID
software (17). Time to peak contrast concentration (TTP) or time
at which the deconvolved residue function reaches its maximum
value (Tmax) is generally used to evaluate hypoperfusion status.
Compared with TTP, Tmax has the advantage of reducing
dependence on bolus shape and cardiac output (21). Therefore,
Tmax seems to be more appropriate in evaluating tissue lesions
with hypoperfusion. It has been reported that Tmax > 6 s or
Tmax > 4 s is more accurate than Tmax > 2 s in predicting the
salvageable penumbra or stroke progression. Difference between
the volumes of Tmax > 4 s and Tmax > 6 s seems to be the
best biomarker in identifying severe hypoperfusion (22). Studies
have shown benefit from prolonged reperfusion therapy with
increased likelihood of good prognosis through evaluating the
ischemic penumbra with the perfusion parameter Tmax (17,
19). However, few studies have reported risk factors of low
perfusion in Chinese populations. Therefore, the present study
aimed to quantitatively evaluate the hypoperfusion status of AIS
patients and to explore the potential predictors of hypoperfusion
on MRI.

MATERIALS AND METHODS

Subjects
Acute ischemic stroke patients, admitted to the comprehensive
Stroke Center of Shanghai Fourth People’s Hospital affiliated to
Tongji University within 7 days of onset between January 2016
and June 2017, were recruited to the present study.

The inclusion criteria were: (a) Patients who were admitted
within 7 days of onset and evaluated by two stroke neurologists
(23, 24); (b) MR images including both DWI and PWI were
available at the time of hospitalization; (c) Tmax maps were
assessed using the RAPID software (iSchemaView USA, Version
4.9) (25) independently.

The exclusion criteria: patients did not have their perfusion
status assessed using DWI and PWI within 7 days of stroke onset.

Demographic data, clinical variables, risk factors, neurologic
deficits, time between MRI scan and stroke onset were
documented for each patient. The 90 d mRS was evaluated by
experienced neurologists.

MRI Parameters
MRI scans were collected using a 1.5-T Avanto scanner (Siemens,
Erlangen, Germany). The imaging protocol for this study
included diffusion-weighted imaging (DWI), perfusion weighted
imaging (PWI), apparent diffusion coefficient (ADC), fluid-
attenuated inversion recovery (FLAIR), and magnetic resonance
angiography (MRA). Imaging parameters were listed below,
DWI: 19 slices, 192 × 192 matrices; slice thickness = 5.5mm;
TR/TE, 3,600/102ms; field of view = 230 mm2, b = 0 and
1,000 s/mm2; EPI factor = 192; bandwidth = 964 Hz/pixel.
FLAIR: 18 slices, 256 × 190 matrices; slice thickness =

5.5mm; TR/TE, 4,000/92ms; field of view = 230 mm2; TI
= 1,532.6ms; bandwidth = 190 Hz/Px; flip angle = 150◦.
Dynamic susceptibility contrast PWI (DSC-PWI): 19 slices, 128
× 128 matrices; slice thickness = 5mm; TR/TE, 1,590/32ms;
measurements = 50; field of view = 230 mm2; band width =

1,346 Hz/pixel; flip angle = 90◦. A Gd-DTPA contrast agent
(gadopentetate dimeglumine injection; Shanghai Pharmaceutical
Corporation, Shanghai, China) was injected intravenously (0.2
mmol/kg body weight) at a rate of 4 mL/s after a bolus with
30ml normal saline. Three-dimensional time-of-flight MRA of
the internal carotid artery (ICA) and intracranial circulation: 241
× 256 matrices, slice thickness = 0.7mm; TR/TE, 25/7ms; field
of view= 180 mm2; Bandwidth= 100 Hz/PX; flip angle= 25◦.

Post-processing
Estimates of hypoperfusion on PWI were calculated using the
RAPID software (iSchemaView USA, Version 4.9), which is an
automated imaging post-processing system. ADC < 620 × 10−6

mm2/s was adopted to define the infarct core (26). Volumes
of Tmax > 4 s and >6 s were used to determine hypoperfusion
in ischemic stroke patients. The volume of hypoperfusion was
measured outside the infarct area, based on ADC < 620 ×

10−6 mm2/s. Measurement of vascular stenosis was performed
on Magnetic Resonance Angiography by two independent
radiologists using the North American Symptomatic Carotid
Endarterectomy Trial (NASCET) method (27). The extent of
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FIGURE 1 | Flowchart of patient recruitment.

reduction of the internal arterial diameter was then graded. If the
measurements of two radiologists were inconsistent, repetition
will be required before reaching a conclusion.

Clinical Outcomes
The primary outcome was assessed using the 90-day modified
Rankin Scale (mRS). mRS ranges from 0 (asymptomatic) to 6
(death). Excellent functional outcomes are defined by a 90 d-mRS
score ≤ 1, and poor functional outcomes are defined by a 90 d-
mRS score≥ 2. Threemonths after stroke onset, mRS scores were
collected through clinic visits or telephone calls.

Ethics
Ethical approval for this study was obtained from the Human
Research Ethics Committee of Shanghai Fourth People’s Hospital
Affiliated to Tongji University School of Medicine. Written
informed consent was obtained from all subjects.

Statistical Analysis
Data analysis was performed using IBM SPSS (version 22.0)
for Windows (SPSS Inc., Chicago, IL, USA). Continuous
parameters were presented as mean± standard deviation (SD) or
median with interquartile range (IQR); categorical variables were
summarized as independent proportions. Baseline information
of patients with or without MRI perfusion abnormalities
was compared using either t-test or Mann-Whitney U-test
for continuous variables and χ

2 or Fisher’s exact test for
categorical variables. In this study, the cutoff value was 38ml for
hypoperfusion. Logistic regression analysis was used to identify
independent predictors of Tmax> 4–6 s maps. Multivariate

step-wise regression modeling was used to correlate Tmax > 4–
6 s maps with potential risk factors with their P-values < 0.01.
All correlation data were presented as odds ratios (OR) with
their corresponding 95% confidence intervals (CI) and P-values.
Statistical significance was considered when P < 0.05.

RESULTS

In the present study, 635 patients with acute ischemic stroke were
admitted within 7 days of onset, but only 241 (73 women, 168
men; median age: 67 years) had technically adequate DWI and
PWI scans. Among those 394 patients who were excluded, 383
of them did not have MRI, 3 could not provide the information
of hematological data, 10 had their MRI more than 7 days after
stroke onset, 1 had poor MRI image quality. Among these 241
patients, 107 patients had excellent functional outcomes and 134
poor functional outcomes. Among these patients, 125 had Tmax

> 4–6 s volume in the range of 0–38ml and the other 116 had a
volume > 38ml (Figure 1, Table 1).

Baseline Characteristics
Baseline characteristics of patients included in the present
study were shown in Tables 1, 2. The median (IQR) age
of these patients was 67 (61–79) years and their median
Admission NIHSS score was 3 (IQR: 1–9). Perfusion status was
evaluated after a median (IQR) delay of 3 (1–6) days from
the symptom onset. The median ADC volume was 0 (IQR:
0–7.5) ml. The median fasting blood glucose (FBG) was 6.0
(IQR: 5.2–8.2) mmol/L. A history of hypertension was present
in 68.5% (165/241) of patients, diabetes mellitus in 34.4%
(83/241), atrial fibrillation in 14.5% (35/241), prior stroke in17%

Frontiers in Neurology | www.frontiersin.org 3 May 2021 | Volume 12 | Article 66836035

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Xiao et al. Risk Factors of Hypoperfusion

TABLE 1 | Comparison of demographic and clinical characteristics among ischemic stroke patients within 7 days of onset based on Tmax >4 s −6 s volume 38ml.

Characteristics Total (n = 241) Tmax > 4–6 s

volume, (0–38ml)

(n = 125)

Tmax > 4–6 s

volume, (>38ml)

(n = 116)

P-value

Age, y, median (IQR) 67 (61–79) 66 (59–75) 70 (62–80) 0.009

Male, n (%) 168 (69.7%) 86 (68.8%) 82 (70.7%) 0.75

Medical history, n (%)

Hypertension 165 (68.5%) 84 (67.2%) 81 (69.8%) 0.661

Diabetes mellitus 83 (34.4%) 44 (35.2%) 39 (33.6%) 0.797

Atrial fibrillation 35 (14.5%) 9 (7.2%) 26 (22.4%) 0.001

Smoking 80 (33.2%) 39 (31.2%) 41 (35.3%) 0.495

Previous ischemic stroke 41 (17%) 12 (9.6%) 29 (25.0%) 0.001

Cardo-metabolic

FBG, mmol/L, median (IQR) 6.0 (5.2–8.2) 5.9 (5.2–7.8) 6.1 (5.4–8.3) 0.310

TC, mmol/L, median (IQR) 3.72 (1.89–4.89) 3.73 (1.95–5.02) 3.68 (1.80–4.62) 0.385

LDL, mmol/L, median (IQR) 2.63(1.98–3.34) 2.65(2.0–3.40) 2.62(1.94–3.31) 0.466

TG, mmol/L, median (IQR) 2.32 (1.3–4.22) 2.35 (1.37–4.23) 2.24 (1.27–4.13) 0.408

HDL, mmol/L, median (IQR) 1.12 (0.88–1.34) 1.14 (0.91–1.33) 1.07 (0.85–1.39) 0.802

Hcy, umol/L, median (IQR) 13.6 (11.3–16.6) 12.4(10.9–15.85) 14.25 (12.0–17.0) 0.011

SBP at baseline, mm Hg, median (IQR) 140 (130–160) 150 (135–160) 140 (130–153) 0.093

DBP at baseline, mm Hg, median (IQR) 80 (78–90) 80 (79–90) 80 (77–89) 0.404

Admission NIHSS score, median (IQR) 3 (1–9) 3 (1–6) 6 (2–10) <0.001

Treatment 0.782

Alteplase treatment 36 (14.9%) 19 (15.2%) 17 (14.7%)

Bridge-EVT 2 (0.8%) 2 (1.6%) 0

Direct-EVT 12 (5.0%) 1 (0.8%) 11 (9.5%)

Standard medical therapy 191 (79.3%) 103 (82.4%) 88 (75.9%)

Symptom onset to the MR perfusion, d, median (IQR) 3 (1–6) 4 (2–6) 3 (1–6) 0.006

Vascular stenosis (≥70%), n (%) 154 (63.9%) 62 (49.6%) 92 (79.3%) <0.001

CD4/CD8 (≥1.7), n (%) 99 (41.1%) 58 (46.4%) 41 (35.3%) 0.081

Secondary bleeding, n (%) 12 (9%) 6 (11.5%) 6 (7.4%) 0.616

7 (2.9%) 2 (1.6%) 5 (4.3%) 0.266

Clinical outcomes (90 d mRS) 2 (0–3) 1 (0–3) 2 (1–4) <0.001

Excellent functional outcome (0–1) 107 (44.4%) 73 (58.4%) 34 (29.3%)

Poor functional outcome (2–6) 134 (55.6%) 52 (41.6%) 82 (70.7%)

ADC < 620 × 10−6 mm2/s volume, ml, median (IQR) 0 (0–7.5) 0 (0–0) 0 (0–24.5) <0.001

Measurement data conformed to normal distribution variables expressed as mean ± standard deviation; non-normal distribution variables were expressed as median (25–75%). The

categorical variables are expressed in terms of frequency (percentage).

IQR, interquartile range; INR, International standardization ratio; LDL, Low-density lipoprotein; HDL, Low-density lipoprotein; NIHSS, National Institutes of Health Stroke Scale; SBP,

systolic blood pressure; DBP, diastolic blood pressure; TC, total cholestrol; Hcy, homocysteine; FBG, fasting blood-glucose; IVT, intravenous thrombolysis; Direct-EVT, direct endovascular

thrombectomy; Bridge-EVT, bridge endovascular thrombectomy; mRS, modified Rankin Scale; Tmax > 4 s, Time to maximum of the residue function > 4 s; Tmax > 6 s, Time to maximum

of the residue function > 6 s; ADC, apparent diffusion coefficient; Tmax > 4–6 s volume, Volume difference between Tmax > 4 s and Tmax > 6 s.

Significant difference at α < 0.05.

(41/241) and smoking in 33.2% (80/241). The patients were
divided into four groups: intravenous thrombolysis (36/241),
Bridge endovascular thrombectomy (2/241), Direct endovascular
thrombectomy (12/241), and standard medical therapy alone
(191/241) (Table 1).

Comparison of Demographic and Clinical
Characteristics Among Ischemic Stroke
Patients Within 7 Days of Onset Based on
Tmax > 4–6 s Volume 38 ml
Demographic characteristics, possible risk factors associated with
the Tmax > 4–6 s map, and comparisons of these variables
between groups with volume = 0–38ml and >38ml were

presented in Table 1. Hypoperfusion volume of 38ml was the
best cut-off value for predicting poor prognosis of patients with
cerebral infarction (90 d-mRS score ≥ 2) as shown by the ROC
(AUC: 0.67, 95% CI: 0.603–0.738, sensitivity: 0.612, specificity
0.673, p < 0.001) (Figures 2, 3). In univariate analyses, factors
associated with hypoperfusion were: age [66 (59–75) vs. 70 (62–
80), p = 0.009], atrial fibrillation (7.2 vs. 22.4%, p = 0.001),
previous ischemic stroke (9.6 vs. 25.0%, p= 0.001), homocysteine
[12.4 (10.9–15.85) vs. 14.25 (12.0–17.0), p = 0.011], admission
NIHSS score [3 (1–6) vs. 6 (2–10), p < 0.001], symptom onset
to the MR perfusion [4 (2–6) vs. 3 (1–6), p = 0.006], vascular
stenosis (≥70%) (49.6 vs. 79.3%, p < 0.001), ADC volume
[0 (0–0) vs. 0 (0–24.5), p < 0.001]. Other variables were not
statistically different (Table 1).
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TABLE 2 | Imaging characteristics of ischemic stroke patients with excellent and poor functional outcomes.

Characteristics Total (n = 241) Excellent functional

outcome group (90 d

mRS 0–1) (n = 107)

Poor functional outcome

group (90 d mRS 2–6)

(n = 134)

P-value

Vascular stenosis (≥70%), n

(%)

154 (63.9%) 63 (58.9%) 91 (67.9%) 0.147

ADC < 620 × 10−6 mm2/s

volume, ml, median (IQR)

0 (0–8) 0 (0–0) 0 (0–12.3) <0.001

Tmax > 4 s volume, ml,

median(IQR)

35 (8–105) 19 (5–63) 71 (14.0–166.3) <0.001

Tmax > 6 s volume, ml,

median(IQR)

0 (0–13) 0 (0–3) 0 (0–32.5) <0.001

Tmax > 4–6 s volume, ml,

median(IQR)

35 (8–88) 18 (4–57) 48 (14–113) <0.001

Tmax > 4 s –ADC volume, ml,

median (IQR)

34 (6–95) 18 (0–63) 54 (10.8–146.0) <0.001

Tmax > 6 s –ADC volume, ml,

median (IQR)

0 (0–3.5) 0 (0–0) 0 (0–13.5) 0.004

Measurement data conformed to normal distribution variables expressed as mean ± standard deviation; non-normal distribution variables were expressed as median (25–75%). The

categorical variables are expressed in terms of frequency (percentage).

IQR, interquartile range; mRS, modified Rankin Scale; ADC, apparent diffusion coefficient; Tmax > 4 s, Time to maximum of the residue function > 4 s; Tmax > 6 s, Time to maximum of

the residue function > 6 s; Tmax > 4–6 s volume, Volume difference between Tmax > 4 s and Tmax > 6 s; Tmax > 4 s–ADC volume, Volume difference between Tmax > 4 s and ADC;

Tmax > 6 s–ADC volume, Volume difference between Tmax > 6 s and ADC.

Significant difference at α < 0.05.

FIGURE 2 | Diffusion and perfusion abnormalities of a patient treated with intravenous tPA. A 63-year-old male who presented with dysarthria and weakness in the

right arm, hypertension for more than 3 years, vascular stenosis (≥70%), no previous ischemic stroke, MRI scan was completed 6 days after stroke onset. DWI,

diffusion-weighted imaging; PWI, perfusion-weighted imaging; ADC, apparent diffusion coefficient; Tmax , Time to maximum of the residue function. Tmax color scale:

4 s < Tmax≤ 6 s (blue); 6 s < Tmax≤ 8 s (green); 8 s < Tmax≤ 10 s (yellow); 10 s < Tmax (red). (A) DWI, lesion volume was 22ml. (B) ADC, lesion volume was 9ml. (C)

PWI, lesion volumes according to Tmax delay were as follows: Tmax > 4 s, 132ml; Tmax > 4 s–ADC volume, 123ml; Tmax > 6 s, 22ml; Tmax > 6 s–ADC volume, 13ml;

Tmax > 8 s, 4ml; and Tmax > 10 s, 3ml.

Excellent functional outcomes (mRS 0–1) were present in
44.4% (107/241) of patients, among whom the median (IQR)
Tmax > 4–6 s volume, Tmax > 6 s volume, and Tmax > 4 s
volume were 18 (4–57) ml, 0 (0–3) ml, and 19 (5–63) ml,
respectively. MRA scans with adequate quality of both the carotid
and intracranial vessels were available in the present study.
MRA showed that vascular stenosis (>70%) was detected in 154
(63.9%) patients (Table 2).

Prediction of MRI Perfusion Abnormality
In the present study, we divided patients with hypoperfusion into
two groups based on the volume of Tmax > 4–6 s: Tmax > 4–
6 s = 0–38ml and Tmax > 4–6 s > 38ml. The incidences of MR

perfusionTmax > 4–6 s= 0–38ml andTmax > 4–6 s> 38ml were
51.9% (125/241) and 48.1% (116/241), respectively (Table 1).

In the univariate binary logistic regression analysis, age (P =

0.010, OR = 1.031, 95% CI: 1.007–1.056), atrial fibrillation (P
= 0.001, OR = 3.723, 95% CI: 1.662–8.340), previous ischemic
stroke (P = 0.002, OR = 3.139, 95% CI: 1.515–6.504), admission
NIHSS score (P < 0.001, OR = 1.091, 95% CI: 1.040–1.145),
symptom onset to MR perfusion (P = 0.018, OR = 0.872, 95%
CI: 0.779–0.977), vascular stenosis (≥70%) (P < 0.001, OR =

3.895, 95% CI: 2.203–6.887), ADC volume (P < 0.001, OR =

1.044, 95% CI: 1.019–1.070) were independently associated with
MR perfusion abnormality in ischemic stroke patients within 7
days of onset (Table 3).

Frontiers in Neurology | www.frontiersin.org 5 May 2021 | Volume 12 | Article 66836037

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Xiao et al. Risk Factors of Hypoperfusion

Multivariate step-wise regression modeling was performed
for predictors with P-values < 0.01 and the multivariate
logistic regression analysis performed to show the correlation
between previous ischemic stroke, stenosis (≥70%), and MR
perfusion abnormalities. Patients with previous ischemic stroke
and stenosis were likely to develop hypoperfusion on PWI
maps. The adjusted odds ratios were 3.418 (95% CI: 1.537–
7.600, P = 0.001) and 2.265 (95% CI: 1.199–4.278, P = 0.012),
respectively. Other variables were not significantly associated
with hypoperfusion (Table 3).

DISCUSSION

In the present study, risk factors of hypoperfusion on MRI
were analyzed for AIS patients admitted within 7 days of
onset. It was found that the perfusion parameter Tmax > 4–6 s
volume was related to clinical prognosis. Patients with previous
stroke and vascular stenosis (≥70%) were more likely to have
hypoperfusion, and these two were independent risk factors of
low perfusion as shown by Tmax > 4–6 s map > 38 ml.

FIGURE 3 | Area under the ROC curve predicts hypoperfusion based on 90

d-mRS.

Tmax > 4–6 s Map and 90 d mRS
It is well-known that DWI and ADC maps were closely
related to the final infarct volume and were important
predictors of clinical prognosis (9, 28). The present study
used non-invasive multimode magnetic resonance imaging to
quantitatively evaluate Tmax > 4–6 s map. It was found that
the tissue perfusion status of Tmax > 4–6 s was closely related
to 90 d mRS. The greater the Tmax > 4–6 s map was,
the worse the 90 d mRS was. Previous studies have shown
that perfusion imaging was closely related to the status of
collateral circulation, and the cerebral perfusion parameter Tmax

was a good biomarker of collateral volume (29). Therefore,
it is reasonable to use the Tmax > 4–6 s map to evaluate
tissue hypoperfusion.

Collateral status could be used to predict the prognosis of
patients with acute ischemic stroke as the key determinant
(30, 31). Perfusion status changes temporally and spatially.
Findings from perfusion imaging reflect collateral status or
response to treatment for those without large vessel occlusion
within 6 h or for those with large vessel occlusion within 24 h.
These are closely correlated with clinical prognosis. In this
study, the cutoff value 38ml of Tmax > 4–6 s map was used
to define hypoperfusion on MRI with an aim to find risk
factors that were related to hypoperfusion, and to provide a
reasonable direction for accurate control of these risk factors.
This would improve clinical prognosis and reduce the occurrence
of recurrent ischemic events.

Previous Ischemic Stroke and Tmax > 4–6 s
Maps
This study found that hypoperfusion was associated with
recurrent stroke and persistent deterioration of neurological
functions. It might be related to a certain proportion of vascular
stenosis and distal hypoperfusion in patients with previous
strokes, which are likely to recur. This is consistent with the
result of a previous studies (32). Previous studies have shown
that stroke patients have a recurrence rate of 17% within 1
year. In symptomatic intracranial atherosclerotic stenosis (ICAS)
patients, the more severe the baseline hypoperfusion was, the
higher the risk of stroke recurrence was (33–35). In this study,
41 patients had a history of stroke, among whom 29 had their
Tmax > 4–6 s volume > 38ml, accounting for 25% of this type

TABLE 3 | Factors independently associated with Tmax > 4–6 s > 38mL in ischemic stroke patients within 7 days of onset.

OR (95% CI) P-value Adjusted OR (95% CI) P-value

Age 1.031 (1.007–1.056) 0.010 1.037 (1.009–1.066) 0.010

Atrial fibrillation 3.723 (1.662–8.340) 0.001 1.404 (0.545–3.614) 0.482

Previous ischemic stroke 3.139 (1.515–6.504) 0.002 3.418 (1.537–7.600) 0.001

Admission NIHSS score 1.091 (1.040–1.145) <0.001 1.038 (0.983–1.096) 0.181

symptom onset to the MR perfusion 0.872 (0.779–0.977) 0.018 0.905 (0.793–1.034) 0.142

Vascular stenosis (≥70%) 3.895 (2.203–6.887) <0.001 2.265 (1.199–4.278) 0.012

ADC < 620 × 10−6 mm2/s volume 1.044 (1.019–1.070) <0.001 1.033 (1.009–1.058) 0.008

HCY 1.007 (0.986–1.029) 0.516 N N

CI, confidence interval; OR, odds ratio; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; ADC, apparent diffusion coefficient, Hcy, homocysteine.
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of patients. Among these 41 patients, 30 had vascular stenosis
≥ 70%, accounting for 73.2% of these patients. Previous strokes
are a risk factor of hypoperfusion. The possible reason is that the
majority of patients with previous strokes have vascular stenosis,
which leads to distal hypoperfusion, and consequently recurrence
of ischemic stroke.

Vascular Stenosis and Tmax > 4–6 s Map
Spencer and Reid first proposed the relationship between cerebral
artery stenosis and cerebral blood flow, which predicted a
decrease in blood flowwhen stenosis was>70% (36, 37). Cerebral
artery stenosis or occlusion can trigger serious hemodynamic
disorders. However, it has been shown that the severity of
vascular stenosis does not necessarily affect the status of distal
blood flow (38). In this study, it was found that vascular stenosis
was related to the Tmax > 4–6 s map. 63.9% of the patients
had evidence of ipsilateral proximal artery stenosis or occlusion
on MRA, among whom the proportion of tissue hypoperfusion
was 60.4% (93/153). Therefore, tissue hypoperfusion may be
more likely to occur in patients with ipsilateral proximal artery
stenosis or occlusion on MRA, which is consistent with previous
studies (39, 40). This might be due to changes in the cerebral
vascular structure and function resulted from intracranial
atherosclerosis. Vascular stenosis affects the hemodynamic status,
mainly through the decrease of cerebrovascular reserve. In the
presence of insufficient collaterals, the decrease in pressure may
lead to hypoperfusion.

The volume of hypoperfusion at different thresholds of
Tmax non-invasively reflected the status of collaterals, which is
consistent with findings of previous studies. Therefore, it is likely
that perfusion parameters on MRI will be a good biomarker
for volumes of collateral blood flow (29). The benefit of the
present study is to non-invasively assess hypoperfusion volumes
at the early stage of ischemic stroke, which reflects the collateral
status. It will provide evidence for early intervention to halt
stroke progression, prevent stroke recurrence, and to improve
clinical prognosis.

The present study has a number of limitations. Firstly, it
is a retrospective study in which all subjects were recruited
from a local hospital, which may result in selection bias. In
addition, it has a relatively small sample size and the conclusion
from this study may not be extrapolated to all ischemic stroke
patients. Therefore, prospective studies with a large sample size
are required to confirm our findings. Secondly, it is a cross-
sectional study and can not pinpoint the direct causality between
hypoperfusion and the risk factors of ischemic stroke patients
within 7 days of onset. A longitudinal design can help to
investigate the direct causal relationship between risk factors
and MR hypoperfusion in future studies. Thirdly, Tmax > 4–6 s
and volume of hypoperfusion > 38ml were used to determine

hypoperfusion,which is based on the cutoff value of 38ml in
our analysis, whether this method has better accuracy and
applicability needs to be verified by future prospective, large-
scaled studies. Fourthly, The present study did not repeat MR
scan between the therapeutic window and 90 days to evaluate the
perfusion status, which might result in treatment bias.

In conclusion, hypoperfusion could be found in ischemic
stroke patients within 7 days of onset when PWI was examined,
which is related to clinical prognosis. Patients with previous
ischemic strokes and vascular stenosis are more likely to have
severe hypoperfusion and poor functional outcomes. Accurate
control of risk factors may effectively improve functional
outcomes. However, larger prospective studies are needed to
confirm these findings.
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Objective: This study aims to evaluate the efficacy of music-supported therapy for stroke

patients’ hand function.

Methods: The databases used included Cumulative Index to Nursing and Allied Health

Literature (CINAHL), MEDLINE, PubMed, Embase, Music Index, and Google Scholar.

Studies published between January 2010 and August 2020were included. The searching

key terms included “music-supported therapy,” “music therapy,” “hand function,” “hand

dysfunction,” “stroke,” “ischemic,” and “hemorrhagic.” Randomized controlled trials or

controlled trials involving adults who have hand function problems caused by stroke

are included in this study. The methodological quality and risk of bias of the included

studies were rated by two independent assessors under the guidance of Cochrane

collaboration’s risk of bias tool.

Results: Twelve studies that met the inclusion criteria were included in this study. Totally,

the data included 598 stroke patients (345 male, 253 female) with recruited time from

1.7 months to 3 years, and the mean age of the participants were 61.09 years old.

Based on the Cochrane risk of bias tool, study quality ranged from three to seven out

of seven points. Compared with the control group, outcomes including hand strength,

range of joint motion, dexterity of hands, arm function, and quality of life were significantly

superior with music-supported therapy. Five studies reported improved dexterity of

hands, and one study reported the improvement of range of motion and strength of

patients’ hands, which supported the therapy has positive effects on patients’ hand

function and improving their quality of life after the therapy. The therapy ranged over

a period of 4–8 weeks, with an average duration of 30 min/session and an average of

three times per week.

Conclusion: Based on the results, music-supported therapy could be a useful

treatment for improving hand function and activities of daily living in patients with stroke,

especially for patients within 6 months after stroke. However, the low certainty of

evidence downgrades our confidence to practice in hospital. More and more randomized

controlled trials and larger sample sizes are required for a deeper review.

Keywords: music supported therapy, hand function, stroke—diagnosis, systematic review, randomized controlled

trial

42

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.641023
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.641023&domain=pdf&date_stamp=2021-05-25
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:douzul@163.com
https://doi.org/10.3389/fneur.2021.641023
https://www.frontiersin.org/articles/10.3389/fneur.2021.641023/full


Huang et al. Music Therapy for Hand Function

INTRODUCTION

Stroke is believed to affect more than two million patients
annually in China and is one of the most common causes of hand
function impairment in middle-aged as well as elderly people.
The stroke symptoms may include numbness and weakness in
the affected arms and cause a loss of coordination and dexterity
(1, 2). Although most of the function can be restored with
rehabilitation, ranging up to 79%, the recovery of functional

problems of the hand left after stroke is not as satisfactory (3). It

has been estimated that∼67% of stroke survivors are still unable
to use the affected hand 4 years after the onset of stroke (4, 5).
Therefore, rediscovering the potential of hand function and

improving the quality of life is of great value to stroke patients.
The most commonly used conventional treatment for

hand function problems include constraint-induced movement
therapy (CIMT), mirror therapy, virtual reality, and music-
supported therapy (MST) (6–8).MST for hand function is usually
achieved by playing the instructions. The movement patients
conduct during playing the piano or grasping drumsticks can
facilitate the coordination of hands, strengthen the power of
grasp of the impaired hand (9). The aim of the MST is to improve
the function of the upper limbs and to provide appropriate
stimulation through real-time auditory feedback. Studies have
shown that after a 4-week MST program, the hand mobility,
fluency, and speed of stroke patients can improve during the test.
Besides, the sensory stimulation brought by music can induce
functional recovery in damaged hemispheres.

Through the combination of music and movement, MST
uses continuous movement and sensory input to enable the
patient’s central nervous system to re-establish new synaptic
connections to the greatest extent possible, thereby creating
new neuromotor pathways. Functional magnetic resonance
imaging (fMRI) shows that the blood flow of the damaged
area of the brain increases when receiving stimulation from
MST, which can help repair the cerebral cortex caused by
cerebral hemorrhage or cerebral infarction (10). Especially, when
patients with high muscle tension caused by stroke, MST can
relieve high muscle tension and increase the ability of fingers
to move freely. Brain plasticity is associated with treatment-
induced recovery, which helps the patient to repair after the
brain is damaged (11). When stroke patients participate in
MST, they need to process information from multiple senses
at the same time, including auditory, visual, and sensorimotor
information, which is transmitted from the auditory system
to the premotor cortex (PMC), thereby adjusting the top-
down output (12). However, a major current focus in MST
is to evaluate how does MST works and how does MST
helps patients with gait problems (13). Few researchers have
addressed the problem of MST improving the hand function of
stroke patients.

Up to now, the effect of MST on the recovery of hand function
during rehabilitation has not been gone through systematically
yet. Therefore, we decided to undertake a systematic review to
find out evidence that can support that MST has ideal curative
effect in the recovery of impaired hand in stroke patients. The
review sheds new light on the therapy for helping patients

more effectively and increasing the ability of motor control,
especially the hands so that they can finish the daily life task
by themselves. One of the main challenges is that we need to
search the randomized controlled trials (RCTs) based on MST
on stroke patients, which are the gold standard for effectiveness
research (14). Our systematic literature review solves the PICOS
question, “Does MST can help stroke patients improve their
hand function and increase the quality of life?” The answers may
provide new thinking for occupational therapy and determine the
effectiveness of the MST.

METHODS

This systematic review has been reported according to
the Preferred Reporting Items for Systematic Review
(PRISMA) statement. A protocol for this review was not
registered prospectively.

Search Strategy
A systematic literature search of the following electronic
databases was performed: Cumulative Index to Nursing and
Allied Health Literature (CINAHL), MEDLINE, PubMed,
Embase, Music Index, and Google Scholar. Databases were
searched using a combination of the following keywords
considering diagnose, therapy, and outcome. Diagnosis includes
stroke, ischemic, and hemorrhagic. Exercise therapy includes
music, rhythm, music therapy, MST, music movement therapy,
neurologic music therapy (NMT), and neuroscience. The
outcome includes neurologic assessment, physical and cognitive
disability, strength and dexterity of the hands, gross mobility
of hands, and the assessment of quality of life. MEDLINE
was searched using MeSH headings which included dystonic
disorders, neurofeedback/behavior therapy/exercise therapy, and
recovery of function/treatment outcome. Additional articles were
identified from reference lists of retrieved articles. The search was
conducted in August 2020.

Eligibility Criteria
Studies were included if they met the following PICOS criteria:

(1) Population: The study population included adults (18 years
old or older) diagnosed with ischemic or hemorrhagic stroke
which was needed to be confirmed by computer tomography
or magnetic resonance imaging and by diagnostic guidelines
updated by the American Heart Association/American
Stroke Association. The patients presenting with the Fugl–
Meyer Assessment—upper extremity (FMA-UE) results less
than 46 points.

(2) Intervention: Interventions had to be sound based, including
music listening or listening to rhythmic sequences (MLI or
RAS, which could be performed by various instruments, e.g.,
metronome, synthesizer). At least one group of participants
had to perform a task in this condition.

(3) Controls: A similar motor act had to be performed
without listening to music or rhythmic sequences
(control intervention).
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(4) Outcome: Outcome measures had to assess hand function in
a biomechanical manner (e.g., fine motor and gross mobility,
strength and dexterity of the hands, functional movements of
hands, muscle activity, or muscle-related assessment).

(5) Study design: All designs should be randomized
controlled trials.

(6) Time: Articles published between January 2010 and
August 2020.

Studies were excluded from a review when studies were not
written in English and if less than half of the participants
were musicians. In addition, altered auditory and sensory
feedback strategies and studies assessing the combined effects
of neuromuscular re-education and transcranial direct current
stimulation were also excluded from the review.

Study Selection
The screening procedure was performed by two independent
researchers. To collect potentially relevant studies, eligibility was
screened based on title and abstract based on the provided
inclusion and exclusion criteria described above. Full texts
were retrieved and evaluated based on the same eligibility
criteria. Afterward, full texts were gathered and evaluated on the
previously set inclusion criteria. Reference lists were manually
screened to identify additional relevant studies. Results between
the two reviewers were compared, in situations where two
reviewers were unable to come to an agreement, we took the
original articles back together to solve the problem. See Figure 1.

Data Extraction and Analysis
Data were extracted and documented using an extraction
form developed to identify relevant information. Details
recorded from each reference included the author’s background
and discipline, participants, intervention (follow-up),
control/comparison, outcome measures, and results. Data
and information were extracted by one reviewer and checked for
accuracy by a second reviewer. The patients’ characteristics and
intervention detail of each study were summarized in Table 1,
reflecting the heterogeneity of the included studies.

The risk of bias assessment was based on the handbook
of Cochrane (5.1 version). To assess bias, two reviewers
independently followed the steps to choose low risk and
high risk; if a question was impossible to answer because
the original article did not specify it or it was unclear,
we chose “unclear.” Reviewers assessed selection (random
sequence generation and allocation concealment), performance
(blinding of participants and personnel), detection (blinding
of outcome assessors), attrition (incomplete outcome data),
reporting (selective reporting), and other sources of bias. If there
is a disagreement between two reviewers, a third reviewer will
solve it. See Figures 2, 3.

RESULTS

Study Characteristics
In order to identify the review, a total of 269 articles were
retrieved in this search. Two hundred twelve articles were

FIGURE 1 | A summary of the PRISMA flow of the study selection process.
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TABLE 1 | Summary of the included studies and the detail of intervention and measurement.

Reference Participants Intervention (follow-up) Control/comparison Outcome measures Results

Raglio et al. (15) N = 38;

age range: 54–89

The standard of care and

relational active music

therapy approach (n = 19)

Repeat exercise: 20

sessions lasting 30 min

each, 3-weekly

Only standard of care,

including physiotherapy

and occupational

therapy (n = 19)

Measured at baseline and at the

end of treatment

Neurologic: It-NIHSS

Physical and cognitive disability:

FIM

Strength/dexterity of the hands:

the Grip-Pinch Dynamometric

Test and the Nine-hole Peg Test

Gross mobility: TUG

Psychological traits and quality

of life: HADS and MQOL-It

Video-recorded sessions: MTRS

Neurologic: no significant difference

between groups

Physical and cognitive disability:

improved both in experimental and

control groups (p = 0.001)

Strength/dexterity of the hands: the

amount of left paretic patients (n = 5)

improved more than control groups

(n = 2)

Gross mobility: improved both in

experimental and control groups

(p = 0.032)

Psychological traits and quality of life:

a decrease of anxiety and depression

and a significant positive trend

Street et al. (16) N = 11;

age range: 53–67

Play acoustic musical

instruments and/or iPads

with touch screen musical

instruments (n = 6)

Repeat exercise: 20–30 min

a session, twice weekly for

6 weeks

Received no

intervention (n = 5)

Measured at baseline and at 6-,

9-, 15-, and 18-week follow-up

Arm function: the action research

arm test and the 9-hole peg test

Arm function: no significant difference

between groups

Street et al. (9) N = 14;

age range: 18–90

Therapeutic instrumental

music performance therapy

(n = 7)

Repeat exercise: twice

weekly for 6 weeks

Received no

intervention (n = 7)

Measured at baseline and at 6-,

9-, 15-, and 18-week follow-up

Arm function: the action research

arm test and the 9-hole peg test

Electroencephalography

Recording

Arm function: no significant difference

between groups

Electroencephalography recording:

no significant difference

between groups

Grau-Sanchez

et al. (17)

N = 39;

age range: 54–92

The regular therapy and

extra sessions to play a

keyboard and an electronic

drum set (n = 20)

Repeat exercise: 20

individual sessions, 30 min

each, 5 sessions/week for

4 weeks

Extra time for exercises

for the upper extremity

based on the regular

therapy (n = 20)

Measured at baseline, after the

intervention, and at a 3-month

follow-up

Functional movements: the

action research arm test

Motor outcomes: FMA and grip

strength

Fine dexterity: the 9-hole peg

test and BBT

Activities of daily living: CAHAI

Working memory and attention:

the digit span subtest from the

Wechsler Adult Intelligence Scale

III, response inhibition by the

Stroop task and processing

speed and mental flexibility by

the trail-making test

Verbal memory: RAVLT and the

story recall from the Rivermead

behavioral memory test

Mood outcomes: the Profile of

Mood States, the Beck

Depression Inventory Scale, the

Positive and Negative Affect

Scale, and the Apathy Evaluation

Scale.

QoL outcomes: the

Stroke-Specific QoL Scale and

health-related QoL with the

health survey

questionnaire SF36.

Functional movements: significantly

improved functional performance

score in the MST group compared

with CT group (mean ± SD, standard

treatment with exercise, 9.8 ± 7.9,

vs. exercise, 6.7 ± 7.9; p < 0.001)

Motor outcomes: no significant

difference between groups

Fine dexterity: no significant

difference between groups

Activities of daily living: no significant

difference between groups

The cognitive outcomes: no

significant difference between groups

QoL outcomes: significantly improved

in the MST group from baseline to

posttreatment compared with CT

group (MST group of t(18) = −2.23,

p < 0.05, d = 0.54 vs. CT group of

no improvements)

Mood outcomes: no significant

differences between groups in the

change scores

(Continued)
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TABLE 1 | Continued

Reference Participants Intervention (follow-up) Control/comparison Outcome measures Results

Jun et al. (18) N = 30;

age range: 54–93

Received music and

movement therapy (n = 15).

Repeat exercise:

1 h/session, 3 times/week

for 8 weeks

Received routine

care (n = 15)

Measured at baseline and at

8-week follow-up

Physical functions: range of joint

motion

Muscle strength: Medical

Research Council scale

Activities of daily living: K-MBI

Mood state: the Korean version

of the Profile of Mood States

Brief instrument

Depression: CES-D

Physical functions: no significant

difference between groups

Muscle strength: no significant

difference between groups

Activities of daily living: no significant

difference between groups

Mood state: the score of experimental

group members improved when

compared with that of the control

group (t = 1.818, p = 0.040)

Depression: no significant difference

between groups

Van Vugt et al.

(19)

N = 34;

age range: 30–75

Received its sounds after a

random delay sampled from

a flat distribution between

100 and 600 ms when the

patients play the piano

(n = 19)

Repeat exercise: 10

sessions of half an hour

Received the its

sounds immediately

when the patients play

the piano (n = 15)

Measured at baseline, after the

intervention

Fine motor control: the 9-hole

peg test

Finger tapping measurements: a

triaxial accelerometer (ADXL 335)

Mood measurements: POMS

Fine motor control: significantly

improved fine motor score in the jitter

group compared with normal group

(mean ± SD, the average

improvement of jitter group,

14 ± 53.6 vs. normal, 3.8 ± 17.9;

p < 0.001)

Tapping speed: no significant

difference between groups

Tapping variability: no significant

difference between groups

Mood measurements: no significant

difference between groups

Fotakopoulos

and Kotlia (20)

N = 65;

age range: 71–79

A music group (MG) (daily

listening to

experiential/traditional

music)

Repeat exercise: 6 months

at a frequency of four

training sessions/week, of

45 min each session

A control group (CG)

with no

experiential/traditional

music therapy

(standard care only)

Measured at baseline, after the

intervention

Cognitive deficits: mMt

Performance in activities of daily

living: BI

CT perfusion: CBF

Cognitive deficits: significantly

improved cognitive score in the

recovery group compared with

no-recovery group (mean ± SD, the

recovery group, 26.38 ± 1 vs.

no-recovery group, 24.33 ± 2;

p < 0.001)

Performance in activities of daily

living: significantly improved ADL

score in the recovery group

compared with no-recovery group

(mean ± SD, the recovery group,

81.92 ± 2 vs. no-recovery group,

76.53 ± 7; p = 0.007)

CT perfusion: significantly improved in

CBF in affected area in the recovery

group compared with no-recovery

group (mean ± SD, the recovery

group, 29.16 ± 4 vs. no-recovery

group, 12.27 ± 11; p < 0.001)

Bunketorp-Käll

et al. (21)

N = 123;

age range:

56–70.4

Rhythm-and-music therapy

(n =41 )

Horse-riding therapy

(n = 41)

Repeat exercise: 2 times a

week for 12 weeks

Control group continue

with their regular

activities and usual

care such as outpatient

physiotherapy,

occupational therapy,

or speech

therapy (n = 41)

Outcome measures were

reported at 0 and 6 months

postintervention

Hand strength: Grippit

Hand strength: significant differences

in the mean changes in right-sided

maximum and left-sided final grip

force

Rhythm-and-music group significantly

improved their right-sided maximum

grip force(16.41 [95% CI,

5.65–27.17]) and left-sided final grip

force (17.26 [95% CI, 6.19–28.33])

compared with controls (−1.29 [95%

CI, −7.99 to 5.41]) (0.55 [95% CI,

−7.07 to 8.17]; p = 0.015 and 0.042,

respectively);

The left-sided improvements were

sustained at the 6-month

follow-up (p = 0.011).

(Continued)
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TABLE 1 | Continued

Reference Participants Intervention (follow-up) Control/comparison Outcome measures Results

Tong et al. (12) N = 33;

age range:

34–64.9

Audible music group (MG)

includes conventional

rehabilitation treatments and

extra sessions of audible

musical instrument training

(n = 15)

Repeat exercise: 20 extra

sessions over 4 weeks

Mute music group (CG)

includes conventional

rehabilitation

treatments and extra

sessions of “mute”

musical instrument

training (n = 18)

Repeat exercise: 20

extra sessions

over 4 weeks

Measured at baseline, after the

intervention

Motor function: WMFT, FMA

Motor functions of upper limbs:

significant improvements

Significant differences in the WMFT

were found between the two groups

(WMFT-quality: p = 0.025;

WMFT-time: p = 0.037) but not in the

FMA (p = 0.448).

Subjects in MG demonstrated greater

improvement than those in CG.

Schneider et al.

(22)

N = 77;

age range:

41.2–68

Music-supported therapy in

addition to conventional

therapy (n = 32).

Repeat exercise: 30 min

each unit in duration, totally

27.4 units, over 3 weeks

Conventional treatment

only (n = 30), Without

specific additional

selection criteria

(n = 15) standard

therapies (physical

therapy and individual

occupational therapy)

30 min each unit in

duration.

TG: 28.0 units over

3 weeks

CG: 27.2 units

over 3 weeks

Measured at baseline, 3-week

intervention

Motor functions: BBT, the 9-hole

peg test, action research arm

test, arm paresis score

Motor test/parameter: frequency

(FREQ), Number of inversions of

velocity profiles, Average

maximum angular velocity in ◦/s

BBT, the 9-hole peg test, action

research arm test, and arm paresis

score: significant improvements in

groups TG and MG. Conventional

physiotherapy in CG did not produce

an improvement, differences between

MG, CG, and TG were highly

significant, F (2, 66) = 6.66,

p = 0.002.

BBT: MG increased the number of

cubes grasped by around 10/min.

Differences between MG, CG, and

TG were highly significant,

F (2,74) = 57.08, p < 0.001.

FREQ: Increase in MG but not TG

and CG

Fujioka et al. (23) N = 29;

age range:

54.3–64.2

Music-supported therapy

used an electronic keyboard

and a series of eight

electronic drum pads

(n = 14).

Repeat exercise: 30 h of

training over 10 weeks

Conventional physical

training (n = 14)

Repeat exercise: 30 h

of training

over 10 weeks

Measured at baseline, after

5 weeks, after 10 weeks, and

3 months after training

completion.

Arm and hand subsections of the

CMSA Impairment Inventory,

action research arm test, BBT

CMSA: Both showed only minor

changes over the time course of

treatment, hand score was improved

at the post 2 time point compared

with pre [t(27) = −2.27, p = 0.031].

A tendency for such improvement

was found for the MST group

[t(13) = −1.88, p = 0.082]. The

improvement in the GRASP group

was not significant.

Action research arm test: in the MST

group, the decrease between pre and

post 2 time points approached

significance [t(13) = 2.10, p = 0.056].

BBT: not to analyze, as eight

participants were unable to perform

the test at any time point using their

affected hand.

Bunketorp-Käll

et al. (24)

N = 123;

age range:

56–70.4

Rhythm-and-music therapy

(n = 41)

Horse-riding therapy

(n = 41)

Repeat exercise: 2 times a

week for 12 weeks.

Control group continue

with their regular

activities and usual

care such as outpatient

physiotherapy,

occupational therapy,

or speech

therapy (n = 41).

Measured at baseline, after the

intervention

Motor function: Modified Motor

Assessment Scale.

Modified Motor Assessment Scale:

The MST group did not produce any

immediate gains. 6 months 31

post-intervention, the MST group

performed better with respect to time;

−0.75 s [95% CI, −1.36 to

−0.14]; (p = 0.035)

It-NIHSS, the National Institutes of Health Stroke Scale; FIM, the Functional Independence Measure; HADS, the Hospital Anxiety and Depression Scale; MQOL-It, the Italian version of

McGill Quality-of-Life Questionnaire; TUG, the Timed Up and Go Test; MTRS, the Music Therapy Rating Scale; mMt, the mini mental test; BI, the Barthel Index; CBF, cerebral blood

flow; CMSA, the Chedoke–McMaster Stroke; CAHAI, the Chedoke Arm and Hand Activity Inventory; RAVLT, the Rey auditory verbal learning test; K-MBI, Korean-modified Barthel index;

CES-D, The Center for Epidemiologic Studies Depression Scale; POMS, the Profile of Mood States; WMFT, Wolf motor function test; FMA, Fugl–Meyer assessment; BBT, Box and

Block test.

considered for screening, and 41 full-text articles were excluded
because the study did not focus on the stroke patients (n = 5),
the type of study did not meet our inclusion criteria (n= 13), the

abstract of study did not focus on the music-supported therapy
(n = 6), and hand function areas (n = 5). Twelve articles were
included in the systematic review. See Table 1.
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FIGURE 2 | Risk of bias summary.

FIGURE 3 | Risk of bias graph.

Baseline of Patients
Totally, the data involved 598 stroke patients of mixed
gender population. The included studies had the gender
distribution as follows: 253 females and 345 males. The mean
age of the participants was 61.09 years old (SD = 11.43),
ranging from 48.6 to 76.02 years old (9, 12, 16, 17, 19, 21–
24). All subjects suffered from stroke from 1.7 months to
3 years before exposed to the MST intervention. Four articles
did not provide the time of poststroke of the population
in their articles. Based on the data of demographics, the
percentage of ischemic stroke was 74.53% (199 participants)

and the percentage of hemorrhagic stroke was 25.47%
(68 participants).

Risk of Bias of Included Studies
The items’ random sequence generation, allocation concealment,
incomplete outcome data, and other sources of bias were assessed
as low risk of bias in most of the included studies (9, 12, 16,
17, 19, 21–24). Blinding of participants and personnel scored
high risk of bias or unclear risk in half of the included studies,
which is inherent to the intervention (15–20, 22, 24). There are
some studies that the blinding of outcome assessment was not
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described clearly so that they were scored unclear in the detection
bias (12, 19, 20, 22).

Intervention Characteristics
Study objectives varied greatly; music was used to influence grip
strength (15, 17, 18, 21), range of joint motion (18), dexterity of
the hands (9, 15–17, 19, 22), and arm function (9, 12, 16, 17, 22–
24), and demonstrated the changes of activities of daily living (17,
18, 20) and quality of life (15, 17, 23). To determine effectiveness,
musical interventions were compared with blank control group
(9, 16), standard of care, regular activities (15, 18, 20, 21, 23),
conventional rehabilitation treatments (12, 17, 22, 24), and mute
music training (19, 24). Conventional rehabilitation treatments
such as passive mobilization, stretch and progressive resistance
exercises, and task-specific training (17, 22), mute music training
such as using a sponge or custom-made pad on the musical
instrument to inhibit or delay patients from hearing sounds
during the training (19, 24).

Nine trials required participants played rhythmical-melodic
musical instruments or digital music equipment, such as
xylophones, glockenspiels, drums, bongos, ethnic percussion,
piano, iPads with touch screen musical instruments (9, 12, 15–
19, 22, 23). The methods included free interactions between
patients and music therapists and sang a song while playing
musical instruments. Three trials employed prepared music and
daily listening to experiential/traditional music (20, 21, 24); two
of three trials involved structured R-MT combining listening to
music while performing coordinated rhythmic sequences and
cognitively (21, 24). Participants were trained to begin with
motions of the unaffected side and then the affected upper
extremity following a modular therapy regime with a stepwise
increase of complexity (17, 18).

Sessions were offered one-to-one with individual participants
at home or clinical setting (9, 12, 16, 17, 19, 22, 23) or to
small groups (15, 18, 20, 21, 24). Within these sessions, there
was consistent treatment “dosage,” lasting a single session of 30
or 45 min each. The duration of interventions was variability
ranging from 20 sessions over 3 weeks (15) to four sessions
weekly over 6 months (20). Delivery of musical interventions
was predominantly provided by experienced music therapists or
licensed therapists.

Qualitative Synthesis: Outcome
The included articles show that MST has a better effect on stroke
patients in the acute and recovery phases when compared with
the group that received conventional rehabilitation. The effect on
stroke patients includes many aspects. See Table 2.

Hand Strength
One trial showed significant differences in the mean changes
in both sided maximum and one-sided final grip force, as
measured with Grippit. Some improvements were also sustained
at the 6-month follow-up (21). In the grip-pinch test, one trial
showed that the strength of the nondominant hand significantly
increased (15). Two trials showed no significant differences were
observed for the group comparisons after treatment or at follow-
up (17, 18).

Range of Joint Motion
Only one trial showed that the ROM (shoulder, elbow joint,
and hip joint flexion) on the affected side of subjects in the
experimental group was increased following the music therapy,
whereas the ROM of these joints in the control group either
decreased or remained the same. There was a significant increase
in shoulder flexion and elbow joint flexion (18).

Dexterity of Hands
Five trials with nine-hole peg test examined fine motor skills
of hands improved gradually (9, 15, 16, 19, 22). One trial
showed no significant differences were observed for the group
comparisons after treatment or at follow-up; however, the within-
group analyses revealed that both groups improved after and
at follow-up using nie-hole peg test and box and blocks test
(17). In the test of finger tapping measurements, there was no
significant difference between groups in areas of tapping speed
and variability (19).

Arm Function
Significant improvements in motor functions of upper limbs
after 4 weeks of treatment; however, we only found differences
between the two groups in Wolf motor function test (WMFT-
quality: p = 0.025; WMFT-time: p = 0.037), but found no
differences in Fugl–Meyer assessment (p = 0.448) (12). Grau-
Sanchez’s (17) study showed that in 39 included patients, no
significant difference between MST groups and control groups
was shown after a 4-week treatment. Four trials showed no
significant difference between groups in arm function through
the action research arm test (9, 16, 17, 23). One of the four
trials found the within-group analyses revealed that both groups
improved after and at follow-up (17). Another trial also indicated
minor changes by the CMSA arm and hand impairment scale
(23). However, MST patients in one trial showed a substantial
improvement over time compared with other groups of patients
in the action research arm test and arm paresis score (22). One
trial also did not produce any immediate gains with the Modified
Motor Assessment Scale (M-MAS) (24).

Activities of Daily Living
No significant differences in effect using Chedoke Arm and Hand
Activity Inventory (CAHAI) or Korean-modified Barthel index
(K-MBI) (18, 19). Only one trial showed significantly improved
ADL score in the recovery group compared with the no-recovery
group (20).

Quality of Life
One trial showed a significant positive trend in quality of
life through the Italian version of McGill Quality-of-Life
Questionnaire (MQOL-It), but no clinical differences between
groups were found (15). There was a significant improvement
in the MST group from baseline to posttreatment compared
with the conventional treatment groups among other trials (17).
Negative effect of affective functions and quality of life was
significantly reduced after intervention (23).
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TABLE 2 | The result of outcome measures in the included studies.

Outcome measures Measurements Results

Muscle strength Grippit Improvements were shown at the final of intervention and 6-month

follow-up (21)

Grip-pinch test Strength of nondominant hand significantly increased (15)

Medical Research Council scale and grip strength No significant difference between groups (17, 18)

Range of joint motion Measuring the ROM of shoulder, elbow joint, and hip joint flexion Significant increase in shoulder flexion and elbow joint flexion (18)

Dexterity of hands 9-Hole peg test Improved gradually (9, 15, 16, 19, 22)

9-Hole peg test and box and blocks test Both groups improved but no significant differences (17)

Test of finger tapping measurements No significant difference between groups (19)

Arm function Wolf motor function test Significant differences between the 2 groups (12)

The action research arm test and arm paresis score Significant differences between the 2 groups (22)

The action research arm test No significant difference between groups (9, 16, 17, 23)

The Modified Motor Assessment Scale (M-MAS) No significant difference between groups (24)

Activities of daily living The Barthel Index Significant differences between the two groups (20)

Chedoke Arm and Hand Activity Inventory (CAHAI) or

Korean-modified Barthel index (K-MBI)

No significant difference between groups (18, 19)

Quality of life The Stroke-Specific QoL Scale and health-related QoL with the

health survey questionnaire SF36

Significant differences between the 2 groups (17)

Italian version of McGill Quality-of-Life Questionnaire (MQOL-It) No significant difference between groups (15)

DISCUSSION

The purpose of this systematic review was to evaluate the
effectiveness of MST on hand function improvement in
stroke patients. The result shows that MST can be useful
in improving hand function and the quality of life in
stroke patients.

The subjects of studies we focus are symptoms of unilateral

hemiparesis in ischemic and hemorrhagic stroke patients.
Through a systematic review, we found that MST can improve

hand function in patients. Especially for patients within 6months

after stroke, MST can significantly improve their hand function
with different aspects such as dexterity of hands.

However, according to the included studies, only a few studies
have clear results indicating that the grasping ability and the
dexterity of the finger are improved (9, 15, 16, 19, 22). For
example, one study stated that the hand function was improved
for both the MST group and the control group, but there
were no significant differences between the two groups when
compared (15). MST did not show superiority improvement
when compared with conventional therapy. At this point, we
conclude that it may be caused by the following reasons. Firstly,
low-intensity music-supported therapy is not known to cause
an effect on the improvement of a patient’s ability. Therefore,
according to the results of a systematic review, training for
at least 30 min a day and five times a week is the suitable
intensity that is proven as effective. Secondly, some assessment
scales, such as FMA, are not sensitive enough to assess the
difference in the area of hand function before and after treatment,
while assessment scales like WMFT can. The reasons may be
because the movement of MST is similar to the movement of
evaluation so that it causes some bias that impacts the result
of the assessment. Therefore, when we select the assessment
scale, we should choose an appropriate scale that can have a

good sensitivity to identify the differences. Finally, several studies
stated that for their research, the sample size was not large
enough to obtain a significantly different result, which suggests
that we should do a larger experiment to show the effect of
music-supported therapy in the future.

Among the included studies, MST has been described to
improve hand function. Compared with traditional treatment,
the patient mainly improved the ability of priming, timing,
trajectory, and muscle force requirements for the movements
of the upper limbs (16), and because of the characteristics of
MST, such as, noninvasive, low cost, convenient, and effective
intervention, it has been widely used in practice and accepted
by Chinese occupational therapists. When playing a musical
instrument, the hands follow the beat of the music and make
corresponding movements, which is a kind of stimulation to
the damaged part of the brain (25). The musical stimulation
can promote the extensive activation of the patient’s central
nervous system’ functional network, increase blood flow in the
brain area, and accept more stimulation from the movement (26,
27). Among the included articles, there are descriptions of the
use of violin, piano, and drumming instruments for treatment.
When the patient’s hand grasps or strikes the instruments, the
patient’s grasping ability can be trained purposefully. When the
stroke patients train with the rhythm of music, it can help
muscle contraction to become more active, so that the sense of
participation, rhythm, and speed in the exercise will be more
effective (28).

MST can have an improved performance in activities of daily
living and enhance the quality of life (17). Furthermore, MST
decreases a patient’s depression and helps deal with the emotional
stress caused by sudden and severe neurological diseases (19).
MST helps the patient facilitate their emotions and share their
feelings. At the same time, music also plays an important role in
motivating patients and stimulating their inner motivation. MST
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increases patients’ motivation due to happiness and intrinsic
motivation. We can help them acquire a new skill as well as a
hobby so that they can actively participate in MST and enjoy the
fun of playing.

LIMITATIONS

The systematic review has some limitations that should be given
attention. First, the sample size in the study is not big enough.
Studies with larger sample sizes are needed in the coming future.
Second, when conducting a systematic search of the literatures,
only studies written in English were searched. It is possible that
we missed articles of high significance written in other languages.
Third, there was a lack of good way of randomization in the
included studies, especially with the blinding of patients. It is
clear that patients had knowledge of whether they were receiving
MST or not, so there was an inability to avoid a placebo effect as
a result of receiving MST. Higher-quality articles are needed to
provide ideas on how to avoid the placebo effect, and it will be
applied for future research development.

CONCLUSION

The review included data from 12 randomized controlled trials to
explore the effectiveness ofMST on the hand function for patients

after stroke. Based on current evidence, this study demonstrated
that MST can improve hand function and enhance a patient’s
quality of life. The rhythm and auditory feedback play a vital
part in the treatment of MST. However, more well-described
randomized controlled trials are required to prove its efficacy.
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Background: Acute dizziness is a common symptom among patients visiting

emergency medical centers. Extensive neurological examinations aimed at delineating

the cause of dizziness often require experience and specialized training. We tried to

diagnose central dizziness by machine learning using only basic clinical information.

Methods: Patients were enrolled who had visited an emergency medical center with

acute dizziness and underwent diffusion-weighted imaging. The enrolled patients were

dichotomized as either having central (with a corresponding central lesion) or non-central

dizziness. We obtained patient demographics, risk factors, vital signs, and presentation

(non-whirling type dizziness or vertigo). Various machine learning algorithms were

used to predict central dizziness. The area under the receiver operating characteristic

curve (AUROC) was measured to evaluate diagnostic accuracy. The SHapley Additive

exPlanations (SHAP) value was used to explain the importance of each factor.

Results: Of the 4,481 visits, 414 (9.2%) were determined as central dizziness. Central

dizziness patients were more often older and male and had more risk factors and higher

systolic blood pressure. They also presented more frequently with non-whirling type

dizziness (79 vs. 54.4%) than non-central dizziness. Catboost model showed the highest

AUROC (0.738) with a 94.4% sensitivity and 31.9% specificity in the test set (n = 1,317).

The SHAP value was highest for previous stroke presence (mean; 0.74), followed by male

(0.33), presentation as non-whirling type dizziness (0.30), and age (0.25).

Conclusions: Machine learning is feasible for classifying central dizziness using

demographics, risk factors, vital signs, and clinical dizziness presentation, which are

obtainable at the triage.

Keywords: dizziness, vertigo, machine learning, stroke, vertebrobasilar insufficiency

INTRODUCTION

Acute dizziness and vertigo are common symptoms presented by patients admitted to emergency
medical centers (EMCs) (1). Though dizziness is usually attributable to benign etiologies
originating from peripheral causes, 5% of acute dizziness may be caused by cerebrovascular issues
(2). Acute dizziness and vertigo are the most common presenting symptoms of vertebra-basilar
ischemia (3), which shows a stepwise deterioration of poor prognosis when the diagnosis is
inappropriately delayed (4).
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Unfortunately, because there is no standard test or
biomarker that can be used for the confirmatory diagnosis
of central dizziness, verification of the etiology remains
challenging. Many efforts have been made to distinguish
central dizziness from peripheral dizziness, especially those
utilizing extensive neurological examinations (5). However,
to some extent, misdiagnosis stems from an overreliance on
negative neurological examinations (2). Approximately 11% of
medial posterior-inferior cerebellar artery infarction patients
were shown to present with isolated vertigo, abnormal ocular
manifestations, and imbalance (6). However, interpretation of
the oculomotor findings often requires further examinations
with experienced and specialized neuro-ophthalmology staff.
While acute dizziness and vertigo are very commonly observed
clinical symptoms, which most physicians, not only specialists,
may encounter daily, misdiagnosis can lead to devastating
results (7).

Therefore, clinicians require a simple and widely applicable
method with high sensitivity that can significantly reduce
misdiagnosis of central dizziness. Machine learning (ML) has
previously been used and has shown an acceptable performance
in predicting the characteristics and prognosis of ischemic stroke
(8–11). Several studies have shown thatML can be used to analyze
nysagmogram or postulography videos to diagnose the causes of
dizziness, which still needs equipment to measure the nystagmus
or posture (12, 13). Here, we used ML techniques to diagnose
isolated acute dizziness patients visiting EMCs. As such, we used
only simple clinical information to delineate the central causes
of dizziness from peripheral causes. Additionally, we aimed to
examine the feature importance of theMLmodel and understand
its behavior.

MATERIALS AND METHODS

Participants
Patients visiting the EMC of the Asan Medical Center with acute
dizziness or vertigo were consecutively checked with diffusion-
weighted imaging (DWI) to exclude central dizziness. In the
present study, we have retrospectively recruited patients who
visited the EMC presenting with acute dizziness or vertigo
between January 2010 and December 2013 and received DWI
before being discharged from the EMC.

We excluded patients refusing DWI or with contraindications
for magnetic resonance imaging (MRI; i.e., pacemaker). In
addition, patients were excluded who presented with symptoms
indicative of nausea, even though the chief complaint was
dizziness or vertigo, and were diagnosed with gastrointestinal
disorders. Patients who presented with non-specific dizziness
and were diagnosed with general weakness due to poor medical
conditions, such as systemic infection or cancer, were also
excluded from the final analysis. The Institutional Review Board
of the Asan Medical Center approved this study. Informed
consent was waived because of the retrospective design.

Classification of the Cause of Dizziness
The cause of acute dizziness and vertigo was categorized
based on the final diagnosis upon discharge from the EMC.

The final diagnosis was based on extensive evaluation with
neuroimaging and comprehensive evaluation by neurologists,
otorhinolaryngologists, and emergency medicine physicians.
All patients included received DWI. Additional neuroimaging
procedures were performed for patients who were suspicious
of vertebrobasilar insufficiency after consultation to the
neurologists. Computed tomography angiography (CTA) or
magnetic resonance angiography (MRA) were performed based
on the clinician’s decision.

The cause of dizziness was initially categorized as one
of the following: (1) central, (2) peripheral, (3) psychogenic,
(4) cardio-circulatory, and (5) non-specific. A diagnosis of
central dizziness was dependent upon the identification of a
focal structural lesion from the corresponding area. Central
dizziness included patients with DWI lesions presenting acute
ischemic stroke or a significant stenosis (more than 50%) at
the vertebrobasilar system. Peripheral dizziness included patients
diagnosed as benign paroxysmal positional vertigo, Meniere’s
disease, vestibule-neuritis, and other vestibulopathies. Patients
diagnosed with depression, anxiety disorder, or hyperventilation
were categorized as psychogenic dizziness. Cardio-circulatory
dizziness included patients diagnosed as syncope or presyncope
due to cardiac problems, such as symptomatic arrhythmias,
causing insufficient cerebral circulation. Dizziness with an
unclear etiology but excluded from being categorized as central
causing dizziness by neuroimaging was determined to be non-
specific dizziness. All causes of dizziness, except central dizziness,
were regarded as non-central dizziness.

Development and Evaluation of Model
Predictors included demographics (e.g., age and sex), previous
medical history (e.g., history of hypertension, diabetes,
hyperlipidemia, stroke, or coronary artery disease), systolic
and diastolic blood pressure (BP), and heart rate. In the
current study, we built classification models using various ML
algorithms, including the radial basis function kernel support
vector machine (SVM), random forest (RF), Catboost, and
conventional logistic regression (LR).

The data was split by order of admission date (i.e., temporal
validation) into a training set and a test set. Within a
training set, multiple hyperparameters were tuned using a five-
fold cross-validation. The loss function was negative a log-
likelihood with class weights. Area under the curve of the
receiver operating characteristic curve (AUROC) was measured
to validate performance in a test set. Sensitivity and specificity
were also calculated on a test set using threshold at which
sensitivity on the training set was 99% or 99.9%, since notmissing
patients with central dizziness is a more critical factor not missing
those with non-central dizziness.

In addition, to understand the reasoning behind certain ML
model predictions, we used a Tree Explainer of SHapley Additive
exPlanations (SHAP) value (https://github.com/skjang54/Asan_
Central-Dizziness-and-Machine-Learning/) (14). The SHAP
value (log-odds unit) identifies the degree of impact a predictor
has on a prediction. A positive SHAP indicates that the feature
drives an increase in the probability of central dizziness (response
variable), and a negative SHAP implies that the feature decreases
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FIGURE 1 | Flow diagram. EMC, emergency medical center; GI, gastrointestinal; DWI, Diffusion-weighted imaging; MRI, Magnetic resonance imaging.

TABLE 1 | Baseline characteristics of the records of the enrolled patients with central and non-central dizziness.

Central dizziness† (n = 414) Non-central dizziness† (n = 4,067) p-value‡

Age (y) 66.1 ± 11.8 61.3 ± 11.5 <0.001

Sex (male) 245 (59.2) 1592 (39.1) <0.001

Hypertension 198 (47.8) 1531 (37.6) <0.001

Diabetes 100 (24.2) 531 (13.1) <0.001

Hyperlipidemia 133 (32.1) 1,368 (33.6) 0.571

Current smoking 41 (9.9) 265 (6.5) 0.012

History of previous coronary artery disease 77 (18.6) 495 (12.2) <0.001

History of previous stroke 100 (24.2) 313 (7.7) <0.001

Systolic blood pressure (mmHg) 148.3 ± 23.6 145.7 ± 22.0 0.032

Diastolic blood pressure (mmHg) 87.7 ± 15.8 88.1 ± 14.0 0.584

Heart rate (beat/min) 75.2 ± 15.1 74.6 ± 14.0 0.425

Presentation of dizziness <0.001

Non-whirling type dizziness 327 (79.0) 2,211 (54.4)

Vertigo 87 (21.0) 1,856 (45.6)

†
Values represented as frequency (percentage) or mean ± SD.

‡
P-values were calculated using t-test for continuous variables and χ

2-test for categorical variables.

the probability. This approach provides local explanations by
illustrating the attribution of a feature within a single patient.
Also, the mean of the absolute values of SHAP explains
the importance of each feature across the population (global
explanation). The SHAP values of Catboost and RF models were
computed by Tree Explainer, with SVM as the Kernel Explainer
and LR as the Linear Explainer (SHAP version 0.34.0).

RESULTS

Of the 11,366 patients who visited the EMC with dizziness
or vertigo, 4,426 patients were included in the final analysis
(Figure 1). All patients had DWI data and 989 patients had
additional angiographic evaluation (CTA, n = 81 and MRA, n
= 908). Of these final patients, 3,116 patients were included in
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FIGURE 2 | The receiver operating characteristics curve of the model for

central dizziness. LR, logistic regression; SVM, support vector machine; RF,

random forest; CAT, Catboost; AUC, area under the receiver operating

characteristic curve.

the training set, and the remaining 1,310 patients were included
in the test set. Within the period of the training set, 46 patients
visited twice, and one patient visited three times. Only the first
visit was used for the test set. The ratio of central to non-
central causes of dizziness was not significantly different in the
training set than the test set (Supplementary Table 1). Among
4,481 records, 414 (9.2%) were diagnosed with central dizziness.
There was no missing data among clinical variables.

Characteristics of Patients With Central
Dizziness
As shown in Table 1, patients with central dizziness were older
(66.1± 11.8 vs. 61.3± 11.5 years old; p < 0.001) and more often
male than those with non-central dizziness (59.2 vs. 39.1%; p <

0.001). Patients with central dizziness showed a higher prevalence
of hypertension (47.8 vs. 37.6%; p < 0.001), diabetes (24.2 vs.
13.1%; p < 0.001), current smoking (9.9 vs. 6.5%; p = 0.012),
previous coronary artery disease (18.6 vs. 12.2%; p < 0.001), and
history of stroke (24.2 vs. 7.7%; p< 0.001). Systolic BP was higher
in patients with central dizziness than in those with non-central
dizziness (148.3 ± 23.6 vs. 145.7 ± 22.0 mmHg; p = 0.032). The
clinical presentation of non-whirling-type dizziness was observed
more often in patients with central dizziness than in those with
non-central dizziness (79.0 vs. 54.4%; p < 0.001).

Machine Learning Predicting Central
Dizziness
The ability of the ML algorithms to discriminate between
central and non-central dizziness is shown in Figure 2. In
the ROC analysis, the models achieved an AUROC of 0.730

TABLE 2 | Sensitivity and specificity of the classification models in the

independent test set.

Sensitivity Specificity

A. Threshold at which sensitivity is 99% in training set

Logistic regression 0.992 (0.976–1.000) 0.107 (0.088–0.125)

Support vector machine 0.984 (0.960–1.000) 0.157 (0.136–0.177)

Random forest 0.992 (0.976–1.000) 0.125 (0.108–0.144)

Catboost 0.976 (0.944–1.000) 0.167 (0.146–0.190)

B. Threshold at which sensitivity is 99.9% in training set

Logistic regression 0.992 (0.968–1.000) 0.068 (0.055–0.083)

Support vector machine 0.992 (0.976–1.000) 0.116 (0.099–0.134)

Random forest 0.992 (0.976–1.000) 0.060 (0.046–0.073)

Catboost 1.000 (1.000–1.000) 0.046 (0.034–0.060)

(0.690–0.771) in LR, 0.727 (0.687–0.767) in SVM, 0.726 (0.686–
0.768) in RF, and 0.738 (0.693–0.780) in Catboost, suggesting
moderate predictive accuracy with highest performance by
Catboost but without statistically significant difference among
models. (Catboost vs. LR: p = 0.443; Catboost vs. SVM:
p = 0.263; Catboost vs. RF: p = 0.099). Sensitivity and
specificity were also similar among the models, evaluated
in the independent test set (Table 2). At a classification
threshold of 99% sensitivity in the training set, the models
showed a sensitivity of 97.6–99.2% and a specificity of
10.5–18.6%. At a threshold of 99.9% sensitivity, the models
showed a sensitivity of 99.2–100% and a specificity of 4.6–
8.1%.

Factors Predicting Central Dizziness
Overall feature attributions of the Catboost model were
compared with those of the LR as shown in Figure 3. The
mean Catboost SHAP value was highest for the presence
of a previous stroke history (0.74 ± 0.12), followed by
male (0.33 ± 0.04), presentation as non-whirling-type
dizziness (0.30 ± 0.02), and age (0.25 ± 0.18). The
mean of the absolute values of SHAP was highest for the
presentation of dizziness (0.31 ± 0.02), followed by sex
(0.27 ± 0.06), age (0.25 ± 0.18), and history of previous
stroke (0.14 ± 0.20) in Catboost (Figure 3A). These four
features—presentation of non-whirling-type dizziness,
sex, and age—were also factors with relatively strong
impacts on other algorithms, including LR (Figure 3B and
Supplementary Figure 1).

The difference in the way to use features between LR and
Catboost can be seen in Figure 4. The plots represent how a
single feature affects the classifier according to their values. As
shown in Figure 4, lower than normal systolic BP contributed
to a greater negative prediction for central dizziness, whereas
higher BP, between 125 and 150 mmHg, showed a neutral SHAP
value. Systolic BP over 150 mmHg showed a positive SHAP
value, indicating the model considers patients having the range
of systolic BP at high risk for central dizziness (Figure 4A).
Additionally, diastolic BP under 75 or higher than 125 mmHg
increased the risk for central dizziness (Figure 4C; U-shape
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FIGURE 3 | Feature attributions of all features. Summary plot of SHAP values for all features: (A) Logistic regression (B) Catboost. Each point represents the feature

attribution on the log-odds scale for one patient in the training set. Continuous variables were colored by feature value. In the case of categorical variables, except for

representation of dizziness and sex, the red color denotes a positive (i.e., a patient has the feature), and the blue color denotes negative. F, female; M, male; V, vertigo;

D, dizziness.

curve). Similarly, heart rates lower than 60 and higher than 80
bpm showed positive SHAP values (Figure 4E). However, the LR
model considered that as the value of feature increases [systolic
BP (B), and heart rate (D)] or decreases [diastolic BP (F)], the
feature contributes to increasing the log-odds of central dizziness
linearly. The RF seemed to have a similar pattern as Catboost, and
the SVM appeared to have a smooth curve because of the radial
basis function kernel (Supplementary Figure 2).

DISCUSSION

In the current study, 9% of patients visiting the EMC showed
central dizziness. The ML algorithms designed to predict central
dizziness using simple clinical data obtained from triage showed
moderate predictive accuracy. The presentation type of dizziness
(non-whirling-type dizziness), age (older), sex (male), and
history of stroke (present) were shown to be important factors
for predicting central dizziness in the Catboost model.

Previous studies have differentiated central dizziness from
peripheral causes of vertigo by extensive neuro-ophthalmological
examination, including the head-thrust test, gaze-evoked
nystagmus, and skew deviation (15). These three tests were
proven to be even more sensitive than neuroimaging (15).
However, these tests are typically difficult to apply for non-
neuro-otology specialists. Alternatively, many scoring systems
have been applied to diagnose central dizziness. The modified
ABCD2 (age, BP, clinical presentation, and diabetes) score
showed an AUROC curve of 0.79 (16). Another scoring
system that used eight items, the TriAGE+ score, had an
AUROC of 0.82 (17). However, these scoring systems are
complicated and still require neurological tests, such as testing
for cerebellar dysfunction or focal weakness. Among patients
without weakness, the AUROC of the ABCD2 score was
lowered to 0.63 (17). Considering that ∼10% of patients with
cerebellar infarction present with isolated vertigo (6), it may be
inappropriate to differentiate central dizziness based on these
scoring systems. Our ML-based diagnosis of central vertigo
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FIGURE 4 | SHAP values for a single feature. SHAP values (impact of each feature on the model) of logistic regression and Catboost are represented on the left and

right side, respectively. Systolic blood pressure (A,B), diastolic blood pressure (C,D) and heart rate (E,F). BP, blood pressure.

based specifically on simple clinical information, in the absence
of neurological information, showed strong predictive power in
classifying central dizziness reaching accuracies close to previous
scoring systems.

ML has recently shown promising results in various medical
fields, some of which have been validated in real-world settings
(18). In ML, algorithms are designed to identify important
features and/or complicated relationships between these features
in an attempt to predict or classify response variables; this is
in contrast to rule-based algorithms that use features defined
manually. In the current study, Catboost had the highest AUROC
among the ML models (0.738) and had 16.7% of specificity
at 97.6% of sensitivity and 4.6% of specificity at 100% of
sensitivity. These results indicate that, if the model is used to
differentiate between central dichotomously in practice, 2.4% of
patients with central dizziness would be misdiagnosed, while

16.7% of those with non-central dizziness do not require further
neuroimaging services.

We further uncovered important predictors of central
dizziness and, moreover, how these variables impact the decision
making of the Catboost model using SHAP. Based on our results,
previous stroke history, sex (males), presentation of dizziness,
and age (older) were the most important factors for classifying
central dizziness (Supplementary Figure 1). However, according
to SHAP, other factors, such as heart rate and systolic and
diastolic BP, were still proven to be useful for classifying central
dizziness. However, these factors displayed some differences, with
higher systolic and diastolic BP showing positive SHAP values.
However, lower systolic BP was correlated with lower SHAP
values, whereas lower diastolic BP was associated with higher
SHAP values. Heart rate results were similar to that of diastolic
BP. Patients with low or high heart rates may have a change
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of subclinical arrhythmias that may increase the risk of central
dizziness. SHAP value patterns exhibit non-linear characteristics
using the Catboost model, which is similar to previously observed
effects of blood pressure or heart rate on stroke risk. Meanwhile, a
linear model, such as LR, showed linearly increased or decreased
SHAP values as the variables increase (Figure 4).

There are some noteworthy limitations to this study. First,
this was a single-center study and may have a limitation in
generalizability. Though we included a large number of patients,
consecutively to reduce the bias, external validation may be
needed to strengthen our results. Second, the clinical information
was based on a conservative format that evaluated dizziness
based on the presentation of dizziness and risk factors (19). A
more updated algorithm that delineates dizziness using timing
and triggers may show different results. However, using the
presentation of dizziness and risk factors is still a widely accepted
clinical approach for differentiating central dizziness. Finally,
since ML has an advantage in processing large data, combining
findings with video nystagmography or video oculography may
enhance the predictive power of the algorithms. However,
here we simply used clinical information for the ML input
in an attempt to diagnose central dizziness, a strategy that
may be more applicable for the non-neuro-otology specialists.
Furthermore, as we only used simple data obtainable from
the triage, there was no missing clinical data throughout
the study.

Our results show that ML models for predicting central
dizziness are feasible and require only simple clinical data
and the presentation of dizziness. This tool for diagnosing
central dizzinessmay be extremely helpful for non-neuro-otology
specialists in determining the priorities of urgent patients and
differentiating central dizziness from non-central dizziness in
clinical practice.
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Background and Purpose: This study aims to determine whether machine learning

(ML) and natural language processing (NLP) from electronic health records (EHR) improve

the prediction of 30-day readmission after stroke.

Methods: Among index stroke admissions between 2011 and 2016 at an academic

medical center, we abstracted discrete data from the EHR on demographics, risk factors,

medications, hospital complications, and discharge destination and unstructured textual

data from clinician notes. Readmission was defined as any unplanned hospital admission

within 30 days of discharge. We developed models to predict two separate outcomes,

as follows: (1) 30-day all-cause readmission and (2) 30-day stroke readmission. We

compared the performance of logistic regression with advanced ML algorithms. We used

several NLP methods to generate additional features from unstructured textual reports.

We evaluated the performance of predictionmodels using a five-fold validation and tested

the best model in a held-out test dataset. Areas under the curve (AUCs) were used to

compare discrimination of each model.

Results: In a held-out test dataset, advanced ML methods along with NLP features out

performed logistic regression for all-cause readmission (AUC, 0.64 vs. 0.58; p < 0.001)

and stroke readmission prediction (AUC, 0.62 vs. 0.52; p < 0.001).

Conclusion: NLP-enhanced machine learning models potentially advance our ability

to predict readmission after stroke. However, further improvement is necessary before

being implemented in clinical practice given the weak discrimination.

Keywords: stroke, readmission, machine learning, natural language processing, bioinformatics

INTRODUCTION

Nearly 800,000 patients experience a stroke each year in the USA (1). The cost of initial admissions
for stroke averages US$20,000 while readmissions cost on average US$10,000 (1–3). Reduction
in readmission is, thus, an important target to reduce healthcare costs and improve patient care.
However, several studies have demonstrated that available prediction models for readmission
perform modestly (4, 5). A better understanding of the causes leading to readmission and better
prediction tools may allow hospital systems to better allocate resources to the patients who are
most at risk for readmission (6, 7).
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Prior efforts to stratify risk of readmission have utilized
basic statistical models, such as logistic regression, with modest
results (AUC range: 0.53–0.67) (5, 7, 8). However, these studies
do not report results on a separate held out dataset thereby
not addressing the generalizability of these results. Also, since
these methods are trained and validated on the same datasets,
the results are highly prone to be inflated due to overfitting.
Furthermore, logistic regression base models are incapable of
properly weighing the interactions between the complex variables
in additive analyses (4, 9).

Machine learning (10) (ML) has emerged as a new statistical
approach to overcome the limitation of non-linearity and
improve predictive analysis in healthcare. AdvancedMLmethods
have shown to be superior for predicting readmission in patients
with heart failure (11). Furthermore, natural language processing
(NLP) methods can be utilized to automatically extract much
of the rich but difficult-to-access medical information that is
often buried in unstructured text notes within electronic health
records (EHR). There has been widespread interest to use ML
in conjunction with NLP to build clinical tools for cohort
construction, clinical trials, and clinical decision support (9, 12).
There has been, however, no study to use NLP of clinical notes
and ML to predict readmissions after stroke. We, therefore,
sought to evaluate advancedML algorithms that incorporate NLP
features of textual data in the EHR to improve prediction of 30-
day readmission after stroke.We also seek to evaluate our models
on a separate held out dataset in order to test the generalizability
of our results.

METHODS

Cohort
Using the Northwestern Medicine Enterprise Data Warehouse
(NM-EDW), a database that collects and integrates data from
the EHR at Northwestern Medicine Healthcare (NMHC) system
practice settings, we identified stroke patients hospitalized at
Northwestern Memorial Hospital between January 1, 2011 and
December 31, 2015. Inclusion criteria were age >18 years old.
We defined stroke by ICD-9 codes 430–436 for hemorrhagic
and ischemic stroke, excluding 432.x, and 433.x0, and 435.x
for transient ischemic attack or asymptomatic cerebrovascular
conditions. We excluded patients who expired during index
hospitalization and those with psychiatric admissions due to
privacy restrictions on access to this type of data in the EDW.

Data Extraction
We obtained discrete structured variables and unstructured free-
form text-based clinical notes from the EHR (Cerner, Kansas
City, MO) pertaining to the index stroke hospitalization for
all patients meeting study criteria from the EDW. The EDW
currently contains clinical data on nearly 6.2 million patients
dating back to the 1970s, which can be easily queried at the
individual patient level or for aggregate data and can link
laboratory tests, procedures, therapies, and clinical data with
clinical outcomes at specific points in time.

For discrete variables, we recorded demographics (age, sex,
race, ethnicity, insurance status, marriage status, smoking status),

comorbidities based on ICD-9/10 codes (prior stroke, prior
transient ischemic attack (TIA), hypertension, diabetes, coronary
artery disease, hyper/dyslipidemia, atrial fibrillation, chronic
obstructive pulmonary disease, hypothyroidism, dementia, end
stage renal disease, cancer, valvular heart disease, congestive
heart disease, prior coronary stent or bypass), prior healthcare
utilization (number of ED visits and number of hospitalizations
in the preceding year), stroke type (hemorrhagic vs. ischemic),
length of stay, index hospital stay complications (pneumonia,
mechanical ventilation, and percutaneous gastrostomy tube
placement), discharge disposition, and discharge medications
(e.g., anticoagulants). For non-discrete variables (e.g., text), a data
analyst extracted the notes from the EDW. We included only
a small appropriate subset of report types to identify potential
predictors of readmission: admission, progress, consultation, and
discharge notes. We pre-processed them to make it usable for
machine learning and combined the raw text data with the
discrete data, linking by a common identifier.

Feature Selection
A feature is an individual measurable property or characteristic
of a phenomenon being observed. We built different feature sets
for our predictive models. First, we compiled discrete features,
some of which were used previously in studies of readmission
after stroke (Table 1). We then extracted these features from the
structured data, when available, in the EDW. These 35 discrete
features formed the first feature set. We ranked each feature
based on its importance using feature importance methods.
Specifically, we used xgboost in order to find out the importance
of each feature.

Next, we constructed three different types of NLP features
from the unstructured clinical notes. To do that, we first
pre-processed the notes to remove language abnormalities
and make it usable for feature extraction. Specifically, we
lowercased the text, removed punctuations, and stop words
and non-alphanumeric words. We aggregated all the reports
for each patient and then created a large corpus of all the
aggregated reports from all the patients. We then created a token
dictionary of all the unique important terms from the corpus.

TABLE 1 | List of discrete features extracted from enterprise data warehouse.

Demographics Age, gender, race, ethnicity, marital status, and

insurance status

Risk factors Hypertension, diabetes mellitus, atrial fibrillation, prior

stroke, coronary artery disease, congestive heart failure,

valvular heart disease, coronary artery bypass graft/stent,

end-stage renal disease, hypothyroidism, dementia,

cancer, chronic lung disease, and smoking status

Index stroke

encounter

characteristics

Primary stroke type, initial NIHSS score, initial GCS

score, in-hospital pneumonia, medications (e.g.,

anticoagulants) at discharge, percutaneous endoscopic

gastrostomy, mechanical ventilation, intensive care unit

stay, and discharge destination

Other baseline

factors

Miles from residence to hospital, frequency of hospital

admissions in preceding year, and frequency of stroke

admissions in preceding year
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We experimented with unigrams, bigrams, trigrams, and noun
phrases; however, we found the combination of unigrams and
bigrams to work best. An n-gram is a set of occurring words
within a given window (for example, n = 1 it is unigram, n =

2 it is bigram, n= 3 it is trigram, and so on).
For our first set of NLP features, using the token dictionary,

we transformed the corpus to a patient-token matrix in
which each token (unigram or bigram) is represented by
term-frequency-inverse document frequency (tf-idf). Next,
we used logistic regression with “l1” penalty (LASSO) to
reduce the large dimensionality of features (13). The LASSO
method puts a constraint on the sum of the parameter
coefficient and applies shrinking (regularization) to penalize the
coefficient of non-essential features to zero. We filtered all the

non-zero coefficient features and used them as our second set
of features.

For second set of features, on the patient-token matrix,
we applied principal component analysis (PCA) (14) and
constructed a graph of the variance by cumulative number of
principal components. This graph provided us with the most
effective number of principal components that explained the
most variance in the data set. We then selected these principal
components to form our third set of features.

For final set of features, we ran word2vec (15) on the text
corpus to learn word vectors for each token in our dictionary.We
used genism (16) package and continuous bag of words approach
with standard parameters for running word2vec algorithm. Next,
to construct a patient vector, we summed all the individual token

FIGURE 1 | Description of feature ensemble method.

FIGURE 2 | Description of classifier ensemble method.
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TABLE 2 | Baseline characteristics of the training cohort (n = 2,305) and testing

cohort (n = 550).

Characteristic Training cohort Testing cohort P-value

Mean age in years (SD) 64.4 (16.4) 64.8 (15.1) 0.90

Male sex [n (%)] 1,156 (50.2) 297 (54) 0.11

Race [n (%)]

White 1,156 (50.2) 284 (51.6) 0.09

Black 613 (26.6) 138 (25)

Asian 78 (3.4) 13 (2.4)

American Indian or Alaskan

Native

4 (0.2) 4 (0.7)

Native Hawaiian/Pacific Islander 4 (0.2) 3 (0.5)

Declined, missing, or unknown 233 (10.1) 63 (11.4)

Other 217 (9.41) 45 (8.1)

Hispanic [n (%)] 164 (7.1) 63 (11.4) <0.01

Marital status [n (%)]

Married 1,001 (43.4) 265 (48.1) 0.02

Widowed 253 (11.0) 45 (8.1)

Single 759 (32.9) 157 (28.5)

Divorced 142 (6.2) 33 (6)

Separated 8 (0.3) 1 (0.2)

Unknown, other, or missing 142 (6.2) 49 (8.9)

Insurance status [n (%)]

Private 833 (36.1) 173 (31.5) <0.01

Medicare 1,060 (46.0) 278 (50.5)

Medicaid 182 (7.9) 63 (11.5)

Other or self-pay 230 (10.0) 36 (6.5)

Primary index stroke diagnosis [n (%)]

Ischemic stroke 1,825 (79.1) 416 (75.6) <0.01

Intracerebral hemorrhage 257 (11.1) 94 (17)

Subarachnoid hemorrhage 223 (9.7) 40 (7.3)

Hypertension [n (%)] 1,853 (78.8) 466 (84.7) 0.01

Diabetes mellitus [n (%)] 629 (27.3) 179 (32.6) 0.13

Atrial fibrillation [n (%)] 430 (18.7) 111 (20.2) 0.42

Coronary artery disease [n (%)] 189 (8.2) 30 (5.5) 0.03

Congestive heart failure [n (%)] 232 (10.1) 67 (12.2) 0.15

Valvular heart disease [n (%)] 42 (1.8) 36 (6.5) <0.01

Prior stroke [n (%)] 218 (9.5) 57 (10.3) 0.57

Chronic lung disease [n (%)] 236 (10.2) 48 (8.7) 0.29

Dementia [n (%)] 149 (6.5) 37 (6.7) 0.87

Cancer [n (%)] 180 (7.8) 45 (8.2) 0.75

End-stage renal disease [n (%)] 39 (1.7) 13 (2.3) 0.34

Hypothyroidism [n (%)] 270 (11.7) 56 (10.2) 0.32

Smoking [n (%)]

Current 363 (15.7) 76 (13.8) 0.03

Former 595 (25.8) 115 (20.9)

Non-smoker 1,224 (53.1) 328 (59.6)

Missing or other 123 (5.3) 31 (5.6)

Any prior hospitalization [n (%)] 1,428 (61.0) 324 (58.9) 0.37

Median initial NIHSS score (IQR) 2 (0–6) 2 (0–6) 0.09

Median initial GCS (IQR) 15 (14–15) 15 (14–15) 0.10

Missing [n (%)] 83 (3.6) 22 (4) 0.65

Intensive care unit stay [n (%)] 1,166 (50.6) 306 (55.64) 0.04

(Continued)

TABLE 2 | Continued

Characteristic Training cohort Testing cohort P-value

Inhospital pneumonia [n (%)] 108 (4.7) 24 (4.4) 0.76

Mechanical ventilation [n (%)] 226 (9.8) 49 (8.9) 0.52

Gastrostomy [n (%)] 153 (6.6) 35 (6.3) 0.80

Discharge destination [n (%)]

Home 1,659 (72.0) 350 (63.6) <0.01

Acute inpatient rehabilitation 429 (18.6) 148 (26.9)

Skilled nursing facility or

long-term facility

153 (6.6) 33 (6)

Other hospital or against medical

advice

64 (2.8) 19 (3.45)

Any unplanned readmission

within 30 days [n (%)]

337 (14.6) 62 (11.5) 0.04

Stroke readmission within 30

days [n (%)]

124 (5.4) 24 (4.5) 0.33

vectors for each token present in each patient’s report. Doing this,
each patient is then represented by a single vector, which formed
our fourth and final set of features.

Definition of Outcomes
Readmission was defined as any unplanned inpatient
hospitalization for any cause after index stroke hospitalization
discharge. We excluded planned or scheduled readmissions,
emergency department visits without admission, and observation
visits. Using the date of index stroke hospital discharge and date
of readmission, we identified unplanned readmissions occurring
within 30 days of hospital discharge.

Predictive Models
We developed models to predict two separate outcomes: (1) 30-
day all-cause readmission and (2) 30-day stroke readmission.
For each of these outcomes, we trained different predictive
models and compared them with each other. In addition, we
also used different types of features for each of predictive models
as discussed above. Thus, our study not only evaluates the
performance of different predictive algorithms but also the added
value of different types of features. We trained a number of
different base predictive models as well as several hierarchical
predictive models to enhance predictive performance. The base
models included logistic regression (17), naïve Bayes (18),
support vector machines (19), random forests (18), gradient
boosting machines (20), and finally extreme gradient boosting
(XGBoost) (21). We trained each of these models for each
of the feature types and compared the performance across
multiple models.

For our first hierarchical model (Figure 1), we combined all
the features in the dataset to form a “super” feature set and then
trained each of the base models on top of it. In addition, we
combined the results from each of these base models and using
those as features, we trained another meta-classifier model. We
experimented with logistic regression as well as XGBoost for
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meta-classifier, but we found logistic regression to perform better.
We designated this model a feature ensemble model.

Next, for our final model (Figure 2), instead of combining all
the features, we concatenated results from the best performing
model on individual features. We used the predictions from
each of these models as features to train a meta-classifier. This
technique is known as stacking (22) wherein outputs from base
predictive models are combined to form a feature set which is
then used to train another level 2 classifier. We designated this
method a classifier ensemble model.

Validation and Evaluation
To avoid over-fitting, we performed five-fold cross-validation
(23). Cross-validation, also called rotation estimation, is a
technique to evaluate predictive models by partitioning the
original sample into a training set to train the model and a
validation set to evaluate it. In k-fold cross-validation, the original
sample is randomly partitioned into k equal size subsamples. Of
the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining k-1 subsamples
are used as training data. The cross-validation process is then
repeated k times (the folds), with each of the k subsamples used
exactly once as the validation data. The results from the folds
can then be averaged (or otherwise combined) to produce a
single estimation. We also performed hyper-parameter tuning
for our base model within each fold using “hyperopt” python
package (24).

In order to test true generalizability of our results, we obtained
another dataset spanning from January 1, 2016 to December 31,
2016. We pre-processed it the same way as we did for training
data we used for 5-fold cross validation. Next, we trained the best
performing models for both outcomes on all the training data

and performed the trained model in the test dataset to generate
final predictions. We also bootstrapped the test dataset over 50
iterations to generate confidence intervals.

To evaluate the performance of each model, we estimated area
under the curve or AUCs from receiver operating characteristic
curve analysis. We also compared the best performing model
with the baseline logistic regression model of discrete variables
alone. p-values < 0.05 were considered significant in all analyses.

Interpretability of NLP Features
To evaluate which NLP-based features were helpful in the
prediction model, we ranked the bag of words features according
to the feature importance given by the model.

Standard Protocol Approvals,
Registrations, and Patient Consents
This study was approved by the Institutional Review Board of
Northwestern University. Informed consent was waived for this
retrospective data analysis.

Data Availability
All data not presented in this paper will be made available
in a trusted data repository or shared at the request of other
investigators for purposes of replicating procedures and results.

RESULTS

After pre-processing and combining various data files, we had
2,305 patients for training and 550 patients for testing. The
mean age for training cohort and testing cohort was 64.4
and 64.8 years, respectively. The training and testing datasets
were similar except the testing set contained more Hispanic,

FIGURE 3 | Comparison of models to predict 30-day all-cause readmissions.
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government-insured, married, hypertensive, cardiac disease, and
intracerebral hemorrhage patients with more ICU days; the
testing set also contained more patients who required acute
inpatient rehabilitation at discharge (Table 2).

In training cohort, there were 337 patients (14.6%) with all-
cause readmission within 30 days and 124 patients (5.4%) with
stroke readmission within 30 days. In testing cohort, there were
62 patients (11.3%) with all-cause readmission within 30 days
and 24 patients (4.4%) with stroke readmission within 30 days.
We collected ∼28,500 different patient reports for the training
data set and 6,606 reports for the test dataset. We extracted 35
discrete features, 250 principal components features, 400 word-
vector features, and 200 bag of words features for all patients in
both cohorts.

For all-cause readmission (Figure 3), a model using logistic
regression using discrete features had AUC of 0.58 (95%CI, 0.57–
0.59). In comparison, XGBoost outperformed logistic regression
using the same discrete features with an AUC of 0.62 (95%
CI, 0.61–0.63). Using NLP-based features, we obtained similar
results with XGBoost performing best with bag of words features
(AUC, 0.61; 95% CI, 0.60–0.62), logistic regression performing
best with PCA features scoring (AUC, 0.61; 95% CI, 0.59–0.62),
and XGBoost performing best with word-vector-based features
(AUC, 0.60; 95% CI, 0.59–0.61). Ensemble model performed best
with feature ensemble method (AUC, 0.64; 95% CI, 0.62–0.66)
and classifier ensemble method (AUC, 0.65; 95% CI, 0.62–0.66).
We performed the trained classifier ensemble model in the test
dataset with bootstrapping over 50 iterations, which resulted in
an AUC of 0.64 (95% CI, 0.63–0.65).

We obtained similar results for 30-day stroke readmissions
(Figure 4). Logistic regression with discrete features formed
modest baseline with AUC of 0.52 (95% CI, 0.51–0.53). XGBoost

outperformed logistic regression using discrete features alone
with AUC of 0.58 (95% CI, 0.56–0.59). The models using the
best NLP-based features produced AUCs of 0.61 (95% CI, 0.59–
0.63), 0.60 (95% CI, 0.59–0.62), and 0.58 (95% CI, 0.57–0.59) for
bag of words features, PCA features, and word-vector features,
respectively. Ensemble methods were again the best performing
models with AUCs of 0.63 (95% CI, 0.6–0.65) and 0.64 (95% CI,
0.62–0.66) for feature ensemble model and classifier ensemble
models, respectively. Performed on the test set, we obtained an
AUC of 0.62 (95% CI, 0.61–0.63) using classifier ensemble.

Some of the NLP features that were ranked higher
in importance by the model were as follows: “stenosis,”
“encephalomalacia,” “craniectomy,” “encephalomalacia,” “mild
calcified atherosclerotic,” “hypoattenuation white matter,” and
“chiari ii malformation.”

DISCUSSION

Given the burden of readmission on the patient and the
healthcare system, improving prediction of readmissions with
a goal of preventing them is of major importance. A prior
study estimated that the cost to Medicare of unplanned
rehospitalizations in 2004 was $17.4 billion (25). Readmission to
the hospital within 30 days after stroke is also associated with
1-year mortality and serves as a quality metric across specialties
under the guidance of the Affordable Care Act (3, 26).

Currently, clinician judgment and simple mathematical
models are able to onlymodestly predict readmission after stroke.
In our study, the baseline model that used logistic regression
and discrete variables resulted in poor discrimination of 30-
day readmission, a result that is consistent with prior studies
(5, 7, 8). While NLP-enhanced ML models advance conventional

FIGURE 4 | Comparison of models to predict 30-day stroke readmissions.
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approaches, further improvement is necessary before these
predictive models can be implemented in practice given the weak
discrimination. Our finding is similar to another study using
machine learning in readmission after heart failure (11).

Given the challenges in accurate prediction of 30-day
readmission even using modern machine learning approaches,
grading and penalizing hospitals on this metric may not be
justifiable. Indeed, hospitals may be forced to “game” the system
by increasing observation status visits and avoid penalties at the
cost of increasing mortality as a recent study in heart failure
patients found (27). Therefore, the penalties facing hospitals seem
misguided until such a time when readmission prediction is
more robust.

Machine learning is able to weigh the interactions between
complex variables in additive analysis to produce better
prediction models. In addition, the use of NLP in medicine
may be revolutionary. Untangling the complex data within
clinical notes and other non-discrete and unstructured
data could be valuable in tackling a myriad of research
questions. Our advanced models could further ongoing machine
learning efforts across specialties to better identify patients for
clinical trials, radiologic findings in neurologic emergencies,
dermatologic-related malignancies, automatic infectious disease
prediction in the emergency room, and outcomes in psychiatric
admissions (28–32).

The strengths of our study include a five-fold cross-validation
technique to avoid overfitting. The internal validity of our results
was further tested by obtaining a second dataset not used in
the derivation and validation steps. We also bootstrapped the
test dataset over 50 iterations to generate confidence intervals.
Our study, however, has limitations. ML algorithms are also
limited by the data that are fed into them such that data that
are not commonly reflected in the EHR, such as psychosocial
factors, post-discharge care coordination, detailed social support
post-hospitalization, and post-stroke rehabilitation care are not
accounted for in our study. Prior studies suggest including
post-acute care data improve prediction of readmission (5, 33).
Healthcare systems across the country are heterogeneous, and
the variables we used may be non-uniformly available at other
hospitals. External validation of our results is necessary. An
additional limitation of a single-center cohort is the potential
for incomplete follow-up (e.g., care fragmentation leading to

admission at another hospital in the region) resulting in an
underestimation of readmission rates. However, a recent Chicago
multihospital study noted a low rate of care fragmentation
(34). There are several differences between the two datasets: the
training dataset as it was later chronologically noted changes
in the health system and stroke program. These differences
may result in error in trained model validation. However,
it does provide some measure of external validation as the
model performed well. Nevertheless, formal external validation
of the model is recommended. In addition, these algorithms
require large volume, structured pools of data. Approximately
80% of EHR data is composed of provider notes. Our use
of NLP provided a tool for deconstructing these language
blocks; however, sufficient time is required to design and train
these programs (9). Lastly, these programs lack the clinical
insight that is essential for unsupervised implementation, and
with any “black box” program, results must be interpreted
cautiously (11).

SUMMARY

In summary, we demonstrated a modest added utility of
NLP-enhanced ML algorithms to improve prediction of 30-
day readmission after stroke hospitalization compared with
conventional statistical approaches using discrete predictors
alone. While these results are encouraging, further work is
required. Given the challenges in predicting readmission after
stroke even using the most advanced techniques, the current
penalties applied to hospitals for unplanned readmissions should
be reevaluated.
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Aim: To use available electronic administrative records to identify data reliability, predict

discharge destination, and identify risk factors associated with specific outcomes

following hospital admission with stroke, compared to stroke specific clinical factors,

using machine learning techniques.

Method: The study included 2,531 patients having at least one admission with a

confirmed diagnosis of stroke, collected from a regional hospital in Australia within

2009–2013. Using machine learning (penalized regression with Lasso) techniques,

patients having their index admission between June 2009 and July 2012 were used

to derive predictive models, and patients having their index admission between July

2012 and June 2013 were used for validation. Three different stroke types [intracerebral

hemorrhage (ICH), ischemic stroke, transient ischemic attack (TIA)] were considered

and five different comparison outcome settings were considered. Our electronic

administrative record based predictive model was compared with a predictive model

composed of “baseline” clinical features, more specific for stroke, such as age, gender,

smoking habits, co-morbidities (high cholesterol, hypertension, atrial fibrillation, and

ischemic heart disease), types of imaging done (CT scan, MRI, etc.), and occurrence

of in-hospital pneumonia. Risk factors associated with likelihood of negative outcomes

were identified.

Results: The data was highly reliable at predicting discharge to rehabilitation

and all other outcomes vs. death for ICH (AUC 0.85 and 0.825, respectively),

all discharge outcomes except home vs. rehabilitation for ischemic stroke, and

discharge home vs. others and home vs. rehabilitation for TIA (AUC 0.948 and

0.873, respectively). Electronic health record data appeared to provide improved

prediction of outcomes over stroke specific clinical factors from the machine

learning models. Common risk factors associated with a negative impact on

expected outcomes appeared clinically intuitive, and included older age groups,
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prior ventilatory support, urinary incontinence, need for imaging, and need for allied

health input.

Conclusion: Electronic administrative records from this cohort produced reliable

outcome prediction and identified clinically appropriate factors negatively impacting most

outcome variables following hospital admission with stroke. This presents a means of

future identification of modifiable factors associated with patient discharge destination.

This may potentially aid in patient selection for certain interventions and aid in better

patient and clinician education regarding expected discharge outcomes.

Keywords: electronic records, stroke outcomes, machine learning, discharge destinations, stroke mortality

INTRODUCTION

The use of electronic administrative records has become
widespread in many settings in recent years. This includes
the primary care setting and hospital environment (1).
Administrative data in the Australian setting may be in the
form of mandatory hospital collected data relating to every
hospital episode of care, with the data reported to state health
departments, in order to inform health care delivery, resourcing,
and financial allocation (2). Administrative datasets include
primary and secondary diagnosis codes, coding related to
comorbidities, discharge destination, and other demographic
data. The ability to harness this data to improve patient care,
predict outcomes, and identify risk factors for recurrent disease
and readmission means that this has become an important area
for research and health metrics (3). The heterogeneity of the
data and data systems themselves mean that close collaboration
between clinicians and analysts is required. Identifying the type of
data available and applying this to appropriate clinical questions
not yet answeredmakes this exciting future area of endeavor. This
also increases the importance of accurate data collection. Even
more vital is the capture of disease specific factors.

Despite the apparent decrease in stroke incidence, in an
aging population, stroke survival, and prevalence is increasing
(4, 5). This dramatically increases the societal burden of care.
Importantly, stroke outcomes are significantly affected by timely
hyperacute therapies such as thrombolysis and endovascular clot
retrieval for ischemic stroke (6–8), admission to a specialized
stroke unit setting (9), appropriate imaging and secondary
prevention therapies (10), dysphagia screening, and early
mobilization (11). These interventions directly impact the need
for rehabilitation or other discharge outcomes, including the
potential need for long-term high-level care, and mortality (12).
Understanding the factors contributing to functional outcome
after stroke provides a potential target for clinicians to alter
their management of patients (13). It is important to clarify if
these strategies are routinely implemented through available data
and audit processes, which may be best performed by disease
specific quality clinical registries (14). Whilst the interventions
above are well-proven to influence outcomes and also result
in a reduction in hospital length of stay and readmission (15),
there may be other novel factors during the admission process
that have not been previously captured or studied. Analysis of

available administrative datamay identify process, structural, and
outcome measures not previously recognized.

It is important to acknowledge the limitations of
administrative datasets. Functional outcome data for stroke
from administrative data may not be well-documented at
any stage in the collection process. Stroke severity such as
the NIHSS score may not be routinely captured or mandated
and is known to directly impact outcomes (12, 15). Standard
functional scoring such as the modified Rankin score or Barthel
index may not be well-recorded and are not mandated in
the electronic data. At best, in some cases, we may only be
able to use proxy markers of function, such as in-hospital
mortality, or discharge destination. Whilst these surrogate
outcomes are well-captured from administrative data, they
may not illustrate functional status comprehensively and
in particular relation to stroke outcomes, do not inform
around the 3- or 12-month clinical status, often used to assess
the benefits of interventions in stroke patients. However,
the systematic methods used, relatively complete capture
of admitted patient data and system wide data collection
in administrative datasets make these compelling sources
to utilize.

Using machine learning techniques to answer health related
questions presents a unique and powerful option for improving
diagnosis, treatment, and outcome measures. There are also
opportunities for identifying predictive factors impacting patient
outcomes. Knowledge regarding patient and other factors
associated with certain outcomes may allow future application of
measures that influence patient care.

AIMS

We sought to use data from existing electronically collected
administrative records to identify risk factors associated with
specific outcomes for patients with stroke (both ischemic and
hemorrhagic) admitted to a large regional hospital, in Victoria,
Australia. In addition, we sought to evaluate the utility of
using a large array of available electronic health record data
from a cohort of patients, when compared to a cohort of
patients with available stroke specific clinical factors, to predict
discharge outcomes following hospital admission with stroke,
using machine learning techniques.
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METHODS

Study Setting
Barwon Health is a large regional tertiary hospital, located
in Geelong, approximately 1 h to the west of Melbourne,
the second most populous city in Australia. This health
service provides public hospital care to the population of
Geelong and surrounding regional areas. The hospital includes
a comprehensive neurology service, including acute stroke
thrombolysis, dedicated specialized and geographically located
stroke unit, and high-level imaging facilities available for acute
stroke investigation. The benefits of evaluating this patient cohort
include that the majority of patients with stroke are admitted
to the public hospital, via the emergency department, rather
than local private hospitals. Nearly all cases were likely to be
captured for this region as a result. Stroke units in Australia do
not currently require formal stroke unit certification, however,
designated stroke units are required to adhere to a number of key
elements defined in the national stroke services framework (16).

We obtained a comprehensive selection of data fields from the
routinely collected electronic administrative data from Barwon
Health, for the period 2003–2014. Administrative data refers
to both coding and demographic data and is reportable to the
state Department of Health and Human Services (2, 17). We
analyzed data based on all patients with an admission diagnosis
of stroke, using ICD 10 coding nomenclature. Due to the lack
of stroke specific data on functional outcomes after the incident
event, surrogate outcomes of discharge destination, and in-
hospital mortality were thought to be the most appropriate
markers of outcome. Comparisons were made between patient
admission source i.e., from home, rehabilitation, nursing home,
other hospital, and discharge destination, including death in
hospital. The comparisons were performed in order of perceived
severity of the outcome. Patient admission source is a defined
variable collected for all hospital admitted episodes, as opposed
to their discharge destination. By ascertaining relevant factors
contributing positively or negatively to our defined outcomes,
we hoped to be able to understand novel patient, investigation,
and management factors associated with our outcomes. Prior
ethics approval had been provided for all data use and
analysis between Barwon Health and Deakin University in an
institutional agreement.

Dataset
The patient cohort consisted of 2,531 patients with confirmed
diagnosis of Stroke or TIA admitted between July 2009 and June
2013. A stroke admission was defined by ICD-10 codes G46, I60-
69, G450-453, and G458-459 in the discharge diagnoses (either
primary or secondary). For each patient, the index admission
was defined as the first stroke admission of the patient starting
from 1st January 2009. Patient records available from Barwon
Health admissions prior to the index admission were available
and were used to construct independent variables. Available data
from index admissions and prior admissions included all data
reportable to the state Department of Health andHuman Services
as part of mandatory hospital reporting (2, 17). Our dataset was
not able to capture admission data outside of Barwon Health

admissions i.e., was not linked to private hospital admissions or
admissions to other public institutions. The outcome considered
was the discharge destination (home, rehabilitation, or nursing
home) if the patient is alive, or death if the patient had died
during hospitalization.

Data Analysis
We considered all available administrative hospital data
including static information (age, gender, occupation, insurance
types), and time-stamped events associated with emergency
visits, hospitalizations, radiological tests, length-of-stay,
emergency attendance time, primary and secondary diagnoses,
and procedures. The use of cerebral imaging such as CT and
MRI in stroke evaluation is an important process measure in
helping to accurately diagnose and manage patients and was
felt important to include in the analysis. Medication usage data
was not available from our dataset. Age was coded as a binary
variable (i.e., the age variable or not) in one of 10-year intervals,
in line with other stroke community and cohort studies (18, 19).
Occupation was a binary of value 1 if it was either pensioner,
retired, or home duties and 0 otherwise. Time-stamped events
were aggregated over two periods of time prior to the index
admission: 0–12 months and beyond 12 months. This resulted in
a total of 1,303 features. Models were built to analyse the factors
associated with different outcomes [e.g., in-hospital death vs.
others (i.e., Discharge to home, Rehabilitation, Nursing home),
Discharge to home vs. others] using penalized logistic regression
with Lasso (20).

We split the data in time (external validation) with data from
July 2009 to June 2012 for derivation of predictive models and
July 2012 to June 2013 as validation. Confidence intervals were
computed based on 100 bootstrapped derivation cohorts from
the original derivation cohorts using sampling with replacement.

Five different comparison settings for each of the three sub-
cohorts of stroke [intracerebral hemorrhage (ICH), ischemic
stroke, transient ischemic attack (TIA)] are considered, by
evaluating factors likely to be associated with the defined
outcomes, vs. other outcomes.

• Discharge to home vs. others (rehabilitation, nursing home,
in-hospital death) out of all patients

• Discharge to rehabilitation vs. home for patients either
discharged to home or rehabilitation

• Discharge to nursing home vs. rehabilitation for patients either
discharged at nursing home or rehabilitation

• Discharge to nursing home vs. death
• In hospital death vs. discharge to all other places (home,

rehabilitation, nursing home)

Where there were small sample sizes, data were collapsed
together for the purposes of comparison.

All data processing was performed off-line using a commercial
software package (MATLAB, Statistics Toolbox, TheMathWorks
Inc., 1994–2014). Prediction accuracy is expressed as the area
under the receiver operating characteristic curve (AUC). Missing
data were imputed.

Two feature sets were constructed:
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1. Features constructed from the electronic administrative
record which included all available detailed diagnosis,
procedure, and administrative data. This included stroke
and TIA related diagnostic codes (I60–I69, G45) relating
to primary diagnosis, secondary (comorbidity) diagnostic
codes, and all available procedure codes relating to patient
admissions. The number of variables was 1,303 (some
examples of the types of features included can be seen in the
data items listed in the Appendix Figures).

2. Features constructed from more stroke specific clinical
data such as age, gender, smoking habits, co-morbidities
(hyperlipidaemia, diabetes, hypertension, atrial fibrillation,
and ischemic heart disease), types of imaging done (CT
scan, MRI, etc.,—an important stroke management process
marker), and occurrence of in-hospital pneumonia. Specific
stroke risk factors such as alcohol use, anticoagulant use, and
obesity are not included in the routine data collection.

RESULTS

We derived prediction results for three subcohorts of stroke
patients (ICH, ischemic stroke, and TIA) in five different
settings, as outlined above. All results presented are based
on the validation cohort, unless otherwise specified. Patient
characteristics and discharge destinations are summarized in
Tables 1, 2.

The percentage of stroke type found in our cohort is similar to
other cohorts. The occurrence of “Not specified” diagnostic codes
highlights a key problem in using administrative datasets and is
identified as a limitation in other cohort studies (21).

The percentage of patients with specified comorbidities
is again similar to other cohort studies (4, 22), although
the percentage with IHD was lower. In relation to imaging,
100% of patients underwent imaging with CT scan of the
brain, as is standard clinic practice in patients with suspected
stroke or TIA, in order to ascertain presence of infarction
or hemorrhage, as well as other causes of potential stroke
mimics. The majority of patients had a length of stay of
between 1 and 5 days, in keeping with findings from local acute
stroke audits.

We sought to identify specific predictive factors from
our analysis associated with the outcomes we have studied.
These factors were items from our administrative data,
presented in the figures below as both positively and
negatively weighted variables. Table 6 below summarizes
factors found to negatively impact the outcome presented.
For example, for patients with ICH, patients were less likely
to be discharged home vs. to all other discharge destinations
(rehabilitation, nursing home, or die in hospital) in older
age groups (80–90 years old), had had prior ventilatory
support, a history of urinary incontinence, or diagnosis
of SAH.

Figures in the Appendix below identify all factors from
the administrative dataset that both positively and negatively
impact the outcomes being studied and represent weights of the
linear model.

TABLE 1 | Patient characteristics.

No. of patients 2,531 %

Males 1,346 53.2

Females 1,185 46.8

Mean age 72.9 (18.4–99.8)

<50 years 1.5

50–59 years 9.6

60–69 years 24.5

70–79 years 24.2

80–89 years 32.2

90–99 years 8.0

Stroke type

Transient ischemic attack 25.1

Intracerebral hemorrhage 14.6

Ischemic stroke 37.7

Aneurysm 0.9

Not specified 21.8

Comorbidities

Hypertension 52.5

Atrial fibrillation 15.4

Hyperlipidaemia 6.7

Smoking 13.8

Ischemic heart disease 8.4

Imaging

CT brain 100

X ray chest 91.8

US carotid doppler 43.8

MRI brain 36.8

Length of stay 1–5 days 99.1

>5 days 0.9

TABLE 2 | Discharge destination.

Discharge destinations %

Home 58.9

Rehabilitation 24.5

Nursing home 5.1

In hospital death 9.4

DISCUSSION

Our goal was to compare the utilization of an electronic health
record model constructed using a general set of coding data and
demographic data, with a model based on a specifically selected
set of clinically recognized features, in identifying data reliability,
predict discharge destination, and identify risk factors associated
with specific outcomes following hospital admission with stroke.
Analysis using the electronic health record data provided better
prediction of outcome and use of stroke specific factors did not
appear to improve the model’s reliability. When comparing the
data from Tables 4, 5, our data was highly reliable in predicting
outcomes in patients with ICH of discharge to rehabilitation
vs. nursing home or death, as well as all other discharge
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TABLE 3 | Percentage of patients that fit the model in the derivation cohort under

five different prediction settings for three sub-cohorts of stroke.

Intracerebral

hemorrhage

Ischemic stroke TIA

Home vs. others 16.5% (357) 47.1% (830) 87.5% (659)

Home vs. rehab 24.6% (240) 57.8% (677) 93.8% (531)

Rehab vs. nursing

home or death (nursing

home and death

collapsed due to small

sample size)

60.7% (298) 65.2% (437)

Nursing home vs.

death

17.8% (117) 35.3% (153)

Others vs. death 26.9% (357) 11.9% (830)

Where there are missing outcomes in the table, this denotes scenarios where derivation

is difficult due to the lack of sufficient number of patients. The numbers in parentheses

denote total patient numbers in the derivation category for that pair of outcomes.

outcomes vs. death. In ischemic stroke, the data was reliable
at predicting discharge home vs. other outcomes, discharge to
rehabilitation vs. nursing home or death, discharge to nursing
home vs. death, and all other outcomes vs. death. For TIA, the
data proved reliable in predicting discharge home and to home
vs. rehabilitation.

There are several problems in using electronic administrative
records data to identify risk factors and predict outcomes. The
amount of electronic data collection contained in these datasets
is copious, and there is significant risk in misinterpreting data
if it is not disease specific. The complexities of interactions
between patient demographic, diagnostic, imaging, procedural,
and outcome data may be difficult to interpret. If there is
a small group of well-known risk factors, which have been
expertly evaluated or have a sound scientific or peer reviewed
connection with the research question or patient group, this
may be applied in the analysis. Another method may be to
examine a larger group of risk factors and determine their
statistical significance and predictive power, and hence refine
these to the patient population, using regression methods.
However, this method again may not be disease specific. The
risk factors used in any analysis may be too limited for
the data available, and too much data may make the results
noisy or uninterpretable. There are inherent differences in
risk factors, measures of severity, and specific management
strategies for ischemic stroke/TIA and hemorrhagic stroke,
which may be useful to capture in any comprehensive
medical record.

The use of logistic regression with Lasso is a common
linear classifier method that is also suitable for feature selection.
The models obtained are likely to be more parsimonious
than logistic regression alone. Our aim was to contribute to
understanding about the utility of using electronic health record
data for clinical prediction, rather than use of different machine
learning methods.

Although we understand risk factors such as age, gender,
and co-morbidities well in terms of their likely effect on

outcomes in stroke patients, the highly detailed data collected
by the hospital data warehouse, both for reporting, planning,
and financial purposes, means there are likely to be novel
but useful predictive factors identified from analyses like
this one. Of interest from our list of identified predictive
factors for discharge destination were the findings of prior
factors in patient histories including prior ventilatory support,
imaging factors, respiratory and urinary tract conditions,
and allied health input. These novel past history and
other elements may indicate new and innovative areas to
focus on, guiding clinically, and patient relevant insights
and exploration.

Note that factors for Nursing Home vs. Rehabilitation and
Death vs. Others for patients with TIA are not presented since
the predictive models are unstable (as seen by the lack of valid
data in Table 3).

The burden of stroke is significant, and recurrent events
may add significantly to pre-existing disability, with further
acute healthcare, career, and economic impact. Being able to
better identify factors associated with poorer outcome can help
clinicians intensify efforts in certain areas. Predictive measures
can be factored into clinical care paradigms in situations where
the data is reliable and serve as an additional tool.

Many of the identified factors from the model felt to influence
the outcomes in question appear clinically intuitive. Older
age group, the need for allied health and complications of
illness such as pneumonitis the clinician understands have a
substantial impact on good outcomes in patients with stroke
and other diseases. However, understanding these specific
factors may help us to better define which patients require
more attention or intervention, and supports the strength of
the dataset. Some of these factors are not modifiable but
can help us in prognostication and better informing patients
and families.

One of the limitations of this study was the lack of
an available functional outcome measure in the electronic
data, leading to the use of “surrogate” markers of function
on discharge from the acute event. The use of clinically
important scores such as the modified Rankin score and
NIHSS (23) in most stroke outcome studies is not possible
using the current dataset and highlights the important areas
of deficit in clinically relevant/disease specific measures from
administrative data. The lack of important imaging data such
as stroke infarct volume, and stroke specific treatments, is also
a barrier.

CONCLUSION

The electronic administrative record data for our stroke cohort
appeared reliable in outcome prediction for most patients
and for different stroke types, when based on discharge
destination. Risk factors having a negative impact on the
defined discharge destinations provide useful and intuitive
patient factors which could allow therapeutic intervention and
a clearer understanding of which patients are more likely to
have better clinical outcomes following an index stroke. In
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TABLE 4 | AUC of prediction for three different sub-cohorts of stroke at five different settings.

Intracerebral hemorrhage Ischemic stroke TIA

Home vs. others 0.604 (0.404–0.791) 0.803 (0.746–0.891) 0.948 (0.901–0.955)

Home vs. rehab 0.600 (0.418–0.783) 0.752 (0.683–0.820) 0.873 (0.749–0.996)

Rehab vs. nursing home or death 0.850 (0.737–0.963) 0.818 (0.736–0.801)

Nursing home vs. death 0.550 (0.245–0.855) 0.902 (0.777–1.00)

Others vs. death 0.825 (0.698–0.952) 0.881 (0.804–0.959)

The features used are constructed from the electronic administrative record. 95% CI for reported AUC is presented in the respective parenthesis. Results with missing values implies

invalid CI associated with unstable models, generally resulted from lack of sufficient data.

TABLE 5 | AUC of prediction for three different sub-cohorts of stroke at five different settings.

Intracerebral hemorrhage Ischemic stroke TIA

Home vs. others 0.459 (0.285–0.634) 0.702 (0.634–0.769) 0.794 (0.585–1.00)

Home vs. rehab 0.296 (0.131–0.462) 0.636 (0.558–0.714) 0.729 (0.283–0.996)

Rehab vs. nursing

home or death

0.504 (0.346–0.661) 0.767 (0.674–0.860)

Nursing home vs.

death

0.625 (0.369–0.881) 0.778 (0.586–0.970)

Others vs. death 0.583 (0.424–0.742) 0.808 (0.718–0.899)

The features used are stroke specific clinical data. 95% CI for reported AUC is presented in the respective parenthesis. Results with missing values implies invalid CI associated with

unstable models, generally resulted from lack of sufficient data.

TABLE 6 | Selected predictive factors associated with the prediction models.

Discharge home vs.

other outcomes

Discharge home vs.

to rehabilitation

Discharge to

rehabilitation vs.

nursing home or

death

Discharge to nursing

home vs. death

All other discharge

outcomes vs. death

ICH Older age group

(80–90), prior

ventilatory support,

urinary incontinence,

SAH

SAH, prior ventilatory

support, prior CT

imaging, urinary

incontinence, older age

group

Prior admission from

emergency to the ward,

prior CT brain/cervical

spine, older age group,

prior ventilatory support

Prior ventilatory

support, age 70–80,

male gender, SAH

Ventilatory support, age

>90, prior CT

brain/cervical spine,

age 80–90, past

admission from

emergency to ward

Ischemic stroke Urinary retention,

hemiplegia, age group

80–90, allied health

input as inpatient, chest

X-ray, pneumonitis

Urinary retention,

inpatient allied health

involvement,

hemiplegia, older age

group (80–90)

Older age group (>90),

pneumonitis, other

intestinal disorders, and

restlessness/agitation

Other medical care

(Z51)*, prior ventilatory

support, pneumonitis,

unspecified threat to

breathing, chest X-ray,

and hemiplegia

Other medical care,

pneumonitis, chest

X-ray, and unspecified

threat to breathing

TIA Older age group (>90),

cerebral infarction

diagnosis,

disorientation, prior

allied health care and

diagnosis of

syncope/collapse

Older age group (>90),

diagnosis of cerebral

infarction,

syncope/collapse, and

prior allied health

involvement

N/A* N/A* N/A*

Factors are those having a negative impact on the outcome in question.

*The other medical care (Z51) diagnosis is very broad—includes radiotherapy session, chemotherapy session, blood transfusion without reported diagnosis, preparatory care for

subsequent treatment, palliative care, desensitization to allergens, other specified medical care, medical care unspecified.
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future, the availability of more stroke specific clinical factors
in the dataset, including better clinical outcome variables, will
likely aid in improving the validity of our data for analysis
and prediction.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily
available because the raw data outputs are no longer
available due to changes in University and health service

agreements. Requests to access the datasets should be directed
to benc73@hotmail.com.

AUTHOR CONTRIBUTIONS

All authors contributed to conception and design of the study.
SR, WL, TT, DP, and BC organized the database. SR, WL, TT,
DP, and SV performed the statistical analysis. BC wrote the first
draft of the manuscript. All authors contributed to manuscript
revision, read, and approved the submitted version.

REFERENCES

1. Dregan A, Toschke MA, Wolfe CD, Rudd A, Ashworth M, Gulliford

MC. Utility of electronic patient records in primary care for

stroke secondary prevention trials. BMC Public Health. (2011)

11:86. doi: 10.1186/1471-2458-11-86

2. Victorian Admitted Episodes Dataset: Department of Health and Human

Services, State Government of Victoria. (2015). Available online at: https://

www2.health.vic.gov.au/hospitals-and-health-services/data-reporting/

health-data-standards-systems/data-collections/vaed (accessed June, 2015).

3. Frisher M, Short D, Bashford J. Determining patient characteristics

for decision analysis support systems using anonymized

electronic patient records. Health Informatics J. (2010) 16:49–

57. doi: 10.1177/1460458209353559

4. Clissold BB, Sundararajan V, Cameron P, McNeil J. Stroke incidence

in Victoria, Australia—emerging improvements. Front Neurol. (2017)

8:180. doi: 10.3389/fneur.2017.00180

5. Jamrozik K, Broadhurst RJ, Lai N, Hankey GJ, Burvill PW, Anderson CS.

Trends in the incidence, severity, and short-term outcome of stroke in perth,

Western Australia. Stroke. (1999) 30:2105–11. doi: 10.1161/01.STR.30.10.2105

6. The National Institute of Neurological Disorders and Stroke rt-PA Stroke

Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl

J Med. (1995). 333:1581–7. doi: 10.1056/NEJM199512143332401

7. Goyal M,Menon BK, van ZwamWH, Dippel DW,Mitchell PJ, Demchuk AM,

et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-

analysis of individual patient data from five randomised trials. Lancet. (2016)

387:1723–31. doi: 10.1016/S0140-6736(16)00163-X

8. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D. et al.

Thrombolysis with alteplase 3 to 45 hours after acute ischemic stroke. N Engl

J Med. (2008) 359:1317–29. doi: 10.1056/NEJMoa0804656

9. Stroke Unit Trialists’ Collaboration. Organised inpatient (stroke

unit) care for stroke. Cochrane Database Syst Rev. (2013)

2013:CD000197. doi: 10.1002/14651858.CD000197.pub3

10. Hankey GJ. Preventable stroke and stroke prevention. J Thromb Haemost.

(2005) 3:1638–45. doi: 10.1111/j.1538-7836.2005.01427.x

11. Fjaertoft H, Indredavik B, Magnussen J, Johnsen R. Early supported discharge

for stroke patients improves clinical outcome. Does it also reduce use of

health services and costs? One-year follow-up of a randomized controlled

trial. Cerebrovasc Dis. (2005) 19:376–83. doi: 10.1159/000085543

12. Elwood D, Rashbaum I, Bonder J, Pantel A, Berliner J, Yoon S, et al. Length

of stay in rehabilitation is associated with admission neurologic deficit and

discharge destination. PMR. (2009) 1:147–51. doi: 10.1016/j.pmrj.2008.10.010

13. Frank M, Conzelmann M, Engelter S. Prediction of discharge destination

after neurological rehabilitation in stroke patients. Eur Neurol. (2010) 63:227–

33. doi: 10.1159/000279491

14. Registry ASC. AUSCR (2016). Available online at: www.auscr.com.au (accessed

June, 2013).

15. Ruuskanen EI, Laihosalo M, Kettunen J, Losoi H, Nurmi L, Koivisto

AM, et al. Predictors of discharge tohome after thrombolytic treatment

in right hemisphere infarct patients. J Cent Nerv Syst Dis. (2010) 2:73–

9. doi: 10.4137/JCNSD.S6411

16. National Stroke Services Frameworks: Stroke Foundation. (2017). Available

online at: https://strokefoundation.org.au/what-we-do/treatment-programs/

clinical-guidelines/national-stroke-services-frameworks (accessed June,

2017).

17. Victorian Emergency Minimum Dataset: Department of Health and Human

Services, State Government of Victoria. (2015). Available online at: https://

www2.health.vic.gov.au/hospitals-and-health-services/data-reporting/

health-data-standards-systems/data-collections/vemd (accessed June, 2015).

18. Thrift AG, Dewey HM, Macdonell RA, McNeil JJ, Donnan GA.

Stroke incidence on the east coast of Australia: the North East

Melbourne Stroke Incidence Study (NEMESIS). Stroke. (2000)

31:2087–92. doi: 10.1161/01.STR.31.9.2087

19. Leyden JM, Kleinig TJ, Newbury J, Castle S, Cranefield J, Anderson

CS, et al. Adelaide stroke incidence study: declining stroke

rates but many preventable cardioembolic strokes. Stroke. (2013)

44:1226–31. doi: 10.1161/STROKEAHA.113.675140

20. Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc B

Methodol. (1996) 58:267–88. doi: 10.1111/j.2517-6161.1996.tb02080.x

21. Hall R, Mondor L, Porter J, Fang J, Kapral MK. Accuracy of administrative

data for the coding of acute stroke and TIAs. Canad J Neurol Sci. (2016)

43:765–73. doi: 10.1017/cjn.2016.278

22. Islam MS, Anderson CS, Hankey GJ, Hardie K, Carter K, Broadhurst R,

et al. Trends in incidence and outcome of stroke in Perth, Western Australia

during 1989 to 2001: the Perth Community Stroke Study. Stroke. (2008)

39:776–82. doi: 10.1161/STROKEAHA.107.493643

23. Schlegel DJ, Tanne D, Demchuk AM, Levine SR, Kasner SE. Prediction of

hospital disposition after thrombolysis for acute ischemic stroke using the

National Institutes of Health Stroke Scale. Arch Neurol. (2004) 61:1061–

4. doi: 10.1001/archneur.61.7.1061

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Rana, Luo, Tran, Venkatesh, Talman, Phan, Phung and Clissold.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neurology | www.frontiersin.org 7 September 2021 | Volume 12 | Article 67037975

mailto:benc73@hotmail.com
https://doi.org/10.1186/1471-2458-11-86
https://www2.health.vic.gov.au/hospitals-and-health-services/data-reporting/health-data-standards-systems/data-collections/vaed
https://www2.health.vic.gov.au/hospitals-and-health-services/data-reporting/health-data-standards-systems/data-collections/vaed
https://www2.health.vic.gov.au/hospitals-and-health-services/data-reporting/health-data-standards-systems/data-collections/vaed
https://doi.org/10.1177/1460458209353559
https://doi.org/10.3389/fneur.2017.00180
https://doi.org/10.1161/01.STR.30.10.2105
https://doi.org/10.1056/NEJM199512143332401
https://doi.org/10.1016/S0140-6736(16)00163-X
https://doi.org/10.1056/NEJMoa0804656
https://doi.org/10.1002/14651858.CD000197.pub3
https://doi.org/10.1111/j.1538-7836.2005.01427.x
https://doi.org/10.1159/000085543
https://doi.org/10.1016/j.pmrj.2008.10.010
https://doi.org/10.1159/000279491
http://www.auscr.com.au
https://doi.org/10.4137/JCNSD.S6411
https://strokefoundation.org.au/what-we-do/treatment-programs/clinical-guidelines/national-stroke-services-frameworks
https://strokefoundation.org.au/what-we-do/treatment-programs/clinical-guidelines/national-stroke-services-frameworks
https://www2.health.vic.gov.au/hospitals-and-health-services/data-reporting/health-data-standards-systems/data-collections/vemd
https://www2.health.vic.gov.au/hospitals-and-health-services/data-reporting/health-data-standards-systems/data-collections/vemd
https://www2.health.vic.gov.au/hospitals-and-health-services/data-reporting/health-data-standards-systems/data-collections/vemd
https://doi.org/10.1161/01.STR.31.9.2087
https://doi.org/10.1161/STROKEAHA.113.675140
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1017/cjn.2016.278
https://doi.org/10.1161/STROKEAHA.107.493643
https://doi.org/10.1001/archneur.61.7.1061
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rana et al. Machine Learning and Stroke Outcomes

APPENDIX

Factors for Discharge toNursingHome vs Rehabilitation andDeath vs All Other DischargeDestinations for PatientsWith TIAAreNot
Presented as the Predictive Model Is Unstable.

FIGURE A1 | Factors for prediction of Discharge Home vs all Other discharge destinations for the sub-cohort of Intracerebral haemorrhage stroke patients.

Frontiers in Neurology | www.frontiersin.org 8 September 2021 | Volume 12 | Article 67037976

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rana et al. Machine Learning and Stroke Outcomes

FIGURE A2 | Factors for prediction of Discharge to Rehabilitation vs Home for the sub-cohort of intracerebral hemorrhage stroke patients.
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FIGURE A3 | Factors for prediction of Discharge to Nursing Home vs Rehabilitation for the sub-cohort of intracerebral hemorrhage stroke patients.

FIGURE A4 | Factors for prediction of Death vs all Other discharge destinations for the sub-cohort of intracerebral hemorrhage stroke patients.
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FIGURE A5 | Factors for prediction of Discharge Home vs all Other discharge destinations for the sub-cohort of ischaemic stroke patients.

FIGURE A6 | Factors for prediction of Discharge to Rehabilitation vs Home for the sub-cohort of ischemic stroke patients.

Frontiers in Neurology | www.frontiersin.org 11 September 2021 | Volume 12 | Article 67037979

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rana et al. Machine Learning and Stroke Outcomes

FIGURE A7 | Factors for prediction of Discharge to Nursing Home vs Rehabilitation for the sub-cohort of ischemic stroke patients.

FIGURE A8 | Factors for prediction of Death vs Discharge to all Other discharge destinations for the sub-cohort of ischemic stroke patients.
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FIGURE A9 | Factors for prediction of Discharge Home vs all Other discharge destinations for the sub-cohort with TIA.

FIGURE A10 | Factors for prediction of Discharge to Rehabilitation vs Home for the sub-cohort with TIA.
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Objectives: Patients with anterior circulation large vessel occlusion are at high risk of

acute ischemic stroke, which could be disabling or fatal. In this study, we appliedmachine

learning to develop and validate two prediction models for acute ischemic stroke (Model

1) and severity of neurological impairment (Model 2), both caused by anterior circulation

large vessel occlusion (AC-LVO), based on medical history and neuroimaging data of

patients on admission.

Methods: A total of 1,100 patients with AC- LVO from the Second Hospital of Hebei

Medical University in North China were enrolled, of which 713 patients presented

with acute ischemic stroke (AIS) related to AC- LVO and 387 presented with the

non-acute ischemic cerebrovascular event. Among patients with the non-acute ischemic

cerebrovascular events, 173 with prior stroke or TIA were excluded. Finally, 927

patients with AC-LVO were entered into the derivation cohort. In the external validation

cohort, 150 patients with AC-LVO from the Hebei Province People’s Hospital, including

99 patients with AIS related to AC- LVO and 51 asymptomatic AC-LVO patients,

were retrospectively reviewed. We developed four machine learning models [logistic

regression (LR), regularized LR (RLR), support vector machine (SVM), and random forest

(RF)], whose performance was internally validated using 5-fold cross-validation. The

performance of each machine learning model for the area under the receiver operating

characteristic curve (ROC-AUC) was compared and the variables of each algorithm

were ranked.

Results: In model 1, among the included patients with AC-LVO, 713 (76.9%) and 99

(66%) suffered an acute ischemic stroke in the derivation and external validation cohorts,

respectively. The ROC-AUC of LR, RLR and SVM were significantly higher than that of

the RF in the external validation cohorts [0.66 (95% CI 0.57–0.74) for LR, 0.66 (95%

CI 0.57–0.74) for RLR, 0.55 (95% CI 0.45–0.64) for RF and 0.67 (95% CI 0.58–0.76) for

SVM]. In model 2, 254 (53.9%) and 31 (37.8%) patients suffered disabling ischemic stroke
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in the derivation and external validation cohorts, respectively. There was no difference in

AUC among the four machine learning algorithms in the external validation cohorts.

Conclusions: Machine learning methods with multiple clinical variables have the ability

to predict acute ischemic stroke and the severity of neurological impairment in patients

with AC-LVO.

Keywords: anterior circulation large vessel occlusion, acute ischemic stroke, machine learning, prediction model,

neurological impairment

INTRODUCTION

Acute ischemic stroke caused by large vessel occlusion accounts
for more than 40% of cases, ∼80% of which occurs in
the anterior circulation (1). Compared to non-large vessel
occlusion (LVO) acute ischemic stroke (AIS), patients with
anterior circulation large vessel occlusion (AC-LVO) stroke are
considered to be at greater risk of mortality or disability before
endovascular treatment (2). They tend to improve significantly
after mechanical thrombectomy (3, 4). Previously reported
prediction models for AC-LVO stroke such as prehospital
scales (Prehospital Acute Stroke Severity scale, PASS; Cincinnati
Prehospital Stroke Severity Scale, CPSSS; stroke Vision Aphasia
Neglect, VAN; Rapid Arterial Occlusion Evaluation scale RACE
and Field Assessment Stroke Tri-age for Emergency Destination,
FAST-ED) (5–9) that are based on NIHSS, and the recently
proposed model by Philipp Hendrix et al., which combines past
medical history and neurologic examination (10), have focused
on the identification of large vessel occlusion in patients with AIS.
The main clinical purpose of the prediction scores is to identify
which patients with AIS have LVO so that they can be referred
to capable centers for endovascular treatment (EVT). However,
accurate prediction of AIS in patients with AC-LVO remains
a challenge.

Anterior circulation-LVO stroke can be further divided based
on pathogenesis and severity of clinical consequences, into non-
disabling and disabling stroke with the latter frequently resulting
in post-stroke dependence. Nevertheless, no previous studies
have predicted the risk of disabling ischemic stroke in patients
with AC-LVO, which may be useful in treatment decisions
and prevention.

In this study, we developed and validated two models based
on machine learning algorithms with clinical variables, to predict
acute ischemic stroke (Model 1) and severity of neurological
impairment (Model 2) in patients with AC-LVO.

METHODS

Patient Cohorts
A total of 1,100 patients with AC- LVO admitted between June
2016 and April 2018 at the Second Hospital of Hebei Medical
University, North China, were registered in the derivation cohort;
927 of them who presented with AIS related with AC-LVO
and asymptomatic AC-LVO were retrospectively reviewed. In
addition, 471 patients with first-ever ischemic stroke (including
disabling and non-disabling stroke) were selected. For the

external validation, we collected data of patients with AC-
LVO from Hebei Province People’s Hospital, China between
September 2016 and April 2021.

Anterior circulation-LVO was defined as complete occlusion
of at least one intracranial internal carotid artery (ICA) or middle
cerebral artery (MCA) visualized on computed tomography
angiography (CTA) or magnetic resonance angiography (MRA).
ICA occlusion refers to the complete occlusion of the C1–
C7 segment of the internal carotid artery based on CTA or
MRA. MCA occlusion refers to the occlusion of the MCA
involving at least the M1 segment (for more details please see in
Supplementary Figure I). Asymptomatic AC-LVO was defined
as the absence of a transient ischemic attack (TIA), amaurosis
fugax, and ischemic stroke attributed to anterior circulation large
vessel (11, 12). In accordance with previous studies, disabling
and non-disabling ischemic strokes were defined by the initial
clinician as National Institutes of Health Stroke Scale (NIHSS)
> 5 and≤ 5 on admission, respectively (13).

Data Collection and Variable Selection
Patient characteristics that were collected on admission for the
development of Models 1 and 2 include (1) demographic data
of the patients such as the age, sex, body mass index (BMI),
current smoking and drinking status, comorbidity (hypertension,
coronary atherosclerotic heart disease, atrial fibrillation, diabetes
mellitus, and hyperlipidemia), history of transient ischemic
attack (TIA); (2) clinical variables such as serum apolipoprotein B
(Apo B) and homocysteine on arrival; (3) imaging variables such
as occluded vessels (unilateral MCA, unilateral ICA, andmultiple
arteries), posterior circulation large vessel severe stenosis (≥
70%) /occlusion, anterior cerebral artery (ACA) occlusion, and
Alberta Stroke Program Early CT Score (ASPECTS). Data on
14 variables were included in Model 1, and on 12 in Model
2. Specifically, normal blood flow status of the vertebrobasilar
arteries via the posterior communicating artery plays a major
role in primary collateral compensation after anterior circulation
large vessel occlusion. Therefore, posterior circulation large
vessel stenosis/occlusion was introduced into Model 1. Posterior
circulation large vessel refers to the intracranial vertebral artery,
basilar artery, or segment P1 of the posterior cerebral artery.

Data Pre-processing
Processing of the data was performed using Python. First,
records containing outliers, which were identified by boxplot,
were excluded. Furthermore, the median imputation method was
used to impute missing values in derivation cohorts. Finally, the
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categorical variables were converted into numerical values with
dummy encoding, and the continuous features were standardized
by removing the mean and scaling to unit variance.

Prediction Models With Machine Learning
Machine learning is a discipline that constructs models base on
data, which is a part of artificial intelligence. Machine learning
extracts the characteristics and abstracts the model of the data,
discovers the information in the data, and then analyzes and
predicts it. First, an algorithm and some parameters of the
model which were supplied with training data were selected
arbitrarily. During training procedures, the model automatically
adjusts some trainable parameters stage by stage to achieve
better performance optimization. After the training, all themodel
parameters are fixed. Importantly, the true effectiveness of the
model was evaluated using test data that were completely separate
from the training data.

We selected logistic regression without regularization (LR),
regularized logistic regression (RLR), random forest (RF), and
support vector machine (SVM) as machine learning algorithms
that are commonly used.

Logistic regression, a classic classification algorithm in
machine learning, was regularized using a combination of L1 and
L2 loss in this study. Here, the target was determined by Y:

Y = {“disabling ischemic stroke,′′

“non-disabling ischemic stroke′′}

Z = WTX+ b

y =
1

1+ e−Z
=

1

1+ e−WTX+b

We selected binary cross-entropy loss as the cost function, where
y is the ground truth, y∧ is the predicted score of the model, and
R represents the regularization. The loss functions L1 and L2 are
defined as follows:
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)
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1
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In the training process of themodel, standardization of numerical
variables was carried out to accelerate the convergence process
and speed of the model.

Random forest is an extended variant of bagging, which uses
a decision tree as the base learner and introduces the selection
of random attributes in the training process of the decision tree
(14). The main parameters that can affect the model performance
in RF include the number of trees in the forest, maximum depth
of the tree, minimum number of samples required to split an
internal node, minimum number of samples required to be at
a leaf node, and function to measure the quality of a split.
In this study, the values in the dataset were discretized, and

the parameters were optimized with a grid search during the
training process.

An SVM classifies data by calculating the maximum-margin
hyperplane, which adds a regularization term in the solving
process to optimize the structural risk. The strength of SVM
is that it can process complex datasets with many variables or
dimensions (15). The validity of SVM depends mainly on the
selection of the kernel function, parameters of the kernel, and soft
margin parameter C. Otherwise, in this study, each combination
of parameter selections was checked using cross-validation, and
only parameters with optimal accuracy were selected.

Moreover, LR, RLR, RF, and SVM can estimate the
contribution of each feature to the model by calculating
the absolute value of the standardized regression coefficient,
information gain / Gini coefficient, and weight coefficient.

Model Derivation and Internal Validation
In this study, for model derivation, we adopted 5-fold cross-
validation, which is a standard way of optimizing the model
with inner test data and has been used in a previous study
(16). During modeling, the grid search algorithm which is
a greedy algorithm was combined to tune and optimize the
model hyperparameters. For each group of hyperparameters, we
selected 5-fold cross-validation to determine the optimal ones,
after which we calculated the means of sensitivity, specificity,
accuracy, and AUC to evaluate the performance of each model
(Figure 1).

The derivation and validation models were conducted using
Python 3.6. The model algorithms, cross-validation, and grid
search were based on the Scikit-Learn library of Python in the
PyCharm. Matplotlib 3.3.3, NumPy 1.19.5, pandas version 1.1.5,
and Scikit-Learn toolkit version 0.21.0 were used to train the
machine learning models.

External Validation
After internal training and testing, the performance of the model
was evaluated using external validation data. Subsequently, the
AUCs were compared among machine learning algorithms.

Statistical Analysis
Clinical variables are presented as mean ± SD or median
with interquartile range, depending on the distribution of
the variables. To compare the group differences, continuous
variables were compared using the Student’s t-test or Mann-
Whitney U test, and categorical variables were compared with
the χ2 test or Fisher’s exact test. These two prediction models
were discriminated against using AUC. Calculation of AUC,
sensitivity, specificity, precision, negative predictive value (NPV),
and accuracy criteria were performed with R statistical software
version 3.0.2. The area under the precision-recall curve (PRC)
and F1-score were calculated with MedCalc. For the derivation
and validation cohorts, a comparison of AUC among themachine
learning methods was performed using the DeLong test with
Bonferroni correction. Two-sided P < 0.05 were considered
statistically significant.
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FIGURE 1 | The schema of 5-fold cross-validation and external validation. First, the original data were randomly divided into five patterns without duplication, one of

which was used as the test set, and the remaining four as the training set for model training. Next, we adapted grid search with 5-fold cross-validation to optimize the

hyperparameters for each machine learning model. Finally, the trained models were externally validated on the external test data.

RESULTS

Baseline Characteristics
Figures 2A,B illustrate the flow diagram of the enrolled
patients. For the derivation cohort, 1,100 patients with AC-
LVO were hospitalized at the study institution. After excluding
173 patients with prior stroke or TIA as non-acute ischemic
cerebrovascular events, 713 patients with AIS related with
AC-LAO and 214 with asymptomatic AC-LAO were finally
included in the analysis for model 1. Among the 214 patients
with asymptomatic AC-LVO, 119 (56%) were hospitalized for
head discomfort such as heaviness of the head and fullness
in the head. The other reasons for hospitalization in patients
with asymptomatic AC-LVO included coronary artery disease,
subarachnoid hemorrhage, migraine, cerebral large artery
disease detected by routine physical examination, unruptured
intracranial aneurysms, diabetic peripheral vascular disease,
central nervous system infection, lower extremity atherosclerotic
occlusive disease, intracranial space-occupying lesions, epilepsy,
Parkinson’s disease, cerebral atrophy, subclavian artery steal
blood syndrome, cough syncope, and cardiac syncope. The
general screening of large artery disease was performed with
transcranial Doppler and carotid artery ultrasound in these
patients. Further computed tomography angiography (CTA)
or magnetic resonance angiography (MRA) examinations were
conducted and AC-LVO was identified. Among the 713 patients
with AIS, 242 with prior stroke were excluded, and 471
patients with first-ever ischemic stroke (254 with disabling and
217 with non-disabling strokes) were included in the analysis
for Model 2. For the external validation cohort, 150 eligible
patients with AC-LVO were included in Model 1. Of the 99

patients with AIS, 82 who presented with the first episode were
included in the analysis for model 2. The baseline characteristics
of the included patients are presented in Tables 1, 2, and
Supplementary Tables I–IV.

Comparison Between the Models in the
Derivation Cohort
The performance metrics of each approach for Models 1 and 2
in the derivation cohort are shown in Tables 3, 4, respectively.
The receiver operating characteristic (ROC) curve (indicating
the predictive performance of our LR/RLR/RF/SVM model) for
each algorithm in the two models and the comparison among
these machine learning algorithms are shown in Figures 4A,C.
In model 1, the AUCs of RF and SVM were significantly
higher than those of the LR and RLR, when using the DeLong
test with Bonferroni correction (RF vs. LR, P < 0.0001; RF
vs. RLR, P < 0.0001; SVM vs. LR, P < 0.0001; SVM vs.
RLR, P < 0.0001; Figure 3A). Similar results were obtained
for accuracy and F1-score. In model 2, while the differences
in AUCs among the four machine learning algorithms were
not significant (Figure 3C), the RF showed the most perfect
classification accuracy (71.8%) compared to that of the other
machine learning approaches.

Comparison Between the Models in the
External Validation Cohort
The ROC curves for Models 1 and 2 in the external validation
cohort are shown in Figures 4B,D. In Model 1, RF exhibited
the worst performance among the machine learning models
(Table 5). The AUCs in LR, RLR and SVM were significantly
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FIGURE 2 | The flow diagram of the patients included in this study is shown in (A,B).

higher than that in RF, when using the Delong test with
Bonferroni correction (LR vs. RF, P = 0.0048; RLR vs. RF, P =

0.0048, SVM vs. RF, P = 0.0006; Figure 3B). In Model 2, there

was no difference in AUCs among the four machine learning

algorithms (Figure 3D). The AUC of each algorithm was as

follows: LR 0.68 (95% CI 0.56–0.8), RLR 0.76 (95% CI 0.66–0.87),
RF 0.71 (95% CI 0.59–0.83) and SVM 0.77 (95% CI 0.66–0.87)
(Table 6).

Important Variables of the Machine
Learning Models
After calculating the importance of each feature, the top five
selected variables of Models 1 and 2 were ranked by their
discriminative performance (Figures 5, 6). For LR and RLR,
the absolute value of the standardized regression coefficient was
calculated in both models. For RF, the important features for
information gain and Gini coefficient were ranked in Models 1
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TABLE 1 | Baseline characteristics of patients with anterior circulation large vessel

occlusion.

Derivation

cohort

(n = 927)

Validation cohort

(n = 150)

Mean ± SD age, y 59.3 ± 12.4 62.0 ± 10.9

Males n (%) 626 (67.5) 108 (72.0)

Current smoking n (%) 268 (28.9) 57 (38.0)

Drinking n (%) 267 (28.8) 26 (17.3)

Hypertension n (%) 602 (64.9) 107 (71.3)

Coronary atherosclerotic heart

disease n (%)

143 (15.4) 22 (14.7)

Atrial fibrillation n (%) 52 (5.6) 11 (7.3)

Diabetes n (%) 225 (24.3) 52 (34.7)

Hyperlipidaemia n (%) 292 (31.5) 14 (9.3)

Occluded vessels n (%)

Unilateral MCA

442 (47.7) 51 (34.0)

Unilateral ICA 261 (28.2) 69 (46.0)

Multiple artery 224 (24.2) 30 (20.0)

BMI≥24 n (%) 795 (85.8) 108 (72.0)

Posterior circulation large vessel

severe stenosis /occlusion n (%)

176 (19.0) 9 (6.0)

ApoB (g/L) 1.0 ± 0.3 0.7 ± 0.2

Homocysteine (µmol/L) 19.0 ± 11.2 15.9 ± 9.6

Acute ischemic stroke n (%) 713 (76.9) 99 (66.0)

ApoB, apolipoprotein B; BMI, body mass index; ICA, internal carotid artery; IQR,

interquartile range; MCA, middle cerebral artery; SD, standard deviation.

and 2 respectively. For SVM, the absolute value of the weight was
used to rank the variables only in model 2 due to the introduction
of the kernel function in Model 1. The absolute values of the
important metrics for the features were normalized, ensuring
the comparability in feature importance ranking. In Model 1,
homocysteine, occluded vessels and BMI appeared together in
the top five rankings of all machine learning algorithms. In
addition, coronary atherosclerotic heart disease was an important
feature in both LR and RLR. Age and Apo B appeared to be
important variables in RF. In Model 2, ASPECT, age and BMI
were common variables for all machine learning algorithms.
Prior TIA was included in LR, RLR, and RF. Hypertension,
current smoking, and gender appeared in RLR, RF, and SVM,
respectively. Furthermore, occluded vessels coexisted in LR
and SVM.

DISCUSSION

This study demonstrated that the use of a machine learning
approach can predict the risk of AIS and severity of ischemic
stroke in AC-LVO from clinical data. To the best of our
knowledge, this is the first report on an attempt to predict
AIS and severity of neurological impairment in patients with
AC-LVO using the machine learning approach. The machine
learning algorithm can eliminate linearity and has various ways of
overcoming the imperfections of the polyfactorial models such as
overfitting ofmodels and collinearity of variables, whichmay lead

TABLE 2 | Baseline characteristics of patients with first-ever acute ischemic

stroke (AIS) caused by anterior circulation large vessel occlusion.

Derivation

cohort

(n = 471)

Validation cohort

(n = 82)

Mean ± SD age, y 58.6 ± 12.7 61.0 ± 13.0

Males n (%) 321 (68.2) 59 (72.0)

Current smoking n (%) 147 (31.2) 35 (42.7)

Hypertension n (%) 290 (61.6) 51 (62.2)

Diabetes n (%) 105 (22.3) 25 (30.5)

Coronary atherosclerotic heart

disease n (%)

69 (14.6) 7 (8.5)

Prior TIA n (%) 30 (6.4) 0 (0)

Hyperlipidaemia n (%) 158 (33.5) 8 (9.8)

BMI ≥24 n (%) 410 (87.0) 60 (73.2)

Median ASPECTS (IQR) 6 (3–8) 8 (7–9)

Occluded vessels n (%)

Unilateral MCA

236 (50.1) 31 (37.8)

Unilateral ICA 133 (28.2) 36 (43.9)

Multiple artery 102 (21.7) 15 (18.3)

Anterior cerebral artery occlusion n

(%)

87 (18.5) 3 (3.7)

Disabling ischemic stroke (NIHSS >

5) n (%)

254 (53.9) 31 (37.8)

ASPECTS, Alberta Stroke Program Early CT Score; BMI, body mass index; ICA, internal

carotid artery; IQR, interquartile range; MCA, middle cerebral artery; NIHSS, National

Institutes of Health Stroke Scale; SD, standard deviation; TIA, transient ischemic attack.

to a series of problems when it comes to variable selection (17).
In the two prediction models in this study, 14 and 12 common
variables were collected, respectively, bypassing the traditional
method of variable selection.

Contrary to the findings in the derivation cohort of model
1 that RF showed significantly better predictive performance
than LR and RLR, in the validation cohort, RF had the worst
performance among the machine learning models. The decision
trees of RF forced interactions between the features, which might
make the result rather inferior if the majority of the features
have no or very weak interactions. Therefore, we suspect that
the RF was not able to carry on an accurate classified forecast
owing to extremely weak interactions between the variables
in our dataset. Moreover, the small data sets with 150 cases
in the validation cohort may be another reason for the poor
performance of the RF. In model 2, although the LR showed a
predictive property similar to those of the other three algorithms
both in the validation cohort and derivation cohort, the RLR
exhibited a higher AUC compared with LR in the validation
cohort, this was as a result of the poor generalization performance
of LR compared with other algorithms. Accordingly, LR with L2
regularization was implemented in this study to avoid overfitting
and improve the generalization performance and robustness of
the model; thus, a more optimal result was obtained with an AUC
of 0.76.

As shown in Figures 5, 6, the important features were
not entirely consistent in the machine learning algorithms in
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TABLE 3 | Scores for each algorithm of model 1 in derivation cohort.

Model AUC (95% CI) PRC Sensitivity Specificity Precision NPV Accuracy F1max

LR 0.68 (0.64–0.72) 0.88 57.9 71.5 87.1 33.8 61.1 0.87

RLR 0.68 (0.64–0.72) 0.88 57.9 71.5 87.1 33.8 61.1 0.87

RF 0.80 (0.77–0.83) 0.93 69.1 79.9 92.0 43.7 71.6 0.89

SVM 0.77 (0.74–0.81) 0.92 76.9 68.2 89.0 46.9 74.9 0.88

AUC, receiver operator characteristic area under the curve; F1max , the maximum F1 score; LR, logistic regression without regularization; PRC, area under the precision-recall curve; RF,

random forest; RLR, regularized logistic regression; SVM, support vector machine; NPV, negative predictive value.

TABLE 4 | Scores for each algorithm of model 2 in derivation cohort.

Model AUC (95% CI) PRC Sensitivity Specificity Precision NPV Accuracy F1max

LR 0.78 (0.74–0.81) 0.78 63.0 77.9 76.9 64.3 69.9 0.76

RLR 0.75 (0.71–0.79) 0.77 61.0 78.3 76.7 63.2 69.0 0.74

RF 0.77 (0.73–0.81) 0.78 67.7 76.5 77.1 66.9 71.8 0.75

SVM 0.76 (0.71–0.80) 0.78 63.4 77.0 76.3 64.2 69.6 0.74

AUC, receiver operator characteristic area under the curve; F1max , the maximum F1 score; LR, logistic regression without regularization; PRC, area under the precision-recall curve; RF,

random forest; RLR, regularized logistic regression; SVM, support vector machine; NPV, negative predictive value.

FIGURE 3 | The means ± 95% CI of the receiver operating characteristic area under the curve (AUC) for models 1 and 2 are displayed as bar graphs using the

derivation cohort data (A,C), and the validation cohort data (B,D). For the derivation cohort data, there were significant differences between random forest [RF],

support vector machine [SVM] and logistic regression without regularization [LR], regularized logistic regression [RLR] in model 1. For the external validation cohort

data, there were significant differences between the random forest [RF] and the other three machine learning methods in model 1. For the derivation and external

validation cohort data, the Delong test with Bonferroni correction was used. LR indicates logistic regression without regularization; RF, random forest; RLR, regularized

logistic regression; and SVM, support vector machine. *P < 0.01, **P < 0.001.
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FIGURE 4 | The AUC of the machine learning models for model 1 (A,B) and model 2 (C,D) on the derivation and external validation cohort data. LR indicates logistic

regression without regularization; RF, random forest; RLR, regularized logistic regression, SVM, support vector machine.

model 1 and model 2. As important variables of model 1,
homocysteine, BMI, and occluded vessels (unilateral MCA)
appeared in all three algorithms, and atrial fibrillation and
coronary atherosclerotic heart disease were detected in both LR
and RLR. Elevated blood homocysteine concentration increases
the risk of ischemic stroke by inducing oxidative damage to

vascular endothelial cells and enhancing platelet adhesion to
endothelial cells, especially in large vessel strokes (18–22). The
results of our study are in accordance with the aforementioned
studies, suggesting that elevated homocysteine levels may be
a significant marker for predicting ischemic stroke in AC-
LVO.
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TABLE 5 | Scores for each algorithm of model 1 in external validation cohort.

Model AUC (95% CI) PRC Sensitivity Specificity Precision NPV Accuracy F1max

LR 0.66 (0.57–0.74) 0.82 42.4 88.2 87.5 44.1 58.0 0.80

RLR 0.66 (0.57–0.74) 0.82 42.4 88.2 87.5 44.1 58.0 0.80

RF 0.55 (0.45–0.64) 0.72 59.6 54.9 72.0 41.2 58.0 0.80

SVM 0.67 (0.58–0.76) 0.81 65.7 60.8 76.5 47.7 64.0 0.80

AUC, receiver operator characteristic area under the curve; F1max , the maximum F1 score; LR, logistic regression without regularization; PRC, area under the precision-recall curve; RF,

random forest; RLR, regularized logistic regression; SVM, support vector machine; NPV, negative predictive value.

TABLE 6 | Scores for each algorithm of model 2 in external validation cohort.

Model AUC (95% CI) PRC Sensitivity Specificity Precision NPV Accuracy F1max

LR 0.68 (0.56–0.80) 0.60 45.2 86.3 66.7 72.1 70.7 0.60

RLR 0.76 (0.66–0.87) 0.71 83.9 56.9 54.2 85.3 67.1 0.66

RF 0.71 (0.59–0.83) 0.65 41.9 92.2 76.5 72.3 73.2 0.61

SVM 0.77 (0.66–0.87) 0.71 93.5 49.0 52.7 92.6 65.9 0.67

AUC, receiver operator characteristic area under the curve; F1max , the maximum F1 score; LR, logistic regression without regularization; PRC, area under the precision-recall curve; RF,

random forest; RLR, regularized logistic regression; SVM, support vector machine; NPV, negative predictive value.

Regarding the association between BMI and ischemic stroke,
a previous meta-analysis revealed a J-shaped dose-response
relationship between being overweight or obese and an increased
risk of incident ischemic stroke (23). However, few studies
have focused on the relationship between BMI and risks of
ischemic stroke subtype (24, 25). Our study showed a robust
positive association between overweight/obesity and AC-LVO
AIS. Possible explanations for our findings include insulin
resistance, endothelial dysfunction, and inflammation, which
have been considered to influence the relationship between
obesity and atherosclerosis (26). Moreover, our findings further
revealed that a high BMI (≥ 24 kg/m2) shows a greater
predisposes to disabling than non-disabling ischemic stroke with
AC-LVO, emphasizing the importance of weight control and
aerobic fitness.

The compensation of the collateral pathway inMCAocclusion
mainly depends on the pia meningeal branch from the anterior
cerebral artery and the posterior cerebral artery with worse
compensatory ability than the circle of Willis, which means it
would result in hemodynamic failure and is more prone to
decompensation (27). Our study delves deeper into this field and
demonstrates that unilateral MCA occlusion plays a crucial role
in the occurrence of ischemic stroke. Furthermore, we found
that stroke severity at admission was greater in the multiple AC-
LAO patients than in unilateral MCA occlusion or unilateral ICA
occlusion patients. This is consistent with a previously published
study of patients with AC-LVO AIS, which showed that high
NIHSS was associated with multiple AC-LAO (28).

Cardioembolism might be responsible for large vessel
occlusion, in which atrial fibrillation accounts for∼50% (29, 30).
Atrial fibrillation is strongly associated with a high occurrence
rate of LVO, suggesting that it may be a potential risk factor
for LVO (31). Otherwise, large emboli that block intracranial
vessels usually originate from the left atrial appendage in

patients with symptomatic carotid stenosis or atrial fibrillation
(32). Similarly, in our analysis, atrial fibrillation showed a
robust association with AC-LVO AIS, further suggesting that
knowledge of the potential complications of atrial fibrillation
is likely to motivate both patient and clinician to comply with
standard treatment.

Large-artery atherosclerotic stroke is associated with a high
risk of coronary atherosclerotic heart disease (33). Nevertheless,
our results indicate that coronary atherosclerotic heart disease
is associated with a low risk of AIS in AC-LVO patients.
One explanation for this finding might be that coronary
atherosclerosis is significantly correlated with stenosis of the
extracranial carotid; therefore, the development of intracranial
anterior circulation large vessel occlusion may be independent
of coronary atherosclerotic heart disease (34). Furthermore,
antiplatelet and statin therapy in coronary atherosclerotic heart
disease may reduce the risk of ischemic stroke in AC-LVO.

Apolipoprotein B is the primary apolipoprotein component of
chylomicrons and low-density lipoproteins (35). In this study, we
found that elevated serum levels of Apo B were associated with
an increased risk of ischemic stroke in AC-LVO. Additionally, a
Mendelian randomization study reported a positive correlation
of Apo B with large artery stroke and small vessel stroke (36).
Therefore, we advocate Apo B as a marker of routine serum
lipid examination.

In our study, age emerged as an important predictor in
both models, as well as in a previously developed model for
predicting the clinical outcome of AIS with LVO (17). In
general, our results indicate that the prevalence of ischemic
stroke and disability increases with age in patients with AC-
LVO. In addition, our data also suggested that ASPECT
was the common element included in all machine learning
methods. Studies have demonstrated that diffusion-weighted
imaging (DWI) ASPECTS which represents infarct volume,
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FIGURE 5 | Top five Important Features in the Model 1. Apo B indicates apolipoprotein B; AF, atrial fibrillation; BMI, body mass index; CHD, coronary atherosclerotic

heart disease; Hcy, homocysteine; LR, logistic regression without regularization; OV, occluded vessels; RF, random forest; RLR, regularized logistic regression.

FIGURE 6 | Top 5 Important Features in the Model 2. ASPECT indicates Alberta Stroke Program Early CT Score; BMI, body mass index; HTN, hypertension; LR,

logistic regression without regularization; OV, occluded vessels; RF, random forest; RLR, regularized logistic regression; SVM, support vector machine; TIA, transient

ischemic attack.

is a significant independent predictor of functional outcome
in AC-LVO strokes (37). Correspondingly, patients presenting
with ASPECTS ≥7 are correlated with favorable outcomes
following intravascular or thrombolytic therapy (38, 39). Our
study further supports the association between ASPECT and
the severity of neurological defects in first-ever ischemic stroke
with AC-LVO. Consequently, a lower score of ASPECTS
suggests less preserved brain parenchyma and predicts severe
neurological impairment in patients with first-ever AC-LVO
ischemic strokes.

It is well established that TIA increases the risk of ischemic
stroke. In the present study, we found that prior TIA decreased
ischemic stroke severity at admission, which is similar to the
results of Marc Gotkine et al. showing that previous TIA was
independently associated with lower severity of the ischemic
stroke and a better short-term outcome (40). Prior TIA may have
a neuroprotective effect on the subsequent ischemic stroke.

The chief strength of this study is the development and
external validation of a new scoring tool, which predicts the risk
of ischemic stroke and the severity of ischemia in AC-LVO based
on machine learning approaches. Nevertheless, this study has
several limitations. Foremost, few neuroimaging features were

taken into consideration, excluding others such as the collateral
flow status which might improve the predictive performance
of the models. Further evaluation of the level of collateral
circulation is necessary. Second, the sample size for this study
was small which might have been due to the stringent inclusion
criteria for patients with AC-LVO. As a result, the performance
advantages of machine learning models may not have been fully
realized. Finally, this was a retrospective study; the performance
of the model needs to be tested in a prospective population in
future studies.
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The application of machine learning has rapidly evolved in medicine over the past

decade. In stroke, commercially available machine learning algorithms have already been

incorporated into clinical application for rapid diagnosis. The creation and advancement

of deep learning techniques have greatly improved clinical utilization of machine learning

tools and new algorithms continue to emerge with improved accuracy in stroke diagnosis

and outcome prediction. Although imaging-based feature recognition and segmentation

have significantly facilitated rapid stroke diagnosis and triaging, stroke prognostication

is dependent on a multitude of patient specific as well as clinical factors and hence

accurate outcome prediction remains challenging. Despite its vital role in stroke diagnosis

and prognostication, it is important to recognize that machine learning output is only as

good as the input data and the appropriateness of algorithm applied to any specific

data set. Additionally, many studies on machine learning tend to be limited by small

sample size and hence concerted efforts to collate data could improve evaluation of

future machine learning tools in stroke. In the present state, machine learning technology

serves as a helpful and efficient tool for rapid clinical decision making while oversight

from clinical experts is still required to address specific aspects not accounted for in an

automated algorithm. This article provides an overview of machine learning technology

and a tabulated review of pertinent machine learning studies related to stroke diagnosis

and outcome prediction.

Keywords: machine learning, artificial intelligence, deep learning, stroke diagnosis, stroke prognosis, stroke

outcome prediction, machine learning in medical imaging, machine learning in medicine

INTRODUCTION

The term machine learning (ML) was coined by Arthur Samuel in 1959 (1). He investigated two
machine learning procedures using the game of checkers and concluded that computers can be
programmed quickly to play a better game of checkers than the person who wrote the program.
Simply put, machine learning can be defined as a subfield of artificial intelligence (AI) that uses
computerized algorithms to automatically improve performance through iterative learning process
or experience (i.e., data acquisition) (2). Of late, the field of ML has vastly evolved with the
development of various computerized algorithms for pattern recognition and data assimilation
to improve predictions, decisions, perceptions, and actions across various fields and serves as an
extension to the traditional statistical approaches. In our day-to-day life, a relatable example of
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ML is the application of spam filters to the 319 billion emails
sent and received daily worldwide, of which, nearly 50% can
be classified as spam (3). Use of ML technology has made
this process efficient and manageable. The ML technology
utilizes various methods for automated data analysis including
linear and logistic regression models as well as other methods
such as the support vector machines (SVM), random forests
(RF), classification trees and discriminant analysis that allow
combination of features (data points) in a non-linear manner
with flexible decision boundaries. The advent of neural networks
and deep learning (DL) technology has transformed the field
of ML with automatic and efficient feature identification and
processing within a covert analytic network, without the need for
a priori feature selection. Notably, performance of DL is known
to improve with access to larger datasets, whereas classic ML
methods tend to plateau at relatively lower performance levels.
Hence, in this era of big data where clinicians are constantly
inundated with plethora of clinical information, use of DL
technology has significnalty enhanced our ability to assimilate the
vast amount of clinical data to make expeditious clinical decision.

Stroke is a leading cause of death, disability, and cognitive
impairment in the United States (4). According to the 2013
policy statement from the American Heart Association, an
estimated 4% of US adults will suffer from a stroke by 2030,
accounting for total annual stroke-relatedmedical cost of $240.67
billion by 2030 (5). For ischemic stroke, acute management
is highly dependent on prompt diagnosis. According to the
current ischemic stroke guidelines, patients are eligible for
intravenous thrombolysis up to 4.5 h from symptom onset
and endovascular thrombectomy without advanced imaging
within 6 h of symptom onset (6–8). For patients presenting
between 6 and 24 h of symptom onset (or last known well
time), advanced imaging is recommended to assess salvageable
penumbra for decisions regarding endovascular therapy (9–
11). Similarly for hemorrhagic stroke, timely diagnosis utilizing
imaging technology to evaluate the type and etiology of
hemorrhage is important in guiding acute treatment decisions.
Prompt diagnosis with emergent treatment decision and
accurate prognostication is hence the cornerstone of acute
stroke management. Over the recent years, a multitude of
ML methodologies have been applied to stroke for various
purposes, including diagnosis of stroke (12, 13), prediction of
stroke symptom onset (14, 15), assessment of stroke severity
(16, 17), characterization of clot composition (18), analysis
of cerebral edema (19), prediction of hematoma expansion
(20), and outcome prediction (21–23). In particular, there has
been a rapid increase in the trend of ML application for
imaging-based stroke diagnosis and outcome prediction. The
Ischemic Stroke Lesion Segmentation Challenge (ISLES: http://
www.isles-challenge.org/) provides a global competing platform
encouraging teams across the world to develop advanced tools
for stroke lesion analysis using ML. In this platform, competitors
train their algorithms on a standardized dataset and eventually
generate benchmarks for algorithm performance.

Deciding which type of ML to use on a specific dataset
depends on factors such as the size of dataset, need for
supervision, ability to learn, and the generalizability of the

model (24). DL technology such as the deep neural networks
has significantly improved the ability for image segmentation,
automated featurization (e.g., conversion of raw signal into
clinically useful parameter), and multimodal prognostication in
stroke; and it is increasingly utilized in stroke-based applications
(25–27). For example, DL algorithms can be applied to
extract meaningful imaging features for image processing in an
increasing order of hierarchical complexity to make predictions,
such as the final infarct volume (27). Some commonly used ML
types with their respective algorithms and practical examples are
outlined in Figures 1–3. In the healthcare setting, supervised
and unsupervised algorithms are both commonly used. In this
review, we will specifically focus on ML strategies for stroke
diagnosis and outcome prediction. Table 1 provides an overview
of pertinent studies with use of ML in stroke diagnosis (Section
A) and outcome prediction (Section B). A glossary of machine
learning terms with brief description is separately provided in
Supplementary Table 1.

METHODS

We searched PubMed, Google Scholar, Web of Science, and IEEE
Xplore R© for relevant articles using various combination of the
following key words: “machine learning,” “artificial intelligence,”
“stroke,” “ischemic stroke,” “hemorrhagic stroke,” “diagnosis,”
“prognosis,” “outcome,” “big data,” and “outcome prediction.”
Resulting abstracts were screened by all authors and articles
were hand-picked for full review based on relevance and
scientific integrity. Final article list was reviewed and approved
by all authors.

Machine Learning in Stroke Diagnosis
The time-sensitive nature of stroke care underpins the need
for accurate and rapid tools to assist in stroke diagnosis.
Over the recent years, the science of brain imaging has
vastly advanced with the availability of a myriad of AI
based diagnostic imaging algorithms (77). Machine learning is
particularly useful in diagnosis of acute stroke with large vessel
occlusion (LVO). Various automated methods for detection
of stroke core and penumbra size as well as mismatch
quantification and detection of vascular thrombi have recently
been developed (77). Over the past decade, 13 different
companies have developed automated and semi-automated
commercially available software for acute stroke diagnostics
(Aidoc R©, Apollo Medical Imaging Technology R©, Brainomix R©,
inferVISION R©, RAPID R©, JLK Inspection R©, Max-Q AI R©,
Nico.lab R©, Olea Medical R©, Qure.ai R©, Viz.ai R©, and Zebra
Medical Vision R©) (78). The RapidAI R© and Viz.ai R© technology
have been approved under the medical device category of
computer-assisted triage by the United States Food and Drug
Administration (FDA). The RAPID MRI R© (Rapid processing of
Perfusion and Diffusion) software allows for an unsupervised,
fully-automated processing of perfusion and diffusion data to
identify those who may benefit from thrombectomy based on
the mismatch ratio (79). Such commercial platforms available
for automatic detection of ischemic stroke and LVO have
facilitated rapid treatment decisions. When compared to manual
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FIGURE 1 | Supervised learning. In supervised learning, a model is built by labeling images [Subarachnoid Hemorrhage (SAH) and Not Subarachnoid Hemorrhage
(Not SAH)], a predictive model is created, and then tested for accuracy in reading unlabeled images (gray box). Source: WesternDigital BLOG.

FIGURE 2 | Unsupervised learning. In unsupervised learning, the machine learning algorithm discovers structures within given data. The initial data is not labeled and
a clustering algorithm groups unlabeled data together. Source: WesternDigital BLOG.

segmentation of lesion volume and mismatch identification
from patients enrolled in DEFUSE 2, the RAPID results
were found to be well-correlated (r2 = 0.99 and 0.96 for
diffusion and perfusion weighted imaging, respectively) with
100% sensitivity and 91% specificity for mismatch identification
(80). Since 2008, the RapidAI R© platform has expanded to
include other products (Rapid R© ICH, ASPECTS, CTA, LVO,
CTP, MRI, Angio, and Aneurysm) that assist across the entire
spectrum of stroke. Viz LVO R© was the first FDA-cleared

software to detect and alert clinicians of LVO via the “Viz
Platform” (81). In a recent single center study with 1,167 CTAs
analyzed, Viz LVO R© was found to have a sensitivity of 0.81
and a negative predictive value of 0.99 with an accuracy of
0.94 (82).

Other areas of stroke diagnostics that have
seen an increase in attention over the past decade
are the identification of intracerebral hemorrhage
(ICH) and patients at risk for delayed cerebral
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FIGURE 3 | Created from the following referenes: Dey (28) Zhou (29)
Geron (30).

ischemia in the setting of aneurysmal subarachnoid
hemorrhage (aSAH). While most studies tend to
have good accuracy in detecting an ICH there is
more variability in subclassification and measurements
of hematoma volume. A summary of recent

publications on ML in stroke diagnosis is presented in
Table 1 (Section A).

Machine Learning in Stroke Outcome
Prediction
Despite recent advances in stroke care, it remains the second
leading cause of death and disability world-wide (4, 83).
Although acute stroke diagnosis and determination of the time
of stroke onset are the initial steps of comprehensive stroke
management, clinicians are also often charged with the task
of determining stroke outcomes. These outcomes range from
discrete radiological outcomes (e.g., final infarct volume, the
likelihood of hemorrhagic transformation, etc.), the likelihood of
morbidity (e.g., stroke-associated pneumonia) andmortality, and
various measures of functional independence (e.g., mRS score,
Barthel Index score, cognitive, and language function, etc.).

Prognostication after an acute brain injury is notoriously
challenging, particularly within the first 24–48 h (84). However,
a clinician may be called upon to provide estimates of a
patient’s short-term and long-term mortality and degree of
functional dependence to assist with decision-making regarding
the intensity of care (e.g., use of thrombolytics or endovascular
treatment, intubation, code status, etc.) (60, 64, 66, 67, 69, 70, 72–
76). Like all medical emergencies, it is incumbent upon the stroke
clinician to ensure that all care provided is concordant with an
individual patient’s goals (85). For example, a surrogate decision-
maker may decline to reverse a patient’s longstanding “do not
intubate” order to facilitate mechanical thrombectomy if the
clinician predicts the patient has a high likelihood of functional
dependence or short-termmortality. Hence, accuracy in outcome
prediction is critical in guiding management of our patients.

Determining a patient’s likelihood of developing symptomatic
intracranial hemorrhage (sICH) is of obvious, immediate value
in acute stroke management in determining candidacy for
thrombolytic therapy or endovascular treatment. Historically,
clinician-based prognostication tools to predict the risk of
symptomatic intracranial hemorrhage after IV thrombolysis,
such as the SEDAN (Sugar, Early Infarct signs, Dense cerebral
artery sign, Age, and NIHSS) and HAT (Hemorrhage After
Thrombolysis) scores have been used to predict the risk of
symptomatic intracranial hemorrhage after IV thrombolysis (23).
Advances in ML and DL have allowed for the development of
more accurate models which outperform the traditional SEDAN
and HAT scores (23, 54, 55). Similarly, the ability to predict
final infarct volume and the likelihood of the development of
malignant cerebral edema have important treatment implications
and remain a significant focus of ML in stroke (26, 51–53).

In patients with intracerebral hemorrhage (ICH), the ICH-
score is one of the most widely used clinical prediction scores
(85–88). Although ML technology for outcome prediction
has rapidly advanced for ischemic stroke, recent ML studies
predicting functional outcomes after ICHhave also demonstrated
high-discriminating power (63, 89). A recent study by Sennfält
et al. tracked long-term functional dependence and mortality
after an acute ischemic stroke of more than 20,000 Swedish
patients (90). The 30-day mortality rate was 11.1%. At 5 years,
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TABLE 1 | Studies utilizing machine learning for stroke diagnosis and prediction.

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Section A: stroke diagnosis

Ischemic stroke

Garca-Terriza et al.
(31)

Stroke type diagnosis
and mortality

RF 10-fold cross
validation
resampling

• 119
• (AIS

105,
ICH 14)

• Type of stroke
• Mortality
• Non-invasive

variables (cardiac
and pulmonary)

• Accuracy

• Subtype - 92%
• Mortality - 96%

- May predict the
type of stroke a
patient is at risk for
and outcomes

Data obtained after event to
for prediction models but do
not include usual risk factors
for consideration

Sung et al. (32) Ischemic stroke
phenotype*

Various models (C4.5,
CART, KNN, RF, SVM,
LR, with aggregation
algorithms

10-fold cross
validation

4,640 Clinical notes with
preprocessing and
MetaMap to identify
medical entities +/-
NIHSS

• Accuracy; kappa

• NIHSS + text
• (0.489–0.583;

0.272–0.399)
• NIHSS
• (0.465–0.533;

0.254–0.344)
• Text
• (0.465–

0.533; 0.170–0.328)

- Clinical text plus
validated scoring
tools might aid in
phenotyping of
stroke

• Phenotype based on
OCSP definitions,*

• Difficult delineating certain
phenotypes,

• Unclear who were the
authors of the clinic notes

Giri et al. (33) Ischemic stroke
diagnosis by EEG

1D CNN vs. various
models (NB,
Classification Tree,
ANN, RF, kNN, LR)

Leave-one-out
cross-validation

• 32 – AIS
• 30 –

Controls

15-min EEG with 24
chosen features

• Accuracy - 0.86
• F-Score 0.861

Leave-one-out
scenario of 1D CNN

In areas with
limited access to
CT imaging may
help diagnosis AIS

Time to apply EEG
electrodes may result in
delays of care

Lee et al. (14) Identify patients within
4.5-h thrombolysis
window

LR, RF, SVM • 85% training
• 15% test

355 MRI features • Sensitivity 75.8%
• Specificity 82.6%
• AUC 85.1%

RF Improved
sensitivity than
human readings in
identifying stroke
patients within
thrombolysis
window

Assessed only
dichotomized visibility of
signals in the lesion territory

Ho et al. (15) Classifying onset time
from imaging

LR, RF, GBRT, SVM,
SMR

10-fold cross
validation on
training data with
optimal
hyperparameters

104 MRI • Sensitivity 78.8%
• AUC 76.5%

LR with deep
autoencoder features

Improved stroke
onset detection
compared to
DWI-FLAIR

Trained on MRI only

Takahashi et al.
(34)

Detection for MCA dot
sign in unenhanced CT

SVM Not described 297
images

Unenhanced CT Sensitivity 97.5% SVM Accurately detect
hyperdense MCA
dot sign

Data from 7 patients

Chen et al. (35) Automatically segment
stroke lesions in DWI

CNN Train / Test 741
subjects

DWI Dice score 0.67 CNN Segment stroke
lesions
automatically

Improved Dice scores on
larger lesions

Bouts et al. (36) Depict ischemic tissue
that can recover after
reperfusion

GLM, GAM, SVM,
Adaptive boosting, RF

Generalized cross
validation with
unbiased risk
estimator scoring

19 rats MRI Dice Score 0.79 GLM MRI-based
algorithms could
estimate extent of
salvageable tissue

Varying efficacy in
differentiating between
areas irreversibly damaged
vs. salvaged after
reperfusion

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Chen et al. (37) Quantify cerebral
edema following
infarction via CSF
quantification

RF with geodesic active
contour segmentation

• 10-fold cross
validation

• Train / Test

38
subjects

CT Imaging • Baseline Dice Score
0.76

• 6-h Dice score 0.73

RF with geodesic active
contour segmentation

Efficiently and
accurately
measure evolution
of cerebral edema

Colak et al. (38) Stroke Prediction MLP ANN and SVM
with radial basis
function kernel

Train / Test 297
subjects
(130 sick
and 167
healthy)

9 predictors (CAD, DM,
HTN, CVA history, AF,
smoking, carotid
Doppler findings,
cholesterol, CRP

• Accuracy 85.9%
• AUC 0.93

ANN Ability to screen
patients at risk for
stroke based on
comorbidities

Factors used to predict
model are known to be risk
factors for stroke

Maier et al. (39) Classify lesion
segmentation

KNN, GNB, GLM, RF,
CNN

Leave-one-out
cross-validation

37
subjects

MRI • RF:
• Precision 82%
• Recall 62%
• CNN:
• Precision 77%
• Recall 64%

• RF
• CNN

Future work may
be able to
segment lesions

No methods achieved
results in the range of the
human observer agreement

Öman et al. (40) Detection of ischemic
stroke

3D CNN Train / Test 60
subjects

CT Angiography • Sensitivity 93%
• Specificity 82%
• AUC 0.93
• Dice 0.61

3D CNN Lesion can be
detected with
CNN

Contralateral hemisphere
data may reduce false
positive findings

Chen et al. (41) Prehospital detection of
large vessel occlusion

ANN 10-fold cross
validation

600
subjects

Baseline
demographics, medical
history, NIHSS, risk
factors

• Youden index 0.640
• Sensitivity 0.807
• Specificity 0.833
• Accuracy 0.822

ANN Known patient risk
factors may help in
predicting large
vessel occlusion

Cohort included stroke
patients and not those with
mimics or hemorrhagic
stroke

Hemorrhagic stroke

Dhar et al. (42) Hemorrhage and
perihematomal edema
(PHE) quantification

CNN • 10-fold cross
validation

• Train / Test

124 24-h CT head scans • Dice score
• 0.9 – hemorrhage
• 0.54 - PHE

- Rapid and
consistent
measurements of
supratentorial ICH

-IVH not delineated from
ICH

Arab et al. (43) Hematoma
segmentation and
volume quantification

CNN with deep
supervision based on
reader labeling

Train / Test 55 64 axial slices of 128 ×

128 voxels
• Dice score
• 0.84 ± 0.06
• Precision
• 0.85 ± 0.07
• Recall
• 0.83 ± 0.07
• F-Score 0.84

CNN with deep
supervision

Fast and reliable
quantification of
hematoma volume

• False positives observed
with calcifications

• False negatives observed
with blood close to bone

Ko et al. (44) ICH detection CNN and long-short
term memory

Train / Test 5,244,234 Pre-processed CTH to
balance subtypes and
window settings

• Classification
accuracy

• 92 – 93%

- Identification of
ICH and subtypes

-Preprocessing of data
required to attain accuracy

Irene et al. (45) ICH segmentation and
volume approximation

Dynamic Graph CNN • 4-fold cross
validation

• Train / Test

27 CTH • Accuracy 96.4%
• Precision 0.93
• Recall 0.98
• F-Score 0.96

SVM method with radial
basis function kernel

Identification of
ICH and blood
volume prediction

Small dataset

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Arbabshinrani et
al. (13)

Diagnose ICH and
prioritize radiology
worklists

Deep CNN • Training (75%)
• Cross validation

(5%)
• Testing (20%)

46,573
studies

Preprocessing of CTH
images

• ROC 0.846
• Specificity 0.8
• Sensitivity 0.73

- Assist in
upgrading image
reads to “stat”
from “routine”

Did not identify location of
ICH

Sage et al. (46) ICH subtype detection Double-branch CNN of
SVM, RF

Concatenation of
double-branch
features and
classification

9,997
subjects

372,556 images
(11,454 CT scans)

• Accuracy range
• SVM
• 76.9 – 96%
• RF
• 74.3 – 96.7%

- Identify and
classify ICH

EDH performed the worst in
SVM and RF possibly due to
under representation in data

Ye et al. (47) ICH subtype detection 3D joint CNN –
recurrent NN

• Training (80%)
• Validation (10%)
• Testing (10%)

2,836
subjects

76,621 slices from
non-contrast head CT
scans

• AUC for +/- ICH

• 0.98
• AUC range for

subtypes
• 0.89 – 0.96

- Identify and
classify ICH

SAH classification may have
been more difficult due to
blended ICH examples

Chang et al. (48) ICH detection and
volume measurements

Hybrid 3D/2D CNN 5-fold cross
validation

10,841
Scans

Non-contrast CTH • ICH detection

• Accuracy 0.97
• Sensitivity 0.951
• Specificity 0.073
• Volume
• Dice

score 0.772–0.931

- Identification of
ICH and blood
volume prediction

Generalization needs to be
confirmed in other
institutions

Subarachnoid hemorrhage

Capoglu et al. (49) Vasospasm prediction Sparse dictionary
learning and
covariance-based
features

Not described 20 3D brain angiograms ROC 0.93 - Proof of concept
to predict those
who might have
vasospasm

Small dataset

Ramos et al. (22) DCI Prediction LogReg, SVM, RF, MLPMonte-Carlo
cross-validation
with 100 random
splits (75% training
/ 25% test) and
5-fold
cross-validation

317 Non-contrast CT image
data and 48 clinical
variables

• ROC 0.74
• Specificity 0.67
• Sensitivity 0.75

RF with clinical
variables and image
features

ML improved
prediction of DCI
especially when
image features
included
(aneurysm height /
width)

Manual extraction of
features from medical
images is time-consuming

Tanioka et al. (50) DCI prediction RF Leave-one-out
cross-validation

95 Clinical variables and
matricellular proteins
(MCP) on days 1 – 3

• Accuracy
• 93.9% - clinical

variables
• 87.2% - MCP only
• 95.2% - clinical

variables + MCP

- MCP might play a
role in predicting
DCI but further
data needed

Other biomarkers not
assessed

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Miscellaneous

Ni et al. (12) Stroke Case Detection LR, SVM-P, SVM-R,
RF, ANN

Two iterations of
10-fold cross
validation

8,131 Medical record
information compared
to ICD codes

• Accuracy 88.6%
• Precision 93.8%
• Recall 92.8%
• F Score 93.3%
• AUC 89.8%
• AUC-PR 97.5%

RF Detection of stroke
diagnosis through
EHR data that was
miscoded

Accurate ICD codes limit
utility of the algorithm

Park et al. (16) Autonomously grade
NIHSS and MRC
scores through
wearable sensors

• SVM
• Ensemble

5-fold cross
validation
searched by
Bayes optimization
in 30 trials

240 Wearable sensors • NIHSS:
• Accuracy 83.3%
• AUC 0.912
• MRC:
• Accuracy 76.7%

AUC 0.87

SVM Automatic grading
in real time of
proximal
weakness

Requires sensors to be
applied

Section B: stroke outcome prediction

References Study objective ML-based approach Validation

method

Sample

size

Feature Optimal results Best predictors Clinical

implications

Limitations

Radiological outcomes

Nielsen et al. (26) Prediction of final
infarct volume

CNNdeep 85% training/15%
testing

222 MRI images AUC 0.88 ± 0.12 - Facilitates
treatment
selection

No external validation,
retrospective

Giacalone et al.
(51)

Prediction of final
infarct volume

SVM K-fold
cross-validation

4 MRI images 95% accuracy - “ ” Small sample size,
Retrospective

Grosser et al. (52) Prediction of final
infarct volume

XGBoost Leave-one-out
cross-validation

99 MRI images AUC 0.893 ± 0.085 Spatial lesion
probability

“ ” Retrospective, Limited
generalizability (patient data
is from 2006 to 2009)

Foroushani et al.
(53)

Prediction of malignant
cerebral edema

LR 10-fold
cross-validation

361 Serial, quantitative CT
images

AUC 0.96 Reduction in CSF
volume

“ ” No external validation

Bentley et al. (23) Prediction of sICH SVM K-fold
cross-validation

116 Unenhanced CT
images

AUC 0.744 Baseline NIHSS, CT
evidence of acute
ischemia

“ ” Image processing took
∼30min; Small number of
sICH cases

Yu et al. (54) Prediction of HT SR-KDA Leave-one-out
cross-validation

155 MRI images 83.7 ± 2.6% accuracy - “ ” Single-center, Retrospective

Scalzo et al. (55) Prediction of HT SR-KDA 10-fold
cross-validation

263 MRI images 88% accuracy - “ ” Retrospective, current
limitations in measuring
BBB permeability

van Os et al. (56) Prediction of
reperfusion after EVT
(mTICI <2b vs. ≥2b)

LR (using backward
elimination)

Nested
cross-validation,
consisting of an
outer and an inner
cross-validation
loop

1,383 EHR data, CT/CTA
images

AUC 0.57 - “ ” Retrospective; Only
moderate predictive value,
LR outperformed
machine-learning

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Hilbert et al. (57) Prediction of
reperfusion after EVT
(mTICI <2b vs. ≥2b)

RFNN-ResNet-AE
fine-tuned

4-fold
cross-validation

1301 CTA images Average AUC 0.65 - “ ” Retrospective; Only
moderate predictive value

Rondina et al. (58) Comparison of imaging
approaches (lesion load
per ROI vs. pattern of
voxel) to predict post
stroke motor
impairment

GPR 10-fold
cross-validation

50 Post stroke MRI Best prediction was
obtained using motor
ROI and CST (derived
from probabilistic
tractography) R =

0.83, RMSE = 0.68

Patterns of voxels
representing lesion
probability produced
better results

Informs
appropriate
methodology for
predicting long
term motor
outcomes from
early post-stroke
MRI.

Small sample size, no
external validation

Discrete morbidity and mortality clinical outcomes

Matsumoto et al.
(59)

Prediction of all-cause,
in-hospital mortality

LASSO 10-fold
cross-validation

4,232 EHR data AUC 0.88 - Facilitates GOC
decision making

Retrospective,
Single-center, Limited
generalizability (ETV used in
only 1.5% of patients), Low
rate (3.5%) of in-hospital
mortality

Scrutinio et al. (60) Prediction of 3-yr
mortality after severe
stroke

SMOTE RF 10-fold
cross-validation

1,207 EHR data AUC 0.928 Age Facilitates GOC
decision making

No external validation

Ge et al. (61) Prediction of SAP at 7
and 14 d

Attention-augmented
GRU

10-fold
cross-validation

13,930 EHR data • 7 d: AUC 0.928
• 14 d: AUC 0.905

PPI use Facilitates early
detection and
targeted
application of
prophylaxis
interventions

Single-center, No external
validation

Li et al. (62) Prediction of SAP at 7
d

XGBoost 5-fold
cross-validation

3,160 EHR data AUC 0.841 Age, Baseline NIHSS,
FBG, sex, Premorbid
mRS score, & History
of AF

“ “ Single-center, No external
validation

Wang et al. (63) Predicting functional
outcome (mRS) at 1st
and 6th months

RF 10-fold
cross-validation

333 Demographics, labs,
CT brain

• 1 month outcome:
AUC 0.899;

• 6 months outcome
AUC: 0.917

• 1 month outcome=
26 attributes;

• 6 months outcome:
22 attributes

Use of ML to
predict functional
outcome after ICH
is feasible, and RF
model provides
the best predictive
performance

Small sample size, excluded
large hematomas, did not
evaluate hematoma or
edema expansion, no
external validation

Functional outcomes

Heo et al. (64) Prediction of mRS
score (0–2 vs. 3–6) at
90 d

Deep neural network 67% training/ 33%
testing

2,604 EHR data AUC 0.888 - Informs patient
expectations,
Facilitates GOC
decision making

Single-center, No external
validation

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Lin et al. (65) Prediction of mRS
score (0–2 vs. 3–6) at
90 d

SVM 10-fold
cross-validation

35,798 Registry data f1-score 87.9 ± 0.2%
(92.9 ± 0.1%, with
follow-up data)

mRS score at 30 d,
toilet use degree of
dependence

“ “ More severe strokes
accounted for most
prediction errors

Brugnara et al. (66)Prediction of mRS
score (0–2 vs. 3–6) at
90 d

“Machine-learning
models with gradient
boosting classifiers”

Not specified 246 Clinical data,
radiological data (CT,
CTA, CTP, and
angiographic images)

AUC 0.856 NIHSS score at 24 h,
Premorbid mRS score,
Final infarct volume on
CT

“ “ Single center, No external
validation, Retrospective

Forkert et al. (67) Prediction of mRS
score at 90 d

SVM (specifically the
Extended Problem-
specific model)

Leave-one-out
cross-validation

68 Clinical data, MRI
images

• mRS score ± 1:
82.4% accuracy

• mRS score 0–2 vs.
3–6: 85.4% accuracy

• L-hemisphere
strokes: lesion-based
t-score sum

• Rt-hemisphere
strokes:
Lesion volume

“ “ No external validation,
Retrospective

Monteiro et al. (68) Prediction of mRS
score (0–2 vs. 3–6) at
90 d

RF 10-fold
cross-validation

425 Clinical data, CT or MRI
images

AUC 0.936 ± 0.34 Baseline NIHSS score,
Baseline NIHSS score
on subsection 2 (Best
gaze, horizontal EOMs)

“ “ Single center, No external
validation, Retrospective,
Performed worse than
non-imaging model

Jang et al. (69) Prediction of mRS
score (>1 vs. >2) at 90
d

XGBoost 3-fold
cross-validation
and a random
search strategy

6,731 Registry data • mRS >1: AUC 0.84
• mRS >2: AUC 0.87

“ “ Treatment-related factors
were not included, No
external validation

Hope et al. (70) Prediction of speech
production scores

GPR Leave-one-out
cross-validation

270 Clinical data,
Assessments, MRI
images

R2 0.59 Time post-stroke,
Lesion site

Informs patient
expectations

Post-stroke imaging
obtained over a wide range
of times (<1 month to +30
y), No external validation,
Retrospective

Lopes et al. (71) Prediction of cognitive
functions at 3 y after
minor stroke

Ridge Regression 3-step nested
leave-one-out
cross-validation,
consisting of inner,
middle, and outer
loops

72 Clinical data,
Assessments,
functional MRI images

R2 values for attention,
memory, visuospatial
functions, and
language functions:
0.73, 0.67, 0.55, 0.48

- “ “ Limited generalizability
(mean NIHSS on admission
was 1.5 ± 2.2),
Retrospective

Sale et al. (72) Prediction of change in
BI score and FIM score
during inpatient rehab

SVM Nested 5-fold
cross-validation

55 Clinical biomarker data,
Assessments

Discharge cognitive
FIM score: MADP
17.55%, RMSE 4.28

Cognitive FIM score
upon admission

Informs patient
expectations,
Facilitates GOC
decision making

Small sample size, included
hemorrhagic stroke patients

Iwamoto et al. (73) Prediction of ADL
dependence after
inpatient rehab

CART method Not specified 994 Clinical data,
Assessments

AUC 0.83 FIM transfer score (≤4
or >4)

“ “ Single center, Retrospective

Lin et al. (74) Prediction of BI score
(<60, 60–90, >90)
upon discharge from
inpatient rehab

LR, RF 5-fold
cross-validation

313 Clinical data,
Assessments

LR: AUC 0.796, RF:
AUC 0.792

BI, IADL, and BBT
scores on admission

“ “ Limited generalizability due
to aggressive rehab
strategy, No external
validation

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Tozlu et al. (75) Prediction of
post-intervention UE
motor impairment in
chronic stroke

Elastic net Nested 10-fold
cross-validation
with outer and
inner loops

102 Clinical data,
Assessments

Median R2 0.91 Pre-intervention
UE-FMA, difference in
MT between the
affected and unaffected
hemispheres

Informs patient
expectations,
Increases
rehabilitation
efficiency

Retrospective, No external
validation

Stinear et al. (76) Predicts potential for
UE recovery

Cluster analyses Not applicable 40 Clinical assessments ±

neurophysiological
assessments and MRI
images

Partial η2 0.811 - “ “ Small sample size, Single
center, No external
validation

Section A and B

ADL, Activities of daily living; AE, Auto-encoders; AF, Atrial fibrillation; AIS, Acute ischemic stroke; ANN, Artificial neural network; AUC, area under the receiver operating characteristic curve; BBB, blood-brain barrier; BBT, Berg balance

test; BI, Barthel Index; CART, Classification and regression tree; CNN, convolutional neural network; CSF, cerebral spinal fluid; CST, Corticospinal tract; CT, computed tomography; CTA, Computerized tomography angiography; CTP,

Computerized tomography perfusion; CXR, Chest radiograph; D, days; DCI, delayed cerebral ischemia; DTI, Diffusion Tensor Imaging; DWI, diffusion weighted image; EDH, epidural hematoma; EEG, electroencephalogram; EHR,

electronic health record; EOMs, Extra-ocular movements; EVT, endovascular treatment; FBG, Fasting blood glucose; FIM, Functional independence measure; GAM, generalized additive model; GBRT, gradient boosted regression tree;

GLM, generalized linear model; GOC, Goals-of-care; GRU, gated recurrent unit; GPR, Gaussian Process model Regression; H, hours; HT, hemorrhagic transformation; IADL, Instrumental activities of daily living scale; ICH, Intracerebral

hemorrhage; IVH, intraventricular hemorrhage; KNN, K nearest neighbor; L, Left; LASSO, Least absolute shrinkage and selection operator regression; LR, logistic regression; MADP, Mean absolute percentage deviation; MCA, middle

cerebral artery; MCP, matricellular proteins; Min, minutes; MLP, multilayer perceptron; MRC, medical research council; MRI, magnetic resonance imaging; mRS, Modified Rankin Score; MT, motor threshold; NB, naïve bayes; NIHSS,

National Institutes of Health Stroke Scale; PHE, perihematomal edema; PPI, Proton pump inhibitor; RF, Random forest; RFNN, Structured Receptive Field Neural Networks; RMSE, Root mean square error; ROI, region of interest; Rt,

Right; SAP, Stroke-associated pneumonia; sICH, symptomatic intracranial hemorrhage; SMOTE, synthetic minority oversampling technique; SMR, stepwise multilinear regression; SR-KDA, Kernel Spectral Regression for Discriminant

Analysis; SVM, support vector model; SVM-P, support vector machine with polynomial; SVM-R, support vector machine with radial basis function; UE, Upper extremity; UE-FMA, Upper extremity Fugl-Meyer Assessment; XGBoost,

Extreme gradient boosting; Yr, year.

NB: List of ML terms with definitions is provided in Supplementary Table 1.

Section B

Many of the listed studies utilize a variety of machine learning (ML)-based approaches. The approach listed on the table is the approach with the optimal result from each individual study.
*Phenotype based on Oxfordshire Community Stroke Project (OCSP) (total anterior circulation infarcts, lacunar infarcts, partial anterior circulation infarcts, posterior circulation infarcts).
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70.6% of ischemic stroke patients were functionally dependent
(defined as mRS score of ≥3) or had died (5-year mortality
rate of 50.6%). These sobering outcomes partially account for
the development of many stroke prognostic models over the
years, which frequently serve as benchmarks in stroke research.
Recently, Matsumoto et al. compared the performance of six
existing stroke prognostic models for predicting poor functional
outcomes and in-hospital mortality with linear regression or
decision tree ensemble models (59). The novel prediction models
performed slightly better than the conventional models in
predicting poor functional outcomes (AUC 0.88–0.94 vs. AUC
0.70–0.92) but were equivalent or marginally worse in predicting
in-hospital death (AUC 0.84–0.88 vs. AUC 0.87–0.88). Many
such stroke prediction models have emerged over the recent
years. An overview of ML based automated algorithms for stroke
outcome prediction is provided in Table 1 (Section B).

DISCUSSION

In recent years, some DL algorithms have approached human
levels of performance in object recognition (91). One of the
greatest strengths of ML is its ability to endlessly process data
and tirelessly perform an iterative task. Further, creation of a
ML model can be performed much faster (i.e., in a matter
of 5–6 days compared with 5–6 months or even years) than
traditional computer-aided detection and diagnosis (CAD) (92).
which makes ML an attractive field for computer experts and
scientists. Several ML tools are currently in use including the
FDA-approved ML algorithms previously discussed for rapid
stroke diagnosis which have significantly enhanced the workflow
of acute ischemic stroke patients.

Despite the prolific advent of new and improved ML
algorithms with increasing clinical applications, it is important
to recognize that computer-based algorithms are only as good
as the data used to train the models. For a reliable algorithm,
it is important to develop well-defined training, validation, and
testing sets. Testing should be done on a diverse set of data
points reflective of a real-world scenario. Overfitting can be an
issue in ML algorithms when the model is trained on a group
of highly-selected, specific features, which when tested on a
larger dataset with varied features, fails to perform adequately.
Similarly, underfitting can occur when a model is oversimplified
with generalized feature selection in the training set which then
becomes unable to capture the relevant features within a complex
pattern of a larger or more diverse testing set. The aphorism
“garbage in, garbage out” remains true as the use of inadequate
or unvalidated data points (e.g., unverified clinical reports from
electronic health record) in the training set can lead to poor
performance of the ML algorithm in the testing set. Hence, it is
important to note that the algorithmic decision-making tools do
not guarantee accurate and unbiased interpretation compared to
established logistic regression models (56, 59, 93). Comparisons
to well-established models should be standard when developing
new ML algorithms given the high cost associated with ML
(e.g., the time required to collect data, train the model, perform
internal and external validations, cost of reliable and secure data

storage, etc.) (94). Specifically, as it relates to diagnostics there
are a myriad of considerations that must be taken into account.
Not only should the algorithm provide accurate information
quickly, but it should have the ability to integrate into the
electornic health record (EHR) to improve end user experience
and efficiency in workflow. Programs such as RAPID R©, Viz.ai R©,
and Brainomix R© have started to successfully integrate into the
EHR, which has helped expedite acute stroke diagnosis and triage
process. One of the major technical challenges of ML include
the ability to develop an algorithm with a “reasonable” detection
rate of pathology without an excessive rate of false-positives.
For example, there are notable discrepancies among various ML
studies for ICH diagnosis, with varying accuracy depending on
the type of ICH (e.g., spontaneous ICH, SDH, aSAH, or IVH).
Overfitting and underfitting of the model could lead to poor
applicability and therefore, image preprocessing with meticulous
feature selection is necessary. Furthermore, the “black-box”
nature of ML precludes the clinicians from identifying and
addressing biases within the algorithms (95, 96). Hence, proper
external validation is necessary to ensure generalizability of the
algorithm in diverse clinical scenarios.

For stroke prediction, most existing ML algorithms utilize
dichotomized outcomes. Functional outcome is frequently
defined as “good” when mRS score is 0–2 and “poor” when
mRS score is 3–6 by convention and IS studies often measure
mRS score at 90 days after stroke (64–69, 97). However,
the medical community is increasingly embracing patient-
centered outcomes. People are starting to recognize the need
for longitudinal patient follow-up given potential for functional
improvement beyond conventional norms of 90 days (98). Once
patient-centered outcomes are clinically validated (e.g., MRS
cutoff of 0–2 vs. 3–6, 0–3 vs. 4–6, or 0–4 vs. 5–6), new ML
algorithms incorporating such outcomes would be increasingly
helpful to the clinicians. The use of high-yield, ML programs
using patient-centered outcomes could ease the commonplace
but challenging discussions of the anticipated quality of life
and the risk of long-term dependency or death before deciding
on a patient’s goals-of-care. It is however important to apply
caution while using ML algorithms for outcome prediction as
patient demographics and clinical practice continue to evolve
and updates to the ML algorithms would be necessary to
remain applicable to evolving patient populations and clinical
standards. Additionally, developers often retrieve data from
existing datasets (e.g., clinical trial data) with its inherent biases
including selection bias, observer bias and other confounders
(e.g., withdrawal of life supporting therapymay bemore common
in older patients with large hemispheric stroke compared to
younger patients, which could confound outcome prediction in
older patients compared to younger ones).

Overall, compared to other diseases such as Alzheimer’s
disease, there is a relative paucity of large, high-quality
datasets within stroke. Some limitations that have stymied the
development of large, open-access stroke registries include the
need for data-sharing agreements, patient privacy concerns, high
costs of data storage and security, arbitration of quality control of
the input data, etc. (95). Cohesive and collaborative efforts across
hospital systems, regions, and nations with data acquisition and
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harmonization is needed to improve future ML-based programs
in stroke. With adoption of EHR systems, healthcare data is
rapidly accumulating with an estimated over 35 zettabytes of
existing healthcare data! (99). Adoption of AI andML algorithms
allow us to efficiently process the plethora of information that
surround us every day. Nonetheless, as we continue to adapt to
this evolving landscape of medical practice surrounding big data,
clinicians need to remain aware of the limitations of this modern
day “black box” magic.

CONCLUSION

The emerging ML technology has rapidly integrated into
multiple fields of medicine including stroke. Deep learning has
significantly enhanced practical applications of ML and some
newer algorithms are known to have comparable accuracy to
humans. However, the diagnosis and prognosis of a disease,
including stroke, is highly intricate and depends on various
clinical and personal factors. The development of optimal
ML programs requires comprehensive data collection and
assimilation to improve diagnostic and prognostic accuracy.
Given the “black box” or cryptic nature of these algorithms,
it is extremely important for the end-user (i.e., clinicians)
to understand the intended use and limitations of any ML
algorithm to avoid inaccurate data interpretation. Although
ML algorithms have improved stroke systems of care, blind
dependence on such computerized technology may lead to
misdiagnosis or inaccurate prediction of prognostic trajectories.
At the current state, ML tools are best used as “aids”

for clinical decision making while still requiring oversight
to address relevant clinical aspects that are overlooked by
the algorithm.
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Background and Purpose: Treatment for mild stroke remains an open question. We

aim to develop a decision support tool based on machine learning (ML) algorithms,

called DAMS (Disability After Mild Stroke), to identify mild stroke patients who would

be at high risk of post-stroke disability (PSD) if they only received medical therapy

and, more importantly, to aid neurologists in making individual clinical decisions in

emergency contexts.

Methods: Ischemic stroke patients were prospectively recorded in the National

Advanced Stroke Center of Nanjing First Hospital (China) between July 2016 and

September 2020. The exclusion criteria were patients who received thrombolytic therapy,

age < 18 years, lack of 3-month modified Rankin Scale (mRS), disabled before the index

stroke, with an admission National Institute of Health stroke scale (NIHSS) > 5. The

primary outcome was PSD, corresponding to 3-month mRS ≥ 2. We developed five ML

models and assessed the area under curve (AUC) of receiver operating characteristic,

calibration curve, and decision curve analysis. The optimal ML model was selected to be

DAMS. In addition, SHapley Additive exPlanations (SHAP) approach was introduced to

rank the feature importance. Finally, rapid-DAMS (R-DAMS) was constructed for a more

urgent situation based on DAMS.

Results: A total of 1,905 mild stroke patients were enrolled in this study, and patients

with PSD accounted for 23.4% (447). There was no difference in AUCs between the

five models (ranged from 0.691 to 0.823). Although there was similar discriminative

performance between ML models, the support vector machine model exhibited higher

net benefit and better calibration (Brier score, 0.159, calibration slope, 0.935, calibration

intercept, 0.035). Therefore, this model was selected for DAMS. In addition, SHAP
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approach showed that the most crucial feature was NIHSS on admission. Finally, R-

DAMS was constructed and there was similar discriminative performance between

R-DAMS and DAMS, but the former performed worse on calibration.

Conclusions: DAMS and R-DAMS, as prediction-driven decision support tools, were

designed to aid clinical decision-making for mild stroke patients in emergency contexts.

In addition, even within a narrow range of baseline scores, NIHSS on admission is the

strongest feature that contributed to the prediction.

Keywords: mild stroke, machine learning, post-stroke disability, decision support tool, predictive model

INTRODUCTION

Around half of patients with ischemic stroke have mild
neurological symptoms (1), usually with the expectation that
such patients will come back to their pre-stroke activities
regardless of the treatment. However, over one-third of
mild stroke patients present with some degree of post-
stroke disability (PSD) (2–4), which may be the result of
inadequate acute treatments, early stroke recurrence, serious
complications, or other reasons (1, 5). For the acute treatment
of mild stroke patients, the guidelines from the American
Heart Association/American Stroke Association (AHA/ASA) (6)
distinguish disabling from non-disabling stroke and recommend
intravenous (IV) alteplase only for the former. Nonetheless, the
more certain, but not definitive, concept of “disabling stroke” is
subjective and requires interpretation by individual neurologists.
On the other hand, there is a trade-off between the benefits of
IV alteplase and the risk of symptomatic intracranial hemorrhage
(sICH). Therefore, decisions on how to treat mild stroke patients
should be made on an individual basis.

3-month modified Rankin Scale (mRS), a valuable instrument
for testing therapeutic interventions (7, 8), was used to assess the
levels of PSD (5, 8). For mild stroke patients who only received
medical therapy but had PSD, such therapy is not enough.
Therefore, mild stroke patients who would be at high risk of PSD
if they only received medical therapy should be early identified
in emergency contexts, and some aggressive treatments, such as
IV alteplase or close monitoring preventing worsening, should
be taken in time. Unexpectedly, neurologists’ overall accuracy for
identifying those patients was staggeringly low (16.9%) (9). Each
day that such a problem continues to exist means that uncounted
mild stroke patients are being left with preventable disability.

However, none of the previously published risk models which
were developed to predict the function outcome after stroke are
fit to solve this problem. For example, the Totaled Health Risks in
Vascular Events (THRIVE) score and the Houston Intra-Arterial
Therapy (HIAT) score assign 0 points for National Institute of
Health stroke scale (NIHSS) ≤ 5, losing the predictive power of
NIHSS in mild stroke patients (10, 11). NIHSS on admission has
been proven to be a strong predictor of PSD (5). Thus, despite
convenient clinical applicability, these models cannot accurately
identify mild stroke patients at high risk of PSD. Such models
remain inadequate.

With the increased clinical data gathered for each patient,
modern medical decision-making demands accurate, novel, and

prediction-driven decision support. Machine learning (ML)
algorithm, as a burgeoning statistical approach, is well-suited for
that mission. Numerous studies with a considerable number of
patients have shown great potential for ML approaches to predict
recurrence (12), swallowing recovery (13), or aphasia (14) in
patients with stroke. However, a model based on ML algorithms,
focusing on the more debatable area of treating MS, has not yet
been established.

Here, our goal was to develop and validate a prediction-
driven decision support tool based on ML algorithms, called
DAMS (Disability AfterMild Stroke), to early identifymild stroke
patients who would be at high risk of PSD if they only received
medical therapy, and more importantly, to assist neurologists to
make individual clinical decisions for mild stroke patients.

MATERIALS AND METHODS

Study Population
The study population involved the sequential ischemic stroke
patients within 12 h of symptoms onset recorded in the National
Advanced Stroke Center of Nanjing First Hospital (China)
between July 2016 and September 2020. The exclusion criteria
were patients who received thrombolytic therapy, age < 18 years,
lack of 3-month mRS, who were disabled before the stroke
(premorbid mRS score ≥ 2), with an admission NIHSS > 5. The
primary outcome was PSD, corresponding to 3-month mRS≥ 2.

Based on the Helsinki declaration, this study was allowed
by the ethics committee of Nanjing First Hospital (document
number: KY20130424-01), and informed consent of all patients
was obtained.

Patient Clinical and Demographic Variables
Data used for prediction were routinely gathered and stored in
the electronic health record. Demographic variables included
age, education level, and education. Laboratory data included
fasting blood glucose (FBG), systolic blood pressure (SBP), and
platelet count. The quality of laboratory data was validated
throughout the study period by regular internal quality control
procedures and participation in an External Quality Assessment
scheme. Comorbidities were diagnosed by experienced clinicians
and identified according to International Statistical Classification
of Diseases and Related Health Problems, 10th Revision [ICD-
10] codes, including hypertension, diabetes mellitus, and atrial
fibrillation. Clinical symptoms included language disorder,
facial paralysis, hemiplegia, and dizziness. Medication use

Frontiers in Neurology | www.frontiersin.org 2 December 2021 | Volume 12 | Article 761092111

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Lin et al. Decision Support for Mild Stroke

history was recorded on admission. Based on the clinical
characteristics, imaging, and laboratory examination, ischemic
stroke etiology was classified by a trained physician by Trial
of Org 10172 in Acute Stroke Treatment (TOAST) criteria
(15). NIHSS on admission and 3-month mRS were evaluated
by certified assessors during telephone questionnaires or face-
to-face interviews with the patients, their relatives, or general
practitioners. Data must have been recorded and available in the
electronic health record before prediction to be included.

Statistical Analysis
The continuous variable data was presented as the median value
and interquartile range, using Mann-Whitney U test for clinical
and demographic comparison between two groups. Univariate
tests were conducted using Pearson’s chi-square test or Fisher’s
exact test for categorical data which were indicated as the number
of events (fraction of the total). All tests were two-sided and p-
values <0.05 were considered statistically significant. The above
statistics and descriptions were implemented with SPSS version
25.0 (IBM Corporation, Armonk, NY, USA).

ML Algorithms
Before introducing the ML prediction model with the
demographic and clinical variables mentioned above, missing
values were first filled following the k-nearest neighbor algorithm
(16). In addition, patients who missed more than one data would
be excluded. The continuous data were standardized by z-score
normalization (17), and the categorical data were converted by
one-hot encoding (18). To select the ML algorithm that exhibits
the best predictive ability, five ML classifiers, logistic regression
(LR), support vector machine (SVM), random forest classifier
(RFC), extreme gradient boosting (XGB), and deep neural
network (DNN), were implemented for model construction to
predict PSD in mild stroke patients.

Feature Selection
Superfluous and extraneous factors may lead to model overfitting
and affect the predictive power of the model, respectively. Thus,
a feature selection process was carried out in the study. All
variables with significant difference (p < 0.05) in the univariate
analysis were subjected to the least absolute selection and
shrinkage operator (LASSO) algorithm, which is available for
software python (version 3.7; https://www.python.org/). LASSO
algorithm implements variable selection and regularization to
improve the prediction accuracy and interpretability of themodel
(19). Finally, variables with non-zero coefficients determined
by LASSO method were incorporated for building ML models.
The feature selection algorithm was carried out with Python
Scikit-learn environment (version 0.23.2).

Model Development
Supervised ML algorithms mentioned above with binary
classification (PSD and non-PSD) were applied to establish
predictive models. The study population was randomly divided
into the training set (80%) for developing models and the testing
set (20%) for assessing the models’ performance. In the training
step, 10-fold cross-validation was implemented, dividing and

FIGURE 1 | Flow chart illustrating patient selection. mRS, modified Rankin

Scale; NIHSS, National Institute of Health stroke scale; IV, intravenous.

generating ten different derivation and inner validation subsets,
which improved the generalizability and avoided overfitting. Grid
search algorithm was adapted to tune model hyper-parameters to
achieve the highest area under curve (AUC) of receiver operating
characteristic (ROC).

Model Evaluation
Upon obtaining the models, the predictive performance was
assessed on a testing set according to scores of AUC of ROC,
drawn by sensitivity and 1-specificity across a series of cut-off
points. Discrimination of the ML model on the testing set was
evaluated by AUC. Delong test was carried out to compare the
ROC curves in different models. Calibration of the ML model on
the testing set was evaluated by calculating Brier score, calibration
slope, and calibration intercept. The difference between the
estimated and observed risk for PSD was calculated by Brier
score, and the model with calibration slope = 1 and calibration
intercept = 0 indicated perfect calibration. In addition, the
null model Brier score was calculated to compare the relative
gain of the algorithms to this benchmark (20). Decision curve
analysis was introduced to evaluate the clinical utility (weighted
average of true positives and false positives) by calculating the net
benefits in the range of threshold probabilities. To evaluate the
dominance of theMLmodels in terms of predictive performance,
we also implemented THRIVE and HIAT score on the testing set
(10, 11). Finally, the optimal model was selected for DAMS.

Feature Importance
ML models were accused of being “black boxes,” which means
that the development and validation processes of ML models
are uninterpretable. In order to rank features in ML models, we
introduced the SHapley Additive exPlanations (SHAP) approach.
The SHAP approach has a high potential for rationalization of
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TABLE 1 | Demographic and clinical data of the patients.

Total (n = 1905) Non-PSD (n = 1458) PSD (n = 447) p-value

Demographic

Age years median (IQR) 65 (58–73) 63 (56–71) 70 (63–79) <0.001*

Male sex n (%) 1337 (70.2%) 1046 (71.7%) 291 (65.1%) 0.007*

BMI kg/m median (IQR) 24.57 (22.49–26.67) 24.62 (22.49–26.67) 24.39 (22.22–26.67) 0.089

Education n (%) 0.018*

0–6 739 (38.8%) 540 (37.0%) 199 (45.5%)

6–9 617 (32.4%) 487 (33.4%) 130 (29.1%)

9–12 392 (20.6%) 314 (21.5%) 78 (17.4%)

>12 157 (8.2%) 117 (8.0%) 40 (8.9%)

Risk factors of n (%)

Hypertension 1322 (69.4%) 977 (67.0%) 345 (77.2%) <0.001*

Diabetes mellitus 557 (29.2%) 394 (27.0%) 163 (36.5%) <0.001*

Dyslipidemia 55 (2.9%) 44 (3.0%) 11 (2.5%) 0.538

Coronary artery disease 158 (8.3%) 106 (7.3%) 52 (11.6%) 0.003*

Atrial fibrillation 90 (4.7%) 62 (4.3%) 28 (6.3%) 0.079

Previous TIA 8 (0.4%) 7 (0.5%) 1 (0.5%) 0.689

Previous ischemic stroke 196 (10.3%) 136 (9.3%) 60 (13.4%) 0.013*

Previous hemorrhagic stroke 46 (2.4%) 27 (1.9%) 19 (4.3%) 0.004*

Current smoker 877 (46.0%) 710 (48.7%) 167 (37.4%) <0.001*

Current drink 652 (34.2%) 529 (36.3%) 123 (27.9%) 0.001*

Clinical symptoms n (%)

Amaurosis 4 (0.2%) 3 (0.2%) 1 (0.2%) 1.000

Language disorder 61 (3.2%) 44 (3.0%) 17 (3.8%) 0.409

Facial paralysis 840 (44.1%) 612 (42.0%) 228 (51.0%) 0.001*

Hemiplegia 1271 (66.7%) 924 (63.4%) 347 (77.6%) <0.001*

Dizziness 225 (11.8%) 176 (12.1%) 49 (11.0%) 0.525

Consciousness disturbance 27 (1.4%) 16 (1.1%) 11 (2.5%) 0.038*

Sensory disturbance 293 (15.4%) 230 (15.8%) 63 (14.1%) 0.389

Medication use history n (%)

Previous antiplatelet 206 (10.8%) 144 (9.9%) 62 (13.9%) 0.017*

Previous anticoagulation 29 (1.5%) 23 (1.6%) 6 (1.3%) 0.722

Previous statin 115 (6.0%) 84 (5.8%) 31 (6.9%) 0.362

TOAST classification <0.001*
†

LAA (%) 895 (47.0%) 620 (42.5%) 275 (61.5%)

CE (%) 124 (6.5%) 89 (6.1%) 35 (7.8%)

SAO (%) 824 (43.3%) 697 (47.8%) 127 (28.4%)

SOC (%) 16 (0.8%) 13 (0.9%) 3 (0.7%)

SUC (%) 46 (2.4%) 39 (2.7%) 7 (1.6%)

Baseline data

Premorbid mRS=1 (%) 90 (4.7%) 52 (3.6%) 38 (8.5%) <0.001*
†

NIHSS at admission median (IQR) 2 (1–3) 2 (1–3) 3 (2–4) <0.001*
†

SBP mmHg median (IQR) 143 (130–158) 143 (130–158) 146 (130–160) 0.010*
†

DBP mmHg median (IQR) 85 (80–90) 85 (80–90) 84 (80–90) 0.352

Platelet count 10/L median (IQR) 204 (164–204) 205 (165–241) 201 (158–234) 0.068

Creatinine mmol/L median (IQR) 77 (58–82) 75 (59–81) 82 (58–88) 0.022*
†

FBG mmol/L median (IQR) 5.97 (4.58–6.61) 5.86 (4.55–6.40) 6.31 (4.64–7.36) 0.002*
†

TC mmol/L median (IQR) 4.51 (3.77–5.16) 4.50 (3.77–5.15) 4.54 (3.73–5.19) 0.547

TG mmol/L median (IQR) 1.69 (1.02–1.95) 1.73 (1.04–1.98) 1.58 (0.99–1.80) 0.006*
†

HDL mmol/L median (IQR) 1.08 (0.86–1.19) 1.07 (0.87–1.19) 1.07 (0.86–1.21) 0.917

LDL mmol/L median (IQR) 2.72 (2.12–3.26) 2.70 (2.13–3.24) 2.76 (2.11–3.34) 0.189

IQR interquartile range; BMI body mass index; TIA transient ischemic attacks; TOAST Trial of Org 10172 in Acute Stroke Treatment; LAA large artery atherosclerosis; CE cardioembolism;

SAO small artery occlusion; SOC stroke of other determined cause; SUC stroke of undetermined cause; mRS modified Ranking Scale; NIHSS National Institutes of Health Stroke Scale;

SBP systolic blood pressure; DBP diastolic blood pressure; FBG fasting blood glucose; TC total cholesterol; TG triglycerides; HDL high-density lipoprotein; LDL low-density lipoprotein.

Data are given as n (%) or median (interquartile range).

*Variables included into the least absolute selection shrinkage operator regression (P<0.05).
†
Variables selected by the least absolute selection shrinkage operator regression.
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FIGURE 2 | The receiver operating characteristic curve (ROC) of the machine learning models on training set (A) and ROC of the machine learning models and

traditional models on testing set (B) AUC, the area under curve; LR, logistic regression; SVM, support vector machine; RFC, random forest classifier; XGB, extreme

gradient boost; DNN, deep neural network; THRIVE, Totaled Health Risks in Vascular Events; HIAT, Houston Intra-arterial Recanalization Therapy.

TABLE 2 | Discrimination and calibration of each machine learning algorithms on the testing set.

Model AUC (95% CL) Sensitivity % Specificity % Accuracy % Intercept Slope Brier

LR 0.766 (0.709–0.823) 78.6 64.3 68.0 −0.129 0.805 0.221

RFC 0.755 (0.699–0.812) 80.6 59.4 64.8 −0.488 1.5533 0.228

SVM 0.762 (0.705–0.819) 74.5 71.0 71.9 0.035 0.935 0.159

XGB 0.749 (0.691–0.807) 70.4 68.2 68.8 0.068 0.879 0.165

DNN 0.759 (0.702–0.816) 74.5 67.1 69.0 −0.030 0.576 0.227

AUC, area under curve of receiver operating characteristic; CL, confidence interval; LR, logistic regression; RFC, random forest classifier; SVM, support vector machine; XGB, extreme

gradient boosting; DNN, deep neural network.

Null model Brier score = 0.180.

the predictions from sophisticated ML models (21). In addition,
the SHAP method indicates whether the effect of a feature on the
result is positive or negative.

Rapid Prediction Model
DAMS may include some variables that take a relatively long
time to obtain in emergency contexts, such as triglycerides and
creatinine levels. For a more urgent situation, rapid-DAMS (R-
DAMS), which excluded these variables, would be constructed
based on DAMS. Then we will compare R-DAMS with DAMS
in multiple dimensions such as ROC, calibration curve, and
decision curve analysis.

RESULTS

Study Population
As shown in Figure 1, 1,905 patients met the inclusion criteria
and were included in the present study. Patients with PSD

account for 23.5% (447) of mild stroke patients; analogous
proportions of PSD patients were established between training
and testing sets (22.9 vs. 25.7%, p > 0.05). The median age
of included patients was 65 (interquartile range: 58–73) years
and 1,337 (70.2%) patients were men. The baseline statistics
of both PSD and non-PSD groups were exhibited in Table 1.
The characteristics of the patients struck a balance between the
training (n = 1,524, 80%) and testing (n = 381, 20%) sets
(Supplementary Table 1).

Feature Selection
Table 1 shows that 21 features were significantly different (p <

0.05) between patients with and without PSD with univariate
analyses. Then, nine features without non-zero coefficients
were excluded by LASSO regression. The final 12 variables
incorporated intoMLmodels were age, NIHSS at admission, SBP,
creatinine, FBG, triglyceride, hemiplegia, hypertension, previous
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FIGURE 3 | The calibration curve of the machine learning models (A) and decision curve analysis of the machine learning models (B). LR, logistic regression; SVM,

support vector machine; RFC, random forest classifier; XGB, extreme gradient boost; DNN, deep neural network.

ischemic stroke, current drink, premorbid mRS, and TOAST
classification.

Model Performance
Supplementary Table 2 exhibited the model hyper-parameters.
ROCs of eachmodel on the training set were shown in Figure 2A.
Table 2 shows performance metrics on the testing set, including
AUC, sensitivity, Brier score, calibration slope, and calibration
intercept.

As shown in Table 2 and Figure 2B, the discriminative
performance was observed in LR (AUC, 0.766; 95% CL, 0.709–
0.823), RFC (AUC, 0.755; 95% CL, 0.699–0.812), SVM (AUC,
0.762; 95% CL, 0.705–0.819), XGB (AUC, 0.749; 95% CL, 0.691–
0.807), and DNN (AUC, 0.759; 95% CL, 0.702–0.816) on the
testing set, and AUCs on the testing set were 0.633 (95% CL,
0.577–0.689) and 0.629 (95% CL, 0.596–0.721) in HIAT and
THRIVE score, respectively. The results of the DeLong test
indicated that there was no statistical difference in the AUCs
of the five ML models, but the AUCs of the five ML models
was significantly better than that of HIAT and THRIVE scores
(Supplementary Table 3).

The null model Brier score in the present study was 0.180.
On the testing set, the Brier score ranged from 0.159 to 0.228.
The calibration slope ranged from 0.576 to 1.553 and calibration
intercept ranged from −0.488 to 0.068 (Figure 3A and Table 2).
Decision curve analysis indicated that SVM and XGB models
exhibited higher net benefit than other ML models as well
as default strategies of treating all patients or no patients
(Figure 3B).

There was no statistical difference in AUCs of the ML models,
but the SVM model exhibited higher net benefit and calibration
(Brier score, 0.159, calibration slope, 0.935, calibration intercept,
0.035). Therefore, the SVMmodel was selected to be DAMS.

Feature Importance
SHAP was introduced to rank the feature importance based on
DAMS. Figures 4A,B show that the most important features
were NIHSS on admission, age, and FBG. Figure 4A shows the
individual distribution of SHAP values for single variables on
DAMS. The redder the color of the sample dot, the higher the
feature value of the variable for the sample. The higher the SHAP
value of the abscissa, the greater the likelihood of PSD. Feature
importance based on other ML models trained in the present
study were provided in Supplementary Figure 1.

Rapid Prediction Model
DAMS included triglycerides and creatinine levels, which
may take some time to obtain in an emergency context.
Therefore, rapid-DAMS (R-DAMS) that excluded triglycerides
and creatinine levels were constructed formore urgent situations.
Then, we compared it with DAMS on a testing set using ROC,
calibration curve, and decision curve analysis. As shown in
Figure 5 and Supplementary Table 4, there was no significant
difference in AUC between R-DAMS and DAMS but the former
performed slightly worse on calibration.

DISCUSSION

In this study, we demonstrated DAMS had the capacity to
early identify mild stroke patients who would be at high risk
of PSD if they only received medical therapy, achieving an
optimal performance compared with our other ML models
and previous scoring systems (THRIVE and HIAT scores). In
addition, R-DAMS was developed for more urgent situations.
DAMS and R-DAMS were able to generate reliable risk estimates
for individuals, relying merely on data that were acquired in an
emergency setting, and R-DAMS was able to do this within 4.5 h
or less of symptom onset. Hitherto none of the prognosis models
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FIGURE 4 | Feature importance ranking based on Shapley Additive exPlanations (SHAP) values (A,B) in DAMS. (A) Red indicates that the value of the feature is high,

and blue indicates that the value of the feature is low; the x-axis represents the SHAP values. The features are ranked according to the sum of the SHAP values for all

patients. (B) Standard bar charts were drawn and sorted using the average absolute value of the shape values of each feature in DAMS. NIHSS, National Institutes of

Health Stroke Scale; FBG, fasting blood glucose; TOAST, Trial of Org 10172 in Acute Stroke Treatment; LAA, large artery atherosclerosis; SAO, small artery occlusion;

SBP, systolic blood pressure; mRS, modified Ranking Scale.

for mild stroke patients were developed for the prime objective
of providing clinical decision support which targets treatment
in the emergency contexts. DAMS and R-DAMS, as prediction-
driven clinical decision support tools with this target in mind, are
significant because neurologists faced a dilemma about the more
debatable area of treating mild stroke: using IV alteplase but with
the risk of sICH, or not using IV alteplase but potentially leaving
the patient with brain ischemia.

In our study, the use of R-DAMS could offer neurologists
effective support in the IV alteplase decision. Whether mild
stroke patients will benefit from IV alteplase is still controversial.

A meta-analysis reported that mild stroke patients who were
treated with IV alteplase had lower odds of PSD even if the
incidence of sICH increased slightly (22, 23). However, this
research relied on retrospective data. The Potential of rtPA for
Ischemic Strokes with Mild Symptoms (PRISMS) trial, which
prospectively enrolled mild stroke patients without “clearly
disabling” deficits, demonstrated no benefit for IV alteplase
in this subgroup of patients (23). This trial defined a more
certain, but not definitive, population for which the use of IV
alteplase cannot be recommended. In line with the findings of
the PRISMS trial, the AHA/ASA guidelines distinguish mild
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FIGURE 5 | The receiver operating characteristic curve (ROC) (A), the calibration curve (B), and decision curve analysis (C) between R-DAMS model and DAMS

model. AUC, the area under curve.

disabling stroke frommild non-disabling stroke and recommend
IV alteplase within 3 and 4.5 h only for the former (6). The
population in our study was not categorized by whether their
initial symptoms were “clearly disabling,” because there are subtle
differences in judgments about “clearly disabling” deficits in
individual neurologists. In the present study, it should be stated
explicitly that for patients who were identified to be at high
risk of PSD by DAMS or R-DAMS, medical therapy alone is
not enough. Thus, the two models support decision-making in
the following ways: First, for mild stroke patients judged to
be eligible for IV alteplase by current guidelines, R-DAMS was
the best choice. The prediction generated by R-DAMS, paired
with neurologists’ expertise, enables them to choose the most
appropriate candidates for IV alteplase. Second, for patients who
are not eligible but are at high risk of PSD according to DAMS,
best medical therapy alone with close monitoring may be an
appropriate course of action.

On the other hand, we unlocked the potential utility of
DAMS in secondary prevention. In a secondary analysis of
the Acute Stroke or Transient Ischemic Attack Treated with
Aspirin or Ticagrelor and Patient Outcomes (SOCRATES) trial,
recurrent cerebrovascular event occurred at a significantly higher
rate in patients with PSD than patients without PSD (29.0 vs.
3.7%) (5). Furthermore, as a leading cause of PSD (5, 8), a
recurrent cerebrovascular event would do more irreparable harm
to the patients at high risk of PSD compared with those at low
risk. Therefore, effective prevention of recurrent cerebrovascular
event to the patients at high risk of PSD portends a decreased
risk of PSD. In the present study, DAMS could help to identify
mild stroke patients at high risk of PSD, namely those who
would most likely obtain substantial benefits from secondary
prevention. For this patient group, a focus on evidence-based
treatments for secondary prevention, and a support program to
improve achievement of secondary prevention targets (e.g., blood
pressure, diabetic control, cholesterol) in the long-term, might
significantly reduce PSD.

With the expectation that DAMS and R-DAMS can be
integrated into clinical practice, we had to acknowledge that

our results represent only one step toward one component
of a prediction-driven decision support tool for mild stroke
patients. Some other steps need to be considered. Firstly,
external validation, using data sets from different centres, should
be carried out to duplicate the present results. Secondly, an
impact study, quantifying whether application of DAMS and
R-DAMS in clinical practice improves neurologists’ decision
making and subsequent patient outcome, is indispensable (24).
Finally, development of simple-to-use software, providing a clear
interpretation of the prediction and further treatment/prevention
information based on this prediction, is required. The present
results are promising but we need to emphasize that much work
must be done before completely integrating DAMS and R-DAMS
into clinical practice.

In the present study, several predictors of PSD have been
discovered. NIHSS is a widespread assessment tool used to
quantify the baseline severity in stroke patients. As shown in
Figure 4A, even within a narrow range of baseline scores, the
strongest feature that contributed to the prediction was NIHSS
on admission and the higher the values of NIHSS, the more likely
the chance of PSD. Noticeably, although the NIHSS has been
widely favored in clinical research, some neurological deficits
are measured objectively. For example, one NIHSS item, ataxia,
confused hemiplegia and normal function by scoring ataxia as
“normal” (0) in patients with hemiplegia (25). In the present
study, patients with hemiplegia at admission are more likely to
be PSD.

There are some limitations to the present study. Firstly,
the mRS used to assess the levels of PSD in our study lacks
sufficient detail to describe cognition and mood outcomes. A
study published in 2017 in the Stroke journal demonstrates
that a considerable number of patients with a good mRS
outcome were incapable of socially reintegrating because of
cognitive impairment and depression (26). However, the validity
and reliability of the mRS was recognized by several clinical
researchers (23, 27). Since the mRS is easy to use and interpret,
the scale has been a valuable tool for assessing the efficacy
of therapeutic interventions till now. Secondly, the lack of
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external validation in our study hinders the evaluation of external
generalizability. As a result, whether DAMS and R-DAMS, which
have the selection bias that is inherent in any prediction model,
can be used directly in other health institutions is still uncertain.
To solve this problem, we provided as much detail as possible
about the study cohort (Table 1). This information enables
other institutions to judge whether their selected population
matches the population here. In addition, the process of model
development has been described in a precise fashion in Methods
and Supplementary Table 2. Therefore, DAMS and R-DAMS
may be transferable to other institutions. Thirdly, recurrent
cerebrovascular event, a known predictor of PSD in mild stroke
patients, was absent in the process by which DAMS and R-DAMS
are developed (5, 8). Our models were initially designed for
supporting clinical decision-making in emergency contexts, in
which the data of recurrent cerebrovascular event is unavailable.

CONCLUSIONS

DAMS and R-DAMS represent one step within a larger process
to early identify mild stroke patients who would be at high
risk of PSD if they only received medical therapy, by assisting
neurologists to make individual clinical decisions for mild
stroke patients. Compared with our other ML models and
previous scoring systems (THRIVE and HIAT scores), DAMS
had a better performance and R-DAMS was able to operate
within 4.5 h or less of symptom onset. Future work should
build on these findings to transfer DAMS and R-DAMS to
different centers.
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