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Origins of Dissociations in the
English Past Tense: A Synthetic Brain
Imaging Model
Gert Westermann* and Samuel Jones

Department of Psychology, Lancaster University, Lancaster, United Kingdom

Brain imaging studies of English past tense inflection have found dissociations between

regular and irregular verbs, but no coherent picture has emerged to explain how these

dissociations arise. Here we use synthetic brain imaging on a neural network model to

provide a mechanistic account of the origins of such dissociations. The model suggests

that dissociations between regional activation patterns in verb inflection emerge in an

adult processing system that has been shaped through experience-dependent structural

brain development. Although these dissociations appear to be between regular and

irregular verbs, they arise in the model from a combination of statistical properties

including frequency, relationships to other verbs, and phonological complexity, without

a causal role for regularity or semantics. These results are consistent with the notion

that all inflections are produced in a single associative mechanism. The model generates

predictions about the patterning of active brain regions for different verbs that can be

tested in future imaging studies.

Keywords: English past tense, connectionist modeling, synthetic brain imaging, experience-dependent brain

development, verb inflection, verb morphology, neuroconstructivism

INTRODUCTION

The English past tense has, over the past 35 years, taken center stage in the debate on the nature
of language and cognitive processing. This is because the past tense is a prototypical “rules-and-
exceptions” system, with regular verbs that form their past tense by adding –ed to the stem (e.g.,
look-looked), and irregular verbs with past tense forms that range from no change (hit-hit) and
vowel changes with or without suffixation (sleep-slept, sing-sang) to completely idiosyncratic forms
(go-went). The main question around which this debate has revolved is whether there are separate
processing mechanisms for regular and irregular verbs, or if they can be accounted for in a system
that produces both regular and irregular forms through a single associative mechanism. This
question is important because it has wider implications, for example, for the rule-like nature of
grammar (is rule-like behavior evidence for an underlying mental rule or can it be explained through
associative processes?) and for the question of whether behavioral dissociations imply that the
language system has a modular architecture. These questions touch on the very nature of language
and cognitive processing, and the English past tense has therefore been called the “drosophila
of language processing” (Pinker, 1994): a model system in which such questions can be studied
in detail.

Two dominant theories of the nature of inflection processing have emerged. One view, the dual-
mechanism or words-and-rules theory (e.g., Pinker, 1991, 1997, 1999; Marcus et al., 1995; Ullman
et al., 1997; Clahsen, 1999; Pinker and Ullman, 2002; Ullman, 2004) holds that the processing
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differences between regular and irregular forms that have been
observed in many studies are caused by distinct, qualitatively
different underlying mechanisms: A mental symbolic rule for
regular forms, and associative storage in the mental lexicon for
irregular forms. According to this view grammatical differences
are psychologically real in that the mental grammar is used
directly in language processing (Clahsen, 1999), so that language
processing separates into an associative mental lexicon and a
rule-based system (i.e., words-and-rules).

An alternative view argues that all past tense forms are
processed in a single associative system in which overlapping
representations for regular and irregular forms compete for
processing resources (e.g., Bybee and Slobin, 1982; Rumelhart
and McClelland, 1986; MacWhinney and Leinbach, 1991;
Plunkett and Marchman, 1991, 1993; Marchman, 1993; Joanisse
and Seidenberg, 1999; Plunkett and Juola, 1999; McClelland and
Patterson, 2002; Westermann and Plunkett, 2007; Westermann
and Ruh, 2012; Engelmann et al., 2019). This view is closely tied
to implemented connectionist neural network models that have
simulated how graded dissociations between different verbs can
arise without recourse to modularity and qualitatively different
processes. In these systems, apparent dissociations between
regular and irregular forms emerge on the basis of the different
statistical properties of verbs, such as frequency, phonological
complexity, similar sounding verbs with a similar sounding
past tense form (i.e., “friends;” e.g., sing and ring), similar
sounding verbs with a different sounding past tense form (i.e.,
“enemies;” e.g., sing and bring), or due to reliance on semantic
vs. phonological factors.

A large amount of empirical and computational work has
aimed to provide evidence for each view [for an overview, see
McClelland and Patterson (2002), Pinker and Ullman (2002),
and Westermann and Ruh (2012)]. While much of this research
has focused on behavioral data from language acquisition and
studies involving adults with and without brain damage, a
number of brain imaging studies have also revealed brain
regions involved in processing different verb inflections. These
studies have found differences in neural activation patterns when
participants inflected regular and irregular verbs, evidence cited
by some researchers as support for a dual mechanism system in
which the rule component and the associative mental lexicon
are located in different brain regions [e.g., Jaeger et al., 1996;
Lavric et al., 2001; Dhond et al., 2003; Sahin et al., 2006; Oh
et al., 2011; Bakker et al., 2013; for an overview see Leminen
et al. (2019)]. For example, in a seminal study by Jaeger et al.
(1996) using positron-emission tomography (PET), participants
were asked to generate past tense forms of visually presented
monosyllabic verb stems. Jaeger et al. (1996) predicted that
the left frontal lobe should be involved in regular processing
due to its role in grammatical processing. Likewise, inflection
of irregulars was predicted to involve posterior temporal or
parietal activity as an index of memory retrieval. Results showed
that although many brain regions were activated equally by all
verbs, production of regulars selectively activated left dorsolateral
prefrontal cortex and left anterior cingulate cortex. Irregulars,
meanwhile, prompted higher overall activation and involved
occipital visual processing areas. These systematic differences

between both verb types were interpreted by the authors as strong
evidence for the dual-mechanism account of inflection. Similar
claims were made by Lavric et al. (2001) in an ERP study of covert
past tense production. These authors found differences between
regular and irregular past tense forms in a time window from 288
to 321ms after visual presentation of the verb stem, and source
localization indicated higher activation during this time window
for regulars in right prefrontal and temporal areas and higher
activation for irregulars in the left temporal area and the anterior
cingulate cortex.

In another study using magnetoencephalography (MEG),
Dhond et al. (2003) asked participants to covertly generate
past tense forms of visually presented verb stems. Dhond
et al. also found that generation of regulars and irregulars
activated many brain areas in common, but that processing
of regulars led to greater activation in left inferior prefrontal
areas (Broca’s area), and processing of irregulars preferentially
activated left occipitotemporal cortex as well as right dorsolateral
prefrontal cortex. These results were interpreted as indicating
that regulars activated rule-based grammar regions and irregulars
activated areas involved in the associative retrieval of forms,
corresponding directly to the dual-mechanism theory. Different
results were found in an fMRI study of covert past tense
and plural production (Sahin et al., 2006) in which Broca’s
area was activated equally by regular and irregular verbs.
Irregulars activated the anterior cingulate and supplementary
motor area more than regulars, whereas regulars led to greater
activation in some subcortical structures. Overall there was
greater activation for irregulars. These results were interpreted
within the dual-mechanism framework by suggesting that
activation differences between regulars and irregulars were
evidence for separate mechanisms and, therefore, against a
single mechanism of inflection. Specifically, it was argued
that Broca’s area was involved in inflection processing, and
that greater activation associated with irregulars indicated
blocking of the application of the rule by a retrieved
irregular form.

However, the results of these and other studies have been
controversial. One problem is that specific methodological
choices can strongly affect results. For example, because of the
low temporal resolution of PET, Jaeger et al. (1996) used a
block design in which all regular verbs and all irregular verbs
were presented together. However, this design introduces the
confound that participants could develop response strategies for
regular but not for irregular verbs, suggesting that differences
between both verb types should be found independently of the
nature of the underlying processingmechanisms (Seidenberg and
Hoeffner, 1998). Furthermore there have been inconsistencies
between studies in the brain areas that were activated by different
verbs [see also Table 1 in Desai et al. (2006)]. For example, Broca’s
area was activated selectively by regulars in one study (Dhond
et al., 2003) which led the authors to argue that it is responsible
for rule-based processing, but it was active equally for regular and
irregular verbs in another (Sahin et al., 2006). Likewise, greater
activation of the anterior cingulate cortex was found for regulars
in one study (Jaeger et al., 1996) and for irregulars in others
(Lavric et al., 2001; Sahin et al., 2006).
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Several other imaging studies have investigated the possibility
that the observed activation differences between regular and
irregular verbs are due to the different statistical properties of
verbs and not to separate underlying mechanisms. For example,
an fMRI study in which participants covertly produced the past
tense of auditorily presented stems (Joanisse and Seidenberg,
2005) found that regulars and irregulars activated common areas
in both hemispheres, but that regulars, as well as irregulars
that were phonologically similar to regulars (e.g., burnt, slept),
additionally activated the inferior frontal gyrus bilaterally. In this
study, irregulars did not activate any area more than regulars.
Dissociations between verbs were thus argued to arise from the
phonological properties of verbs instead of their regularity. In
a similar fMRI study, Desai et al. (2006) also found widespread
overlapping activation, including in Broca’s area, for all verbs,
and greater activation for regulars in the left dorsal superior
temporal gyrus, involving the primary auditory areas and the
planum temporale. This study also found regions of greater
activation for irregulars compared with regulars (inferior frontal,
precentral cortex and parietal cortex bilaterally). When the
authors matched a subset of their verb set for phonological
complexity of the past tense form, they found that no regions
were activated more for regulars than for irregulars. Desai et al.
(2006) explained the widespread activation of brain regions
for irregular verbs in terms of higher demands on attention,
working memory, and response selection for generating the
past tense forms of these verbs. The fact that both regular
and irregular production activated Broca’s area was seen as
contradicting the dual-mechanism account which assumes that
regular, but nor irregular forms are generated through a mental
grammar instantiated in Broca’s area (Ullman et al., 1997).
Greater activation in auditory areas for regulars was explained
with regular forms being phonologically more complex than
irregular forms (Burzio, 2002; Bird et al., 2003). Therefore,
despite double dissociations between regular and irregular verbs
these results were interpreted as evidence for a single-mechanism
view of inflection processing.

In summary, previous imaging studies, despite each reporting
single or double dissociations between regular and irregular
verbs, have not provided a coherent picture of the brain areas
involved in processing the English past tense: First, the activated
regions for specific verb types differed considerably between
studies; and second, the nature of the dissociations differed
between studies. One study (Joanisse and Seidenberg, 2005)
reported activation of distinct brain regions for regulars but not
irregulars, another (Desai et al., 2006) reported the opposite
pattern with distinct regions active for irregulars but not for
regulars when verbs were matched phonologically, and other
studies (Jaeger et al., 1996; Dhond et al., 2003; Sahin et al., 2006;
Oh et al., 2011) reported a double dissociation with some regions
more active for regulars and others more active for irregulars
(although these regions differed in each case). These inconsistent
patterns of activation have made it difficult to sufficiently
constrain the theories of inflection for (or against) which they
were meant to provide evidence. For example, involvement of
Broca’s area in the inflection of both regular and irregular verbs
has been claimed to provide evidence both for (Sahin et al.,

2006) and against (Desai et al., 2006) dual-mechanism views
of inflection.

One possible explanation for the inconsistency in observed
activation patterns in the discussed neuroimaging studies is that
statistical factors and not grammatical class determine how a
verb is processed, and that these factors differed between the
specific verb stimuli used in existing studies. In each study,
regular and irregular verbs were matched on certain factors,
but the choice of factors had little theoretical foundation and
differed greatly between studies. Jaeger et al. (1996) matched
stem and past tense frequencies (albeit based on a word list
that did not distinguish between nouns and verbs and therefore
overestimated regular stem frequencies), Lavric et al. (2001) and
Dhond et al. (2003) matched word frequency and letter length,
Sahin et al. (2006) matched past and stem cluster frequency
and syllable length and aimed for phonological similarity, Oh
et al. (2011) matched phonological complexity and past tense
frequency, and Joanisse and Seidenberg (2005) matched past
tense frequency, imageability, and concreteness. Themost careful
matching was done by Desai et al. (2006), with past tense
frequency, friend-enemy ratio, stem letter length, and stem and
past tense syllable length all taken into account, in addition
to a sub-group of verbs being further matched on number of
phonemes and past tense syllable structure. However, which of
these factors affect processing, and in what way, remains an open
question. It is therefore also unclear whether a processing system
that is sensitive to the statistical properties of verbs would give
rise to the observed dissociations in active brain regions.

One approach to answering these questions is to consider
how the adult language processing system is shaped through
development. Adult psycholinguistics traditionally pays little
heed to the mechanisms of language development although a
better understanding of developmental trajectories could inform
the nature of the adult processing system. Taking this perspective,
in this paper we train an artificial neural network model on
English past tense inflection (Westermann and Ruh, 2012),
adopting a neuroconstructivist developmental process in which
the architecture of the adult inflection processing system emerges
through an interaction between experience-dependent structural
development and experiences with verbs that have specific
statistical properties. We then use what has been called “synthetic
brain imaging” (e.g., Arbib et al., 1994; Tagamets and Horwitz,
1998, Cangelosi and Parisi, 2004, Horwitz et al., 1999; Arbib et al.,
2000; Thomas et al., 2012) to analyze activation patterns across
different parts of the model and show that such a system displays
visible processing differences between regular and irregular
verbs without relying on built-in dissociable processing modules.
Finally, we investigate which statistical properties account for the
observed dissociations, generating predictions for behavioral and
imaging studies.

The computational model used in the current paper was
developed by Westermann and Ruh (2012) for modeling
behavioral aspects of the acquisition and adult processing
of the English past tense. This model displayed a realistic
acquisition profile, adult-like non-word generalization, and
selective breakdown after damage to parts of the network. The
model is based on the neuroconstructivist framework (Quartz
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and Sejnowski, 1997; Mareschal et al., 2007; Westermann et al.,
2007), which stresses the importance of experience-dependent
structural brain development in shaping an adult processing
system that is specifically adapted to the learning task. There is
overwhelming evidence that experience shapes the brain during
cognitive development (e.g., Quartz and Sejnowski, 1997; Quartz,
1999; Casey et al., 2000, 2005; Johnson, 2001; Johnson and
Munakata, 2005; Nelson et al., 2006; Mareschal et al., 2007;
Westermann et al., 2007; Stiles, 2009; Bick and Nelson, 2017),
and that differences in adult brain structures can at least partly be
explained by a developmental process by which the brain adapts
to the specific aspects of the tasks being learned. For example, one
study involving Chinese-speaking adults and English-speaking
adults living in the United States reported specific differences
in the size of frontal, temporal and parietal cortical substrates
between these groups (Kochunov et al., 2003). This structural
difference was interpreted by the authors as an outcome of
the different orthographic, phonetic and semantic characteristics
of Chinese and English, which impacted experience-dependent
brain development. Likewise, structural brain changes have been
observed when learning a second language [see Li et al. (2014), for
a review] and for bilinguals [see Bialystok (2017), for review]. For
example, native Japanese speakers trained on learning English
words for 16 weeks showed an increased density of gray andwhite
matter in the right IFG, but a control group did not show these
changes (Hosoda et al., 2013). Anatomical change in this study
correlated positively with the participants’ knowledge of English
vocabulary. Other studies have begun to address systematic cross-
linguistic variation in the neural structures supporting language
processing (Chen et al., 2009; Mei et al., 2015) and more broadly
have asked how specific experiences affect brain organization in
members of different cultures (Park and Huang, 2010). Here,
along similar lines, we argue that the specific processing demands
of the English inflection system will lead to brain structures that
are adapted to these demands through experience-dependent
development. From this perspective, the specific dissociations
between brain activation patterns observed in the adult language
system are the outcome of experience-dependent structural
development under the task demands of learning verb inflections
with their characteristic distribution and statistical properties.
This view is in contrast to a modular view of language processing
according to which functionally specialized modules implement
qualitatively different mental processes (e.g., Pinker, 1994).

Translating these ideas into a computational model, the
artificial neural network developed by Westermann and Ruh
(2012) integrates structural changes that mimic, on an abstract
level, the experience-dependent development of cortical regions
through childhood, allowing for the adaptation of its neural
circuits to the specific demands of learning to inflect a large set
of English verbs. It should be noted, however, that this relatively
simple model, despite integrating aspects of neural development,
is not a computational neuroscience model that aims to account
for the formation of biological synapses or the internal processes
of biological neurons, or to mimic the specific aspects of
experience-dependent brain development. Connectionist models
are usually conceptualized as higher-level models that are based
on an abstract and simplified view of neural processing in

the brain (e.g., Rumelhart, 1989): Interactions between simple
processing units to generate complex behavior; learning of
associations by adapting the efficacy of transmission between
processing units; and the ability to extract statistical structures
from the environment. As high-level models, units (“neurons”) in
connectionist models are not assumed to correspond to biological
neurons on a one-to-one basis but instead to large ensembles
of biological neurons (e.g., O’Reilly and Munakata, 2000).
Nevertheless, the model is grounded in the assumptions that first,
task-driven structural adaptation during learning qualitatively
changes the learning process compared with learning in a
fixed structure (Quartz, 1993; Quartz and Sejnowski, 1997;
Westermann and Ruh, 2012; Westermann, 2016), and second,
that it shapes the functional structure of the final system
(Mareschal et al., 2007; Shultz et al., 2007) so that the adult
system can best be understood as an outcome of such a structural
developmental process. In building the model, therefore, we
were interested in a principled mechanistic account of how a
processing system that is sensitive to the statistical properties
of verbs to which it is exposed while undergoing a structural
developmental process, gives rise to the dissociations between
activation patterns for different verbs that are observed in adult
neuroimaging studies.

Synthetic brain imaging (Arbib et al., 1994, 2000; Tagamets
and Horwitz, 1998; Horwitz et al., 1999) applies the idea
of brain imaging—comparing brain region activation profiles
between different test conditions to gain insights into underlying
processing mechanisms—to artificial neural networks. In a
structured neural network, different stimuli will generate specific
activation patterns in different network components and, like
in brain imaging, these patterns can be compared between
conditions. Although synthetic brain imaging is still in initial
stages of exploration, several results have been reported in
modeling language processing. For example, one study showed
how differential activation patterns for nouns and verbs arose
in evolved agent-based networks (Cangelosi and Parisi, 2004):
Whereas nouns activated preferentially sensory processing
areas of the networks, verbs activated multisensory integration
areas more broadly. These activation patterns were compared
with brain imaging data showing that nouns activate more
posterior brain areas whereas verbs also activate anterior motor
areas. In another study, synthetic brain imaging was used
in a model of sentence comprehension (Just et al., 1999)
and accounted for fMRI data on brain regions involved in
processing sentences of different complexities. A third study used
synthetic brain imaging and lesioning to investigate whether
impairment after brain damage and neuroimaging predict the
same patterns of functional specialization (Thomas et al.,
2012).

In deciding how to measure the synthetic analog to
the fMRI BOLD signal it is important to consider which
aspect of neural processing is reflected by BOLD. Current
understanding is that the BOLD signal in fMRI does not
measure neural activity (i.e., spike potentials) but rather the
local field potential (LFP), which reflects the summation of
post-synaptic potentials (Logothetis et al., 2001; Norris, 2006).
This view would indicate that the closest correlate in a
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connectionist model to the BOLD signal is the incoming
activation into a group of units, that is, the activation
flowing through a pathway to this set of units. While it
is beyond the scope of this report to explain in detail the
many different activation patterns that have been observed in
neuroimaging studies of the past tense, we aim to show how
differential activation patterns can be generated in a single-
mechanism system that is shaped through interactions between
the statistical structure of the environment and experience-
dependent brain development. In doing so we will account for
some empirical results in detail and generate predictions for
future neuroimaging studies.

There are a number of reasons why synthetic brain imaging
using neural networks can inform theory building and help
generate predictions for assessment in studies using real brain
imaging. First, in neural networks, the experimenter has
full control over the studied process. In imaging studies of
inflection processing, the large number of active brain areas
suggests that it is difficult to find a baseline condition that
differs from the experimental condition only in the inflection
process. For example, Desai et al. (2006) reported that the
baseline task of reading verbs activated some brain regions
that were not active when the verbs were inflected. In a
model of verb inflection that takes a verb stem as input and
produces its past tense as output, the inflection process can be
isolated effectively. It is therefore not necessary to establish a
baseline condition (such as reading a verb without inflecting
it) and subtracting this baseline activation from the observed
activation patterns in the inflection task. Second, a computational
model allows for the precise analysis of what factors affect
differential activation of network components in a much larger
set of verbs than those typically used in neuroimaging studies,
where small sets of verbs have to be matched for statistical
factors. Third, the language experience that has shaped the
computationalmodel toward its final structure is precisely known
and is under the control of the modeler. This allows for a
better characterization of the statistical factors that underpin
emerging dissociations.

MATERIALS AND METHODS

The Model
The neuroconstructivist neural network model (NCM;
Westermann and Ruh, 2012) (Figure 1) starts out with a
minimal architecture in which the input and output layers are
fully connected. In a process of experience-dependent structural
development, the hidden layer gradually expands to enable the
past tense inflection task to be learned. The “adult” architecture
of the model is therefore an outcome of, and optimally adapted
to, the specific learning task.

In (Westermann and Ruh, 2012), the NCM was presented
with phonological representations of verb stems and had the
task of producing the corresponding past tense forms. Hidden
layer units had a Gaussian (i.e., bell-shaped) activation function.
Units of this type become active for a subset of similar-sounding
verbs, forming a receptive field for a region of the phonological
input space. Gaussian units are activated when an input (i.e.,

a verb stem) falls within their receptive field, and the closer
the input is to the center of the receptive field the higher is
the activation of the unit. In the NCM, lateral inhibition in the
hidden layer was simulated by suppressing activation of all but
the most active hidden unit. The position of the receptive field
of this unit was adjusted at each presentation to move a small
step toward the position of the current input. Receptive field sizes
were also adapted to increase for fields that responded to a range
of different verbs. Each hidden unit kept a local error counter to
which the network’s output error was added when the hidden unit
was active.

The model attempted to learn the inflection task in the
initial minimal architecture, and structural change occurred
when the current structure no longer allowed for improvement
in performance: When the average error over 10,000 verbs was
no lower than for the previous 30,000 verbs, three new hidden
unit receptive fields were inserted at the position of the existing
hidden unit which had the highest local error, and their weights
to the output layer were initialized randomly. In this process, a
hidden unit whose activation leads to a high output error will
become the preferred location for the insertion of new units.
Because a high local error is usually caused by one hidden unit
being responsible for too many input patterns with conflicting
input-output transformations (e.g., sink-sank and blink-blinked),
the insertion of additional resources led to a more fine-grained
covering of the input space in those areas where similar sounding
verbs have different past tense forms. As a consequence, the
hidden units were “quasi-localist” [see Westermann and Ruh
(2012)]: different units became responsive to between 1 and
136 verbs, with the degree of granularity an outcome of the
task demands of the past tense inflection task. Note that this is
different from purely localist “lexical entry units” (e.g., Joanisse
and Seidenberg, 1999) where each unit is activated by exactly
one verb.

Regressive events in the model were implemented by pruning
hidden units that were not activated for 30,000 verb presentations
[For further details of the implementation see Westermann and
Ruh (2012)]. Together, these mechanisms led to a process in
which the structure of the model—number, size and location
of hidden unit receptive fields as well as the weight patterns in
both the direct and indirect pathways—was a direct outcome of
the experience with the environment of the English past tense,
with its different verbs with specific inflections, phonological
properties, similarity clusters, and frequencies. This way of
developing the model is in contrast both to the more common
static models in which only the weights but not the model
structure are adapted, and to models in which change proceeds
along a maturational timetable independent from environmental
input (e.g., Elman, 1993). Indeed, whereas the developing
model was shown to account for a wide range of data on
acquisition, adult generalization, and selective impairment after
brain damage, an equivalent static model did not account for
many of these data (Westermann and Ruh, 2012).

This “neuroconstructivist” type of model also corresponds
most closely to current views of experience dependent brain
development in which new abilities become manifest in
developing brain structures that are adapted to the demands of
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FIGURE 1 | The architecture of the neuroconstructivist past tense model.

a specific ability [see also Shultz et al. (2007)]. In the past tense
model, more structure (i.e., hidden units and their connections)
was allocated for forms that were “harder” to learn because of the
statistical properties of the verb set.

Corpus
The NCM was trained on a set of 1,271 mono- and bisyllabic
English verbs extracted from the CELEX database [Baayen et al.,
1995; full training details are provided in Westermann and
Ruh (2012)]. Of these verbs, 111 (i.e., 8.73% of types, 46.00%
of tokens) were irregular. During training, verbs were drawn
from this corpus on the basis of their past tense frequencies.
The phonemes of each verb were inserted into a consonant-
vowel template of the form xCCCVCC for each syllable [where
x indicates if the syllable was stressed (1) or not (0)]. Individual
phonemes were encoded by phonetic feature vectors, following
the binary version of the PatPho coding scheme (Li and
MacWhinney, 2002) which requires six features per vowel and
seven features per consonant. The presence or absence of a
feature was encoded by a value of 1 or −1, respectively, and all
features for an empty phoneme slot were set to 0. The stem of
a verb was encoded by 84 bits and the past tense form had an
additional VC suffix (13 bits).

Training
Five networks were trained on 20m verb tokens each. Verbs were
presented randomly according to their past tense frequencies.
Weights were updated after the presentation of each verb (online
learning) using the perceptron learning rule (Rosenblatt, 1958).
For earlier work on this model see Westermann and Ruh (2009).

Synthetic Brain Imaging Analysis
Synthetic brain imaging (SBI) in the models was performed
by measuring the activation flowing through the direct

(input-output) and indirect (hidden-output) pathways for each
verb. Activation in the direct pathway was computed as
the summed absolute activation flowing through the input-
output connections:

∑

o

∑

i

|woiai|

where o are output units, i input units, woi the weight of
the connection between input unit i and output unit o, and
ai the activation of input unit i. Likewise, activation in the
indirect pathway was computed as the absolute activation flowing
through the hidden-output connections as:

∑

o

|wohah|

where woh is the connection weight from the active hidden unit
h to output unit o and ah the activation of hidden unit h. Total
activation was computed as the sum of the activation in the
two pathways.

RESULTS

All models reached 100% accuracy on average after exposure
to 16.8 million verbs, with an average number of 361 hidden
units (range= 355–370). Since performance across networks was
highly comparable, detailed results from a randomly sampled
network will be reported unless otherwise specified.

Emerging Double Dissociation Between
Regulars and Irregulars
Figure 2 shows a longitudinal developmental SBI activation
profile of the two network pathways. Early in development each
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FIGURE 2 | Development of the activation profiles of regular and irregular verbs in both network pathways.

pathway was activated equally strongly by regular and irregular
verbs. With development, activation in the direct pathway
increased and separated between regular and irregular verbs,
with regulars producing on average higher activation in this
pathway than irregulars (mean activation at the end of training
by regulars: M = 864.3, SD = 111.9; by irregulars: M = 844.1,
SD = 91.5; Mann-Whitney U-test, z = −2.19, p = 0.029, mean
rank for regulars = 642.97; and for irregulars = 563.21). Overall
activation in the indirect pathway initially decreased because
activation in this pathway interfered with learning the task due
to the insufficient number of hidden units. Throughout the rest
of development, mean activation differences between regular and
irregular verbs then continued to increase (mean activation at
the end of training by irregulars: M = 75.5, SD = 59.1; by
regulars: M = 21.4, SD = 13.8; Mann-Whitney U-test, z =

−14.534, p < 0.001, mean rank for regulars = 589.7, and for
irregulars = 1119.7). This double dissociation between regular
and irregular verbs emerged in the model without any functional
pre-specification of either pathway and without explicit encoding
of regularity, solely on the basis of the different task demands of
producing the past tenses of different verbs.

Although to our knowledge there have not yet been
developmental brain imaging studies of verb inflection, a
developmental fMRI study of word production (Brown et al.,
2005) found an increase in activation in some cortical areas and a
decrease in others across age, with significant differences between
age groups even when overt task performance was equal. The
network for which results are displayed in Figure 2 reached 100%
correct performance in the inflection task after 16.0 million verb
tokens, and it is interesting to observe that activation in the direct

pathway likewise continued to increase after this point without a
change in overt performance.

The fact that a double dissociation in regional activation
patterns between regular and irregular verbs emerges in the NCM
contradicts the argument that differential activation of brain
regions for each verb type necessarily indicates an underlying
qualitative processing difference between regular and irregular
forms (e.g., Jaeger et al., 1996; Beretta et al., 2003; Sahin et al.,
2006). In the “adult” NCM all past tense forms are generated
through a single associative mechanism, but dissociations arise
on the basis of statistical and distributional differences between
verbs that have become manifest in the network’s architecture
during development. The developing hidden layer enables the
model to allocate additional processing resources for verbs whose
inflections are hard to learn in the direct pathway alone, as
structure is added to this layer when learning no longer improves.
The fact that the indirect pathway is activated more by irregular
verbs is compatible with the “ease-of-processing” account of
functional specialization in past tense processing (Westermann
and Ruh, 2012). This account states that on average, irregular
forms are harder to learn and process than regulars. An irregular
is harder to process than a regular, however, not by virtue of its
irregularity, which is a grammatical property of an individual
verb, but instead as the result of a combination of statistical and
distributional factors such as relative frequency and numbers
of friends and enemies, which are statistical properties that
arise from the verb corpus as a whole (Westermann and Ruh,
2012). The origin of the emergent dissociations is, therefore,
the differential ease of processing of verbs and not their
grammatical class.
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FIGURE 3 | Distribution of path activations by regular and irregular verbs. (A) Direct pathway activation. (B) Indirect pathway activation. (C) Activation ratio.

Double Dissociations Between Mean
Activation Values Mask Distributional
Differences
More detailed analysis of the NCM further revealed that, despite
the observed double dissociation between regular and irregular
verbs, each verb activated both pathways, albeit to different
degrees. Figure 3 shows the distribution of regular and irregular
verbs activating each pathway. In the direct pathway (Figure 3A)
the spread of activations is similar for regular and irregular verbs,
with the highest activations resulting from regulars. In contrast,
in the indirect pathway a higher proportion of irregulars than
regulars were strongly activated, and most regulars only led to
weak activation in this pathway (Figure 3B). Figure 3C shows
the activation ratio which was computed as:

direct pathway activation

direct pathway activation + indirect pathway activation

where activations in both pathways were scaled to a maximum
value of 1. A ratio of >0.5 indicates that a specific verb activates
the direct pathway relatively more than the indirect pathway. The
figure shows that regulars as well as irregulars activated the direct
pathway more than the indirect pathway, but regulars tended to
have a higher activation ratio than irregulars. Nevertheless, some
irregulars as well were produced almost solely through the direct
pathway, with activation ratio near 1.0. These results indicate
that although there is an apparent global specialization of the

direct pathway for regular verbs and of the indirect pathway for
irregulars as revealed by the observed double dissociation, this
is an outcome of complex overlapping activation patterns for
individual regular and irregular forms throughout the network.

Greater Regular Activation Is Due to
Greater Phonological Complexity of
Regulars
We further modeled more specific results from Desai et al.’s
(2006) fMRI study. Desai et al. (2006) argued that a higher
activation for regular verbs in some cortical regions was the
consequence of the higher phonological complexity of the regular
verbs used in their experiment. To test this claim they analyzed
a subset of their verbs in which regulars and irregulars were
matched for phonological complexity. As predicted, they found
that for this matched set there was no brain region more active
for regular verbs. We simulated this result by comparing the
activation profiles in the model for all verbs with those for the
matched subset of Desai et al. (2006). Of the 80 verbs in the
subset, two irregulars were not in the network’s training corpus
(break, cost). These word’s matched regular partners (stay, guess)
were also removed from the test set, and the NCM was tested
on the remaining 76 matched verbs. For this matched subset,
as in Desai et al.’s (2006) study, no area was now more active
for regulars. Whereas with the full verb set the average direct
pathway activation was higher for regulars than for irregulars
(see section EmergingDouble Dissociation Between Regulars and
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Irregulars), the matched subset showed the opposite pattern, with
irregulars (M = 853.2, SD = 99.1) now on average activating
the direct pathway more than regulars (M = 798.8, SD = 92.8;
Mann-Whitney U-test, z = −2.68, p = 0.007, mean rank for
regulars = 31.71; and for irregulars = 45.29). As in the full set
of verbs, indirect pathway activation was higher for irregulars in
the matched subset (irregular activation M = 58.9, SD = 31.3;
regular activation M = 31.0, SD = 20.0; Mann-Whitney U-test,
z = −4.21, p < 0.001, mean rank for regulars: 27.84, and for
irregulars: 49.16).

Although Desai et al. (2006) found that with the
phonologically matched subset some areas were activated
more for irregulars than had been for the non-matched set (i.e.,
the precentral gyrus and left anterior cingulate gyrus), the region
previously more active for regulars later showed no difference
between regulars and irregulars. While in the NCM this area
(i.e., the direct pathway) was now more active for irregulars
than for regulars, the model accounted for Desai et al.’s (2006)
main result of the disappearance of higher activation for regulars
within the processing system when phonological complexity
was controlled.

The NCM further provided a more general evaluation
of the role of phonological complexity in observed regular-
irregular dissociations. Whereas in experimental neuroimaging
the effect of phonological complexity can only be controlled
for by using matched subsets of verbs, in the NCM the same
can be achieved by dividing the total activation in the direct
pathway by the number of active input units. This is because
in the distributed phonological representation of verbs, higher
phonological complexity, here defined as number of phonemes
or number of syllables, corresponds to more input units being
active. Dividing the direct pathway activation by the number
of active input units therefore normalizes this activation (Note
that this is not necessary for the indirect pathway because
only one hidden unit is active for each verb). Whereas, non-
normalized activation in the direct pathway was higher for
regulars than for irregulars, activation normalized for complexity
was conversely smaller for regulars (M = 30.6, SD = 8.4)
than for irregulars (M = 36.0, SD = 7.3; Mann-Whitney U-
test, z = −6.82, p < 0.001, mean rank for regulars = 614.28,
and for irregulars = 862.95), providing further evidence that
systematic differences in phonological complexity can lead to
regular-irregular dissociations.

Origins of dissociations
What, then, are the origins of the dissociations found in
neuroimaging studies? The “easiness” view of past tense
processing suggests that different statistical characteristics of
verbs affect their ease of processing, and hence their activation
profile, irrespective of whether they are regular or irregular.
By using synthetic brain imaging we are able to investigate
precisely which statistical factors are involved, as the model
is tested on a large set of verbs in which these factors vary
considerably. To do this, we characterized each verb along a
range of factors that were accessible to the model during training:
Past tense frequency, presence of a stem final alveolar consonant,
phonological complexity, and number of friends and enemies
within the training corpus (Note that a “friend” was defined as a

TABLE 1 | Correlations between the statistical properties of verbs and their

activation ratio.

Correlation

with

activation

ratio

Past tense

frequency

Friends Enemies Phonological

complexity

r −0.696 0.226 −0.434 0.245

All correlations p < 0.001.

verb with the same stem rime and the same past tense rime, e.g.,
sing-sang and ring-rang, and an “enemy” was defined as a verb
with the same stem rime but with different past tense rime, e.g.,
sing-sang and bring-brought).

Table 1 shows that frequency, friend/enemy measures, and
complexity correlate significantly with activation ratio (i.e., direct
activation divided by total activation; see Formula 3). These
correlations indicate that phonologically complex, low-frequency
verbs with an advantageous neighborhood (i.e., many friends,
few enemies) tend to activate the direct pathway relatively more
strongly (i.e., lead to a higher activation ratio), while the indirect
pathway is activated relatively more for frequent verbs with an
unfavorable neighborhood.

To examine which statistical factors contributed to activation
differences in each pathway, we entered these factors as
independent variables into multi-level regression models across
all networks, with pathway activation as the dependent variable
and verb and network as random effects. All predictors were zero
centered and scaled to SD = 1. Indirect pathway activation was
most strongly predicted by past tense frequency (β = 16.77),
enemies (β = 5.64), phonological complexity (β = −3.64), and
friends (β = −2.86; all p < 0.001), with this model explaining
50% of the variance in pathway activation (R2 = 0.498). For direct
pathway activation, the only significant contributing factors were
phonological complexity (β = 38.78) and friends (β = 26.43;
both p < 0.001), with this model accounting for only 19% of the
variance in pathway activation (R2 = 0.189).

The picture emerging from these results is, therefore, slightly
more complex than directly linking activation in the indirect
pathway with low ease of processing. Although indirect pathway
activation is predicted by a high number of enemies and low
number of friends—both factors that would be expected to
make processing harder—it is also predicted by high frequency,
which would be expected to make processing easier. The reason
for this counterintuitive result is that verbs that are frequently
encountered by the model will lead to the accumulation of many
small errors on hidden units (instead of fewer but larger errors for
harder verbs) so that in the experience-dependent development
of the network’s structure new units will also be inserted in those
regions of the input space. Importantly, the neuroconstructivist
view of past tense processing therefore predicts that the same
brain regions should be shared by the processing of frequent and
hard verbs.

Typical and Non-typical Regulars and
Irregulars
Given these results we used the activation ratio to establish
“typical” and “non-typical” regular and irregular verbs from
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the imaging perspective. Typical regulars were regulars with a
high activation ratio. The 10 most typical monosyllabic regulars
according to this measure, given the specific training set of
our model, were nail, nurse, roar, hail, hiss, slice, frost, dawn,
roast, and rate. Note that these are not the most frequent
regulars because frequent verbs also highly activated the indirect
pathway, leading to a lower activation ratio. The 10 least typical
monosyllabic regulars, that is, those regulars with the lowest
activation ratio, were ask, look, roam, mask, add, try, soil,
dry, hum, and use. Interestingly, several of these verbs would
normally be regarded as prototypical regulars because of their
high frequencies. The synthetic imaging results presented here,
however, predict that in brain imaging studies theymight actually
activate similar regions to irregulars.

The 10 irregular verbs with the most typical irregular
activation pattern, that is, a low activation ratio, were say, see,
think, stand, bring, do, go, make, get, and speak. The 10 least
typical irregulars according to this measure were shrink, spin,
sweep, flee, deal, creep, thrust, kneel, ride, and quit. Five of these
10 verbs (sweep, flee, deal, creep, and kneel) are pseudo-regulars
which add [t] or [d] to their past tense and, according to Joanisse
and Seidenberg (2005), should be expected to cluster with regular
verbs in their activation profile. In line with this claim, these verbs
showed “regular-like” activation patterns in the NCM.

Analysis From a Dual-Mechanism
Perspective
Although the NCM shows that regional double dissociations
between regular and irregular verbs can emerge solely on
the basis of the statistical properties of different verbs in a
single processing mechanism that is shaped by experience-
developmental structural development, and that the grammatical
property of regularity plays no role in causing these dissociations,
in brain imaging studies the underlying mechanisms remain
unknown and are hypothesized on the basis of observed data.
Thus, when dissociations between regular and irregular verbs
are observed in an empirical study, researchers adopting a dual-
mechanism framework explain these data in terms of separate
processing mechanisms (Jaeger et al., 1996; Lavric et al., 2001;
Beretta et al., 2003; Dhond et al., 2003; Sahin et al., 2006; Oh
et al., 2011), with regions more active for regulars hypothesized
to be responsible for the application of grammatical rules, such
as regular inflection, and regions more active for irregulars
indicating the retrieval of full forms from the mental lexicon
located in this region. At the core of such dual-mechanism
interpretations lies the assumption that grammatical class (i.e.,
regularity) forms the basis of observed dissociations.

To mimic this inferential process from data to hypothesized
mechanism, we analyzed the activation differences in the model
from a dual-mechanism perspective, which would assume that
regularity itself is a predictor of the observed dissociations. We
performed further multi-level regression analyses for pathway
activation, with verb and network as random effects, and with
regularity added to the inventory of independent variables first
modeled in section Origins of Dissociations (each zero centered
and scaled, SD = 1). Results were again highly significant, with

past tense frequency (β = 15.35), regularity (β = −36.28),
complexity (β = −4.65), and friends (β = −1.68; all p <

0.001) predicting indirect pathway activation (R2 = 0.557). This
model accounted for∼6%more variance than the model without
regularity as a factor, and this increase was significant (p <

0.001). Including regularity as a predictor in the regression
model of direct pathway activation did not lead to a statistically
significant improvement in model fit, and regularity did not
predict activation (p= 0.638).

Although the NCM is a single-mechanism model, the results
for indirect pathway activation correspond to the predictions
made by the revised version of the dual-mechanism theory
for lexical retrieval (Pinker and Ullman, 2002). This revised
theory predicts lexical retrieval not only for irregulars but also
for high frequency regulars because high frequency forms are
more likely to be memorized than low frequency ones, and
for regulars with low friend-enemy ratios because they are
more likely to be attracted to irregular enemies. From a dual-
mechanism perspective, activation patterns like those observed
in the model would therefore be taken as backing for this theory,
despite being caused by a very different underlying mechanism.
This result highlights the benefit of computational modeling:
when we collect empirical data we do not know the mechanism
that generates them but we infer from the data to a potential
underlyingmechanism.When we construct a model we know the
mechanism and we see how this mechanisms generates empirical
data. In the past tense debate, empirically observed dissociations
between regulars and irregulars have often been hypothesized as
arising from two separate underlying mechanisms. The NCM
shows that such dissociations, down to a level of detail that
has previously served as refinement of the dual-mechanisms
theory, arise in a single-mechanism system on the basis of
statistical properties of verbs together with experience-dependent
structural development. By designing the model we know that
whether a verb is regular or not is not encoded in the training
data and is therefore not accessible to the network. The fact
that regularity nevertheless emerges as a significant predictor
for indirect pathway activation is a consequence of two factors:
on the one hand regularity correlates highly with several of the
measures that lead to specialization of the network pathways
(Table 2). Regular verbs tend to be less frequent, have more
friends and fewer enemies than irregulars, and are phonologically
less complex. As discussed above, learning high frequency verbs
with few friends and many enemies leads to the allocation of
hidden units in the indirect pathway, and thus to higher indirect
pathway activation in the adult model. Therefore, regular verbs,
which show the opposite profile, will on average have fewer
dedicated hidden units and thus a lower activation of the indirect
pathway, with these forms activating the direct pathway more.

Nevertheless, this cannot be the sole explanation of the
significant effect for regularity, because if regularity was entirely
predictable from these factors the hierarchical regression should
not show a significant improvement when regularity is added.
Instead, the explanation lies in the fact that associative learning
mechanisms make use of all cues that facilitate learning of a
mapping. In the case of the English past tense, these cues do not
only lie in the distributional characteristics of verbs available to
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TABLE 2 | Correlations between regularity and the statistical properties of verbs in

the training data.

Correlation

with

regularity

Past tense

frequency

Friends Enemies Phonological

complexity

r −0.363 0.176 −0.7 −0.122

All correlations p < 0.001.

themodel indirectly through the training schedule, but also in the
phonological characteristics of verbs, which are available directly
as inputs. The second factor explaining why regularity emerges
as a significant predictor of activation in the indirect pathway
is that the mapping between stem and past tense for regulars is
easy to learn in the direct pathway because regular verbs have
the highest relative and absolute type frequency. To form their
past tense, in English more verbs preserve their stem and add –ed
than undergo any other transformation. Therefore, additional
structure in the hidden pathway is not necessary for learning this
transformation. As such, regularity-specific activation patterns
in the model arise out of a combination between structural
and distributional environmental cues together with the model’s
experience-dependent developmental process.

Mapping the Model to the Brain
A question that can be addressed in SBI studies is which brain
areas give rise to specific behaviors. Indeed, one way in which
SBI has been applied is in modeling the internal functioning
of, and the interactions between, specific brain areas that are
known to be involved in a task. For example, themodel developed
by Cangelosi and Parisi (2004) contained a sensory layer and a
sensory/proprioceptive layer, and results from processing nouns
and verbs were linked to previous fMRI results showing that
nouns activate more sensory areas and verbs activated motor
areas. Similarly, Horwitz et al. (1999) presented a biologically
plausible large scale neural model of the interactions between
specific brain areas, and used this model to account for cerebral
blood flow data from PET studies. Nevertheless, of course, even
“biologically plausible” models are far away from the biological
substrate of the brain in terms of detail and number of interacting
regions. Any link between activated regions in a higher-level
model and the brain can therefore only serve as a suggestion
that should be verified in subsequent neuroimaging studies. As
such, speculating on such links can be beneficial for generating
predictions about which stimuli might activate which brain
areas preferentially.

Can amapping betweenmodel and brain areas also be done on
the basis of the present past tense model? One difficulty is that by
necessity, the model is simple and the brain is complex, making
any such attempted link seem tenuous. On the other hand,
though, as the model clearly develops specialized processing
pathways, it might seem a missed opportunity not to at least
speculate how the model’s pathways might map onto brain
structures. A second difficulty in attempting such a mapping is
that, unlike in the models described above, the data from past
tense imaging experiments are anything but clear. As discussed
above, studies have differed greatly in the areas that were found

to be involved in regular and irregular processing. Furthermore,
most imaging studies were not principally concerned with
testing whether specific brain areas were involved in inflection
processing, but instead investigated whether regular and irregular
verbs activated different brain areas in principle (to provide
evidence for dual-mechanism accounts of inflection) or whether
regions for regulars and irregulars overlapped and dissociations
were based on phonological and semantic factors (as evidence
for single-mechanism accounts). When differences were found
they were typically explained in a post-hoc manner. In one
study favoring a dual-mechanism interpretation, for example,
Dhond et al. (2003) noted that the left fusiform area, which
was activated more by irregulars, has been implicated in lexico-
iconic or word-form encoding and early lexical access, whereas
Broca’s area, which was in this study activated more by regular
verbs, plays a role in rule-based past-tense formation, grammar,
and syntactic parsing. Likewise adopting a dual-mechanism
interpretation Sahin et al. (2006) and Jaeger et al. (1996) found
equal activation of Broca’s area for regulars and irregulars, and
therefore attributed a general role in inflection processing to
this region. Stronger activation for irregulars in the anterior
cingulate and supplementary motor areas was in Sahin et al.’s
(2006) study attributed to irregular verbs blocking the application
of regular inflection, which is a central feature of dual mechanism
accounts. Few studies include predictions about the specific areas
involved in past tense processing. For example, Joanisse and
Seidenberg (2005) hypothesized that, overall, activation should
be distributed over areas responsible for phonological processing
such as the inferior frontal gyrus (IFG), including Broca’s area,
and areas involved in semantic processing, particularly the
posterior temporal lobe. These areas have also been shown in
brain-damaged patients to lead to dissociations between verb
types (Patterson et al., 2001; Bird et al., 2003).

The IFG and posterior temporal lobe are also a subset of the
areas involved in inflection processing in Desai et al.’s (2006)
study, which had the most carefully matched verb set. Given
that studies with brain damaged patients also point toward these
areas as being involved in inflection, we can hypothesize that the
pathways in our model map to these areas. Specifically, the direct
pathway in our model might reflect the functioning of the IFG,
and the indirect pathway might reflect the functioning of the
posterior temporal lobe. However, our model does not suggest
that these are phonological and semantic areas respectively, as
suggested by Joanisse and Seidenberg (2005). Instead, both reflect
phonological processes, with the IFG processing direct mappings
based on distributed phonological information, and posterior
temporal areas providing more localist word representations that
complement these distributed representations in the IFG. There
has been a controversy on whether semantic representations are
causal in enabling the formation of irregular past tense forms
or whether semantic and irregular past tense representations are
merely collocated in the IFG.

Deficits in irregular inflection are often associated with
semantic impairments in Alzheimer’s disease, semantic dementia
and herpes simplex encephalitis (HSE) (Ullman et al., 1997;
Patterson et al., 2001; Tyler et al., 2002) as a consequence to
damage to the temporal lobes. Nevertheless, the association does
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not seem to be absolute, as would be expected if semantic
representations formed the basis for irregular inflection. Several
studies have reported cases in which patients with semantic
deficits did not show disproportionate problems with semantic
inflection (Tyler et al., 2004; Miozzo and Gordon, 2005) and
others found patients with no semantic deficits but problems
with irregular inflection (Miozzo, 2003). A longitudinal study
of two semantic dementia patients (Bright et al., 2008) reported
that the early stages of dementia were associated with semantic
deficits, but that language deficits occurred later when brain
atrophy was more widespread. We believe that these results
raise the intriguing possibility that semantic and irregular verb
representations are closely but not causally associated, because
both constitute idiosyncratic representations. There is nothing
in the sound of a word that signifies its meaning, and there is
also nothing in the sound of a verb that predicts its irregular
past tense. Both have to be learned, and it is possible that
idiosyncratic information connected with words is stored in the
posterior temporal areas of the brain. Computational modeling
work supports this view. A well-known model of past tense
impairment after brain damage (Joanisse and Seidenberg, 1999)
included a set of localist units for each verb, and damage to
these localist units led to greater irregular impairment. However,
while these units were labeled as “semantic” in the model, there
was nothing to connect them to the meaning of words; their
main role was to encode idiosyncratic information. Likewise, in
our neuroconstructivist model we did not include “semantic”
representations (in the sense that the meaning of verbs was not
encoded) because we found that a model without semantics
(albeit with the ability to encode idiosyncratic information
without recourse to semantics) accounted for a wide range
of behavioral data in past tense tasks, spanning acquisition,
adult processing and impairment after brain damage, and that
assuming a causal role for semantics was therefore not necessary.

The proposed mapping of the pathways in our model to brain
areas is corroborated by results from selectively damaging the
model’s pathways (Westermann and Ruh, 2012), where damage
to the indirect pathway selectively affected irregular verbs and
damage to the directed pathway affected all verbs, albeit regulars
to a greater degree. These results correspond to patients with
brain damage to left temporal areas and the IFG, respectively.
Further evidence linking the direct pathway to the IFG comes
from the fact that in Joanisse and Seidenberg’s (2005) fMRI study,
“pseudo-regulars” (such as burnt) clustered with regulars in the
IFG, and the same was true in the model where several pseudo-
regulars had activation ratios comparable with regular verbs.
Finally, locating the direct pathway in the left IFG can provide
insight into why some studies found equal activation for all verbs
in Broca’s area (Desai et al., 2006; Sahin et al., 2006), while others
found greater activation for regular verbs in this region (Dhond
et al., 2003). In ourmodel, the direct pathway is strongly activated
by all verbs, but slightly more by regulars. Whether activation
differences in this path are found therefore depends on the
precise choice of verbs. In accord with Joanisse and Seidenberg
(2005), the model predicts that activation in the IFG is associated
with phonological processing rather than with regularity: In our
regression analysis of direct pathway activation, phonological

complexity was the strongest predictor, but regularity was not
a predictor.

DISCUSSION

The simulations described in this paper show how dissociations
between brain activation patterns in inflection tasks can
arise from a single associative mechanism together with
experience-dependent structural development. The argument
that dissociations between verbs reflect ease of processing
has been made previously with respect to imaging studies
(Seidenberg and Arnoldussen, 2003), but the present model
provides a mechanistic account of how these dissociations can
arise and a precise characterization of their underlying factors.
Importantly, the model predicts that frequency acts in the
opposite direction to ease of processing, and that hard-to-
process verbs should generate similar activation patterns to high
frequency verbs because dedicated structure in the developing
system is allocated to both.

Together these results raise a number of important points.
First, dissociations in activation patterns like those observed
in the model have often been described as being between
regular and irregular verbs, and have been taken as evidence
for the existence of qualitatively distinct mechanisms (i.e., rule
application and lexical retrieval) in the inflection of these verbs
(Jaeger et al., 1996; Bergida et al., 1998; Lavric et al., 2001;
Dhond et al., 2003; Sahin et al., 2006). The fact that the same
dissociations emerge in the model on the basis of a single
processing mechanism considerably weakens this argument.
Whereas separate processing mechanisms would result in
observable dissociations, the reverse implication is not true:
Separate mechanisms are not necessary to obtain dissociations
[see also Plaut (1995)]. Second, although superficially the
emerging dissociations appear to be between regular and
irregular verbs, their true nature is better described as a
grading between low-frequency, phonologically complex verbs
with many phonological friends and few enemies on the one
hand, and high-frequency verbs with many enemies and few
friends on the other. Although these statistical factors correlate
with regularity, characterizing the dissociations observed as being
between regulars and irregulars is a post-hoc abstraction of
the actual underlying mechanisms. When this abstraction is
used as an explanation of the underlying processes, as in dual
mechanism approaches, a lot of the empirical data, such as the
gradation of dissociations and the effects of phonology, friends,
and enemies, cannot be captured. Third, regional activation
patterns in imaging studies are likely to be a complex function
of the statistical and phonological properties of the verbs used in
a specific study. All imaging studies have taken this possibility
into account and controlled for various properties. However,
the selection of properties controlled for has generally not been
systematic or based on evident theoretical considerations. The
results presented here suggest that interactions between verb
frequency, phonological complexity, and numbers of friends
and enemies are the main factors affecting regional activation
differences. Fourth, these results indicate that typical (i.e., high
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frequency) regulars and irregulars might not in fact activate
different brain regions. Instead, according to the model, all
frequent verbs share activated regions, and dissociations between
regulars and irregulars will primarily be found among low
frequency verbs. Finally, some previous approaches have also
based explanations for dissociations on a differential involvement
of semantics in the generation of regular and irregular forms (e.g.,
Joanisse and Seidenberg, 1999; Patterson et al., 2001). In this view,
regular inflections rely on phonological representations, whereas
irregular inflections are based on the semantic representations
of verbs. Without precluding the possibility that semantic and
irregular processing might be linked and correlated, the present
model, which does not contain semantic representations, suggest
that semantic and irregular impairments might correlate because
they both refer to idiosyncratic information about verbs that
cannot be directly retrieved from their phonological form.

In line with our argument that experience-dependent
brain development shapes the adult cognitive architecture, the
performance of the NCM model is an outcome of its experience
with the learning environment. While we have made specific
predictions about what are typical and atypical regular and
irregular verbs in terms of brain activation patterns, as well as
about the statistical factors predicting activation patterns in the
model pathways, this point must serve as a caveat because it is not
clear how closely the statistics of our verb set reflect those of real-
world language learners. For example, the frequency statistics
in our corpus are extracted from the CELEX database (Baayen
et al., 1995) and are not derived from parental input to a child.
Likewise, with respect to modeling, we made decisions about
what statistical factors to consider in the first place. These choices
were guided by two considerations. First, the factors must be
available to the model. Therefore we did not include, for example,
imageability as a factor because the model does not contain
semantic representations. Second, a factor must be available
for the majority of verbs. This precluded our use of age of
acquisition norms, which are only available for a relatively small
subset of verbs. Given these caveats, a worthwhile avenue for
future research will be to investigate how variation in the input
comes to be reflected in variation in the model’s architecture and
performance, and in how far model performance is robust to
input variation.

In a similar vein, our model effectively isolates the past tense
inflection process from the rest of cognitive processing. On the
one hand this is a valuable abstraction because it allows for a
precise investigation into the factors affecting activation patterns
in this task alone. On the other hand, it is possible that different
inflectional paradigms such as noun plurals or even inflections
across languages known to multilinguals affect each other. While
computational models exist that have simultaneously learned
multiple inflections in a single system (Plunkett and Juola,
1999) there has been no systematic investigation of how these
paradigms affect each other. Likewise, although we argued that
the semantics of verbs are not causally linked to irregular
inflection (Westermann and Ruh, 2012), omitting semantic
representations from the model does not allow it to distinguish
between homophones (e.g., ring and wring) and consequently
these were excluded from the training data.

Although the model provides a precise account of the
origins of different activation patterns in synthetic brain
imaging, it is nevertheless possible that verbs might dissociate
differently depending on the experimental paradigm, because
representations in different areas for the same verb might be
redundant. As discussed, the model predicts that in imaging
studies inflecting frequent and hard verbs activate the same brain
regions. It is, however, possible that in behavioral paradigms such
as lexical decision tasks, frequent and hard verbs might dissociate
as interactions between processing regions can differ with specific
task demands even when the same regions are involved in
processing both. This is because in a neuroconstructivist system
that structurally develops on the basis of experience with the
environment, a brain area that is activated by a certain process
need not be necessary for this process because such a system
would involve a degree of redundancy. For example, although
high frequency verbs in the model activated the indirect pathway
more than low frequency verbs, this does not mean that
the indirect pathway is necessary for the production of high
frequency past tense forms. Instead, their production might be
possible based on the direct pathway alone, with indirect pathway
representations being redundant. This would also indicate that
one could expect differences between results from brain imaging
and from behavioral studies with brain damaged patients (Price
and Friston, 2002; Thomas et al., 2012). Damage to a certain
brain area would therefore affect forms that activate this area in
different ways, depending on whether the area is redundant for
the processing of a specific form or not. For example, as described
above, in lesioning the NCM to simulate selective impairment
after brain damage (Westermann and Ruh, 2012), even when
the indirect pathway was completely lesioned performance on
regulars remained virtually unimpaired, indicating that the direct
pathway is sufficient for producing all regular forms, despite, as
reported here, regulars also activating the indirect pathway in
synthetic brain imaging.

As a more general contribution, the model presented
here highlights the importance of computational modeling
in understanding the mechanisms of cognitive processing. As
shown in the regression analyses, depending on the adopted
theoretical perspective different explanations can be derived from
the same observed dissociations. Under the assumption that the
grammatical class (i.e., regular or irregular) of a verb is accessible
to the model and analyzing the observed activation patterns from
this perspective, the results would be taken as evidence for a
dual-mechanism view of inflection processing. In studying the
brain, this top-down approach from observed data to potential
underlying mechanisms is the only possible approach. In a
computational model, however, the mechanisms of processing
are known and we can observe what data is generated through
these known mechanisms. Using this bottom-up approach we
know that regularity is not one of the factors accessible to
the model, and that all inflections are based on a single
mechanism that operates in a structured processing system.
Likewise, the model has no access to semantic representations,
with all inflections based on phonological information alone.
Finding that dissociations between regular and irregular verbs
nevertheless emerge under these constraints disconfirms the
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claim that such dissociations are evidence against a single-
mechanism explanation and necessitate a dual-process system.
However, these results also weaken the argument of prior single-
mechanism accounts that semantic representations play a causal
role in the inflection of irregular verbs. Computational modeling
provides a detailed alternative explanation to these views by
quantifying the interactions between statistical verb properties
that give rise to the observed dissociations, and by providing a
mechanism by which the structure of the environment comes to
be reflected in the structure of the processing system through
neuroconstrucivist development. Computational modeling is
therefore an important approach in the gathering of converging
evidence for theories of inflection processing, and for theories of
cognitive processing in general.

Finally, together with previous work incorporating the NCM
(Westermann and Ruh, 2012), which accounted for empirical
data from past tense acquisition, adult generalization, and
impaired processing after brain damage, we believe that our
modeling of brain imaging data in the current paper illustrates
how neuroconstructivist computational modeling can overcome
one point of criticism sometimes levied against models in this
domain—that each individual model is tailored specifically to
account for a single phenomenon (Pinker and Ullman, 2003)—
in providing a principled account of past tense processing by
explaining existing data as well as generating predictions for
future research.
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Recent evidence for the influence of morphological structure on the phonetic output

goes unexplained by established models of speech production and by theories of

the morphology-phonology interaction. Linear discriminative learning (LDL) is a recent

computational approach in which such effects can be expected. We predict the

acoustic duration of 4,530 English derivative tokens with the morphological functions

DIS, NESS, LESS, ATION, and IZE in natural speech data by using predictors derived from a

linear discriminative learning network. We find that the network is accurate in learning

speech production and comprehension, and that the measures derived from it are

successful in predicting duration. For example, words are lengthened when the semantic

support of the word’s predicted articulatory path is stronger. Importantly, differences

between morphological categories emerge naturally from the network, even when no

morphological information is provided. The results imply that morphological effects on

duration can be explained without postulating theoretical units like the morpheme,

and they provide further evidence that LDL is a promising alternative for modeling

speech production.

Keywords: speech production, linear discriminative learning, acoustic duration, morphological theory, derivation,

mental lexicon

INTRODUCTION

Recent findings in morpho-phonetic and psycholinguistic research have indicated that phonetic
detail can vary by morphological structure. For example, the acoustic duration of English
word-final [s] and [z] differs depending on morphological status and inflectional function (Plag
et al., 2017, 2020; Seyfarth et al., 2017; Tomaschek et al., 2019). For derivation, too, studies have
demonstrated effects of morphological structure on phonetic output. For example, morphological
geminates in English differ in duration depending on morphological category and informativity
(Ben Hedia and Plag, 2017; Ben Hedia, 2019), and phonetic reduction in various domains can
depend on how easily speakers can decompose a complex word into its constituents (e.g., Hay,
2003, 2007; Plag and Ben Hedia, 2018; Zuraw et al., 2020).

These findings raise several problems at the theoretical level. The observation that phonetic
detail varies systematically with morphological properties is unaccounted for by traditional and
current models of themorphology-phonology interaction and of speech production (e.g., Chomsky
and Halle, 1968; Kiparsky, 1982; Dell, 1986; Levelt et al., 1999; Roelofs and Ferreira, 2019; Turk and
Shattuck-Hufnagel, 2020). This is because these models are either underspecified regarding the
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processing of complex words, or do not allow for post-lexical
access of morphological information. For example, feed-forward
models of the morphology-phonology interface (e.g., Kiparsky,
1982) assume that morphological brackets around constituents
are “erased” in the process of passing on a word through
morphological and phonological levels of processing. This means
that no trace of morphological structure should be left at the level
of phonetic realization. Similarly, established psycholinguistic
models of speech production (e.g., Levelt et al., 1999) assume
thatmorphological units select general phoneme templates which
are then passed on to an articulator module to be realized
phonetically. Again, no morphological information is encoded in
these templates, meaning that no systematic differences between
morphological properties are expected at the phonetic level.

Yet, morphological effects on the phonetic output have
repeatedly been observed, which is incompatible with these
assumptions. For example, the observation that complex words
are more acoustically reduced when they are less decomposable
into their constituents (Hay, 2003, 2007; Plag and Ben Hedia,
2018; Zuraw et al., 2020) seems to suggest that information about
morphological boundaries must somehow still be present at the
phonetic level. From the perspective of the speech production
models and theories of the morphology-phonology interaction
outlined above, such effects are unexpected, and the mechanisms
behind them are unclear. To better explain the morphology-
phonetics interaction at the theoretical level and to understand
the patterning of durations in complex words from a new
perspective, we need alternative approaches.

One such approach is to model phonetic detail based on
the principles of discriminative learning (see, e.g., Ramscar and
Yarlett, 2007; Ramscar et al., 2010; Baayen et al., 2011). Such
an approach sees form-meaning relations not as compositional,
but as discriminatory instead. That is, form-meaning relations
are created in a system of difference, which distinguishes
between features based on their similarity and dissimilarity
and connects them to each other in a learning process. In
discriminative approaches, “signs” in the semiotic sense of
relations of form and meaning (de Saussure, 1916) are not
fixed units. Discriminative models refrain from sub-lexical static
representations such as morphemes or roots in the lexicon.
Instead, speech comprehension and production are the result
of a dynamic learning process where relations between form
and meaning are constantly recalibrated based on the speaker’s
experience. How strong associations between given forms and
meanings are in the system depends on how often specific forms
occur together with specific meanings, and on how often they
fail to occur together with others. Each time a speaker makes a
new experience, i.e., encounters a form together with a specific
meaning, all associations of forms and meanings in the system
are updated to reflect this new state of learning. An association
strength increases when a “cue” (such as a specific form) occurs
together with an “outcome” (such as a specific meaning), and an
association strength decreases when a cue does not occur with
the outcome.

Such an approach has clear advantages if we are to explain the
evidence that morphology directly affects phonetic realization. A
discriminative learning model lacks a feed-forward architecture

which divides speech processing into separate levels. It is an
end-to-end model that goes directly from form to meaning
and from meaning to form. This means that the loss of
morphological information between levels, e.g., through bracket
erasure or phoneme template selection, is no longer an issue.
Moreover, discriminative learning refrains from postulating
morphemes or phonemes as psychologically relevant units in
the first place. This opens the way for interpreting acoustic
differences from a new perspective. In a discriminative approach,
differences between morphological functions are expected to
emerge naturally from sublexical and contextual cues. If we
can model systematic acoustic variation between morphological
functions with measures derived from a discriminative network,
it is possible to explain potential effects by its theoretical
principles of learning and experience.

While discriminative approaches have already been used to
model other morphological correlates, such as reaction time (e.g.,
Baayen et al., 2011), the question arises whether a discriminative
approach is able to successfully predict phonetic variation.
Recently, Tomaschek et al. (2019) employed naïve discriminative
learning (NDL) to model the duration of English word-final
[s] and [z] of different morphological status. The measures
derived from their network were predictive and indicated that
a higher certainty in producing a morphological function leads
to lengthening. While Tomaschek et al. (2019) focused on
inflection, it is necessary to also test how well discriminative
approaches can deal with derivational morphology. The present
paper aims to account for this gap.

Our study investigates the durational properties of derived
words in English. We modeled word durations for 4,530 tokens
with the derivational functions DIS, NESS, LESS, ATION, and IZE

from the Audio BNC (Coleman et al., 2012), using multiple
linear regression models and mixed-effects regression models.
The crucial predictors in our models are measures derived from
the computational framework of linear discriminative learning
(Baayen et al., 2019b).

Linear discriminative learning (LDL) is a new variant of naïve
discriminative learning. Like NDL, it is discriminative because its
system of form-meaning relations is generated by discriminating
between different forms and meanings instead of building them
from compositional units. Like NDL, LDL is a system of learning
because the association strengths between forms and meanings
are continuously recalibrated in a process of experience. This
learning is simple and interpretable because, in contrast to deep
learning, it features just two layers, an input layer and an output
layer, both of which are linguistically transparent. Unlike NDL,
however, LDL is linear and no longer “naïve.” Its networks are
linear mappings between form matrices and meaning matrices
(which serve as either the input layer or the output layer,
respectively). In this approach, forms are represented by vectors,
and meanings are also represented by vectors, similarly to
approaches in distributional semantics. The idea is that if we
can express both forms and meanings numerically, we can
mathematically connect form and meaning. In LDL, the network
is no longer naïve because where NDL represents word meanings
with binary vectors, LDL uses real-valued vectors, taking into
account that words cannot only be similar in form, but also in
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meaning. How this is implemented is explained further below in
the section Materials and Methods.

Our aim in this study is, first, to investigate how well
LDL can account for the durational variation in our data.
Second, we investigate what the effects of the LDL-derived
measures tell us about the mechanisms of speech production.
How can we interpret potential effects conceptually? Third, as
we are interested in exploring how these findings relate to
morphological functions, we also investigate how the results
differ depending on how much information the network has
about these functions. For this purpose, we initially trained
three different LDL networks, two of which contain explicit
morphological information. The first network does not include
any information about morphological category and treats all
derivatives as idiosyncratic (the Idiosyncratic Network). The
second network uses vectors that include semantic information
about the derivative and about the morphological category it
belongs to (the Morphology Network). The third network uses
vectors that include semantic information about the base word
(instead of the derivative) and about the morphological category
(the Base Network).

We hypothesize that LDL-derived measures can successfully
(i.e., significantly) predict derivative durations. If they do,
the effects of LDL-derived measures should be interpretable
with regards to speech production (for example, they should
mirror the finding by Tomaschek et al. (2019) that higher
certainty is associated with longer durations). Lastly, we
explore whether there are differences between the networks
that contain information about the morphological category a
derivative belongs to and the network that does not contain
such information.

To preview our results, three key findings emerge from
the analysis. First, all LDL networks achieve high learning
accuracy and the proportion of variance in duration explained
by the LDL-derived predictors is comparable to that explained
by traditional predictors. Second, the effects of LDL measures
highlight important patterns of speech production. For example,
they suggest that words are lengthened in speech production
when the semantic support of the word’s predicted articulatory
path is stronger (i.e., when certainty is higher), mirroring the
finding by Tomaschek et al. (2019). Third, we find that, even
though we did not provide the Idiosyncratic Network with
any information about the morphological category a word
belongs to, these categories still emerge from the network. For
instance, the different morphological categories are reflected in
the distributions of the correlation strength of a word’s predicted
semantics with the semantics of its neighbors. This corresponds
to what we would traditionally describe as the differences in
semantic transparency between affix categories.

The remainder of this paper is structured as follows. The
section Materials and Methods describes our methodology,
illustrating the procedure of collecting the speech data (the
section Speech Data), building the LDL networks (the section
Linear Discriminative Learning), the variables used (the section
Variables) and the modeling procedure (the section Modeling
Word Durations). The section Results outlines our results,
followed by a discussion and conclusion in the section Discussion
and Conclusion.

MATERIALS AND METHODS

Ourmethodology consists of threemain steps: first, retrieving the
speech data for the durational measurements for the response
variable, second, building the LDL networks to retrieve LDL-
derived predictors of interest, and third, devising regression
models to predict derivative durations from various predictors.
All data, scripts and materials can be found at osf.io/jkncb.

Speech Data
The speech data was obtained from the Audio BNC (Coleman
et al., 2012). This corpus consists of both monologues and
dialogues from different speech genres of several British
English varieties. It comes phonetically aligned by an automatic
forced aligner. Containing about 7.5 million words, it is
large enough to yield enough observations per derivational
function. A corpus approach has the advantage that that
we are not only able to analyze a lot of data, but also
that the type of data is conversational speech. This enables
us to investigate a more authentic process of language
production than with carefully elicited speech. It has been
argued (e.g., Tucker and Ernestus, 2016) that research on
speech production in particular needs to shift its focus to
spontaneous speech to be able to draw valid conclusions about
language processing.

The morphological categories selected for investigation are
DIS, NESS, LESS, ATION, and IZE. We use the term morphological
category in the traditional sense, referring to words that share
a particular morphologically expressed meaning. We do not
use the term morpheme because it is usually employed to
denote a minimal sign combining a form and a meaning
(e.g., /-l@s/ “without,” see, e.g., Plag and Balling, 2020). We
use the term function to refer to the semantic or grammatical
contribution of a particular affix or process. LDL does not assume
any fixed relationship between form and meaning. Meanings
are dynamically mapped onto a stream of forms (overlapping
triphones in our case), but never defined as being tied to strings
that we would traditionally describe as being “morphemic.” The
terms function and category better reflect the fact that in LDL,
derived words might be grouped into categories sharing similar
semantics or features (cf. Word and Paradigm Morphology)
but are not “composed” of form-meaning building blocks (cf.
morpheme-based morphology). LDL’s lexomes are pointers to
meanings only, not to forms.

The five categories DIS, NESS, LESS, ATION, and IZE were
chosen, first, because they featured sufficient token counts in the
Audio BNC and are attested in Baayen et al.’s (2019b) vector
space (explained in the section Training Data). Second, they were
chosen because they cover a wide spectrum of characteristics
traditionally considered important for affix classification. For
example, following Bauer et al. (2013) and Plag (2018),
the affixes corresponding to those categories differ in their
semantic transparency: -ness, -less, and dis- produce mostly
transparent derivatives, whereas -ize and -ation are overall a
little less transparent in comparison. They vary in the range
of their meanings, from relatively narrow and clearly definable
semantics (e.g., the privative meaning of -less or the negative
meaning of dis-) to more varied semantics (e.g., -ness denoting
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abstract states, traits, or properties) to highly multifaceted
semantics (-ize can have locative, ornative, causative, resultative,
inchoative, performative, or similative meaning, -ation can
denote events, states, locations, products or means). They
also differ in their productivity, with -ness and -less being
considered highly productive, and -ize, -ation, and dis- being
somewhat less productive. Lastly, they also differ phonologically.
While -ness, -less, and dis- are not (obligatorily) subject to
phonological alternations and not involved in resyllabification
processes, -ize and -ation can cause stress shifts and other
phonological alternations within their bases, and resyllabification
is commonplace.

We obtained speech data for these morphological categories
by entering pertinent query strings into the web interface
of the Audio BNC and extracting the resulting wordlist and
associated recordings and textgrids. These query strings searched
for all word tokens that begin or end in the orthographic
and phonological representation of each of the investigated
derivational function. We manually cleaned the datasets by
excluding words which were monomorphemic (e.g., bless, disk,
station), whose semantics or base were unclear (e.g., harness,
disrupt, dissertation), or which were proper names or titles (e.g.,
Guinness, Stenness, Stromness).

Before starting the acoustic analysis, manual inspection of
all items was necessary to exclude items that were not suitable
for further analysis. This was done by visually and acoustically
inspecting the items in the speech analysis software Praat
(Boersma and Weenik, 2001). Items were excluded that fulfilled
one or more of the following criteria: the textgrid was a duplicate
or corrupted for technical reasons, the target word was not
spoken or was inaudible due to background noise, the target
word was interrupted by other acoustic material, laughing, or
pauses, the target word was sung instead of spoken, the target
word was not properly segmented or incorrectly aligned to the
recording. In cases where the alignment did not seem satisfactory,
we examined the word-initial boundary and the word-final
boundary in order to decide whether to exclude the item. We
considered an observation to be correctly aligned if none of
these boundaries would have to be shifted to the left or right
under application of the segmentation criteria in the pertinent
phonetic literature (cf. Machač and Skarnitzl, 2009; Ladefoged
and Johnson, 2011). Following Machač and Skarnitzl (2009), we
considered the shape of the sound wave to be the most important
cue, followed by the spectrogram, followed by listening.

In a final step, the dataset was reduced to only those words
that were attested in the TASA corpus as well as in CELEX, and
whose base was simplex (this step is explained in the section
Training Data). The final dataset of derivatives that entered
the models comprised 4,530 tokens and 363 types. Table 1

gives an overview of the data in each morphological category.
Further descriptive statistics of the datasets are provided in the
Supplementary Material.

Linear Discriminative Learning
Our aim is to predict the durational patterning in the 4,530-
token dataset described above with measures derived from an
LDL network. These measures can be calculated on the basis of

TABLE 1 | Overview of tokens and types per morphological category.

DIS NESS LESS ATION IZE

Tokens 233 344 145 3,403 405

Types 35 49 31 209 39

a transformation matrix that maps a cue matrix C for forms onto
a semantic matrix S for meanings (for comprehension), and the
semantic matrix S onto the cue matrix C (for production). The
basic building blocks used to construct the meaning dimensions
in matrix S are referred to as lexomes. Lexomes are atomic units
of meaning in an LDL network and serve as pointers to semantic
vectors. In comprehension, they are also the “outcomes” in the
S matrix, which are predicted from the “cues” in the C matrix.
Lexomes can for example correspond to words (content lexomes,
such as LEMON), but also to derivational or inflectional functions
(function lexomes, such as NESS).

It is important to note that function lexomes correspond
to morphological categories, but are not the same thing as
morphemes. In LDL, morphological categories (like NESS) are
coded as semantic vectors and are not units of form and
meaning, but units of meaning only. How these lexomes and
their vectors were obtained, how the matrices were constructed
and how they were mapped onto each other is illustrated in the
following sections.

Training Data
To construct a linear discriminative learning network, it is
necessary to obtain semantic vectors that represent the words’
meanings (this will be explained in more detail in the section
Matrices for Form and Meaning). For this, we made use of
the vectors generated by Baayen et al. (2019b) from the TASA
corpus, who used an algorithm to predict words in each sentence
of the corpus from other words in that sentence (this will
be explained further below). To make sure that we can use
these semantic vectors for our derivatives, we first reduced our
speech data set from the Audio BNC to those derivatives that
are attested in TASA (losing 352 words). In a second step,
we used the CELEX lexical database (Baayen et al., 1995) to
obtain phonological transcriptions for the words in our data
set. These transcriptions are necessary for constructing the
matrices. Since CELEX did not have transcriptions for all words,
this step led to a slight reduction of our data set (losing 9
words). In a final step, we excluded all derivatives (49 words)
whose bases were already complex, i.e., all derivatives that
have more than one derivational function (e.g., stabilization,
specification, attractiveness, disclosure, disagreement). One reason
for excluding these derivatives is that it is currently not clear
how to build their semantic vectors. Another reason is that
multi-affixed words in corpora are comparatively infrequent. Too
infrequent derivatives might require a corpus even bigger than
TASA from which to construct reliable semantic vectors.

The resulting dataset contained 363 unique derivatives (i.e.,
types). This dataset consists of all derivatives from the Audio
BNC that are also attested in TASA. One problem with this
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TABLE 2 | Schematic examples of a cue matrix C (left) and a semantic matrix S (right) for the words cat, happiness, walk, and lemon.

Schematic example of a C matrix Schematic example of an S matrix

#k{ k{ t {t# #h{ h{p CAT HAPPINESS WALK LEMON

k{t 1 1 1 0 0 k{t 0.000000 −6.24e-05 4.71e-05 −0.000138

h{pInIs 0 0 0 1 1 h{pInIs −0.000110 0.0000000 0.000194 −2.20E-05

w$k 0 0 0 0 0 w$k 0.000304 −0.0002335 0.000000 −3.74E-05

lEm@n 0 0 0 0 0 lEm@n −7.28e-05 −2.41e-07 −2.68e-05 0.00000

Note that for the triphones in the C matrix, word boundaries are also counted, represented by a hash (#). The DISC phonetic alphabet is used for computer-readable transcription

(Burnage, 1990).

dataset is that it would be rather unrealistic as training data. This
is because a speaker encounters far more than just a few hundred
words during their lifetime, and not all these encountered words
contain one of the five investigated morphological categories
DIS, NESS, LESS, ATION, and IZE. We therefore decided to
merge this dataset with all words in TASA that had already
been coded in Baayen et al. (2019b) for derivational functions
(function lexomes) and phonological transcriptions (4,880 more
words). This dataset contained 897 derivatives with the 25
derivational function lexomes AGAIN, AGENT, DIS, EE, ENCE,
FUL, IC, INSTRUMENT, ATION, ISH, IST, IVE, IZE, LESS, LY, MENT,
MIS, NESS, NOT, ORDINAL, OUS, OUT, SUB, UNDO, and Y, as well
as 3,983 monomorphemic words. Derivational functions were
coded irrespective of variation in affix spelling. Most of these
words are not attested in our speech data and therefore not of
interest for the durational modeling, but including them makes
the training itself more realistic.

The resulting 5,176 unique word forms were then used for the
C matrix, and the 5,201 unique lexomes (comprising the vectors
for the 5,176 content lexomes and the 25 derivational function
lexomes) were used for the S matrix. The next section illustrates
what these matrices are and how they are constructed.

Matrices for Form and Meaning
In an LDL network, features of a word are represented by a
vector for this word in a multidimensional space. Each word
has a vector that specifies its form features, and a vector that
specifies its semantic features. We therefore need two matrices:
a cue matrix C for the words’ forms and a semantic matrix S for
the words’ meanings.

The cue matrix C contains in rows the words’ phonological
transcriptions, and in columns form indicators that are either
present or absent in those words. As shown in Arnold et al.
(2017) and Shafaei-Bajestan et al. (2020), it is possible to use real-
valued features extracted directly from the speech signal instead
of discrete features. In the present study, we use triphones as
form indicators, following Baayen et al. (2019b). These triphones
overlap and can be understood as proxies for transitions in
the articulatory signal. Each cell in the matrix codes in a
binary fashion (1 for present or 0 for absent) whether the
respective triphone string (specified in the column) occurs in the
phonological transcription of the word (specified in the row). An
example of the layout of the C matrix is given in Table 2 on the

left-hand side. For the C matrix in this study, we used the 5,176
unique word forms mentioned in the section Training Data.

The semantic matrix S contains in its rows the words’
phonological transcriptions, and in its columns the semantic
dimensions, or lexomes, with which the words are associated.
In the present study, these lexomes correspond to interpretable
linguistic items, such as words and derivational functions.
Each cell in the S matrix contains a real number, which
represents the association strength of a word (specified in the
row) to a lexome (specified in the column). As mentioned
in the Introduction, this is an important difference of LDL
compared to NDL, where word meanings are initially coded
as binary-valued vectors similar to the cue matrix. LDL, on
the other hand, starts out with real-valued association weights.
An example of the layout of the S matrix is given in Table 2

on the right-hand side. For the S matrix in this study, we
used the 5,201 unique lexomes mentioned in the section
Training Data.

Where do these association weights come from? In the present
study, we used association weights that were generated from
word co-occurrence in real language data. For this, Baayen et al.
(2019b) trained an NDL network on the TASA corpus (Ivens and
Koslin, 1991; Landauer et al., 1998). This NDL network operated
on an established learning algorithm (Widrow and Hoff, 1960)
that incrementally learns association strengths between lexomes.
In such an approach, words in a sentence are predicted from
the words in that sentence. While the network goes through
the sentences in the corpus, the associations strengths of the
lexomes with each other are continuously adjusted over time.
As language learning is about learning which connections are
relevant, the association strength of lexomes that often occur
together will be strengthened. As discriminative learning is also
about unlearning connections which are irrelevant, similarly,
the association strength of lexomes will be weakened each
time they do not occur together. For the implementational
and mathematical details of this procedure, as well as for the
validation of the resulting semantic vector space, the reader is
referred to Baayen et al. (2019b). Importantly for the present
study, Baayen and colleagues included lexomes not only for
words, but also for derivational functions corresponding to
suffixes and prefixes. This enables us to build LDL networks
that take into account morphological categories shared between
derivatives (in addition to an LDL network that does not take
these into account and treats all words as idiosyncratic, i.e., as
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having a unique semantics that is not related to the semantics of
constituents below the word level).

The so-called lexome-to-lexome matrix resulting from this
learning process is a vector space in which each lexome vector
represents a certain association with the meanings of all other
lexomes. According to the idea that “you shall know a word by
the company it keeps” (Firth, 1957), each value in the vector
of a lexome represents the association strength of this lexome
to the meaning of another lexome in TASA. Following Baayen
et al. (2019b), we used a version of their lexome-to-lexome
matrix which was trimmed to about five thousand dimensions
and whose main diagonal was set to zero.1 From this lexome-
to-lexome matrix, we extracted the vectors for our 5,201 unique
lexomes (described in the section Training Data), which we then
used for the Smatrix.

For the present study, we built three different LDL networks:
one which contains no information about the morphological
category a derivative belongs to but treats all derivatives as
idiosyncratic, one in which the vectors contain information about
the derivative and about themorphological category it belongs to,
and one in which the vectors contain information about the base
of a derivative and about the morphological category it belongs
to. For each of these networks we need a matrix S and a matrix
C. We will refer to the matrices with idiosyncratic derivatives as
matrix SI and matrix CI , to the matrices with information about
the derivative and its morphological category as matrix SM and
matrix CM , and to the matrices with information about the base
and the morphological category as matrix SB and matrix CB. We
will refer to the networks as a whole as the Idiosyncratic Network,
theMorphology Network, and the Base Network, respectively.

The Idiosyncratic Network withmatrices SI andCI considered
only the semantic vector of the derivative lexome (e.g., only the

vector for HAPPINESS, which can be represented as
−−−−−→
happiness).

This vector was taken as is from the lexome-to-lexome matrix
and straightforwardly entered matrix SI for each word. This
way, the vector contains only idiosyncratic information, and no
information about any shared morphological category.

TheMorphology Network with matrices SM and CM made use
of the semantic vector of the content lexome of the derivative
(e.g., the vector for HAPPINESS, i.e.,

−−−−−→
happiness) and the semantic

vector of the corresponding derivational function lexome (e.g.,

the vector for NESS, which can be represented as
−−→
NESS).2 We took

both these vectors from the lexome-to-lexome matrix, and the
sum of these two vectors entered matrix SM for each word. That
is, the semantic vector associated with the word happinesswas the

sum of the vectors for HAPPINESS and NESS:
−−−−−→
happiness +

−−→
NESS.

This way, the resulting vector contains idiosyncratic information,
but also information about the morphological category it shares

1The main diagonal of a lexome-to-lexome matrix represents the association

strengths of each word to itself. Each word occurring in a sentence naturally

predicts itself very well to occur in that sentence, but this value is not very

informative about the word’s relation to other words. Baayen et al. (2019b)

therefore argue that when the researcher is interested in semantic similarity, they

should replace these values with zero values.
2Note that the form matrices CI , CM , and CB are identical, as the networks only

differ in their construction of semantic vectors, not of form vectors.

with other derivatives. While it is also conceivable to add to
the vector of NESS the vector of HAPPY (instead of HAPPINESS),
taking HAPPINESS better reflects the fact that derived words
most often still carry some idiosyncratic meaning, i.e., signify
more than merely the sum of their parts. The combination of
HAPPINESS and NESS, thus, takes into account the morphological
category NESS that the word shares with other derivatives, but
still acknowledges that English derivatives are not characterized
by strictly compositional semantics.

The Base Network with matrices SB and CB uses the semantic
vectors of the content lexomes of the bases of derived words and
the vectors of the derivational function lexomes. That is, instead
of adding the derivational lexome vector to the lexome vector
of the derivative as in the Morphology Network, in the Base
Network we add the derivational lexome vector to the content
lexome vector of the derivative’s base. For instance, the semantic
vector associated with the word happiness in matrix SB is the sum

of the vectors for HAPPY and NESS:
−−−→
happy +

−−→
NESS. This way, the

resulting vector contains information about the morphological
category it shares with other derivatives, like in the Morphology
Network. But unlike the Morphology Network, it contains no
idiosyncratic information at all. The meaning of complex words
in the Base Network is assumed (against our better knowledge)
to be strictly compositional. In principle, this property makes
this network unattractive and less suitable for predicting word
durations, but it can be fruitfully used to gain further insights into
the differences between architectures.

We now have three matrices (for each morphological setup,
respectively) of the layout shown in Table 2. We have the C
matrix, containing information about form, and the S matrix,
containing information about meaning. These matrices can now
be mapped onto each other.

Comprehension and Production Mapping
In speech comprehension, a listener encounters a form and
needs to arrive at the corresponding meaning. Therefore, for
comprehension we calculate a transformation matrix F which
maps the semantic matrix S onto the cue matrix C, so that

CF = S. (1)

In speech production, on the other hand, a speaker starts
out with a meaning and needs to find the right form to
express this meaning. Therefore, for production we calculate a
transformation matrix G which maps the cue matrix C onto the
semantic matrix S, so that

SG = C. (2)

Mathematically, the transformation matrices F and G can
be calculated by multiplying the generalized inverse (Moore,
1920; Penrose, 1955) of C with S (for comprehension) and
the generalized inverse of S with C (for production). The
transformations are visually illustrated in Figure 1.

As soon as we have obtained the transformation matrices, we
can use them to estimate what forms and meanings the network
would predict. For this, we calculate the predicted matrices Ŝ and
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FIGURE 1 | Comprehension and production mapping, adapted from Baayen

et al. (2019b). For comprehension, transformation matrix F transforms the cue

matrix C into the semantic matrix S. For production, transformation matrix G

transforms the semantic matrix S into the cue matrix C.

Ĉ. For comprehension, we multiply the form matrix C with the
transformation matrix F, i.e., we solve Ŝ = CF. For production,
wemultiply the semanticmatrix Swith the transformationmatrix
G, i.e., we solve Ĉ = SG. It is important to keep in mind
that the mappings are simple linear transformations that are
achieved by matrix multiplication (for an introduction in the
context of LDL, see Baayen et al., 2019b). It is possible to think
of the transformation matrices F and G like coefficients in linear
regression, which try to approximate the target matrix but will
not produce exactly the same values. This is true especially for
large datasets like in the present study. The predicted matrices
Ŝ and Ĉ are thus not exactly the same as the original matrices S
and C.

We can also use the predicted matrices to evaluate model
accuracy. To see how well the model predicts the semantics of an
individual word in comprehension, we can multiply an observed
form vector c from the cuematrix with the transformationmatrix
F to obtain a predicted semantic vector ŝ. We can then see
how similar this predicted semantic vector ŝ is to the target
semantic vector s. For production, in turn, we can multiply an
observed meaning vector s from the semantic matrix with the
transformation matrix G to obtain the predicted form vector ĉ,
which represents the estimated support for the triphones.We can
then see how similar this predicted form vector ĉ is to the target
form vector c. If the correlation between the estimated vector
and the targeted vector, i.e., between ŝ and s or between ĉ and c,
respectively, is the highest among the correlations, a meaning or
form is correctly recognized or produced. The overall percentage
of correctly recognized meanings or forms is referred to as
comprehension accuracy and production accuracy, respectively.

To obtain the mappings, we used the learn_comprehension()
and learn_production() functions from the R package
WpmWithLDL (Baayen et al., 2019a). Accuracy estimations
were obtained with the functions accuracy_comprehension()
and accuracy_production(). Finally, the measures of interest
which we use to predict the durations were extracted from
the networks with the help of the comprehension_measures()
function and the production_measures() function. While we

model word durations in the present study, which are the
result of speech production, both speech production and speech
comprehension mappings produce relevant measures for the
analysis of production data. This is because the emergent
structure of the learner’s lexicon is determined both by the
association of forms with meanings and of meanings with forms.
In LDL, like in human learning, production and comprehension
are inextricably linked to each other (see Baayen et al., 2019b for
discussion). We will now describe the LDL-derived measures, as
well as other used measures, in more detail.

Variables
As described above, many potentially useful LDL measures can
be extracted automatically from the matrices by the package
WpmWithLDL (Baayen et al., 2019a). However, some of the
variables provided by this package capture similar things and are
strongly correlated with each other. Careful variable selection,
and sometimes adaptation, was therefore necessary. Further
below we illustrate our selection and explain the conceptual
dimensions we aim to capture with each variable.

Conceptually, it is desirable to not have any traditional
linguistic covariates in the models that are not derived from
the network, such as lexical frequencies, neighborhood densities,
or bigram frequencies. It is important to build models instead
which contain LDL-derived variables only. This is because, first,
we are interested in how well an LDL network fares on its
own in predicting speech production. Second, many traditional
covariates bring along implicit assumptions that LDL does not
want to make, such as the existence of discrete phonemic and
morphemic units. Third, it is unclear how these traditional
measures contribute to learning and processing. At the same
time, however, the traditional measures might tap into properties
of the linguistic signal that are picked up in a discriminative
learning process. Hence, LDL measures often correlate with
traditional measures.3

The models of interest therefore only include LDL-derived
variables (described in the section LDL-Derived Predictor
Variables), with one exception: the one important non-LDL
variable that needs to be taken into account is SPEECH RATE. This
is an influence that is beyond the control of the network.

In addition, we built models with just non-LDL variables
(we describe these variables in the section Traditional Predictor
Variables). This is to compare the explanatory power of the
LDL-derived models with traditional models used in morpho-
phonetic research.

Response Variable

Duration Difference
One important problem in analyzing spontaneous speech is that
which words are spoken is uncontrolled for phonological and
segmental makeup. This problem is particularly pertinent for
the present study, as our datasets feature different affixes whose
derivatives vary in word length. To mitigate potential durational
differences that arise simply because of the number and type

3Correlation matrices and variable clustering trees for both LDL-derived variables

and traditional variables are documented in the Supplementary Material.
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of segments in each word, we refrained from using absolute
observed duration as our response variable. Instead, we derived
our duration measurement in the following way.

First, we measured the absolute acoustic duration of the word
in milliseconds from the textgrid files with the help of scripts
written in Python. Second, we calculated the mean duration
of each segment in a large corpus (Walsh et al., 2013) and
computed for each word the sum of the mean durations of
its segments.4 This sum of the mean segment durations is
also known as “baseline duration,” a measure which has been
successfully used as a covariate in other corpus-based studies
(e.g., Gahl et al., 2012; Caselli et al., 2016; Sóskuthy andHay, 2017;
Engemann and Plag, 2021). It would now be possible to subtract
this baseline duration from the observed duration, giving us
a new variable that represents only the difference in duration
to what is expected based on segmental makeup. However, we
found that this difference is not constant across longer and
shorter words. Instead, the longer the word is on average, the
smaller the difference between the baseline duration and the
observed duration. In a third and final step, we therefore fitted
a simple linear regression model predicting observed duration
as a function of baseline duration. The residuals of this model
represent our response variable. Using this method, we factor
in the non-constant relationship between baseline duration and
observed duration. We named this response variable DURATION

DIFFERENCE, as it encodes the difference between the observed
duration and a duration that is expected on the basis of the
segmental makeup.

LDL-Derived Predictor Variables

Mean word SUPPORT
MEAN WORD SUPPORT is a measure that we introduce to capture
how well-supported on average transitions from one triphone to
the next are in the production of a word. Taken together, these
transitions are referred to as an articulatory “path.” MEAN WORD

SUPPORT is calculated based on the variable PATH SUM from
the package WpmWithLDL. PATH SUM refers to the summed
semantic support that a given predicted articulatory path receives
from its corresponding predicted semantic vector ŝ, i.e., the path
from one triphone to the next in the predicted form of a word.
This is illustrated in Figure 2 with the toy example lawless. Each
node in the path, i.e., each triphone, has a certain probability
of being selected against all the other possible triphones when
trying to produce a word based on its semantics. The maximum
value per transition is therefore 1, i.e., a 100% probability of
being selected. However, with longer words, there are also more
transitions. For example, if a word’s form is perfectly predicted
across all triphone transitions, but there are five such transitions,
PATH SUM would take the value 5. Thus, the problem with
PATH SUM is that it increases not only with higher support,
but also with increasing segmental length of words. This would
not be ideal as a measure of semantic support when modeling
durations, since durations naturally increase with longer words.
The interpretation of PATH SUM as a measure for mere semantic

4We used a different corpus than the Audio BNC for this task because the

Audio BNC does not provide this information in an accessible and reliable form.

FIGURE 2 | Toy example of an articulatory path for the word lawless. Each

connection between a triphone node is assigned a probability of being

selected against other triphones.

support would be difficult. Therefore, we decided to divide each
value of PATH SUM, i.e., each summed support of a word’s path,
by the number of path nodes in a word. This new variable MEAN

WORD SUPPORT controls for path length and only reflects the
average transition support in each word. MEAN WORD SUPPORT

can be read as a metaphor for certainty. The higher the average
transition probabilities in a word, the more certain the speaker
is in pronouncing this word based on its semantics. Based on
previous studies which have found higher certainty of various
operationalizations to be associated with lengthening (Kuperman
et al., 2007; Cohen, 2014, 2015; Tomaschek et al., 2019; Tucker
et al., 2019), words with higher MEAN WORD SUPPORT can be
expected to be longer in duration.

Path Entropies
Like MEAN WORD SUPPORT, PATH ENTROPIES considers the
transition probabilities between nodes in the path from one
triphone to the next in the predicted form of a word. PATH

ENTROPIES is the Shannon entropy calculated over the support
that a given path in the predicted form vector ĉ receives from
its corresponding predicted semantic vector ŝ. Entropy is a
measure of the uncertainty in the choice of one of several
alternatives. Higher entropy generally means a larger number of
possibilities of similar probabilities, in other words, less certainty.
Similarly to MEAN WORD SUPPORT, this measure is thus related
to certainty, albeit in a conceptually different way. The higher
the entropy, the less certain the speaker is in producing a word,
because there is not much informational value in the path
support differences. Higher PATH ENTROPIES thus indicate more
uncertainty. Based on the above-mentioned previous studies on
certainty (Kuperman et al., 2007; Cohen, 2014, 2015; Tomaschek
et al., 2019; Tucker et al., 2019), words with higher PATH

ENTROPIES can thus be expected to be shorter.
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Semantic Vector Length
SEMANTIC VECTOR LENGTH refers to the L1 distance, also
known as taxicab distance, Manhattan distance, or city-block
distance, of ŝ. It thus measures the length of the predicted
semantic vector by summing the vector’s absolute values. We
decided to use the L1 distance instead of the correlated L2
distance, as the former does not lose information by smoothing
over the city-block distance. The longer the predicted semantic
vector becomes, the stronger the links to other lexomes become.
SEMANTIC VECTOR LENGTH can thus be understood as a
measure of semantic activation diversity. It is the extent to which
a given word predicts other words. As a result, it can also
be understood as a measure of polysemy. The more semantic
dimensions a speaker is active on for a word and the more other
meanings the word can predict, the more collocational relations
it has and the more varied and confusable the meanings of this
word are (cf. Tucker et al., 2019, also cf. the notion of “sense
uncertainty” in Filipović Durdević and Kostić, 2021). Following
Tucker et al. (2019), words with higher activation diversity can
be expected to be shorter: the speaker is more uncertain when
more meanings are activated and therefore invests less energy in
maintaining the signal.

Semantic Density
SEMANTIC DENSITY refers to the mean correlation of ŝ with
the semantic vectors of its top 8 neighbors’ semantic vectors.
A strong average correlation of the estimated semantic vector
with the vectors of its neighbors means that the neighboring
words are semantically very similar to the word in question.
The higher the density, the more semantically similar these
words are. SEMANTIC DENSITY applied to derived words is thus
an important measure of semantic transparency: Words in a
dissimilar neighborhood are idiosyncratic and their meaning is
not predictable. Words in a semantically similar neighborhood
are semantically transparent, i.e., mathematically shifted in the
same direction. It is currently unclear whether one should expect
a facilitatory or inhibitory effect of measures related to semantic
transparency on duration. We explore this question in more
detail in the discussion in the section Discussion and Conclusion.

Target Correlation
TARGET CORRELATION refers to the correlation between a word’s
predicted semantic vector ŝ and the word’s target semantic vector
s. This is a measure for how accurate the network is in predicting
meaning based on form. The closer the predicted meaning to
the actual targeted meaning, the more successful is the model,
and the better is the learner in making the correct connection
between form and meaning. Being better in making the correct
connection between form andmeaning could be expected to have
a facilitatory effect in both comprehension and production, i.e., in
our case, to lead to shorter durations.

Traditional Predictor Variables

Speech Rate
SPEECH RATE is the only covariate in our LDL-derived models,
and the only predictor that is not derived from the LDL networks.
It is, of course, also used in the traditional models. The duration

of a word is naturally influenced by how fast we speak. SPEECH
RATE can be operationalized as the number of syllables a speaker
produces in a given time interval (see, e.g., Pluymaekers et al.,
2005b; Plag et al., 2017). In the window containing the target
word plus 1 s before and 1 s after it, we divided the number
of syllables by the duration of this window. This is a good
compromise between a maximally local speech rate which just
includes the adjacent segments, but allows the target item to
have much influence, and a maximally global speech rate, which
includes larger stretches of speech but is vulnerable to changing
speech rates during this larger window. The number of syllables
in the window and the duration of this window were extracted
from the textgrids with a Python script. A higher speech rate (i.e.,
more syllables being produced within the window) should lead
to shortening.

Word Frequency
WORD FREQUENCY has been shown to affect acoustic durations
(and processing in general) in many different studies (for an
overview, see, e.g., Baayen et al., 2016). Higher word frequency
is expected to lead to shorter durations. We extracted the
WORD FREQUENCY, i.e. the frequency of the derivative, from
the Corpus of Contemporary American English (COCA, Davies,
2008), with the help of the corpus tool Coquery (Kunter, 2016).
Derived words are often rare words (see, e.g., Plag et al., 1999).
For this reason, very large corpora are necessary to obtain
frequency values for derived words. We chose COCA because
this corpus is much larger than the BNC, and therefore had
a much higher chance of the words and their bases being
sufficiently attested. We prioritized covering a bigger frequency
range with more tokens. Following standard procedures, we log-
transformed WORD FREQUENCY before it entered the models
instead of using raw frequency. We added a constant of+1 to the
variable in order to be able to take the log of the zero frequency of
non-attested derivatives (cf. Howes and Solomon, 1951; Baayen,
2008).

Relative Frequency
RELATIVE FREQUENCY refers to the frequency of the base word
relative to the frequency of its derivative from COCA (Davies,
2008), calculated by dividing BASE FREQUENCY by WORD

FREQUENCY. It is a frequency-based measure for morphological
decomposability. Morphological decomposability, or
segmentability, has been found to affect duration in a number of
studies (Hay, 2003, 2007; Pluymaekers et al., 2005b; Schuppler
et al., 2012; Zimmerer et al., 2014; Ben Hedia and Plag, 2017;
Plag and Ben Hedia, 2018; Zuraw et al., 2020). The higher the
relative frequency, the more decomposable the item is assumed
to be. According to Hay (2001, 2003, 2007), more decomposable
words should feature longer durations (although some studies
have also found the opposite). We added a constant of +1 and
log-transformed the variable.

Bigram frequency
BIGRAM FREQUENCY refers to the frequency of the target
derivative occurring together with the word following it in the
COCA (Davies, 2008). It has been found that the degree of
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acoustic reduction can be influenced by the predictability of the
following context (see, e.g., Pluymaekers et al., 2005a; Bell et al.,
2009; Torreira and Ernestus, 2009). It is thus expected that the
higher the bigram frequency, the shorter the duration. We added
a constant of+1 and log-transformed the variable.

Mean Biphone Probability
The variable BIPHONE PROBABILITY refers to the sum of all
biphone probabilities (the likelihood of two phonemes occurring
together in English) in a given target derivative. It has been
found that segments are more likely to be reduced or deleted
when they are highly probable given their context (see, e.g.,
Munson, 2001; Edwards et al., 2004; Turnbull, 2018; also see
Hay, 2007 on transition legality effects on reduction). Thus,
biphone probability can be expected to negatively correlate
with duration: the more probable the biphones, the shorter
the durations. Biphone probabilities were calculated by the
Phonotactic Probability Calculator (Vitevitch and Luce, 2004).
For this, we first manually translated the target derivatives’
ASCII transcriptions of the Audio BNC into the coding referred
to as Klattese, as this is the computer-readable transcription
convention required by this calculator.

AFFIX
AFFIX is a categorical variable coding which affix category
the derivative belongs to. This is to account for any potential
idiosyncrasies in durations of affix categories.

Modeling Word Durations
Due to the distributional properties of the words in our
dataset, we decided to fit both standard multiple linear
regression models and mixed-effects regression models to
the data. In our dataset, we have many types that are
attested only once, which precludes the use of mixed-effects
regression.5 Having many single observations for one type
involves the danger that certain word types may become
too influential in the model. Mixed-effects regression, on the
other hand, can prevent certain word types from being too
influential in the model but necessitates the exclusion of
items for which no repeated measurements are available. We
decided to address this problem by fitting and documenting
both types of model. All regression models were fitted in
R (R Core Team, 2020), using the lme4 package (Bates
et al., 2015) and lmerTest (Kuznetsova et al., 2016) for the
mixed models.

In the course of fitting the regression models, we trimmed
the dataset by removing observations from the models whose
residuals were more than 2.5 standard deviations away from the
mean, which led to a satisfactory distribution of the residuals
(see, e.g., Baayen and Milin, 2010). For the standard regression
models, this resulted in a loss of 82 observations (1.8% of the
data) for the model based on the Idiosyncratic Network, and
74 observations (1.6% of the data) for the models based on the
Morphology Network and the Base Network.

5We provide plots illustrating the frequency distribution in our data in the

Supplementary Material.

For the mixed models, we only included word types
that occurred more than once (reducing our dataset from
363 to 261 types, or from 4,530 to 4,358 observations).
The trimming procedure resulted in a loss of 71
observations (1.6% of the data) for the models based on
the Idiosyncratic Network and the Base Network, and 70
observations (1.6% of the data) for the model based on the
Morphology Network.

From our experience, LDL-derived variables are often strongly
correlated with each other. As explained in the section Variables,
we made sure to select variables that are not highly correlated
and that had least conceptual overlap with each other, in terms
of representing specific concepts such as certainty or semantic
transparency. Still, we used variance inflation factors to test for
possible multicollinearity of the remaining variables. All of the
VIF values were smaller than 2, i.e., far below the critical value of
10 (Chatterjee and Hadi, 2006).

The initial models were fitted including all variables described
in the section Variables. The models were then simplified
according to the standard procedure of removing non-significant
terms in a stepwise fashion. An interaction term or a covariate
was eligible for elimination when it was non-significant at
the 0.05 alpha level. Non-significant terms with the highest
p-value were eliminated first, followed by terms with the
next-highest p-value. This was repeated until only variables
remained in the models that reached significance at the 0.05
alpha level.

RESULTS

General Comparison of the Networks
Network accuracy was generally satisfactory, with
comprehension accuracies at 81, 82, and 83% for the
Idiosyncratic Network, the Morphology Network, and the
Base Network, respectively, and production accuracies at 99, 99,
and 98%, respectively.

Before turning to the regression models that predict duration,
let us compare the predicted semantic matrices Ŝ of the three
networks. This can be done by calculating the correlation
of each predicted semantic vector ŝ from one network with
its corresponding predicted semantic vector ŝ from the other
two networks, and then taking the mean of these correlations
for all words. Comparing the semantic vectors ŝI of the
Idiosyncratic Network to the semantic vectors ˆsM from the
Morphology Network, we find that they are on average very
weakly correlated: the mean correlation between the vectors of
the ŜI matrix and the ˆSM matrix was r = 0.08. This means that
the matrices are rather different. Likewise, the mean correlation
between the vectors of the ŜI matrix and the ŜB matrix is
weak (r = 0.1).

However, the mean correlation between the vectors of
the ˆSM matrix and the ŜB matrix is extremely high (r =

0.9). This indicates that it is probably the information about
derivational function that differentiates the semantic vectors of
the Idiosyncratic Network from the semantic vectors of the other
two networks. Morphological category matters.
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TABLE 3 | Final standard linear regression models reporting effects on duration difference with variables from the three networks.

Idiosyncratic Network model Morphology Network model Base Network model

Estimate SE Estimate SE Estimate SE

Intercept 0.216901 0.026210 *** 0.090708 0.025887 *** 0.408246 0.029999 ***

MEAN WORD SUPPORT 0.170726 0.023507 *** 0.250262 0.020700 *** 0.050723 0.012716 ***

PATH ENTROPIES −0.008688 0.002242 *** −0.008442 0.002309 *** −0.009342 0.002259 ***

SEMANTIC DENSITY −0.043545 0.008925 *** 0.033868 0.012372 ** −0.093906 0.025844 ***

SPEECH RATE −0.058757 0.001148 *** −0.058602 0.001159 *** −0.058702 0.001171 ***

N 4,448 4,456 4,456

R2 adjusted 0.3778 0.3742 0.3623

Full models are documented in the Supplementary Material. Significance codes: *** < 0.001, ** < 0.01, * < 0.05.

TABLE 4 | Final mixed-effects regression models reporting effects on duration difference with variables from the three networks.

Idiosyncratic Network model Morphology Network model Base Network model

Estimate SE Estimate SE Estimate SE

Intercept 1.328e-01 4.601e-02 ** 2.146e-01 6.024e-02 *** 2.595e-01 2.510e-02 ***

MEAN WORD SUPPORT 2.722e-01 4.600e-02 *** 2.535e-01 4.572e-02 *** 1.211e-01 2.654e-02 ***

PATH ENTROPIES −1.173e-02 5.625e-03 * −1.163e-02 5.633e-03 *

SEMANTIC VECTOR LENGTH −1.606e-02 6.860e-03 * −3.294e-02 1.550e-02 *

SPEECH RATE −5.944e-02 1.116e-03 *** −5.937e-02 1.116e-03 *** −5.936e-02 1.117e-03 ***

N 4,357 4,358 4,357

R2 marginal 0.3690016 0.3638608 0.3487138

R2 conditional 0.5198377 0.5168201 0.5200542

Full models are documented in the Supplementary Material. Significance codes: *** < 0.001, ** < 0.01, * < 0.05.

Predicting Durations With LDL Variables
Let us now turn to the regression models predicting duration.
Tables 3, 4 report the final models regressing duration difference
against the LDL-derived variables and SPEECH RATE.

The model in Table 3 reports the results of the standard
regression models. As we can see, of the LDL-derived
variables, MEAN WORD SUPPORT, SEMANTIC DENSITY, and
PATH ENTROPIES significantly affect duration in the regression
models of all three networks. In addition, SPEECH RATE is
significant in all three models. The variables SEMANTIC VECTOR

LENGTH and TARGET CORRELATION, on the other hand, did
not reach significance and were therefore excluded from these
final models.

The model in Table 4 reports the results of the mixed
models. These models are very similar to the standard
regression models, with two important differences. The variables
MEAN WORD SUPPORT and SPEECH RATE display the same
effects as in the standard models. PATH ENTROPIES also
displays the same effects for the Idiosyncratic Network and
the Morphology Network (it was only marginally significant
for the Base Network and therefore excluded). However,
SEMANTIC DENSITY does not reach significance in the mixed
models. Instead, there is a significant effect of SEMANTIC

VECTOR LENGTH in the models derived from the Idiosyncratic
Network and the Morphology Network, but not in the
Base Network.

Before taking a look at the effects of individual variables,
let us first examine how much variation is actually explained
by the models. Tables 3, 4 show that for all three networks
in both types of model, the R2 of the fixed effects is between
0.36 and 0.37, i.e., about 36–37% of the variance in duration
is explained by the predictors (the marginal R2 of the mixed
model for the Base Network is an exception, being slightly
lower with about 35%). To put this number into perspective,
we compared the explained variance of the LDL-derived
models to that of a model containing predictor variables that
are traditionally used in morpho-phonetic corpus studies of
duration. We fitted a standard linear regression model and
a mixed model including the traditional predictors from the
section Traditional Predictor Variables. These variables were
fitted to the response variable DURATION DIFFERENCE. Some
observations were lost due to the same trimming procedure
as explained in the section Modeling Word Durations (80
observations, or 1.8% of the data, for the standard model,
and 74 observations, or 1.7% of the data, for the mixed
model). For the sake of comparison of the explanatory power
of individual predictors, we did not remove insignificant
variables from the models. The models are summarized
in Table 5. WORD FREQUENCY, RELATIVE FREQUENCY, and
BIGRAM FREQUENCY were not significant in the models,
while MEAN BIPHONE PROBABILITY, some levels of AFFIX,
and SPEECH RATE were. We can see that about the same
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TABLE 5 | Standard linear regression model and mixed-effects regression model reporting effects on duration difference with traditional, non-LDL predictors.

Traditional standard regression model Traditional mixed-effects model

Estimate SE Estimate SE

Intercept 3.888e-01 8.345e-03 *** 4.159e-01 1.106e-02 ***

WORD FREQUENCY 4.970e-08 3.764e-08 −2.608e-07 2.328e-07

RELATIVE FREQUENCY −2.136e-05 4.166e-05 −1.446e-05 8.931e-05

BIGRAM FREQUENCY −6.542e-07 6.293e-07 7.978e-07 6.382e-07

MEAN BIPHONE PROBABILITY −5.188e+00 8.872e-01 *** −7.167e+00 1.545e+00 ***

AFFIX ATION

DIS 8.145e-03 6.700e-03 −1.405e-03 1.438e-02

IZE −2.316e-02 5.251e-03 *** −1.491e-02 1.377e-02

LESS −5.749e-02 8.226e-03 *** −7.569e-02 1.524e-02 ***

NESS −5.473e-02 5.700e-03 *** −3.630e-02 1.295e-02 **

SPEECH RATE −5.893e-02 1.163e-03 *** −5.986e-02 1.116e-03 ***

N 4,450 4,354

R2 adjusted/marginal 0.3731 0.3705799

R2 conditional 0.5344904

Full models and ANOVAs are documented in the Supplementary Material. Significance codes: *** < 0.001, ** < 0.01, * < 0.05.

TABLE 6 | Relative importance of variables in the models for the overall explained variance (marginal variance for mixed models).

Relative importance metrics (lmg)

Idiosyncratic Morphology Base Traditional

Network Network Network model

lm lmer lm lmer lm lmer lm lmer

MEAN WORD SUPPORT 0.0089 0.1649 0.0148 0.0956 0.0025 0.1641

PATH ENTROPIES 0.0023 0.0031 0.0023 0.0017 0.0030

SEMANTIC DENSITY 0.0067 0.0020 0.0014

SEMANTIC VECTOR LENGTH 0.0064 0.0399

SPEECH RATE 0.3605 0.1946 0.3556 0.2266 0.3559 0.1845 0.3561 0.2140

WORD FREQUENCY 0.0007 0.0065

RELATIVE FREQUENCY 0.0006 0.0044

BIGRAM FREQUENCY 0.0007 0.0034

MEAN BIPHONE PROBABILITY 0.0025 0.1178

AFFIX 0.0136 0.0246

Total variance explained 0.3778 0.3690 0.3742 0.3639 0.3623 0.3487 0.3731 0.3706

proportion of the variance is explained by the traditional
models (R2 = 0.37).

Partitioning how much each of the predictors contributes
to the proportion of explained variance, using the lmg metric
(Lindeman et al., 1980) from the relaimpo package (Grömping,
2006) and the calc.relip.mm function (Beresewicz, 2015) reveals
that in both the traditional models and the LDL models,
by far most of the variance is explained by speech rate
(which alone explains about 35% of the total variance in
the standard regression models and about 20% in the mixed
models). This is shown in Table 6. The variables of interest
MEAN WORD SUPPORT, PATH ENTROPIES, SEMANTIC DENSITY,
and SEMANTIC VECTOR LENGTH are all comparable in their
explanatory power to the categorical AFFIX variable and

MEAN BIPHONE PROBABILITY, and often better than the three
frequency measures WORD FREQUENCY, RELATIVE FREQUENCY,
and BIGRAM FREQUENCY. While the small differences in the
explained variance between the LDL-derived variables and
the traditional variables after factoring out the contribution
of SPEECH RATE are not large enough to truly say which
set of variables is “better,” they clearly show that they are
in the same ballpark. We can thus say that LDL-derived
variables can compete against traditional variables frommorpho-
phonetic studies.

We can now take a closer look at the effects of each of
the variables. Figure 3 (for the standard regression models)
and Figure 4 (for the mixed models) plot the effects of the
LDL-derived variables and SPEECH RATE on duration. Figure 5
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FIGURE 3 | Effects on duration difference in the standard linear regression models for the Idiosyncratic Network variables (left column), the Morphology Network

variables (middle column) and the Base Network variables (right column).

displays the density distributions of the variables in all three
networks. We will discuss the two variables relating to certainty
in the articulatory path first (MEAN WORD SUPPORT and PATH

ENTROPIES), followed by a discussion of the two variables
relating to the semantic relations between words (SEMANTIC

DENSITY and SEMANTIC VECTOR LENGTH). The covariate
SPEECH RATE and the variable TARGET CORRELATION will not
be further discussed, as SPEECH RATE behaves as expected (see
the bottom rows of Figures 3, 4) and TARGET CORRELATION was
not significant in any of the models.

Mean Word Support and Path Entropies
As explained in the section LDL-Derived Predictor Variables,
the two variables MEAN WORD SUPPORT and PATH ENTROPIES

both reflect properties of the semantic support for the predicted
articulatory path, and they both tap into articulatory certainty.
Given that the way these variables are calculated, MEAN WORD

SUPPORT is a measure of certainty, while PATH ENTROPIES is
a measure of uncertainty, they should mirror each other by
showing opposite effects on duration.We find that this is the case.

Let us start with MEAN WORD SUPPORT. This variable has
a significant effect on duration difference in all models. We
can see from the coefficients in Tables 3, 4 as well as from
its positive slope in the top row of Figures 3, 4 that higher
MEAN WORD SUPPORT is significantly associated with longer
durations. The higher the average semantic support of a word’s
predicted triphone path, the longer this word is pronounced.
This means that the more certain the speaker is in producing
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FIGURE 4 | Effects on duration difference in the mixed-effects regression models for the Idiosyncratic Network variables (left column), the Morphology Network

variables (middle column) and the Base Network variables (right column). Red regression lines indicate significant effects from the final models, gray regression lines

indicate non-significant effects from the initial models before the non-significant predictors were excluded.

the word, the more the articulation is durationally enhanced.
In other words, more certainty is associated with lengthening.
Interestingly, if we look at the distribution of MEAN WORD

SUPPORT in the top row of Figure 5, we can see that mainly two
derivational functions are responsible for this effect: Whereas the
paths of IZE and ATION words are always very well-supported
(as well as the paths of DIS in the Idiosyncratic Network and
in the Morphology Network), paths of NESS and LESS words
often feature weaker transition probabilities between triphones.
The distributional differences of each of these two categories
compared to the others are significant (Mann-Whitney, p <

0.001). This is true for all three networks. However, it is notable

that the mean support of words is generally lower in the Base
Network, especially for IZE, NESS, and LESS words. We will come
back to these differences between morphological categories and
between networks in the discussion.

If MEAN WORD SUPPORT indicates that with greater certainty,
durations become longer, our next predictor PATH ENTROPIES

should indicate that with greater uncertainty, durations become
shorter. This is the case. Moving on to the second row in
Figures 3, 4, we can observe negative slopes for the effect of PATH
ENTROPIES, which was significant in the models (marginally
significant in the mixed model for the Base Network). The
higher the Shannon entropy of the semantic support for the
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FIGURE 5 | Density distributions of variables by derivational function in the Idiosyncratic Network models (left column), the Morphology Network models (middle

column), and the Base Network models (right column). Note that in the first two panels in the top tow, the density curves around 1.0 are calculated over a single value.

predicted articulatory paths becomes, i.e., the more variation
of support there is in the system, the shorter the durations
are. More uncertainty is associated with reduction. In other
words, a speaker’s lower certainty in production means the
articulatory signal is less strengthened or less enhanced. Again,
there are differences between morphological categories in all
three networks. For example, words with IZE are characterized
by more diverse and informative support values, while the other
categories often feature more entropic supports across the paths,
especially LESS and DIS. All differences in the distributions are

significant at p < 0.001, except for the non-significant difference
between LESS and DIS in the Idiosyncratic Network and the
Morphology Network, and the difference between NESS and DIS

in the Base Network.

Semantic Density and Semantic Vector Length
Let us now look at the two variables that capture the semantic
relations to other words, SEMANTIC DENSITY and SEMANTIC

VECTOR LENGTH.
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SEMANTIC DENSITY is significant in the standard regression
models, but did not reach significance in the mixed models. Its
coefficients in Table 3 show that while it has a negative effect on
duration when derived from the Idiosyncratic Network and the
Base Network, it has a positive effect on duration when derived
from theMorphologyNetwork. This is illustrated in the third row
of Figure 3. For the Idiosyncratic Network and the Base Network,
the stronger an estimated semantic vector correlates with its
neighbors, the shorter becomes the duration of a word. For the
Morphology Network, the stronger an estimated semantic vector
correlates with the semantic vectors of its neighbors, the longer
becomes the duration of a word. High-density words live in a
space more semantically close to other words, i.e., they can be
said to be less idiosyncratic and, due to their being derived words,
more semantically transparent. Higher transparency can thus
lead to both lengthening and shortening, depending on how the
network is constructed.

Investigating the distribution of this variable, we observe that
SEMANTIC DENSITY shows differences between the networks.
The data points in Figure 3 and the distributions in Figure 4

show that density is lowest in the Idiosyncratic Network,
higher in the Morphology Network, and highest in the Base
Network. This means that density increases with the amount of
morphological structure we encode in the networks. SEMANTIC

DENSITY also shows differences between derivational functions.
Especially in the Idiosyncratic Network, this difference is very
pronounced. This is again illustrated in Figure 5 (third row,
first column). Words with LESS and IZE have particularly
high densities, whereas densities are lower for DIS and NESS

words, and lowest for ATION words. All of the distributions
are significantly different from each other at p < 0.001. The
fact that these morphological categories cluster so distinctly
is particularly surprising, given that the Idiosyncratic Network
was not provided with any information about these categories.
We will return to the peculiar behavior of this variable in
the discussion.

Turning to the second semantic variable, we can see that
SEMANTIC DENSITY is replaced by SEMANTIC VECTOR LENGTH

in the mixed models: SEMANTIC VECTOR LENGTH, while
not significant in the standard regression models, reaches
significance in the mixed models for the Idiosyncratic Network
and the Morphology Network (Table 4 and third row in
Figure 4). When derived from these networks, SEMANTIC

VECTOR LENGTH has a negative effect on duration. Recalling that
this variable captures activation diversity, we can say that being
active onmore semantic dimensions as a speaker has a facilitatory
effect in production. The more collocational relations a word has
to other words and the more meanings are activated, the shorter
it is pronounced.

Investigating the distribution of SEMANTIC VECTOR LENGTH

(Figure 5, fourth row), we observe that the estimated semantic
vectors are generally longer in the Morphology Network and the
Base Network than in the Idiosyncratic Network. Not only are
they longer on average, they also cluster more closely together
in terms of their length: the L1 distance in the Morphology
Network and the Base Network covers a range from about
2 to 3, while in the Idiosyncratic Network, it is spread out

across a range from about 0 to 2.5. One reason for this may
be purely mathematical: The vectors in the two networks with
information about the morphological category can often be
longer because the vector for the derivational function lexome
is added to the vector of the derived word’s content lexome.
However, the vectors are not just generally longer in these
networks, but the spread of the datapoints is also narrower.
This indicates that the words cluster more closely together. Since
SEMANTIC VECTOR LENGTH can represent activation diversity,
this is expected: If words share a morphological function with
other words, they become more similar to each other, hence are
more likely to be semantically active when a member of their
category is accessed. In the Idiosyncratic Network, words do
not explicitly share a morphological category, hence members
of a given category are not as likely to be co-activated. Again,
the distributions show that vector lengths cluster differently
depending on derivational function, meaning that different
morphological categories are characterized by different degrees
of semantic activation diversity.

It is interesting to note that when modeling durations, it is the
Base Network that seems to behave differently from the other two
networks, even though it shares with theMorphologyNetwork its
property of having information about morphological categories.
The mixed model based on the variables from the Base Network
is the least successful, as two predictors that are significant in
the other networks (PATH ENTROPIES and SEMANTIC VECTOR

LENGTH) do not reach significance in the Base Network. In
the section Matrices for Form and Meaning, we have already
discussed that the Base Network is conceptually unappealing
and theoretically flawed, as it wrongly assumes that the meaning
of a derived word is strictly composed of the meaning of its
base word and the meaning of the affix. However, we now
find that it also seems to perform less optimal in modeling
durations. Importantly, it is surprising that the Base Network
shows a facilitatory effect of SEMANTIC DENSITY similar to the
Idiosyncratic Network, instead of behaving like the Morphology
Network, i.e., showing an inhibitory effect. This is despite the
fact that the distribution of SEMANTIC DENSITY is very similar
in the Base Network and in the Morphology Network, but very
different in the Idiosyncratic Network (see again Figure 5, third
row). Moreover, it was the ˆSM matrix and the ŜB matrix which
are extremely highly correlated with each other (see the section
General Comparison of the Networks) and not at all correlated
with the ŜI matrix.

Exploring the aberrant behavior of the Base Network further,
we investigated the semantic space of the Base Network in
more detail and found that the clustering of words in the
semantic space is detrimental. This is exemplified in Table 7,
which shows an extract from the list of closest semantic neighbors
to words with DIS in the three networks. Quite expectedly,
the Idiosyncratic Network features a lower number of DIS

words as neighbors of target DIS words than the other two
networks. And there are more neighbors featuring DIS in the
Base Network than in the Morphology Network. This increase
of the number of DIS words as neighbors across the three
networks mirrors the increasing role of explicit morphological
information encoded in these networks. There is an important
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TABLE 7 | Extract from the closest semantic neighbors of DIS words in the three networks.

Word Phones Neighbors

Idiosyncratic network

disarm dIs,m m1d1 kInt w{m m{mb5 kr{NkI n5zI bl{NklI

disband dIsb{nd m1d1 kInt bl{NklI w{m m{mb5 kr{NkI pIpIn

discard dIsk,d dIs@r1 dIst1st dIskrEdIt dIsgr1s dIskVmf@t $l dIs@b1

discharge dIsJ,= dIsl2k dIsQnIst dIstrVst dIs@gri dIskVmf@t dIsgr1s dIsk@ntEnt

disclose dIskl5z m1d1 kInt m{mb5 w{m bl{NklI n5zI SIt

discount dIsk6nt dIsQnIst dIskVmf@t dIsgr1s dIsk@ntEnt dIstrVst dIst1st dIsg2z

discourse dIsk$s dIs@r1 dIst1st dIskrEdIt dIsgr1s dIskVmf@t dIsp{r@tI dIslQ=

disease dIziz dIskVv@R dIs@p7R dIs$d@R dIsJ,= dIsl2k dIsk6nt dIs@gri

disgrace dIsgr1s dIst1st dIskVmf@t dIs@r1 dIskrEdIt dIs@b1 dIslQ= dIsp{r@tI

disguise dIsg2z dIskVmf@t dIsgr1s dIst1st dIs@r1 dIsQnIst dIsk@ntEnt dIskrEdIt

dislike dIsl2k dIsQnIst dIskVmf@t dIsgr1s dIstrVst dIsk@ntEnt dIst1st dIsg2z

Morphology network

disarm dIs,m dIsjun@tI dIs5n dIsb{nd dIs@r1 dIskrEdIt dIsp{r@tI dIs@b1

disband dIsb{nd dIsjun@tI dIs5n dIs,m dIs@r1 dIskrEdIt dIs@b1 dIsp{r@tI

discard dIsk,d dIskVmf@t dIsgr1s dIst1st dIsQnIst dIs@r1 dIsk@ntEnt dIslQ=

discharge dIsJ,= dIsl2k dIsQnIst dIstrVst dIs@gri dIskVmf@t dIsgr1s dIsk@ntEnt

disclose dIskl5z dIs@r1 dIs5n dIs,m dIskrEdIt dIsjun@tI dIsb{nd dIsp{r@tI

discount dIsk6nt dIskVmf@t dIsQnIst dIsgr1s dIsl2k dIs@gri dIstrVst dIsg2z

discourse dIsk$s dIskVmf@t dIsgr1s dIst1st dIsQnIst dIsk@ntEnt dIs@r1 dIsrIg,d

disease dIziz dIskVv@R dIs@p7R dIs$d@R dIsJ,= dIsl2k dIsk6nt dIs@gri

disgrace dIsgr1s dIst1st dIskVmf@t dIs@r1 dIskrEdIt dIs@b1 dIslQ= dIsp{r@tI

disguise dIsg2z dIskVmf@t dIsgr1s dIst1st dIs@r1 dIsQnIst dIsk@ntEnt dIskrEdIt

dislike dIsl2k dIskVmf@t dIsQnIst dIsgr1s dIstrVst dIs@gri dIsk@ntEnt dIsg2z

Base network

disarm dIs,m dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIsl2k dIs@bidj@ns dIspl1s

disband dIsb{nd dIsg2z dIsp{r@tI dIs@r1 dIsgVst dIsl2k dIspl1s dIs@bidj@ns

discard dIsk,d dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIs@bidj@ns dIsl2k dIspl1s

discharge dIsJ,= dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIsl2k dIs@bidj@ns dIsQnIst

disclose dIskl5z dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIsl2k dIs@bidj@ns dIslQ=

discount dIsk6nt dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIs@bidj@ns dIsl2k dIsQnIst

discourse dIsk$s dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIspl1s dIs@bidj@ns dIsQnIst

disease dIziz dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIs@bidj@ns dIsl2k dIsQnIst

disgrace dIsgr1s dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIsl2k dIs@bidj@ns dIsQnIst

disguise dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIs@bidj@ns dIsl2k dIsQnIst dIslQ=

dislike dIsl2k dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIs@bidj@ns dIslQ= dIsQnIst

difference, however, between the Morphology Network and the
Base Network. While in the Morphology Network, the DIS

neighbors consist of many different word types with DIS, in
the Base Network these are very often exactly the same word
types. A type analysis of the neighbors for all morphological
categories in the three networks confirms this impression:
Figure 6 shows that the Base Network is characterized by
the least diverse neighbor space of the three networks, and
that this is true for every investigated morphological function.
Given this behavior, it is thus no longer surprising that
measures derived from the Base Network might behave strangely
or not display effects. We conclude that the Base Network
is not only theoretically the least appealing of the three
networks, but that these problems also lead to an empirically
unattractive model.

DISCUSSION AND CONCLUSION

This study set out to explore how morphological effects on the

phonetic output, which have been frequently observed in the

literature, can be explained. From the perspective of current

speech production models and theories of the morphology-

phonology interaction, such effects are unexpected, and the
mechanisms behind them are unclear. Our study investigated
whether we can successfully model the durations of English
derivatives with a new psycho-computational approach, linear
discriminative learning. We hypothesized that measures derived
from an LDL network are predictive of duration. We also
explored what insight their effects can give us into the
mechanisms of speech production, and whether the measures
derived from these networks differ in their predictive power
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FIGURE 6 | Type count of top 8 neighbors by network and morphological function.

depending on the kind of information they have about
morphological functions.

Our study demonstrated that LDL-derived variables can
successfully predict derivative durations. The mean semantic
support of a word’s articulatory path, the entropy of a word’s path
supports, the mean correlation of a word’s predicted semantics
with the semantics of its neighbors, and the distance of the
semantic vector in the semantic space all significantly affect
duration. We have also shown that these measures explain a
reasonable proportion of the durational variance, in the sense
that their contribution to the explained variance is comparable to
the contribution of traditional linguistic variables used in corpus
studies of duration. The present study thus contributes to the
growing literature that demonstrates that LDL is a promising
alternative approach to speech production which can explain the
variation in fine phonetic detail we find in different kinds of
words, be they simplex, complex, or non-words (cf. Baayen et al.,
2019b; Chuang et al., 2020).

Regarding the question what the effects of LDL-derived
variables can tell us about speech production, we find that two
important concepts relevant for production are the certainty
in the association of form with meaning and the semantic
relations of words to other words. The positive effects of
MEAN WORD SUPPORT and the negative effects of PATH

ENTROPIES on duration both indicate that generally, higher
certainty in the association of form and meaning is associated
with longer durations. The better an articulatory path is on
average semantically supported, and the less these supports
vary over the path, the more strengthened the articulation
becomes. It is important to note that the metaphor of “certainty”
which is ascribed to these measures can generate two opposing
expectations, both of which are intuitive in their own way. On
the one hand, it could be assumed that the more certain a
speaker is, the more strengthened the signal will be, leading to
longer durations. This may be because a speaker invests more
energy in maintaining duration when they are certain, and less
energy when they are uncertain, in order to not prolong a
state of uncertainty (Tucker et al., 2019). On the other hand,
it could be assumed that the more certain a speaker is, the
more efficient they can articulate, leading to shorter durations.

This may be because more certainty could enable a speaker
to select the correct path more quickly. The present results
provide support for the first interpretation rather than the
second one.

This interpretation is in line with the findings for other
measures that have been interpreted with reference to the concept
of certainty. Tomaschek et al. (2019), for instance, found that
with higher functional certainty, gauged by the support for
a word’s inflectional lexome and the word’s overall baseline
support, segment durations of different types of English final S
are lengthened. Kuperman et al. (2007) found that with higher
certainty, gauged by the paradigmatic support (probability)
of Dutch compound interfixes, these interfixes are realized
longer. Cohen (2014) found that higher certainty, gauged by
the paradigmatic probability of English suffixes, is associated
with phonetic enhancement, i.e., again with longer durations.
Cohen (2015) found that higher paradigmatic support can also
enhance Russian vowels. Tucker et al. (2019) found that with
higher support for tense and regularity (more certainty), acoustic
duration of stem vowels increases, and with greater activation
diversity (more uncertainty), acoustic duration decreases. In
sum, regarding the question whether certainty has an effect
of enhancement or reduction, recent evidence—including the
present study—points toward enhancement.

The significant effects of SEMANTIC DENSITY and of
SEMANTIC VECTOR LENGTH indicate that a second relevant
factor in the production of derivatives is the semantic relation
of a word to other words. Starting with SEMANTIC DENSITY,
depending on the architecture of the network, the average
semantic similarity of a word’s neighbors to this word can
lead to both longer and shorter durations. If the network
has information about the semantics of the morphological
category of the derivative and of the derivative itself, higher
densities are associated with longer durations. If the network
has no such information and treats all words as idiosyncratic,
or if the network has information about the morphological
category and the semantics of the derivative’s base word, higher
densities are associated with shorter durations. In order to get
a better understanding of this somewhat puzzling finding, three
observations are helpful.
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Let us first compare the Idiosyncratic Network and the
Morphology Network. We can see in the data points in Figure 3

as well as in the density plots in Figure 5 that SEMANTIC

DENSITY is distributed very differently when derived from the
Idiosyncratic Network than when derived from the Morphology
Network (both the model results as well as the distributions
are plotted on the same x-axis scale, respectively, for easier
comparison). For the Idiosyncratic Network, there are hardly
any data points above 0.8 and the vast majority of data points
have density values below 0.4. For the Morphology Network, on
the other hand, the vast majority of data points show densities
above 0.8. At the conceptual level this makes sense: We would
expect words sharing the semantics of their morphological
category to be closer to their neighboring words, i.e., to be
more transparent and less idiosyncratic. This means that if the
model has information about morphological categories, density
should be generally higher. This is the case. In contrast, words in
the Idiosyncratic Network are generally more dissimilar to each
other because they do not share the semantic information that
comes with belonging to a particular morphological category.
This difference between the two networks is also illustrated by
the example of DIS neighbors in Table 7, which shows that in the
Morphology Network a larger proportion of nearest neighbors
comes from the morphological category of the target word.

Returning to the relation between SEMANTIC DENSITY and
duration, we can now see in Figure 3 that the contradictory
effects happen at different ends of the distribution. The negative
effect found in the Idiosyncratic Network is carried by the low-
density words, while the positive effect of semantic density on
duration is carried by the high-density words. The positive
effect of densities above 0.8 is even visible in the Idiosyncratic
Network: the residuals in that range are clearly skewed toward
higher durations. If we attempt an interpretation of the relation
of SEMANTIC DENSITY and word duration across these two
networks, we can say that the shortest durations are found in
the middle of the semantic density range. Having many close
semantic relatives slows down articulation, and so does having
very few relatives.

What about SEMANTIC DENSITY in the Base Network?
SEMANTIC DENSITY in this network is distributed similarly
to the Morphology Network, yet the effect is similar to the
Idiosyncratic Network, as it negatively affects duration. However,
our exploration of the type diversity in the semantic space of
the networks in the section Semantic Density and Semantic
Vector Length has shown that the neighbors that are behind
these semantic densities are not at all diverse in the Base
Network. This was true to such an extent that for the DIS

words, for example, the Base Network considered the same
few words (especially disguise, disparity, disgust, disarray) to
be the closest neighbors for the vast majority of the target
words. We consider this clustering to be rather unrealistic.
Most likely, it is the consequence of the questionable premises
underlying this network architecture discussed earlier. Overall,
we conclude that the effect of SEMANTIC DENSITY in this
network is not interpretable.

The question remains how we can understand the opposite
effects of SEMANTIC DENSITY in the Idiosyncratic Network and
the Morphology Network. If our interpretation that SEMANTIC

DENSITY captures semantic transparency is correct, we would
expect higher densities to lead to longer durations. More
transparent words should be more protected against phonetic
reduction because they feature a stronger morphological
“boundary,” i.e., they are more decomposable. Such lengthening
effects induced by supposedmorphological boundaries have been
observed in several studies (e.g., Hay, 2001, 2003, 2007; Plag and
Ben Hedia, 2018). If we assume that the theoretical concept of
a morphological boundary and the similarity of a word to its
neighboring words capture the same underlying dimension of
semantic transparency, we should still be able to replicate this
effect. However, it is not entirely clear why a higher degree of
semantic transparency would lead to lengthening. Given that a
higher semantic transparency means that more words will be
more strongly activated, we would rather expect durations to
shorten. This is because semantic activation diversity has been
found to be associated with reduction (Tucker et al., 2019).
This reduction in speech production is mirrored in reaction
time experiments that have found shorter reaction times with
larger morphological family sizes (Schreuder and Baayen, 1997;
Bertram et al., 2000). This family size effect has been interpreted
as a semantic effect arising through activation spreading between
morphologically related words. Interestingly, in the study by
Bertram et al. (2000), the effect was restricted to transparent
family members. This is an indication that the effect may not be
as linear as standardly assumed.

A non-linear, U-shaped effect of transparency on reaction
times was observed by Plag and Baayen (2009). These authors
demonstrated that suffixes that are either very easily segmentable
or hardly segmentable have lower processing costs (as gauged
by shorter reaction times in lexical decision) than suffixes in
the middle of the segmentability range. Plag and Baayen (2009)
interpreted this as an effect of the opposing forces of storage and
computation. Assuming that our high-density words are those
that are easily segmentable, while our low-density words are the
ones that are not segmentable, we can come up with the tentative
interpretation that the short durations in the mid-range of
density are a reflection of the higher processing costs incurred by
the forms in the middle of the segmentability scale. One problem
with this account is, however, that higher processing costs in
lexical decision seem to be correlated with shorter durations
in production, but with longer latencies in comprehension.
This contradiction can only be solved if we know more about
the specific processing differences between production and
comprehension, or about the specific processing stages involved
in lexical decision vs. freely generated conversational speech. We
leave this issue to be explored in future studies.

The second variable capturing the semantic relation between
words that this study has shown to be able to successfully
predict duration is SEMANTIC VECTOR LENGTH. Compared to
SEMANTIC DENSITY, the effect of SEMANTIC VECTOR LENGTH is
more straightforward to interpret. A longer semantic vector, i.e.,
a higher activation diversity, is associated with shorter duration.
Tucker et al. (2019) argue that the more semantic dimensions a
speaker is active on for a word, the more confusable the meanings
of this word are. When more meanings are activated and these
meanings are more confusable, the speaker is more uncertain
and therefore invests less energy in maintaining the signal. In this
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account, our finding that words with higher activation diversity
are shorter is thus expected.

Let us now return to the role of morphological information
in our networks. Importantly, our results for the two semantic
variables show that differences betweenmorphological categories
can emerge even from the network without any information
about derivational functions. For example, semantic density is
significantly higher for words with the derivational functions
NESS, LESS and DIS than for words with ATION. This is
in accordance with traditional descriptions of the semantic
transparency of affixes, which posit -ness, -less, and dis- as
producingmostly transparent derivatives, while words with-ation
are assumed to be less transparent (Bauer et al., 2013; Plag,
2018). Only IZE does not fit that pattern, as many IZE words
are characterized by high densities but are considered about
as transparent as -ation (however, -ize is considered to be
more productive than -ation). Another interesting example of
this is the distribution of SEMANTIC VECTOR LENGTH. The
longer the vector of a word, the higher its semantic activation
diversity becomes and the more collocational relations it has
to other words, i.e., the more polysemous it is. The average
vector length was highest for IZE and ATION words. This
reflects traditional descriptions of -ize and -ation having highly
multifaceted semantics (cf. the locative, ornative, causative,
resultative, inchoative, performative or similative meaning of
-ize, and the meanings of -ation denoting events, states, locations,
products, or means; Bauer et al., 2013; Plag, 2018). The affixes
-less, dis-, and to a lesser extent -ness, on the other hand, have
comparatively clearer and narrower semantics. In sum, these
differences betweenmorphological categories in the Idiosyncratic
Network demonstrate that LDL can discriminate derivational
functions from sublexical and contextual cues alone.

Our results have implications for morphological theory and
speech production models. First, the acoustic properties of
morphologically complex words can be modeled successfully by
implementing a discriminative learning approach. Traditional
approaches were largely unable to accommodate effects of
morphological structure on the phonetic output production
(Chomsky and Halle, 1968; Kiparsky, 1982; Dell, 1986; Levelt
et al., 1999; Roelofs and Ferreira, 2019; Turk and Shattuck-
Hufnagel, 2020). Many theories of morphology-phonology
interaction assume that morphological boundaries are erased
in the process of passing morphemic units on to phonological
processing. And many models of speech production assume an
articulator module that realizes phonemic representations with
pre-programmed gesture templates independently of morphemic
status. These approaches lack explanations for the fact that
a word’s morphological structure or semantics can cause
differences in articulatory gestures, as they do not allow for a
direct morphology-phonetics interaction. In LDL, however, such
interaction is expected and can be explained by its underlying
theoretical principles of learning and experience.

Second, our implementations show that morphological
functions can emerge as a by-product of a morpheme-free
learning process. Morphology is possible without morphemes.
Given the many problems with the morpheme as a theoretical
construct (see, e.g., Baayen et al., 2019b), this is a welcome
finding. Finding morphological effects on phonetic realization

need not lead to the conclusion that these effects must originate
frommorphemes. They can also emerge in the mapping of forms
and meanings that have no information on morphology at all
(see, e.g., Baayen et al., 2011 et seq. for more examples of this).
As Divjak (2019) puts it, “it is not because a phenomenon can be
described in a certain way that the description is psychologically
realistic, let alone real” (p. 247). Of course, the success of
LDL in this study and others does not allow us to infer that
there is no cognitive plausibility to these structural units at
all. If LDL is modeling rather how children learn languages,
adult speakers may learn differently once they have explicit
knowledge of morphemic structure. Such structure might also be
acquired after-the-fact, when a speaker has seen enough words
to start seeing analogies, or after learning about this structure
explicitly. The morpheme might be epiphenomenal rather than
superfluous. However, LDL does demonstrate that such fixed
units of form and meaning are at the very least not obligatory.
The connection between form and meaning can be dynamic and
relational, allowing morphological theory to reframe its semiotic
legacy. In fact, it has been argued that since its discriminative
underpinnings emphasize that language is a system of différence,
discriminative learning elegantly carries the discipline back to its
Saussurean heritage (Blevins, 2016).

There are several potential future directions for discriminative
learning studies on the phonetics of derived words. First, it
would be interesting to model the durations of more derivational
functions in a larger dataset. Investigating more than the five
morphological categories of the present study might reveal
further important differences between these categories. Second,
one issue that we would like to resolve in future studies concerns
the response variable. In a corpus study of duration with
different word types, it is essential to control for phonological
length. This is why instead of duration, we decided to model
duration difference, i.e., the residuals of a model regressing a
word’s absolute duration against the sum of its average segment
durations. However, for an LDL implementation, this response
variable is not optimal, since strictly speaking it still implicitly
assumes segmental structure. It would be desirable to control for
segmental makeup without actually having to refer to segments.
Third, we think it could be fruitful to investigate how best to
construct vectors for words with multiple derivational functions.
This would enable us to gain more insight into the complex
interplay of morphological categories. And, finally, we think
that to further test how well LDL can predict durations when
the semantics of derivatives are strictly compositional (like in
the Base Network), one interesting avenue for future research
would be to use vectors that already assume this compositionality
when generating lexome-to-lexome vectors.6 That is, while in
the present study we used lexome vectors that Baayen et al.
(2019b) generated by using the Widrow-Hoff algorithm to
predict function lexomes in addition to content lexomes for
words in a sentence, it is conceivable to use vectors generated
by predicting function lexomes in addition to content lexomes

for bases in a sentence. The lexome vector
−−−→
happy, for instance,

would then capture relations to contextual lexomes surrounding

6Thanks are due to Reviewer 2 for this suggestion.
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the word happiness as well. Similarly, one could generate vectors
of derived words to use in the Idiosyncratic Network that do not
capture cues of any functional lexomes by refraining from coding
them altogether in the training data. We leave this interesting
option to be explored in future studies.

To summarize, this study modeled the acoustic duration
of 4,530 English derivative tokens with the morphological
functions DIS, NESS, LESS, ATION, and IZE in natural speech
data, using predictors derived from a linear discriminative
learning network. We have demonstrated that these measures
can successfully predict derivative durations. They reveal that
more semantic certainty in pronunciation is associated with
acoustic enhancement, i.e., longer durations, which is consistent
with previous studies of paradigmatic probability and semantic
support measures. We have also shown that differences between
morphological categories emerge from the network, even without
explicitly providing the network with such information. This
further strengthens the position of LDL as a promising theoretical
alternative for speech production, and provides further evidence
that morphology is possible without morphemes.
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Durational Differences of Word-Final
/s/ Emerge From the Lexicon:
Modelling Morpho-Phonetic Effects
in Pseudowords With Linear
Discriminative Learning
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Recent research has shown that seemingly identical suffixes such as word-final /s/
in English show systematic differences in their phonetic realisations. Most recently,
durational differences between different types of /s/ have been found to also hold for
pseudowords: the duration of /s/ is longest in non-morphemic contexts, shorter with
suffixes, and shortest in clitics. At the theoretical level such systematic differences are
unexpected and unaccounted for in current theories of speech production. Following a
recent approach, we implemented a linear discriminative learning network trained on real
word data in order to predict the duration of word-final non-morphemic and plural /s/ in
pseudowords using production data by a previous production study. It is demonstrated
that the duration of word-final /s/ in pseudowords can be predicted by LDL networks
trained on real word data. That is, duration of word-final /s/ in pseudowords can be
predicted based on their relations to the lexicon.

Keywords: morphology, speech production, linear discriminative learning, computational modelling, pseudoword
paradigm, subphonemic differences

INTRODUCTION

Many studies on the acoustic properties of phonologically homophonous elements have shown
unexpected effects of their morphological structure on their phonetic realisation. Such effects were
shown for seemingly homophonous lexemes (Gahl, 2008; Drager, 2011), for free and bound variants
of stems (Kemps et al., 2005a,b), and for prefixes (Ben Hedia and Plag, 2017; Ben Hedia, 2019).

For the level of individual segments, a number of studies have shown that the acoustic realisation
of word-final /s/ and /z/ (henceforth S) in English depends on its morphological status and category.
Corpus studies (Zimmermann, 2016; Plag et al., 2017) found that non-morphemic word-final
S shows longest acoustic durations, followed by suffixes, which in turn are followed by clitics.
Experimental studies (Walsh and Parker, 1983; Hsieh et al., 1999; Seyfarth et al., 2017; Plag et al.,
2020) confirm durational differences between different types of S. However, their results are mostly
not as clear as those by previous corpus studies. That is, only recently a study by Schmitz et al. (2020)
on word-final S in pseudowords confirmed the pattern of durational differences found previously
only in corpus studies.
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Most importantly, none of the aforementioned studies on the
matter of word-final S was able to explain found differences on a
theoretical level. Traditional models of speech production come
with the assumption of having no morphological information
in phonetic processing (Levelt et al., 1999; Roelofs and Ferreira,
2019; Turk and Shattuck-Hufnagel, 2020), thus rendering an
explanation on the basis of differing morphological categories
improbable. Other accounts, e.g., standard feed-forward theories
of morphology-phonology interaction (e.g., Chomsky and Halle,
1968; Kiparsky, 1982) or prosodic phonology (e.g., Booij, 1983;
Selkirk, 1996; Goad, 1998, 2002), do not offer a satisfying
explanation for such durational differences, either.

Only recently, Tomaschek et al. (2019) analysed durational
differences between types of S by means of an implementation
of naïve discriminative learning (Ramscar and Yarlett, 2007;
Ramscar et al., 2010; Baayen et al., 2011). Their results indicate
that the duration of a word-final S in English can be sufficiently
approximated by considering the support for its morphological
function from the word’s sublexical and collocational properties.

This paper continues this line of evidence by making use of the
computational model of linear discriminative learning (Baayen
et al., 2019b; Chuang et al., 2020), the more advanced successor
of naïve discriminative learning. We analyse the durational
differences between non-morphemic and plural word-final /s/
found not in real words, but in pseudowords. By using nonce
words, we want to rule out potentially confounding effects of
the lexical and contextual properties of the individual utterances
(e.g., Caselli et al., 2016). Making use of measures derived
from this implementation of linear discriminative learning, the
present study demonstrates that the effects found by Tomaschek
et al. (2019) can be confirmed. Differences in phonetic duration
emerge from differences in the strengths of associations between
form and meaning.

We proceed as follows. The next section will give an overview
on studies on the duration of word-final S, and possibilities
and obstacles of theoretical accounts. Section “Introduction to
LDL” introduces linear discriminative learning on a theoretical
level, while Section “Combining Real Words and Pseudowords in
an LDL Implementation” presents the implementation of linear
discriminative learning used in the present study. The analysis
and results of our study are given in Sections “Analysis” and
“Results.” A discussion of the obtained results and a conclusion
follow in Section “Discussion.”

WORD-FINAL /s/ AND ITS DURATION

A number of morphological categories can take the phonological
form of /s/ in English, i.e., plural, genitive, genitive plural, third
person singular, and the clitics of is, has, and us. In itself, there
is nothing in the phonological form of these morphological
categories that indicates systematic differences in realisation on
the phonetic level between different S morphemes or a non-
morphemic S. Yet, a number of studies report on durational
differences between different types of S.

Corpus studies on word-final S in English find differences
in duration between non-morphemic, suffix, and clitic variants.

Zimmermann (2016) on New Zealand English, and Plag et al.
(2017) and Tomaschek et al. (2019) on North American English
find that non-morphemic S (as in grace, cheese, bus) shows longer
durations than plural S and the clitic S of has and is, while plural
S in turn shows longer durations than clitic S.

Turning to experimental studies, results are not as consistent.
Walsh and Parker (1983) conducted a production experiment
with three homophonous word pairs with all words ending in
either a non-morphemic or morphemic word-final S. Tested
in three different contexts, they find durational differences in
two of them. They conclude that morphemic S in English is
systematically lengthened by speakers (Walsh and Parker, 1983:
204). However, their conclusion relies on only a small number
of 110 observations, a mixture of common and proper nouns as
items, and lacks appropriate inferential statistical methods as well
as an integration of covariates.

Hsieh et al. (1999) find that plural S is longer than third
person singular S in child-directed speech. However, as their data
was originally elicited for another study (Swanson and Leonard,
1994), half of all plural items occurred sentence-finally, while
almost all third person singular items occurred sentence-medial.
Thus, the durational differences found by Hsieh et al. (1999) may
be attributed to effects of phrase-final lengthening (e.g., Klatt,
1976; Wightman et al., 1992) rather than to phonetic differences
between different types of S.

In another study, Seyfarth et al. (2017) conducted a production
experiment on word-final /s/ and /z/ in non-morphemic, plural,
and third person singular contexts. Their results indicate that
non-morphemic S is shorter than morphemic S. However, they
do not find a difference between voiced and voiceless instances,
even though previous studies confirm differences dependent on
voicing (e.g., Plag et al., 2017). With only six items ending in /s/,
but twenty items ending in /z/, it is questionable how meaningful
their results on different types of S are.

Comparing affixes, Plag et al. (2020) find that plural
and genitive plural S differ in duration. That is, in their
study the genitive plural suffix shows a longer duration than
the plural suffix.

Most recently, Schmitz et al. (2020) conducted a production
experiment on pseudowords carrying either a non-morphemic,
plural, or is- or has-clitic S. Their results are in line with those of
aforementioned corpus studies. That is, non-morphemic S shows
longest S durations, followed by plural S, which in turn is followed
by clitic S, while there is no significant durational difference
between the two clitics. An overview of the durational differences
found in corpus and experimental studies is given in Table 1.

There is a noteworthy discrepancy between experimental
results and the results based on conversational speech data.
Results of corpus studies are in line with each other, but they
might be flawed due to imbalanced data sets. Experimental
studies, on the other hand, often rely on small data sets,
and lack phonetic covariates, appropriate statistical methods,
or a proper distinction of voiced and voiceless segments.
Additionally, previous experimental studies rely on different
experimental methods, making their results subject to their
pertinent limitations. Another crucial difference between corpus
and experimental studies is the use of homophones. While corpus
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TABLE 1 | Overview of durational differences of word-final /s/ found in
previous studies.

Study Findings

Zimmermann, 2016;
Plag et al., 2017;
Tomaschek et al., 2019;
Schmitz et al., 2020

Non-morphemic > plural > clitics

Walsh and Parker, 1983 Plural > non-morphemic

Hsieh et al., 1999 Plural > third person singular

Seyfarth et al., 2017 Plural > non-morphemic

Plag et al., 2020 Genitive plural > plural

studies take into consideration all words, most experimental
studies restrict their data to homophone pairs. This limitation to
homophones and the competition between their representations
might be a problem of its own as it is unclear how members
of such homophone pairs may influence each other in speech
production. Lastly, differences in results might also arise due
to potentially confounding effects of the lexical properties and
contextual effects of the items under investigation.

But even if the direction of durational differences between
different types of S is not entirely clear yet, it appears
that there are indeed durational differences of some sort.
How is one to explain such differences? In standard feed-
forward theories of morphology-phonology interaction (e.g.,
Chomsky and Halle, 1968; Kiparsky, 1982) all types of S,
morphemic and non-morphemic, are treated in a similar
way. For morphologically complex words, e.g., words ending
in a morphological word-final S, a process named “bracket
erasure” is said to remove any morphological information.
Thus, leaving speech production with no information on the
morphology of a complex word (e.g., the plural form cats),
rendering its morphological information equal to that of a
morphologically simple word ending in a non-morphemic word-
final S (e.g., the singular form bus). In such a system, there is
nothing that could account for realisational differences between
phonologically identical forms of suffixes, clitics, and non-
morphemic segments.

A similar distinction of lexical and post-lexical processing is
also found in established theories of psycholinguistics. According
to models of speech production (e.g., Levelt et al., 1999; Roelofs
and Ferreira, 2019), morphemic types of word-final S do not
differ in their realisation from non-morphemic instances of
word-final S. For a plural form, e.g., cats, the lemma of the
lexical concept CAT and a plural specification are retrieved.
Then, during morphological encoding, the plural specification
is mapped onto the base lemma, i.e., cat, and the plural
suffix, < -s >. During phonological encoding, phonemes are
selected for the corresponding morphemes, i.e., /k/, /æ/, /t/,
and /s/. Finally, the phonemes are syllabified, resulting in a
phonological word representation. Such phonological forms
are then forwarded and used in speech production. Thus, no
information on the morphological origin of particular segments
is contained in the phonetic realisation, rendering an explanation

FIGURE 1 | Prosodic configuration for (A) non-morphemic and (B,C) plural S.

on durational differences between types of S on morphological
grounds improbable.

In prosodic phonology (e.g., Booij, 1983), differences in
phonetic realisation may arise from the position of sounds in
different configurations of prosodic constituency. For instance,
different types of word-final S can be analysed as being integrated
at different levels of the hierarchical prosodic configuration.
In the case of word-final S, different levels co-determine
differing degrees of integration of an S to the word it
belongs to. Non-morphemic S, uncontroversially, is an integral
part of the prosodic word itself (Selkirk, 1996), see (A) of
Figure 1. For plural S, Goad (1998) analyses it as an “internal
clitic”, see (B), while Goad (2002) analyses it as an “affixal
clitic”, see (C).

Thus, the prosodic approach posits a structural prosodic
difference between types of S. However, it is not so clear
what particular phonetic effects these differences would predict.
Most plausibly, a higher degree of integration would correlate
with shorter durations, predicting shortest S durations in
monomorphemic words. Yet, findings on S duration show the
opposite (e.g., Zimmermann, 2016; Plag et al., 2017; Tomaschek
et al., 2019; Schmitz et al., 2020), i.e., the duration of non-
morphemic S is longest.

An alternative explanation for durational differences between
different types of S can be found within the computational
modelling framework of naïve discriminate learning (NDL;
e.g., Ramscar and Yarlett, 2007; Ramscar et al., 2010; Baayen
et al., 2011). NDL is based on simple but powerful principles
of discriminative learning theory (Wagner and Rescorla,
1972; Rescorla, 1988), i.e., learning results from exposure
to informative relations among events in the individual’s
environment. Such events are used to form associations between
them, while the associations and their resulting representations
are constantly updated on the basis of new experiences.
Associations are built between features (“cues”, e.g., biphones)
and content lexemes or morphological functions (“outcomes”,
e.g., different types of S), which co-occur in events in which
the individual is predicting outcomes from cues (Tomaschek
et al., 2019: 11). Using the Rescorla-Wagner equations (Rescorla
and Wagner, 1972; Wagner and Rescorla, 1972; Rescorla, 1988),
relations between cues and outcomes are modelled. That is, the
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weight of an association, i.e., its strength, increases every time a
cue and an outcome co-occur, while it decreases if a cue occurs
without the outcome. The result of this process is a continuous
recalibration of association strengths, which is a crucial part of
discriminative learning.

NDL has been used successfully to model various
morphological phenomena, e.g., reaction times in studies
on morphological processing (e.g., Baayen et al., 2011; Blevins
et al., 2016; see Plag, 2018, chapter 7 for an introduction
to NDL in morphological research). For word-final S,
Tomaschek et al. (2019) reproduce the differences in duration
found by Plag et al. (2017) by means of NDL measures.
Their study shows that the duration of different types of
S can be approximated by considering the support for
these morphological functions from a word’s sublexical and
collocational properties. In the NDL network, all words and
their diphones within a five word window centred on the
target word that contained the S served as cues, and were
associated with the morphological functions, which served as
outcomes. Two main measurements from this network emerged
as predictive for S duration. First, the so-called “activation” as
a measure of an outcome’s baseline activation, i.e., of how well
an outcome is entrenched in the lexicon. Second, the so-called
“activation diversity” as a measure to quantify the extent to
which the cues in a given context also support other targets.
Taken together, the following pattern for S duration emerges:
When the uncertainty about a targeted outcome increases, i.e.,
the level of “activation” decreases and the level of “activation
diversity” increases, the duration of S decreases. In other words:
The stronger the support for a morphological function is, both
from long-term entrenchment and short-term from the context,
the longer its duration.

While NDL implementations apparently offer some form
of explanation for different durations of different types of S,
they also come with shortcomings and limitations. In NDL,
a word’s meaning is defined in terms of the presence or
absence of an outcome, i.e., NDL “adopted a stark form of
naive realism” (Baayen et al., 2019b: 4) just for computational
reasons. That is, NDL takes into account that words tend
to have similar forms, but ignores that words are also
similar in meaning. Thus, Baayen et al. (2019b) introduced
semantic vectors of reals replacing the binarily coded row
vectors of the semantic matrix (see Section “The S Matrix:
Semantic Vectors”), naming their new implementation linear
discriminative learning (LDL) instead of naïve discriminative
learning. Outcomes are no longer assumed to be independent,
i.e., semantic similarities are now reflected, and networks
are mathematically equivalent to linear mappings of matrices,
i.e., vector spaces. It is the implementation of such linear
discriminative learning that the present paper makes use
of for analysing the duration of word-final types of S.
Our paper explores whether measures derived from an LDL
implementation are predictive of different types of S and their
durations. In order to better understand the relation between
traditional psycholinguistic variables (such as lexical frequencies,
neighbourhood densities, bigram probabilities, morphological
category etc.) and LDL measurements we also compare models

that use measures derived from an LDL implementation with
models that use traditional measures to predict S durations.
Finally, we test whether measures derived from an LDL
implementation render the specification of morphological
structure proper (affix vs. no affix) as predictor variable for S
duration unnecessary.

INTRODUCTION TO LDL

Overview
Linear discriminative learning as a computational model
implements a discriminative view of learning. In contrast to
deep learning models that have multiple hidden layers based on
non-linear functions, LDL networks are very simple two-layer
networks and are linguistically transparent and interpretable.
In LDL, the mental lexicon consists of five high-dimensional
numeric matrices, each of which represents a different subsystem:
the visual matrix, retina; the auditory matrix, cochlea; the
semantic matrix; the speech matrix, speaking; and the spelling
matrix, typing. For the current implementation, the semantic and
the speech matrix are most important.

With regard to the mappings between vectors, linear mappings
are implemented. These mappings are estimated using the linear
algebra of multivariate regression. Thus, each mapping is defined
by a matrix A that transforms the row vectors in a matrix
X into the row vectors of a matrix Y , i.e., Y = XA. Then,
A = X′Y , where X′ is the generalised inverse of X. We will
return to the mapping of matrices in Section “Comprehension
and Production,” and refer the interested reader to Baayen et al.
(2019b) for an introduction to the mathematical details, as well as
to Milin et al. (2017) for a detailed discussion on the restrictions
and possibilities of linear mappings.

Another important feature of LDL is its notion of lexomes, i.e.,
basic semantic units corresponding to words or morphological
functions. As outlined in Chuang et al. (2020), lexomes
fall into two groups: content lexomes, and inflectional and
derivational lexomes. Content lexomes can be morphologically
simple or complex forms, i.e., cat and cats. Inflectional
lexomes represent inflectional functions, e.g., number, tense,
and aspect. Derivational lexomes represent derivational
functions, e.g., morphological categories such as -NESS, -
LESS, or UN-. Each lexome is paired with a vector of the
aforementioned five subsystems. That is, for the semantic
matrix, each lexome is paired with a semantic vector, making
each lexome a pointer to a semantic vector on the one hand
(Milin et al., 2017), and a location in a high-dimensional
space on the other hand. For monomorphemic words, the
semantic vector is identical to the semantic vector of the
corresponding lexome. That is, the semantic vector of the
word cat, −→cat, is identical to the vector of the lexome CAT.
For complex words, the semantic vector is the sum of its
corresponding lexome vectors. That is, the semantic vector of
the word cats, −→cats, is the sum of the semantic vectors of the
lexomes CAT and PLURAL, −→cat +

−−−→
plural. The implementation

of LDL and the matrices necessary for the present paper are
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introduced in the subsequent sections. Please refer to https:
//osf.io/zy7ar/?view_only=ef43a5caf6444270a56074027d7d6482
for the full documentation of the data set, the implementation in
R (R Core Team, 2020), and the R script.

The S Matrix: Semantic Vectors
The semantic matrix S contains semantic vectors of word forms
on basis of their corresponding lexomes. That is, the semantic
vector−→s in S for a simplex word is identical to its corresponding
lexome, while the semantic vector −→s in S for a cosmplex word
is the sum of its corresponding lexomes, e.g.,

−−→
apple+

−−−→
plural

for apples (Baayen et al., 2019b). Semantic vectors of lexomes
can be derived in different ways (e.g., Landauer and Dumais,
1997; Jones and Mewhort, 2007; Shaoul and Westbury, 2010;
Mikolov et al., 2013).

The C Matrix: Form Vectors
The present study uses triphones to represent form, as previous
studies (Milin et al., 2017; Baayen et al., 2019b; Chuang
et al., 2020) have shown that triphones capture the variability
of neighbouring phonological information well for English.
Triphones are sequences of three phones within a word form.
They overlap and can be understood as proxies for phonetic
transitions. The cue matrix C encodes the forms of words in
a binary fashion, giving information on which triphones are
part of which word. This is illustrated in (1). In each word’s
individual form vector −→c , the presence of a triphone is marked
with 1, while the absence is marked with 0. The cue vectors
of all words of a set of words constitute its C matrix. That is,
each row in such a C matrix represents a word form, while the
columns of the respective C matrix represent all triphones of its
underlying word set.

Comprehension and Production
In LDL, comprehension refers to a model that has form vectors
as input and semantic vectors as output. We illustrate the
C matrix of a set of words with a toy lexicon containing
the words cat, bus, and eel in (1). Here, the DISC keyboard
phonetic alphabet (the “Distinct Single Character” representation
introduced by Burnage, 1988) is used for triphone representation.
Word boundaries are marked by the # symbol.

C =
cat
bus
eel

#k{ k{t {t# #bV bVs Vs# #il il# 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1

 .

For the same toy lexicon, suppose that the semantic vectors for
these three words are the row vectors of the following S matrix:

S =
cat
bus
eel

cat bus eel 1.0 0.2 0.5
0.4 1.0 0.1
0.2 0.3 1.0

 .

To map forms onto meanings we need transformation matrix F,
such that

CF = S.

The transformation matrix F is straightforward to obtain. Let C′
denote the Moore-Penrose generalised inverse1 of C, available in
R as the ginv function of the MASS package (Venables and Ripley,
2002). Then,

F = C′S.

For the toy lexicon example,

F =

#k{
k{t
{t#

#bV
bVs
Vs#
#il
il#

cat bus eel

0.33 0.06 0.16
0.33 0.06 0.16
0.33 0.06 0.16
0.13 0.33 0.03
0.13 0.33 0.03
0.13 0.33 0.03
0.10 0.15 0.50
0.10 0.15 0.50


,

with CF being exactly equal to S in this simple example. That
is, taking form vectors as input for the prediction of semantic
vectors as output, i.e., solving Ŝ = CF, this toy example
correctly predicts 100% of all (three) words’ semantics, i.e.,
ŝi = si. In more complex cases, semantic vectors are only
approximately identical, thus, for a word i and its predicted
semantic vector ŝi, comprehension is successful if ŝi shows
the highest correlation with the targeted semantic vector si
(Baayen et al., 2019b). Following this method, one can report the
percentage of comprehension accuracy.

Production as modelled in in LDL takes semantic vectors
as input and delivers form vectors as output. Using the same
toy lexicon as before, we adapt its C matrix, i.e., we borrow
the notation by Baayen et al. (2019b) and henceforth call
it T as is contains the Targeted triphones. For production,
the transformation matrix G is of interest. Similar to F for
comprehension, it is straightforward to obtain. Let S′ denote the
Moore-Penrose generalised inverse of S. Then,

G = S′T.

Given G, one can then predict the triphone matrix T̂ from the
semantic matrix S by solving

T̂ = SG.

For our toy lexicon example, the G transformation matrix is

cat
bus
eel

G =
#k{ k{t {t# #bV bVs Vs# #il il# 1.14 1.14 1.14 −0.06 −0.06 −0.06 −0.56 −0.56
−0.44 −0.44 −0.44 1.05 1.05 1.05 0.12 0.12
−0.09 −0.09 −0.09 −0.30 −0.30 −0.30 1.08 1.08

.

As this is a toy example, SG is identical to T. For more
complex cases, T̂ will not be virtually identical to T “but will be

1The inverse of a matrix needs not exist, rendering such a matrix a singular
one. Most matrices used in LDL implementations are singular matrices. Thus, an
approximation of the inverse must be used instead of an inverse itself. One such
approximation is the Moore-Penrose generalized inverse (Moore, 1920; Penrose,
1955).
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FIGURE 2 | Illustration of mapping between C and S matrix via F (i.e.,
comprehension), and S and C matrix via G (i.e., production). In production, C
is referred to as T.

an approximation of it that is optimal in the least squares sense”
(Baayen et al., 2019b: 21). Triphones with strongest support
are expected to be the triphones making up a word’s form. As
triphones are not ordered, it is also checked whether the sequence
of phones can be constructed correctly. Both, checking triphone
support and sequence, are conveniently done by the functions of
the WpmWithLdl package (Baayen et al., 2019a). Following this
method, one can report the percentage of production accuracy.

Figure 2 summarizes the mapping between form and meaning
by the F and G transformation matrix for comprehension and
production modelling.

COMBINING REAL WORDS AND
PSEUDOWORDS IN AN LDL
IMPLEMENTATION

The Semantics of Pseudowords
The present paper follows the implementational basics outlined
in Section “Introduction to LDL.” However, as we are interested
in /s/ durations in pseudowords (and not in real words), there
are a number of complications. The most important complication
arises from the widely shared belief that pseudowords do not
have meaning. So how can we map form and meaning with
forms that have no meaning? In a recent study (Chuang et al.,
2020) it was shown that the assumption that pseudowords are
bare of meaning is most probably wrong. Due to their formal
similarity with existing words, pseudowords resonate with the
lexicon. As a result, they may in fact carry meaning. The authors
demonstrate that quantitative measures gauging the semantic
neighbourhoods of pseudowords predict reaction times of lexical
decision and acoustic durations. The present study is inspired
by these results and implements a similar architecture. To model
resonance of pseudowords with the lexicon, both real words and
pseudowords must be included in the networks. The following
sections will detail the combined LDL implementation of real
words and pseudowords.

Data Set: Real Words and Pseudowords
The pseudowords and their phonetic realisations that this paper
is based on are taken from the study of word-final /s/ production
by Schmitz et al. (2020). In their study, participants were

given pictures of “alien creatures” and their respective names
(which were the target pseudowords), a short explanation of a
situation, and a question relevant to the situation which was
to be answered aloud. For each participant, pairings of pictures
and pseudowords were randomised. That is, each pseudoword
was represented by different pictures across participants. By
button-press, a question was given to elicit an answer with
the pertinent type of S while the context slowly faded out.
The fading out of the question forced participants not to rely
on the reading-aloud of the given context. In total, 24 pairs
of pseudowords were used in that study. Each pseudoword
form can act as singular or plural noun, e.g., glaits is either
realised as singular, i.e., a glaits, or as plural, i.e., two glaits.
Additionally, some pseudowords show a number of different
realisations by the participants in the experiment, e.g., prups is
sometimes produced as /p r2ps/, and sometimes it is produced as
/p rups/. Thus, not 48 (i.e., 2 × 24) but 78 different phonological
forms are included in the pseudoword set. Supplementary
Table 1 gives an overview of all pseudowords and their
phonological forms.

The second set of words contains real words and their
phonetic realisations. Following Chuang et al. (2020) we
extracted these words from the MALD corpus (Tucker et al.,
2019a). While the MALD corpus contains 26,793 real words, only
a subset of 8,285 words is used for a number of reasons. First,
some 7,577 words in the corpus contain multiple affixes. As it
was unclear how to handle such words, these were excluded.
Second, only words for which we have semantic vectors could
be used, leading to the exclusion of further 6,828 words. Third,
only words with transcriptions available in the CELEX corpus
(Baayen et al., 1995) were retained, i.e., there was no transcription
available for 818 words. Fourth, 3,285 words showed ambiguities
regarding their morphology, e.g., walks as a third person singular
verb versus the plural of a noun. As huge numbers of words lead
to extensive computation times, we decided to exclude such cases
as well. The final set of real words contains 6,165 simple and 2,120
complex word forms.

Cue Matrices
As introduced in Section “The C Matrix: Form Vectors,” cue
matrices are coded in binary form, giving information on
which triphones are part of which word. For the current
implementation, two such cue matrices are created using the
WpmWithLdl package’s (Baayen et al., 2019a) make_cue_matrix
function. First Crw, the real word cue matrix, is created for
the set of real words. Then, a second cue matrix, Cpw, is
created for the set of pseudowords. However, Cpw is a lot
smaller than Crw as there are only 78 phonological forms for
pseudowords, but more than 8,000 for real words. Thus, the
Crw is of dimension 8285 × 7610, while Cpw is of dimension
78 × 78. We will come back to this issue of differing dimensions
in the next section.

Semantic Matrices
To introduce semantics, i.e., semantic vectors, for the present
set of real words, a pre-built semantic matrix A from Baayen
et al. (2019b) was used. These authors derived semantic vectors
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based on the TASA corpus (Ivens and Koslin, 1991). For this,
words were parsed into their lexomes, i.e., inflected words were
represented by their stem and sense-disambiguated labels for
their respective inflectional functions. Ambiguous forms, e.g.,
walks, were disambiguated using part of speech tagging (Schmid,
1999). Derived words were assigned a lexome for their stem
and a lexome for derivational function. Then, following Baayen
et al., 2016 and Milin et al. (2017), Naïve Discriminative Learning
(Baayen et al., 2011; Sering et al., 2019) was used to build
semantic vectors. The Rescorla-Wagner update rule (Rescorla
and Wagner, 1972; Wagner and Rescorla, 1972; Rescorla, 1988)
was applied incrementally to the sentences of the TASA corpus.
That is, for each sentence the algorithm was given the task to
predict the lexomes in that sentence from all lexomes of that
sentence. This resulted in a 23562 × 23562 weight matrix A.
This matrix lists all lexomes as rows and columns. Thus, for a
given lexome at row i, the association strengths of this lexome
with all other lexomes as given as columns is contained. In this
state of the A matrix, lexomes predict themselves. Thus, the
diagonal of the A matrix is set to zero (see Baayen et al., 2019b,
for a discussion on this procedure). Lastly, columns which mostly
contain zeros, i.e., no information, and show small variances
(σ < 3.4 × 10−8) are removed. The resulting A matrix is
of dimension 23, 562 × 5030. Following the method outlined
in Section “The S Matrix: Semantic Vectors,” a semantic matrix
for real words Srw can be constructed based on A. That is, the
semantic vector −→s in Srw for a simplex word is identical to
its corresponding lexome, while the semantic vector −→s in Srw
for a complex word is the sum of its corresponding lexomes.
That is, the semantic vector of apple is

−−→
apple, while the semantic

vector of apples is the sum of the vectors of the lexomes APPLE

and PLURAL, i.e.,
−−−→
apples =

−−→
apple+

−−−→
plural. As a set of real

words is used, Srw contains only semantic vectors for this set
of real words (instead of, e.g., all word forms of the TASA
corpus). The final real word semantic matrix Srw is of dimension
8285 × 5487.

While this procedure is rather straightforward, the creation
of a pseudoword semantic matrix Spw is not. Due to the nature
of pseudowords, their lexomes are not contained within any
corpus or our A matrix, for that matter. Instead, one can estimate
a pseudoword’s semantic content by utilising the semantic and
phonological information on real words, i.e., their C and S matrix
(Chuang et al., 2020). That is, the same transformation matrix F
that is used for mapping real word cues onto predicted real word
meanings (see Section “Comprehension and Production”) can be
used to map pseudoword cues onto their estimated semantics.
That is, one must first solve

F = C′rwSrw

to obtain F. Then, one can make use of the pseudoword cue
matrix Cpw, and estimate pseudoword semantics, as

Spw = CpwF,

with Spw denoting the originally estimated semantic matrix for
pseudowords. In this semantic matrix, pseudowords of identical
segmental makeup show identical semantics as semantics are

calculated only based on triphone occurrence, i.e., the semantics
of pleepssingular is identical to the semantics of pleepsplural.
To differentiate between singular and plural pseudowords, the
semantic vector of the PLURAL lexome is added to all plural
pseudowords in the S matrix. Similarly, the semantic vectors of
ALIEN and CREATURE are added to all pseudoword semantic
vectors as participants in the original production experiment
were told that pseudowords describe alien creatures. As explained
in Section “Model B: LDL Measures and Affix Specification,” the
pairing of the pictures with pseudowords representing the alien
creature was randomised during the experiment by Schmitz et al.
(2020). A pertinent pseudoword thus only contains the semantics
of “alien creature” as a constant part of its own semantics,
while other factors such as appearance, e.g., colour, shape, or
number of eyes, differ across participants. We can assume that
in the course of the experiment, participants gradually came to
realize that the looks of these alien creatures, i.e., colour, shape,
etc., are not relevant to their label names. Thus participants
were just aware of the fact that these are all alien creatures,
without paying much attention to their individual features. Please
see the aforementioned complementary material for a detailed
implementation.

Comprehension and Production
Pseudoword comprehension and production are not computed
and evaluated in isolation but in combination with real
words, simulating a real person’s lexicon in a pseudoword
comprehension and production situation, respectively. For this,
we created a cue matrix Ccomb based on a combined set of words,
containing all aforementioned real words and pseudowords. In
total, 8440 word forms are part of this set of words. A combined
semantic matrix Scomb is created by attaching Spw to Srw, and
reordering its rows to reflect the same order of words as
found in Ccomb.

Then, using the functions of the WpmWithLdl package
(Baayen et al., 2019a) in R, a comprehension model is
trained and checked for accuracy. That is, taking form vectors
as input for the prediction of semantic vectors of output,
Ŝcomb = CcombF is solved. Comprehension is successfully
modelled for a word i if its predicted semantic vector ŝi is
most highly correlated with its targeted semantic vector si. This
is true for 74.41% of cases (i.e., 6,165 word forms) in our
comprehension model. In total, 25.59% of cases (i.e., 2,120 word
forms) are incorrectly predicted, with 1,912 simple and 208
complex word forms. None of the incorrectly predicted word
forms is a pseudoword.

Similarly, a production model is trained and checked for
accuracy using functions of the aforementioned R package.
Thus, semantic vectors are provided as input to predict form
vectors as output, i.e., to solve T̂comb = ScombG. Production is
successfully modelled for a word i if its predicted triphones are
those triphones present in its targeted cue vector in the correct
sequence (possible sequences of triphones will be referred to
below as “paths”). This is true for 97.3% of cases (i.e., 8,061 word
forms) in our production model. In total, 2.7% of cases (i.e., 224
word forms) are incorrectly predicted, with 98 simple and 126
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complex word forms. None of the incorrectly predicted word
forms is a pseudoword.

Measures
In order to explore the potential of different measures
emerging from the network to predict phonetic duration,
we extracted a whole range of measures, based on the
measures introduced by the WpmWithLdl package (Baayen
et al., 2019a) and by Chuang et al. (2020). Please see
the Supplementary Material for exploratory analyses of
individual measures.

In the following, we first describe the semantic measures
before we turn to the phonetic measures.

L1NORM and L2NORM: The L1NORM is the sum of
the absolute values of vector elements of a given word’s
predicted semantic vector ŝ, i.e., its city-block distance.
The L2NORM is the square root of the sum of the
squared values of a given word’s predicted vector ŝ, i.e.,
its Euclidian distance. For both variables, higher values
imply more strong links to many other lexomes. Thus,
both measures may be interpreted as semantic activation
diversity.

DENSITY: For DENSITY, the correlation values of a word’s
predicted semantic vector ŝ and its eight nearest neighbours’
semantic vectors sn1 · · · sn8 are taken into consideration. The
mean of these eight correlation values describes DENSITY, with
higher values indicating a denser semantic neighbourhood.

ALC: The Average Lexical Correlation, ALC, is the mean
value of all correlation values of a pseudoword’s estimated
semantic vector as contained in Spw with each of the real word
semantic vectors as contained in Srw. Higher ALC values indicate
that a pseudoword’s semantics are part of a denser semantic
neighbourhood. Thus, ALC may be interpreted as a measure of
semantic activation diversity for pseudowords.

EDNN: This variable describes the Euclidian Distance
between a pseudoword’s estimated semantic vector s and its
Nearest semantic real word or pseudoword Neighbour. Thus,
higher values indicate a larger distance to the nearest semantic
neighbour. EDNN may be regarded as a measure of semantic
neighbourhood density.

NNC: The Nearest Neighbour Correlation is computed by
taking a pseudoword’s estimated semantic vector as given in Spw
and checking it for the highest correlation value against all real
word semantic vectors as given in Srw. This highest correlation
value is taken as NNC value. Thus, higher values indicate that
a pseudoword is semantically close to a real word. Additionally,
one can tell which real word a pseudoword’s semantics are closest
to. This measure may be interpreted as a measure of similarity
between nonce and real words, indicating the co-activation of a
real word when confronted with a pseudoword.

SUPPORT: This measure describes the amount of support the
word-final triphone (i.e., fs#, ks#, ps#, ts#) obtains for each
pseudoword. The value of SUPPORT is extracted from T̂. Higher
values of this variable indicate a higher semantic support for the
word-final triphone which includes the segment of interest, i.e.,
word-final S.

PATH_COUNTS: PATH_COUNTS describes the number of
paths, i.e., possible sequences of triphones, detected for the
production of a word by the production model. PATH_COUNTS
may be interpreted as a measure of phonological activation
diversity, as higher values indicate the existence of multiple
candidates (and thus paths) in production.

PATH_SUM: PATH_SUM describes the summed support of
paths for a predicted form. PATH_SUM may be interpreted as a
measure of phonological certainty, with higher values indicating
a higher certainty in the candidate form.

PATH_ENTROPIES: PATH_ENTROPIES contains the Shannon
entropy values which are calculated over the path supports of the
predicted form in T̂. Thus, PATH_ENTROPIES may be interpreted
as a measure of phonological uncertainty, with higher values
indicating a higher level of disorder, i.e., uncertainty.

ALDC: The Average Levenshtein Distance of all Candidate
productions, ALDC, is the mean of all Levenshtein distances of
a word and its candidate forms. That is, for a word with only
one candidate form, the Levenshtein distance between that word
and its candidate form is its ALDC. For words with multiple
candidates, the mean of the individual Levenshtein distances
between candidates and targeted form constitutes the ALDC.
Thus, higher values indicate that a word’s candidate forms are
very different from the intended pronunciation. ALDC may
be interpreted as a measure of phonological neighbourhood
density as it takes into account real word neighbourhoods
for pseudowords, i.e., large values indicate sparse real word
neighbourhoods.

ANALYSIS

The data set by Schmitz et al. (2020) contains non-morphemic,
plural, or clitic word-final S as final segment of a pseudoword.
As our LDL implementation does not include information on
clitics, we only consider durational data on non-morphemic
and plural S for the present study. A subset of 666 data points
remains, with 303 observations with non-morphemic S and 363
observations with plural S. Due to some variable pronunciations
requiring triphones not included in our LDL implementation,
13 data points had to be excluded, resulting in a final data
set with non-morphemic and plural S durations of 653 data
points, i.e., 300 entries on non-morphemic S and 353 entries on
plural S.

Covariates
Besides the aforementioned variables extracted and computed
from the LDL implementation itself (see Section “Measures”), the
following covariates, adopted from previous analyses of word-
final S (e.g., Plag et al., 2017; Tomaschek et al., 2019; Schmitz
et al., 2020), are included in the analysis. The main reason for
this is to allow us to compare the performance of these predictors
with the performance of LDL predictors. LDL measures often
correlate with traditional measures (such as lexical frequencies,
transitional probabilities, or neighborhood densities), but the
traditional measures have no clear correlating mechanisms in
learning or processing.
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There are, however, also covariates that do not tap into lexical
properties, but that control for other influences, such as speech
rate, the speaker, gender, the order of stimuli in an experiment,
etc. These will be referred to as “non-lexical covariates” and they
will also be included in our regression models.

AFFIX: This binary variable indicates whether a word contains
an affix, i.e., whether the pertinent pseudoword is a singular or
plural form. It takes the value NM for pseudowords without affix,
and PL for pseudowords with affix.

SPEAKINGRATE: Analysing durational data, speech rate is a
self-evident variable to consider. As speech rate is no inherent
part of any LDL measure, we calculated speaking rate as the
number of syllables in an utterance divided by the duration of
the utterance (e.g., Tomaschek et al., 2019; Schmitz et al., 2020).
This was done automatically using a script in Praat (de Jong and
Wempe, 2008; Boersma and Weenink, 2019).

BASEDURLOG: Base duration was taken as a more local
measure of speech rate (e.g., Plag et al., 2017, 2020; Schmitz
et al., 2020). Here, the term “base” refers to the string of
segments preceding the word-final S, for both non-morphemic
and morphemic pseudowords. Base duration was then log-
transformed to achieve a closer to normal distribution.

PAUSEBIN: To account for final-lengthening effects,
stretches of silence between the offset of the word-final
S and the onset of the following word were measured.
Silence of 50 ms and above was considered as pause (Lee
and Oh, 1999; Krivokapić, 2007). In order to make sure
that closures of following plosives were not mistaken for
pauses, their average closure duration (see Yao, 2007) was
subtracted of the pertinent measured silence. Following
the results by Schmitz et al. (2020), pause information was
included as binary variable with the values PAUSE / NO
PAUSE.

DISC: As some pseudowords were produced with multiple
pronunciations, their transcription was incorporated as a
categorical variable. This variable is called DISC after the DISC
keyboard phonetic alphabet (Burnage, 1988).

BIPHONEPROBSUMBIN: The summed biphone probability for
each pseudoword and its phonological variants is included as
the binary variable BIPHONEPROBSUMBIN. It was calculated
using the Phonotactic Probability Calculator (Vitevitch and
Luce, 2004). The rationale for this variable is that more
probable biphones should lead to shorter durations (e.g.,
Schmitz et al., 2020).

LIST & SLIDENUMBER: To account for priming effects, the list
number (1–12) and the point of occurrence during the original
experiment by Schmitz et al. (2020) are included.

PREC: To account for potential effects of the consonant
preceding the word-final S (Umeda, 1977), it is included as PREC
variable (similar to e.g., Tomaschek et al., 2019).

BIPHONEPROB: The probability of the final biphones /fs/, /ks/,
/ps/ and /ts/ in monomorphemic words is included as covariate
to account for potential effects of phonotactics (see Schmitz et al.,
2020, for a detailed explanation).

FOLTYPE: As the segment following the word-final S is no part
of the individual pseudoword, it is also not considered in LDL
measures. Thus, the covariate FOLTYPE is introduced (similar to

e.g., Tomaschek et al., 2019), coding the following segment by its
segmental class (i.e., approximant APP for listen, fricative F for
find, nasal N for know, plosive P for cook, and vowel V for eat),
to account for potential effects of the following word (Klatt, 1976;
Umeda, 1977).

SPEAKER, GENDER, AGE, LOCATION and
MONOMULTILINGUAL: SPEAKER ID was included to account
for general inter-speaker differences in production. GENDER,
AGE, and LOCATION, i.e., the place in which the pertinent
participant spent the bigger part of their life, were included as
well. Additionally, participants who were early bilinguals were
categorised as multilingual, while all other participants were
categorised as monolingual in MONOMULTILINGUAL.

REAL: Some of the pseudowords in Schmitz et al.’s data set
have an orthographically different, but phonologically identical
real word counterpart. We introduced the variable REAL to
control for this potential confound. This variable is TRUE for
pseudowords with such a real word counterpart, and FALSE
for those without. We considered the following real words as
counterparts as given in Schmitz et al. (2020): glits corresponds
to glitz, glaiks corresponds to Gleicks, glifs corresponds to glyphs,
and pleets corresponds to pleats.

All of the following analyses make use of the following
non-lexical covariates: BASEDURLOG, SPEAKINGRATE,
SLIDENUMBER, and PAUSEBIN as variables concerning
speech rate and continuity, PREC and FOLTYPE accounting
for coarticulatory effects, LIST taking into consideration potential
priming effects, MONOMULTILINGUAL, GENDER, LOCATION,
AGE, and SPEAKER to account for speaker-individual differences,
and REAL to include potential effects of real word counterparts.

Modelling Strategy
We devised three kinds of model: First, a baseline model with the
traditional predictor variables (plus the non-lexical covariates).
Second, a model with LDL predictors that also includes AFFIX
as a covariate (plus the non-lexical covariates). Third, a model
that contains only the LDL predictors (plus the non-lexical
covariates).

The three kinds of model will allow us to answer our
research questions. Recall that our ultimate goal is to understand
how systematic durational differences emerge between words
of different, but homophonous morphological categories.
Traditional lexical variables are predictive but cannot explain
how morphology can make its way into durational differences.
But these models can show that such differences exist by looking
at the effect of the variable AFFIX. This is our baseline model. As
an alternative we implement a model that uses LDL measures.
If these measures are predictive, they offer an explanation of the
morphologically-induced phonetic differences: they emerge as a
by-product of the association of form and meaning in the mental
lexicon, and this association is the outcome of discriminative
learning. By having a model that also includes AFFIX as an
additional predictor, we can see whether the LDL measures
completely capture the morphological effect, or whether there
is a residue of morphological information that is predictive of
duration but is still not captured by the LDL measures.
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Model A: Traditional Measures
This model is meant to resemble those in previous studies
on word-final S duration (e.g., Plag et al., 2017; Schmitz
et al., 2020). Thus, we make use of similar variables: AFFIX,
BIPHONEPROBSUMBIN, and BIPHONEPROB, as well as those
control variables included in all analyses of this paper. None of
these covariates showed high correlation coefficients. Hence, no
cautionary measures regarding collinearity were taken before an
initial full model was constructed. The model selection process
proceeded as explained in section “Model B: LDL Measures
and Affix Specification.” That is, non-significant variables were
excluded in a controlled step-wise fashion.

Then, variance inflation factors were checked. The covariates
BIPHONEPROB and PREC showed high VIF values (i.e., 46.53 and
46.88, respectively), indicating potential overfitting of the model
(e.g., Zuur et al., 2010; Fox and Weisberg, 2019). Consequently,
PREC was removed from the model as it showed the highest VIF
value, following the procedure described by Zuur et al. (2010). Re-
fitting the model without PREC and re-checking the new variance
inflation factor values revealed only non-problematic values.

Finally, the resulting model’s residuals were trimmed (e.g.,
Baayen and Milin, 2010). Data points with residuals larger than
2.5 standard deviations were removed, ensuring a satisfactory
distribution of residuals. This procedure led to a loss of 4 data
points, i.e., 0.61% of all data points. An overview of all variables
used in the initial model is given in Supplementary Table 2.

Model B: LDL Measures and Affix
Specification
This model makes use of all LDL measures as well as of
the AFFIX variable. Additionally, the non-lexical covariates are
included. One issue to address when considering a model
with such a multitude of variables is collinearity (e.g., Baayen,
2008; Tomaschek et al., 2018). To avoid collinearity related
problems later on, all variables were tested for correlation using
the languageR package (Baayen and Shafaei-Bajestan, 2019).
This correlation check resulted in eight correlation coefficients
indicating a high degree of correlation, for which we assume the
threshold to be |rho| ≥ 0.5. The pairs of correlated covariates as
well as their correlation coefficients are given in Table 2.

Due to the high number of correlated variables, we opted
for a principal component analysis (PCA; e.g., Venables and
Ripley, 2002; Baayen, 2008; Tomaschek et al., 2018) to address
collinearity issues. In a PCA, the dimensionality of the data is
reduced by transforming the included variables into principal
components. These transformations result in linear combinations
of the predictors that are orthogonal to each other. Thus, the
resulting principal components are not correlated.

The PCA was carried out using the PCAmix function of the
PCAmixdata package (Chavent et al., 2017) in R, allowing the
simultaneous integration of continuous and discrete variables.
All variables given in Table 2 were included in the computation
of the principal component analysis, which yields nine principal
components. The next step of the PCA is to determine how
many of these principal components are meaningful and thus
should be retained for further use. For this decision, we followed

several rules of thumb (e.g., O’Rourke et al., 2005; Baayen, 2008).
First, any component that displays an Eigenvalue greater than
1 accounts for a greater amount of variance than had been
contributed by one variable. Such a component is therefore
potentially meaningful. Second, one should retain enough
components so that the cumulative percent of variance explained
is equal to some minimal value. Following other implementations
of principal component analyses, we aim at a value of 80% (e.g.,
O’Rourke et al., 2005). Third, only interpretable components
are to be retained. That is, each component is made up of
loadings, i.e., parts of the variables included in the PCA’s
computation represented by correlation coefficient values. If
none of these variables is strongly represented in a component,
the interpretability of that component is extremely low, rendering
the component of small interest for further analyses. Following
these three criteria, we find that the first three of the principal
components show an Eigenvalue of one or higher. Also, the
first three components account for 84% of variance. Considering
the third criterion, all three components are strongly correlated
with input variables. We therefore retain components 1 to 3 for
further analysis, all of which show an Eigenvalue greater than 1,
account for more than eighty percent of variance, and contain
strong representations of variables in their loadings.2 But what
do these principal components mean? The highest loadings of
the principal components, i.e., the correlation of the original
variables to the pertinent component, are given in Table 3.

COMPONENT1 is most strongly positively correlated with
PATH_COUNTS, PATH_ENTROPIES, and ALDC, while it is
most strongly negatively correlated with PATH_SUM and
SUPPORT. For PATH_COUNTS, higher values indicate the
existence of multiple candidates (and thus paths) in production.
It thus functions as an indicator of phonological uncertainty.
Values of PATH_ENTROPIES relate to the level of uncertainty
concerning the path supports of the predicted candidate form,
with higher values indicating a higher level of uncertainty.
For ALDC, higher values mean that a word’s candidate
forms are very different from the intended pronunciation,
indicating uncertainty in production. PATH_SUM describes the
summed support of paths for a predicted form, with higher
values indicating a higher certainty in the candidate form.
Higher values for SUPPORT suggest more certainty in the
choice of the word-final triphone. COMPONENT1 can thus
be described as a dimension that represents phonological or
articulatory certainty.

COMPONENT2 is most strongly correlated with L1NORM,
L2NORM, NNC, and AFFIX. L1NORM and L2NORM both imply
more strong links to many other lexomes with higher values
indicating a higher semantic activation diversity. Higher values of
NNC suggest a close real word neighbour, which leads to higher
levels of co-activation of that real word when confronted with the
pseudoword, also leading to higher semantic activation diversity.
As for AFFIX, COMPONENT2 is positively correlated with the
presence of non-morphemic S data points.

2In addition, a cluster analysis was performed. This analysis revealed clusters
which align well with the retained components of the principal component
analysis. The cluster analysis is also documented in the materials that can be found
at https://osf.io/zy7ar/?view_only=ef43a5caf6444270a56074027d7d6482.
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TABLE 2 | Correlated variables and their correlation coefficients.

variables rho variables rho

L1NORM L2NORM 0.98 AFFIX NNC −0.89

PATH_COUNTS PATH_ENTROPIES 0.95 PATH_COUNTS SUPPORT −0.65

PATH_COUNTS ALDC 0.89 PATH_SUM SUPPORT 0.73

PATH_ENTROPIES ALDC 0.90 PATH_ENTROPIES SUPPORT −0.63

TABLE 3 | Loadings of original predictor variables in the three retained principal
components of the first principal component analysis.

Component1 Component2 Component3

L1NORM 0.397 0.348

L2NORM 0.405 0.363

PATH_COUNTS 0.813

PATH_ENTROPIES 0.828

PATH_SUM −0.430

ALDC 0.710

NNC 0.698

SUPPORT −0.650

AFFIX 0.421 0.517

COMPONENT3 is similar to COMPONENT2 as it is also
strongly correlated with L1NORM, L2NORM, and AFFIX. Again,
for L1NORM and L2NORM higher values indicate higher semantic
activation diversity. AFFIX is positively correlated for plural S
data points. We will come back to the interpretation of this
correlation in Section “Model B: LDL Measures and AFFIX
Specification.”

In a next step, models were fitted using linear mixed-
effects regression in R (R Core Team, 2020) using RStudio
(RStudio Team, 2021) and as implemented by lme4 (Bates
et al., 2015), lmerTest (Kuznetsova et al., 2017), and
LMERConvenienceFunctions (Tremblay and Ransijn, 2020)
to analyse the data on non-morphemic and plural S duration.
The dependent variable, duration of S, was log-transformed
following standard procedures to reduce the potentially harmful
effect of skewed distributions in linear regression models (e.g.,
Winter, 2019). The name of this variable is SDURLOG.

Following the standard backward step-wise selection process
for model selection (e.g., Baayen, 2008), a first model containing
all remaining variables is created. That is, COMPONENT1,
COMPONENT2, COMPONENT3, DENSITY, ALC, EDNN,
BASEDURLOG, SPEAKINGRATE, PAUSEBIN, FOLTYPE, PREC, and
REAL were included as fixed effects. The remaining variables,
GENDER, LOCATION, MONOMULTILINGUAL, AGE, LIST, and
SPEAKER, are included as random intercepts.

This full model was then continuously reduced through step-
wise exclusion of non-significant variables. That is, a variable was
considered as significant if it passed all of three tests. First, its
F-value in the pertinent model had to yield a value below −2
or above 2. Second, the AIC value, i.e., the Akaike information
criterion value, of the model including the variable had to
be lower than the AIC value of a comparable model without
the pertinent variable. Third, the results of log-likelihood tests

comparing the model with to a model without the pertinent
variable had to yield a p-value below the 0.05 threshold, thus
indicating a significant improvement of model fit. This process
was verified using the step function of R, which resulted in an
identical model.

Then, variance inflation factors (VIFs) were computed.
Predictors showing variance inflation factor values equal or
greater than 3 are to be excluded due to the high risk of
introducing multicollinearity and thus overfitting of the model
(e.g., Zuur et al., 2010). For the present model, all variance
inflation factor values are below 3.

Finally, the resulting model needed trimming of its residuals
(e.g., Baayen and Milin, 2010). Data points with residuals larger
than 2.5 standard deviations were removed to ensure a more
satisfactory residual distribution. This procedure resulted in a
loss of six data points (0.92%). An overview of all variables
used in the initial model and their distribution is given in
Supplementary Table 2.

Model C: LDL Measures Only
This model uses all LDL measures but does not incorporate the
AFFIX covariate. As in the previous model, there was a high
number of highly correlated variables (see Table 2 with the
exception of the correlation of AFFIX and NNC, as AFFIX is
not included in this analysis). We therefore again computed a
principal component analysis, following the procedure outlined
in Section “Model B: LDL Measures and Affix Specification.”
Following the first two criteria, we find that two principal
components are to be retained. However, considering the third
criterion, we find that the two components are not readily
interpretable as they show relatively high positive or negative
correlations with all or almost all variables, without indicating
a clearly discernible dimension underlying the patterns of
correlations. We therefore turned to another procedure to reduce
collinearity issues.

For each set of variables with a correlation of |rho| > 0.5,
models containing only the pertinent variable and a random
intercept for subject are fitted and compared. Using log-
likelihood tests for model comparison, the variable contained in
a significantly better fit model is retained while those variables
highly correlated with it are no longer used. In case of a non-
significant difference, the variable of the model with the lower
AIC value is retained. This procedure leads to the exclusion of
L2NORM, PATH_COUNTS, PATH_ENTROPIES, and PATH_SUM.

Linear mixed-effects regression models were fitted according
to the procedure given in Section “Model B: LDL Measures and
Affix Specification.” That is, an initial full model was fitted with
the following variables: L1NORM, ALDC, SUPPORT, DENSITY,
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TABLE 4 | p-values of fixed effects in the final “traditional” model, fitted to the log-transformed durations of S.

Sum Sq Mean Sq NumDF DenDF F.value Pr ( > F)

AFFIX 0.711 0.711 1 37.90 13.845 0.001

SPEAKINGRATE 0.163 0.163 1 604.07 3.165 0.076

BASEDURLOG 6.278 6.278 1 572.80 122.247 0.000

PAUSEBIN 5.430 5.430 1 635.92 105.722 0.000

BIPHONEPROBSUMBIN 0.646 0.646 1 596.28 12.580 0.000

FOLTYPE 2.199 0.550 4 605.15 10.703 0.000

TABLE 5 | Fixed-effect coefficients and p-values as computed by the final “traditional” model (mixed-effects model fitted to the log-transformed duration of S).

Estimate Std. Error df t-value Pre (> | t|)

(Intercept) −1.202 0.083 407.927 −14.520 0.000

AFFIXPL −0.087 0.023 37.896 −3.721 0.001

SPEAKINGRATE −0.022 0.012 604.072 −1.779 0.076

BASEDURLOG 0.635 0.057 572.805 11.057 0.000

PAUSEBINPAUSE 0.234 0.023 635.917 10.282 0.000

BIPHONEPROBSUMBINlow −0.076 0.021 596.279 −3.547 0.000

FOLTYPEF −0.001 0.073 610.436 −0.007 0.994

FOLTYPEN −0.004 0.028 600.528 −0.134 0.893

FOLTYPEP −0.027 0.025 599.182 −1.107 0.269

FOLTYPEV −0.145 0.025 610.241 −5.852 0.000

TABLE 6 | p-values of fixed effects in the final “LDL measures and Affix” model, fitted to the log-transformed durations of S.

Sum Sq Mean Sq NumDF DenDF F.value Pr ( > F)

COMPONENT1 0.376 0.376 1 618.06 6.970 0.008

COMPONENT3 1.340 1.340 1 627.71 24.819 0.000

BASEDURLOG 6.751 6.751 1 620.55 125.080 0.000

PAUSEBIN 5.805 5.805 1 642.19 107.568 0.000

FOLTYPE 2.093 0.523 4 617.98 9.695 0.000

PREC 0.702 0.234 3 615.33 4.334 0.005

DENSITY 0.219 0.219 1 621.79 4.067 0.044

ALC 0.293 0.293 1 623.25 5.425 0.020

TABLE 7 | Fixed-effect coefficients and p-values as computed by the final “LDL measures and Affix” model (mixed-effects model fitted to the
log-transformed duration of S).

Estimate Std. Error df t-value Pre (> | t|)

(Intercept) −1.106 0.124 635.215 −8.952 0.000

COMPONENT1 0.014 0.005 618.057 2.640 0.008

COMPONENT3 −0.041 0.008 627.708 −4.982 0.000

BASEDURLOG 0.652 0.058 620.548 11.184 0.000

PAUSEBINpause 0.237 0.023 642.193 10.371 0.000

FOLTYPEF −0.014 0.075 621.463 −0.180 0.857

FOLTYPEN −0.006 0.029 614.760 −0.198 0.843

FOLTYPEP −0.028 0.025 615.172 −1.126 0.261

FOLTYPEV −0.141 0.025 620.352 −5.612 0.000

PRECk −0.023 0.027 614.436 −0.835 0.404

PRECp −0.040 0.027 614.491 −1.475 0.141

PRECt −0.095 0.028 615.916 −3.414 0.001

DENSITY −0.241 0.119 621.790 −2.017 0.044

ALC −5.302 2.277 623.246 −2.329 0.020
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ALC, EDNN, NNC, BASEDURLOG, SPEAKINGRATE, PAUSEBIN,
FOLTYPE, PREC and REAL. As for random effects, random
intercepts for GENDER, LOCATION, MONOMULTILINGUAL, AGE,
LIST, and SPEAKER were included.

This full model was then continuously reduced through
step-wise exclusion of non-significant variables, following the
aforementioned criteria. Then, variance inflation factors were
computed, resulting only in non-problematic values (e.g., Zuur
et al., 2010). Finally, the resulting model needed trimming of
its residuals (e.g., Baayen and Milin, 2010). That is, data points
with residuals larger than 2.5 standard deviations were removed,
ensuring a more satisfactory residual distribution. This procedure
led to a loss of 8 data points, i.e., 1.2% of all data points. An
overview of all variables used in the initial model and their
distribution is given in Supplementary Table 2.

RESULTS

Model A: Traditional Measures
The final model of traditional measures includes main effects
of the following variables: type of S (AFFIX), speaking
rate (SPEAKINGRATE), log-transformed base duration
(BASEDURLOG), pause (PAUSEBIN), the summed biphone
probability (BIPHONEPROBSUMBIN), and following segmental
type (FOLTYPE). As for random effects, random intercepts
for SPEAKER and random slopes for AFFIX are included. The
p-values of the analysis of variance of the final model are given in
Table 4.

The marginal R-squared value of the model is 0.43, i.e., fixed
effects explain 43% of variation in the data. Taking random effects
into account as well, the conditional R-squared value is 0.62.
That is, the model explains 62% of data variation in total (see
Nakagawa et al., 2017, for details on marginal and conditional
R-squared computation). Both R-squared values were computed
using the MuMIn package (Barton, 2020). The R-squared values
are similar to the values found by Schmitz et al. (2020) on their
complete data set.

The estimates of the final model and their p-values are given
in Table 5. The reference levels for the categorical predictors
are: for AFFIX it is NM, for PAUSEBIN it is no-pause, for
BIPHONEPROBSUMBIN it is high, and for FOLTYPE it is APP.

The predictor strength of individual covariates was checked by
taking the final model as template. For each predictor variable, a
model was fitted lacking the particular variable. This resulted in
seven models, each lacking a different predictor. Then, R-squared
values were computed for these models and finally compared.
The variable leading to the highest decrease in R-squared value
as compared to the final model is thus the variable showing the
highest predictor strength. The results of this comparison are
reflected in the hierarchy given in (1). The decrease in R-squared
is greatest when removing BASEDURLOG, followed by PAUSEBIN,
and so forth. The resulting order is identical to the one found by
Schmitz et al. (2020) for the complete data set.

(1) baseDurLog > > pauseBin > > Affix > > folType > >
speakingRate > > biphoneProbSumBin

Model B: LDL Measures and AFFIX
Specification
In the final model including LDL measures as well as
the AFFIX covariate as parts of the individual components
resulting from the principal component analysis, and fitted
according to the procedure described in Section “Model B:
LDL Measures and Affix Specification,” we find main effects
of the first principal component (COMPONENT1), the third
principal component (COMPONENT3), DENSITY, ALC, base
duration (BASEDURLOG), following pause (PAUSEBIN), following
segmental type (FOLTYPE), and preceding consonant (PREC).
Regarding random effects, only a SPEAKER-specific random
intercept turns out to significantly improve model fit. The
p-values of the analysis of variance of the final model are given
in Table 6.

The marginal R-squared value of the final model is 0.42,
thus fixed effects explain 42% of the variation in our data. The
conditional R-squared value of the final model is 0.60, that is fixed
and random effects taken together explain 60% of variation.

The estimates of the final model and their p-values are given
in Table 7. The reference levels for the categorical predictors are:
for PAUSEBIN it is no-pause, for FOLTYPE it is APP, and for PREC
it is f.

Similar to Section “Model B: LDL Measures and AFFIX
Specification,” the predictor strength of individual covariates was
checked by taking the final model as template. For each predictor
variable, a model was fitted lacking the pertinent variable. This
resulted in seven models, each missing a different covariate. Then,
marginal R-squared values were computed and compared. The
model showing the lowest of these values in turn missed the
covariate with the highest predictor strength. The result of this
procedure is reflected in the hierarchy in (2). The decrease in
R-squared is greatest when removing BASEDURLOG, followed by
PAUSEBIN, and so forth. In sum, variables containing measures
obtained by our LDL analysis appear to be meaningful predictors
of S duration.

(2) BASEDURLOG > > PAUSEBIN > > COMPONENT3 > >
FOLTYPE > > ALC > > DENSITY > > COMPONENT1 > >
PREC

Figure 3 shows the effect on S duration of the numerical
variables included in the model. The estimated values of
the dependent variable SDURLOG, i.e., S duration, and
BASEDURLOG, i.e., base duration, are back-transformed
into seconds. For COMPONENT1, higher values lead to longer
S durations, while for COMPONENT3 (panel A), higher values
lead to shorter S durations (panel B). Higher values of DENSITY
(panel C) and ALC (panel D) come with shorter S durations.
Longer bases come with longer S durations (panel E).

The partial effects of the categorical variables included in the
final model are illustrated in Figure 4. Pauses lead to longer
S durations (panel A), which is most likely a case of phrase-
final lengthening (e.g., Cooper and Danly, 1981). There is also
an effect of the following segment type, with S being shorter
when followed by a vowel (panel B). This difference is significant
for all consonant types being compared against vowels with the
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FIGURE 3 | Partial effects of the numerical variables included in the final “LDL measures and AFFIX” model, fitted to the log-transformed values of duration of S.
(A) COMPONENT1 (B) COMPONENT3 (C) DENSITY (D) ALC (E) back-transformed BASEDURLOG.

exception of fricatives. However, as there is only a small number
of fricative cases in our data, this non-significant difference is
potentially not meaningful. Lastly, there is an effect of preceding
consonant on S duration (panel D). S duration is significantly
longer if preceded by a voiceless labiodental fricative /f/ or
a voiceless velar stop /k/ as compared to cases where S is
preceded by a voiceless alveolar stop /t/. All other comparisons
are non-significant.

Let us turn to the variables of interest, i.e., those derived from
our LDL network. COMPONENT1 acts as a general measure of
phonological certainty. High values of COMPONENT1 come with
high values of PATH_COUNTS, PATH_ENTROPIES, and ALDC,
indicating a high level of phonological uncertainty. At the other
end of the COMPONENT1 dimension, high values of PATH_SUM
and SUPPORT indicate a high level of phonological certainty.
Higher uncertainty appears to lead to longer S durations, while
higher certainty appears to lead to shorter S durations.

Recall from Section “Model B: LDL Measures and Affix
Specification” that COMPONENT3 relates to semantic activation
diversity and to the presence of the plural suffix. Higher values
of COMPONENT3 indicate a higher level of semantic activation

diversity. Higher levels of activation diversity then lead to
shorter S durations (see panel B of Figure 3). High values of
COMPONENT3 are positively correlated with the presence of
plural S. It appears that the presence of plural makes words
semantically more similar to each other as they share this
meaning component. Hence it is to be expected that plural
words live in a space of greater semantic activation diversity.
COMPONENT3 is not only a measure of semantic activation
diversity, but also indicates that plural pseudowords show a
tendency of having a higher degree of semantic activation
diversity as compared to monomorphemic pseudowords in
general. DENSITY and ALC also tap into the semantics of
pseudowords. That is, similar to COMPONENT3, higher values
indicate higher levels of semantic activation diversity. These
higher levels then lead to shorter S durations.

Model C: LDL Measures Only
The final model of LDL measures only is fitted with main
effects of the following variables: L1NORM, ALC, NNC, log-
transformed base duration (BASEDURLOG), pause (PAUSEBIN),
following segmental type (FOLTYPE), and preceding consonant
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FIGURE 4 | Partial effects of the categorical variables included in the final “LDL measures and AFFIX” model, fitted to the log-transformed values of duration of S.
(A) PAUSEBIN (B) FOLTYPE (C) PREC.

(PREC). The SPEAKER variable is included as random intercept.
The p-values of the analysis of variance of the final model are
given in Table 8.

With a marginal R-squared value of 0.41, the fixed effects
of this model explain 41% of variation within the data. The
conditional R-squared value of the model is 0.61, that is the
complete model accounts for 61% of variation.

The coefficients of the final model and their p-values are given
in Table 9. The reference levels for the categorical covariates are:
for PAUSEBIN it is no-pause; for FOLTYPE it is APP, and for PREC
it is f.

As for both other final models, the predictor strength of
the individual predictors was checked. Models with one of the
predictor variables were constructed based on the complete final
model. Then, marginal R-squared values were computed for
each of these six models. A comparison of R-squared values
then revealed the hierarchy of predictor strength given in (3).
That is, the decrease in R-squared is greatest when removing
BASEDURLOG, followed by PAUSEBIN, and so forth.

(3) BASEDURLOG > > PAUSEBIN >> FOLTYPE >> NNC
>> L1NORM >> ALC >> PREC

Base duration and speaking rate show identical effects as
compared to the model fitted in Section “Model B: LDL Measures
and AFFIX Specification,” i.e., longer base durations come with
longer S durations, while higher speaking rates lead to shorter S
durations. As for categorical variables, pauses again come with
longer S durations, and S is shorter if followed by a vowel. There
is also an effect of the preceding consonant, with S duration

being significantly longer if preceded by a voiceless labiodental
fricative /f/ or a voiceless velar stop /k/ as compared to cases
where S is preceded by a voiceless alveolar stop /t/. These results
are generally in line with those by the analysis in the previous
section.

Taking a closer look at the variables of interest, we find
that higher values of L1NORM, and ALC, i.e., higher semantic
activation diversity, lead to shorter S durations. As in model B,
higher levels of semantic activation diversity come with shorter
S durations. For NNC, we find that S duration is longer if a
pseudoword is semantically similar to a real word. The effects of
L1NORM, ALC, and NNC are illustrated in Figure 5.

DISCUSSION

The Present Results
Previous studies (Zimmermann, 2016; Seyfarth et al.,
2017; Tomaschek et al., 2019; Plag et al., 2020, 2017;
Schmitz et al., 2020) reported that there are significant
differences in the acoustic duration between different types
of word-final S in English. Such durational differences
challenge established feed-forward theories of morphology-
phonology interaction (e.g., Chomsky and Halle, 1968;
Kiparsky, 1982) as well as theories of psycholinguistics
(e.g., Levelt et al., 1999; Roelofs and Ferreira, 2019; Turk
and Shattuck-Hufnagel, 2020). The present study investigated
whether measures derived on the basis of a discriminative
learning theory are predictive of S durations in nonce
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TABLE 8 | p-values of fixed effects in the final “LDL measures only” model, fitted to the log-transformed durations of S.

Sum Sq Mean Sq NumDF DenDF F.value Pr ( > F)

L1NORM 0.685 0.685 1 611.07 13.473 0.000

BASEDURLOG 6.047 6.047 1 627.51 118.901 0.000

PAUSEBIN 5.440 5.440 1 632.72 106.956 0.000

FOLTYPE 2.056 0.514 4 610.10 10.105 0.000

PREC 0.761 0.254 3 607.96 4.985 0.002

ALC 0.534 0.534 1 615.51 10.504 0.001

NNC 0.778 0.778 1 619.67 15.296 0.000

TABLE 9 | Fixed-effect coefficients and p-values as computed by the final “LDL measures” model (mixed-effects model fitted to the log-transformed duration of S).

Estimate Std. Error df t-value Pre (> | t|)

(Intercept) −2.334 0.320 625.440 −7.301 0.000

L1NORM −0.044 0.012 611.066 −3.671 0.000

BASEDURLOG 0.624 0.057 627.514 10.904 0.000

PAUSEBINpause 0.233 0.022 632.719 10.342 0.000

FOLTYPEF −0.019 0.073 613.088 −0.267 0.790

FOLTYPEN −0.005 0.028 607.324 −0.195 0.845

FOLTYPEP −0.023 0.024 607.817 −0.950 0.343

FOLTYPEV −0.140 0.025 611.952 −5.693 0.000

PRECk −0.029 0.027 607.726 −1.058 0.291

PRECp −0.053 0.027 607.478 −1.950 0.052

PRECt −0.101 0.028 608.068 −3.632 0.000

ALC −6.663 2.056 615.511 −3.241 0.001

NNC 1.221 0.312 619.671 3.911 0.000

FIGURE 5 | Partial effects of LDL derived variables contained in the final “LDL measures only” model, fitted to the log-transformed values of duration of S.
(A) L1NORM (B) ALC (C) NNC.

words. In particular, we implemented LDL networks that
model the production of a word based on its relation to the
rest of the lexicon.

We explored the predictive possibilities of LDL measures
by fitting three different models: a) a model based on the
traditional predictors as used in previous studies (Plag et al.,
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2017; Tomaschek et al., 2019; Schmitz et al., 2020); b) a
model with LDL measures and a variable AFFIX specifying the
presence or absence of an affix; and c) a model with LDL
measures but without a variable specifying the presence or
absence of an affix. Both models with LDL measures show
that such measures are predictive of S durations. This result
is the most important of our study. While traditional variables
such as lexical frequencies, bigram frequencies, transitional
probabilities or neighbourhood densities measure important
lexical properties, it is unclear why they would manifest
themselves in a particular morphological effect in speech
production. In LDL such effects can emerge through the
mapping of form and meaning in a clearly defined process of
discriminative learning.

All regression models showed a similar hierarchy of predictor
strength for the variables included in the models. For the
traditional model A, AFFIX is the third strongest predictor of S
duration and for model B this spot is taken by COMPONENT3,
while there is no comparable variable included in model C.
Comparing the variance explained by the fixed effects of the
different models, we find that the traditional model accounts for
most variation, i.e., 43%, while the LDL model including the
AFFIX variable accounts for 42%, and the LDL model without
the AFFIX variable accounts for 41% of variation. Thus, in
terms of marginal R-squared values, all three models are close
to each other. To check whether these differences in marginal
R-squared values are of significance, the three models were
refitted to the untrimmed data set and then compared with
an analysis of variance. The results suggest that there is no
significant difference between the traditional model and the
LDL model including the AFFIX variable. However, the LDL
model without the AFFIX variable shows a significantly worse fit
(p < 0.01). This seems to indicate that the LDL measures do not
capture the full amount of the variance that is captured by the
variable AFFIX. This means that there is still something about
the morphological function that translates into duration and
that is not properly modelled by the associative measurements
of the learning network. The same problem holds, incidentally,
for the traditional model (model A), in which the usual lexical
measures (such as lexical frequencies, neighbourhood densities,
etc.) and phonetic covariates (such as pauses, speech rate,
etc.) are also not able to cover all durational variance. The
morphological residue in both types of analysis remains a
conundrum that calls for more sophisticated approaches in
future research.

Comparison of Results to Other Studies
The LDL measures included in our final models are either
concerned with semantic activation diversity (COMPONENT3,
ALC, and DENSITY in model B; L1NORM, and ALC in model
C), semantic similarity (NNC in model C) or with phonological
certainty (COMPONENT1 in model B).

Higher degrees of semantic activation diversity come
with shorter S durations. This effect is similar to the one
which was reported by Tucker et al. (2019b) in a study
on stem vowels, and Tomaschek et al. (2019) in their
NDL study on S duration. A higher degree of activation

diversity makes it “more difficult to discriminate the targeted
outcome from its competitors” (Tomaschek et al., 2019:27).
As for production, a prolongation of the acoustic signal is
dysfunctional if the prolongation maintains or increases the
discrimination problem instead of contributing to resolving it
(Tomaschek et al., 2019).

In the model without AFFIX as predictor variable, NNC (i.e.,
a pseudoword’s semantic similarity to its closest semantic real
word neighbour) emerges as significant (see model C). Why so?
As reported in Table 2, the AFFIX variable and NNC are strongly
negatively correlated (rho =−0.89). Post-hoc analysis shows that
plural S has significantly lower NNC values as compared to non-
morphemic S (Wilcoxon test, p < 0.001). It therefore appears that
NNC takes over the role of differentiating between plural and
non-morphemic S in model C.

As for phonological certainty, we find that higher
phonological certainty leads to shorter S durations, while
higher phonological uncertainty leads to longer S durations.
Shorter durations in contexts of high phonological certainty may
be related to effects of frequency, i.e., highly frequent forms are
produced with higher certainty and are thus shorter.

Directions for Future Research and
Conclusion
The results of the present study may bring up further questions.
First, are the predictive measures found for word-final S duration
in pseudowords also predictive for word-final S duration in real
words? Tomaschek et al.’s (2019) NDL implementation suggests
that it is, but LDL networks still need to be implemented. It
would be especially interesting to model those data sets that
have yielded seemingly contradictory effects. Second, taking
into account that the specification of AFFIX in the modelling
process leads to a significantly better model fit, one may ask
what the underlying reasons for this significant effect are. This
then automatically leads to another question: Is it possible to
catch the effect of the AFFIX specification in terms of (new)
LDL measures?

To summarize, this paper was the first to investigate
durational differences between different types of word-final
S (non-morphemic vs. plural S) in pseudowords by means
of an LDL implementation, measures, and resulting statistical
analyses. The findings yielded important evidence on the
question of how such durational difference come to be, i.e.,
they can be predicted based on their pseudoword’s relations
to the lexicon. We demonstrated that durational differences
emerge from the pseudoword’s resonance with the lexicon by
way of differing degrees of semantic activation diversity and
phonological uncertainty. These manifestations of the relations
to other words in the lexicon in turn are the result of
discriminative learning.
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Baayen, R. H., Milin, P., Ðurd̄ević, D. F., Hendrix, P., and Marelli, M. (2011).
An amorphous model for morphological processing in visual comprehension
based on naive discriminative learning. Psychol. Rev. 118, 438–481. doi: 10.
1037/a0023851

Baayen, R. H., Piepenbrock, R., and Gulikers, L. (1995). The CELEX Lexical
Database (CD-ROM). Philadelphia, PA: University of Philadelphia.

Baayen, R. H., Shaoul, C., Willits, J., and Ramscar, M. (2016). Comprehension
without segmentation: a proof of concept with naive discriminative
learning. Lang. Cogn. Neurosci. 31, 106–128. doi: 10.1080/23273798.2015.106
5336

Barton, K. (2020). MuMIn: Multi-Model Inference (1.43.17). Available
online at: https://cran.r-project.org/package=MuMIn (accessed June 09,
2021).

Bates, D., Mächler, M., Bolker, B. M., and Walker, S. C. (2015). Fitting linear
mixed-effects models using lme4. J. Statist. Softw. 67:51. doi: 10.18637/jss.v067.
i01

Ben Hedia, S. (2019). Gemination and Degemination in English Affixation:
Investigating the Interplay Between Morphology, Phonology and Phonetics.
Berlin: Language Science Press, doi: 10.5281/zenodo.3232849

Ben Hedia, S., and Plag, I. (2017). Gemination and degemination in English
prefixation: phonetic evidence for morphological organization. J. Phonetics 62,
34–49. doi: 10.1016/j.wocn.2017.02.002

Blevins, J. P., Ackerman, F., and Malouf, R. (2016). “Morphology as an adaptive
discriminative system,” in Morphological Metatheory, eds D. Siddiqi and H.
Harley (John Benjamins), 271–302. doi: 10.1075/la.229

Boersma, P., and Weenink, D. (2019). Praat: doing phonetics by computer (6.1.27).
Available online at: http://www.praat.org/ (accessed October 13, 2020).

Booij, G. E. (1983). Principles and parameters in prosodic phonology. Linguistics
21, 249–280. doi: 10.1515/ling.1983.21.1.249

Burnage, G. (1988). CELEX, A Guide for Users. Centre for Lexical Information.
Nijmegen, Netherlands: Centre for Lexical Information.

Caselli, N. K., Caselli, M. K., and Cohen-Goldberg, A. M. (2016). Inflected words in
production: evidence for a morphologically rich lexicon. Quar. J. Exp. Psychol.
69, 434–454. doi: 10.1080/17470218.2015.1054847

Chavent, M., Kuentz, V., Labenne, A., Liquet, B., and Saracco, J. (2017).
PCAmixdata: Multivariate Analysis of Mixed Data (3.1). Available online at:
https://cran.r-project.org/package=PCAmixdata (accessed June 09, 2021).

Chomsky, N., and Halle, M. (1968). The Sound Pattern of English. Manhattan, NY:
Harper and Row.

Chuang, Y.-Y., Vollmer, M. L., Shafaei-Bajestan, E., Gahl, S., Hendrix, P., and
Baayen, R. H. (2020). The processing of pseudoword form and meaning in
production and comprehension: a computational modeling approach using
linear discriminative learning. Behav. Res. Methods 53, 945–976. doi: 10.3758/
s13428-020-01356-w

Cooper, W. E., and Danly, M. (1981). Segmental and temporal aspects of utterance-
final lengthening. Phonetica 38, 106–115.

de Jong, N., and Wempe, T. (2008). Praat Script Syllable Nuclei
[Praat Script]. Available online at: https://sites.google.com/site/
speechrate/Home/praat-script-syllable-nuclei-v2 (accessed August 19,
2020).

Drager, K. K. (2011). Sociophonetic variation and the lemma. J. Phonetics 39,
694–707. doi: 10.1016/j.wocn.2011.08.005

Fox, J., and Weisberg, S. (2019). An R Companion to Applied Regression. Thousand
Oaks, CA: Sage Publishing.

Gahl, S. (2008). Time and thyme are not homophones: the effect of lemma
frequency on word durations in spontaneous speech. Language 84, 474–496.
doi: 10.1353/lan.0.0035

Goad, H. (1998). Plurals in SLI: prosodic deficit or morphological deficit? Lang.
Acquisition 7, 247–284. doi: 10.1207/s15327817la0702-4_6

Goad, H. (2002). Markedness in right-edge syllabification: parallels across
populations. Canad. J. Linguistics 47, 151–186.

Hsieh, L., Leonard, L. B., and Swanson, L. L. (1999). Some differences between
english plural noun inflections and third singular verb inflections in the input:
the contributions of frequency, sentence position, and duration. J. Child Lang.
26, 531–543. doi: 10.1017/S030500099900392X

Frontiers in Psychology | www.frontiersin.org 18 August 2021 | Volume 12 | Article 68088960

https://osf.io/zy7ar/?view_only=ef43a5caf6444270a56074027d7d6482
https://osf.io/zy7ar/?view_only=ef43a5caf6444270a56074027d7d6482
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.680889/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.680889/full#supplementary-material
https://doi.org/10.1017/CBO9780511801686
https://doi.org/10.1017/CBO9780511801686
https://doi.org/10.21500/20112084.807
https://cran.r-project.org/package=languageR
http://www.sfs.uni-tuebingen.de/~hbaayen/software.html
http://www.sfs.uni-tuebingen.de/~hbaayen/software.html
https://doi.org/10.1155/2019/4895891
https://doi.org/10.1037/a0023851
https://doi.org/10.1037/a0023851
https://doi.org/10.1080/23273798.2015.1065336
https://doi.org/10.1080/23273798.2015.1065336
https://cran.r-project.org/package=MuMIn
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.5281/zenodo.3232849
https://doi.org/10.1016/j.wocn.2017.02.002
https://doi.org/10.1075/la.229
http://www.praat.org/
https://doi.org/10.1515/ling.1983.21.1.249
https://doi.org/10.1080/17470218.2015.1054847
https://cran.r-project.org/package=PCAmixdata
https://doi.org/10.3758/s13428-020-01356-w
https://doi.org/10.3758/s13428-020-01356-w
https://sites.google.com/site/speechrate/Home/praat-script-syllable-nuclei-v2
https://sites.google.com/site/speechrate/Home/praat-script-syllable-nuclei-v2
https://doi.org/10.1016/j.wocn.2011.08.005
https://doi.org/10.1353/lan.0.0035
https://doi.org/10.1207/s15327817la0702-4_6
https://doi.org/10.1017/S030500099900392X
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-680889 August 3, 2021 Time: 20:18 # 19

Schmitz et al. Modelling Morpho-Phonetic Effects in LDL

Ivens, S. H., and Koslin, B. L. (1991). Demands for Reading Literacy Require New
Accountability Methods. Valley: Touchstone Applied Science Associates.

Jones, M. N., and Mewhort, D. J. K. (2007). Representing word meaning and
order information in a composite holographic lexicon. Psychol. Rev. 114, 1–37.
doi: 10.1037/0033-295X.114.1.1

Kemps, R. J. J. K., Ernestus, M., Schreuder, R., and Harald Baayen, R.
(2005a). Prosodic cues for morphological complexity: the case of
Dutch plural nouns. Memory Cogn. 33, 430–446. doi: 10.3758/BF0319
3061

Kemps, R. J. J. K., Wurm, L. H., Ernestus, M., Schreuder, R., and Baayen,
R. H. (2005b). Prosodic cues for morphological complexity in Dutch
and English. Lang. Cogn. Proc. 20, 43–73. doi: 10.1080/0169096044400
0223

Kiparsky, P. (1982). “Lexical morphology and phonology,” in Linguistics in the
Morning Calm: Selected Papers From SICOL1, ed. I. Yang (Hanshin), 3–91.

Klatt, D. H. (1976). Linguistic uses of segmental duration in English: Acoustic
and perceptual evidence. J. Acous. Soc. Am. 59, 1208–1221. doi: 10.1121/1.38
0986
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A growing body of work in psycholinguistics suggests that morphological relations

between word forms affect the processing of complex words. Previous studies have

usually focused on a particular type of paradigmatic relation, for example the relation

between paradigm members, or the relation between alternative forms filling a particular

paradigm cell. However, potential interactions between different types of paradigmatic

relations have remained relatively unexplored. This paper presents two corpus studies

of variable plurals in Dutch to test hypotheses about potentially interacting paradigmatic

effects. The first study shows that generalization across noun paradigms predicts the

distribution of plural variants, and that this effect is diminished for paradigms in which the

plural variants are more likely to have a strong representation in the mental lexicon. The

second study demonstrates that the pronunciation of a target plural variant is affected

by coactivation of the alternative variant, resulting in shorter segmental durations. This

effect is dependent on the representational strength of the alternative plural variant. In

sum, by exploring interactions between different types of paradigmatic relations, this

paper provides evidence that storage of morphologically complex words may affect the

role of generalization and coactivation during production.

Keywords: morphology, phonetics, paradigms, reduction, inflection, Dutch, plural, variation

1. INTRODUCTION

Most psycholinguistic accounts of lexical processing agree that the comprehension and production
of a word form can be affected by its morphological relations with other word forms (see, for
example, the recent overview in Arndt-Lappe and Ernestus, 2020). In very general terms, two
words can be seen as morphologically related if they share phonological features that also reflect a
similarity in meaning. Broadly, two types of morphological relations can be distinguished: relations
between words that share a base (e.g., burn and burned) and relations between words with shared
inflectional or derivational exponence (e.g., burned and cared). In this paper, we will refer to the
former as relations within paradigms and to the latter as relations between paradigms. We will
make a further distinction between two types of within-paradigm relations: those between the base
and a complex form (e.g., burn and burned), and those between two alternative forms (e.g., burned
and burnt). Previous psycholinguistic studies on morphological relations have mostly focused on
how the different relation types individually affect word processing (e.g., Ernestus and Baayen, 2003
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for between-paradigm relations; Hay, 2001 for base-complex
relations; Cohen, 2015 for relations between alternatives).
Potential interactions between these different types of
paradigmatic relations have remained relatively unexplored
(but see Milin et al., 2009). In the current research, we will use
Dutch plurals to investigate the potentially interacting effects of
between- and within-paradigm relations. In doing so, we aim to
contribute to a more complete understanding of the mechanisms
of generalization, storage and coactivation that are involved in
the processing of complex words.

Most Dutch plural nouns are inflected for number by suffixing
the singular base form with either of the two regular suffixes -
en and -s. In addition, a few plurals are formed with irregular
suffixes such as -eren or -a. As noted by dictionaries (e.g., Van
Dale, 2020) and textbooks on Dutch morphology (e.g., de Haas
and Trommelen, 1993), for certain nouns more than one suffix
is acceptable: artikel “article” can be inflected as both artikels
and artikelen, and both keuzes and keuzen are acceptable plurals
of keuze “choice.” Although some of this variability can be
attributed to differences in modality (Kürschner, 2009), register
(Baayen et al., 2002) and dialect (Goeman et al., 2005), different
plural forms of the same noun can be found in a single utterance,
see (1) which was taken fromWilde Haren De Podcast (2019).

(1) de
‘the

piramides

pyramids
van
of

Gizeh,
Giza,

hè,
right,

de
the

drie
three

bekende
famous

piramiden

pyramids’

Baayen et al. (2002) argue that this type of variation occurs
when the factors that govern the allomorphy within the Dutch
plural system are inconclusive. For instance, most accounts of
the Dutch plural agree that the distribution of -en, pronounced
/@(n)/, vs. -s, pronounced /s/, seems to reflect a prosodic
preference for a word-final disyllabic trochee. As a result, most
nouns with an unstressed final syllable, e.g., bakker /"bAk@r/,
are pluralized with -s, whereas most nouns ending in a stressed
syllable are pluralized with -en, e.g., dier /"dir/. However, if a
singular noun already ends in schwa, e.g., piramide /�pira"mid@/,
the -en suffix is simplified to -n, such that adding either
suffix would result in a word-final trochee and, as a result, an
acceptable plural (Kürschner, 2009). Variation may also occur
when two factors are in conflict. For instance, the phonological
generalization that nouns ending in stressed vowels have the
plural suffix -s sometimes conflicts with the preference for a
trochee. This may explain the variation in the plural of the
noun individu /�Indivi"dy/: individu’s and individuen. In sum,
previous discussions of Dutch variable plurals suggest that two
alternative forms may exist as a consequence of the application
of non-deterministic phonological generalizations. However, we
will argue that storage and coactivation mechanisms might also
be expected to affect the production of variable plurals, given the
different paradigmatic relations that apply to variable plurals. As
such, Dutch variable plurals provide an excellent opportunity to
investigate how different types of paradigmatic relations interact.

1.1. Paradigmatic Relations
Dutch variable plurals are a suitable phenomenon to illustrate
how between-paradigm relations may affect morphological
processing. Themorpho-phonological patterns that, according to
Baayen et al. (2002), govern both the distribution of invariable
and variable Dutch plurals can be seen as generalizations
among noun paradigms. In fact, these between-paradigm
generalizations can be explicitly modeled using the mechanism
of analogy. For instance, in order to produce the plural
form of vampier “vampire,” generalization by analogy relies on
morpho-phonological similarities to singular base forms from
other paradigms such as pionier “pioneer” and generalizes their
plural forms, i.e., pioniers, to the original base form, resulting in
vampiers. An advantage of such an analogical approach is that the
production of variation is built-in: the plural of vampier can also
be generalized from the papier-papieren “paper(s)” paradigm,
resulting in vampieren, which is also an acceptable form. Previous
work has shown that computational analogical models accurately
predict the variation observed for various phonological and
morphological phenomena, and affix choice in particular (e.g.,
Krott et al., 2001; Wulf, 2002; Ernestus and Baayen, 2003;
Keuleers et al., 2007; Arndt-Lappe, 2014). Although analogical
models elegantly predict the occurrence of many affixed forms
that would be classified as exceptions in categorical rule-based
models, analogical mechanisms are not completely successful in
their predictions either. The model implemented by Keuleers
et al. (2007) shows that inaccurate predictions also exist for Dutch
plurals. Although this model improved on the performance of
a deterministic rule-based model, it still attributed the wrong
allomorph to around 9% of the plural forms they considered. This
suggests that not every Dutch plural form can be predicted from
between-paradigm relations.

It has been argued that the influence of between-paradigm
relations on lexical processing is limited for word forms with
high token frequencies (e.g., Bybee, 1995). The reasoning behind
this claim is that repeated exposure to a word form results
in a strong representation which is easier to access directly,
compared to weaker representations of infrequent word forms,
which may be easier to process by generalization from related
word forms (e.g., Divjak and Caldwell-Harris, 2019). Such
storage effects might affect the distribution of morphological
structure in a language. For example, Bybee (1995) argues that
the irregular past tense in English tends to occur in frequent
verbs because their strong representations have resisted the
generalization from phonologically similar regular past tense
forms (see also Cuskley et al., 2014). This suggests that absolute
token frequency is a measure of representational strength.
However, some studies (Hay, 2001, 2007; Blumenthal-Dramé,
2012) have claimed that representational strength of complex
forms is best measured as the token frequency of the complex
word relative to its base word. Hay (2001) observes that models
of lexical processing which incorporate both computation and
whole-word access involve some type of competition between
whole-word representations and representations of the base (e.g.,
Baayen et al., 1997b). It follows, according to Hay (2001), that
relative frequency between these forms, rather than absolute
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frequency of the complex form, is a better predictor of the degree
to which complex representations are accessed directly in lexical
processing. Psycholinguistic evidence for this base-complex
frequency relation has come from studies on derived words
(e.g., Hay, 2001, 2007; Blumenthal-Dramé, 2012) in addition
to findings from plural inflection (e.g., Baayen et al., 1997a,b,
2003; New et al., 2004; Biedermann et al., 2013; Beyersmann
et al., 2015). For instance, Baayen et al. (1997b) showed that
Dutch singular nouns are processed faster than their plural
inflections but only if they are singular-dominant, i.e., if the
singular forms are more frequent than the corresponding plurals.
These findings have led researchers to posit that processing of
singular-dominant plurals often requires computation based on
the singular, resulting in slower and less accurate processing
(Beyersmann et al., 2015). Conversely, in a picture naming
study, Baayen et al. (2008) concluded that shorter production
latencies for Dutch plural-dominant plurals may reflect that
their production is less dependent on analogical generalization.
In sum, the base-complex frequency relation has been argued
to mediate between distinct processing mechanisms: direct
activation of a representation vs. some form of generalization, be
it through rules or analogy.

Within-paradigm frequency relations have also been found
to affect the phonetic realization of morphologically complex
words. For instance, Cohen (2014) found that when speakers
read aloud sentences like The choir for the church services seems
nervous, the verb agreement suffix -s was longer if the 3rd
person singular form (e.g., seems) was frequent compared to the
uninflected form (e.g., seem). Various studies have found similar
phonetic enhancement of complex words with a higher frequency
relative to one or more members of their paradigm (Kuperman
et al., 2007; Schuppler et al., 2012; Bell et al., 2020; Tomaschek
et al., 2021b, but see Hanique and Ernestus, 2012). This so-called
paradigmatic enhancement effect has been argued to occur when
the choice between multiple paradigm members is probabilistic
(Kuperman et al., 2007). However, studies vary considerably with
regard to the paradigm members they deem to contribute to this
effect. In the current research, we will follow Cohen (2014) and
Cohen (2015) by only considering the paradigmatic enhancement
effect associated with the frequency relation between paradigm
members that are allowed by the syntactic context and that result
in a very similar meaning. We can illustrate such paradigmatic
alternatives using Dutch variable plurals: in De drie bekende
piramides/piramiden “the three famous pyramids,” both plurals
are allowed by the syntactic context and the resulting semantics
are very similar (if they differ at all). If paradigmatic enhancement
applies to Dutch variable plurals we would expect the frequency
ratio between plural variants to affect their pronunciation.

Paradigmatic enhancement can be formulated in terms of
probability: words with a higher paradigmatic probability have
more enhanced pronunciations. In that light, paradigmatic
enhancement is a surprising effect, given many previous studies
which show that increased probability of a linguistic structure
generally results in reduced pronunciations. For instance, it has
been shown that contextually probable segments (e.g., van Son
and Pols, 2003), syllables (e.g., Aylett and Turk, 2006), and words
(e.g., Bell et al., 2009) are reduced in terms of duration and/or

spectral qualities. Moreover, there is even some evidence that
increased probability of a complex word relative to its base
results in reduced pronunciation (Hay, 2001). This tendency to
reduce predictable units can be explained from a communicative
perspective if we assume that speakers reduce elements that
contribute less to listener comprehension (e.g., Aylett and
Turk, 2004). In addition to this listener-oriented account,
an alternative, potentially better supported (Bell et al., 2009;
Ernestus, 2014), speaker-driven account of reduction has been
proposed. In such an account, the reduction of predictable words
can be explained using two mechanisms that are relevant to the
current study. Firstly, it has been proposed that representations
of more predictable words are easier to access, which allows for
faster articulation (e.g., Bell et al., 2009). Secondly, the reduction
of high probability words can been explained as a direct result
of practicing the same articulations over and over (e.g., Bybee
and Hopper, 2001). Neither of these mechanisms, however,
predicts paradigmatic enhancement, which seems to require a
different explanation.

The first detailed theoretical account of paradigmatic
enhancement is given by Cohen (2015), who adopts an
exemplar theoretic approach (e.g., Goldinger, 1998) in which the
pronunciation of a word is codetermined by all exemplars that are
activated during production (e.g., Walsh et al., 2010). According
to Cohen (2015), during lexical access, multiple representations
of paradigmatically related words may be activated. This
coactivation is mediated by the linguistic context, which means
that paradigm members that are contextually plausible are
activated more strongly. For example, in the Dutch sentence de
antilopen/antilopes rennen “the antelopes are running,” both the
-en and the -s form are allowed, and, as a result, activation of the
-s form may lead to coactivation of the -en form. Importantly,
the degree to which the exemplars of the coactivated form
contribute to the pronunciation of the word depends on the
number of exemplars of each activated form, i.e., how often
the speaker has encountered the respective forms. For instance,
the pronunciation of the -s suffix in Dutch antilopes might be
strongly influenced by antilopen exemplars because the -en form
is much more frequent for this noun. Cohen (2015) argues that
the nature of this influence can be predicted by comparing the
target pronunciation and the coactivated pronunciation. In our
example, final [s] in the target pronunciation [Antilop@s] would
be reduced because the coactivated pronunciation [Antilop@]

does not have a final [s] (the /n/ in the -en suffix is usually
omitted). However, if the target form, e.g., piramides, is more
frequent than the coactivated form, piramiden, we would expect
the [s] in the target pronunciation to be less reduced. According
to this account, then, paradigmatic enhancement reflects a
relative lack of reduction due to the relative infrequency of
coactivated word forms. While direct phonetic influence of the
coactivated variants on pronunciation works for this example
and the phenomena described by Cohen (2014) and Cohen
(2015), it does not explain other manifestations of paradigmatic
enhancement (e.g., Tomaschek et al., 2021b). It may also be
that coactivation of paradigmatic alternatives indirectly disrupts
articulation of the target form. Bell et al. (2020) propose that
enhancement of a particular segment depends on the amount
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of activation available for its articulation, which in turn is
decreased by paradigmatic alternatives with a different (or
no) segment in the same position. In such an account, a
strong representation of an alternative plural variant would take
away activation from the articulation of final [s], resulting in
reduced pronunciation. Regardless of the precise implementation
of reduction, an account in which articulation is affected by
coactivated representations of paradigmatic alternatives may
explain why produced forms with higher frequencies relative to
paradigmatic alternatives have less reduced pronunciations.

1.2. Interactions Between Paradigmatic
Relations
While it has been shown that base-complex relations and
relations between paradigmatic alternatives affect production, it
is unknown whether these different within-paradigm relations
interact with each other. Such an interaction might be expected
given previous theoretical assumptions about the respective
relations. The first assumption is that the base-complex frequency
relation (e.g., piramide-piramides) reflects the representational
strength of complex words (e.g., Hay, 2001). Whether this
assumption applies to Dutch variable plurals is tested separately
in our Study 1. The second assumption (as proposed by
Cohen, 2015) is that the degree of paradigmatic enhancement
depends on the representational strengths of the produced form
(e.g., piramides) and the co-activated alternative form (e.g.,
piramiden). If we apply the definition of representational strength
in the first assumption to the second assumption, a hypothesis
can be constructed about how paradigmatic enhancement should
be affected by an interaction between base-complex relations and
relations among paradigmatic alternatives. The first assumption
implies that the greatest disparity in representational strength
between paradigmatic alternatives can be found if one alternative
(A1) is much more frequent than the base form (B) whereas the
other alternative (A2) is much less frequent compared to the base
(i.e., A2 < B < A1). According to the second assumption, we
would expect to see a strong paradigmatic enhancement effect in
this case. Conversely, if both alternatives are much less frequent
than the base (i.e., A1, A2 < B), we would not expect to see a
strong paradigmatic enhancement effect. In terms of processing
mechanisms, this means that a paradigmatic enhancement effect
would not be expected to surface if production of paradigmatic
alternatives might be mostly computational, i.e., if production
does not involve strong representations of complex words.
Applied to Dutch variable plurals, this interaction hypothesis
would predict that the relative frequency of plural variants
has a greater effect on pronunciation if the noun paradigm is
plural-dominant. After all, in plural-dominant paradigms the
differences in representational strength between plural variants
are potentially greatest (i.e., A2 < B< A1; or A1< B< A2). This
interaction hypothesis is tested in our Study 2.

Dutch plural variation has a number of features that makes
it a suitable phenomenon to test the interaction between base-
complex relations and relations among paradigmatic alternatives.
Firstly, as the plural variants have the same morphological
function (see also morphological overabundance; Thornton,

2019), they form paradigmatic alternatives in every context.
Consequently, the context of the plural variants does not need
to be controlled in an experiment to collect enough data points,
which means that the relations among plural variants can be
studied in natural communicative settings. Secondly, for Dutch
variable plurals the base-complex relation and the relation
between paradigmatic alternatives are not conflated. Such a
conflation of relations can be found in English verb agreement
to collective nouns: in the the family seem/seems example, seem
is both the base form and the alternative of seems (see also
Cohen, 2014). Finally, the range of relative frequencies between
the members of the noun paradigms that contain variable
plurals is large enough to measure their effect on pronunciation.
Importantly, given the assumption that the frequency of a
complex word relative to its base reflects how it is processed,
paradigms should be included in which the singular base is more
frequent than the complex plurals as well as paradigms with
relative frequencies in favor of the plural forms. Conveniently, a
fair number of Dutch nouns are plural-dominant, providing the
necessary spread in the relative frequency between complex and
base forms. In sum, Dutch variable plurals provide an excellent
opportunity to investigate how the different relations within
paradigms interact during production.

1.3. The Present Studies
The current research approaches the interaction between
singular-plural relations and relations among plural variants in
two studies. The first study tests whether previous assumptions
about the singular-plural relation for invariable plurals and
base-complex relations in general also apply to variable plurals.
The second study of this research tests whether the singular-
plural relation interacts with the relation between plural variants
in affecting the processing of variable plurals. In both studies, we
will focus on how production of a single variant is affected by
paradigmatic effects. Specifically, we will focus on the -s variant
because affixes realized as [s] have reliably shown morphological
effects on duration in previous research (e.g., Walsh and Parker,
1983; Cohen, 2014; Plag et al., 2017, 2020; Tomaschek et al., 2021a
for -s suffix in English; Kuperman et al., 2007 for -s- interfix
in Dutch).

Our first study tests the association between the base-
complex frequency relation and the representational strength of
complex words. As strong representations have been argued to
limit the influence of generalization (e.g., Divjak and Caldwell-
Harris, 2019), this association can be evidenced by showing
that relatively frequent complex words are less affected by
generalization. Specifically, our first study investigates whether
PLURAL DOMINANCE, measured as the combined frequency
of the plural variants divided by the frequency of the singular
form, moderates the influence of phonological generalizations
on the choice between plural variants. It has been shown that
phonological generalizations can be used to accurately predict
the plural suffix of many Dutch nouns (Baayen et al., 2002;
Keuleers et al., 2007). Given psycho-linguistic studies on PLURAL

DOMINANCE (Baayen et al., 2008; Beyersmann et al., 2015),
we would expect that the plural variant of plural-dominant
plurals is harder to predict using phonological patterns. In
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order to test the predictability of a plural variant, we needed
a measure of the distribution of plural variants that would
be predicted by phonological generalizations and a measure of
the actual distribution. The actual distribution can be extracted
from a corpus of written Dutch. By counting the number of -
s (e.g., piramides) tokens and the number of competing (e.g.,
piramiden) tokens, the ratio of -s tokens, henceforth -S BIAS,
can be computed for each noun. The predicted distribution
can be obtained using a computational model that predicts
the plural variant based on phonological features of the noun.
We adopted the analogical model of Dutch plural formation
described by Keuleers et al. (2007) to predict the plural allomorph
of variable plurals. In this model, which is implemented using
the TiMBL software (TilburgMemory Based Learner; Daelemans
et al., 2018), conflicts between analogies with different nouns
are possible, resulting in uncertainty about the plural allomorph
that should be chosen. By expressing this uncertainty as the
probability of obtaining the -s allomorph and entering it as the
-S PREDICTION variable into a regression model of the -S BIAS,
we can assess the extent to which phonological generalization
predicts the variation. We expect that the positive effect of
-S PREDICTION on the observed -S BIAS will be smaller
for more frequently pluralized nouns, that is, for nouns with
higher PLURAL DOMINANCE. This outcome would support the
hypothesis that the frequency relation between variable plurals
and their singular forms reflects the influence of different
processing mechanisms (generalization vs. whole-word access)
on the production of variable plurals. More generally, such
an outcome supports the assumption that the base-complex
frequency relation reflects the representational strength of
complex words.

In our second study, we test the hypothesis that base-
complex relations interact with relations among paradigmatic
alternatives. Specifically, we used the paradigmatic enhancement
phenomenon to investigate the interaction between the singular-
plural dominance relation and the coactivation among plural
variants. On the basis of Cohen’s (2015) theoretical account
of paradigmatic enhancement, we can predict that a plural
variant that is infrequent relative to its alternative should be
pronounced with amore reduced plural suffix. As such, we expect
that final -s is shorter for plurals with a more frequent -en or
irregular variant. Crucially, we expect that this effect of -S BIAS
is mediated by the PLURAL DOMINANCE measure. For noun
paradigms with high PLURAL DOMINANCE, a low -S BIAS means
that the competing plural variant is frequent relative to both
the -s variant and the singular. As such, the final [s] of these
nouns is expected to be shorter due to interference of the much
stronger representation of the alternative variant. Conversely,
a high -S BIAS for plural-dominant nouns suggests that the -s
variant has a much stronger representation than the alternative
variant, which is therefore not expected to reduce the duration of
final [s]. For infrequently pluralized nouns, i.e., nouns with low
PLURAL DOMINANCE, we do not expect a strong paradigmatic
enhancement effect as neither plural variant is assumed to have
a strong representation. These outcomes would provide evidence
for an account of plural production in which the representational
strength of the plural variants negotiates between the influence

TABLE 1 | Mean, minimum and maximum values of the variables in the

distributional study.

Dependent variable Mean Min. Max.

-s Bias −0.222 −7.749 6.564

Predictors of interest

-s Prediction 0.482 0.000 1.000

Plural Dominance −1.079 −7.726 7.953

Covariate

Plural Frequency 3.329 1.099 8.033

of generalizations across different noun paradigms and the
influence of alternatives within its own paradigm. In such
an account, plural variants that have strong representations
are mostly produced by accessing whole word representations,
whereas plural variants with weak representations are mostly
produced by a generalization mechanism. The influence of the
competing plural variant on production is dependent on its
representational strength relative to that of the produced variant.
More generally, such an outcome would be in line with the
hypothesis that base-complex relations interact with relations
among paradigmatic alternatives.

2. DISTRIBUTIONAL STUDY

2.1. Materials and Methods
2.1.1. Frequency Data
Most of the variables used in this study (see Table 1) were
based on word frequency data. The corpus used to compute
these word frequencies had to meet a number of criteria.
Most importantly, it needed to be sufficiently large. Numerous
examples of variable plurals are discussed in the literature (e.g.,
de Haas and Trommelen, 1993), but many of these are low
frequency words and are therefore not likely to occur frequently
in small text corpora, which would hamper the computation
of reliable ratios of the occurrence of -s vs. other plural affix
variants. The second criterion related to the level of annotation.
Word tokens needed to be morphologically annotated for the
data processing step, which consisted of automatically selecting
nouns, identifying which word forms were part of the same
inflectional paradigm, and distinguishing between invariable and
variable plurals. Finally, we preferred a corpus that was not
solely based on formal written language. This was important as
formal texts aremore sensitive to prescriptive rules and conscious
linguistic processing, which might have limited the amount of
variation in plural suffixes.

The SUBTLEX-NL corpus was found to best match these
criteria. With more than 400,000 unique, morphologically
annotated word forms, it met two of our requirements.
Furthermore, it is based on subtitles, which have word frequency
distributions that have been shown to predict word processing
measures more accurately than frequencies from alternative
sources (Keuleers et al., 2010), presumeably because subtitle
frequencies approximate those in natural speech. Using the
morphological annotations of the SUBTLEX-NL corpus, we
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TABLE 2 | An example of a TiMBL feature vector and class label for the plural vaders “fathers”.

Penultimate syllable Final syllable Plural type

Onset Nucleus Coda Stress Onset Nucleus Coda Stress Final letter

v a – + d @ r – r -s

automatically separated the nouns that had a single plural form
from those that had multiple. As we focused on -s plural
variants, we only considered nouns with multiple plurals if one
of those was an -s variant. From this set of variable plurals,
we manually excluded nouns that were incorrectly identified as
having a variable plural. For instance, certain orthographically
identical but phonologically and semantically separate words
with different plurals, e.g., sportster+s “female athletes” and
sportster+en “sports stars”, were incorrectly conflated under a
single lexical entry. Similarly, we excluded nouns if their different
plural forms had separate (though sometimes related) meanings,
such as wortelen “carots” and wortels “roots” (see Haeseryn
et al., 1997). Other cases we excluded involved incomplete
interfixed compounds, such as functionerings(gesprek) “appraisal
[meeting]”, which were sometimes analyzed as -s plurals by the
morphological tagger used for SUBTLEX. Apart from removing
obvious mistakes, we also excluded plural forms that occur
in very few paradigms such as brandweerman-brandweerlieden
“firefighter(s)”, and -en plurals that could also be analyzed as
infinitive verb forms such as testen in De onderzoeker houdt van
testen “The researcher loves tests/to test”. Finally, we removed
forms that occurred more frequently in foreign utterances than
in Dutch utterances, e.g., rings.

After excluding mistakes and potentially unreliable data, the
selection of variable plurals consisted of 384 noun types. For each
of these nouns the dependent variable -S BIAS was computed by
dividing the number of -s tokens by the number of tokens with
the alternative plural variant and taking the natural logarithm
of the resulting ratio. Additionally, the predictor PLURAL

DOMINANCE was calculated for each noun type by dividing the
total number of plural tokens by the total number of singular
tokens and taking the natural logarithm of the resulting ratio.
Following Cohen (2015), we expressed these within-paradigm
frequency relations using log-transformed ratios to compensate
for the enormous range in token frequencies. A positive log-ratio
indicates that the numerator (e.g., plural frequency for PLURAL

DOMINANCE) is greater than the denominater (e.g., singular
frequency for PLURAL DOMINANCE). The reverse frequency
relation is true for a negative log-ratio, and a log-ratio of
zero indicates that numerator and denominator are equally
frequent. In other words, -S BIAS and PLURAL DOMINANCE are
centered around the point of equal proportion. In addition to the
paradigmatic predictors, the PLURAL FREQUENCY variable was
computed by taking the natural logarithm of the total number
of plural tokens for each noun. For lower values of PLURAL

FREQUENCY, the -S BIAS measure is biased toward 0. In fact, -
S BIAS is exactly 0 for all variable plurals that occur only twice in
the corpus. These plurals were excluded, as they would lead to less

reliable estimates of the regression model. The final set consists
of 361 noun types. Section 2.1.3 describes how we used PLURAL

FREQUENCY to account for the tendency of -s Bias toward 0 in
the remaining data when estimating the effects of the predictors
of interest.

2.1.2. Generating -s Predictions With TiMBL
In order to model the influence of between-paradigm relations
on the choice of plural variant, we needed detailed phonological
transcriptions for the nouns that were identified in the SUBTLEX
corpus. As such, we used the CELEX corpus (Baayen et al.,
1996) to collect phoneme and word stress features for the
singulars forms of both the variable and invariable plurals that
were selected from SUBTLEX. In addition to these features,
we also needed a computational model that could use them
to predict the plural variant. We adopted the approach by
Keuleers et al. (2007), who used the TiMBL classifier (Daelemans
et al., 2018) to implement a probabilistic model based on
phonological and orthographic analogy that predicts the suffix
of Dutch plurals. In this approach, each plural was represented
as a vector of phonological and orthographical features and a
class label indicating the correct plural type; see Table 2 for the
example vaders.

In the present study, we recognized 3 plural suffix types: -s,
-en, and other. TiMBL uses the k-nearest neighbors algorithm
(kNN) to predict the plural suffix of noun types that are unseen
by TiMBL. This algorithm compares the feature vector of an
unseen noun to the feature vectors of nouns for which the
plurals are known. The noun with the feature vector most similar
to that of the unseen noun is the closest neighbor at k = 1.
Similarly, the second-most similar noun is at distance k = 2, et
cetera. Consequently, if the parameter k is set to larger numbers,
more dissimilar nouns are considered in the comparison. In the
standard configuration of the kNN algorithm, the unseen noun is
assigned the plural type that was associated with the majority of
the neighbors. If distance weighting is enabled, closer neighbors
count for more than distant neighbors.

Although this standard implementation of TiMBL has been
shown to model phonological factors on invariable Dutch plurals
quite well (Keuleers et al., 2007), its categorical output is not
a very useful predictor for variable plurals. Therefore, we had
our TiMBL model produce two types of output: categorical
classifications for training and validation based on the invariable
plurals, and continuous probabilities for prediction of the
variable plurals. Accordingly, we separated our plural data into
a training set, which consisted of 9908 invariable plural types, a
validation set, which contained another 1532 invariable plurals,
and a test set, which contained 361 variable plurals. The model
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TABLE 3 | Beta-binomial model of -s Bias.

µ Coefficients Estimate Std. Error z-value p

Intercept 0.588 0.277 2.123 0.034

-s Prediction −1.238 0.497 −2.493 0.013

Plural frequency −0.379 0.063 −5.974 0.000

Plural dominance −0.058 0.069 −0.833 0.405

-s Prediction : Plural frequency 0.614 0.114 5.392 0.000

-s Prediction : Plural dominance −0.248 0.120 −2.069 0.039

φ Coefficients Estimate Std. Error

Intercept 0.350 0.016

p-values were estimated using Wald tests.

was subsequently trained and optimized on the training and
validation sets using categorical labels. This process involved
comparing the validation accuracies for every combination of the
hyperparameters listed in Supplementary Table 1.

The best validation accuracy of 0.949 was achieved by a
model that used inverse distance decay with k=5, trained
on type merged data with feature vectors of 2 syllables
(see Supplementary Table 1 for descriptions of features).
Subsequently, this model was used to provide probabilities of the
respective plural classes for the variable nouns in the test set. The
predictor of interest -S PREDICTION (see Table 1) was extracted
from the resulting probability distributions.

2.1.3. Modeling -s Bias
To assess the potential for collinearity in our data, we calculated
correlations between all the variables in this study. None of
the pairwise Pearson correlations between predictor variables
exceeded r = 0.20 (see Supplementary Figure 1 for full
documentation of all correlations).

In choosing an appropriate statistical model of the interaction
effect between PLURAL DOMINANCE and -S PREDICTION on -
S BIAS, we considered the nature of the dependent variable. As
-S BIAS can be described as a log odds ratio, a binomial model
seemed the obvious choice. Binomial models are suitable for
our data as they can take into account differences in sample
size, i.e., plural frequencies, when calculating the standard errors
of the estimated log odds. However, when we considered that
the dependent variable is based on characteristics of specific
words (see language-as-fixed-effect fallacy, Clark, 1973), it became
clear that regular logistic regression would lead to a poorly
estimated model. We know from research on invariable Dutch
plurals (Keuleers et al., 2007) that the choice of allomorph does
not always follow a predictable pattern. A calculation based on
the data from Keuleers et al. (2007) shows that around 9% of
invariable plurals does not have the allomorph predicted by
TiMBL. In other words, for some nouns the choice of plural
allomorph is noun-specific. Likewise, we might expect that
the distribution of plural variants for certain variable plurals
is at least partly specific to the noun. It is therefore likely
that modeling -S BIAS using logistic regression would lead
to overdispersion, i.e., a case in which the data show more

variability than expected on the basis of a regular binomial
model. After all, simple logistic regression assumes that the
-S BIAS of each noun can be predicted exclusively from
fixed effects (e.g., phonological patterns). Instead, an approach
was needed which treated the underlying probability of an -
s variant as a random variable. Although random structure
in binomial data can be modeled using generalized mixed
effects models, previous research has shown that beta-binomial
regression more reliably results in robust parameter estimates
(Harrison, 2015). Beta-binomial regression assumes that the
probability parameter of the binomial model is randomly
chosen from a beta-distribution for each noun. The additional
free parameter of this beta-distribution is estimated when
the beta-binomial model is fitted. This allowed us to model
both fixed and noun-specific effects on -S BIAS. As such,
we used beta-binomial regression, as implemented in the R
package aods3 (Lesnoff and Lancelot, 2018), to model -S BIAS.
Model diagnostics did indeed reveal that a beta-binomial model
fitted the data significantly better than a binomial model, see
Supplementary Figure 2.

The -S PREDICTION × PLURAL DOMINANCE interaction
was included to test our hypothesis that the representational
strength of a plural limits the degree to which the choice between
plural variants is governed by analogical generalization. We
expected that higher values of PLURAL DOMINANCE, which are
assumed to reflect stronger plural representations, would be
associated with a weaker relation between -S PREDICTION and -S
BIAS. Additionally, the -S PREDICTION × PLURAL FREQUENCY

interaction was included to account for the tendency of -S BIAS
toward 0 for infrequent plurals. Biased values of -S BIAS for
low frequency plurals limit the amount of variance that can be
explained by -S PREDICTION. As such, we expected that the
positive relation between -S PREDICTION and -S BIAS would
diminish for lower values of PLURAL FREQUENCY. By accounting
for this effect, the estimation of the -S PREDICTION × PLURAL

DOMINANCE interaction should be less influenced by the limited
effect of -S PREDICTION at lower PLURAL FREQUENCY.

2.2. Results
Table 3 summarizes the outcome of the fitted beta-
binomial model of -S BIAS. The µ coefficients describe
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FIGURE 1 | Partial effect plot for the -S PREDICTION × PLURAL DOMINANCE

interaction in the model of -S BIAS. PLURAL FREQUENCY is held constant at the

median value. Coloured bands reflect 95% confidence intervals.

the average relations between the predictors and -S BIAS.
The φ coefficient, a dispersion parameter, describes the
estimated shape of the underlying probability distribution of
-S BIAS.

Table 3 reveals a significant interaction between the predictors
of interest, -S PREDICTION and PLURAL DOMINANCE. The fitted
lines in Figure 1 illustrate the estimated effect of -S PREDICTION

on -S BIAS at different values of PLURAL DOMINANCE. A
PLURAL DOMINANCE of 4 amounts to a plural/singular ratio
of more than 50/1 and it is indicated by the dashed line with
an orange confidence band; a value of 0 corresponds to a
plural/singular ratio of exactly 1/1 which is represented by the
dotted line with a blue confidence band; and a value of –4
reflects a plural/singular ratio of less than 1/50 and it is visualized
by the solid line with a teal confidence band. As PLURAL

DOMINANCE decreases, the slopes of these lines increase. This
result is in line with our expectations, which suggested that
generalization, represented by -S PREDICTION, mainly affects
the plural variation of plurals with less representational strength
(PLURAL DOMINANCE).

Additionally, Table 3 indicates a significant interaction
between -S PREDICTION and PLURAL FREQUENCY. The fitted
lines in Figure 2 visualize the effect of -S PREDICTION on -S BIAS
at different values of PLURAL FREQUENCY. The log-transformed
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FIGURE 2 | Partial effect plot for the -S PREDICTION × PLURAL FREQUENCY

interaction in the model of -S BIAS. PLURAL DOMINANCE is held constant at the

median value. Coloured bands reflect 95% confidence intervals.

values of 2, 4, and 6 correspond to approximate untransformed
frequencies of 7, 55, and 403, respectively. As illustrated by the
nearly horizontal line, -S PREDICTION does not have a clear
effect on -S BIAS for nouns with low PLURAL FREQUENCY.
Conversely, for nouns with high PLURAL FREQUENCY, the rising
line indicates a positive effect of -S PREDICTION on -S BIAS. This
interaction was expected because -S BIAS has a tendency toward
0 for low frequency nouns.

3. DURATIONAL STUDY

3.1. Materials and Methods
3.1.1. Acoustic Data
The speechmaterial analyzed in this study was extracted from the

Dutch speech corpora listed in Table 4. We limited our dataset

to Netherlandic Dutch, as the Dutch-Belgian border coincides
with a different distribution of plural allomorphs for a number

of nouns Goeman et al. (2005). Variable plural tokens were
automatically identified using the orthographic transcriptions of

the speech corpora and the selection of 361 noun types that

occurred with multiple plural forms in SUBTLEX. We arived
at a final dataset after discarding observations that would have
resulted in unreliable duration measurements. This included
tokens in which the final /s/ was preceded or followed by

Frontiers in Psychology | www.frontiersin.org 8 September 2021 | Volume 12 | Article 72001770

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zee et al. Paradigmatic Relations Interact During Production

/s/, /z/, /S/, /Z/, /t/, /d/ or /j/, as it is very difficult to
segment the speech signal into two distinctive sounds in such
cases. Furthermore, in certain recordings that involved multiple
speakers, the respective speakers’ voices were not recorded on
separate audio channels. As a result, overlapping speech in
those recordings is more difficult to segment, and durational
measurements of such data may not be reliable. Therefore, final
/s/ tokens from these recordings were excluded if they occurred
in overlapped speech. The final data set consisted of 594 -s
plural tokens.

The final /s/ duration of the variable plural tokens was
measured by the Kaldi-based (Povey et al., 2011) CLST forced-
aligner (Kuijpers et al., 2018) to limit the influence of human
biases and inconsistencies. The pronunciation dictionary of the
forced-aligner was enriched to allow for reduced pronunciation
variants according to the rules laid out by Schuppler et al. (2011).
The parameters of the forced-aligner were validated on a separate
set of manually annotated utterances in the Spoken Dutch
Corpus (Oostdijk, 2000). Using this procedure we selected the
settings that resulted in the smallest number of phonetic feature
changes, insertions or deletions (as measured by weighted feature
edit distance; Mortensen et al., 2016) between the automatic and
manual transcriptions. The extracted segment durations from the
automatically aligned speech were log-transformed to arrive at
our dependent variable -S DURATION.

3.1.2. Predictors
Our paradigmatic predictors of interest -S BIAS and PLURAL

DOMINANCE were extracted from the data set used in
the distributional study. Additionally, we used SUBTLEX to
calculate two alternative measures of lexical representation, -S
FREQUENCY and RELATIVE -S FREQUENCY, which have been
used in previous research. -S FREQUENCY was computed to
represent an account of the lexical representation of the -s
plural based on its log-transformed absolute frequency instead
of paradigmatic relations (e.g., Schuppler et al., 2012). We
also included the RELATIVE -S FREQUENCY to account for
the proposal that paradigmatic effects should be measured by
dividing the frequency of the -s plural by the lexeme frequency
and log-transforming the resulting proportion (e.g., Cohen,
2015).

In order to account for the variance in -S DURATION that is
unrelated to our paradigmatic predictors, we included a number
of covariates. Specifically, we used covariates that have been used
in previous studies that looked at segmental durations in corpus
data (e.g., Plag et al., 2017).

One of the more obvious influences on segmental duration
comes from the relative speed with which the surrounding
speech is uttered. We measured this influence using two different
variables. Firstly, SPEECH RATE was calculated in syllables
per second by counting the number of syllables in the current
utterance and dividing it by the duration of the utterance.
Utterances were defined as uninterrupted chunks of speech. The
number of syllables was determined by counting the number of
vowels that were recognized by the forced aligner. Secondly, BASE
DURATION was defined as the natural logarithm of the duration
of the word excluding the final /s/. This measure was included

to account for the variation in local speaking rate that was not
captured by the speech rate variable.

The duration of final /s/ might also be influenced by the
phonological characteristics of the word containing and the word
following it. As such, NUMBER OF SYLLABLES was included as
a variable to account for the segmental reduction that increases
with the number of syllables in a word (e.g., Nooteboom, 1972).
Additionally, the phonetic class of the PREVIOUS SEGMENT

was taken into account, as it might influence the duration of
the final /s/. For instance, final /s/ might be shorter if it
forms a consonant cluster with the preceding segment (e.g.,
Klatt, 1976). The phonetic context following final consonants
has also been shown to influence segmental duration (e.g., Luce
and Charles-Luce, 1985). Therefore, the broad phonetic class
of the NEXT SEGMENT was also included as a variable. We
considered the following classes for PREVIOUS SEGMENT and
NEXT SEGMENT: vowels, liquids, approximants, nasals, fricatives,
plosives and silence.

A number of prosodic variables have been shown to affect
the pronunciation of consonants (e.g., Cho andMcQueen, 2005).
On a word level, stressed syllables result in longer segments.
Therefore, we used CELEX to implement WORD STRESS as
a categorical variable which indicated whether the stressed
syllable contained the final /s/. The larger prosodic context
also influences segmental duration (Cho and McQueen, 2005).
Particularly relevant for the current study is the phenomenon
known as final lengthening, in which segments that occur
before a prosodic boundary are lengthened (e.g., Hofhuis et al.,
1995). Unfortunately, the corpora used in this study were not
prosodically annotated. To get around this problem some corpus
studies (e.g., Plag et al., 2017) use syntactic boundaries instead,
as these sometimes co-occur with prosodic boundaries. We took
a similar approach by generating syntactic annotations using
the dependency parser (Canisius et al., 2006) included in the
FROG natural language processing tool (Hendrickx et al., 2016).
We then derived features from these annotations that have been
shown to predict prosodic boundaries, such as intermediate or
intonational phrase breaks (see features F2–F8 in Ingulfsen, 2004,
pp. 36–38). In order to limit the number of prosodic boundary
variables, we used a principle component analysis to identify 5
principle components, PROSODYPC1−5, that accounted for more
than 94% of the variance described by the 7 original features.

We also considered the distributional characteristics of the
words containing and surrounding the /s/. It has been shown, for
instance, that words which are predictable given the surrounding
words have more reduced realizations (e.g., Pluymaekers et al.,
2005; Bell et al., 2009). As such, we used the NLCOW14
corpus (Schäfer, 2015) to measure the bigram frequency of
the plural and the word preceding it in addition to the
bigram frequency of the plural and the word following it. By
dividing these respective bigram frequencies by the frequency
of the plural form in the NLCOW14 corpus, we calculated
conditional probabilities of the plural form given the preceding
and subsequent word. These were log-transformed, resulting in
PROBABILITY FROM PREVIOUS WORD and PROBABILITY FROM

NEXT WORD, respectively. Similarly, whether or not a word
has been recently mentioned may also affect its pronunciation
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TABLE 4 | Overview of the corpora used in the durational study, including the number of -s plural tokens that were selected.

Register Corpus Reference Tokens

Spontaneous conversation

Spoken Dutch corpus part a

Oostdijk, 2000

196

Spoken Dutch corpus part c 47

Spoken Dutch corpus part d 45

Ernestus corpus of spoken Dutch Ernestus, 2000 9

IFA dialog video corpus van Son et al., 2008 8

News broadcasts Spoken Dutch corpus part k
Oostdijk, 2000

74

Read stories Spoken Dutch corpus part o 215

Total: 594

(e.g., Pluymaekers et al., 2005). This was encoded as the binary
RECENTLY MENTIONED variable by checking whether the same
plural had been uttered in the 30 seconds prior.

Another feature that may influence phonetic reduction
concerns a word’s phonological similarity to other words. This
similarity has been implemented by counting the number of
PHONOLOGICAL NEIGHBORS, which are the words that differ
from the target word by one sound. Higher neighborhood density
has been associated with both more and less reduced segments
(see discussion in Gahl et al., 2012). For each plural, we used the
pronunciation lexicon that came with the CLST forced aligner
(Kuijpers et al., 2018) to find the number of lexical neighbors.

Finally, previous research has shown that more careful speech
is associated with longer durations (e.g., van Son and Pols, 1999).
We expected that some of the speech used in this study, such
as the read-aloud stories, would be more careful compared to
speech from spontaneous conversations. Consequently, speech
REGISTER was the final influence on the duration of final /s/

that we considered. This variable had three levels: Conversation,
Stories and News.

3.1.3. Modeling -s Duration
We used linear mixed effects regression, as implemented in the
R package lme4 (Bates et al., 2015), to model -S DURATION.
By analyzing the effect of the interaction between -S BIAS and
PLURAL DOMINANCE on -S DURATION we hoped to test our
hypothesis that the effect of competition between plural variants
on pronunciation is more noticeable if the plural variants are
representationally strong relative to the singular. Additionally,
we wanted to know how well our paradigmatic predictors
explained differences in -S DURATION compared to alternative
measures like the absolute -S FREQUENCY. As such, we created
multiple models.

First, we fitted a Paradigmatic model containing -S BIAS,
PLURAL DOMINANCE and their interaction term, all covariates,
and random intercepts for SPEAKER and NOUN, which was
the maximal random structure that was supported by the data.
Additionally, we fitted two alternative models in which the -
S BIAS and PLURAL DOMINANCE variables were replaced by
alternative measures of representational strength. In the Absolute
frequency model we replaced the paradigmatic measures with
a single -S FREQUENCY predictor. We also fitted a Relative

frequency model, in which we used the RELATIVE -S FREQUENCY

measure. Using the AIC scores of the resulting three models,
we calculated their relative likelihood to determine whether our
paradigmatic predictors provided the best fit to the data.

Subsequently, we wanted to interpret the predictors of interest
in our paradigmatic model. As such, we needed to avoid
collinearity between our predictors of interest and any covariates.
To assess the potential for collinearity in our data, we calculated
correlations between all covariates and our predictors of interest;
see Supplementary Figure 3. This showed us that -S BIAS was
correlated (Pearson’s r ≥ 0.4) with the covariates WORD STRESS

and NUMBER OF SYLLABLES. This was not very surprising, as
both of these covariates can be related to the stress pattern of a
noun, which has been shown to affect the choice of plural suffix
(Baayen et al., 2002). Removing these covariates would make
sure that they could not lead to collinearity issues. However, we
wanted to make sure that any potential effect of -S BIAS and
its interaction with PLURAL DOMINANCE would not actually
be better modeled by the correlated covariates. Therefore, we
fitted three linear regression models of -S DURATION: for -S
BIAS, WORD STRESS and NUMBER OF SYLLABLES, respectively.
Each model contained one of the three correlated variables,
the PLURAL DOMINANCE variable and their interaction. An
AIC comparison showed that the model containing -S BIAS
performed best. As such we excluded the correlated covariates
from further analysis. Starting from the resulting Paradigmatic
model, we used backward elimination (as implemented in
Kuznetsova et al., 2017) on to arrive at a model in which only
the significant predictors remained. After fitting the model with
the remaining variables, we trimmed the data with residuals
that exceeded 2.5 standard deviations and refitted the model on
the trimmed data set, following Baayen (2008). The residuals of
this final model were approximately normally distributed, see
Supplementary Figure 4.

3.2. Results
The full paradigmatic model of -S DURATION containing the
-S BIAS × PLURAL DOMINANCE interaction had an AIC of
690.90. By comparison, the best performing alternative model,
which contained the -S FREQUENCY predictor, had an AIC of
697.86; see Supplementary Table 2 for full models. This means
that the Absolute frequency model was exp( 690.90−697.86

2 ) = 0.031
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TABLE 5 | Mixed effects model of -s Duration.

Fixed effects Estimates Std. Error t-value p

Intercept −2.610 0.038 −68.979 0.000

Speech rate −0.142 0.018 −7.891 0.000

ProsodyPC2 0.034 0.016 2.124 0.034

Next segment: Approximant −0.334 0.071 −4.713 0.000

Next segment: Fricative −0.187 0.047 −3.982 0.000

Next segment: Liquid −0.219 0.191 −1.145 0.253

Next segment: Nasal −0.077 0.078 −0.995 0.320

Next segment: Plosive −0.096 0.070 −1.369 0.172

Next segment: Silence 0.562 0.042 13.523 0.000

Register: Stories 0.170 0.039 4.374 0.000

Register: News 0.016 0.069 0.233 0.817

-s Bias −0.000 0.007 −0.058 0.954

Plural Dominance −0.023 0.010 −2.432 0.015

-s Bias : Plural Dominance 0.017 0.004 4.271 0.000

Random effects Variance Std. Deviation

Speaker (Intercept) 0.019 0.137

Residual 0.125 0.353

p-values were calculated using Satterthwaite’s method. Reference levels are Next segment: Vowel and Register: Conversation.

times as likely to minimize the information loss compared to the
Paradigmatic model (Burnham and Anderson, 2004). In other
words, the Paradigmatic model performed much better than the
models with alternative measures of representational strength.

Table 5 summarizes the parameters of the final model, that is,
the Paradigmatic model after removal of correlated covariates and
insignificant predictors. In addition to the -S BIAS × PLURAL

DOMINANCE interaction, this model contains the covariates
SPEECH RATE, PROSODYPC2, NEXT SEGMENT, and REGISTER

and the random variable SPEAKER. As indicated by the estimates
in Table 5, the covariates show the expected effects, e.g., a higher
SPEECH RATE reduces -S DURATION and a subsequent Silence
is associated with a longer -S DURATION. Importantly, Table 5
also reveals a significant interaction between the predictors of
interest, -S BIAS and PLURAL DOMINANCE. The fitted lines
in Figure 3 illustrate the estimated effect of -S BIAS on -S
DURATION at three different values of PLURAL DOMINANCE

(see section 2.2 for interpretation of these values). At high
PLURAL DOMINANCE, the slope of the line is positive, which
means that final -s becomes longer if -S BIAS becomes larger.
This result supports the expected paradigmatic enhancement
effect. Unexpectedly, we find the opposite effect at low PLURAL

DOMINANCE: for these nouns, final -s becomes shorter as -S
BIAS becomes larger. We expected that -S BIAS would have very
little effect on -S DURATION at negative PLURAL DOMINANCE,
resulting in a horizontal line. However, the model predicts that
the paradigmatic enhancement effect is already nullified at a
PLURAL DOMINANCE of zero. In noun paradigms with negative
PLURAL DOMINANCE, a reduction effect is predicted.

4. DISCUSSION

The current research explored how paradigmatic structure relates
to the mechanisms that are involved in the processing of
complex words. Dutch variable plurals were chosen as the
subject of inquiry, as they are involved in paradigmatic relations
that have been associated with generalization, storage and
coactivation mechanisms.

In our first study we investigated whether the singular-plural
frequency relation of a noun influences the distribution of its
plural variants in a Dutch subtitles corpus. We hypothesized
that the distribution of variants for nouns with higher PLURAL

DOMINANCE would be less predictable by a measure of
phonological generalization. The results supported this account
by showing that the positive effect of the generalization measure
-S PREDICTION on the distributional measure -S BIAS decreases
with higher values of PLURAL DOMINANCE. These findings are
in line with previous accounts of invariable plurals (Baayen
et al., 2008; Beyersmann et al., 2015) which suggest that higher
plural dominance limits the influence of generalization on plural
processing. Presumably, plural-dominant variable plurals are less
affected by generalization because they have representations that
are more stable or are easier to retrieve during the speech
production process. The distributional results also contribute to
the wider discussion about the role of token frequency in the
generalization of morphological exponents. Whereas, previous
distributional research has generally focused on absolute token
frequency as an inhibitor of generalization (e.g., Cuskley et al.,
2014), this study showed that frequency relative to the base form
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FIGURE 3 | Partial effect plot for the -S BIAS × PLURAL DOMINANCE interaction

in the model of -S DURATION. Coloured bands reflect 95% confidence intervals.

may also affect the scope of general phonological patterns1 (see
also Tiersma, 1982; Collie, 2008).

The goal of the second study was two-fold. Firstly, we wanted
to investigate whether the paradigmatic enhancement hypothesis
applies to Dutch variable plurals. That is, an -s plural variant
that is more frequent than its alternative should be phonetically
enhanced compared to an -s variant that is less frequent than its
alternative. This hypothesis was based on the assumption that
the more frequent -s variant has a stronger representation and
therefore its pronunciation is less affected by the coactivated
representation of the alternative variant. Additionally, we
hypothesized that such a paradigmatic enhancement effect
should primarily occur in noun paradigms with relatively high
PLURAL DOMINANCE. This qualification was based on the
assumption that the representational strengths of plural variants
primarily depend on their frequencies relative to the singular.
As such, we expected that the differences in representational

1A reviewer pointed out that the interaction effect of our absolute token frequency

measure, PLURAL FREQUENCY, and our generalization measure, -S PREDICTION,

seems to suggest that higher token frequency facilitates generalization, which

would be completely contrary to previous findings. However, this interaction is

confounded by sampling bias: a frequent plural is more likely to show variation

compared to an infrequent plural, especially when the general patterns strongly

favour a particular variant. As we only included plurals that showed variation in

our data set, this resulted in a better match between -S PREDICTION and observed

-S BIAS for high frequency plurals. The interaction between the absolute token

frequency and the generalization measure was included to account for the effect of

this bias in the estimation of the other predictors, see section 2.1.3.

strengths measured by -S BIAS would be greatest at high PLURAL

DOMINANCE. The results revealed an interaction effect of -S
BIAS and PLURAL DOMINANCE on -S DURATION. For plural-
dominant plurals, a higher -S BIAS was associated with a longer
-S DURATION, which suggests that paradigmatic enhancement is
reflected in our data. This finding supports previous accounts of
paradigmatic enhancement that interpret the frequency relation
between paradigmatic alternatives as a measure of their relative
representational strengths Cohen (2014, 2015). Furthermore, the
results showed that an increased -S BIAS was associated with a
shorter -S DURATION for singular-dominant plurals, which was
surprising as we expected that the pronunciation of infrequently
pluralized plurals would not be affected by the frequency relation
between variants. Nonetheless, this interaction effect was in
line with our hypothesis that paradigmatic enhancement would
primarily affect plural-dominant plurals. As such, this study is the
first to provide evidence that, in certain paradigms, paradigmatic
enhancement is mediated by the base-complex relation.

By combining the findings from both studies, we might better
understand the unexpected reduction effect of -S BIAS on -S
DURATION for singular-dominant plurals that was observed in
our second study. The interpretation of the -S BIAS predictor
is crucial to this understanding. The combined results suggest
that what -S BIAS represents depends on the value of PLURAL

DOMINANCE. At high PLURAL DOMINANCE, the paradigmatic
enhancement effect in the durational study suggests that -S BIAS
is a measure of the representational strength of the -s variant
relative to its competitor. However, at low PLURAL DOMINANCE,
the distributional study suggests that -S BIAS represents the
amount of phonological support from similar paradigms, i.e., the
-S PREDICTION. In formulating the hypotheses for the duration
study, we did not consider that increased analogical support
could result in the reduction of final -s, given the lack of
precedents for such an effect (but see gang size effect in Tucker
et al., 2019). However, the association of reduced final -s with
increased -S PREDICTION would fit the more general theory that
predictable linguistic elements are reduced (e.g., Bell et al., 2009).
Importantly, as this explanation assumes that -S BIAS primarily
reflects -S PREDICTION for singular-dominant nouns, it does not
conflict with our account of paradigmatic enhancement, which
mostly affects frequently pluralized nouns.

The combined results have implications for psycholinguistic
models of morphological processing. These models can be
categorized according to the relative importance they attribute
to abstract rules and lexical storage (see the overviews in Arndt-
Lappe and Ernestus, 2020; Fábregas and Penke, 2020). At one
end of the spectrum are models that emphasize the role of
rules in explaining the paradigmatic structure that arises from
commonalities in form and function among the words of a
language. In these models, complex words are only stored if
they do not submit to morphological rules (e.g., Wunderlich,
1996). Such models often assume that stored exceptions to
the rule do not influence regular application of the rule.
Our results suggest that the base-complex frequency relation
indicates the extent to which variable plurals follow the morpho-
phonological rules. As this frequency relation must be stored
somehow, either in representations of individual nouns or in
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weighted connections between morphological exponents and
specific semantic representations, the current research questions
the complete separation of generalization and storage in rule-
based models.

In a second category of models, both abstract rules
and lexical storage may affect the production of complex
words (see Arndt-Lappe and Ernestus, 2020). In one such
a model, the Parallel Dual Route Model (e.g., Baayen et al.,
1997b), production of a complex word involves simultaneous
retrieval of the complex representation and composition
involving the base representation. The relative speed of the
composition and retrieval routes determines which route affects
production the most. In some dual route models, complex
words that are less frequent than their bases are assumed
to be more easily (de)composable Hay (2001), which would
speed up the (de)composition route. This conceptualization
of the base-complex relation can be applied to the PLURAL

DOMINANCE variable in our studies. It would predict that
singular-dominant plurals are produced using the composition
route, whereas plural-dominant plurals are primarily produced
using the retrieval route. Such an account would explain
why the distribution of plural variants in singular-dominant
noun paradigms follows phonological patterns. It would also
explain why plural variants in plural-dominant noun paradigms
are subject to paradigmatic enhancement. At high PLURAL

DOMINANCE, an -s variant with high -S BIAS would be more
frequent than the singular. As such it would be produced using
the retrieval route, and its pronunciation would not be affected
by the alternative variant. However, an -s variant with low -S BIAS
would likely be less frequent than the singular while its alternative
would be more frequent compared to the singular. The -s variant
would then be produced using the composition route, and its
pronunciation would be affected by the alternative variant, which
was simultaneously activated through the retrieval route.

In a third category of models, processing of complex words
involves no abstract computation. In those word-based models
(e.g., Bybee, 1995), paradigmatic enhancement findings are easily
accounted for, as all word forms including their frequencies
of occurrence can be stored. Analogy between stored word
forms can be used to explain morpho-phonological patterns
across paradigms. Our first study showed that such an analogical
mechanism can also account for variation observed for Dutch
variable plurals. The reduced influence of analogy on the
production of plural-dominant nouns can be explained through
a weaker activation level of the singular representation relative
to the plural representation: a relatively infrequent singular form
results in decreased activation of a noun’s singular representation,
which, in turn, leads to decreased analogical influence of other
noun paradigms with phonologically similar singular forms. As
such, models without a separate rule-based processing route can
account for the Dutch variable plural data as well.

The current findings shed light on how paradigmatic relations
may be related to the mechanisms that are involved in the
processing of complex words. While the results cannot be
explained by the mechanisms of a primarily rule-based model,
both a dual-route model and a word-based model are compatible
with the results. Regardless of theoretical framework, the novel

implication of this research is that the role of the base-
complex relation, whether it is conceptualized using activation
levels or (de)composability, should be considered when the
effect of additional within-paradigm relations, such as those
between plural variants, are investigated. It follows that measures
which conflate base-complex relations and relations among
paradigmatic alternatives, such as form frequency relative to
lexeme frequency, might not adequately capture how processing
mechanisms interact. This was evidenced in our durational study
by the fact that the model which distinguished between -S BIAS
and PLURAL DOMINANCE predictors performed much better
than the model that combined them into a single RELATIVE -
S FREQUENCY predictor. More generally, these findings show
that the nature of the individual morphological relations within
a paradigm should be considered when their effect on processing
is investigated.

In addition to providing answers about paradigmatic
relations, our findings also raise questions. This research was
concerned with paradigmatic relations and their psycholinguistic
relevance during speech production. It would therefore be
interesting to know whether our interpretations of the -S
BIAS, PLURAL DOMINANCE and -S PREDICTION relations are
representative for the processing mechanisms of individual
speakers. However, these relations were measured using type
and token frequencies from corpus data. As Blumenthal-Dramé
(2012) points out, corpus frequencies do not necessarily reflect
the input frequencies of individual language users, but rather
a simplified and likely biased approximation of the input
of multiple language users. With regard to Dutch plurals in
particular, it seems unlikely that all speakers encounter and/or
produce the different variants of a plural with the same -S
BIAS. Presumably, this also leads to differences among speakers
in the processing of variable plurals. It is therefore likely that
the paradigmatic effects found in this research do not affect
the speech of all language users equally. This is particularly
true for the distributional study, as it does not relate the
paradigmatic measures to the production of individual speakers.
Unfortunately, the small size of our data set meant that we could
not investigate inter-speaker differences in the paradigmatic
enhancement effect. Additionally, due to the nature of the data,
we could not take other potentially relevant factors, such as
register, into account in our distributional study. These issues
may be addressed by studies with better control over the
relevant variables.

Furthermore, the findings from the durational study are
primarily relevant for a narrow definition of paradigmatic
enhancement. In this account, the coactivation resulting in
paradigmatic enhancement only involves paradigm members
that occur in the same linguistic context. In other words, the
context works as a filter that determines which representations
are coactivated: in utterances like the boy runs/run/running
only one paradigm member (runs) is likely and therefore no
paradigmatic enhancement effect would be expected. As such,
this account does not provide clear explanations of paradigmatic
enhancement effects on forms that can be predicted from the
communicative context (e.g., Kuperman et al., 2007; Schuppler
et al., 2012). Our research does provide naturalistic support for
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previous experimental findings of paradigmatic enhancement in
which the linguistic context was controlled to allow for multiple
paradigm members (e.g., Cohen, 2014, 2015; Bell et al., 2020;
Tomaschek et al., 2021b).

Regardless of the limitations of the current research, its
relevance is not limited to obscure morphological alternations.
As documented by work on morphological overabundance (e.g.,
Thornton, 2019), the existence of paradigmatic alternatives
is far from exceptional. As such, this research paves the
way for similar investigations of paradigmatic relations using
other overabundance phenomena. Apart from highlighting the
underexplored variation in the realization of complex words,
such research would contribute to morphological theory by
identifying paradigmatic effects on processing that must be
accounted for by psycho-linguistic models. As this research has
emphasized, those paradigmatic effects can only be understood
if paradigmatic relations are considered both individually and
taken together.
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Inflectional values, such as singular and plural, sustain agreement relations between

constituents in sentences, allowing sentence parsing and prediction in online processing.

Ideally, these processes would be facilitated by a consistent and transparent

correspondence between the inflectional values and their form: for example, the value

of plural should always be expressed by the same ending, and that ending should only

express plural. Experimental research reports higher processing costs in the presence

of a non-transparent relation between forms and values. While this effect was found

in several languages, and typological research shows that consistency is far from

common in morphological paradigms, it is still somewhat difficult to precisely quantify

the transparency degree of the inflected forms. Furthermore, to date, no accounts have

quantified the transparency in inflection with regard to the declensional classes and the

extent to which it is expressed across different parts of speech, depending on whether

these act as controllers of the agreement (e.g., nouns) or as targets (e.g., adjectives).

We present a case study on Italian, a language that marks gender and number features

in nouns and adjectives. This work provides measures of the distribution of forms in

the noun and adjective inflection in Italian, and quantifies the degree of form-value

transparency with respect to inflectional endings and declensional classes. In order to

obtain these measures, we built Flex It, a dedicated large-scale database of inflectional

morphology of Italian, and made it available, in order to sustain further theoretical and

empirical research.

Keywords: grammatical gender, grammatical number, adjective inflection, noun inflection, declensional classes,

inflectional morphology, language resource, contextual and inherent inflection

1. INTRODUCTION

Languages can express grammatical features through inflectional morphology. For instance, in
English the singular and plural values of the grammatical feature of number can be expressed
through the forms apple (SG, singular) and apples (PL, plural), whereby the plural form is realized
through the ending -s. On the language processing side, the relevance of the role of inflectional
features for comprehension is attested, for instance, by the ability to pick up inflectional regularities
from the first stages of language development shown by children as young as 12 months (Ferry
et al., 2020). One might expect these processes to be enabled and facilitated by consistency in
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the correspondence between an inflectional feature’s value
and a word form. For example, the value of plural should
ideally always be expressed by the same affix in a certain
language (for a review: Huettig et al., 2011). In line with this
account, transparency does appear to facilitate the acquisition of
inflectional features, as shown in a recent study with Bulgarian-
and Russian-speaking children on the acquisition of grammatical
gender (Ivanova-Sullivan and Sekerina, 2019). Similarly, it
has been noted that, in sentence comprehension, speakers of
morphologically rich languages (like Italian or German) are more
likely to use inflectional cues than speakers of languages having
highly constrained word order (like English; Bates et al., 1982;
MacWhinney et al., 1984; MacWhinney and Bates, 1989) and that
in second language acquisition less proficient speakers are more
likely to rely on ending cues than more proficient speakers and,
as a result, are faster and more accurate in retrieving the gender
of nouns whose endings transparently convey the corresponding
morphological value (e.g., for German-English bilinguals: Bordag
et al., 2006; for Basque-Spanish bilinguals: Caffarra et al., 2017).
Unsurprisingly, a facilitation in the processing of grammatical
gender information when the relation between ending and value
is transparent or regular has been observed in a wealth of studies,
comprising behavioral paradigms (e.g., Bates et al., 1995, 1996;
Taft and Meunier, 1998; Gollan and Frost, 2001; De Martino
et al., 2011), electrophysiological (e.g., Caffarra et al., 2015) and
neural evidence (e.g., Miceli et al., 2002; Russo et al., 2021),
including studies on aphasia and semantic dementia (Luzzatti
and De Bleser, 1996; Lambon Ralph et al., 2011; Franzon et al.,
2013).

1.1. The Form-Function Inconsistency
Issue
However, consistency is not always observed in the inflectional
paradigms of natural languages (Corbett, 2006). In fact, a lack
of transparency between forms and feature values is more the
rule than the exception (e.g., one value expressed through several
different endings, different values expressed through the same
ending, or values apparently expressed by no ending). For
example, in English the plural value is not always conveyed by
the final -s. Cases of allomorphy like ox/oxen, suppletivism like
child/children, and apophony like foot/feet are not infrequent,
such that the very Bloomfieldian notion of morphemes as the
smallest linguistic units bearing meaning (Bloomfield, 1933)
has been questioned (Matthews, 1974; Anderson, 1992; Aronoff,
1994; Baayen et al., 2011). Although these forms can be seen
as sub-regularities (due to the fact that they are fossils of
grammatical rules that are no longer active in a synchronic
perspective, and therefore no longer productive; e.g., Anderson,
1992), they are nonetheless “irregular” since to say that a form
has a regular inflection is to say that it has the inflection
one would expect unless one knew that it was different
(Matthews, 1991, p. 130).

Some accounts suggest that the presence of irregular
inflectional paradigms, which may initially yield errors related
to an over-generalization of regular patterns, ultimately supports
learning processes (Ramscar et al., 2018). Furthermore, as noted

in relation to verb inflection by Marzi et al. (2019), while
one would expect maximal contrast between forms to yield
immediate discrimination and recognition of inflectional values,
this has a cost in terms of the storage space required for too many
different forms. The coexistence of regular and irregular forms
within the language has indeed been ascribed to an inevitable
trade-off betweenmaximal discriminability, on the one hand, and
a degree of regularity sufficient to allow successful generalization,
on the other (Blevins et al., 2017). A way in which this relation
between ambiguity and informativeness of inflectional systems
has been operationalized is the implementation of entropy
metrics (Dye et al., 2017; Mickus et al., 2019;Williams et al., 2020;
Franzon and Zanini, 2021) as defined by Shannon, 19481. In this
sense, entropy allows to quantify the probability for a feature to be
associated to one or more given forms, and vice versa, assessing
the consistency of this association.

1.2. Noun and Adjective Forms in Italian
The inflectional system of Italian nouns and adjectives comprises
four combinations of inflectional values (i.e., masculine singular,
masculine plural, feminine singular, and feminine plural).
However, noun inflection in Italian has hardly been investigated
(Franzon and Zanini, 2021), and an account of adjective
inflection in Italian is completely missing, up to date.
Furthermore, although the reason why form-value inconsistency
occurs for inflectional features is still debated, form-value
inconsistency in Italian inflection has hardly ever been quantified
in these terms. Given that the notion of transparency is pivotal
for psycholinguistic accounts describing the architecture of the
mental lexicon (Crepaldi et al., 2010; Davis and Rastle, 2010;
Amenta and Crepaldi, 2012; Marelli et al., 2015; Milin et al.,
2017; Marelli and Amenta, 2018), measures of the transparency
of the inflectional systems can significantly contribute to the
understanding of how words are processed both in isolation
and in sentence contexts. In the present study, a first step is
taken to assess the extent to which inflectional forms consistently
represent a given value in Italian.We will assess how the inflected
forms of nouns and adjectives are distributed within the finite set
of the combinations of feature values of gender and number.

Indeed, Italian nouns and adjectives are necessarily inflected
for number (singular vs. plural) and gender (masculine vs.
feminine), whose values are both expressed in a single
fusive ending [e.g., gatto “cat(M).SG,” gatta “cat(F).SG,” gatti
“cat(M).PL,” gatte “cat(F).PL”]. Crucially, the endings of Italian
nouns and adjectives cannot be considered unambiguous
formal cues for gender and number values; nonetheless, the
correspondence between forms and functions displays some
recurrent patterns. Nouns have traditionally been divided into
declensional classes according to the inflectional endings of their
singular and plural forms. Considering a declensional class as
a set of lexemes whose members each select the same set of
inflectional realizations (Aronoff, 1994, p. 64), six declensional
classes have been described for nouns in Italian (Iacobini and
Thornton, 2016, p. 195): Class I (SG: -o; PL: -i, libro - libri “book

1H = −
∑

x p(x) log2 p(x) where p(x) is the probability of occurrence of a given

word form.
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- books”); Class II (SG: -a; PL: -e, rosa - rose “rose - roses”); Class
III (SG: -e; PL: -i, fiore - fiori “flower - flowers”); Class IV (SG:
-a; PL: -i, problema - problemi “problem - problems”); Class V
(SG: -o; PL: -a, uovo - uova “egg - eggs”); Class VI (invariable
nouns, various endings: e.g., re “king / kings”). For adjectives, five
declensional classes have been identified (Iacobini and Thornton,
2016, p. 204): Class I (M.SG: -o; M.PL: -i; F.SG: -a; F.PL: -e, bello
- belli - bella - belle “beautiful”); Class II (M.SG and F.SG: -e;
M.PL and F.PL: -i, grande - grandi “big”); Class III (M.SG and
F.SG: -a; M.PL: -i; F.PL: -e, belga - belgi - belghe “Belgian”); Class
IV (M.SG and F.PL: -e; M.PL: -i; F.SG: -a, sornione - sornioni
- sorniona “seemingly friendly”); Class V (invariable adjectives,
various endings: e.g., blu “blue”).

Noun Classes I and II are quite transparent with respect to
gender features (comprising, respectively, mostly feminine and
mostly masculine nouns), and so is adjective Class I. However,
there is no straightforward correspondence between declensional
classes and gender features. This entails that, considering the
whole declensional system, no ending is unambiguously related
to one value, and likewise no value is unambiguously related to
one ending. This is possibly due to the fact that Italian, unlike
languages such as English or Spanish, has a non-additive, non-
sigmatic plural and, in general, its words must end with a vowel.
As such, Italian noun and adjective forms are distributed in a
narrow space subtended by just four vowels: -o, -a, -e, -i. In
principle, a speaker exposed to a novel noun ending in -e, in the
absence of other cues (such as an article or any other determiner),
would not be able to disentangle whether the noun is a feminine
plural of the first class like sedie “chairs,” a feminine singular of the
third class like tigre “tiger,” or a masculine singular of the third
class like elefante “elephant.” Similarly, the masculine singular
value is realized with different endings, such as -o (divano
“couch”) and -e (elefante “elephant”), -a (problema “problem”).

We are aware that in our experience as speakers and
readers we are hardly exposed to nouns in isolation. Therefore,
a transparent form-value relation may not be a necessary
nor a sufficient cue to sustain learning processes. Indeed,
inflection plays a functional role in establishingmorpho-syntactic
agreement (e.g., the apple.SG is.SG red vs. the apples.PL are.PL
red). Agreement can be described as the systematic covariance
between a semantic or formal property of one element and
a formal property of another (Steele, 1978, p. 610). It has
been noted that agreement involving inflectional features, such
as the feature of number with its singular and plural values,
allows to disambiguate the relations between words in sentence
parsing, reducing processing effort by favoring word predictions
(Wicha et al., 2004; Huettig et al., 2011; Dye et al., 2017).
More precisely, nouns are generally the “controllers,” i.e., the
elements that determine the agreement and whose expression
of agreement features is usually covert. On the other hand,
adjectives (as well as other functional elements such as articles)
are “targets,” i.e., the elements whose form is determined
by the controllers (Corbett, 2006). In turn, this relates to
another related aspect, that is, the difference between inherent
and contextual inflection proposed in theoretical linguistics
accounts (Booij, 1993, 1996; Di Domenico, 1997), and seldom
explored experimentally (De Vincenzi and Di Domenico, 1999;

Franzon et al., 2014). Inherent and contextual inflection are
here exemplified, respectively, by nouns, which have an inherent,
context-autonomous gender, and determine the form of other
parts of speech, and adjectives whose gender and number will
be determined by those of the noun they are related to. As we
will discuss in section 4.1.3, this entails interesting differences
in the distribution of inflectional features of Italian nouns and
adjectives. It follows that less variability is expected in the target,
i.e., the adjective forms having contextual inflection, since gender
and number play here a merely functional, context-driven role
and, as such, on the computational side, can serve more for
prediction purposes allowing amaximal discriminability between
gender and number values. A new metric therefore appears more
suitable to quantify form-value consistency, while moving away
from binary, categorical and non-quantifiable distinctions such
as “transparent vs. opaque” or “regular vs. irregular.”

1.3. Objectives of the Study
In Italian, studies concerning nominal inflection or nominal
agreement have often relied on the morphological competence
of the experimenters in controlling the transparency of the
stimuli selection, even when the processing of inflected word
forms was a central part of the study (Luzzatti and De Bleser,
1996; Caffarra et al., 2015; Franzon et al., 2016; Arcara et al.,
2019; Zanini et al., 2020). This shortcoming has been likely
due to the long-standing unavailability of suitable linguistic
resources to measure noun transparency. To our knowledge,
a resource for nominal inflection in Italian was released only
recently: the database DeGNI (De Martino et al., 2019), which
is based on the Colfis corpus (Bertinetto et al., 2005), containing
type frequency information for mostly singular forms. Token
frequency information, which is considered a better estimate of
actual language use, is not provided.

The present work aims at providing an account of the
distributional properties of noun and adjective inflection in
Italian, to quantify the degree of form-value transparency and to
investigate the distribution of forms across inflectional values and
declensional classes. In order to compute such metrics, we built
a dedicate large scale resource: Flex It, a database of inflectional
morphology of Italian, which will be described in section 2. Flex
It is set available as a freely usable resource, with the aim to enable
further empirical and theoretical research.

1.4. Definition of the Terms Used in the
Study
Before moving to a more thorough description of the Flex It
database, it is worth summarizing and defining a few terms used
in this paper (especially in the light of inconsistent terminology
in the literature): word form, any inflected word (e.g., gatti
“cats,” is the Italian plural form of the noun gatto “cat”); ending,
the inflectional termination of a word (e.g., -i in the Italian
noun gatti “cats”); declensional class, set of lexemes whose
members each select the same set of inflectional realizations
(e.g., the Italian nouns gatto “cat,” and cane “dog,” belong to two
different declensional classes since they do not share the same
endings: gatt-o/-i “cat/cats,” vs. can-e/-i “dog/dogs”); feature, any
grammatical characteristic/property for which a word can be
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specified (e.g., Italian nouns can be specified for number: gatto
“cat,” vs. gatti “cats”); value, any possible specification of a given
feature (e.g., in Italian, the feature of number has two values:
singular and plural); token, the total number of occurrences of a
word form in the database (e.g., the plural word form gatti “cats,”
occurs N times); type, every different type of word form in the
database, regardless of its total number of occurrences (e.g., even
if the plural word form gatti “cats,” occurs N times, it is counted
only once).

2. METHODS

2.1. The Flex It Database
In building Flex It, our goal was to gather data for the
present study, as well as to provide a large-scale morphologically
annotated database and set it available for further research. The
database and its descriptive analyses were developed using R (R
Core Team, 2021) and can be downloaded from: https://github.
com/franfranz/Flex_it.

The database contains the token frequencies of 71,954 Italian
word forms (33,637 noun types and 38,317 adjective types),
annotated for inflectional ending, gender, number, declensional
class, lemma, grade of adjectives, raw and standardized measures
of frequency. We obtained token frequency measures from
ItWaC, the largest freely available corpus of Italian, consisting
of 1.9 billion tokens from web-collected texts (Baroni et al.,
2009). While the size and text variety of this corpus suffice
in providing an excellently representative sample of language
use, its morphological tagging is at the part of speech (POS)
level. A finer-grained morphological annotation, comprising also
the indication of gender (feminine - masculine) and number
(singular - plural) feature values for adjective and noun types,
was retrieved from Morph-it!, a list containing approximately
500,000 word forms, tagged for lemma (Zanchetta and Baroni,
2005).

The Flex It database provides morphological information on a
wide scale: besides tags for gender, number and for inflectional
endings, we reported a tag for inflectional class. As stated in
section 1, in Italian, the inflectional ending corresponds to
the last phoneme of a word form, in the noun as well as in
adjective declension. In written text, it will in turn correspond
to the last letter, due to the orthographically transparent writing
system. In order to obtain the inflectional ending, the last
character of each word form was stripped. Inflectional paradigms
were reconstructed by coupling the endings occurring for the
same lemma. Embracing the inherent vs. contextual theoretical
distinction (as discussed in section 1), inflectional paradigms for
nouns include the number values as a two-cell paradigm, whereas
inflectional paradigms of adjectives include gender and number
values as a four-cell paradigm (In other words, the lemma of
a noun is lexically specified for gender, can be inflected in the
singular or in the plural, and thus can assume two combinations
of values. Instead, the form of an adjective is determined by the
values of the noun it modifies and, thus, each lemma can assume
four combinations of values). In some cases, only one form was
attested for a lemma; in this case, a “NA” tag was assigned in
place of the ending not attested in our database even if supposed

from a theoretical point of view. In the case of identical word
forms for the singular and the plural, an “Inv” tag signals the
invariance. In order to avoid some possible confounds derived
from the tagging of the original resources, invariance and other
phenomena that lead to the presence of ambiguous forms had to
be tackled before quantifying the morphological transparency of
inflectional classes and exponents.

2.2. Ambiguous Forms
Some noun types are homograph to other POS, such as
apparecchio noun(M).SG “device,” or verb-I.SG.PRES “I
prepare.” These cases were not problematic for the database, as
we collected the token frequency for the occurrences of words
tagged as nouns in the ItWaC corpus. The same method was
applied to the collection of adjective types homograph to types
tagged as other POS. Similarly, in word forms occurring as nouns
as well as adjectives, such as manifesto noun(M).SG “poster,”
or adj(M).SG “evident,” or sole noun(M).SG “sun,” or adj(F).PL
“alone,” the token frequency measures reported in the noun and
in the adjective lists refer to the occurrences, respectively, tagged
as nouns and as adjectives in the corpus. Since ItWaC is tagged
at the POS level, no confounds should occur in measures taken
on homograph forms belonging to different POS.

Nevertheless, some types sharing the same POS inflected
in different feature values do surface with an identical word
form. This can be due to several factors. In cases like
latte noun(M).SG “milk”/noun(F).PL “tin cans,” the difference
in meaning undoubtedly points to two different lemmas
incidentally surfacing in a homograph form. In other cases,
homography is observed in semantically related words and
has a more systematic aspect due to the intersection of
inflectional classes, as in cameriere noun(M).SG “waiter,” and
noun(F).PL “waitresses”; here, the singular masculine in the e_i
class is confounded with the plural feminine in the a_e class.
Similarly, other types surface in the same word form in the
singular, like musicista noun(M).SG, noun(F).SG “(male/female)
musician,” showing different forms in the plural, respectively,
feminine, musiciste(F).PL “female musicians,” and masculine,
musicisti(M).PL “male musicians.” Other types are identical in
the singular and in the plural: this lack of change of form will
be the hallmark of an “invariant” inflectional class. Finally, some
nouns, mostly denoting humans (portavoce) “spokesperson,”
show the same form for all four features. We collected all the
ambiguous forms, independently of the factors that determine
their ambiguity. Ambiguous forms make up the 0.056 (in
proportion) of the total noun list, and adjectives make up the
0.169 (in proportion) of the adjective list.

In Tables 1, 2, we report the number of ambiguous forms for
nouns and adjectives, respectively, and their occurrence across
the inflectional features. A form is reported as an example for
each kind of ambiguity.

For each of the forms ambiguously surfacing in more than
one combination of feature values, it is possible to retrieve its
type frequency, due to the tag provided by the Morph-it! list.
However, the token frequency for each of these types cannot be
disambiguated into the different values. For example, it is not
possible to state how many of the 5,232 tokens of the word form
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cameriere are occurrences of the type noun(M).SG “waiter” and
how many of the type noun(F).PL “waitresses.” In order to avoid
this potential confound, we considered the type frequencies of
ambiguous nouns in our analysis, but we limited our counts on
the token frequency of non-ambiguous forms.

3. RESULTS

We measured the distribution of Italian nouns and adjectives in
the Flex It database to assess the entropy of the morphological

TABLE 1 | Number of ambiguous noun forms.

Feature values N.forms

F. SG. - F. PL. - M. SG. - M. PL. portavoce “(fe)male spokesperson(s)” 43

F. SG. - F. PL. - M. SG. radio “radio - radios - radius bone” 11

F. PL. - M. SG. - M. PL. marine “marinas - mariner - mariners” 6

F. SG. - M. SG. - M. PL. boa “buoy - boa - boas” 9

F. SG. - F. PL. analisi “analysis - analyses” 246

F. PL. - M. PL. abitanti “female residents - male residents” 190

F. PL. - M. SG. cameriere “waitresses - waiter” 34

F. SG. - M. PL. sequestri “kidnapping unit - requisitions” 1

F. SG. - M. SG. abitante “female resident - male resident” 240

M. SG. - M. PL. quiz “quiz - quiz” 969

Total 1,749

TABLE 2 | Number of ambiguous adjective forms.

Feature values N.forms

F. SG. - F. PL. - M. SG. - M. PL. antidroga “antidrug” 268

F. SG. - F. PL. - M. SG. molle “soft” 9

F. PL. - M. PL. abili “skilled” 2,451

F. SG. - M. SG. abile “skilled” 2,663

Total 5,391

systems with respect to the features of gender and number. To
this end, we considered the distribution of the word forms from
two different points of view: (i) first, the arrangement of the word
forms according to each declensional class (e.g., the amount of
word forms that belong to Class I, sharing the same endings o_i
for the singular and the plural, and convey the value of masculine
vs. the amount of word forms that belong to Class I and instead
convey the value of feminine; section 3.1.1 for nouns and section
3.2.1 for adjectives); (ii) second, the distribution of the word
forms across all possible combinations of values (F.SG, F.PL,
M.SG, M.PL) with respect to each inflectional ending (e.g., the
amount of word forms in -o that convey the value combination
of masculine singular vs. the amount of word forms in -o that
instead convey the value combinations of masculine plural or
feminine singular or feminine plural; section 3.1.2 for nouns and
section 3.2.2 for adjectives).

3.1. Noun Inflection
3.1.1. Declensional Classes
The number of type and tokens for each declensional class are
reported in Table 3. The invariant nouns are grouped together
as a single class “Inv.” The “Other” tag in the table collects
the nouns that would be expected to be invariant but are
attested as inflected in some cases, as sport(M).SG/sports(M).PL
- corpus(M).SG/corpora(M).PL. For each of the declensional
classes, we report an entropy value H, calculated in the way
indicated by Shannon (1948), based on the probability for each
set of endings to realize the feminine or the masculine forms. In
this sense, entropy is a measure of consistency in the association
of a declensional class with a gender value. Low entropy values
correspond to a more stable association between a declensional
class and a gender value.

3.1.2. Inflectional Endings
The distribution of noun types across the four most frequent
inflectional endings -a, -e, -i, -o is reported in Table 4 and plotted
in Figure 1A. The distribution of noun tokens across the four

TABLE 3 | Distribution of noun lemmas across the declensional classes (types - token).

Noun types Noun tokens

Class F. M. Total H F. M. Total H

o_i 2 11,957 11,959 0.0023 442,454 128,733,286 129,175,740 0.033

a_e 8,318 0 8,318 0 81,295,823 0 81,295,823 0

e_i 3,268 3,907 7,175 0.9943 47,533,225 26,577,783 74,111,008 0.9415

a_i 4 932 936 0.0398 207,807 5,900,697 6,108,504 0.2142

o_a 23 23 46 1 405,856 472,125 877,981 0.9959

o_a_i[*] 14 42 56 0.8113 136,379 684,209 820,588 -

Inv 2 40 42 0.2761 893 9,004 9,897 0.4372

Other 55 89 144 0.9594 233,392 979,046 1,212,438 0.7066

[*] In Italian, a handful of nouns can have one form for the singular, but two forms for the plural (e.g., muro(M).SG “wall,” muri(M).PL “walls,” mura(F).PL “city wall”). These forms are

listed as the same lemma in the resources used for the compilation of Flex It. The count for these forms are reported here for informative purposes only. It is not among the scopes

of the present paper to describe these plural forms (e.g., muri(M).PL “walls” and mura(F).PL “city wall”) as resulting from the inflection of the same lexeme or two distinct, although

homophonous, lexemes (each linked to a diverse plural form). For theoretical accounts concerning these forms, see (Acquaviva, 2002, 2008; Thornton, 2013).
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TABLE 4 | Number of noun types for the most frequent inflectional endings.

Nouns - types

Ending F.PL F.SG M.PL M.SG Total H

-a 23 4,331 12 477 4,843 0.5316

(0.0047) (0.8943) (0.0025) (0.0985)

-e 4,286 1,715 3 2,002 8,006 1.4631

(0.5353) (0.2142) (0.0004) (0.2501)

-i 1,667 0 8,661 4 10,332 0.6424

(0.1613) (0) (0.8383) (0.0004)

-o 0 5 7 6,205 6,217 0.0221

(0) (0.0008) (0.0011) (0.9981)

The first column lists the endings, the second to fifth report the counts and probabilities

(the proportional values in brackets) for each combination of features. In the last, we report

the entropy for the ending indicated in the row.

TABLE 5 | Number of noun tokens for the most frequent inflectional endings.

Nouns - tokens

Ending F.PL F.SG M.PL M.SG Total H

-a 405,856 59,533,689 8,213 4,273,650 64,221,408 0.4094

(0.0063) (0.9270) (0.0001) (0.0665)

-e 24,251,151 39,817,093 134 16,710,610 80,778,988 1.4945

(0.3002) (0.4929) (0.000) (0.2069)

-i 11,290,598 0 53,488,244 129,009 64,907,851 0.6868

(0.1739) (0) (0.8241) (0.0020)

-o 0 289,291 5,963 90,593,727 90,888,981 0.0320

(0) (0.0032) (0.0001) (0.9968)

The first column lists the endings, the second to fifth report the counts and probabilities

(the proportional values in brackets) for each combination of features. In the last, we report

the entropy for the ending indicated in the row.

most frequent inflectional endings is reported in Table 5 and
plotted in Figure 1B.

We counted how many forms occur for each combination of
inflectional values. Based on the probability of each ending to
realize one of the possible forms, we calculated the entropy as
a proxy to transparency of each of the endings. Transparency is
related to a low entropy, corresponding to the fact that an ending
is mostly likely to realize a specific combination of values. Such
an ending will be informative of the presence of an inflectional
value or combination of values. The entropy for each ending is
reported in the H columns in the tables, respectively, calculated
on the types and on the tokens.

3.2. Adjective Inflection
3.2.1. Declensional Classes
The number of type and tokens for each declensional class are
reported in Tables 6, 7. We find a consistent representation of
the first and second declensional classes predicted by theoretical
descriptions. Due to the less precise representation of adjectives
in the corpus, possibly related to their lower frequency of
occurrence (as shown in Figures 1, 2), we reported several

defective types for which some inflected forms are not present
in the corpus. In this regard, it is worth noticing that not
all the possible forms of an adjective lemma predicted on a
theoretical basis occur in our database (for example, an adjective
lemma that can be inflected in all combinations of values, i.e.,
F.SG, F.PL, M.SG, and M.PL, is attested only in the F.SG).
Moreover, only the first two declensional classes (which are also
the most represented) include adjective forms per all possible
combinations of values. Hence, the lack of occurrences of
some forms in the database, instead assumed at a theoretical
level, explains the apparent discrepancy between the number
of declensional classes identified in the literature (i.e., five)
and the number of rows in Tables 6, 7 (i.e., 12). For each
of the declensional classes, we report an entropy value, which
refers to the probability for each set of endings to realize the
combination of feminine plural, feminine singular, masculine
plural or masculine singular values. These declensional classes
stem from the realization of an inflected adjective lemma. For
example, the first class collected the lemmas whose occurrences
end in -a in the feminine singular, in -e in the feminine plural,
in -o in the masculine singular and in -i in the masculine plural.
In this case, the transparency of the forms is evident in the
column “Class” of Tables 6, 7, which lists four different forms.
The columns H represents the probability for which each of the
lemmas occurs as inflected in each of the value combination.

3.2.2. Inflectional Endings
The distribution of adjective types across the four most frequent
inflectional endings -a, -e, -i, -o is reported in Table 8 and plotted
in Figure 2A. The distribution of adjective tokens across the four
most frequent inflectional endings is reported in Table 9 and
plotted in Figure 2B. We counted how many forms occur for
each combination of inflectional values. Based on the probability
of each ending to realize one of the possible forms, we calculated
the transparency of each of the endings. Transparency is related
to a low entropy, corresponding to the fact that an ending is
mostly likely to realize a specific combination of values; such
ending will be informative of the presence of an inflectional value
or combination of values.

4. DISCUSSION

For the first time, we measured the distribution of Italian nouns
and adjectives across the feature values for which they can be
specified to assess the entropy of the morphological inflectional
system. For this purpose, we created a large database, Flex It,
combining the corpus ItWaC, the largest freely available corpus
of Italian which is tagged at the part of speech level, and Morph-
it!, a list of word forms comprising a finer-grained morphological
annotation. Based on the probability of the inflectional endings to
convey the possible feature values, we calculated the entropy as a
proxy to transparency of each of the endings. More precisely, we
considered the distribution of the word forms from two different
points of view: (i) the distribution of the word forms across all
possible combinations of values (F.SG, F.PL, M.SG, M.PL) with
respect to each inflectional ending (e.g., the amount of word
forms in -o that convey the value combination of masculine
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FIGURE 1 | Distribution of nouns across the most frequent inflectional endings. (A) Number of noun types for the most frequent inflectional endings. (B) Number of

noun tokens for the most frequent inflectional endings.
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TABLE 6 | Distribution of adjective lemmas across the declensional classes

(types).

Adjectives - types per declensional class

Class F.PL F.SG M.PL M.SG Total H

a_e o_i 5,727 6,068 5,831 6,137 23,763 1.9994

e_i e_i 148 148 148 148 592 2

NA o_i 0 0 285 287 572 1

a_NA NA 0 458 0 0 458 0

NA o_NA 0 0 0 395 395 0

a_e NA 128 131 0 0 259 0.9999

NA_e NA 242 0 0 0 242 0

NA NA_i 0 0 240 0 240 0

NA e_i 0 0 19 19 38 1

e_NA NA 0 11 0 0 11 0

e_i NA 2 2 0 0 4 1

NA e_NA 0 0 0 2 2 0

TABLE 7 | Distribution of adjective lemmas across declensional classes (tokens).

Adjectives - tokens per declensional class

Class F.PL F.SG M.PL M.SG Total H

a_e o_i 12,516,462 24,500,447 15,542,053 27,661,762 80,220,724 1.9292

e_i e_i 49,146 98,955 130,777 157,807 436,685 1.8916

NA o_i 0 0 52,466 165,194 217,660 0.7968

NA_e NA 154,248 0 0 0 154,248 0

NA NA_i 0 0 117,487 0 117,487 0

NA o_NA 0 0 0 82,563 82,563 0

a_e NA 35,220 47,231 0 0 82,451 0.9846

a_NA NA 0 27,666 0 0 27,666 0

NA e_i 0 0 1,891 2,530 4,421 0.9849

NA e_NA 0 0 0 2,167 2,167 0

e_i NA 122 483 0 0 605 0.7252

e_NA NA 0 132 0 0 132 0

singular vs. the amount of word forms in -o that instead convey
the other combinations of values), and (ii) the arrangement of the
word forms according to each declensional class (e.g., the amount
of word forms that belong to Class I, sharing the same endings o_i
for singular and plural, and convey the value of masculine vs. the
amount of word forms that belong to Class I and instead convey
the value of feminine).

4.1. Form-Function Consistency
4.1.1. Transparency of Inflectional Endings
First, we found that masculine singular nouns mostly end in -
o, which is indeed associated to the lower close-to-min entropy
of the distribution (of both types and tokens). A higher entropy
is instead detected for -a (which mostly realizes -but it is not
restricted to- feminine singular forms) and for -i (which mostly
realizes -but it is not restricted to- masculine plural forms). The
highest entropy of the distribution was spotted for -e which is
almost equally likely to form feminine singular, feminine plural,

TABLE 8 | Number of adjective types for the most frequent inflectional endings.

Adjectives - types

Ending F.PL F.SG M.PL M.SG Total H

-a 0 6,657 0 0 6,657 0

(0) (1) (0) (0)

-e 6,097 161 0 169 6,427 0.3434

(0.9487) (0.0251) (0) (0.0263)

-i 150 0 6,523 0 6,673 0.1551

(0.0225) (0) (0.9775) (0)

-o 0 0 0 6,819 6,819 0

(0) (0) (0) (1)

The first column lists the endings, the second to fifth report the counts and probabilities

(the proportional values in brackets) for each combination of features. In the last, we report

the entropy for the ending indicated in the row.

TABLE 9 | Number of adjective tokens for the most frequent inflectional endings.

Adjectives - tokens

Ending F.PL F.SG M.PL M.SG Total H

-a 0 24,575,344 0 0 24,575,344 0

(0) (1) (0) (0)

-e 12,705,930 99,570 0 162,504 12,968,004 0.1620

(0.9798) (0.0077) (0) (0.0125)

-i 49,268 0 15,844,674 0 15,893,942 0.0303

(0.0031) (0) (0.9969) (0)

-o 0 0 0 27,909,519 27,909,519 0

(0) (0) (0) (1)

The first column lists the endings, the second to fifth report the counts and probabilities

(the proportional values in brackets) for each combination of features. In the last, we report

the entropy for the ending indicated in the row.

and masculine singular nouns. Thus, the overall system seems
to reflect the trade-off between maximal discriminability and
maximal regularity that has been argued in the literature for
other languages and other grammatical systems (as mentioned
in section 1; e.g., Blevins et al. 2017).

The distribution of nouns mirrors, in broad terms, that of
adjectives, albeit with some non-negligible differences. Indeed,
we observed much less variability in the distribution of adjective
forms across feature values in comparison to nouns. In this
case, the endings -a and -o are both associated to the minimum
entropy being the unambiguous marks of feminine singular
and masculine singular, respectively; and the endings -e and -
i, even if associated to a slightly higher entropy, are mostly
used for feminine plural and masculine plural, respectively. Put
in different terms, the overall association between inflectional
endings and feature values tends to be more transparent and
clear-cut in the adjective forms than in the noun forms. If, from
a theoretical perspective (see sections 1 and 4.1.3), this may be
anything but an unexpected result, nevertheless, it is the first
time that these different distributions are quantified and caught
in terms of entropy metrics as for the Italian inflectional system.
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FIGURE 2 | Distribution of adjectives across the most frequent inflectional endings. (A) Number of adjective types for the most frequent inflectional endings. (B)

Number of adjective tokens for the most frequent inflectional endings.
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4.1.2. Transparency of Declensional Classes
When considering declensional classes, the distribution of forms
is arranged a little differently across nouns and adjectives. By
definition, Italian nouns have a two-cell paradigm, whereas
adjectives have a four-cell paradigm (see section 2.1; Iacobini
and Thornton, 2016). It follows that the maximum entropy for
noun paradigms will be 1 bit, while for adjective paradigms
it will be 2 bits. At the same time, entropy allows to
quantify information content across paradigms with different
numbers of cells. Nonetheless, it is noteworthy that in Italian
adjectives information tends to be higher when considering
form distribution across feature values, whereas in Italian nouns
information grows when considering form distribution across
declensional classes.

As for nouns, the most represented classes are a_e, o_i, and
e_i. While the first two classes show the minimum entropy
as they almost always host feminine and masculine nouns,
respectively, the third class e_i shows the close-to-max entropy as
masculine and feminine nouns share almost the same probability
of being comprised. This is consistent with what is usually stated
in the literature, namely that the first two inflectional classes
tend to be the most productive as they are more transparent
with respect to gender and number features. In other words,
newly formed lexical entries are more likely to be assigned to
one of the first two Italian declensional classes because these
are the most informative ones (Thornton, 2004; D’Achille and
Thornton, 2008; Acquaviva, 2009). Even in this case, the overall
declensional system seems to reflect a trade-off between maximal
discriminability and maximal regularity.

When it comes to adjectives, once again, much less variability
is found than for nouns. By far the most represented class, a_e
o_i is associated to the close-to-max entropy of the distribution
since it equally comprises masculine singular, feminine singular,
masculine plural, and feminine plural forms.

4.1.3. Form-Value Transparency in Nouns and

Adjectives
We suggest that the different distributions of noun and adjective
forms we observed so far are related to the distinct functions
played by these two parts of speech in agreement relations, in
which they usually act, respectively, as controllers and targets.
In Italian, the gender and number of nouns are inherent to the
lexeme because their encoding is context-autonomous, while the
gender and number of adjectives are contextual because their
encoding is obligatorily driven by morpho-syntactic agreement
(see section 1; for more on inherent vs. contextual inflection:
Booij, 1993, 1996). Therefore, since it is the target which is the
locus of agreement (Corbett, 2006, p. 12), in the sense that the
signpost of agreement surfaces in the form of the target, we
expect a more transparent form-value relation in targets than in
controllers. Consequently, we expect this to be reflected in their
distribution in the language. Word-formation processes in the
adjective domain confirm this aspect, with superlative forms in
-issima, -issime, -issimo, -issimi being assigned to the maximally
discriminative class.

To a certain extent, this also applies to adjectives such as
grande-grandi, “big.SG – big.PL,” in which -e is the ending for

both masculine and feminine singulars and -i is the ending for
both masculine and feminine. Although syncretism blurs the
gender distinction, the number opposition is still clear-cut. This
resonates with general typological trends whereby the feature
of number is prioritized over the feature of gender. Indeed,
grammatical gender is less widespread across languages (Corbett,
1991) and, as stated in Greenberg’s Universal 34, in a language,
the presence of number is a necessary condition for gender to
surface (Greenberg, 1963) possibly, due to a preminence of the
semantic information conveyed by number (Franzon et al., 2019,
2020). Thus, noun forms are less informative with respect to
gender (and, to a lesser extent, number) since their main role is
to distinguish classes of words mainly favoring discriminability
between diverse forms as a whole rather than between gender
and number values. Conversely, almost all Italian adjective
forms manage to maintain close-to-max discriminability, at least
between number values. This result can be interpreted in light
of a language processing mechanism; the transparency of targets
disambiguates the features of theirs controllers, making their
agreement relation explicit. Since targets favor prediction in
language processing, it seems reasonable that their form-to-
value consistency tends to be more transparent when compared
to controllers.

4.2. Pending Issues and Conclusions
Our results on Italian nouns and adjectives are compatible
with current Word and Paradigm-based approaches from both
a theoretical and computational perspective (for an overview
see Marzi et al., 2020). However, the differences found in
the distributions of nouns (that are generally controllers and
have an inherent inflection) and adjectives (that are generally
targets and have a contextual inflection) needs to be deepened
on. In this respect, while some recent accounts have explored
the differences in the effect of syntagmatic and paradigmatic
cues in comprehension (Ðurd̄ević and Milin, 2019), only few
studies have been dedicated on how contextual and inherent
inflection are parsed during language processing (Franzon et al.,
2013, 2014). Do the distributional properties measured in this
study reflect only mechanisms internal to the morphological
organization of (Italian) forms, or are they also a reflection of
more general cognitive mechanisms? Literature is scarce in this
regard. Despite the fact that consistency between formal cues
and gender values has been shown to impact gender retrieval in
both isolated word presentation and sentence processing (see, for
example, Caffarra et al., 2015), to date no psycholinguistic study
has tested whether the observed differences in the distribution
of noun forms vs. adjective forms with respect to gender and
number values also correspond to differences in processing. Yet,
it is possible that inherent inflection and contextual inflection are
not merely theoretical constructs. For example, it has been found
that, in contact language situations (when a recipient language
changes as an effect of contact with a source language), inherent
inflection is more likely to be borrowed than contextual inflection
since this latter is more entrenched in the grammar and altering
it in a resource language causes huge changes in agreement
mechanisms. By contrast, the introduction of endings realizing
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inherent inflection impacts less on the overall morpho-syntactic
structure of the recipient language (Gardani, 2012, 2020).

Our results are also consistent with psycholinguistic studies
that have related effects on processing to the distributional
properties of Italian nouns, reporting slower and less accurate
responses to noun forms opaque with respect to gender
(De Martino et al., 2011, 2017; Caffarra et al., 2015). Mismatches
between declensional class and gender value have been proven
costly in processing terms and, in particular, fMRI data showed
increased cortical activity for an extensive network (involving
frontal and temporal areas, cingulate cortex and cerebellum)
linked to inflectional operations for Italian non-transparent
declensional classes (Russo et al., 2021). We expect our results to
provide a better estimate of Italian nouns’ transparency for future
neuro- and psycholinguistic studies on inflection.

In this respect, we are well aware that our approach is only
one possible way to quantify the regularity of morphological
cues. For example, under the umbrella of the competition
model, MacWhinney et al. (1984) argued that each mapping
between a form and a function can be assigned a weight or
strength. The weight of a cue would depend on its validity,
i.e., the combination of cue reliability (how many times the
cue relates to a specific function) and cue availability (how
many times a specific cue is present in the lexicon). We do
not comment on the substance of this model. Yet, it is worth
noticing that, in the present study, we propose entropy as a
measure based on the properties of the signal, as observed in
linguistic corpora. To use Mandelbrot’s words, three elements
are to be considered [for a theory of communication]: (1) The
structure of language, or shortly, message; (2) The way in which
information is coded by the brain; (3) The economical “criterion
of matching” which links 1 and 2 (Mandelbrot, 1953, p. 486). The
present work aims at contributing to the knowledge regarding
the first element, which is necessary to inform the other two.
With this purpose in mind, and with the currently available
material, it is not possible to completely disentangle entropy
from other linguistic and psycholinguistic variables. However, we
believe that this work will nonetheless provide researchers with
a useful metric of form-value, that has thus far scarcely been
considered (especially with regard to Italian noun and adjective
forms), and that this will provide them with a solid ground

for the experimental assessment of inflectional morphology-
related hypotheses. Moreover, entropy metrics seem to be a
suitable and well-grounded tool when comparing typologically
diverse languages.

Eventually, although we have measured the entropy of purely
morphological systems, the distribution of word forms across
inflectional feature values, overall, seems to reflect factors which
relate to the morpho-syntactic level and the functions that
parts of speech such as nouns and adjectives play at this level.
Hence, these entropy metrics are valuable both when testing
words in isolation and in sentence context. For all these reasons,
we believe that the set of observations we have provided in
the present work are potentially relevant for any future study
focusing on inflection, in light of the implications that form-value
(in)consistency can have for sentence processing, especially with
respect to nouns and adjectives. We encourage further research
on this topic.
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Children approach verb learning in ways that are specific to their native language,

given the differential typological organization of verb morphology and lexical semantics.

Parent-child interaction is the arena where children’s socio-cognitive abilities enable them

to track predictive relationships between tokens and extract linguistic generalizations

from patterns and regularities in the ambient language. The current study examines how

the system of Hebrew verbs develops as a network over time in early childhood, and the

dynamic role of input-output adaptation in the network’s increasing complexity. Focus is

on themorphological components of Hebrew verbs in a dense corpus of two parent-child

dyads in natural interaction between the ages 1;8-2;2. The 91-hour corpus contained

371,547 word tokens, 62,824 verb tokens, and 1,410 verb types (lemmas) in CDS and

CS together. Network analysis was employed to explore the changing distributions and

emergent systematicity of the relations between verb roots and verb patterns. Taking

the Semitic root and pattern morphological constructs to represent linked nodes in a

network, findings show that children’s networks change with age in terms of node degree

and node centrality, representing linkage level and construct importance respectively; and

in terms of network density, as representing network growth potential. We put forward

three main hypotheses followed by findings concerning (i) changes in verb usage through

development, (ii) CS adaptation, and (iii) CDS adaptation: First, we show that children

go through punctuated development, expressed by their using individual constructs for

short periods of time, whereas parents’ patterns of usage are more coherent. Second,

regarding CS adaptation within a dynamic network system relative to time and CDS, we

conclude that children are attuned to their immediate experience consisting of current

CDS usage as well as previous usage in the immediate past. Finally, we show that parents

(unintentionally) adapt to their children’s language knowledge in three ways: First, by

relating to their children’s current usage. Second, by expanding on previous experience,

building upon the usage their children have already been exposed to. And third, we show

that when parents experience a limited network in the speech of their children, they

provide them with more opportunities to expand their system in future interactions.

Keywords: CS-CDS adaptation, network analysis, Hebrew, roots and patterns, dynamic network analysis

92

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.719657
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.719657&domain=pdf&date_stamp=2021-10-13
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:elitzurd@gmail.com
https://doi.org/10.3389/fpsyg.2021.719657
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.719657/full


Dattner et al. Adaptation in Hebrew CS-CDS Verbs

INTRODUCTION

Network analysis is increasingly common in various areas of
science, from social studies to the spread of epidemics (Kolaczyk,
2009), as it captures relations within the data and allows the
statistical assessment of the structure of links between data
components (Chen et al., 2018). In linguistics, network analysis
has mostly been used to explain the structure and development of
semantic networks (Beckage et al., 2011). The present study aims
to model the development of Hebrew verb morphology—that
is, the system of relations between roots and inflected patterns.
We look at patterns of adaptation between Child Speech and
Child Directed Speech (van Geert, 1991; van Dijk et al., 2013),
expressed in changes within their respective morphological
systems. The development of the system is shown to be complex
and dynamic, such that attributes of the child’s system are
affected by other attributes within the system, as well as by
the parent’s system, and vice versa. In order to account for
the verb lexicon morphology as a system, we adopt a network-
based framework that allows for measuring complex relations
between morphological constructs and their dynamic changes as
a function of development and adaptation.

In light of these objectives, the current paper extends
linguistic network analysis in two important directions. One is
developmental: while language learning makes use of low-level
generalizations, taking into account frequency and similarity of
exemplars (Ambridge, 2020), the adaptive nature of language
development entails the growing complexity of networks
(Beckner et al., 2009). A second direction is morphological:
Network analysis makes it possible to underscore the role of links
between morphemes and the structure that emerges from these
connections. The present study utilizes measures of network
structure to explain early morphological development of the
Hebrew verb system in the context of parent-child interaction
and adaptation.

Input–Output Relations in Language
Development
Parent-child interactions constitute the arena in which children
use their cognitive and social abilities to extract patterns and
regularities from the ambient language. Interactional support,
linguistic adaptation and conceptual challenge promote language
learning during these interactions (Rowe and Snow, 2020). In the
realm of usage-based language acquisition, this type of linguistic
input, also termed Child Directed Speech (CDS), is fine-tuned
to the child’s age and linguistic abilities (Snow, 1995; Ko, 2012).
For the child, CDS is the major source of information about
the morphology, syntax and semantics of the language being
acquired (Hoff-Ginsberg, 1985; Maslen et al., 2004; Behrens,
2006). Usage-based analyses have shown that children detect
patterns in the speech they hear and form generalizations by
using the socio-cognitive abilities of intention reading, coupled
with statistical learning and consequent schematization (Saffran,
2003; Tomasello, 2003, 2006, 2009). Abstract categories gradually
emerge out of the items children have learned, based on the
distributional and frequency properties of the input (Lieven et al.,
2003; Tomasello, 2004; Lieven, 2008).

Focusing on the acquisition and development of verbs,
studies on input-output relations have revealed clear correlations
between features of verbs in CDS and their realization in
Child Speech (CS). These include morphological characteristics
of verbs (Acsu-Koc, 1998; Xantos et al., 2011) and their
lexical semantics (Montag et al., 2015); syntactic properties
of verbs in their environments (Naigles and Hoff-Ginsberg,
1998; Goldberg, 2006; Arunachalam et al., 2011); and their
pragmatic features (Cameron-Faulkner, 2012; Clark and de
Marneffe, 2012; Ninio, 2014). Of particular interest to the present
study is the development of Hebrew verb morphology as a
system that develops over time in early childhood, and the
role of input-output relations and adaptation in the network’s
increasing complexity.

Recent studies have shown that Hebrew acquiring toddlers
rely on stable, frequently occurring inflectional verb affixes
in maternal input to gain salient information on the opaque,
irregular verbs they frequently encounter (Ashkenazi et al.,
2016). Furthermore, correlations were found between Child
Directed Speech and Child Speech in terms of verb lemmas
and their morphological components—structural root categories,
binyan conjugations, and derivational verb families. Clear
CDS-CS relations were also found between lexical-derivational
development and inflectional growth as measured by Mean Size
of Paradigm (MSP; Ashkenazi et al., 2020). The current study
delves deeper into the development of morphological complexity
in the verb domain by computing developmental changes in root,
pattern and inflectional morphology in the dyadic interactions of
two toddlers and their respective parents.

Morphological Constructs in Hebrew Verbs
Three morphological constructs are relevant to the current
study: Semitic roots, binyan patterns, and subject-verb
agreement markers.

The Semitic Root Network
The morphological construct termed the Semitic root (e.g.,m-s-r
“deliver,” g-d-l “grow”) is a central feature of Semitic languages.
This is a (usually) tri-literal consonantal string that constitutes
the formal and semantic core of many Hebrew words, and
most especially, of all Hebrew verbs (Laks, 2013; Kastner, 2019;
Ravid, 2019). Many studies point to the Semitic root as the most
accessible Hebrew morpheme in spoken and written language
development and usage (Ravid and Bar-On, 2005; Gillis and
Ravid, 2006; Schiff et al., 2012; Ben-Zvi and Levie, 2016; Deutsch
and Kuperman, 2019), including contexts of language disability
or environmental deprivation (Ravid and Schiff, 2006; Schiff
and Ravid, 2007; Levie et al., 2017, 2019). Young Hebrew-
speaking children demonstrate an early ability to extract roots
from familiar words and use them in novel forms (Berman, 1985,
2000, 2012; Ravid, 2003). While a root is not a verb, it functions
as a consonantal skeleton shared by different verbs—e.g., r-d-
m in nirdam “fall asleep,” hirdim “make sleep;” or r-g-l in hirgil
“make familiar” and hitragel “get used”—often carrying a shared
basic lexical semantics, creating derivational verb families (Levie
et al., 2020). Therefore, roots are key in Hebrew morpho-lexical
development as the organizers of root-based networks in the
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verb lexicon.Within the network-based framework of the current
paper, the root is a morphological construct which is conceived as
a node in a morphological network.

The Semitic Binyan Network
As a consonantal, discontinuous entity, the Semitic root is not
pronounceable, and as a sub-lexical bound morpheme, it has no
lexical category. It is thus always complemented by the Semitic
binyan (lit. “building”), a prosodic template interspersing root
radicals with vowels, often preceded or followed by a small set
of pattern affixes, as in maskim “agrees,” pattern maCCiC. There
are seven binyan conjugations respectively termed Qal, Nif ’al,
Hif ’il, Huf ’al, Pi’el, Pu’al, and Hitpa’el, which are affixed to roots
to create verb lemmas (Schwarzwald, 1981; Berman, 1993a,b;
Berman, 2012). For example, siper “tell” is expressed by the
combination of root s-p-r and binyan Pi’el; yarad “go down” as
the combination of root y-r-d with Qal, and horid “take down” as
the combination of root y-r-d with Hif ’il (the last two sharing a
root, but being two discrete verb lemmas).

In tandem with roots, binyan-based conjugations thus
constitute networks organizing the Hebrew verb lexicon
in morpho-phonological patterns associated with a set of
transitivity and Aktionsart functions (Berman, 1993a,b; Kastner,
2016; Ravid, 2019). On the one hand, root-binyan verb lemmas
form derivational verb families, where verbs with different binyan
patterns are based on a single shared root (Bolozky, 1999; Ravid,
2019). Consider, for example, the network of verbs sharing root
l-m-d: lamad “learn” (in Qal), its passive counterpart nilmad
“be learned” (Nif ’al), the causative verb limed “teach” (Pi’el), and
the middle-voice verb hitlamed “apprentice” (Hitpa’el) (Berman,
1987). From a complementary perspective, verbs with different
roots share the same binyan conjugation, as demonstrated by the
causative verbs higbir “make stronger,” higdil “make bigger,” histir
“hide,Tr” and hiklit “record,” all sharing the Hif ’il pattern, with
different roots. Similarly to roots, the current framework takes
a binyan (with temporal patterns and agreement inflections, see
below) to be a morphological construct which is conceived as a
node in a morphological network.

Note that in young children and parental speech, most verbs
are based on Qal, the most prevalent binyan in Hebrew. With
age, children are exposed to larger root-pattern networks that
highlight the shared vocalic structure of verbs, making it possible
for binyan conjugations and their syntactic-semantico values to
be learned (Levie et al., 2020). The increase in number, size and
complexity of networks of root-related derivational verb families
is a clear indicator of a growing verb lexicon (Ravid et al., 2016;
Levie et al., 2019).

Temporal Patterns Within Binyan Conjugations
In the current framework of analysis, the notion of verb pattern
relates the derivational notion of binyan to the inflectional
paradigm within each binyan. Each of the seven conjugations
termed binyanim actually consists of a phonologically unique
bundle of five temporal patterns—past tense, present tense,
future tense, imperative, and infinitive forms—as depicted
in Table 1. Temporal pattern templates determine the basic
morpho-phonology of the verb stem, including root radical slots

and vowel combinations. This means that temporal shifts within
the same binyan paradigm require the use of the same root, each
time combining with a different binyan-unique temporal pattern.
For example, CaCaC, CoCeC, and li-CCoC (where C’s stand for
root radicals) serve as the respective past, present and infinitive
patterns ofQal.When combinedwith root k-t-b “write,” the stems
katav “wrote,” kotev “writes/writing,” and li-xtov “to-write” are
yielded, respectively. In the same way, hiCCiC, maCCiC, yaCCiC,
and le-haCCiC serve as the respective past, present, future and
infinitive patterns of Hif ’il, combining with k-t-b to respectively
yield hixtiv “dictated,” maxtiv “dictates/dictating,” yaxtiv “will
dictate,” and le-haxtiv “to-dictate.” Given the prominence of the
root and binyan morphemes in the Hebrew lexicon, this process
is critical in the acquisition of verb morphology (Berman, 1987;
Ravid, 2003).

As Table 1 shows, Hebrew speaking children are faced with
31 binyan-specific temporal patterns that need to be learned.
In the current analysis, when we refer to a verb pattern, we
actually refer to one of these 31 binyan-unique temporal patterns.
From a developmental perspective, this construal of verb patterns
is a facilitating property of the system, so that for the young
child, root-based relations in the verb system can first be
learned by attending to the root-pattern temporal shifts within
the same binyan (Ashkenazi et al., 2016, 2020). Table 1 shows
that, while some temporal patterns are phonologically similar
(e.g., the temporal paradigm of Hitpa’el), others (e.g., those of
Qal and Nif ’al) display more phonological distinctions. This
is important, as Qal, which occupies about 80% of the verb
tokens heard or produced by children up to 3 years of age, has
the most phonologically distinct temporal patterns, a boost to
the transparency-aided acquisition of root and pattern structure
(Ravid, 2019).

To illustrate the central role of this network, think about
noting the formal resemblance of verbs sharing the meCaCeC
present-tense Pi’el pattern (e.g., medaber “talking,” meshaker
“lying,” melamed “teaching”), the similarity of their temporal
semantics, and their relation to other Pi’el patterns such as
past-tense CiCeC in diber “talked,” shiker “lied,” and limed
“taught” respectively.

Recent research (Ashkenazi et al., 2016, 2020; Ravid et al.,
2016) indicates that young Hebrew-speaking children initially
learn to manipulate roots and patterns in the inflectional shifts
across the temporal stems in the paradigm of a single binyan
(most often the ubiquitous Qal), where semantic coherence of
roots is highest. This is in fact the launching pad of non-
linear formation in the verb system. Evidence of errors from
toddlers and young children acquiring the binyan-temporal
system indicates that it takes time and linguistic experience
for this knowledge to crystallize toward the beginning of
elementary school (Berman, 1982; Ravid, 1995). It is only
later on, at schoolage, that verb lemmas in different binyan
conjugations sharing the same root—i.e., derivational families—
enrich the young verb lexicon (Levie et al., 2020). The larger,
more numerous and varied root-based verb networks in the
lexicon of the language learner (both inflectional, across the
temporal paradigm of a single binyan, and derivational, across
different binyan conjugations)—the more complex, productive
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TABLE 1 | The seven binyan conjugations as sets of temporal patterns.

Binyan Past tense Present tense Future tense Imperative Infinitive

Qal CaCaC CoCeC yiCCoC CCoC liCCoC

Nif’al niCCaC niCCaC yiCaCeC hiCaCeC lehiCaCeC

Hif’il hiCCiC maCCiC yaCCiC haCCeC lehaCCiC

Huf’al huCCaC muCCaC yuCCaC — —

Pi’el CiCeC meCaCeC yeCaCeC CaCeC leCaCeC

Pu’al CuCaC meCuCaC yeCuCaC — —

Hitpa’el hitCaCeC mitCaCeC yitCaCeC hitCaCeC lehitCaCeC

TABLE 2 | Subject-verb agreement in Hebrew verbs.

Temporal category Person Number Gender

Infinitive X X X

Imperative V V V

Future tense V V V

Present tense X V V

Past tense V V V

and abstract the organization of the lexical network relying on
roots (Levie et al., 2020).

Agreement Inflection
The verb stem created by the non-linear affixation of root plus
binyan-unique temporal pattern is further inflected for number,
gender, and person in agreement with the grammatical subject.
Unlike temporal shifts, verb agreement inflection is linear, taking
the verb stem rather than the root as its base. For example, nimsor
“we will deliver” is composed of root m-s-r in the future tense
pattern of Qal, with the prefix n- designating the first person
plural; and masru “they delivered” is composed of root m-s-r in
the past tense pattern of Qal, with the suffix -u designating the
third person plural. Note, however, that the actual formation of a
specific verb (wordform) requires morpho-phonological changes
in the stem that are typical of each binyan, root type and temporal
category. This is not investigated in our current study.

Table 2 presents an overview on agreement marking of
Hebrew verbs. In general, it shows that the only temporal
category which does not require agreement inflection is the
infinitive form; and that present tense verbs are marked for
number and gender, but not for person agreement.

Table 3 presents a detailed view of the 25 pattern-inflection
categories identified in Ashkenazi’s (2015) corpus, which
constitutes the database of the current study. Each category
represents a temporal pattern (Infinitive, Imperative, Future
tense, Present tense, or Past tense) with all possible agreement
marking (e.g., past tense 3rd person plural). The actual examples
in Table 3 are the 25 wordforms constituting the temporal
category-agreement inflectional paradigm of Qal with root l-q-h̄
“take.”1

1Roots are represented as morphological entities, that is, taking into account their

morpho-phonological behavior, as detailed in Ravid (2012). For example, the k

phoneme in the root k-t-b alternates with spirant x phoneme, while the k phoneme

The Current Research
Against this background, the present study has two main
objectives: (i) to model the systematic development of the
morphology of the Hebrew verb lexicon—that is, the system of
relations between roots and inflected patterns; and (ii) to account
for various patterns of adaptation between Child Speech and
Child Directed Speech (van Geert, 1991; van Dijk et al., 2013),
expressed in changes within their respective morphological
system structures. The development of the system is shown
to be adaptive and complex, such that attributes of the child’s
system are affected by other attributes within the system, as
well as by the parent’s system structure, and vice versa. Both
the systematic development and the patterns of adaptation are
shown to be dynamic, in that the system’s structure at one point
in time affects its structure in the future. In order to account
for verb morphology as a dynamic system, we adopt a network-
based framework that allows for measuring complex relations
between morphological constructs and their dynamic changes as
a function of development and adaptation.

A Dynamic Network Model assumes that higher-order
properties are emergent phenomena, such that structure emerges
on the basis of the dynamic interactions between lower-level
components (Barabasi, 2009; Den Hartigh et al., 2016). This view
is compatible with recent usage-based approaches to cognitive
representation of language, in which learning is construed as
constantly updating connection weights between nodes based
on experience (Bybee and McClelland, 2005; Kapatsinski, 2018).
The morphological network of the verb lexicon is dynamic in
the sense that the values of the constructs it comprises change
as a consequence of the interactions with other morphological
constructs (among other factors). For example, the importance
of a particular root within the verb lexicon can be affected
by the importance of the pattern(s) it is linked to (creating
specific verb wordforms). Thus, if a low frequency root is
linked to a low frequency pattern, it may have consequences
for the entrenchment of the verb wordform within cognitive
representation, and thus for future usage.

Dynamic network analysis can be helpful in accounting
for another facet of dynamicity: over developmental time,
morphological constructs may appear or disappear; it is not
the case that we use every single root, binyan temporal pattern
and agreement inflection in our lexicon every single day.

in q-d-m does not (Temkin Martinez, 2010). For words (in contrast to roots) we

use a broad phonemic transcription.
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TABLE 3 | Hebrew verb inflectional categories.

Coding Inflectional category Example (root l-q-h̄ + Qal)

1 Infinitive lakáxat’a “to take”

2 Imperative, masculine, singular kax “take.Masc”

3 Imperative, feminine, singular kxi “take.Fm”

4 Imperative, plural kxu “take.Pl”

5 Future, 1st person, singular ekax “I will take”

6 Future, 2nd person, masculine, singular tikax “you.Masc.Sg will take”

7 Future, 2nd person, feminine, singular tikxi “you.Fm.Sg will take”

8 Future, 3rd person, masculine, singular yikax “he will take”

9 Future, 3rd person, feminine, singular tikax “she will take”

10 Future, 1st person, plural nikax “we will take”

11 Future, 2nd person, plural tikxu “you.Pl will take”

12 Future, 3rd person, plural yikxu “they will take”

13 Present, masculine, singular loké’ax “take/s/taking.Masc”

14 Present, feminine, singular lokáxat “take/s/taking.Fm”

15 Present, masculine, plural lokxim “take/taking.Pl”

16 Present, feminine, plural lokxot “take.Pl.Fm”

17 Past, 1st person, singular lakáxti “I took”

18 Past, 2nd person, masculine, singular lakáxta “you.Masc.Sg took”

19 Past, 2nd person, feminine, singular lakaxt “you.Fm.Sg took”

20 Past, 3rd person, masculine, singular lakax “he took”

21 Past, 3rd person, feminine, singular lakxa “she took”

22 Past, 1st person, plural lakáxnu “we took”

23 Past, 2nd person, masculine, plural lakáxtem “you.Masc.Pl took”

24 Past, 2nd person, feminine, plural lakáxten “you.Fm.Pl took”

25 Past, 3rd person, plural lakxu “they took”

aStress in Hebrew is usually final, thus it is only marked if penultimate.

Treating development as a dynamically changing set of networks
enables us to evaluate such punctuated growth, accounting for
accumulated change. For example, the probability of using a
particular pattern on a particular day may be higher if that
pattern was used the day before (either by the child or by
the parent) than if it was not. In the following section we
present our data and methods for constructing the network and
modeling development.

DATA AND METHOD

Data
The analyses reported below are based on a densely recorded
corpus of naturalistic longitudinal interactions of two Hebrew-
speaking parent-child dyads—a boy dyad and a girl dyad. The
boy dyad was recorded between the ages 1;8.27 (1 year 8 months
and 27 days, or 635 days) to 2;2.3 (2 years 2 months and 3 days,
or 795 days), yielding 49 recording sessions. The girl dyad was
recorded between the ages of 1;9.25 (1 year 9 months and 25
days, or 664 days) to 2;2.19 (2 years 2 months and 19 days,
or 810 days), yielding 47 recording sessions. Different child
genders were chosen so as to permit analysis of the obligatory
gender agreement in Hebrew verb inflection (Schwarzwald, 1998;
Ravid and Schiff, 2015). Both families were from mid-high SES
background, living in central Israel. The two sets of parents, who

did not know each other, were monolingual native-born speakers
of Hebrew. They did not receive any monetary remuneration for
their voluntary participation.

Both children were first-born and had no siblings at the time
of recording. Both had normal cognitive, communicative, and
linguistic development according to parental report (including
the Hebrew CDI checklist in Maital et al., 2000), periodic
assessment at the local neonate and children’s health clinic, and
assessment by the last author (a certified senior SLP). Neither of
them had a history of ear infections or any other major health
issues. The boy attended nursery school and the girl did not.
Table 4 summarizes the corpus details (Ashkenazi, 2015).

Data Collection
The children were audio- and video recorded by their parents
at home during bath time, play time and meal time using an
MP3 recorder and a video camera supplied to the family. Each
dyad was audio recorded twice a week and video recorded
once a week, for 45–60min each time, for 6 months between
1;8-2;2 approximately (see details above). The parents were
informed that the study concerned early language development
in Hebrew. They were asked to record spontaneous, natural
interactions. Recordings of both dyads started when each child
started producing two word utterances and some verbs, based
on parental reports using the Hebrew CDI (Maital et al., 2000).

Frontiers in Psychology | www.frontiersin.org 5 October 2021 | Volume 12 | Article 71965796

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Dattner et al. Adaptation in Hebrew CS-CDS Verbs

TABLE 4 | The corpus details.

Girl (Child 1) Boy (Child 2)

Age range 1;9.25-2;2.19 1;8.27-2;2.3

# recordings 47 49

Word tokens CS 39,717 32,369

CDS 158,679 140,782

Verb types CS 204 172

= lemmas CDS 531 503

Verb tokens CS 4,610 3,101

CDS 31,283 23,830

Transcriptions of the recordings (see below) ceased when each
child produced subject-verb agreement in number and gender
in two subsequent recordings, including two different person
agreements in past tense, on at least two different verbs. This
morphosyntactic criterion indicated that the child was gaining
command of the basic components of verb structure and
semantics by productively using temporal stems, that is, root-
pattern alternations, as well as agreement markers (Berman and
Lustigman, 2012; Ravid et al., 2016). All interactions were coded
and analyzed, including nursery rhymes and songs in the parental
input, as well as speech addressed to the other parent (which
consisted <5% the recordings).

Transcription
Dyadic interactions were transcribed in broad phonemic
transcription following the CHILDES conventions
(MacWhinney, 2005), adapted to take into account Hebrew-
specific phonemic, phonological, prosodic, and orthographic
features (Albert et al., 2013). The transcriptions were carried out
by undergraduate students of an academic SLP program who
took a CHILDES course as part of their studies. The recordings
were thoroughly checked by the last author and corrected when
necessary, with an estimated 5% error rate. Next Hebrew MOR
was run over the transcripts. Ambiguous forms and verb forms
that were not analyzed by the program were identified and
coded manually.

Method
Morphological Variables
Three variables participated in the network analysis
described below:

1. Root: The Semitic consonantal construct at the basis of the
Hebrew verb, e.g., s-y-m “put,” z-h-r “take care,” r-d-m “sleep,”
or n-g-b “towel.”

2. Pattern+ Agreement: This was the complementary construct
to the root. In the current analysis, it consisted of (i) the
binyan-specific temporal pattern (see Table 1 for the full array
of binyan-temporal patterns); and (ii) the person-number-
gender agreement inflection (see Table 3 for the full array
of agreement inflections). Note that 1 and 2 are the two
morphological constructs that participate in the verb structure,
rather than actual words.

FIGURE 1 | A Hebrew morphological verb network: an illustration. The root

l-m-d is linked to two binyan temporal-inflection patterns, yielding two verb

wordforms: l-m-d+Piel.3rdSgMsPast is limed “He taught,” and

l-m-d+Piel.3rdSgMsFuture is yelamed “He will teach”.

3. Verb wordform: The actual word as appearing in the
transcription: a unique combination of a root and a binyan-
temporal pattern + agreement marking, as in the following
four examples (see also Figure 1):

1. sámti “I put”= s-y-m+ Qal past tense, 1st Sg;
2. tizahari “take care!”= z-h-r+Nif ’al imperative, 2nd Sg Fm;
3. nirdamim “are falling asleep” = r-d-m + Nif ’al present
tense, Pl Masc;
4. yitnagev “(he will) towel (himself)” = n-g-b + Hitpa’el
future tense, 3rd Sg Masc.

Network Analysis
For each child and parent in the data we constructed a list of
all available roots and inflected patterns throughout the entire
database, resulting in four lists. These lists formed the basis for
the network analysis, such that each participant used a subset
of their list on a particular recording. The nodes of the bipartite
network of recording N are the list of roots and inflected binyan
patterns that appear in recording N, creating links that stand
for the actual verb wordforms that were used in recording N
by participant X. For example, a token of the root l-m-d and
the inflected pattern <Pi’el, masculine, singular, third person,
past tense> constitutes one link yielding the wordform limed
“taught.3.Sg.Ms.”; while a token of the same root (l-m-d) and the
inflected pattern <Pi’el, masculine, singular, third person, future
tense> constitutes another link, yielding the wordform yelamed
“will teach.3.Sg.Ms.” That is, verb wordforms are links between
nodes in a morphological network, as illustrated in Figure 1.
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Node Level Measure: Degree
Node degree is a centrality measure, corresponding to the number
of links a node has with other nodes in a network. Degree (CD) is
calculated as:

CD(j) =

n∑

j=1

Aij (1)

for every node in the data, over its corresponding rows and
columns of the matrix A.

A node with a high degree value is more important in
the network as it participates in more language events. Degree
corresponds to the token frequency of each construct. Thus, a
network with a few high degree nodes indicates repeated use of
particular types, suggesting a less varied network.We hypothesize
that the degree level of nodes will increase with age in the
CS, and that degree distribution within the CS networks will
change with age, indicating usage variation. These changes are
not hypothesized to occur in the CDS networks.

Node Level Measure: Eigenvector Centrality
A second centralitymeasure used here is the eigenvector centrality
of particular nodes - roots or inflected patterns in our case. To
achieve a relevant explanatory assessment of the data, we focus
here on eigenvector centrality as reflecting the node’s importance
(Bonacich, 2007; Lohmann et al., 2010; Oldham et al., 2019).
Eigenvector centrality xi of node i is given by:

xi =
1

λ

∑

k

ak,ixk (2)

where λ 6= 0 is a constant, and k is the node’s degree.
A node with high centrality is linked to many other nodes

that, in turn, are linked to many other nodes. In non-directed
networks, as in the present study, such nodes are said to be
in a central, prominent position. For example, an inflected
pattern linked to two roots that are themselves linked to three
inflected patterns each is higher in centrality than an inflected
pattern linked to two roots that are not linked to other patterns.
Centrality quantifies the significance of a node relative to other
nodes in the network. For example, centrality can reveal those
morphological patterns that act as centers of gravity for forming
verbs, and changes in centrality of a particular pattern can
be measured during development. We hypothesize that nodes’
centrality will change through development in a non-linear
manner, reflecting changes in discourse circumstances, in both
the CS and CDS networks. Crucially, these changes are not a
matter of mere frequency, but rather of the frequency of links
with other frequent nodes.

Network Level Measure: Density
While degree and centrality are measures concerning attributes
of the nodes of the network, the density measure concerns the
network as a whole. The density of the network is a measure
of fulfilled links between nodes (Wasserman and Faust, 1994).

Density is a mathematical notion that measures the proportion
of observed links relative to the maximum number of possible
links: the closer it is to one, the more possible links are actually
manifested, and thus the more interconnected the network.
Network density (d) is calculated as:

d =
m

n(n− 1)/2
(3)

wherem is the total number of existing links in the network, and
n is the number of nodes in the network. Links within a dense
network are more predicted and anticipated. As such, somewhat
counter-intuitively, a sparse network is taken here to indicate
a higher level of potential productivity: In a sparse network,
there are more root- and pattern-nodes which are not linked
to each other, compared to a dense network in which most of
the nodes are already linked. Hence, the potential to link two
nodes that have not been linked before, thus creating new verb
wordforms, is higher in a sparse network, compared to a dense
network (Levie et al., 2019). That is, a sparse network means
that the pool from which one can choose how to put experience
into words, specifically verbs (by linking a root and a pattern)
is not exhausted, and new verb wordforms can be created: new
links between roots and inflected patterns, which refer to more
fine-grained aspects of experience. We hypothesize that network
density will decrease with age within the children’s networks, but
will remain steady through time in the parents’ networks.

Network Construction and Model Design
For every recording we calculated two networks, one for each
participant. This resulted in 94 networks for Child 1 [47
recordings ∗ (CS + CDS)], and 98 networks for Child 2 [49
recordings ∗ (CS + CDS)]. We account for these networks as
consecutive points in a dynamically evolving network, analyzing
the development of network measures as obtained in each
instance of network. The three measures presented above were
extracted for each network, resulting with a time series data
of network density for every participant, the changing degree
of each node in the networks through development, and the
changing centrality of each node through development.

In order to find patterns of adaptation in network structure
as representing the verb lexicon, we assessed the development
of network measures for each child and parent separately, and
modeled the effect of the child’s age on each measure, the effect
of CDS network measures on CS network measures, and vice
versa. Moreover, since time related data are available, we added to
the models the level of each measure in the preceding recording,
enabling further assessment of adaptation. For example, we could
ask whether the density level of the child’s network in the
preceding recording affects the parent’s level of density in the
network of the current recording.

Furthermore, for each node that appeared on a particular day
in both the child’s and the parent’s networks, we modeled its
degree and centrality (in CS and CDS, in Child 1 and Child
2, separately) as a function of the other measures in the same
recording, as well as the levels of the other measures in the
preceding recording. For example, we could ask whether the
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TABLE 5 | Summary of study variables.

Variable Interpretation

Situational variables

Age Child’s age

Speaker Child Speech (CS) vs. Child Directed Speech (CDS)

Morphological variables

Verb root A node in the network

Verb inflected pattern A node in the network

Verb wordform A link in the network (linking a root and a pattern)

Network measures

degree.cs CS node degree at recording N

prior.degree.cs CS node degree at recording N-1

degree.cds CDS node degree at recording N

prior.degree.cds CDS node degree at recording N-1

centrality.cs CS node centrality at recording N

prior.centrality.cs CS node centrality at recording N-1

centrality.cds CDS node centrality at recording N

prior.centrality.cds CDS node centrality at recording N-1

density.cs CS network density at recording N

prior.density.cs CS network density at recording N-1

density.cds CDS network density at recording N

prior.density.cds CDS network density at recording N-1

chance of a root or inflected pattern produced by the child to
have high centrality is higher if this root or inflected pattern is
central in the parent’s network in the preceding recording, and/or
is central in the child’s preceding recording, and/or has a high
degree level in the current recording.

Table 5 summarizes the variables and measures in the study
that were part of either the construction of the networks or
the model design in analyzing adaptation through development.
Each morphological/situational variable and network measure is
a part of the four participants design: CS of Child 1, CDS of
Child 1, CS of Child 2, and CDS of Child 2. Consequently, the
results reported below present four models for each measure. All
resulting measurements of the network analysis were centered
and scaled before model calculations.

RESULTS

Overall Outlook
We start off the presentation of our results with an overall
outlook on the four changing temporal networks (two networks
of children’s speech, CS 1 and CS 2; and two networks of Child
Directed Speech, CDS 1 and CDS 2), from a dynamic perspective
that underscores the emergence of the system. These networks
are shown in Figure 2 through four representative time points
within the longitudinal corpus: recordings no. 1 (age 1;9.25 for
Child 1, 1;8.27 for Child 2); 16 (age 1;11.6 for Child 1, 1;10.7 for
Child 2); 31 (age 2;1.1 for Child 1, 2;0.0 for Child 2); and 46 (age
2;2.17 for Child 1, 2;1.23 for Child 2). The nodes of the networks
are roots and inflected patterns. Links between nodes represent
verb wordforms.

Figure 2 shows that the children’s networks go through much
more development than the parents’ networks, such that more
nodes and more links between nodes are shown with time. That
is, in morphological terms, we see growth in the number of
roots and inflected patterns, and growth in the number of verb
wordforms (cf. Ashkenazi, 2015). Growth in number of nodes
and links renders a more complex network, as can be seen by
the complex structure of the children’s networks in older ages.
Moreover, we can see that the structures of the parents’ networks
remain similar throughout the data, such that it is very complex
from the very beginning. The view presented by Figure 2 allows
us to observe growth in complexity in a visual manner. The
models presented below will add to this view, relating system
development to multiple factors. However, before turning to
the models results, let us emphasize another facet of dynamic
network analysis, that of node activation, as shown in Figure 3.

Morphological constructs in a dynamic perspective are
portrayed according to their activation patterns. For example,
a link between a root and an inflected pattern may appear in
recording number 6 (i.e., the link is active), be absent from
recording number 7 (i.e., the link is inactive), and reappear in
recording number 8. Figure 3 portrays a timeline of inflected
pattern activation throughout development (in the age ranges
of the current corpus; root nodes are not represented in
order to increase readability of the plot). We can see that
the children’s networks are characterized by what we term
punctuated development, such that most of the inflected patterns
appear and disappear frequently; while the parents’ networks
are characterized by more continuous usage of the full array of
inflected patterns. This characterization of the development of
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FIGURE 2 | Dynamic view of a developing verb lexicon as a network. Top row: CS of child 1; second row: CDS of child 1; third row: CS of child 2; bottom row: CDS

of child 2. Each row portrays four points in the longitudinal corpus: recordings no. 1 (age 1;9.25 for Child 1, 1;8.27 for Child 2); 16 (age 1;11.6 for Child 1, 1;10.7 for

Child 2); 31 (age 2;1.1 for Child 1, 2;0.0 for Child 2); and 46 (age 2;2.17 for Child 1, 2;1.23 for Child 2). The nodes of the networks are roots and inflected patterns.

Links between nodes represent verb wordforms.

the morphological system is made possible by the framework of
dynamic network analysis, and we will return to its implications
in the discussion section below. We now turn to the results
of the models. First the two node-level measures (degree and
centrality), and then the global network measure (density).

Node Level Measure: Degree
Recall that the degree of an inflected pattern within a network
is the number of roots linked with it, and the degree of a root
within a network is the number of inflected patterns it is linked
to. Figure 4 presents degree distribution through development.
Every recording session (the X axis) is a single network within
the entire set of networks through time. Each bar represents
the degree distribution within a single network as a single point
in time.

Figure 4 shows that CDS degree levels are much higher than
CS degree levels in both sub-corpora, and that degree level
in CS seems to increase with age in both children. That is,
parents tend to link more roots to more inflected patterns, and

more inflected patterns to more roots, compared with children’s
linkage distribution.

In order to assess development and adaptation relative to
node degree, we fitted our models only on those nodes that
appeared in both the child’s and the parent’s network. Thus, for
each participant we fitted a linear mixed model (estimated using
REML and nloptwrap optimizer) to predict degree level with the
following variables: age, degree of the other party in the dyad in
the same recording, and the degrees of both parties of the dyad in
the previous recording. We also included eigenvector centrality
measures of both parties in current and antecedent networks,
and the same for density measures, in order to reveal complex
relations within the system and to account for adaptation across
time. Each model included the specific root or inflected pattern
node as a random effect (coded as name in the models below).
Standardized parameters were obtained by fitting the model
on a standardized version of the dataset. Ninety-five percent
Confidence Intervals (CIs) and p-values were computed using the
Wald approximation.
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FIGURE 3 | Inflected patterns activity throughout the entire time range in the data. Each line represents the time in which a node is active in the network. Nodes are

represented by the numbers at the beginning of each line (root nodes have been removed in order to increase readability).

CS Node Degree
Table 6 shows the results for the linear mixed models for both
children, predicting CS degree level. Each model is detailed
below.

CS Node Degree: Child 1
The model’s total explanatory power is substantial (conditional
R2 = 0.55) and the part related to the fixed effects alone (marginal
R2) is of 0.50. Within this model, the following variables have a
significant effect on CS1 degree level: child’s age (positive effect),
CDS degree level (positive effect), CDS degree level in recording
N-1 (positive effect), CS degree level in recording N-1 (positive
effect), CS centrality level (positive effect), CS density (negative
effect), and CS density in recording N-1 (positive effect).

CS Node Degree: Child 2
The model’s total explanatory power is substantial (conditional
R2 = 0.49) and the part related to the fixed effects alone (marginal
R2) is of 0.40. Within this model, the following variables have
a significant effect on CS2 degree level: age (positive effect),

CDS degree level (positive effect), CS degree level in recording
N-1 (positive effect), CS centrality level (positive effect), CS
density (negative effect), and CDS density in recording N-1
(negative effect).

CDS Node Degree
Table 7 shows the results for the linear mixed models for both
parents, predicting CDS degree levels. Each model is detailed
below.

CDS Node Degree: Child 1
The model’s total explanatory power is substantial (conditional
R2 = 0.78) and the part related to the fixed effects alone (marginal
R2) is of 0.71. Within this model, the following variables have a
significant effect on CDS1 degree level: age (negative effect), CS
degree (positive effect), CDS degree in recording N-1 (positive
effect), CDS centrality level (positive effect), CS density in
recording N-1 (positive effect), CDS density (negative effect), and
CDS density in recording N-1 (negative effect).
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FIGURE 4 | Node degree distribution by session: CS (right panels) and CDS (left panels), child 1 (top panels) and child 2 (bottom panels).

CDS Node Degree: Child 2
The model’s total explanatory power is substantial (conditional
R2 = 0.77) and the part related to the fixed effects alone (marginal
R2) is of 0.71. Within this model, the following variables have
a significant effect on CDS2 degree level: age (positive effect),
CS degree (positive effect), CDS degree level in recording N-1
(positive effect), CDS centrality (positive effect), CDS centrality
in recording N-1 (positive effect), CS density in recording N-1
(positive effect), CDS density (negative effect), and CDS density
in recording N-1 (negative effect).

Node Eigenvector Centrality
Recall that the eigenvector centrality of a node is a measure of
importance. For example, an inflected pattern has high centrality
if it is linked to many roots that are linked to other inflected
patterns, that are linked to other roots in turn. Figure 5 presents
centrality distribution by recording day, showing a mirror image
of degree distribution (Figure 4): Centrality levels within CS
networks are much higher than CDS networks. That is, there are
more central nodes within the children’s network than there are
within the parents’ networks, and trends in centrality changes are
less apparent in the CDS than in the CS.

The models summarized in Tables 8, 9 portray the
development of node eigenvector centrality. In a similar
model design for the one presented for node degree, we fitted a
linear mixed model for each participant (estimated using REML

and nloptwrap optimizer) to predict eigenvector centrality
with age, centrality of the other party in the dyad in the same
recording, and the centralities of both parties of the dyad in
the previous recording. We also included degree values of both
parties in current and antecedent networks, and the same for
density values. Each model included the specific root or inflected
pattern node as a random effect (coded as name in the models
below). Standardized parameters were obtained by fitting the
model on a standardized version of the dataset. Ninety-five
percent Confidence Intervals (CIs) and p-values were computed
using the Wald approximation.

CS Node Eigenvector Centrality
Table 8 shows the results for the linear mixed models for both
children, predicting CS eigenvector centrality. Each model is
detailed below.

CS Centrality: Child 1
The model’s total explanatory power is substantial (conditional
R2 = 0.46) and the part related to the fixed effects alone (marginal
R2) is of 0.44. Within this model, the following variables have
a significant effect on CS1 centrality level: age (negative effect),
CDS centrality (positive effect), CS centrality in recording N-1
(positive effect), CDS centrality in recording N-1 (positive effect),
CS degree (positive effect), and CS density (positive effect).

Frontiers in Psychology | www.frontiersin.org 11 October 2021 | Volume 12 | Article 719657102

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Dattner et al. Adaptation in Hebrew CS-CDS Verbs

TABLE 6 | Linear mixed model: CS node degree.

Predictors degree.cs: child 1 p degree.cs: child 2 p

Estimates CI Estimates CI

(Intercept) −0.73 −0.87 –−0.59 <0.001 −0.7 −0.84 –−0.56 <0.001

age 0.01 0.01 – 0.01 <0.001 0.01 0.00 – 0.01 <0.001

degree.cds 0.07 0.04 – 0.10 <0.001 0.08 0.03 – 0.12 <0.001

prior.degree.cds 0.03 0.00 – 0.06 0.043 −0.01 −0.04 – 0.02 0.566

prior.degree.cs 0.23 0.16 – 0.30 <0.001 0.24 0.15 – 0.32 <0.001

centrality.cs 0.11 0.10 – 0.13 <0.001 0.05 0.03 – 0.06 <0.001

prior.centrality.cs −0.01 −0.03 – 0.01 0.277 0.01 −0.00 – 0.02 0.241

centrality.cds −0.03 −0.15 – 0.08 0.596 −0.07 −0.20 – 0.07 0.331

prior.centrality.cds −0.06 −0.17 – 0.05 0.259 0.07 −0.01 – 0.14 0.078

density.cs −0.06 −0.10 –−0.03 <0.001 −0.04 −0.06 –−0.02 <0.001

prior.density.cs 0.05 0.01 – 0.10 0.024 0.01 −0.01 – 0.03 0.213

density.cds 0.03 −0.06 – 0.11 0.555 0.04 −0.03 – 0.11 0.28

prior.density.cds −0.07 −0.16 – 0.02 0.123 −0.1 −0.17 – −0.03 0.005

Random Effects

σ2 0.08 0.08

τ00 0.01 name 0.01 name

ICC 0.1 0.15

N 147 name 109 name

Observations 841 541

Marg.R2/Cond.R2 0.502/0.551 0.396/0.486

TABLE 7 | Linear mixed model: CDS node degree.

Predictors degree.cds: child 1 p degree.cds: child 2 p

Estimates CI Estimates CI

(Intercept) 0.59 0.27 – 0.91 <0.001 0.34 0.02 – 0.65 0.038

age −0.01 −0.01 –−0.00 0.001 0.01 0.00 – 0.01 0.026

degree.cs 0.32 0.18 – 0.46 <0.001 0.32 0.15 – 0.50 <0.001

prior.degree.cs −0.13 −0.29 – 0.02 0.091 −0.04 −0.21 – 0.14 0.682

prior.degree.cds 0.14 0.07 – 0.20 <0.001 0.2 0.14 – 0.27 <0.001

centrality.cs 0 −0.04 – 0.04 0.979 −0.01 −0.04 – 0.01 0.304

prior.centrality.cs 0.01 −0.03 – 0.05 0.546 −0.02 −0.04 – 0.00 0.095

centrality.cds 1.84 1.63 – 2.06 <0.001 1.7 1.47 – 1.93 <0.001

prior.centrality.cds 0.19 −0.04 – 0.42 0.102 0.18 0.02 – 0.33 0.024

density.cs −0.07 −0.13 – 0.00 0.051 −0.01 −0.04 – 0.03 0.713

prior.density.cs 0.14 0.04 – 0.24 0.005 0.09 0.06 – 0.12 <0.001

density.cds −0.57 −0.75 –−0.39 <0.001 −0.58 −0.71 –−0.45 <0.001

prior.density.cds −0.36 −0.55 –−0.17 <0.001 −0.3 −0.44 –−0.16 <0.001

Random Effects

σ2 0.35 0.33

τ00 0.11 name 0.08 name

ICC 0.24 0.2

N 147 name 109 name

Observations 841 541

Marg.R2/Cond.R2 0.711/0.781 0.707/0.766
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FIGURE 5 | Node centrality distribution by session: CS (right panels) and CDS (left panels), child 1 (top panels) and child 2 (bottom panels).

CS Centrality: Child 2
The model’s total explanatory power is substantial (conditional
R2 = 0.43) and the part related to the fixed effects alone (marginal
R2) is of 0.43. Within this model, the following variables have
a significant effect on CS1 centrality level: age (negative effect),
CDS centrality (positive effect), CS degree (positive effect), CS
density (positive effect), and CDS density (negative effect).

CDS Centrality
Table 9 shows the results for the linear mixed models for both
parents, predicting CDS eigenvector centrality. Each model is
detailed below.

CDS Centrality: Child 1
The model’s total explanatory power is substantial (conditional
R2 = 0.81) and the part related to the fixed effects alone (marginal
R2) is of 0.67. Within this model, the following variables have
a significant effects on CDS1 centrality: CS centrality (positive
effect), CDS centrality in recording N-1 (positive effect), CS
degree in recording N-1 (positive effect), CDS degree (positive
effect), CS density (positive effect), CS density in recording N-1
(negative effect), and CDS density (positive effect).

CDS Centrality: Child 2
The model’s total explanatory power is substantial (conditional
R2 = 0.77) and the part related to the fixed effects alone (marginal

R2) is of 0.60. Within this model, the following variables have
a significant effects on CDS2 centrality: age (negative effect),
CS centrality (positive effect), CS centrality in recording N-
1 (positive effect), CDS centrality in recording N-1 (positive
effect), CDS degree (positive effect), CDS degree in recording N-
1 (positive effect), CS density in recording N-1 (negative effect),
CDS density (positive effect), and CDS density in recording N-1
(positive effect).

Network Density
Recall that network density measures the proportion of active
links relative to the maximum number of possible links in
the current network, given the active nodes. Figure 6 depicts
the changing densities of networks with age for each of
the participants.

Network density seems to decrease with age for both children
(although at different rates), while it seems to remain constant for
the parents through development. That is, as children grow, they
exhaust fewer of their possible links, leaving more room for their
network of roots and inflected patterns to grow: a non-exhausted
network (i.e., a low density network) is a network with a high
growth potential, since new links can be created between existing
constructs that have not been linked before.

For each network we fitted a linear model to predict network
density with the following variables: age, network density of the
other party in the dyad, and network density at the preceding
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TABLE 8 | Linear mixed model: CS node centrality.

Predictors centrality.cs: child 1 p centrality.cs: child 2 p

Estimates CI Estimates CI

(Intercept) 1.58 1.08 – 2.09 <0.001 2.71 1.83 – 3.60 <0.001

age −0.02 −0.03 –−0.01 <0.001 −0.03 −0.05 –−0.01 0.001

centrality.cds 0.56 0.16 – 0.95 0.006 1.29 0.45 – 2.12 0.003

prior.centrality.cs 0.16 0.09 – 0.22 <0.001 −0.01 −0.08 – 0.07 0.842

prior.centrality.cds 0.39 0.02 – 0.77 0.04 −0.13 −0.66 – 0.39 0.612

degree.cs 1.48 1.26 – 1.70 <0.001 2.68 2.22 – 3.15 <0.001

prior.degree.cs −0.23 −0.47 – 0.02 0.074

degree.cds 0 −0.11 – 0.11 0.967 −0.2 −0.47 – 0.08 0.156

prior.degree.cds −0.08 −0.18 – 0.03 0.146 −0.13 −0.36 – 0.10 0.262

density.cs 0.26 0.15 – 0.37 <0.001 0.6 0.50 – 0.71 <0.001

prior.density.cs −0.16 −0.33 – 0.01 0.058 −0.06 −0.16 – 0.05 0.304

density.cds −0.18 −0.48 – 0.13 0.26 −0.58 −1.05 –−0.12 0.014

prior.density.cds 0 −0.32 – 0.32 0.995 0.34 −0.14 – 0.82 0.162

Random Effects

σ2 1.05 4.14

τ00 0.04 name 0.0 name

ICC 0.04 0.0

N 147 name 109 name

Observations 841 541

Marg.R2/Cond.R2 0.442/0.462 0.435/0.435

TABLE 9 | Linear mixed model: CDS node centrality.

Predictors centrality.cds: child 1 p centrality.cds: child 2 p

Estimates CI Estimates CI

(Intercept) −0.09 −0.17 – 0.00 0.058 −0.01 −0.11 – 0.10 0.909

age 0 −0.00 – 0.00 0.093 0 −0.00 –−0.00 0.002

centrality.cs 0.01 0.00 – 0.02 0.01 0.01 0.00 – 0.02 0.031

prior.centrality.cs 0 −0.01 – 0.01 0.45 0.01 0.00 – 0.02 0.014

prior.centrality.cds 0.21 0.15 – 0.27 <0.001 0.1 0.05 – 0.14 <0.001

degree.cs −0.01 −0.05 – 0.03 0.666 −0.02 −0.08 – 0.03 0.374

prior.degree.cs 0.07 0.03 – 0.11 0.001 0.03 −0.03 – 0.08 0.344

degree.cds 0.13 0.11 – 0.14 <0.001 0.15 0.13 – 0.17 <0.001

prior.degree.cds 0 −0.01 – 0.02 0.601 0.03 0.01 – 0.05 0.006

density.cs 0.02 0.00 – 0.04 0.02 0 −0.01 – 0.01 0.709

prior.density.cs −0.04 −0.07 –−0.02 0.001 −0.02 −0.03 –−0.01 <0.001

density.cds 0.17 0.13 – 0.22 <0.001 0.19 0.15 – 0.22 <0.001

prior.density.cds 0 −0.05 – 0.05 0.888 0.05 0.01 – 0.10 0.011

Random Effects

σ2 0.02 0.03

τ00 0.02 name 0.02 name

ICC 0.44 0.42

N 147 name 109 name

Observations 841 541

Marg.R2/Cond.R2 0.668/0.813 0.595/0.767
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FIGURE 6 | Network density by session, Child 1 and 2, CS and CDS. CS of Child 1 is represented by a dashed red line; CS of Child 2 is represented by a dashed

green line; CDS of Child 1 is represented by a solid red line; CDS of Child 2 is represented by a solid green line.

recording for both parties. As network density is a global measure
relevant for the entire network, we did not include measures of
individual nodes in these models (unlike the models presented
above for degree and centrality).

CS Density
Table 10 shows the results for the linear models for both children,
predicting CS network density. Each model is detailed below.

CS Density: Child 1
The model’s explanatory power is substantial (R2 = 0.28, adj.
R2 = 0.27). Within this model, the following variables have a
significant effect on CS1 network density: age (negative effect),
CDS density (positive effect), and CDS density in recording N-1
(negative effect).

CS Density: Child 2
The model’s explanatory power is substantial (R2 = 0.40, adj.
R2 = 0.39). Within this model, the following variables have
a significant effect on CS2 network density: age (negative
effect), CDS density (positive effect), CS density in recording
N-1 (negative effect), and CDS density in recording N-1
(positive effect).

CDS Density
Table 11 shows the results for the linear models for both parents,
predicting CDS network density. Each model is detailed below.

CDS Density: Child 1
The model’s explanatory power is substantial (R2 = 0.28, adj.
R2 = 0.28). Within this model, the following variables have
a significant effect on CDS1 network density: age (positive
effect), CS density (positive effect), CDS density in recording

N-1 (negative effect), and CS density in recording N-1
(positive effect).

CDS Density: Child 2
The model’s explanatory power is weak (R2 = 0.08, adj. R2

= 0.07). Within this model, the following variables have a
significant effect on CDS2 network density: age (positive effect),
CS density (positive effect), and CS density in recording N-1
(positive effect).

Interim Summary
The results reported above show that Hebrew verb morphology
can be conceptualized as a network linking roots and patterns.
This construal sheds new light on the development of this system
with respect to patterns of adaptation within and between CS and
CDS, as well as tracking small, but meaningful, changes within
the system’s structure. Looking at node activation in the network,
we show that development is punctuated in terms of verb usage.
The node degree measure reveals that the CS linkage level (of
each root to number of patterns and each pattern to number of
roots) is affected by the following factors: age; the CDS linkage
level of the same root or pattern; the linkage level the same root
or pattern had in the previous recording in CS; the root’s or
pattern’s centrality within the network; and the network’s density.
The CDS degree (linkage level) is not shown to be affected by age,
remaining steady throughout the time range of our data. It is,
however, affected by the following: the CS linkage level and by
the linkage level of the same pattern/root in previous recordings;
the centrality of the pattern/root within the system; the density
of the current network; and the density of previous networks of
both the child and the parent.
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TABLE 10 | Linear model: CS Network density.

Predictors density.cs: child 1 p density.cs: child 2 p

Estimates CI Estimates CI

(Intercept) 1.31 1.07 – 1.55 <0.001 5.36 4.88 – 5.84 <0.001

age −0.02 −0.03 –−0.02 <0.001 −0.1 −0.11 –−0.09 <0.001

density.cds 0.51 0.33 – 0.69 <0.001 0.92 0.57 – 1.27 <0.001

prior.density.cs 0.03 −0.07 – 0.14 0.544 −0.14 −0.23 –−0.06 0.001

prior.density.cds −0.45 −0.64 –−0.25 <0.001 0.76 0.38 – 1.15 <0.001

Observations 841 541

R2/R2 adjusted 0.276/0.273 0.397/0.392

TABLE 11 | Linear model: CDS Network density.

Predictors density.cds: child 1 p density.cds: child 2 p

Estimates CI Estimates CI

(Intercept) −0.95 −1.01 –−0.88 <0.001 −0.49 −0.64 –−0.34 <0.001

age 0.01 0.00 – 0.01 <0.001 0.01 0.00 – 0.01 0.001

density.cs 0.07 0.04 – 0.09 <0.001 0.05 0.03 – 0.07 <0.001

prior.density.cds −0.36 −0.43 –−0.29 <0.001 −0.07 −0.16 – 0.02 0.141

prior.density.cs 0.27 0.24 – 0.31 <0.001 0.04 0.02 – 0.06 <0.001

Observations 841 541

R2 / R2 adjusted 0.279/0.275 0.078/0.071

The node centrality measure reveals that within the CS
networks there are more central roots/patterns compared with
the parents’ networks. The centrality of a root/pattern within the
CS morphological system (i.e., its centrality within the network)
is affected by the following factors: age; the centrality of the same
root/pattern in the CDS network; its degree in the CS network;
and the CS network’s density. The node centrality in the CDS
network is not affected by age, but rather by the following: the
previous centrality within the CDS network; the degree of the
same root/pattern in the CDS network; the density of the CDS
network; and the density of the previous CS network.

Finally, the network density measure reveals that CS network
density is affected by age as well as by the density of the CDS—of
both the previous and the current network. The CDS network
density is affected by age as well (contra to the degree and
centrality measures) and by the density of the CS network—both
the previous and the current. In the following section we discuss
each of these results and its implications in detail.

DISCUSSION

Recent studies on Hebrew verb acquisition (Ashkenazi et al.,
2016, 2020) have shown that toddlers rely on stable, frequently
occurring inflectional verb affixes in maternal input to gain
salient information on the opaque, irregular verbs they frequently
encounter. Furthermore, children’s output greatly resembles and
correlates with parental input in terms of structural, semantic
and pragmatic features of the verbs used, highlighting the role
of CDS in shaping CS verb structure. Previous studies indicated

the possible contribution of CDS to CS verb content in the
form of parental corrections, reformulations and expansions,
children’s uptake and imitations in parent-child conversations
characterized by mutual attention and responsiveness (Clark and
de Marneffe, 2012).

The present study adds to this line of research by accounting
for the development of the morphology of Hebrew verbs as
a dynamic network of roots and inflected patterns within the
interactive domain of Child Speech and Child Directed Speech.
The results presented in Figures 2–6 and the models in Tables 6–
11 show that the development of the system of roots and
inflected patterns between 1;8 and 2;2 is not strictly linear: it
is not only a matter of mere frequency of use, but rather that
across development, the child links more roots to every available
pattern and inflection, and more patterns and inflections to
every available root. Development is shown here to be dynamic,
complex, and adaptive in several ways.

First, we saw that morphological development in children can
be characterized as punctuated rather than continuous. Except
for a few frequent nodes, most morphological constructs (i.e.,
roots and patterns) become active for a specific period of time,
and then stop being used, sometimes re-appearing again in later
periods. Conversely, as shown in Figure 3, the parent’s use of
morphological constructs is more coherent or continuous, such
that each construct is used for a longer period of time, and breaks
between uses are shorter. That is, it seems like the child is busy
mastering each construct for a certain period, only to move on
to another construct. Consider for example the CS1 data (CS of
Child 1; top left panel in Figure 3): Node number 74 in the CS1
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data is the pattern Pi’el.Inf; it is active at the first recordings,
and then goes inactive and active again throughout the data.
Conversely, node number 121 in the same data is the pattern
Qal.Fut.3.Sg.Ms, and it is active in each and every recording.

Second, themodels presented above reveal the dynamic nature
of development, underscoring the role of adaptation—between
the child and the parent, and relative to past experience. This
is explained in the following sections, where we discuss (1)
linkage (i.e., node degree) between roots and inflected patterns;
(2) importance (eigenvector centrality) of roots and inflected
patterns; and (3) systematic growth potential in the network
(network density). Since we are interested in the dynamic nature
of development through time, we included the level of the various
measures at the prior recording as a possible explanatory variable
for the measures of a current recording for both CS and CDS.

Root and Inflected Pattern Degree Across
Development
The degree of a node in a network measures the number of links
it has with other nodes. In our case, links between nodes are verb
wordforms created by the affixation of roots to inflected patterns.
For example, the inflected pattern node Qal.Present.Fm.Sg, has a
degree level of 4 in the CS network of Child 2, recording number
3, linked to the roots r-P-y, k-P-b, n-w-h̄, and b-w-P, manifested as
the verbforms ro’a “sees/ing,” ko’évet “hurts/ing,” náxa “rests/ing,”
and bá’a “comes/ing,” respectively. The same inflected pattern is
expanded through development, having a degree level of 8 in
recording number 32. This means that this inflected pattern is
used in a larger grammatical network, linking other roots to the
morphological family of the pattern. That is, it highlights another
context in which this pattern can be used in terms of referents
and event attributes.

The results of our models show that changes in the degree
of roots and inflected patterns are not only a factor of age,
but rather that the degree level of a morphological construct is
systematically related to other factors within the network and
within the dyad. These results are different for the CS and the
CDS, and the two models are presented separately. We discuss
only those results that were significant for both children, leaving
individual differences to future research.

Results for the CS degree models (Table 6) show that the
number of roots predicted to be linked to a single inflected
pattern and the number of inflected patterns a single root is
linked to are affected by the age of the child, such that with
age, each construct is predicted to be linked to more constructs.
The linkage level is also affected by the number of links these
constructs have in the previous network of the child speech, and
by the number of links they have in the parent’s current network.
The importance of these constructs in the child’s speech also
affects their linkage, such that more central nodes are predicted
to have more links. Note that the centrality of the nodes in
the parent’s network does not have a significant effect on the
child’s degree. That is, for a construct to have more links in
the CS, it is crucial that it has more links in the CDS, but not
that it has a prominent position in the CDS network. Finally,
another factor that is common to both children is the effect of

the CS network density on degree level, such that degree levels
decrease with higher network density. This is a manifestation
of the growth potential interpretation of the density measure,
proposed by Levie et al. (2019), since lower density levels indicate
a higher potential for the network to grow, realized here as higher
degree levels.

Results for the CDS degree model (Table 7) show that age has
differential effects in the two children participating in the current
study: while the degree levels in parental speech rise in the CDS of
Child 1, they fall in the CDS of Child 2. However, the degree level
in the current CS network and degree level in the previous CDS
network have the same effect in both parents: increasing degree
levels in the current network of the CS and in the previous CDS
network predict increase in the degree levels in the CDS. That is,
linkage between roots and inflected patterns within the parent’s
speech is affected by the current speech of the child, as well as
the previous speech of the parents themselves. We may conclude
that parents adapt to their children’s speech in two ways: first, by
relating to their children’s current usage. Second, by expanding
on previous experience, counting on the usage their children
have already been exposed to and building upon it. Interestingly,
degree levels in the previous recording in the CS do not have an
effect on current degree in the CDS. That is, parents do not build
on their children’s previous usage, but on their own. This effect,
too, should be further investigated in future research.

The importance of nodes in the current network (as realized
by eigenvector centrality) affects CDS linkage as well, such that
more important nodes are predicted to havemore links. Note that
this applies only to the importance of the nodes in the current
network of the parents, but not to the current network of the child
nor to previous networks of the child or the parent. That is, in
contrast to previous linkage, which seems to affect current linkage
in both children and parents, the importance of morphological
constructs has an effect only on the current network. This may be
explained by the fact that centrality (i.e., importance) is a more
context specific measure than degree (i.e., linkage), and context
is changing from one recording session to another. Linkage,
however, is a matter of morphological productivity, linking a
single root to relatively many inflected patterns, and vice versa.
Therefore, it is a systematic measure that grows incrementally.

Root and Pattern Centrality Across
Development
The eigenvector centrality of a node is a measure of its
importance within the network: It assigns a value to a node
based on the number of links it has with other nodes that have
many links themselves. For example, in our case, a binyan-
temporal pattern that is linked to many roots that are linked to
other binyan-temporal patterns has high centrality. While the
measure of degree discussed above underscored the importance
of linkage in expanding the network, eigenvector centrality is
a relative measure, highlighting network variability. A network
with few highly centralized nodes has few hubs through which
information in the network can flow. In morphological terms we
can think of it as a network with a small number of inflected
patterns that are linked to many roots, each of which is linked to
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other patterns as well. This type of network limits the possibility
to link a root to an inflected pattern that is not central in the
network: in a given conversation, it is more probable for a new
link to be made between a root and a central inflected pattern
than with a less central one (resembling diversity situations
with high entropy). However, if the network has many low
centralized nodes, with no single node (or few nodes) standing
out from the crowd, the probability of making new links is
higher. Figure 5 shows that this is indeed the main difference in
centrality distribution between the CDS and CS of both dyads in
our data.

Results for the CS centrality model (Table 8) show that the
eigenvector centrality of a root or an inflected pattern is predicted
to fall with age. We interpret this result as indicating that
networks become more evenly distributed in terms of centrality
with age, thus enabling morphological productivity in language
use: Since there are no few nodes that stand out from the crowd,
the probability to use each node in the network (rather than just
a few) is increasing (resembling a low entropy system). Thus,
the structure of the system not only reflects productivity, but
rather enables it, as more nodes gain usage probability. The
centrality of a node in the children’s networks is also affected
by the centrality of this node in the parent’s network, such that
rising CDS centrality predicts rising CS centrality. That is, if on
a given day a root is used with many patterns that are used with
many roots in the parents’ speech, than this root is predicted to
be used with many patterns that are used with many roots in
the children’s speech as well. The degree of a node also affects
the centrality of the node, but only relative to its linkage in the
children’s speech. The degree of a node in the parents’ speech does
not predict its centrality level in CS. Finally, the density of the
network has an effect as well, such that rise in density levels (i.e.,
a less varied network) predicts high centrality. That is, density, as
a growth potential measure, affects not only local morphological
productivity (as seen above in the discussion of the degree
as morphological linkage), but also systematic morphological
productivity, such that a network with more growth potential is a
less centralized system.

Results for the CDS degree model (Table 9) show that
eigenvector centrality of roots and inflected patterns in the
parents’ speech to children is not affected by the age of the child.
That is, the system is stable over time in terms of construct
importance. However, while it is stable as a system, the network
is still adaptive at a more local level: the centrality of roots
and inflected patterns in the CDS changes as a function of
their centrality in the CS. That is, parents adapt the particular
morphological construct they use to the usage of their children,
putting the burden of morphological productivity on the same
constructs their children already use. The model also shows an
effect for the centrality in the previous CDS network on current
centrality. We interpret this result as indicating continuation
and coherence: If a morphological construct is important in the
network, a parent will keep using it in an important manner. This
may facilitate learning, as it provides the child withmore learning
opportunities with the same distributional characteristics. The
effect of CDS density on CDS centrality is similar to the effect of
CS density on CS centrality discussed above: High CDS density

predicts a more centralized network, interpreted as a less variable
and less productive one.

Finally, adaptation can also be seen in the effect of CS density
in the prior network on CDS centrality, an effect that was absent
in the CS model for centrality. The CDS centrality model shows
that a rise in density levels in the CS previous network predicts a
fall in centrality levels in the CDS current network. High density
and low centrality can be thought of as two sides of the same coin,
denoting systematic productivity. That is, a network with high
density has low growth potential since most of its possible links
have already been made. Conversely, a system with many low
central nodes is less limited in its potential to form new links, as
probability is more evenly distributed. The current model shows
that if the previous network of the children had low growth
potential, the current network of the parents is systematically
more productive. This can be seen as fine-tuned tweaking of
the system toward productivity by the parent: when parents
experience a limited network in the speech of their children,
they will provide them with more opportunities to expand their
system in future interactions.

Morphological Network Density Across
Development
The density of the network is a measure of fulfilled links
among nodes, relative to all possible links. As such, this measure
quantifies the level of network exhaustion in terms of how much
of the potential of the current network has already actually been
fulfilled by the speaker. A speaker that has already fulfilled most
of her network’s entire potential has nowhere to grow, in the sense
that the probability of re-using existing verb wordforms (i.e.,
links within the networks) is high. In such a network, the main
road to expansion is by adding new nodes, and not by creating
new links. Thus, a child with a high density network needs to
add more roots and/or inflected patterns to her network in order
to expand her morphological verb lexicon. On the other hand, a
child with a low density network can expand her network also by
linking constructs that were not linked before, creating variations
on verb wordforms.

Figure 6 and the models summarized in Tables 10, 11 show
that for both children, CS network density is affected by the child’s
age, such that networks become less dense with age. CDS network
density is affected by age in the opposite direction, with density
rising with age. Patterns of adaptation are manifested in the
relations revealed here between the density of the CS networks
and that of the CDS networks: CDS network density affects CS
network density for both children, such that children’s network
density is adaptive to that of their parents: the higher the density
of the CDS network, the higher the density of the CS network.
Parents are also adaptive to their children’s network density: CDS
network density is affected by CS network density, such that
higher CS density levels predict higher CDS density levels. The
model also shows that CDS network density is affected by the
density of the CS in the previous recording.

These results demonstrate the manifestation of adaptation:
both parties in the dyad adapt their network structure to that
of their interlocutor, taking into account their current and the
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FIGURE 7 | A developmental model of a morphological verb lexicon network: The image shows a dynamic system of adaptation involving the child, the parent, and

time. Arrows between affecting and affected network measures are colored according to the affecting variable; solid lines indicate positive effects, and dashed lines

indicate negative effects.

previous states (with some individual differences). Going from
the statistics to morphology, we interpret density as growth
potential (Levie et al., 2019). Thus, we can conclude that the
potential to expand the network, forming new links between
existing roots and inflected patterns, is a function of more
than just the age of the child, with the current and previous
morphological network structures of the other party in the
developmental tango also having an effect.

An illuminating step in the development of a morphological
system is morphological over-generalizations. However, in the
present study we do not report on such morphological errors,
that are the result of linking an existing root to an existing
pattern within the network, creating a link that is not observed
in the adult language. The fact that we did not find such errors
might seem surprising, but we believe it is due to the nature of
our particular data. Specifically, we claim that the age range of
our data (1;8–2;2) might be too early for morphological over-
generalizations of this type in Hebrew. We might find errors in
this age range in terms of word order or agreement marking,
but derivational root-binyan errors are more typical of children
aged 4 years and above, indicating the consolidation of verb
morphology (Levie et al., 2020). We assume that recordings of
older child-adult dyads may reveal more over-generalizations,
since themorphological systemwould gainmore network growth
potential, as shown above, until reaching a point of equilibrium

in terms of network density, balancing between creativity and
conventionality (Tomasello, 2000).

Converging Models
Figure 7 is a visual summary of all significant effects found in the
models discussed above, suggesting a complex unified model for
patterns of adaptation in Hebrew verb morphology development
between the ages of 1;8–2;2 as a network.

Figure 7 shows that many of the variables both affect and are
affected by other variables, within the speaker (child or parent),
and between speakers. This indicates dynamic relations within
the changing system of the morphological verb lexicon involving
adaptation within the speaker, between the speakers, and relative
to past experience.

CONCLUSION

Language learning is dynamic (van Geert, 1991, 2010), changing
as a function of age, individual differences, and input language
(CDS), among other factors. Within this growing/emerging
system, CDS and CS affect each other in different ways. The
current paper shows these relations, modeling the development
of Hebrew verb morphology between the ages of 1;8–2;2.

We used network analysis to account for complex relations
between morphological constructs, so as to assess changes
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in network structure over time. Growth in frequency during
development is unquestionably apparent. With age, children are
shown to produce more roots, more inflected patterns, and
more wordforms. Using network analysis we also showed that
children’s networks are growing with age as well, in terms of node
degree and centrality representing linkage level and construct
importance respectively, and in terms of the network density as
representing network growth potential. However, this method
allowed us to go beyond growth to the crucial role of variation,
showing that both take part in development. A major finding
reported above is that development is not linear, and that children
go through periods of punctuated development: We saw that
children’s use of morphological constructs is not coherent, in
the sense that it is not the case that once a child is using a
construct she will continue to use it in a productive manner.
Rather, the children were shown to use individual constructs for
short periods of time. This finding is highlighted by contrasting
it with the parents’ patterns of usage, which is much more
coherent or continuous. This leads us to the conclusion that
children between the ages of 1;8–2;2 do not use their entire
range of possible constructs based on a cumulative lexicon.
Rather, children are attuned to their immediate experience: If a
morphological construct was highly linked or very important in
the immediate past, or if it is important within the network of
their caregiver, it is more likely to be used again by the child. This
expresses the variation of the developing dynamic system. The
productivity of morphological constructs is varied, and depends
on many different (and related) factors.

Another facet of dynamic development revealed by the
network analysis concerns the adaptation of the parents to their
children’s systems. We show that parents adapt to their children’s
speech patterns in three ways: first, by relating to their children’s
current usage. Second, by expanding on previous experience,
counting on the usage their children have already been exposed
to, and building upon it. And third, we show that when parents
experience a limited network in the speech of their children,
they will provide them with more opportunities to expand their
system in future interactions.

A dynamic system goes through changes that are a function
of its current state (van Geert, 2010). The analysis suggested
in the present paper shows that this is an apt description of
the development of Hebrew verb morphology, and that the
framework of dynamic network analysis thus provides insights
into the complex issue of language development. Given that, we

would like to point out two directions for future research. First,
the present paper modeled each variable in a separate manner,
while the converged model presented in Figure 7 suggests that
an improved model might arise by analyzing the entire array of
variables simultaneously so as to expose interactions. Second, the
discussion of the results in the present paper focused on those
cases where no individual differences were found. As shown in
the summaries of the models, there are individual differences
between the two children and the two parents in the current
database. This suggests that analyzing such data by taking not
only the item itself as a random variable (as done in the present
paper), but also the speaker, and expanding our sample, might
reveal evenmore interesting relations within the dynamic system.
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Modeling Morphology With Linear
Discriminative Learning:
Considerations and Design Choices
Maria Heitmeier*, Yu-Ying Chuang and R. Harald Baayen

Department of Linguistics, Eberhard-Karls Universität, Tübingen, Germany

This study addresses a series of methodological questions that arise when modeling

inflectional morphology with Linear Discriminative Learning. Taking the semi-productive

German noun system as example, we illustrate how decisions made about the

representation of form and meaning influence model performance. We clarify that for

modeling frequency effects in learning, it is essential to make use of incremental learning

rather than the end-state of learning. We also discuss how the model can be set up to

approximate the learning of inflected words in context. In addition, we illustrate how in

this approach the wug task can be modeled. The model provides an excellent memory

for known words, but appropriately shows more limited performance for unseen data, in

line with the semi-productivity of German noun inflection and generalization performance

of native German speakers.

Keywords: German nouns, linear discriminative learning, semi-productivity, multivariate multiple regression,

Widrow-Hoff learning, frequency of occurrence, semantic roles, wug task

1. INTRODUCTION

Computational models of morphology fall into two broad classes. The first class addresses the
question of how to produce a morphologically complex word given a morphologically related form
(often a stem, or an identifier of a stem or lexeme) and a set of inflectional or derivational features.
We refer to these models as form-oriented models. The second class comprises models seeking to
understand the relation between words’ forms and their meanings. We refer to these models as
meaning-oriented models.

Prominent form-oriented models comprise Analogical Modeling of Language (AML; Skousen,
1989, 2002) and Memory Based Learning (MBL; Daelemans and Van den Bosch, 2005), which are
nearest-neighbor classifiers. Input to thesemodels are tables with observations (words) in rows, and
factorial predictors and a factorial response in columns. The response specifies an observation’s
outcome class (e.g., an allomorph), and the model is given the task to predict the outcome
classes from the other predictor variables (for allomorphy, specifications of words’ phonological
make-up). Predictions are based on sets of nearest neighbors, serving as constrained exemplar
sets for generalization. These models have clarified morphological phenomena ranging from the
allomorphy of the Dutch diminutive (Daelemans et al., 1995) to stress assignment in English
(Arndt-Lappe, 2011).

Ernestus and Baayen (2003) compared the performance of the MBL, AML, and Generalized
Linear Models (GLM), as well as a recursive partitioning tree (Breiman et al., 1984), on the task
of predicting whether word-final obstruents in Dutch alternate with respect to their voicing.
They observed similar performance across all models, with the best performance, surprisingly,
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for the only parameter-free model, AML. Their results suggest
that the quantitative structure of morphological datasets may be
straightforward to discover for any reasonably decent classifier.
The model proposed by Belth et al. (2021) is a recent example of
a classifier based on recursive partitioning.

Minimum Generalization Learning (MGL; Albright and
Hayes, 2003) offers an algorithm for rule induction (for
comparison with nearest neighbor methods, see Keuleers et al.,
2007). The model finds rules by an iterative process of minimal
generalization that combines specific rules into ever more general
rules. Each rule comes with a measure of prediction accuracy,
and the rule with the highest accuracy is selected for predicting
a word’s form.

All models discussed thus far are exemplar-based, in the
sense that the input to any of these models consists of a
table with exemplars, exemplar features selected on the basis of
domain knowledge, and a categorical response variable specifying
targeted morphological form changes. In other words, all these
models are classifiers that absolve the analyst from hand-
engineering lexical entries, rules or constraints operating on these
lexical entries, and theoretical constructs such as inflectional
classes. In this respect, they differ fundamentally from the second
group of the following computational methods.

The DATR language (Evans and Gazdar, 1996) defines non-
monotonic inheritance networks for knowledge representation.
This language is optimized for removing redundancy from
lexical descriptions. A DATR model requires the analyst to set
up lexical entries that specify information about, for instance,
inflectional class, gender, the forms of exponents, and various
kinds of phonological information. The lexicon is designed in
such a way that the network is kept as small as possible, while still
allowing the model, through its mechanism of inheritance, to
correctly predict all inflected variants. Realizational morphology
(RM; Stump, 2001) sets up rules for realizing bundles of
inflectional and lexical features in phonological form. This
theory can also be defined as a formal language (a finite-
state transducer) that provides mappings from underlying
representations onto their corresponding surface forms and
vice versa (Karttunen, 2003). The Gradual Learning Algorithm
(GLA; Boersma, 1998; Boersma and Hayes, 2001) works within
the framework of optimality theory (Prince and Smolensky,
2008). The algorithm is initialized with a set of constraints and
gradually learns an optimal constraint ranking by incrementally
moving through the training data, and upgrading or
downgrading constraints.

The third group of form-oriented computational models
comprises connectionist models. The past-tense model of
Rumelhart and McClelland (1986) was trained to produce
English past-tense forms given the corresponding present-tense
form. An early enhancement of this model was proposed by
MacWhinney and Leinbach (1991), for an overview of the
many follow-up models, see Kirov and Cotterell (2018). Kirov
and Cotterell proposed a sequence-to-sequence deep learning
network, the Encoder-Decoder (ED) learner, that they argue does
not suffer from the drawbacks noted by Pinker and Prince (1988)
for the original paste-tense model. Malouf (2017) introduced
a recurrent deep learning model trained to predict upcoming

segments, showing that this model has high accuracy for
predicting paradigm forms given the lexeme and the inflectional
specifications of the desired paradigm cell.

In summary, the class of form-oriented models comprises
three subsets: statistical classifiers (AML, MBL, GLM, recursive
partitioning), generators based on linguistic knowledge
engineering (DATR, RM, GLA), and connectionist models
(paste-tense model, ED learner). The models just referenced
presuppose that when speakers use a morphologically complex
form, this form is derived on the fly from its underlying form.
The sole exception is the model of Malouf (2017), which takes
the lexeme and its inflectional features as point of departure.
As pointed out by Blevins (2016), the focus on how to create
one form from another has its origin in pedagogical grammars,
which face the task of clarifying to a second language learner how
to create inflected variants. Unsurprisingly, applications within
natural language processing also have need of systems that can
generate inflected and derived words.

However, it is far from self-evident that native speakers of
English would create past-tense forms from present-tense forms.
Meaning-oriented models argue that in comprehension, the
listener or reader can go straight from the auditory or visual
input to the intended meaning, without having to go through a
pipeline requiring initial identification of underlying forms and
exponents. Likewise, speakers are argued to start from meaning,
and realize this meaning directly in written or spoken form.

The class of meaning-oriented models comprises both
symbolic and subsymbolic models. The symbolic models of Dell
(1986) and Levelt et al. (1999) implement a form of realizational
morphology. Concepts and inflectional features activate stems
and exponents, which are subsequently combined into syllables.
Both models hold that the production of morphologically
complex words is a compositional process in which units are
assembled together and ordered for articulation at various
hierarchically ordered levels. These models have been worked out
only for English, and to our knowledge have not been applied to
languages with richer morphological systems.

The subsymbolic model of Harm and Seidenberg (2004) sets
up multi-layer networks between orthographic, phonological,
and semantic units. No attempt is made to define morphemes,
stems, or exponents. To the extent that such units have any
reality, they are assumed to arise, statistically, at the hidden
layers. Mirković et al. (2005) argue for Serbian that gender is
an emergent property of the network that arises from statistical
regularities governing both words’ forms and their meanings (see
Corbett, 1991, for discussion of semantic motivations for gender
systems). The model for auditory comprehension of Gaskell and
Marslen-Wilson (1997) uses a three-layer recurrent network to
map speech input onto distributed semantic representations,
again without attempting to isolate units such as phonemes or
morphemes.

The naive discrimination learning (NDL) model proposed by
Baayen et al. (2011) represents words’ forms sub-symbolically,
but words’ meanings symbolically. The modeling set-up
that we discuss in the remainder of this study, that of
linear discriminative learning (LDL, Baayen et al., 2019),
replaces the symbolic representation of word meaning in
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NDL by sub-symbolic representations building on distributional
semantics (Landauer and Dumais, 1997; Mikolov et al., 2013b).

LDL is an implementation of Word and Paradigm
Morphology (Matthews, 1974; Blevins, 2016). Sublexical
units such as stems and exponents play no role. Semantic
representations in LDL, however, are analytical: the semantic
vector (word embedding, i.e., a distributed representation of
meaning) of an inflected word is constructed from the semantic
vector of the lexeme and the semantic vectors of the pertinent
inflectional functions. Both NDL and LDL make use of the
simplest possible networks: networks with only input and output
layers, and no hidden layers.

At this point, the distinctionmade by Breiman (2001) between
statistical models and machine learning is relevant. Statistical
models aim to provide insight into the mechanisms that generate
the data. Machine learning, on the other hand, aims to optimize
prediction accuracy, and it is not an issue whether or not the
algorithms are interpretable. LDL is much closer to statistical
modeling than to the black boxes of machine learning. All input
and output representations can be set up in a theoretically
transparent way (Baayen et al., 2019). Furthermore, because LDL
implements multivariate multiple regression, its mathematical
properties are well-understood. Importantly, modeling results do
not depend on the choice of hyper-parameters (e.g., the numbers
of LSTM layers and LSTM units), instead, they are completely
determined by the representations chosen by the analyst.

The goals of this study are, first, to clarify how such choices
of representation affect LDL model performance; second, to
illustrate what can be achieved simply with multivariate multiple
regression; and third, to call attention to the kind of problems
that are encountered when word meaning is integrated into
morphology. Our working example is the comprehension and
production of German nouns. In what follows, we first introduce
the German noun system, and review models that have been
proposed for German nouns. We then introduce LDL, after
which we present a systematic overview of modeling choices,
covering the representation of form, the representation of
meaning, and the learning algorithm (incremental learning vs.
the regression “end-state of learning” solution).

2. GERMAN NOUN MORPHOLOGY

The German noun system is both highly irregular and semi-
productive, featuring three different genders, two numbers and
four cases. In this section, we will give an overview over this
system, show where irregularity and semi-productivity arise,
and which (non-computational) models have been employed to
account for it.

Plural forms are marked with one of four suffixes (-(e)n, -
er, -e, -s) or without adding a suffix [∅; a “zero” morpheme
(Köpcke, 1988, p. 306)], three of which can pair with stem vowel
fronting [e.g., a (/a/) → ä (/E/)] (e.g., Köpcke, 1988) (Table 1).
There are additional suffixes which usually apply to words with
foreign origin, such as -i (e.g., Cello → Celli, “cellos”) (Cahill
and Gazdar, 1999). Cahill and Gazdar (1999) sub-categorize
the nouns into 11 classes, based on whether singulars have a

different suffix than plurals (Album → Alben, “albums”). Nakisa
and Hahn (1996) distinguish between no less than 60 inflection
classes. No plural class is prevalent overall (Köpcke, 1988), and
it is impossible to fully predict plural class from gender, syntax,
phonology or semantics (Köpcke, 1988; Cahill and Gazdar, 1999;
Trommer, 2021). Further complications arise when case is taken
into account. German has four cases: nominative, genitive, dative,
and accusative, which are marked with two exponents (applied
additional to the plural markers): -(e)n and -(e)s (Schulz and
Griesbach, 1981). Case forms are also not fully predictable
from gender, phonology or meaning. Since many forms do not
receive a separate marker, the system has been described as
“degenerate” (Bierwisch, 2018, p. 245) (see Table 2). German
speakers do, however, get additional disambiguing information
from the definite and indefinite articles which accompany nouns
and likewise encode gender, number, and case. Table 2 shows the
definite articles for all genders. Additionally, there are indefinite
articles available for singular forms which also express case in
their endings (e.g., Gen. sg. m./n./f. eines, Dat. sg. m./n. einem,
Dat. sg. f. einer).

Unsurprisingly, it has been the subject of a long-standing
debate whether a distinction between regular and irregular nouns
is useful for German (the debate has mostly focused on the
formation of the nominative plural which we accordingly also

TABLE 1 | Plural classes of German nouns (relative frequencies from Gaeta,
2008).

Plural class Example Type frequency (%)

-(e)n Tasse → Tassen “cup(s)” 56.5

(uml+)-e Tag → Tage “day(s)”

Topf → Töpfe “pot(s)” 23.9

(uml+)-er Brett → Bretter “board(s)”

Glas → Gläser “glass(es)” 2.3

(uml+)∅ Daumen → Daumen “thumb(s)”

Apfel → Äpfel “apple(s)” 13.3

-s Kamera → Kameras “camera(s)” 2.6

Most of the classes can appear with both masculine and neuter nouns. Feminine nouns

belong mostly to the -(e)n class (97%; Gaeta, 2008).

TABLE 2 | German noun declension.

Case and number Masculin I Masculin II Neutral Feminin

Nom. sg. der Freund der Mensch das Kind die Mutter

Gen. sg. des Freundes des Menschen des Kindes der Mutter

Dat. sg. dem Freund dem Menschen dem Kind der Mutter

Acc. sg. den Freund den Menschen das Kind die Mutter

Nom. pl. die Freunde die Menschen die Kinder die Mütter

Gen. pl. der Freunde der Menschen der Kinder der Mütter

Dat. pl. den Freunden den Menschen den Kindern den Müttern

Acc. pl. die Freunde die Menschen die Kinder die Mütter

Plural endings vary with declension class. Table adapted from Schulz and Griesbach

(1981, p. 105).
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focus on here). It is also unsurprising that the system shows
limited productivity. Several so-called “wug” studies, where

participants are asked to inflect nonce words, have clarified that

German native speakers struggle with predicting unseen plurals.

Köpcke (1988), Zaretsky et al. (2013), and McCurdy et al. (2020)
reported high variability across speakers with respect to the
plural forms produced. Köpcke (1988) took this as evidence for
a “modified schema model” of German noun inflection, arguing
that plural forms are generated based not only on a speaker’s
experience with the German noun system, but also on the “cue
validity” of the plural markers. For example, -(e)n is a good cue
for plurality, as it does not occur with many singular forms. By
contrast, -er has low cue validity for plurality, as it occurs with
many singulars.

Köpcke (1988) also observed that -s is used slightly more in
his wug experiments than would be expected from corpus data.
Marcus et al. (1995) and Clahsen (1999) therefore argued that -s
serves as the regular default plural marker in German, contrasting
with all other plural markers that are described as irregular.
Others, however, have argued that an -s default rule does not
provide any additional explanatory value (Nakisa and Hahn,
1996; Behrens and Tomasello, 1999; Indefrey, 1999; Zaretsky and
Lange, 2015).

Despite the irregularity and variability in the system,
some sub-regularities within the German noun system have
also been pointed out (Wiese, 1999; Wunderlich, 1999). For
instance, Wunderlich (1999, p. 7f.) reports a set of rules that
German nouns adhere to, which can be overridden on an
item-by-item basis through “lexical storage.” For example, he
notes that

a. Masculines ending in schwa are weakly inflected (and thus
also have n-plurals).

b. Non-umlauting feminine have an n-plural.
c. Non-feminines ending in a consonant have a @-plural. [. . . ]
e. All atypical nouns have an s-plural. [. . . ]

He also allows for semantics to co-determine class membership.
For instance, masculine animate nouns show a tendency
to belong to the -n plural class (see also Gaeta, 2008).
A further remarkable aspect of the German noun system,
especially for second language learners, is that whereas
it is remarkably difficult to learn to produce the proper
case-inflected forms, understanding these forms in context
is straightforward.

In the light of these considerations, the challenges for
computational modeling of German noun inflection, specifically
from a cognitive perspective, are the following:

1. To construct a memory for a highly irregular, “degenerate,”
semi-productive system,

2. To ensure that this memory shows some moderate
productivity for novel forms, but with all the uncertainties
that characterize the generalization capacities of German
native speakers,

3. To furthermore ensure that the performance of the mappings
from form to meaning, and from meaning to form, within the

framework of the discriminative lexicon (Baayen et al., 2019),
are properly asymmetric with respect to comprehension and
production accuracy (see also Chuang et al., 2020a).

2.1. Computational Models for German
Nouns
The complexity of the German declension system has inspired
many computational models. The DATR model of Cahill and
Gazdar (1999) belongs to the class of generating models based on
linguistic knowledge engineering. It assigns lexemes to carefully
designed hierarchically ordered declension classes. Each class
inherits the properties from classes further up in the hierarchy,
but will override some of these properties. This model provides
a successful and succinct formal model for German noun
declension. Other models from this class include GERTWOL
which is based on finite-state operations (Haapalainen and
Majorin, 1994), as well as the model of Trommer (2021) which
draws on Optimality Theory (OT) and likewise requires careful
hand-crafting and constraint ranking (but does not currently
have a computational implementation).

Belth et al. (2021) propose a statistical classifier based
on recursive partitioning, with as response variable the
morphological change required to transform a singular into
a plural, and as predictors the final segments of the lexeme,
number, and case. At each node, nouns are divided by their
features, with one branch comprising the most frequent plural
ending (which will inevitably include some nouns with a different
plural ending, labeled as exceptions), and with the other branch
including the remainder of the nouns. Each leaf node of the
resulting tree is said to be productive if a criterion for node
homogeneity is met. An older model, also a classifier building up
rules inductively, was developed 20 years earlier by Albright and
Hayes (2003).

Connectionist models for the German noun system include
a model using a simple recurrent network (Goebel and
Indefrey, 2000), and a deep learning model implementing a
sequence-to-sequence encoder-decoder (McCurdy et al., 2020).
The latter model takes letter-based representations of German
nouns in their nominative singular form as input, together
with information on the grammatical gender of the noun.
The model is given the task to produce the corresponding
nominative plural form. The model learned the task with high
accuracy on held out data (close to 90%), but was more
locked in on the “correct” forms compared to native speakers,
who in a wug task showed substantially more variability in
their choices.

The models discussed above also differ with respect to how
they generate predictions for novel nouns. The sequence-to-
sequence deep learning model of (McCurdy et al., 2020) can
do so relatively easily, straight from a word’s form and its
gender specification but its inner workings are not immediately
interpretable (though recent work has started to gain some
insights, see e.g., Linzen and Baroni, 2021, for syntactic structure
in deep learning). By contrast, the linguistically more transparent
DATR model can only generate a novel word’s inflectional
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variants once this word has been assigned to an inflectional
class. This may to some extent be possible given its principal
parts (Finkel and Stump, 2007), but clearly requires additional
mechanisms to be in place.

In what follows, we introduce the LDL model. LDL is a
model of human lexical processing, with all its limitations and
constraints, rather than an optimized computational system
for generating (or understanding) morphologically complex
words. It implements a simple linear mapping between
form and meaning, where form is represented as a binary
vector of sublexical cues, and meaning is represented in a
distributed fashion.

By applying LDL to the modeling of the German noun system
(including its case forms), we address a question that has thus far
not been addressed computationally, namely the incorporation of
semantics. Semantic subregularities in the German noun system
have been noted by several authors (e.g., Wunderlich, 1999;
Gaeta, 2008), and although deep learning models can be set
up that incorporate semantics (see e.g., Malouf, 2017), LDL by
design must take semantics into account.

The next section introduces the LDL model. The following
sections proceed with an overview of the many modeling
decisions that have to be made. An important part of this
overview is devoted to moving beyond the modeling of isolated
words, as words come into their own only in context (Elman,
2009), and case labels do not correspond to contentful semantics,
but instead are summary devices for syntactic distribution classes
(Blevins, 2016; Baayen et al., 2019).

3. LINEAR DISCRIMINATIVE LEARNING

LDL is the computational engine of the discriminative lexicon
model (DLM) proposed by Baayen et al. (2019). The DLM
implements mappings between form and meaning for both
reading and listening, and mappings from meaning to form
for production. It also allows for multiple routes operating in
parallel. For reading in English, for instance, it sets up a direct
route from form to meaning, in combination with an indirect
route from visual input to a phonological representation that
in turn is mapped onto the semantics (cf. Coltheart et al.,
1993). In what follows, we restrict ourselves to the mappings
from form onto meaning (comprehension) and from meaning
onto form (production). Mappings can be obtained either
with trial-to-trial learning, or by estimating the end-state of
learning. In the former case, the model implements incremental
regression using the learning rule of Widrow and Hoff (1960);
in the latter case, it implements multivariate multiple linear
regression, which is mathematically equivalent to a simple
network with input units, output units, no hidden layers,
and simple summation of incoming activation without using
thresholding or squashing functions.

Each word form of interest is represented by a set of cues. For
example, wordform1 might feature the cues cue1, cue2, and
cue3, while wordform2 could be marked by cue1, cue4, and
cue5. We can thus express a word form as a binary vector, where

1 denotes presence and 0 absence. This information is coded in
the cue matrix C:

C =

( cue1 cue2 cue3 cue4 cue5

wordform1 1 1 1 0 0
wordform2 1 0 0 1 1

)

Words’ meanings are also represented by numeric vectors. The
dimensions of these vectors can have a discrete interpretation,
or have a latent interpretation (see section 4.2 below for detailed
discussion). In the following example, wordform1 has strong
negative support for semantic dimensions S3 and S5, while
wordform2 has strong positive support for S4 and S5. This
information is brought together in a semantic matrix S:

S =

( S1 S2 S3 S4 S5

wordform1 0.1 0.004 −1.95 0.03 −0.54
wordform2 −0.49 −0.32 0.03 1.06 0.98

)

Comprehension and production in LDL are modeled by means
of simple linear mappings from the form matrix C to the
semantic matrix S, and vice versa. These mappings specify how
strongly input nodes are associated with output nodes. The
weight matrix for a given mapping can be obtained in two ways.
First, using the mathematics of multivariate multiple regression,
a comprehension weight matrix F is obtained by solving F from

S = C · F,

and a production weight matrix G is obtained by solving G from

C = S · G.

As for linear regression modeling, the predicted row vectors are
approximate. Borrowing notation from statistics, we write

Ŝ = C · F

for predicted semantic vectors (row vectors of Ŝ), and

Ĉ = S · G

for predicted form vectors (row vectors of Ĉ).
These equations amount to estimating multiple outcomes

from multiple variables, which in statistics is referred to as
multivariate multiple regression. In simple linear regression, a
single value y is estimated from a value x via an intercept β0 and
a weighing of x with scalar β1:

ŷ = β0 + β1x (1)

which can easily be expanded to estimating y from a vector x
(multiple linear regression), using a vector of beta coefficients
βi ∈ β to weigh each value xi ∈ x:

ŷ = β0 + x1β1 + x2β2 + ...+ xnβn (2)
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Finally, to estimate a vector y from a vector x (multivariate
multiple regression), we need an entire matrix of beta coefficients
βij ∈ B. A single value yi ∈ y is then estimated via

ŷi = β0i + x1β1i + x2β2i + . . . + xpβpi (3)

Thus, estimating the mappings F and G in LDL amounts to
computing the coefficients matrix B for mappings from C to S

and vice versa. As such, each value in a predicted semantic vector
ŝ (form vector ĉ) is a linear combination (i.e., weighted sum) of
the values in the corresponding form vector c (semantic vector
s) it is predicted from. This means that LDL is mathematically
highly constrained: it cannot handle non-linearities that even
shallow connectionist models (e.g., Goldsmith and O’Brien,
2006) can take in their stride. Nevertheless, we have found that
these simple linear mappings result in high accuracies (e.g.,
Baayen et al., 2018, 2019) suggesting that morphological systems
are surprisingly simple. Cases where model predictions are less
precise due to the limitations of linearity become indicative of
learning bottlenecks.

Furthermore, note that estimating the mappings F and G

using the matrix algebra of multivariate multiple regression
provides optimal estimates, in the least squares sense, of
the connection weights (or equivalently, beta coefficients) for
datasets that are type-based, in the sense that each pair of row
vectors c of C and s of S is unique. Having multiple instances of
the same pair of row vectors in the dataset does not make sense,
as it renders the input completely singular and does not add
any further information. Thus, models based on the regression
estimates of F and G are comparable to type-based models such
as AML, MBL, MGL, and models using recursive partitioning.

Making the estimates of the mappings sensitive to frequency
of use requires incremental learning, updating weights after each
word token that is presented for learning. Incremental learning is
implemented using the learning rule of Widrow and Hoff (1960)
and Milin et al. (2020), which defines the matrix W

t+1 with
updated weights at time t + 1 as the weight matrix W

t at time
t, modified as follows:

W
t+1 = W

t + c · (oT − c
T ·Wt) · η,

where c is the current cue (vector), o the current outcome vector,
and η the learning rate. Conceptually, this means that after each
newly encountered word token, the weight matrix is changed
such that the next time that the same cue vector has to be mapped
onto its associated outcome vector, it will be slightly closer
to the target outcome vector than it was before. The learning
rule of Widrow-Hoff implements incremental regression. As the
number of times that a model is trained again and again on a
training set increases (training epochs), the network’s weights
will converge to the matrix of beta coefficients obtained by
approaching the estimation problem with multivariate multiple
regression (see e.g., Evert and Arppe, 2015; Chuang et al.,
2020a; Shafaei-Bajestan et al., 2021). As a consequence, the
regression-based estimates pertain to the “end-state of learning,”
at which the data have been worked through infinitely many
times. Unsurprisingly, effects of frequency and order of learning

are not reflected in model predictions based on the regression
estimates. Such effects do emerge with incremental learning (see
section 4.5).

Comprehension accuracy for a given word ω is assessed by
comparing its predicted semantic vector ŝω with all gold standard
semantic vectors in S (the creation of gold standard semantic
vectors will be described in subsequent sections), using either the
cosine similarity measure or the Pearson correlation r. In what
follows, we use r, and select as the meaning that is recognized
that gold standard row vector smax of S that shows the highest
correlation with ŝω. If smax is the targeted semantic vector, the
model’s prediction is classified as correct, otherwise, it is taken to
be incorrect.

For the modeling of production, a supplementary algorithm
is required for constructing actual word forms. The predicted
vectors ĉ provide information about the amount of support that
form cues receive from the semantics. However, information
about the amount of support received by the full set of cues
does not provide information about the order in which a subset
of these cues have to be woven together into actual words.
Algorithms that construct words from form cues make use of the
insight that when form cues are defined as n-grams (n > 1), the
cues contain implicit information about order. For instance, for
digraph cues, cues ab and bc can be combined into the string
abc, whereas cues ab and cd cannot be merged. Therefore,
when n-grams are used as cues, directed edges can be set up in
a graph with n-grams as vertices, for any pair of n-grams that
properly overlap. A word form is uniquely defined by a path
in such a graph starting with an initial n-gram (starting with
an initial word edge symbol, typically a # is used) and ending
at a final n-gram (ending with #). This raises the question of
how to find word paths in the graph. This is accomplished by
first discarding n-grams with low support from the semantics
below a threshold θ1, then calculating all possible remaining
paths, and finally selecting for articulation that path for which the
corresponding predicted semantic vector (obtained by mapping
its corresponding cue vector c onto s using comprehension
matrix F) best matches the semantic vector that is the target for
articulation. This implements “synthesis by analysis,” see Baayen
et al. (2018, 2019) for further details and theoretical motivation.
For a discussion of the cognitive plausibility of this method, see
Chuang et al. (2020b).

The first algorithm that was used to enumerate possible paths
made use of a shortest-paths algorithm from graph theory.
This works well for small datasets, but becomes prohibitively
expensive for large datasets. The JudiLing package (Luo et al.,
2021) offers a new algorithm that scales up better. This algorithm
is first trained to predict, from either the Ĉ or the S matrix, for
each possible word position, which cues are best supported at that
position. All possible paths with the top k best-supported cues are
then calculated, and subjected to synthesis by analysis. Details
about this algorithm, implemented in julia in the JudiLing

package as the function learn_paths can be found in Luo
(2021). The learn_paths function is used throughout the

1This is a simple cut-off point for n-grams with low support, not to be confused

with thresholds as often used in deep learning.
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FIGURE 1 | Options when modeling a language’s morphology with LDL. Examples with options in italics are discussed in the present study.

remainder of this study. A word form is judged to be produced
correctly when it exactly matches the targeted word form.

4. MODELING CONSIDERATIONS

When modeling a language’s morphology within the framework
of the DLM, the analyst is faced with a range of choices, illustrated
in Figure 1. From left to right, choices are listed for representing
form, for the unit of analysis, for the representation of semantics,
for the handling of context, and for the learning regime.

With respect to form representations, the kind of n-gram
has to be selected, setting n, deciding on phonological or
orthographic grams, and specifying how stress or lexical tone
are represented. With respect to the unit of analysis, the
analyst has to decide whether to model isolated words, or
words in phrasal contexts. A third set of choices concerns what
semantic representations to use: simulated representations, or
word embeddings such as word2vec (Mikolov et al., 2013b), or
grounded vectors (Shahmohammadi et al., in press). A further
set of choices for languages with case concerns how to handle
case labels, as these typically refer to syntactic distribution classes
rather than contentful inflectional features (Blevins, 2016).
Finally, a selection needs to be made with respect to whether
incremental learning is used, or instead the end-state of learning
using regression-based estimation. In what follows, we illustrate
several of these choice points using examples addressing the
German noun system.

The dataset on German noun inflection that we use for our
worked examples was compiled as follows. First, we extracted all
monomorphemic nouns and their inflections with a frequency
of at least 1 from CELEX (Baayen et al., 1995), resulting in a
dataset of about 6,000 word forms. Of these we retained the 5,486
word forms for which we could retrieve grammatical gender
from Wiktionary, thus including word forms of 2,732 different
lemmas. The resulting data was expanded such that each attested
word form was listed once for each possible paradigm cell it
could belong to. For instance, Aal (“eel”) is listed once as singular
nominative, once as dative and once as accusative (Table 3).
This resulted in a dataset with 18,147 entries, with word form
frequencies ranging from 1 to 5,828, (M log frequency 2.56,
SD 1.77). Word forms are represented in their DISC notation,
which represents German phones with single characters2.Table 3
clarifies that there are many homophones. As a consequence, the

2Data and code are available in the Supplementary Materials at https://osf.io/

zrw2v/

TABLE 3 | Representation of the paradigm for Aal “eel” in our dataset.

Word

form

Pronunciation Lemma Case Number Frequency Gender

Aal al Aal Nominative Singular 29 M

Aal al Aal Dative Singular 29 M

Aal al Aal Accusative Singular 29 M

Aale al@ Aal Nominative Plural 34 M

Aale al@ Aal Genitive Plural 34 M

Aalen al@n Aal Dative Plural 17 M

Aalen al@n Aal Accusative Plural 17 M

Genitive singular (Aals) is not included as it has a frequency of 0 in CELEX.

actual number of distinct word forms in our dataset is only 5,486,
which amounts to on average about two word forms per lemma.

There are many ways in which model performance can be
evaluated. First, we may be interested in how well the model
performs as a memory. How well does the model learn to
understand and produce words it has encountered before? Note
that because the model is not a list of forms, this is not a
trivial question. For evaluation of the model as a memory,
we consider its performance on the training data (henceforth
train). Second, we may be interested in the extent to which the
memory is productive. Does it generalize so that new forms can
be understood or produced? Above, we observed that the German
noun system is semi-regular, and that German native speakers
are unsure about what the proper plural is of words they have
not encountered before (McCurdy et al., 2020). If our modeling
approach properly mirrors human limitations on generalization
from data with only partial regularities, evaluation on unseen,
held-out data of German should not be perfect. At this point,
however, several issues arise that require careful thought.

For one, from the perspective of the linguistic system, it seems
unreasonable to assume that any held-out form can be properly
produced (or understood) if some of the principal parts (Finkel
and Stump, 2007) of the lexeme are missing in the training data.
In what follows, we will make the simplifying assumption that
under cross-validation with sufficient training data, this situation
will not arise.

A further question that arises is how to evaluate held-
out words that have homophones in the training data. Such
homophones present novel combinations of a form vector
(shared with another data point in the training data) and a
semantic vector (not attested for this form in the training data).
We may want to impose a strict evaluation criterion requiring
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TABLE 4 | Types of model evaluation.

Evaluation type

Simple Blind evaluation of all held-out data val_all

Nuanced Evaluation on novel forms only val_newform

Evaluation on homophones Strict val_strict

Lenient val_lenient

that the model gets the semantic vector exactly right. However,
when presented with a homophone in isolation, a human listener
cannot predict which of a potentially large set of paradigm
cells is the targeted one (the problem of modeling words in
isolation). We may therefore want to use a lenient evaluation
criterion for comprehension according to which comprehension
is judged to be accurate when the predicted semantic vector ŝ is
associated with one of a homophonic word’s possible semantic
interpretations. Yet a further possible evaluation metric is to see
how well the model performs on words with forms that have
not been encountered in the training data. These possibilities
are summarized in Table 4. Below, in section 4.3.1, we consider
further complications that can arise in the context of testing the
model on unseen forms.

For evaluating the productivity of the model, we split the full
dataset into 80% training data and 20% validation data, with
14,518 and 3,629 word forms, respectively. In the validation
data, 3,309 forms are also present in the training data (i.e.,
homophones), and 320 are new forms. Among the 320 new
forms, 8 have novel lemmas that are absent in the training
data. Since it is unrealistic to expect the model to understand
or produce inflected forms of completely new words, these 8
words are excluded from the validation dataset for new forms,
although they are taken into consideration when calculating the
overall accuracy for the validation data. The same training and
validation data are used for all the simulations reported below,
unless indicated otherwise.

4.1. Representing Words’ Forms
Decisions about how to represent words’ forms depend on the
modality that is to be modeled. For auditory comprehension,
Arnold et al. (2017) and Shafaei-Bajestan et al. (2021) explore
ways in which form vectors can be derived from the audio signal.
Instead of using low-level audio features, one can also use more
abstract symbolic representations such as phone n-grams3. For
visual word recognition, one may use letter n-grams, or, as lower-
level visual cues, for instance, features derived from histograms
of oriented gradients (Dalal and Triggs, 2005; Linke et al., 2017).
In what follows, we use binary vectors indicating the presence or
absence of phonological phone or syllable n-grams.

4.1.1. Phone-Based Representations
Sublexical phone cues can be of different granularity, such as
biphones and triphones. For the word Aale (pronunciation al@),

3Other work (e.g., Joanisse and Seidenberg, 1999) has used slot-coding for

representing phonology, but we do not think that this representation is optimal,

since, for example, we are not sure how prefixation is to be modeled without

hand-engineering (details in Heitmeier and Baayen, 2020).

the biphone cues are #a, al, l@, and @#, and the triphone cues
are #al, al@, and l@#. The number of unique cues (and hence
the dimensionality of the form vectors) increases as granularity
decreases. For the present dataset, there are 931 unique biphone
cues, but 4,656 triphone cues. For quadraphones, there are no
less than 9,068 unique cues. Although model performance tends
to become better with more unique cues, we also run the risk
of overfitting. That is, the model does not generalize and thus
performs worse on validation data. The choice of granularity
therefore determines the balance of having a precise memory on
the one hand and a productive memory on the other hand. In
the simulation examples with n-phones that follow, we made use
of simulated semantic vectors. Details on the different kinds of
semantic vectors that can be used are presented in section 4.2.1.

Accuracy for n-phones is presented in the first three rows
of Table 5. For the training data, comprehension accuracy is
high with both triphones and quadraphones. For biphones,
the small number of unique cues clearly does not offer
sufficient discriminatory power to distinguish word meanings.
Under strict evaluation, unsurprisingly given the large number
of homophones in German noun paradigms, comprehension
accuracy plummets substantially to 8, 33, and 35% for biphone,
triphone, and quadraphone models, respectively. Given that
there is no way to tell the meanings of homophones apart without
further contextual information, we do not provide further details
for strict evaluation. However, in section 4.1.1 we will address
the problem of homophony by incorporating further contextual
information into the model.

With regards to model accuracy for validation data, we see
that overall accuracy (val_all) is quite low for biphones, while
it remains high for both triphones and quadraphones. Closer
inspection reveals that this high accuracy is mainly contributed
by homophones (val_lenient). Since these forms are already
present in the training data, a high comprehension accuracy
under lenient evaluation is unsurprising. As for unseen forms
(i.e., val_newform), quadraphones perform slightly better
than triphones.

Production accuracy, presented in the right half of Table 5, is
highly sensitive to the threshold θ used by the learn_paths
algorithm. Given that usually only a relatively small number of
cues receive strong support from a given meaning, we therefore
set the threshold such that the algorithm does not need to
take into account large numbers of irrelevant cues. Depending
on the form and meaning representations selected, some fine-
tuning is generally required to obtain a threshold value that
optimally balances both accuracy and computation time. Once
the threshold is fine-tuned for the training data, the same
threshold is used for the validation data.

Production accuracy is similar to comprehension accuracy,
albeit systematically slightly lower. Triphones and quadraphones
again outperform biphones by a large margin. For the training
data, triphones are somewhat less accurate than quadraphones.
Interestingly, in order to predict new forms in the validation data,
triphones outperform quadraphones. Clearly, triphones offer
better generalizability compared to quadraphones, suggesting
that we are overfitting when modeling with quadraphones as
cues. Accuracy under the val_newform criterion is quite low,
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TABLE 5 | Comprehension and production accuracy for train and validation datasets, with biphones, triphones, quadraphones, and bisyllables as cues.

Comprehension Production

Train (%) val_all (%) val_lenient (%) val_newform (%) Train (%) val_all (%) val_lenient (%) val_newform (%)

Biphone 22 16 17 8 48 31 33 12

Triphone 93 88 92 51 84 64 68 21

Quadraphone 97 93 97 53 91 67 73 11

Bisyllable 99 93 99 20 95 63 69 0.3

word2vec 87 72 79 0.3 97 88 94 25

For the first four rows, we used simulated semantic vectors. For the last row, cues are triphones, and semantic vectors are word2vec embeddings (discussed in section 4.2.2). For the

learn_paths algorithm, the threshold θ was set to 0.05, 0.008, 0.005, 0.005, and 0.008, respectively.

which is perhaps not unexpected given the uncertainty that
characterizes native speakers’ intuitions about the forms of novel
words (McCurdy et al., 2020). In section 4.3.2, we return to
this low accuracy, and consider in further detail generated novel
forms and the best supported top candidates.

4.1.2. Syllable-Based Representations
Instead of using n-phones, the unit of analysis can be a
combination of n syllables. The motivation for using syllables
is that some suprasegmental features, such as lexical stress in
German, are bound to syllables. Although stress information
is not considered in the current simulation experiments,
suprasegmental cues can be incorporated (see Chuang et al.,
2020a, for an implementation).

As for n-phones, when using n-syllables, we have to choose
a value for the unit size n. For the word Aale, the bi-syllable
cues are #-a, a-l@, and l@-#, with “-” indicating syllable
boundary. When unit size equals two, there are in total 8,401
unique bi-syllable cues. For tri-syllables, the total number of
unique cues increases to 10,482. Above, we observed that the
model was already overfitting with 9,068 unique quadraphone
cues. We therefore do not consider tri-syllable cues, and only
present modeling results for bi-syllable cues4.

As shown in the fourth row of Table 5, comprehension
accuracy (for bi-syllables) for the training data is almost error-
free, 99%, the highest among all the cue representations. For
the validation data, the overall accuracy is also high, 93%.
This is again due to the high accuracy for the seen forms
(val_lenient = 99%). Only one fifth of the unseen forms,
however, is recognized successfully (val_newform = 20%).
Production accuracies for the training and validation data are
95 and 63%, respectively. The model again performs well for
homophones (val_lenient = 69%) but fails to produce
unseen forms (val_newform = 0.3%). This extremely low
accuracy is in part due to the large number of cues that appear
only in the validation dataset (325 for bisyllables, but only 23
for triphones). Since such novel cues do not receive any training,
words with such cues are less likely to be produced correctly. We

4Even though the number of bi-syllables is close to that of quadraphones, the fact

that quadraphones still outnumber bi-syllables suggests that quadraphones have

captured within-syllable phone collocations that are not available in bi-syllable

cues. These further fine-grained cues might include, for example, consonant

clusters, as in Sprache “language.”

will come back to the issue of novel cues in section 4.3.1. For now,
we conclude that triphone-based form vectors are a good choice
as they show a good balance of comprehension and production
accuracy on training and validation data.

4.2. Semantic Representation
There are many ways in which words’ meanings can be
represented numerically. The simplest method is to use one-hot
encoding (i.e., a binary vector where a single value/bit is set to
one), as implemented in the naive discriminative learning model
proposed by Baayen et al. (2011). One-hot encoding, however,
misses out on the semantic similarities between lemmas: all
lemmas receive meaning representations that are orthogonal.
Instead of using one-hot encoding, semantic vectors can also be
derived by turning words’ taxonomies in WordNet into binary
vectors with multiple bits on (details in Chuang et al., 2020a).
In what follows, however, we work with real-valued semantic
vectors, known as “word embeddings” in natural language
processing. Semantic vectors can either be simulated, or derived
from corpora using methods from distributional semantics (see
e.g., Landauer and Dumais, 1997; Mikolov et al., 2013b).

4.2.1. Simulated Semantic Vectors
When corpus-based semantic vectors are unavailable, semantic
vectors can be simulated. The JudiLing package enables the
user to simulate such vectors using normally distributed random
numbers for content lexemes and for inflectional functions.
By default, the dimension of the semantic vectors is set to be
identical to that of the form vectors.

The semantic vector for an inflected word is obtained by
summing the vector of its lexeme and the vectors of all the
pertinent inflectional functions. As a consequence, all vectors
sharing a certain inflectional feature are shifted in the same
direction in semantic space. By way of example, consider the
German plural dative of Aal “eel,” Aalen. We compute its
semantic vector by adding the semantic vector for PLURAL and

DATIVE to the lemma vector
−→
Aallemma:

−−−→
Aalendat.pl =

−→
Aallemma +

−−−−→
PLURAL +

−−−−→
DATIVE

The corresponding singular dative Aal can be coded as:

−→
Aaldat.sg. =

−→
Aallemma +

−−−−−−→
SINGULAR +

−−−−→
DATIVE
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Alternatively, the singular form could be coded as unmarked,
following a privative opposition approach:

−→
Aaldat.sg. =

−→
Aallemma +

−−−−→
DATIVE

For the remainder of the paper, we treat number as an equipollent
opposition. Finally, a small amount of random noise is added to
each semantic vector (M 0, SD 1; compare this to M 0, SD 4 for
lexeme and inflectional vectors), as an approximation of further
semantic differences in word use other than number and case [see
Sinclair (1991, e.g., p.44ff.)5, Tognini-Bonelli (2001) and further
discussion below]. The results reported thus far were all obtained
with simulated vectors.

It is worth noting that when working with simulated semantic
vectors, the meanings of lexemes will still be orthogonal, and
that as a consequence, all similarities between semantic vectors
originate exclusively from the semantic structure that comes from
the inflectional system.

4.2.2. Empirical Semantic Vectors
A second possibility for obtaining semantic vectors is to derive
them from corpora. Baayen et al. (2019) constructed semantic
vectors from the TASA corpus (Ivens and Koslin, 1991), in such
a way that semantic vectors were obtained not only for lexemes
but also for inflectional functions. With their semantic vectors,
the semantic vector ofAalen can be straightforwardly constructed
from the semantic vectors of Aal, PLURAL, and DATIVE.

However, semantic vectors that are created with standard
methods from machine learning, such as word2vec (Mikolov
et al., 2013a), fasttext (Bojanowski et al., 2017), or GloVe
(Pennington et al., 2014), can also be used (albeit without
semantic vectors for inflectional features; see below). In what
follows, we illustrate this for 300-dimensional vectors generated
with word2vec, trained on the German Wikipedia (Yamada et al.,
2020). For representing words’ forms, we used triphones.

The model in general performs well for the training data
(Table 5). For the validation data, while the homophones are
easy to recognize and produce, the unseen forms are again
prohibitively difficult. Interestingly, if we compare the current
results with the results of simulated vectors (cf. second row,
Table 5), we observe that while the train and val_all
accuracies are fairly comparable for the two vector types,
their val_newform accuracies nonetheless differ. Specifically,
understanding new forms is substantially more accurate with
simulated vectors (51 vs. 0.3%), whereas word2vec embeddings
yield slightly better results for producing new forms (21 vs. 25%).

To understand why these differences arise, we note, first,
that lexemes are more similar to each other than is the case
for simulated vectors (in which case lexemes are orthogonal),
and second, that word2vec semantic vectors are exactly the
same for each set of homophones within a paradigm, so that
inflectional structure is much less precisely represented. This lack

5Our approach of adding small semantic differences to individual word forms

does probably not do justice to Sinclair (1991)’s view that word forms can have

completely idiosyncratic meanings, since we still assume commonalities across

word forms such as e.g., a shared meaning of plurality. We hope to be able to

address this issue in future research.

of inflectional structure may underlie the inability of the model
to understand novel inflected forms correctly. Furthermore,
the lack of differentiation between homophones simplifies the
mapping from meaning to form, leading to more support from
the semantics for the relevant triphones, which in turn facilitates
synthesis by analysis.

In addition, we took the word2vec vectors, and reconstructed
from these vectors the vectors of the lexemes and of the
inflectional functions. For a given lexeme, we created its lexeme
vector by averaging over the vectors of its inflectional variants6.
For plurality, we averaged over all vectors of forms that can be
plural forms. Using these new vectors, we constructed semantic
vectors for a given paradigm cell by adding the semantic vector
of the lexeme and the semantic vectors for its number and
case values. The mean correlation between the new “analytical”
word2vec vectors and the original empirical vectors was 0.79
(sd = 0.076). Apparently, there is considerable variability
in how German inflected words are actually used in texts, a
finding that has also emerged from corpus linguistics (Sinclair,
1991; Tognini-Bonelli, 2001). The idiosyncracies in the use of
individual inflected forms renders the comprehension of an
unseen, but nevertheless also idiosyncratic, inflected word form
extremely difficult. From this we conclude that the small amount
of noise that we added to the simulated semantic vectors is likely
to be unrealistically small compared to real language use.

Interestingly, semantic similarity facilitates the production of
unseen forms. A Linear Discriminant Analysis (LDA) predicting
nine plural classes (the eight sub-classes presented in Table 1

plus one “other” class) from the word2vec semantic vectors
has a prediction accuracy of 62.7% (50.5% under leave-one-
out cross validation). Conducting 10-fold cross-validation with
Support Vector Machine (SVM) yields an average accuracy of
56.7%, considerably higher than the percentage of the majority
choice (the -n plural class, 35.6%). Apparently, semantically
similar words tend to inflect similarly. When a novel meaning
is encountered in the validation set, it is therefore possible
to predict to some extent its general form class. Given the
similarities between LDA and regression, the same kind of
information is likely captured by LDL.

4.3. Missing Forms and Missing Semantics
Evaluation on held-out data is a means for assessing the
productivity of the network. However, it often happens during
testing that the model is confronted with novel, unseen cues, or
with novel, unseen semantics. Here, linguistically and cognitively
motivated choices are required.

4.3.1. Novel Cues
For the cross-validation results presented thus far, the validation
data comprise a random selection of words. As a consequence,
there often are novel cues in the validation data that the model
has never encountered during training. The presence of such
novel cues is especially harmful for production. As mentioned in
section 4.1.2, the model with bi-syllables as cues fails to produce

6Note that these vectors are not sense-disambiguated, so that the they can cover

homophonous forms from various paradigm cells.
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TABLE 6 | Comprehension and production accuracy for train and validation datasets, which are split in such a way that no novel cues are present in the validation set.

Comprehension Production

Train (%) val_all (%) val_lenient (%) val_newform (%) Train (%) val_all (%) val_lenient (%) val_newform (%)

Triphone 93 88 91 52 85 63 67 17

Bisyllable 99 99 99 61 95 52 52 12

Both the triphone and bisyllable models make use of simulated semantic vectors.

unseen forms, due to the large number of novel cues in the
validation data.

What is the theoretical status of novel cues? To answer this
question, first consider that actual speakers rarely encounter new
phones or new phone combinations in their native languages.
Furthermore, novel sounds encountered in loan words are
typically assimilated into the speaker’s native phonology7. Also,
many cues that are novel for the model actually occur not only in
the held-out nouns, but also in verbs, adjectives, and compounds
that the model has no experience with. Thus, the presence of
novel cues is in part a consequence of modeling only part of the
German lexicon.

Since novel cues have zero weights on their efferent
connections (or, equivalently, zero beta coefficients), they are
completely inert for prediction. One way to address this issue is
to select the held-out data with care. Instead of randomly holding
out words, we make sure that in the validation data all cues are
already present in the training data. We therefore split the dataset
into 80% training and 20% validation data, but now making sure
that there are no novel triphone cues in the validation dataset.
Among the 3,629 validation words, 3,331 are homophones, and
298 are unseen forms. We note that changing the kind of cues
used typically has consequences for how many datapoints are
available for validation. When bi-syllables are used instead of
triphones, due to the sparsity of bi-syllable cues, we have to
increase the percentage of validation data to include sufficient
numbers of unseen forms. Even for 65% training data and 35%
validation data, the majority of validation data are homophones
(98.5%), and only 76 cases represent unseen forms (with only
known cues).

For the triphone model (top row, Table 6), for both
comprehension and production, the train, val_all,
and val_lenient accuracies are similar to the results
presented previously (Table 5). For the evaluation of unseen
forms (val_newform), there is only a slight improvement
for comprehension (from 51 to 52%); for other datasets,
the improvement can be larger. However, for production,
val_newform becomes worse (decreasing from 21 to 17%).
The reason is that even though all triphone cues of the validation
words are present in the training data, they obtain insufficient

7Note that such assimilation effects could bemodeled using real acoustic input (i.e.,

audio files) with LDL-AURIS (Shafaei-Bajestan et al., 2021). Here, unseen sounds

would presumably be assimilated to the closest seen sounds, similar to human

performance. Of course, given sufficient training data, such a model would over

time also be able to acquire the new sounds. We have, however, restricted ourselves

to modeling using letter/phone representations.

support from the semantics. The solution here is to allow a small
number of triphone cues with weak support (below the threshold
θ) to be taken into account by the algorithm that orders triphones
into words. This requires turning on the tolerance mode
in the learn_paths function of the JudiLing package. By
allowing at most two weakly supported triphones to be taken into
account, production accuracy for unseen forms increases to 57%.

The bi-syllable model benefits more from the removal of novel
cues in the validation data. Especially for comprehension, the
accuracy of unseen forms reaches 61%, compared to 20% with
random selection. For production, we observe a non-negligible
improvement as well (from 0.3 to 12%). Further improvements
are expected when tolerance mode is used, but given the large
number of bi-syllables, this comes at considerable computation
costs. In other words, bi-syllables provide a model that is an
excellent memory, but a memory with very limited productivity
specifically for production.

4.3.2. Unseen Semantics
In real language, speakers seldom encounter words that are
completely devoid of meaning: even novel words are typically
encountered in contexts which narrow down their interpretation.
In the wug task, by contrast, participants are often confronted
with novel words presented without any indication of their
meaning, as, for instance, in the experiment on German nouns
reported by McCurdy et al. (2020). Within the framework of the
discriminative lexicon, this raises the question of how to model
the wug task, as the model has no way to produce inflected
variants without semantics.

For modeling the wug task, and comparing model
performance with that of German native speakers, we begin with
observing that the comprehension system generates meanings
for non-words. Chuang et al. (2020c) showed that measures
derived from the semantic vectors of non-words were predictive
for both reaction times in an auditory lexical decision task and
for non-words’ acoustic durations in a reading task. In order to
model the wug task, we therefore proceeded as follows:

1. We first simulated a speaker’s lexical knowledge prior to the
experiment by training a comprehension matrix using all the
words described in section 4. Here, we made use of simulated
semantic vectors.

2. We then used the resulting comprehension network to obtain
semantic vectors snom.sg for the nominative singular forms of
the non-words by mapping their cue vectors into the semantic
space, resulting in semantic vectors snom.sg.
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3. Next, we created the production mapping from meaning to
form, using not only all real words but also the non-words
(known only in their nominative singular form).

4. Then, we created the semantic vectors for the plurals
(snom.pl) of the non-words by adding the plural vector
to their nominative singular vectors while subtracting the
singular vector.

5. Finally, these plural semantic vectors were mapped onto form
vectors (ĉnom.pl) using the production matrix, in combination
with the learn_paths algorithm that orders triphones for
articulation.

We applied these modeling steps to a subset of the experimental
materials provided by Marcus et al. (1995) (reused by McCurdy
et al., 2020), in order to compare model predictions with the
results of McCurdy et al. (2020). The full materials of Marcus
et al. (1995) contained non-words that were set up such that only
half of them had an existing rhyme in German. We restricted
ourselves to the non-words with existing rhymes, first, because
non-rhyme words have many cues that are not in the training
data; and second, because, as noted by Zaretsky and Lange
(2015), many of the non-rhyme words have unusual orthography
and thus are strange even for German speakers. Furthermore,
many of the non-rhyme non-words share endings and therefore
do not provide strong data for testing model predictions.

McCurdy et al. (2020) presented non-words visually and
asked participants to write down their plural form. To make
our simulation more comparable to their experiment, in the
following we made use of letter trigrams rather than triphones.
We represented words without their articles, as the wug task
implemented by McCurdy et al. (2020) presented the plural
article as a prompt for the plural form; participants thus
produced bare plural forms. For assessing what forms are
potential candidates for production, we examined the set of
candidate forms, ranked by how well their internally projected
meanings (obtained with the synthesis-by-analysis algorithm, see
section 3), correlated with the targeted meaning snom.pl. We then
examined the best supported candidates as possible alternative
plural forms.

The model provided a plausible plural form as the best
candidate in 7 out of 12 cases. Five of these belonged to the -en
class. A further plausible candidate was also only provided in 5 of
the cases. The lack of diversity as well as the bias for -en plurals
does not correspond to the responses given by German speakers
in McCurdy et al. (2020).

Upon closer inspection, it turns out that a more variegated
wug performance can be obtained by changing two parameters.
First, we replaced letter trigrams by letter bigrams. This
substantially reduces the number of n-grams that are present
in the non-words but that do not occur in the training data.
Second, we made a small but important change to how semantic
vectors were simulated. The default parameter settings provided
with the JudiLing package generate semantic vectors with the
same standard deviation for both content words and inflectional
features. Therefore, the magnitudes of the values in semantic
vectors is very similar for content words and inflectional features.
Since words are inflected for case and number, their semantic
vectors are numerically dominated by the inflectional vectors.
To enhance the importance of the lexemes, and to reduce
the dominance of the inflectional functions, we reduced the
standard deviation (by a factor of 1

10 ) when generating the
semantic vectors for number and case. As a consequence, the
mean of the absolute values in the plural vector decreased
from 3.25 to 0.32. (Technical details are provided in the
Supplementary Materials.) With these two changes, the model
generated a more diverse set of plural non-word candidates
(Table 7). Model performance is now much closer to the
performance of native speakers as reported by Zaretsky et al.
(2013); McCurdy et al. (2020).

The model also produces some implausible plural candidates,
all of which however are phonotactically legal; these are marked
with an asterisk in Table 7. Sometimes a plural marker is
interfixed instead of suffixed (e.g., Spand, Span-en-d; Pund, Pun-
en-d). Almost all words have a candidate which shows double
plural marking (e.g., Bral, Bral-en-en; Nuhl, Nuhl-er-e; Pind,
Pind-er-n; cf. Dutch kind-er-en), or a mixture of both (e.g., Span,
Span-en-d-e; Spert, Sper-er-t-en). For Klot, doubling of the -
t can be observed, as this form is presumably more plausible
in German [e.g., Motte (“moth”), Gott (“god”), Schrott (“scrap,
rubbish”)]. One plural has been attracted to an existing singular
(Spand, Spaten-d). Apparently, by downgrading the strength
(or more precisely, the L1-norm) of the semantic vectors of
inflectional functions, the model moves in the direction of
interfixation-like changes.

The model does not produce a single plural form with an
umlaut, even though in corpora umlauted plurals are relatively
frequent (see e.g., Gaeta, 2008). Interestingly, the German
speakers inMcCurdy (2019) also tended to avoid umlauted forms
(with the exception of Kach→ Kächer). Interestingly, children at
the age of 5 also tend to avoid umlauts when producing plurals

TABLE 7 | First five candidates for the plural forms of non-words.

Bral Kach Klot Mur Nuhl Pind Pisch Pund Raun Spand Spert Vag

Bralen Kachen Klot Muren Nuhlen Pinden Pischen Punden Raunen *Spanend Sperten Vag

Bral Kach *Klotten Murn Nuhl Pind Pisch *Punend Raun Spand Sperte Vagen

*Bralenen Kacher *Klotte Mur Nuhle Pinder Pischer Pund *Raunern *Spanende Sperter Vage

*Bralern Kache *Klotter *Murnen *Nuhlern Pinde Pische Punde Rauner *Spanenden *Spererten Vager

Braler *Kachern *Klieloten Murer *Nuhlere *Pindern *Pischern *Pundene Raune *Spatend *Spererte *Vagern

Forms that are implausible as plurals are marked with an asterisk. Non-words are taken from Marcus et al. (1995).
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for German non-words, but usage increases for 7-year-olds and
adults (Van de Vijver and Baer-Henney, 2014).

Finally, most non-words have a plural in -en as one of the
candidates (10 out of 12 cases), with as runners-up the -e plural
(8 out of 12 cases), and the -er plural (8 out of 12). There is
not a single instance of an -s plural, which fits well with the
low prevalence (around 5%) of -s plurals in the experiment of
McCurdy et al. (2020).

This simulation study shows that it is possible to make
considerable headway with respect to modeling the wug task for
German. The model is not perfect, unsurprisingly, given that
we have worked with simulated semantic vectors and estimates
of non-words’ meanings. It is intriguing that a strong weight
imposed on the stem shifts model performance in the direction of
interfixation-like morphology. However, the model has no access
to information about words’ frequency of use, and hence is blind
to an important factor shaping human learning (see section 4.5
for further discussion). Nevertheless, the model does appear to
mirror the uncertainties of German speakers fairly well.

4.4. Words in Context
Thus far, we have modeled words in isolation. However, in
German, case and number information is to a large extent carried
by preceding determiners. In addition, in actual language use, a
given grammatical case denotes one of a wide range of different
possible semantic roles. The simplifying assumption that an
inflectional function can be represented by a single vector, which
may be reasonable for grammatical number, is not at all justified
for grammatical case. In this section, we therefore explore how
context can be taken into account. We first present modeling
results of nouns learned together with their articles. Next, we
break down grammatical cases into actual semantic functions,
and show howwe can begin tomodel the noun declension system
with more informed semantic representations.

4.4.1. Articles
We first consider definite articles. Depending on gender and case,
a noun can follow one of the six definite articles in German—der,
die, das, dem, den, des. We added these articles, transcribed in
DISC notation, before the nouns. Although in writing articles and
nouns are separated by a space character (e.g., der Aal), to model
auditory comprehension we removed the space character (e.g.,
deral). By adding the articles to the noun forms, the number of
homophones in our dataset was reduced to a substantial extent,

whereas the number of unique word forms more than doubled
(from 5,427 to 12,798).

In the first set of simulations we used the same semantic
vectors as we did previously for modeling isolated words. That
is, the meanings of the definite articles are not taken into account
in the semantic vectors, as all forms would be shifted in semantic
space in the exactly the same way. After including articles, the
validation data now only contained 3,982 homophones, but the
number of unseen forms increased to 3,260. Using triphones
as cues, we ran two models, one with simulated vectors and
the other with word2vec semantic vectors. For simulated vectors
the results (Table 8) are generally similar to those obtained
without articles (Table 5). However, if we look at the evaluation
of comprehension with the strict criterion (according to which
recognizing a homophone is considered incorrect), without
articles val_strict is 6%, whereas it is 34% with articles.
The generalizability of the model also improves as the number
of homophones in the dataset decreases. Even though there are
more unseen forms in the current dataset with articles than
in the original one without articles, the val_newform for
comprehension increases by 12% from 51 to 63%.

When using word2vec embeddings, adding articles to form
representations also improved the comprehension of unseen
forms: the val_newform astonishingly increased from 0.3
to 58%. Without articles, homophones all shared the same
form representations and exactly the same word2vec vectors.
As a consequence, many triphone cues were superfluous
and not well-positioned to discriminate between lemma or
inflectional meanings. Now, with the addition of articles, the
form space is better discriminated. With an increased number of
triphone cues, the model is now able to predict and generalize
more accurately for comprehension. However, for production,
model performance is generally worse when articles have to
be produced. For the training data, for instance, production
accuracy drops from 97% (without articles) to 48%. This is of
course unsurprising. In the simulation with articles, the semantic
representations remain the same, but now identical semantic
vectors have to predict more variegated triphone vectors. The
learning task has become more challenging, and inevitably
resulted in less accurate performance. Replacing the contextually
unawareword2vec vectors by contextually aware vectors obtained
using language models such as BERT (Corbett et al., 2019;
Miaschi and Dell’Orletta, 2020) should alleviate this problem.

We can test the model on more challenging data by including
indefinite articles (ein, eine, einem, einen, einer, eines), and

TABLE 8 | Comprehension and production accuracy for train and validation datasets with articles.

Comprehension Production

Train (%) val_all (%) val_lenient (%) val_newform (%) Train (%) val_all (%) val_lenient (%) val_newform (%)

Simulated 94 76 92 63 81 37 57 19

word2vec 91 69 81 58 48 14 28 1

def + indef 94 80 93 64 82 40 60 15

All three simulations use triphones as cues. The first two rows present results with simulated vectors and word2vec embeddings as semantic representations. The simulation presented

in the bottom row also makes use of simulated vectors, but includes both definite and indefinite articles.
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creating two additional semantic vectors, one for definiteness
and one for indefiniteness. This doubles the size of our dataset:
half of the words are preceded by definite articles, and the other
half by indefinite articles. However, because German indefinite
articles are restricted to singular forms, only indefinite singular
forms are preceded by indefinite articles. On the meaning side,

the
−−−−−−→
DEFINITE vector is added to the semantic vectors of words

preceded by definite articles, and the
−−−−−−−→
INDEFINITE vector is added

to vectors for words preceded by either indefinite articles in the
singular, or no article in the plural.

The validation data of this dataset confronts the model with in
total 3,982 homophones and 3,260 unseen forms. Homophones
comprise slightly more words with indefinite articles (57%)
whereas unseen forms comprise slightly more definite articles
(59%). The results, presented in the bottom row of Table 8,
are very similar to those with only definite articles (top row).
Closer inspection of the results for the validation data shows
that for comprehension, accuracies do not differ much across
definite and indefinite forms. For production, however, especially
for unseen forms, the accuracy for definite articles is twice
higher than that for indefinite articles (20 and 9%, averaging
out to 15%). This is a straightforward consequence of the
much more diverse realizations of indefinite nouns. For definite
nouns, the possible triphone cues at the first two positions in
the word are always limited to the triphone cues of the six
definite articles. For indefiniteness, however, in addition to the six
indefinite articles, initial triphone cues also originate from words’
stems—indefinite plural forms are realized without articles. The
mappings for production are thus faced with amore complex task
for indefinites, and the model is therefore more likely to fail on
indefinite forms.

4.4.2. Semantic Roles
The simulation studies thus far suggest it is not straightforward
to correctly comprehend a novel German word form in isolation,
even when articles are provided. This is perhaps not that
surprising, as in natural language use, inflected words appear
in context, and usually realize not some abstract case ending,
but a specific semantic role (also called thematic role, see e.g.,
Harley, 2010). For example, a word in the nominative singular
might express a theme, as der Apfel in Der Apfel fällt vom Baum.
(“The apple falls from the tree”), or it might express an agent
as der Junge in Der Junge isst den Apfel. (“The boy eats the
apple.”). Exactly the same lemma, used with exactly the same
case and number, may still realize very different semantic roles.
Consider the two sentences Ich bin bei der Freundin (“I’m at the
friend’s”) and Ich gebe der Freundin das Buch (“I give the book
to the friend”). der Freundin is dative singular in both cases,
but in the first sentence, it expresses a location while in the
second it represents the beneficiary or receiver. Semantic roles
can also be reflected in a word’s form, independently of case
markers. For example, German nouns ending in -er are so-called
“Nomina Agentis” (Baeskow, 2011). As pointed out by Blevins
(2016), case endings are no more (or less) than markers for the
intersection of form variation and a distribution class of semantic
roles. Since within the framework of the DLM, the aim is to
provide mappings between form and meaning, a case label is not

a proper representation of a word’s actual meaning. All it does is
specify a range of meanings that the form can have, depending
on context. Therefore, even though we can get the mechanics
of the model to work with case specifications, doing so clashes
with the “discriminative modeling” approach. In what follows,
we therefore implement mappings with somewhat more realistic
semantic representations of German inflected nouns.

Our starting point is that in German, different cases can realize
a wide range of semantic roles. For our simulations, we restrict
ourselves to some of the most prominent semantic roles for each
case (Table 9). Even though these clearly do not reflect the full
richness of the semantics of German cases, they suffice for a
proof-of-concept simulation.

In order to obtain a dataset with variegated semantic roles, we
expanded the previous dataset, with each word form (including
its article) appearing with a specification of its semantic role,
according to the probabilities presented in Table 9. The resulting
dataset had 45,605 entries, which we randomly split into 80%
training data and 20% validation data. For generating the
semantic matrix, we again used number, but instead of a case
label, we provided the semantic role as inflectional feature.
Comprehension accuracy on this data is comparable to the
previous simulations: 89% for the training data train, and 85%
val_lenient. Comprehension accuracy on the validation set
drops dramatically when we use strict evaluation (4% accuracy).
This is unsurprising given that it is impossible for the model to
know which semantic role is intended when only being exposed
to the word form and its article in isolation, without syntactic
context. Production accuracy is likewise comparable to previous
simulations with train at 78% and val_lenient at 61%
(val_newform 25%). This simple result clarifies that in order
to properly model German nouns, it is necessary to take the
syntactic context in which a noun occurs into account. Future
research will also have to face the challenge of integrating words’
individual usage profiles into the model (see also section 4.2.1
above).

4.5. Incremental Learning vs. the End-State
of Learning
In the simulation studies presented thus far, we made use of the
regression method to estimate the mappings between form and
meaning. The regression method is strictly type based: the data
on which a model is trained and evaluated consists of all unique
combinations of form vectors c and semantic vectors s. In this

TABLE 9 | Probabilities of semantic roles by cases in the German noun system.

Case Semantic roles

Nominative Agent (50%), theme (40%), patient (10%)

Genitive Possessive (90%), partitive (10%)

Dative Beneficiary (50%), location (50%)

Accusative Patient (40%), motion (30%), experiencer (30%)

Semantic roles are informed by Schulz and Griesbach (1981). Percentages are simulated

and do not necessarily reflect corpus-frequencies of the respective semantic role.
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respect, the regression method is very similar to models such as
AML, MBL, MGL, and to statistical analyses with the GLM or
recursive partioning methods. However, word types (understood
as unique sets {c, s}) are not uniformly distributed in language,
and there is ample evidence that the frequencies with which word
types occur co-determines lexical processing (see e.g., Baayen
et al., 1997, 2007, 2016; Tomaschek et al., 2018). While some
formal theorists flatly deny that word frequency effects exist for
inflected words (Yang, 2016), others have argued that there is no
problem with integrating frequency of use into formal theories of
the lexicon (Jackendoff, 1975; Jackendoff andAudring, 2019), and
yet others have argued that it is absolutely essential to incorporate
frequency into any meaningful account of language in action
(Langacker, 1987; Bybee, 2010).

Within the present approach, effects of frequency of
occurrence can be incorporated seamlessly by using incremental
learning instead of the end-state of learning as defined by
the regression equations (see Danks, 2003; Evert and Arppe,
2015; Shafaei-Bajestan et al., 2021, for the convergence over
learning time of incremental learing to the regression end-state of
learning). We illustrate this for our German nouns dataset with
number and semantic role as crucial constructors of simulated
semantic vectors.

We begin with noting that word forms usually do not
instantiate all possible semantic roles equally frequently. For
instance, a word such as der Doktor (“doctor”) will presumably
occur mostly as agent in the nominative singular form, rather
than as theme or patient. If the model is informed about the
probability distributions of semantic roles in actual language
use (both in language generally, and lexeme-specific), it may be
expected to make more informed decisions when coming across
new forms, for instance, by opting for the best match given its
past experience.

Incremental learning with the learning rule of Widrow-
Hoff makes it possible to start approximating human word-to-
word learning as a function of experience. As a consequence,
the more frequent a word type occurs in language use, the
better it can be learned: practice makes perfect. This sets the
following simulation study apart from models such as proposed
by McCurdy et al. (2020) or Belth et al. (2021), who base their
training regimes strictly on types rather than tokens.

In the absence of empirical frequencies with which
combinations of semantic roles and German nouns co-occur,
we simulated frequencies of use8. To do so, we proceeded as
follows. First, we collected token frequencies for all our word
forms from CELEX. Next, we assigned an equal part freqp of

this frequency count to each case/number cell realizing this
word form. Third, for each paradigm cell, we randomly set to
zero some semantic roles, drawing from a binomial distribution
with n = 1, p = 1

K , with K the number of semantic roles for
the paradigm cell (see Table 9). In this way, on average, one
semantic role was omitted per paradigm cell. Finally, given a

8Though there are several semantic role labelers available for English [e.g., arising

from the CoNLL-2004 and 2005 Shared Tasks (https://www.cs.upc.edu/~srlconll/

home.html)], there are—to our knowledge—currently no suitable taggers for

German.

proportional frequency count freqp, the semantic roles associated

with a paradigm cell received frequencies proportional to the
percentages given in Table 9. Further details on this procedure
are available in the Supplementary Materials, a full example can
be found in Table 10.

Having obtained simulated frequencies, we proceeded by
randomly selecting 274 different lemmas (1,274 distinct word
forms with definite articles included), in order to keep the size
of the simulation down— simulating with the Widrow-Hoff rule
is computationally expensive. The total number of tokens in this
study was 4,470. For the form vectors, we used triphones. The
dimension of the simulated semantic vectors was identical to that
of the cue vectors. As before, the data was split into 80% training
and 20% validation data. We followed the same procedure as in
the previous experiments, but instead of computing the mapping
matrices in their closed form (i.e., end-state) solution, we used
incremental learning.

While for comprehension, the implementation of the learning
algorithm is relatively straightforward, this is not the case
for production. The learn_paths algorithm calculates the
support for each of the n-grams, for each possible position in a
word. In the current implementation of JudiLing, the calculation
of positional support is not implemented for incremental
learning. Therefore, we do not consider incremental learning of
production here.

Comprehension accuracy was similar to that observed for
previous experiments. Training accuracy when taking into
account homophones was 85%, validation accuracy on the
full data was 79% (val_lenient). Without considering
homophones, validation accuracy drops substantially
(val_strict 7%). This is unsurprising given that from the
form alone it is impossible to predict the proper semantic role.

The accuracy of the model’s predictions is also closely linked
to the frequencies with which words’ form+role combinations
are encountered in the training data. If a word’s form+role
combination is very frequent, it is learned better. Figure 2

presents the correlations of words’ predicted and targeted
semantic vectors against their frequency of occurrence. The
left panel presents the results for the incrementally learned

TABLE 10 | Example of simulated frequencies for combinations of case and
semantic role for the word form “Adresse.”

Word

form

Lemma Case Number Semantic

role

Form

frequency

Form+role

frequency

Adresse Adresse Nominative Singular Agent 137 20

Adresse Adresse Nominative Singular Theme 137 16

Adresse Adresse Nominative Singular Patient 137 0

Adresse Adresse Genitive Singular Possessive 137 0

Adresse Adresse Genitive Singular Partitive 137 35

Adresse Adresse Dative Singular Beneficiary 137 18

Adresse Adresse Dative Singular Location 137 18

Adresse Adresse Accusative Singular Patient 137 0

Adresse Adresse Accusative Singular Motion 137 0

Adresse Adresse Accusative Singular Experiencer 137 35
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FIGURE 2 | Correlation between the simulated frequency and correlation of the predicted semantic vector with its target. Generally, the more frequent a word form is,
the more accurate its semantic vector is predicted. The blue line indicates a loess smooth with a 0.95 confidence interval. (A) Incremental learning. (B) End-state of
learning.

model, the right panel for the end-state of learning. Clearly,
after incremental learning the model predicts the semantics of
more frequent form+role combinations more accurately. For the
end-state of learning on the other hand, no such effect can be
observed. These results clearly illustrate the difference between a
token-based model and a typed-based model.

The effect of frequency of use on the kind of errors made
by the model is also revealing. We zoom in on those cases
where the model was able to correctly identify the lemma and
paradigm cell of the word form, but did not get the semantic
role right. Figure 3 provides scatterplots graphing the number of
times a semantic role was (incorrectly) understood against the
frequency of the form’s semantic role, cross-classified by training
method (incremental, left panels; end-state of learning, right
panels) and by evaluation set (top panels: training data, bottom
panels: validation data). For incremental learning, there is a
positive correlation between the number of times a semantic role
was (incorrectly) identified and the frequency of the semantic
role in the training data. Note that the relation is not linear,
but curvilinear. A linear relation would have implied that a
fixed proportion of word forms would be incorrectly recognized,
across all semantic roles. What we see, by contrast, is that
greater exposure in language use has an increasingly detrimental
effect on learning, with more probable semantic roles being
over-identified. Importantly, for the end-state of learning, this
curvilinear effect of frequency on learning is absent, with the
PATIENT role representing an atypical outlier. This outlier status
is due to the patient semantic role being realized by two cases:
nominative and accusative. As a consequence, it is not only
frequent, but it is also predicted by many more different cues

(especially cues from the articles) than is the case for other
semantic roles.

In other words, with incremental learning, strong frequency
effects emerge, hand in hand with overgeneralization of semantic
roles (the study by Ramscar et al., 2013 makes the same point
for irregular English noun plurals). By contrast, for the end-state
of learning, such effects are absent. Mathematically, this makes
sense: as experience (i.e., volume of training data) goes to infinity,
all forms are learned an infinite number of times, and frequency
is no longer distinctive.

With incremental learning, it is also possible to follow the
learning trajectory of the model. Figure 4 presents this trajectory
at 10 evaluation points. Learning proceeds rapidly during
the first 15,000 learning events and slows down afterwards.
Validation accuracy val_lenient closely follows training
accuracy, which is a straightforward consequence of the large
numbers of homophones. val_newforms on the other hand
stays relatively low, in accordance with the semi-productivity of
the German declension system.

Note that in this simulation we only pass through the
data once. If a word form has a form+role frequency of 1,
it is only seen a single time during training. As such, it is
not possible for the model to reach accuracies as high as
at the end-state of learning (indicated as dots in Figure 4),
which would be reached eventually after an infinite number
of passes through the data (Danks, 2003; Evert and Arppe,
2015; Shafaei-Bajestan et al., 2021). This sets our approach
apart from deep learning, where models are trained on many
iterations through the data set until the loss function reaches
a local minimum. Whereas such a procedure makes sense

Frontiers in Psychology | www.frontiersin.org 16 November 2021 | Volume 12 | Article 720713129

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Heitmeier et al. Modeling Considerations With LDL

FIGURE 3 | Counts of overgeneralization errors of semantic roles for training (top) and test data (bottom), for incremental learning (left) and the end-state of learning
(right), conditional on the model having understood lexeme, number, and case correctly. (A) Training: incremental learning. (B) Training: end-state of learning. (C)
Validation: incremental learning. (D) Validation: end-state of learning.

for language engineering, it does not make sense for human
learning: we don’t relive the same exposure to data multiple
times, and for healthy people, there is no point in learning after
which performance degrades. For instance, vocabulary learning
is a continuous process straight into old age (Keuleers et al.,
2015).

Note finally, that even though incremental learning is
certainly superior for modeling realistic frequency effects, there
are also cases where the end-state of learning can be the

preferred choice of modeling. Incremental learning is muchmore
computationally expensive which becomes a problem especially
if the training set is large and frequencies are high. Moreover,
in cases where simulated speakers are expected to have learned
a phenomenon well enough, the end-state simulation might
be sufficient.

In summary, the present modeling framework offers the
possibility to approximate incremental human learning and
the consequences of frequency of exposure for learning in a
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cognitively motivated way (see also Chuang et al., 2020a, for
learning in a multilingual setting).

4.6. Model Complexity
LDL mappings are costly in the number of connection weights,
or equivalently, the number of beta coefficients. For example,
the mapping matrix F for the dataset discussed in section 4.4.2
has 35 million weights (5,913 × 5,913 dimensions), rendering
it much more costly in terms of the number of weights than
deep-learning models, models such as AML, MBL, and recursive
partitioning methods.

Inspection of the distribution of weights, however, clarifies
that many weights are very close to zero. Apparently, many cues
have low discriminative value. This suggests their connections
can be pruned without seriously affecting model performance.
This can be tested by selecting a threshold ϑ and setting all
absolute values in the mapping matrix that fall below this

FIGURE 4 | Comprehension accuracy over the course of learning. After a very
fast increase in accuracy over the first 15,000 learning events, the amount of
learning levels off. Points indicate the accuracy at the end-state of learning
which the incremental model would reach eventually after an infinite number of
learning events.

threshold to zero. Figure 5 shows, for varying ϑ , that up to
40% of the small weights can be pruned without substantially
impacting model performance with end-state of learning. As
neural pruning is part and parcel of human cortical development
(see e.g., Gogtay et al., 2004), an interesting topic for further
research is to integrate incremental learning with neural pruning
of uninformative connections.

5. DISCUSSION

In this study, we illustrated the methodological consequences
of the many different choices that have to be made when
modeling morphological systems within the discriminative
lexicon framework, using LDL asmodeling engine.We illustrated
these choices for the German noun system. This system is
“degenerate,” as many of its paradigm cells share the same word
forms (homophones). This system is also in many ways irregular:
a noun’s declension class can often not be fully predicted by
its phonology, gender, or semantics (Köpcke, 1988). The results
we obtained with LDL reflect this complexity. The model can
learn word forms very well, achieving accuracies of more than
90% on both comprehension and production when evaluated on
training data. It can also generalize very well to new paradigm
cells when it comes to word forms it has already seen, thanks
to the ubiquitous homophony that characterizes German noun
paradigms. However, it also mirrors the unpredictability of
German inflections when it comes to word forms it has not
seen before. Accuracies for both comprehension and production
suffer. Nevertheless, the model shows some semi-productivity
and succeeds in generalizing to many of the sub-regularities
found in the German noun system (Wunderlich, 1999), reaching
accuracies of 50% on comprehension and 20% on production.
Since German speakers encounter similar problems with new
German word forms, as has been demonstrated in various wug
studies (Zaretsky et al., 2013; McCurdy et al., 2020), our model
properly exhibits the limitations that are also characteristic for
native speakers.

FIGURE 5 | (A) Distribution of weights in the mapping matrix from form to meaning for the dataset with semantic roles. (B) Accuracy of the end-state model as a
function of the proportion of connection weights close to zero are pruned. About 40% of the weights can be set to zero without seriously affecting the performance of
the model.
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In this study, we also probed the modeling of German
nouns in context. The rampant homophony that characterizes
German noun paradigms is a straightforward consequence of
considering words in isolation. The amount of homophony can
be substantially reduced by including articles, in which case
the model still performs well. In context, case-inflected words
typically do not realize a specific case meaning, but rather a
specific semantic role. As case endings typically do not stand in
a one-to-one relation with semantic roles, we also examined to
what extent we can make the model more realistic by replacing
semantic vectors for cases with semantic vectors for a variety of
semantic roles. For the simulated dataset that we constructed, the
model again performed well.

For this dataset, we also demonstrated how the consequences
of frequency of occurrence can be brought into the model,
namely, by moving from the end-state of learning (estimated
with regression) to incremental learning using the Widrow-Hoff
learning rule.

One limitation of the present approach is that most models
have been using very high-level abstract representations. The
phone-based representation, for example, involves tremendous
simplifications compared to real speech, as variability in
pronunciations is enormous (Ernestus et al., 2002; Johnson, 2004;
Shafaei-Bajestan et al., 2021). On the meaning side, traditional
case labels have no intrinsic semantic content, and although
we can replace cases with semantic roles, these too are still
too simplistic to be able to capture the full complexity of the
semantics of words in context. However, we note that even
with the present high-level representations, the model can still
generate useful predictions. We note here that various other
studies carried out within this framework have successfully
modeled a range of aspects of human lexical processing (see
Chuang and Baayen, 2021, for further details). In summary, even
though the current framework undoubtedly misses out on a
great number of nuanced but potentially informative features of
forms and meanings in real language use, it can still serve as a
useful linguistic tool to explore the strengths and weaknesses of
morphological systems.

A question that inevitably arises in the context of
computational modeling is how cognitively plausible a model
is. In the introduction, we called attention to the distinction
made by Breiman (2001) between statistical models and machine
learning models. We view LDL primarily as a statistical model
that enables us to clarify, at a functional level of analysis,
quantitative structure in the lexicon as well as understand the
challenges a language processing system faces, without claiming
that our model is cognitive reality. However, it is worth noting
that LDL helps incorporate biologically and psychologically
plausible learning into linguistic theory by making use of the
principle of error-driven learning (when training the model
incrementally). The very simple learning rules of Widrow-Hoff
and Rescorla-Wagner have been shown to excellently explain
phenomena from a range of domains in e.g., biology and
psychology (see e.g., Rescorla, 1988; Schultz, 1998; Marsolek,
2008; Oppenheim et al., 2010; Trimmer et al., 2012).

It is possible to take the model as point of departure for
addressing questions at the level of neural organization in the

brain. For instance, Heitmeier and Baayen (2020) were interested
in clarifying whether the framework of the discriminative lexicon
properly predicts the dissociations of form andmeaning observed
for aphasic speakers producing English regular and irregular
past-tense forms, following Joanisse and Seidenberg (1999). They
took the unordered banks of units of form and meaning (the
column dimensions of the C and Smatrices) and projected them
onto two-dimensional surfaces approximating, however crudely,
cortical maps. This made it possible to lesion the network in a
topologically cohesive way, rather than by randomly taking out
connections across the whole network. For projection, they made
use of an algorithm from physics (http://www.schmuhl.org/
graphopt/) for displaying graphs, but temporal self-organizing
maps (TSOMs, Ferro et al., 2011; Chersi et al., 2014) offer
a much more fine-grained and principled way for modeling
morphological organization that builds on principles of error-
driven learning.

Deep learning algorithms provide the analyst with powerful
modeling tools, but it seems they are too powerful (see e.g.,
McCurdy et al., 2020) for understanding not only the strengths
but also the weaknesses and the frailties of human lexical
memory and lexical processing. However, linguistic models are
in a different way also too powerful on the one hand, and
too underspecified on the other hand. Paradigms are typically
constructed to accommodate any contrast between forms and
inflectional functions, even when a contrast is attested only for
a few forms in the language. The result is an overabundance
of homophones, which are severely underspecified with respect
to their real meanings in actual language use (such as their
semantic roles). Furthermore, in actual language use, inflected
forms can occur at very different frequencies and some are never
encountered at all (Karlsson, 1986; Janda and Tyers, 2018), which
in turn has demonstrable consequences for lexical processing
(Lõo et al., 2018)9. An interesting challenge for further research is
to clarify how different degrees of paradigm economy (Ackerman
and Malouf, 2013) are reflected in the matrices that define
mappings between form and meaning within the framework of
the discriminative lexicon.

In this study, we have provided an overview of the many
choice points that arise in modeling with LDL, each of which
requires knowledge of morphology and morphological theory.
The implications of our approach to psycho-computational
modeling for morphological theory depends on the specifics
of a given specific theory of morphology. Our approach is
broadly consistent with usage-based approaches to morphology
(Bybee, 1985, 2010), and with Word and Paradigm Morphology
(Blevins, 2016). It is less clear whether our modeling approach
is informative for theories that are only interested in defining
possible words. With this methodological study, we have shed
some light on the many questions and issues that do not arise
in formal theories of morphology, but that have to be addressed

9Note that we do not claim that rare inflected word forms cannot be processed.

Generally, the more regular a morphological system, the more easily the model

can predict new forms (e.g., in Estonian, Chuang et al., 2020b), while in semi-

productive cases such as German or Maltese (Nieder et al., 2021) generalization

is much more difficult.
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in a linguistically informed way when the goal of one’s theory is
to better understand, and predict, in all its complexity, human
lexical processing across comprehension and production.
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We addressed an understudied topic in the literature of language disorders, that
is, processing of derivational morphology, a domain which requires integration of
semantic and syntactic knowledge. Current psycholinguistic literature suggests that
word processing involves morpheme recognition, which occurs immediately upon
encountering a complex word. Subsequent processes take place in order to interpret
the combination of stem and affix. We investigated the abilities of individuals with
agrammatic (PPA-G) and logopenic (PPA-L) variants of primary progressive aphasia
(PPA) and individuals with stroke-induced agrammatic aphasia (StrAg) to process
pseudowords which violate either the syntactic (word class) rules (∗reheavy) or the
semantic compatibility (argument structure specifications of the base form) rules
(∗reswim). To this end, we quantified aspects of word knowledge and explored how the
distinct deficits of the populations under investigation affect their performance. Thirty
brain-damaged individuals and 10 healthy controls participated in a lexical decision
task. We hypothesized that the two agrammatic groups (PPA-G and StrAg) would have
difficulties detecting syntactic violations, while no difficulties were expected for PPA-
L. Accuracy and Reaction Time (RT) patterns indicated: the PPA-L group made fewer
errors but yielded slower RTs compared to the two agrammatic groups which did not
differ from one another. Accuracy rates suggest that individuals with PPA-L distinguish
∗reheavy from ∗reswim, reflecting access to and differential processing of syntactic
vs. semantic violations. In contrast, the two agrammatic groups do not distinguish
between ∗reheavy and ∗reswim. The lack of difference stems from a particularly impaired
performance in detecting syntactic violations, as they were equally unsuccessful at
detecting ∗reheavy and ∗reswim. Reduced grammatical abilities assessed through
language measures are a significant predictor for this performance, suggesting that the
“hardware” to process syntactic information is impaired. Therefore, they can only judge
violations semantically where both ∗reheavy and ∗reswim fail to pass as semantically
ill-formed. This finding further suggests that impaired grammatical knowledge can affect
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word level processing as well. Results are in line with the psycholinguistic literature
which postulates the existence of various stages in accessing complex pseudowords,
highlighting the contribution of syntactic/grammatical knowledge. Further, it points
to the worth of studying impaired language performance for informing normal
language processes.

Keywords: derivational morphology, morphological processing, pseudowords, primary progressive aphasia,
stroke-induced aphasia, agrammatism

INTRODUCTION

Morphological Processing in Healthy
Adults
An important dimension of word knowledge which has been
found to affect lexical processing is morphological structure.
Morphology changes a word’s form either to denote some
grammatical function, e.g., boy > boys (singular > plural) or to
create new lexical items with related (most of the time) meanings,
e.g., boy > boyish, boy > boyfriend. The first operation is referred
to as inflection (boy-s) while the other two are known as derivation
(boy-ish) and compounding (boy-friend). In case of inflection and
derivation, an inflectional or derivational morpheme attaches to a
lexical stem, boy + -s, boy + -ish while in compounding two lexical
stems merge together, boy + friend. These are highly productive
operations in many languages.

The effects of complex structure on word processing have
been studied extensively (see Amenta and Crepaldi, 2012 for
a review). Till recently, the main issue among them was how
morphologically complex words are accessed and how they are
stored in the Mental Lexicon. In other words, the major question
was whether we need to decompose them into their parts to access
their meaning, e.g., boy + ish or whether we access them as one
unit, e.g., boyish. This debate has had, and it still has proponents
on both sides. Some researchers have claimed that morphological
structure plays no role and that morphologically complex words
are fully listed in the memory (Butterworth, 1983; Lukatela et al.,
1987). Connectionist models are also against the representation
of morphological structure in the mental lexicon (Elman et al.,
1996; Sereno and Jongman, 1997). In contrast, other researchers
have argued that complex words are obligatorily decomposed
into their constituents and that the mental lexicon comprises only
stems and affixes and not affixed words (Taft and Forster, 1975;
Taft, 1988). Finally, several models of morphological processing
have combined whole word access with affix-stripping, suggesting
dual route processing for complex words (Frauenfelder and
Schreuder, 1991; Chialant and Caramazza, 1995).

In the current literature, this remains an open debate,
with recent papers providing evidence for both directions.
This is certainly an important issue, nonetheless, its thorough
discussion is beyond the scope of this paper. In our view, the
balance might be turning in favor of decomposition route, as
most recent neuroimaging studies suggests. Indeed, besides the
numerous behavioral studies, a variety of neuroimaging studies
from unimpaired populations about complex word processing
have provided converging evidence that the human language

processor has immediate access to constituent morphemes (see
Münte et al., 1999; Lehtonen et al., 2011; Royle et al., 2012;
Fruchter et al., 2013; Fruchter and Marantz, 2015; Leminen et al.,
2019 for a review of neuroimaging data; Diependaele et al.,
2009; Dominguez et al., 2010; Rastle and Davis, 2008 for a
review of behavioral studies). This appears to be a process
which operates in an early, automatic and semantic-blind way in
both prefixed and suffixed words. Thus, in healthy populations,
morphological decomposition takes place immediately after word
viewing, resulting in the activation of both stem and affix, e.g.,
teach + er, for teacher.

If we assume that this is a property of the human language
processing system, then it should be universal and it should
operate independently of modality, i.e., visual vs. auditory.
Lexical access takes place when sensory information is matched
to lexical information. In auditory lexical access what activates
lexical information is the first few phonemes (regardless of
syllable structure), whereas in visual lexical access is the first
(orthographically defined) syllable (Taft, 2004). Each modality is
subject to additional restrictions related to the physical properties
of input. For instance, in visual lexical decision factors such
as frequency (Balota et al., 2004), family size (Bertram et al.,
2000), derivational family entropy (del Prado Martín et al.,
2004) facilitate lexical access. Similarly, in a relevant study
about auditory recognition of prefixed words, Wurm et al.
(2006) showed that cohort entropies, conditional root uniqueness
points and morphological family size influenced lexical access
of prefixed words. A general finding is that participants usually
respond faster in visual lexical access compared to auditory
but, importantly, there is no qualitative difference between their
responses both behaviorally and in terms of EEG (Zunini et al.,
2020) and MEG components (Brennan et al., 2014) which is
suggestive of common underlying and universal ways of dealing
with complex lexical items.

A big bulk of research regarding lexical access of complex
words comes from pseudowords This spans from the early
days of psycholinguistics (Caramazza et al., 1988; Laudanna
et al., 1992; Burani et al., 1999) to the era of neuroimaging
(Leinonen et al., 2009; Leminen et al., 2013; Kim et al., 2015)
and it covers both auditory and visual lexical access. The reason
for this choice is because pseudowords are devoid of lexical
representations, and therefore, are supposed to be accessed
through decomposition into their constituents. Furthermore,
pseudowords are particularly useful for the exploration of
prelexical effects of morphological segmentation, without lexical
interference from the whole word. The main contribution of
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studies using pseudowords is that they robustly support multi-
stage processing models for morphologically complex lexical
items (such as the one adopted for the current study) ranging
from behavioral experimental and modeling studies to neural
evidence (for a review see Ripamonti et al., 2015). The use of
pseudowords has also drawn criticism, mostly on the assumption
that pseudowords lack semantics and that they are detached from
the mental lexicon (Chuang et al., 2021). As we will see later, these
lines of criticism are not directly relevant for the current study, as
we do not treat pseudowords as meaningless units.

Several questions remain unsolved, however, pertaining to
what happens once we have decomposed a complex word or
pseudoword. Schreuder and Baayen (1995) in their meta-model
which is designed to account for both visual and auditory
processing of complex words1 described a two-stage post–
decomposition process, consisting of licensing, during which each
activated morpheme is validated through its subcategorization
specifications (syntactic checking) and composition, during which
we check whether the lexical representation of the whole word
can be computed based on the semantic representations of the
activated morphemes. In other words, syntactic licensing checks
whether we are allowed to combine teach + er in terms of their
syntactic properties and composition checks whether it makes
sense to combine teach + -er on semantic grounds. With this in
mind, we can postulate that all formations that do not respect
either syntactic or semantic restrictions will fail to be recognized
as real words, and their rejection will take place at different
stage and timeframe.

Based on this and considering the latest advancements in
lexical processing we can outline the architecture of complex
pseudoword recognition. This would include a first stage, where
obligatory decomposition occurs, and all lexicalized substrings
are exposed. It is during this stage that pure non-words with
the form of stem (non-existing) + affix, such as ∗pearn-able are
rejected. The second stage includes syntactic licensing, during
which all formations which violate the syntactic specifications
of the base (grammatical class), are processed, and rejected. It
is in this stage that a pseudoword of the type of inappropriate
stem + affix, such as ∗river-able would be rejected. The third
stage includes semantic composition, where formations such as
∗danceable would be rejected. Although both the stem (dance)
and the affix (-able) are already activated in stage 2, it is not
until this stage that semantic processing occurs, and participants
decide on the well-formedness of semantic violations.

This architectural model has been confirmed in a variety of
behavioral and neuroimaging studies, by using data from various
languages and by employing either the violation paradigm
described above which distinguishes between syntactic and
semantic information or existing words. Several studies have
investigated the temporal and spatial dynamics of grammatical
category (licensing), showing that information associated with
the syntactic category elicit an early left anterior negative ERP

1Schreuder and Baayen (1995) acknowledge the complications of auditory lexical
access when it comes to segmentation and mapping of speech input on form-based
access representations. “Prosodic information, resyllabification, stress shifts, tone
sandhi, and other phonological mutations may complicate this mapping operation”
(p. 133).

component (ELAN) peaking at about 250 ms after stimulus
presentation (e.g., Hahne and Friederici, 1999; Hahne and
Jescheniak, 2001). This response is identified usually at the
inferior portion of the superior temporal gyrus. Data from
MEG (Dikker et al., 2009; Linzen et al., 2013) confirm the
early processing of grammatical category. Similarly, a separate
body of studies advocate the existence of semantic composition
as taking place at a later stage and at distinct brain-areas.
Fruchter and Marantz (2015) were the first ones to establish the
distinction between lexeme lookup and semantic composition by
using derivational family entropy targeting lexeme lookup and a
variable they called derived semantic coherence targeting semantic
composition. The first variable elicited early activation (between
241 and 387 ms) in middle temporal gyrus, while the second
elicited activation in orbitofrontal cortex at a later stage (between
431 and 500 ms). Finally, Whiting et al. (2014) compared complex
words such as teacher to pseudo-complex words such as corner
in a MEG experiment. While at early stages both types of words
evoked same type of responses (inferior temporal gyrus and
fusiform between 150 and 230 ms after stimulus presentation),
there was greater activation for the pseudo-derived words at a
later stage (between 300 and 360 ms) in the middle temporal
gyrus. This later effect was interpreted by the authors as lexicality
effect which amounts to semantic composition of an initially
erroneously decomposed item.

The effects of syntactic licensing and semantic composition
within one single experiment were first addressed by
Manouilidou (2006, 2007) in a series of experiments. For
instance, Manouilidou (2006, 2007) tested the ability of Greek-
speaking individuals to detect violations of word formation
with the aim to detect what kind of information is available
after initial decomposition and morpheme recognition. The
ultimate goal was to tease apart the contribution of syntactic
and semantic information in deverbal structures. A variety of
suffixes creating deverbal formations, nouns, and adjectives, was
used. For instance, by using the Greek suffix -tis (equivalent to
the English -er) which creates agentive nominalizations such
as pezo ‘play’ > pex-tis ‘player’ we created syntactic violations,
such as ∗potiri-tis (Noun + -tis) ‘glass-er’, and also semantic
violations not respecting the argument structure specifications
of the base such as ∗diaferistis ‘differ-er.’ The main finding
of these behavioral experiments was that participants were
faster and more accurate in detecting syntactic violations
(∗potiritis ‘glasser’) compared to semantic violations (∗diaferistis
‘∗differ-er’). These studies were later replicated by using
stimuli from other, typologically quite distinct languages, such
as English (Manouilidou and Stockall, 2014) and Slovenian
(Manouilidou et al., 2016). Findings of these later studies are
in complete agreement with the original studies conducted in
Greek, confirming the architectural model of complex word
recognition outlined above.

Moreover, subsequent neuroimaging studies (Neophytou
et al., 2018; Stockall et al., 2019) confirm the existence of these two
stages and the involvement of syntactic and semantic processing
in post-decomposition processes. Specifically, Neophytou et al.
(2018), using a subset of the Greek stimuli used in Manouilidou
(2007), provided Magnetoencephalography (MEG) evidence for

Frontiers in Psychology | www.frontiersin.org 3 November 2021 | Volume 12 | Article 701802138

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-701802 November 23, 2021 Time: 16:0 # 4

Manouilidou et al. Morphology and Language Disorders

the distinction between these two types of pseudowords which
violated syntactic and semantic rules of word formation, in
terms of distinct timeframes and brain correlates. In their
study, syntactic violations evoked more activity than semantic
violations in the temporal lobe in the 200–300 ms time-
window, while semantic violations evoked more activity than
syntactic violations in the orbitofrontal cortex in the 425–
500 ms window. This finding clearly differentiates the two
types of information (syntactic vs. semantic) which needs to
get processed when dealing with a complex word. This new
piece of evidence adds to the growing body of research, which
highlights the involvement of various sub-processes during
lexical access of complex words and distinguishes syntactic vs.
semantic processing in complex word recognition. Specifically,
evidence advocates toward the idea that syntactic licensing and
semantic composition occur at two distinct stages, whereby
the former precedes the latter. The same pattern was later
replicated in another MEG study by Stockall et al. (2019) by
using data from English prefixation. As with Neophytou et al.
(2018) and by using the same type of violations, the study
targeted the spatial organization and temporal dynamics of
morphological processing in the human brain. Results were
identical with Neophytou et al. (2018) reinforcing the idea
of the existence of stages in lexical processing and their
sequence in time.

Thus, taken all this together we have credence to the existence
of a consistent architectural map on the complete process
of processing morphologically complex words, from initial
form-based decomposition to syntactic licensing, and semantic
interpretation. Interestingly, combined results of MEG studies
from Greek (Neophytou et al., 2018) and English (Stockall et al.,
2019) further suggest that the spatial and temporal dynamics of
this process are very similar across different languages.

Morphology in Primary Progressive
Aphasia and Stroke-Induced
Agrammatic Aphasia
Primary Progressive Aphasia is a neurodegenerative disease
which slowly and progressively disrupts the language regions
of the brain, resulting in a gradual, and initially isolated,
decline in language function (Mesulam, 1982, 2013). Other
mental faculties such as memory remain intact, at least at
initial stages. According to recent guidelines, PPA can be
subdivided into three main variants based on clinical and
imaging criteria (Gorno-Tempini et al., 2011; Maruta et al.,
2015). What appears to be a common feature is impaired
word knowledge, mainly manifested as anomia. However,
there are specific deficits associated with each variant. The
main characteristics of the logopenic variant (PPA-L) is
intermittent word-finding hesitations, impaired phonological
memory and problems with repetition (Gorno-Tempini et al.,
2011) while their grammatical ability is, in general preserved.
However, several recent studies have brought into light
various difficulties with grammatical domains, especially in
connected speech, such as difficulties with verbal morphology
and avoidance of complex structures in production (e.g.,

Knibb et al., 2009; Ash et al., 2013; Fraser et al., 2014;
Marcotte et al., 2017; Mack et al., 2021), albeit these difficulties
appear to stem from a general word retrieval and verbal
working memory deficit, rather than from an underlying
grammatical impairment (Mack et al., 2021). The agrammatic
variant (PPA-G)2 is characterized by impairments of grammar
(syntax and morphology) but not of word comprehension.
Non-fluent speech, production of grammatically impoverished
sentences, verb production difficulties, difficulties with complex
syntactic structure (production and comprehension), difficulties
in producing function words and bound morphemes, and in
general, impaired processing of morphosyntactic structure (e.g.,
Thompson et al., 1997, 2013; Thompson and Mack, 2014
for a review) also complete the PPA-G profile. Finally, the
semantic variant (PPA-S) is characterized by impairments of
word comprehension, and more specifically by difficulty in
processing lexical–semantic information (i.e., word meaning)
in both production and comprehension, with associated neural
atrophy in the left anterior temporal lobe. Given that no PPA-S
patients participated in the study, we will not further elaborate
on this condition.

Despite neuropathological differences, similar language
deficits, mainly in the syntactic domain, can be found in stroke-
induced agrammatic aphasia (StrAg) and in PPA-G as well
(Thompson et al., 2012c, 2013). In particular, the processing
of argument structure is a domain for which difficulties have
been reported for both populations. For instance, difficulties
with processing complex argument structure or violations of
verb argument structure in narrative speech have been described
for both PPA-G and StrAg (Thompson et al., 2012c for PPA-G,
Bastiaanse and Jonkers, 1998; Thompson and Bastiaanse, 2012,
for StrAg). Thus, it is not uncommon for researchers to compare
the two conditions, in order to gain insights about the nature
of agrammatism as manifested in two different conditions after
brain damage. Even though argument structure difficulties are
mostly a result of sentence processing, a comparison of the
two groups at the lexical level is valid, given that inflectional
morphology has been found to be compromised in both PPA-G
and StrAg. Interestingly, a recent study by Kordouli et al. (2018)
has brought into light interesting dissociations in compound
naming between PPA-G and StrAg, with PPA-G performing
significantly worse. At the same time, less is known about
how patients with PPA and stroke-induced aphasia process
derivational morphology, which is the topic of the current study.

Derivational morphology, that is the production of a new
lexical item from another lexical stem, e.g., happy > unhappy,
emerge > reemerge is usually better preserved than inflectional
morphology in brain-damaged populations. For instance,
Miceli and Caramazza (1988) report on agrammatic aphasic
patients’ ability to use derivational affixes as relatively intact.
However, subsequent studies brought into light various
interesting facts about the processing of derivational morphology
by brain-damaged populations. For example, the study by

2In some patients, grammar and comprehension are jointly impaired early in
the disease. These patients can be said to have a fourth ‘mixed’ variant (PPA-m)
(Mesulam, 2013).
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Miceli et al. (2004) reports morphological errors in association
with phonological errors, while Faroqi-Shah and Thompson
(2010), focusing on complexity as manifested in past tense forms
(-ed) and progressive aspectual forms (-ing), did not find any
effects of morphological complexity. On the other hand, Semenza
et al. (2002) studied the performance of two Slovenian-speaking
patients, one diagnosed with agrammatic aphasia and the other
with transcortical motor aphasia. The study showed that while
prefixes (e.g., re- in reappear) are well-preserved in the grammar
of both patients, with no phonological distortions on them, at
the same time, they can be omitted or substituted. This fact
suggests that prefixation, as a morphological operation, and the
structure of a prefixed word are preserved in these two types of
aphasia. However, the fact that patients do not always succeed
in producing the right form of the derived verb suggests certain
difficulties with this operation, for both individuals with aphasia
(agrammatic and transcortical).

An interesting study by Marangolo et al. (2003) reports on
two patients with comparable right hemisphere lesions which
involved the gray and white matter of the right temporal and
parietal lobes and the right centrum semiovale, who showed a
selective deficit in the processing of derived words without any
other linguistic deficit. This study was the first one to show
that derivational morphology can be selectively impaired and
that its processing can be mediated by the right hemisphere.
Patients were tested in a picture naming task where they had
to name either an action verb or the corresponding derived
nouns. They were also asked to produce derived nouns that
corresponded to verbs presented to them orally and to produce
the verb that corresponded to the nouns they heard. Both patients
were unsuccessful in naming derived nouns from verbs (e.g.,
liberare ‘to free’ > liberazione ‘freedom’) but they could name
verbs from derived nouns (e.g., liberazione ‘freedom’ > liberare
‘to free’). This study highlights in the best way that derivational
morphology can be selectively impaired and that it can have
ties with the right hemisphere as well and not necessarily with
typical language areas. Finally, not only overt derivation but
also zero-derivation (Lukic et al., 2016) appears to be affected
in StrAg, especially in cases when aphasic individuals with verb
impairments had to “derive” verbs from nouns (brush > to brush),
stressing the crucial role of the grammatical category of the base
(i.e., verbs) in performing morphological processes.

Taking all the above into consideration, it appears that
derivational morphology leads its own life when it comes to
language disorders. On the one hand, it appears better preserved
than inflectional morphology. On the other hand, it appears
to engage different brain areas, since derived words exhibit a
variety of properties that are not found in inflected forms, such
as a distinct semantic component, given that the derived word
is a separate concept. However, it remains an understudied
area in the field of language disorders, thus, calling upon
further investigation.

The Current Study – Research Questions
In the present study we analyze data of complex pseudoword
processing from English-speaking individuals diagnosed with
two variants of PPA and with StrAg. Given that PPA is a

condition which mostly affects lexical processing and given that
pseudoword processing touches upon many issues (see Section
“Morphological Processing in Healthy Adults”), it appears to be
an appropriate domain of investigation in order to see how the
underlying deficits of these conditions might affect it. At the
same time, a secondary goal is to inform morphological theory by
providing independent evidence about a linguistic phenomenon
which has occupied the psycholinguistic literature for decades,
that is, complex word recognition.

Thus, the overarching aim of the study is to investigate
processing of complex pseudowords in these populations and
to contribute new data to the literature of lexical/morphological
processing by PPA individuals. Within this general frame, we also
seek to shed light to related issues, with respect to the type of
stimuli investigated and the specific populations that participated
in the study. First and foremost, given that there is no evidence
about complex pseudoword processing, the main aim of the study
is to fill this gap of knowledge, thus, making it the first study to
bring into light evidence about word-structure building in PPA, a
productive operation across languages. Second, the specific types
of pseudowords used in the current study allow us to investigate
the contribution of finer-grained types of information necessary
in word-structure building, that is information that pertains
to knowledge of the grammatical category of the base and to
argument structure specifications. This is particularly important
given that no previous study has looked at the influence of both
syntactic and semantic properties in the processing of word-
building in PPA. Finally, given that both StrAg and PPA-G are
characterized by agrammatism, the third aim of the study is to
compare the two conditions and examine whether agrammatism
affects pseudoword processing in the same way.

MATERIALS AND METHODS

Participants
Thirty brain-damaged individuals diagnosed with PPA and
meeting the criteria for logopenic (n = 12) and agrammatic (n = 8)
variant or stroke-induced agrammatic aphasia (n = 10) were
recruited to participate in the study. An additional group of 10
healthy volunteers, aged-matched controls (AM) (5 males and 5
females) were also selected. All participants were monolingual
native English speakers with self-reported normal vision and
hearing. One healthy AM control was excluded due to poor
performance on the lexical decision task, and thus all analyses
were done on the remaining 9 AM controls. The participant
groups were matched on age [t(37) = 1.118, p = 0.271] and
years of education [t(37) = 0.917, p = 0.365] although StrAg
participants were marginally younger than the participants with
PPA [t(4) = −2.629, p = 0.058].

Individuals with PPA were recruited from the Mesulam Center
for Cognitive Neurology and Alzheimer’s Disease in Chicago, IL,
United States. All patients were clinically diagnosed with PPA
based on neurological examination and related test results [i.e.,
magnetic resonance imaging and were further categorized by
PPA variant based on language and neuropsychological testing,
and their magnetic resonance images based on the criteria
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TABLE 1 | Participants’ demographic information.

AM AM01 AM02 AM03 AM04 AM05 AM06 AM07 AM08 AM09 Group average

Age 56 67 60 53 76 64 75 68 63 64.7

Gender F F M M F M F M F 4 M (5 F)

Handedness R R R R R R R R R all R

Education (years) 18 18 18 18 14 20 21 18 17 18.0

StrAg SA01 SA02 SA03 SA04 SA05 SA06 SA07 SA08 SA09 SA10 Group average

Age 41 64 29 46 42 22 48 38 67 51 44.8

Gender M M F M M F M F M M 7 M (3 F)

Months post-stroke 94 13 28 27 20 31 18 98 306 37 67.2

Handedness R R R R L R R R L R 8 R (2 L)

Education (years) 16 18 19 18 16 14 16 18 20 20 17.5

PPA participants P1 P2 P3 P4 P5 P6 P7 P8 PPA-G ave P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 PPA-L ave Total group ave

PPA-type G G G G G G G G L L L L L L L L L L L L

Age 76 64 69 74 65 63 66 53 66.25 69 64 80 58 65 70 73 51 60 63 75 67 66.25 66.25

Gender M F F M F M F F F M M F M M M M M M F F 11 M (9 F)

Symptom duration (years) 3.6 2.5 2.6 4.9 2.5 7.0 1.5 6.0 3.8 2.6 3.8 6.8 2.0 3.5 2.0 4.0 3.5 4.0 3.5 4.0 4.5 3.7 3.7

Handedness R R R R R R R R R R R R R R R R R R R R 20 R

Education (years) 18 16 16 16 14 20 18 16 16.75 16 16 18 19.5 19 17 20 12 18 18 19 18 17.54 17.22

AM, age-matched; StrAg, stroke agrammatic; SA01, SA02, SA03 etc., stroke agrammatic; PPA, Primary progressive aphasia; G, agrammatic; L, logopenic; S, semantic; P1, P2, P3...etc. Patient; F, female; M, male;
R, right-handed.

Frontiers
in

P
sychology

|w
w

w
.frontiersin.org

N
ovem

ber
2021

|Volum
e

12
|A

rticle
701802

141

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-701802 November 23, 2021 Time: 16:0 # 7

Manouilidou et al. Morphology and Language Disorders

discussed in Mesulam (2001, 2003, 2013) and Gorno-Tempini
et al. (2011)]. Demographics for all participants are presented
in Table 1; scores on language measures across participants
are provided in Supplementary Appendix 1. None of the PPA
patients showed evidence of stroke or other neurological disorder,
while all presented a history of progressive language deficits in
the face of relatively spared abilities in other cognitive domains.
The study was approved by the Institutional Review Board at
Northwestern University and informed consent was obtained
from all participants.

The stroke-induced agrammatic aphasic individuals suffered
a single left-hemisphere stroke at least 1 year prior to the study
with no history of other speech and language impairments
prior to stroke. Participants were selected for inclusion based
on neuropsychological assessments and according to the criteria
of the Western Aphasia Battery-Revised (WAB-R) (Kertesz,
2006). Participants exhibited mild-to-moderate aphasia (WAB-
AQ mean: 75.4, range: 53.5–89), with non-fluent agrammatic
features, such as (a) slow and effortful spontaneous speech (WAB
fluency mean: 10.9, range 2–20), (b) impaired comprehension
and production of non-canonical sentences, as indicated by
performance on the Sentence Comprehension Test (SCT) and the
Sentence Production Priming Test (SPPT) of the Northwestern
Assessment of Verbs and Sentences (NAVS) (Thompson, 2011):
for comprehension: non-canonical range: 33.3–86.7% correct;
canonical range: 46.7–93.3% correct; for production: non-
canonical range: 0–73.3% correct; canonical range: 33.3–100%
correct, (c) unimpaired noun production and preserved single-
word comprehension of both nouns and verbs, as illustrated
by scores ≥ 50% correct on the Confrontation Naming subtest
of the Northwestern Naming Battery (NNB) (Thompson and
Weintraub, 2014; experimental version) and by scores ≥ 60% on
the Auditory Comprehension subtest of the NNB, respectively3.
Details are listed in Supplementary Appendix 1.

Experimental Conditions and Materials
Four experimental conditions with 40 items each (39 for non-
words) and one filler condition were included in the experiment.
Specifically, the experimental conditions included one group of
non-words (#1 below), two groups of words violating certain
constraints of word formation in English (see #2 and #3 below)
and one group of real words (#4 below). All were formed with the
prefix re-. The filler conditions (#5 below) consisted of 80 well-
formed words that contained different decomposable affixes (e.g.,
unable). Fillers were used exclusively to distract the participants
and to balance the ratio of grammatical vs. ungrammatical
words and were not further analyzed. Materials were based
on Manouilidou and Stockall (2014). They were modified to
comply with the requirements of American English participants
i.e., word frequencies of existing items were recalculated based
on CELEX English database (Baayen et al., 1995) and a set
of new real words were selected. All experimental items were
matched for CELEX spoken and written stem/root frequency
[for spoken: F(3) = 1.095, p = 0.353; for written: F(3) = 0.049,

3NNB scores are missing for one participant, SA09, due to time constraints when
testing.

p = 0.986), and for length, apart from real words, which
were slightly longer (mean: 7.575, p = 0.006 when compared
to SynViol and SemViol)]. Finally, durations of auditory files
were also calculated. There is no significant difference between
durations in the two critical conditions (t = −1.056, p = 0.297)
but they both differ significantly when compared to fillers
(p = 0.000 in both comparisons). Table 2 presents details on the
experimental stimuli.

The stimulus set comprised the following experimental
conditions:

(1) Non-words (NWs): pseudowords stems + re- (e.g.,
∗repearn; n = 39).

(2) SynViol: real word base + re-, forming a grammatical
category constraint violation (SynViol) (e.g., ∗resimple;
n = 40).

(3) SemViol: real word base + re-, forming an argument
structure/thematic constraint violation (SemViol) (e.g.,
∗rescream; n = 40).

(4) Real words with re- and no base form violations (e.g.,
resubmit; n = 40).

(5) Fillers: real words without re- (e.g., acceptable; n = 80).

In total, the stimuli included 239 words and the ratio between
well-formed and ill-formed was 50:50.

Procedure
An auditory lexical decision task was conducted, running on
an IBM computer using E-prime 2.0 professional software
(Psychology Software Tools, Pittsburgh, PA, United States),
which collected and recorded response time and accuracy data.
Initially, participants were given detailed instructions about the
experiment and 10 practice trials were provided to familiarize
participants with the task. All stimuli were recorded by a
native speaker of American English and were presented to the
participants via headphones. Participants first saw a cross “ +” in
the middle of the screen for 1,000 ms and then they heard the
stimulus. Participants had to decide as quickly and as accurately
as possible whether the word that they heard was a word of
English. Participants had 3,000 ms to press with their left hand
one of two pre-specified color-coded buttons (either the YES “s”
or the NO “a” key), on the left side of the QWERTY keyboard.
Participants could pause the task and have a break at any point
during the experiment.

ANALYSIS AND RESULTS

A mixed-effects logistic regression was performed on the item-
level data for accuracy and a linear mixed-effects regression was
performed on the item-level data for reaction times (RT) using
the lme4 package in R Studio version 1.2.1335 (Bates et al.,
2015; Kuznetsova et al., 2015; R Core Team, 2015; Team, 2018).
Participants’ accuracy and the logarithmic transform of their
reaction times (logRT) were used as the dependent variables in
separate analyses. For both accuracy and reaction time analyses,
group (PPA-G, PPA-L, StrAg, and AM), condition (pseudowords
with SynViol, pseudowords with SemViol, Non-Words, and real
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TABLE 2 | Characteristics of experimental stimuli.

SynViol SemViol Real NWs fillers

Mean length (letters) 6.85 6.85 7.57 7.35 7.39

Mean Audio file duration (sec) 0.75 0.77 0.73 0.76 0.66

Mean stem/root frequencies (CELEX_log) 0.98 1.16 1.18

words), and their interaction were entered as fixed factors with
age as a covariate, and random intercepts for participants and
trial items were entered as crossed random factors in the full
model. Models with and without each fixed factor were compared
using the anova function in R [see (a) – (e) below for formulas
of compared models] to identify the best-fit model for accuracy
and RT data separately. In the presence of significant effects,
post hoc planned comparisons were run, and p-values were
corrected for multiple comparisons using a single-step method
in the multcomp package (Bretz et al., 2010) in R.

Model formulas: For accuracy data, DV = accuracy (1/0), while
for RT data, DV = logRT. Formula d was the best-fit model
for all analyses.

(a) Intercept and random factors only:
DV ∼ 1 + (1| participant) + (1| item)

(b) Intercept, group, and random factors:
DV ∼ 1 + group + (1| participant) + (1| item)

(c) Intercept, group, condition, and random factors:
DV ∼ 1 + group + condition + (1| participant) + (1| item)

(d) Intercept, group, condition, and their interaction, and
random factors:
DV ∼ 1 + group∗condition + (1| participant) + (1| item)

(e) Full model: Intercept, group, condition and their
interaction, and age (covariate), and random factors:
DV ∼ 1 + group∗condition + age + (1| participant)
+ (1| item).

With respect to accuracy, group means and standard
deviations are presented in Table 3.

For accuracy data, the best-fit model was the one that
included the interaction term [formula (d) above; χ2(9) = 61.71,
p < 0.001]. Results from the mixed-effects logistic regression
analyses showed a significant group∗condition interaction. Post
hoc comparisons of participant groups indicated that for non-
words and real words, the AM group performed better than
all patient groups, although this was only significant when
comparing the AM group to the PPA groups for real words:
(PPA-G: z = −3.56, p = 0.002; PPA-L: z = −2.73, p = 0.03).
None of the patient groups differed significantly from each other
for real words or non-words. Comparisons between groups with
respect to the two critical conditions (SynViol and SemViol)
revealed the following: For the SynViol condition, the AM group
stands out yielding, on average, significantly more accurate rates
compared to the PPA-G group (z = −2.92, p = 0.018) and
compared to the StrAg group (z = −3.31, p = 0.005). None of
the patient groups significantly differed from each other for the
SynViol condition. For the SemViol condition, the AM group
was, on average, only marginally significantly more accurate than

TABLE 3 | Average percent correct (SD) scores for each condition and group.

SynViol SemViol NW real

StrAg 63 (26.7)* 56 (23.3) 76 (23.9) 84 (9.7)

PPA-G 63 (31.0)* 59 (33.2) 78 (17.9) 71 (18.6)*

PPA-L 77 (13.1)* 65 (13.2)* 81 (9.8) 79 (14.0)*

AM 90 (3.3)* 78 (13.1)* 86 (8.4) 92 (5.6)

Blue asterisk (*) indicates significant difference between critical conditions *reheavy
vs. *reswim and red asterisk (*) indicates significant difference between groups of
patients and control group.

the StrAg group (z = −2.51, p = 0.059). There were no other
significant comparisons for the SemViol condition.

Post hoc comparisons of conditions for each group indicated
no reliable differences between the SynViol and SemViol
conditions for the PPA-G group (z = −0.82, p = 0.85) or for
the StrAg group (z = −1.75, p = 0.30). Interestingly, both
the PPA-G and StrAg groups performed significantly better for
NWs compared to pseudowords with SynViol (PPA-G: z = 4.46,
p < 0.001; StrAg: z = 3.83, p < 0.001) and compared to
pseudowords with SemViol (PPA-G: z = −5.37, p < 0.001; StrAg:
z = −5.81, p < 0.001). This suggests that for the two agrammatic
groups, the two types of violations (SynViol and SemViol words)
are clearly distinguishable from non-words, even though they do
not differ between each other. At the same time, both the PPA-L
and healthy AM participants produced distinct rates of accuracy
for SynViol and SemViol conditions, with significantly better
performance for SynViol words (PPA-L: z = −3.01, p = 0.014;
AM: z = −3.25, p = 0.006). Notably though, the PPA-L group
showed no distinct performance between NWs and pseudowords
with SynViol (z = 1.22, p = 0.61).

Looking at individual responses at Table 4, we see that
there is within group variability in the data also illustrated
in Figures 1A,B, which is mostly manifested in the two
agrammatic groups (for PPA-G, SynViol range: 18–97.5%
SemViol range: 10–95%; StrAg, SynViol range: 10–92.5%;
SemViol 10–80%). The PPA-L group appears to be less
variable (SynViol range: 52.5–90%; SemViol range: 40–80%).
Since the PPA classification does not necessarily control for
the extent of sentence comprehension/production deficits, we
also ran separate models using performance on language
measures of non-canonical sentence comprehension (ncSCT)
and production (ncSPPT) instead of group as a fixed factor.
These two tasks are not related to the lexical decision task
used in the current study, as they tap into participants’
grammatical knowledge, as a broader domain of language
knowledge. However, they can provide valuable information with
respect to the underlying language deficits of the populations
under investigation which can possibly affects participants’
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TABLE 4 | Individual responses (% correct responses) per experimental condition.

SynViol accuracy P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

StrAg 65% 55% 80% 87.50% 78% 92.50% 65% 75% 25% 10%

PPA-G 97.50% 75% 23% 45% 68% 18% 85% 93%

PPA-L 62.50% 80% 57.50% 77.50% 90% 78% 75% 83% 52.50% 88% 95% 85%

SemViol accuracy P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

StrAg 57.50% 62.50% 80% 77.50% 50% 77.50% 55% 65% 22.50% 10%

PPA-G 95% 80% 10% 32.50% 70% 20% 82.50% 85%

PPA-L 55% 80% 52.50% 67.50% 75% 75% 80% 70% 52.50% 40% 57.50% 77.50%

performance in the lexical decision task as well. The same
procedure was used to determine the best-fit model using
the same formulas listed above (a) – (e), with the only
difference of replacing the fixed factor of group with a
(continuous) fixed factor for performance on ncSCT (percent
correct), and separately with a (continuous) fixed factor for
performance on ncSPPT (percent correct). For the model
including sentence comprehension of non-canonical structures
(ncSCT) as a fixed factor, the best-fit model was the one that
included the interaction term [χ2(3) = 35.84, p < 0.001].
Results from the logistic regression analysis showed a significant
interaction between condition and performance on ncSCT.
Post hoc comparisons revealed that performance on ncSCT
was not a significant predictor of accuracy for any of the
conditions. For the model including sentence production of
non-canonical structures (ncSPPT) as a fixed factor, the best-
fit model was the one that included the interaction term
[χ2(3) = 50.73, p < 0.001]. Results from the logistic regression
analysis showed a significant interaction between condition and
performance on ncSPPT. Post hoc comparisons indicated that
the ncSPPT language measure was a significant predictor of
SynViol accuracy (z = 2.52, p = 0.01), but not of accuracy
for the other conditions. As shown in Figure 2, the degree
of impairment of grammatical abilities agrees with accuracy
in detecting SynViol, while no significant interactions were
found for SemViol.

Comparisons between groups revealed that the PPA-L group
performed significantly better than the StrAg group for these
two language measures (ncSCT: z = −4.86, p < 0.001; ncSPPT:
z = −3.16, p = 0.005) and significantly better than the PPA-
G group for ncSPPT (z = 2.41, p = 0.04). The StrAg group
performed worse than the PPA-G group for ncSCT (marginal
significance: z = −2.32, p = 0.053), but not for ncSPPT (z = −0.53,
p = 0.86; see Table 5 for SCT and Table 6 for SPPT). Participants’
percentages of correct responses in these tasks can be found in
Supplementary Appendix 1, the relevant part repeated here for
convenience in Table 7.

With respect to RTs, only response latencies corresponding to
correct trials were analyzed, and RTs smaller than 300ms were
eliminated for all participants (less than 1% of the data). Although
the model was run using log-transformed data, raw values are
presented in Table 8 for easier interpretability. For RT data, the
best-fit model was the one that included the interaction term
[formula (d) above; χ2(9) = 59.86, p < 0.001]. Results from

the linear mixed-effects regression analyses showed a significant
group∗condition interaction. Post hoc comparisons of participant
groups indicated no significant differences for SynViol or
SemViol words. Post hoc comparisons of conditions for each
participant group revealed that all groups performed faster for
both NW and real words compared to the critical conditions
(SynViol and SemViol) (p < 0.001)4, but only the AM group
differentiated between the two critical types of violation (syntactic
and semantic) by presenting significantly faster responses in
the former type of violation (z = 3.279, p = 0.005). We also
modeled for interactions with performance on language measures
(ncSCT/ncSPPT), but there were no significant outcomes.

In sum, the current pattern of results can be summarized
as follows. Healthy controls distinguished the two critical
conditions, both in terms of accuracy and RTs, with SynViol
being easier and faster to reject compared to SemViol. With
respect to patient groups, closer to AM was the PPA-L group,
as they were the only group which did tell apart the two critical
conditions based on error rates, however, RTs did not indicate
distinct timeframes in terms of processing. PPA-G and StrAg
were comparable to each other, not being able to tell apart the
two critical conditions, but clearly isolating them from both
real words and non-words. Finally, participants’ performance
on ncSPPT was a strong predictor for their accuracy rates on
SynViol. Based on this summary, we will discuss our data in the
following section.

DISCUSSION

The current investigation aimed at: (a) examining the ability of
PPA and StrAg individuals to process pseudowords and more
specifically to detect violations in deverbal word formation, (b)
isolating the contribution of each type of relevant information
(e.g., syntactic vs. semantic) in deverbal word structure building
and (c) comparing the performance of PPA-G and StrAg, two
conditions characterized by agrammatism, in order to detect its
effect in pseudoword processing. For the investigation of the
above questions, we will focus on the data obtained for the two
critical conditions, that is SynViol and SemViol, and we will
consider participants’ scores on both accuracy of response as well
as reaction times.

4For PPA-G the comparison between NW vs. SynViol was only marginally
significant (p = 0.0535) and for the AM group, p = 0.0162 for NW vs. SynViol.
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FIGURE 1 | Within group variability across participants [% correct responses for pseudowords with SynViol (A) and SemViol (B)].

Looking at accuracy data, when it comes to the first question,
the PPA-L group appears to be the group with the best
performance, as it does not differ significantly from AM in
either the detection of SynViol or SemViol. The two agrammatic
groups clearly have difficulties with the detection of SynViol, as
they both differ significantly from AM, while for SemViol, the
PPA-G group did not differ from AM while there was only a
marginally significant difference between StrAg and AM5. This
is a first indication that the two agrammatic groups have an
increased difficulty in accessing information of syntactic nature
within a complex word. A comparison among experimental
conditions within groups reveals further important dissociations.
Addressing the second question will shed more light into the
source of these differences.

The second question aimed at investigating whether the
groups of participants can process separately the two types
of information (syntactic vs. semantic) in pseudoword lexical
access. In other words, we seek to examine whether they can tell
apart the two critical conditions which will also help us further
investigate the source of their difficulties. For this purpose, we
are looking for distinct accuracy rates for SynViol and SemViol
across participant groups. It seems that while all participants
had higher accuracy rates for SynViol, this difference reached

5Following Olsson-Collentine et al. (2019), we will interpret this difference as
“insignificant.” According to the study values between 0.05 and 0.10 are known
to have low evidential value and they should be treated as insignificant.

significance only for PPA-L but not for the two agrammatic
groups, PPA-G and StrAg, which appear to treat them alike
(∗resmile = ∗rehappy). If this is the case, then we would have
to assume that the PPA-L group is able to process separately
information associated with the grammatical category of the base
and information associated with argument structure. The group
of PPA-L performed as expected, that is, they processed the two
types of information, and they did not differ from AM controls,
suggesting a better preserved morphological and lexical system
than the two agrammatic groups.

Finally, there is a dichotomy between the two agrammatic
groups (PPA-G and StrAg) and the PPA-L group. PPA-G and
StrAg groups did not differ significantly, neither with respect
to overall accuracy rates nor with respect to accuracy rates
regarding the two types of violations. This lack of difference
is in line with previous studies comparing the two conditions
in various grammatical tasks and it suggests a unified effect
of agrammatism in detecting word-formation violations. Of
particular interest is the performance of these groups when
it comes to language measures which target the investigation
of their grammatical abilities (see Figure 1). Specifically,
grammatical abilities (as modeled through complex sentence
production), turned out to be a significant predictor for SynViol
accuracy. Several studies have shown that individuals with
acquired aphasia often present with sentence comprehension
and production deficits in sentences with non-canonical
word order, such as passives and object relative clauses,
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FIGURE 2 | Interaction between accuracy rates for SynViol and language measures as fixed factors. Language measure used: Northwestern Assessment of Verbs
and Sentences (NAVS*) Sentence Comprehension Task (SCT) for non-canonical constructions (A) and NAVS Sentence Production Priming Task (SPPT) for
non-canonical constructions (B) (*Thompson, 2011).
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TABLE 5 | Between group comparisons for SCT.

Comparison Estimate Standard error Z-value P-value

PPAL – PPAG 0.178 0.083 2.15 0.081

StrAg – PPAG −0.200 0.086 −2.32 0.053

StrAg – PPAL −0.378 0.078 −4.86 < 0.001***

Significance level: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

TABLE 6 | Between group comparisons for SPPT.

Comparison Estimate Standard error Z-value P-value

PPAL – PPAG 0.311 0.129 2.41 0.042*

StrAg – PPAG −0.071 0.134 −0.53 0.86

StrAg – PPAL −0.381 0.121 −3.16 0.005**

Significance level: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

TABLE 7 | Percentages of correct responses (standard deviations) per group for
language measures of comprehension (SCT) and production (SPPT) of
non-canonical sentence structures.

SCT SPPT

StrAg 56.7 (18.12) 38.0 (28.94)

PPA-G 76.7 (27.36) 45.0 (39.26)

PPA-L 94.4 (7.95) 76.1 (16.92)

TABLE 8 | Mean RTs (SD) in milliseconds for each condition and group for only
correct responses > 300 ms.

SynViol SemViol NW real

StrAg 1379 (270) 1416 (270) 1279 (268) 1280 (208)

PPA-G 1488 (218) 1551 (217) 1420 (220) 1340 (182)

PPA-L 1596 (173)* 1636 (143)* 1463 (150) 1415 (123)

AM 1389 (105)* 1477 (103)* 1320 (97) 1159 (73)

Blue asterisk (*) indicates significant difference between critical conditions *reheavy
vs. reswim and red asterisk (*) indicates significant difference between groups of
patients and control group.

compared to those with a basic, canonical Subject, Verb,
Object (SVO) order (for production: Schwartz et al., 1994;
Friedmann and Grodzinsky, 1997; Caplan and Hanna, 1998; for
comprehension: Caramazza and Zurif, 1976; Schwartz et al.,
1980; Caplan and Futter, 1986; Grodzinsky and Finkel, 1998;
Friedmann and Shapiro, 2003; Thompson and Shapiro, 2005).
Thus, what unites these two groups is their compromised
grammatical knowledge, which appears to be a decisive factor for
the detection of SynViol. Similarly, while both populations have
clear and well-documented difficulties with identifying violations
of verb argument structure at the sentence level (Thompson
et al., 2012c), the image, as emerged in the current study,
is not that clear at the lexical level as there is no statistical
difference with the control group when detecting SemViol, that
is argument structure violations at the lexical level. If further
research establishes this finding, it could suggest that the source of
their sentence deficit does not have to do with a loss of argument
structure knowledge but with a difficulty processing it at the
sentence level, as also suggested in Thompson and Mack (2019).

Results on RTs add a different dimension to the current
investigation. First, results of AM controls were in line
with previous studies dealing with these types of violations.
That is, healthy participants produced distinct RTs for each
type of unattested pseudowords, and most importantly, they
distinguished SynViol from SemViol. This piece of evidence
suggests that speakers are selectively sensitive to levels of
linguistic analysis when it comes to lexical processing. This on
its own is an important piece of information. However, the
interesting issue to be addressed is what this selective sensitivity
reflects. It can reflect a qualitative difference between the types
of information one needs to evaluate during lexical processing,
suggesting an “ease” of detecting a violation of syntactic type in
word formation. That is, speakers need more time to evaluate
semantic information compared to syntactic information. This is
a plausible interpretation, given the nature of the pseudowords
used in the current study, as the processor seeks interpretable
situations for SemViol, and this “search” could be easily reflected
in RTs. On the other hand, the observed pattern might also reflect
a deeper architectural mechanism in word-building structure. We
will discuss this possibility in the following paragraphs.

This pattern further supports the argument put forward by
Manouilidou (2006, 2007), Manouilidou and Stockall (2014),
and further validated by Neophytou et al. (2018) and Stockall
et al. (2019), that the processing of the grammatical category
information temporally precedes the processing of the argument
structure information. Looking at the broader picture, these
results support the idea that syntactic licensing and semantic
composition occur at two distinct stages, the former preceding
the latter. With respect to our first question, the two types
of violations did not produce distinct RTs for any group of
pathological populations. In contrast, RT patterns obtained from
PPA-L, PPA-G and StrAg suggest that participants from these
groups did not process these two types of critical stimuli at
distinct timeframes. This could mean that their overall approach
to these types of pseudowords was not to process them at distinct
stages but altogether, in a more holistic way. However, they all
process them at distinct timeframes compared to NWs and real
words, suggesting that for each group SynViol and SemViol are
not pure NWs, and that participants tried to interpret them but
failed to tell them apart.

Taken together, the results from accuracy and RTs as well
as our previous knowledge about the processing for these
pseudowords by healthy participants, one can make the following
observations. Let us assume a staged lexical access, as outlined in
Schreuder and Baayen (1995), Burani et al. (1999) and Fruchter
and Marantz (2015). At an initial stage, decomposition occurs,
and all lexicalized substrings are exposed. This is when NWs
(∗repearn) are processed and rejected as bearers of a non-existent
stem. The second stage is where syntactic licensing occurs, and
the stage during which SynViol (∗recomplex) are dealt with. The
third stage is dedicated to semantic processing or recombination,
and it is the stage where SemViol (∗reswear) are processed.

The AM controls follow this pattern as reflected in distinct
RTs produced for each category. The lack of difference at the
RTs between SynViol and SemViol for all patient groups is
suggestive of the following scenarios which should be considered
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with caution, given the variability among our participants in
pathological groups and the confounding effect it might have.
First, either stages 2 and 3 are unified as one stage (where
both syntactic and semantic information are being processed)
or one of them (either syntactic or semantic) is eliminated or
skipped depending on the deficit of the specific population. On
the grounds of this, let us examine the performance of all groups
of participants. Accuracy rates suggest that the two agrammatic
groups (PPA-G and StrAg) do not distinguish between SynViol
and SemViol. Thus, the first thought would be to assume that
agrammatic speakers have one single stage (a combination of
stages 2 and 3) where any kind of information is being processed.
However, given that the reduced grammatical abilities of these
two groups are a strong predictor for accuracy rates, it is plausible
to assume that what they miss is the “hardware” to perform
syntactic licensing (stage 2), thus judging pseudowords with
violations only at the semantic level, where both SynViol and
SemViol fail to pass. This pattern explains both the lack of distinct
RTs and the lack of distinct accuracy rates for these two groups.

On the other hand, accuracy rates suggest that PPA-L
distinguish SynViol from SemViol. Thus, they must have access
to the different kinds of information that are violated in each
formation. The PPA-L group yielded the highest accuracy rates,
and it was the only group which did not differ from controls.
It is the group that demonstrates the most consistent (smallest
variability) and best-preserved performance when it comes to
detecting violations and for telling them apart. This is in
accordance with their profile as demonstrated in the literature
(Thompson et al., 2012a; Thompson and Mack, 2014). That is,
while derivational morphology has not been examined in PPA-
L, evidence from inflectional morphology suggests that patients
do not have difficulties in the production of morphology. In
other words, their performance in processing pseudowords is
compatible with their manifested lexical difficulties stemming
mostly from the phonological component of lexical knowledge
(Mack et al., 2013, 2021), a deficit that could not have interfered
with the nature of a lexical decision task. However, their high
RTs (overall significantly slower than StrAg and AM) suggest
a processing slowdown which could also be responsible for the
lack of RT difference between the critical conditions (SynViol vs.
SemViol), possibly as a speed-to-accuracy trade-off6.

Before we conclude anything along the previous lines about
PPA-L, an important piece of information that we should
consider is the fact that accuracy rates for SynViol do not differ
from NWs in this group. This suggests a robust rejection of these
formations as pure non-words, possibly by applying a coarse
structural well-formedness criterion, rejecting them without
hesitation and being unsure about finer-grained distinctions such
as SemViol. Even though semantic impairments are not the
main feature of PPA-L, there have been studies in the literature,
suggesting faulty semantic processing as well (Rogalski et al.,
2008; Thompson et al., 2012b; Barbieri et al., 2021). Specifically,
in Barbieri et al. (2021), individuals with PPA-L failed to detect

6Similar speed-to-accuracy trade-off effects were also reported for a combined
PPA-L/PPA-G group in a word comprehension eye-tracking study (Seckin et al.,
2016).

violations of argument structure (which constitute the basis of
our SemViol) in an EEG sentence processing experiment. Hence,
one could claim that the difference between the two (SynViol
and SemViol) appears to stem from a sensitivity to what is
being violated at the syntactic level and a slight disturbance at
the semantic level. Thus, it seems that there is a dichotomy
between the two agrammatic groups on the one hand and the
PPA-L group on the other hand, with the first ones judging the
pseudowords under investigation at a semantic level and the
latter ones, judging them at a structural well-formedness level.
In fact, such a dichotomy, agrammatic groups on the one hand
and PPA-L on the other, has already been manifested in previous
studies (Thompson and Mack, 2014) examining grammatical
impairments in all variants of PPA.

Thus, if we indeed accept a staged lexical access as outlined
in Section “Morphological Processing in Healthy Adults,” we
will have to assume a two-way performance for our groups
of participants. Specifically, agrammatic groups fail to fully
apply the syntactic licensing criterion – they judge them at the
semantic level (different from AM when it comes to SynViol), a
judgment which produces similar accuracy at similar timeframes
for both SynViol and SemViol. Ultimately, the two agrammatic
groups are not selectively sensitive to various levels of linguistic
analysis, as they treat both violations as semantic. Finally, PPA-
L demonstrates performance with the highest accuracy rates
(like AM controls), an indication of a preserved ability to
process morphologically complex words, albeit with the slight
interference of a possible semantic disturbance [as in Barbieri
et al. (2021)].

Finally, we will conclude this section with a comment on
the issue of variability. Variability among participants has been
a feature of many pathological conditions and it is very well
manifested in aphasia. It has also been one of the methodological
challenges in group studies. Genuine individual differences exist
in every aspect of human existence. It is the challenge for the
researcher to pin down their source, to the extent that this is
possible. In our study, within group variability is undeniable
and it is mostly manifested within the two agrammatic groups.
However, when controlling for this individual variation by using
participants as a random factor in our mixed models, a uniform
pattern emerges, and it is in accordance with the patients’ clinical
and cognitive profile. Furthermore, by modeling for language
measures, we have shown how variation (in dealing with these
pseudowords that deviate from canonicity) can be understood
and we have identified its source.

GENERAL DISCUSSION AND
CONCLUSION

Language research on brain-damaged populations is informative
for two main reasons; first it contributes to the understanding of
the pathology; second it allows us to learn more about the normal
process. Before we conclude, we will address these two points
having in mind the findings of the present study.

The hallmark of PPA is impaired word knowledge. Given the
vastness of this, the current study is the first one attempting to
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shed light onto finer aspects of word knowledge in PPA, by using
a linguistically informed approach in order to provide detailed
profiles of linguistic strengths and weaknesses of the populations
under investigation. We focused on complex pseudowords,
aiming at investigating morphological processing, an under-
studied domain when it comes to language disorders. As outlined
in the introduction, morphological processing requires the
combination of knowledge of various linguistic domains, such as
syntax and semantics. With this in mind, we aimed at examining
how the specifics of each PPA variant under consideration
could be affected.

This study allowed us to confirm some facts about the different
variants and it also brought into light new insights. First, the
study provides evidence for a unified effect of agrammatism,
resulting from stroke and from a neurodegenerative disease, at
the lexical level. What we knew up until now is that the two
populations demonstrate similar performance at the sentence
level and in syntactic tasks (Thompson et al., 2012c; Thompson
and Mack, 2014). The current study brought into light striking
similarities at the lexical level as well suggesting that both
groups operate in the same way when judging pseudowords as
well. Given that their performance correlates with their weak
grammatical abilities altogether, we have evidence that they rely
on their semantic knowledge rather than on anything else in
order to process these pseudowords.

The current dataset also brought into light a dichotomy
between the two agrammatic groups and PPA-L, as it is also
reported in Thompson and Mack (2014). Results are in line with
the profiles of PPA-L, as manifested in the literature, that is,
a relatively good performance of PPA-L at detecting violations
at the lexical level (no difference compared to the AM group).
Given the scarcity of chronometrized studies when it comes to
PPA, what we did not know before is that PPA-L shows a speed-
accuracy trade-off effect, suggestive of their strategy in dealing
with these pseudowords. In other words, this group approaches
with caution the lexical decision task, taking time in using their
relatively preserved abilities.

Overall, the novelty of the current study with respect to
PPA is that it provides an explanation for what “impaired word
knowledge” could mean by revealing the different strategies
of these populations when confronted with pseudowords,
thus allowing a window to our understanding on how these
populations treat any complex lexical item. Therefore, when we
say that PPA affects word knowledge, the current study offers an
account as to what might be the underlying reason for failing
word knowledge for the variants under consideration.

Looking at the other side of the coin, the present study offered
an alternative way of looking at morphological operations. Most
psycholinguistic literature postulates the existence of various
stages in accessing complex pseudowords, each stage being
devoted to the processing of specific types of information. The
present study confirms this procedure, albeit in an alternative
way. The lack of time differences in the processing of SynViol vs.
SemViol does not allow us to clearly talk about temporal stages.
However, combined results from RTs and accuracy confirm
the different types of information that are involved in these
types of structures.

First, looking at the performance of PPA-G and StrAg when it
comes to SynViol and the fact that this performance is predicted
by their weak grammatical abilities altogether, we have a first-
hand piece of evidence that grammatical knowledge is at stake
when it comes to processing these pseudowords. Alternatively
seen, syntactic licensing is an obligatory step in complex word
recognition, a step which is being compromised by agrammatism.
Taken together with their control-like performance for the
SemViol condition, we have the second piece of evidence that
although SemViol words result from violating argument structure
specifications, they are ultimately processed at a semantic level,
as semantic recomposition suggests (Fruchter and Marantz,
2015). This distinction between the types of information being
processed is further reinforced by the performance of the PPA-
L group.

Thus, the current study evidently and inevitably provides
further input to our knowledge about morphological processing
of complex words in a totally innovative way. Empirical evidence
of this type constitutes a contribution to our perception of
morphology which is beyond the theoretical level. Given the
increase of linguistically informed research in language disorders,
the role of this type of study to our understanding of normal
language may turn out to be vital, in a way that, until recently,
might have looked unimaginable.
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The uncertainty associated with paradigmatic families has been shown to correlate with

their phonetic characteristics in speech, suggesting that representations of complex

sublexical relations between words are part of speaker knowledge. To better understand

this, recent studies have used two-layer neural network models to examine the way

paradigmatic uncertainty emerges in learning. However, to date this work has largely

ignored the way choices about the representation of inflectional and grammatical

functions (IFS) in models strongly influence what they subsequently learn. To explore

the consequences of this, we investigate how representations of IFS in the input-output

structures of learning models affect the capacity of uncertainty estimates derived from

them to account for phonetic variability in speech. Specifically, we examine whether

IFS are best represented as outputs to neural networks (as in previous studies) or

as inputs by building models that embody both choices and examining their capacity

to account for uncertainty effects in the formant trajectories of word final [5], which

in German discriminates around sixty different IFS. Overall, we find that formants are

enhanced as the uncertainty associated with IFS decreases. This result dovetails with

a growing number of studies of morphological and inflectional families that have shown

that enhancement is associated with lower uncertainty in context. Importantly, we also

find that in models where IFS serve as inputs—as our theoretical analysis suggests they

ought to—its uncertainty measures provide better fits to the empirical variance observed

in [5] formants than models where IFS serve as outputs. This supports our suggestion

that IFS serve as cognitive cues during speech production, and should be treated as

such in modeling. It is also consistent with the idea that when IFS serve as inputs to

a learning network. This maintains the distinction between those parts of the network

that represent message and those that represent signal. We conclude by describing

how maintaining a “signal-message-uncertainty distinction” can allow us to reconcile a

range of apparently contradictory findings about the relationship between articulation and

uncertainty in context.

Keywords: linguistic knowledge, discriminative learning, cue-to-outcome structure, morphological structure,

phonetic characteristics, reduction, enhancement, context
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1. INTRODUCTION

The phonetic characteristics of speech signals are highly variable.
Separating the variability that is simply noise from that which
is informative is central to our understanding of speech. Some
parts of this problem have been solved. It is known that variability
occurs in relation to coarticulation (e.g., Öhman, 1966; Zsiga,
1992; Magen, 1997), speaking rate (e.g., Lindblom, 1963; Gay,
1978), syllable position (Pouplier and Hoole, 2016), prosody
(Mooshammer and Fuchs, 2002; Mücke et al., 2009) and even the
idiosyncrasies of speakers (e.g., Tomaschek and Leeman, 2018;
Gittelson et al., 2021). By contrast, there is still much debate
about the way that representations of linguistic knowledge—
and the differing levels of uncertainty associated with this
knowledge—serve to co-determine articulation, and in turn the
phonetic characteristics of speech. This is especially the case
when it comes to the representation of words within inflectional
paradigms and the way that the uncertainty associated with
different word-forms correlates with fine phonetic detail in
the speech signal. Some studies report effects of reduction
associated with lower paradigmatic uncertainty—mirroring
findings within the information theoretic and the Smooth Signal
Redundancy Hypothesis framework. By contrast, work within the
Paradigmatic Signal Enhancement Hypothesis framework reports
the enhancement of phonetic characteristics (these findings are
discussed in detail below).

In what follows, we investigate these effects by addressing
the relationship between the uncertainty associated with the
inflectional functions of German word-final [5], as in the word
Lehrer [’le:.K5] “teacher”, and the phonetic characteristics of [5].
This phone discriminates roughly sixty different grammatical
and inflectional functions in German, in morphologically simple
and complex words, making it an ideal test bed for this research.

One potential confound in the earliest studies investigating
the effects of sublexical relationships on articulation lies in their
operationalizations of paradigmatic relations, which were based
on theoretically motivated definitions of word-internal structure.
To avoid having to make these kinds of assumptions, we follow
the approach of Tucker et al. (2019) and Tomaschek et al.
(2019) who investigated these phenomena from a discriminative
learning perspective. In this approach, which employs a simple
neural network trained with an error-driven learning algorithm
(widely known as the delta-rule), paradigmatic uncertainty is
an emergent property within lexical systems, which develops
as the individual items it comprises are learned. In doing this,
we shall also address some often neglected questions that this
approach raises. Psycholinguistic studies using neural networks
have typically ignored the way that implementational choices
concerning the relationships between inputs and outputs in
a network can shape its performance. However, as Bröker
and Ramscar (2020) demonstrate, decisions about the input-
output structure of computational learning models serve to co-
determine what these models actually learn. This in turn affects
researchers’ interpretations of the performance of models in
relation to their theoretical contribution. Accordingly—and in
line with the topic of this special issue—a further aim of this work
will be the investigation of the kind of input-output structure that

is most appropriate for the representation of morphological and
inflectional paradigms. Specifically, we shall examine whether
inflectional functions of [5] are best characterized as serving as
inputs to neural networks or as their outputs, as implemented in
Tucker et al. (2019) and Tomaschek et al. (2019).

To analyze the performance of our network models (which
we also describe in detail below), we use simulated activations
as a measure of the uncertainty associated with each inflectional
function. These are regressed against the phonetic characteristics
of [5] in order to assess their capacity to predict the phonetic
characteristics of the speech signal. We show an enhancement of
[5]’s phonetic characteristics associated with lower paradigmatic
uncertainty. Critically, we find that when inflectional functions of
[5] serve as inputs to the learning network, uncertainty associated
with these functions obtained from the network is a better
statistical predictor for [5]’s phonetic characteristics than when
inflectional functions serve as outputs. Accordingly, the present
study contributes to a line of research that investigates how
uncertainty affects speech production through a combination of
computational modeling of learning and an examination of the
predictions of these models for the phonetic characteristics of
actual speech (for example Baayen et al., 2019; Tomaschek et al.,
2019; Tucker et al., 2019; Stein and Plag, 2021; Schmitz et al.,
2021b in the present special issue).

We begin by discussing the empirical and theoretical
background of this study, as well as previous work by Tucker
et al. (2019) and Tomaschek et al. (2019) that we seek to further
examine. We then describe our simulations and analyses before
discussing the theoretical and computational implications of
our results.

2. BACKGROUND

2.1. Phonetic Characteristics and
Paradigmatic Probability
It is well-established that phonetic reductions occur in contexts
where syntagmatic uncertainty is low. Lower uncertainty has
been shown to be associated with shorter words, syllables and
segments (Aylett and Turk, 2004; Cohen Priva, 2015) and
more centralized vowels (Wright, 2004; Aylett and Turk, 2006;
Munson, 2007; Malisz et al., 2018; Brandt et al., 2019). This has
been demonstrated by studies that operationalized uncertainty by
means of word frequency (Wright, 1979, 2004; Fosler-Lussier and
Morgan, 1999; Bybee, 2002), conditional probability (Jurafsky
et al., 2001a,b; Aylett and Turk, 2004; Bell et al., 2009), or
informativity (Cohen Priva, 2015; Schulz et al., 2016; Malisz et al.,
2018; Brandt et al., 2019, 2021). Aylett and Turk (2004, 2006)’s
Smooth Signal Redundancy Hypothesis explains these reduction
phenomena from an information theoretic perspective (Shannon,
1948), arguing that the amount of information in the speech
signal is balanced against the amount of information conveyed
at the syntagmatic level. These systematic findings sparked a
line of research that investigated whether equivalent changes
in phonetic characteristics can be found when uncertainty is
operationalized within other contexts, such as morphological and
paradigmatic families.
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However, while there is an abundance of evidence showing
a systematic relation between uncertainty within these contexts
and the phonetic characteristics of speech, when it comes
to uncertainty within morphological families, the effects of
this relationship seems to run in the opposite direction to
those reported at the syntagmatic level. Numerous studies
have shown lower uncertainty within morphological families
to be associated with enhancement. This is reflected in longer
word durations (Lõo et al., 2018) and consonant durations at
compound boundaries (Bell et al., 2019), in longer interfixes
in Dutch compounds (Kuperman et al., 2007), in more
enhanced articulatory positions in stem vowels of English verbs
(Tomaschek et al., 2021), in lower deletion probabilities of
the word final [t] in Dutch words (Schuppler et al., 2012)
and in Dutch regular past-participles (Hanique and Ernestus,
2011), and in less centralized vowel articulations in Russian
verbal suffixes (Cohen, 2015). Kuperman et al. (2007) have
proposed the Paradigmatic Signal Enhancement Hypothesis to
provide a theoretical formalization of these patterns of findings,
arguing that phonetic enhancements are a consequence of the
greater levels of paradigmatic support that these voicings receive.
However, while it might may seem that the findings just discussed
appear to contradict one another, it is not entirely clear whether
they actually do.

This is because although the studies just described do appear
to support the Paradigmatic Signal Enhancement Hypothesis,
other studies have found an opposite effect, demonstrating
an association between lower uncertainty in morphological
and paradigmatic families and reduction. This is reflected, for
example, in higher deletion probability of [t] in derived adverbs
(e.g., swiftly) (Hay, 2004) and in Dutch irregular past-participles
(Hanique and Ernestus, 2011), in shorter [@] durations in Dutch
prefixes (Hanique and Ernestus, 2011), in shorter duration of
English prefixes and their consonants (Ben Hedia and Plag, 2017;
Plag and Ben Hedia, 2017), and finally, in more centralized [-i]
and [-o] when they serve as suffixes in Russian (Cohen, 2015).
The different effects associated with paradigmatic uncertainty—
enhancement or reduction—emerge independently of the kind
of probabilistic measure used to operationalize uncertainty in
the domain of morphological and paradigmatic families. That is,
regardless of whether paradigmatic uncertainty is operationalized
as family size, as word frequency divided by the summed
frequency of all the words in a paradigm, or as the frequency of a
morphologically complex word divided by its base frequency.

Thus far in this discussion, we have treated the idea of
uncertainty in linguistic knowledge as if it is an objective
matter of fact. There are, however, good reasons to believe
this is not the case. First, because all of the measures used to
operationalize the uncertainty associated with different kinds
of knowledge are based on theoretical assumptions. Second,
because these theoretical assumptions typically disregard the fact
that all morphological knowledge is learned. Since languages are
learned, it necessarily follows that the word-internal structures
and distinctions posited by any given theory are unlikely to
correspond exactly to the structures and distinctions that have
actually been learned by a given speaker at any given point
in time.

Tucker et al. (2019) and Tomaschek et al. (2019)’s solution
to this problem was to model learning by means of a two-layer
neural network that was trained with an error-driven learning
rule (the delta rule Rescorla and Wagner (1972), Rumelhart and
McCelland (1987), provided by the Naive Discriminative Learner
package in R, Arppe et al., 2018). If trained in a naive way,
the neural network does not explicitly embody the structures
of linguistic knowledge that are typically assumed in psycho-
linguistic theories. Rather, the model’s representation of these
structures emerges in bottom-up fashion, as a result of training
the network. As a consequence, knowledge in the model is
represented by the distribution of its connection weights such
that “morphological structure” emerges gradually, in gradient
fashion, as the model is trained1.

Tucker et al. (2019) and Tomaschek et al. (2019) used network
measures to operationalize uncertainty within a morphological
paradigm. The results of these studies showed lower uncertainty
to be associated with longer stem vowel duration in regular
and irregular English verbs and longer duration of word final
[s] that encodes multiple inflectional functions (plural noun,
genitive, second person singular verbs, etc.). Accordingly, these
results provided evidence to corroborate the claim that phonetic
enhancement is associated with lower paradigmatic uncertainty.

Because the present study builds on the work by Tucker et al.
(2019) and Tomaschek et al. (2019), we shall need to discuss
their models and input-output structures in detail. However,
before we can do so, it is first important that we flesh out the
theoretical background to this work. This is because, as we noted
above, we do not only aim to examine the relation between
paradigmatic uncertainty and articulation here. Our goal is also
to provide a theoretical examination of the way that the various
factors that contribute and provide evidence for these effects are
best represented in neural network models (see also Bröker and
Ramscar, 2020; Ramscar, 2021a).

Accordingly, we shall begin by discussing how previous
computational models of speech production have addressed these
issues, and how they were used to make predictions about the
phonetic characteristics of speech. Then, since both Tucker et al.
(2019) and Tomaschek et al. (2019) are rooted in the theory of
discriminative learning, a cognitive theory of how language (and
actually any kind of behavior) is learned (Ramscar and Yarlett,
2007; Ramscar et al., 2010, 2013b; Ramscar, 2019, 2021b), we shall
examine the constraints that this theory imposes on the way the
input-output structure of models is configured.

2.2. Computational Models of Speech
Production
Researchers in the twentieth century collected a great deal
of information in the form of speech errors and data from
controlled psycho-linguistic experiments. This information then
informed theoretical speculations about the nature of the speech
production process (e.g., Fromkin, 1971; Levelt et al., 1999).
While these psycho-linguistic theories are useful at a general

1The way that knowledge about input-output structures is represented in a

network trained by the error-driven learning rule is neatly demonstrated by Hoppe

et al. (2022).
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level, they are subject to the standard limitations of all verbal
theories. One of the limitations is that they are open to
interpretation and that they are often vague when it comes
to the specific details of processing. Computational models,
such as those presented by Dell (1986) and Roelofs (1997)
ameliorate these problems of vagueness. These models force
language researchers to make definitive commitments regarding
the detailed structure of processes, regarding the kinds of
algorithms involved and, of importance to the present study,
regarding the structure of the representations that are required
to model speech production. In return for these commitments,
researchers are not only able to eliminate some of the vaguenesses
in theory, they are also able to obtain quantitatively testable
predictions. While most research on computational models of
speech production has focused on the structure of models at an
algorithmic level, the structure of the input and output to/from
these models has been largely taken for granted. However, the
performance of computational models does not only depend on
their individual architectures and algorithms. The representation
of knowledge in the model can also have a critical bearing
on its behavior. That is, the structure of its inputs (on which
its predictions are based) and its outputs (what it predicts)
can systematically change how a model performs. Indeed, as
Bröker and Ramscar (2020) recently demonstrated, depending
on the representational assumptions made, different models
of the same empirical result can provide support for psycho-
linguistic theories that make opposing claims about the nature
of learning and processing.

The relation between input-output structures and the
subsequent interpretation of performance become further
apparent when we consider computational models such as
WEAVER++ (e.g., Roelofs, 1997) or the Spreading-Activation
Theory of Retrieval (Dell, 1986; Dell et al., 2007, and follow-up
models). These models use a network framework that reflects
a common conceptualization of speech production in psycho-
linguistics, assuming it to be a sequential, transformational
process. At the highest level, the production of spoken words
is initiated by information that represents the semantics of the
words to be uttered. These in turn activate discrete information
at lower levels of processing such as morphemes, syllables, and
finally phonemes2. In terms of the representation of linguistic
knowledge, this means that the complexity of information within
these models fans out into more and more fine grained units.
This situation is illustrated in Figure 1B where “label” can
be taken as a placeholder for any kind of higher level units
of information—e.g., inflectional functions or morphological
contrast—and “feature 1”, “feature 2”, etc. can be regarded as
a placeholder for lower level units—e.g., phones. This raises
a question: How reasonable is this flow of information from
the perspective of learning theory? We address this in the
next section.

2Both models stop at the phonological representation and outsource the problem

of articulatory movements to theories of articulation and their computational

implementations such as Articulatory Phonology/Task Dynamic framework

(Browman and Goldstein, 1986; Saltzman and Kelso, 1987) or DIVA (Guenther,

2016).

2.3. Linear Order and Discriminative
Learning
It seems clear that where systematic patterns of variance in
production have been seen to relate to morphological and
paradigmatic structure, these effects must be a product of
what speakers have learned. The mechanisms that support
this learning thus offer an obvious source of explanation for
the patterns of behavior observed. While different kinds of
mechanisms have been proposed for language learning (see e.g.,
Ellis, 2006), research has revealed that the majority of human
(and animal) learning mechanisms are based on prediction and
prediction-error, i.e., error-driven learning (O’Doherty et al.,
2003; Schultz, 2006).

Rescorla and Wagner (1972)’s implementation of the delta
rule defines a simple error-driven learning algorithm that is
often used in psychological research, and was used by Tucker
et al. (2019) and Tomaschek et al. (2019) to train their two-layer
networks (a detailed description is provided in their Appendix)3.
Its algorithm implements a systematic learning process that
aims to produce a set of mappings that best discriminate the
informative, predictive relationships between a set of inputs and a
set of outputs given a training schedule. Because of this, Ramscar
et al. (2010) suggest that from a computational perspective
the algorithm is best understood as describing a discriminative
learning mechanism4.

Because prediction is a time-sensitive process, the order in
which experiences occur is a strong determinant of the kind
information that can be learned about cue-outcome relationships
through error-driven learning (Ramscar et al., 2010; Arnon and
Ramscar, 2012; Hoppe et al., 2020; Vujovic et al., 2021). Speech
comprises an ordered series of gestures. These yield an ordered
series of phonetic contrasts (Nixon and Tomaschek, 2020) that
represent an ordered series of linguistic events (Dell et al.,
1997; Grodner and Gibson, 2005). Given that it seems clear
that language is learned through an error-driven mechanisms it
follows that speech production is likely to be particularly sensitive
to these sequential/time-sensitive effects.

However, although speech is clearly ordered, in its use in
communication it supports “displaced reference” (Hockett and
Hockett, 1960). That is, it allows for reference to things that are
not present in the here and now. One consequence of this is that
the constraints that are imposed by predictive relationships in
language use are not always obvious. This is especially the case
when it comes to the relations between form and meaning in
linguistic morphology (Ramscar et al., 2010; Ramscar, 2013; see
also Ramscar, 2021a for a general review of this issue in relation
to morphology).

To explain these constraints, it is first important to note that
because prediction and prediction error modulate the values of

3The algorithm Rescorla and Wagner (1972)’s implementation of the delta rule is

simply the linear form of an earlier rule proposed by Widrow and Hoff (1960),

Rumelhart and McCelland (1987), and this in turn is formally equivalent to the

delta-rule used in connectionist networks (Sutton and Barto, 1981).
4This point also applies to the error-driven learning algorithms found at the heart

of most connectionist/neural network model (Jordan et al., 2002), and Bayesian

models of learning (e.g., Daw et al., 2008).
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FIGURE 1 | The possible predictive relationships labels (in morphological terms, series of words and affixes) can enter into with the other features of the world (or

other elements of a code). A feature-to-label relationship (A) will facilitate cue competition between features, and the abstraction of the informative dimensions that

predict morphological contrasts (e.g., nouns and plural affixes) in learning. By contrast, a label-to-feature relationship (B) will be constrained to simply learning the

probability of each feature given the label.

cue-outcome relationships, these values are not determined by
simple co-occurrence. Rather, when multiple cues to an outcome
are present, a given cue’s value will depend on a competitive
process that weighs the informativity of each cue in relation to
the current uncertainty of a learner. This situation is illustrated
in Figure 1A, where multiple present features compete for the
prediction of an outcome or a label. Informativity thus takes
into account both co-occurrences between a cue and an outcome
and the non-occurrence of the outcome given the cue. Because
uncertainty is finite, more informative cues gain value at the
expense of less informative cues. In other words, cues compete for
predictive value, a process that leads to the discovery of reliable
cues through the discriminatory weakening and elimination of
other cues (Ramscar et al., 2010; Nixon, 2020).

While this mechanism is simple in principle, in practice it is
an extremely efficientmethod for extracting predictive structures.
For example, in Englishmorphology, plurality is typicallymarked
on nouns by a final sibilant /s/ (whose voicing depends on
phonetic context).

The existence of this predictable regularity has implications
for the informativity of cues about inflectional structures.
Someone learning to predict the form of English nouns will
be presented with a large number of cues to the wide range
of articulatory events that English nouns comprise. Most of
the plural nouns that children encounter will tend to provide
evidence for the highly informative cue-outcome relationship
between plurality and the presence of a final sibilant at the end
of the noun’s form. Because of this, it follows that once children

have begun to learn the cues to nouns, the relationship between
plurality and a final sibilant at the end of nouns can be expected
to be reliably learned. However, because this relationship is not
informative about the subset of irregular plurals, children will
have to learn to ignore this cue in irregular contexts, and learn
the more specific cues to these nouns instead. It follows from this
that until children have learned to ignore the more general cue
to regular plurals, the intermediate representation they acquired
may cause them to over-regularize irregulars (Ramscar and
Yarlett, 2007; Ramscar and Dye, 2009; Ramscar et al., 2013b). In
the same way that children learn to ignore the erroneous cues
to irregulars, they will also learn that the other, less informative
cues associated with regular plurals should also either be ignored,
or associated with other parts of the signal (Ramscar et al., 2010,
2013a). Accordingly, as speech unfolds in time, similar forms of
this process will allow for the many abstract features associated
with verbs and their suffixes (e.g., tense, aspect etc.) to be learned
and extracted in much the same way.

In addition, because learning happens in time, and because the
events signaled in speech occur serially, it follows that linguistic
regularities (or “units”) can serve as both cues and outcomes in
learning. For example, in the sentence ‘The girl plays football’,
“girl” predicts “plays” which in turn predicts “football”. It thus
follows that, when all of these considerations are taken together,
determining exactly what counts as a cue and what counts
as an outcome in speech production is not always obvious.
Moreover, when it comes to modeling, these matters will often
be determined by the specific goals of the model.
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2.4. Cue-to-Outcome Structure in Speech
Production and Implications for
Input-Output Structures
With cue competition, prediction and prediction error in mind,
we can conceptualize speech production and articulation
from the perspective of discriminative learning. As we
discussed earlier, in existing psycho-linguistic theories of
speech production, semantics, inflectional and morpho-syntactic
information should serve as cues for articulation. In addition to
these high level sources of information, there is evidence that
articulation is also driven by articulatory, sensory and acoustic
targets (“articulatory target cues”, cf. Hickok, 2014; Guenther,
2016). From a discriminative perspective, all these cues will
compete simultaneously for informativity about the executed
articulatory gestures during learning. As a consequence, it
follows that during production, these cues will serve to activate
the execution of articulatory gestures. Note that we do not make
any statements about the size of gestural chunks. Following
Guenther (2016), we assume that their size can range between
a single phone, and sequences of multiple phones. Moreover,
even the size of the “same chunk” might vary, depending, for
example, on the amount of practice a particular speaker has
with them (see Tomaschek et al., 2018a,c, 2020; Saito et al.,
2020a,b, for electromagnetic articulography and ultrasound
studies on practice).

It thus follows from the above that when it comes to the
computational modeling of speech, it is these semantic, morpho-
syntactic, inflectional and articulatory target cues that should
serve as the inputs to neural network learningmodels. In the same
vein, the articulatory gestures that will be activated by these cues
should serve as the outputs of these models.

However, Tucker et al. (2019) and Tomaschek et al. (2019)
did not employ this input-output structure to train the networks
described earlier. Rather, following the approach taken by Baayen
et al. (e.g., 2011, 2016b), in the model of Tucker et al. (2019) the
target gestures served as the only inputs—reflected by diphones
of words in the Buckeye Corpus (Pitt et al., 2007). The outputs
of the model then consisted of the tense of the verbs under
investigation, in addition to inflected word forms. This meant
that, from the perspective of our analysis above, the outputs of
this models contained information that actually serves as inputs
when speakers learn to articulate inflections.

Tomaschek et al. (2019) followed Tucker et al. (2019)’s
example regarding the input-output structure, but extended the
input to a five-word window around the targeted word in the
Buckeye corpus. From this five-word window, two kinds of
inputs for the network were extracted. First, diphones from all
words that served as an approximation of acoustic and sensory
targets that serve to initiate articulation in models of speech
production (Hickok, 2014; Guenther, 2016). Second, the word
forms preceding and following the target word. These word
form inputs were assumed to capture the target word’s semantic
embedding—in the same way that studies of distributional
semantics counted the number of co-occurrences between words
within a specific context (Lund and Burgess, 1996; Landauer
et al., 1997; Shaoul and Westbury, 2010; Mikolov et al., 2013),

and in the same way that studies within the framework of “naive
discriminative learning” used word forms to discriminate word
meanings (Baayen et al., 2016a,b). As outcomes, the inflectional
functions encoded by word final [-s] in English were used. In
summary, this meant that the input-output structure provided
to the neural networks in both of these studies did not reflect
the cue-to-outcome structure that actually seems appropriate
to speech production. Instead, some of the information that
was represented as outputs in these models actually appears to
serve as inputs when production is analyzed from a learning
perspective. With this theoretical and empirical background in
mind, we turn to the specific aims of the present study.

2.5. The Present Study
The general aims of the present study are: (a) to train
a two-layer neural network with an input-output structure
that contains the inflectional information relevant to German
word final [5]; (b) to use the resulting network measures to
predict the phonetic characteristics of [5]. Since findings are
contradictory regarding the relationship between uncertainty
within themorphological and paradigmatic context and phonetic
characteristics, it followed that at the outset, the expected
direction of this relationship was unclear.

The network measures might be associated with
enhancement, as predicted by the Paradigmatic Signal
Enhancement Hypothesis (Kuperman et al., 2007) and
demonstrated by previous studies using two-layer network
models (Tomaschek et al., 2019; Tucker et al., 2019); or
they might be associated with reduction, as predicted by the
Smooth Signal Redundancy Hypothesis (Aylett and Turk, 2004;
Cohen Priva, 2015). Accordingly, another aim of this study
was to empirically determine which of these hypotheses is
supported by a model that accurately captures the dynamics of
morphological learning.

Accordingly, the study also aimed to compare the
performance of a two-layer learning network employing
the input-output structure used by Tucker et al. (2019) and
Tomaschek et al. (2019)—where inflectional functions served
as outputs—to one in which these functions were represented
appropriately: as inputs to the output gestures that represent
their realization in speech. We will refer to these learning
networks as the functional output network and functional input
network, respectively. We expected that measures extracted
from the functional input network would be a better predictor of
phonetic characteristics than measures computed on the basis of
the functional output network.

3. METHODS

3.1. Material
The materials for the present study were extracted from the Karl-
Eberhards-Corpus of spontaneously spoken southern German
(KEC, Arnold and Tomaschek, 2016). The KEC contains
recordings of two acquainted speakers having a spontaneous
conversation for 1 h about a topic of their own choosing. Speakers
were seated in two separate recording booths and their audio
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signal was recorded on individual channels so that the audio
of each speaker can be analyzed without the interference from
the other. The KEC contains manually corrected word boundary
annotations and forced-aligned segment annotations obtained
using the Rapp forced aligner (version 2015, Rapp, 1995).

The corpus contains a total of roughly 23,100 word tokens
(1,360 types) that contain a word-final [5]. To make sure the
segment annotations are correct, we manually corrected all
[5] instances in the corpus for which the aligner provided an
annotation. We excluded all instances for which the aligner failed
to perform the annotation. This was the case when there was too
big a mismatch between the expected and actual duration of the
word. In these cases, it was also very hard to annotate the [5]
as it was unclear, due to the strong reduction of the [5]-bearing
word, where to place segment boundaries. We also excluded the
article der from the analysis since its annotation is complicated:
its pronunciation ranges between [de:5], [dE:5], [d5], etc. and it
is at times unclear at what point the boundary between the two
vowels, if present, should be made.

The final data set for the analysis in the present study
contained 10,320 word tokens (870 types). It contained 4,944
content words (e.g., nouns, adjectives), 4,463 morphologically
simple function words (e.g., adverbs) and 913 morphologically
complex function words (e.g., demonstrative pronouns).

The inflectional functions encoded by [5] in these words
was manually classified. In total, 60 inflectional functions were
obtained, based on combinations of grammatical functions
(nouns, articles, pronouns, etc.), numerus (singular, plural),
gender (feminine, masculine, neuter) and case (nominative,
genitive, dative, accusative). A list of all functions can be found
in the Supplementary Material (https://osf.io/8jf5s/).

As a measure of spectral characteristics, we investigated the
time courses of the first and second formant (F1, F2).We used the
LPC algorithm provided by Praat (Boersma and Weenink, 2015,
standard settings) to compute the time courses of F1 and F2 in
each vowel. For analysis, we excluded vowels shorter than 0.018 s
(log = −4) due to sparse data. In addition, we excluded formant
measurements for which F1 was outside a range between 250 and
1,000 Hz, and F2 was outside a range between 1,000 and 2,000
Hz. As a result of this exclusion, additional 112 word tokens were
excluded, yielding a data set of 11,018 word tokens (871 types)
with word final [5] for the analysis. Words with word final [5]
will be called [5]-word from now on. In order for higher tongue
positions to be associated with higher F1 values, thus making F1
frequencies straightforwardly interpretable, F1 frequencies were
inverted by being multiplied by −1. Prior to analysis, formant
frequencies were centered and normalized by speaker.

3.2. Assessing Uncertainty
In this section, we discuss the details of the input-output
structures discussed in the introduction and how we
implemented them in the functional output network and
the functional input network. We used the entire KEC to
construct the learning events on the basis of which we trained
the two network models. Learning was simulated using the
Rescorla and Wagner (1972)’s delta-rule [as implemented in the
Naive Discriminative Learner package 2, Shaoul et al. (2014)]. An

explanation of the delta-rule can be found in the Appendix of
Tomaschek et al. (2019). As noted above, apart from information
about inflectional function, several other sources of information
serve as cues to speech production. To operationalize these
other cues, we followed Tomaschek et al. (2019)’s approach.
Accordingly, both models described below used cues derived
from a five-word sliding window that iterated across all learning
events. Keeping the rest of the cue structure consistent across the
models (and studies) ensured comparability between both the
two models implemented here and the previous studies.

3.2.1. Knowledge Representation in the Functional

Output Network
The input-output structure used to train the functional output
network was essentially the same as that employed by Tomaschek
et al. (2019). Inputs consisted of the word forms preceding
and following the target word in the five-word sliding window.
The target word itself never served as an input to avoid direct
mappings between inputs and outputs. In addition, inputs
contained the diphones of all words in the sliding window
including the target word. Diphones were based on the phonetic
transcription provided by the Rapp forced aligner used to
annotate the corpus (Rapp, 1995).

As in the Tucker et al. and Tomaschek et al. studies,
the outcomes in the functional output network were the
morphological and inflectional functions of the [5]-words. Recall
that the network iterated across all word events in the KEC
corpus. This means that it also encountered numerous words
that did not have word-final [5], and accordingly no inflectional
function of interest. In this case, a simple place holder was used
to ensure cue competition. To summarize, the functional output
network was trained to predict inflectional functions of [5]-word
on the basis of word and diphone cues.

To obtain a predictor of phonetic characteristics of [5], we
computed functional output activation on the basis of the trained
network. The measure can be regarded as a measure of the
uncertainty about the inflectional functions that emerges within
the five-word sliding window. Functional output activation was
computed by summing the weights between all word and
diphone inputs in the five-word window around the [5]-word
and the inflectional functions of the target word.

3.2.2. Knowledge Representation in the Functional

Input Network
The input-output structure in the functional input network
followed the logic of our analysis in the introduction, where
we argued that inflectional functions are learned to serve as
cues in speech production and hence should actually serve
as inputs to the learning process simulated in the network
(Ramscar et al., 2013b; Ramscar, 2021a, see also). Also consistent
with this analysis, the outcome of the articulation process, [5],
functioned as the output of the network. Accordingly, in addition
to diphones and words within the five-word window (the same
as in the previous structure), we used the inflectional functions of
the words with final [5] as inputs. The output of the network was
[5], whenever it was in word-final position of [5]-bearing words.
In line with the interpretation by Tomaschek et al. (2019), we
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regard the outcome [5] to function as an abstract placeholder for
potential articulatory gestures representing the articulation of [5]
in context. In other words, this network was trained to predict the
occurrence of [5] on the basis of word forms, diphones and the
inflectional functions. To ensure cue competition, we also used
the word forms of the target words in the center of the sliding
window as outputs. As a predictor of phonetic characteristics, we
computed functional input activation by summing the weights
between all word, diphone and inflectional function inputs in
the five-word window and the [5] output. An introduction to
training such a two-layer network and coding the calculation of
activations can be found in Tomaschek (2020).

3.2.3. Example
To explain the way training proceeded in the two models,
consider the following sentence: Das ist dieser groβe Mann
“This is the big man”. In the functional output network, the
word inputs in the five-word sliding window centered on
dieser “this” were DAS IST DIESER GROβE MANN (we ignored
major case). The acoustic diphone inputs in this windows
are #d da as sI Is st td di iz z5 5g gr ro
os s@ @m ma an n#, with # representing boundary cues.
The outputs would be the combination of grammatical and
inflectional functions of dieser: DEMONSTRATIVPRONOMEN

MASKULIN NOMINATIV “demonstrative pronoun masculine
nominative”. Note that grammatical and inflectional functions
were used as separate entries and hence, each of them served
as an individual output in a learning event (called multiple-hot
encoding in the machine learning community). In the functional
input network, the inputs in the five-word sliding window
centered on dieser “this” are the words DAS IST GROβE MANN,
the acoustic diphones #d da as sI Is st td di iz
z5 5g gr ro os s@ @m ma an n#, and the inflection
functions DEMONSTRATIVPRONOMEN MASKULIN NOMINATIV

(multiple-hot encoding). The articulated forms such as dieser ER,
including a “gestural placeholder” representing the [5]-gesture,
served as outputs.

4. ANALYSIS AND RESULTS

4.1. Statistical Analysis of Formant
Trajectories
4.1.1. Creating a Baseline Statistical Model
In this section, we describe our statistical approach to analyzing
the time course of F1 and F2. We employed generalized additive
mixed models (GAMM in the mgcv package, Hastie and
Tibshirani, 1990; Wood, 2006, 2011) to investigate how the time
course of F1 and F2 in [5] was co-determined by uncertainty in
the two models. GAMM uses spline-based smoothing functions
to model non-linear functional relations between a response
and one or more covariates, modeling wiggly curves using
spline smooths as well as wiggly (hyper)surfaces using tensor
product smooths (see Wieling et al., 2016; Baayen and Linke,
2020, for an introduction to spline smooths and their use). All
model comparisons (and visualization) reported in the following
paragraphs were performed with the help of functions provided

by the itsadug package (van Rij et al., 2015). All analyses can be
found in the Supplementary Material.

We constructed a model that contained a smooth “s()” for
time to model the time course of F1 and F2. Time contained the
time points at which formant frequencies were measured. Since
vowels vary in duration, time points were normalized to a [0,
1] interval, with 0 linked to vowel onset and 1 to vowel offset.
We fitted F1 and F2 simultaneously in one model. Accordingly,
we needed a predictor to differentiate between the shapes of F1
and F2 trajectories using a factorial predictor dimension with the
levels F1 and F2. This predictor interacted with the smooth for
time. To control for speaker dependent formant trajectories, we
fitted by-speaker random factor smooths for time, i.e., the non-
linear equivalent of a combination between random intercepts
and random slopes from standard mixed-effects regression.

The inclusion of words as random effects caused high
concurvity in our models5. Accordingly, following the suggestion
presented in Baayen and Linke (2020), we did not include
words as an random effect. Instead, we controlled for effects of
coarticulation with the context by fitting by-place-of-articulation
random factor smooths for time for the preceding and for
the following segment. To allow random factor smooths to
vary depending on dimension, all by-factor smooths included
an interaction with dimension (F1/F2). We controlled for
autocorrelation among residuals using the rho parameter
(ρ = 0.8).

In a bottom-up fitting procedure, we tested whether the
inclusion of additional predictors improved the model fit.
The first additional predictor we tested was vowel duration,
log-transformed to obtain normally distributed values. Vowel
duration served as a control variable as it accounted for
undershoot and overshoot associated with temporal variation
(Gay, 1978). The inclusion of vowel duration as a main effect
interacting with dimension significantly improved model fit (1
ML=−1106, 1 edf=+4, p < 0.0001). Allowing vowel duration
to interact with time and dimension (by means of a tensor
product smooth “te()”) further improved model fit (1 ML =

−845, 1 edf = +6, p < 0.0001). The tensor thus accounts for
systematic changes in the shape of the trajectory as a function of
vowel duration.

German word-final [5] discriminates inflectional and
grammatical function in content words (e.g., nouns, adjectives),
morphologically complex function words (e.g., demonstrative
pronouns) and morphologically simple function words (e.g.,
adverbs). Numerous studies have reported that higher level
information such as inflectional function (Plag et al., 2017;
Seyfarth et al., 2018; Schmitz et al., 2021a) or pragmatic
function (Drager, 2011; Podlubny et al., 2015) correlate with
phonetic characteristics. Similar effects have been demonstrated
for word class (e.g., Johnson, 2004; Bell et al., 2009; Fuchs,
2016; Lohmann, 2018; Linke and Ramscar, 2020), for which
also processing differences during perception (Neville et al.,
1992; Pulvermüller, 1999; Brusini et al., 2017) and production

5Concurvity is the non-linear equivalent of collinearity that, when high, can render

model terms uninterpretable. See the Appendix of Tomaschek et al. (2018b) and

Baayen and Linke (2020) for more information on concurvity).
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(Fox et al., 2009; Juste et al., 2012) have been demonstrated.
Given these systematic differences in perception and production
due to higher level information, especially those for word class,
we also expect [5] to vary with word class.

This prediction was tested with the predictor word class,
allowing for potential differences in formant trajectories
depending on content words, morphologically complex function
words and morphologically simple function words. In order
to allow formant trajectories to vary independently in the two
dimensions F1 and F2 as well as word class, we constructed the
factorial predictor “dimension-by-class” (dbc) with six levels:
one level for each of the six combinations of dimension by word
class. The inclusion of dbc as a main effect significantly improved
model fit (1 ML = −405, 1 edf = +4, p < 0.0001), as was
the case when it was allowed to interact with the time by vowel
duration tensor (1 ML = −736, 1 edf = +20, p < 0.0001). We
also tested whether the three levels in word class were indeed
necessary. We accomplished this by collapsing two levels and
refitting the model (e.g., morphologically simple and complex
function words were collapsed into one level, and so forth).
Collapsing two levels never yielded a better model fit than using
word class with the three levels. Accordingly, it appears that
[5] does indeed vary systematically depending on word class.
This conclusion is supported by the visualization of the formant
trajectories, which are further discussed below. We shall consider
this our baseline model, whose formula is illustrated below (with
POA= place of articulation):

m0 = formant frequency ∼ dbc
+ te(time, vowel duration by = dbc)
+ s(time, speaker, bs =“fs”, m = 1, by =

dimension)
+ s(time, preceding POA, bs =“fs”, m = 1,
by = dimension)
+ s(time, following POA, bs =“fs”, m = 1,
by = dimension)

(The random effects structure, indicated by bs=“fs”, was the
same in all models which is why we will not display it anymore in
the following formulas).

4.1.2. Testing Activations
In the next analytic stage, we tested the degree to which the
inclusion of functional output activation and functional input
activation improved the model fit. The following formula
illustrates the model (where activation represents both kinds
of activation):

m1 = formant frequency ∼ dbc
+ te(time, vowel duration by = dbc)
+ s(activation, by = dimension)

The question thus arises of whether there are also systematic
differences of activation depending on word class. The following
model tested this interaction between activation and dbc.

FIGURE 2 | ML-score difference between model m0 and models m1 to m4.

The larger the difference, the better the model’s goodness of fit.

m2 = formant frequency ∼ dbc
+ te(time, vowel duration by = dbc)
+ s(activation, by = dbc)

We also tested whether the shape of the trajectory was modulated
by activation. This was accomplished by fitting an interaction
between time and activation and dimension using a partial tensor
product smooth “ti()”6:

m3 = formant frequency ∼ dbc
+ te(time, vowel duration, by = dbc)
+ s(activation, by = dbc)
+ ti(time, network measure, by =

dimension)

The final model tested to what degree both the intercept and the
shape of the formant trajectories varied in relation to activation
and dbc:

m4 = formant frequency ∼ dbc
+ te(time, vowel duration, by = dbc)
+ s(activation, by = dbc)
+ ti(time, network measure, by = dbc)

Figure 2 illustrates the difference in ML-scores between our
baseline model m0 and models m1 to m4. The inclusion of
both types of activation improved model fit, as can be seen
by means of the large negative ML-score difference for model
m1. Nevertheless, there was no large difference between the
gam model containing functional output activation (triangles)
and the one containing functional input activation (circles)

6Since main effects are already fitted by means of s(), partial tensor product

smooths are used to fit the interaction between two predictors but not the

main effects.
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(indeed the difference in ML-score between models with the
two types was only 1.5). The goodness of fit depending on the
two types of activation changed in more complicated models.
In models m2 to m4, functional input activation provided
systematically better model fits, as indicated by larger difference
in ML-score to m0. In other words, a network that was
trained to predict the articulatory gesture of [5] on the basis
of semantic, phonological and inflectional functions provided
better predictions about [5]’s phonetic characteristics than a
network trained to predict the inflectional function itself. We
also tested to what degree the inflectional function in the input
structure is necessary. We found that activations computed on
the basis of network trained without inflectional functions as
inputs provided a significantly worse model fit than functional
input activation (on average, they had anML-score lower by 200).
Accordingly, we regard inflectional functions to be necessary in
the input structure (model comparisons can be found in the
Supplementary Materials).

An inspection of concurvity indicated that the smooths
and tensor product smooths for both types of activation for
morphologically simple function words suffered from high
concurvity. Further inspection indicated that this problem was
alleviated when individual models were fitted for each level
of word class. Since the significant interaction with word class
(by means of dbc) indicated that formant trajectories differ
systematically between word classes, fitting individual models
for each word class was fully supported. Accordingly, below we
report the results for models in which formant trajectories were
fitted for each of the three levels of word class individually. Once
models were obtained, data points with residuals larger than
2.5 standard deviations away from the mean were excluded and
models were refitted. The following formula illustrates the final
model structure:

m.final = formant frequency ∼ dimension
+ te(time, vowel duration, by = dimension)
+ s(activation, by = dimension)
+ ti(time, activation, by = dimension)

4.2. Modulation of Formant Trajectories
4.2.1. Summaries
Even though functional output activation performed worse
than functional input activation, we will report the estimated
trajectories for both of them to allow for a direct comparison.
Summaries of all the statistical models indicated that all the
tensor product smooths for the time by vowel duration in both
dimensions (F1, F2) were significant (p < 0.001) in all statistical
models for all activation types. The same result was found
for random factor smooths for participants and for place of
articulation of the preceding and following vowel. Since these
effects are not of primary interest for the present study, and the
summaries use up a lot of space, we provide their summaries only
in the Supplementary Material. Here, we report the summaries
for the effect of interest, functional input activation and functional
output activation. Table 1 illustrates that all but one smooth

and tensor terms for functional input activation are significant.
Only the partial tensor in the F1 dimension in the model fitting
morphologically simple function words failed to be significant.
Accordingly, the amplitude of the F1 time course was not
significantly modulated. A similar result can be see for functional
output activation. Here, only the partial tensor product smooth
for F1 in morphologically complex function words failed to
be significant.

4.2.2. Modulation of Formant Trajectory
Figure 3 provides a visualization of the summed effects of the
models presented in Table 1 by means of estimated trajectories.
The x-axes represent inverted z-scaled F2 frequencies such that
the left edge points toward the front of the vowel space and
the right edge points toward the back of the vowel space. Y-
axes represent inverted z-scaled F1 frequencies such that the
top points to the top of the vowels space and the bottom
points toward the bottom of the vowel space. The onset of
the trajectories is indicated with a filled star, its center with a
circle. Columns represent different word classes (from left to
right: content words, morphologically simple function words
and morphologically complex function words). Rows represent
different numeric predictors.

The onset of the formant trajectories in all three word classes
is located at a high fronted position, followed by a fall. Roughly
at the mid point of the vowel trajectory (indicated by the black
circle), the trajectory makes a turn that results in raised positions.
Focusing on the differences between word classes reveals that
formant trajectories in morphologically complex function words
(left column) are produced at the most fronted position;
those in content words are relatively centered (mid column);
the trajectories in morphologically simple function words are
produced at the most retracted position (right column).

Formant trajectories further differ in their shapes. [5] vowels
in morphologically complex word forms have, on average, a
relatively wide u-shaped trajectory, while morphologically simple
function words have a very narrow trajectory. Moreover, it seems
that the differences in shape between word classes is mirrored
by the relative horizontal position in the vowel space (ignoring
the effect of vowel duration): more fronted trajectories have wide
trajectories than more retracted trajectories. In conclusion, we
observe systematically different formant trajectories in relation to
word class. These shapes are further modulated by vowel duration
and activation.

Before we discuss the effects of the vowel duration and
activation predictors, it will be first necessary to discuss how
reduction and enhancement can be expected to be reflected in
[5]. Typically, reduction of vowels is reflected bymore centralized
formant trajectories. However, since [5] is already located in the
center of the vowel space in a very dense vocalic environment
surrounded by [@] and [a] in the vertical dimension and by [I],
[Y] and [O] in the horizontal dimension, the specific direction
enhancement will take is unclear. Enhancing [5] in any direction
and dimension may result in potential competition with its
neighboring vowels.
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TABLE 1 | Summary of the statistical models using functional input activation and functional output activation as a predictor of formant trajectories.

edf Ref.df F-value p-value

FUNCTIONAL INPUT ACTIVATION

Complex function words

s(functional input activation):dimension = F1 3.7482 3.9577 39.0716 < 0.0001

s(functional input activation):dimension = F2 3.2589 3.7180 44.7998 < 0.0001

ti(time,functional input activation):dimension = F1 7.6804 9.7289 2.3730 0.0079

ti(time,functional input activation):dimension = F2 4.6737 5.8764 4.3388 0.0002

Content words

s(functional input activation):dimension = F1 3.3729 3.7829 10.0274 < 0.0001

s(functional input activation):dimension = F2 3.8460 3.9845 94.0980 < 0.0001

ti(time,functional input activation):dimension = F1 10.4838 12.7473 5.2548 < 0.0001

ti(time,functional input activation):dimension = F2 7.7378 9.4625 14.1532 < 0.0001

Simple function words

s(functional input activation):dimension = F1 3.8933 3.9921 20.9012 < 0.0001

s(functional input activation):dimension = F2 3.7390 3.9562 27.3247 < 0.0001

ti(time,functional input activation):dimension = F1 7.3833 9.7127 1.4650 0.1497

ti(time,functional input activation):dimension = F2 10.8514 12.8554 4.6229 < 0.0001

FUNCTIONAL OUTPUT ACTIVATION

Complex function words

s(functional output activation):dimension = F1 1.0020 1.0038 115.2282 < 0.0001

s(functional output activation):dimension = F2 3.8720 3.9862 12.4216 < 0.0001

ti(time,functional output activation):dimension = F1 4.6471 6.5973 0.5412 0.7934

ti(time,functional output activation):dimension = F2 3.6281 4.2364 6.7708 < 0.0001

Content words

s(functional output activation):dimension = F1 3.7248 3.9528 5.1275 0.0011

s(functional output activation):dimension = F2 3.9479 3.9976 106.9967 < 0.0001

ti(time,functional output activation):dimension = F1 9.6920 12.3538 3.8719 < 0.0001

ti(time,functional output activation):dimension = F2 9.9943 12.3734 8.4570 < 0.0001

Simple function words

s(functional output activation):dimension = F1 3.2277 3.6812 21.2965 < 0.0001

s(functional output activation):dimension = F2 3.9082 3.9942 39.8523 < 0.0001

ti(time,functional output activation):dimension = F1 8.0654 9.6352 8.6645 < 0.0001

ti(time,functional output activation):dimension = F2 4.9361 6.8905 3.0888 0.0027

Summaries of control variables and random effect structure can be found in the Supplementary Material.

To establish how enhancement and reduction are manifested
in [5], we shall first inspect how they are manifested in relation to
hyperarticulation and hypoarticulation in long and short vowels.
The top row of Figure 3 illustrates the effect of vowel duration
(from the functional input activation models). Shades of red
represent the 10th, 30th, 50th, 70th, and 90th percentile of vowel
duration with darker shades of red representing longer vowels.
Longer vowels are associated with longer formant trajectories,
and lower and more retracted vocalic centers in all three word
classes. This is a typical effect on the continuum between
hypoarticulation and hyperarticulation associated with phonetic
duration (Gay, 1978; Lindblom, 1990). Additionally these results
show that longer vowels have stronger fronted offsets than
shorter vowels. As a result, trajectories for longer vowels are
“crossed”. How might one account for this effect? First, the offset
of the trajectory tends to be located roughly in the center of the
vowel space. Second, [5] should not be retracted too far to the
back as it may enter into a vowel space where it would compete

with the mid low vowel [O]. In order to apply both constraints,
long [5] result in narrower trajectories, even though when they
are hyper articulated.

4.2.3. Effects of Functional Output Activation
The effect of functional output activation is illustrated in
the mid row of Figure 3. Higher percentiles of functional
output activation are represented by means of darker shades
of red. In morphologically complex function words, higher
functional output activation is associated with lower, slightly
more fronted positions. Comparing the effect to that of vowel
duration, the lowering could be regarded as an enhancement
effect. In content words, there is no observable effect apart
from very high percentiles that are associated with more
retracted positions. Finally, even though the main effect for
functional output activation is significant in both dimensions
in morphologically simple words, there are comparatively little
changes across the activation continuum. In other words,
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FIGURE 3 | Estimated trajectories for different word classes (columns) in relation to vowel duration (top), functional output activation obtained from a network with

inflectional functions of [5] in the output (middle) and functional input activation obtained from a network with inflectional functions of [5] in the input (bottom). The

x-axes represent inverted z-scaled F2 frequencies such that the left edge points toward the front of the vowel space and the right edge points toward the back of the

vowel space. Y-axes represent inverted z-scaled F1 frequencies such that the top points to the top of the vowels space and the bottom points toward the bottom of

the vowel space. Shades of red represent percentiles for different predictors (optimized for color blindness). Onset of the time course is located at the filled star, the

circle in the trajectory represents the center of the vowel.

functional output activation co-determines the [5] trajectory only
in morphologically complex function words.

4.2.4. Effects of Functional Input Activation
Next, we turn our attention to how functional input activation
modulates the [5] trajectory. In both morphologically complex

function words and content words, higher functional input
activation is associated with stronger retracted formant
trajectories. Using the effect of vowel duration as a baseline,
we thus observe more enhancement under lower uncertainty,
and reduction under higher uncertainty about [5]. The way
functional input activation co-determines formant trajectories
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points in the same way as the effect of vowel duration. The effect
of functional input activation for content and morphologically
complex function words is thus consistent in both the temporal
and spectral domains.

However, in morphologically simple function words the
effect seems to be reversed. Higher functional input activation
produces slightly more fronted trajectories7. Since this effect
is only minimal, we refrain from interpreting it to indicate
reduction under lower uncertainty. Rather, we conclude that,
perhaps unsurprisingly, functional input activation has no effect
for morphologically simple words.

4.3. Vowel Duration
Even though we controlled for vowel duration during our
investigation of formant trajectories, it is still possible that it is
also correlated with functional output activation and functional
input activation. Recall that Tucker et al. (2019) and Tomaschek
et al. (2019) reported that lower uncertainty about inflectional
functions was associated with longer phonetic duration. A
Spearman’s rank correlation indicated that vowel duration has a
correlation of ρ = −0.01 (Pearson’s r = −0.03) with functional
output activation and ρ = 0.06 (Pearson’s r = 0.07) with
functional input activation. Thus, the correlation between our
activationmeasures and [5] duration is very small. To statistically
evaluate these effects, we fitted log-transformed [5] duration
as a function of functional output activation and functional
input activation. We performed a linear mixed-effect regression,
controlling for local speaking rate and the number of segments in
the word, including random intercepts for speakers and words.
The model further indicated that functional output activation did
not significantly correlate with vowel duration (β =−0.018, se=
0.04, t = −0.434), while with functional input activation did (β
= 0.36, se = 0.16, t = 2.81). Visual inspection indicated that the
difference between low and high functional input activation was
roughly an increase of 10 ms in vowel duration. We also tested
word class as a predictor but found no significant effect.

Thus, in the functional output network we did not observe a
correlation between vowel duration and activation. By contrast,
the functional input network did yield a small, but significant
effect of enhancement.

5. DISCUSSION

This study sought to investigate how the uncertainty associated
with inflectional functions influences the phonetic characteristics
of speech. It was motivated by the contradictory findings
that have been reported regarding the effects of uncertainty
on production in relation to paradigmatic and morphological
families, where some studies found lower uncertainty to be
associated with reduction (e.g., Hay, 2004; Hanique and Ernestus,

7When all word classes were fitted in one joint model, i.e., m4, this effect was

strongly amplified such that the difference between low and high functional

input activation was in the range of that for content and morphologically

complex function words. However, comparing individual models with the joint

model indicated that this amplification was most likely due to concurvity in the

joint model.

2011; Plag and Ben Hedia, 2017), whereas others reported
enhancement (e.g., Kuperman et al., 2007; Schuppler et al., 2012;
Cohen, 2015; Tomaschek et al., 2021). To assess the degree to
which these findings reflected differing assumptions regarding
word-internal structures, we followed Tucker et al. (2019) and
Tomaschek et al. (2019)’s approach and sought to allow these
structures to emerge naturally, in learning. We trained two two-
layer networks employing two different representations of the
predictive relations relevant to learning in speech production.
From these we extracted network measures that we used to
gauge the uncertainty associated with the inflectional functions
of German word final aschwa [5] (which discriminates around
sixty different inflectional functions). We used these models to
investigate how the inputs and outputs presented to learning
networks should be implemented so as to most appropriately
represent the structure of linguistic knowledge. To this end,
we tested how accurately the measures of uncertainty derived
from different implementations served to predict the phonetic
characteristics of [5] in the speech signal.

We observed that formant trajectories of [5] were enhanced
in relation to decreased uncertainty in those word classes that
were morphologically complex. Below we discuss this finding
in more detail in relation to the two questions that guided our
study: (1) What is the relation between uncertainty within the
context of morphological families and phonetic characteristics
and how can it be explained? (2) What kind of input-output
structure most appropriately represents linguistic knowledge in
speech production models?

5.1. Effects of Word Class
Our analyses revealed that the formant trajectories
of [5] systematically differed between the three word
classes investigated. These systematic differences emerged
independently of the uncertainty measures obtained from
the learning networks. Accordingly, this finding supports the
assumption that fine phonetic detail is co-determined by lexical
information. In phonological theories, definitions of phones and
phonemes are typically based on a mixture of impressionistic
judgments and theoretical considerations. These definitions thus
not only ignore differences in fine phonetic detail, they also
ignore potential differences that can arise from the influence
of other levels of linguistic description, such as morphology or
word class. By contrast, in keeping with other studies showing
that the phonetic characteristics of supposedly homophonous
“phones” vary systematically according to their morphological
or grammatical status (e.g., Drager, 2011; Plag et al., 2017, and
references in the introduction), these results raise questions
about the adequacy of the “sound units” phonological theories
suppose. In particular, it appears that the phonetic detail of
speech signals contains fine grained difference that are far more
systematic than traditional theories have tended to assume.
Moreover, it appears that these differences may actually be
informative about word class in communication. Studies have
demonstrated that listeners are sensitive to changes at this
level of phonetic detail, and that they use them not only to
discriminate phonetic (e.g., Whalen, 1983; Beddor et al., 2013)
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but also morphological contrasts (Kemps et al., 2005; Tomaschek
and Tucker, 2021). This suggests that the whole idea that speech
signals comprise phonological realizations of words that are
somehow analogous to orthography may be fundamentally
misguided (Port and Leary, 2005; Ramscar and Port, 2016).

5.2. What Kind of Input-Output Structure
Should Speech Production Models
Employ?
Theoretically, the network simulations reported in our study
were rooted in discriminative learning (Ramscar and Yarlett,
2007; Ramscar et al., 2011, 2013a,b; Ramscar, 2019, 2021b).
This framework conceptualizes learning—during perception and
production—as a process that serves to discriminate informative
relationships between a set of cues and a set of outcomes
in a cognitive system. When it comes to modeling, this in
turn raises the question of how inputs (representing cognitive
cues) and outputs (representing behavioral outcomes) should be
implemented so as to most appropriately capture the cognitive
process in question: in this case, speech production?

This question is further complicated by the fact that
computational modeling inevitably constrains the way that
relevant information is represented in a simple set of inputs and
outputs (Bröker and Ramscar, 2020). This problem of abstraction
is particularly apparent in simple two-layer networks of the
kind employed here. This is because these models do not have
the hidden layers that can enable multi-layer networks to learn
abstractions from data. This is both a strength and a weakness.
On one hand, it limits the ability of these models to discover
abstract structures—such as inflectional functions—that may be
present in a set of training data. On the other hand, simply
because of their simplicity, they constrain modelers to utilizing
input and output structures that explicitly code for the cues and
outcomes that they believe to be important to the process being
modeled (see Ramscar, 2021b, for a more detailed discussion of
this point).

A similar point applies to most early computational models
of speech production, such as Weaver++ (e.g., Roelofs, 1997)
or the Spreading-Activation Theory of Retrieval (Dell, 1986;
Dell et al., 2007, and follow-up models). While they did
not explicitly address learning, these models were based on
traditional linguistic and psycho-linguistic theories (e.g., by
Fromkin, 1971, 1973; Levelt et al., 1999) that assumed an
idealize speech process in which any abstractions posited by the
theory had already been learned (and hence existed as discrete
elements). Accordingly, in these models the ‘lexical semantics’ of
a word served as an input for lemma selection, which in turn
served as an input for the selection of discrete morphological
structures. These then activated the abstract phoneme sequences
that explicitly represented the words to be pronounced. These
abstract phoneme sequences, once syllabified, could then be
used to compute the execution of articulatory gestures in a
high dimensional acoustic-spatio-temporal space (Browman and
Goldstein, 1986; Guenther, 2016; Turk and Shattuck-Hufnagel,
2020).

The functional input network presented in this study shares
the same general conceptualization of the role semantics as
traditional models. It assumes that intended meanings serve as
the (main) cues to the initiation of articulations. It thus also
shares with these older models the representation of articulation
as the outcome of a process that is initiated semantically. Since
our model is grounded in learning—which is always subject to
experience—the input structure assumed in our model is less
discrete. Rather than assuming that morphological functions
and lexical meanings are somehow separate dimensions of
experience, we assume that learning is required to separate
them. That is, we assume that discriminating lexical from
morphological features is a function of exposure and learning.
Further, given the skewed distribution of linguistic forms,
it follows that the degree to which these dimensions are
discriminated in a given item or context will vary across the
lexicon (Ramscar et al., 2013b).

Accordingly, many of the simplifying assumptions embodied
in these earlier models make little sense in a learning
model. For example, Levelt et al. (1999)’s theory assumes that
“higher level” information is forgotten once it is transformed
into a representation at a “lower level”. However, this is
clearly inconsistent with learning, and the idea of abstraction
being a product of the learning process. Rather, from a
learning perspective, it is competition between cues representing
information at lower levels that enables abstractions at higher
levels to form. Finally, if the simplifying assumptions made
in earlier models were true, there ought to be no correlation
between semantic and morphological information and the
phonetic characteristics. Yet, again consistent with the idea
of all of this information being discriminated/shaped in
learning, the present results, along with many of the other
studies we have reviewed, contradict this assumption. Semantic
and morphological information clearly does correlate with
acoustic characteristics.

It further follows that if the cues to semantic and
morphological information must be discriminated and
abstracted in order to learn speech, they must play a similar
role in speech production. That is, the semantic information
that was discriminated into different levels of abstraction—
lexical, morphological, inflectional—in learning will then serve
as the cues to executed articulatory outcomes. Once again,
which cues are informative about which articulations will
depend on learning; and learning will be shaped by individual
experience, the distributional structure of the language and
context. In an actual speaker, this learning will be continuous
both in time and across the lifespan (see e.g., Ramscar et al.,
2014), and will be then processed by the multiple learning
mechanisms contained within the complex architecture of the
human brain.

By contrast—and critically—when it comes to modeling these
learning processes, a great deal of this abstract information must
be simplified and discretized in order to make the learning
process tractable. Moreover, depending upon the goal of the
modeling exercise, the goal of making the outcomes of the
learning process interpretable raises further considerations. If
our goal had been to emulate human performance as accurately
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as possible, there exists a range of more powerful models—
multi-layered, deep learning networks (Graves, 2012; LeCun
et al., 2015) that are far more capable of learning to capture the
many complex factors that seems to drive speech and language
(Hannun et al., 2014; Jozefowicz et al., 2016). However, this same
complexity inevitably leads to Bonini’s paradox (Bonini, 1963), in
that understanding exactly how they actually learn their functions
can be as challenging as understanding children’s learning itself8.

It is in this regard, as we noted above, that the apparent
shortcoming of two-layer networks can actually be an advantage.
Because these simple networks lack the hidden layers that
would typically be responsible for learning complex abstractions,
they require that any implementation be simplified so as to
include only the information thought necessary to learning. It
furthermore requires that abstractions that are assumed to be
necessary to this process be made explicit, and represented in the
input-output structure.

Accordingly, by employing simple two-layer network
models, we were able to explicitly examine the way that
abstract information such as inflectional functions ought
to be represented in models of articulatory learning. This was
accomplished by configuring two networks with the two different
input-output structures, and then testing which of them was
the better predictor of phonetic characteristics. Our results
showed that the activations from the network trained with
inputs that included inflectional functions served to predict the
phonetic characteristics of [5] better than activations from the
network trained on an input structure in which these functions
were outputs.

One question about these models that remains to be answered
is why the functional output model that successfully predicted
phonetic characteristics in Tucker et al. (2019) and Tomaschek
et al. (2019) almost failed to do so in the present study,
while the functional input model succeeded. The data and
analyses at hand only allow for speculations. One possible
answer lies in the difference between the types of acoustic
signals investigated in the previous studies and in the present
study. Like the majority of studies investigating effects of
uncertainty associated with paradigmatic families, Tucker et al.
and Tomaschek et al. focused on durations. By contrast, the
present study investigated a higher dimensional spectral signal.
Another possible explanation may be the amount of inflectional
functions under investigation. Tucker et al. focused on two
inflectional functions; Tomaschek et al. investigated nine. By
contrast, here, we investigated 60 different inflectional functions.
It is of course impossible to draw firm conclusions from these
considerations, however it seems likely that the results of these
previous studies may have been particularly dependent on the
specifics of their approach. It thus follows that any conclusions
one might draw from this previous work will be more limited

8At present it is unclear how the complexities of learning at multiple levels of

abstraction that underlie the performance of these models is to be translated

into theoretical insight. This is highlighted by recent attempts to understand the

performance of multiplayer networks in language processing tasks by treating

them as experimental subjects (McCloskey, 1991; Linzen et al., 2016; Wilcox et al.,

2018; Futrell et al., 2019).

in its generalizability than those one might draw from the
current study.

5.3. Enhancement vs. Reduction
As we noted at the outset, the results of studies of the association
between the statistical characteristics of word forms within
morphological and inflectional paradigms and their phonetic
characteristics in speech show an inconsistent pattern. Some
studies demonstrate that higher probability of words and
segments is associated with phonetic enhancement (Kuperman
et al., 2007; Hanique and Ernestus, 2011; Schuppler et al., 2012;
Cohen, 2015; Lõo et al., 2018; Bell et al., 2019; Tomaschek
et al., 2021), others find that it is associated with phonetic
reduction (Hay, 2004; Hanique and Ernestus, 2011; Cohen, 2015;
Ben Hedia and Plag, 2017; Plag and Ben Hedia, 2017). As
we have argued, one reason why these contradictory patterns
may have emerged is because these studies often disregarded
how words and their paradigms are learned. Moreover, even
where learning has been taken into account, they have often
disregarded the assumptions one makes about the representation
of linguistic knowledge and how it can influence learning (Bröker
and Ramscar, 2020).

Addressing this last problem enabled us to provide a
better account of our data. By taking into account how
the distributional characteristics in language are learned, we
were able to show that the phonetic characteristics of [5]
appear to be enhanced in relation to lower uncertainty
associated with inflectional functions. These results support
the findings within the framework of the Paradigmatic Signal

Enhancement Hypothesis (Kuperman et al., 2007; Hanique
and Ernestus, 2011; Schuppler et al., 2012; Cohen, 2015;
Lõo et al., 2018; Bell et al., 2019; Tomaschek et al., 2021).
Since these findings contradict the consistent effects of
reduction in syntagmatic context demonstrated in the framework
of the Smooth Signal Redundancy Hypothesis (Aylett and
Turk, 2004), the question arises how the different effects in
context of syntagmatic and morphological information are to
be explained.

Kuperman et al. (2007) argue that enhancement in the
paradigmatic context ought to be expected, because it reflects
speaker confidence about the selection of a specific word
form. The more confident speakers are (i.e., their speech
production systems are) about a selection, the more time
they can take to actually produce it. By contrast, Cohen
(2015) argued that this effect should be expected for very
different reasons. Arguing from within the framework of
Exemplar theory, she suggests an alternative explanation: the
phonetic characteristics of less frequent word forms will be
shifted toward the characteristics of a competitor in the
inflectional paradigm. This has the effect of reducing these less
probable forms and making more probable form seem to be
more enhanced.

While both explanations have their merits, it nevertheless
remains the case that they are unable to fully explain all
of the effects of enhancement and reduction in relation
to uncertainty that have been observed. With regards to
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the confidence account, it is unclear why the effects of
increased confidence are not observed within syntagmatic
contexts (as pointed out by Cohen, 2015). With regards to the
Exemplar theory account, exactly how it accounts for other
word forms in the paradigm and how they contribute to
systematic changes of phonetic characteristics (as demonstrated
by e.g., Kuperman et al., 2007; Tomaschek et al., 2021)
remains unclear.

5.4. The Signal-Message-Uncertainty
Distinction
So how are the different influences of uncertainty on
articulation in context—syntagmatic and paradigmatic—
to be reconciled? It seems clear that in some sense
both the Smooth Signal Redundancy Hypothesis and the
Paradigmatic Signal Enhancement Hypothesis are true,
at least in context. What is needed is an explanation
of what this context is and how it applies. We suggest
that the answer lies in the contribution of two very
different aspects of speech production: The signal and
the message, and the very different way that these interact
with context.

Accordingly, it is important that we be clear about what it
is that we mean when we talk about the “signal”. Every type
of human communication is rooted in kinematic behavior. In
acoustic communication, this behavior involves the movement of
the articulators, the vocal cords and all other organs necessary to
produce the acoustic speech signal (see Tucker and Tomaschek,
forthcoming, for an overview). In another modality, say the
visual modality in sign languages or gestures, it involves the
movement of the body and the limbs. By “signal”, we therefore
mean both the execution of kinematic behavior to create the
acoustic or visual signals and the contrasts embodied in the
different signals themselves, whose properties will of course vary
in context.

It is important to stress that our conceptualization of
speech production contrasts with the traditional, linguistic
conceptualization of communication. This means that we
do not assume that speaker messages convey or contain
meanings. Rather, speakers produce a signal that listeners
use to discriminate the meaning intended by the speakers.
The discrimination process is based on a code that has
been learned in much the same way as the discriminative
models described above. It follows that this code serves to
condition meanings onto signals: Language users learn the
relationships between the world and the speech contrasts that
encode their language’s representation of various states of affairs
in that world. To do this, they must learn to discriminate
the semantic (in its broadest sense) cues to phonetic and
articulatory contrasts in context. This in turn allows speakers
to use these articulatory/phonetic contrasts in context to
construct messages that serve to discriminate the meanings
that they have learned to condition onto the same contrasts in
similar contexts.

That is, in order for two speakers to have a conversation,
they must share the same “source code” (Ramscar, 2019, 2021b)

that underlies the language they are using. A listener uses what
they have learned about the shared code to predict the messages
intended by speakers. These messages will be produced by a
speaker who has learned the same—or at least sufficiently the
same—shared code. From this it also follows that speakers can
use this code to predict when listeners have been provided
sufficient cues to discriminate the intended message. In this
sense, the relationship between the signal and the message
is a function of the speaker’s predictions about the meaning
that a listener can be expected to be able to discriminate
using the signal produced by the speaker in context. With
this characterization of the communication process that speech
serves to underpin in mind, we now turn our attention to
the way these factors influence enhancement and reduction in
speech production.

We propose that the different levels of uncertainty that
are associated with the signal and the message are critical
to explaining why the different kinds of uncertainty that
occur in different contexts have such a very different effect
on articulation. Moreover, we suggest that the signal-message-
uncertainty distinction not only explains why these two
different sources of uncertainty in speech lead to these
apparently contradictory effects, we further suggest that once
this distinction is recognized, these effects do not appear to
be contradictory at all. Rather, these two different sources of
uncertainty simultaneously exert a consistent, if contrastive,
influence on articulation:

(1) Lower uncertainty about the message discriminated by the
signal leads to reduction.

(2) Lower uncertainty about the signal leads to enhancement.

What is more, once the importance of the signal-
message-uncertainty distinction is recognized, it becomes
clear why two seemingly sensible accounts of effects
of uncertainty could nevertheless appear to contradict
one another.

This is because from the perspective of this distinction,
(1) can be seen as a reformulation of the many insights
that led to the hypotheses put forward in the information
theoretic framework by Aylett and Turk (2004), Jaeger (2010),
and Cohen Priva (2015). Speakers reduce, or even delete
word forms or segments when they predict that listeners
can discriminate an intended message in context from the
signal. This means that under the wrong assumptions about
uncertainty about the message, speakers might actually reduce
articulations even though the correct strategy would be to
enhance them. By contrast, we suggest that when speakers
expect that the message will not be fully discriminated, they
enhance the signal. This may occur because of the context,
because they get appropriate feedback from the listener, or
because they find themselves in a noisy environment, (Lindblom,
1990; Junqua, 1993; Buschmeier and Kopp, 2012; Hay et al.,
2017).

At the same time, not only is (2) consistent with the present
findings, it also captures the theoretical insights captured in
the Paradigmatic Signal Enhancement Hypothesis. Moreover, in
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contrast to the Paradigmatic Signal Enhancement Hypothesis, the
scope of our hypothesis is not constrained to morphological
paradigms. Rather, its scope expands to predict potential
enhancement effects in all instances in which a signal has to be
produced in contexts where its form will be uncertain (see also
Linke and Ramscar, 2020; Tomaschek et al., 2020, for enhanced
variability associated with uncertainty).

Most importantly, whether a measure—be it activations
based on an artificial neural network or probabilistic measures
based on information theoretic considerations—operationalizes
uncertainty about the signal or the message will ultimately
depend on the input-output structure provided to a model—
and critically, whether that structure maintains the important
distinction between signals and messages. Only when the input-
output structure appropriately reflects the relevant cue-outcome
relations in a given process can we draw the correct conclusions
from the statistical analyses involving these measures. As we have
sought to show here, establishing what the appropriate input-
output structure to any given process requires detailed analysis
and empirical testing. Accordingly, we suggest that questions
concerning the way that uncertainty about the message and
uncertainty about the signal are to be modeled across the full
range of contexts in which speech is produced can only be
answered by detailed future research.

6. CONCLUSIONS

We have investigated how uncertainty in the context of
inflectional paradigms is associated to phonetic enhancement
and reduction of signals discriminating the corresponding
inflectional functions. To do so, we trained two learning networks
and extracted measures of uncertainty from them. We found
that lower uncertainty is associated to phonetic enhancement—
supporting work performed within the Paradigmatic Signal
Enhancement Hypothesis framework. This is only the case when
the network was trained on the cognitively appropriate input-
output structure, where inputs represent the cognitive cues
discriminating articulatory gestures and outputs represent the
articulatory gesture at hand. We propose a distinction based on
differences in signal-vs.-message-uncertainty to account for an
apparent contradiction in previous research looking at the effects
of uncertainty on the phonetic characteristics of speech.
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Some types of developmental dyslexia (DD) are associated with morphology. Deep
DD leads to morphological and semantic errors, and possible comorbidity with
syntactic deficits; phonological-output-buffer DD causes problems in decoding longer
morphologically complex words. In addition, cross-linguistic studies highlight the
effects of morphological awareness on reading accuracy and fluency. The role of
morphosyntactic abilities on reading is, however, not clear. This study explores the
influence of morphosyntactic competence on reading in Italian children with and
without DD. A total of 14 children with DD and 28 with Typical Development
(TD) attending the Italian primary school were tested on written decoding, syntactic
comprehension of different grammatical structures, and syntactic production of direct
object clitic pronouns. DD children were significantly less accurate and slower
in reading than TD children. Syntactic skills of the two groups did not differ
significantly, but some differences in their acquisitional pace emerged. Syntactic
comprehension and production of direct-object-clitic pronouns predicted reading
accuracy standard scores, thus suggesting that morphosyntactic abilities, beyond
clitics’ weak phonological status, affect decoding accuracy. Decoding accuracy was
influenced by reading errors related to morphology (morphological, semantic, and
phonological-output-buffer errors). Decoding speed was a specific weakness of DD
children and was rather affected by multi-letter combinations. Consistent with a dual-
route approach to orthographic processing, we argue that accuracy depends on fine-
grained decoding strategies maximizing the precise ordering of letters, thus it is more
sensitive to morphosyntactic skills. Morphological reading errors were associated with
phonologically weak (determiners, clitic pronouns, and prepositions) and salient words
(verbs). This suggests that the decoding of function words and morphologically complex
words is particularly demanding and related to both phonological and morphosyntactic
skills. Age had a negative predictive effect on semantic errors, compatible with the
gradual acquisition of lexical decoding strategies, which seemed to be slowed down by
DD. We conclude that oral morphosyntactic skills play a role in reading accuracy in the
Italian shallow orthography for both DD and TD children. It is then advisable to assess

Frontiers in Psychology | www.frontiersin.org 1 April 2022 | Volume 13 | Article 841638173

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2022.841638
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2022.841638
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2022.841638&domain=pdf&date_stamp=2022-04-27
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.841638/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-841638 April 20, 2022 Time: 14:26 # 2

Casani et al. Morphosyntactic Skills Influence Written Decoding

children’s linguistic profile during DD diagnoses to establish whether some reading errors
are related to morphosyntactic weakness. In this case, ad hoc morphosyntactic training
might support reading accuracy.

Keywords: reading, developmental dyslexia, dual-route model, dual-route approach to orthographic processing,
morphology, syntax, clitic pronouns

INTRODUCTION

Reading is a complex activity that involves several underlying
abilities including language, metalanguage, and cognitive skills
(cf. Nagy and Townsend, 2012). In this study, we bring evidence
of the role of morphosyntactic skills on decoding accuracy
in Italian children with and without developmental dyslexia
(henceforth, DD). We also show that some decoding errors that
have to do with morphology to different degrees play a central
role in decoding accuracy.

Dual-Route Model of Reading
There is wide consensus on the fact that an accurate model to
describe typical reading aloud processes should include a lexical
and a sublexical route (Coltheart et al., 2001; for a review, see
Castles, 2006; for a case study arguing for the existence of a third
route of reading, see Wu et al., 2002). The lexical route allows
reading by accessing the lexicon for previously seen written
words stored in long-term memory, whereas the sublexical
route uses a set of mapping rules to convert graphemes into
phonemes, thus allowing the reading of every regular word, both
known and unknown, in particular in shallow orthographies.
At the top of the dual-route model, there is a common stage
of orthographic visual analysis, which is responsible for letter
identification, encoding of letter position within the word, and
binding of letters to words. In the last stage, the phonological
string generated through either the lexical or sublexical route
is sent to the phonological output buffer, a short-term interface
between phonological representations and articulatory motor
programming having the function to keep the information until
full production and to assemble phonological strings into larger
units (Zoccolotti et al., 2005; Castles, 2006; Friedmann and
Coltheart, 2018). Recent studies reveal that different decoding
error types can be associated with atypical functioning or non-
functioning of specific sections of the dual-route model of
reading, which can give rise to different types of DD (Friedmann
and Coltheart, 2018), even in a shallow-orthography language
like Italian (Traficante et al., 2017). Figure 1 displays the dual-
route model of reading, decoding errors associated with the
different sections of the model, and related types of DD.

Some decoding error types have to do with morphology
to different extents. In particular, morphological and semantic
decoding errors can be associated with a deficit in both
the lexical and sublexical route of reading, resulting in
deep DD (Stuart and Howard, 1995). In this condition,
words that can be read via meaning by resorting to their
visual imagery properties are generally preserved, whereas
function words and morphologically complex words are
particularly problematic. The difficulty with function words

might depend on their abstractness, which makes them
particularly difficult to be imagined (Friedmann and Coltheart,
2018). Function words can be replaced with visually similar
lexical words, other function words, or just omitted. The
imageability effect could also determine the difficulty with
morphologically complex words, which can be decomposed
into lexical (bases, stems, or roots) and functional chunks
(morphological affixes) requiring the co-activation of different
sections of the reading model. In particular, bases, stems, or
roots might be read by resorting to the semantic lexicon, whereas
affixes via a direct (lexical) route linking the orthographic
input buffer to the phonological output buffer (see Figure 1).
If this route is impaired, morphologically complex words
can be simplified through omissions and substitutions of
morphological affixes (Friedmann and Coltheart, 2018). Children
with deep DD can also present with syntactic deficits, which
might make it difficult to resort to the context in reading
(Friedmann and Coltheart, 2018).

A deficit in the phonological output buffer (phonological-
output-buffer dyslexia) can be responsible for errors in decoding
longer morphologically complex words, characterized by
omissions, substitutions, and transpositions of some phonemes.

The possible presence of syntactic deficits in children
and adults with DD (Bishop, 1991; Muter and Snowling,
1998; Talli et al., 2013; Cardinaletti and Volpato, 2015;
Friedmann and Coltheart, 2018) suggests that these deficits
might contribute to difficulties in retrieving function words
and morphological affixes, which convey morphosyntactic
information, during reading. In particular, we wonder whether
the three error categories described above (morphological,
semantic, and phonological-output-buffer errors) might be
influenced by the reader’s morphosyntactic skills. Namely,
whether adequate morphosyntactic competence might improve
children’s familiarity with text chunks encoding morphosyntactic
information, thus allowing faster retrieval through the activation
of the direct (lexical) route from the orthographic input lexicon
to the phonological output buffer. At the same time, good
morphological knowledge might help individuals with DD in
accessing subparts of morphologically complex words, thus
benefitting from the cumulated frequency of morphemes to
process shorter inputs by co-activation of the direct lexical route
beside the semantic lexicon.

A Dual-Route Approach to Orthographic
Processing
By applying the dual-route model of reading to a smaller scale
of granularity, Grainger and Ziegler (2011) propose a dual-
route approach to orthographic processing. They suggest that
optimization of print-to-meaning mapping takes place thanks
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FIGURE 1 | Dual-route model of reading aloud, with different error types associated with each section of the model, and consequential types of DD. Yellow cases
display the visual-orthographic step of reading; orange cases display the lexical route; and red cases display the sublexical route of reading, including the
phonological output buffer (Casani, 2021, adapted after Friedmann and Coltheart, 2018).

to two distinct learning constraints based, respectively, on
the prelexical orthographic coding processes of diagnosticity
and chunking.

Chunking allows the detection of relevant letter combinations
corresponding to pre-existing sublexical phonological and
morphological representations. It takes place along the fined-
grained route, which is activated by frequently co-occurring
contiguous letter combinations with a precise letter ordering, and
precise placement with respect to the beginning and ending of
words. These include prefixes and suffixes, which are subject to
morpho-orthographic processing.

On the other hand, diagnosticity allows for the selection of
letter combinations that are informative with respect to word
identity. It takes place along the coarse-grained route, which
codes for approximate letter position within words, irrespective
of letter contiguity. This route benefits from the combinations
of most visible letters that best constrain word identity. So,
it provides a lower precision level in coding letter-position
information compared to the fine-grained route, but a higher
speed level because it can provide faster top-down activation of
whole-word representations. In skilled readers, when most visible
letters combined with contextual constraints are not sufficient to
activate top-down constraints, the fine-grained route intervenes
to disambiguate the information.

Parallel development and smooth integration of the two
routes enable the emergence of morpho-semantic and morpho-
orthographic representations as well as increased sensitivity to
morphological structure, thus reducing the effects of word length
and phonological recoding (Grainger and Ziegler, 2011). Since
the detection of morphological constituents is the key mechanism
of morpho-orthographic chunking (which is performed along
the fine-grained route), we suppose that higher morphological
competence should facilitate the detection of morphological

constituents, thus increasing the reading performance, in
particular concerning accuracy. In the following section, we
report evidence that morphology influences word decoding
through automatic morpho-orthographic segmentation.

Morphological Awareness and Reading
Besides the vast literature around phonological awareness,
orthographic competence, and rapid automatized naming (RAN)
(for a review, see Casani, in preparation, 2021), cross-linguistic
research provides evidence of the role of morphological
awareness as a predictor of word reading accuracy (Burani
et al., 2008; Traficante et al., 2011), fluency (Fowler and
Liberman, 1995; Carlisle and Katz, 2006; Roman et al., 2009), and
comprehension (Deacon and Kirby, 2004; Nagy et al., 2006; Tong
et al., 2011). Verhoeven and Perfetti (2011) highlight the role of
morphology in reading across a wide range of languages, and
suggest that morphology, “which is foundational for language
knowledge, is universally part of reading, subject to constraints
imposed by the language and by how the writing system encodes
that language.” Besides the universal phonological principle that
all writing systems support the activation of phonology at their
smallest functional grapheme units (e.g., Perfetti, 2003), they
suggest that cross-linguistic research might lead to a universal
morphology principle. The ease of word identification and the
role of morphology may vary across languages depending on their
orthographic depth (Frost et al., 1987) and their morphological
richness (Vannest et al., 2002).

According to the orthographic depth hypothesis (Frost, 2006),
the opaque relationship between phonemes and graphemes in
deep orthographies is handled by resorting to lexical mediation.
The extent of involvement of lexical mediation is determined
by the orthographic depth of the language. Before learning to
read, words are stored as holistic phonological units. As literacy
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is acquired, these bigger phonological representations gradually
give way to syllable and then phoneme representations and
determine a restructuring of the learner’s lexicon granularity.
According to the grain size theory (Frost et al., 1987), phonology
offers a bigger scale and orthography a smaller scale of
granularity, which are represented by phonological units and
letters, respectively. The degree of consistency between phonemes
and letters might determine the speed of reading development
(Vulchanova and Farukh, 2018).

In Italian, a shallow orthography with high grapheme-
phoneme consistency, morphological information has been
shown to influence both reading fluency (Burani, 2010) and
accuracy (Angelelli et al., 2014). Children of different reading ages
take advantage of morphemic lexical units (Burani et al., 2002).
“Morphemes may develop as orthographic and phonological
salient reading units” (Burani et al., 2008, p. 254), and
these “common letter patterns might become consolidated
in lexical memory” (Deacon et al., 2011, p. 476). Masked-
priming experiments (e.g., Meunier and Longtin, 2007) confirm
that skilled adult readers possess orthographic representations
that are structured morphologically and activated before
representations of whole words. How this (quasi-)regular trend
influences the acquisition of reading across languages is not clear.

There is cross-linguistic evidence (Quémart et al., 2011;
Beyersmann et al., 2012; Dawson et al., 2018) that adult skilled
readers process complex words and non-words based on
morphological structure. Masked priming experiments across
English (Beyersmann et al., 2012) and French (Beyersmann et al.,
2015) showed robust morphological priming effects on word
recognition for child participants, but only when morphological
primes had a semantically transparent relationship with
targets (e.g., darkness-DARK). Beyersmann et al. (2012) found
no evidence that English children aged 8–10 use morpho-
orthographic analysis: priming effects for pseudo-morphological
pairs (e.g., corner-CORN) could not be distinguished from
those based on non-morphological form overlap (e.g., brothel-
BROTH). In a related comparison, Beyersmann et al. (2015)
could not differentiate masked priming effects for suffixed non-
word pairs (e.g., tristerie-TRISTE) and non-suffixed non-word
pairs (e.g., tristald-TRISTE) in French readers aged 7–11 (see
also Hasenäcker et al., 2016, for a similar study in German). The
developmental trajectory observed in English (Beyersmann et al.,
2012) also appears in Hebrew, a Semitic language with a very rich
morphological structure (Schiff et al., 2012).

In Italian, morphological awareness can affect decoding since
the second grade (Burani et al., 2002, 2008; Marcolini et al.,
2011; Traficante et al., 2011). Interestingly, a facilitating effect
on word reading speed was observed in second-graders and
children with DD, whereas in older skilled readers it was limited
to low-frequency words. Furthermore, a cross-linguistic study on
English and French (Casalis et al., 2015) suggests a higher degree
of morphological processing efficiency in French (affecting both
accuracy and latencies in a lexical decision task) than in English
(affecting accuracy only).

Studies on morphologically productive languages like French
(Quémart et al., 2011) and Hebrew (Schiff et al., 2012) provide
evidence of morpho-orthographic decomposition in young

readers as in adults, differently from English children aged
7–10 years (Beyersmann et al., 2012). Burani et al. (2002) report
that Italian children aged 8–10 read aloud morphologically
structured non-words more quickly and accurately than
non-words without morphological structure. In a similar
reading aloud experiment, children aged 9–11 read aloud
morphologically complex English words with a high-frequency
stem more quickly and accurately than those with a lower-
frequency stem (Deacon et al., 2011). In a lexical decision task,
Casalis et al. (2015) report that English and French children
between the ages of 7 and 10 found morphologically structured
non-words (e.g., gifter) harder to reject than non-words without
a morphological structure (e.g., curlip). The same pattern was
reported by Burani et al. (2002) for Italian children of similar
age, thus replicating the pattern observed in skilled readers
(Crepaldi et al., 2010).

In more recent research using this paradigm with three age-
groups of developing English readers (ages 7–9, 12–13, and 16–
17), the two younger groups showed an effect of morphological
structure on accuracy, whereas only older adolescents (16–
17 years old) and adults showed this effect on reaction time
(Dawson et al., 2018).

Häikiö et al. (2011) examined the role of morphology
in Finnish reading development by measuring participants’
eye movements while they read sentences containing either
a hyphenated (e.g., ulko-ovi “front door”) or concatenated
(e.g., autopeli “racing game”) compound. The participants were
Finnish second, fourth, and sixth graders. Fast second graders
and all fourth and sixth graders read concatenated compounds
faster than hyphenated compounds. This suggests that they
resort to slower morpheme-based processing for hyphenated
compounds but prefer to process concatenated compounds via
whole-word representations.

Further eye-tracking research showed that eye movements
are affected by both whole-word frequency and first-constituent
frequency. In processing Dutch (Kuperman et al., 2008, 2009)
and Italian (Marelli and Luzzatti, 2012) compounds, frequency
in first-fixation duration, namely the time initially spent by the
reader fixating the target element, correlates negatively with the
frequency of whole-words.

In processing Italian derived words, stem frequency has a
facilitating effect on first-fixation duration only within sentences
prompting a semantically transparent interpretation of the word,
whereas a stem-frequency effect is inhibitory within sentences
prompting an opaque interpretation of the target word (Amenta
et al., 2015). Word frequency, as well as the amount of
information and the size of the morphological family of the
suffix, affects the reading times of Dutch derived words with
shorter suffixes. This is interpreted as a relative entropy effect of
morphemes. Affixes occurring more frequently are more salient
and processed faster (Kuperman et al., 2010).

In English, root frequency affected fixation times for longer
(about eight letters) but not shorter (about six letters) prefixed
words, whereas whole-word frequency for shorter but no
longer prefixed words (Niswander-Klement and Pollatsek, 2006).
In Italian, base and word frequency affected first-fixation
duration for nouns derived from noun bases differently: base
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frequency facilitated first fixation, whereas word frequency had
an inhibitory effect (Traficante et al., 2018).

Behavioral data from languages with rich morphology show
differences in lexical decision times for nouns, adjectives, and
verbs. Kostić and Katz (1987) attribute this effect in Serbo-
Croatian to the number of inflectional alternatives available
for each grammatical class. Deutsch et al. (1998) ascribe
the differences in processing verbs and nouns in Hebrew,
beyond semantic and syntactic components, to the distributional
properties of constituents, namely to the fact that “when a
morpheme is common to more words in the language, its impact
on processes of morphological decomposition is prominent” (p.
1,252). Italian skilled adult readers recognized verbs slower than
nouns and adjectives. Moreover, latencies for verbs, but not
for nouns or adjectives, correlated with their base frequency
(Colombo and Burani, 2002; Traficante and Burani, 2003).

Marcolini et al. (2011) showed that Italian children with
DD read pseudowords made up of a root and a derivational
suffix faster and more accurately than simple pseudowords.
However, only dyslexic and reading-matched younger children
benefited from morphological structure in reading words aloud.
The authors investigated the effects of word frequency and
word length on complex-word reading in Italian dyslexic and
skilled readers and showed that word frequency affects the
probability of morpheme-based reading, interacting with reading
ability. Young skilled readers named polymorphemic words
faster than simple words only when they were of low frequency,
whereas they read high-frequency polymorphemic words as
fast as high-frequency simple words. By contrast, poor readers
took advantage of polymorphemic words irrespective of word
frequency, while adult readers showed no facilitating effect of
morphological structure. Similar findings emerged in English
(Carlisle and Stone, 2005) and Danish (Elbro and Arnbak,
1996) populations, where only younger and dyslexic children
read derived words faster than monomorphemic words, whereas
morphological complexity did not affect reading speed in the
elder skilled children. This indicates that morpheme-based
reading is effective for both poor and skilled young readers
when a whole-word representation is not firmly established in
the reader’s orthographic lexicon, because either the whole word
is not familiar to the reader or (s)he has poor reading skills
(Marcolini et al., 2011).

Angelelli et al. (2014) found that morphological information
in Italian is a useful resource for both reading and spelling,
as typically developing children benefit from the presence of
morphological structure when they read and spell non-words. In
processing low-frequency words, however, morphology facilitates
reading, but not spelling. They attribute their results to successful
cooperation between lexical and sublexical processes in reading
and spelling, which facilitate morpho-lexical access.

These data converge on the fact that morphological awareness
facilitates lexical reading for low-frequency words that otherwise
would not probably be represented as a whole in the mental
lexicon, even in Italian and other shallow orthographies (for
Spanish, see Defior et al., 2008; Suárez-Coalla et al., 2017),
where the orthography-phonology mapping might be expected
as sufficient for correct decoding and spelling. This suggests

that morphological competence and its interface with syntactic
competence play a role in written decoding.

(Morpho)syntactic Competence and
Reading
Syntactic competence has been generally explored in relation to
reading comprehension, of which it is deemed as a good predictor
(see for instance, Simpson et al., 2020 for Spanish speakers;
Morvay, 2012 for speakers of English as a foreign language; Chik
et al., 2012 for Chinese speakers). Fewer studies analyzed its
effects on decoding. Sana Teixeira et al. (2016) revealed relations
of syntactic awareness with both reading accuracy and reading
speed in typically developing Brasilian children in primary school
(age: 9;0–11;7).

Traficante et al. (2018) analyzed the role of the base word
distributional properties on eye-movement behavior and found
an inhibitory base frequency effect, but no word frequency effect
for nouns derived from verb bases. They suggest that syntactic
context, calling for a noun in the target position, is responsible for
the inhibitory effect when a verb base is detected, thus hampering
the lexical access to the corresponding base-suffix combination.

A recent longitudinal study (Casani, in preparation, 2021),
besides confirming a strong predictive role of oral syntactic
comprehension on reading comprehension, found that syntactic
comprehension, measured in the last year of kindergarten and
second grade of primary school through the Italian version of
Bishop (2009), predicted both word and text decoding accuracy
in second grade. In particular, it was a predictor of surface
errors, which are related to the lexical route of reading. This
highlights the strict relation between (morpho)syntactic and
lexical competence, as confirmed by the correlations of syntactic
comprehension with both receptive (% = 0.540, p = 0.000) and
productive (% = 0.554, p = 0.000) vocabulary. In the same
research, longitudinal syntactic-comprehension skills predicted
the emergence of difficulties in word and non-word writing,
beyond reading comprehension difficulties, in second and third
grade; longitudinal syntactic production of third-person direct
object clitic pronouns predicted the emergence of decoding
accuracy and decoding speed difficulties.

These data find support in the study of event-related
potentials in adult speakers of German (Cantiani et al.,
2013), a morphologically rich language with relatively shallow
orthography like Italian. Seventeen subjects with DD and
seventeen with TD were presented with oral stimuli with
morphosyntactic violations. DD participants showed anomalous
morphosyntactic processing, especially when morphosyntactic
violations were expressed by both lexical and inflectional
changes. Furthermore, anomalous morphosyntactic processing
was mediated by lexical cues instead of acoustic salience. Several
behavioral studies also report the presence of syntactic deficits in
subjects with DD (Bishop, 1991; Muter and Snowling, 1998; Talli
et al., 2013; Cardinaletti and Volpato, 2015).

The Current Study
The literature mentioned in previous sections shows that some
decoding errors related to the central routes of reading (i.e., the
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lexical and sublexical route) have to do with morphology
to different extents. Moreover, morphological awareness and
its interface with syntax have a prominent cross-linguistic
role in reading accuracy and speed. Yet, only few studies
have investigated the influence of general (morpho)syntactic
competence on written decoding.

In the present study, we analyze the effects of oral
(morpho)syntactic comprehension and production, as well
as different reading errors, including morphological ones,
on the written decoding of Italian primary-school children
with and without DD.

We expected to find effects of (morpho)syntactic competence
on decoding accuracy, due to greater familiarity with morpho-
lexical chunks and distributional properties, by children with
higher morphosyntactic skills. We did not expect the same effects
on decoding speed. In fact, according to the dual-route approach
to orthographic processing (Grainger and Ziegler, 2011),
speeding up reading processes in skilled readers depends on
the ability to process not only fine-grained orthographic strings
preserving the information about letter ordering, as morphemes
are, but also coarse-grained orthographic representations, which
code for the presence of informative letter combinations in the
absence of precise positional information (Traficante et al., 2018).

MATERIALS AND METHODS

Participants
A total of 53 Italian monolingual children in primary school were
initially tested (for the results of the whole sample, see Casani,
2020a,b). They were recruited in primary schools in the Center
and South of Italy. In total, 11 of them were excluded due to
the presence of language disorders or the alleged presence of
developmental problems based on teachers’ reports. Among the
42 participants (24 females + 18 males), one child was in second
grade, 16 children were in third grade, 8 were in fourth grade, and
17 were in fifth grade.

A total of 14 children [age 7;5–10;9 (M = 9;9, SD = 0;11)]
had a diagnosis of general DD, and 28 [age 8;4–11;3 (M = 9;6;
SD = 0;11)] were age-matched Typically Developing (TD)
children. Diagnoses were established by the Italian public health
system (ASL) or authorized private clinical centers. Children
included in the TD group were not reported by teachers for any
language or learning problems.

Materials and Procedures
The participants’ families signed informed parental consent.
Children expressed their willingness to participate in the
activities during an exploratory interview. The procedures
followed the ethical principles of the Declaration of Helsinki.
Children were tested individually in silent and adequately
lit rooms in school facilities. Tests were administered
by the first author. Different abilities including syntactic
comprehension, syntactic production, and reading were tested.
Syntactic comprehension was tested through a standardized
picture-sentence matching task extracted from the BVN 5–11
(Neuropsychological Assessment Battery for the developmental

age) (Bisiacchi et al., 2005). It is a reduced adaptation of Bishop
(2009) consisting of 18 items investigating the comprehension
of different syntactic structures (for additional information, see
Supplementary Data).

Syntactic production was tested through a non-standardized
elicitation task of third-person direct object clitic pronouns
(Arosio et al., 2014). These are complex structures requiring
the mastering of phonological, morphosyntactic, syntactic, and
pragmatic skills. The test elicits 12 third-person singular direct
object clitic pronouns (6 masculine + 6 feminine) under
conditions of gender and number match with the sentential
subject. Casani and Cardinaletti (2021) recently showed that this
morphosyntactic combination is significantly more accessible
than combinations including gender mismatch between the clitic
pronoun and the sentential subject. Children were shown two-
slide cartoons, where the recorded voice of an Italian male native
speaker presented the situation through a brief sentence [e.g., In
questa storia c’è un signore che vuole pescare un pesce (In this
story, there is a man who wants to fish a fish)] and then asked
a question [Guarda! Cosa sta facendo al pesce? (Look! What is Ø
doing to the fish?→ Look! What is he doing to the fish?)]. The
restrictive context should elicit a null-subject sentence containing
a third-person direct object clitic pronoun agreeing in gender and
number with its antecedent (Lo_3rd.sing.masc.dir.clit . sta pescando.
(Ø it_3rd.sing.masc.dir.clit is fishing.→He is fishing it). Grammatical
and pragmatically appropriate responses were assessed as correct.
The test was administered through a 15-inch laptop screen with
stereo speakers.

Decoding accuracy and speed were tested through
standardized texts calibrated to the students’ grades. These
stem from the MT-2 battery (Cornoldi and Colpo, 2011). They
were black printed on A4 white paper.

Analyses
Syntactic Comprehension
To our aims, we opted to only analyze the effects of grammar-
focused items. According to the authors of the test, items 1–8
are focused on lexicon, whereas items 9–18 are focused on
grammar. We do not agree with considering item number 5 (La
mucca le sta guardando [“The cow them is watching” = The
cow is watching them)] as a lexicon-focused item because it
includes the interpretation of a third-person direct object clitic
pronoun, a structure requiring high-level morphosyntactic and
syntactic skills (for the difficulties involved in third-person
direct object clitic pronouns, see Arosio et al., 2014; Casani,
2020c). We then included it among grammar-focused items and
analyzed it as such. The complete list of the structures analyzed
is in Supplementary Data. Correct responses (pointing to the
right picture) were assigned one point; incorrect responses were
assigned 0 points. Proportional scores were analyzed.

Syntactic Production
Responses containing a grammatical third-person direct
object clitic pronoun were assigned one point. Ungrammatical
responses (gender or number errors in clitic agreement, clitic
omissions, clitic-position errors) and sentences containing a full
determiner phrase instead of the clitic (which is grammatical
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but pragmatically inappropriate) were assigned 0. Proportional
scores were analyzed.

Reading
The total error number and the speed rate (syllables per second)
were computed and converted into standard scores. Accuracy and
speed standard measures (Z) were analyzed.

An analysis of proportional reading errors based on an
adaptation of the coding scheme by Friedmann and Coltheart
(2018) was performed. Eleven types of decoding errors were
detected, as shown below.

1. LP (Letter Position errors), e.g., dispiacere →
∗despicare; presso→ perso.

2. ATT (ATTentional errors), e.g., dal tetto→ dal letto; se mi
hai letto→ se mai hai letto.

3. LI (Letter Identity errors), e.g., due → bue;
babbo→ ∗papo.

4. NEGL (NEGLect errors), e.g., rallegrò →

allegro; bigi→ ∗bi.
5. VIS (VISual errors), e.g., nipotino→ ∗nipotivino; fradicia
→
∗fraggida.

6. SURF (SURFace errors), e.g., [’]fradicia–∗fra[’]dicia; si
[’]presero→ si ∗pre[’]sero.

7. MULTI (MULTIletter errors), e.g., cresceva–∗crescheva;
foglio→∗forgerio.

8. VOW (VOWel errors), e.g., dimissioni–∗dimessioni;
a lungo→ e lungo.

9. MORPH (MORPHological errors), e.g., dimenticando →
dimenticato; sentì→ sente.

10. SEM (SEMantic errors), e.g., ripeté → ribatté; a bocca
aperta→ a mano aperta.

11. BUFF (phonological-output-BUFFer errors), e.g.,
ringraziamenti →

∗rangrizzamenti; sentenziava →
∗sensiva.

Error categories 1, 2, 3, 4, and 5 are related to the
orthographic-visual-analysis stage of reading, at the top of the
reading model; category 6 is related to the lexical route of reading;
categories 7 and 8 are related to the sublexical route of reading;
categories 9 and 10 are related to both central routes, namely
the lexical and sublexical routes; category 11 is related to the
phonological output buffer, at the bottom of the reading model
(see Figure 1).

Analyses of the elements involved in different error types
(adjectives, adverbs, clitic pronouns, conjunctions, determiners,
nouns, prepositions, pronouns, verbs, whole phrases) and of
superficial errors (additions, omissions, changes, moves, and
substitutions with a different part of speech) associated with
different error types were performed.

Statistical Analyses
Two generalized mixed models (GMM) were run to analyze
the effects of group, syntactic comprehension, and syntactic
production on standard measures of decoding accuracy and
speed. Decoding errors were entered as random effects.
This allowed us to control simultaneously for the effects of
all error types.

In addition, we ran 11 GMMs to analyze the effects of the same
factors/variables on each error type.

As the distribution of children across grades was not
homogeneous (for the number of participants in each grade, see
Supplementary Tables 1, 4), we opted to enter age in months as
a random effect, which allowed us to control for a more analytical
measure than the grade variable.

In addition, we ran two GMMs to analyze the combined effect
of age and group (age variable nested in the group variable) on
syntactic comprehension and production, respectively; and two
GMMs, where we replaced the age variable with grade (nested in
the group variable).

We finally checked the combined effect of grade and group
(grade variable nested in the group variable as a fixed effect) on
SEM-error proportions (dependent variable).

Fisher’s exact tests with post hoc Z (Bonferroni) were used to
analyze the association between each error type and different
parts of speech.

Statistical analyses were run in SPSS-24 and are described in
detail in section “Results.”

RESULTS

Differences Between Groups
Figure 2 displays the distribution of standard scores obtained in
decoding, and of percentage scores obtained in syntactic tests by
TD and DD children.

Four distinct GMMs with scores obtained on syntactic
(comprehension and production) and decoding (accuracy and
speed) tests as respective dependent variables, the double level of
group as a fixed effect, and children’s age (in months) as a random
effect revealed a significant effect of group on decoding accuracy
[F(1, 40) = 8.584, p = 0.006] and speed [F(1, 40) = 16.727,
p = 0.000]. TD children were significantly more accurate and
faster than DD-children, as shown in Table 1.

No significant effect of group emerged on syntactic
comprehension (p = 0.399) and syntactic production (p = 0.535).
The significance of the random effect was also analyzed and
revealed no effect of age on any variable (0.259 < p < 0.697).

Effects of Grade on Morphosyntactic Skills
As we analyzed (morpho)syntactic proportional scores instead
of standard scores,1 we verified in more depth the absence of
effects of age on morphosyntactic skills by running two robust
GMMs with syntactic comprehension and production scores as
respective dependent variables, and the age variable nested in
the group variable as a fixed effect. Age (combined with group)
confirmed no predictive effect on syntactic comprehension
(p = 0.184) and production (p = 0.187).

Then, we ran two additional models by replacing the
age variable with grade. Grade (nested in the group

1The syntactic-comprehension test (Bisiacchi et al., 2005) includes separate
standard scores for grammar-focused items and lexicon-focused items, thus
allowing to evaluate the two areas independently, at least in the authors’ intentions.
In our opinion, however, the test should be restandardized by considering item
number 5 among grammar-focused items (see the section “Analyses”).
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FIGURE 2 | Distribution of decoding standard scores and syntactic percent scores (*p < 0.05).

variable) predicted both syntactic comprehension [F(6,
33) = 95.269, p = 0.000] and production [F(6, 31) = 14.446,
p = 0.000].

As for morphosyntactic comprehension (for complete
statistics, see Supplementary Tables 1–3), there was a significant
score increase in the TD group between third and fourth grade
(Est = 0.182, SE = 0.043, p = 0.000).2 In fourth grade only, the
TD-group’s score was significantly higher than that of the DD
group (Est = 0.168, SE = 0.069, p = 0.020).

As for morphosyntactic production (for complete statistics,
see Supplementary Tables 4, 5), there was a significant increase
in target clitic pronouns between fourth and fifth grade in the DD
group only (Est = 0.154, SE = 0.065, p = 0.024). No differences
between groups emerged.

2We have not commented on the significant increase of morphosyntactic-
comprehension scores found in the DD group between second and third grade
(see Supplementary Table 2) because it is based on one second-grader only and is
not comparable with the TD group, where there were no second-graders (see the
number of participants in each grade in Supplementary Table 1).

TABLE 1 | Differences between TD and DD children in standard measures of
decoding accuracy and speed.

CI (95%)

Outcome Coeff. (TD) SE t p Lower Upper

Decoding accuracy (Z) 0.820 0.280 2.930 0.006 0.254 1.385

Decoding speed (Z) 0.868 0.212 4.090 0.000 0.439 1.297

Predictors of Reading
Two GMMs were run with decoding accuracy and decoding
speed as the respective dependent variables, the double level of
group (TD and DD), syntactic-comprehension and syntactic-
production scores as fixed effects, and age (in months) and the 11
decoding error types as random effects. The models significantly
predicted decoding accuracy [F(3, 38) = 8.477, p = 0.000] and
decoding speed [F(3, 38) = 4.297, p = 0.010].

Significant main effects of group [F(1, 38) = 4.494, p = 0.041],
syntactic comprehension [F(1, 38) = 14.137, p = 0.001], and
syntactic production [F(1, 38) = 6.716, p = 0.013] emerged on
decoding accuracy, whereas only a main effect of group emerged
on decoding speed [F(1, 38) = 12.247, p = 0.001].

Significant fixed effects are reported in Table 2.
TD children [M = 0.604, SE = 0.745, CI (−0.905, 2.113)]

were significantly more accurate than DD-children [M = 0.320,
SE = 0.754, CI (−1.206, 1.845)]; TD children [M = 0.314,
SE = 0.408, CI (−0.512, 1.139)] were also faster than DD-children
[M = − 0.374, SE = 0.432, CI (−1.248, 0.501)], after controlling
for age and decoding errors.

Analyses of random effects revealed that BUFF, MORPH, and
SEM errors affect decoding accuracy, whereas MULTI errors
affect decoding speed significantly. Significant random effects of
decoding errors are reported in Table 3.

Morphosyntactic Predictors of Reading Accuracy
A GMM with decoding accuracy as the dependent variable, the 11
syntactic-comprehension items focused on grammar (including
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TABLE 2 | Predictive fixed effects of group and syntactic skills on decoding standard scores.

CI (95%)

Dependent variable Predictor Coeff. SE t p Lower Upper

Decoding accuracy Group (TD) 0.284 0.134 2.120 0.041 0.013 0.556

Syntactic comprehension 1.684 0.448 3.760 0.001 0.777 2.591

Syntactic production 0.591 0.228 2.591 0.013 0.129 1.052

Decoding speed Group (TD) 0.687 0.196 3.500 0.001 0.290 1.085

item number 5, which was erroneously coded as a lexicon-focused
item by the test authors, as explained in section “Materials and
Methods”) as fixed effects, and group and age as random effects
was run with a stepwise procedure. The model correctly predicted
decoding accuracy standard scores [F(4, 13) = 3.258, p = 0.047].
Item number 5, namely a sentence requiring the interpretation of
a third-person feminine plural direct object clitic pronoun (see
section “Materials and Methods”), was a significant predictor of
decoding accuracy [Coeff. = 1.125, SE = 0.438, t = 2.566, p = 0.023,
CI (0.178, 2.072)].

Reading Errors
Figure 3 displays the percentages of reading errors made by TD
and DD children.

LP-errors (7%) were present only in DD-children. Errors were
numerically higher in DD-children than in TD children for every
category except VIS (TD = 6%; DD = 2%) and NEGL errors
(TD = 5%; DD = 4%). These two error types showed high
SD (VIS = 0.189; NEGL = 0.129). Fisher’s exact test revealed
a significant association between individuals and error types
(Fisher = 437.235, V = 0.393, p = 0.000). Post hoc analyses revealed
that significant rates of VIS (0.70%; Z = 4.0) and NEGL (1.10%;
Z = 4.0) errors were associated with two different children of the
TD group (Bonferroni, p ≤ 0.050).

A series of 11 robust GMMs with each decoding error type
as a dependent variable, group as a fixed effect, and age (in
months) as a random effect correctly predicted BUFF errors [F(1,
40) = 10.104, p = 0.003]. TD children made significantly fewer
BUFF errors than DD children [Coeff. = −0.137, SE = 0.043, t
(40) =−3.179, p = 0.003, CI (−0.224,−0.050)].

Morphological and Semantic Errors
Fisher’s exact test revealed a significant association between error
categories and parts of speech (V = 0.303, p = 0.000). Post hoc

TABLE 3 | Significant random effects of percent decoding errors on standard
measures of decoding accuracy and speed.

CI (95%)

Dependent
variable

Effects Est. SE df p Lower Upper

Decoding accuracy BUFF −0.987 0.337 38 0.006 −1.670 −0.304

MORPH −10.929 1.502 38 0.000 −13.970 −7.889

SEM −6.259 1.047 38 0.000 −8.379 −4.138

Decoding speed MULTI −4.756 1.872 38 0.015 −8.546 −0.966

analyses revealed that MORPH decoding errors are significantly
associated with determiners (87.5%, Z = 4.6), clitic pronouns
(67.9%, Z = 3.9), prepositions (63.6%, Z = 3.0), and verbs
(43%, Z = 2.1). Significant rates of MORPH decoding errors
(Fisher = 165.505, V = 0.451, p = 0.000) consisted of substitutions
with other visually similar parts of speech [e.g., le mostrò → e
mostrò; ebbe finito → ∗ebbe fino; in compenso → il compenso
(82.4%, Z = 4.3)], and morphological changes [e.g., dovevi →
devi; rimaneva→ rimane; il nipotino→ il nipote (40.4%, Z = 2.1)]
(Bonferroni, p ≤ 0.050).

Semantic errors, in turn, were significantly associated with
nouns (34.9%, Z = 2.9) and adverbs (18.6%, Z = 2.8) (Bonferroni,
p ≤ 0.050). Noun-errors included substitutions (63%, Z = 2.2)
with visually similar (è a metà dell’opera → ∗è a mente
dell’opera; diede le dimissioni → ∗diede le dimensioni) and/or
morphologically related words (un giocatore→ un gioco; parole
→ parlare). Adverb errors included significant rates of additions
(e.g., ma io sono→ma io non-sono; sempre chiusa→ sempre più
chiusa) (30.4%, Z = 3.0).

Three distinct GMMs with MORPH, SEM, and BUFF errors
as respective dependent variables, syntactic comprehension and
production percent scores as fixed effects, and group and age
as random effects were run. There was no predictive effect of
syntactic skills (fixed effects) on any error type, but age (random
effect) had a significant negative effect on SEM errors (Coeff.
(15.572) =−0.022, SE = 0.008, p = 0.014, CI [−0.039,−0.005].

Effect of Grade on Semantic Errors
We eventually analyzed the effect of grade on semantic errors
in each group by running a robust GMM with SEM-error
proportions as the dependent variable, and the grade variable
nested in the group variable as a fixed effect. The combination
of group and grade correctly predicted semantic errors [F(5,
16) = 2.938, p = 0.045]. In third grade, DD children made
significantly more semantic errors than TD children (Est = 0.033,
SE = 0.013, p = 0.026). There was a significant decrease of
semantic errors between third and fourth grade in the DD group
only (Est = 0.075, SE = 0.009, p = 0.000) (for complete statistics,
see Supplementary Tables 6–8).

DISCUSSION

Differences Between Groups
We analyzed the influence of morphosyntactic skills on the
reading of Italian primary-school children with DD compared
to TD children. As expected, DD-children were significantly
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FIGURE 3 | Proportions of decoding errors by TD and DD children (CI = 95%) (*p < 0.05).

less accurate and slower in reading than TD children after
controlling for decoding errors, irrespective of their age. The two
groups obtained similar syntactic comprehension and production
results, irrespective of their age (for qualitative response analyses
of syntactic tests on a wider sample including the present
participants, see Casani, 2020a,b), thus suggesting that DD does
not directly affect oral morphosyntactic and syntactic skills
in primary school.

The absence of effects of age on syntactic skills raised
some doubts. Two additional models, where the age variable
combined with the group variable was entered as a fixed
effect, confirmed no effect of age on syntactic skills. The use
of the grade variable instead of the age variable (combined
with the group variable), on the contrary, showed significant
effects on both syntactic comprehension and production. This
means that children’s instructional level rather than their age
affects their syntactic skills. As for syntactic comprehension,
TD children revealed a significant increase in their performance
until the maximum score in fourth grade. Such an increase
was not present in DD children, whose score remained around
80%, and this difference between groups (in fourth grade
only) was significant. This is partially consistent with studies
arguing for the presence of syntactic deficits in children and
adults with DD (Bishop, 1991; Muter and Snowling, 1998;
Talli et al., 2013; Cardinaletti and Volpato, 2015), which might
depend on the presence of undiagnosed language disorders
(Guasti, 2013), or differences in DD profiles of participants.
For instance, individuals with deep DD are specifically reported
for possible syntactic deficits (Friedmann and Coltheart, 2018).
The peculiarity of the present study is that these problems

seem to be related to a specific developmental phase. Given the
small number of participants distributed across grades [in fourth
grade, they were 8 (5 with DD + 3 with TD)] this hypothesis
should be taken cautiously and checked on larger samples. This
outcome, however, stresses the importance of a careful analysis
of linguistic profiles of DD children, even in a longitudinal
perspective, to reveal possible problems that might emerge in
particular developmental steps. A qualitative analysis of different
language structures is also advisable, to reveal possible strategies
that might be associated with specific developmental conditions
(Casani, 2020b). In this regard, third-person direct object
clitic pronouns are deemed very sensitive to detect language
difficulties (e.g., Tuller et al., 2011; Varlokosta et al., 2016;
Casani, 2020c), even in DD (e.g., Guasti, 2013). So, we wonder
why there were no differences in their production between our
groups.3 The answer might lie in the test used (Arosio et al.,
2014), which elicits clitic pronouns under the most accessible
morphosyntactic conditions, namely gender and number4 match
between the clitic pronoun and the sentential subject (Casani and
Cardinaletti, 2021). Recent studies report significant difficulties
under conditions of subject-object gender mismatch (Arosio and
Giustolisi, 2019; Casani and Cardinaletti, 2021). The literature
describing clitic pronouns as acquired at 4 or 5 years in
typically developing monolingual children (Schaeffer, 2000;

3There was only an intra-group difference revealing a significant increase of target
clitics between fourth and fifth grade in the DD group, which might suggest a
different acquisitional pace between groups.
4Subject-object number mismatch showed not to be as problematic
as gender mismatch for third-person direct object clitic production
(Casani and Cardinaletti, 2021).
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Arosio et al., 2014; Belletti and Guasti, 2015; Varlokosta et al.,
2016) does not consider these difficulties, so their introduction
in the elicitation tasks might make some differences arise. A new
test with balanced match/mismatch conditions between subject
and object features is in preparation, which will help disentangle
this issue (see Casani and Cardinaletti, 2021).

Predictors of Reading
Decoding accuracy was predicted by morphosyntactic
comprehension and production, with a stronger effect of
comprehension, as well as by three error categories, i.e.,
MORPH, SEM, and BUFF errors, which have to do with
morphology to different extents. MORPH errors had a very
strong effect, followed by SEM and, lastly, BUFF errors.

Decoding speed, instead, was predicted by the presence of
DD and by MULTI errors, namely errors in decoding multi-
letter combinations, which are often non-shallow. The significant
(fixed) effect of group only on decoding speed means that speed is
a specific problem of DD-children and, differently from accuracy,
is not directly mediated by morphosyntactic skills. This is in
line with studies considering speed as a more reliable measure
of DD than accuracy in shallow-orthography languages (see
Zoccolotti et al., 2005). At the same time, the predictive effect
of MULTI errors on decoding speed encourages the adoption of
a multicomponent approach to reading, in which accuracy and
speed interact. In this view, some reading errors might depend on
impairments to specific sections of the reading model, which slow
down the reading performance by hampering faster processing
via the direct route. In this regard, a word decoding assessment
battery based on the dual-route model (Friedmann and Gvion,
2003) has been recently adapted to the Italian language by
Traficante et al. (2017). Their pilot study found six different
types of DD in 52 Italian poor readers compared to 210 typical
readers from the second to the fifth grade of primary school, thus
showing that it is possible to discriminate several types of reading
impairments due to selective segments of the dual-route model
of reading even in a shallow-orthography language like Italian.
Casani (2019) applied a coding scheme based on Friedmann
and Coltheart (2018) to the text reading (Cornoldi and Colpo,
2011) of 21 children with DD, 4 of which with a developmental
language disorder, compared to 32 typically developing children
from the first to the second grade. That study detected 11 different
error types. Children with language disorders presented the
most compromised situation, with significant error proportions
due to a combined deficit in the sublexical route and the
orthographic visual analysis stage. The analyses of individual
performances confirmed an impairment in both the lexical and
sublexical route in 3 out of 4 children with language disorders.
Interestingly, both Traficante et al. (2017) through the word
lists, and Casani (2019) through text reading, found 11 and 2
cases of poor readers, respectively, who had not been detected
through standard measures. These data encourage a fine-grained
decoding error analysis even in shallow-orthography languages.
At the same time, the problematic conditions of decoding skills
in children with language disorders, who are likely to present
with deficits in the production of direct object clitic pronouns,
confirm the interrelation between reading and language skills,

as well as the importance of outlining an accurate linguistic
profile of subjects during DD diagnoses. The predictive role
of morphosyntactic skills on reading accuracy emerged in the
present study confirms this need.

The present study also revealed that the reading performance
is mainly slowed down (in both DD and TD children) by MULTI
errors, namely the decoding of multi-letter combinations. This
supports a multicomponent approach to reading, in which
decoding accuracy and speed interact with each other and
with language processes. In light of a dual-route approach
to orthographic processing (Grainger and Ziegler, 2011),
reading accuracy is increased by familiarity with fine-grained
representations coding for the presence of frequently co-
occurring letter combinations, namely higher-level orthographic
representations preserving the information about letter
ordering. Morphemic constituents belong to this category.
Higher morphosyntactic competence might increase children’s
familiarity with these fine-grained representations. This might
not be sufficient, however, to speed up the processes further.
To this aim, children need to increase diagnosticity, namely
to rapidly map orthography to semantics by selecting letter
combinations that are most informative with respect to
word identity, according to the distributional properties of
word features. This is possible by processing coarse-grained
representations, which code for the presence of informative letter
combinations in the absence of precise positional information
(Grainger and Ziegler, 2011; Traficante et al., 2018), as in the case
of multi-letter combinations.5 In this interactive view of accuracy
and speed, reading would be the product of orthographic,
morphosyntactic, and lexico-semantic processes.

Morphosyntactic Predictors of Reading Accuracy
To explore in more depth the morphosyntactic processes
involved in reading accuracy, we analyzed which syntactic-
comprehension structures predict decoding accuracy. A sentence
requiring the interpretation of a third-person direct object clitic
pronoun [La mucca le_3rdperson_fem_plur_clit sta guardando (“The
cow them is watching” = The cow is watching them)], in
particular, predicted decoding accuracy. Both comprehension
and production of third-person direct object clitic pronouns,
then, predict decoding accuracy. This might be due to the
particular status of third-person direct object clitic pronouns,
which match weak phonological salience to a high load of
morphosyntactic information, as they are marked for person,
gender, number, and case. Moreover, they are subject to syntactic
movement and are placed preverbally with finite verbs, which is
a non-canonical object position. Finally, they are mandatory in
some contexts, forbidden in others, and optional in some others.
These characteristics make third-person direct object clitic
pronouns particularly sensitive to reveal language difficulties. In
this regard, cross-linguistic literature reports clitic pronouns as
a clinical marker of atypical language development in several
languages including Italian (for Italian, see Bortolini et al., 2006;

5Frequent multi-letter compounds can enter the orthographic lexicon and be
processed via the fine-grained route (Grainger and Ziegler, 2011) in skilled
readers. In any case, their processing would not be mediated by morphosyntactic
competence as the processing of morphological constituents.
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Arosio et al., 2014; for French, see Jakubowicz et al., 1998;
Tuller et al., 2011; for a cross-linguistic study on 16 languages,
see Varlokosta et al., 2016), as well as vulnerable in bilinguals
that are scarcely exposed to the target language (for Italian, see
Vender et al., 2016, 2018; Casani, 2020c; Casani and Cardinaletti,
2021). At the same time, clitics’ properties might expose them
to be easily overlooked for their scarce phonological salience or
avoided for their morphosyntactic difficulties during reading.

Reading Errors
As for reading errors made by the two groups, the DD group
made significantly more BUFF (phonological-output-buffer)
errors than the TD group. This does not necessarily imply
the presence of phonological-output-buffer dyslexia in our DD-
sample but reveals a specific difficulty of DD-children in decoding
longer and morphologically complex words. Other error types
did not differ significantly between groups (Figure 3). VIS
and NEGL errors were numerically higher in TD children, but
proportions were small and the difference between groups was
non-significant. Given the high standard deviation, we analyzed
the association between these error types and participants. VIS
and NEGL errors were significantly associated with two different
children of the TD group attending the fifth grade (age = 10;4)
and third grade (age = 8;10), respectively. This suggests some
difficulties in the visual-orthographic analysis stage of reading,
at the top of the reading model (see Figure 1), which should be
carefully evaluated to exclude or confirm the possible presence of
peripheral dyslexia in these two children.

Morphological Reading Errors
Analyses of the parts of speech affected by morphological errors
revealed significant difficulties in decoding function words, i.e.,
determiners, clitic pronouns, and prepositions, but also verbs.
The presence of verbs as the only lexical part of speech that
was significantly affected by MORPH errors is consistent with
studies reporting differences in lexical decision times for nouns,
adjectives, and verbs (for Italian, see Colombo and Burani, 2002;
Traficante and Burani, 2003; for Serbo-Croatian, see Kostić and
Katz, 1987; for Hebrew, see Deutsch et al., 1998; for adults with
acquired language disorders, see a review in Crepaldi et al.,
2011). Deutsch et al. (1998) ascribe these processing differences,
besides syntactic and semantic components, to the distributional
properties of constituents, namely to the fact that “when a
morpheme is common to more words in the language, its impact
on processes of morphological decomposition is prominent”
(Deutsch et al., 1998, p. 1,252). Traficante et al. (2018) suggest
that the processing of Italian verbs might be deemed as more
demanding than that of nouns because Italian verbs belong to a
larger morphological family, as verb roots are shared by about
50 different inflected forms and several derived words, whereas
noun roots are inflected in up to four different ways and are
shared by fewer derivations. The authors refer to fMRI studies
highlighting stronger activation of the left inferior frontal gyrus
associated with longest reaction times during a grammatical-
class switching task (for adult skilled readers, see Marangolo
et al., 2006; Berlingeri et al., 2008; for subjects with Parkinson’s
Disease, see Di Tella et al., 2018; Silveri et al., 2018) to conclude

that processing difficulties might be due to the complexity of
selection and inhibition processes required by the task. These
reasons might explain the significant presence of MORPH errors
in verbs in our sample.

It is worth noting that both phonologically weak (clitic
pronouns, determiners, prepositions) and phonologically salient
words (verbs) are significantly associated with decoding MORPH
errors. This means that these errors might depend on both
phonological and morphosyntactic weakness. The fact that oral
comprehension and production of direct object clitic pronouns
(which are phonologically weak and morphosyntactically
complex) contribute significantly to reading accuracy (see above)
supports this idea.

Semantic Errors and Interaction With
Morphosyntactic Processes
SEM errors were significantly associated with nouns and adverbs.
The co-occurrence of MORPH and SEM errors can be due
to deep dyslexia (Friedmann and Coltheart, 2018), namely an
impairment in both the lexical and sublexical route of reading.
In our sample, MORPH and SEM errors correlate within the
DD group (%s = 0.564, p = 0.036) but not within the TD group
(p = 0.538), thus suggesting the possible presence of deep dyslexia
in the DD sample. The co-presence of comparable rates of
MORPH and SEM errors in the TD group as in the DD group (see
Figure 3), however, suggests that these errors might be affected by
language competence. Generalized mixed analyses showed that
syntactic skills do not predict any of these two error types. As for
syntactic comprehension, this might be due to the nature of the
structures investigated, which mainly involve general syntactic
competence, except item number 5, which involves a functionally
specific structure as a third-person direct object clitic pronoun.
The use of a morphosyntactic-comprehension test specifically
built on the structures that revealed a significant association with
MORPH and SEM errors might give more informative outcomes.

Higher age predicted fewer SEM errors. This might be because
children tend to read via the lexical route as their age (and
expertise) increases. The core of the lexical route of reading
consists of two lexicon storages containing the orthographic and
the phonological lexicon, respectively. A known orthographic
string activates the correspondent entry in the input orthographic
lexicon. This lexicon is organized by written word frequency.
Hence, compared to words with similar orthographic (and
phonological) properties, the more frequent, the more accessible
words are. The activated lexical representation in the input
orthographic storage can be either processed through the
semantic system assigning meaning to the read word or directly
sent to the phonological output lexicon assigning phonological
information to the read known word. The direct connection
between the two lexicon storages, possibly mediated by the
semantic system, allows for both accurate and faster conversion
(Coltheart et al., 2001; Castles, 2006). According to the self-
teaching hypothesis of phonological decoding (Perry et al., 2013),
the activation of preexisting words in the phonological lexicon
allows for the creation of orthographic entries, so that phonology
works as a self-teaching device (or “built-in teacher”) refining
and strengthening the network of letter-sound connections.
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The teaching signal that is internally generated by phonology
contributes to increasing the decoding network (Ziegler et al.,
2020). This might explain the predictive effect of age on the
decrease of SEM decoding errors, mainly due to the “built-in
taught” interactive development of phonology and lexicon thanks
to the increased reading experience. We found a significantly
higher rate of SEM errors by DD children in third grade,
followed by a significant decrease between third and fourth
grade, which equated their SEM-error rate and that of TD
children. This suggests that DD might be responsible for slower
development of the lexical route of reading. Given the small
number of participants across grades, however, this result should
be verified in larger samples, as it might be differently affected by
different types of DD.

Taken together, these data highlight the interactive role
of lexical skills and reading skills. In this regard, a recent
longitudinal study (Casani, in preparation, 2021) confirmed
predictive effects of lexical and syntactic skills on written
decoding. Moreover, it found a significant role of school-grade
in vocabulary acquisition but no evident effects of school-grade
on more complex syntactic abilities, i.e., clitic production under
the condition of increasing morphosyntactic difficulties (for
information on the test used, see Casani and Cardinaletti, 2021)
between the last year of kindergarten and the second grade of
primary school in mono and bilingual children. A significant
increase in children’s receptive vocabulary was evident only
between kindergarten and second grade but not in first grade. The
author suggests that the instructional input received in primary
school, which also entails a certain metalinguistic component,
had a role in the development of children’s vocabulary.

Given these data, the mentioned self-teaching hypothesis,
and the body of research proving the effects of vocabulary on
school achievements (for a review, see Elleman et al., 2009),
we can motivate an interactive development of vocabulary
and reading, with reciprocal effects. In this light, reading is
the multicomponent product of interactive processes including
phonological, morphological, morphosyntactic, and semantic
skills. Similar to what happens in the interactive development
of phonemic awareness and reading (see Casani, in preparation,
2021), good morphosyntactic and lexical skills might improve fast
recognition of function words as well as morphological strings,
such as free and bound morphemes and compound constituents;
at the same time, increased abilities to recognize these strings
might improve their oral mastering. In this framework, an
important role in reading lies in the interaction among
morpho-semantic, morpho-orthographic (Feldman et al., 2009),
and morpho-syntactic processes, whose successful cooperation
should facilitate morpho-lexical access.

CONCLUSION

The present study demonstrates that oral morphosyntactic skills
play a role in reading accuracy for both DD and TD children
in a shallow-orthography language like Italian. Consistent
with the dual-route approach to orthographic processing
(Grainger and Ziegler, 2011), reading accuracy was mediated by

morphosyntactic competence, which helped process fine-grained
orthographic representations maximizing precise ordering of
letters, such as morphemic constituents. On the other hand,
reading speed was mainly affected by familiarity with coarse-
grained orthographic representations coding for the presence
of informative letter combinations without precise positional
information (Grainger and Ziegler, 2011; Traficante et al., 2018),
such as multi-letter combinations.

Third-person direct object clitic pronouns were confirmed
as a sensitive structure not only for oral language but also for
written language, as both their comprehension and production
predicted decoding accuracy. We attributed this sensitivity to
the fact that clitics match weak phonological salience with a
heavy load of morphosyntactic information. Direct object clitic
pronouns, determiners, and prepositions, as well as verbs, were
significantly associated with MORPH decoding errors, thus
suggesting that these errors are due to both phonological and
morphosyntactic competence.

Age predicted a decrease of semantic decoding errors,
meaning that children generally tend to read via the lexical route
as their age increases. This is consistent with the development of
the orthographic step of reading (Frith, 1985), namely of fine-
grained chunks (Grainger and Ziegler, 2011) to be processed
via the lexical route (Coltheart et al., 2001). We hypothesized
that DD might slow down the acquisition of these processes as
well as morphosyntactic skills. In any case, chunking the text
into meaningful orthographic strings, which include free and
bound morphemes, function words, morphological-compound
constituents, as well as frequent multi-letter combinations,
improves the reading performance by reducing the number
of units to be processed (Traficante et al., 2018). Increased
familiarity with these units and their distribution, deriving from
higher morphosyntactic, lexical, and orthographic competence
might improve their decoding.

Since children tend to read via the lexical route as their
expertise increases, interventions to enhance their familiarity
with functional strings should be planned timely to avoid
resorting to inadequate lexical-orthographic compensation
strategies, which are required by increasingly demanding texts
proposed in school. This might facilitate, in particular, the
reading of longer and morphologically complex words, in
which DD children revealed particular difficulties, through the
decomposition into phonologically and semantically meaningful
chunks to be processed via the lexical route.

These data argue in favor of a multicomponent approach
to reading, in which linguistic, metalinguistic, orthographic,
and cognitive skills interact. In the Italian shallow orthography,
morphological competence can affect decoding since the second
grade (for studies on the role of morphological awareness in
Italian reading, see Burani et al., 2002, 2008; Marcolini et al.,
2011; Traficante et al., 2011; for a longitudinal study showing
the role of (morpho)syntactic competence in the reading of
Italian mono and bilingual children, see Casani, in preparation,
2021). It is then advisable to assess the linguistic profile
of children during DD diagnoses to establish whether some
reading errors are related to morphosyntactic difficulties. In
these cases, in particular, a morphosyntactic training aiming at
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recognizing function elements, which might be easily mistaken
for their morphological complexity and/or overlooked for their
phonological weakness, might be useful to increase reading
accuracy. Longitudinal intervention studies might support this
statement. At the same time, cross-sectional studies are needed to
explore the age of impact of morphology on reading in languages
with different morphological richness and orthographic depth.
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