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The huge volume of multi-modal neuroimaging data across different neuroscience commu-
nities has posed a daunting challenge to traditional methods of data sharing, data archiving, 
data processing and data analysis. Neuroinformatics plays a crucial role in creating advanced 
methodologies and tools for the handling of varied and heterogeneous datasets in order to better 
understand the structure and function of the brain. These tools and methodologies not only 
enhance data collection, analysis, integration, interpretation, modeling, and dissemination of 
data, but also promote data sharing and collaboration. 

This Neuroinformatics Research Topic aims to summarize the state-of-art of the current achieve-
ments and explores the directions for the future generation of neuroinformatics infrastructure. 
The publications present solutions for data archiving, data processing and workflow, data min-
ing, and  system integration methodologies.  Some of the systems presented are large in scale, 
geographically distributed, and already have a well-established user community. Some discuss 
opportunities and methodologies that facilitate large-scale parallel data processing tasks under 
a heterogeneous computational environment.

We wish to stimulate on-going discussions at the level of the neuroinformatics infrastructure 
including the common challenges, new technologies of maximum benefit, key features of next 
generation infrastructure, etc.  We have asked leading research groups from different research 
areas of neuroscience/neuroimaging to provide their thoughts on the development of a state of 
the art and highly-efficient neuroinformatics infrastructure. Such discussions will inspire and 
help guide the development of a state of the art, highly-efficient neuroinformatics infrastructure.
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The enormous volume of multi-modal neuroimaging data across different neuroscience research
communities poses a daunting challenge to traditional methods of data sharing, data archiving,
data processing, and data analysis (Van Horn and Toga, 2014).

Neuroinformatics plays a crucial role in creating advanced methodologies and tools for the
handling of varied and heterogeneous datasets in order to better understand the structure and
function of the brain. These tools and methodologies not only enhance data collection, analysis,
integration, interpretation, modeling, and data dissemination, but also promote data sharing and
collaboration (Cox, 1996; Smith et al., 2004; Friston, 2006; Marcus et al., 2007; Dinov et al., 2009;
Van Horn and Toga, 2009) which are essential elements for making progress efficiently in this
rapidly burgeoning field.

The purpose of this special issue is to use case studies of the state-of-art neuroinformatics
infrastructure to anticipate and project future generation systems.

A number of leading research groups from different parts of the world were invited to participate
in this research topic. Each of the contributions provided a showcase solution to domain specific
challenges we currently face. We will try to review these articles according to the categories of the
issues they covered. Some articles covered multiple categories. However, due to the limited space,
we only discuss them under one category.

Articles by Bartsch et al. (2014), Goscinski et al. (2014), Haselgrove et al. (2014), King et al.
(2014), Marenco et al. (2014), Muehlboeck et al. (2014), Rane et al. (2014), Rautenberg et al. (2014),
Sherif et al. (2014), and Wood et al. (2014), present solutions for data archiving and related issues
including, how to efficiently collect, store, query, visualize and share large volume neuroimaging
data. Some of these systems are large in scale, geographically distributed, and already have a large
dataset and a well-established user community.

Beyond neuroimaging, Sobolev et al. (2014) present a data management platform for
neurophysiological data, and Mouček et al. (2014), and Tripathy et al. (2014) describe techniques
and methodologies for collecting and managing electrophysiological data.

Once the incoming data have been archived, there are many other important issues that need to
be addressed.

First, how to visualize the data to meet domain-specific needs is still an open-ended research
question. Gutman et al. (2014) present a light framework to visualize DICOM images stored in the
Extensible Neuroimaging Archive Toolkit (XNAT). Hänel et al. (2014) describe an application with
two designs for the 3D visualization of the human brain.

Second, how to efficiently process huge volumes of datasets is challenging especially when
bottom-up explorative data analysis becomes more and more popular. Contributions from
Andronache et al. (2013), Da Mota et al. (2014), Dinov et al. (2014), Eklund et al. (2014), Friedel
et al. (2014), and Mahmud et al. (2014), discuss opportunities and methodologies that facilitate
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large-scale parallel data processing tasks under a heterogeneous
computational environment.

Third, how to mine the data i.e., how to extract meaningful
information from the data, is the most challenging part of
all. Liu and Calhoun (2014) provide a review of multivariate
analyses approaches in Imaging Genetics. Goh et al. (2014)
discuss challenges in neuroinformatics of Traumatic Brain Injury
neuroimaging analysis in the context of structural, connectivity,
and functional paradigms. The manuscript by Miller et al.
(2013) describes novel neuroinformatics technologies at 1mm
anatomical scale based on high-throughput 3D functional and
structural imaging technologies of the human brain. Xiang
et al. (2014) explored novel data analysis methodologies and
platforms for handling large volumes of neuromagnetic data
with a very wide range of temporal frequencies. Kauppi et al.
(2014), introduce a versatile software package for inter-subject
correlation based analyses of fMRI data.

Finally, there are a number of contributions discussing
other topics important to the neuroinformatics infrastructure.
Zaslavsky et al. (2014) describe a prototype implementation
of digital atlasing infrastructure initiated by the International
Neuroinformatics Coordinating Facility (INCF). Herrick et al.
(2014) showcase how to use dictionary service to extendmetadata

across XNAT database instances. Sarwate et al. (2014) review
the relevant literature on differential privacy, a framework for
measuring and tracking privacy loss in these settings, and
demonstrate the feasibility of using this framework to calculate
statistics on data distributed at many sites while still providing
privacy. Das et al. (2014) report a case study on how to foster
discussion and communication by using an open-source content
management system. Evans and Polavaram (2013) provide a
general commentary article in the field of computational models
of biologically realistic neuronal networks.

We intend this Special Issue as more than a compendium of
current systems. We wish to stimulate on-going discussions at
the level of the neuroinformatics infrastructure including: –what
are the common challenges the next generation of infrastructure
will have to address? –what new technologies will be of maximum
benefit? –how will we go beyond the limits of the current
generation infrastructure? and –what are the key features next
generation infrastructure should implement? Such discussions
will inspire and help guide the development of a state of
the art, highly-efficient neuroinformatics infrastructure. Such
research community wide productive catalytic reactions will be a
testament to the worthiness of our efforts in creating this Special
Issue.
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Clinical research studies generate data that need to be shared and statistically analyzed
by their participating institutions. The distributed nature of research and the different
domains involved present major challenges to data sharing, exploration, and visualization.
The Data Portal infrastructure was developed to support ongoing research in the areas
of neurocognition, imaging, and genetics. Researchers benefit from the integration of
data sources across domains, the explicit representation of knowledge from domain
experts, and user interfaces providing convenient access to project specific data resources
and algorithms. The system provides an interactive approach to statistical analysis, data
mining, and hypothesis testing over the lifetime of a study and fulfills a mandate of public
sharing by integrating data sharing into a system built for active data exploration. The
web-based platform removes barriers for research and supports the ongoing exploration
of data.
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1. INTRODUCTION
Data exploration is an interactive approach involving extrac-
tion of relevant characteristics from complex datasets with
the aim of formulating hypotheses that lead to collection of
new data and experiments (Tukey, 1980). In order to shorten
the time required for producing and confirming novel results
the interactive component of data exploration can be imple-
mented as a frequent switching between phases of data explo-
ration for the purpose of generating hypotheses and hypothesis
testing. However, without proper statistical tools that imple-
ment appropriate tests and control for multiple comparisons,
data exploration can easily degrade into data fishing, with
poor reproducibility of hypothesis test results in independent
samples.

Data exploration can also be useful for data curation, qual-
ity control, guidance, and early intervention if applied during the
data acquisition phase of a project. Thus, effective data explo-
ration tools can improve data quality by identifying problems
of study design or execution in a timely fashion. Furthermore,
data exploration tools can facilitate analyses by abstracting them
from technical considerations such as data location, how infor-
mation is encoded and what file formats are used. Diverse
data sources such as demographic, neurocognitive, imaging,
and genetic information can be analyzed in a unified man-
ner by implementing guidelines for the selection of appropri-
ate statistical models. Providing a system that actively supports
data exploration combined with hypothesis testing across data
modalities is a valuable adjunct to facilities focused primarily
on data sharing like the Neuroimaging Informatics Tools and
Resources Clearinghouse (NITRC) (Buccigrossi et al., 2008) and
the database of Genotypes and Phenotypes (dbGaP) (Mailman
et al., 2007).

1.1. DATA SOURCES
Medical imaging studies collect anatomical and functional vol-
umetric images in search of biomarkers to detect disease or to
characterize normal development. Because the pictorial repre-
sentation of structures in imaging does not easily lend itself to
statistical analysis (unstructured data), the imaging data are pro-
cessed, usually automatically, resulting in structured data with
an organization into quantitative measurements for features in
regions of interest (Dale et al., 1999; Desikan et al., 2006; Hagler
et al., 2009). If image data are acquired by multiple sites each
device might introduce systematic variation in the data that can
hinder the detection of effects or introduce spurious correlations.
Documenting auxiliary measures such as the identity of the imag-
ing scanner (i.e., device serial number) and the version of the
software used to perform image reconstruction provides essen-
tial additional information that can lead to increased power and
accuracy in statistical analyses.

Demographic information, neuromedical history, and self-report
measures are all captured by questionnaires and digitized in
tabular form which results in a mixture of categorical vari-
ables and continuous variables like gender, age, or household
income. Information about patient and family history and socio-
economic factors provide important context for the interpreta-
tion of data from other sources and are often correlated with
clinical outcomes (Monzalvo et al., 2012).

Neurological function and behavior are measured by tests
of cognition, emotion, motor function, and sensory function.
Standardized tests to obtain these measurements are available
(Wechsler, 2004; Weintraub et al., 2013) and can be used to obtain
either raw or age-normalized scores.

High density gene chips measure variation in single nucleotide
polymorphisms (SNPs) in a large number of locations across the
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whole genome. Typically, on the order of 0.5–2.5 million locations
are genotyped for each participant (1000 Genomes, 2012; Fjell
et al., 2012). Each location is coded as one of several (two or more)
alleles for each study participant. Differences in the frequencies of
alleles can be linked to behavioral or structural phenotypes. The
distribution of alleles can also be compared to known reference
populations, providing information about the genetic ancestry
mixture for each participant in the study.

Structured data from these different modalities need to be
combined for appropriate statistical analyses that can also con-
trol for measured covariates. For example, genetic ancestry may
covary with imaging measurements (Biffi et al., 2010), or socio-
economic data may covary with cognitive measurements (Hurst
et al., 2013). When this information is integrated into the statisti-
cal analysis, ancestry admixture effects can be disassociated from
effects driven by socio-economic factors.

1.2. APPLICATIONS
Many open-source projects and commercial applications pro-
vide support for data acquisition and study control (Wang et al.,
2008; Harris et al., 2009; OpenClinica LLC., and collabora-
tors), storage and sharing of imaging data (Marcus et al., 2007;
DCM4CHEE, 2013), viewing collections of images (Rosset et al.,
2004; Weasis, 2013), organizing collections of genetic informa-
tion (Purcell et al., 2007), statistical analysis of cognitive, self-
report and psychophysical measurements (JMP, 1989–2007; R
Core Team, 2013). One notable difference between these applica-
tions and the application presented here (Data Portal) is that the
Data Portal promotes integrated data exploration and statistical
analyses across behavioral, imaging, and genetics domains.

In this paper we describe the features of the data portal for
exploratory data analysis and hypothesis driven statistical analy-
sis in the context of the Pediatric Imaging, Neurocognition and
Genetics (PING) project (Fjell et al., 2012, http://pingstudy.ucsd.

edu, see Figure 1). The PING study contains information from
over 1500 subjects between the ages of 3 and 20 years and was
created to provide a publicly shared database able to link genetic
information and behavioral measures with developing patterns of
brain structural connectivity and morphology.

The Data Portal allows for the simultaneous exploration of
roughly 2300 distinct morphological, demographic, and behav-
ioral measures as well as 500,000 genetic measures obtained on
each study participant. Investigators can define and execute sta-
tistical models online for data exploration and hypothesis testing.
This makes it possible to discover and explore patterns in multi-
ple data domains while controlling for covariates using a rigorous
statistical framework. For a given statistical model the portal also
supports the exploration of multi-modal image data for any indi-
vidual subject. The displayed data include structural magnetic
resonance images (MRI), diffusion tensor images (DTI) such as
fractional anisotropy (FA), apparent diffusion coefficients (ADC),
and directionally encoded color (DEC) images, atlas based fiber
tracks and surface reconstructions for vertex (surface point) based
measures for cortical thickness, regional surface area expansion
and regional volume expansion. The combination of study-level
analysis with the capabilities of personalized, participant spe-
cific exploration of key developmental features support data

exploration efforts especially during the data acquisition phase of
a project.

2. MATERIALS AND METHODS
2.1. NOMENCLATURE
The data portal distinguishes between projects as collections of
data and applications as project neutral entities for data analy-
sis and visualization. This separation supports several projects
hosted side-by-side on the same system. Applications use access
to project data to implement specific workflows. As an exam-
ple, the table application can be used to review the registration
of diffusion weighted images and structural scans for a large
number of subjects. Images are displayed in a table with selected
demographic entries for each session. Two example images are
displayed in separate columns for each of the structural scans
(horizontal section of T1) and the registered diffusion weighted
scans (horizontal section of FA). This arrangement of subject
information visually highlights any misalignment of images as
disagreement of structural information displayed in the two
image modalities. A link guides the user to the image view-
ing application that provides a multi-planar reconstruction of
available image volumes.

As a secondary workflow the table application helps to iden-
tify image data for a known subject identification number. The
user can filter the table columns for subject and visit identification
number to identify a particular study session.

Applications implement a restricted set of functionalities but
provide interfaces that allow them to exchange information with
each other. For example, the table application is able to filter
data and provides links to the image viewing application. The
image viewing application accepts this information and is able
to visualize three dimensional reconstructions of multi-modal
images.

For this work we refer to collections of subject data as sessions.
For example, all image data and all the neurocognitive measures
obtained during a single visit are collected into a single session
that is identified by the subject’s identification number and a visit
number or date. Typically, the session information is stored in a
single row in a data table. Measures identify the quantitative or
qualitative data obtained for each session and map to columns in
this table. Any measure that is not available for a particular session
is left empty.

2.2. TECHNOLOGY
The data portal is implemented using a rich client-server, web-
based architecture. The web-server delivers data in JavaScript
Object Notation (JSON) format together with application code
delivered as JavaScript. The clients receive the data, execute the
application logic and render the result. Server-side data com-
pression and client-side caching of static data were found to be
effective in limiting the resources required on the server (vir-
tual machine with 2GB of main memory and 2 CPU’s). The
minimum hardware requirements on the client are 1 GHz or
faster processor with at least 2 GB RAM and graphics hard-
ware supporting WebGL/OpenGL rendering. The web-interface
rendering is implemented using responsive web design and gen-
erates appropriate interfaces for workstation computers, laptops,
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FIGURE 1 | Entry page to the PING data portal reflecting the

architecture of the data portal as a collection of workflow driven

components. A navigation menu structure and project data summary is

displayed in the top half of the page followed by a list of
eight application groups. See section 2 for a description of each
component.

tablet computers, and smart phones. The application has been
successfully tested and is functional on all of these device types.

As a general rule all applications transfer project data from the
server to the client machine. The client’s browser is responsible
for filtering and rendering of the data. All modern browsers have
advanced built-in capabilities for data caching, which reduces the
dependency of the application on network delay because succes-
sive requests can be served from the client’s cache. The availability
of many JavaScript based libraries for data conversion, analy-
sis, and visualization make it straight forward to adapt novel
visualization techniques. An example of a JavaScript library that
supports many data visualization tasks is D3 (Bostock et al.,
2011). Compute intensive applications such as image analysis
cannot be efficiently implemented in JavaScript yet (but see first
attempts to improve processing speed by ASM, 2013; Pixastic,

2013). Specialized applications for statistical analysis are also not
yet available as a component for web-based architectures. For
both of these use cases we integrate server-side processing instead.
We will mention in each of the following sections if a server-side
implementation was selected.

2.2.1. Server
Server side document storage of structured data is done by
text files in either JSON format or in comma-separated-values
format (csv) which has been selected as a format of lowest com-
mon denominator available at the different data acquisition and
processing sites. Whereas more traditional relational databases
require an interface to import new data into the data model,
our simplified approach stores the original data delivered by each
site. As such, updates of the data are synonymous with replacing
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files and data integrity and versioning are implemented by ver-
sion control software. Additional information such as user logins,
project descriptions and project documentation is stored using
JSON notation. This notation is compact enough to be efficient
for transport, is supported for automatic parsing on both server
and client side and can be viewed and edited as text.

Due to the distributed nature of the PING project, with 10 sep-
arate data acquisition sites, it was beneficial to keep a separation
of imaging-derived measures (termed imaging spreadsheet) and
measures related to demographic, genetic and cognitive informa-
tion (termed super spreadsheet). This reduced the dependencies
between the research groups handling onsite data acquisition and
the group responsible for image data processing as they operated
on different schedules. Additionally to the imaging spreadsheet
and the super spreadsheet each user of the portal can provide
a third, private spreadsheet with supplemental data to integrate
derived measures or measures not part of the official dataset
(such as site-specific additional measures). Merging of spread-
sheets is implemented in the R statistical language (R Core Team,
2013) (freely available software), resulting in an efficient binary,
user-specific representation of the study data on the server.

Investigators depend on a stable version of the study data for
publication purposes. In order to support reference data sets as
well as frequent data updates, the Data Portal provides versioning
for uploaded data sets. Users can select the currently active version
they wish to work with. As selection of the active version is specific
to a browser session users can use this feature to document data
differences.

2.2.2. Client
Client applications are built using HTML5 (2013) technology
supporting modern application interfaces that run inside stan-
dard web-browsers. The client has been successfully tested on
Internet Explorer 9.0 (and later), Chrome (version 31 and later),
Firefox (version 26 and later), Safari (version 7 and later), and
Opera (version 18 and later). The user interface is built using the
bootstrap front-end framework (Twitter, 2013) with additional
jQuery user interface elements (jQuery, 2013). It provides a con-
sistent look and feel across the different Data Portal applications
and supports multiple device types and screen form factors.

2.3. STATISTICAL ANALYSIS
The ability to collate data from multiple sources allows explo-
ration of inter-relationships in the data in a rigorous manner.
In order to support online statistical analyses in the Data Portal,
we implement an application that combines a web-based inter-
face with server-side statistical processing using R (R Core Team,
2013).

2.3.1. Region of interest based analysis
The application provides input fields organized into a model
description mask (see top part of screen capture in Figure 2) that
allows the user to specify variables of interest (see section 2.5).
The application does not require prior knowledge about the syn-
tax used by the R programming language and provides immediate
feedback if terms are entered that are not present in the data dic-
tionary. Descriptions for all terms are displayed as tool tips to the

user. The model variables include a dependent variable, an inde-
pendent variable and an arbitrary list of user defined covariates.
Additionally the input mask also supports the definition of a sep-
arate variable that should interact with the independent variable.
In models that are used to describe interactions it is important
to include both the main effect of the interaction variable and
the interaction term itself which is automatically the case if the
interaction field is used.

Additionally, we identified sources of variation known to
influence a variety of measures. These system covariates include
the device serial number of the imaging device, the household
income and level of education as socio-economic factors, and
genetic ancestry factors derived from gene expression patterns.
Users can disable the system covariates, but they are enabled
by default (options displayed in green in Figure 2). Providing
these factors is one way in which domain expert knowledge
is implemented in the application. Genetic ancestry factors are
encoded as probabilities and are therefore dependent on each
other. The system thus automatically removes one of the ances-
try groups from the analysis to provide the statistical analysis
with the correct degrees of freedom. Utilizing meaningful pre-
sets and automatic model extensions in this fashion help to
make the statistical analysis application accessible to a wider
audience.

Regression analyses are performed on the server using a
generalized additive model (GAM) framework with automatic
smoothness constrains (Wood, 2013). GAMs include usual linear
regression as a special case and are applicable to cross-sectional
(single time point) analyses. R reads the project data in binary
form, executes the imported model and generates summary
measures and model comparison statistics as temporary files.
Summary statistics together with model curves and data point
coordinates are saved as JSON and transmitted to the client,
which is responsible for presenting the data to the user.

Suitable matrix formulations for the computationally inten-
sive parts of the R statistical analysis have been implemented
to improve performance of the application. As a further opti-
mization the analysis is restricted to session data for which all
model variables are non-missing; sessions with missing values are
removed as a first step in the analysis. It is possible in princi-
ple to do an initial multiple imputation step for missing data,
but this is not currently implemented. The resulting indepen-
dent and dependent variables are rendered by the client as an
interactive scatter plot. Axis labels are inserted using the short
description obtained from the data dictionary application, and
each data point can be queried using the mouse to display its
value and basic demographic information such as gender and
age. A link presented to the user for each data point provides
a direct connection to the image viewer application that loads
relevant session images. Together with the scatter plot, model
curves (GAM fits) are displayed in order to provide feedback
to the user about the relationship between the dependent and
independent variables, including interaction terms. For exam-
ple, if age is used as an independent variable and gender is
used as an interaction term, separate mean curves for males
and females are displayed. If the effect of the predictor variable
is modeled as a smoothly varying function, the model curves
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FIGURE 2 | Screen capture of the data exploration application

displaying a statistical analysis of the effects of age on the total

cortical area for male (red dots and curve) and female (blue dots and

curve) children in the PING study. The model corrects for the effects of
intra-cranial volume, scanning device, socio-economic factors, and genetic
ancestry. Interface components that relate to model specification are

shown above the scatter plot. The model is executed on the server using
R after selecting the “Compute Model” option. Resulting model curves
and residualized data points are plotted together with summary statistics
in the middle and lower parts of the web-page. The scatter plot supports
an interactive legend, changes in magnification, and data points that link
back to imaging data.

might indicate gender specific changes in the predicted vari-
able. The freedom to specify arbitrary variables of interest makes
this statistical framework suitable for a wide number of research
questions related to age trajectories of brain development. As
an example in section 3 we show how to use the PING data
portal to analyze the influence of socio-economic factors on
imaging measures while correcting for age, gender and genetic
factors.

Together with a visual representation using scatter plots and
model fits, the application also displays the statistical sum-
mary information computed by R (lower part of Figure 2). This
includes the version number of the data, the generated model
specification and the p-values for each of the factors. Key model
characteristics such as Akaike (1974) and Schwarz’s Bayesian
information criteria (Schwarz, 1978) are displayed as well and
can be used to compare models with different covariates with
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each other. Both of these model selection procedures help guard
against over-fitting by inclusion of too many variables with small
effects.

In order to document a particular model users can either
export scatter plots in image or spreadsheet format or users can
download the data and the R script used for processing. This
information can be used to document findings, and users with
appropriate knowledge of the statistical models can also alter the
script. During development this feature helped in detecting errors
created, for example, by inconsistent encoding of measures in the
spreadsheets.

2.3.2. Surface based analysis
In addition to region of interest based measures derived from
imaging data, the PING study also produced surface based
measures for cortical thickness, regional area expansion, and
regional volume expansion for each study participant. In this
mode the vertex measures are used as dependent variables and

the R model is run for each vertex. The resulting surface maps
represent regional effect sizes for the (1) user-defined inde-
pendent variable, (2) the main effect of the interaction vari-
able, if any, (3) its interaction with the independent variable,
and (4) estimates for the dependent variables per vertex over
the range of the independent variable. Surface maps are writ-
ten out as JSON and requested by the client. The client ren-
ders the surfaces interactively and maps the p-values as color
(Cabello, 2013; WebGL, 2013); animated maps are used to
show the values of the dependent variable over the range of
the predictor. The brain geometry is rendered as two inde-
pendent hemispheres and the user interface provides keyboard
shortcuts to allow for the inspection of the inter-hemispheric
space (see Figure 3).

By default surface maps are rendered using a static surface
geometry derived from an atlas brain. The application also pro-
vides an option to calculate and display the geometry as a pre-
dicted variable. In this mode the surface geometry is deformed

FIGURE 3 | Screen capture of the surfer viewer application. Color is
used to map the − log10(p) values of the main effect of age onto each
vertex (WebGL cortical surface rendered on the left, same statistical
model as in Figure 2). The two user interface components displayed
are the Colormap Editor (bottom right) which controls a step-wise linear
colormap and the “Controls” interface (middle right) that provides a

selection of main and interaction effects as well as an option to display
the predicted values for each vertex over the range of the predictor
(age). Further options include surface re-orientation, background color
selection, control of the false discovery rate to correct for effects of
multiple comparisons, and an option to adjust the geometry as a
predicted variable.
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to show the shape trajectories of predicted variables such as age
corrected for influences of the selected covariates.

Performing the same statistical analysis for each vertex requires
multiple-testing corrections for tests of significance. The applica-
tion provides for a correction for multiple comparisons using the
false-discovery rate (FDR) (Benjamini and Hochberg, 1995). The
client uses this information to adjust its color mapping for p-value
maps using neutral gray tones for regions that are not deemed
significant. The user has control over the color mapping and can
adjust the colors in the application using step-wise linear transfer
functions. Users may also select a point on the surface using the
mouse. The name of the corresponding closest region of interest
is displayed in that case together with a highlight that shows the
outline of the region.

2.4. VIEWING IMAGES
Image data are often acquired in search of biomarkers for diseases.
Such biomarkers are derived from anatomical and functional
images and are screened by statistical methods for effectiveness
in diagnosing disease. In order to get reliable, observer indepen-
dent measures, automated atlas based image processing pipelines
are used (Dale et al., 1999; Hagler et al., 2009). Quality of the
generated data depends on appropriate scanning sequences and

adherence to scanning protocols. In order to detect protocol vio-
lations and other technical anomalies automated and manual
quality control of images and derived segmentations are required.
This control step is used to identify cases that have to be rejected
due to artifacts created for example by subject motion, incorrect
scanner settings, or signal dropout. The image viewer application
(see Figure 4) supports such a quality control workflow by pro-
viding a direct link between raw image data and volumes derived
after automatic registration and processing. As an example T1
weighted intensity images and color coded cortical and sub-
cortical labels are fused together to allow for a visual inspection
of cortical segmentation relative to anatomical scans of T1 image
intensity. Scans derived from diffusion weighted imaging are also
available as overlays onto anatomical images which supports the
inspection of multi-modality registration procedures.

The image viewing application presents a multi-planar recon-
struction of volumetric data that is displayed as linked coronal,
axial and sagittally oriented images for each modality. A cross-hair
tool is used to identify a 3D location in each image stack and the
corresponding two orthogonal images closest to this location are
loaded from the server and displayed. Scrolling also requests new
image tiles from the server. The image storage on the server con-
tains the images for all three orientations registered across several

FIGURE 4 | Screen capture of the image viewer application. A multi-planar
reconstruction displays axial (top left), sagittal (top right), and coronal (middle
right) images linked by a common cross-hair (pale yellow). Below, a row of
axial thumbnail images depict available image modalities such as (left to right)
fused sub-cortical segmentation with T1-weighted anatomical image,
fractional anisotropy (FA), mean diffusivity, T1-weighted anatomical image,

color coded directional image stack, fused FA and T1 image stack, fused fiber
atlas tract with T1 and fiber atlas tract image stack. All image modalities are
registered with each other and selection of a thumbnail image will display the
corresponding volumetric information in the multi-planar viewer component
above the row of thumbnails. All images support slice browsing using the
mouse wheel, brightness, and contrast calibration, and image zoom.
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image modalities for each session. The client application displays
thumbnail images for each image modality available and switch-
ing between modalities allows the user to inspect a specific image
location across image modalities. The viewer supports image
zoom and pan operations and provides basic adjustments for
contrast and brightness. On-demand loading of image tiles and
browser caching of already downloaded images allow for inter-
active performance over a pre-computed image cache containing
several millions of images.

2.5. DATA DICTIONARY
We define a data dictionary as an organization that structures
technical terms and their textual descriptions. It is used in this
work as the basis for a machine interpretable and processable
documentation of the PING related technical terms. The primary
use of this resource is to allow researchers not familiar with the
PING project to identify measures of interest. The scope of the
PING data dictionary is restricted to terms that describe imaging,
demographic, self-report, neurocognitive, and genetic measures.

The initial form of the data dictionary is created from the col-
umn headers of the data spreadsheets gathered by different units
in the research study. Each entry is used as a category (term) with
two attributes, a short description which is suitable as an axis label
and a textual explanation describing the data encoding in detail.
This textual information is made available as a web-service, and
data portal application such as the statistical analysis tool utilize
this resource.

The data dictionary application provides two visual represen-
tations of the data dictionary. All terms are displayed as a list in the

data dictionary view using HTML5 with embedded RDFa (W3C,
2012, see Figure 5). This structured representation allows for
data integration and reasoning using external tools. Furthermore,
where appropriate, the list displays links to external resources
such as the PhenX toolkit (Hamilton et al., 2011). The structured
graph view facilitates the data exploration of the data dictionary
terms. In the PING study more than 2300 measures are available
for each study session. Browsing through this collection of terms
is supported by imposing a structure that links related terms. The
linkage is not exhaustive but merely done in an effort to balance
the displayed hierarchy in terms of the number of hierarchy levels
and the number of leaf nodes in each category.

We define a term as either a string of characters that is taken
from the initial data dictionary or a grouping term that is accom-
panied by a pattern that maps the grouping term to a subset of
all terms. Patterns are implemented as regular expressions utiliz-
ing linguistic relationships between terms similar to the work of
Ogren (2004). The PING data dictionary lends itself to this analy-
sis as it contains many terms that are derived hierarchically using
a small sub-set of root strings. For example, 700 imaging related
terms contain the initial string “MRI_” followed by a categoriza-
tion of the measurement type as either cortial area, thickness,
volume, or contrast, followed by an indication for left or right
hemisphere and a string characterizing the name of the region of
interest. Further examples include self-report measures using the
PhenX toolkit (Hamilton et al., 2011) that start with the string
“PHX_”, genetic ancestry measurements starting with “GAF_”,
and cognitive measurements obtained using the NIH cognitive
toolbox (Weintraub et al., 2013) that start with the letters “TBX_”.

FIGURE 5 | Screen capture of a section of the data dictionary

displaying NIH toolbox measures. A sequential number is displayed
together with the dictionary term on the left side of the page. On the
right side, the corresponding axis label (top) and the available long

description (bottom) is listed. Links to external resources such as the
PhenX toolkit are embedded into the page. This HTML5 encoded
document also contains the RDFa structure information to facilitate
knowledge extraction.
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Regular expressions are a flexible and efficient way to test large
collections of strings. But term clustering using string matching
methods is known to be only efficient for small sets of pat-
terns (Tanaka, 1995). Currently about 100 patterns are used to
describe the balanced hierarchical structure of the PING project
data dictionary. A main requirement for global pattern matching
to work is that the string representation of terms used through-
out the project is unique. In certain cases we found that terms
shared the same name, e.g., “Age” was used to indicate the age
at imaging examination and also in a separate group to indi-
cate the age at the neurocognitive examination. In an effort
to resolve these cases new terms were introduced to make the
entries unique (e.g., “Age_At_IMGExam”, “Age_At_NPExam”).
This approach to normalization is clearly inefficient and further
efforts are needed to include relational types between categories
as well as attributes for synonyms and abbreviations. In most
cases, if new entries are added to the data dictionary and if those
new entries follow already established naming conventions, no
change in the pattern set is required to integrate the measure-
ments into the structure. To validate correctness, a coverage check
is performed to ensure that (1) the new term is matched by a
pattern and (2) appears in the correct place in the hierarchy. If
the new term is not correctly matched but conforms to the nam-
ing conventions the list of patterns is changed. Changes include
the extension of existing patterns to cover the new term using
alternations and the introduction of new categories as they are
required.

In order to visually represent the derived structure, we use an
interactive graph layout (Bostock et al., 2011) which adjusts if ele-
ments are added or removed (see Figure 6). Only the first two
levels of the hierarchy are displayed initially. The user can select
a term, the corresponding pattern is executed, and the hierar-
chy level below the selected term is populated with the matching
entries. The layout engine adds the structure using animated
unfolding and adjust the spacing between terms. Exploration of
the data dictionary structure is therefore interactive and efficient
as it only depends on the parts of the hierarchy that the user
explores.

2.6. GENETIC INFORMATION
Genotyping using microarrays generates vast amounts of data
for each study participant. The size of a typical data vector for
each study participant is in the order of 500,000 or more ele-
ments. Each of these vectors consists of allele combinations of
many SNPs located across the genome. SNP location is specified
in terms of number of base pairs from the start of the chromo-
some. SNP location may overlap with functional regions of the
genome that encode genes, pseudo-genes, non-coding RNA, or
mRNA sequences. A typical approach to browsing genome-wide
data is to search for a particular gene based on findings that relate
this gene to a function of interest. SNP values that are captured
by the study and which overlap with, or are close to, the gene of
interest are selected and used in statistical analyses as independent
variables.

The SNP browser provides a user interface that links together
gene names and their locations on the chromosome, as well as
SNP locations and allele combinations for each study participant
(see Figure 7). We found that network speed and modern browser
technology easily keep up with the transmission of data generated
by larger studies. Data can be stored on the client computer in
memory but browser-based applications are limited in terms of
their ability to simultaneously display graphical representations
often involving thousands of objects. We solve this problem by
using client-based logic that prevents content from being ren-
dered that is not currently visible in the browser window. User
interactions like scrolling are used as a signal to add content. As
an example, the SNP browser application appears to list initially
all 500,000 SNP’s in a single table as no search term is specified
at the start of the application. As the user scrolls down the page,
data are dynamically added to the bottom using unobtrusive pag-
ination. This approach limits the number of items rendered in the
browser and adjusts naturally with differences in screen size and
resolution of client machines.

The user can search for a specific gene using its name or a suit-
able regular expression that is matched against all gene names.
The client application filters the global set of names and populates
the chromosome and the base pair range fields in the interface.

FIGURE 6 | Screen capture displaying parts of the hierarchical structure

of the PING data dictionary. The branches for “Imaging” and “cortical
contrast” have been opened by the viewer. The regular expression used to
create the displayed hierarchy level for “Imaging” is “/(H_area | H_thickness |

H_contrast | H_volume | H_intensity | Diffusion | H_Fuzzy)/”. The entry “cortical
contrast” (H_contrast) is implemented by the pattern “/(ˆMRI_cort_contrast)/”.
In PING this maps to all MRI related cortical contrast measures in the data
dictionary (subset displayed on the right).
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FIGURE 7 | Screen capture of the SNP browser application used

to explore and extract genetic information available for the PING

study. A search mask is used to specify a gene (SSH, sonic
hedgehog). Utilizing a database with 80,000 entries, the SNP browser
obtains the available chromosome number (7) and the basepair
location (155,592,735–155,601,766) for this gene. The table is filled

with SNP entries that fall in the range of the basepair location. In
this example, three SNP entries are available. The user has selected
SNP number 2 indicated by the dark blue checkbox and the
corresponding SNP name has been copied to the list of SNP names
for download. Selecting the download option would provide the user
with a spreadsheet of the alleles for this SNP for all PING subjects.

This search is performed on the client computer using cached data
and does not require resources on the server or even a connection
to the server. The resulting table displays the subset of SNP loca-
tions that fall into the base pair range indicated by the gene. Each
of the SNPs displayed is linked to the NCBI (2013) database for
further information.

The SNP browser provides access to the study specific SNP
data so users can select candidate SNPs for further analysis.
The SNP names are collected as a editable list in the interface
and, upon request, the list of SNP alleles for each subject id
is generated and presented to the user as a csv spreadsheet for
download. Due to the size of the SNP database (approximately
2 gigabytes of binary data) a server-side implementation using
the PLINK software (Purcell et al., 2007) is used to create each
spreadsheet. PLINK provides an efficient binary storage for large
samples of SNP data which reduces storage requirements and,
more importantly, provides a fast read and access to SNP informa-
tion. Updates of SNP data are supplied as PLINK files, which are
copied directly to the server. No further processing is required to
integrate the information into the Data Portal. Processing time on
the server is similar to the time required to download the resulting
spreadsheet.

The SNP browser exports data that are suitable for upload into
the statistical analysis application of the Data Portal. Together
with genetic ancestry information already available in the sta-
tistical analysis application, this setup provides a flexible solu-
tion allowing genetic information to be linked to other data
domains.

2.7. QUALITY CONTROL
Several applications are suitable to detect outliers in the data. For
example, the image viewing application shows region of inter-
est (brain labels) merged with anatomical information. Errors in
the segmentation are easily identifiable on these images. Outliers
on the population level are apparent in the scatter plots of the
data exploration application. Each data point in scatter plots
links to the corresponding imaging data. Exploring these data
can increase confidence that observed variation is due to true

variation between study participants and is not caused by differ-
ences in image quality or noise levels.

A dedicated application is used to capture the current status
of quality control. Sessions with known problems are indicated
and textual annotations are used to explain choices of inclu-
sion or exclusion of data from analysis. Access to the quality
control application is limited to trained personnel using a role-
based access control system. If a data point is marked as “bad,”
it is excluded from further analysis by forcing a re-generation of
the data cache available to each user. Results of the process are
immediately accessible to every user of the portal.

2.8. SECURITY AND PRIVACY CONSIDERATIONS
Removal of patient identifying data is performed during data
acquisition as stipulated by the responsible institutional review
boards. Only limited information is provided to researchers
requesting access. However, the combination of many sources
of information such as genetic, demographic, and imaging data
poses unique challenges for data privacy.

For example, genomic data have the potential to link people
across studies (Homer et al., 2008). These data could therefore be
used to re-identify study participants or their relatives. In order
to prevent such activities and to ensure the privacy of study par-
ticipants, access to the Data Portal is secured. Each user of the
Data Portal is required to agree to a data use policy that forbids
the use of study data for the purpose of de-identification. As a fur-
ther precaution the SNP viewer implements limits on the number
of SNP values that a user can download for a given project. The
download of all SNP values is not supported by the data portal
but may be provided using dedicated data sharing sites for genetic
information like dbGAP (Mailman et al., 2007).

3. RESULTS
The large number of variables available in the PING study provide
a rich resource for data exploration of patterns of brain devel-
opment. As an example we show how to explore a measure of
cortical surface area over age. Area of the heavily folded human
cortex correlates under some circumstances with the number of
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neurons available for processing and has been implicated as a
variable of interest for describing the developing human brain.

Identifying variables of interest: The first step is to identify data
dictionary entries that refer to the variables of interest. Using
the data dictionary application a measure of the total cortical
thickness called “MRI_cort_area.ctx.total” can be found in the
sub-tree imaging. Additionally, the entry is also listed in the sec-
tion labeled summary measures. If parts of the variable name are
known the data exploration application input fields can be used
as search fields that display the matching content in drop-down
lists. Entering the search strings “area” or “total” would list the
measure together with a textual description as a tool tip.

Initially we start with the simplest model by disabling the
system defined covariates that represent imaging device iden-
tity, socio-economic factors and genetic ancestry factors. After
specifying the independent and dependent variables in the data
exploration application as total cortical area and age at image
examination the model is executed and produces a linear func-
tional relationship between cortical surface area and age. This
initial model shows a large spread of the scatter points which
indicates a poor explanatory power of the model which is con-
firmed by a low value of variance explained (0.076%) as listed in
the statistical summary section. Only a small part of the relation-
ship between brain surface area and age can be explained by our
initial model.

Model comparison: Replacing the linear function of age
“Age_At_IMGExam” with a smoothly varying function
“s(Age_At_IMGExam)” we can improve the fit. The new
model captures an initial increase in total cortical area followed
by decreasing cortical area over age (variance explained 7.5%).

Adding back the sequence of system covariates for imaging
device, socio-economic factors (household income, highest level
of parental education) and genetic ancestry the models can cap-
ture successively more of the variance (13, 17, 20%). It is well
known that adding variables to a model will tend to increase its
explanatory power which at some point will lead to poor general-
ization as accidental features of the data are captured. Also, as new
measures are added a subset of subjects will need to be removed
from the analysis if measurements are not available for them. In
order to be able to detect over-fitting the data exploration appli-
cation displays the adjusted coefficient of determination R̄2 which
incorporates a correction for the number of variables included
into the model. Increasing values over successive runs of the
model confirm that our model variables help to explained the
observed variance without introducing over-fitting. This is also
confirmed by the displayed Akaike Information Criterion (AIC,
Akaike, 1974).

Whereas the system covariates have been identified as sensible
choices for model testing it is up to the investigator to identify fur-
ther variables. A potential source of variation not captured by our
current model is gender differences. Also, cortical area will likely
scale with head size so our measure for total surface area includes
effects that can be attributed to varying head sizes. Identifying
measures for gender and intra-cranial volume and including them
into the model increases variance explained to 70%.

Significance analysis: The significance of each model variable is
listed in the statistical summary section of the data exploration

application. The socio-economic factors for example show that
effects of household income are significant (p < 0.01) whereas
the level of the highest parental education is not.

Analysis of interaction: Adding gender as a covariate explained
a large part of the variance observed. This could indicate that
there is substantial difference in the developmental patterns of
male and female children. In order to investigate these differences
the data portal can calculate interaction effects with age and dis-
play separate model curves for each gender. Moving gender from
the covariate text field to the field labeled interaction both the
main effect of gender and the interaction effect of gender and age
are added to the model. We observe a highly significant interac-
tion effect of age by gender (p < 0.001). The total cortical area
over age curves generated by executing this model suggest that
the developmental trajectories differ for boys and girls. Cortical
area appears to peak slightly earlier and decline somewhat more
rapidly in boys than in girls.

Adding data sources: Using the rich literature of genes impli-
cated in development and disease we can use the portal to try
to replicate findings using the PING data. The STON2 gene has
been implicated as being correlated with regional surface area in
a model of schizophrenia Xiang et al. (2013). The SNP Browser
application of the Data Portal provides access to selected SNPs
that are located in genes of interest. A search for “STON2” reveals
three SNPs that are located on chromosome 14 and intersect with
STON2. Upon request the application generates a csv formatted
spreadsheet with three columns of SNP alleles for each PING sub-
ject for download. The spreadsheet format is such that it can be
uploaded into the data exploration application as a user defined
spreadsheet. Adding the SNP names as new covariates we can cre-
ate a model that tests for significance of SNP allele combinations
related to STON2 on total cortical area. Running the extended
model reveals no significant effect of STON2 SNP alleles on total
cortical area in the PING study. Other external sources of subject
specific information can be integrated into the data exploration
portal in a similar manner.

Surface based analysis: Cortical area measures are available
in the PING study as atlas-based regions of interest measures
(Desikan et al., 2006). Additionally, area measures are available
for each point on the cortical surface. These measures are cal-
culated as factor values of local area expansion required to map
points in the individual brain onto points in an atlas brain.
Regions of the brain that need to expand if mapped to the atlas
can therefore be distinguished from regions that would need to
contract.

The surface based analysis uses the same model description
and statistical tools as the region based analysis. Our current
model description can therefore also be used to calculate develop-
mental effects of regional surface area. The surface viewer appli-
cation displays the calculated p-values as surface maps of − log10
scaled p-values (see Figure 3). The scaling is used to map high
significance (low p-values) to large false-color encoded values
indicating regions which are significant at a level of p < 0.05.
Running the model simultaneously for each point on the sur-
face may cause some regions to reach significance due to chance
alone (multiple testing). To counteract this artificial inflation of
significance the surface viewer application performs re-scaling
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of the p-value surface maps using false-discovery rate (FDR)
calculations. Similar features are available for surface-based esti-
mates of cortical thickness and volume.

Inspection of the calculated point-wise surface area expansion
factor due to age shows a general increase for all points relative to
the given atlas. This is explained by the choice of the atlas which
represents an adult brain. A measure independent of the choice of
the atlas is available in the surface viewer application as the instan-
taneous rate of change. This measure highlights cortical areas that
show increased (red to yellow) or decreased (blue) developmen-
tal change at a particular age (dependent variable of the model).
Using this option the surface viewer animates the complex pat-
tern of developmental change over age for both hemispheres and
provides presets for the visual inspection of both hemispheres and
the inter-hemispheric spaces.

Export: The graphic system used to display the model and
scatter plot adjusts to the display size of the device used to
view the page. Model curves and point sets can be switched
on and off independently using controls embedded in the leg-
end of the figure. Each scatter plot point can be investigated
and reveals session information such as the anonymized subject
identification number, the gender and links to the image viewer
application.

The scatter plot and model functions can be exported as vec-
tor graphics (pdf format) or, as quantitative data (csv format) for
further statistical analysis. The data exploration application also
provides a download package that contains the source code of
the statistical analysis and the study data in R format. This pack-
age can be used for both documentation and replication of the
implemented statistical methods.

Each map displayed by the Surface Viewer can be exported as a
high quality graphic (png image format) with transparency used
to encode background pixel. The graphics can easily be assem-
bled into publication ready representations of key developmental
figures (see Figure 8 for image collage).

Efficient implementation of statistical methods on the server
reduces the response time for a full statistical analysis to approx-
imately 5–10 s. The combination of automatic model generation
for the R programming language, server side execution, export of
result data and the integration of visualization and data explo-
ration provides a low barrier of entry for people with limited
technical expertise. The features implemented in the data portal
therefore extend the usability of study data to a larger audience.

4. DISCUSSION
Traditional approaches for data management have used database
management system to store all information related to a project.
In this setup data import and export algorithms become the tools
to map domain specific data to structures suitable for database
storage and retrieval. The specific choice for the database layout,
such as the number of tables and the values, keys and indexes
that are stored in a relational database is expected to be stable
over time. This requires projects to make decisions early on, often
using insufficient information. Using relational databases there-
fore can be costly if changes in the database layout are required.
Often application logic for import and export of data is used
instead to adjust to changing requirements.

FIGURE 8 | Image collage of surface models exported from the surface

viewer application for the model described in section 3. Cortical area
expansion factor is mapped as color (red—expansion, blue—contraction)
over age (3–21 years, left to right) given the model described in section 3.
Rows show superior (1), right lateral (2 and 3), medial view of the right
hemisphere (4 and 5), medial view of the left hemisphere (6 and 7), left
lateral (8 and 9), and inferior (10) views of the 3d surface model.

The data portal architecture improves on this approach by
favoring file formats that are linked to data processing and visual-
ization. These data structures augment the database management
infrastructure as a primary source for algorithmic processing. For
example, binary representations of large datasets such as genomic
data combine compact representation and guarantee fast access
while minimizing system resources. Our approach of keeping
established data formats such as PLINK’s binary format and R’s
RData format for storage on the server has also simplified the
incremental update of our system to new versions of the data
because only a small number of files have to be replaced using
a very simple procedure.

The PLINK and R software applications are publicly available
and provide efficient read access for compact data caches mini-
mizing server requirements on memory and speed. Furthermore,
data are stored in a way that is best suited to the specific applica-
tion that implements the data analysis. Instead of data warehous-
ing with complex implementations of data access, domain specific
languages provide an integration for suitable analysis algorithms.
In this framework the domain languages are responsible for trans-
lation of processing results into formats suitable for transfer and
decoding on the client side (JSON, csv).

One of the more challenging aspects of the data portal devel-
opment has been the efficient transfer of large assemblies of image
data. The application preserves bandwidth by downloading only
images that are displayed and images that are immediately adja-
cent. One way to increase viewing performance further is to
combine images into mosaics. This would result in a lower num-
ber of file transfers with larger files which is more efficient in the
setting of web-based applications.
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The statistical processing is optimized for cross-sectional stud-
ies. Longitudinal analysis requires the use of an extended sta-
tistical modeling framework, such as generalized additive mixed
models. Currently the data portal is able to detect longitudi-
nal data and data points in the scatter plot that belong to the
same participant are marked. A warning is presented to the user
that informs him or her about the restrictions imposed by the
cross-sectional analysis stream.

The data portal combines the elements of study participant
specific exploration of key developmental features across behav-
ioral, imaging and genetics domains with capabilities to for-
mulate and test study level hypotheses and estimate population
parameters.
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The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE)
is a national imaging and visualization facility established by Monash University, the
Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization
(CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding
from the National Computational Infrastructure and the Victorian Government. The
MASSIVE facility provides hardware, software, and expertise to drive research in the
biomedical sciences, particularly advanced brain imaging research using synchrotron
x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI),
x-ray computer tomography (CT), electron microscopy and optical microscopy. The
development of MASSIVE has been based on best practice in system integration
methodologies, frameworks, and architectures. The facility has: (i) integrated multiple
different neuroimaging analysis software components, (ii) enabled cross-platform
and cross-modality integration of neuroinformatics tools, and (iii) brought together
neuroimaging databases and analysis workflows. MASSIVE is now operational as a
nationally distributed and integrated facility for neuroinfomatics and brain imaging
research.

Keywords: neuroinformatics infrastructure, high performance computing, instrument integration, CT

reconstruction, cloud computing, Huntington’s disease, Quantitative susceptibility mapping, digital atlasing

INTRODUCTION
The “21st century microscope” will not be a single instrument;
rather it will be an orchestration of specialized imaging tech-
nologies, data storage facilities, and specialized data processing
engines. Moreover, scientists increasingly require access to a wide
range of imaging instruments, across multiple modalities and
multiple scales, to characterize a scientific sample or perform an
experiment. The Multi-modal Australian ScienceS Imaging and
Visualization Environment (MASSIVE—www.massive.org.au) is
a high performance computing facility that is specialized for com-
putational imaging and visualization, and has been created to
underpin this new landscape.

THE MASSIVE FACILITY
MASSIVE has been established by Monash University, the
Australian Synchrotron, the Commonwealth Scientific Industrial

Research Organization (CSIRO), and the Victorian Partnership
for Advanced Computing (VPAC) to support next-generation
imaging and instrumentation. This facility provides computer
hardware, software and expertise to drive research in the
biomedical science, materials research, engineering, and neu-
roscience communities, and it stimulates advanced imaging
research that will be exploited across a range of imaging
modalities, including synchrotron x-ray and infrared imaging,
functional and structural magnetic resonance imaging, x-ray
computer tomography (CT), electron microscopy, and optical
microscopy.

The MASSIVE project has a number of objectives. First,
to provide a world-class imaging and visualization facility to
research groups identified by the MASSIVE stakeholders. Second,
to increase the uptake of imaging and visualization services
by research groups using the Australian Synchrotron and by
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Australian research groups more generally. Third, to increase
the performance and capability of imaging and visualization
systems, especially the on-line reconstruction of images gen-
erated by the Imaging and Medical Beamline (IMBL) at the
Australian Synchrotron. And fourth, to increase the capabilities
of research groups to use and develop imaging and visualization
services.

MASSIVE is a unique Australian facility with a focus on
fast data processing, including processing data “in-experiment,”
large-scale visualization, and analysis of large-cohort and lon-
gitudinal research studies. It provides this service within a
national context of peak and specialized HPC facilities (Figure 1).
The facility runs an instrument integration program to allow
researchers to more easily process imaging data, and provides
a high-performance managed interactive desktop environment
providing access to common interactive analysis and visualization
tools. MASSIVE offers Australian scientists access to two special-
ized computing facilities at Monash University and Australian
Synchrotron with computer systems linked by a high-bandwidth
communications link.

MASSIVE also manages a major nationally funded soft-
ware infrastructure collaboration to make scientific tools, and
in-particular neuroinformatics tools, available freely and cloud-
ready. This collaboration, which is called the Characterization
Virtual Laboratory, is composed of members of the Australian
Characterization Council, the Australian Synchrotron, the
Australian Nuclear Science and Technology Organization
(ANSTO), the Australian Microscopy and Microanalysis Research
Facility (AMMRF) and the National Imaging Facility (NIF), as
well as Monash University, the University of Queensland, the
Australian National University, and the University of Sydney.
MASSIVE is participating in this project to support new
imaging research disciplines in applying HPC, and to further
develop the interactive analysis and visualization component of
MASSIVE.

FIGURE 1 | The Australian high performance computing (HPC)

environment including peak (national) facilities, specialized national

facilities, and local HPC facilities.

The total cost of MASSIVE exceeded AUD$5 million with
additional contributions from the Australian Synchrotron,
Monash University, CSIRO and VPAC, and is initially opera-
tional for three years until mid 2014. The MASSIVE facility is also
part funded the National Computational Infrastructure (NCI) to
provide imaging and visualization high performance computing
facilities to the Australian scientific community. This agreement
designates MASSIVE as the NCI Specialized Facility for Imaging
and Visualization and allows researchers across Australia to access
it based on merit allocation.

A Collaboration Agreement underpins the governance
arrangements and includes a Steering Committee with an
independent chair and members who are representatives of
the partner organizations. The committee is guided by two
Science Advisory Committees, which are the Synchrotron Science
Advisory Committee and the Imaging and Visualization Advisory
Committee. The facility provides an extensive program of user
support and training on all aspects of high performance com-
puting, and has an active outreach program to ensure that the
MASSIVE stakeholders, Australian and international researchers,
government and the broader community are aware of its benefits
and achievements.

MASSIVE AND APPLICATIONS TO NEUROSCIENCE AND
NEUROINFORMATICS
Advanced imaging instruments, including CT and MRI scanners
and electron and optical microscopes, are capable of produc-
ing data at an incredible rate. As an example, the Australian
Synchrotron Imaging Beamline is able to produce data at over 500
Mbytes/s. This introduces obvious challenges for researchers to
capture, process, analyze, and visualize data in a timely and effec-
tive manner. Researchers are also increasingly eager to perform
data analysis “in-experiment” so that they can make appropri-
ate decisions in real-time. MASSIVE provides real-time imaging
support as follows:

• Integration of the data sources (the instruments) with the data
storage and data processing engines (MASSIVE or other HPC
facility) including an instrument integration support program
for this purpose; and

• Provision of a common desktop environment for data process-
ing, analysis, and visualization that is integrated with the HPC
capability, and allows researchers to access their data through
an environment that supports both the desktop and HPC tools
they use to process their data.

This configuration results in researchers moving their data
only once, automatically during data capture, with subse-
quent processing, analysis, and visualization performed cen-
trally on MASSIVE. The outcome is that MASSIVE is able
to support communities that have not traditionally used HPC
computing.

MASSIVE currently supports over 25 Australian neuroinfor-
matics research projects that include researchers who are:

• Undertaking large-cohort studies and longitudinal studies such
as the ASprin in Reducing Events in the Elderly (ASPREE)

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 30 | 24

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Goscinski et al. MASSIVE: applications in neuroinformatics

study (Nelson et al., 2008) and the IMAGE-HD Huntington’s
disease study (Georgiou-Karistianis et al., 2013);

• Processing, analysing, and viewing data generated by advanced
imaging equipment, including the Australian Synchrotron
Imaging Beamline, new generation Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), and other tech-
niques;

• Applying computer tomography techniques or volume visual-
ization and analysis techniques;

• Applying advanced image processing, image analysis, or visu-
alization techniques, or undertaking research in these fields;
and

• Developing modeling and simulation applications, in particu-
lar applications that are suited to fast file system access or GPU
hardware.

COMPUTING INFRASTRUCTURE FOR NEUROINFORMATICS
Scientific applications of HPC, cloud and grid computing have
been thoroughly documented and computing is considered an
essential scientific tool (Foster and Kesselman, 2003). A number
of specialized undertakings for bioinformatics, and more specif-
ically neuroinformatics, have been very successful and deserve
particular comment.

The Biomedical Informatics Research Network (BIRN)
(Grethe et al., 2005) is an infrastructure to help communities
build virtual organizations, and includes support for data sharing,
security, authentication and authorization, and scientific work-
flows. The Functional Bioinformatics Research Network (fBIRN)
is a specific application of BIRN for neuroimaging, allowing
researchers to calibrate and collect fMRI data across sites, and
manage and analyse that data (Greve et al., 2010). Similarly,
CBRAIN and GBRAIN (Frisoni et al., 2011) are an online collab-
orative web platform for neuroimaging allowing users to access a
wide range of participating HPC resources, in Canada and across
the globe.

A number of projects provide dedicated HPC access and sup-
port to neuroimaging researchers. These include the NeuGrid
Redolfi (Redolfi et al., 2009) and it’s successor N4U (Haitas
and Glatard, 2012), and the NeuroScience Gateway (NSG)
(Sivagnanam et al., 2013). All three projects provide web-based
mechanisms for data management and processing and analysis on
HPC systems, and specialized support for neuroimaging.

In addition there are a number of online and desktop
workflow environments that are being applied to general sci-
ence and specific bioinformatics and neuroinformatics pur-
poses. These include Galaxy (Giardine et al., 2005), the
LONI Pipeline (Rex et al., 2003), Kepler (Ludäscher et al.,
2006), and Soma-workflow (Laguitton et al., 2011). These
projects all provide mechanisms to interface with high per-
formance computing resources. Nipype (Gorgolewski et al.,
2011) is a workflow for interfacing with a range of neu-
roinformatics packages, allowing users to easily compare
algorithms across packages. PSOM (Bellec et al., 2012) is
a workflow engine for Octave and Matlab developed for
neuroimaging.

The Blue Brain Project (Markram, 2006) is undertaking to
simulate the brain on a HPC. The project commenced by

undertaking to simulate a cellular-level model of a 2-week-
old rat somatosensory neocortex based on captured microscopy
data, specifically targeting the IBM Blue Gene HPC platform.
This project, has now evolved into the broader Human Brain
Project (HBP, 2012), which is discussed in Section Large-scale
International Initiatives.

MASSIVE shares many of the fundamental goals of these
projects—to provide neuroscience researchers with access to
high performance computing capabilities and data management.
However, our project differs in a number of ways:

• Integration of scientific instrumentation is a key feature of the
project, allowing scientists to perform sophisticated processing
immediately after data capture, and in some cases performing
data processing as part of the experiment (Section Instrument
Integration Program);

• Easy access for non HPC-experts is important to support the
broad neuroscience community. Many of the projects discussed
approach this problem by providing access to web portals or
workflow environments. MASSIVE has decided to take the
approach of providing a remote desktop (Section Massive
Interactive Software Environment), which has proved effective
in helping researcher transition from their personal desktop to
a HPC environment. It also alleviates the need to wrap tools in
a web front-end and means that a vast range of desktop tools
can be supported on the systems.

• We are actively developing the MASSIVE software stack to
the cloud (Section Neuroinformatics in the Cloud) which
will make MASSIVE more accessible to a wider range of
neuroscientists.

INFRASTRUCTURE
HARDWARE
MASSIVE consists of two interconnected computers, M1, and
M2 respectively, that operate at over 5 and 30 teraflops 1 respec-
tively, using traditional CPU processing, and accelerated to over
50 and 120 teraflops1, respectively, using co-processors. M1 and
the first stage of M2 were made available to Australian researchers
in May 2011. The computers are connected using a dedicated
connection for fast file transfer and common management. A
summary of the technical specifications of the two systems and
the hardware configuration of the two computers, including the
GPU coprocessors and the parallel file systems, are given in
Table 1.

GPUs have proved an important part of the MASSIVE envi-
ronment. Key applications, including the X-TRACT (Gureyev
et al., 2011) CT reconstruction software, have been parallelized to
take advantage of the GPUs. This has been critical to performing
fast processing of data in a near real-time fashion as discussed in
Section Instrument Integration Program. Moreover, GPUs have
become an important developmental technology for the research
community and MASSIVE has supported a number of projects to
successfully port imaging analysis code to the GPU environment.
Section GPU reconstruction of quantitative magnetic suscepti-
bility maps of the human brain describes a specific example of

1Theoretical performance of the systems.
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Table 1 | Technical specifications of the MASSIVE high performance

computing system.

M1 AT THE AUSTRALIAN SYNCHROTRON

42 nodes (504 CPU-cores total) in one configuration:

42 nodes with 12 cores per node running at 2.66 GHz

48 GB RAM per node (2016 GB RAM total)

2 NVIDIA M2070 GPUs with 6GB GDDR5 per node (84 GPUs total)

153 TB of fast access parallel file system
4x QDR Infiniband Interconnect

M2 AT MONASH UNIVERSITY

118 nodes (1720 CPU-cores total) in four configurations:

32 nodes with 12 cores per node running at 2.66 GHz

48 GB RAM per node (1536 GB RAM total)

2 × NVIDIA M2070 GPUs with 6 GB GDDR5 per node (64 GPUs total)

10 nodes with 12 cores per node (visualization/high memory
configuration)

192 GB RAM per node (1920 GB RAM total)

2 × NVIDIA M2070Q GPUs with 6 GB GDDR5 per node (20 GPUs
total)

56 nodes with 16 cores per node running at 2.66 GHz

64 GB RAM per node (3584 GB RAM total)

2 × NVIDIA K20 (9 nodes—18 GPUs total)

2 × Intel PHI (10 nodes—20 coprocessors total)

20 nodes with 16 cores per node running at 2.66 GHz

128 GB RAM per node (2560 GB RAM total)

2 × NVIDIA K20 (40 GPUs total)

345 TB of fast access parallel file system

4 × QDR Infiniband Interconnect

Combined the M1 and M2 have 2,224 CPU-cores.

the application of GPUs to Quantitative Susceptibility Mapping
(QSM). Importantly, the GPU capability allows MASSIVE to
provide good support for interactive visualization, including
through the MASSIVE Desktop (Section MASSIVE Interactive
Software Environment) and through parallel rendering tools such
as Paraview (Henderson et al., 2004).

Both M1 and M2 have a GPFS (Schmuck and Haskin, 2002)
file system that is capable of a combined 5 GB+ per second write
speed. This capability has proved essential to support both the
fast capture of data from instruments, and file system inten-
sive image processing workloads. Section Instrument Integration
Program discusses the importance of the file system to support
large-scale and real-time CT reconstruction image processing
applications.

INSTRUMENT INTEGRATION PROGRAM
MASSIVE has a dedicated program for the integration of imag-
ing instruments with high performance computing capability
(Figure 2, Table 2) that gives scientists the ability to use com-
plex and computationally demanding data processing workflows
within minutes of acquiring image datasets. Instruments inte-
grated with MASSIVE that are of particular interest for neuro-
science research include MRI and CT equipment at Australian
National Imaging Facility locations across Australia, and for near

real-time CT image reconstruction on the Imaging Beamline at
the Australian Synchrotron.

The instrument integration program allows scientists to visu-
alize and analyse collected data as an experiment progresses or
shortly after it completes, thereby integrating processing, anal-
ysis and visualization into the experiment itself. In particular,
groups that are imaging live anesthetized animals must be able
to establish whether a previous scan has successfully produced
the desired data before proceeding with the next step of the
experiment. These experiments are typically time-critical as there
is limited instrument availability once an experiment has com-
menced. In many cases the images captured by detectors at the
Imaging Beamline are very large and necessitate the rapid move-
ment of TB data sets for processing. These constraints dictate
that significant computing power is required on demand and that
the computer is tightly coupled to the instruments and readily
available to the researchers.

Data management at Monash Biomedical Imaging
Neuroimaging studies, especially multi-modal, longitudinal stud-
ies of large cohorts of subjects, generate large collections of
data that need to be stored, archived, and accessed. MRI based
studies can easily accumulate terabytes of data annually and
require integration of HPC and informatics platforms with the
imaging instrumentation. Integrated systems that combine data,
meta-data, and workflows are crucial for achieving the oppor-
tunities presented by advances in imaging facilities. Monash
University hosts a multi-modality research imaging data man-
agement system that manages imaging data obtained from five
biomedical imaging scanners operated at Monash Biomedical
Imaging (MBI) (Figure 3). In addition to Digital Imaging and
Communications in Medicine (DICOM) images, raw data and
non-DICOM biomedical data can be archived and distributed
by the system. Research users can securely browse and download
stored images and data, and upload processed data via subject-
oriented informatics frameworks (Egan et al., 2012) including the
Distributed and Reflective Informatics System (DaRIS) (Lohrey
et al., 2009; DaRIS, 2013), and the Extensible Neuroimaging
Archive Toolkit (XNAT) (Marcus et al., 2007).

DaRIS is designed to provide a tightly integrated path from
instrument to repository to compute platform. With this frame-
work, the DaRIS system at MBI manages the archiving, process-
ing, and secure distribution of imaging data (with the ability to
handle large datasets) acquired from biomedical imaging scan-
ners and other data sources. This ensures long-term stability,
usability, integrity, integration, and inter-operability of imaging
data. Imaging data are annotated with meta-data according to a
subject-centric data model and scientific users can find, down-
load, and process data easily. DaRIS users can export their data
directly into their MASSIVE project environment for analysis.

Recent enhancement of DaRIS (Killeen et al., 2012) pro-
vides for the management and operation of workflows (using
the Nimrod and Kepler technologies) with input and output data
managed by DaRIS. In this way, large subject-cohort projects can
robustly process (and re-process) data with attendant enhanced
data provenance. Current DaRIS enhancements are focusing
on additional efficient data inter-operability capabilities so that
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FIGURE 2 | A schematic of the integration of access to imaging instrumentation from the MASSIVE desktop and the Cloud via the Characterization

virtual laboratory.

researchers can access their managed data when and where they
need it.

Australian synchrotron imaging beamline CT reconstruction
The MASSIVE computers have been integrated with a num-
ber of beamlines at the Australian Synchrotron, and provide
a range of data processing services to visiting researchers.
These include: near real-time image reconstruction at the
IMBL, near-real time automated structural determination at the
Macromolecular Crystallography beamline, microspectroscopy
at the Infrared beamline, data analysis at the Small and Wide
Angle Scattering beamlines, and image analysis at the X-ray
Fluorescence Microprobe Beamline. These techniques are being
applied to a range of biomedical sciences and neuroimaging
applications.

The IMBL has a capability of near real-time high-resolution
CT imaging of a range of samples, including high-resolution

phase-contrast x-ray imaging of biomedical samples, animal
models used in neuroscience experiments, and engineering
materials. The beamline is 150 meters long, with a satellite build-
ing that includes a medical suite for clinical research as well as
extensive support facilities for biomedical and clinical research
programs. Two detectors based on pco-edge cameras are avail-
able for use. Typical data acquisition times are dependent upon
the chosen x-ray energy and detector resolution and vary approx-
imately between 10 and 60 min for a complete CT scan. When
imaging data is acquired at the maximum detector resolution and
at 50 frames per second, the data rate is 2560 × 2160 × 2 byte ×
50 fps = 527.34 Mbytes/s. Figure 4 illustrates the architecture of
the IMBL CT Reconstruction service.

In order to control the data collection and optimize the exper-
imental conditions at IMBL, scientists must be able to visualize
collected data in near real-time as the experiment is in progress.
In particular, groups that are imaging live anesthetized animals
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Table 2 | The computational systems and file system access associated with the imaging instrumentation integrated with MASSIVE and the

Characterization Virtual Laboratory.

Instrument Capture method Service Scientific capability

INTEGRATED

Imaging and Medical Beamline File system integration GPU processing, parallel FS, and
interactive visualization

CT reconstruction and visualization

Macromolecular Crystallography
Beamline

File system mount Compute Structural determination

Infrared Beamline Compute Signal correction

X-ray Fluorescence Microprobe
Beamline

Parallel FS and interactive
visualization

Analysis

Small Angle and Wide Angle X-ray
Scattering

Compute Modeling

CT and MRI Imaging Instruments DaRIS GPU processing, parallel FS, and
interactive visualization

Data capture, analysis, and visualization

Electron Microscopes Tardis Parallel FS, cloud computing, and
interactive visualization

Data capture, analysis, and visualization

PLANNED OR IN PROGRESS

Biomedical X-ray sources File system mount GPU processing, parallel FS, and
interactive visualization

CT reconstruction and visualization

Atom Probes Tardis Cloud computing and interactive
visualization

Analysis

Electron Microscopes Tardis GPU processing, parallel FS, and
interactive visualization

Structural determination and visualization

Micro-CT X-ray sources File system mount CT reconstruction and visualization

Soft X-ray Beamline CT reconstruction

often need to establish whether a previous scan has successfully
produced the desired data before proceeding with the next step
of an experiment. The experiments are typically time-critical as
the window of the experiment once begun is short. The image
datasets captured by detectors at the IMBL require the manip-
ulation of data sets in the terabyte range. These experimental
constraints dictate that significant computing power is tightly
coupled to the experimental detectors and available on-demand.

CT data sets collected at IMBL are typically tens of GB per
sample consisting of typically 1200–2400 projection images that
can be acquired from a single sample in less than 1 min. The
X-TRACT package on M1 is the primary software available to
users for reconstruction of CT data, including phase-contrast
CT as implemented at IMBL (Goscinski and Gureyev, 2011;
Gureyev et al., 2011). Usage of MASSIVE for CT reconstruction
via X-TRACT is offered during the synchrotron experiments and
also via remote access up to 6 months after an experiment has
been completed, allowing researchers to process and analyse cap-
tured data remotely. The CT reconstruction service has been in
production since November 2012.

The X-TRACT customized CT image reconstruction software
is parallelized for the MASSIVE GPU and parallel file system
architecture. X-TRACT is an application for advanced process-
ing of X-ray images that also provides multiple image processing
tools. In particular, there is extensive functionality for X-ray CT
image processing, including multiple methods for CT reconstruc-
tion and X-ray phase retrieval and simulation of phase-contrast
imaging. Additionally, a large number of operations such as
FFT, filtering, algebraic, geometric, and pixel value operations

are provided. X-TRACT has been designed to fully leverage the
processing capabilities of modern hardware such that computa-
tionally intensive operations utilize multiple processors/cores and
GPU’s where available to increase performance. The X-TRACT
software has been adapted for use on HPC cluster infrastructure,
and has been optimized for the MASSIVE systems, to enable it to
process multi-TB datasets produced at synchrotron light sources
that are unable to be processed on standalone desktop machines.

To demonstrate the importance of the file system capability
in particular, benchmarking of X-TRACT on the M1 cluster has
been performed using the Gridrec CT reconstruction algorithm
(Rivers and Wang, 2006) for multi-TB datasets. The total recon-
struction time and IO time as a proportion of the runtime for a
set of CT reconstructions is shown in Figure 5 as a function of
the number of CPU cores. The input dataset consisted of 8192
pre-processed sinogram files (total ∼1.5 TB), and the output was
an 81923 pixel dataset (total ∼2 TB). The results demonstrate
that IO represents a significant proportion of the overall running
time—particularly beyond 36 CPU-cores. We are currently inves-
tigating the refinement of the HPC based CT processing workflow
to reduce the high proportion of IO time which is currently the
major performance bottleneck.

MASSIVE INTERACTIVE SOFTWARE ENVIRONMENT
MASSIVE provides users with highly accessible high-
performance scientific desktop—an interactive environment
for analysis and visualization of multi-modal and multi-scale
data (Figure 6). This environment provides researchers with
access to a range of existing tools and software, including
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FIGURE 3 | Schematic of the neuroscience image data flow from Monash Biomedical Imaging and the computational processing performed on M2.

FIGURE 4 | Schematic of the architecture of the IMBL CT Reconstruction service provided on M1.
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FIGURE 5 | The total reconstruction time for CT reconstruction of an

89123 dataset (top) and IO time as a proportion of runtime (bottom)

on M1 as a function of the number of CPU cores.

commercial and open-source neuroinformatics applications.
Common neuroimaging applications such as FSL (Smith et al.,
2004) and SPM (Friston et al., 1994) have been integrated into
the desktop to allow users to submit HPC jobs without specific
HPC knowledge. The continual growth in data and study sizes
increasingly necessitates the analysis and rendering of data at
the location where the data is stored. Furthermore, performing
analysis and visualization on a central facility greatly increases
the efficiency and flexibility for researchers to access high perfor-
mance hardware, including fast file systems and GPUs. Together
with the MASSIVE Instrument Integration program, the desktop
provides a fully integrated environment that allows researchers to
view and analyze images shortly after the imaging data has been
acquired.

The scientific desktop allows MASSIVE users to access a wide
range of analysis tools without rewrapping or reengineering of the
tools. The remote desktop has been built using CentOS running
the KDE or Gnome desktop environment. For remote access, the
desktop uses an open source VNC implementation, TurboVNC
(http://www.virtualgl.org/), as it supports remote hardware accel-
erated rendering and clients on all three major platforms:
Windows, Mac, and Linux. Network latency and bandwidth
using the Australian academic research network (AARNET) is
sufficient to support TurboVNC across the Australian imaging
research community and the MASSIVE desktop is commonly
accessed from every major city in Australia. The MASSIVE desk-
top supports a simple launcher called Strudel (short for Scientific

Desktop Launcher) that automates the steps to access a desktop
session. The Launcher launches an interactive visualization job
on the MASSIVE system, and connects using TurboVNC using
a secure SSH connection. The launcher is provided for all three
major desktop platforms. It is configurable to other facilities and
is being applied at other HPC facilities in Australia. It is available
open source (Section Software and System Documentation).

NEUROINFORMATICS IN THE CLOUD
To make imaging tools more accessible to the scientific com-
munity, MASSIVE is a key participant in the Australian
Characterization Virtual Laboratory (CVL) project that is funded
under the National eResearch Collaboration Tools and Resources
(NeCTAR) project (www.nectar.org.au). The NeCTAR CVL
project is an open source project aimed at porting key scien-
tific imaging applications to the cloud with a particular focus on
neuroinformatics tools (Goscinski, 2013).

The CVL has developed a managed desktop environment,
based on the MASSIVE Desktop, including the Neuroimaging
Workbench to support the neuroscience imaging community.
The CVL environment provides access to the MASSIVE file sys-
tem and job queues and is supporting further expansion of the
instrument integration program (Figure 2). The Neuroimaging
Workbench has integrated workflow and database systems to
allow researchers using instruments managed by the Australian
National Imaging Facility (NIF) to process and manage large neu-
roimaging datasets. The Australian NIF is a national network
of universities and biomedical research institutes that provides
key biomedical imaging instruments and capabilities for the
Australian research community.

Neuroinformatics tools in the cloud have great potential to
accelerate research outcomes. The Neuroimaging Workbench
includes a project for registration of multi-modal data brain data
for the Australian Mouse Brain Mapping Consortium (Richards
et al., 2011). Ultra-high resolution 15 um MRI and micro-CT
images from excised tissue, can be registered with 3D reconstruc-
tions of histological stained microscopy sections. The registered
datasets enable the MRI and CT images to be correlated at both
the microscopic (cellular) and macroscopic (whole organ) scales.
A mouse brain atlas that combines ultra-high resolution MRI and
histological images has wide ranging application in neuroscience.
However, image registration of 3D microscopy and MRI datasets
requires immense computational power as well as a range of spe-
cialized software tools and workflows, the developed workflow is
applicable to all small animal atlas building efforts.

A major objective of the CVL Neuroimaging Workbench is
to increase the efficiency for the neuroimaging community to
undertake complex image processing and analyses for large and
longitudinal scale studies. The integration of key imaging instru-
ments across multiple nodes of NIF is allowing neuroimaging
researchers to efficiently stage data to the cloud for processing on
HPC facilities. The workbench provides researchers with simple
and free access to a high performance desktop environment, that
contains a fully configured set of neuroimaging tools for anal-
ysis and visualization, that may obviate the need for high-end
desktop workstations that are currently replicated across many
neuroimaging laboratories.
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FIGURE 6 | The MASSIVE Desktop environment showing FSLView and a range of neuroinformatics tools available through the menu.

SOFTWARE AND SYSTEM DOCUMENTATION
User system documentation for MASSIVE and the infrastruc-
ture developed under the Characterization Virtual Laboratory is
available publically (www.massive.org.au). In addition, system
documentation is available on request. Software developed under
the Characterization Virtual Laboratory to support remote desk-
tops and the neuroimaging workbench is available open source as
they enter beta release (www.massive.org.au/cvl).

APPLICATIONS IN NEUROSCIENCE IMAGING
APPLICATION TO HUMAN BRAIN IMAGING IN HUNTINGTON’s
DISEASE
The IMAGE-HD study is an intensive multi-modal MRI longitu-
dinal study in Huntington’s disease (Georgiou-Karistianis et al.,
2013). The IMAGE-HD study is investigating the relationships
between brain structure, microstructure and brain function with
clinical, cognitive and motor deficits in both pre-manifest and
symptomatic individuals with Huntington’s disease. Structural,
functional, diffusion tensor, and susceptibility weighted MRI
images have been acquired at three time points in over 100 vol-
unteers at study entry, and after 18 and 30 months. This data
is managed in the DaRIS environment. Multi-modal imaging
was used to identify sensitive biomarkers of disease progression
for recommendation in future clinical trials. The multi-modal
imaging results have demonstrated evidence of differential rates
of change in both Huntington’s disease groups across a range of

imaging measures with changes detected up to 15 years before
the onset of symptoms (Domínguez et al., 2013; Gray et al.,
2013).

The MASSIVE desktop has been used to undertake the com-
putational imaging analyses of the structural, diffusion, and func-
tional MRI data acquired in the IMAGE-HD study. Longitudinal
diffusion tensor imaging datasets have been analyzed using deter-
ministic (trackvis.org) and probabilistic (Behrens et al., 2007)
tractography tools that have been recoded for the MASSIVE GPU
and made available via the desktop. Network level brain dysfunc-
tion in axonal fiber-connectivity in HD has been analyzed using
MASSIVE (Poudel et al., 2013), as well as resting-state fMRI data
analyses using graph theoretical methods (Zalesky et al., 2010).
The desktop is used to run semi-automated analysis pipelines
for tracking longitudinal changes in structural connectivity, dif-
fusivity in white matter, and functional connectivity in HD. The
desktop is also being to used to develop combined analyses of
fMRI and DTI datasets in order to understand the relation-
ships between brain functional and microstructural deficits in
Huntington’s disease.

GPU RECONSTRUCTION OF QUANTITATIVE MAGNETIC
SUSCEPTIBILITY MAPS OF THE HUMAN BRAIN
Quantitative Susceptibility Mapping (QSM) (Duyn et al., 2007;
Liu et al., 2009) is a technique used in MRI to measure the
magnetic susceptibility of tissue, which in turn relates to the
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paramagnetic content of the tissue. Diffusion guided QSM
(dQSM) (Ng, 2013) is a new technique that uses diffusion MRI
data to improve the modeling of magnetic susceptibility at each
position in the image, but it is a computationally challeng-
ing problem, requiring the inversion of a multi-terabyte matrix.
Diffusion guided QSM treats the magnetic susceptibility effect
of each image voxel as isotropic (Liu et al., 2011) or axial (Lee
et al., 2012) depending on the fractional anisotropy (FA) in cor-
responding diffusion-weighted images. The computation of the
matrix formulation of the problem using the Landweber iteration
(LI) method is prohibitively expensive on central processing unit
(CPU) cores. Acceleration of the algorithm by utilizing graphics
processing unit (GPU) cores is necessary to achieve image com-
putation times practical for research use today, and for clinical
application in the near future. The dQSM problem is suited to
the GPU for the reason that the elements of the matrix in the
Landweber iteration formulation can be computed on-demand;
without this ability the problem would be intractable on GPUs.
By computing the elements of the matrix on-the-fly using the
MASSIVE GPU architecture the time for computation of QSM
images has been reduced by a factor of 15.

Several attributes of the Landweber iteration method applied
to the dQSM problem make it particularly suitable to the GPU
architecture. Computing the solution requires iteratively multi-
plying very large matrices, which are computed on-the-fly from
smaller input buffers, with vectors of voxel input data and adding
the result to the previous values. Each iteration is an Order
(N∧2) problem with a high computational load of calculating
the matrix elements that extensively uses multiply-then-add that
allows fused multiply-add instructions. The conveniently con-
tiguous access to most of the read/write data vectors by parallel
computational threads enables better cache performance and
reduced global memory read/write overheads. By computing the
elements of the matrix on-the-fly and optimizing to best use the
MASSIVE GPU architecture, the time for computation of QSM
images has been reduced by a factor of 15.

The reference CPU solution uses an MPI parallel processing
paradigm that already provides a domain decomposition. This
decomposition was applied to the GPU implementation to split
separate sections of the problem over a number of GPUs in an
additional layer of parallelism. The MASSIVE architecture pro-
vides two NVIDIA Tesla M2070 or K20 GPUs per compute node
along with 12 CPU cores. The fast interconnect between nodes
enabled excellent scaling on the multiple GPU code with minimal
communication overhead even when computed on up to 32 GPUs
over 16 nodes. Current work involves a more intelligent load
balancing of the work across multiple GPUs and potentially sep-
arating the problem into white-matter voxels (which require the
LI technique and therefore the huge level of compute power the
GPU provides), and other voxels which can be computed using
a fast Fourier transform based technique. This would permit uti-
lization of the CPU cores that sit idle while the GPU computation
is performed.

The dQSM method implemented on the MASSIVE GPU
architecture demonstrates greater accuracy in susceptibility
estimation results compared to methods based solely on a
spherical diffusion mode. The major disadvantage is the very

long computation time, which makes the method challeng-
ing for routine research and clinical applications. Algorithmic
improvements and the growth in compute capability of GPUs
together with the further speed-up of the GPU implementa-
tion being undertaken, is expected to enable clinically-relevant
post-processing times (less than 30 min). Using multi-component
models of tissue structures to estimate susceptibility effects will
provide more accurate results with further improvements in
implementation of the dQSM algorithm.

DIGITAL ATLASING OF THE MOUSE BRAIN
The mouse is a vital model to elucidate the pathogenesis of
human neurological diseases at a cellular and molecular level.
The importance of the murine model in neuroscience research is
demonstrated by the multitude and diversity of projects including
the Allen Brain Atlas (brain-map.org), Waxholm Space (wax-
holm.incf.org) developed under the auspices of the International
Neuroinformatics Coordinating Facility, the Mouse Brain Library
(MBL) (mbl.org) and the Mouse Brain Architecture Project
(MBAP) (brainarchitecture.org). Many research groups use non-
invasive MRI to structurally map the murine brain in control and
disease model cohorts. Until recently, the construction of mouse
brain atlases has been relatively restricted due to the variety of
sample preparation protocols and image sequences used, and the
limited number of segmented brain regions.

The Australian Mouse Brain Mapping Consortium (AMBMC)
has recently developed an ultrahigh resolution and highly detailed
MRI-based mouse brain atlas (Richards et al., 2011; Ullmann
et al., 2012). The AMBMC atlas has initially concentrated on
five primary brain regions, the hippocampus, cortex, cerebellum,
thalamus, and basal ganglia and has recently published a segmen-
tation guide and probabilistic atlas for over 200 structures. MRI
data from 18 C57BL/6J mice was acquired at 30 µm3 resolution,
averaged to create a single image at a resolution of 15 µm3, and
placed in the stereotaxic Waxholm space. The components of the
brain were delineated, on the bases of differences in signal inten-
sity and/or their location in reference to landmark structures. A
digital atlas containing over 200 structures with mean region vol-
umes, T2∗-weighted signal intensities and probability maps for
each of structure was generated for use as a detailed template for
cross modality applications (see www.imaging.org.au/AMBMC).

These components have been integrated and made available
through the Neuroimaging Workbench (Janke, 2013).

DISCUSSION AND FUTURE
There are a number of major trends that will influence MASSIVE,
both under its current project plan and in the future. This
includes technological trends, capabilities such as visualization,
and major international initiatives.

MASSIVE CHALLENGES
Our experience developing and managing the MASSIVE systems
has highlighted a number of noteworthy challenges.

The MASSIVE systems cannot be managed in the same way as
a more traditional HPC facility where computer utilization is a
key measure of success. Because we commonly provide access to
compute in a near-realtime or interactive manner, we must keep
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a proportion of the systems available and waiting for instrument
processing or desktop sessions. We aim for CPU-core utilization
of around 70%, as opposed to more traditional systems that are
able to achieve between 90 and 100% utilization. We are exper-
imenting with strategies such as dynamic provisioning of nodes
and short running jobs to fill idle time.

Interactive desktop sessions on our facility run on a dedicated
node. Thus, users have access to two CPU processors running
between 8 and 12 cores, and up to 192 GB of memory. We do
not allow multiple users onto a single desktop node, because a
user can inadvertently affect other users. For example, by launch-
ing a multi-core application. However, a significant proportion
of desktop users do not require access to the full technical capa-
bilities. For example, a user that is using an image viewer to
examine a large dataset might only require one CPU-core. The
result is wasted computing resources. Our long-term plan to solve
this problem is to host desktop sessions in virtual machines that
will be provisioned at specific sizes and capabilities. Using virtual
machines allows us to completely isolate multiple users of a single
desktop and ensure a good user experience. In our early experi-
ence with provisioning on the cloud (Section Neuroinformatics
in the Cloud) the overhead imposed by a virtual machine is
acceptable, but fast access to file systems needs to be carefully
considered.

Our most significant challenge is not technical but relates to
user support. In a traditional HPC environment users will be
accustomed to submitting jobs to a queue and checking back for
their results. In an interactive environment, small changes to per-
formance and accessibility have a strong effect on user experience.
Moreover, users require fast response to problems—particularly
considering issues with the computing system can have a major
effect a physical experiment. Our solution to this problem has
been to ensure that have adequate expert staff who are able to
quickly triage and prioritize problems.

TRENDS IN SCIENTIFIC COMPUTING
A major trend in HPC has been the application of GPU technol-
ogy, developed primarily to support the gaming market, to enable
fast parallel processing. This has continued to be driven by the
development of new architectures, such as the Intel Phi.

Likewise, the trend toward centralized cloud hosting, and the
competition between major cloud vendors has created a land-
scape where hosting applications in the cloud is a very economical
solution, whilst still providing a high degree of control to cus-
tomize a solution to a particular science question. Early cloud
hardware offerings lacked specialized hardware, such as GPUs
or high performance interconnects. However, cloud computing
providers are increasingly providing these capabilities, including
Amazon (Ekanayake and Fox, 2010) (Amazon, 2013). In addition,
the development of open source cloud computing middleware,
such as OpenStack (OpenStack, 2013), allows a broader range of
providers to offer cloud solutions and increases the availability of
specialized services—such as parallel hardware or scientific appli-
cations. In particular, through the NeCTAR project, a number of
major Australian Universities are developing an OpenStack fed-
erated multi-node cloud for the research community (NeCTAR,
2013). The CVL project is hosted on this environment allowing

it access to GPUs and, in the future, a low latency and high
bandwidth connection to MASSIVE. The Neuroimaging Tools
and Resources Clearinghouse (NITRC) (Buccigrossi et al., 2007)
Computational Environment (NITRC, 2013), is an analogous
project that, like the CVL, provides a cloud platform pre-
configured for neuroinformatics. This allows any neuroscientist
to easily access the latest tools running on the Amazon cloud for
between $0.02 and $3.10 per hour depending on the hardware
configuration.

These trends in computing are creating a landscape where
cloud hosting of scientific applications—including interactive
desktop applications—will become a feasible, economical, and
powerful solution. MASSIVE is supporting this trend by porting
neuroimaging applications to the cloud through the CVL project,
and integrating key Australian instruments, including the IMBL
and imaging equipment through the NIF.

VISUALIZATION FOR NEUROINFORMATICS
Understanding and visualizing information is a hurdle for
researchers who generally work with 2D screens and rarely use 3D
displays. Advances in research imaging technology has dramati-
cally increased the volume and complexity of research data that
is routinely collected. New virtual reality technologies now pro-
vide the possibility of panoramic 320◦ visual displays that match
human visual acuity, and provide visualization opportunities for
exploring, and understanding the complexity of neuroscience
data, in particular human brain imaging data. The next gener-
ation of neuroscience discoveries underpinned by virtual reality
technologies and advanced computational approaches have the
potential to initiate a new discipline of visualization led scien-
tific discovery in neuroscience. MASSIVE is collaborating with
a unique Australian immersive visualization facility, the Monash
University CAVE2 facility (CAVE2, 2013), to allow researchers to
visualize MASSIVE 2D and 3D data in an immersive environ-
ment. The direct integration of the MASSIVE Desktop with the
CAVE2 display facility, including support for 3D display from
applications the MASSIVE users are already familiar with, is a key
objective for the initial operating period of the CAVE2.

Scientists are increasingly applying a systems approach to
understanding the human brain—coupling multiscale models to
develop an understanding of how models work together, how
effects propagate through systems and how high-level outcomes
are constructed from fundamental physics and chemistry. There is
a desire to provide mechanisms for interacting with and steering
of simulations to understand emergent properties. In particu-
lar, the Human Brain Project (HBP, 2012; Markram, 2012) will
develop mechanisms to gain visual feedback, steer simulations,
and interrogate simulated models as if they were a real biolog-
ical sample. New visualization tools for easily interacting with
computational models, large-scale simulations, and big data are
important to ensure HPC is easily accessible to the neuroscience
community.

LARGE-SCALE INTERNATIONAL INITIATIVES
Several large-scale international brain research initiatives are
now underway in both the US and Europe to accelerate our
understanding of the brain and its diseases and disorders. The
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Human Brain Project (HBP) has been funded with the aim to
take advantage of the convergence between ICT and biology to
model the brain in a single multi-level system. The HBP will
use supercomputers to build and simulate brain models with
unprecedented levels of biological detail, and use data from new
sequencing and imaging technologies, cloud technology, and neu-
roinformatics. The neuroinformatics community is already work-
ing closely with the large-scale initiatives to ensure collaboration
on computational neuroscience and neuroinformatics standards
and infrastructure.

The International Neuroinformatics Coordinating Facility
(INCF) is an international organization established to coordinate
international neuroinformatics infrastructure, and currently has
17 member countries across North America, Europe, Australia,
and Asia. With its international network of national nodes, INCF
is well positioned to connect scientists from its member coun-
tries with international large-scale brain initiatives to strengthen
global collaboration and accelerate discovery in neuroscience.
The INCF will play an increasingly important role in establishing
and operating scientific programs to develop standards for neu-
roscience data sharing, analysis, modeling, and simulation. The
global computational and informatics infrastructure will enable
the integration of neuroscience data and knowledge worldwide,
and catalyze insights into brain function in health and disease.
MASSIVE participation in the Victorian node of the INCF pro-
vides an Australian centralized hardware and software facility
and a national focal point for imaging and neuroinformatics
expertise.

The HPB and the US-led BRAIN Initiative sit alongside a num-
ber of other major grand-challenge scientific endeavors, including
mapping the human genome or understanding the fabric of mat-
ter and the universe using the CERN Large Hadron Collider or the
Square Kilometer Array. These endeavors each produce immense
volumes of data and are totally reliant on large-scale data pro-
cessing to uncover new knowledge. Likewise, neuroscience is
increasingly a data and simulation driven science and facilities
such as MASSIVE are essential to develop new understandings of
the brain.

CONCLUSION
Neuroscience and neuroinformatics is an area of priority
for the governments of most research intensive countries.
Computational HPC approaches are central to neuroscience and
to emerging neuroscience technologies including robotics, intel-
ligent systems, and medical bionics. HPC facilities are essential
for any future economy based on knowledge intensive indus-
tries. MASSIVE provides an Australian centralized hardware and
software facility and a focal point for imaging and neuroinfor-
matics expertise. The development of MASSIVE has been based
on best practice in system integration methodologies, frame-
works, and architectures. MASSIVE is now driving research in
advanced brain imaging MRI, x-ray CT, optical microscopy and
increasingly synchrotron x-ray and infrared imaging.
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Data sharing is becoming increasingly common, but despite encouragement and facilitation
by funding agencies, journals, and some research efforts, most neuroimaging data acquired
today is still not shared due to political, financial, social, and technical barriers to sharing
data that remain. In particular, technical solutions are few for researchers that are not a part
of larger efforts with dedicated sharing infrastructures, and social barriers such as the time
commitment required to share can keep data from becoming publicly available. We present
a system for sharing neuroimaging data, designed to be simple to use and to provide benefit
to the data provider. The system consists of a server at the International Neuroinformatics
Coordinating Facility (INCF) and user tools for uploading data to the server. The primary
design principle for the user tools is ease of use: the user identifies a directory containing
Digital Imaging and Communications in Medicine (DICOM) data, provides their INCF Portal
authentication, and provides identifiers for the subject and imaging session. The user tool
anonymizes the data and sends it to the server.The server then runs quality control routines
on the data, and the data and the quality control reports are made public. The user retains
control of the data and may change the sharing policy as they need.The result is that in a few
minutes of the user’s time, DICOM data can be anonymized and made publicly available,
and an initial quality control assessment can be performed on the data. The system is
currently functional, and user tools and access to the public image database are available
at http://xnat.incf.org/.

Keywords: neuroinformatics, neuroimaging, quality assessment, data processing, data archiving

INTRODUCTION
Data sharing is becoming increasingly common (Biswal et al.,
2010; Di Martino et al., 2013), but despite encouragement and
facilitation by funding agencies, journals, and some labs and larger
research efforts1 (Hall et al., 2012; Prior et al., 2013), there remain
political, financial, social, and technical barriers to sharing data
(Poline et al., 2012). Excuses such as “it’s too hard” and “it takes
too long” are all too common, and there is anxiety about subject
protection and control of data (De Schutter, 2010). And unless
one is part of a large project with dedicated sharing infrastructure,
there is also a lack of open technical infrastructure and public and
free archive space.

There are some central, open databases for image data sharing
such as The Cancer Imaging Archive2 and the National Database
for Autism Research3, but these are domain-specific, and con-
tributing data requires a substantial investment of time to handle
both bureaucratic and technical aspects of contributing data. On
the other end of the spectrum are image databases that can be
installed locally, such as COINS4 (Scott et al., 2011), the Human
Imaging Database5 (Ozyurt et al., 2010), LORIS6 (Das et al., 2012),

1http://grants.nih.gov/grants/policy/data_sharing
2http://www.cancerimagingarchive.net/
3http://ndar.nih.gov/
4http://coins.mrn.org/
5http://www.nitrc.org/projects/hid/
6https://www.nitrc.org/projects/loris/

NIDB7 (Book et al., 2013), and XNAT8 (Marcus et al., 2007). Using
any of these to share image data requires an investment in hard-
ware as well as initial and ongoing technical support. With the
exception of XNAT Central, none of these provide a public, open
instance that anyone can use to share their data.

Given an open repository such as XNAT Central, other issues
come into play. The actual mechanics of uploading data must then
be addressed. There are tools available to facilitate data upload, but
these often require somewhat involved installation, and most are
then general in scope, with many options that must be understood.
XNAT Desktop9 and DicomBrowser10, for instance, allow a user
to manage local data and send it to XNAT Central, but the flexibil-
ity in anonymization options and subject identifier customization
mean that there is a learning curve to using these tools effectively.
Moreover, they often don’t capture the relevant metadata simply
and efficiently.

We have created a system for data sharing that attempts to
address many of these issues. We set up a public, open image
repository within an international organization that can host and
manage imaging data, and have created user tools that make
data upload to this server trivial. The user software is designed
to be easy to install, and once installed, data upload is initiated

7http://nidb.sourceforge.net/
8http://www.xnat.org
9http://www.wiki.xnat.org/display/XNAT/XNAT+Desktop
10http://nrg.wustl.edu/software/dicom-browser/
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by a simple drag and drop. The user is then walked through
the few steps necessary to anonymize and upload the data in
a way that control of the data on the repository is retained.
On receipt of the data, the repository also runs quality assess-
ment (QA) routines on the data as a service to the user and as
additional motivation to share. In the near future, this should
also provide the imaging community with a useful resource for
quality checking. This report describes the design and imple-
mentation of this system and initial results of its testing and
validation.

METHODS
OVERVIEW
The system has two components: the image repository and the
user tools. The repository is an XNAT installation, and while some
XNAT customizations were necessary, most of the innovation lies
with the user tools. An overview of the design of the system can
be found in Figure 1. Since the overarching goal of this system is
to make data sharing simple, we describe the components of the
system in the order they are encountered by the data as it moves
from a local disk to the server. The ultimate effect is that given a few
minutes of a researcher’s attention, data is anonymized, archived,
and shared, and the researcher gets feedback on the quality of the
data.

The server itself can be found at http://xnat.incf.org, and the
user tools can be downloaded from this location as well. Source
code for the user tools and custom code for the repository can be
found on GitHub at http://github.com/incf/one_click.

USER UPLOAD TOOL
The driving design principle for the user tool is ease of use. Our
goal is to remove the barriers to data sharing, and the more difficult
it is to install or successfully run any tool, the more likely it is that
the user will give up. We provide two user tools, a command
line script and a graphical user interface (GUI). The two options
provide the same functionality, but in different ways: the command
line script is useful for users comfortable at the command line,
while the GUI uploader is useful for users accustomed to a more
interactive experience. The only requirement for these tools is that
data is prepared in a certain well-defined way before being sent to
the archive (see below).

The current user tools are written in Python, released under the
BSD license, and can be installed on Linux or Mac OS machines.

Dependencies are pydicom11, httplib212, and DCMTK13. The
user tools can be downloaded directly from the International
Neuroinformatics Coordinating Facility (INCF) web site14. The
command line tool requires manual installation of the dependen-
cies, although it is packaged and released through NeuroDebian15

(Halchenko and Hanke, 2012) which simplifies installation and
dependency handling on Debian systems. The Linux GUI tool
also requires PyQt16. All of the dependencies are bundled for the
Mac OS GUI.

The custom code for the archive server is also made available on
line via GitHub17 and released under the BSD license. Although
we plan to support the ability to push to alternate archives, focus
so far has been on the user tools and user experience, with one
archive sufficient for testing. Similar to a new user tool, a new
archive for this system would only have to conform to certain well-
defined specifications, such as being able to handle data prepared
as described below.

Data selection, validation, and annotation
The first step is selecting the Digital Imaging and Communications
in Medicine (DICOM) data to share. This can be invocation of the
command line script that takes the containing directories of the
data as arguments or dragging and dropping a folder containing
data onto the GUI tool (Figure 2). The selected data is then vali-
dated and sorted into subjects and imaging sessions: the user tool
scans the specified directories for DICOM data using pydicom and
groups the data by subject (by the DICOM Patient ID field) and
imaging session (by Study Instance UID).

If valid data is found, the user is asked to consent to a simple
usage agreement before proceeding (Figure 3). This agreement is
intentionally broad and simple; waiting to implement this upload
system until all of the legal aspects of sharing have been perfected
is a recipe for failure. The user is then prompted for a user name
and password that identify the user on the INCF portal18. The

11http://code.google.com/p/pydicom/
12http://code.google.com/p/httplib2/
13http://dicom.offis.de/dcmtk.php.en
14http://xnat.incf.org/
15http://neuro.debian.net/
16http://www.riverbankcomputing.com/software/pyqt/intro
17http://github.com/incf/one_click
18http://www.incf.org/

FIGURE 1 | System overview. Users are walked through data preparation using the user tool, after which the data is sent to the image repository for further
processing and publishing.
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FIGURE 2 | Selecting data for upload. Dragging and dropping the DICOM folder to the uploader application initiates the process using the GUI user tool.

user name allows the archive to assign the data to the user so they
retain control of the data, and links to the e-mail address to which
reports are sent. Since the archive shares the users and passwords
of the INCF portal, the password allows the user tool to query the
archive for existing data under the user’s control to avoid collisions
of new subject or session identifiers (Figure 4). This all takes a few
short minutes of the user’s time and attention.

There is some coordination with the archive required at this
stage. The archive server is running XNAT, which provides a set

of REST19 services that allow these queries. XNAT structures data
hierarchically into projects, subjects, and sessions. Permissions are
handled at the project level: access to subjects and sessions depend
solely on the level of access permitted to the containing project.
The user tool prompts the user for a project for each subject in
the selected data, and since the tool has queried the archive, the

19Representational state transfer, an architectural standard for communication
between components in a distributed system.

FIGURE 3 | Upload agreement. After verifying that DICOM data is available in the selected folder and before further action, the user must consent to this
agreement.
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FIGURE 4 | User authentication. The uploaded data is tagged with the user name so the user retains control of the data. Requiring the password at this stage
allows the tool to query the archive for existing data so conflicts can be avoided when labeling the data. Here, the user tool is querying the archive for existing
projects.

tool can verify that the user is specifying a project to which he has
access or a new project that can be created. Similarly, the user tool
will prompt the user for valid subject and session identifiers that
do not conflict with those already in the archive (Figure 5).

Anonymization and upload
The data is anonymized locally before it leaves the user’s computer
and is then sent to the archive. At this stage, all necessary infor-
mation has been collected from the user, and the data must be
prepared and sent to the archive. One benefit of using DICOM
data in our initial test case is that the DICOM standard includes
a network communication protocol for transferring data, a pro-
tocol which XNAT handles natively on the receiving end. But the
user tool must first anonymize the data so no identifiable infor-
mation leaves the user’s machine and then annotate the data with
the user information and the specified data identifiers. Depending
on the amount of data and the quality of the network connection,
this may take an hour or more, but it does not require the user’s
attention.

Anonymization is a challenge because of the various levels and
interpretation of anonymization that can be applied. DICOM
defines concepts such as patient name and study date that it
stores in fields, and there are several different conflicting DICOM
anonymization schemes that specify what information should be
protected (meaning, in our case, removed from the data). We
can illustrate this challenge by examining three different examples
of existing anonymization protocols: DICOM Supplement 5520

(developed primarily with clinical uses in mind), the National

20ftp://medical.nema.org/medical/dicom/final/sup55_ft.pdf

Cancer Institute deidentification profile21, and the default dei-
dentification profile provided by XNAT’s DICOM Browser22.
All agree that the Patient’s Name field should be protected,
but only one specifies protecting Study Date, another protects
Patient’s Address, one pair protects Patient’s Age, and another
pair protects Institution Name, and so on in every combination.
Clearly, no consensus is to be found: the level of anonymiza-
tion depends on the application context and the specifics of
the data. In addition, the DICOM specification defines fields
that must be present in valid data sets23, and programs at
both the sending and receiving ends of the network transfer
have their own quirks regarding what fields they require to be
present.

Rather than trying to definitively solve this problem, we decided
to choose a set of protected fields that are removed or replaced
(guided by existing anonymization profiles), making sure that the
network tools on either end would function with our anonymized
data. Table 1 shows the protected fields that are currently removed
from the data before it is sent to the archive.

The INCF user name and the project, subject, and session iden-
tifiers specified by the user are stored in the Study Comments field,
which is replaced or created as needed.

This anonymized and annotated DICOM data is then pushed
to the archive using the DICOM network transport protocol by
storescu from the DCMTK package. Similar to the Python depen-
dencies described above, this can be installed separately, but

21https://wiki.nci.nih.gov/display/Imaging/Clinical+Imaging+Data+Sharing
22http://nrg.wustl.edu/software/dicom-browser/
23http://medical.nema.org/
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FIGURE 5 | Data labeling. In this example, the user tool found data for
two subjects, BUSS_2030 and HENA_022009. The user now selects a
project and specifies public subject and session identifiers for the data
on the archive. Validation is done on the fly: here, an error exists

because no project is given, but the tool will also inform the user if
he does not have sufficient permissions to upload to the specified
project, if the session already exists, if identifiers use invalid characters,
and so on.

NeuroDebian handles its installation on Linux and it is bundled
with the Mac OS GUI tool.

IMAGE REPOSITORY
The repository itself is located at and hosted by the International
Neuroinformatics Coordinating Facility (INCF). The server itself
is a Linux virtual machine with two 2.4 GHz processors and a total
of 4 GB memory. The image repository is a customized installation
of XNAT 1.5.4.

Data validation and archiving
Data is validated on arrival at the archive and then archived.
The server itself does not have the processing power or memory
for intensive parallel analysis, so launching this computationally
intensive processing immediately when data arrives could easily

overload the system if a lot of data arrives at once. This step is
therefore queued and run using the arc-queue tools24.

The validation processing starts with an anonymization check,
and if the data does not conform to the anonymization profile
described above (i.e., if any of the protected fields are found in
the data), the data is removed from the archive and the user is
notified by e-mail. The content of the Study Comments field is
then validated, checking for a valid user and for project, subject,
and session identifiers. If the project exists, user permissions are
also checked. If everything is in order, archiving begins.

The archiving itself is a standard, built-in function of XNAT,
which arranges the data into projects, subjects, sessions, and scans,
after which thumbnail images are created for each scan (Figure 6).

24http://www.nitrc.org/projects/xnat_extras/
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Table 1 | DICOM fields for anonymization.

Tag Name

(0008, 0050) Accession number

(0008, 0080) Institution name

(0008, 0090) Referring physician’s name

(0008, 0096) Referring physician identification

(0008, 1048) Physician(s) of record

(0008, 1049) Physician(s) of record identification

(0008, 1050) Performing physicians’ name

(0008, 1052) Performing physician identification

(0008, 1060) Name of physician(s) reading study

(0008, 1062) Physician(s) reading study identification

(0010, 0030) Patient’s birth date

(0010, 0050) Patient’s insurance plan code

(0010, 0101) Patient’s primary language code

(0010, 1000) Other patient IDs

(0010, 1001) Other patient names

(0010, 1002) Other patient IDs

(0010, 1005) Patient’s birth name

(0010, 1010) Patient’s age

(0010, 1040) Patient’s address

(0010, 1060) Patient’s mother’s birth name

The current user tools clear or remove values for these fields, and data that arrives
at the archive with any of these fields set is rejected.

At this point the data is available for download, and users can
browse or search the archive for data. After archiving, QA is
launched.

Quality assessment
Once the data has been validated, QA runs are launched. QA pro-
cedures differ for various scan types, and the results are stored
on the archive and sent to the user by e-mail. Currently, three
types of QA are available for these scan types: structural, time
series, and diffusion. Structural QA is run on any scan of type
MPRAGE. Time series and diffusion QA is launched for every
scan and allowed to fail if the data does not satisfy the prerequi-
sites for these types (i.e., data with only one time point will file
the time series QA, and data without diffusion gradient direction
descriptions will fail the diffusion QA). QA begins by converting
each scan to NIfTI-1 and NRRD, and the bundling the data and
descriptors into an XCEDE-formatted file (Gadde et al., 2012).
XCEDE-formatted data is required by the QA procedures. Even
if the QA fails, these alternate data formats will be available for
download on the archive.

Structural QA. The structural QA is a custom procedure created
for this system. This procedure calculates image intensity statistics
over white matter, gray matter, CSF, whole brain, and the region
exterior to the head. The signal to noise ratio (SNR) is defined

as the mean image intensity in the brain divided by the standard
deviation of the image intensity external to the brain.

FSL25 (Zhang et al., 2001; Smith, 2002; Smith et al., 2004; Jenk-
inson et al., 2005) is used to classify regions in the volume and
calculate statistics, specifically:

• Brain and head are determined using bet image -A -m.
• Tissue types are determined using fast -t 1 image_brain, where

image_brain is an output of bet.
• Statistics are calculated using fslstats, using -k to mask each

region, -R for the minimum and maximum intensities, -r for
the robust minimum and maximum intensities, -m for the
mean intensity, -s for the intensity standard deviation, -v for
the number of voxels and the volume.

As this is a new and custom structural image QA procedure
designed as a simple proof of concept for this tool, it is imperfect
and likely to evolve as it is used as we study the results obtained on
large numbers of scans.

Time series QA. Time series QA is performed by fmriqa_generate.pl,
part of the BXH/XCEDE Tools suite26 (Friedman et al., 2006). This
program takes XCEDE wrapped data and produces a web page
reporting the results, including several plots. Examples of mea-
sures are the mean volume intensity at each time point and the
center of mass (x, y, and z) at each time point. Plots of these
measures can indicate at a glance if there is a variation at a given
time point that warrants further investigation. The mean SNR and
mean signal to fluctuation noise ratio (SFNR) are also calculated
as part of this process.

Diffusion QA. Diffusion QA is provided by DTIPrep27 (Liu et al.,
2010) with default parameters (DTIPrep -w scan.nrrd -p default -
d -c). The DTIPrep produces an XML report containing a number
of pass/fail checks of basic image parameters (spatial information,
basic gradient checks) followed by informational reports of other
parameters (e.g., gradient directions) that can be examined for
errors or possible problems. DTIPrep will also generate warnings
of certain non-standard conditions that might warrant additional
investigation (e.g., a non-standard number of gradient directions
or suspicious b-values).

QA reporting. Quality assessment results are parsed and stored on
the archive as assessments, custom XNAT data types that allow
for storage, management, and display of arbitrary data types.
These assessments are accessible from the web front-end and are
associated with the raw data for each scan (Figure 7).

While the diffusion QA is mainly informational with some
pass/fail results, the SNR and SFNR calculated for the structural
and time series QA procedures provide quantitative values that
may not have much meaning in isolation but can be compared
against other scans or collections of scans. For these QA reports,
histograms of SNR and SFNR for similar scans in the database as

25http://www.fmrib.ox.ac.uk/fsl/
26http://www.nitrc.org/projects/bxh_xcede_tools
27http://www.nitrc.org/projects/dtiprep
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FIGURE 6 |The existing one-click XNAT archive. Data is structured by project, subject, session, and scan. An automatically generated thumbnail image is
also shown.

well as for data in the 1000 Functional Connectomes28, as a refer-
ence dataset, are generated on the fly to give context of the SNR
and SFNR values for these scans.

The archive web front-end presents other data as is, such as
the raw values of tissue volume and voxel intensity statistics for
each tissue type (structural QA), the intensity and motion plots
(time series QA), and the diffusion pass/fail checks and gradient
information (diffusion QA).

When this processing is complete, the user is notified by e-mail
and given pointers to the data and to the QA results.

Data sharing
The data itself and the QA results are archived in a struc-
tured way and made publicly available in several formats. The

28http://www.nitrc.org/projects/fcon_1000

user retains full control of the data, however, and can make
the data private (on a project-by-project basis, following the
XNAT security model) or can remove the data from the archive
completely.

DISCUSSION
The system was conceived to remove some of the technical barriers
to data sharing and address some common excuses such as “it’s too
hard,” “it takes too long,” “there’s nowhere that will publicly host
my data,” and “I need to make sure the data is anonymized.” At
this point, the system addresses all of these issues. With this basic
functionality in place, the system can support other missions as
well. There has been interest in this platform to support the NIH
data sharing mandate and journals’ data sharing requirements.
There has also been independent interest in QA measures and
interest in the system providing further basic data analysis such as
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FIGURE 7 | Quality Assessment (QA) results. The results from the structural QA are shown as a custom XNAT assessment. The SNR is plotted against a
histogram of SNR values for a base set of data and for data in the archive. Raw values from the structural QA are shown at the bottom. Similar reports are
created for time series QA and diffusion QA.

FreeSurfer29 (Dale et al., 1999; Fischl et al., 1999) reconstructions
as a matter of course.

LIMITATIONS
There are various limitations to the current system, on the user
side, on the repository side, and on the system as a whole.

At this point, the user tools trade customizability for ease of
use, but this does not have to be a strict tradeoff. Anonymization
should be flexible, and the target of the upload should be customiz-
able (allowing for multiple archives; this could mean archives with
other processing on the back end, or local archives). With sensi-
ble defaults in place, adding these options does not need to stand
in the way of basic usability. The tools do require user attention,

29http://freesurfer.net/

but could be even more useful if a non-interactive mode were
provided. The command line script could then be embedded in
processing or other pipelines so data can be uploaded to an archive
as part of the same mechanism that moves it from the scanner to
a local lab for analysis, or to use an archive to do some initial
analysis. The user tools are also limited as to what platforms they
will run on (for the GUI tools), and the command-line script has
several dependencies that must be installed by hand if the Debian
package is not used. A web-based option for the user tool would
be the ideal solution here, but would require that anonymiza-
tion be performed on the server side or using local JavaScript
code.

On the server side, we identify scans for structural QA by
their declared scan types (MPRAGE). This could be extended by
using a lexicon of scan types (MPRAGE, SPGR, FSPGR, etc) but
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this solution will not scale: much structural data will be always
described in terms unfamiliar to the system, and the lexicon will
be forever chasing data found in the real world. A better way of
identifying scan types is likely to by inspection of scan parameters
reported in DICOM fields combined with a lexicon of scan types.
Allowing the user to specify the scan type unambiguously would
also solve this problem.

One limitation of the system as a whole is its requirement
for DICOM data. While the DICOM transfer protocol was use-
ful for this initial prototype, other data formats (NIfTI-1, MGH,
MINC, etc.) are more prevalent in day-to-day use within individ-
ual laboratories, and there is currently no good way to convert
these files back to DICOM to prepare it for upload. Most imaging
data starts as DICOM at the scanner, however, so this limitation
is less of a problem as investigators begin to consider central-
ized archival of their data immediately upon acquisition. The
restriction to DICOM data also limits the system to imaging data,
while other modalities (e.g., EEG) are excluded from using the
system.

Finally, the utility of the structural QA technique is cur-
rently unknown. We hope that as this is applied to more data,
it will become clear how to interpret it and how to improve it.
While the time series and diffusion QA procedures have been
formalized more completely, it still remains to be seen exactly
how to incorporate these metrics into practical implementa-
tions that indicate QA limits for data as a function of a desired
use.

CONCLUSION
What was conceived during a discussion of data sharing as a system
to aid data sharing has now been implemented, providing users
with a way to share data that addresses ease of use, anonymiza-
tion, and storage and archiving, and even providing some basic
processing results. The basic functionality is in place; users need
only to start using the system. The fact that they haven’t is not a
failure of the system; rather, it is a form of progress in ongoing
data sharing efforts.

Providing this system that functions to its technical specifica-
tions has removed certain technical barriers, throwing into relief
some of the social issues standing in the way of effective data shar-
ing. Exposing these issues will allow us to better understand and
focus on them. With “we can’t share” out of the way, we can better
attack “we won’t share.” Data sharing has not been solved, but
the discussion has been moved forward. And as further barriers
are removed, we have in place an infrastructure for sharing and
archiving.
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Accurate data collection at the ground level is vital to the integrity of neuroimaging
research. Similarly important is the ability to connect and curate data in order to make it
meaningful and sharable with other investigators. Collecting data, especially with several
different modalities, can be time consuming and expensive. These issues have driven
the development of automated collection of neuroimaging and clinical assessment data
within COINS (Collaborative Informatics and Neuroimaging Suite). COINS is an end-to-end
data management system. It provides a comprehensive platform for data collection,
management, secure storage, and flexible data retrieval (Bockholt et al., 2010; Scott
et al., 2011). It was initially developed for the investigators at the Mind Research Network
(MRN), but is now available to neuroimaging institutions worldwide. Self Assessment
(SA) is an application embedded in the Assessment Manager (ASMT) tool in COINS. It
is an innovative tool that allows participants to fill out assessments via the web-based
Participant Portal. It eliminates the need for paper collection and data entry by allowing
participants to submit their assessments directly to COINS. Instruments (surveys) are
created through ASMT and include many unique question types and associated SA
features that can be implemented to help the flow of assessment administration. SA
provides an instrument queuing system with an easy-to-use drag and drop interface
for research staff to set up participants’ queues. After a queue has been created for
the participant, they can access the Participant Portal via the internet to fill out their
assessments. This allows them the flexibility to participate from home, a library, on site,
etc. The collected data is stored in a PostgresSQL database at MRN. This data is only
accessible by users that have explicit permission to access the data through their COINS
user accounts and access to MRN network. This allows for high volume data collection
and with minimal user access to PHI (protected health information). An added benefit to
using COINS is the ability to collect, store and share imaging data and assessment data
with no interaction with outside tools or programs. All study data collected (imaging and
assessment) is stored and exported with a participant’s unique subject identifier so there
is no need to keep extra spreadsheets or databases to link and keep track of the data. Data
is easily exported from COINS via the Query Builder and study portal tools, which allow
fine grained selection of data to be exported into comma separated value file format for
easy import into statistical programs. There is a great need for data collection tools that
limit human intervention and error while at the same time providing users with intuitive
design. COINS aims to be a leader in database solutions for research studies collecting
data from several different modalities.

Keywords: assessment data collection, neuroinformatics, tool suite, database, intuitive, COINS

INTRODUCTION
Collecting phenotypic data is a central part of any neuroimag-
ing study. Traditionally, this data has been collected by writing
observations and responses on paper. In some cases, study staff
will record the data on paper while interviewing the partici-
pant. In other cases, the participant may enter the data directly
onto the paper themselves. After this initial data collection, the
paper hard-copies must be carefully cataloged and stored in filing

systems. Since data contained on sheets of paper is difficult to
analyze, the data must then be entered into a computer system
(e.g., database or spreadsheet). In order to reduce errors, many
studies will perform dual entry, where the data is redundantly
entered by two individuals. The two entries are then compared,
and any differences are resolved before an official entry is created.
Even with dual entry, there is a small chance of data entry
errors.
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Fortunately, modern technology has provided researchers with
many alternatives to the expensive, time-consuming process
described above. Data collection services like SurveyMonkey1,
Mechanical Turk, and Qualtrics2 (Buhrmester et al., 2011) offer
comprehensive form building tools. Once built, a form can be
used by study staff or a participant to enter data directly into a
computer, thus avoiding the cost and time associated with enter-
ing data on paper records into a computer system. The data
collected in using these systems must still be securely tied to each
study participant, and their imaging data (typically stored on local
databases, with metadata contained in spreadsheets). Managing
the connections between electronic phenotypic data and the par-
ticipant records in a way that does not compromise participant
privacy is a stressful and time consuming task.

In this article we introduce the web-based Self Assessment tool
as an optimal method for assessment data collection. The impe-
tus for developing this tool was to reduce data collection and entry
time as well as reduce the probability of entry errors and data loss.
Accurate data collection and entry is necessary to the success of
any research study. Similarly important is collection of item-level

1SurveyMonkey Inc. Palo Alto, CA. Available online at: www.surveymonkey.
com
2Qualtrics and all other Qualtrics product or service names are registered
trademarks or trademarks of Qualtrics. Provo, UT. Available online at: http://
www.qualtrics.com

data rather than summary values. This allows researchers greater
opportunity for discovery within a larger, more robust dataset
(Nooner et al., 2012). Self Assessment enables researchers to col-
lect and store all item-level assessment data in an efficient and
timely way.

There are many facets to this tool that produce an easy-to-
use interface and efficient data collection. Ease of use is one of
the most important aspects considered while creating this tool -
to reduce the time, energy, frustration of participants. The Self
Assessment tool (SA) provides research staff an assessment queue-
ing system, the ability to create user friendly instruments, the
ability to review participant submitted assessments and easily
export options. With this tool and others, COINS is striving to
create an efficient, comprehensive and intuitive database to offer
the research community.

METHODS
COINS OVERVIEW
COINS, created and developed at the Mind Research Network
(MRN; The Mind Research Network for Neurodiagnostic
Discovery, 2013), is a web-based data management system.
COINS is unique in that it offers tools to collect, manage and
share data of different modalities, including MRI, MEG, EEG and
assessment data (Bockholt et al., 2010; Scott et al., 2011). There
are similar neuroimaging suites (Marcus et al., 2007; Das et al.,
2011), but they do not offer a module for participants to complete
their own assessments.

FIGURE 1 | Add a new study.
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For the purpose of conveying where the Self Assessment tool
fits into the study schema of COINS, we will briefly explain
the process of adding a new study and enrolling participants in
the system. Creating a study involves entering basic information
about the study into a form (Figure 1). After this form has been
submitted, the research staff must create study visits and subject
types for the study. It is important to create study visits that
reflect the study protocol. The study visits are used to associate
assessments and scans with the time point on which the data was
collected. Subject types are the different subject groups in the
study protocol (e.g., Smoker, Non-Smoker).

After the study is set up, the research staff can begin enrolling
participants into the study. Basic demographic information is
entered for each participant during enrollment (Figure 2). At this
time a subject type, chosen from the previously created subjects
types, is assigned to the participant. Every time a participant is
enrolled into a new study, they are assigned a study specific sub-
ject ID called an URSI (Unique Research Subject Identifier). In
COINS all of the participant data (scans and assessments) are
coded with the URSI and are linked together in data collection,
data storage and at export (Figure 3).

PERMISSION LEVELS
The COINS database has been designed with security and
restricted/controlled access features. External access to the sys-
tem is restricted to either a VPN account with the Mind
Research Network (MRN) or through a firewall rule for limited
IP addresses within a collaborating institution. At the MRN, each

user is given a dedicated, password protected COINS account that
is only granted after all institutional human protections train-
ings have been completed. Account renewal is done annually and
is dependent on human protections recertification. User access
is based on study and role permissions. In order to gain access
to a particular study, investigators need to have IRB approval to
access that study within the database. The study PI will determine
the level of study permissions the investigator is assigned based
on their role (e.g., data entry, coordinator, co-investigator, etc.).
Certain roles and applications allow an investigator to have access
to a study, but not the participant identification details.

COINS is currently in compliance with HIPAA Privacy and
Security Rule (Health Insurance Portability and Accountability
Act of 1996, 2002) requirements. PHI is encrypted using the
mcrypt libraries. The data exists on a virtual machine within
the MRN firewall such that access to the machine is limited to
only COINS system developers and IT personnel. Permission is
granted by the site administrator on a granular level within each
study. Raw data is restricted through user permissions both at the
filesystem and the web application levels. Raw data, when viewed
independent of the associated meta-data, is free of demographic
PHI. PHI will be stored encrypted on a PostgresSQL database
within the MRN network and protected by its firewall. Participant
names and other identifying information will be maintained in
this restricted database, available only to authorized members of
the research team for the duration of the study. At the time of
study closure, the link to participant names and other identifiable
data will be unlinked and made inaccessible to the research team.

FIGURE 2 | Add a new subject.
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INSTRUMENTS
Clinical data gathered from interviews, questionnaires, and
neuropsychological tests are entered into COINS through the
Assessment Manager (ASMT) application. The Self Assessment
tools are accessible through this application.

One of the first steps to assessment data collection in the
COINS database is instrument creation. The term instrument
here means the measure (or blank form) through which
assessment data is entered (by the research staff or directly by the
participants). Instruments can be created in several ways. There

FIGURE 3 | Data collection flow chart.
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is an instrument creation tool in which the general properties
of the instrument are entered (instrument label, description,
version, etc.), then sections are created manually as well as ques-
tions/responses. Another option to create an instrument is the
instrument import tool. This process involves the research staff
creating a template of the instrument in a.csv file that includes
all of the fields that are required during manual instrument cre-
ation (instrument properties, sections, questions, etc.) which is
then imported into the study by the COINS staff. The final option
is to request an existing instrument be shared or copied to the
investigator’s study.

SELF ASSESSMENT QUESTION TYPES AND FEATURES
During instrument creation there are several features that can be
employed to optimize the participant’s experience. Instrument
creation in COINS takes into account the need for participant
friendly language. For this purpose there are Self Assessment
specific instrument, section, and question labels available. These
labels can be used in place of stigmatizing language that might
influence a participant’s responses.

This tool also has several different unique question
types/features such as media question types. This question
type can be used if the investigator would like to capture a
participant’s response to an image or video. The research staff
can upload an image or video and create associated questions
(multiple choice, visual analog scale, text response) (Figure 4).
An extension of this question type is the continuous visual analog
scale (VAS). Continuous VAS questions can be configured to
record values at regular intervals while the participant is viewing
a video. This can be used to allow participants to rate their
emotional response to images/sounds in a video over time.

For the sake of efficiency and accuracy, COINS provides
conditional looping, conditional skipping and auto-populated
responses. Conditional looping and skipping (also sometimes
referred to as “branching logic”) allow the participant to move
through a questionnaire without having to answer irrelevant
questions (Figure 5). For example, a participant could skip out
of answering cigarette smoking related questions if they do not

smoke. Auto-populate questions can be used if more than one
instrument asks the same question, for example, age. If the
participant enters their age in the “auto-populate from” question,
the “auto-populate to” question will display that response when
the participant reaches that question. This reduces time of entry
as well as frustration on the participant’s part. The research staff
can also choose to make the questions required, this option will
not allow the participant to navigate away from a page until all
questions are answered. This ensures that the assessment is fully
completed. For questions that capture text responses, there are
text enforcement options. These can be employed to be sure the
correct type (date, phone number, number, time (HH:MM), etc.)
of text response is entered (Figure 6).

Often times neuroimaging research involves asking partici-
pants sensitive questions. The responses to these questions could
lead to necessary intervention by the research staff (i.e., discussing
suicidality). In order to alert the staff to such questions, there is
a critical flagging feature that allows any response to be consid-
ered a critical flagged response. If such a response is selected by
the participant, the research staff will see the assessment in red
in their review queue (Figure 7), as well as the critical response
question (Figure 8).

SELF ASSESSMENT PREVIEW
To ensure that the instrument presented to the participant func-
tions (i.e., conditional skips, loops, specify options, etc.) as
expected there is a tool called SA (Self Assessment) Preview. This
tool allows research staff to view the instrument as a participant.
Use of this tool is highly recommended for any instrument that
will be viewed by participants. The research staff can view the
instrument in SA Preview by the click of a button (available on
each question), which launches a modal pop up. The instrument
is displayed just as it would be to the participant.

SELF ASSESSMENT QUEUES
In order for participants to fill out the assessments in the
Participant Portal the research staff has to populate the
“Participant Queue.” Within ASMT there is a “Manage Subject

FIGURE 4 | Visual analog scale.
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FIGURE 5 | Conditional skipping.

FIGURE 6 | Text enforcement.
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FIGURE 7 | Critical flagging in review queue.

FIGURE 8 | Critical flagged question.

Queues” tool. The user selects the participant’s URSI, the
study visit (e.g., Baseline, Visit 1, Visit 2) for which they want
data entered, the queue type and then creates a login for the
participant (it is recommended that these logins not contain
any participant identifiers). Queue types determine how the
assessment is handled in the Participant Portal. A one-time
queue is used for assessments that are only to be collected once
per visit. An on-going queue is used if the assessment data is
collected throughout the study (e.g., calendar data). Once the
data collection is over only the research staff can complete an
assessment in the on-going queue. A recurring queue is used if
an assessment needs to be collected more than once per visit.
Each time the participant opens an assessment in this queue a
new assessment is begun and an new instance is created in the
database. As with the on-going queue only the research staff can
complete an assessment in this queue type.

Creating a queue is a drag and drop system. The interface
displays a box for the “Participant Queue,” “Study Templates,”
and “Study Instruments” (Figure 9). The “Study Instruments”
box includes all of the instruments that have been created for
the study. To populate the queue the research staff has to click
each desired instrument and drag it from the “Study Instruments”
box to the “Participant Queue” box and release. When all instru-
ments have been queued, they save the list and can provide the
participant with the website (coins.mrn.org/p2) and login.

TEMPLATES
A template schema was created for ease of use. The user can drag
and drop all of the instruments into the “Participant Queue,” click
a button and a pop up appears that asks for a template name.

The template then appears in the “Study Templates” box. When
the next participant is ready to be queued for assessments, the
research staff can drag the template previously created over to the
“Participant Queue” and the instruments will appear in the same
order in which they were saved. This reduces the amount time
that it takes for the user to set up the queue as well as accounts for
any potential error (forgetting an instrument, adding two of the
same instrument, etc.).

PARTICIPANT PORTAL
A participant can begin filling out the queued assessments as soon
as they login into the Participant Portal. The Participant Portal
can be accessed anywhere with an internet connection. The portal
has been designed to have an easy to use interface for all ranges
of participant types, from those that are computer savvy to those
that have had little exposure to computers.

As the participant is completing the assessments, they are
made aware of their progress. At the bottom of the screen there
is a note to the user indicating how many assessments they
have to complete. Also at the end of each assessment there is
a brief message that they have completed the assessment and
indicates how many assessments are left in their queue. If the
participant needs a break, they can click “Save and Exit” and
when they log back in they will be brought the last unanswered
question.

As the participants complete the assessments the research staff
receive emails indicating that an assessment is complete and
waiting to be reviewed in the review queue. These emails also
contain a link to the review queue so that the researcher can easily
access it. In order to receive the notification emails, the research
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FIGURE 9 | Participant Queue.

staff enter the desired email addresses in a list during study set up.
This list can be edited throughout the duration of the study so
that only those who need to, receive the assessment emails.

CUSTOMIZED CSS IN SELF ASSESSMENT
At the site level, users can customize the Participant Portal with
a CSS upload tool. With a basic understanding of CSS, users cre-
ate a CSS file to change the layout, background, color, and fonts of
any generic element or specify a class or id to change more specific
elements. They can also upload a logo or graphic from their insti-
tution to be displayed at the top of every page in Self Assessment.
These tools provide the participant with a feeling of continuity
as the Participant Portal will have the same look and feel of the
other websites that they are using during their study participation
(Figure 10).

SELF ASSESSMENT REVIEW QUEUE
The review queue contains all of the self assessments that have
been completed by participants. The research staff member
reviewing the assessments has the option to complete the assess-
ment, deny the assessment or save the assessment to review later.
If there are no issues with the assessment the study staff can click
“Complete” to send the assessment to the database as a finished,
complete record (no further entry is needed). If the assessment
is incomplete or there is a response that needs clarification, the
assessment can be denied. When an assessment is denied it is sent
back to the participant’s queue for completion/updating. If the

user cannot complete the review, they can save it and escape the
assessment in order to keep it in their review queue to be reviewed
and completed/denied at another time.

The Self Assessment time log is a tool to determine how
long participants spend on individual questions or pages while
completing an assessment in the Participant Portal. There is a list
of all of the self assessments for the study. Included on that list is a
column labeled, “time spent,” which displays the time, in minutes,
that it took the participant to complete that specific assessment.
The user can also view a further breakdown of the time log that
displays timing information on every event completed in the
assessment (e.g., assessment resumed, question answered, next
page button clicked, assessment complete, etc.) (Figure 11).

EXPORTING DATA
Data collected via SA is easily retrieved and exported from Query
Builder and/or a study portal. Query Builder is the most versa-
tile data export tool currently offered in the COINS tool suite.
This tool supports secure, ad hoc querying of single and cross-
site studies for assessments, scans and demographics. It also offers
the ability to search assessment data and scan data in the same
query.

A study portal is a centralized collaboration tool for
monitoring enrollment progress, quality assurance, document
exchange, etc. Progress reports within the portals provide a
complete workflow overview of a study to identify missing
data at one glance. Internal and external collaborators can
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FIGURE 10 | Participant Portal.

FIGURE 11 | Self assessment time log.

use the portals to access all assessment data associated with
their studies. Assessment data can be exported by subject
type/instrument/study visit. There are also reports that display
graphical views of question scores, demographic statistics and
outliers in the data.

RESULTS
Since the release of the Self Assessment tool in 2011, there
have been 35,448 assessments collected across 6 sites (Table 1).
Several studies/programs have been instrumental in the con-
tinual development of this tool. The enhanced Nathan Kline
Institute - Rockland Sample (NKI-RS) is an ongoing project

aimed at collecting 1,000 or more participants to provide a lifes-
pan sample (ages 6–85 years old) of phenotypic, neuroimaging
and genetics data (Nooner et al., 2012). The initial develop-
ment of Self Assessment was guided by the expected types of
assessments collected by the NKI-RS project. Currently, NKI-RS
almost exclusively collects assessment data via Self Assessment,
sometimes collecting over 15 assessments at one visit.

Although COINS allows cross modality data collection, not
every group using COINS collects imaging data. The New Mexico
Works Intensive Case Management, Recovery and Employment
(ICARE) program is a pilot program designed to address sub-
stance use barriers to employment in Temporary Assistance
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for Needy Families (TANF) recipients (NM Human Services
Department, 2012). The substance abuse data is collected via
an SA calendar tool that has been tailored to the Timeline
Followback assessment (Sobell and Sobell, 1992). This particular
calendar tool is designed to collect life events as well as substance
use information for a complete emulation of a paper and pencil

Table 1 | Assessments per site.

Sites Number of assessments

The Mind Research Network 20,613

Nathan Kline Institute 12,136

NM works—ICARE 2166

University of North Carolina—Wilmington 286

University of Colorado Boulder 238

Timeline Followback assessment. Data entered by the day into
the virtual calendar (Figure 12) can be duplicated, edited and
deleted. Multiple days with same information can be entered all
at once via simple key commands. This tool is capable of con-
tinuous entry when queued in an On-going queue type. The
Followback Calendar includes an administrator tool that allows
staff to edit previously entered data in the event of an entry error
or incorrect reporting. The information entered into the calendar
through Self Assessment can then be viewed and exported in very
detailed and easy-to-use reports. Substance use information from
the calendar can be graphically viewed in several different charts
types (Figure 13) via the “Calendar Report Tool.” Each unique
substance reported on the calendar can be shown or hidden with
toggle icons and can be viewed as a simple, clean bar graph or as
a cumulation graph, showing length of use and abstinence peri-
ods. All life events and substances used are also plainly listed by

FIGURE 12 | ICARE calendar.

FIGURE 13 | Calendar report tool.
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date for easy review. In addition to the ability to effortlessly visu-
alize the substance use data, it can also be exported for analysis,
allowing for the day range, days per interval customization. This
project serves participants that have little or no knowledge of
computers and thus far there have not been any barriers dur-
ing their use of the tool. There have been 2166 self assessments
collected for this project thus far.

DISCUSSION
COINS is under constant development in order to satisfy the need
for a database that provides tools for all aspects of a research study.
Although we offer a robust tool suite there are several areas in
which we can improve and provide more features.

AUTO-QUEUES
We plan to continue to reduce ways in which the research staff
have to manually enter information. We are currently develop-
ing an auto assessment-queuing process. This tool will enable
research staff to set up conditions for automated assessment
queues (currently done manually by research staff) based on sub-
ject types and/or responses to specific questions. This will reduce
errors (queuing incorrect assessments, queuing for incorrect vis-
its, etc.) and the amount of time spent by research staff.

OFFLINE DATA STORAGE
Data collection is often conducted in the field, where wireless
internet can be unpredictable or non-existent. COINS currently
offers a Windows-XP-Tablet-based direct entry application that
uses a web service to sync assessment data to the database when
a data connection is available (Turner et al., 2011). This appli-
cation is primarily used by research studies that need to collect
data in an environment where no data connection is available
(e.g., correctional institutions or rural populations). This tool
has proven extremely useful for this purpose and requires lit-
tle maintenance after a study has been set up. Unfortunately,
the application was designed for use exclusively on touch-based
Windows XP devices. These devices will no longer be supported
by Microsoft in the spring of 2014, and newer tablet technology
from Apple, Microsoft and Google warrants a new offline-capable
system.

To this end, we plan to leverage HTML5 web standards such
as the Local Storage API (Hickson, 2013), and Cache Manifest
(HTML5, 2012). This will allow any device with a browser to
cache instruments for use in an offline environment, and then
store data entered into those instruments on the device until a
data connection can be established. Once a data connection is
established, data will be synced to the COINS servers, where it
can be inspected, approved and imported.

CONCLUSION
There are several options available to researchers for assessment
data collection, but very few that offer a full neuroimaging tool
suite as well as participant entered assessments. The COINS Self
Assessment tool is optimal for participant data collection due
to its ease of use (for participants and research staff), integra-
tion capability with other neuroimaging data, security features
for protecting sensitive/identifying participant information. The

COINS team will continue to improve the usability of current
tools as well as aim to provide new features and tools that will
allow COINS stand out as a superior alternative to collecting
study data with several different databases/systems.
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This paper describes how DISCO, the data aggregator that supports the Neuroscience
Information Framework (NIF), has been extended to play a central role in automating the
complex workflow required to support and coordinate the NIF’s data integration capabilities.
The NIF is an NIH Neuroscience Blueprint initiative designed to help researchers access
the wealth of data related to the neurosciences available via the Internet. A central
component is the NIF Federation, a searchable database that currently contains data
from 231 data and information resources regularly harvested, updated, and warehoused
in the DISCO system. In the past several years, DISCO has greatly extended its
functionality and has evolved to play a central role in automating the complex, ongoing
process of harvesting, validating, integrating, and displaying neuroscience data from
a growing set of participating resources. This paper provides an overview of DISCO’s
current capabilities and discusses a number of the challenges and future directions
related to the process of coordinating the integration of neuroscience data within the NIF
Federation.

Keywords: data integration, database federation, database interoperation, neuroinformatics, biomedical

informatics

INTRODUCTION
Experimental and computational data in neuroscience increas-
ingly overwhelms our ability to integrate it to give insight
into the molecular and cellular basis of normal and diseased
neuronal function. The problem is extreme in neuroscience
because the data comes from a wide variety of disciplines.
Tools are therefore urgently needed for automating the dis-
covery, extraction, and organization of this data. This paper
describes the current status of the DISCO framework that has
been extended to play a central role in automating the com-
plex workflow required to support and coordinate the data
integration capabilities of the Neuroscience Information Frame-
work (NIF). The NIF1 is an NIH Neuroscience Blueprint ini-
tiative designed to help researchers access the wealth of data
related to the neurosciences available via the Internet (Gardner
et al., 2008; Gupta et al., 2008; Bandrowski et al., 2012; Cachat
et al., 2012). A central component is the NIF Federation, a
searchable database that currently (as of January, 2014) con-
tains data that is downloaded on an ongoing basis from over
231 data and information resources (for an updated list see,
http://disco.neuinfo.org).

1www.neuinfo.org

A user querying the NIF Federation typically receives results
from a range of resources containing data relevant to the query.
For most resources, further information about a particular data
item can be obtained by linking directly to data stored within the
resource itself.

The NIF Federation is growing as new resources are added, and
as new data are downloaded from participating resources. A major
challenge involves the need to keep the data contained within the
NIF Federation up-to-date, since most of its information resources
are accumulating new data on a regular basis that need to be down-
loaded to the NIF. In addition, data previously downloaded from
a resource may need to be changed to reflect changes made to the
data within the resource. Furthermore, the internal structure of
a resource may periodically change, requiring that the logic that
“harvests” data from that resource be modified.

DISCO (DISCOvery) was initially developed as a set of tools to
assist in focused aspects of the process described above (Marenco
et al., 2010). During the past several years the role of DISCO has
expanded dramatically to play a central role in automating the
complex data-pipeline workflow required. Examples of DISCO’s
capabilities include the following.

• creating a new data resource in the NIF Federation describing
what data to extract and how to extract that data,
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• setting up a schedule for downloading new data from a resource,
• downloading the current data from a resource and comparing

it to the previous version of that data if one exists,
• creating a new version of the data for a resource and putting

it in a temporary (“beta”) file to allow it to be inspected and
approved before it is officially loaded into the operational
version of the NIF Federation,

• allowing the NIF staff to create views of the NIF Federation data
with the help of a concept mapper, including integrated views
that combine data from multiple resources,

• alerting the NIF staff if problems are detected in any of
these activities, and helping coordinate the resolution of each
problem,

• maintaining a record of all these activities as they occur.

This paper provides an overview of DISCO’s current capabil-
ities and discusses some of the issues and challenges involved in
coordinating the integration of neuroscience data within the NIF
Federation.

BACKGROUND
DISCO can be described as an extensible data aggregator designed
to facilitate automated information integration from disparate
data sources over time. To help accomplish this goal DISCO
includes the following features: persistence of provenance storage
representation, historical data tracking, semantic data mappings,
and near real-time federated data synchronization.

The most commonly known aggregators are Web crawlers.
These scan the content of Web pages on a regular basis and index
the terms extracted from free text retrieved. Any data that is stored
inside Web-accessible databases, however, is not scanned and is
therefore “invisible” to Web crawlers. DISCO differs in that it uses
resource-specific tailored logic to guide focused data extraction
from a variety of Web-based data-presentation formats, including
Internet-accessible databases.

Two general approaches that have been widely described for
integrating data from multiple distributed databases are (1) a
data warehouse approach and (2) a data federation approach. In
a data warehouse, data from participating resources are down-
loaded to a central database where they can be queried locally in
an integrated fashion. Examples of data warehouses in the life
sciences and clinical medicine includes DWARF (Fischer et al.,
2006) and i2b2 clinical data warehouse (Majeed and Röhrig, 2012).
By contrast, in a data federation, the data is not downloaded to
a central database but remains stored within each participating
resource. The federation (1) allows the user to submit a query, (2)
breaks that query down into a set of individual subqueries that
are submitted to each appropriate resource, and (3) integrates the
results returned. Examples of biomedical data federated systems
include InterPro BioMart (Jones et al., 2011) and caGrid (Saltz
et al., 2006).

The NIF Federation implements a hybrid approach. A central
component of the NIF Federation is a searchable data warehouse
that contains selected data elements from participating resources.
A major advantage of this approach is that queries can be exe-
cuted much faster since all the data is stored in one place. There
are no network communication latencies and no issues of par-
ticipating resources being temporarily unavailable. In addition,

complex database joins can be particularly difficult to implement
within a pure data federation when the results of intermediate
database operations need to be transmitted over the network.
The NIF Federation is a hybrid because in addition to the data
stored in its data warehouse, a large amount of additional data
stored in individual resources can be linked to from data ele-
ments stored in the warehouse. This allows the user to “drill
down” to very detailed data (for example to raw data such as com-
plex experimental results) once the user determines based on a
search of the warehouse that this additional data is of potential
interest.

Many data warehouses store the data they retrieve from partic-
ipating databases in a normalized form, so that the combined data
can be queried as one single source. The NIF Federation does not
do this. Normalizing data from highly dynamic heterogeneous
federation of resources would be prohibitively time-consuming,
if not impossible. As a result, the NIF stores the data retrieved
from each participating resource in separate resource-specific
tables.

DISCO stores the data that it extracts from all resources in
relational form. Each resource has its data stored in its own set
of DISCO tables. This approach to data extraction and storage
forms the foundation for DISCO that facilitates data integra-
tion, searching over multiple resources, and tracking over time.
Integrated querying of content within the NIF Federation is
supported by first examining the text content and annotation
of the imported data and mapping these to NIFSTD, the NIF
ontology (Bug et al., 2008; Imam et al., 2012). Queries can then
be expressed using NIFSTD. In addition, the NIF Federation
has established some integrated views of data from multiple
resources that allow those data to be more tightly linked for query
purposes.

OVERVIEW OF THE DISCO FUNCTIONALITY
This section first provides an overview of DISCO’s capabilities,
after which we describe DISCO’s operation in more detail using a
number of Web screens that illustrate concretely various aspects of
DISCO’s functionality. More detail about the function of DISCO
as a whole can be found in the online DISCO User’s and Technical
Manual2.

The current DISCO implementation represents a major
advance over an early version of DISCO previously described in
(Marenco et al., 2010). The previous version provided an initial
set of tools that helped participating resource staff define the data
they wished to include in the NIF Federation, and the upload
of that data to the Federation. In its current implementation,
DISCO provides a sophisticated infrastructure that coordinates
and orchestrates three separate, but interrelated federated data
processing pipelines for the NIF. The overall process coordinated
by these pipelines is illustrated in Figure 1.

• The first pipeline involves DISCO resource registration. This
process is initiated by creating a new resource sitemap at
NeuroLex (neurolex.org). At the end of this initial step,
this information is pushed to DISCO. Once registered in
DISCO, NIF data curators then work with resource staff

2http://disco.neuinfo.org/docs/manual/
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FIGURE 1 | A schematic overview of DISCO’s functionality.

FIGURE 2 |The main DISCO Dashboard, as described in the text.
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FIGURE 3 | A DISCO screen showing detailed information about an individual resource (Cell Centered Database) that participates in the NIF

Federation.

FIGURE 4 | DISCO’s NIF Data Source Dashboard.

to construct DISCO scripts that extract data from the
resource.

• The second pipeline involves input data management. Input
data management includes ingestion of data from each resource,
validation, and version tracking. These processes are entirely
managed within the DISCO system.

• The third pipeline involves output data management. This
process includes NIF Federation dataset view generation

and validation, including deployment of that data for use
by the NIF community. DISCO coordinates with other
components of the NIF to generate federated data Views
to help make the data accessible to users in a flexible
fashion.

DISCO utilizes customized template scripts that describe to the
NIF crawling agent where data is located for each resource, how

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 58 | 60

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


Marenco et al. Extending the NIF DISCO framework

FIGURE 5 | A Venn diagram illustrating how the 231 resources

supported by DISCO as of January 2014 are distributed among the

three DISCO services (Interop, LinkOut, and News). The numbers
indicate how many resources participate in each service and, of these, how
many participate in two or three of the services.

it is to be extracted, and how it is to be stored in the NIF Federa-
tion warehouse. Source data in a variety of formats is supported,
with new formats frequently incorporated. Within the warehouse,
the resource data is stored using PostgreSQL tables. To facilitate
provenance, tables from each resource are named using their NIF
IDs as prefix. Every time a resource is rescanned, new temporary
tables are generated. The new data is compared with the pre-
vious production version of the data for changes. If differences
are found, the system reports a summary of the new changes to
data curators for their verification. If the new data is accepted,
DISCO checks whether there are any Views using this data. If so,
new temporary Views are recreated and deployed to the NIF beta
Website. Data curators as well as resource personnel are informed
of a new version of these Views. Once the new temporary version
of each View is approved, it is scheduled for production deploy-
ment. This process can be executed immediately or in batches, as
desired.

DISCO was designed to deal with frequent changes in the infor-
mation stored within a resource since such changes are common in
neuroscience research. While most data changes consist of addi-
tion of new data or changes made to existing data, quite often
a resource expands its content using new attributes or datasets.
Less often the resource may reshape its contents using a different
structure. Keeping track of these intra-resource domain changes
over time is challenging unless these changes are properly doc-
umented within DISCO in a way that an automated agent can
trace. DISCO scripts were particularly designed with this pur-
pose in mind. Once a data extraction script is written, it is
functional for data changes (additions, deletions, and correc-
tions) as long as the structure of the data is not altered within
the resource. If the structure changes, the extraction scripts need
to be changed accordingly or the data ingestion procedure will
break.

DISCO tracks data changes using predefined primary keys
specified in resource scripts. (For a resource containing highly

unstructured data, a hash of each entire record may be used.)
These keys are used to create unique identifiers for specific
pieces of data (entities) in a resource. The data structure
within each resource is also tracked. DISCO uses a customized
EAV/CR schema (Marenco et al., 2003) as a concurrent ver-
sioning system (CVS) back-end. Changes to data and metadata
are stored using reverse delta methodology, and changes to
resource database structures are stored using deltas. Reverse
deltas allow DISCO to keep the most current version the data
in the production tables actively used by the NIF, while changes
from previous versions are stored in EAV form to allow the
recreation of previous versions if needed. This technique is
efficient for data additions and/or modest data edits. Substan-
tial data changes may require copying all previous data to the
CVS.

Semantic data mappings in DISCO are done based on
schema annotations in DISCO scripts. We follow the approach
to enhanced metadata annotation previously developed as the
EAV/CR dataset protocol (EDSP; Marenco et al., 2003). Schema
elements such as table groups, tables, and columns are annotated
to describe their content, semantic relationships, and whether they
contain complex objects, simple terms, or just values. Once data
has been extracted from a resource, columns containing terms are
queried to extract those terms, which are then mapped to term
IDs from standard vocabularies. DISCO facilitates semantic data
integration by mapping semantic metadata and term IDs to the
NIFSTD ontology. The DISCO semantic data mapping function-
ality is coordinated by the NIF Concept Mapper (Gupta et al.,
2008).

Having the most current data from each resource in DISCO
is also challenging due to the absence of mechanisms to inform
DISCO when new data is added to a resource. As described
below, DISCO’s current scheduling approach allows the data to
be refreshed at predefined intervals. There is therefore no assur-
ance of having completely up-to-date data from each resource.
We are currently exploring mechanisms to allow bidirectional
notifications from resources to prompt DISCO when to rescan
for new information. For resources that are not able to imple-
ment this mechanism, an approach using some type of probing
may be possible, for example, checking for file timestamps or size
changes.

Since DISCO is a system in continual evolution, for its develop-
ment we use the Scrum agile development framework. This allows
quick development and rollup into production. DISCO is imple-
mented as a Web application written in Java using PostgreSQL as
a back-end database.

DISCO OPERATION
To coordinate its operation, DISCO contains three high-level
“dashboards”: the main DISCO Dashboard, the NIF Data Sources
Dashboard, and the NIF Views Dashboard. These are used by
NIF staff to coordinate the various workflow steps required to
maintain the NIF Federation. The three dashboards provide an
overview of the status of all of DISCO’s various activities for
every participating resource, along with the ability to drill down to
see more detailed information about the activities and resources
involved.
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FIGURE 6 | DISCO’s NIF Views Dashboard.

FIGURE 7 |The screen provides a snapshot overview that illustrates the operation of the DISCO task scheduler, as described in the text.
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Figure 2 shows the main DISCO Dashboard, which also serves
as DISCO’s homepage. It contains the list of the resources, includ-
ing all the NIF Federation resources, that share their information
via DISCO. This dashboard (at the top of the “Resource” section)
shows a toolbar for searching, sorting, and paging through the
resources. Below is a table of resources, showing each resource’s
ID and name, as well as summary information indicating what
NIF capabilities DISCO coordinates for that resource, as well as
links to more detailed information. This information includes (1)
where the DISCO file(s) for each resource resides (locally on the
DISCO server or remotely at the resource itself), and (2) which
DISCO services each resource is participating in. This dashboard
provides NIF staff with an overview of this basic information about
all participating resources.

Clicking on a resource name (e.g., Cell Centered Database in
line 5 of Figure 2) will link to the DISCO content page for that
resource, as shown in Figure 3. This page displays a variety of
information about that resource, including contact information
for that resource’s technical support, as well as pointers to DISCO
files which contain scripts defining in detail how DISCO imple-
ments each DISCO service for that resource (as summarized in the
“Services” section of Figure 2). The content presented in this page
is encoded using an XML formatted file, and can be modified by
selecting the Edit button in the “DISCO Information” section of
the page.

Whereas the main DISCO Dashboard provides an overview of
the basic information DISCO maintains about each participating
resource (including descriptive information and scripts), the NIF
Data Source Dashboard (Figure 4) provides an overview of the
workflow status of each resource.

The Data Source Dashboard displays a table with columns con-
taining each resource’s ID and name, together with the DISCO
service type provided and summary information concerning the
“Production” and “Current” version of the data that has been
uploaded to the NIF for each service. DISCO currently sup-
ports three types of service. The basic service (labeled Interop)
involves incorporating a set of specified data from a resource
into the NIF Federation’s data warehouse. The LinkOut service
involves exporting data to the National Library of Medicine for
incorporation in PubMed to support its ability to “link out”
from a paper citation to related data items (Marenco et al.,
2008). The News service allows DISCO to consolidate news pro-
vided by participating resources and to provide this aggregated
news to interested NIF users. DISCO supports one or more of
these three services for a total of 231 resources, as illustrated in
Figure 5.

For example, as seen in Figure 4, the Addgene resource (lines
4 and 5) uses the DISCO Interop and LinkOut services. As indi-
cated in Figure 4, the Addgene Interop data currently contains
55,925 records. The “Production” version of that data is in the
10th version of data uploaded, which was created on 4/4/13 and
which involved the import of “New” data. In addition to this
production version of the data, there is a more recent (“Cur-
rent”) version of the data that was uploaded on 12/4/13, which
is “Pending” (as indicated by the little clock icon) inspection and
approval by NIF staff before it can be used as the production ver-
sion. When the [ = ] icon is shown in the status column (as seen

in line 2 of Figure 4), this indicates that the most recent ver-
sion of the data downloaded was unchanged from the previous
version.

Underlying the information presented on this screen is a for-
malized NIF Data Source Lifecycle, which includes the following
workflow.

• NIF staffs specify how frequently the data for each resource
should be updated. This is determined by NIF staff in
consultation with resource staff and depends on how frequently
new data is added to a resource.

• When the time comes to update the data, a new version of the
data is uploaded into a temporary table, where it is held (marked
as “pending”).

• The data is then compared against the production version of the
data for that resource (unless of course this is the first version
of data uploaded).

• If the data is unchanged from the production version, then that
fact is recorded.

• If there is new data, and/or if previous data is changed, this
fact is recorded, and the data continues to be held as “pending”
until a NIF staff member reviews it (by inspecting the new data
to assure that no errors or anomalies have occurred during the
data import process).

• Based on this review, the NIF staff member may “approve” the
newly uploaded version, in which case it will be scheduled for
transfer to become the production version.

• If the NIF staff member identifies a potential problem, this
fact is recorded. Depending on the nature of the problem a
number of steps may take place next. Examples of the type of
problems that occur when importing data include (1) data type
errors, (2) duplicate keys, (3) text fields that are too big for the
corresponding field within the NIF, and (4) failure of the data
import process to complete.

This coordination of the data sources lifecycle is the heart of
DISCO’s automated support of the workflow required to organize
the ongoing harvest and integration of data from participating
NIF Federation resources.

Figure 6 shows NIF Views Dashboard, which coordinates the
maintenance of the various views that have been defined over the
NIF Federation data, including a growing number of views that
combine data elements from multiple resources. Views involving
multiple resources are “materialized” in the sense that data ele-
ments from the NIF tables for each of those resources are copied
into new table. This allows the combined data to be queried and
manipulated more efficiently. The decision to create such a view is
made by NIF staff in consultation with members of a community
of neuroscience researchers for whom such a view would be help-
ful in presenting data in a fashion that would be most intelligible.
See the online DISCO Manual3 for more detail.

SCHEDULING AND COORDINATING THE DATA UPDATE TASKS
At any given point of time, different resources will be at differ-
ent points within the overall data life cycle, and there may be
many tasks that are waiting to be executed or in the process of

3http://disco.neuinfo.org/docs/manual/
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FIGURE 8 |This screen shows scheduling information relevant to a specific resource, the Cell Centered Database.

FIGURE 9 | Growth of the NIF Federation in terms of the number of participating resources over time.

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 58 | 64

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


Marenco et al. Extending the NIF DISCO framework

FIGURE 10 | Growth of the NIF Federation in terms of the number of records (the number of rows of data) stored over time. There are two major jumps
in seen in the graph: (1) in July 2011 BrainSpan.org (an atlas of the development of human brain) was added with 267 million records, and (2) in February 2013
PubMed was added with 567 million records.

Table 1 |This table shows how frequently the data from different

Interop resources are updated within the NIF Federation, as of

January 2014.

# of resources

Weekly 12

Bi-weekly 4

Monthly 122

Ad hoc (not scheduled) 17

Total 155

being executed. DISCO has a number of components to help man-
age, schedule and coordinate all these activities. To illustrate how
DISCO manages these activities, Figure 7 shows a Web page that
provides an overview “snapshot” of the activities of the DISCO
scheduler engine as of a given point of time. This table lists the
various resources that are scheduled to be updated, or are in the
process of being updated.

Figure 8 provides a different perspective on the scheduling
function supported by DISCO. In this case, we see the process
from the perspective of a single resource, in this case the Cell Cen-
tered Database. As indicated in the top half of the screen, the data
for this resource is updated on a monthly basis, currently on the
19th of each month, at 2 P.M. The bottom half of the screen shows
a record of the six most recent update runs.

This section has provided an overview of DISCO’s activi-
ties by showing a representative subset of the various screens
that DISCO provides to help manage and coordinate the inte-
gration of data within the NIF Federation. Our goal in show-
ing and describing these screens has been to help make the
various functions that DISCO provides more concrete and
transparent.

CURRENT STATUS AND FUTURE DIRECTIONS
As of January 2014, 155 resources utilize the DISCO Interop service
to share data via the NIF Federation. Figure 9 shows how this num-
ber has gradually increased over time. The relatively steady rate of
increase reflects the fact that the amount of effort to incorporate
a new resource is relatively constant irrespective of the amount of
data involved. Figure 10 shows how the amount of data stored
in the NIF Federation has increased over the same time period.
Table 1 indicates how frequently the NIF Federation resources
are currently updated. Figure 11 illustrates this process from the
perspective of a single participating resource by showing how the
amount of data stored in the NIF Federation for ModelDB has
grown over time.

Looking to the future, the development of DISCO will continue
to be a work in progress. The overall approach is undergoing a
continual process of refinement. There is also a quite extensive list
of additional capabilities that would be desirable to incorporate in
the future.

• There are a number of ways in which the current DISCO system
could be refined and made more robust. For example, there
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FIGURE 11 |This figures shows the growth of data from ModelDB stored in the NIF Federation, reflecting the growth of ModelDB itself, and the

ongoing process of harvesting that data and integrating it into the NIF Federation. Each diamond indicates a time when data was updated.

is a need for more extensive status reporting and debugging
tools for use when the import of data from a resource “hangs”
(fails to complete). There are a wide variety of reasons this
might happen, and it does happen quite regularly. It is a major
problem that needs to be accommodated by providing as much
automated assistance as possible.

• A second refinement that will be important as the NIF Fed-
eration grows will be to distribute DISCO’s functions over
multiple machines so that the many tasks that are performed
can be accomplished more rapidly utilizing parallel computing.
DISCO currently runs on a single server machine.

• In addition to enhancing the current DISCO framework, there
is a wide range of further capabilities that we would like to
build. A major project would be to integrate the NIF’s ontol-
ogy mapping functions so that they can be applied in an
automated fashion to data as they are being imported. It is
also becoming evident that the underlying capabilities imple-
mented in DISCO could be utilized in other data aggregator
systems, and that other groups would like to leverage the
DISCO code. Some of these will want to extract data from
some of the same resources as DISCO. The DISCO code could
be adapted to facilitate its use by other groups including the
shared harvesting of data from a resource by multiple aggregator
systems.

DISCUSSION
This section discusses some of the challenges that face the various
groups of people who participate in developing and maintaining
NIF and DISCO, including (1) the DISCO developers, (2) the

NIF staff who use DISCO to coordinate their activities, and (3)
the local staff at the participating resources. The biggest challenge
facing all of these groups is that Web-based resources can be very
idiosyncratic and difficult to extract data from, for a variety of
reasons.

LACK OF DESCRIPTIVE METADATA
One example of this problem is seen when a table containing
data to be downloaded into the NIF does not include descriptive
metadata such as informative column headers (e.g., a table might
contain several idiosyncratic column names (“str1,”“str2,”. . .)
without any metadata indicating that these columns contain
the names of “strains”) or descriptive data types (e.g., a table
might contain “1” as a data type instead of “male”). When
descriptive, informative metadata is used in the tables down-
loaded from a resource, that metadata can in turn be used
to more effectively annotate the data within the NIF to facil-
itate searching that data and integrating it with other data
sets.

USE OF COMPLEX DATA-PRESENTATION LOGIC
Another problem is seen when resource developers use customized
client-side code (such as JavaScript) to present data in their local
Web site. This approach has the advantage of allowing the Web
presentation of the data to be “flashier” and potentially more
understandable by the resource’s users. Unfortunately for DISCO
staff, the approach also results in the data being in effect con-
cealed by the client-side programming. To extract data from such
a Web site, DISCO staff must examine and understand this code
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in detail to understand exactly what it is doing, so that they can
write appropriate logic to access the data.

• A simple approach that greatly facilitates data extraction from
a Web-based resource is for the resource developers to use a
standardized template to organize the data presented on each
Web page. For example, a standard set of section headers that are
located consistently within each Web page greatly facilitates the
organized extraction of that data. In addition, using standard
terms for column headers greatly facilitates semi-automated
terminology mapping of resource terms by the NIF Concept
Mapper (Gupta et al., 2008).

It will be important to develop guidelines and standards for
resource Web-site design that can be used by a resource to facilitate
incorporation into a system like DISCO. New Web standards such
as HTLM5, RDFa, and Google Microformats are very productive
steps in this direction since they encourage and facilitate the incor-
poration of semantic metadata describing a resource’s data. The
increasing use of these approaches in the design of Web resources
will facilitate automated data extraction by data aggregators such
as DISCO.

INFORMATION SHARING STATEMENT
Technical information describing DISCO, including installation
instructions, is available at: http://disco.neuinfo.org/docs/manual/.
Additional program code can be obtained by contacting project
staff.
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The hive database system (theHiveDB) is a web-based brain imaging database, collabora-
tion, and activity system which has been designed as an imaging workflow management
system capable of handling cross-sectional and longitudinal multi-center studies. It can
be used to organize and integrate existing data from heterogeneous projects as well as
data from ongoing studies. It has been conceived to guide and assist the researcher
throughout the entire research process, integrating all relevant types of data across
modalities (e.g., brain imaging, clinical, and genetic data). TheHiveDB is a modern activity
and resource management system capable of scheduling image processing on both private
compute resources and the cloud. The activity component supports common image
archival and management tasks as well as established pipeline processing (e.g., Freesurfer
for extraction of scalar measures from magnetic resonance images). Furthermore, via
theHiveDB activity system algorithm developers may grant access to virtual machines
hosting versioned releases of their tools to collaborators and the imaging community. The
application of theHiveDB is illustrated with a brief use case based on organizing, processing,
and analyzing data from the publically available Alzheimer Disease Neuroimaging Initiative.

Keywords: neuroimaging database framework, image processing, query interface, data management, data query,

neuroimaging collaboration and workflows, web 2.0 application

INTRODUCTION
The advent of increasing numbers of large longitudinal imaging
studies, imaging-genetics studies, and multi-center studies and
the need to curate large volumes of imaging data from individ-
ual studies for data reuse purposes has led to a growing need for
an integrated brain imaging database, resource, data, and activity
management system. A number of imaging databases have been
described in the literature including the LONI IDA (Van Horn
and Toga, 2009), Loris (Das et al., 2012), and XNAT (Marcus et al.,
2007) systems. Each of these databases represent attempts to cre-
ate a system capable of jointly managing the increasing amounts
of imaging data and data from other sources and modalities,
while providing support for the specific processing requirements
of imaging projects. They have been created in and for very specific
environments with their own respective emphases and limitations.

The driver for the creation of a new alternative approach arose
from a series of joint studies between King’s College London, the
Karolinska Institute, and our collaborators working on a num-
ber of large imaging studies including AddNeuroMed (Lovestone
et al., 2007, 2009), Alzheimer Disease Neuroimaging Initiative
(ADNI; Jack et al., 2008; Weiner et al., 2010), and AIBL (Ellis et al.,
2009). The hive database system (theHiveDB) has been developed
to match requirements not easily reconciled with the alterna-
tives mentioned above. TheHiveDB offers a consistent solution
to the intricacies of imaging projects. For ongoing projects and
pre-existing collections of data it provides viable approaches to

properly organize, manage, and store, both imaging and associated
non-imaging data types. It is first and foremost a data aggregation
and management system with a focus on easy interactions with
the researcher.

MATERIALS AND METHODS
NEUROIMAGING PROJECT CHARACTERISTICS
Imaging projects consist of sets of participants, referred to here as
individuals, typically divided into different groups (e.g., patients
and healthy controls, or those who respond/don’t respond to the
effects of a novel drug). According to study protocols individu-
als may present on a number of occasions. These might be visits
for cognitive tests or scanning sessions. Once data is acquired it is
assigned to predefined labels (e.g., Baseline, 1-year-follow-up etc.),
referred to here as timepoints. Imaging data is acquired in conjunc-
tion with a plethora of clinical, behavioral, and genetic data. Data
from these modalities are frequently available in tabular form and
often need to be combined across modalities for subsequent anal-
ysis. To properly support imaging data a neuroimaging database
framework also needs to support the management of binary files,
which we refer to as assets. We will consider here a use case of
magnetic resonance imaging data, though the system is designed
flexibly so that PET, SPECT, digital X-rays, or other medical images
can also be managed.

At each timepoint a study consists of a series of images (for
example a MRI localizer, multi-slice T2-weighted fast spin echo
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images and a T1-weighted ultrafast gradient echo volume). Each
individual series will often consist of a number of slices or volumes.
To guarantee usable and comparable results, scanning protocols
are often pre-defined and matched to other imaging studies. The-
HiveDB is designed to manage and organize raw and processed
imaging data in conjunction with other available data such as
demographic, cognitive, biological sample, and genetic data. Spe-
cial attention and support are given to raw imaging data which is
efficiently archived, properly stored and thoroughly documented.
Image types can be defined by means of scanning protocol param-
eters, such that image assets can be extracted automatically from
raw data archives. The system provides image format conversion
routines for the resulting image assets. Assets are accessible to
authorized users (project members) through a web interface via
secure streaming. Tabular data can be downloaded through an
interactive query interface.

For image processing, an activity component allows the execu-
tion and automation of frequent imaging tasks or application of
standard image processing pipelines by means of a convenient web
interface. Activities are defined in terms of the required inputs and
resources designated to carry them out. Activity instances can be
created by resource owners and assigned to projects.

For effective network management and security the authentica-
tion, authorization, and accounting (AAA) architecture has been
chosen. System users need to authenticate to access the system.
The authorization function is split into access to file data (assets),
which is granted by means of project memberships (and is possible
via the web interface) and user roles. The latter define the extent
to which a user can interact with the system (e.g., only query data
versus upload data and request processing). The activity system
provides tracking and accounting functionality.

The main aspects of the system are:

• Asset management – storage, data archival, retrieval/access,
availability, transfer, backup.

• Data processing – rendering algorithms available and usable for
projects in an automated and traceable fashion.

• Resource management and sharing – to reduce overhead and
cost, existing resources can be managed effectively and shared
efficiently.

• Data querying – interactive querying of variables of interest
across modalities.

APPLICATION ARCHITECTURE
The Hive database web application has been developed using
the Grails open source web application framework based on the
Groovy programming language. Groovy is an object-oriented pro-
gramming language for the Java platform, which is dynamically
compiled to java virtual machine (JVM) byte-code. Since most
Java code is also syntactically valid Groovy code it interoper-
ates seamlessly with existing Java code and libraries. The Grails
framework interacts with relational database engines using object
relational mapping. Hibernate1 is used for relational persistence.
MySQL has been chosen as the default database for theHiveDB due
to its performance, wide-spread availability, transactional support,

1http://www.hibernate.org/

and web and data warehouse strengths2. As a full stack web appli-
cation framework Grails provides performance optimized layers
for communication with the back end, domain object mapping,
database communication, and caching. Our current production
environment hosts imaging for about 18,000 scanning sessions
with 50,000 series and over 33 million documented DICOM files.
The entire application is connected to various profiling utilities to
identify and address scenarios where response times for the web
interface are above 800 ms.

TheHiveDB relies on job scheduling3 for any request likely to
use significant CPU resources (e.g., run Freesurfer or DICOM
archive creation). For these requests a job record is created with
instant feedback to the user. The same applies for data transfers.
The system handles jobs and transfers independently of the user’s
session based on resource availability, priorities, and concurrent
requests.

The web application interface is accessible via secure http
(https), which provides bidirectional encryption of communica-
tions between client and server. The system communicates with
all resources using a pure Java implementation of the SSH-2 pro-
tocol4. The web interface relies heavily on JavaScript libraries to
enhance the user’s experience. JavaScript libraries are used within
the context specific help system, data filters (see Figure 1), and the
dynamic query interface. Additionally some views have JavaScript
enhancements to allow for viewing adjustments.

The activity system extensively uses the open source grid engine
[formerly Sun grid engine (sge)] for job scheduling, monitoring
and resource management. Grid Engine is software that facili-
tates “distributed resource management” (DRM). Far more than
just simple load-balancing tools or batch scheduling mechanisms,
DRM software typically provides the following key features across
large sets of distributed resources5:

• Policy based allocation of distributed resources (CPU time,
software licenses, etc.)

• Batch queuing and scheduling
• Supports diverse server hardware, operating systems (OSs), and

architectures
• Load balancing and remote job execution
• Detailed job accounting statistics
• Fine-grained user specifiable resources
• Suspension, resumption, and migration of jobs
• Tools for reporting Job/Host/Cluster status
• Job arrays
• Integration and control of parallel jobs

The integration of other job schedulers within theHiveDB is
feasible as long as they support the features listed above.

STORAGE ARCHITECTURE
TheHiveDB facilitates the work of research groups by offering
a unified approach to management, sharing, and processing of
imaging data research projects. It has been designed as an imaging

2http://www.mysql.com/why-mysql/topreasons.html
3http://quartz-scheduler.org/
4http://www.snailbook.com/protocols.html
5http://packages.debian.org/wheezy/gridengine-client
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FIGURE 1 |TheHiveDB provides extensive filters for searching within entity lists (e.g., individuals or different types of assets). The example shows a
filter used for searching ADNI DICOM archive data using specific criteria like data acquired for individuals born prior to 1963 and scanned after January 2006 on
a non-Siemens scanner.

project and data management system with an integrated activity
component. Imaging projects are created using the web inter-
face. Study participants (individuals) are assigned to projects using
project specific identifiers. Individuals can be created and main-
tained through the web interface, direct upload of individual lists
or automatically derived from DICOM6 header data.

All file data enters the system through a web-based upload
interface (Figure 2). File naming conventions and manual assign-
ment can be used for allocation to projects. Uploaded tabular
data is incorporated directly (e.g., individual list or cognitive test
result; see Figure 3), while (binary) files are recorded as assets.
Assets are data entities managed by theHiveDB. They are registered
upon creation or upload and can be transferred for processing
or downloaded via streaming through the web interface. Every
asset belongs to a project, individual, and timepoint by virtue
of being assigned to it directly (e.g., an image) or by inheritance
(e.g., an image transform, the modified representation of an image
outputted by an image processing algorithm).

To manage assets effectively theHiveDB relies on predictable
unique identifiers. TheHiveDB automatically computes and
assigns such identifiers to all newly created assets. The identifiers

6http://medical.nema.org/standard.html

are predictable, because they are determined based on informa-
tion about the actual asset or the process leading to its creation.
Technically the identifier is a deterministic universally unique
identifier (dUUID). A UUID is a 16-octet (128-bit) number. In
canonical form, it is represented by 32 hexadecimal digits, dis-
played in five groups separated by hyphens for a total of 36
characters (8-4-4-4-12, i.e., 32 alphanumeric characters and four
hyphens, e.g., 6d0b1c00-2a11-4aaa-a337-3ba06e9ee2ef). UUIDs
are frequently used in distributed systems to uniquely iden-
tify information. A UUID by itself is not human interpretable.
Within theHiveDB however it is used as a powerful alias for
the asset it refers to. TheHiveDB web interface offers the pos-
sibility to use UUIDs like tracking numbers and will assemble
details for all assets listed in the search field. User preferences
govern how assets are renamed for the individual user upon
download. If the above example for instance refers to a DICOM
archive, the user may choose to retrieve such files as managed
by the system (i.e., 6d0b1c00-2a11-4aaa-a337-3ba06e9ee2ef.tar),
identified for asset type (i.e., dicomArchive.6d0b1c00-2a11-
4aaa-a337-3ba06e9ee2ef.tar), enriched with human-interpretable
information (e.g., DCM.AcquisitionDate.PatientID.6d0b1c00-
2a11-4aaa-a337-3ba06e9ee2ef.tar), etc. Similar renaming options
are available for other asset types.
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FIGURE 2 |TheHiveDB features a web based upload interface, which allows local data to be uploaded to the database. The multi file upload allows for
drag and drop and shows upload progress.

Aside from warranting uniqueness, predictability is another
concern. Therefore within theHiveDB UUIDs are not assigned
randomly, but computed in a deterministic fashion. For instance
DICOM header information is used to compute identifiers for
image assets. Identifiers for output from image processing algo-
rithms or pipelines are computed taking the algorithm’s name,
version, and input file identifiers into account. Consequently,
requesting extraction of images from a DICOM archive containing
a subset of already extracted data will result in a UUID collision.
Similarly, the request to reprocess data with the same algorithm
without removing previous results will fail. While there is cur-
rently no plan to implement federated searches, data exchange, or
migration between HiveDB instances is planned.

Typically assets will have at least one “asset file” – the data file
on disk associated with it. These asset files may exist at multiple
locations (e.g., one in project space and another one as backup in
the cloud).

Being tailored to the specific needs of brain imaging projects
the system extends the notion of asset to a number of special
assets like DICOM archives (see section “DICOM management,
storage, and compression”), images (see “Images” section), output

collections, and image transforms (see “Workflow” section), but
can also store and manage new types of assets, as defined by the
user. For example binary data files obtained from a proprietary
device or program, or items with no file data like a blood sample
stored in a fridge. The UUID could then be used for barcode
generation.

Since images are a special type of asset with extended feature
support, image files may exist in various image formats, for exam-
ple DICOM and NifTi7. Image assets are traced and recorded as to
their whereabouts just like any other asset, but in addition they can
be viewed, rated, converted to other image formats, and processed
using image processing algorithms.

The program md5sum is used extensively throughout the-
HiveDB. Md5sum is designed to verify data integrity using the
MD5 (Message-Digest algorithm 5) 128-bit cryptographic hash.
MD5 hashes can confirm both file integrity and authenticity.
Md5sum information is registered for all assets managed by the
database to allow for data verification upon transfer or backup
creation.

7http://nifti.nimh.nih.gov/
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FIGURE 3 |TheHiveDB supports convention based import of tabular

data. Scalar data can be imported on three levels: describing individuals
(A) (e.g., gender, genetic data), individuals at timepoints (B) (e.g., clinical

tests), or assets (C). Since the asset belongs to a project, individual, and
timepoint (e.g., activity output) the assignment can be performed
automatically by just providing the unique asset ID.

In summary, assets are either created by directly uploading
files via the web interface (see Figure 2) or by invoking activities
on other assets already in the system. Assets specific to imaging
projects extend the feature set of regular assets and the system
provides built-in activities to derive, manage, and transform them
effectively.

ARCHIVING AND AUTOMATION
DICOM management, storage, and compression
The system supports DICOM data management by means of spe-
cial assets called DICOM archives. Uploaded DICOM data is
packaged and compressed after relevant DICOM header informa-
tion is automatically extracted. The compression ratio (uncom-
pressed/compressed) for the lossless compression method used
is around three, resulting in space savings of about 70%. Lossless
compression techniques ensure that the original data can be exactly
reconstructed from the compressed data. The resulting DICOM
archive assets are single files containing some metadata and the
entire collection of DICOM files. Once created, DICOM archives
are considered immutable. Image series can be extracted as needed
without any modification to the archive. Due to the deterministic
nature of the unique identifiers used, they can also be migrated
and imported into other HiveDB instances.

During the archival process information about all individual
DICOM series is extracted and later used for automatic valida-
tion of scanning protocols. Each individual file contained in the
archive is documented as a member of a DICOM archive and
DICOM series including its md5sum. The information stored in
the database is a reflection of the actual data found in the DICOM
headers.

Metadata is stored in the database using three data domains:

1. DICOM archives – documenting the actual archive as packaged
on disk.

2. DICOM series – documenting specific parameters of individual
series contained in the archive.

3. DICOM files – documenting every single DICOM slice as
members of the above series and archive.

Advantages of this approach include:

• Single archives instead of thousands of files on disk per study
(scanning) session, resulting in significantly improved transfer
speeds and file system performance.

• Significant space savings (up to 70%).
• Convenient for long time cloud storage in Amazon

Glacier or offline tape storage for backup purposes
(http://aws.amazon.com/glacier/).

• Content querying and information about study available
through the database instead of interaction with data on disk.

• It is possible to target individual series for extraction or
conversion to various image formats.

• Data verification and validation can be performed at various
levels as md5sums are stored for every single DICOM file and
the entire archive.

• Regardless of original scanner export convention, files can be
re-organized and fed to processing pipelines in an automated
fashion (The system knows which individual files make up a
series, which one is the first DICOM file, etc.).

• Data provenance. The system also extracts and manages infor-
mation about the scanning device used to acquire images (e.g.,
Manufacturer, software version, field strength, etc.). Scanners
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are managed using their serial numbers and software versions,
such that users can search for data acquired on specific devices.

Raw (DICOM) data de-identification/anonymization
Modern imaging systems conforming to DICOM specifications
sometimes include protected health information (PHI) in the
exported data. Privacy laws such as the European Commission’s
Directive on Data Protection and the U.S. Health Insurance Porta-
bility and Accountability Act (HIPAA) restrict the sharing of
data containing PHI. These laws protect citizens but complicate
the day-to-day operations of scientific collaboration. Prior to
any analysis of research group data or collaboration with other
groups imaging data needs to be anonymized. Without a stringent
workflow, users might forget to de-identify data, or incompletely
de-identify data, before using it for an analysis or even sharing
it. TheHiveDB enables projects to follow privacy laws affecting
medical research projects. DICOM header information of newly
inserted data will be visible only to the uploading user and must
be confirmed as anonymized, before data can be assigned to a
project. TheHiveDB is designed to coexist with PACS systems
and is by no means a replacement for a PACS system. In the
workflow describing a typical imaging study theHiveDB situates
itself right after either an imaging system such as a MRI sys-
tem or a PACS system (unless data is available publicly or via
collaborators). Network architecture and local data retrieval reg-
ulations govern the interaction of theHiveDB with PACS systems.
For instance, newly acquired data still located on a PACS sys-
tem can either be exported and directly uploaded via theHiveDB’s
upload interface or pushed to a workstation, which is registered
as a HiveDB resource. PACS systems are governed by local (hospi-
tal) laws and governmental regulations. In hospital environments
they may also store data for all scanned individuals, even those
not to be retrieved for imaging research projects. TheHiveDB is
designed to be used only with de-identified data and can easily
be integrated into existing environments to enhance patient con-
fidentiality by means of imposing a stringent workflow and data
flow.

Images
Once a DICOM archive is assigned to a project, individual
and timepoint, data becomes available and will be visible to all
approved members of that particular project. Acquisition pro-
tocol details (e.g., echo time, repetition time, or slice thickness)
for each project can be defined through the web interface, such
that matching acquisitions can be extracted automatically as MR
image assets. The system performs automated control of compli-
ance with acquisition protocol details defined for any given project,
as by default it rejects the extraction of acquisitions using invalid
scanning parameters.

The image asset is an abstract entity representing the series of
a certain scan type (i.e., T1 or T2 weighted MRI, etc.) obtained
in the scanning session. The image asset inherits project specific
properties during extraction from the original DICOM archive.
As discussed in the “Storage Architecture” section it may be
represented by actual files stored on disk (i.e., image files), at
possibly various locations and a number of file formats. Currently
a DICOM series may be extracted from the archive and stored

as zipped DICOM data, compressed NifTi and minc8. Project
settings determine which formats will be generated during the
extraction. Image format conversion is part of the core system.
Freely available converters will be added to produce additional
image formats. TheHiveDB considers DICOM as the source for all
conversions for native files, but will support conversion between
formats if converters are available.

DATA ACCESS, PERMISSIONS, AND OWNERSHIP
Users of the theHiveDB gain access to project data by means of
project memberships. Projects are collections of imaging and asso-
ciated data acquired or assembled with intent to answer scientific
questions. Project data is stored on resources (i.e., project servers)
assigned to them. Projects have administrators authorized to grant
membership to new users. Upon login users may activate any num-
ber and combination of projects they are members of, to view,
add, and query data or perform quality control on both origi-
nal images as well as processed output (see “Annotation” section)
or request activities for assets (i.e., initiate processing on imag-
ing data). Predefined user roles determine which actions users
may perform for projects (e.g., view, create, and delete assets). A
user may be allowed to only view and query data, but cannot be
barred from viewing access to individual assets or specific variable
collections.

Each institution will have its own limitations as to available
resources and project specific restrictions. TheHiveDB accommo-
dates this variability by letting users define where data should be
located and processed. A HiveDB instance may exist on a pri-
vate local network only reachable through VPN or entirely rely
on cloud offerings. Constraints are defined by institutional regu-
lations, data usage, and ownership restrictions possibly on a per
project basis. Groups may even choose to have two instances of the-
HiveDB to separate internal and collaboration databases. Figure 4

8http://www.nitrc.org/projects/minc/

FIGURE 4 |TheHiveDB topology can be adjusted to individual

requirements. Illustration of separate database instances per research lab
and some compute resource sharing [(A) to the left] versus collaborative
setting with unified architecture [(B) to the right].
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shows topology examples for different requirements. Frequently
research labs will prefer to have their own HiveDB instance with the
project source data stored on an in house file system (Figure 4A).
Collaboration in these cases will be based on sharing resources
for processing purposes and possibly sharing access to subsets of
projects across labs. Note, that theHiveDB database server, file
servers for data store, and processing resources may well all be
at different physical locations and on different servers. If how-
ever, resources are to be pooled, a unified topology arrangement
(Figure 4B) is also a viable option.

NEUROIMAGING DATA PROCESSING ALGORITHMS, PACKAGES, AND
LIBRARIES
TheHiveDB incorporates a growing number of mechanisms for
data management, archival, extraction of images, and image trans-
forms. Additionally freely available activities and pipelines are
being integrated. A range of powerful neuroimaging pipelines exist
today such as Freesurfer9 and FSL10. Freesurfer will be used as an
example application here. Briefly, the Freesurfer pipeline can be
used for volumetric segmentation, cortical surface reconstruction,
and cortical parcellation (Fischl et al., 2002, 2004). The procedure
automatically assigns a neuroanatomical label to each voxel in
an MRI volume based on probabilistic information automatically
estimated from a manually labeled training set. This segmentation
approach has been used for multivariate classification of AD and
healthy controls (Westman et al., 2011a,c), neuropsychological-
image analysis (Liu et al., 2010c, 2011), imaging-genetic analysis
(Liu et al., 2010a,b), and biomarker discovery (Thambisetty et al.,
2010, 2011).

TheHiveDB also provides convenient mechanisms for propri-
etary (or not publically accessible) processing algorithms to be
integrated with their respective authors. Access is granted by these
authors within the context of collaborative efforts. Any compute
resource capable of ssh-2 connections can be registered in the-
HiveDB and used to perform tasks for specific projects (see “Data
Processing and Workflow” section).

Activities may be triggered by project settings or via the applica-
tion web interface. The transfer of required input files to available
resources is performed automatically using the ssh-2 protocol
for secure connections. Any activity requested by the system is
logged and visible through the web interface job management
module which provides live job queue monitoring, accounting
and statistics. Upon job completion automated retrieval of pro-
cessing output (e.g., output images and summary measures such
as volumes and thicknesses) is also triggered by the job module.

TheHiveDB supports a number of common image man-
agement and processing activities directly. It supports external
activities indirectly by automatically transferring required input
files onto suitable resources and generating unique output collec-
tion identifiers for expected results. Upon completion of external
processing these identifiers may be used to upload the results fol-
lowing naming conventions. For instance, a user experimenting
with a new algorithm combining information from two types of
MR images could register that activity and a resource for required

9http://surfer.nmr.mgh.harvard.edu/
10http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

input files. The system will then compute a unique identifier for
each requested task and create a directory structure using these
identifiers and place the required input files at the remote location
within the respective directories. Jobs will be marked as completed
once the user uploads properly named output files (i.e., using the
identifiers computed for the task). With this method virtually any
activity (including those requiring manual interaction) can be per-
formed on existing assets (e.g., images) while output and results
remain fully traceable.

For activities not yet to be registered and experimental pur-
poses, assets can be pushed to any location registered by the
requesting user for convenient examination or processing.

VISUALIZATION/ANNOTATION
In the quality control interface the user can rate both raw images
and processed output. The system uses a multi rater approach,
recording ratings of all authorized users separately. For quick
inspection theHiveDB will create quality control images for every
image or image transform visible through the web interface image
library (Figure 5). However, images and image transforms are
accessible directly in various formats or may be transferred to
another resource for in-depth inspection and quality control. For
instance a user may push nifti format native images for an entire
project to a workstation instead of downloading them one by one
in order to perform quality control. This approach allows the
raters to use their preferred tools and image formats for quality
evaluation. For DTI or BOLD data for instance external software
is essential to perform quality control. Those images can be eval-
uated on a dedicated quality control station (e.g., using DTI Prep)
and the results uploaded as a spreadsheet containing the image
UUID as an identifier.

Quality control information can later be retrieved when query-
ing the database. For example image processing for multiple
images of varying quality can be compared to assess the impact of
image artifacts and overall quality on processing output. Criteria
for image QC for structural MRI image analysis pipelines have
previously been published (Simmons et al., 2009, 2011).

DATA PROCESSING AND WORKFLOW
Computing resources (i.e., physical or virtual machines) can be
managed through theHiveDB activity system. A compute resource
is registered by means of providing a host (i.e., IP address, host-
name) and ssh login credentials (i.e., username and password).
The user registering the compute resource will be considered
its owner by theHiveDB. For theHiveDB to actually utilize the
resource, a resource purpose (e.g., processing resource, project
server or dropbox) needs to be assigned. Choosing “processing
resource” will prompt for input and output paths to be regis-
tered. At this point an “activity instance” can be created. Simplified
an “activity instance” corresponds to the invocation of a specific
command/program on that resource (multiple instances can be
created with different parameters and environment settings passed
to the command). By means of granting access to projects the
resource owner manages which project data can be transferred to
the resource and processed as defined in the “activity instance.”
TheHiveDB instance will act on behalf of the user login regis-
tered by the resource owner. To optimize resource use through
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FIGURE 5 |TheHiveDB image library provides access to the quality control interface and allows the user to request processing of images. List items
are links to individuals, actual image data in various formats for direct download, scanner information, and activity history, etc.

collaboration without compromising processing speed, requests
for external projects (i.e., from other HiveDB instances) can be
assigned to a separate grid engine queue.

Within this collaborative ecosystem algorithm developers can
create versioned virtual machines capable of running their tools
using the cloud (e.g., Amazon cloud ec2)11. TheHiveDB users
can run instances of these virtual machines and assign them to
projects in order to take advantage of these algorithms. To illustrate
the potential of this approach, consider the example of a virtual
machine created in the cloud using a standard Linux installation
with grid engine enabled and the Freesurfer 5.3 package added. At
this point the compute resource can be registered by its owner in
any HiveDB instance. Furthermore the resource owner can register
activity instances and assign them to projects in order to authorize
them to use the resource. An activity instance defines the algorithm
or activity to be used (e.g., Freesurfer version 5.3), the activity
parameters to be used and the projects authorized to request it.
Activity parameters are command line arguments to be passed to
the command to be executed (e.g., Freesurfer can run with “-all-
mprage-nuintensitycor-3 T” for a project with 3 T imaging data
and with a basic exploratory argument like “-recon1” for a second
project).

While the above can also be achieved with a conventional phys-
ical server, the cloud approach has a number of advantages. Apart
from minimal storage costs a cloud image only incurs cost to
the user when it is used. It doesn’t physically break down and

11http://aws.amazon.com/ec2/

its hardware can improve over time as newer technology is made
available by the cloud provider. When newer versions of algo-
rithms are released images of previous versions may be kept for
ongoing projects still requiring them. This is especially relevant
when different versions of software packages cannot be installed
on the same physical system.

PROVENANCE AND META-DATA MANAGEMENT
Imaging source data is fully documented as described in the
“DICOM management, storage, and compression” section. All
assets produced or derived within the database system are trace-
able using the job sub-system (Figure 6). Every activity within
theHiveDB consumes input and produces an output collec-
tion (i.e., a compressed archive file containing the individual
results obtained from an image processing activity). The out-
put of any activity is considered to be a collection containing
at least one item. If members of an output collection have
been defined they can be extracted automatically by the system
(e.g., tissue classification result image obtained from a processing
pipeline).

This concept provides full traceability of newly generated data,
transparency for all project members, and an ever current inven-
tory to assess project progress. A fully-fledged activity system is a
prerequisite for enabling advanced processing for extremely large
amounts of imaging data. Algorithm comparison with regard to
stability across versions and vulnerability to image artifacts can
be performed. For instance, all images obtained from an indi-
vidual during a MRI session can be processed individually or
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FIGURE 6 |The activity system keeps a track record of all activities performed by the system or requested by users. It communicates with remote
resources for status updates and retrieves output collections automatically. Accounting information is compiled using the grid scheduler’s accounting output.

in combination. Additionally multiple versions of the processing
algorithm can be used and results compared.

USE CASE
To illustrate the application of theHiveDB consider the scenario
where researchers wish to download and subsequently analyze raw
data from the ADNI study, a large North American study which
includes 1.5 T MRI, 3 T MRI, FDG, and amyloid PET, together with
CSF samples, clinical, cognitive, neuropsychological, and genetic
data.

The raw imaging data for the study can be downloaded from
the LONI distribution system12 in the form of collections of raw
DICOM data with xml files for each image series. Additionally
data from other modalities such as cognitive tests, demographic
information, genetic data, and CSF data can be downloaded in
tabular form.

The user has the following requirements for image databasing
and analysis:

• Users need to be able to perform operations like tabular data
import and imaging data upload through the web interface.

• No alterations of the database structure (i.e., adding tables)
should be needed for newly added variables or results derived
using imaging data processing algorithms.

• Tabular data import should be possible instead of data re-entry
through a web interface.

12https://ida.loni.usc.edu/login.jsp

• Users need to be able to deactivate projects. Regardless of a
user’s authorization to see data (e.g., has access to 40 projects)
the user needs to be able to activate only those of current
interest.

• Data needs to be accessible directly by project members via
the database web interface without the need for an interme-
diary (e.g., a database manager retrieving data) when image
processing is desired.

• The system needs to support multiple image file formats as the
inputs and outputs of different image analysis pipelines and
manage data effectively as opposed to merely registering file
pointers for a single file format.

• Processing of as many images as available for any given time-
point using algorithms and pipelines available is required, for
example processing the two T1 volume images acquired as part
of ADNI-1 and ADNI-2.

• Integration of existing infrastructure and processing capabil-
ities with automated processing as triggered by the database
system.

• As new versions of image analysis pipelines become available
it must be possible to maintain multiple versions of both the
algorithms and the results of the analysis pipelines (for example
Freesurfer versions 5.1 and 5.3).

TheHiveDB was designed to provide the feature set of similar
distribution and collection systems in the neuroimaging domain,
but extending them to a more complete framework with the above
requirements in mind.
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SCALAR DATA IMPORT
TheHiveDB allows for collation of existing data by simply upload-
ing spreadsheets with scalar data. Variables are grouped into
variable collections. The import is governed by conventions. Using
existing collection names will add data to collections using the first
line as field names. If variables are identified as members of the
same collection they are queryable across projects (e.g., if Mini-
mental state examination MMSE data is always imported using
the same field names).

Variables can be imported (see Figure 3) and may later be
queried at these three levels:

1. Describing individuals (permanently) like some genetic data or
gender.

2. Describing individuals at specific timepoints (e.g., clinical or
cognitive tests).

3. Describing assets obtained to assess individuals at specific time-
points (e.g., MR images or volume results from processing
pipelines).

Via theHiveDB web interface a user creates a new project “adni”
and creates or assigns an existing compute resource for project data
(i.e., project server). Disk space of the project server will be used as
primary location for all project data assigned to this project. The
user registers timepoints (i.e., adni visit identifiers) and defaults
for desired image format conversion. For this example DICOM
and nifti are chosen as available formats.

The user downloads a list of ADNI study participants and
creates a spreadsheet containing the following fields: project,
SiteId. Gender, and DateOfBirth. Gender and DateOfBirth are
not mandatory, but may be provided. The file is renamed to
“adni.individuals.list.csv” and uploaded. All individuals are now
registered and assigned to the “adni” project. Following the exam-
ples outlined in Figure 3 more data describing the individual
permanently or describing the individual at a specific timepoint
may be uploaded.

IMAGING DATA UPLOAD PREPARATION
Raw ADNI imaging data is downloaded via the LONI distribution
system, resulting in a folder structure based on the ADNI series
identifier. Auxiliary xml files with summary information about the
individual, series and assignment to a visit identifier will be found
at the top level of the folder structure.

For smaller projects data would be uploaded directly to the-
HiveDB web interface marked as anonymized and assigned to
projects, individuals, and timepoints. In view of the amount of
data downloaded [ADNI MP-RAGE (T1) data occupies 400 GB
of disk space] and since data is known to be anonymized, an
alternative route to DICOM archive creation is used. Based on
information from the ADNI xml files a spreadsheet containing the
following columns is created:

• Project (i.e., “adni”)
• Individual (i.e., the PatientID as found in DICOM header or

xml file)
• TimePoint (i.e., the visit identifier found in the xml file)
• SourceLocation (i.e., the location data has been downloaded to)

• TargetLocation (i.e., the location where the DicomArchive and
descriptor file is to be created. If the project server location is
available the user may choose it to avoid data transfers.)

TheHiveDB provides a convenience function for large data col-
lections. Upon upload the spreadsheet (in this case ∼16,000 rows)
will be converted into a job script, which can be submitted to the
queue for HiveDB DICOM archive creation. This activity requires
no connection to the HiveDB instance and can run directly on the
Linux machine already hosting the downloaded data. UUIDs are
computed using the same mechanism as within theHiveDB and
for every folder containing DICOM data a compressed DICOM
archive and a supplementary descriptor file in JSON format13 is
created. For the above example the procedure takes on average
5 s per folder. Within 3 h on a desktop machine (eight cores) this
process transforms almost three million single DICOM slices into
about 16,000 completely documented and compressed DICOM
archives.

DATA IMPORT AND ORGANIZATION
The descriptor files are subsequently uploaded via theHiveDB web
interface resulting in DICOM archives being automatically created
and assigned to project, individuals, and timepoints. The user
defines at least one scanning protocol for the “adni” project, such
that the system can automatically identify T1 data. After a test
search the user confirms the protocol as valid leading to automatic
extraction of all MR image assets and the creation of downloadable
image files in DICOM and nifti format. All data is now available
to project members through the web interface.

DATA PROCESSING
The user registers a processing resource (i.e., an existing cluster the
user has access to) and defines two activity instances through the
web interface (One instance with parameters to be used for 1.5 T
data labeled “Freesurfer-5.1 1.5 T” and another one for 3.0 T data
labeled “Freesurfer-5.1 3.0 T”).

The user now selects the current session preferences panel and
deactivates all projects other than “adni.” In the image library the
user now searches for T1, 1.5 T, and timepoint M00 (i.e., baseline)
data and chooses “Freesurfer-5.1 1.5 T” as activity to apply to all
elements found, followed by the same procedure for 3.0 T data.
Standard processing time for Freesurfer is in the vicinity of 16 h
per image. Processing all 16,000 images on the 100 core cluster cur-
rently providing processing for the production database will take
about 3 months. For this reason timepoints will be submitted in
sequence in order to start analysis on data as it becomes available.
The user may now log off.

TheHiveDB will create job files (using computed UUIDs for
names), transfer inputs to the processing cluster and submit jobs.
It will monitor the queue and upon job completion retrieve an
output collection (a tar file) containing the results for every single
job.

If new versions of the pipeline (e.g., Freesurfer 5.3) become
available, the creation of additional activity instances is required.
The steps above are repeated with the new version of the pipeline.

13http://www.json.org/
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Since the activity version is part of the computation of UUIDs,
new unique identifiers for outputs will be provided by the system.

The Freesurfer pipeline outputs a multitude of different mea-
sures (Fjell et al., 2009; Walhovd et al., 2011; Westman et al., 2013),
which need to be queried and combined for analysis with data
from other modalities. Since Freesurfer is directly supported by
the database, volume extraction will be performed automati-
cally and all volumes will be registered in a variable collection
labeled Freesurfer-5.1. The user may now query those volumes
in conjunction with other data uploaded via tabular data import.
If the user produces additional measures using external meth-
ods to compute scalar values those may be uploaded following
conventions depicted in Figure 3. TheHiveDB aggregates data
from these different modalities automatically and combines it
with image processing results, such that research problems can
be addressed without the need to manually manage and merge
spreadsheets.

DISCUSSION
RELATED WORK
TheHiveDB has been developed to advance imaging efforts in a
context where more and more data is available to researchers either
by means of in house acquisition or more frequently by means of
collaboration. The latter includes the growing number of publicly
available collections of imaging data such as the ADNI; Jack et al.,
2008; Weiner et al., 2010) and AddNeuroMed (Lovestone et al.,
2009, 2007).

Most of these collections use a distribution system (such as
the LONI ADNI archive)14 to disseminate data. In these systems
assets (the raw imaging data) and associated data from other
modalities are readily accessible and frequently processed data
(output collections) can also be downloaded. The LONI image
data archive provides scalar data organized into spreadsheets. An
accompanying data dictionary helps clarify the meaning of vari-
able names contained in these spreadsheets. For any given group
of variables (typically a questionnaire or the scalar results of some
processing or other analysis of data) spreadsheets can be down-
loaded. It is up to the researcher to match data from different
cohorts (Westman et al., 2011b) or modalities (Westman et al.,
2012) prior to any data analysis being undertaken using the raw
data and images. Ever changing spreadsheets have to be orga-
nized, merged, and maintained. The creation of subsets of data
to investigate specific research questions remains a cumbersome
process.

Other systems like the LORIS system (Das et al., 2012) focus on
scalar data collection for relatively homogeneous ongoing stud-
ies. The LORIS system needs to be customized at the database
structural level, before its web interface can be used as a data entry
system by participating sites. Each addition of tabular data implies
a change to the database structure to store data for newly added
variables. While the LORIS query interface is able to match some
MRI data to clinical variables, the imaging component remains
an afterthought due to the system’s architectural conception as
scalar data entry system. The LORIS web interface does not allow
distribution of data directly as file data is only referenced in the

14http://adni.loni.usc.edu/data-samples/access-data/

database and solely accessible via command line interfaces on
servers hosting the actual data.

For handling ongoing data collection and data entry the RED-
Cap (Obeid et al., 2013) system appears to be a more feature
complete and convenient system. REDCap is designed to com-
ply with HIPAA regulations and can be quickly adjusted to cover
all aspects of research data capture.

The LONI pipeline (Dinov et al., 2010) provides a collection
of neuroimaging tools for computational scientists. It allows for
workflow creation and execution via Pipeline Web Start (PWS)15.

The XNAT (Marcus et al., 2007) system and its Python client
library PyXNAT (Schwartz et al., 2012) represent the web ser-
vices approach to neuroimaging databases. Neuroimaging data
is modeled through XML schemas and a representational state
transfer Application Program Interface (REST API) allows soft-
ware developers to programmatically interact with the database
system.

Research labs can struggle with how to organize the ever
growing collections of data. Most neuroimaging databases con-
sequently provide a container based approach with a more or less
predefined structure to organize data. This approach works well to
organize data as long as the data stays within the realm of control
of the database system. A user who downloads a set of image files
to perform processing temporarily breaks the way data is struc-
tured in the database. If files have no unique identifiers or can be
identified by means of header tags or md5sums the interaction of
the researcher with the database system is rapidly disturbed. Data
needs to be reorganized and the database needs to be updated
with newly created results. Unfortunately this implies frequent
changes to the actual database structure and/or creation of XML
schemata.

Most of the above mentioned database systems are designed as
containers or data inventories. The container approach works well
for data entry systems where the size of a prospective study war-
rants the effort of customization, but they are frequently limited
to tabular data collection. The other approaches require the user
to interact programmatically with the database system to retrieve
data and repopulate with results.

TheHiveDB goes beyond these approaches. It offers ways to
organize data beyond simple storage. Imaging data assets are
enhanced with features to simplify the researcher’s interaction
with the data (See sections “DICOM management, storage, and
compression” and “Images”). While programmatically interact-
ing with theHiveDB is an option for advanced users (theHiveDB
is a RESTful resource) the framework aims to accompany and
support the researcher in daily activities and explorations. Stan-
dard activities can be automatically performed for any new project
with existing resources and new activities can be explored with the
help of the system. All assets remain identifiable within and out-
side the system. Even for external activities the identifier creation
keeps expected results traceable. This way manual steps or external
resources for free image processing can be integrated.

TheHiveDB implements the main ideas of other activity and
workflow systems. Tools and algorithms are available to the
researcher and can be applied to available data. To warrant

15http://pipeline.loni.usc.edu/products-services/pws/
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consistency without compromising progress theHiveDB requires
all activities to be versioned.

The primary shortcoming of some neuroimaging frameworks
is their insufficient support for file data (assets). Neuroimaging
research is an active field. In order to progress imaging assets
need to be available and accessible to those working with them.
The unique identifiers within theHiveDB constitute tracking or
serial numbers for assets. The web interface acts like a track-
ing system providing appropriate information. For images this
may be the scanner or protocol used or assessments of image
quality. For output from any activity the entire process lead-
ing to its generation is traceable. The system is not designed
to force all data into a container. It encourages the interaction
with the researchers by letting them experiment with assets to
perform activities not (yet) supported by the system. It even pro-
vides the possibility to re-integrate results by allowing for external
activities where the user needs to provide the activity output
by means of uploading it, using the identifier provided by the
system.

Interacting programmatically with theHiveDB API remains a
possibility for the so inclined power user, but it is not a requirement
for researchers. The ability to voluntarily disable access to projects
throughout the system can greatly simplify the researcher’s day to
day interaction with the system. It can be frustrating to always
have to set additional filters in order not to be exposed to all data
one is authorized to see.

FUTURE DEVELOPMENT
TheHiveDB has been conceived and developed as a data aggre-
gation system. While it currently supports scalar data import,
it would be desirable for theHiveDB to interface directly with
clinical data entry systems. Especially with systems allowing non-
programmers to quickly create forms for tabular data collection
like the REDCap application.

ThHiveDB’s activity system supports activity creation based on
asset types. While it is presently only used for image processing
it would be conceivable to integrate workflows for other types of
data (e.g., by supporting genetic data processing).

TheHiveDB allows users to directly access MR images in their
preferred format to be visualized for quality control purposes.
While we favor direct access to images in user definable formats
and the possibility to push entire collections to dedicated qual-
ity control stations, the inclusion of a web based viewer with 3D
capabilities may be desirable for some users. The integration of
imageJ16 could provide additional convenience to users in this
regard. Nielsen’s heuristics have influenced the design and devel-
opment of theHiveDB and it has been developed in continuous
interaction with future users. However, a formal evaluation of the
system would be desirable.

While some architectural design elements might hint toward
a federated database system currently only data exchange and
migration/fusion is planned. Data ownership concerns and the
protected nature of imaging database as discussed in the “Data
access, permissions, and ownership” section make this a more
likely scenario.

16http://rsb.info.nih.gov/ij/index.html

CONCLUSION
At the topological level theHiveDB provides the integration of dif-
ferent components – a solid database engine combined with secure
data store and an activity system for data processing purposes. The
application is flexible to be adapted to individual requirements
and available resources without the need to customize its database
tables and structure.

TheHiveDB provides extensive cross domain integration. For
tabular/scalar data, convention based import (i.e., using specific
column arrangements) allows for swift integration of data already
available in spreadsheets or textual form.

The asset management system provides support tailored to the
particular needs of brain imaging projects. But what is more, it is
also capable of integrating newly defined asset types. The genera-
tion of unique identifiers extends to any type of uploaded data and
provides data integrity verification and management with storage,
transfer, backup, and availability. This approach clears the way
for integration of imaging workflow with other types of workflow
based on custom asset types.

On an architectural level theHiveDB is capable of integrat-
ing distributed systems. Each “HiveDB” has its own unique
ID. Frequently individual research groups will have their own
HiveDB instance (see Figure 4A), but share resources for activ-
ities (i.e., data processing). Additionally cloud resources can be
enabled by algorithm developers to be used by those instances
of theHiveDB. Project data will in most cases be stored on local
resources, but long term cloud backup (e.g., Amazon glacier) for
both raw imaging data and processed output is another viable
option.

TheHiveDB represents another step toward creating a complete
neuroimaging research framework. It provides easy access to data
just like traditional distribution systems and offers the convenience
of multi modal querying.

A key aim of theHiveDB is to enable collaborations. It does so by
providing a framework for neuroimaging projects based on sound
data management, organization, and documentation. Upon that
base rests an activity system allowing for automation and resource
sharing while ensuring full traceability of activities and outputs.
With its asset management and activity system it establishes a
powerful ecosystem for collaborative work and resource sharing
in continuous interaction with the researcher.

The inclusion of standard communication protocols and job
schedulers eliminates the need for a human data manager needed
in most of the other systems available to date. TheHiveDB knows
where project data is supposed to be stored and where it can be
processed. It is capable of performing its own data transfers and
request activities/processing to that effect.

The system has been designed to interact with the researcher in
a (human) way that does not require the acquisition of database
query language skills or programming proficiency.
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The real world needs of the clinical community require a domain-specific solution to
integrate disparate information available from various web-based resources for data,
materials, and tools into routine clinical and clinical research setting. We present a
child-psychiatry oriented portal as an effort to deliver a knowledge environment wrapper
that provides organization and integration of multiple information and data sources.
Organized semantically by resource context, the portal groups information sources by
context type, and permits the user to interactively “narrow” or “broaden” the scope
of the information resources that are available and relevant to the specific context. The
overall objective of the portal is to bring information from multiple complex resources into
a simple single uniform framework and present it to the user in a single window format.
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INTRODUCTION
Neuroimaging studies performed with specific hypothesis in
mind are highly informative for learning details about human
brain development, elucidating the etiology of numerous psychi-
atric disorders, and developing ways to remedy them. However,
disorder-focused neuroimaging studies have a very precise and
narrow objective when it comes to developing a broad under-
standing the human brain. The data collected during these
individual studies can be a resource for extracting additional
information about the disorder or the human brain in general.
This general concept regarding the latent-content of research data
has led to development of numerous neuroimaging data shar-
ing resources, such as NDAR (Hall et al., 2012), NIH Pediatric
Database (Evans, 2006), CANDIShare (Kennedy et al., 2012), and
ADNI (Jack et al., 2008), which make neuroimaging data available
to interested users. In addition to neuroimaging data, hundreds
of data and information resources are also available that sup-
port dissemination of information related to literature, genetic,
derived metadata results, etc. about the brain in health and dis-
ease. Despite the burgeoning set of resources hosting research
information, attempts to query across these distributed resources
are daunting due to variation in the underlying data models,
schema and interfaces.

While methods to improve the accessibility of these dis-
parate data resources are underway, an additional consideration
needs to be paid to the end user. The Neuroscience Information
Framework (NIF) portal (Gardner et al., 2008; Cachat et al., 2012)
is an effort to integrate web-based neuroscience resources such as
data, materials, and tools. In addition to this general and com-
prehensive infrastructure, domain-specific solutions are needed
in order to meet the real-world needs of the various clinical
communities where there is a need to incorporate and integrate
these disparate information resources into the routine clinical and
clinical research setting.

In this paper we describe the design of a child-psychiatry ori-
ented portal as an effort to deliver a knowledge environment

wrapper that provides organization and integration of multiple
information sources. Organized semantically by resource context,
the portal groups information sources by context type, and per-
mits the user to interactively “narrow” or “broaden” the scope of
the information resources that are available and relevant to the
specific context. The overall objective of the portal is to bring
information from multiple complex resources into a simple sin-
gle uniform framework and present it to the user in a single
interface from which they can easily continue to explore the rele-
vant resources as needed. We will review the conceptual design,
describe the methods of implementation, and provide exam-
ples of its operation. This will be followed by a discussion of
the impact, impediments and future prospects for this type of
approach.

METHODS
In this section we review the conceptual design, followed by the
practical implementation of the portal. We emphasize the extensi-
ble nature of the design, and highlight how content from existing
resources is accessed under a common user framework.

PORTAL DESCRIPTION
The overall system is designed such that a user can generate
specific classes of query, identify the various resources that can
provide information relevant to the query and then view the
results from each of the resources.

The portal front end has a four-pane window format
(Figure 1): Select Query, Anatomic Atlas, Resource Match and
Results. The Select Query pane is used to build the desired query.
Queries are built out of selection of “contexts,” currently includ-
ing diagnosis, brain region of interest, gender, age, and species.
Diagnoses selection is implemented in a drop down list format.
Similarly, brain region of interest can also be chosen from a
drop down list or by selecting it in the clickable atlas provided
below the search pane. The specific age range can be provided
by selecting Young (0–9 years), Adolescent (10–18 years), Young
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FIGURE 1 | The four pane window format. The portal has a four-pane
format consisting of Select Query pane, Clickable brain atlas pane, Resource
match pane and the Results pane. The Research match pane displays any

matching information and data resources. The results for each of the
matched resources can either be viewed in the Results pane or be opened in
a separate tab.

and Adolescent (0–18 years), or Adult (19–150 years). The mini-
mum and the maximum bounds of the age range can be further
modified by entering the values directly.

The Anatomic Atlas pane supports the user selection of the
anatomic context for the Select Query pane. This is accomplished
through the use of the canvas feature of HTML5. The atlas itself
is based on FreeSurfer segmented structural MRI scan of a typi-
cally developing 15-year-old female subject. The user can navigate
between coronal slices and select regions by mouse click.

The Resource Match pane displays links to various available
data and information resources, the output for which can be
viewed either in the Results pane or in a separate web-browser
tab. For the data resources a summary of the numbers of datasets
available per resource is provided.

RESOURCES
A specific set of remote resources is currently supported which
are queried using the public web services. We make a distinction
between two types of resources: information resources and MRI
data resources. As will be elaborated upon below, these two classes
of resource, and the results returned, require different handling.
The following is the set of resources that are currently included:

Information Resources:
PubMed: Biomedical literature from MEDLINE, life science
journals, and online books).

Entrez Gene: Genetic records including nomenclature, reference
sequences, maps, pathways, variations, phenotypes, etc.
IBVD (Kennedy et al., 2003): Internet Brain Volume Database
(IBVD) is a database of volumetric information of different
brain structures from over 600 publications and over 15 thou-
sand individual volumes.
PubBrain (Kalar et al., 2007): A meta-analysis tool providing
numerical and pictorial representation of prevalence of brain
structure bibliographic references as identified by the query
terms found in PubMed.

MRI Data Resources:

CANDIShare (Kennedy et al., 2012): MRI datasets of structural
brain images, as well as their anatomic segmentations, demo-
graphic, and behavioral data and a set of related morphometric
resources for young and adolescent typically developing and
psychiatric disorder populations.
OASIS datasets on XNAT Central: MRI datasets of very mild
to moderate Alzheimer’s disease patients including demented
and non-demented subjects as well as normal controls between
the ages of 18 and 96 years in the cross-sectional dataset, and
between the ages of 60 and 96 years in the longitudinal dataset
where the subjects are scanned over two or more visits.
∗OASIS-brains Database (Marcus et al., 2007): OASIS
datasets are available through www.oasis-brains.org with
additional demographic details such as gender, grouping into
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demented/non-demented groups and CDR scores (unavailable
for download through the XNAT central OASIS release).
fCON1000 (Biswal et al., 2010): Neuroimaging database of
resting-state functional magnetic resonance imaging data of
healthy subjects.
∗PING (Brown et al., 2012): Large MRI and genetics data set of
typically developing children between the ages of 3 and 20 years.
∗NIH_PD (Evans, 2006): NIH Pediatric database (NIH_PD)
of longitudinal MRI data of typically developing children and
adolescents scanned during three visits.
∗ADHD200 (Fair et al., 2012): Publically released dataset of
resting-state fMRI and anatomical imaging for 491 typically
developing individuals, and 285 in children and adolescents
with ADHD between the ages of 7 and 21 years.
∗ABIDE (Di Martino et al., 2013): Autism Brain Imaging Data
Exchange (ABIDE) dataset contains resting state functional
imaging and morphometric data from 539 individuals with
autism spectrum disorder and 573 typical controls.

Resources marked with ∗ require some sort of user registration
process in order to access the imaging data. While the portal
provides simple indication of the types of data that would be
obtained with the query (in terms of subjects matching age, gen-
der, and diagnostic characteristics) users are required to acquire
their own specific access authentication.

OPERATION
Once the user fills in their query terms and clicks the submit but-
ton in the “Select Query” pane, resources matching the query
are displayed in the Resource Match pane. Each of the informa-
tion resources can then either be viewed in the Result pane, or
opened in a separate tab. For all the imaging databases, the demo-
graphic information of available data is displayed in the result
pane and the user is directed to the respective websites in order to
complete any necessary registration process in order to download
the data.

When queries are run against IBVD, CANDIShare, OASIS,
fCON1000, PING, NIH_PD, ADHD200, or ABIDE with diagno-
sis included, the implication is that the user is interested in the
contrasts between “typical” and this diagnosis. Therefore, while
running the queries on these resources, the query is conducted
twice, once for the diagnosis and other context qualifiers, and
additionally for age and gender matched normal controls.

Also, data returned from specific resources can be processed
locally to derive additional representations of that data. Specific
examples of this include automated provision of a z-score table
and a z-score plot for the ROI volumes returned from the IBVD
results, and a generation of the top five most published genes list-
ing for the Entrez gene results for any given disorder of interest
query.

IMPLEMENTATION
The portal is designed as a stand-alone application. Instead of
downloading this application to each user, the application is
hosted on a publically available computer and accessed via web-
based browser. HTML5 is used to develop the user interface.
Dynamic functionality is implemented using JavaScript. The

point-and-click brain atlas is implemented using the canvas fea-
ture of HTML5. The atlas itself is based on FreeSurfer segmented
structural MRI scan of a normal 15-year-old female subject.

In the absence of a standard API that facilitates interopera-
tion with all neuroscience resources, we maintain a resource-by-
resource catalog of queryable terms and the context that these
terms are pertinent to. When queries are implemented we main-
tain a resource-specific specification of each queryable item and
the syntax of the query for that resource. Given the variations
between the different resources, the query for each resource is
generated independently. Figure 2 provides a pictorial view of
how different resources are queried. Either all or a subset of the
search criteria is used to generate the query for an individual
resource. e.g., PubMed results are based on the diagnosis, brain
region, hemisphere, gender, age range as chosen by description
(young, adolescent, young, and adolescent, or adult), and species
queried, where as PubBrain results are purely based on the diag-
nosis, gender and age range in years. This approach provides
modularity to the portal, making it easier to modify the current
queries or add any new resources in future. Another advantage of
this approach is that the data is presented in a way that would be
most useful to the user. For example, though the IBVD results are
limited by age range, we provide a IBVD based z-score plot over
the entire age range from young to adult, hence giving the user an
overview of changes in volumes of the ROI as a factor of age.

CANDIShare, fCON, ABIDE, ADHD200, and OASIS datasets
available through XNAT are queried using Python and pyx-
nat (Schwartz et al., 2012). NIH pediatric database and PING
database are currently not available for direct web query. The
results for these resources are made available to the user by query-
ing the demographics available to us. Currently each resource
query is custom created (e.g., for IBVD the age range is inputted
in the form of minimum and maximum age as opposed to
PubMed for which either of young, adolescent or old is used).
The results frame utilizes the inline frame feature, hence enabling
display of various resource webpages in the same window.

LOCAL DATA MANIPULATION
As indicated above, the portal supports a layer of local analyses
that can be inserted to process or condition the results of each
of the queries to add information or contest. We demonstrate two
examples of this local processing that enhance the interpretational
value of information returned from the query in support of the
clinical end user.

First, the anatomic volume results from IBVD query for a
disorder of interest and healthy control groups are represented
as a flat table and a graph of raw volumes. A common way of
interpreting these results would be for the end user to further
parse these results to find matching disorder—normal control
results pairs that originate from the same article. These results
can then be converted in to a z-score, which is a ratio of difference
between the disorder and control group mean to the average stan-
dard deviation of the two groups, using the formula stated below.
Any articles that might have multiple disorder-normal pairs that
can’t be separated using gender or hemisphere information are
marked as multiple matches. The results are provided to the user
as a table as well as a z-score vs. age plot. This sequence of data
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FIGURE 2 | Flowchart depicting how the query input is tailored to requirements of various resources.
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interpretation steps is automated in the portal in order to provide
the end user an added context to the results that are returned. The
multiple-matched results are not included in the plot.

Z-score =

(
disorder group mean volume−

control group mean volume
)

[0.5 × (disorder volume std +
control volume std)]

Finally, a trend-line is generated for the z-score vs. average age
plot using the locally weighted scatterplot smoothing (lowess)
non-parametric regression (Cleveland, 1979; Cleveland and
Devlin, 1988).

As a second example of local result manipulation, we con-
sider the Entrez gene database query result. Initially, this query
provides a list of associated genes that is ordered relative to last
update of their Entrez gene record (such that the most recently
published gene on top of the list). However, as the list of genes
returned from a query becomes large, recency of record update is
not the optimum criterion for identifying the most salient genetic

implications. In this case, the portal will run a process that takes
these results and rank order organizes it with respect to the num-
ber of publications per gene for the query. The top five of the most
published genes are presented under the Gene tab along with a list
of all the genes published for that disorder—ROI combination
and PubMed IDs of publications for each gene.

USE CASES
We illustrate the query building functionality through examina-
tion of the details for a sample query:

Disorder: Bipolar Disorder
Brain Structure: Amygdala
Hemisphere: Left
Gender: Female
Age: Young or 0–9 years
Species: Human

For each resource, the following table shows the mapping of the
context terms to the actual query.

Resource Diagnosis Brain structure Hemisphere Gender Age range Species

PubMed Bipolar disordera Amygdala – Female Young Human
EntrezGene Bipolar disorder Amygdala – – – –
IBVD Bipolar disorder Amygdala Left Female Age min = 0

Age Max = 9
Human

Normal Amygdala Left Female Age min = 0
Age Max = 9

Human

PubBrain Bipolar disorder – – – – –
CANDIShare Bipolar disorder - - F* Age min = 0

Age Max = 9
–

Normalb – – F* Age min = 0
Age Max = 9

–

OASIS datasets on XNAT –** – – – Age min = 0
Age Max = 9

–

OASIS-brains database CDR score =””
or CDR score = 0

– – F* Age min = 0
Age Max = 9

–

fCON1000 Normal – – F* Age min = 0
Age Max = 9

–

PING Normal# – – F* Age min = 0
Age Max = 9

–

NIH_PD –## – – F* Age min = 0
Age Max = 9

–

ADHD200 Controlb – – F* Age min = 0
Age Max = 9

–

ABIDE Typically
developingb

– – F* Age min = 0
Age Max = 9

–

aDatabases such as PubMed expand individual search criterion to match their own terminology.
bBased on a given resource, the search parameters are modified to fit the reported diagnosis, such as “Typically developing” for ABIDE, “Control” for ADHD200,

and “Normal” for CANDIShare.
*F for female is compared with the capitalized first letter of the reported gender to determine a match.
**Since diagnosis is not available as a part of OASIS dataset demographics on XNAT, it is not queried.
#PING dataset limits its subjects to those without any confirmed diagnosis of autism, mental retardation, bipolar disorder, schizophrenia, or any neurological disorder

such as cerebral palsy, fetal alcohol syndrome, Down’s syndrome, fragile X, cerebral neoplasm, bacterial meningitis, epilepsy, and hence the subjects are considered

“Typically developing.”
##NIH_PD exclusion criteria included diagnosis for any major medical illness, congenital abnormalities, heart problems, cancer, lead poisoning, seizures, CNS

Infection, head injury, significant hearing loss, language disorder, mood disorder, Conduct, AD/HD, Tic, Eating disorders, as well as, presence of bipolar disorder,

chronic depression, psychotic, AD/HD, drug dependence, or PDD in first degree relatives. Hence, can be considered typically developing and no diagnosis is reported.
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USER ACCESS
The portal is freely accessible as a website hosted at http://
childportal.virtualbrain.org. This host is an Amazon EC2
NITRC-Computational Environment Ubuntu 12.04 platform.
The underlying computational power of the EC2 instance can be
scaled to meet variations in portal demand.

RESULTS
The operation of the portal is best illustrated through a num-
ber of examples/case studies. Figure 3 provides an overview and
comparison of the results of two different contextual queries. The
left hand column displays the results for a query on “Diagnosis:
ADHD; Brain Structure: cerebrum; and Age: Adolescent.” The
right column displays query for “Diagnosis: Bipolar Disorder;
Brain Structure: Amygdala; Gender: female; and Age: Young”
(Figure 3A). The links are generated for each resource and pre-
sented to the user. The specific, query-dependent version for each
resource is displayed. As shown in Figure 3B, the IBVD results
for the query are presented along with z-score table and plot
for the disorder-ROI combination. Similarly, the Entrez Gene
results are further processed and presented with the top five most
published genes for the disorder-ROI combination, as shown in
Figure 3D for the Bipolar-Amygdala query which has only four
genes that actually have common publications for Bipolar disor-
der and Amygdala despite the list of 33 genes produced by Entrez
Gene. The user can further manipulate the output for each of the
information resource, if necessary. For example, Entrez gene did
not have any entries for the combined query of ADHD and cere-
brum (Figure 3D). The user can in such cases modify the search
in the results pane for that particular resource only to look at gene
entries for ADHD alone.

For the MRI data resources, the available data for the disor-
der as well as normal controls are displayed for the age range in
question. If any resource has not specified any disorder in their
demographics, those results are displayed as well and listed as
“unspecified disorder.” Since many data resources require a user
to register with them before the data can be released, the portal
points them to the resource websites in case they want to access
the data.

DISCUSSION
Despite the presence of numerous neuroinformatics resources
that are available to the clinician, we believe that the Child
Psychiatry Portal is the first effort to create a platform to con-
solidate these data and information resources specifically for the
needs of the pediatric psychiatry researcher. Currently the tar-
get resources include IBVD, PubMed, Entrez gene, and PubBrain,
NIH pediatric database, PING, CANDIShare, 1000 Functional
Connectomes Project (FCON), and OASIS longitudinal and
cross-sectional studies. We list data that is available through the
five resources we query whether it matches the entire query as
specified, including diagnosis, or it matches the age range and
gender characteristics specified for control (typically developing)
subject data. The power of this approach comes not through
the complexity of any one query, but rather the collection and
integration of a wide variety of resource queries under one appli-
cation where most of the operational details and idiosyncrasies

of the of the individual resources can be initially abstracted away
from the end user. Ultimately, use of these varied resources by
users not intimately trained in the details of each site will be
critical to wide-spread utilization of these many valued data
sources.

ADVANTAGES
The first and foremost advantage of this portal is that it brings
information from multiple complex resources into a simple
single uniform framework without requiring myriad of resource-
specific syntax knowledge. Additionally, the portal has an exten-
sible modular architecture. Hence, it can be expanded to include
results from any additional resources as and when they become
available. We understand that a user might already be aware of
some of the individual resources and be well versed in navigat-
ing these resources. However, the ability to modify the search
parameters for multiple resources simultaneously should be an
advantage to the user over having to go through each of the
resources individually. This represents a dramatic saving in terms
of time in order to look for availability of information from mul-
tiple resources every time one needs to modify a search parameter.
See the Supplementary Material for the description of performing
query on individual resources presented in the portal without the
portal.

A second critical advantage of the system is to introduce a
data manipulation layer between the raw results from the vari-
ous resources and the presentation of this information in a form
that is best suited to the end user. Databases that do a good
job of collecting data cannot anticipate and support every re-
use and re-interpretation that can be envisioned for their data.
As users develop convenient ways to interpret data, there need to
be equally convenient ways to implement and disseminate these
views to the end users that are more flexible than building upon
the database infrastructure itself.

Finally, within the neuroimaging search functionality,
acknowledging that multiple data sources (implemented using
multiple data hosting platforms) will always exist and that the
content from these sources will ultimately need to be pooled,
requires the development of a “higher-order” search platform
that can span a dynamically changing landscape of image data
resources. The ability to both quickly and efficiently integrate data
sets between sources and discover the presence of additional data
sources will grow in importance as the amount of shared image
data, number of providers, and variety of access terms increases.

LIMITATIONS
As it can be seen from the results, though numerous studies are
published every year, a very small portion of the data is made
available and it is further limited in case of studies of psychi-
atric disorders in children. This highlights the need to promote
data sharing to researchers. Currently only a limited number of
MRI Data resources are available for downloading patient related
imaging data. Despite this, the user can at least take advantage of
any available control data, perhaps for integration with their own
patient datasets.

Another important thing to note is, not all available data
resources follow similar rules for nomenclature. For example, the
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FIGURE 3 | Continued
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FIGURE 3 | Continued
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FIGURE 3 | Portal output based on two separate search criteria. (A)

Search criteria, (B) Results of IBVD for each of the queries displayed in
tabular as well as z-score plot form, (C) Publication results for the queries, (D)

Entrez Gene result along with the top five most published genes for the

disorder and brain region in query, (E) PubBrain results for the disorder
queried which enlist the brain regions published for that disorder, (F) Data
resources which can provide the user with MRI data available for the disorder
queried as well as normal control data which fits the rest of the query criteria.

1000 functional connectomes (fCON1000) project and the OASIS
longitudinal and cross-sectional datasets do not make it explic-
itly clear in their demographics the diagnosis of their subjects.
This information needs to be inferred based on the description
provided on their respective webpages as normal controls for
the fCON1000, and as probable Alzheimer’s Disease if a CDR
scores >0 or otherwise healthy controls for the OASIS datasets.
Similarly, the OASIS datasets, which actually are available for
download through XNAT central, do not provide the gender of
the subjects on XNAT central, hence in case of gender specific
query, the XNAT central resource gets ignored. As of this writing,
PING and NIH pediatric database are not yet available for direct
query over the web. In these cases, we have separate access to the
demographic information saved locally upon which those specific
queries are run. CANDIShare, fCON, and OASIS databases are
available through XNAT (NITRC-IR and XNAT central) and have
some similarities between their demographics data structure.

However, in general we had to run individualized queries for
most of the databases, making it an ad-hoc peer-to-peer style pro-
cess as described earlier. We hope that in future there would be
developments toward streamlining and homogenizing the way the
information in stared and presented. The INCF Neuroimaging
Data Sharing task force (Poline et al., 2012) is working on an
API which would standardize description of neuroimaging/meta
data to facilitate the communication between databases. However,
we are still far away from standardization of available research
resources, hence necessitating a portal presented in this paper.

FUTURE WORK
We will continue expanding the list of available resources as
and when they become available and open to be queried. fMRI
activation results from the BrainMap (Laird et al., 2005) and
SuMSDB (Van Essen et al., 2004) databases are an obvious
extension. In addition, bridging between resources that integrate
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across species will be critical. Adding homology mapping and
additional resources like the Allen Brain Institute mouse gene
expression database and the CoCoMac database of connectivity
will broaden the types of inference that can be supported by the
portal environment. We plan to further customize our currently
reported results, similar to the brain volume z-score plots or the
most published genes, to improve the end usability.

When searching for neuroimaging data using the portal, the
user quickly runs into the barriers of publically vs. privately
shared data sources. While the portal helps to identify the mag-
nitude of query results that will be found if one has access to
these private data sources, users themselves must conform to the
various data sharing policies needed for each. Future extensions
to the portal that help a user manage their multiple different
resource access permissions and facilitate data integration across
these multiple sites will be pursued.

In the near future we plan to add a feature to highlight the
queried aberrance in the Z-plots. In this fashion, it will become
clearer where there is or isn’t data available and how that age-
range-specific data fits in the context of data from other ages.

The portal currently takes into consideration one disorder and
one brain region of interest. In future, we plan to add additional
number of disorders to address co-morbidities. We also plan to
expand the query to include more than one ROI, so that any com-
monalities in the results that might exist between multiple brain
regions, which could shed more light on the etiology of a disorder,
can be made available to the user.

CONCLUSION
Despite of these limitations, our portal provides an initial pro-
totype for a homogenized front end for a variety of resources
that would ease the burden of information integration for
child-psychiatry researchers.
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Neuroscience today deals with a “data deluge” derived from the availability of
high-throughput sensors of brain structure and brain activity, and increased computational
resources for detailed simulations with complex output. We report here (1) a novel
approach to data sharing between collaborating scientists that brings together file
system tools and cloud technologies, (2) a service implementing this approach, called
NeuronDepot, and (3) an example application of the service to a complex use case in the
neurosciences. The main drivers for our approach are to facilitate collaborations with a
transparent, automated data flow that shields scientists from having to learn new tools
or data structuring paradigms. Using NeuronDepot is simple: one-time data assignment
from the originator and cloud based syncing—thus making experimental and modeling
data available across the collaboration with minimum overhead. Since data sharing is
cloud based, our approach opens up the possibility of using new software developments
and hardware scalabitliy which are associated with elastic cloud computing. We provide
an implementation that relies on existing synchronization services and is usable from all
devices via a reactive web interface. We are motivating our solution by solving the practical
problems of the GinJang project, a collaboration of three universities across eight time
zones with a complex workflow encompassing data from electrophysiological recordings,
imaging, morphological reconstructions, and simulations.

Keywords: morphology, electrophysiology, imaging, data management, neuroinformatics, cloud services, research

data management

1. INTRODUCTION
Science today deals with a “data deluge” caused by the widespread
use of high-throughput sensors in experiments, and the ever
more complex simulations afforded by increased computational
power (Moore, 1965). Both measured and simulated data need to
be stored in raw form, preprocessed, contextualized with meta-
data, organized to facilitate queries, and then analyzed to produce
scientific statements. Ideally, peer-reviewed data should also be
available for replication and re-analysis to test new hypotheses as
knowledge progresses.

In addition, the need for multi-university collaboration is par-
ticularly acute in neuroscience being a multilevel discipline. It
tackles questions spanning disparate levels of organization such as
genes, neurons, circuits, and behavior with a variety of methods
including sequencing, electrophysiology, and computer simula-
tions (Shepherd et al., 1998). Projects with such multi-university
collaborations benefit from well organized coordination of the
participating specialists (Cummings and Kiesler, 2007).

One challenging aspect of project workflows might concern
immediate sharing of highly structured and voluminous data
across labs. Tasks of such a project workflow can interdepend:
a further step of the local work depends on another operation
that is remotely carried out. In this case, scientific workflows
allow to optimize and then more efficiently execute scientific pro-
cesses (Ludäscher et al., 2009). For example, analysis results can
motivate further collection of experimental data, whereupon it is
clearly of advantage that they are made available once they are
produced.

Proposals to alleviate the data management overhead fre-
quently might require scientists to change and diminish their
local processing workflow in order to be able to offer dis-
tributed access for collaborators to participate in the project.
We propose here a novel approach which integrates seamlessly
the widespread filesystem-based acquisition, analysis, and pub-
lication workflows by leveraging proven cloud synchronization
technology. Our implementation of this approach, a service called

Frontiers in Neuroinformatics www.frontiersin.org June 2014 | Volume 8 | Article 55 |

NEUROINFORMATICS

91

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00055/abstract
http://community.frontiersin.org/people/u/54355
http://www.frontiersin.org/people/u/132727/profile
http://community.frontiersin.org/people/u/7256
http://community.frontiersin.org/people/u/133193
http://community.frontiersin.org/people/u/129919
http://community.frontiersin.org/people/u/116832
http://community.frontiersin.org/people/u/5012
http://community.frontiersin.org/people/u/13465
http://community.frontiersin.org/people/u/3843
mailto:rautenberg@mpdl.mpg.de
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Rautenberg et al. NeuronDepot: keeping your colleagues in sync

NeuronDepot, enables researchers to continue interacting with
the scientific project data through the filesystem and at the
same time opens up the data for further processes in cloud-
based web applications. In this way NeuronDepot exploits the
existing substantial investment in development, acquisition, and
training in local applications with their mature and rich inter-
faces and local access to data. We illustrate the approach with a
deployment of NeuronDepot tailored to the specific needs of the
GinJang project (http://projects.g-node.org/ginjang/), a complex
use case that combines data from electrophysiological recordings,
imaging, morphological reconstructions, and simulations.

Several initiatives have established databases to make neu-
romorphological or neurophysiological research data publicly
available. NeuroMorpho (http://neuromorpho.org/) is a curated
inventory of digitally reconstructed neurons. The goal of the
project is to provide dense coverage of available reconstruc-
tion data for the neuroscience community (Ascoli et al., 2007).
The neurodatabase.org project (http://neurodatabase.org) and
the Collaborative Research in Computational Neuroscience
(CRCNS) site (http://crcns.org) host electrophysiological data
that have been specifically selected by contributing labs for the
purpose of making the data available to the public. Typically,
data in these databases are from studies that have been pub-
lished and are provided for use in further investigations after they
have served their primary purpose. Only a few projects have been
designed to support data sharing in collaborative research.

The CARMEN portal (https://portal.carmen.org.uk/) allows
neuroscientists to share data and programs from neurophysiolog-
ical experiments. Data analysis functions are provided as services
that can be applied to the data stored in the system (Austin et al.,
2011). Data, metadata, and analysis workflows are accessible via a
web interface.

The German Neuroinformatics Node (G-Node) provides a
platform for management and sharing of neurophysiological data
(http://www.g-node.org/data). Users can upload, organize, and
annotate data, and make them accessible to other users or the
public. Data annotation follows a flexible schema (Grewe et al.,
2011) so that any metadata necessary can be entered. An API pro-
vides fine-grained data access through common languages like
Python or Matlab, enabling data management and collabora-
tive data sharing directly from the scientists’ local data workflow
environments (Sobolev et al., 2014a,b).

Recently, the International Neuroinformatics Coordinating
Facility (INCF) established the INCF Dataspace (http://incf.org/
dataspace), a cloud-based file system to share all kinds of neuro-
science data.

One of the first databases integrating results from various fields
like morphology, physiology, and immunohistochemistry is the
Bombyx Neuron Database for assembling and sharing experi-
mental and analytical data (Kazawa et al., 2008). Its integrative
approach inspired also the development of NeuronDepot.

2. SCOPE OF THE NeuronDepot APPROACH
In contrast to some of the infrastructure solutions presented
above, NeuronDepot does not focus on a particular field or type
of data but leaves the specifics of each data type to the well-
established working environments of the participating members.

NeuronDepot supports the scientist by providing a service that
integrates data flows with the corresponding management and
data analysis.

Beyond facilitating collaboration, the development of a
database to properly store and backup all the data of the project
makes it accessible to further projects. Putting data into struc-
tured databases facilitates its reuse and enables replication and
verification of analyses.

2.1. THE GinJang PROJECT AND ITS WORKFLOW
NeuronDepot was developed around the German–Japanese col-
laboration GinJang (http://projects.g-node.org/ginjang/). This
project provides a perfect opportunity for use-case-driven devel-
opment and field-testing of the NeuronDepot infrastructure
because (1) it involves three universities with several labs across
multiple time zones, (2) it deals with different types of data from
neuroanatomy and electrophysiology, and (3) it requires quick
synchronization and reliable transfer of large quantities of raw
data with complex associated metadata, including both recorded
data and simulation results.

The GinJang project studies the processing of auditory signals
in the honeybee. Honeybees communicate the direction and dis-
tance to food sources with hive-mates by waggle dance (Frisch,
1967). The hive-mates detect and process airborne vibration
caused by the bee’s wingbeat during the waggle dance, which con-
sists of vibration pulses with a highly specific temporal pattern.
Several critical interneurons for processing the airborne vibra-
tion have been identified (Ai et al., 2007, 2009; Ai, 2010; Ai and
Itoh, 2012; Ai and Hagio, 2013). However, the neural process-
ing of these vibration signals has rarely been studied: types and
roles of neurons involved, their circuitry, and their development
are largely unknown.

Members of the GinJang project also developed a program
(SIGEN, see Minemoto et al., 2009) that is used to automat-
ically extract and segment the morphology of interneurons
that are involved in vibration processing. Goal of the GinJang
project is to clarify the morphological characteristics of the
vibration-processing neurons and their morphological develop-
ment according to age and experience of the bees.

The workflow of the GinJang project is illustrated in
Figures 1, 2. The experimental setup is at Fukuoka University
where electrophysiological measurements (Figure 1A), electro-
physiological analyses (Figure 1D), and imaging (Figure 1B) are
performed. The image stacks are used at the University of Hyogo
for neuronal segmentation (Figure 1C). The resulting 3D neu-
ronal segmentations are then normalized by registering them to
the Honeybee standard brain (HSB; http://www.neurobiologie.
fu-berlin.de/BeeBrain/Project.html), which is done at Fukuoka
University. Finally, morphological analyses, simulations, and
further analyses are done at Ludwig-Maximilians-Universität
München (LMU) (Figure 1E).

2.1.1. Data acquisition
The vibration-sensitive neurons in the honeybee auditory sys-
tem are electrophysiologically and anatomically characterized at
Fukuoka University. Using sharp electrodes, voltage traces are
recorded from interneurons in response to several sensory input
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FIGURE 1 | Processing stages and data transitions of a typical workflow

like the GinJang honeybee project. (1) Processing stages (A) Single cell
recording at a electrophysiological setup. Here, the electrical cell activity is
measured at the dendrite as well as a dye is injected into the cell. (B) Using
the brain from experiments, image stacks are created applying confocal
microscope technology. (C) The application SIGEN computes from confocal
image stacks segmentations representing the underlying neuron. (D)

Electrophysiological recordings are analyzed with specialized software. This
stage represents an entire electrophysiological infrastructure using local
computers at the experimental lab but also remote G-Node-services. For

simplicity, this illustration exemplary shows the result of a spike detection
algorithm that identifies spikes of three neuronal units. (E) Further process
stages follow that build upon already processed data. (2) Traditional data
transition (A → B) The honeybee brain is physically moved from
electrophysiological setup to the confocal microscope setup. (B → C; C → E)
data units (single file, or set of files that represents a logical unit like all files
of an image stack) are transferred by common tools like USB-sticks, external
hard drives, Dropbox, or simply as email attachments. The same tools are
applied for (A → D; D → E) but moreover dedicated web techniques for the
domain of electrophysiological provided by G-Node can be applied.

protocols (Ai et al., 2009; Ai and Itoh, 2012; Kai et al., 2013). Then
the neuron is filled with a dye and imaged at a different setup
using confocal microscopy to generate anatomical image stacks
(Ai, 2010; Ai and Hagio, 2013). Thus, every experiment generates
three kinds of data:

• Electrophysiological data (e.g., voltage and current traces).
• Microscopy image stacks.
• Honeybee metadata (e.g., age or colony) and neuron metadata

(e.g., phenotype).

2.1.2. Segmentation
Image stacks are transferred to the University of Hyogo,
Japan. Here, using automated image analysis software SIGEN
(Yamasaki et al., 2006; Minemoto et al., 2009) the 3D struc-
ture of the neuron is extracted and stored using the SWC file

format (http://www.neuronland.org/NLMorphologyConverter/
MorphologyFormats/SWC/Spec.html). At this stage two kinds of
data are generated:

• Segmented neuron (e.g., SWC file).
• Parameters used for segmentation (which constitute segmen-

tation metadata).

2.1.3. Registration
The morphological segmentations of the neurons are transferred
back to Fukuoka University for registration into the Honeybee
Standard Brain using various transformations. We use the hon-
eybee standard brain to analyze the spatial relationships among
morphologically and physiologically characterized vibration-
sensitive neurons. The neuronal profiles of stained interneurons,
obtained from different preparations, are segmented as explained
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FIGURE 2 | Sequence Diagram of the GinJang workflow

(morphological scope). The GinJang workflow starts at the Fukuoka
University with two processing stages (indicated by solid arrows): the
experimental data collection and the imaging processing stage. Anatomical
image stacks are transferred (dashed arrow) to University of Hyogo where
they are segmented. Segmented neurons are transferred to the LMU and
also back to Fukuoka University where they are registered to the honeybee
standard brain. Unregistered segmentation and registered segmentation
are used for simulations and analysis at the LMU. Using analysis results,
scientists in Fukuoka can tweak existing experiments or design new ones.

in the previous section. Subsequently, the neuropilar outlines
are traced semi-automatically with Amira 4.1 (Evers et al.,
2005) and ITK-SNAP (http://www.itksnap.org/). These neuropi-
lar label fields are used to register the segmented neuron of
each preparation into the honeybee standard brain following the
method described by Brandt et al. (2005). Data generated at this
stage are:

• Registered neuron morphology.
• Parameters used for registration.

2.1.4. Analysis
These segmentations (both registered and unregistered) are trans-
ferred to the LMU, Germany, where 3D segmentations are used
for morphometric analysis and simulation studies. Multiple kinds
of data are generated at this stage:

• Model files for simulations.
• Simulation metadata, e.g., parameters of simulation, location

of stimulation (input) and measurements (output).
• Simulation results: visualizations and summary data.
• Morphometric analysis metadata, e.g., subregion of analysis,

metrics used.
• Results of morphometric analysis: volume, surface area, num-

ber of branch points.

2.1.5. Traditional data transfer methods
The workflow of the GinJang project requires multiple data
transfers between diverse processing stages. These transfers were
previously done via e-mail, usb-sticks, external hard drives, ftp-
servers, or cloud storage services (like Dropbox, http://www.

dropbox.com/). NeuronDepot replaces these traditional data
transfer methods.

3. REQUIREMENTS ANALYSIS
We asked the members of the GinJang Project to specify the fea-
tures that they expect to have in NeuronDepot. Based on those we
came up with the following set of requirements:

1. Data Management

• Replacement of “manual” data transitions that are using
memory. devices like e-mail, USB-sticks, external hard
drives, FTP-servers, or cloud storage services.

• Ease of metadata assignment for various kinds of data like
image stacks, voltage trace, and neuronal reconstructions.

• Interrelate various kinds of data.
• Visibility of the current state of the project through a web

browser.
• Automatic update and synchronization across project work-

stations.

2. Integration

• Maintenance of the well-established work environments of
the participating scientists.

• Minimization of the integration effort.

3. Data Security

• Reliability of upload and download of large data.
• Access control.

4. Automated Backup
5. Additional Requirements

• Easy adaptation to new data-specific requirements that
emerge during the project.

• Support for automated data processing like metadata
extraction, analysis, and simulation.

• Quick overview of contents and metadata.
• Flexible search of data.

4. CONCEPT
4.1. NeuronDepot AS A SERVICE
NeuronDepot is designed as a service. As opposed to a prod-
uct, functionalities of a service are set up to meet a specific
set of requirements at a point in time (Truex et al., 1999;
Bennett et al., 2000; Bullinger et al., 2003). Therefore, the spe-
cific form of NeuronDepot changes as the project progresses
and its requirements continually evolve. Moreover, NeuronDepot
brings together other already existing service-modules, which
are reassembled and configured to meet the current require-
ments. While building up NeuronDepot from its sub-services,
we make sure that NeuronDepot stays functional even when its
sub-services develop with time. Also, these developments can be
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utilized in evolving NeuronDepot. By offering new functionality
in a way that is compatible with existing services, tools, training,
and working environments, the costs of data sharing in a collabo-
ration are brought down to a minimum while the accessibility of
research assets is future-proofed.

4.2. CORE IDEA
When handling a large amount of data, it is common for sci-
entists to arrange the corresponding files in a directory tree. By
doing this, they often encode metadata in the name of directories,
for example, the date of recordings or experimental parameters.
NeuronDepot also uses this well established principle. The dif-
ference is that NeuronDepot automatizes this. It employs a set
of rules to automatically create such a directory structure and
arrange the data. It uses the associated metadata (available in
the database) for naming the directories. The rules for form-
ing this directory structure can be changed. Thus, the same
data can be organized in different structures as required by the
scientist.

4.3. DEFINITIONS
In this section we define terminologies which are used in explain-
ing NeuronDepot.

4.3.1. Data unit
A data unit (Figure 3, bottom left and bottom right) is a logical
grouping of one file (trivial case) or multiple files which are gen-
erated by a single process. Examples of individual data units in
the GinJang context include: an image stack consisting of several
image files, the morphology of a neuron represented in a single
SWC-file, or several plots and tables resulting from simulations
of a neuron’s electrophysiological characteristics.

4.3.2. Context path and context trees
Any data unit can be uniquely identified by a subset of the meta-
data attributes associated with it (Figure 3). We define the context
path of a data unit as an ordered list of the specific attributes that
uniquely identify it (Figure 4). This context path can be used to
construct a path in the file system where the order of metadata

FIGURE 3 | Data units as smallest logical entity for specific data

processing attached to the metadata of the project. (Left) A data unit is
connected to metadata by its unique hash value id. Metadata are illustrated
here as a graph where each point represents an attribute like AGE=15,
DATE=130525, or HONEYBEE=HB123. The data unit could express an image
stack or a compartmental reconstruction of a specific neuron. (Middle) Data
processing by a script or an applications that operates on specific input data

units and that generates a new output data unit. For example, SIGEN
generates from input data units expressing image stacks neural
segmentations as an output data unit containing an SWC-file. (Right)
Processing a data unit with a specific script or application leads to an output
data unit associated with new metadata that is integrated into the existing
metadata graph. According to our SIGEN-example, parameters of the
segmentation algorithm are stored within the metadata graph.
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FIGURE 4 | Mapping a data unit to context trees using attached

metadata. (Left) Each data unit is connected to metadata. Using this
metadata allows the organization of data units by two aspects: The
entire data of a project can be (1) sub-divided into divers subsets of
data where (2) data units are arranged within a tree structure where
the nodes represent metadata and the leafs represent the data unit.
As a meaningful specification of such a arrangement depends on the
context of data usage, we call this arrangement context tree. (Right)
One context tree of NeuronDepot arranges project data for the
morphometric processing stage. The file format SWC serves as a filter

argument as just SWC-files are needed for simulation. Metadata
attributes LABOR_STATE, REGION, HONEYBEE_ID, and
SIGEN_PARAMETERS serve for grouping. Example of context path (α)
pointing to a data unit containing a segmentation: /forager/

left_DL/HB130427/D20V05C01S01/morphology.swc Another
context tree of NeuronDepot arranges project data for our imaging
processing stage. Here, the project data are reduced to image stacks.
Metadata attributes HONEYBEE_ID and REGION serve for grouping.
Example of context path (β) pointing to a data unit containing an
image stack: /HB130427/left-DL/*.tiff

attributes corresponds to the hierarchical levels in the file
system.

Example: If a member of the project wants to analyze one
particular segmentation of neuron NRN-1 of honeybee HB123,
the following two paths leading to the corresponding data unit
would represent these attributes:

(1) HB123/NRN-1/segmentation/
(2) segmentation/HB123/NRN-1/

The desired order of the attributes depends on how the data units
are to be queried for specific analyses: the path order is projected
into a hierarchy and therefore defines different grouping levels
specific analyses.

4.3.3. Projection
A projection is the representation of a context tree within the
file system. It is comparable to materialized views of relational
database management systems.

4.4. DESIGN CONSIDERATIONS
The architecture of NeuronDepot follows these principles.

4.4.1. Incorporation of existing open source components
The open source ecosystem holds multiple solutions solving very
specific tasks. Some examples are SQLAlchemy1 (for controlling
the persistence of objects by mapping them to database struc-
tures), numpy 2 (solving highly optimized numerical tasks),
or matplotlib3 (illustrate data by drawing graphs and figures).
Moreover, the community of neuroinformatics has added several
domain-specific tools for simulations, analysis, and processing of
data from the field. We have incorporated some of these solution
while developing NeuronDepot (see section 6). NeuronDepot
is also structured so that other such solutions can be integrated
to it.

4.4.2. Utilization of established cloud services
Cloud services have rapidly emerged as a widely accepted
paradigm built around core concepts such as on-demand com-
puting resources, elastic scaling, elimination of up-front invest-
ment, reduction of operational expenses, and establishing a

1http://www.sqlalchemy.org/
2http://www.numpy.org/
3http://matplotlib.org/
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pay-per-use business model for information technology and
computing services. The use of cloud services helps to reduce
development time and effort.

5. HOW NeuronDepot WORKS
5.1. DATA ARRANGEMENT: FLAT ON THE SERVER AND HIERARCHICAL

ON USER WORK STATIONS
NeuronDepot applies systematically the principle of using folder
names and file names as carrier for metadata describing the data
contained in the filesystem. For flexibility, the collection of data
units is stored in a central server in a flat structure where each data
unit has a unique identifier, and the metadata are kept separate
and referenced to those identifiers. When users define a subset
of data they are interested in, along with a hierarchical arrange-
ment that suits their needs, NeuronDepot creates a user- and
task-specific context tree as a hierarchy of symbolic links with the
data units at the leaves. By exposing these hierarchies to a syn-
chronization daemon, the projection is made available to every
workstation that subscribes to it.

5.2. DATA ASSIGNMENT
NeuronDepot also leverages advances in synchronization tech-
nology for the data upload process: the user simply places new
data units in a designated floating folder (comparable to the
Camera Upload folder of Dropbox, see section 5.3). This folder
is synchronized to the server. Then, the data units appear as
available for metadata assignment via a graphical user interface
of NeuronDepot. Once metadata assignment is complete, data
units can be projected, as described above, to hierarchies that
are adapted to the local users’ workflows. Data units are now
also accessible to cloud analytic services that directly query the
metadata database without demanding a specific projection, as
these clients are not constrained by the hierarchical data model of
filesystems. NeuronDepot thus maintains consistency all the way
from the scientists’ local copy of acquired data to the cloud-based
analysis platforms.

5.3. CLOUD-BASED DATA FLOW
NeuronDepot’s mechanism for data transmission is based on
synchronization by GWDG Cloud Share (Figure 5). This cloud
storage service is used to keep all local computers that are involved
in the project updated by the server and, therefore, updated
among each other. This core update process is based on syn-
chronization on the file system level. In order to integrate data
units into workflows, the system provides two types of base
folders: floating folders (Figure 5-1) and context tree folders
(Figure 5-3). Floating folders are provided with read/write per-
missions for project members. Data within floating folders are not
assigned to the metadata structure and, therefore, are in a float-
ing state. Floating folders are part of the data-assignment process
(Figure 5-2). The second type of folder is the context tree folder
with read-only permissions for project members that synchronize
projected context trees to the local work environment.

The underlying data transfer workflow replaces traditional
transfer methods as described above and consists of three steps:
(1) new data units are stored within the floating folder and
synchronized to the server. (2) Synchronized data units within

the floating folder are assigned to the existing project data via a
web application. As NeuronDepot’s web GUI uses responsive web
design it provides optimal viewing experience—easy reading and
navigation with a minimum of resizing, panning, and scrolling—
across a wide range of devices from mobile phones to desktop
computer monitors (Marcotte, 2010). The system ensures that
all data are correctly related to each other and that all data stay
consistent. Project members can plug scripts into this assignment
process to automate and facilitate data processing. Moreover, the
system provides diverse reports to brief the scientists about the
current state, or about recent changes. (3) NeuronDepot dis-
tributes data units back to project members. According to the
underlying context tree, NeuronDepot synchronizes projected
context tree folders by cloud storage services to the workstations
of the scientists.

6. SYSTEM ARCHITECTURE
6.1. GRAPHICAL USER INTERFACE
The architecture underlying NeuronDepot consists of individual
layers and components (Figure 6). Users can access NeuronDepot
via a web application or through cloud storage synchronization
clients. NeuronDepot distinguishes two kinds of users: regis-
tered project members which can manage the entire project data
and administrators with global permissions including user man-
agement. NeuronDepot uses OpenIDs (http://openid.net/) for
authentication.

The graphical user interface (GUI) consists of two parts: a
web application (Figure 6A, left) and local applications (Figure 6,
right). The web application provides forms for assigning data,
entering metadata, annotating data with metadata, and delet-
ing data units and metadata. We used the micro web framework
Python-Flask (http://flask.pocoo.org/) for rapid development.

Upload and download processes are handled by GWDG Cloud
Share (https://powerfolder.gwdg.de/) incorporated by the vir-
tual filesystem projection layer (see below). Thus, scientists can
use established tools like Windows Explorer, Mac Finder, Linux
Nautilus, or other file managers to copy files for upload in
dedicated folders (Figure 6A, right).

6.2. BUSINESS LOGIC AND VIRTUAL FILESYSTEM PROJECTION
The business logic (Figure 6B, left) encodes the NeuronDepot
logic rules that determine how data can be created, read, updated,
and deleted. We therefore propose a Virtual Filesystem Projection
layer (Figure 6B, right) which can map data items to cloud stor-
age synchronization clients based on project-specific metadata
and provides a consistent view of the file system structure for
computational workflows.

A workflow is composed out of multiple tasks. Typically tasks
extract metadata, index data items, manipulate images or calcu-
late statistics. Workflows are created in Python with the help of
libraries like Snakemake (Köster and Rahmann, 2012).

Workflows are triggered explicitly by user interactions over the
web frontend or implicitly by the Virtual Filesystem Projection
layer when new files are added. The execution state of the work-
flow is displayed in the web application.

The filesystem projection layer projects the data items based on
metadata to directories and files. The hierarchy of directory tree
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FIGURE 5 | NeuronDepot and its data flow. NeuronDepot is based on
GWDG Cloud Share and simple Flask web-apps that use modern database
management systems. GWDG Cloud Share keeps all local computers that
are involved in the project synchronized with the server and, therefore,
synchronized among each other. This core synchronization is based on the file
system. In order to integrate files into workflows, the system provides two
types of base folders: floating folders for upload (gray) with read/write
permissions for project members and multiple data folders (purple, green,
red) with read-only permissions for project members. The data transition
workflow consists of three steps: (1) new data units are stored within the
floating folder and synchronized to the server. (2) Synchronized data units
within the floating folder are assigned to the existing project data via a web

application. As NeuronDepot’s web GUI uses responsive web design it
provides optimal viewing experience—easy reading and navigation with a
minimum of resizing, panning, and scrolling—across a wide range of devices
from mobile phones to desktop computer monitors (Marcotte, 2010). The
system ensures that all data is correctly related to each other and that all data
stay consistent. Project members can plug scripts into this assignment
process to automate and facilitate data processing. Moreover, the system
provides diverse reports to brief the scientists about the current state or
about recent changes. (3) NeuronDepot distributes data units back to project
members. According to the underlying context tree, NeuronDepot
synchronizes projected context tree folders by cloud storage services to the
workstations of the scientists.

is generated by rules using project metadata and the data items
which are controlled by the persistence layer.

6.3. PERSISTENCE LAYER
The persistence layer (Figure 6C) consists of the following two
components:

Project Metadata Within a project database additional meta-
data are stored. This can be metadata which were extracted by
a computational workflow or manually-entered data. For map-
ping Python objects to database objects we use SQLAlchemy
(http://www.sqlalchemy.org/) storing metadata in an PostgreSQL
(http://www.postgresql.org/).

Storage Backend The responsibility of the storage back-
end is to consistently store data items and provide abstrac-
tions for the file system projection layer. NeuronDepot uses
Camlistore (https://camlistore.org/), which stores files like a

traditional filesystem. Moreover, it’s specialized in storing higher-
level objects.

7. GinJang USING NeuronDepot
In the context of the GinJang project, NeuronDepot manages
image stacks and morphological reconstructions of neurons (see
section 2.1). The database contains all the image stacks and neu-
ronal reconstructions currently being analyzed as part of the
project. It also contains the associated metadata (see section
2.1). The web application presents all the data annotated with
metadata in easily readable tables so that the scientists can keep
track of it. Such a central presentation of all the data and meta-
data of the project is useful during the web-based discussions of
collaborators in tracking the progress of the project.

By using NeuronDepot, the process of sharing data between
the collaborators has been made simple. The data are uploaded at
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FIGURE 6 | Schematic representation of the different components of

NeuronDepot. (A) The graphical user interface consists of two parts: a
web application and local applications. The web application (left) provides
forms for assigning data, enter metadata, and annotating data with
metadata. The upload and download processes are handled by GWDG
Cloud Share incorporated by the filesystem projection layer (see below).
Here, scientists can use established tools like Windows Explorer, Mac
Finder, Linux Nautilus, or other file managers to copy files for upload in
dedicated folders (right) which are connected to the cloud services. (B) The
business logic (left) encodes the NeuronDepot logic rules that determine
how data can be created, red, updated, and deleted. Moreover, when new
data items are added, deleted, or modified, project-specific workflows can
be triggered for each processing stage (illustrated by five small rectangles).
A Virtual Filesystem Projection layer (right) maps data items and directories
to GWDG Cloud Share synchronization clients based on project-specific
metadata and provides a consistent view of the file system structure. (C)

Within a project database additional metadata are stored. This can be
metadata which was extracted by a computational workflow or manually
entered data. The responsibility of the storage backend is to consistently
store data items and provide abstractions for the file system projection
layer.

the source of generation once and is automatically made available
to the workstations where it is analyzed. Any further changes to
this data, for example, if an improved neuronal reconstruction is
generated, is automatically made available to the collaborator who
is analyzing reconstructions. Thus, data sharing is achieved with
minimum manual intervention.

The data assigned to NeuronDepot are analyzed by two collab-
orators (at University of Hyogo, Japan, and at LMU, Germany),
each requiring them in a different hierarchical structure for their
analyses. NeuronDepot automatically provides the data in the

structure the collaborators specify and thus alleviates the need for
manual organization.

8. DISCUSSION
8.1. ADAPTABILITY
The system architecture of NeuronDepot can be conceptually
divided into two parts: the core engine, which is not specific to
any processing stage, and plain and focused modules, which are
project-specific. In the GinJang project, segmentation is a pro-
cessing stage that is implemented as a dedicated plain module
storing, analyzing, and reporting segmentation data. Moreover,
such a module provides all the required features for the data and
metadata produced by this processing stage like connecting it to
other existing data in NeuronDepot, handling upload of this data
and specifying the information necessary while presenting it to
the user.

NeuronDepot can be adapted to other projects by incorpo-
rating project-specific plain modules upon its core engine. These
plain modules correspond to the different processing stages of a
project, while the core engine remains the same.

8.2. DISTINGUISHING FEATURES OF NeuronDepot
NeuronDepot provides data via file system. This opens up a
plethora of tools that are available at the local work bench
like (1) desktop search using diverse indexing methods (spot-
light, locate, Copernic, Google Desktop), (2) file system explorers
(for searching and sorting), (3) Backup, (4) Version-Control,
(5) Unix-world applications like grep, find, and tree
(since “everything is a file”), (6) transmission protocols like ftp,
ssh, and http, and (7) file synchronization services.

An important feature of NeuronDepot is the isolation of the
upload process from the GUI. In the conventional upload pro-
cess the user indicates the file to be uploaded and waits until
the upload process is finished. This way of uploading can be
very inconvenient when uploading large files (several hundreds
of MBs). This problem is further compounded when the net-
work connection is not stable. Our approach solves this problem
by isolating the upload process from the data assignment pro-
cess. The upload process of NeuronDepot consists of two steps.
Data is copied into the GWDG Cloud Share and then assigned
from there to the database using the GUI. This upload procedure
facilitates assisted assignment of data since the data are available
beforehand. Certain analysis scripts can be started on the data in
the virtual file system and its results can be later used during the
assignment of the data via the web-GUI.

At the end user, a subset of the data in the database is presented
in a tree structure. Such a representation of a desired subset of the
data in a hierarchical structure provides a partitioning/grouping
of the data which becomes very handy if the user intends to
perform analysis or comparison on a specific subset of the
data.

In NeuronDepot, a specific subset of data is encapsulated into
an entity via the concept of context trees. Such an encapsulation
facilitates management operations in which treatment of the sub-
set of the data as an entity is essential such as referencing, tagging,
and sharing. This is very much like a book encapsulating a set of
concepts/facts and making them a single entity.
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8.3. COMPARISON WITH OTHER SYSTEMS
Other file-based solutions for collaborative data sharing pro-
vide access through a web browser like the web platforms of
CARMEN (https://portal.carmen.org.uk/) and G-Node (http://
www.g-node.org/data). There, manual download is required to
access new data when a dataset has been updated, whereas in
NeuronDepot the new data are automatically provided locally.

CARMEN enables access to analysis services on its platform
(Austin et al., 2011). G-Node provides access to data in a common
representation through an API (Sobolev et al., 2014a) with client
tools for integration with the scientist’s analysis scripts (Sobolev
et al., 2014b). NeuronDepot complements these approaches by
presenting the data in the usual file system way. This is particularly
useful for collaborations between specific labs where all partners
know how to access the data.

Unlike with other existing solutions, using NeuronDepot does
not require learning a new GUI or any other infrastructure
specific usage features since NeuronDepot provides the data as
directory trees to the user. Having this feature, project mem-
bers could keep their established working environments. In other
words: NeuronDepot adapts for existing workflows whereas other
systems require the scientist to adapt its workflow to the new
system.

8.4. FURTHER DIRECTIONS, LIMITATIONS, AND OPEN QUESTIONS
A package/extension for an existing web-framework like Flask or
Django can be developed by reorganizing the system components
of NeuronDepot. Several existing solutions of the Open Source
Ecosystem were used in the development of NeuronDepot and
this is a way of contributing back to it. Moreover, it serves as a
good building block for the development of new data software.

As explained in section 4.1, NeuronDepot is a service which
develops as the associated project progresses. In the context of the
GinJang project, extensions to NeuronDepot are being developed
which automate morphological analysis and simulations using
the neuronal reconstructions.

At the moment, the context trees used to provide the user with
data are hard-coded. The user has to communicate with the devel-
opers to have different data structures provided. This process can
be slow and can prove to be a hindrance to the scientist’s work. A
service can be incorporated which enables the user to specify what
data structure is needed. This would reduce the user’s dependence
on the developers and also allow the user to quickly adjust the data
that are required from NeuronDepot.

9. CONCLUSION
With this software architecture, we contribute an approach to sci-
entific data workflow and specifically a tool to the neuroscientific
infrastructure. NeuronDepot’s principal merit is that it integrates
smoothly with established tools and resolves the transition from
local to cloud-based processing. In doing so, it enables researchers
to leverage the advantages of cloud services while not requiring
them to relinquish control of their data or analysis.
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The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative
research platform developed in response to the challenges raised by data-heavy,
compute-intensive neuroimaging research. CBRAIN offers transparent access to remote
data sources, distributed computing sites, and an array of processing and visualization
tools within a controlled, secure environment. Its web interface is accessible through
any modern browser and uses graphical interface idioms to reduce the technical
expertise required to perform large-scale computational analyses. CBRAIN’s flexible
meta-scheduling has allowed the incorporation of a wide range of heterogeneous
computing sites, currently including nine national research High Performance Computing
(HPC) centers in Canada, one in Korea, one in Germany, and several local research servers.
CBRAIN leverages remote computing cycles and facilitates resource-interoperability in
a transparent manner for the end-user. Compared with typical grid solutions available,
our architecture was designed to be easily extendable and deployed on existing
remote computing sites with no tool modification, administrative intervention, or special
software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread
across 53 cities in 17 countries. The platform is built as a generic framework that can
accept data and analysis tools from any discipline. However, its current focus is primarily on
neuroimaging research and studies of neurological diseases such as Autism, Parkinson’s
and Alzheimer’s diseases, Multiple Sclerosis as well as on normal brain structure and
development. This technical report presents the CBRAIN Platform, its current deployment
and usage and future direction.

Keywords: eScience, distributed computing, meta-scheduler, collaborative platform, interoperability, cloud

computing, neuroimaging, visualization

INTRODUCTION
For the past decade, scientists in all fields of research have had to
cope with the effects of accelerated data acquisition and accumu-
lation, large increases in study size and required computational
power (Bell et al., 2009), and most importantly, the need to con-
nect, collaborate, and share resources with colleagues around
the world. This general intensification, often referred to as “Big
Data” science, is certainly true in biomedical research fields, such
as neuroscience (Markram, 2013; Van Horn and Toga, 2013),
and cyberinfrastructure has been proposed as a potential solu-
tion (Buetow, 2005). The efforts expended by many research
groups in deploying cyberinfrastructures have unquestionably
led to the development of successful new research methodolo-
gies. Neuroimaging platforms and applications have emerged that
address common issues using drastically different approaches;
from programmatic frameworks (Gorgolewski et al., 2011; Joshi
et al., 2011) to advanced workflow interfaces, abstracting tech-
nological decisions away from users to various degrees (Rex
et al., 2003; Olabarriaga et al., 2010). These applications excel in
addressing different aspects of the problem; workflow building,
leveraging data or compute grids, data visualization, collaborative

elements (topic reviewed in Dinov et al., 2009). However, as these
technologies are often strongly rooted in local requirements, they
tend to form application and infrastructure “silos,” not easily
adaptable to needs other than those for which they were orig-
inally conceived. Therefore, while the global nature of current
scientific collaborations requires broader integration and plat-
form interoperability, efficient integration of heterogeneous and
distributed infrastructures across multiple technological admin-
istrative domains, in a sustainable manner, remains a major
logistical challenge.

Over the past two decades, the evolution of neuroimaging
research has led to the development of a rich array of data
processing tools and complete analysis pipelines (exhaustive list-
ing on the online NITRC1 repository). However, many of these
tools remain unintuitive to the average researcher, as they require
a solid understanding of advanced computer systems and dis-
play drastically differing underlying philosophies, which limits
their potential for growth and adoption. They often require
familiarity with command line and scripting techniques, long lists

1http://www.nitrc.org
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of configuration parameters and knowledge of how to properly
prepare data for use as input. Manually processing heavier loads
requires skills for data transfers and submission of analysis jobs
to remote HPC sites in addition to a solid understanding of the
scheduling software environment and policies used at each site.
Furthermore, properly scaling these operations for large multi-
site projects requires skills beyond all but the most technical
research teams. Usability issues such as these lead to poor adop-
tion of standards for tools and techniques, sub-optimal usage
of resources, and immense amounts of replication and overhead
cost. This alone represents a sufficient motivation to promote
usage of common tools deployed in shared controlled envi-
ronments where provenance details of each action are carefully
recorded to ensure the reproducibility of results (Mackenzie-
Graham et al., 2008).

The CBRAIN platform (http://www.cbrain.mcgill.ca) is a
web-based, collaborative research platform designed to address
the major issues of Big Data research in a single consistent frame-
work. CBRAIN was conceived at a time when the question was
no longer of creating resources such as HPC clusters and data
repositories, since they already existed. Rather it was of creat-
ing a platform to leverage currently existing resources in a way
that would best benefit the research community at large. Our pri-
mary objective was to build a user-friendly, extensible, integrated,
robust yet lightweight collaborative neuroimaging research plat-
form providing transparent access to the heterogeneous comput-
ing and data resources available across Canada and around the
world. These key goals carry significant challenges. To address
them, CBRAIN was designed with the following guidelines:

• Convenient and secure web access (no software installation
required)

• Distributed storage with automated, multipoint data move-
ment, and cataloging

• Transparent access to research tools and computing (HPC)
• Flexibility to adapt to extremely heterogeneous computing and

data sites
• Full audit trail (data provenance) and logs across all user

actions
• Lightweight core components, low requirements for deploy-

ment and operation
• Scalability (no architectural bottlenecks)
• Maintainability and sustainability by a research-based team
• Full ecosystem security and monitoring

The development of this type of integrated platform required
addressing the aforementioned problems as they manifest them-
selves in brain imaging research. For example, pipeline tools are
often built with hard-coded interactions to a particular cluster
scheduling system, showing little understanding of proper HPC
usage or consideration for site-to-site portability. This leads to a
massive waste of resources as the generated workloads must be
re-encapsulated for responsible use of public or shared HPCs.
In addition, procedures and policies at various HPC sites, even
within the same organization, can differ significantly, impos-
ing additional burden on users and platform builders. Although
sites may claim to use the same scheduling software, different

scheduling policies may be implemented; queue limits and pri-
orities vary, installed libraries and environment configuration
vary, location and performance of various local storage may differ
greatly.

In order to foster more flexible national and international col-
laborations, we seek to extend CBRAIN past these technological
borders. CBRAIN was built in several layers, with a focus on
ensuring tight coordination of the entire ecosystem: abstraction
of extremely heterogeneous computing resources scattered over
large distances; abstraction of remote data resources and a col-
laborative portal entirely accessible from a regular web browser
where users can securely control and share, as desired, data, tools,
and computing resources. In this paper, we will discuss how
the above philosophy and guidelines have been implemented in
CBRAIN and we will present the current deployment and usage
of the platform within our neuroimaging community.

MATERIALS AND METHODS
CBRAIN OVERVIEW
CBRAIN is a multi-tiered platform composed of three main layers
(see Figure 1): (i) the access layer, accessible through a standard
web-browser (for users) or a RESTful Web API (for applications
or other platforms), (ii) the service layer which provides portal
services for the access layer, the metadata database, which stores
information about all users, permissions, and resources, and
orchestration services for resource coordination (users requests,
data movement, computing loads, jobs, data models,. . .), and
finally (iii) an infrastructure layer consisting of networked data
repositories and computing resources. An arbitrary number of
concurrent data sources (data providers), computing sites (exe-
cution servers), and CBRAIN portals may co-exist, with only the
metadata database as a central element for a given deployment.
A data-grid mechanism with synchronization status tracking has
been designed to avoid transfer bottlenecks and ensure scalabil-
ity. Data transfers are coordinated directly from data providers by
execution servers, ensuring that data are not transferred through
the central service orchestration layer during operation, and that
remote data providers are not overwhelmed by direct connections
from processing nodes. Data visualization, being handled directly
by a CBRAIN portal server, is the only major service that requires
a data transfer to the central servers. This core flexibility allows a
wide array of possible site setups. The simplest being the creation
of a Virtual Site (also referred to as Virtual Organization or VO)
and associated user accounts. These users will obtain access to
CBRAIN shared storage and computing resources, but their data
will remain private unless they explicitly decide otherwise. Sites
can also integrate their own data providers and/or computing
resources (again, shared or private). In addition to hosting pri-
vate data providers and computing servers, a site may host its own
CBRAIN portal within the walls of its institution and explicitly
limit all operations to private local resources and private network.
Such a configuration ensures a completely local handling of sci-
entific data while at the same time benefiting from the advantages
of the platform.

The CBRAIN web portal allows users to authenticate and man-
age their data and analyses. It also provides several advanced
visualization tools for exploring results and performing quality
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FIGURE 1 | CBRAIN architectural layers. The top user layer (1)
represents consumption of services through web browser clients or
RESTful API. The central services and coordination layer (2) hosts
CBRAIN portals that are responsible for providing services and business
logic for requests from the top user layer and orchestration for the lower
resource layer. The state of all model instances (users, VOs, tools,
resources, catalog, privileges, etc.) is stored in the metadata database. In

the lower remote resource layer (3) lays the data providers (scientific
data servers, databases or virtual machine images, and tools repositories)
and the execution controllers. Execution controllers have to be located at
the computing sites on a node that has access to the system scheduler
and cluster file systems. Note that data transfers between data providers
and execution controllers are triggered by the coordination layer, but do
not pass through this layer.

control. The main components of the user environment are
shown in Figures 2–4; namely the project view, file view and task
view. Data is organized in user-created personal or shared projects
(Figure 2). The file view (Figure 3) shows all data files and asso-
ciated results registered in a selected project from all physical
storage locations. Once files or collections are registered in the
platform, users can filter, manage, tag, move, and share them
across physical locations through a graphical user interface and
without having to manage authentication, hostnames, and paths.
The same principle applies to tool usage; the user simply selects
a set of files and a tool, fill a tool parameter form and launches
jobs to be executed remotely. All data transfers, environment
setup, scheduler interactions, and monitoring are handled behind

the scenes by CBRAIN. Current tasks (sets of computing jobs
from various user operations) can be monitored, managed, and
troubleshot, if desired, from the task view (Figure 4). Once com-
pleted, output files appear in the file view as children of the input
files (see Figure 3). Complete audit trails (provenance) are avail-
able for all user actions: logins, file movement and transfers, task
parameters, tool versions and logs, resources used, work directo-
ries. Links between input files (parents), compute jobs and output
files (children) are maintained to allow convenient event browsing
when doing post-analysis investigation. Resource views show the
status of all data and computing resources accessible to the user
(Figures 5, 6). The portal also provides a RESTful Web API that
exposes CBRAIN functionality to other systems (Figure 1). This
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FIGURE 2 | CBRAIN portal: project view. Authenticated users can see a representation of the various projects they own. Projects are color coded: blue for
personal projects, green for shared projects, red are default user or site projects, and white allows access to all files owned by this user.

API allows decoupled cross-platform interoperability; any autho-
rized system may authenticate, exchange data, and launch jobs on
CBRAIN.

Access policies that regulate the use of CBRAIN-mediated
resources for any given project are beyond the scope of this report
since access restrictions do not arise from technical limitations.
CBRAIN provides flexible capabilities to enforce data access and
transfer policies on any computing resource, data source or tool,
limiting access to specific users or groups and preventing actual
scientific data or services to cross specific boundaries (such as
institutional networks) whenever required.

DISTRIBUTED COMPUTING
Computing servers or HPCs connected to CBRAIN run a
lightweight execution server. The execution server awaits requests
for job submission, performs any setup required by the HPC site
and then forwards the job submission request and parameters to
the HPC’s scheduler. The first challenge faced by CBRAIN was to
manage the heterogeneity of these compute resources. Frequently,
computing sites are built independently using different architec-
tures, cluster job scheduler software, UNIX environments, storage
setups, and overarching usage policies. Developing a centralized

point of access that would be reasonably easy to use meant
these differences in system architecture had to be overcome in
a way that is invisible to the user. CBRAIN addresses this prob-
lem in several abstraction layers. The first layer is the Simple
Cluster Interface in Ruby (SCIR), a custom library developed
in-house.

SCIR was developed as a streamlined meta-scheduler to
abstract scheduler differences away from the core platform. SCIR
is a simple Ruby library that implements basic high-level func-
tionality required to query, submit, and manage jobs to a given
cluster job scheduler. It is implemented with a plugin architec-
ture that makes it easily adaptable to new environments. New grid
environments are supported by creating simple SCIR subclasses in
Ruby implementing the base SCIR API. SCIR subclasses currently
implemented provide support for current and legacy versions
of SGE, PBS, Torque, MOAB, and several custom managers and
direct UNIX environments.

CBRAIN execution servers simply run in a regular user
account on a cluster head node. An execution server on a given
HPC receives requests from the CBRAIN portal containing infor-
mation about the requesting user, the location of data required
for analysis, tools and parameters to use, and the data provider
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FIGURE 3 | CBRAIN portal: file view. The file view is the main control space
where users can manage file or file collection properties (name, privileges,
project, tags, type, physical location), filter and select input files based on any
property and select a tool for a given task. Web uploads and downloads can

be performed through this page, although private data providers or SFTP
transfers are preferable for large data. Synchronization information of a file or
collection over various caches and data providers is indicated by a symbol
next to the file name.

on which to store the results. The server can then synchronize
the data to the HPC and make any preparation required by the
tool or the HPC in order to successfully run the analysis. This
can include creating work directories or setting up environment
variables. The execution server then uses SCIR to optimize, con-
vert, and submit the job requests to the local cluster scheduler.
Once analysis is done, the execution server initiates transfers of
the results to the data provider selected by the user. The execu-
tion server is configured through an administrative web interface
where parameters such as scheduling type (by core or by node),
number of cores per node, maximum queue occupancy, libraries

and environment paths, and cache and scratch directories can
be set. CBRAIN also performs meta-scheduling activities, such
as monitoring jobs, performing failure recovery, optimizing, and
re-packaging job loads to match different cluster environments
and buffering excess jobs in a meta-queue when quotas are
exceeded.

DISTRIBUTED STORAGE
The CBRAIN data provider is an abstract model representing
a data repository securely available to the platform from the
Internet. Similarly to SCIR, the data provider is a programmatic
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FIGURE 4 | CBRAIN portal: tasks view. The tasks view allows monitoring of
task progress, if desired. In this example, the CIVET pipeline has been launched
on 1082 MINC files. This workload was split in 568 tasks on 3 different
computing sites. CBRAIN has automatically packaged the jobs in proper task
units for each execution server. Colosse provides full node scheduling with 8

cores per node (Parallel CIVET x8), Guillimin has the same type of scheduling,
but with 12 cores per node (Parallel CIVET x12), while Mammouth-S provides
per core scheduling. Although the user has full control of the tasks across the
various sites, this is completely optional and transparent. Once jobs are
completed, results are automatically transferred to the selected project.

FIGURE 5 | CBRAIN portal: execution servers view. This view allows
users to see which computing resources are available for his/her use and
their real-time status. Users can also obtain reports on tool access, cache

and data provider utilization, and archived work directories. Administrative
users can control group access and put the resource online or offline for
CBRAIN users.

API that abstracts away the details of specific types of data stores.
The data provider defines a base class of uniform program-
matic API methods for querying a file, transferring it, mirroring
it and so on, and plugin Ruby classes implement the methods
for a particular data store type, allowing CBRAIN to interact
with it transparently. CBRAIN widely uses asynchronous data
provider wrappers defined for rsync over SSH and SFTP proto-
cols for connecting to data stored remotely. The choice of these
tools and protocols does not represent file transfer methodology
preferences but rather a pragmatic adoption of the mechanisms
commonly supported by data and computing sites. Such mech-
anisms are also easily manageable by users (site administrators
can create a new data provider with the web interface by pointing
to the service and adding the CBRAIN public key in the proper
account) for greater flexibility and extensibility. These auto-
mated grid-like methods have proven robust enough to connect
CBRAIN to storage ranging from dedicated network file servers

to smartphones. Cloud storage APIs for services such as Amazon
S3 and Dropbox, are in the prototyping stage.

A distributed storage model does, however, make network
performance a potential concern. CBRAIN makes heavy use of
CANARIE’s advanced research network2 and robust synchroniza-
tion and caching mechanisms were built into the core platform
to avoid unnecessary data transfers. The portal and execution
servers maintain a local cache of the files that have been asyn-
chronously transferred to them. Synchronization status for all
data in all caches is maintained in the metadata database by
CBRAIN. Resources will use cached versions of files until the
version on the data provider changes, at which point all cached
versions will be flagged as invalid. Resources caching invalid
data will simply resynchronize with the data provider upon the
next requested data operation. Users can manually trigger cache

2http://www.canarie.ca
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FIGURE 6 | CBRAIN portal: data providers view. This view, presented from
an administrative account, shows both the real-time status of official CBRAIN
data storages (top) and user created storage (bottom). Main information

shown: type of connection, project, owner, time zone, number of registered
files and/or file collections, read/write mode, and synchronization mode.
Reports for group access, transfer restrictions, and disk usage are available.

deletion of their data if desired. In addition, execution servers
use a throttled data transfer model (Park and Humphrey, 2008).
To avoid scalability issues, they initiate only a limited number of
concurrent data transfer connections.

For most tasks, data stored on a data provider need never be
transferred to the central CBRAIN server. Users can keep their
data locally, CBRAIN will transfer it directly from their local
stores to an HPC cache to run analysis, and then have the results
transferred directly back to their data provider. If a lab or an
institution has a private HPC with the proper tools connected to
CBRAIN, the data need never leave their institution for process-
ing. They can take full advantage of the abstraction provided by
CBRAIN while maintaining full control over the location of their
data. The only tools that may require that some data be sent to
the CBRAIN portal server are the visualization tools as well as
browser uploads and downloads for small datasets. To upload or
download large datasets, CBRAIN offers SFTP services for users
who do not have private data providers.

SECURITY
Users authenticate into the system by first logging into a pri-
vate account. All communication between clients and the service

middleware layer happens over a secure socket layer (SSL).
Interactions between the middleware layer and remote resources
occur through secure shell tunnels (SSH) with standard 2048
bits key encryption. As many resources used by CBRAIN are
outside of our administrative domain, controlling exposure,
and potential propagation of intrusions through intermediate
machines is a fundamental security concern. CBRAIN uses an
on-demand SSH-agent forwarding mechanism to create commu-
nication channels between portals, execution servers and data
providers, sending all key challenges back to the service layer
and closing all channels when not in use. In addition, CBRAIN
is equipped with an SSH-agent locking mechanism. Unlocking
requests are made by execution servers using a special key stored
in the CBRAIN database. Tunnels are thus opened on demand,
conditional to the establishment of the proper handshake and
closed as soon as the transfer operation is complete. This has
several advantages: it eliminates the risks associated with pass-
words or private keys located on any intermediate machines, it
minimizes the duration of open tunnels and it allows platform
administrators to carefully monitor whether the key challenges
are associated with actual platform operations or possibly suspi-
cious activities.
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PERMISSION MODEL
Access to all resources in CBRAIN is managed by three central
concepts: users, projects, and sites. Users represent the account
of a CBRAIN user. Once authenticated users are granted access
to their environment and to any resources to which they have
access. By default, users only have access to data they have added
through their account. Ownership can be applied to any object
within CBRAIN. This can include data, HPC jobs, projects, data
providers, and HPCs. Ownership provides full read/write access:
a user can rename, move, edit, or unregister any resources they
own. On the other hand, if a user is associated to a shared resource
through a site or a project, their access to the resource will depend
on how it was configured by its owner.

Projects define shared access to resources. All data providers,
data, execution servers, and tools in CBRAIN are associated with
a project. Projects can have one or more users as members, and
members of a given project will have access to the resources asso-
ciated with it. This system is similar to group permissions in
Unix-like operating systems. Users can create and manage their
own projects, and by default the resources associated with these
projects will be available only to the project’s creator. A user can,
however, invite other users to their projects, making it possible to
share their data, tools, data providers, and execution servers with
others.

A CBRAIN site represents a VO such as a laboratory, institu-
tion, or a distributed research group that wishes to have some
control over how its resources are used in CBRAIN. A site will
have users and projects associated with it, and one or more of
those users can be given the role of site manager. A site man-
ager has administration capabilities for resources associated with
a given site. They can create and manage user accounts, projects,
and other resources for their site. Essentially, a site creates an
administrative subdomain in CBRAIN over which one or more
local site managers can have control.

PLUGINS AND VISUALIZATION TOOLS
Once data has been processed, users often need to visualize their
results. This can be for the purposes of performing quality con-
trol on a job that was run, or simply to explore the data in
a meaningful way. In many processing-centric platforms, this
would require a user to transfer large data sets to their computer
and run locally installed visualization software. The CBRAIN
portal, however, integrates visualization tools that allow users
to explore their data in real-time through their web browser,
with only the data necessary for the visualization being trans-
ferred to the client. At the most basic level, if a data set contains
standard images or quality control related text, these can simply
be made available for viewing through the browser. More com-
plex visualization tools can be made available through CBRAIN’s
viewer plugin architecture, which associates file types with view-
ers. Formats viewable in CBRAIN currently include text, images,
video, audio, MINC volumes, MNI 3D objects, and file types
supported by Jmol (molecular structures). Display of most sup-
ported types involves simply using the appropriate HMTL ele-
ment. CBRAIN does, however, provide more complex visualizers
for MINC volume data and various surface file formats in the
integrated BrainBrowser suite of web-enabled visualization tools

(demonstration service available at https://brainbrowser.cbrain.

mcgill.ca).
The BrainBrowser Surface Viewer (Figure 7) is a web-based,

real-time 3D surface viewer capable of viewing MNI Object,
Wavefront Object, and Freesurfer ASC files. BrainBrowser allows
users to view and manipulate 3D surface data in real-time.
Color map data can be applied to surfaces, and color thresh-
olds and opacity can be adjusted to ensure proper viewing. The
BrainBrowser Surface Viewer is currently being used to provide
web access to the MACACC data set (Lerch et al., 2006). The
BrainBrowser Volume Viewer (Figure 7) is a web-based, slice-by-
slice viewer for 3D MINC volumes. The Viewer provides three
panels, one each for the sagittal, coronal, and transverse planes.
Each panel displays a slice on a given plane at some position in
the volume, and the user is allowed to navigate through the vol-
ume by moving the cursor within the volume. Four-dimensional
fMRI data can be viewed by manipulating time sliders to view the
data across time steps. Subjects can be viewed side-by-side and
overlaid. Color maps and thresholds can be adjusted to optimize
viewing.

TECHNOLOGY USED
CBRAIN components are implemented using Ruby on Rails3

(Bachle and Kirchberg, 2007), a widely used RESTful, Ruby-
based framework, used by such sites as Github, Twitter, Shopify,
Groupon, NASA, Hulu. Our core objective was to follow
cutting-edge architecture and development strategies. The key
to using Ruby on Rails in a distributed multi-component
ecosystem like CBRAIN was streamlining the activities of
the various layers and offloading any longer term process-
ing to subsystems. This approach allowed us to take advan-
tage of the built-in object-relational mapping (ActiveRecord)
and RESTful nature of Ruby on Rails, while at the same
time ensuring that the platform performs and scales elegantly.
It also requires less development, hardware, multi-site setups,
and operations personnel than common enterprise technolo-
gies such as frameworks based on Java. The portal uses Ruby
Thin servers behind an Nginx load balancer and a MySQL
database to track metadata pertaining to all resources. Using
Ruby on Rails also allowed us to develop an agile methodol-
ogy based on rapid iterations made with constant feedback from
users.

CBRAIN development aims to use openly available tools
and standards-compliant web technologies whenever possible.
This ensures that development and distribution of the sys-
tem can remain free and unrestricted. All browser interactions
with CBRAIN occur over HTTPS and the web client uses
standard HTML and CSS for the interface and jQuery4 and
jQuery UI for behavior and theming. The BrainBrowser Volume
Viewer uses the HTML canvas element for rendering, and the
BrainBrowser Surface Viewer uses three.js5 for WebGL-based 3D
rendering.

3http://rubyonrails.org
4http://jquery.com
5http://threejs.org
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FIGURE 7 | BrainBrowser Surface and Volume Viewers. BrainBrowser
allows CBRAIN users to examine any MINC file volume or 3D object (such as
surfaces from CIVET, Freesurfer, or Wavefront objects) directly within their

web browser. This step enables to conveniently perform quality control,
which is often critical before proceeding to further analysis or large data
transfers, especially if format conversion steps have been applied.

INTEROPERABILITY
CBRAIN exposes a RESTful Web API to allow interoperability
with other platforms and database systems that want to take
advantage of its capabilities. Requests are made to the same
URLs used for the CBRAIN portal interface using standard HTTP
methods (through SSL). The body of an API request can con-
tain XML or JSON and the response will be an XML document
representing the data requested. Wrappers for the CBRAIN Web
API have been written in Java, Perl, and Ruby. Our usage of
Ruby on Rails framework coding conventions ensures that all user
interactions with the portal naturally map to RESTful API calls
that return XML rather than HTML upon request. This greatly
reduces the necessary work required to convert and support the
API for cross-platform interoperability.

RESULTS
CURRENT DEPLOYMENT AND USE
CBRAIN has been in active production since 2009 and currently
has over 200 users and 80 virtual sites, from 53 cities in 17 coun-
tries around the world. Operations are scaled on a yearly basis
according to both the yearly computing allocation we obtain and
the amount of user support our team can provide. The current
production deployment of CBRAIN consists of 12 computing
sites, totaling more than 100,000 CPU cores. The infrastructure
model is hybrid, while many large clusters are shared national aca-
demic research resources (Table 1), others sites are institutional

or completely private and available solely to CBRAIN. Of these
sites, 7 are from the Compute Canada6 HPC network, 2 are
international collaborator sites (Germany and South Korea), and
5 are small local research servers. This integration of heteroge-
neous resources was done without any new hardware purchases,
and does not require administrative access or major changes
to local system configuration on the part of the participating
sites. Between 2010 and 2013 CBRAIN has launched in excess
of 198,000 jobs and obtained an allocation of 13.7 million CPU
core hours from Compute Canada alone. CBRAIN provides users
with three central data providers, for a total of 80 TB of stor-
age. Furthermore, several user-registered data providers exist as
storage for specific projects or institutions. Although it fluctuates
significantly, active data currently hosted on the central storage
system provided to all CBRAIN users amounts to approximately
13.1 TB in over 100,000 datasets representing 8.4 million files (this
does not include computing site caches or user-registered data
providers).

CBRAIN provides a wide variety of tools, from pre-processing
and analysis pipelines to various file format converters for
file types commonly used in neuroimaging research, including
MINC, DICOM, NIfTI, and Analyze. Tool integration is priori-
tized according to the needs of our user community. CBRAIN’s
philosophy has been to focus on integrating, testing and properly

6https://computecanada.ca
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Table 1 | CBRAIN high performance clusters and servers.

Machine

name

Administrative

domain

Location (city,

country)

Number of CPU

cores

BrainStorm McGill university Montreal, Canada 24

Colosse Compute Canada Quebec City, Canada 7680

GPC Compute Canada Toronto, Canada 30,000

Guillimin Compute Canada Montreal, Canada 14,000

Judge Jülich supercomputing
center

Jülich, Germany 2472 + 412 GPU

Juropa Jülich supercomputing
center

Jülich, Germany 17,664

CBRAIN-CNA KISTI Seoul, Korea 80

Mammouth-S Compute Canada Sherbrooke, Canada 2112

Mammouth-P Compute Canada Sherbrooke, Canada 39,648

MindStorm McGill university Montreal, Canada 24

Orcinus Compute Canada Vancouver, Canada 9600

Zealous McGill university Montreal, Canada 24

List of servers and HPCs currently integrated in CBRAIN. All CPUs use standard

x86-64 processor architecture and all operating systems are Linux based.

maintaining and supporting tools and features directly requested
by our researchers. The platform supports multiple tool versions
and the version used in a specific analysis is maintained in the
task and provenance logs. Among the most intensively used tools
in CBRAIN is CIVET-CLASP (Kim et al., 2005), a processing
pipeline for measuring cortical thickness, as well as performing
other corticometric and volumetric functions. Components of
the popular FSL7 (Jenkinson et al., 2012), MINC8, SPM9, and
Freesurfer10(Reuter et al., 2012) tools have also been integrated.
These types of tools are ideal candidates for CBRAIN integration
as they are computationally expensive and generally complex to
use for the novice user. Most neuroimaging tools have a relatively
straightforward workflow, with job inputs and options following
a linear sequence of events. However, some pipelines dynami-
cally allocate jobs and dependencies in real-time depending on
the inputs they receive. Such job loads have to be carefully ana-
lyzed and packaged to ensure optimal use of HPC resources. For
example, CBRAIN uses a graph theoretic approach to serialize
and parallelize the dynamic job loads of tens of thousands of
jobs from NIAK, an fMRI pre-processing pipeline based on the
Neuroimaging Analysis Kit for Matlab and Octave, described in
Lavoie-Courchesne et al. (2012).

Cross-platform interoperability features have been imple-
mented both in the context of our group’s multi-center manage-
ment system, LORIS (Das et al., 2011) and external collaborative
efforts. As part of the “neuGRID 4 you” project (Frisoni et al.,
2011), the CBRAIN Web API was consumed by the neuGRID and
Virtual Imaging Platform (Glatard et al., 2013) services in Europe
using the LONI Pipeline software (Rex et al., 2003). A CBRAIN
module for the LONI Distributed Pipeline Server (DPS) was cre-
ated to interact directly with the CBRAIN Web API. This type

7http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
8https://www.nitrc.org/projects/minc
9http://www.fil.ion.ucl.ac.uk/spm
10http://freesurfer.net

of collaboration positions CBRAIN as part of a global network
of research platforms, enabling collaborations between users and
allowing them to take advantage of the broadest set of services
possible.

Although CBRAIN is a generic platform that can accept data
and analysis tools from any discipline, its current focus is primar-
ily on structural neuroimaging projects. For example, CBRAIN
has been used in a study linking childhood cognitive ability and
cortical thickness in old age where DICOM sets from 672 sub-
jects of the Lothian Cohort 1936 were uploaded and registered in
CBRAIN from a research group in Scotland, and shared with a
group of Canadian researchers for pre-processing and analysis of
cortical thickness (Karama et al., 2013). Other examples of initia-
tives actively using CBRAIN for typical MRI data pre-processing
of large cohorts are PreventAD11, NIHPD12, NeuroDevNet13,
ABIDE14, and 1000Brains15.

DISCUSSION
RELATED WORK
The CBRAIN platform incorporates the key aspects of a grid
middleware, namely security (Authentication, Authorization,
Accounting—AAA), distributed file management, and job execu-
tion on multiple distributed sites. Grid middleware has received a
lot of attention in the last 15 years (Foster and Kesselman, 2003),
and resulting technologies and concepts are now used in large
computing infrastructures such as the Open-Science Grid (Pordes
et al., 2007), Teragrid (Catlett, 2002), and the European Grid
Infrastructure (Kranzlmüller et al., 2010). CBRAIN is unique
in the sense that it integrates all these functions in a single,
consistent, lightweight, self-contained, independent framework
that is therefore easily administrated and extended. For example,
grid security usually relies on X509 certificates signed by trusted
authorities, from which time-limited proxy certificates are gen-
erated, delegated to the services involved in the platform, and
used to authenticate all user operations, for instance job execution
and data transfers (Foster et al., 1998). In practice, this mecha-
nism burdens users with the handling of certificates, restricts the
range of usable technologies, generates user-specific errors, and
complicates debugging. To avoid these issues, CBRAIN decou-
ples user AAA from system AAA: users authenticate to the portal
with straightforward login and password, while the portal handles
data and computing authorizations, and then authenticates to the
services using a single or a few group credentials. Such decou-
pled approach is being adopted more broadly by portals using
so-called robot X509 authentication to infrastructure services
(Barbera et al., 2009).

Distributed file management commonly consists of a logical
layer providing a uniform view of physical storage distributed
over the infrastructure. CBRAIN’s file metadata contain simi-
lar information to that stored in grid file catalogs, for instance

11http://www.preventad.com
12http://pediatricmri.nih.gov
13http://www.neurodevnet.ca
14http://fcon_1000.projects.nitrc.org/indi/abide
15http://www.fz-juelich.de/inm/inm-1/EN/Forschung/1000_Gehirne_Studie/
1000_Gehirne_Studie_node.html

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 111

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.nitrc.org/projects/minc
http://www.fil.ion.ucl.ac.uk/spm
http://freesurfer.net
http://www.preventad.com
http://pediatricmri.nih.gov
http://www.neurodevnet.ca
http://fcon_1000.projects.nitrc.org/indi/abide
http://www.fz-juelich.de/inm/inm-1/EN/Forschung/1000_Gehirne_Studie/1000_Gehirne_Studie_node.html
http://www.fz-juelich.de/inm/inm-1/EN/Forschung/1000_Gehirne_Studie/1000_Gehirne_Studie_node.html
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Sherif et al. The CBRAIN platform

the LCG File Catalog (Baud et al., 2005) or the Globus RLS
(Chervenak et al., 2009). However, CBRAIN’s file transfer archi-
tecture notably differs from the main grid solutions: (i) its throt-
tled data transfer model avoids overloading storage providers,
a problem commonly observed in grid infrastructures and
addressed in a similar way by the Advanced Resource Connector
(Ellert et al., 2007) (ii) it caches files on the computing sites,
a feature only provided in a few grid middleware and often
implemented at the application level.

Job execution on multiple distributed computing sites is per-
formed either by a meta-scheduler which dispatches jobs to the
different sites (Huedo et al., 2001; Andreetto et al., 2008) or
by pilot-job approaches provisioning computing resources with
generic agents that pull tasks from a central queue when they
reach a computing node (Frey et al., 2002; Brook et al., 2003).
In neuroimaging, however, due to variations of software and/or
libraries, the execution site often has to be controlled by the users
to guarantee the correctness and reproducibility of computations
(Gronenschild et al., 2012). This is why CBRAIN usually delegates
site selection to the users, providing them historical informa-
tion about queuing times. The matchmaking between tasks and
resources, which involves elaborate resource descriptions when
performed by a generic grid middleware (Andreetto et al., 2010),
is done statically by CBRAIN administrators who map application
versions to sites based on their knowledge of the infrastructure.

The decision to develop SCIR as a streamlined meta-scheduler
to abstract scheduler differences away from the core platform was
based on pragmatic cross-site deployment experience. Libraries
with similar goals do exist, but they did not demonstrate enough
agility and flexibility for the HPC landscape we faced. The
DRMAA (Tröger et al., 2007) and SAGA (Jha et al., 2007) projects,
from the Open Grid Forum Working Group, were just emerg-
ing standards at the time of the initial CBRAIN deployment.
DRMAA is a universal scheduler API library that was used in
earlier versions of CBRAIN. Unfortunately, from our experience,
although the library defines a fairly complete low-level API, the
modules that actually interact with the cluster job schedulers were
found to leave certain scheduler versions unsupported and were
not designed to be easily extended for interaction with in-house
schedulers. Our objectives for low-footprint and flexibility run
contrary to dictating scheduler requirements to a diverse array
of computing sites, so we created a library suited to our specific
needs.

A few other science-gateway frameworks exist to facilitate the
building of web portals accessing distributed infrastructures for
scientific computing (Marru et al., 2011; Kacsuk et al., 2012).
These frameworks provide toolboxes of components meant to
be reused in customized assemblies to build domain-specific
platforms. To ensure performance and flexibility, CBRAIN devel-
oped its own custom portal, which allows fine-grained, optimized
interactions with infrastructure services. Other similar leading
platforms providing access to neuroimaging applications exe-
cuted on distributed infrastructures are LONI (Dinov et al.,
2010), neuGRID (Redolfi et al., 2009), and A-Brain (Antoniu
et al., 2012). While sharing similar overall goals, each platform
uses often radically different approaches and philosophy, allow-
ing them to excel in specific niches. For example, LONI offers an

advanced and flexible graphical workflow builder that has, to our
knowledge, no equivalent in the field. Within CBRAIN, our team
took the design decision of supporting only mature, validated
workflows as needs arise from our community. CBRAIN users are
free to launch any tools or pipelines they have access to, but can-
not create and share an automated workflow using multiple tools,
the way it would be done in LONI, without contacting the core
team. This has the advantage of preventing failures and waste of
resources and of enforcing staged validation and quality control,
however it does limit the rate of automated workflow integration
and flexibility for the users. NeuGRID has a strong remote desk-
top component capable of providing remote users with native
data visualization applications (centralized approach), CBRAIN
handles all visualization applications through web-based appli-
cations (decentralized approach). These two approaches to the
same problem have different characteristics, while the central-
ized approach procures users with familiar applications in their
native mode, supporting usage growth can require large infras-
tructure investments. The decentralized approach uses very light
infrastructure to push modern HTML5 applications to large
amounts remote clients, respecting the CBRAIN scalability phi-
losophy, however these applications have to be web compatible or
developed anew. The A-Brain platform has done extensive work
on low-latency data-intensive processing by building an opti-
mized prototype MapReduce framework for Microsoft’s Azure
cloud platform on the basis of TomusBlobs (Costan et al., 2013).
In comparison, CBRAIN focused on a lightweight, flexible and
low-footprint catalog and data grid mechanism that acts as a
transparent interface for regular multi-site batch-type projects.
While it is clear that the CBRAIN grid cannot move and pro-
cess multi-terabyte studies with the same ease as A-BRAIN, our
goal was to ensure that all user sites can integrate securely in our
grid their own data repositories with a minimum of requirements.
This leads to a mix of faster and slower storage segments, which
CBRAIN manages asynchronously with its caching mechanism.
Most of our large imaging projects, with thousands of subjects
representing hundreds of gigabytes of data can be processed as-
is with the CBRAIN grid. Some multi-terabyte, data-intensive
projects, such as our 3D histological reconstruction (Amunts
et al., 2013), required special infrastructure for processing and
visualization.

The modular plugin approach used to develop many of
CBRAIN’s components makes the platform easily extensible. New
data providers, execution servers, visualization tools and other
components can be added to the platform with a minimal invest-
ment of time and effort. On a deeper level, a small investment in
development time can extend the base data provider and SCIR
APIs to allow compatibility with new types of storage and cluster
management. As an example, our team has begun experiment-
ing with the integration of Amazon’s S3 cloud as a data provider.
CBRAIN as a meta-scheduler does more than provide a uniform
API to the heterogeneous scheduling of various sites; it handles
maximum queue allocations, node vs. core scheduling, max load
per node, specific environment variables, caches locations, and
data transfer tools/protocols on a per site basis. The platform
excels at bridging the gap in common standards between exist-
ing cyber-infrastructures, providing transparent access to grids,
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public HPC sites, and private infrastructure through a single
common framework.

FUTURE WORK
We are prototyping methods to extend the job model to accom-
modate the provisioning of Virtual Machines (VMs) on HPC and
Cloud infrastructure. Thanks to the flexible and integrated devel-
opment of CBRAIN components, these extensions can reuse sev-
eral of CBRAIN’s core services. For instance, the meta-scheduler
is used to launch VMs from disk images equipped with applica-
tion tools which are simply stored on data providers and handled
by the CBRAIN data management system. Executing tasks in
VMs facilitates the deployment of tools on classic HPC clus-
ters, enables the exploitation of clouds, and ensures a uniform
computing environment across heterogeneous infrastructures.
Deployed VMs are seen by the platform as computing sites, open-
ing possibilities for finer cross-site load balancing. This increased
mobility across traditional batch HPC sites and actual clouds will
allow us to further leverage resources from these two types of
services.

Moving forward, priorities for the platform include further
development and refinement of the Web API to allow other sys-
tems to take advantage of the services offered by CBRAIN. There
are plans to extend CBRAIN into fields other than neuroimag-
ing, such as epigenomics and the humanities. The platform itself
is generic, meaning that in principle it should be usable in any
domain that requires computationally expensive processing of
large data sets.

OBTAINING AND ACCESSING CBRAIN
The core CBRAIN codebase will be made available as an
open source project in mid-2014. Please refer to the NITRC
site for instructions (https://www.nitrc.org/projects/cbrain). Trial
CBRAIN accounts can also be obtained upon registration
(https://portal.cbrain.mcgill.ca). For any registration or source
code access questions, our group can be contacted at cbrain-sup-
port.mni@mcgill.ca.
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Neuroscientists increasingly need to work with big data in order to derive meaningful
results in their field. Collecting, organizing and analyzing this data can be a major
hurdle on the road to scientific discovery. This hurdle can be lowered using the same
technologies that are currently revolutionizing the way that cultural and social media
sites represent and share information with their users. Web application technologies
and standards such as RESTful webservices, HTML5 and high-performance in-browser
JavaScript engines are being utilized to vastly improve the way that the world accesses
and shares information. The neuroscience community can also benefit tremendously from
these technologies. We present here a web application that allows users to explore
and request the complex datasets that need to be shared among the neuroimaging
community. The COINS (Collaborative Informatics and Neuroimaging Suite) Data Exchange
uses web application technologies to facilitate data sharing in three phases: Exploration,
Request/Communication, and Download. This paper will focus on the first phase, and
how intuitive exploration of large and complex datasets is achieved using a framework
that centers around asynchronous client-server communication (AJAX) and also exposes
a powerful API that can be utilized by other applications to explore available data. First
opened to the neuroscience community in August 2012, the Data Exchange has already
provided researchers with over 2500 GB of data.

Keywords: open neuroscience, big data, neuroinformatics, data sharing, query builder, javascript

INTRODUCTION
Many of the questions faced by the human neuroimaging com-
munity can no longer be answered through studying small
data sets due to the wide structural and functional variance
between individual subjects. Instead, neuroimaging researchers
need to look at large populations in order to accurately dis-
tinguish between overarching trends and individual outliers.
Accumulating such large data sets can be time consuming and
expensive—often prohibitively so. In response to this challenge,
some members of the neuroimaging community are molding a
new approach to data collection. This new approach has been
dubbed Open Neuroscience, and it necessitates that individual
researchers will openly share phenotypic, genotypic and neu-
roimaging data and collection methodologies (Milham, 2012).

Thus far, several large datasets and sharing platforms have
been released in the spirit of the Open Neuroscience initiative
with great support and success. One of the earliest examples was
the fMRI Data Center (fMRIDC), which consolidated and shared
thousands of datasets from 2000 to 2007 (Van Horn et al., 2001;
Van Horn and Gazzaniga, 2013). Later came the 1000 Functional
Connectomes Project (FCP), which released a curated dataset
of 1300 subjects in December 20091. Other recent examples of

1https://fcon_1000.projects.nitrc.org/ accessed 1/28/2014

curating and centralizing multi-site data for open distribution
include the Biomedical Informatics Research Network (BIRN),
the Functional Biomedical Informatics Research Network (F-
BIRN) and The International Neuroimaging Data-sharing
Initiative (INDI). INDI hopes to expand on the success of the FCP
project by focusing on establishing strong phenotypic datasets to
accompany the imaging data2.

All of the approaches mentioned thus far have utilized a
curation process in which data is manually checked for qual-
ity and adherence to project-specific data collection and pro-
cessing standards. An alternative approach is seen in XNAT
Central and the National Database for Autism Research (NDAR),
which are centralized repositories for researchers to deposit
data3 (Hall et al., 2012). Other researchers may then analyze
and download the posted neuroimaging datasets. Data that is
deposited in these databases is openly available to the commu-
nity, and therefore must be fully anonymized before upload.
XNAT Central does not rely on manual curation to ensure quality
and standards, and places the burden of data-verification on the
downloader.

2http://fcon_1000.projects.nitrc.org/indi/docs/INDI_MISSION_STATEMENT.
pdf
3XNAT Central https://central.xnat.org/
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Here we propose another approach to providing an Open
Neuroscience sharing infrastructure. The proposed approach
does not require manual curation by a centralized organization,
yet promises stricter adherence to standards than a completely
open approach. The key to this approach is a neuroinformatics
data management platform called the Collaborative Informatics
and Neuroimaging Suite (COINS) (Scott et al., 2011). Researchers
have noted the importance of managing data within an infor-
matics platform from the time of collection onward (Mennes
et al., 2013). By doing so, data is stored according to generaliz-
able ontologies that can be mapped across studies, sites and even
between data management platforms. In addition to offering a
framework to organize data for universal mapping, COINS allows
researchers to store all of their research data in one place, and then
selectively (or globally) share that data in a manner that satisfies
the Health Information Privacy and Accountability Act (HIPAA)
and secures Protected Health Information (PHI) against acciden-
tal exposure. The COINS Data Exchange (DX) is a vehicle for
the greater research community to explore, request and download
this shared data. The following text outlines the technology used
by DX as well as an analysis of the success of the system.

MATERIALS AND METHODS
The COINS Data Exchange (DX; http://coins.mrn.org/dx) was
designed to be a repository where researchers from all over the
world can intuitively share data. DX performs two main pro-
cesses: The first provides an intuitive interface through which
researchers can explore, request and download data stored within
the COINS database. The second allows researchers who are not
already storing their data in COINS to upload that data for shar-
ing. This paper will focus on the first step of the first process: data
exploration.

DX uses a unique exploratory interface to visually construct
ad-hoc queries. The interface consists conceptually of a single
workspace that represents a request. The request can have one or
more logical groups, each of which can have zero or more child
groups and zero or more filters. The groups define the logical rela-
tionship (and vs. or) between individual children of that group.
The workspace is populated with groups and filters by clicking
and dragging elements on the screen into the workspace. In addi-
tion, filters may be converted to templates by super users, and
those templates can be used as a starting point for other users
looking for similar data. An example of the interface, which is
called the Data Catalog, is shown in Figure 1.

The Data Catalog is made possible by modern web application
technologies such as JavaScript and JQuery, HTML5 APIs and
CSS3. The development of the Data Catalog was expedited by uti-
lizing Node.js, which facilitated the reuse of libraries in the client
and the server (Tilkov and Vinoski, 2010). Historically, web-based
applications have been created using one server-side program-
ming language (e.g., java, ruby, php), and a completely different
client-side language (JavaScript). Node.js is a paradigm shift from
this methodology in that it allows developers to use JavaScript on
both the server- and client-side. This code reuse allows developers
to program much more efficiently. Other notable companies also
using node.js are PayPal, Groupon, eBay, and LinkedIn. PayPal
estimates that they were able to create new features twice as fast

with fewer people, use 33% fewer lines of code, and generate 40%
fewer files when they used node.js as compared to their previous
methodology utilizing disparate client and server languages4.

ARCHITECTURE
The interface is delivered to the browser in the form of a HTML
web page dynamically generated by PHP scripts and several
javascript libraries. All files are served from the same Linux-
Apache-PostgreSQL-PHP (LAPP) servers that host other COINS
web applications. Since the Data Catalog is accessed within the
COINS web application, security is managed by the COINS
Central Authentication System. After a user logs in, their PHP
session information is stored on a centralized memcached server,
which is accessible to the COINS web application servers as well as
the Node.js servers that host the Data Catalog web services (Brad,
2004; Olson et al., 2014). Once the Data Catalog interface has
been loaded into the browser, all data queries will be sent to a sep-
arate webservice running on a Node.js server. This is illustrated in
Figure 2.

The components of the Data Catalog workspace mentioned
above, and shown in Figure 1 are represented as JavaScript objects
that are defined in the libraries used by both the browser and
Node.js server. This allows for objects that represent the user’s
query (discussed below) to be easily passed from the server to
the client and back. This communication is handled via standard
asynchronous HTTP(S) requests, and can also be leveraged by
other automated services (also shown in Figure 2). For instance,
the NIH-Funded SchizConnect Data Federation is working with
COINS and XNAT Central and the Human Imaging Database
(HID) to create a tool that will automatically compile a com-
prehensive catalog of data available on both sharing resources.
This tool retrieves information about data available in DX via a
RESTful API5 (SchizConnect Data Federation).

USER INTERFACE INITIALIZATION
When the user interface of the Data Catalog is first initialized, a
new Request object is constructed. As part of the construction,
the top-group Group object is also constructed, and the filter-
able modalities are asynchronously retrieved from the server and
loaded into the modalities property of the new Request object
from the server. Each modality represents a mode of data for
which there is at least one filterable attribute, and for which
statistics should be calculated and displayed.

When the request is modified (either by assigning it a label,
or adding a new Filter or Group object, it will be persisted to
the server. This is done by calling the Request object’s write()
method. The write() method utilizes the Request object’s toJ-
SON() method, which in-turn calls the toJSON() methods of all
child objects (Groups and Filters) in order to properly serialize
them. The JSON representation of the object is then sent to the
server via a POST HTTP request. On the server, a new Request is
once again constructed using the same library that was used on
the client. Next, the new Request object’s fromJSON() method is

4https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/ Dec
23, 2013
5http://niacal.northwestern.edu/projects/18
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FIGURE 1 | DX data catalog exploratory filtering tool.

invoked, which in-turn recursively calls the fromJSON() methods
of each child object to properly unserialize all objects. Following
unserialization, the write() method of the server-side Request
object is invoked, which overloads the write() method defined in
the shared definition of Request. This method writes the relevant
properties of the Request to the database, setting the id property
to the value assigned by the database. Write() also recursively calls
the write() methods of all child objects, so that they are also per-
sisted to the database and assigned identifiers accordingly. Finally,
the Request is once-again serialized to JSON, and sent back to the
client, where it is unserialized and replaces the current Request
object before being rendered.

As filters and groups are added or modified, objects repre-
senting those entities are created or updated on the client. Those
objects are then encoded into JavaScript Object Notation (JSON)
strings and sent to the server for processing via asynchronous
HTTP(S) requests (Bray, 2014). The server then parses the JSON
strings into proper objects, and forms SQL queries to retrieve
statistics about the objects from the COINS database. The result-
ing statistics are then appended as properties of the objects before
JSON encoding them and sending them back to the client where
they are used to update the interface with statistics about the
current request.

JAVASCRIPT DATA MODEL
A simplified model of the Javascript objects that comprise the
Data Catalog is shown in Figure 3. Some properties were excluded
from the model for clarity. Each object’s prototype encapsulates a

method to render itself in HTML: a functionality only used on
the client. The prototype for each object also contains methods to
deconstruct itself into a JSON string that can be sent across a wire.
Similarly, each prototype has a method to reconstruct itself from
a JSON string or standard object. These methods are employed on
both the client and the server to facilitate passing the objects back
and forth. Each of the objects illustrated in Figure 3 are explained
in more detail below.

The Request object is the top-level object for the Data Catalog
UI, and as such, it contains pointers to all other objects rele-
vant to the UI. When a new, blank request is first started by a
user, it is assigned a unique identifying integer, which is recorded
in the server-side database, and assigned as the id property for
the request. Another property of the Request object is populated
upon initialization: modalities. Each modality is an object which
specifies the type of data for which metrics are to be displayed,
and for which filters should be available. A user-specified label
may also be associated with the request, and will be persisted to
the server-side database as well.

The topGroup property of the Request is populated upon
request initialization, and points to a group object. Each group
object also has a server-defined identifier (id), and properties to
list child other groups and filters that reside within the current
group. Additionally, groups have a type property which can be
either “and” or “or.”

Groups may contain zero or more filter objects. Filter objects
contain a list of attributes, which correspond to rows of the
dx_source_attributes table mentioned elsewhere in this paper. At
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FIGURE 2 | COINS DX infrastructure.

present, the user interface only supports one attribute per fil-
ter, however, the attributes property is an array in anticipation
of future changes. Other properties of each filter object includes
the type and statistics associated with the modality of the filter,
and a server-issued identifier, which corresponds to a persistent
representation of the filter in the COINS database.

Filter attributes have properties that define the source_attribute
to which the property corresponds, as well as the value and its
description, as selected by the user for that attribute (optionId and
optionDesc, respectively).

SERVER-SIDE PROCESSING
Server-side-only libraries extend the object prototypes in order to
add database-related functionality. For example, each server-side
object prototype (e.g., ServerRequest, ServerGroup, ServerFilter)
exposes a method to persist a representation of each object
to the database for persistence. Other server-side-only methods
generate PL/SQL code to process statistics or metadata about
the object in the database. In the case of a filter object, the
PL/SQL code inserts the primary keys of all data that matches
the filter’s filterAttributes into a temporary table where it can
be intersected or unioned with other filters’ data (depend-
ing on what type of group the filter is in). As with the
JSON (un)serialization methods, all aforementioned methods
call their correlate-methods of all child objects (Request.render()

will call Group.render() for all Groups in the request, and
so on).

MODALITIES AND FILTERS
When a request is first initiated in the client, a list of available
modalities and filters is retrieved from the database. These data
are manually curated by modifying data stored in the COINS
database. Figure 4 depicts the tables discussed in this paper, and
a more general understanding of the COINS database was pub-
lished in 2010 by Scott et al. (2011). The modalities are populated
from a table in the database, which consists of modality labels
and pointers to the tables and primary keys that they correspond
to. Statistics displayed for each modality are calculated by tally-
ing the number of unique primary key values are matched by the
user’s query. For example, the Study modality corresponds to the
a materialized view of available studies and the anonymization_ids
of subjects that are enrolled in them (dx_studies_mv), and the
study_id primary key.

Filters for each modality are also configured and stored in
the COINS database. The table mrs_source_attributes stores avail-
able attributes which can be filtered upon. Each attribute is
linked to a modality via a foreign key constraint. Other columns
of mrs_source_attributes specify which columns of the modal-
ity’s table should be used for the available values and value-
descriptions available for each filterable attribute. Continuing
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FIGURE 3 | Simplified model of a data catalog request.

with the previous example of the Study modality, the value and
value-description properties of the Study Label filter-attribute
correspond to the label and description columns of mrs_studies.

QUERY GENERATION
Among the methods exposed by the server-side-only libraries
are methods to convert each filter’s attributes into SQL queries.
Server-side filter objects expose a method generateSQL(), which
generates SQL to select the identifiers of data that is matched
by each filter-attribute’s “optionId” and “operator.” Similarly, the
group object exposes a generateSQL() method that will union
(type = or) or intersect (type = and) the modular queries created
by the group’s filters and child-groups.

In order to allow groups to contain filters of disparate modal-
ities, some additional logic is necessary. SQL modules generated
by child-groups and filters of the same modality should be com-
bined using the modality’s primary key (e.g., subjects with age ≥
25 AND subjects with age ≤ 55). SQL modules generated by child-
groups and filters of varying modalities must be combined using
the subject-anonymization-identifier (e.g., subjects with age ≥ 25
AND MR with series label = “MPRAGE”).

This additional logic is assisted by automatically redrawing
user-defined groupings every time the user modifies the request
object. The re-drawing looks for groups that contain three or

more filters, where at least two of which are of the same modal-
ity and at least one of which is of a different modality than the
others. These filters are then split up into sub-groups according
to their modalities: for instance, an “and” group containing two
subject filters and two MR filters will be redrawn to contain two
child groups: one for subject filters and one for MR filters.

The generateSQL() methods are called for each object
by the object’s parent (i.e., The request object calls top-
Group.generateSQL(), which in turn calls the generateSQL()
method of each of its child groups and filters, and so on). When
all method calls have returned, the request receives a single SQL
statement that will yield the subject-anonymization-identifiers
and modality-specific-primary-keys of all data that is matched by
the request. Additionally, the SQL generated by each object can be
run independently to retrieve statistics about the amount of data
matched by that object.

A note about security
Whenever utilizing client-generated values to generate SQL, it is
important to screen for SQL injection attacks. The data catalog
implements the same security measures practices elsewhere in the
COINS application. First, the login-role used by the application
does not have read or write access to underlying tables that con-
tain data. Instead, all database reads are performed by selecting
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FIGURE 4 | Database schema for data catalog.

data from views, rather than directly from tables. Similarly, all
write operations are performed by calls to stored functions. In the
case of the data catalog application, the login-role’s read access is
restricted to data-catalog related views and functions that persist
user’s requests to the database. Thus, any SQL injection attacks
would not reveal any more information than is readily avail-
able through the user interface. For the sake of added caution,
other standard protections are also implemented, such as type-
checking, query parameter binding, user authentication, a 30-min
logout window, and record-modification history logging.

RESULTS
APPLICATION AND FEATURES
The Data Catalog is a critical component of the COINS Data
Exchange. It allows users to construct complex ad-hoc queries
against sharable data in the COINS database in an exploratory
way to form a request for data. After constructing a request, the
request can be submitted, which will notify all COINS users that
own the data being requested that some of their data is being
requested. The submitted request can be accepted or denied by
the data owners after the requester and owner have exchanged

messages through the integrated messaging system. All messages
are stored indefinitely, and can be used as official documents or an
audit trail if needed. If one data-owner approves the request, and
another denies it, only the approved subset of data will be made
available to the requester. Data associated with accepted requests
is packaged and zipped on the COINS servers, and the requester is
notified when the package(s) are ready for download. The pack-
aging, zipping, and download process is also quite interesting, but
will not be explained in detail here.

INTEGRATION WITH COINS
Data collected via COINS is easily shareable in DX. Study admin-
istrators are provided very fine-grained control over which data
is shared: individual subject types, subjects, scans, instruments
or assessments may be excluded or included. Additionally, shar-
ing benefits from the centralized approach of COINS. Studies
that have collected data using shared instruments can now expose
their data to sharing more easily. This allows a Data Catalog user
to request data from two studies that have collected data using
the Balanced Depression Inventory II (BDI-II) with a single filter
(Instrument label = “BDI-II”).
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DATA SHARED
The first publicly-available dataset to be shared on COINS DX
was the6 ABIDE dataset. Released in the COINS DX on August
30th 2012, the ABIDE dataset consists of functional and structural
imaging and phenotypic data from more than 1000 participants
gathered from 15 different sites around the world (Nooner et al.,
2012). The ABIDE dataset was imported into the COINS data
management system and made available for sharing. To date,
166 individuals have downloaded over 2450 GB of ABIDE data
through COINS DX.

Next, the NKI Rockland Sample made their first data release
in March 20137. Unlike the ABIDE dataset, the NKI Rockland
Sample dataset was collected directly using COINS. This allows
the NKI research team to make periodic releases by simply select-
ing which subjects and data is ready to be shared in DX. Their
changes are reflected instantly in the Data Catalog. Researchers
requesting access to the NKI Rockland Sample dataset require
individual approval after agreeing to a DUA. Despite the more rig-
orous approval process, over 1200 GB of data have been approved
for sharing and downloaded by 15 researchers from around the
world.

DISCUSSION
The COINS Data Catalog harnesses modern web technologies
to extend a popular neuroinformatics platform for use in the
context of Open Neuroscience. The architecture of the applica-
tion has proven flexible, maintainable, and secure. Moreover, two
large datasets have been successfully shared on an international
scale. One of those datasets was collected and compiled outside of
COINS, then successfully imported. The other dataset is part of
an ongoing collection effort using COINS tools, and can be easily
curated by the data owners. Over all, over 3500 GB of data have
been shared through the COINS Data Exchange since September
2012.

There remains a huge potential to share an increasing amount
of data using DX: There are currently over 500 studies being man-
aged with COINS. These studies have collected 342,000 clinical
assessments and 31,400 MRI and MEG scan sessions from 22,100
participants at many sites across the United States including
The Mind Research Network, Nathan Kline Institute, University
of Colorado—Boulder, Olin Neuropsychiatry Research Center
(King et al., 2014). Each of these studies can easily elect to allow
some or all of their data to be explored and requested through DX.

As more studies elect to share their data through DX, the
greater the number of filtering options will become during data
exploration. If the number of filtering options grows too large, it
may become difficult for a researcher to locate the options that
apply to their own interests. It is important therefore to create
data dictionaries and ontological mappings for the large amount
of data currently stored within COINS. Such mappings will allow
for multi-level filtering options that correspond to other popular
common data elements.

Looking ahead, the developers of the COINS DX are excited
to implement more features to aid sharing within the Open

6http://fcon_1000.projects.nitrc.org/indi/abide/
7http://neuro.debian.net/

Neuroscience community. Dynamic requests are being developed,
which will periodically alert researchers if new data is made avail-
able which matches one of their existing filters. Further improved
API performance and documentation is on the way, and will aid
in integration with projects such as SchizConnect (SchizConnect
Data Federation) and Neurodebian8.
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Recent advancements in technology and methodology have led to growing amounts
of increasingly complex neuroscience data recorded from various species, modalities,
and levels of study. The rapid data growth has made efficient data access and flexible,
machine-readable data annotation a crucial requisite for neuroscientists. Clear and
consistent annotation and organization of data is not only an important ingredient for
reproducibility of results and re-use of data, but also essential for collaborative research
and data sharing. In particular, efficient data management and interoperability requires
a unified approach that integrates data and metadata and provides a common way
of accessing this information. In this paper we describe GNData, a data management
platform for neurophysiological data. GNData provides a storage system based on a data
representation that is suitable to organize data and metadata from any electrophysiological
experiment, with a functionality exposed via a common application programming interface
(API). Data representation and API structure are compatible with existing approaches for
data and metadata representation in neurophysiology. The API implementation is based on
the Representational State Transfer (REST) pattern, which enables data access integration
in software applications and facilitates the development of tools that communicate with
the service. Client libraries that interact with the API provide direct data access from
computing environments like Matlab or Python, enabling integration of data management
into the scientist’s experimental or analysis routines.

Keywords: electrophysiology, data management, neuroinformatics, web service, collaboration, neo, odml

1. INTRODUCTION
1.1. DATA MANAGEMENT IN ELECTROPHYSIOLOGY—COSTS,

BENEFITS, AND NEEDS
Advances in technology and methodology during the past years
have dramatically increased the volume and complexity of data
recorded in electrophysiological experiments. At the same time,
progress in neuroscience increasingly depends on collaborative
efforts, exchange of data, and re-analysis of previously recorded
data. Thus, ensuring that data stays accessible, that data process-
ing is reproducible, and that data can be shared and re-used has
become a challenge for many laboratories (Herz et al., 2008).

Obstacles to efficient data management arise not only from
the variety of data formats and constraints of accessing data in
proprietary formats, but also from the amount and complexity
of additional information about the experiment that needs to be
collected and stored. This additional information, which is com-
monly called “metadata” despite the fact that it is to large part data
supplementing the recorded data (Figure 1), is not only necessary
to reproduce the study but also essential for searching, selecting,
and analyzing the data.

Collecting and storing metadata comprehensibly together with
the recorded data is also a facilitating requisite for sharing the
data. Data sharing starts in the lab, where data needs to stay acces-
sible and understandable for the experimenter even years after
the study, and lab members need to be able to find and access
data even after the person that performed the experiment has left
the lab. In collaborations with scientists outside the laboratory,
data need to be selected and the collaborators need to be able

to understand the data. Having a data organization in the lab
where all data and metadata is kept together in defined formats
and organized structure can reduce both the experimenter’s work
for data preparation and the collaborator’s efforts to read and
understand the data. In the same way, efficient data organiza-
tion minimizes the time and work necessary for preparing data to
make it generally accessible, thus reducing the barriers to public
sharing and data publication.

Experimental metadata typically have to be collected from var-
ious sources and in different formats—different measurement
devices, software code, notes entered during the experiment,
etc.—and have to be brought into compatible formats, which
can require considerable effort. Typically, each lab defines its own
methods, procedures, and format conventions for organizing and
managing the data. If common tools and formats were available,
workload and time demand in the labs would be reduced and data
exchange would require less effort and time.

Developing common tools and standardized formats has
turned out to be particularly challenging for the area of electro-
physiology (Teeters et al., 2013). This field faces an enormous
variety in experimental methodology, with a large number of data
acquisition systems, file formats that are often vendor-specific
and undocumented (Garcia et al., 2014), a variety of electrode
configurations, species, preparations, stimuli, and overall experi-
mental paradigms. Currently, common organization schemes or
standards for accessing data do not exist. Thus, for data exchange,
often substantial work is necessary to make the data accessi-
ble in one form or another. Moreover, in electrophysiology the
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FIGURE 1 | Levels of (meta)data. Recorded data and additional
information that is necessary for understanding and appropriate analysis of
the data. Information about the format in which the data are stored is
required to read the data. Information that complements the raw stored
numbers, such as sampling rate, scaling factors, units, is required to
understand the data as measured signals. To meaningfully analyze the data,
information about the experimental context is necessary, like conditions of
preparation, stimulation, etc. This information in principle can be formalized
and stored in machine-readable form (“hard metadata”) so that it can be
used for data selection and analysis. This metadata can be further
categorized into generic, domain-specific, and study-specific information.
“Soft metadata” is the information about the overall scientific context and
aim of the study, reasons for choosing certain parameters, etc., for which
currently we have no way of formalizing or machine-processing. The
distinction between supplementing data and proper metadata is to some
degree arbitrary. For example, the date when an experiment was performed
might usually be considered as proper metadata. However, in some
analysis the time between experiments might be an important parameter
to be taken into account. In this case, the date of the experiments can be
used as data in the analysis to determine this information.

experimental variety and complexity results in corresponding
variety and complexity of the metadata. While a set of mini-
mal common metadata for a neuroscience experiment has been
proposed (Gibson et al., 2008), for each dataset further specific
information needs to be provided. As long as a comprehen-
sive ontology for this field is missing (Bandrowski et al., 2013),
approaches to achieve a common scheme for metadata descrip-
tion must leave sufficient flexibility to account for the variety and
heterogeneity of experiments (Grewe et al., 2011).

1.2. DATABASES AND SHARING PLATFORMS FOR
ELECTROPHYSIOLOGICAL DATA

In the past years, several initiatives to support data sharing in
neurophysiology have emerged. One of the first public databases
for electrophysiological data was the neurodatabase.org1 project
(Gardner, 2004). In this project, an elaborate data model and
format along with a query protocol for the exchange of neuro-
physiological data were developed. The data, typically obtained
from publications, is made available with extensive metadata and
provided in a format specifically developed for this project.

The SenseLab Project2 is a long-term initiative to build a repos-
itory for multidisciplinary models of neurons and neural systems

1http://neurodatabase.org
2https://senselab.med.yale.edu

(Crasto et al., 2007). It is a part of the Neuroscience Information
Framework3 (NIF, Gardner et al., 2008) and the International
Neuroinformatics Coordinating Facility (INCF) 4. The project
provides open databases (ModelDB, NeuronDB, etc.) designed
for certain aspects like neural modeling, neural cell properties,
modeling of neurocircuits and several others.

The CRCNS.org site5 hosts electrophysiological data that have
been specifically selected by contributing labs for the purpose
of making the data available to the public (Teeters et al., 2008).
Typically, these data are from published studies and have been
made available for re-use. Data format, annotation and documen-
tation are different for each dataset.

The CARMEN project6 provides a platform for data analy-
sis and data exchange where the owner of the data can keep the
data private, or can make the data available to selected users or
the public. The platform also provides services for data analysis
(Austin et al., 2011). For this purpose Carmen has introduced
an internal file format, Carmen NDF7, that is suitable for storing
electrophysiological and other types of neuroscientific data. The
user has the option to enter metadata describing the experiment
in which the data were recorded. This is done via web forms that
provide fields corresponding to the minimal metadata that were
proposed by the Carmen consortium (Gibson et al., 2008).

The German Neuroinformatics Node (G-Node) provides a
platform for data organization and data sharing of neurophys-
iological data8. Users can upload, organize, and annotate their
data, and make them accessible to selected users or the public.
Data conversion functions are provided. Data annotation fol-
lows a flexible schema (Grewe et al., 2011) so that any metadata
necessary can be entered.

Recently, the INCF established the INCF Dataspace9, a cloud
based file system to federate all kinds of neuroscience data.
There are several other initiatives (Marcus et al., 2007; Usui
and Okumura, 2008; Moucek et al., 2014, etc.) that provide a
web-based storage for different domains in neuroscience.

All these solutions are based on data exchange by files, and
they provide little or no support for using formats or data struc-
tures that are in some way standardized. In most cases data are
accessible only through a web browser. Interoperability between
any of these solutions, or with other tools and formats used by
neuroscientists, does not exist. As a basis for such interoper-
ability, common standards for representing and accessing data
would be needed, and tools and services to apply and use these
standards also within the lab would have to be available. Such
standardization will become also highly relevant for the recently
initiated large-scale projects with strong electrophysiology com-
ponents, such as the Allen Institute’s Project Mindscope10, the
Human Brain Project11, or the BRAIN Initiative12.

3http://www.neuinfo.org
4http://incf.org
5http://crcns.org
6http://www.carmen.org.uk/
7http://www.carmen.org.uk/standards
8https://portal.g-node.org/data/
9http://incf.org/dataspace
10http://www.frontiersin.org/10.3389/conf.fncom.2012.55.00033/event_abstract
11https://www.humanbrainproject.eu/
12http://www.nih.gov/science/brain/

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 32 | 123

http://neurodatabase.org
https://senselab.med.yale.edu
http://www.neuinfo.org
http://incf.org
http://crcns.org
http://www.carmen.org.uk/
http://www.carmen.org.uk/standards
https://portal.g-node.org/data/
http://incf.org/dataspace
http://www.frontiersin.org/10.3389/conf.fncom.2012.55.00033/event_abstract
https://www.humanbrainproject.eu/
http://www.nih.gov/science/brain/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Sobolev et al. Integrated platform for electrophysiological data

Here we present GNData, the new version of the G-Node data
management platform. This advanced version was developed with
the aim not only to set up a repository of data files, but to provide
a comprehensive framework that scientists can use to manage,
access, and work with their data within their local laboratory
workflow. The principal novelty of this framework is a stan-
dardized Application Programming Interface (API) together with
client tools that enable data access directly from the local compu-
tational and/or laboratory environment. A unique feature is the
ability to store and organize both the recorded data and the meta-
data together so that all information necessary for data analysis,
re-analysis, and sharing is available in a unified way, and accessi-
ble through a well-defined interface. The integration of data and
metadata has the benefits that data handling in the laboratory
from recording to analysis becomes more efficient and repro-
ducible, and that data sharing requires no further effort because
all the information is already available with the data. Additionally,
GNData allows for data sharing with colleagues, collaborators, or
the public without any obstacles.

2. APPROACH
GNData addresses the need for comprehensive data management
by providing (1) a storage system based on a common data repre-
sentation that is suitable to organize data and metadata from any
electrophysiological experiment, with (2) a general API so that
data access can be integrated in software applications, and (3)
client tools in common languages to support and facilitate this
integration into the laboratory data workflow. These components
implement a unique and efficient way of experimental data and
metadata management, compared to the file-based systems.

2.1. REPRESENTATION OF DATA OBJECTS
A key element supporting reproducibility and data sharing is the
standardization of formats and data structures. Using common
data objects facilitates data access and data exchange, as well as
the application of analysis tools. However, to be useful, standards
must be applicable to the entire field without constraining the
ability to store what is necessary. Given the variety and hetero-
geneity of electrophysiological studies, this poses the challenge of
finding a balance between strict definitions to achieve the nec-
essary standardization and flexible methods to account for the
needs of any use case. GNData achieves this balance by combin-
ing a fixed data model for the recorded data with an adaptable and
maximally unconstrained format for the metadata.

For the representation of electrophysiological data, the Neo
python objects 13 are widely used (Garcia et al., 2014) and have
come close to being a de-facto standard for describing recorded
electrophysiological signals. Neo defines an object model with
attributes and relationships that accounts for all types of recorded
data (signal and spike data, multi-electrode data etc.), includ-
ing numerical values, units, and dimensions. A typical Neo
experimental representation is a dataset (named Block in Neo)
containing several experimental trials (Segments), each having
time series (AnalogSignals), spike event data (SpikeTrains) and
stimulus event times as Neo Events. A dataset (Block ) usually

13http://neuralensemble.org/neo/

also contains groups of electrodes (Recording Channel Groups,
Recording Channels) related with the recorded signals to indi-
cate spatial position and arrangement of electrodes, and units
(Units) identified by spike sorting as sources of spike trains
(SpikeTrains).

In addition to the recorded data, GNData integrates meta-
data based on the open metadata Markup Language, odML 14

(Grewe et al., 2011). odML is an open, flexible and easy to use
format to organize metadata in a hierarchical structure of key-
value pairs (odML Properties). It provides a common Section
object, which is used to meaningfully group Properties accord-
ing to experimental aspects (Subject, Preparation, Stimulus,
Hardware Settings etc.). Sections can be nested, enabling a flex-
ible way to organize experimental metadata in a hierarchy that
reflects the structure of the experiment. Thus, data annotation
can be adapted to the requirements of each specific study. In
addition, odML supports standardization by providing common
terminologies 15—pre-defined odML Section templates for typi-
cal experimental aspects to facilitate standardized descriptions of
experiments across labs (Grewe et al., 2011).

Combining the Neo and odML concepts in a common object
model, GNData integrates data and metadata in a unified frame-
work. An example of the resulting data representation is illus-
trated in Figure 2.

2.2. COMMON INTERFACE TO ACCESS DATA AND METADATA
GNData integrates the Neo data model for electrophysiological
data with the flexible odML data annotation under a single API
definition. A common API is crucial as it unifies data manage-
ment approaches, provides a defined way of data access, and
makes data and metadata accessible to software tools. Previous
approaches (Garcia et al., 2014, The Neuroshare Project 16) have
focused on representation of the recorded data. We comple-
ment these designs by integrating the essential methods for
data annotation and permissions control, as well as providing a
network-accessible implementation.

2.3. CLIENT LIBRARIES FOR MAIN COMPUTATIONAL PLATFORMS
The common data API of the GNData platform enables pro-
grammatic data access and data management through custom
software. To support the use of the data API for everyday data
management in the lab, we provide client libraries that commu-
nicate with the server via the GNData API, enabling instant data
access from the local computational environment. Currently the
focus is on Matlab and Python, which are among the most pop-
ular computational frameworks in experimental neuroscience.
These client libraries 17 hide the generic API interface from the
user and translate the commands and data to representations in
the scientist’s familiar environment, such as Neo Python objects
(Garcia et al., 2014) in the Python client or Matlab structures in

14http://www.g-node.org/projects/odml
15http://www.g-node.org/projects/odml/terminologies
16http://neuroshare.sourceforge.net/API-Documentation/NeuroshareAPI-1-3.
htm
17http://g-node.github.io/python-gnode-client,
http://github.com/G-Node/gnode-client-matlab
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FIGURE 2 | Example data and metadata structure of an experiment with

stimulation changing across trials. The panel on the bottom right
represents the recorded signals in a study that investigates receptive fields of
neurons in visual cortex of macaque monkeys. Each trial had its unique
stimulus configuration (orientation, size, etc.). Local Field Potentials from
different channels (RC1–RC12) were recorded during the experiment; spike

trains of single units (U1–U3) were obtained by spike sorting. The dotted lines
are used to represent a mapping between experimental entities and their
representations in the object model. Neo objects13 (left) are used to
represent the data part of the experiment. odML14 Section, Property and
Value objects (top right) describe stimulus metadata, changing from trial to
trial within a given experiment.

the Matlab client (see Appendix in Supplementary Material), thus
enabling direct access to the data from the simulation software
or analysis script. In addition, a web interface is provided for
browser-based access. Enabling different types of data access sup-
ports interoperability and makes data access independent of a
certain format, language, or platform.

2.4. DATA SHARING
As a multi-user system designed to facilitate collaborative
research, GNData provides fine-grained mechanisms for access
control and data sharing. Original data is always accessible for its
owner. Any subset of data or metadata entities can be shared with
selected users, for example collaborators. The ability to instantly
access the same data without additional data transfer increases the
efficiency of collaborative work. In addition, data can be opened
to all users for public access. Thus, it is easy to provide data
together with metadata for a data publication, to make selected
data available for testing or benchmark purposes, or to release
data to the public for re-use.

3. IMPLEMENTATION
This section describes the main implementation concepts of the
GNData API. A full API reference can be found at the documen-
tation page 18. A demo environment is available where some of
the examples below can be tested to get more detailed overview
(Note that object identifiers can be different). Information
about the demo environment is provided in the Appendix in
Supplementary Material.

3.1. REST-FUL INTERFACE
The GNData API is built according to the REST principles
(Fielding and Taylor, 2002). The REST protocol is designed for
data representation supporting caching, scalability and client-
server architecture19. Many stable open source libraries are avail-
able that support REST in different programming languages.

18http://g-node.github.io/g-node-portal/
19http://en.wikipedia.org/wiki/Client-server_model
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One of the principles of REST is that every object has its
permanent location defined via a Uniform Resource Locator
(URL):

GET /electrophysiology/event/JD53GRU249/

In GNData , URLs defining object locations are designed to have
a certain structure. The first part of the URL defines a names-
pace that corresponds to a particular neuroscientific domain
or function. Currently, GNData supports “electrophysiology,”
“metadata,” and “datafiles” namespaces, providing electrophysi-
ological data, metadata, and file management functions, respec-
tively. Every namespace includes a set of objects related to this
particular namespace. The names of these object types form the
second part of the URL. For instance, the “electrophysiology”
namespace supports “event,” “spiketrain,” and other object types
defined by Neo (see 2.1). The “metadata” namespace supports
“section,” “property,” and “value” object types as provided by the
odML definition. A unique base-32 (RFC4648) object identifier
forms the end part of the object location.

Objects have consistent structured representations (see sec-
tion 3.2) according to the integrated data model. For all objects,
the GNData API supports a number of standard functions like
creating, updating and deleting single objects, or making bulk
object updates. A standard HTTP GET request selects one or sev-
eral objects; requests are highly parameterizable, allowing filtering
or processing objects in chunks:

GET /electrophysiology/event/?owner=demo&label=stimulus

In this example an HTTP GET request queries all event-type
objects owned by the user “demo” having a label attribute equal
to “stimulus.”

HTTP POST request type with JSON-encoded20 data is used
for making updates or creating new objects. HTTP DELETE is
used to remove objects within the system; removed object will
no longer appear in GET responses and will not be available for
POST updates. However, removed objects are still accessible after
the delete operation as all changes to object status and attributes
are being tracked by the system (see section 4.4). Supported oper-
ations together with corresponding URL structures are listed in
Table 1.

20http://www.json.org/

3.2. OPERATIONS WITH HTTP REQUEST AND RESPONSE
All operations use JSON20 as a main request and response format.
The JSON format is supported natively by Javascript21 and also by
many other common programming languages like Python 22 or
Matlab 23.

As defined in Table 1, a GET request of the GNData API has
the following form:

GET /<namespace>/<object_type>/[<object_id>]/[?<params>]

For example,

GET /electrophysiology/spiketrain/BE8O27N959/

returns the spiketrain object with the identifier “BE8O27N959” in
JSON format. In order to create or update objects, a POST request
with the same URL syntax is sent. For example,

POST /electrophysiology/spiketrain/BE8O27N959/
{

"name": "SP-BE8O27N959",
"comment": "spiketrain generated using wave_clus."

}

will make an update fields “name” and “comment” in the spike-
train object with identifier BE8O27N959.

A successful response contains the object represented in JSON
format:

HTTP SUCCESS (200)

{
"logged_in_as": "demo",
"objects_selected": 1,
"selected": [
{

"fields": {
"id": 2,
"guid": "88aa2089cfc73e9231c5518702222e5b8bb0d",
"name": "V1 FIX signals, trial 1",
"analogsignal_set": [
"/electrophysiology/analogsignal/F8LD1EGINL",
"/electrophysiology/analogsignal/LPTUBS44FG",

],
"current_state": 10,
"safety_level": 3,
"owner": "/profiles/profile/5",
"date_created": "2012-07-26 17:16:07",

21http://en.wikipedia.org/wiki/JavaScript
22http://docs.python.org/2/library/json.html
23http://www.mathworks.com/matlabcentral/fileexchange/20565-json-parser

Table 1 | Common API actions for every supported HTTP request type (GET, POST, DELETE) and typical request URL structure.

URL structure Get Post Delete

/namespace/object_type/ List objects, apply filters Create new object or make bulk update Bulk delete

/namespace/object_type/id/ Access single object Update single object Delete single object

/namespace/object_type/id/acl/ Get object permissions Update object permissions 405 Not Supported

Left column contains structure of the REST URL. Table cells define an action for each URL structure and HTTP request type.
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"block": "/electrophysiology/block/BDA1OIE4PE",
"metadata": []

},
"model": "neo_api.segment",
"permalink": "/electrophysiology/segment/RT4DALN1"

},
{

...
}
],

"selected_range": [ 0, 5 ],
"message": "Here is the list of requested objects.",
"message_type": "object_selected"

}

Exceptions are handled with standard HTTP response
codes24, such as 404–Object Not Found, 403—Forbidden,
400—Bad Request, 304 - Not Modified, etc., and the response
body contains a JSON-formatted message with exception details.

3.3. DATA HANDLING
GNData uses the HDF525 file format in the backend to store
array data. We made several performance tests against pop-
ular freely available data storage back-ends (PostgreSQL 26,
MySQL27 and HDF5; results not shown) resulting in HDF5 being
an optimal solution for managing large data arrays, even with
serial file access and fetching of multiple data slices. Every object
in the GNData with associated array data (analog signal, spike
train, waveform etc.) has the related data stored in HDF5 file.
Data can be accessed by downloading a corresponding HDF5 file
that contains an HDF5 array in the root of the file.

For data analysis, often only certain selected parts of the
recorded data are desired. To reduce data transfer between client
and server, a limited data slice can be requested. GNData supports
partial data requests for objects with associated data array(s). This
works for both single and multiple object requests and is practical
when accessing large datasets.

The following request

GET /electrophysiology/analogsignal/LPTUBS44FG/?
start_time=50&duration=100

returns data samples falling within the 100 ms time window of
the originally recorded signal with ID = LPTUBS44FG starting
from 50 ms (units are taken from object attributes). The response
(not shown, see example in section 3.2) contains an URL to the
corresponding file with a particular slice of array data,

GET /datafiles/8U1KHK8IA6/data/?
start_index=1000&end_index=3001

This URL represents a link to a data file containing the data array
for the selected analog signal, with parameters indicating the first
and the last indexes of this array, needed to create the requested
slice. These boundaries are calculated automatically based on the

24http://www.w3.org/Protocols/HTTP/HTRESP.html
25http://www.hdfgroup.org/HDF5/
26http://www.postgresql.org/
27http://www.mysql.com/

object attributes and their units (start time, sampling rate etc.)
and request input parameters (start time, end time, duration etc.).
Sending a GET request to this URL will download an HDF5 file
containing raw data from the 100 ms time window only. Note
that a datafile with array data is no longer dependent on the ana-
log signal and will not contain units or other information, only
data itself. All related meta information should be taken from the
corresponding object.

3.4. CACHING
For efficiency, the GNData API is using standard HTTP mecha-
nisms for data caching like e-Tags28 and “last-modified” attributes
in request headers. Every single change to an object results in
a new e-Tag assigned to this object. By default, an object is not
served for download if no changes were made and e-Tags of the
previously downloaded object and the object on the server match.
In this case, a standard 304 HTTP response (“Not Modified”) is
returned instead.

3.5. OPEN SOFTWARE AND MODULAR STRUCTURE
GNData is developed as an open source software based on the
Django29 framework. The framework is designed to be used with
relational databases. Concurrent user access, as well as atomicity,
consistency and isolation30 are implemented on the database level.
The software architecture follows a modular principle, so that
implementation of new data models into the platform is straight-
forward 31. The principal software components are illustrated in
Figure 3.

The key programming language used is Python. Python has a
growing community in Neuroscience with a large amount of open
software available. The GNData project welcomes developers to
contribute to the software32.

4. KEY GNDATA FEATURES
In this section we describe key features and functional scope of
the GNData platform.

4.1. DATA ACCESS WITH FILTERS
The GNData API provides query mechanism with different filters
based on object attributes and relationships. It allows to query
a subset of all available objects of a particular type based on cer-
tain criteria (equal, greater than, etc.), applied to object attributes.
To avoid definition of a new query language, this query mech-
anism is built on top of the Django querying routine and uses
similar concepts and namings 33. Query parameters, specified in
the request URL are directly converted into the request on the
Django application level, with addition of certain authorization
filters. The following examples illustrate the usage of filters.

This HTTP GET request will select metadata properties having
“luminance” in their “name” attribute:

28http://en.wikipedia.org/wiki/HTTP_ETag
29https://www.djangoproject.com/
30http://en.wikipedia.org/wiki/ACID
31https://docs.djangoproject.com/en/dev/topics/db/models/
32https://github.com/G-Node/g-node-portal/
33https://docs.djangoproject.com/en/dev/topics/db/queries/
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FIGURE 3 | GNData architecture diagram. From the bottom: integration
of low-level data storage components (dark blue), application server
components (light blue) with the REST API (yellow) as the common

access interface. Top: Clients such as web interface components,
Matlab client components, python client library, self-written custom
clients.

GET /metadata/property/?name__icontains=luminance

The resulting response contains objects with their identifiers that
can be used in another request for related objects (here “value”
objects are actual values of related metadata properties):

GET /metadata/value/?
parent_property__in=[AKDALFVCHL, PPQD09BPJ9]

Query conditions on related objects can be directly included
in the request parameters. The next example request selects all
metadata values of (related) properties with “luminance” in their
“name” attribute:

GET /metadata/value/?
parent_property__name__icontains=luminance

Filters allow to query for a certain subset of the experimental
data, which can be used in analysis or visualization. Figure 4
shows the plot of all LFP traces from a certain experimental trial,
selected using filters with certain time and stimulus conditions.
The query is explained in Appendix (Supplementary Material) in
more detail.

A full query reference is available at the project documentation
page.

4.2. UNIFIED ORGANIZATION OF DATA AND METADATA
GNData provides a common set of objects representing elec-
trophysiological (experimental and/or simulated) data, together
with an object model for flexible metadata description.

The GNData API allows to establish meaningful connections
between data and metadata objects. In particular, data objects can
be hierarchically grouped (using odML Sections) to achieve an
efficient organization. Any data object can be annotated by link-
ing with the appropriate metadata objects, thus achieving a com-
prehensive data annotation for data selection and reproducibility.
For example, consider an experiment where stimulus parameters
change from trial to trial. In that case, for every experimental trial
the appropriate stimulus property has to be indicated, which can
be achieved by annotating each Neo Segment representing a trial
to the appropriate metadata values.

Annotation is done by sending an HTTP POST request with
the references to the metadata values and the target object for
annotation:

POST /electrophysiology/analogsignal/F8LD1EGINL/
{

"metadata": [
"/metadata/values/KCAP5DK6FH/",
"/metadata/values/JD53GRU249/"

]
}

In this example, an analog signal object with ID = F8LD1EGINL
is annotated with certain metadata values (KCAP5DK6FH and
JD53GRU249). Required values and their IDs can be pre-selected
with another request using appropriate conditions and parame-
ters (see section 4.1). These connections enable the researcher not
only to identify the experimental context for a given data struc-
ture, but conversely also to query data by specific metadata. The
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FIGURE 4 | Plot of LFP responses from a trial selected using certain

time and stimulus conditions (see text). Note that all informations used
for axes, labels, and legend were taken from the stored data and metadata
directly.

following request selects all analog signal objects that have the
above defined values as their metadata:

GET /electrophysiology/analogsignal/?
^1metadata=KCAP5DK6FH&^2metadata=JD53GRU249

In general, this allows using annotated metadata in requests for
data object of any type.

4.3. DATA SHARING AND COLLABORATION
The GNData system provides a multi-user environment that
facilitates collaborations where researchers need common access
to datasets. Control of data access permissions is achieved using
Access Control Lists (ACL), which provides several access levels
for each object. By default, every object created in the system is
private and only accessible for its owner. The owner of an object
can make it accessible for an individual or group of collaborators,
or open it for access to all users. Thus, data sharing can be
done with a simple command, avoiding any data duplication or
transfer.

GNData supports both read-only and read-write permissions
for individual shares. The whole study can be opened for exper-
imentalists for contribution with experimental recordings, while
certain experimental trials can be made read-only for collabora-
tors who perform data analysis.

Each object’s current ACL is available for the object owner at a
specific URL:

GET /<namespace>/<object_type>/<object_id>/acl/

The structure of the ACL in JSON format contains its global
sharing level and the list of users having individual access:

HTTP SUCCESS (200)

{
"safety_level": 1, # 1-private, 3-public

"shared_with": {
"userA": 1, # 1-read-only
"userB", 2 # 2-read-write

}
}

An authorized POST request to this URL with the request body
containing new ACL configuration updates the object permissions.

4.4. VERSIONING
To support reproducibility, GNData implements object version-
ing mechanisms where all changes to any object are saved, and a
user can always go back in time to the corresponding version of
the data.

Requesting a certain version of an object is done by adding the
“at_time” parameter to the GET request. The following example
requests an object as it was at September, 15th 15:36:55:

GET /metadata/property/HB069BDMPG/?
at_time=2013-11-09 15:36:55

5. DISCUSSION
We presented GNData, a data management system with an open
API for electrophysiological data. GNData unifies organization
of data and corresponding metadata and provides data access
for researchers within a lab as well as for collaborators, directly
from their computation environments. Efficient organization of
data and metadata saves time for data access and facilitates data
exchange and collaboration. Moreover, programmatic data access
enables automatization of many steps in data collection and
data organization, thus facilitating data analysis and collaborative
research.

Key principle of the GNData architecture is an API that sepa-
rates the user application from the storage backend and represents
a consistent interface for accessing electrophysiological data. A
common interface saves development and maintenance efforts
and creates interoperability, faciliating application of tools and
integration of software solutions. The GNData API combines a
common representation for recorded data and a flexible meta-
data schema that is suitable to annotate data from any kind of
experiment. This concept is independent of the REST implemen-
tation. Implementations in other programming languages and on
different technologies are easily possible.

The GNData API includes basic functions for querying data
using different filters applied to object attributes. More exten-
sive search capabilities and support for complex queries would
be desirable for data retrieval. Extended functionality based
on existing open-source solutions (e.g., Lucene 34, Xapian 35,
Minion36, Elasticsearch37 etc.) will be included in future releases.

The GNData platform provides a standardized data represen-
tation, but original recorded data can come from files in various
formats. Using the G-Node Python client (Sobolev et al., 2014, see
also Appendix in Supplementary Material) users can utilize the

34http://lucene.apache.org/
35http://xapian.org/
36https://minion.java.net/
37http://www.elasticsearch.org/
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Neo I/O modules (Garcia et al., 2014) to read the data into Neo
objects before uploading. However, ideally the central data server
would provide this data conversion, so that users can upload their
data in files which are automatically extracted to corresponding
data structures on the platform. For this purpose, integration of
the Neo I/O libraries into the GNData is under development.

Currently GNData is focused on electrophysiological data.
Scalability of the data model and the Client-Server approach,
however, allow straightforward extension to account for data
from other fields of neuroscience. Neuromorphological data,
imaging data or other types of data could be integrated simply
by specifying the appropriate data models. The INCF Task Forces
on Electrophysiology38 and Neuroimaging39 are currently work-
ing on standard data models and formats for the respective types
of data (Teeters et al., 2013). Those standards will be integrated
in the GNData platform as they are released. Likewise, to sup-
port the entire data processing workflow in the laboratory, results
from data analysis need to be accommodated as well. This kind of
extension will be introduced as one of the next steps.

GNData is developed as an open source project available at
the public G-Node Github account40. The project is open to con-
tribution from neuroscientists or members from other scientific
fields.
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As in other areas of experimental science, operation of electrophysiological laboratory,
design and performance of electrophysiological experiments, collection, storage and
sharing of experimental data and metadata, analysis and interpretation of these data, and
publication of results are time consuming activities. If these activities are well organized
and supported by a suitable infrastructure, work efficiency of researchers increases
significantly. This article deals with the main concepts, design, and development of
software and hardware infrastructure for research in electrophysiology. The described
infrastructure has been primarily developed for the needs of neuroinformatics laboratory
at the University of West Bohemia, the Czech Republic. However, from the beginning it
has been also designed and developed to be open and applicable in laboratories that do
similar research. After introducing the laboratory and the whole architectural concept the
individual parts of the infrastructure are described. The central element of the software
infrastructure is a web-based portal that enables community researchers to store, share,
download and search data and metadata from electrophysiological experiments. The
data model, domain ontology and usage of semantic web languages and technologies
are described. Current data publication policy used in the portal is briefly introduced.
The registration of the portal within Neuroscience Information Framework is described.
Then the methods used for processing of electrophysiological signals are presented.
The specific modifications of these methods introduced by laboratory researches are
summarized; the methods are organized into a laboratory workflow. Other parts of the
software infrastructure include mobile and offline solutions for data/metadata storing and
a hardware stimulator communicating with an EEG amplifier and recording software.

Keywords: electrophysiology, event related potentials, infrastructure, neuroinformatics, workflow, portal, signal

processing methods, stimulator

1. INTRODUCTION
As in other areas of experimental science, operation of elec-
trophysiological laboratory, design and performance of electro-
physiological experiments, collection, storage and sharing of
experimental data and metadata, analysis and interpretation of
these data, and publication of results are time consuming activ-
ities. If these activities are well organized and supported by a
suitable infrastructure, work efficiency of researchers increases
significantly.

Our research group, a member of the Czech National Node
of International Neuroinformatics Coordinating Facility (INCF,
2013), focuses on research of brain electrical activity using the
methods and techniques of electroencephalography (EEG) and
event related potentials (ERP). Our neuroinformatics laboratory,
which started to operate in 2005, is currently equipped with a
number of commercial and custom hardware devices and soft-
ware tools. Besides the basic electrophysiological infrastructure
(amplifier, synchronization device, recording and analytic soft-
ware, and software for presentation of stimuli) the laboratory
equipment includes a sound and electrically shielded booth, a car

simulator including a car cockpit, wheel and pedals connected to
the computer, projector, and software tools for the simulation of
driving environment and driving itself. Since the group has been
solving difficulties with the laboratory operation (software and
hardware tools and the whole infrastructure) from the beginning
of its research activities, this paper introduces not only the cur-
rent state of the laboratory infrastructure but also some essential
intermediate steps in its building. The presented infrastructure is
also more oriented to the processing of data from ERP than EEG
experiments; as a result e.g., the methods for ERP component
detection are highlighted in the text.

The paper is organized in the following way. The section
Materials and Methods contains the description of the state of
the art in building infrastructures for research in electrophysi-
ology and neurophysiology. The next subsections first introduce
the whole concept of the laboratory infrastructure; then some
infrastructural parts are described. The section Results provides
information about the current state and some implementation
details of the selected parts of the infrastructure. The section
Discussion mainly discusses the potential limitations of the built
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infrastructure and primarily speculates on the future direction of
the proposed infrastructure.

2. MATERIALS AND METHODS
2.1. STATE OF THE ART
Building large infrastructures for research has become very pop-
ular with the rapid development of computers and hardware
devices, programming languages and technologies, software tools,
and online communication. This development has also spread to
neuroscience and neuroinformatics to support the efficiency of
the research in the field.

Coordinating activities in neuroinformatics are led by INCF
that develops and maintains database and computational infras-
tructure for neuroscientists. Software tools and standards for
the international neuroinformatics community are being devel-
oped through the INCF Programs, which address infrastruc-
tural issues of high importance to the neuroscience commu-
nity (INCF, 2013). To enable collaboration between researchers
through the sharing of neuroscience data, INCF introduced the
INCF Dataspace (INCF Group, 2013). It associates INCF nodes
data sources in a distributed system based on iRods solution.
Technically, data are managed locally by individual nodes and
connected using catalog servers. From a user perspective it works
as a large data file system accessed through a web interface. In
other words, all these zone servers, connected resources, and
hosted datasets build a distributed network of shared data.

In electrophysiology (and in neurophysiology in broader
sense) we can also find activities focusing on building larger soft-
ware and/or hardware infrastructures. These activities, carried
out by universities, research institutions and private companies,
include cooperation of various hardware devices supported by
related software tools in laboratories, definition of data formats,
solutions for storing, managing, and sharing data and metadata,
and development of methods and workflows for data processing,
visualization and interpretation. Finally, more complex, usually
web based solutions then can serve as virtual laboratories. The
following parts of this section introduce some of the various
approaches and activities that contribute to building infrastruc-
tures in electrophysiology (neurophysiology). More complex and
already existing infrastructures are also mentioned.

The description of the electrophysiological domain (and
description of any domain in general) could be provided at differ-
ent levels of abstraction and includes both cooperating and com-
peting techniques and approaches (e.g., classical data modeling
vs. ontological modeling). Moreover, various physical repositories
are used to store domain data and metadata. Then various pro-
graming languages, coding and architectural styles, technologies,
and software tools are used to process these data and metadata.
Since it is out of scope of this paper to focus on and describe
the differences and relationships between various techniques and
approaches, the following selection just introduces well known
approaches and activities.

Open Metadata Markup Language (odML) (Grewe et al.,
2011) is a flexible and unified metadata format for annotation
data in neurophysiology. This language defines terminologies
for the domain, but simultaneously is extensible and flexible
for science that continually changes, and does not restrict the

user by requiring entries. It increases its potential to become
an exchange/sharing format for electrophysiology data. Metadata
stored in odML are linked to the related data, for which a suitable
exchange/sharing format is also looked for. Currently, great deal
of attention is paid to HDF5 (Hierarchical Data Format) (HDF
Group, 2013), or similar formats based on HDF5 (e.g., epHDF).
HDF5 is a data model, library, and file format for storing and
managing data. It supports an unlimited variety of data types,
and is designed for flexible and efficient I/O and for high vol-
ume and complex data. NoSQL document databases, due to their
flexibility, are also very promising for long term storage of electro-
physiological data and metadata. We tested StorageBIT (Carreiras
et al., 2013) that combines HDF5 and MongoDB. HDF5 ensures
data persistency while MongoDB is a front end for data access.
Our tests (Jezek et al., 2014) proves that MongoDB is equiva-
lent to relational databases from the performance point of view.
Moreover it provides a better flexibility.

One of the leading initiatives for data sharing is the
Neuroscience Information Framework (NIF, 2013) as a dynamic
inventory of registered web-based neuroscience resources (data,
materials, and tools). NIF enables access to public research data
and tools through an open source environment (Gardner et al.,
2008). Currently, it is with more than 6,400 resources one of the
largest collection of neuroscience data. Each new resource has
to pass at least one of three levels of registration. These levels
specify depth of resource integration into NIF; level 1 provides
information about the resource, level 2 provides direct access to
resource’s web services, and finally, the resource is sustained by
an ontology at level 3. G-Node data management platform is a
sharing facility that allows data organization, annotation, access
and sharing. All can be managed via web-based interface as well
as via RESTful API; access using an external application is possi-
ble. G-Node provides Matlab and Python scripts clients (G-Node,
2013).

In addition to a proper data and metadata format, ontologies
are also helpful for data sharing. Significant representatives of bio-
ontologies dealing with neurophysiology and electrophysiology
are Neural Electro Magnetic Ontologies NEMO (Dou et al., 2007)
and the Ontology for Biomedical Investigations OBI (Brinkman
et al., 2010). The ontology built within the NEMO project pro-
vides formal semantic definitions of concepts in ERP research,
including ERP patterns, spatial, temporal, functional (cogni-
tive/behavioral) attributes of these patterns, data acquisition and
analysis methods (Dou et al., 2007). OBI is an ontology for
biological and clinical investigation description. Its terminology
contains domain-specific terms and universal terms for general
biological and technical usage. Finally, the ontology will represent
the design of an investigation, the protocols and instrumentation
used, the material used, the data generated and the type analysis
performed on it (Brinkman et al., 2010).

Methods, techniques and tools for ERP signal processing are
also a very important part of the software infrastructure in elec-
trophysiology. The standard approach for event-related potential
(ERP) signal processing can be divided into following steps:
analog to digital conversion, filtering, segmentation, latency cor-
rection, averaging, and methods for detection and analysis of
ERP components. As a result, a set of parameters describing
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ERP components is obtained. From this result, useful informa-
tion about the medical condition of the measured subject can be
determined. (Picton et al., 1995; Luck, 2005). Proven techniques
for ERP signal processing include wavelet transform (Quiroga
and Garcia, 2003), matching pursuit (Aviyente et al., 2006),
Independent Component Analysis (ICA) (Makeig et al., 1997),
Principal Component Analysis (PCA) (Dien, 2012), and Hilbert-
Huang transform (HHT) (Cong et al., 2009). For subsequent clas-
sification, Linear Discriminant Analysis (LDA), Support Vector
Machines (SVM), and multi-layer perceptron are among the most
frequently used methods (Lotte et al., 2007).

Different signal processing tools have been used for event-
related data potential data processing within neuroinformat-
ics community. Matlab (MATLAB, 2012) is the most popular
since it is easy to use and implements many signal process-
ing methods—either in its core (e.g., temporal filtering, FFT),
or in default toolboxes (wavelet transform, matching pursuit,
etc.). Furthermore, EEGLAB (Delorme and Makeig, 2004) can be
directly used for the analysis of EEG/ERP experiments. EEGLAB
is an interactive Matlab toolbox for continuous and event-related
neurophysiological data processing. It allows researchers to load
data in various formats, to extract epochs using stimuli mark-
ers, to remove artifacts (e.g., by using ICA), etc. The BrainVision
Analyzer (BrainProducts, 2012) is a complex tool for neurophys-
iological data analysis. It provides an easy-to-use user interface,
multiple import and export features, different views for visual-
ization, and methods for signal processing and analysis. EEGVIS
(Robbins, 2012) is a MATLAB toolbox that allows users to quickly
explore multi-channel EEG and other large array-based data sets
using multi-scale drill-down techniques. This toolbox can be used
directly in MATLAB at any stage in a processing pipeline, as a
plug-in for EEGLAB, or as a standalone precompiled application
without MATLAB running.

The CARMEN project (Carmen, 2013) is an effort to create a
virtual laboratory. It allows neuroscientists to share and exploit
data, programs (services) and expertise from neurophysiological
experiments. Neural activity recordings (signals and image series)
are the primary data types. The CARMEN Portal is a web interface
onto the CARMEN system accessed via a standard web browser
that provides users with access to the computer and data storage
resources. The project also developed a workflow generation and
execution system within the platform. The Java-based CARMEN
Workflow Tool consists of a graphical design tool, a workflow
engine, and access to a library of CARMEN services and common
workflow tasks. It supports both data and control flow, and allows
parallel execution of services (Carmen, 2013).

Several initiatives and/or pilot studies also try to provide
a solution for researchers to efficiently work out of labo-
ratories using portable devices as laptops, tablets or mobile
phones. Clinician Assessment and Remote Administration Tablet
(CARAT) (Turner et al., 2011) is a Microsoft Windows tablet
adapted to collect and administer clinical assessments in large
scale demographic or neuropsychiatric studies. It uses an archi-
tecture with two modules. The first one set-ups the clinical study
while the second one serves to data collection. Collected data
are synchronized with a remote database. Research Electronic
Data Capture (Harris, 2012) (REDCap) is a software application

and workflow methodology designed to collect and manage data
for research studies. REDCap Mobile (Borlawsky et al., 2011)
is a solution that describes encrypted laptops with a push-pull
relationship to the centralized REDCap database to allow data
collection while off-line. Such solution is suitable in studies that
need to be performed on places without an internet access as
hospitals or jails.

Devices for presenting and synchronizing stimuli and
responses to them are also an important part of the infrastruc-
ture in electrophysiology. Hardware and software stimulators are
produced and sold by multinational companies Metrovision, LKC
Technologies, Grass Technologies, Inomed and Neurobehavioral
systems. Their production is usually very specific and intended
for medical purposes.

2.2. OVERALL ARCHITECTURE
The overall architecture of the software and hardware infras-
tructure for research in electrophysiology comes from the set
of the main activities performed by researchers during elec-
trophysiological experiments. First, hypotheses and design of
protocols for specific experiments are done. Then experiments
are performed according to defined scenarios (protocols) and
data and related metadata are collected. During the experiment
the EEG signal obtained from the scalp of the tested subject
is synchronized with presented stimuli. Second, the data are
analyzed using various processing methods. Then, the data are
interpreted and the results are published. The biggest obstacles
for science are the following: since data are not well-described,
conclusions and interpretations cannot be later reproduced or
verified. The methods used for data analysis are lost or their
detailed parameters are not later traceable. To solve these diffi-
culties, initiatives as (Teeters et al., 2008) have been established
to support experimental data sharing. The development of the
complex infrastructure for experiments in the EEG/ERP domain
contributes to international efforts in the electrophysiology
domain. An overall architecture of this infrastructure is shown in
Figure 1.

The basic aim of this infrastructure is to increase effective-
ness and efficiency of scientific research in the field. The central
point of the infrastructure, the EEG/ERP Portal (EEG/ERP Portal,
2013), is a service providing interface to human users and soft-
ware tools. The main features of this service include long-term
and sustainable storage of data and related metadata collected
from experiments, various methods and workflows for data pro-
cessing, and sharing of data, documents, methods and workflows
in groups.

An initial idea of this infrastructure was particularly described
in Jezek et al. (2013b). Besides a classical web based interface
intended for human readers several communication interfaces for
external tools have been implemented. Standalone tools including
JERPA, offline and mobile version of the EEG/ERP Portal, or tools
for signals visualization communicate with the EEG/ERP Portal
using web services. Other tools as a Semantic Framework are
implemented as libraries integrated directly within the EEG/ERP
Portal. A substantial part of a complex infrastructure is created
by several third-party hardware devices and software tools. These
devices and tools are controlled by the experimenter who interacts
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FIGURE 1 | Overall architecture (Jezek et al., 2013b). ∗Means “many” (0-n occurrences) relationship.

with the EEG/ERP Portal using a web browser on a standard
computer, or using a mobile version of the EEG/ERP Portal.

2.3. EEG/ERP PORTAL
The EEG/ERP Portal is a mature web-based system that enables
researchers to upload, download and manage EEG/ERP experi-
ments (data, metadata, experimental scenarios, etc.) (Jezek and
Moucek, 2012b). The features of the EEG/ERP Portal also include
sharing of knowledge, working in research groups, manage scien-
tific discussions, run methods for signal processing, etc.

Different users have different roles in the system and the
related level of authority. The users’ credentials are required when
users access the system. Individual users are grouped into self-
managed groups. The user who wants to upload or download
experiments has to be registered within the system and has to
become a member of at least one group. On the basis of activities
that the user can perform, several user roles are defined (Reader,
Experimenter, Group Administrator, and Supervisor).

A simple wizard that guides the logged user through the pro-
cess of adding an experiment facilitates upload of an experiment.
Each experiment contains raw data supplemented by related
metadata. A set of metadata which the user is instructed to fill
in through the prepared forms is defined. These metadata are

organized in semantic groups (experimental protocol, experi-
menters and tested subjects, used hardware, description of raw
data, etc.) in accordance with an internal ontology initially pre-
sented in Jezek and Moucek (2011b). The experimenter can also
decide if the experiment is private or public. Public experiments
are downloadable for all registered users (without personal data of
tested subjects), while private experiments are downloadable only
within the experimenter’s group. The functionality that includes
possibility to associate experiments into experimental packages is
in development. Individual packages can have a different access
level. Experiments in these packages can be managed in bulk. The
overall preview of the EEG/ERP Portal is shown in Figure 2.

Since the EEG/ERP Portal cooperates with a set of associated
submodules, several communication interfaces for external tools
have been designed and implemented. The tools can be divided
into two groups. The first group includes tools accessible through
an internet browser. These tools are implemented as stand-alone
libraries integrated within the EEG/ERP Portal directly. The most
important tool is the Semantic Framework (Jezek and Moucek,
2012a). The aim of the Semantic Framework is to provide experi-
mental metadata in the semantic web languages and technologies
(RDF, OWL). Data expressed in these languages and technologies
are readable by semantic reasoners.
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FIGURE 2 | EEG/ERP Portal Overview. The login page and the home page of a logged user are shown. The logged user can see summarized information
about his/her activities.

The second group of tools includes desktop or web-based
tools that run locally on the user’s computer. These tools access
data in the EEG/ERP Portal and these data are then processed
locally. The Electroencephalography Data Processor (EEG Data
Processor) (Jezek and Moucek, 2013b) is a system for running
methods for signal processing that enables a remote process-
ing of data from the EEG/ERP Portal. The methods for sig-
nal processing are installed as plug-ins. Data can be uploaded
directly using the web interface, or through the web service
endpoint.

2.4. DATA MODELS AND ONTOLOGIES
The data model of the EEG/ERP Portal was first proposed in
2008 and since then has changed several times. Currently the core
ERA model contains more than 70 tables. However, the flexibility
of the data model and possibility to share data within commu-
nity are still more important in recent years. Then, the main
goal of data model improvement and ontology development is to
increase data sharing abilities of the Portal. Currently, ontologies
have become not only recommended but even required domain
descriptions (e.g., NIF third level registration requires an onto-
logical description). Besides existing projects a new Ontology for
describing Experimental Neurophysiology (OEN) (Bruha et al.,
2013) is being developed. The group working on the development
of this ontology was formed from the members of the following
initiatives:

• EEG/ERP Portal (EEGBase) (http://eegdatabase.kiv.zcu.cz/
home.html)

• G-Node (www.g-node.org)
• INCF Task Force on standards for sharing of electro-

physiology data (http://www.incf.org/programs/datasharing/
electrophysiology-task-force)

• NIF (www.neuinfo.org)
• Neuroelectro.org (www.neurolectro.org)

The group follows the best practices for creating ontologies, for
example, it cooperates with community of researchers who design
and create ontologies, uses existing data formats and repositories
(odML, HDF5), and reuses existing resources (terms, ontologies -
NEMO, OBI). For the general description of experimental neu-
rophysiology, the terms from ontologies NEMO and OBI are
relevant. However, the set of the domain terms is still not com-
plete in these ontologies (information stored in the EEG/ERP
Portal cannot be fully described by these ontologies) and OEN
will be finally an extension of OBI (e.g., the granularity of OBI for
devices and related information will be extended).

Currently, the development of OEN has been separated into
two branches. The first branch deals with structured terminology
to annotate experimental metadata (e.g., devices or methods);
the second branch deals with structured terminology to annotate
experimental data (e.g., action potential). The knowledge model
of ’device branch’ is shown in Figure 3.
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FIGURE 3 | Device knowledge model (Bruha et al., 2013).

Terminologies within OEN have been primarily developed
in the odML format. Subsequently, an OWL file has been con-
structed aided by Ontofox (Xiang et al., 2010). The current
developer’s version of OEN is available at https://github.com/
G-Node/OEN.

To define the terms and to create the ’device branch’ of OEN
the following schemas that describe the elements of experimen-
tal setups and interactions between these elements were used:
the experimental setup for investigation of driver’s attention
(Figure 4), experimental setup for performing traditional oddball
experiment, and experimental setup for investigation of mouse
visual cortex. Based on these schemas the preliminary knowledge
model representing the experimental setup has been constructed.
This model can be used to annotate the EEG/ERP Portal.

2.5. SIGNAL PROCESSING METHODS
A subset of signal processing methods suitable for ERP waveforms
detection and classification, alternatively for clustering the feature
vectors extracted from ERP signal was investigated, modified and
implemented by the members of our research group. These meth-
ods can be run as web services within the Electroencephalography
Data Processor.

Hilbert-Huang transform [HHT, see (Huang et al., 1998)
for details] is a signal processing method designed especially
for non-linear non-stationary signals. It consists of empirical
mode decomposition (EMD) and Hilbert spectral analysis (HSA).
During the process called sifting EMD decomposes signal to
intrinsic mode functions (IMF) and residue. HSA computes an
analytical signal from IMF and then analytical signal instanta-
neous attributes. Original HHT algorithm is not fully suitable
for EEG signal processing, because EEG is a quasi-stationary sig-
nal. In Ciniburk (2011) we introduced the way HHT can be used
for ERP waveforms detection. In Prokop (2013) we introduced
particular improvements of the classifiers for ERP waveform
detection that work with HHT results. Currently, the classification
reliability of the ERP detection by the modified HHT is compa-
rable with continuous wavelet transform and matching pursuit
algorithm (see Ciniburk, 2011).

The traditional matching pursuit algorithm (MP) as proposed
by Mallat and Zhang (1993) is suitable for EEG/ERP signal pro-
cessing because the subset of atoms from the Gabor base is
correlated with ERP components Benar et al. (2007). However,
the computational complexity of its brute force implementation
is challenging for on-line calculations. One of the most promising

implementations (Ferrando et al., 2002) is based on restricting the
combinations of Gabor parameters that need to be used for scalar
product calculations, an approximation of the original signal. We
showed that MP with GD can be used as a suitable preprocessing
method for the task of ERP detection based on a classifier which
works with Vigner-Wille transform of MP result. We identified
a few issues which led to false positive/negative ERP waveform
detection results and solved some of them. In Rondik (2010) we
based the classification on correlation between a model of ERP
waveform and a signal reconstructed from significant atoms. We
also introduced solution for the case if an ERP component is
approximated by two or more atoms.

Various algorithms were investigated regarding their bene-
fits for off-line BCI systems, and ERP component detection.
For the P300 BCIs purposes, a multi-layer perceptron (MLP)
was used to classify the features obtained using matching pur-
suit (Vareka, 2012) and discrete wavelet transform (Vareka and
Mautner, 2013). For the MLP design, one hidden layer was used
and the number of neurons was optimized using a validation
dataset. The main goal of the research was to evaluate if the multi-
layer perceptron is suitable for the P300 detection and to find
the architectures and training algorithms that perform compa-
rably well for this task. We were able to prove on the off-line
dataset that the trained MLP neural network with the architecture
described in Vareka (2012) is able to detect the P300 component
as successfully as other state-of-the-art classification approaches.

Neural networks have also been used to cluster the feature vec-
tors that were extracted from the ERP signal. The ERP signal
reflects not only ERP components, but also artifacts and back-
ground EEG activity. The objective was to analyze the signal and
to try to separate different waveforms without using reliable but
computationally complex Independent Component Analysis as
proposed in Makeig et al. (1997). Furthermore, since the latency
of ERP components may vary for different subjects, or stimu-
lation protocols (Luck, 2005), the method can also be used to
cluster the feature vectors assigned to a specific ERP component
to further analyze how the component might be affected by exter-
nal factors or disease. In Vareka and Mautner (2012), the features
were extracted from the signal using matching pursuit (Mallat
and Zhang, 1993). The ART 2 neural network (Carpenter and
Grossberg, 1987) was used to cluster the ERP features. The opti-
mal adjusting parameters for the ART 2 neural network were
found. As a result, the traditional ART 2 network was proven
to be useful for our experiments. The proposed architecture is
described in more detail in Vareka and Mautner (2012).

2.6. WORKFLOWS
Data obtained from electrophysiological experiments are ana-
lyzed using various preprocessing and processing methods, some
of them are described in Section 2.5. However, there is usually a
need to use more than one method for analysis of the EEG/ERP
signal. Therefore, we provide an opportunity to define work-
flows for complex analysis of experimental data. In our domain, a
workflow includes a complex set of analytic methods that process
experimental data sequentially or in parallel. It is organized as a
tree structure, where each branch of the tree has the same mean-
ing as a pipe in Linux; an output of the method serves as an input
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FIGURE 4 | Drivers attention experimental setup (Bruha et al., 2013).

of the next method. The whole workflow process is divided into
simple tasks—work steps. The work step includes one analytic
method and requires following information (Mrvec, 2013):

• Name - identification of a work step
• Format - used data format as an input to a method
• Store - a decision, whether a result from a previous method

should be stored
• Data - an input to a method e.g., data files or a name of

previous workstep
• Method - a name of the used method with its parameters

A work unit representing a sequential workflow is composed of
work steps. This solution allows creating more workflows with
the same or different input data.

2.7. MOBILE AND OFFLINE PORTALS
The advantage of the EEG/ERP Portal is its accessibility from all
computers connected to the Internet. Such solution is sufficient
for collecting experiments performed in the laboratory. On the
other hand, situations when a standard computer is not available
are frequent. It includes situations when experiments are con-
ducted outside the laboratory using a portable measuring device.

In this case paper forms that are backward transferred to a central
database are used. This process can be cumbersome, confusing,
and error-prone. In addition, when data are collected electroni-
cally, they can be validated at the time of collection. It protects
making logical errors or notational problems, and ensures that
the required forms are complete.

Another use case is a situation when a researcher discusses
experimental results with colleagues at workshops. He/she prob-
ably does not have desired data on hand. A mobile device used
in everyday life, such as a mobile phone or tablet seems to be a
practical solution for presenting experimental data.

With regards to the mentioned needs and difficulties a sys-
tem for collecting experimental data/metadata running on mobile
devices has been developed. The aim of this system is to serve as
a mobile version of the EEG/ERP Portal. This mobile portal pro-
vides similar functionality as the common EEG/ERP Portal. The
data from this device are synchronized with the data stored in
the EEG/ERP Portal. This solution significantly reduces the usage
of paper forms during experimenting. A preview of the mobile
EEG/ERP Portal is shown in Figure 5.

An offline EEG/ERP Portal is a next useful system developed
outside the EEG/ERP Portal. It is designed to be installed on
computers or laptops without a permanent internet connection.
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FIGURE 5 | The mobile system preview. The print screen shows a list of
available scenarios. When a user clicks to a specific scenario, a detail piece
of information appears. The top bar allows users to add a new scenario
(using “+” button), search existing items (using magnifying glass), or
refresh the list.

The offline EEG/ERP Portal became a part of the JERPA software
tool (Jezek and Moucek, 2011a)—a desktop system for running
signal processing methods and signal visualization. This system
contains a powerful plug-in engine that enables installing sig-
nal processing methods as plug-ins. A server-client approach is
used. A module that ensures an online access to experimental data
stored in the EEG/ERP Portal implements a web service client.
The EEG/ERP Portal represents the server side. Downloaded
data are stored in an embedded database and they are avail-
able when the system gets offline. When a new experiment is
added, it is synchronized with the EEG/ERP Portal when the sys-
tem returns online. The stored data are ready to be processed by
installed methods. An overview of the JERPA system is shown in
Figure 6.

2.8. PROGRAMMABLE HARDWARE STIMULATOR
A programmable hardware stimulator was designed and devel-
oped for EEG/ERP experiments performed in our neuroinfor-
matics laboratory. The main idea was to have a portable device
which was very easy to use and did not require another hardware
device (PC or laptop) needed for experiments. In addition, we
also wanted to compare the results (e.g., timings and delays) from
experiments in which a software stimulator had been used with
the results from experiments in which a hardware stimulation
device had been used.

To design and construct a first prototype we used a simple 8-
bit microcontroller with an interrupt based firmware which works
as a timed LED driver. The basic structure can be seen in the
block diagram in Figure 7. This implementation was expanded
step by step with different features like LED brightness, scalable
distribution schemas, and new experiments predefinitions.

The finalized version provides a fully programmable setting
of stimuli parameters in two scenarios. The first scenario is an
implementation of the oddball protocol and the second scenario
enables multi-source frequency stimulation. A simple GUI and
serial port communication protocol were implemented.

At the moment we are working on a new version of the stim-
ulator based on experience gained by using this prototype during
experiments. It will provide a more comfortable user interface,
a broader opportunity to set parameters for EEG/ERP experi-
ments, and new possibilities in stimuli generation for auditory
stimulation protocols.

3. RESULTS
This section provides information about the current state of the
proposed infrastructure and some implementation details of the
parts of the infrastructure described in Section 2.

3.1. EEG/ERP PORTAL
The EEG/ERP portal is a central point of the complex archi-
tecture presented. It is a powerful tool intended to serve to a
wide researcher’s community. It facilitates management of exper-
imental data; provide an interface for accessing them, and due
to well-defined ontology it significantly helps in interpretation of
experimental data. The portal interface is suitable not only for
human readers who access it using a web browser, but due to an
advanced web service endpoint it can be easily integrated with
complementary tools. Such infrastructure is ready to be used not
only in our laboratory but also by other interested researchers.

A core of the EEG/ERP Portal creates the Spring framework
(Walls, 2011) that provides a comprehensive programing and
configuration model for Java-based enterprise applications. The
data layer of the EEG/ERP Portal uses the Oracle database sys-
tem (Greenwald et al., 2007). The Hibernate framework (Bauer
and King, 2006) ensures persistence of data transferred between
the database and a Java-based application layer. The presenta-
tion layer is created by the Apache Wicket framework (Dashorst
and Hillenius, 2008) that facilitates implementation by a system
of reusable components written with plain Java and HTML. The
privacy of stored data and integration with social networks as
LinkedIn or Facebook are ensured by subcomponents of Spring:
the Spring security framework and the Spring social framework.
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FIGURE 6 | JERPA overview.

FIGURE 7 | Block diagram of the stimulator.

The Spring security framework uses a XML-based configuration
for an authorized access to individual web pages. The Spring
social framework provides a unified API to access various social
networks.

The main integrated tool, the Semantic Framework (described
in Section 2.3), is being developed as a single library. From
the user’s perspective, it is used as a black box with the input
in the form of a collection of Java persistent objects and the
output in the form of an ontology document. The ontology
document can be serialized into several supported syntaxes [cur-
rently RDF/XML (W3C Consortium, 2004), OWL/XML (Motik
and Patel-Schneider, 2008), Turtle (W3C Consortium, 2008), and
abbreviated OWL/XML formats are supported]. The Semantic

Framework is controlled by a build-in timer. The timer calls the
Semantic Framework API in regular intervals. The API generates
the ontology document from the stored experiments and saves
this document to a temporary file. When any document request
appears, the temporary file containing the current set of stored
experiments is immediately available.

External tools work independently of the EEG/ERP Portal. The
EEG/ERP Portal provides an interface for accessing stored experi-
ments using Web Services technology; RESTfull (Richardson and
Ruby, 2007) and SOAP (Snell et al., 2002) web services are used.
These web services are secured by user credentials and provide
several methods to access user’s experiments including raw data,
metadata and experimental scenarios. An interested client only
implements a web service client. Several tools presented in this
paper such as the offline EEG/ERP Portal or mobile EEG/ERP
Portal implement the web service client to access experimental
data and so prove the validity of the approach presented.

3.2. DATA MODELS AND ONTOLOGIES
The EEG/ERP Portal was registered as a neuroscience resource
within the NIF at the level 2.5; this level allows users direct access
to the services implemented within the EEG/ERP Portal. Privacy
and security of the stored data are guaranteed by data and meta-
data anonymization. Currently, the data about tested subjects,
raw experimental data, data related to used hardware, experimen-
tal protocol (scenario), and other experimental parameters (e.g.,
length of recording) are accessible via NIF (Bruha and Moucek,
2012). The Portal is intended to be registered at the 3rd level
of NIF registration schema. This step will be accompanied by
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Mouček et al. Infrastructure in electrophysiology

the annotation of the Portal data and metadata using the OEN
ontology.

Figure 8 shows how to describe the experimental set-up using
terms (labels/names in bold) from OBI (obi_xxxxxxx), NEMO
(NEMO_xxxxxx), OEN (oen_xxxxxxx) and relations (dashed
arrow, label, and id) (Bruha et al., 2013).

3.3. SIGNAL PROCESSING METHODS
From researchers’ point of view, our signal processing meth-
ods infrastructure consists of the following commercial ele-
ments: MATLAB (including EEGLAB Delorme and Makeig,
2004 plug-in) MATLAB (2012), the BrainVision Recorder and
the BrainVision Analyzer applications (BrainProducts, 2012).
Furthermore, the following elements of our infrastructure are
freely available: Lastwave (Bacry, 2012), JERPA (Jezek and
Moucek, 2011a), the EEG/ERP Portal, the EEGDSP java library
(described below), and the EEG Data Processor (Jezek and
Moucek, 2013b). Figure 9 shows this infrastructure including
relationships between the elements.

Researchers can access and work with all elements except the
EEG amplifier and the EEGDSP.jar library. The reason is that both
of them need an interface that provides them functionality. In case
of the EEG amplifier, the interface is the Brain Vision Recorder.
In case of the EEGDSP.jar library, the interface is the EEG Data
Processor or all programing languages which can call external Java
libraries.

The EEGDSP library was implemented in the Java lan-
guage and includes basic methods and approaches for dis-
crete signal processing: wavelet transform, matching pursuit
algorithm, fast ICA, FIR filters (low pass, high pass, band
pass, band reject), window functions (BarlettHann, Barlett,
BlackmanHarris, BlackmanNuttalll, Blackman, Bohman, Cosine,
FlatTop, Gauss, Hamming, Hanning, Kaiser, Lonczos, Nuttall,
Parzen, Rectangular, Triangular, and Tukey), and Hilbert-Huang
transform. The implementation of the Hilbert-Huang transform
uses the modified HHT algorithm (Section 2.5) to detect ERP
components in the EEG signal (there was no free or commercial
library with implemented modified HHT before). To facilitate the
usage of the discrete signal processing methods by researchers and
services, the application Electroencephalography Data Processor
(Section 2.3) was implemented. The data processing feature is
powered by the EEGDSP library.

3.4. WORFLOWS
The workflow management system is currently under develop-
ment. Any workflow is described by an XML file. We chose the
XML format since it is independent of the used platform and pro-
gramming language. An example of the workflow description is
given below (Mrvec, 2013).

<?xml version="1.0" encoding="UTF-8"?>
<workflow name="Workflow">
<workunit name="Experiment1">
<workstep name="SimpleFile" format="KIV_FORMAT"

store="false">
<data>data1.eeg</data>
<data>data1.vhdr</data>
<method params="01,100,Cz,FAST_DAUBECHIES_2">

DWTPlugin-1.0.0</method>

</workstep>
<workstep name="SimpleDouble" format="DOUBLE_FORMAT"

store="true">
<data>Experiment1_SimpleFile</data>
<method params="01,1000,Cz,COMPLEX_GAUSSIAN,

1,1,1,14000,14000">
CWTPlugin-1.0.0
</method>

</workstep>
</workunit>
<workunit name="Experiment2">
<workstep name="SimpleFile" format="KIV_FORMAT"

store="true">
<data>data2.eeg</data>
<data>data2.vhdr</data>
<method params="01,100,Cz,FAST_DAUBECHIES_2">

DWTPlugin-1.0.0</method>
</workstep>

</workunit>
</workflow>

This XML file is generated while the user creates a workflow
(he/she selects methods, defines values of their parameters, and
puts them into analytic pipelines). When the user finishes his/her
workflow, the XML file is transferred to a processing unit that is
responsible for parsing the file and calling required methods. This
approach allows changing a source of analytic methods (e.g., EEG
Data Processor, Matlab scripts, or local libraries) without chang-
ing a generation process of the descriptive file. It is only necessary
to change the processing unit and a graphic user interface.

Since the used analytic methods have various input/output
parameter types, it is necessary to ensure their compatibil-
ity in sequential workflows. It means that the output from
a previous method and the input to a next method must
match. We ensured the syntactic compatibility by comparison of
input/output parameters types. Each used method has a defini-
tion of input/output parameters by the XML file attached to the
methods.

However, for well-designed workflows, ensuring syntactic
compatibility is a necessary, but a single step. The used methods
have to be also connected correctly in terms of their semantics (if
their connection makes sense or not). Therefore, we will focus on
designing the semantic compatibility in the future.

3.5. MOBILE AND OFFLINE PORTALS
Because of difficulties with unavailability of standard comput-
ers in many environments we developed a mobile version of
the EEG/ERP Portal that is able to fully substitute the EEG/ERP
Portal when experiments are performed outside the laboratory.
This solution profits from rising popularity of mobile devices
such as tablets or mobile phones. The presented implementation
can be extended to enable work with other electrophysiological
databases. It will result in a domain independent system using a
customizable user layout.

When the user works on a portable device as a laptop in
environments when the internet connection is not available (as
hospitals or other institutions outside the laboratory), the offline
version of the EEG/ERP Portal is available.

From the implementation point of view, the mobile EEG/ERP
Portal contains a set of forms where the user can fill in metadata
describing an experiment. The set of metadata is equivalent to
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FIGURE 8 | EEG/ERP Portal device knowledge model (Bruha et al., 2013).

FIGURE 9 | Signal processing within the infrastructure.
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the set of metadata that the user can fill in the common EEG/ERP
Portal. The communication of both the mobile EEG/ERP Portal
and web EEG/ERP Portal is ensured using RESTfull web services.
Server-client architecture is used. The server part is implemented
in the EEG/ERP Portal. The server provides access to the database
and sends data to the client implemented inside the mobile
device. The communication between the server and client is
secured using the SSL protocol. User credentials are required; the
EEG/ERP Portal user account is used to verify the client (Jezek
and Moucek, 2013a).

3.6. PROGRAMMABLE HARDWARE STIMULATOR
The hardware stimulator described in Section 2.8 was designed
and tested for elicitation of the visual P3 component. The
arrangement of a typical experiment and connection of the devel-
oped stimulator to the ERP recording system are presented in
Figure 10. The standard oddball task was used to verify the func-
tionality of the proposed hardware stimulator. In this task, red
and green LEDs representing non-target and target stimuli were
randomly switched on and off for a period of 0.5 s. The probabil-
ity of the target stimuli (i.e., the green LED was switched on) was
set up to 0.2. Currently, the hardware stimulator was successfully
used for stimulation of 15 tested subjects.

3.7. SOFTWARE TOOLS LICENCE INFORMATION
The tools developed at our department, including the EEG/ERP
Portal, the mobile EEG/ERP Portal and the Semantic Framework,
are distributed under the Apache License 2.0. The EEGDSP
library, JERPA, and the EEG Data processor are distributed
under the GNU General Public License v.3. All the tools
mentioned above are hosted in GitHub repositories. The
EEG/ERP Portal is available under the INCF group at https://
github.com/INCF/eeg-database. The EEG/ERP Portal is run-
ning on http://eegdatabase.kiv.zcu.cz. The following libraries,
including the EEGDSP library, JERPA, the mobile EEG/ERP
Portal and the Semantic Framework are hosted under the
neuroinformatics group and available at https://github.com/
NEUROINFORMATICS-GROUP-FAV-KIV-ZCU.

4. DISCUSSION
There are a lot of difficulties with collection, storage, manage-
ment and interpretation of electrophysiological experimental data
and metadata. Any complex software and hardware infrastructure

supporting research and researchers in this field can contribute to
efficiency and effectiveness of researchers’ work.

This paper shortly introduced the infrastructure for research
in electrophysiology that has been continuously built in the neu-
roinformatics laboratory at the Department of Computer Science
and Engineering, University of West Bohemia. Over time the parts
of the infrastructure have become more general with the poten-
tial to serve to the wider scientific community. Of course, there are
still many infrastructural parts that need to be changed, finished
or even only properly designed.

The central point of the described infrastructure, the EEG/ERP
Portal, serves as a data management tool that provides services for
other supplementary tools. Because the relational database is cur-
rently used as persistence storage, we are facing difficulties with
storing heterogeneous experimental data. Our next step leads to
the usage of a NoSQL database instead of the relational one.
Currently we test Elasticsearch for its full text search capabili-
ties. The future direction is to provide a domain independent
metadata structure that enables to store various experimental data
from laboratories.

Because some experiments are conducted outside the lab-
oratory, the mobile version of the EEG/ERP Portal was pre-
sented. In response to positive feedbacks the next significant
step is to provide an extension of this system independent
of the EEG/ERP Portal. Such extended system will com-
municate with other domain independent electrophysiological
databases. The layout of this system will be generated auto-
matically as proposed in Jezek et al. (2013a). odML as a uni-
fied metadata format will ensure a server-client data transfer.
Using a NoSQL database also means to modify the supple-
mentary tools, the offline EEG/ERP Portal, and the JERPA
system.

The ontology development was first focused on the exper-
imental data and metadata stored in the EEG/ERP Portal.
Currently, the emerging OEN ontology is not a specific ontol-
ogy describing just the data and metadata stored in the EEG/ERP
Portal; its concept is open for any neurophysiological needs.
Nevertheless, the EEG/ERP Portal will be the first use case fully
described by this ontology. This will also help to fulfil NIF
requirements for the registration at the 3rd level of the NIF por-
tal. Then the data and metadata from the EEG/ERP Portal will be
fully accessible to other communities and research groups via the
NIF interface.

FIGURE 10 | Experimental usage of the programmable hardware stimulator.
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Various tools for EEG signal processing have been used by
our research group. Certainly, researchers would benefit from a
possibility of having all methods at the same place. The EEG
Data Processor seems to be an appropriate solution. However,
there are some issues to be solved. We are not able to imple-
ment all methods that researchers need. Therefore, we plan,
according to the best principles in software engineering, to
implement a common interface which encloses the implemented
methods and gives researchers a unified way to use them on
a source code level; then it is easy to include custom meth-
ods into the EEGDSP implementation. In the medium term,
we will focus on distributed computing as well as on load
balancing.

For a complex analysis, more methods are combined sequen-
tially or in parallel; the workflows are created. The presented
prototype of the workflow management system is still under
development. The proposed description of workflows and the
used XML language bring the independence of the methods used
and the programming language in which they are written. In the
future, the workflow system will be integrated into the EEG/ERP
Portal.

The programmable hardware stimulator is applicable to a
variety of experiments. The modular design of the firmware
allows users to modify stimulation protocols according to experi-
menters’ requirements easily. In the near future, a miniaturized
stimulator using 32bit MCU will be developed. Moreover, this
stimulator will allow users to apply a larger set of stimula-
tion methods and thus it can be used in a larger number of
experimental protocols (e.g., our research group plans to use
it for BCI experiments and for the stimulation of the mouse
brain).

We are aware that the current state of the infrastructure
is intended for storing, maintenance and analysis of EEG/ERP
waveforms and related metadata. On the other hand, long-
term work on this initial infrastructure has helped the research
group to understand heterogeneity of neurophysiological data,
limitations of the proposed methodology and also limitations
of used technologies. The future work of the research group
thus includes changes in methodological concepts (e.g., usage
of international standards for data formats and ontologies or
definition of a wider collection of use cases in neurophysiol-
ogy) and technologies (e.g., technological solutions supporting
more flexible organization of data). On the other hand, there
is also the danger that the proposed infrastructure could be
too general. It results in difficult implementation, configuration,
and too complex and demanding user interface. Aware of both
the difficulties and dangers, too high specialization and/or too
high abstraction of the system, the research group intends to
continuously improve the existing infrastructure for specific pur-
poses. In parallel, it plans to extend the ability of the existing
infrastructure to store and process a larger variety of neuro-
physiological data by following the international standardization
efforts and by respecting the needs of researchers. Some of
these methodological and technological steps (OEN ontology,
odML format, NoSQL database) are already described in this
article.

4.1. DATA SHARING
Our catalog server connected to INCF Dataspace and a node for
eeg/erp domain (a subnode of the catalog server) were estab-
lished. Specifically, the node named “cz.zcu.eeg” contains the col-
lection named “experiments” with a set of subcollections grouped
according to experimental scenarios. These subcollections con-
tain experimental data divided into individual sessions. Metadata
are stored in CSV files. The node server is synchronized with the
data in the EEG/ERP Portal in regular intervals using an imple-
mented timer. It ensures availability of up-to-date experimental
data. The data stored in the EEG/ERP Portal are also shared via
NIF.
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The behavior of neural circuits is determined largely by the electrophysiological properties
of the neurons they contain. Understanding the relationships of these properties
requires the ability to first identify and catalog each property. However, information
about such properties is largely locked away in decades of closed-access journal articles
with heterogeneous conventions for reporting results, making it difficult to utilize the
underlying data. We solve this problem through the NeuroElectro project: a Python
library, RESTful API, and web application (at http://neuroelectro.org) for the extraction,
visualization, and summarization of published data on neurons’ electrophysiological
properties. Information is organized both by neuron type (using neuron definitions
provided by NeuroLex) and by electrophysiological property (using a newly developed
ontology). We describe the techniques and challenges associated with the automated
extraction of tabular electrophysiological data and methodological metadata from journal
articles. We further discuss strategies for how to best combine, normalize and organize
data across these heterogeneous sources. NeuroElectro is a valuable resource for
experimental physiologists attempting to supplement their own data, for computational
modelers looking to constrain their model parameters, and for theoreticians searching for
undiscovered relationships among neurons and their properties.

Keywords: neuroinformatics, electrophysiology, database, text-mining, metadata, API, machine learning, natural

language processing

1. INTRODUCTION
Brains achieve efficient function through implementing a division
of labor, in which different types of neurons serve distinct func-
tional and computational roles. One striking way in which neuron
types differ is in their electrophysiology properties. Though the
electrophysiology of many neuron types has been previously char-
acterized and documented across decades of research, these data
exist across thousands of journal articles, making cross-study
neuron-to-neuron comparisons difficult.

Neurophysiology lacks a centralized resource where consen-
sus data on basic physiological measurements from many neuron
types and studies are accessible for reference and subsequent
meta-analyses. For example, though it is common for neurophys-
iologists to measure and report neuronal measurements such as
resting membrane potential and input resistance, there is not
a public database which compiles this information. In other
domains of neuroscience such efforts have made more progress.
In the domain of neuroanatomical connectivity, information on
connectivity between different brain regions is being compiled

by experts at the Brain Architecture Management System project
(BAMS) across thousands of publications (Bota et al., 2005).
Parallel to this effort is the WhiteText Project, which addresses
a complementary goal by algorithmically mining brain region
connectivity statements from journal abstracts using biomed-
ical natural language processing (bioNLP) methods (French
et al., 2009, 2012). Similarly, in the domain of neuroimaging,
the NeuroSynth Project has mined fMRI-based brain activation
maps from published x,y,z coordinate data tables from thou-
sands of neuroimaging publications (Yarkoni et al., 2011). These
literature-based methods can be contrasted with projects such
as NeuroMorpho.org (Parekh and Ascoli, 2013) and ModelDB
(Migliore et al., 2003; Hines et al., 2004), which index neuron
morphological reconstructions and computational models for
simulating neuron activity by obtaining this information directly
from investigators.

Success among these projects can be defined according
to different criteria. Such criteria include completeness and
comprehensiveness; for example, what percentage of relevant
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connectivity studies are indexed within BAMS? How many dif-
ferent neuron types are contained within the NeuroMorpho
database? Alternatively, success can be defined in terms of the util-
ity of these databases in driving subsequent research, like the use
of BAMS as a resource for discovering relationships between brain
region connectivity and gene expression (French and Pavlidis,
2011) or the use of NeuroMorpho to discover general scaling rela-
tionships among the morphologies of neuron types (Teeter and
Stevens, 2011). Similarly, NeuroSynth is widely used by cogni-
tive scientists as a starting point for designing functional imaging
studies. Thus while these projects are not yet comprehensive and
likely contain data records of varying quality, these resources may
nevertheless be employed to draw novel inferences.

These projects are logically divided according to their methods
for obtaining the source data: through the use of manual meth-
ods like expert curation or user contributions versus automated
methods such as text-mining. Notably, these approaches differ in
their scale and accuracy; while algorithmic methods can “scale-
up” and be applied to arbitrary numbers of publications, they
typically have a lower accuracy relative to human-curated content
(French et al., 2009). This lower accuracy is often attributed to the
rich lexical complexity of biomedical texts which often require
considerable context and background knowledge to understand
and parse (Dickman, 2003; Ambert and Cohen, 2012). The com-
peting constraints of scale versus accuracy pose a challenge for
large-scale compilation of neuroscientific data.

Here, we built a custom infrastructure framework for
extracting electrophysiological measurements for specific neuron
types from published neurophysiology articles. These measure-
ments included properties such as input resistance and resting
membrane potential, as well as associated metadata (i.e., article-
specific methodological details). Our methods combine algo-
rithmic literature text-mining, drawing from the approach used
by NeuroSynth (Yarkoni et al., 2011) where neurophysiological
measurements are primarily extracted from data tables, as well
as manual curation, leveraging the background knowledge of
domain experts. The resulting neurophysiology database, named
NeuroElectro, can be interactively viewed and explored through a
public web interface at http://neuroelectro.org.

2. MATERIALS, METHODS, AND RESULTS
2.1. OVERVIEW
We describe and validate our semi-automated methodology for
obtaining neuronal biophysical measurements directly from pub-
lished reports in the literature (summarized in Figure 1). After
obtaining full article texts from publishers, we then used text-
mining algorithms to identify concepts specific to electrophysi-
ology and neuron types, which we then validated manually.

2.2. ARTICLE IDENTIFICATION
We obtained electrophysiological data from 10 neuroscience spe-
cific journals (Table 1), which include: Journal of Neuroscience,
Journal of Neurophysiology, and Journal of Physiology (among
others). We selected these journals because they often devote a
significant fraction of an article’s main text, tables, and figures
to detailed characterizations and summaries of intrinsic neuronal
biophysical properties.

We obtained tens of thousands of potentially relevant full
article texts directly from publisher websites. We first identi-
fied potential articles that were likely to contain information
relevant to neuron biophysics using the native search func-
tions provided within the journal websites and only down-
loaded articles containing in their full text any of a specific
list of terms including “input resistance” and “resting mem-
brane potential” (Figure 1). This pre-selection step allowed us
to identify and download only articles that contained data rel-
evant to our project. Upon identifying candidate articles, we
then downloaded the full text of each potentially-relevant arti-
cle as HTML; articles downloaded from the publisher Elsevier
(e.g., Neuron and Brain Research) were downloaded as XML
using the provided text-mining API and subsequently con-
verted to HTML. We chose to work with HTML (as opposed
to PDF or XML) because HTML provides a machine-readable
markup of the article’s content, allowing us easily to identify
relevant elements within the article—such as data tables and
the Methods section—using publicly available HTML-parsing
tools (here we used the Beautiful Soup HTML-processing library
implemented in Python: http://www.crummy.com/software/
BeautifulSoup/bs4/doc/). Furthermore, because HTML is a sin-
gle semi-structured standard used across publishers, we could
write relatively generic HTML-processing algorithms applica-
ble to content published across journals. Our focus on using
HTML limits us to relatively newer articles—typically those pub-
lished after 1996—because before this time most publications
are only available as scanned PDF files. However, because the
rate of publication across the field has grown exponentially,
this HTML-available subset constitutes the majority of published
neuroscience articles.

We stored the HTML-enhanced full text of each article in
our database and associated each article with its correspond-
ing PubMed ID (http://www.ncbi.nlm.nih.gov). These 8-digit
IDs serve as publisher-independent unique identifiers for each
article, and allow us to use PubMed-specific tools, such as a
powerful API (i.e., PubMed eutils, http://www.ncbi.nlm.nih.gov/
books/NBK25500/). For example, this API provides the ability to
query each article’s MeSH terms (MEdical Subject Headings) and
returns basic methodological information such as animal species
and strain.

2.3. ELECTROPHYSIOLOGICAL PROPERTY IDENTIFICATION
2.3.1. Rationale for focusing on electrophysiological property

extraction from data tables
In order to algorithmically extract information on neuron elec-
trophysiology from these articles, we needed to first specify the
data types of interest. Our preference was to obtain as much
detailed information about neuron electrophysiological proper-
ties as possible: ideally, this would include raw data corresponding
to recorded electrophysiological traces. In mining information
from articles, we were presented with multiple options (illus-
trated in Figure 2), including extraction from: (1) the text of the
article including figure captions, (2) the figures of the article, or
(3) data tables presented within the article. In addition to these,
authors often submit supplemental materials and figures which
also contain neurophysiological data.
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FIGURE 1 | Illustration of workflow for obtaining electrophysiological information from the research literature.

Given the challenges in mining raw electrophysiological traces
from figure images, we instead focused on obtaining informa-
tion about basic neuronal electrophysiological properties, such
as input resistances and resting membrane potentials. Though
this information is often presented within the text of the arti-
cle, it is usually presented in complex sentence structures that
are difficult to accurately parse algorithmically. Published data
tables, on the other hand, present a unique opportunity for elec-
trophysiological data extraction, since common techniques exist
for extracting information from structured tables (Yarkoni et al.,
2011). Moreover, because tables succinctly summarize multiple
attributes of a collected dataset, the effort of an expert curator
can be put to best use when validating tables relative to validat-
ing content mined from article sentences or figure panels. While
we estimate that only 5–10% of electrophysiology articles contain
data tables, there is sufficient redundancy within the field (i.e.,
multiple investigators often publish articles on the same neuron
type) that focusing on data tables nevertheless yields substan-
tial coverage of electrophysiological properties across many major
neuron types.

2.3.2. Extracting information on electrophysiological properties
In extracting electrophysiological data, we took advantage of the
fact that certain measurements are commonly made during intra-
cellular recordings. For example, such recordings are commonly
used to: (1) measure a neuron’s resting membrane potential,
(2) apply hyperpolarizing current injections for measurement
of input resistance and membrane time constant, and (3) apply
depolarizing current steps to evoke action potentials (spikes) and
enable measurement of characteristics such as spike threshold,
width, and amplitude.

We developed an electrophysiological lexicon comprising 28
measurements that we found to be commonly reported in
the literature, largely based on previously published definitions
(Toledo-Rodriguez et al., 2004; Ascoli et al., 2008). To account for
subtle differences in terminology that authors use to refer to the
same electrophysiological concept (e.g., resting membrane poten-
tial is often referred to as “rmp” and “Vrest”), we also identified a
common list of synonyms to map to each concept. Together, these
electrophysiological concepts and their synonyms define a pre-
liminary ontology for electrophysiological concepts (included in
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Table 1 | Statistics of journals represented in the NeuroElectro

database.

Journal Articles obtained Validated Not validated

J. Neurosci. 19,002 104 560

J. Neurophysiol. 12,078 94 555

J. Physiol. (Lond.) 10,543 44 235

Neuroscience 3035 14 205

Eur. J. Neurosci. 2495 7 117

Brain Res. 3017 7 146

Neuron 1657 4 43

Epilepsia 463 2 23

Neurosci. Lett. 1468 2 34

Hippocampus 208 2 10

Listing of journals and counts of articles downloaded (articles obtained), articles

with published data tables containing neurophysiological information which has

been manually validated by an expert curator (validated), and articles which likely

contain information in a data table which has not yet been manually curated (not

validated). Not validated articles are those which have at least four algorithmically

assigned electrophysiological concepts within data tables.

Supplemental Materials). Moreover, this physiological measure-
ment ontology can serve as a scaffolding for a more in-depth
ontology of electrophysiological investigations (e.g., Ontology for
Experimental Neurophysiology, Bruha et al., 2013). The terms in
our preliminary ontology are also indexed and defined within
NeuroLex (http://neurolex.org, Larson and Martone, 2013).

To identify data corresponding to electrophysiological prop-
erties reported within a data table, we developed algorithms to
search data table header elements and assess whether these ele-
ments corresponded to any of the electrophysiological concept
synonyms in our ontology. We first identified table header ele-
ments by searching for table elements composed primarily of
non-numeric characters. For each putative header element, we
then used fuzzy string matching algorithms (implemented using
the fuzzywuzzy library in Python: https://github.com/seatgeek/
fuzzywuzzy), to assess the textual match between the header ele-
ment and each of the electrophysiological synonyms. These fuzzy
matching algorithms combine a number of string match met-
rics into a single “match value,” including whether a pair of
strings completely match, contain matching substrings, or con-
tain matching but misordered substrings. If the table header and
electrophysiological synonym match value exceeded a specified
threshold, the table header and corresponding row or column of
numeric values were automatically mapped to the electrophysio-
logical concept. Similarly, we mapped whole rows or columns to
specific neuron types recorded during normotypic or “wild-type”
conditions.

We then manually corrected cases where these algorithms mis-
assigned an electrophysiological concept. For example, a common
algorithmic mis-assignment was the case when an author used the
string “EPSP amplitude” to refer to the electrophysiological con-
cept excitatory post-synaptic potential amplitude. In these cases,
our algorithms incorrectly mapped this string to “spike ampli-
tude” because the former concept is not in our current ontology.
In a test sample of 279 articles that were manually curated, we

found that 78% of concept-matchings (901/1152) were identi-
fied correctly with no supervision, with the remainder manually
corrected.

2.3.3. Accounting for differences in electrophysiological definitions
across investigators

By focusing on textually matching the electrophysiological terms
in each table to a list of electrophysiological concepts, we are
implicitly assuming that electrophysiological properties are mea-
sured in the same way by investigators across different articles.
For example, the most common method that electrophysiolo-
gists use to measure a neuron’s spike properties is to record
from the neuron in current-clamp mode and apply peri-threshold
depolarizing currents to evoke 1–2 spikes over several hundred
milliseconds or more. The neuron’s spike amplitude is then
commonly measured by calculating the difference between the
neuron’s voltage at spike threshold and spike peak for the first
evoked spike (e.g., Connors et al., 1982; Toledo-Rodriguez et al.,
2004). However, experimental differences exist between how
investigators measure and compute these properties; we divide
these differences into roughly three categories: protocol, calcu-
lation, and condition differences. For example, investigators can
use different experimental protocols to measure the spike ampli-
tude, like evoking spikes using current steps much greater than
rheobase current required to elicit a single spike (protocol differ-
ences). Additionally, the spike amplitude itself can be calculated
in different ways, such as using the neuron’s resting membrane
potential as the baseline instead of the spike threshold (calcula-
tion differences). Furthermore, the value of spike amplitude that
an investigator reports will also be affected by specific experimen-
tal conditions such as the animal species or age and recording
solution temperature or contents (condition differences).

When manually curating the text-mined content for some of
the most commonly reported electrophysiological properties, we
accounted for an investigator’s calculation of an electrophysio-
logical measurement using an inconsistent methodology (e.g.,
protocol or calculation differences). We did so by normalizing
such measurements to a common reference definition or remov-
ing such data when normalization was not possible. However,
we note that we could not identify all of these cases (in par-
ticular: spike amplitude, input resistance, and membrane time
constant), in part because investigators did not always explicitly
define how these measurements were calculated within their arti-
cle. We note that in cases where we pool measurements which are
measured using inconsistent protocols or calculations, this will
tend to add unexplained variance to our data set. Given these
measurement inconsistencies, we provide our recommendations
for how these electrophysiological properties should be reported
in future investigations via our electrophysiology ontology (see
Supplemental Materials).

2.4. NEURON TYPE IDENTIFICATION
2.4.1. Using neuron types defined by NeuroLex
To extract physiological information specific to individual neu-
ron types, we had to identify which neuron types were reported
in each article. However, in many cases uniquely identifying the
neuron type(s) reported in any given study and mapping these
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FIGURE 2 | Illustration of the sources within an article containing

information relevant to neuron electrophysiological properties. Data
on neuronal electrophysiological properties are presented within article
figures and raw traces, sentences within the article text, and
formatted data tables. The raw traces and example sentence are

from van Brederode et al. (2011) and are reproduced with permission
from The American Physiological Society and the data table is a
constructed example. Colored text indicates electrophysiological
concepts (red), neuron concepts (pink), or neurophysiological data
(yellow).

to a canonical “neuron type” is difficult. This difficulty arises
in part because investigators use different criteria for classify-
ing neurons, including electrophysiological, morphological, or
molecular characteristics (Ascoli et al., 2008; Fishell and Heintz,
2013; Huang and Zeng, 2013).

To define canonical neuron types, we chose to use an existing
list of approximately 250 neuron types and definitions provided
by NeuroLex, a community-sourced, expert-defined collection
of neuron types (http://neurolex.org; Shepherd, 2003; Hamilton
et al., 2012; Larson and Martone, 2013). Moreover, we chose
to use NeuroLex to keep our database consistent with exist-
ing resources and to enable future researchers to combine these
resources seamlessly. NeuroLex also provides synonyms for each
neuron type, which we utilized to identify the neuron type(s)
in each article. In cases where a neuron type was investigated
in the literature across multiple articles but not indexed within
NeuroLex (e.g., cerebellar nucleus neurons), we manually added
this neuron type to our database’s listing and provided this neu-
ron type to the NeuroLex neuron curators for incorporation
(Gordon Shepherd, personal communication). Our specific cri-
teria for identifying each of the neuron types reflected in the
database are given in the Supplemental Materials.

2.4.2. Identifying specific neuron types within an article
Because of the complexity in unambiguously identifying neu-
ron types, we used a mixed text-mining and manual approach
to map the neuron types studied in each article to canonical
NeuroLex neuron types. First, we used text-mining algorithms
to provide an initial “best guess” of the most likely neuron type.
Specifically, we used a bag-of-words approach (Aldous, 1985) on
the full article text. This approach ignores the serial structure of
the words in the document and utilizes only the frequency of
occurrence of each word within the document. We next com-
pared the article’s word-frequency histogram to the listing of
neuron synonyms provided by NeuroLex, ranking all neuron
types by their likelihood of being actually studied within that

article. In comparison to articles that we manually curated, we
found that this automated approach accurately identified the neu-
rons studied in each article with an accuracy of 30% (120 of
399 total) and up to 55% when defining success as the stud-
ied neuron appearing as one of the top three neuron types
suggested by the bag-of-words method. Because of the rela-
tively low accuracy of an automated-only approach, we added
a manual curation step where a curator identified the recorded
neuron type using HTML drop down menus enriched by the
bag-of-words search (e.g., Figure 4). As previously described, we
mapped individual data table elements and corresponding rows
or columns to specific neuron types recorded under normotypic
conditions. We note that currently we only identify data from
normotypic or “control” neurons represented in tables, but plan
to identify data from additional conditions in future work (e.g.,
from pharmacologically manipulated or genetically modified
animals).

2.5. EXTRACTION OF ELECTROPHYSIOLOGICAL DATA VALUES
After identifying specific electrophysiological properties and neu-
ron types reported in a data table (corresponding to row or
column table headers), we then algorithmically extracted the data
corresponding to the table intersection of these (Figure 3). We
developed custom string regular expressions (Thompson, 1968)
to parse the string corresponding to the numeric data. Specifically,
we found that data strings were often of the form: “XX ± YY
(ZZ),” where XX, YY, and ZZ refer to the mean, error term, and
sample size (i.e., the “n”), respectively. Often, the number of repli-
cates or error measurement were not reported or were reported in
alternative ways within the table. Presently, the error term is not
resolved as either a standard deviation or standard error measure-
ment in the current version of NeuroElectro, but could easily be
resolved in future iterations.

When designing our processing algorithms, we parsed data
strings from right to left: first searching for data entities con-
tained within parentheses, then for entities contained to the right
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FIGURE 3 | Example data table illustrating mark-up and annotation of

entities. (A) Example published data table containing neurophysiological
information. Data table from Pasquale et al. (1997) and is reproduced with
permission from The American Physiological Society. (B) Same as (A), but
semantically marked up with algorithmic and manually curated annotations.

Markups in red and pink indicate electrophysiological and neuron type
concepts and yellow indicates extracted data measurements. Note that here
the textual string “+/+” and “stg/stg” refers to the normotypic and
manipulated condition, respectively. Panels (A) and (B) reflect screenshots
taken from NeuroElectro web interface.

of the ± term, and finally the remaining term which we assumed
to refer to the mean term. We found that occasionally data were
reported as “XX (LL–HH)”—where LL and HH indicate the
lower and upper limits of a data range—and accounted for these
cases similarly. We used regular expressions to identify entities
such as digits, decimal signs, parentheses, and ± signs. We then
converted the individual data elements which were encoded as
textual strings of digits to double precision decimal entities before
storing these into our database. Our focus here was primarily
on parsing the mean value from a data record (i.e., summariz-
ing the properties of a number of recorded neurons), but we
also extracted and stored the error term and sample size where
possible. Using these methods, we were able to extract 2176 elec-
trophysiological values for 93 distinct neuron types within 279
articles.

2.6. MANUAL VALIDATION OF AUTOMATED DATA EXTRACTION
Following these automated concept identification and data
extraction steps, we manually validated associated concepts and
corrected incorrect concept mappings as necessary. We devel-
oped custom-HTML and javascript code to allow human curators
to graphically interact with downloaded HTML data tables and
“mark-up” entities within the table (Figure 4). This code allows
for textual based elements of the HTML table to be semanti-
cally annotated using drop down menus and text fields. Moreover,
because annotation is implemented via user interfaces composed
of interactive web pages and drop down menus, these user inter-
faces are simple enough to be utilized by other expert curators
with little formal instruction.

2.7. METADATA IDENTIFICATION
Given the strong relationships between experimental conditions,
such as animal species or recording temperature, and electro-
physiological measurements [e.g., input resistances are known to
decrease when measured in neurons from older animals (Zhu,
2000; Okaty et al., 2009; Kinnischtzke et al., 2012)], we also iden-
tified information on article-specific experimental conditions by
extracting this information primarily from each article’s meth-
ods section. For each article, we found the methods section
by developing custom HTML tag filters for each journal (e.g.,
common publisher-defined HTML tags for methods sections are
“Methods” or “Experimental procedures”). For each metadata
entity that we focused on (species, animal strain, electrode type,
preparation type, liquid junction potential correction, animal
age, recording temperature), we devised custom automated text
searching methods to identify these based on combining regu-
lar expressions (Thompson, 1968) with PubMed MeSH terms
(Table 2). In other words, rather than taking a machine-learning
based approach and training classifiers (McCallum, 2002), we
took a rule-based approach and developed custom rules for iden-
tifying metadata entities. For example, to identify whether the
recording electrode’s liquid junction potential was corrected for
in the study (Neher, 1992), we searched for whether the charac-
ter string “junction potential” was mentioned within the methods
section and, if so, whether the sentence or phrase containing the
term was explicitly negated (indicating that the junction poten-
tial was not corrected for). Here, we identified and parsed distinct
sentences within the methods section using tools provided within
the Natural Language Tool Kit in Python (Bird et al., 2009).
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FIGURE 4 | Example of human validation of algorithmically assigned

content. All textual elements of a table are enhanced using HTML and
javascript to allow for assignment of neuron or electrophysiological

concepts using drop down menus. Example data table from Pasquale
et al. (1997) and is reproduced with permission from The American
Physiological Society.

Following automated identification of article metadata,
we then manually checked each article to ascertain that
algorithmically-tagged metadata was identified correctly and, as
before, we corrected misidentified content as necessary through
the use of custom HTML forms. We found that the mean accu-
racy of algorithmic metadata assignment was approximately 50%
(Figure 5) and was typically lower for identifying continuous-
valued metadata (e.g., animal age or recording temperature)
relative to nominal metadata such as species and electrode type.

2.8. OBJECT MODELS AND RELATIONAL DATABASE
We stored extracted data and metadata using a relational database
implemented in MySQL (http://dev.mysql.com/doc/refman/5.6/
en/) built from a Python Django object model (https://www.

djangoproject.com/). The object model contains classes for a
number of fields, such as full article texts, electrophysiologi-
cal properties, neuron types, synonyms, electrophysiological data
values, and experimental metadata (Figure S1). A useful feature
of the relational nature of the database is that it enables linking
between classes (e.g., linking between neuron types and electro-
physiological properties reported by a single investigator across
multiple articles). This linking feature facilitates efficient and
arbitrary querying of data; for example, querying for known elec-
trophysiological data on olfactory bulb mitral cells recorded in
vitro and published between the dates 2000 and 2004. For exam-
ple, such a feature could be used to assess whether measurements
of olfactory bulb mitral cells have changed as a function of time
or are dependent upon whether the data are collected in vitro or
in vivo.

2.9. WEB APPLICATION
The primary results of NeuroElectro are viewable at http://www.

neuroelectro.org where the data can be interactively explored.

2.9.1. Human interface
The web interface is organized around neuron types and electro-
physiological properties. For example, each neuron type has its
own webpage where extracted data corresponding to specific elec-
trophysiological properties is graphically and interactively dis-
played (graphical plot interactivity implemented using the jqPlot
javascript toolbox, http://www.jqplot.com/). Users can thus visu-
alize the mean and variability of electrophysiological values across
papers, view references plus experimental metadata, and easily
navigate to primary data from specific papers. Furthermore, users
can view electrophysiological data across all of the neuron types
in the database—putting phenotypic properties of a given neu-
ron type into the larger context of other neuron types located
throughout the nervous system.

The web application also contains preliminary features to
allow website visitors to contribute to the NeuroElectro resource.
For example, users can suggest articles that contain electrophysi-
ological data which are not already in the database. We also invite
visitors to become “expert curators” for neurons of interest. In the
future, we plan to build functionality that will allow investigators
to upload raw and summary data, such as recorded voltage and
current traces. In addition, we plan to continue mining the lit-
erature and adding neurophysiological measurements as they are
published.

2.9.2. API
An initial API (application programmer interface) providing pub-
lic access to the electrophysiological data is described at http://
neuroelectro.org/api/docs/. This RESTful API allows contents of
the NeuroElectro database to be dynamically retrieved in JSON
or XML format for utilization within external applications. For
example, using the current API, a developer could build an
application which dynamically queries NeuroElectro for all data
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Table 2 | A partial listing of metadata attributes and extraction methodology.

Metadata concept Values Extraction method Regular expression MeSH term

Species MeSH term only

Rats Rats

Mice Mice

Guinea pigs Guinea pigs

Electrode type MeSH term + Regex

Patch-clamp “Whole cell” or “patch clamp” Patch-clamp techniques

sharp “Sharp electrode”

Animal strain MeSH term only

Fischer 344 Rats, Inbred F344

Long-evans Rats, Long-Evans

Sprague-Dawley Rats, Sprague-Dawley

Wistar Rats, Wistar

C57BL Mice, Inbred C57BL

BALB C Mice, Inbred BALB C

Preparation type MeSH Term + Regex

In vitro “Slice” or “in vitro”

In vivo “In vivo”

Cell culture “Culture” Cell culture techniques

Model “Model” Computer simulation

Junction potential Regex

Not corrected “Not junction potential”

Corrected “Junction potential”

Recording temperature Regex

Continuous value “Record ... C” or “experiment C”

Room temperature “Record room temperature”

Animal age Regex

Continuous value Find digits near: “P#-#” or “P#-P#”

Metadata attributes are extracted through combining PubMed Medical Subject Heading terms (MeSH Terms) and custom regular expressions (Regex). Regular

expression column (or MeSH Term column) indicates specific regular expressions (or MeSH terms) used for identifying metadata concept entities.

corresponding to layer 2/3 neocortical pyramidal cells and then
uses this data to constrain parameters for a Hodgkin–Huxley type
neuron model (Hodgkin and Huxley, 1952). Example use cases of
the current API (version 1) include:

• http://neuroelectro.org/api/1/n/ : Returns a list of all neurons
with electrophysiological data indexed in NeuroElectro.

• http://neuroelectro.org/api/1/nedm/?nlex=sao830368389 :
Returns a list of all indexed data on CA1 pyramidal cells
(queried using the NeuroLex identifier for CA1 pyramidal
cells, sao830368389).

• http://neuroelectro.org/api/1/nes/?e__name=Input+resistance:
Returns a data record composed of the mean, standard devi-
ation, and sample size n, summarizing input resistance
measurements from cerebellar Purkinje cells based on
all indexed articles in NeuroElectro database. Here the
database query is performed using the textual strings for the
electrophysiological and neuron type concepts.

Our future plans are to work with domain ontologists to fur-
ther develop the existing API into a formal relational data for-
mat (RDF) specification, allowing further querying and extend-
ing of NeuroElectro into additional resources. All code used
for the project is available at http://github.com/neuroelectro/
neuroelectro.

3. DISCUSSION
We have developed, applied, and validated a methodology and
pipeline for extracting—from existing literature on cellular
neurophysiology—measurements of basic biophysical proper-
ties from diverse neuron types throughout the nervous system.
Currently, the NeuroElectro database contains 2344 manually
curated electrophysiological measurements from 98 neuron types
from 335 publications. Of these electrophysiological measure-
ments, 2176 (93%) were obtained from 279 (83%) publica-
tions using the semi-automated approach described here. In
addition, we machine-extracted and manually validated 1667
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FIGURE 5 | Accuracy of metadata assignment using automated

methods alone. Error indicate 95% binomial confidence intervals.

methodological conditions (metadata) from these publications.
This represents the single largest collection of neurophysiological
data ever compiled and represents a potentially valuable tool for
scientific discovery.

3.1. SPECIFIC BENEFITS PROVIDED BY THE SEMI-AUTOMATED
APPROACH

One of the key advantages of the approach described here is that
the automated pipeline identifies publications which are likely to
contain content relevant to our domain area (i.e., measurements
of neuronal biophysics). Thus a human needs only to manually
curate the content first identified by the algorithms as being likely
relevant, instead of having to identify the relevant content de novo.
Moreover, the automated identification of neuron types in articles
allows us to target manual curation efforts to publications likely
to contain data from specific neuron types, such as neurons that
are currently underrepresented in the database.

Given our laboratory’s focus on olfactory circuits, we con-
ducted a natural experiment to compare the efficacy of biophys-
ical property extraction using these semi-automated methods
versus traditional methods which do not make use of algorithmic
text-mining as a pre-processing step. In a seven-hour curation
session (evoking the classic American parable of John Henry ver-
sus the steam-powered hammer), a senior graduate student in
our laboratory identified 91 electrophysiological measurements
(focusing on resting membrane potential, input resistance, mem-
brane time constant, spike amplitude, spike width, and spike
threshold) from 35 articles for 7 olfactory bulb neuron types
using only prior knowledge of which articles and investiga-
tors were likely to have reported such electrophysiological data.

In a comparable seven-hour curation session using our semi-
automated methods, a single curator (with similar expertise to the
first curator) identified 551 electrophysiological measurements
from 70 articles across 40 neuron types throughout the nervous
system. Moreover, this comparison would likely tilt even more in
favor of the semi-automated methods had the curators been less
familiar with the primary literature.

3.2. SCALABILITY OF CURRENT APPROACH
We note that multiple steps in our approach require manual
intervention by an expert curator in order for electrophysiolog-
ical measurements to be extracted with an acceptably low error
rate. Namely, an expert curator needs to confirm which of the
machine-identified candidate neuron types are recorded from in
each article and where data from the normotypic or “control”
states of these neurons are textually referenced within a data table.
Moreover, given the current accuracy of the unsurpervised algo-
rithmic assignment of electrophysiological concepts and experi-
mental metadata (78% and 50%, respectively), these also need to
be manually validated and corrected and normalized as required
by an expert. Given the necessity of these manual steps, the scala-
bility of our current approach is limited by our ability to manually
curate this information or by our ability to improve the error
rate of the automated methods. Despite this limitation, our cur-
rent pipeline is still much faster than a purely manual one. The
methodology could be further improved by correcting falsely
matching entities (such as EPSP amplitude in section 2.3.2).
These could be corrected by simply adding these valid concepts to
the electrophysiolgical ontology. Moreover, these improvements
would facilitate formally computing the sensitivity and specificity
of these entity recognition methods.

3.3. PRELIMINARY USE OF NEUROELECTRO IN SCIENTIFIC WORK
The NeuroElectro project is intended to facilitate scientific inves-
tigation by providing easy access to large quantities of data about
neurons. Because the data is machine-readable, we have already
begun to conduct several analyses that would not be possible
without this resource. First, we have begun an investigation of the
relationships between neurons as defined by the similarity of their
electrophysiological properties. This information can be used to
make predictions about as yet unmeasured properties. Second, we
have begun to explore the relationship between patterns of gene
expression [using both the Allen Brain Atlas (Lein et al., 2007) and
single cell qPCR approaches] and electrophysiological properties
of neurons. Third, we have begun automated testing of quantita-
tive neuron models in concert with SciUnit (Omar et al., 2014),
under the reasonable assumption that these models should be
constrained by the available experimental data. These projects are
described in manuscripts currently in preparation.

3.4. EXTENSIONS AND IMPROVEMENTS TO THE CURRENT
SEMI-AUTOMATED ALGORITHMS

Currently, neuron type identification is a critical bottleneck in
our approach. One potential improvement would be to replace
the non-specific bag-of-words approach we are currently using in
favor of a bioNLP classifier-based approach (McCallum, 2002).
Specifically, we propose adapting the named entity recognition
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methodology used by the WhiteText project for tagging brain
regions mentioned in literature (French et al., 2009; French and
Pavlidis, 2012) and first identifying spans of text likely to per-
tain to a neuron type before mapping these textual spans to a
individual neuron type within the neuron ontology.

The approach described here is highly effective for extracting
biophysical measurements presented within machine-readable
data tables published within journal articles. However, the current
requirement that these data tables exist in a machine parseable
format, such as HTML or XML, limits this approach from being
directly applied to older manuscripts, which are only available
as scanned images. Existing approaches, such as optical charac-
ter recognition technology (OCR; e.g., Ramakrishnan et al., 2012)
may be applied toward this problem in the future.

Given the relatively low accuracy of the automated approach
to identifying neuron types, there may be several avenues through
which this process can be improved. For example, we note that the
automated approach was particularly ineffective when the neuron
type investigated within an article was not already described in
NeuroLex or when the neuron had an insufficient list of synonyms
associated with it. The current implementation of NeuroElectro
also does not consider common neuron type acronyms (e.g., that
olfactory bulb mitral cells are commonly referred to as “MCs”).
Adding acronym and abbreviation identification to future itera-
tions will thus likely improve the automated approach (Okazaki
and Ananiadou, 2006; French and Pavlidis, 2012). Moreover, our
current implementation of the bag-of-words algorithm would
likely be enhanced via minor improvements, such as only iden-
tifying neurons using the text of the abstract or results and
discarding text from the introduction or discussion. As neuron
identification forms the major bottleneck in the scalability of
NeuroElectro due to the requirement for manual curation, we
plan to address this bottleneck in future revisions.

3.5. FUTURE METHODS FOR DATA EXTRACTION
A more pressing issue with the current approach is its focus on
extraction from data tables. We estimate that only 5–10% of pub-
lished electrophysiological data is contained within tables, while
the remaining 90–95% is presented within article text or figure
images. Given our preference to obtain data in their most raw
form, we initially considered extraction of data from figures, e.g.,
voltage traces of neuronal activity. However, digitizing article fig-
ures (presented by publishers as images) into a form that can
be further analyzed presents multiple challenges. Though tech-
niques and tools exist to digitize figures, substantial amounts of
manual effort are required to employ them correctly, making this
figure-based approach difficult to scale to increasing numbers of
articles without also employing a large team of human curators.
While automatically extracting measurements from figure images
will likely prove challenging, our methods can likely be adapted
to operate on article text, perhaps by making use of bioNLP
methodologies currently used for relationship extraction in the
identification of connected brain regions (French et al., 2012) or
interacting pairs of proteins (Kim and Wilbur, 2011).

Future developments in machine extraction of data from the
scientific literature will be of great benefit. These should include
better semantic understanding of context, ranging from relatively

unambiguous notations such as units, to syntax-parsing of free-
form prose that relates objects of study to their reported proper-
ties. Much progress has been made by computer scientists in some
of these areas, and more future engagement with their research
should enable vastly more data to be extracted from the literature.

We believe that, if successful, the use of NeuroElectro will
influence the practices of scientists writing papers and report-
ing results. Specifically, we recommend the usage of common
standards and definitions for basic physiological measurements
(Toledo-Rodriguez et al., 2004) and neuron types (Ascoli et al.,
2008; Larson and Martone, 2013). Moreover, we advocate that,
where possible, scientists report more basic physiological data
overall and report such data using machine-parsable data tables.
These recommendations could be made informally by journals
(in particular, requested by reviewers during manuscript review)
as well as by funding agencies. This change would make it eas-
ier for scientists to find and make use of data collected by others.
Such a culture shift has the potential to make science function
more effectively and efficiently to facilitate discovery.
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Advances in web technologies now allow direct visualization of imaging data sets without
necessitating the download of large file sets or the installation of software. This allows
centralization of file storage and facilitates image review and analysis. XNATView is a
light framework recently developed in our lab to visualize DICOM images stored in The
Extensible Neuroimaging Archive Toolkit (XNAT). It consists of a PyXNAT-based framework
to wrap around the REST application programming interface (API) and query the data in
XNAT. XNATView was developed to simplify quality assurance, help organize imaging data,
and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint
design allows the user to connect to XNAT from a web browser, navigate through projects,
experiments, and subjects, and view DICOM images with accompanying metadata all
within a single viewing instance.
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INTRODUCTION
Data management challenges regularly pose problems among
imaging laboratories. Visualization and sharing of complex imag-
ing data sets has traditionally involved downloading large file sets,
installing custom software applications, or in some cases simply
sharing screenshots of specific images with colleagues for review
and comment. These inefficient ad hoc solutions often make
collaboration and soliciting feedback on imaging data compli-
cated, imprecise, and time intensive. However, recent advances in
web-based technologies such as HTML5 and faster overall inter-
net connectivity have the potential to significantly simplify this
process.

In this work, we review some of the existing source tools and
libraries that facilitate web-based image visualization of imaging
data sets. While DICOM is the lingua franca of clinical imaging, it
is worth noting many other imaging formats are commonly used
in imaging research. We will therefore also review some tools and
frameworks that support imaging formats in addition to DICOM.

A number of emerging technologies allow visualization and
interaction with not only the image itself, but also with derivative
images such as masks, tractography results, and statistical maps.
We will review various tools currently available that support this
functionality offline as well as demonstrate our current work that
allows visualization of image overlays directly via HTML.

Capitalizing on these recent advances, we have developed a
light weight HTML based image browser that integrates XNAT,
a popular research informatics platform which we will describe
later. The need for such an image-viewer stemmed from an
ongoing project in our lab which involved the organization

and curation of large retrospectively-collected imaging data sets
of cancer patients with high grade gliomas. For our initial
project (Gutman et al., 2013), we were presented with hun-
dreds of volumes of MR imaging sets and we needed an efficient
method to select which MRI cases were appropriate for the study.
Specifically, we wanted to pull patients with pre-surgical/pre-
treatment T2 FLAIR as well as both pre and post gadolinium
contrast T1 sequences with sufficient image quality. Unlike typ-
ical neuroimaging studies where data is collected on a single
MRI machine with a well-defined imaging protocol, the imag-
ing data in this case was collected during a period of more than
a decade from various universities within the TCGA network
(Cancer Genome Atlas Research et al., 2013), oftentimes using
different image scanners and following different protocols.

Due to the heterogeneity of imaging protocols in the clinical
setting, our data was interspersed with DICOM images of insuf-
ficient quality (motion artifacts, limited field of view, missing
slices) as well as ambiguous/improper names (i.e., we had found
that several T1 images had been incorrectly labeled as T2). This
task was further confounded by the necessities of anonymiza-
tion, as well as by a lack of a direct link back to clinical data that
would have indicated the treatment status of the patient at a given
scan (e.g., pre/post-surgery). Additional complications included
numerous seemingly duplicate/extraneous scans (e.g., two con-
secutive images labeled “T2 FLAIR,” or three different images all
labeled “T1 Gad”) which needed to be disambiguated. In a clini-
cal environment, a scan technician may repeat a scan due to poor
image quality without needing a way to label the “good” scan. As
this data is of course not available many years later when the data
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is being analyzed for research purposes, the ability to rapidly open
and compare images is thus critical. Due to the massive volume of
patient data, we therefore wanted some type of quality assurance
tool that we could use to browse through the images to quickly
determine if the corresponding labels and metadata were correct.

While a built-in image viewer is available through XNAT, the
time required to select and to view individual scans from patient
to patient made this option too inefficient for our project. In
addition, the viewer uses Java, which presented a number of prac-
tical challenges, where programs can not readily be updated (e.g.,
Java) on university- or hospital-owned equipment. To address
these issues, we developed XNATView, a tool that allows us and
potentially any lab involved in large population neuroradiologi-
cal research to easily review large sets of image sequences solely
from a web browser.

While currently supporting direct integration with XNAT, the
XNATView interface can be easily modified to communicate with
any service that supports query and retrieval of DICOM images.
As a proof of principle, we will present some of our prototype
work integrating XNATView, through various plugins, with the
Platform to Enable Shared Scientific Computing And Research
Advances (PESSCARA) being developed at the Mayo Clinic. We
have used the term zero-foot print viewer to describe software
that does not require installation of additional software (e.g., Java,
Active-X, Flash, etc.) relying on native functionality of the web
browser.

BACKGROUND
RESEARCH IMAGE MANAGEMENT SYSTEMS/PACS
The basic technology to support the standardized sharing of med-
ical images is a Picture Archiving and Communication System
(PACS) (Bryan et al., 1999). The basic structure includes a secure
one-way interface transmitting DICOM formatted images from
the physical data capture (X-ray, CT, MRI, etc.), which are ideally
(although optionally) transmitted to a quality assurance worksta-
tion (PACS gateway) where demographics and other characteris-
tics are verified. The images are then transferred to a centralized
archive, where they can be queried and viewed by radiologists in
a reading workstation. Numerous vendors have developed their
own PACS workstations, with varying capabilities ranging from
simply browsing 2-D slices to allowing 3-D visualizations and
advanced image reconstruction capabilities.

For the purposes of this review, we will limit ourselves to
freely-available open-source based platforms. Resources such as
http://idoimaging.com and http://nitrc.org list a number of avail-
able medical software packages as well as accompanying informa-
tion of the tools.

Among the most versatile and earliest implementations of an
open-source web-based viewer is Weasis, a program available
through the DCM4CHE application collection. DCM4CHE
is a DICOM archive and image manager that can be entirely
run from a web browser (http://dcm4che.org/). It was devel-
oped within the framework of JDicom, a toolkit written in
Java (Warnock et al., 2007) and is currently distributed by the
developers of the DCMTK toolkit (DICOM@OFFIS, 2013).
Personal correspondences have highlighted that DCM4CHE is
especially appropriate for large databases, such as those on a

university or hospital setting, and runs smoothly on Windows
or Linux machines. Importantly, DCM4CHE offers various
storage, clinical, and sharing features which were designed
around contemporary standards such as HL7 and DICOM to
facilitate interoperability between users. DCM4CHE can serve
as an image source for DICOM compliant applications (such as
ClearCanvas and OsiriX/etc.) as well as an integrated web-based
image viewer through the Weasis application. Weasis is a multi-
purpose clinical image viewer designed to view images stored in
a PACS with minor adjustments (Figure 1). CDMedicPACSWeb
provides (http://cdmedicpacsweb.sourceforge.net/CDMEDIC_
PACS_WEB.html) a virtual machine/base installation which has
WEASIS and DCM4CHEE preconfigured.

While these tools are useful when DICOM is the primary
imaging modality, other more comprehensive systems that sup-
port multiple imaging formats have also been developed.

A popular PACS workstation program on the Macintosh
Platform is OsiriX (OSIRIX, 2004), which has both a free open-
source version as well as a more fully featured and FDA-approved
version (which includes a certified PACS-viewer) which is appro-
priate if the tool is to be used for diagnostic purposes (Rosset
et al., 2004). ClearCanvas Workstation (ClearCanvas Ontario,
CA http://clearcanvas.ca) provides similar functionality for the
Windows environment and also features both a paid FDA-
approved version as well as a free open-source version which
has been demonstrated to facilitate inter-rater agreement (Hsieh
et al., 2013). ClearCanvas also supports plugins, making it adap-
tive to specific user needs. For example, our lab (Gutman et al.,
2013) previously used a plugin that permits the use of the AIM
markup language (Channin et al., 2009) for structured annota-
tions. In addition to standard editions, ClearCanvas also offered
a beta-release version that supported an integrated Web Viewer,
although the current status of that project is unclear.

Another useful open-source project is the Medical Imaging
Interaction Toolkit (MITK) which offers the user data manage-
ment, advanced visualization, and interactive functions (http://
www.mitk.org/MITK). The basic framework offers advantages
of both Insight Toolkit (ITK) and Visualization Toolkit (VTK)
and supports a wide variety of application plugins (some open-
sourced, others not) to customize the user experience. For
example, the “Iso Surface” plugin interpolates user-defined pixel
selections and creates surface structures on regions of interest and
the “IGT Tracking” plugin allows one to connect a tracking device
to the image and record the resulting tracking location data.
One aspect worth highlighting is the MITK Diffusion Imaging
component which offers a suite of visualizations including fiber
tractography, Q-Ball reconstruction, and Fiberfox to generate
complex white matter tissue models.

InVesalius, a Brazilian program now in its third version, is
another convenient tool used to view DICOM files from both
CT and MRI protocols. It offers wide versatility and can be
run on MS Windows, GNU Linux, and soon MacOS X sys-
tems. One of its main features is its detailed image reconstruc-
tion capability (http://svn.softwarepublico.gov.br/trac/invesalius/
wiki/InVesalius/Screenshots).

Other lighter weight image viewers exist as well, such as
the NIH ImageJ program (http://rsb.info.nih.gov/ij/), which
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FIGURE 1 | User interface of Weasis, a program available

through the DCM4CHE imaging collection. Weasis offers several
tools to facilitate viewing large amounts of clinical data, such as

line drawing, measurements, and a magnifying window. For more
screenshots, visit http://www.dcm4che.org/confluence/display/
WEA/Home.

supports DICOM (among many other formats), and IrfanView
(http://www.irfanview.com/).

COINS, MIDAS, PESSCARA, XNAT: RESEARCH INFORMATICS
PLATFORMS
Public imaging informatics systems are designed to comple-
ment the limitations of a clinically-focused PACS and allow for
the smooth exchange of data between investigators to facilitate
research. They also generally support other image formats besides
DICOM that are commonly used as intermediates during image
analysis.

COINS—Collaborative Informatics and Neuroimaging Suite
The COllaborative Informatics and Neuroimaging Suite (COINS)
was developed at the Mind Research Network headquartered
in Albuquerque, New Mexico and currently holds imaging
data from more than 20,000 participants (Scott et al., 2011).
COINS is an online portal where imaging data, as well as
reports, annotations, and billing data, can be automatically
archived into the system via a DICOM receiver. Additional
accompanying data from interviews, questionnaires, and neu-
ropsychological tests can also be entered through a web appli-
cation called Assessment Manager (ASMT, Figure 2). COINS

also features a Data Exchange Tool designed to facilitate com-
munication by allowing de-identified neuroimaging datasets
with associated metadata to be shared between collaborating
research groups. In addition, a Medical Imaging Computer
Information System (MICIS) component allows smooth project
creation and participant enrollment and management, mak-
ing COINS a useful tool in human research and clinical stud-
ies. In addition to overcoming complicated challenges involved
with human subjects and PHI, principal investigators are able
to set permissions assigning different levels of access accord-
ing to various guidelines set by the Institutional Review
Board.

MIDAS—The Multimedia Digital Archiving System
The Midas Platform is a PHP-based data storage system designed
to facilitate computational scientific research by integrating
data from a variety of sources (http://www.midasplatform.org/)
(Figure 3). MIDAS was developed and is maintained by the same
developers behind the VTK toolkit, which is commonly used
throughout many imaging analysis modalities. The open source
software, now in its 3.2.8 version, indexes data sources from
imaging databases and visualization tools. The Midas frame-
work can then query the back-end database. One benefit of
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FIGURE 2 | An overview of the COINS web-based neuroimaging

software suite. “COINS Tools: MICIS—Participant enrollment and
management, MRI imaging data import, Scan annotation and behavioral data
management, Radiology review event reports, Scan time billing. DICOM
Receiver—Automates image archiving to file system and storage of
meta-data to MICIS. Assessment Manager—Single and double entry as well
as self-assessment. Query Builder—Secure, ad-hoc querying of single and

cross-site studies for assessments, scans and demographics. Study
Portals—Progress reports for subject tracking, shareable documents (study
measures, meeting notes, etc.). Data Exchange with Data Catalog—Browse,
request and share data, available for imaging data and clinical assessments,
tracks data requests and keeps an inventory of data.” (http://neuroinformatics
2012.org/abstracts/coins-collaborative-informatics-neuroimaging-suite-give-
get-collect).

the platform is its ability to be highly customized with various
plugins to individually tailor the program to specific research
needs.

PESSCARA—Platform to Enable Shared Scientific Computing And
Research Advances
PESSCARA is a platform based on open-source resources and
combines four important components for the conduct of science.
The first components are image data and metadata stores,
obviously critical starting points. We use the open source
DCM4CHEE software to provide the mechanism for receiving
and sending DICOM data. In most cases, there are processing
steps applied to the medical images, including filtering, registra-
tion, segmentation, etc. These steps create new versions of the
images, or add metadata about the images. Content manage-
ment systems were built to do exactly these functions, and so we

have leveraged the TACTIC CMS as the second major component
of PESSCARA. It is open-source and has a Python applica-
tion programming interface (API) to allow automation of many
steps.

The third component of PESSCARA is an algorithm devel-
opment environment. For that, we selected iPython Notebooks.
Python has become the major programming language of science
because of powerful libraries that can efficiently handle most
tasks, because the language itself is easy to understand and has
free interpreters for all major operating systems, and because
the iPython Notebook provides a flexible way to develop, share,
and document algorithms. Python has powerful image process-
ing libraries, and also powerful data analysis tools. A mechanism
for documenting the complete processing flow, including input
data, processing steps, and results is key to shareable science. The
fourth and final component is a results repository that allows a
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FIGURE 3 | Screenshot of the Midas Platform. Midas is a web-based toolkit that allows facilitated review of clinical imaging data through digital storage,
online reporting, interactive visualization, and server-slide processing (http://www.midasplatform.org/MIDAS/resources/toolbox.html).

user to document and share all of the parts. This can allow other
investigators to validate the results, as well as to test the same pro-
cessing steps on other data sets or other processing algorithms on
the same data set. We are currently in the process of posting the
code and a virtual machine instance of this framework (http://
PESSCARA.org).

XNAT—The eXtensible Neuroimaging Archive Toolkit
XNAT is an open source imaging informatics platform developed
at Washington University in St. Louis and was designed for the
storage and management of large heterogeneous imaging data sets
to facilitate neuroradiological research (http://xnat.org/) (Marcus
et al., 2007). The extendibility allows each research group to cus-
tomize an “instance” and extend the basic application to suit
their needs. Originally developed to store Phillips PAR files, the
application now has a robust DICOM image management sys-
tem and also allows storage of other common imaging formats
(NII, Analyze, MGZ, etc). XNAT provides key functionality such
as uploading and downloading data in various formats, organiz-
ing and sharing data, and customizing security and access to the
data. In XNAT, users are able to save the original or modified files
to disks or send them across a network to a DICOM C-STORE
service class provider, such as a PACS or another XNAT instance.

In addition, XNAT provides a means to view the data using a
built-in Java-based DICOM viewer. The viewer relies on plugins
to implement image-type-specific functionality and additional
plugins can be developed and integrated to customize the viewer.

One of the key advantages of XNAT and similar systems rela-
tive to a more traditional PACS-based image management system
is the flexibility provided in “tagging” data. Certain features that
are critical in a research setting, such as the ability to associate
certain patients with certain research protocols, are not easily
handled in a typical PACS. A PACS viewer is usually organized
around selecting by patient name, doctor who ordered the study,
imaging modality or scan date—data that is oftentimes superflu-
ous outside of the clinic. Once image sets are tagged in XNAT,
patients can be neatly organized into projects and sorted by name,
ID, or other relevant features.

WEB-BASED VISUALIZATIONS
The X Toolkit
Emerging technologies, including webGL and increased perfor-
mance of JavaScript engines, now allow both 2D and 3D image
manipulation on the client side. The X Toolkit (XTK, http://www.

goXTK.com) and BrainBrowser (https://brainbrowser.cbrain.

mcgill.ca/) are two popular tools that allow visualization and
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interaction with both 2-D (i.e., texture files .png, .jpg) and 3-D
volumes, as well as the support of masks, tractography results,
and/or label maps.

The X Toolkit is available on GitHub and can be used to visu-
alize a wide spectrum of physiological phenomena ranging from
white matter cortical connections, aneurysm characteristics, and
knee morphologies. Of note, an interesting JavaScript library,
jsdicom, also supports native DCM reading of DICOM files and
is available on GitHub (https://github.com/Infogosoft/jsdicom).

An attractive feature of the XTK platform is that apart from
being a native JavaScript library that directly parses DICOM
files directly (as opposed to requiring a server side plugin to
transcode .dcm files into .jpg/.png images), XTK can also support
a number of other common neuroimaging formats such as
several compressed and uncompressed formats of DICOM files
(.nrrd, .nii, .nii.gz, .mgz, .dcm, etc.) as well as files from higher
level MR processing (.trk, .stl, .fsm., .label, etc.) commonly used
in image analysis research.

Several implementations of The X Toolkit include the
AneuRisk Web repository (http://mox.polimi.it/it/progetti/
aneurisk/) (Ford et al., 2009) and SliceDrop.org (Figure 4). The
LONI group (formerly of UCLA, now of UCSC) has developed
an extension of SliceDrop that further supports drawing ROIs
directly within the XTK framework (http://users.loni.ucla.edu/∼
pipeline/viewer/). A pediatric brain atlas, also built using the
XTK visualization platform, further demonstrates the power of
this framework (http://fnndsc.github.io/babybrain/, Figure 5).
Another notable web based viewer is Papaya (http://github.com/
rii-mango/Papaya), based on a similarly functioned Java client
(http://en.wikipedia.org/wiki/Mango_(software)).

MATERIALS AND METHODS
XNATView was designed as a light-weight version of the bun-
dled XNAT image viewer, which is in essence ImageJ (http://
rsb.info.nih.gov/ij/index.html). As mentioned above, this current

bundled application is Java-based, and we had difficulty on some
of our machines installing the proper version of Java and consis-
tently loading the application.

The initial prototype of XNATView was developed using the
Adobe Flex framework, but the current implementation is now
written in native JavaScript. XNATView uses a Representational
State Transfer (REST) (Fielding, 2000) API to query the XNAT
database below, capitalizing on the PyXNAT (Schwartz et al.,
2012) library. The back-end functionality is written in Python
and the user interface is primarily written in jQueryUI (http://
jqueryui.com/).

LEVERAGING XNAT’s REST INTERFACE TO DEVELOP A CUSTOMIZABLE
IMAGE MANAGEMENT SYSTEM
One of the most powerful aspects of the XNAT framework is the
introduction of a REST-based API, which allows programmatic
access to the available imaging data. In developing XNATView,
we have exploited this capability to develop our own image viewer
and web-based GUI for image navigation. The PESSCARA frame-
work also supports REST-based queries, allowing us to leverage
the XNATView architecture and generalize it to produce a more
flexible zero footprint image viewer.

While the rich metadata which XNAT provides related to scan
times, quality, echo time, etc. is important to be able to access by
“power users,” the REST interface allows our lightweight viewer
to sit on top and to abstract many details which may be over-
whelming for the average user. In this way, XNATView trades
some of the functionality for performance by allowing its users
to be able to quickly view the imaging data and accompanying
metadata while providing basic image processing tools such as
contrast and zoom. The average researcher is allowed to tailor his
or her interface and expose select data elements to their user base
to allow for cleaner image viewing and annotation. The images are
also cached, which clears some of the load away from the XNAT
back-end.

FIGURE 4 | Slice:Drop An interactive visualization tool that allows users to instantly visualize imaging data from a wide variety of compatible

imaging formats (available at http://slicedrop.com/).
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FIGURE 5 | The Pedi-Brain Atlas Teacher, an interactive visualization tool for pediatric brain tumors on MRI (available at:

http://fnndsc.github.io/babybrain/).

PyXNAT
XNATView’s back-end functionality is written in Python and
communicates with XNAT via PyXNAT (Schwartz et al., 2012).
PyXNAT is a Python library that wraps around the RESTful Web
Services provided by XNAT and aims to bridge the communi-
cation with an XNAT server and provides an object-oriented
approach to querying the data. PyXNAT, combined with other
scientific libraries available in Python, allows the user to query,
change metadata, upload, and download files in a structured and
intuitive way. For example, if we want to get a list of projects in a
given XNAT instance (identified by an instance string, username,
and password), we would type the following command:

xnat = Interface(server=instance,
user=username, password=password,

cachedir = os.path.join(os.path.expanduser
(’~’),’XNATVIEW/.store’))

project_list = xnat.select.projects().get()

The variable project_list will now contain all the names
of projects in the specific XNAT instance. PyXNAT preserves the
hierarchy and data organization in its API, so if we would want to
get a list of subjects in a particular project we would type:

xnat.select.project(project_name).
subjects().get(’label’)

Downloading and reading DICOM files is also simplified with
PyXNAT. We use the dicom package available in Python to read
DICOM tags and PyXNAT API to download the files from the

online archive to our systems. The following code downloads
the DICOM files associated with a scan and reads the instance
number in each slice.

for each_file in scan.resource(’DICOM’).
files():
#download from XNAT in tempDir
path = os.path.join(tempDir,each_file.
id())

each_file.get(path,False)
#read DICOM tags
dicomData = dicom.read_file(path)
tag = str(dicomData.InstanceNumber)

Scan is an object that contains information specific to a partic-
ular scan, tempDir is a path on the local system, and dicom is
the Python package (import dicom).

RESULTS
XNATView ORGANIZATION
One of the most important characteristics of XNATView is its
very simple and intuitive user interface that allows a user to
browse among tens of thousands of images from one central-
ized location. The data is organized using the same hierarchical
concept used in XNAT—the data is grouped left to right accord-
ing to projects, subjects, experiments, and scan type (Figure 6).
The home user interface also allows users to view basic metadata
such as patient age and medication regimen associated with the
scan as well as easily view, compare, and analyze multiple scans
at once.
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FIGURE 6 | XNATView user interface. Users can select a specific scan narrowing search criteria from project, subject, session, and scan from left to right. Selected
scans can be custom tiled to suit specific viewing needs, scrolled between slices, and viewed using various image settings such as brightness and contrast.

DATA FEDERATION
One interesting aspect of XNATView is the potential to allow mul-
tiple systems (XNAT based or other) to present a single federated
view of available data sources. Specifically, the ability to exploit
the powerful REST interface accessible via PyXNAT allows indi-
vidual labs to maintain their own imaging repository but share
higher level attributes (available subjects, projects, etc.) while still
maintaining access to the underlying images.

By facilitating the need to send and manage multiple files for
review by collaborators, these interactive tools allow immedi-
ate feedback from collaborators. Thus, in addition to improving
upon traditional image communication methods involving static
images or single slice views, we currently support the communi-
cation of images adjusted for brightness/contrast, opacity, color,
and other properties of image overlays/masks.

ENHANCED DATA ACCESS
Another valuable feature we have incorporated is the ability to
provide a “deep link” to a file. When a user loads an image, a URL
appears at the top of the screen; the user can email a colleague the
URL and be directly sent to an image of interest. This could be fur-
ther extended to maintain various desired settings (e.g., contrast,
brightness, zoom). As we further integrate the ability to visualize
image masks, this feature will become even more useful.

As another example of this flexibility, we have developed a
data-finding utility we internally dubbed “XNAT Soup.” As we
were trying to group and visualize image series with similar scan
parameters, we developed an application that allows us to visu-
alize collection of images with similar scan properties. XNAT
Soup includes some standard visualizations, such as scatterplots,

but the main feature is a novel visualization for identifying
relationships between groups of scans. The visualization uses a
force-based layout that supports dragging, panning and zoom-
ing. Each subject is represented as a single node. A repulsive force
causes subject nodes to spread out so as not to appear on top of
one another and a drag force prevents this from causing them to
fly out of view.

XNAT Soup utilizes XNAT’s REST-based search-engine API to
allow the user to execute any scan queries that are supported by
XNAT itself. Each search query is added to the visualization as
a new node, which we call a scan group node. The size of each
scan group node is determined by the number of scans included
in the group. For each subject node that has scans in the scan
group, a spring-force edge is added between the subject node and
scan group node. The strength of the spring force is determined
by the percent of scans in the scan group that belong to that
subject.

The end result is that subjects related to a scan group are
drawn close to it and follow it when the scan group node is
moved around. Any node can be double-clicked to force its
position to remain stationary. When there are multiple scan
groups present, some subjects will appear between the two when
they have scans in both groups. This can be used to identify
groups of subjects with particular characteristics. Hovering over
any node reveals additional details in a tooltip. Figure 7 shows an
example where two scan groups are shown: (1) the smaller group,
in gray, includes only Axial scans with a TR value between 10 and
100, while (2) the larger group, in red, includes all scans with a
TI value above 0.5. From this view, we can see that there are four
subjects with scans in both groups.
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FIGURE 7 | XNAT Soup, a data finding utility used to visualize

collections of images with similar scan properties. In this figure, two scan
groups are shown: (1) the smaller group, in gray, includes only axial scans

with a TR value between 10 and 100, while (2) the larger group, in red,
includes all scans with a TI value above 0.5. Note also the four subjects in
between, who have scans from both groups.

ZERO-INSTALLATION FEATURE
Finally, to keep up with rapidly evolving technology, we are
quickly moving toward a zero-installation model for MRI visu-
alization and manipulation. This allows for a centralization of
image data which helps with the problem of file versioning as
the original file is not downloaded but only streamed from the
server to the webclient. Although there are pragmatic concerns,
such as the ubiquity of outdated Internet Explorer installations on
many machines, the technical burden of sharing and interacting
with images is rapidly decreasing. This then offers the possi-
bility of interaction and feedback from colleagues with a wide
degree of technical expertise and further fosters collaboration and
knowledge discovery.

XNATView OPERATION
XNATView allows the user to choose an XNAT instance and log-
in using XNAT credentials for that instance. The flexibility of the
REST-based services in XNAT allows the XNATView to run with-
out any modification of XNAT itself, and can communicate with
any accessible XNAT back-end. In addition, various visualization
plugins and our basic 2-D slice viewer as well as experimental
support for an XTK based 3D visualization tool are supported by
our XNATView. The basic XNATView interface supports Internet
Explorer 8 with limited functionality, which is often the standard
browser on many hospital and clinic settings. A public instance

of XNATView is available at http://xnatview.org/ (This version
offers basic user options and is available by clicking “guest”
at http://xnatview.org/), which mirrors publically available data
provided by the Cancer Imaging Archive (Prior et al., 2013).

DISCUSSION
To support various neuroimaging research demands in our lab,
we have developed XNATView, a tool that interfaces with XNAT
and leverages the REST layer which XNAT exposes for program-
matic data access. As we further develop this, we hope to gener-
alize this software into a Zero Foot Print Image Viewer (ZFIV)
which can support multiple back-ends (e.g., not just XNAT or
PESSCARA).

XNATView capitalizes on the functionalities of PyXNAT and
serves as a lightweight interface that allows easy visualization of
a wide range of image series along with metadata. As a result,
users are able to review thousands of images from one centralized
location, which has the potential to improve data sharing and
collaboration (Walden et al., 2011). Some advantages of our
implementation are the ability to provide “deep links” allowing
users direct access to a particular scan/session, the potential to
provide federated views to multiple backends (XNAT or other),
a simple UI, Internet Explorer support back to version 8 (with
somewhat reduced functionality), and removing the dependency
on Java.
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It is important to highlight the extreme flexibility that both
PyXNAT and XNAT allow via the REST based user interface.
REST is a powerful tool used to access, query, retrieve and con-
vert database entries and we chose this platform based on its ease
of utilization and functional flexibility. In fact, it has been used in
several applications ranging from displaying bioinformatics data
from sequence alignment data (Katayama et al., 2010) to assisting
physicians in drug prescription decisions (Bianchi et al., 2013).

Therefore, while we feel the application is itself of interest,
perhaps the most important aspect of this work is the ability to
leverage the power of REST-based mechanisms to allow “mash-
ups.” In essence, XNATView is a simple thumbnail gallery, similar
to the multitude of image viewers available. The ability to expose
data via REST, however, allows the end-user to repurpose and
abstract many of the functions of the underlying tool (XNAT) to
suit their own needs. As discussed above, our current work with
PESSCARA, which also supports REST based image query and
retrieval, can be similarly attached. Of note, the name XNATView
reflects the initial implementation of this framework, although
as we enable other back-ends, ZFIV may be a more appropriate
moniker.

CODE AVAILABILITY
The code and initial application is available at our github
site [https://github.com/dgutman/ZeroFootPrintImageViewer_
XnatView].
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The visualization of the progression of brain tissue loss in neurodegenerative diseases like
corticobasal syndrome (CBS) can provide not only information about the localization and
distribution of the volume loss, but also helps to understand the course and the causes
of this neurodegenerative disorder. The visualization of such medical imaging data is often
based on 2D sections, because they show both internal and external structures in one
image. Spatial information, however, is lost. 3D visualization of imaging data is capable
to solve this problem, but it faces the difficulty that more internally located structures
may be occluded by structures near the surface. Here, we present an application with two
designs for the 3D visualization of the human brain to address these challenges. In the first
design, brain anatomy is displayed semi-transparently; it is supplemented by an anatomical
section and cortical areas for spatial orientation, and the volumetric data of volume loss.
The second design is guided by the principle of importance-driven volume rendering: A
direct line-of-sight to the relevant structures in the deeper parts of the brain is provided
by cutting out a frustum-like piece of brain tissue. The application was developed to run in
both, standard desktop environments and in immersive virtual reality environments with
stereoscopic viewing for improving the depth perception. We conclude, that the presented
application facilitates the perception of the extent of brain degeneration with respect to
its localization and affected regions.

Keywords: volume rendering, view-dependent visualization, virtual reality, deformation-based morphometry,

neurodegeneration, atrophy

1. INTRODUCTION
The simultaneous 3D visualization of both, the outer surface and
internal structures of the human brain in an intuitively graspable
manner is still challenging. The pattern of gyri and sulci of the
outer brain surface provides landmarks for at least coarse local-
ization. Besides, internal brain structures must be distinguishable
due to their high functional specificity. Moreover, in neuroscience
it is desired to combine such representations with different kinds
of additional field data; thresholded maps of such field data shall
be integrated with structural data. In the present study, the fol-
lowing types of field data were superimposed on a magnetic
resonance imaging (MRI) scan of a brain of a patient who suf-
fers from the corticobasal syndrome (CBS): Structural MRI data,
time dependent field data that quantify structural changes on the
voxel level, and probabilistic maps of anatomical regions (cf. Zilles
et al., 2002; Amunts et al., 2007). The structural change data were
calculated by analyzing series of longitudinally acquired MRI data
using deformation based morphometry (DBM, cf. Pieperhoff
et al., 2008). New insights into brain regions that are affected by
certain neurodegenerative diseases are enabled by exploration of
occurring structural changes and its temporal progression.

Visualizations of these brain data by means of 2D sections
are widely used. However, each of these sections provides only
a small cutout of the brain. Thus, it is left to the observer to

mentally merge the information into a 3D representation. In par-
ticular, it is difficult to relate the information given in a 2D section
to the cortical surface of an individual brain, e.g., to identify
individual sulci. To this end, an additional 3D visualization can
be provided separately or in combination with sections. Several
software tools are available for the side-by-side 2D and 3D visual-
ization of brain data. For example, Brainvoyager QX (http://www.

brainvoyager.com/) is a commercial software specialized for func-
tional MRI and diffusion tensor imaging (DTI), but the extension
of this program for other data modalities is not straightforward
because of special visualization needs. OpenWalnut (http://www.

openwalnut.org/) and MITK (www.mitk.org) are open source
toolkits that can be extended via plugins, or even within the code
basis. Whereas OpenWalnut is specialized on DTI data, MITK is a
tool for the processing of more general medical data. Both appli-
cations offer a 3D visualization complemented by 2D sections in
different orientations.

The 3D visualization of the human brain, however, raises
particular difficulties that are usually not considered by stan-
dard software. A transparent brain surface representation might
become difficult to comprehend when the surface is overlapping
too many times along the view direction. On the contrary, visu-
alizing the brain as an opaque surface will occlude major parts
of itself. For example, Thompson et al. (2007) and Zhou et al.
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(2013) use opaque surface renderings of the whole brain or of cer-
tain segmented structures that are colored by additional field data,
such as volume change data or statistical scores. But any informa-
tion inside or outside the rendered surfaces is discarded. To enable
the representation of subcortical brain structures like the border
between cortex and white matter, subcortical nuclei, or ventricles,
3D visualizations are often combined with up to three clipping
planes (cf. Weber et al., 2008; Olabi et al., 2012). These planes
define a clipping cuboid, in which the part of the brain inside
this cuboid is removed and the clipping planes itself represent 2D
sections. For the combined visualization of data from different
modalities, the clipping can be limited to individual data sets as
shown in Born et al. (2009) and Rieder et al. (2013), where only
the anatomy inside the clipping cuboid is removed and fiber bun-
dles stay visible. Additionally, a transparent representation of the
brain in the cutout improves spatial perception of non-clipped
structures.

Using a cuboid for the clipping, however, may require clip-
ping too large parts of the brain, for example, when structures
in the central part of the brain should be depicted. Therefore,
a more flexible clipping geometry would be beneficial. As an
alternative to the clipping planes, Rick et al. (2011) present a
flashlight metaphor that enables the user to define interactively
a cutout within the opaque volume visualization of the brain
anatomy. Orientation, diameter, and depth of the clipping cone
can be adjusted by the user. Still, this method is of limited use for
elongated structures when observing the whole structure at once,
because the diameter of the cone becomes unnecessarily large for
the non-elongated direction and again too large parts of the brain
might be clipped. Otherwise, a cone with a small diameter could
be moved manually through the volume showing only a small
part of the volume of interest (VOI) at once.

More data-driven visualization concepts are presented, e.g.,
by Hauser et al. (2001), Krüger et al. (2006), Bruckner et al.
(2006), and Viola et al. (2004). These designs have in common
that they locally decrease the opacity of occluding structures to
show internal ones. Hauser et al. (2001) suggest to render dif-
ferent structures of a data set as individual objects separately in
a first step. These objects are merged in a second step in order
to give each of them a customized appearance in the final visu-
alization. To focus on a small part of the whole volume, Krüger
et al. (2006) use focus and context techniques and apply differ-
ent weights, transparency functions, or color properties for focus
and context objects. Bruckner et al. (2006) motivate their concept
by hand-drawn illustration techniques and influence the focus
mainly by defining the distance to the eye point and a gradient
magnitude. The user can influence the sharpness of transition
between clipped and visible structures, and the depth of clipping.
The drawback of the three previously described techniques is the
missing depth information for the VOI. Viola et al. (2004) resolve
this problem with a technique using a conical cutout, that is com-
parable to the flashlight metaphor of Rick et al. (2011). The cutout
shows anatomical information on its faces, thus giving depth
information. This importance-driven volume rendering (IDVR)
approach has the advantage that the cutout can be assigned to a
particular structure, so that it can be automatically adjusted to the
VOI’s size. Furthermore, the cutout follows the view direction of

the user and therefore stays always perfectly aligned. But for neu-
roscientific applications this technique might be further improved
by providing additional information at the same depth as the VOI
creating a section-like view onto the data and a data-depended
clipping object for the deformation data.

Based on the previous findings we introduce two designs for
the visualization of brain data with time dependant structural
changes. The user interface of our visualization system had to
enable an intuitive interaction and to provide an overview of
the whole data in combination with detailed view of spatial rela-
tions of anatomical structures. The first design provides detailed
anatomical information by means of a transparent anatomy of
a whole MRI brain data set, whereby a 2D section can be inter-
actively defined within this volume (cf. Figure 1). The second
design extends the approach of Viola et al. (2004) by using a frus-
tum of a cone as clipping object (cf. Figure 2) to provide more
context information about nearby structures on the clipping
planes (cf. Figure 3).

The rest of the paper is structured as follows: In section 2 image
data as well as details of our visualization designs and interaction
strategies are described. In section 3, the benefits of our imple-
mentation are discussed and in section 4 conclusions are drawn
and an outlook onto possible future improvements is given.

2. METHODS
Before we describe the two visualization designs mentioned
above in detail, the underlying data modalities are clarified.
Furthermore, we show how the user interface of our visualiza-
tion system aims for an intuitive interaction and provide both, an
overview of the whole data and a detailed view of spatial relations.

2.1. DATA AND IMAGE ANALYSIS
In this work a series of T1-weighted MR-images of a single
person was used as an exemplar. The images were acquired by
Südmeyer et al. (2012) in the context of a longitudinal study
on aging and neurodegenerative diseases. The voxel-size of the
MR-images was 1 × 1 × 1 mm3. These images were acquired
at five points in time within a total interval of 26 months.
The initial MR-image was segmented by deleting the value of
every voxel not belonging to brain tissue. Segmentation masks
were automatically generated by a procedure which was imple-
mented in the program SPM (http://www.fil.ion.ucl.ac.uk/spm/)
and afterwards manually corrected. Maps of volume changes,

FIGURE 1 | Overview Design: Volume visualization showing brain

degeneration (yellow/red) and the premotor cortex area (blue) in

anatomical context (gray).
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FIGURE 2 | View dependent frustum-like cutout into the volume (light blue) following the depth structure of the VOI (dark blue).

FIGURE 3 | Importance-Driven Volume Rendering Design: A

view-dependent cutout is created to the premotor cortex area (blue).

Furthermore, this screenshot shows the application when changing the
opacity of the cortical area via pie menu.

which were superimposed to the structural image, were cal-
culated by DBM in the following way. Each follow-up MR-
image of the subject was non-linearly registered with the initial
image by minimizing the voxel-wise squared intensity differ-
ences between both images, regularized by an elastic energy
term which penalized non-biological distortions. The image reg-
istration yielded for each follow-up MRT image a deformation
field that assigned to each voxel of the initial MRT image a
vector that pointed to the corresponding position in the follow-
up image. From this deformation field, a map of voxel-wise
relative volume differences was derived. Further details of this
analysis can be found in Pieperhoff et al. (2008). In order to
visualize the temporal evolution of tissue degeneration fluently,
volume change maps in-between the actual time points–month
0, 16, 20, 23, and 26–were interpolated to a total number of 27
data sets.

Maps of anatomical regions used here originate from the
JuBrain Cytoarchitectonic Atlas (https://www.jubrain.fz-juelich.
de). They were gained by cytoarchitectonic based parcellations in
histological sections of post-mortem brains (cf. Zilles et al., 2002;
Amunts et al., 2007).

The anatomical data, time dependent field data and cortical
areas were used to develop the visualization designs presented

below and were a use case to examine the supportive effect in the
visual analysis of these data.

2.2. VISUALIZATION
We developed two different visualization designs to support the
spatial understanding of the data. The first design used a trans-
parent 3D representation of the anatomy and an opaque section.
The second design was based on the IDVR algorithm as described
in Viola et al. (2004) creating a view-dependent cutout around a
defined VOI. In both designs, the degeneration of the brain tissue
was visualized by means of time varying data, which were mapped
to a red to yellow color map, with red meaning small and yellow
large volume decline (cf. Südmeyer et al., 2012). Additionally, in
order to identify the affected brain structures, maps of selected
anatomical regions of the JuBrain atlas were included. For the
visualization design described below, we had have to follow
the requirement to present internal structural information with
respect to external anatomy in a meaningful way. The use of vol-
ume rendering and an interactive adjustment of opacity values
for each data set facilitated, for example, a visualization of struc-
tural changes caused by tissue atrophy and anatomical regions.
Furthermore, the combined ray casting for all data in one volume
renderer enabled a correct depth perception. Based on this, our
first visualization design combined common modalities and was
used particularly as an overview visualization, whereas the second
design allowed for a detailed examination of a selective VOI.

2.2.1. Overview design
2D sections can be combined with 3D visualizations when using
them as clipping planes (cf. Cabral et al., 1994; Rößler et al.,
2006; Rick et al., 2011) to assist spatial orientation. Our proposed
overview design was based on this idea: The brain anatomy was
shown semi-transparently by the use of volume rendering and
complemented by a 2D section of the original MRT data. Thus,
both, the complex structure of the brain surface with gyri and
sulci as well as internal regions remained visible, and no infor-
mation in front of the section was lost as with clipping planes. To
give an overview on the tissue degeneration, the deformation data
were blended into the 3D anatomy volume. The final design can
be seen in Figure 1.

2.2.2. Importance-driven volume rendering design (IDVR design)
In comparison to the overview design, the IDVR design offered a
more specialized view for a detailed examination of specific brain
areas. The anatomy was visualized in an opaque fashion and a
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cutout facilitated a view into the volume by removing only as
much anatomy as necessary and staying automatically aligned to
the user’s view direction. For this purpose, the design used an
advanced algorithm based on Viola et al. (2004), so that the spec-
ified VOI was always visible due to a view-dependent cutout. The
original work defines a conical cutout, with the tip of the cone
being determined by the VOI’s deepest voxel along the view direc-
tion. The faces of the cone help to determine the depth of the
VOI in the overall volume. However, a drawback of this previous
algorithm was, nearby structures at the same depth of the VOI
may be covered by the surrounding brain tissue. Therefore, it was
more favorable to expand the cutout by using a section-like plane
that is aligned with the back side (in viewing direction) of the
VOI. Thus, Viola’s algorithm was modified by using a frustum
shaped cutout instead of a conical one. The top plane of this frus-
tum was positioned at the level of the deepest VOI voxel. In the
present study, the VOI was defined by a neuroanatomical region.
Neuroanatomical regions, e.g., cortical areas or nuclei, have often
a complex structure, so that its depth texture is strongly vary-
ing. Hence, creating the section only on basis of one depth value
would neglect nearby structures on all other depth levels of the
VOI. Therefore, we adapted the algorithm to define the top sur-
face of a frustum-like cutout with a section that is approximated
using all values of the VOI’s backface (cf. Figure 2).

The cutout calculation was based on multi-pass raycast render-
ing and worked as follows. In the first pass, a special modification
of a depth texture of the VOI was defined as not only the depth
values are interesting, but also the exact sample position in the
volume. Therefore, rays were directed into the volume that were
defined by a previously calculated ray entry points texture TR and
a ray exit point texture TE. Along each ray, the x-, y-, and z-
coordinate of the deepest VOI voxel and the accumulated length
la until this point were determined. These values were stored into
the output texture TV of this first rendering pass. If the ray did
not hit the VOI at all, the four texture element (texel) values were
set to zero.

In the second rendering pass, the cutout was defined. To find
the best definition of the top surface of the frustum with respect
to the best information retrieval and smoothness, three different
implementations were tested. The first two approaches of the top
surface definition varied only in the determination of the texel
PV ∈ TV that is used as reference point for further calculations

(cf. Figure 4 left, middle). In the first case a vector
−−−→
PRPV1 was

sought, where PR ∈ TR was the current ray entry point and PV1 ∈
TV is defined by the closest texel of TV with la > 0, within a max-
imum distance d in X- and Y-direction of TV . Therefore, the
algorithm iterated over all texels of TV from −d to +d distance
in X- and Y-direction starting from the texel with the same texel
coordinates as PR.

In the second case, we adapted this iteration step by not min-

imizing |−−−→
PRPV1 |, but rather find the texel PV2 ∈ TV that created

a vector
−−−→
PRPV2 with a minimum angle between

−−−→
PRPV2 and the

X- or Y-axis. The iteration starts at 0, checks in ±d in X- and
Y-direction, and terminates if a sufficient PV2 is found. From
this point on, the calculations were identical for the first and
second implementation and we defined PV = PV1 or PV = PV2 ,
respectively.

Let r1 be the maximum length of
−−−→
PRPV , with

r1 =
√

d2 + d2, where
√

d2 + d2 ≥ |−−−→
PRPV |. (1)

If
−−−→
PRPV existed, it was possible to determine a vector

−→
RV , with

V being the corresponding voxel of the VOI to PV saved in the
output texture of the first rendering pass TV , and R being defined
with the help of the congruence theorem of triangles, where an
edge with an angle of 90◦ could be constructed from the view ray

to V (cf. Figure 5). If |−→RV | was within a radius r2, with r2 ≤ r1,
the ray hit the top surface of the frustum and the depth value c of

FIGURE 5 | Schematic illustration of the construction from the closest

depth point of the volume of interest V onto the view ray R. In dark
blue we see in the back the volume of interest and its projected depth
texture on the near clipping plane. The dark green area limits our search
area from the ray entry point PR to a nearby VOI point PV , and the light
green circle with radius r2 limits the top surface size.

FIGURE 4 | Determination of the local depth value in the cutout. Left: Use
depth of PV1 as the closest texel of the VOI’s depth texture to the ray entry
point PR . Middle: PV2 is the most straight aligned texel in relation to PR . Right:

A darker color in the VOI depicts a higher depth value. PV is the closest texel to
PR and is used to calculate the distance to the VOI, but PVd has the highest
depth value in distance d around PR , and is utilized as depth value.
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the cutout for the current view ray was set to the depth value of
V . Otherwise, the cutout depth c was calculated as follows

c = |−→RV | − |−−−→
PRPV | − r2

r1 − r2
. (2)

The result of the first approach showed circular artifacts around
small parts of the VOI that stuck out, and where depth changes
of the VOI occurred (cf. Figure 6 left). For the second approach,
we see hard edges in diagonal orientation (cf. Figure 6 middle).
To create a smoother frustum top surface, neglecting small out-
liers, we implemented a third approach which is schematically
shown in Figure 4 right. In addition to PV1 the texel PVd in TV

was sought within a maximum distance ±d to PR in X- and Y-

direction with the highest la value.
−−−→
PRPV was calculated as in the

previous approaches, but
−→
RV was replaced with

−→
RVd and the addi-

tional depth had to be included in the calculation of the frustum
faces, resulting in

c = |−→
RVd| − |−→

RVd| ·
(
|−−−→
PRPV | − r2

)

r1 − r2
. (3)

Although the depth value of the top surface is determined by the

depth value of Vd, |−→RV | still defines whether the view ray hits the
top surface or is part of a frustum face. An exemplary smoothed
cutout can be seen in Figure 6 right.

2.3. INTERACTION
Depth perception can be improved by rotating, panning, and
zooming (cf. Swanston and Gogel, 1986), suggesting that inter-
action with the brain model in the 3D visualization is desir-
able. In immersive virtual environments, correct depth relations
can already be perceived without additional intentional inter-
action. Therefore, we provided the application for both, stan-
dard desktop setups and 3D immersive virtual environments
with stereoscopic vision. To this end, we used the open source,
cross-platform ViSTA toolkit (cf. Assenmacher and Kuhlen,
2008) for easy scalability to different systems. In the immer-
sive setup, the depth impression of the cutout in the IDVR
design became better comprehensible and the location of the
border between faces and top surface of the frustum was clearly

visible. The advantage of virtual environments over 2D dis-
plays for depth perception and estimation were shown in sev-
eral studies, e.g., in Armbrüster et al. (2006) and Naceri et al.
(2010) and in particular for volume rendered data in Laha et al.
(2012).

Because the application was provided for Virtual Reality
setups, an alternative to the classical 2D menu interaction became
necessary. To this end, we decided to use extended pie menus as
described by Gebhardt et al. (2013). They scale to 2D and 3D
environments and can interactively be moved in the scene while
staying aligned to the user’s orientation. The menu is hierarchi-
cally arranged and can be divided into various submenus (cf.
Figure 3). The most important interactions that were controlled
via these menus are explained below.

Time Navigation–This submenu held the time navigation,
where the user was able to set the animation speed or can
manually step through all time steps of the presented data.

Cortical Areas–Predefined anatomical regions such as cytoar-
chitectonic areas from the JuBrain atlas could be selected for
visualization by this submenu. Color codes of these regions and
their arrangement in groups could be defined in a separate set-
tings file that was read when the program starts. These definitions
were also represented in the pie menu, allowing the user to hide or
display whole area groups with a single mouse click. Furthermore,
the opacity could be adjusted to provide a view onto degeneration
occurring inside the anatomical regions.

Importance Driven Volume Rendering–Here the user could
switch to the IDVR design. Depending on the available data sets
of the subject, a variety of options existed. By default the VOI was
defined by the visible anatomical regions. If provided the user
was able to select any other VOI defined by field data as well. It
can be useful to show other data next to the VOI in the cutout.
Therefore, the user might choose to visualize the degeneration, or
if provided, any other data exempt from the anatomy.

Color Map–This submenu allowed users to adapt the opac-
ity and enhance the contrast of the anatomy. The contrast and
opacity parameters have to be adapted to the range of voxel val-
ues of the data sets which are to be visualized. Furthermore,
the color menu allowed users to change the threshold for the
deformation values to exclude small degeneration values and set
the focus on larger ones. The adjustability of the opacity for
these values led to a good spatial orientation particularly in the
IDVR design because the degeneration could be visualized in

FIGURE 6 | Clipping artifacts depend on the definition of the distance

value and are clearly visible when observing transitions in the sulci

(dark gray) in the detail view. Left: Circular artifacts when using the closest

voxel of the VOI. Middle: Diagonal artifacts when preferring voxels in straight
alignment. Right: Smoothest result with homogeneous depth values for a
nearby voxel.
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the cutout and a high transparency preserves a good view onto
the cutout faces. Moreover, in the overview design the right bal-
ance between opacity of cortical areas and degeneration allowed
for good visual comparability of relationship between the two
volumes.

3. RESULTS AND DISCUSSION
The visualization of anatomical structure and superimposed field
data by volume rendering enables neuroscientists to observe the
data described in section 2.1 not only on the surface, but also
inside the brain, and to get a better impression about the spa-
tial extent of regional volume loss in the context of the individual
brain anatomy. This is an advantage over visualization based on
surface reconstruction, because the latter is typically limited to
field data on or near the surface, which causes a great loss of
information. In studies of neurodegenerative diseases, it makes
an important difference if the tissue atrophy that is quantified by
the superimposed volume change data occurs only in the cor-
tex, or if also subcortical regions and white matter (i.e., fibers
deep inside the brain which connect brain regions) are affected.
For instance, the data examined here show a progressive atrophy,
which includes both the motor cortex areas and the pyramidal
tract. But transparent volume rendering of the brain often yields
diffuse borders, whereas in surface based visualization the per-
ception of the surface shape can be enhanced, for example, by the
simulated effects of lighting, reflection, and shadows. Moreover,
brain structures that are deep inside the brain and have only low
contrast to their environment are hardly perceived when volume
rendering of an MRT image is used exclusively.

A 2D section is added in the overview design onto which the
voxel values of the structural image of the brain are mapped, so
that cortex, subcortical nuclei, and white matter can easily be
identified according to existing brain atlases. The brain in front
of the added plane is not removed and thus landmarks for an
anatomical localization are still provided. This design is particu-
larly useful, when certain features near or within the brain cortex
like the atrophy of certain gyri shall be shown.

In the IDVR design the brain in front of the clipping surface
is removed, whereas the anatomical maps and the volume change
data are still completely rendered. This design is more appropri-
ate to show deeper parts of the brain: By means of rendering the
anatomical regions in front of the clipping surface and the surface
texture, a good localization is possible. In particular, the over-
lap of anatomical regions and volume change data is intuitively
displayed by the blending of their colors (cf. Figure 7).

Moreover, the automatic alignment of the clipping surface
when the brain is moved relative to the observer enables a sim-
ple interaction, which gives a good spatial perception even in
non-virtual environments. The extent of the removed part of the
brain can be controlled by the selection of predefined anatomical
regions and additional parameters like the aperture of the frus-
tum. We observed that using the application in a user-friendly
immersive virtual environment enhances the perception of the
spatial relations, in particular of spatial depth.

Since this application is to be used interactively, the frame rate
has an important influence on the performance, which is why it
was investigated in more detail. In comparison to visualizations

FIGURE 7 | Atrophic part of the brain (red to yellow) of a person with

CBS and maps of anatomical regions (blue premotor cortex, green

cortico-spinal tract). The removed part of the brain is adjusted to the
selected anatomical regions. The overlap between atrophic parts and
anatomical regions can be recognized by the blending of different colors.

of geometries, volume rendering approaches lack in performance.
Moreover, the use of stereo viewing in an immersive virtual envi-
ronment halves the frame rate due to the generation of two
simultaneous images (one per eye). We tested our application
on two systems: The first is used as desktop environment, and
runs Windows 7 on Intel Xeon CPU E5540 with four cores at
2.5 GHz, an Nvidia GeForce GTX 480 graphics card, and 12 GB
RAM; the second system is used as virtual environment with a
passive stereo system, head tracking, and runs Windows 7 on
Intel Xeon CPU E5530 with four cores at 2.4 GHz, but with an
Nvidia Quadro 6000 graphics card, and 4 GB of RAM. With a
resolution of 1400 × 1050 we achieve for the overview design
about 30 frames per second (fps) in stereo mode which ful-
fills the requirement for interactivity. The implementation of the
IDVR design is based on the same volume renderer, thus a higher
frame rate cannot be expected. We are limited by the iteration
over all neighboring texels when seeking PV which it cannot be
early terminated, because there is always the possibility to find
a closer V , respectively, a Vd with higher la. To solve this prob-
lem, we introduced a parameter to the IDVR calculation to set
the accuracy in the iteration. Assuming that the resolution of the
texture TV is sufficiently large, every i-th texel can be skipped
and is not tested to be a candidate for V or Vd. The value for
i can be changed via the pie menu. For i = 2 nearly no visual
artifacts can be found. For i = 3 noticeable impacts in form of
loose wrong depth values appear, but this method is still reason-
able, because it allows for better performance and the artifacts
are not disturbing the overall depth perception in the cutout. The
achieved frame rates (cf. Table 1) for a scene comparable to the
one shown in Figure 3 show that also the IDVR design can be
used interactively in virtual environments, but clearly needs per-
formance improvements. However, in general the frame rate of
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Table 1 | Results of performance tests of the visualization designs

(averaged values from different view points), the overview design

with common volume rendering and the IDVR design with different

precision states for the cutout generation.

Nvidia GeForce GTX Nvidia Quadro

480 (mono view) 6000 (stereo view)

Overview Design 55 fps 30 fps

IDVR Design

i = 1 4 fps 3 fps

i = 2 11 fps 7 fps

i = 3 18 fps 10 fps

our application is highly dependent on the window size, the size
of the volume on the screen, and for the IDVR design on the value
of distance d.

4. CONCLUSION AND FUTURE WORK
In this paper, we have introduced two visualization designs
to address the challenge of depicting complex 3D information
of human brain data. Whereas the first approach provides an
overview of the data, the second allows for a more detailed exam-
ination. Current work as, for example, Laha et al. (2012) already
showed that the visualization in virtual environments supports
the analysis of volume data, but more studies are necessary in this
field. First, the general improvement of spatial impression and
the ability of correct spatial localization with our designs in com-
parison to commonly used 2D section views should be proven,
for example, by determining the extension of an artificial tissue
degeneration and its spatial localization. Second, this experiment
should be repeated in an immersive virtual environment and then
compared to the results of desktop environments. Moreover, since
our application is supposed to benefit the daily workflow of neu-
roscientists, their expert impression of additional or more easily
grasped information should be gathered.

Illustrations in anatomical text books like Nieuwenhuys et al.
(2008) are excellent artworks that selectively emphasize certain
structural entities or parts of the brain while showing the sur-
rounding brain structure. These figures were artistic drawings,
but it is desirable to achieve similar presentations by com-
puterized 3D visualizations which can be manipulated by user
interaction (cf. Bruckner et al., 2006). In particular, the gradi-
ent based emphasis of surface structures could be used to stress
the brain surface and show the ventricles in the overview design
more clearly. Furthermore, an enhanced contrast-to-noise ratio
of the MRI data and a visual smoothing would improve the
quality of the visualization and allow for easier analysis. As dis-
cussed in section 3, the IDVR design could benefit from a faster
cutout calculation to ensure a higher frame rate which in turn
would lead to increased interactivity. Therefore, one approach
might be to use distance maps created from the result of the first
rendering pass and discard the iteration approach during the sec-
ond rendering pass that is mainly responsible for the frame rate
decrease.

In conclusion, we have significantly improved the spatial local-
ization of brain structures affected by CBS and the understanding

of its temporal progression which motivates further research, and
an application to other neurological and psychiatric disorders.
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An emerging application of resting-state functional MRI (rs-fMRI) is the study of patients
with disorders of consciousness (DoC), where integrity of default-mode network (DMN)
activity is associated to the clinical level of preservation of consciousness. Due to the
inherent inability to follow verbal instructions, arousal induced by scanning noise and
postural pain, these patients tend to exhibit substantial levels of movement. This results
in spurious, non-neural fluctuations of the rs-fMRI signal, which impair the evaluation of
residual functional connectivity. Here, the effect of data preprocessing choices on the
detectability of the DMN was systematically evaluated in a representative cohort of 30
clinically and etiologically heterogeneous DoC patients and 33 healthy controls. Starting
from a standard preprocessing pipeline, additional steps were gradually inserted, namely
band-pass filtering (BPF), removal of co-variance with the movement vectors, removal
of co-variance with the global brain parenchyma signal, rejection of realignment outlier
volumes and ventricle masking. Both independent-component analysis (ICA) and seed-
based analysis (SBA) were performed, and DMN detectability was assessed quantitatively
as well as visually. The results of the present study strongly show that the detection of
DMN activity in the sub-optimal fMRI series acquired on DoC patients is contingent on the
use of adequate filtering steps. ICA and SBA are differently affected but give convergent
findings for high-grade preprocessing. We propose that future studies in this area should
adopt the described preprocessing procedures as a minimum standard to reduce the
probability of wrongly inferring that DMN activity is absent.

Keywords: functional MRI (fMRI), resting-state, functional connectivity, disorders of consciousness, vegetative

state, minimally-conscious state, data preprocessing

INTRODUCTION
In recent years, resting-state functional MRI (rs-fMRI) has
attracted substantial research and clinical interest. In contrast
with fMRI based on active tasks, it is a straightforward form
of functional imaging suitable for the study of patients who are
unable to follow procedural instructions or are generally unre-
sponsive. Alongside practical considerations, there is increased
awareness of the importance of intrinsic brain activity in support-
ing behavioral function and determining metabolism (e.g., Fox
and Raichle, 2007; Rosazza and Minati, 2011).

An emerging application of rs-fMRI is the study of patients
with disorders of consciousness (DoC), an etiologically heteroge-
neous condition that typically follows substantial brain damage
due to vascular, hypoxic or traumatic insults. The clinical phe-
notype is highly variable, ranging from complete absence of
wilful responses (vegetative state) to situations where awareness
is fluctuating and a rudimentary communication code may be
established (minimally-conscious state or severe disability; e.g.,
Laureys, 2005; Owen and Coleman, 2008).

In the healthy brain, rs-fMRI reveals a set of well-reproducible,
separable activity components which appear to correlate with
specific sensory, motor and cognitive functions (Biswal et al.,
2010; Allen et al., 2011). In particular, the default-mode net-
work (DMN) has received considerable attention as a potential
proxy of large-scale integrative processes related to awareness,
interoception and memory consolidation. This bi-hemispheric
network has its main constituent nodes in the precuneus, lateral
parietal cortex and medial prefrontal cortex, and exhibits a well-
reproducible, graded response to wakefulness, sleep and coma
(Raichle et al., 2001; Buckner et al., 2008; Rosazza and Minati,
2011).

The severity of the clinical phenotype of patients in vegetative
state or minimally conscious state is reflected in the level of resid-
ual functional connectivity across the DMN (Boly et al., 2009;
Cauda et al., 2009; Vanhaudenhuyse et al., 2010; Soddu et al.,
2011) and other networks (Owen et al., 2006; Owen and Coleman,
2007), with recent work also indicating specific alterations in the
relationships across networks, particularly between the DMN and
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the fronto-parietal component (Boly et al., 2009; Noirhomme
et al., 2010). Importantly, the intensity of connectivity across the
DMN nodes and, consequentially, the detectability of the network
as a whole appear to be coupled to the level of residual conscious-
ness, as assessed by established clinical scales (Vanhaudenhuyse
et al., 2010). Rs-fMRI is therefore of particular relevance for the
study of DoC patients, since it can help to determine how large-
scale integrative processes are affected in the presence of impaired
consciousness.

A major challenge for the use of rs-fMRI in clinical popula-
tions is head movement, consequential to several factors includ-
ing the inability for the patient to understand and comply with
verbal instructions, emotional arousal caused by the scanner envi-
ronment, decorticate or decerebrate posture and postural pain.
Even when gross imaging artifacts are absent owing to the rapidity
of echo-planar acquisition and time-series volumes are accu-
rately realigned, significant signal modulations are introduced
by movement due to multiple factors including inhomogeneous
coil sensitivity, inhomogeneous coil loading by the head, inter-
action between susceptibility gradients and head movement, and
partial-volume effects. Such contaminations can introduce spu-
rious correlations as well as mask coherent neuronal sources
of blood-oxygen level-dependent (BOLD) signal fluctuations,
making it impossible to draw reliable inferences on the degree
of preservation of functional connectivity (Friston et al., 1996;
Hutton et al., 2002; Johnstone et al., 2006; Strother, 2006; Power
et al., 2012).

Thus, head movement represents a particularly insidious con-
found for the study of patients with DoC (Giacino et al., 2006;
Owen and Coleman, 2007; Soddu et al., 2011) because very large
variability of residual neuronal function is expected ab-initio, as
testified by the fact that the EEG can range from near-normal to
near-isoelectric (Soddu et al., 2012), and operators may therefore
be inclined to accept the findings of rs-fMRI uncritically.

Pre-processing techniques to remove physiological noise and
movement artifacts in rs-fMRI have been investigated extensively
in healthy participants with reference to both data-driven (i.e.,
independent-component analysis, ICA) and anatomy-driven (i.e.,
seed-based analysis, SBA) analyses (Birn et al., 2006; Lund et al.,
2006; Fox et al., 2009; Murphy et al., 2009; Weissenbacher et al.,
2009; Van Dijk et al., 2010). Existing studies have demonstrated
the importance of removing by linear regression co-variance with
movement parameters (Power et al., 2012; Van Dijk et al., 2012)
and physiological variables (Corfield et al., 2001; Birn et al.,
2006; Weissenbacher et al., 2009), either measured directly or
inferred from the rs-fMRI time-series. Several reports have also
underlined the utility of removing diffuse and un-specific signal
fluctuations, indexed by averaging signal over the whole brain:
while this may induce artifactual anti-correlations, it strongly
limits the effect of unaccounted sources of global noise over inter-
regional correlation estimates (Desjardins et al., 2001; Macey
et al., 2004; Murphy et al., 2009). Further, it has been demon-
strated that the confounding effect of movement can be attenu-
ated by combining regression of the movement parameters with
the exclusion and replacement by interpolation of selected con-
taminated volumes; this approach is particularly appropriate in
the presence of brief, large movements (Carp, 2013). In recent

work on healthy controls, the effect of the available filtering
techniques was systematically investigated, and it was concluded
that consideration of the parameters listed above alongside the
first temporal derivative of movement enhances the sensitivity
and stability of connectivity inferences (Van Dijk et al., 2012;
Satterthwaite et al., 2013). There is, however, a lack of consistency
in terms of preprocessing methods across the existing rs-fMRI
investigations of residual neural function in DoC: while in some
studies movement-related, physiological and unspecific global
BOLD signal variance were explicitly removed, in others more
basic data-preprocessing chains were utilized. In particular, none
of studies the authors are aware of have included specific prepro-
cessing steps to reduce the impact of the large, sudden movements
and substantial gross anatomical damage present in this popu-
lation, e.g., by outlier rejection and masking (Boly et al., 2009;
Cauda et al., 2009; Vanhaudenhuyse et al., 2010; Soddu et al.,
2011, 2012).

A crucial and unresolved question pertains to what extent the
large variability observed in this clinical group truly represents
neural differences rather than being consequential to movement
and other confounds. From a methodological viewpoint, there
is a need for a systematic evaluation of the effect of preprocess-
ing choices on data from this specific clinical population, and for
clear guidelines on how to best preprocess the rs-fMRI datasets
acquired for diagnostic and research purposes, to ensure the best
yield in terms of detectability of residual DMN function.

Here, we comprehensively investigated how inserting spe-
cific filtering steps in the preprocessing chain can improve the
detectability of the DMN or its residual portions in a clinically
and aetiologically heterogeneous population of DoC patients. We
hypothesized that using a tailored preprocessing chain would
substantially improve DMN detectability, as revealed by auto-
mated measurements as well as qualitative assessments. Since
ICA and SBA are often interchangeably utilized, in spite of their
substantially different computational properties (e.g., Rosazza
et al., 2012), we also investigated whether the two techniques are
differently sensitive to data preprocessing.

METHODS
PARTICIPANTS
All investigational protocols were approved by the institutional
ethics committee and written informed consent was always
obtained from the healthy participants and the legal representa-
tive of the patients. The study was conducted on 30 consecutive
patients with a clinical diagnosis of vegetative state or minimally
conscious state and 33 healthy volunteers. The selection criterion
for the patients was the detectability of the DMN with at least
one data analysis technique in one of the 5 different procedures;
patients in whom in the DMN appeared completely absent, irre-
spective of data preprocessing and analysis choices, were excluded
a-priori, since the purpose of the present study was to demon-
strate the differential effect of data preprocessing choices on DMN
detectability. In the recruitment period, 25 other patients were
scanned, but rejected as the DMN was not detectable with either
ICA or SBA, irrespective of preprocessing.

The average patient age was 54 years (range 22–82), average
disease duration was 34 months (range 7–105), 13 patients were
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female; regarding etiology, 13 have had head trauma, 11 intracra-
nial hemorrhage and 6 cerebral anoxia. For controls, the aver-
age age was 39 years (range 17–66). All patients were assessed
and evaluated with the Coma Recovery Scale-Revised (CRS-R;
Giacino et al., 2004; Lombardi et al., 2007) and with the Coma
Near-Coma scale (CNC; Rappaport, 2005). According to interna-
tionally accepted criteria (Multi-Society, 1994; Giacino, 2004), 15
patients were diagnosed as being in vegetative state (CRS-R 6.4 ±
1.8, CNC 2.4 ± 0.5) with the remaining 15 being in minimally
conscious state (CRS-R 13.7 ± 5.4, CNC 1.3 ± 0.6).

DATA ACQUISITION
Functional imaging was performed on a 3 Tesla scanner equipped
with a 32-channel head coil (Achieva, Philips Healthcare BV,
Best, NL). Two hundred functional volumes were acquired by
means of an axial gradient-echo echo-planar sequence, hav-
ing TR = 2800 ms, TE = 30 ms, α = 70◦, 2.5 mm isotropic voxel
size, 90 × 95 matrix size, 50 slices with 10% gap, ascending
order. Sequence duration was ∼9.5 min. When possible given
the patient posture, the head was gently restrained using foam
pillows, and a wedge was positioned under the knees to mini-
mize spine movement. The relatively small voxel size was cho-
sen primarily to reduce spatial distortions in the presence of
inhomogeneous susceptibility due to macroscopic lesions and
deposits.

DATA PREPROCESSING
Five data preprocessing procedures of increasing complexity,
consisting of different combinations of standard modules imple-
mented in SPM8 (Wellcome Trust Centre for Neuroimaging,
London, UK) and custom code developed in MatLab 7
(Mathworks Inc., Natick MA, USA), were compared (Figure 1).

Procedure 1 (P1) consisted of the standard SPM8 work-
flow for fMRI: rigid-body realignment to average volume with
minimization of squared differences (R), slice-timing correc-
tion (ST), normalization to MNI space by co-registration to
the individual T1 structural scan and subsequent segmentation
(N), and spatial smoothing using an isotropic Gaussian kernel
having FWHM 8 mm (S). The absence of gross normalization

FIGURE 1 | Definition of the data preprocessing pipeline for the five

procedures (P1–P5) under comparison. R, realignment; ST, slice-timing
correction; N, normalization to MNI space; S, spatial smoothing; MPR,
removal of co-variance with movement parameters; BPF, band-pass
filtering; GSR, removal of global parenchymal signal; ROR, removal of
realignment outliers; VM, ventricle masking. The modules in gray are
standard SPM8 functions, the others are functions developed in-house (see
text).

errors was visually confirmed by an experienced operator for all
patients.

Procedure 2 (P2) additionally included masking with a stan-
dard brain-mask to remove all voxels outside the brain outline
(but not the ventricles), removal of movement-related variance
(MPR) and band-pass filtering (BPF). Movement-related vari-
ance was removed by multilinear regression of the individual
voxel time-courses with respect to the six movement vectors, mea-
sured in absolute terms with respect to the first volume. BPF
was performed removing baseline fluctuations, e.g., related to
gradient system heating, by fitting and subtracting a 3rd order
polynomial, followed by low-pass filtering with a Butterworth
filter of order 1 having f−3dB = 0.1 Hz and applied twice in
opposite directions to attenuate rapid, non-neural BOLD signal
fluctuations (e.g., cardiac pulsatility).

Procedure 3 (P3) added global signal regression (GSR), i.e., the
removal by linear regression of the variance correlated to aver-
age signal intensity time-course calculated over all voxels included
in the brain parenchyma mask, derived from SPM segmenta-
tion. Performing this operation is advised in Weissenbacher et al.
(2009) and Van Dijk et al. (2010) as it attenuates topographically-
unspecific temporal variance, e.g., related to residual baseline
instability effects and systemic sources of physiological noise,
which can positively bias connectivity inferences. While this step
is generally deemed not necessary for ICA, here a common set
of preprocessing pipelines was considered and ICA/SBA were
therefore performed on the same data, including the GSR step.

Procedure 4 (P4) added the removal of realignment outliers
(ROR), i.e., the identification and replacement of volumes having
large residual mean-square difference from the average volume
after realignment, indicating the presence of macroscopic imag-
ing artifacts due to head movement, similarly to the work of Carp
(2013). Consideration of mean-square signal difference enables
a more direct assessment of signal contamination with respect
to distance from reference volume; for example, in presence of
sudden movements this criterion promptly identifies volumes
affected by “shear” between the first and last sections: for these,
the translation/rotation realignment parameters may not differ
substantially from the neighboring volumes but the attained over-
lap with the reference volume is poor due to distortion. Volumes
having residual mean-square difference larger than 1.5 times the
interquartile range calculated over all volumes of a series were
considered potential outliers. However, outlier rejection was actu-
ally performed only if the mean-square difference exceeded a
reference value, empirically set to 10% of the average of the three
mean-square differences obtained by artificially displacing by one
voxel along the three axes the image used as reference in the
realignment process. When less than 10 consecutive outliers were
identified, to avoid introducing temporal discontinuities they
were replaced with the multilinear interpolation of the nearest
preserved volumes; groups of more than 10 consecutive outliers
were removed altogether.

Procedure 5 (P5) additionally included masking to remove
the ventricles (VM) and was motivated by the observation of
very large ventricles with substantial flow-induced signal fluc-
tuations in some patients. For each scan, the ventricles were
identified by average signal intensity thresholding followed by
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morphological filtering to remove speckles, fill holes and identify
the connected-component representing the ventricles.

Removal of voxels outside the brain outline (P2) and in the
ventricles (P5) was deemed relevant here because it excludes
a range of non-neural signal sources such as pulsating cere-
brospinal fluid and eye movements; while in healthy participants
these do not impact ICA substantially, it was hypothesized that
in patients their removal might facilitate the proper un-mixing
of weak neural signals, especially given that substantial brain
atrophy can be present and the relative representation of cere-
brospinal fluid voxels can be substantially higher with respect to
controls.

DATA ANALYSIS
ICA was performed independently for each participant, using the
group ICA of fMRI toolbox (GIFT, MIALab, University of New
Mexico, USA) and assuming a fixed number of 20 independent
components (Calhoun et al., 2001, 2008). The component cor-
responding to DMN activity was identified upon agreement of
two experienced observers, who searched for significant correla-
tion clusters (at z > 2) specifically in the precuneus (PCC), lateral
parietal (LP), and medial prefrontal regions (MPFC) and con-
sidered the specificity of correlation in such regions with respect
to the rest of the brain. A component was deemed a candidate
DMN if it exhibited focal activity in at least two regions. In
the rare instances where DMN activity appeared “split” between
two hemispheric components (see results), the components were
merged using the voxel-wise maximum operator before further
evaluation.

SBA of the DMN was implemented by extracting two ref-
erence time-courses from the average of all voxels in the left
and right PCC as defined below, and entering them as regres-
sors in a first-level general-linear model analysis (Fox et al.,
2005). For the purpose of the evaluations described below, the
maps derived from the two hemispheric regressors were always
combined using voxel-wise maximum operator, thresholded and
considered together.

To obtain a further measure of intra- and inter-hemispheric
connectivity across the DMN nodes, linear regressions were per-
formed between the average BOLD signal time-courses in the left
and right PCC, LP, and MPFC.

DEFAULT-MODE NETWORK EVALUATION
The detectability of the DMN was evaluated quantitatively with
ICA as well as SBA for each preprocessing procedure P1–P5. In
order to represent the intensity of DMN activity in the PCC,
LP and MPFC, the peak z-score was calculated in the corre-
sponding binary masks, obtained by intersecting the correspond-
ing regions of the automated anatomical labeling atlas (AAL;
Tzourio-Mazoyer et al., 2002) with the thresholded group-level
DMN component maps from the controls, and dilated by 5 vox-
els to account for potential normalization imperfections. Due to
their medial location, the left/right PCC and MPFC ROIs were
contiguous; hence they were merged, yielding peak z-scores for
bilateral PCC, bilateral MPFC, left LP (LPL) and right LP (LPR).
To obtain a measure of correlation specificity, we additionally
determined the extent of correlations outside the DMN regions

by counting the voxels with a z-score > 2 and represented it as
percentage of brain volume.

The presence of correlated activity in the DMN nodes on the
ICA component map for the DMN was also visually rated by two
experienced observers, blinded to participant information and
preprocessing procedure, along the following scale: 0—definitely
absent, 1—uncertain, 2—definitely present. The scores given by
the two observers were averaged together; for patients the inter-
rater agreement was 73%, 86%, 91%, and 88% for the PCC,
MPFC, LPL, and LPR nodes. A global “DMN detectability” score
was thereafter calculated summing the scores of the four nodes,
and normalized within each patient with respect to the highest
score attained individually; this step was introduced to reduce
variability related to inter-participant differences, as the inter-
est here was to compare the preprocessing procedures within
each case.

STATISTICAL ANALYSIS
For all measures of interest a non-parametric related-samples
Friedman test was performed, followed where appropriate by
pair-wise Wilcoxon rank tests. Non-parametric tests were chosen
in place of ANOVA since some distributions were significantly
skewed. To account for multiple comparisons, all p-values were
corrected using Bonferroni-Holm’s procedure (Holm, 1979),
performed over all Friedman and Wilcoxon tests, separately
for patients and controls. To remove potential bias, scores
corresponding to regions where the brain parenchyma was
absent due to large anatomical lesions were removed and
treated as missing values (10, 3, and 4 instances for the
LPR, LPL, and MPFC, respectively) and imputed to the group
median.

RESULTS
As indicated in Table 1, outlier volumes after rigid-body realign-
ment were detected and rejected for 21 patients (70%) and 5
controls (15%). The results of statistical analyses are given in
Tables 2, 3.

In patients, for ICA assessed qualitatively elevating preprocess-
ing grade increased between procedures P1 and P5 the number of
patients for whom activity in each node was identifiable (Table 4);
at group level, there was a significant difference between pro-
cedures P1–P2 only (Figure 2, Table 3). Elevating preprocessing
grade also increased the peak correlation scores in the PCC
and MPFC, with significant differences between procedures P1–
P3 (Figure 3B, Table 3). Alongside improvement of correlation
intensity, a reduction in the extent of spuriously correlated activ-
ity outside the DMN nodes was also observed, with significant
difference between procedures P1–P3 (Figure 4B, Table 3). By
contrast, in controls elevating preprocessing grade had no rele-
vant effect on DMN detectability as assessed qualitatively (graph
not shown). As reported in Table 2, elevating preprocessing grade
nevertheless increased the peak correlation scores, but in this
case the differences were primarily observed between procedures
P3–P4 (Figure 3A); similar improvements were also detected for
extra-DMN correlations (Figure 4A). While the levels of statisti-
cal significance of the effect of preprocessing were overall similar
between patients and controls, it should be noted that the median
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Table 1 | Statistics on the rejection of realignment-outlier volumes.

Any volume Patients Number of Outliers Volumes Initial displacement (mm) Residual displacement (mm)

rejected? or controls subjects detected removed
Average Worst Average Worst

No Patients 9 0 0 0.06 ± 0.05 0.15 ± 0.13 0.06 ± 0.05 0.15 ± 0.13

Yes Patients 21 20 ± 16 16 ± 23 0.13 ± 0.51 0.45 ± 1.85 0.12 ± 0.16 0.41 ± 0.44

Total Patients 30 13 ± 16 10 ± 20 0.11 ± 0.35 0.45 ± 1.85 0.10 ± 0.12 0.41 ± 0.44

No Controls 28 0 0 0.05 ± 0.04 0.11 ± 0.12 0.05 ± 0.04 0.11 ± 0.12

Yes Controls 5 10 ± 7 0 0.08 ± 0.10 0.14 ± 0.17 0.08 ± 0.08 0.13 + 0.10

Total Controls 33 1 ± 5 0 0.05 ± 0.05 0.14 ± 0.17 0.05 ± 0.05 0.13 + 0.10

In the subjects for whom outliers were detected, the residual displacement after rigid-body realignment of the time-series was reduced by outlier rejection. As

described in-text, depending on the presence of contiguous outliers, replacement by interpolation or outright removal was performed. All values are given in mm as

mean ± standard deviation of relative displacement between consecutive EPI volumes.

Table 2 | Statistical evaluation of the effect of the preprocessing procedures for healthy controls.

Analysis method Parameter Main effect (Friedman test) Post-hoc (Wilcoxon signed ranks test)

P1–P2 P2–P3 P3–P4 P4–P5

χ2 p p p P p

Independent component analysis Qualitative 8 1 – – – –

PCC: z-score 22 0.007 1 1 0.004 0.001

MPFC: z-score 31 0.0001 0.3 0.03 0.005 0.1

LPR: z-score 17 0.07 – – – –

LPL: z-score 23 0.006 1 0.6 0.0003 0.02

Extra-DMN: % 39 <0.0001 0.6 0.02 0.004 0.1

Seed-based analysis MPFC: z-score 71 <0.0001 0.003 0.0002 1 0.3

LPR: z-score 73 <0.0001 0.8 0.0005 1 1

LPL: z-score 65 <0.0001 1 0.0005 1 1

Extra-DMN: % 120 <0.0001 <0.0001 <0.0001 0.0001 0.0001

Linear regression LPL-LPR: r 100 <0.0001 0.002 <0.0001 0.03 0.03

PCCL-LPL: r 112 <0.0001 <0.0001 <0.0001 0.2 0.6

PCCR-LPR: r 104 <0.0001 0.0005 <0.0001 1 1

PCCL-MPFCL: r 108 <0.0001 <0.0001 <0.0001 0.2 0.01

PCCR-MPFCR: r 110 <0.0001 <0.0001 <0.0001 0.08 0.005

As described in-text, Friedman tests followed, where appropriate, by Wilcoxon post-hocs were performed. All p-values are reported following Bonferroni-Holm

correction. PCC, posterior cingulate and precuneus; LP, lateral parietal cortex; MPFC, anterior cingulate and medial prefrontal cortex. Subscripts “L” or “R” stand

for left or right hemisphere. “Extra-DMN” refers to the proportion of activated voxels outside the expected DMN localization. The effect of preprocessing “grade”

was significant for most parameters, with the greatest overall differences being observed between P1–P2 and P2–P3, corresponding to the addition of band-pass

filtering and removal of co-variance with the movement vectors and global brain parenchyma signal. See text for details.

magnitudes of the effect of preprocessing and inter-individual
variability were substantially larger for patients (Figures 3A vs.
3B and 4A vs. 4B).

For SBA, in patients elevating preprocessing grade markedly
reduced the peak correlation scores across all regions, with a
significant difference between procedures P2 and P3 for all
regions (Figure 3B, Table 3). A strong reduction in the extent
of spuriously correlated activity outside the DMN nodes was
also apparent, with significant differences between all procedures
(Figure 4B, Table 3). Similar effects were observed in controls
(Figures 3A, 4A).

For linear regression between average time-courses of the
DMN nodes, preprocessing grade had a significant effect on all
pairs investigated. In patients, the linear correlation coefficient
between LPL-LPR, PCCL-LPL, and PCCR-LPR monotonically
decreased, whereas that between PCCL-MPFCL and PCCR-
MPFCR displayed a more complex response, overall slightly
increasing with disproportionately large values observed for pro-
cedure P2; here, significant post-hoc differences were found
between procedures P1–P3 (Figure 5B, Table 3). The effect of
preprocessing grade was more statistically significant in con-
trols than patients primarily owing to substantially smaller
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Table 3 | Statistical evaluation of the effect of the preprocessing procedures for patients.

Analysis method Parameter Main effect (Friedman test) Post-hoc (Wilcoxon signed ranks test)

P1–P2 P2–P3 P3–P4 P4–P5

χ2 p p p P p

Independent component analysis Qualitative 43 <0.0001 0.01 1 1 1

PCC: z-score 31 0.0002 0.008 1 1 1

MPFC: z-score 19 0.04 0.4 0.04 1 1

LPR: z-score 11 0.9 – – – –

LPL: z-score 14 0.3 – – – –

Extra-DMN: % 48 <0.0001 0.002 0.02 1 1

Seed-based analysis MPFC: z-score 49 <0.0001 1 0.002 1 0.8

LPR: z-score 58 < 0.0001 0.4 0.01 1 1

LPL: z-score 49 < 0.0001 0.4 0.006 1 0.9

Extra-DMN: % 102 <0.0001 0.0002 0.0002 0.005 0.01

Linear regression LPL-LPR: r 66 <0.0001 0.001 0.01 0.9 1

PCCL-LPL: r 50 <0.0001 0.014 0.001 1 1

PCCR-LPR: r 56 <0.0001 0.004 0.004 1 1

PCCL-MPFCL: r 37 <0.0001 0.006 0.0008 1 0.1

PCCR-MPFCR: r 37 <0.0001 0.003 0.0006 1 1

As described in-text, Friedman tests followed, where appropriate, by Wilcoxon post-hocs were performed. All p-values are reported following Bonferroni-Holm

correction. PCC, posterior cingulate and precuneus; LP, lateral parietal cortex; MPFC, anterior cingulate and medial prefrontal cortex. Subscripts “L” or “R” stand

for left or right hemisphere. “Extra-DMN” refers to the proportion of activated voxels outside the expected DMN localization. The effect of preprocessing “grade”

was significant for most parameters, with the greatest overall differences being observed between P1–P2 and P2–P3, corresponding to the addition of band-pass

filtering and removal of co-variance with the movement vectors and global brain parenchyma signal. See text for details.

Table 4 | Qualitative evaluation of default-mode network (DMN) node detectability on the component extracted by ICA.

Preprocessing

procedure

Precuneus (PCC, 30 pts.) (%) Right lateral partietal

cortex (LPR, 20 pts.) (%)

Left lateral parietal

cortex (LPL, 27 pts.) (%)

Medial prefrontal cortex

(MPFC, 26 pts.) (%)

P1 14 (47) 12 (60) 9 (33) 8 (31)

P2 22 (73) 14 (70) 16 (59) 15 (58)

P3 23 (77) 16 (80) 17 (63) 14 (54)

P4 26 (87) 17 (85) 19 (70) 14 (54)

P5 27 (90) 16 (80) 20 (74) 14 (54)

The values represent the number and percentage of patients for whom activity was rated as definitely present. Percentages are adjusted to account for the number

of cases where a node was affected by macroscopic anatomical damage (see Methods).

inter-individual variability. However, in absolute terms, the dif-
ference between P1 and P5 was larger in patients than controls for
LPL-LPR, PCCL-LPL, and PCCR-LPR: while elevating preprocess-
ing grade reduced median r-values down to about 0.7 in controls
(Figure 5A), in patients removal of spurious signal reduced the
median r-values to below 0.5, and for LPL-LPR even below
0.2 (Figure 5B, Table 2). For PCCL-MPFCL and PCCR-MPFCR,
there was a converse pattern, wherein elevating preprocessing
grade increased correlation much more for controls (up to about
0.6) than patients (about 0.3), plausibly representing the dif-
ferent effects of signal contamination on the anterior-posterior
axis and poor preservation of MPFC connectivity in patients
(Figures 5A,B, Tables 2, 3).

Example ICA and SBA maps from representative cases are
shown in Figures 6–9. Mirroring the numerical results reported
in Table 2, ICA and SBA demonstrated a markedly different

response to preprocessing grade. For ICA, improving filtering
progressively enhanced the extent and intensity of correlation in
the DMN nodes whereas for SBA, a gradual attenuation of diffuse,
unspecific activity was observed. Reassuringly, as preprocessing
was refined the results of ICA and SBA tended to converge. The
entity of the effect of preprocessing at first could appear substan-
tially larger for SBA than ICA, but one should consider that ICA
failed to extract an identifiable DMN component in Figures 7–9
unless procedure P3 or higher was utilized. Notably, in Figure 7
an apparent “hemispheric splitting” of DMN activity is visible:
the occurrence of this effect increased with preprocessing grade
(i.e., P1: 2, P2: 5, P3: 6, P4: 9, and P5: 10 patients).

DISCUSSION
The present study extends previous comparative evaluations of
rs-fMRI preprocessing (e.g., Murphy et al., 2009; Weissenbacher
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FIGURE 2 | Qualitative evaluation of the detectability of the whole

default-mode network (DMN) extracted by ICA for patients. The values
represent visual assessment scores for activity across the four main nodes
(PCC, precuneus; LPR, right lateral parietal cortex; LPL, left lateral parietal
cortex; MPFC, medial prefrontal cortex), averaged between the two raters
and normalized within each patient, so that the maximum score of 1
corresponds to the best qualitative appearance of the DMN observed for
each case (see text). The box-plots represent the median and inter-quartile
ranges of the visual assessment scores. As preprocessing steps were
added to the pipeline (P1–P5), the dispersion diminished and the median
approached unity, confirming that the DMN was best identifiable after
preprocessing using procedure P5.

et al., 2009; Van Dijk et al., 2010) to the specific population
of patients in vegetative and minimally conscious state, which
presents particular challenges related to substantial head move-
ments and extensive anatomical damage. In this group, detection
of residual neuroelectric activity is crucial for understanding
disease staging and progression and the effect of possible rehabil-
itation therapies, and if rs-fMRI is performed to support clinical
decision-making false negatives may have severe consequences;
on the contrary, detection of DMN false-positives is less plausi-
ble. While deep sedation and even general anesthesia are routinely
used for structural imaging in DoC patients, they would intro-
duce severe confounds in rs-fMRI studies as they unavoidably
depress central neural activity (e.g., Greicius et al., 2008; Boveroux
et al., 2010; Deshpande et al., 2010; Stamatakis et al., 2010).
Light sedation affects DMN activity more mildly but is generally
insufficient to completely avoid movement (Giacino et al., 2006;
Greicius et al., 2008).

As in Weissenbacher et al. (2009) the removal of co-variance
with the movement vectors and average parenchyma signal cou-
pled with BPF was found to have a substantial impact on the
generation of DMN functional connectivity maps by both ICA
and SBA. Here, additional steps to reject volumes contaminated
by gross movement artifacts and to mask the ventricles were
inserted and found to further improve data quality (Tables 2–4).
The DMN maps generated with the two techniques showed a
complementary sensitivity to preprocessing grade (i.e., proce-
dures P1 to P5). For ICA, improving preprocessing resulted in
larger and more significant correlations (Figures 2, 3, Tables 2, 3),
with several cases in which an identifiable DMN component

could not be extracted at all from data preprocessed with the
most basic procedures (examples in Figures 7–9). By contrast,
SBA maps initially displayed severe contamination by diffuse,
unspecific correlations due to physiological noise and appeared
progressively cleaner, with less significant but more focal and
well-defined correlations for advanced preprocessing procedures
(Figures 3, 4). In line with previous reports, ICA was consider-
ably less sensitive to the choice of preprocessing steps than SBA
(Weissenbacher et al., 2009; Van Dijk et al., 2010; Power et al.,
2012), especially in terms of separation of DMN activity from
spurious correlations in other brain areas (Figure 4 and examples
in Figures 6–9) but it was clearly not indifferent. As indicated in
Tables 2, 3, ICA appeared relatively more sensitive to movement
variance removal and BPF (P2), whereas SBA was most heavily
influenced by removal of unspecific temporal variance (P3).

An important element of the proposed preprocessing chain is
the automated removal of volumes contaminated by gross move-
ment artifacts, which can be automatically identified as outliers
on the basis of the residual root mean square intensity differ-
ence calculated during rigid-body realignment. This approach
appears particularly convenient as it is completely operator-
independent and straightforward to implement, with minimal
assumptions on the type of artifacts Carp (2013). As indicated
in Figure 1, it is important to reject any contaminated volumes
prior to performing further preprocessing steps, namely slice-
timing correction and temporal filtering, which entail assump-
tions on the relationships between consecutive time-points. The
proposed “two-tier” approach, involving replacement by interpo-
lation unless the number of contaminated volumes is excessive,
has specific advantages in terms of minimizing the occurrence
of undesirable temporal discontinuities (e.g., Carp, 2013). Per-
se, the connectivity inferences drawn by both ICA and SBA are
intrinsically insensitive to the removal and linear interpolation of
time-points just as they are to temporal aliasing (Van Dijk et al.,
2010).

In addition to removing spurious signal sources, the rejec-
tion of movement outliers also improves the proportion of real
movement-related variance that can be removed through multi-
linear regression with respect to the movement vectors. This is a
particularly important benefit, because in the presence of outliers
the linear regression may be dominated by abnormally large or
small signal levels for some volumes and thereby fail to properly
capture the covariance with real movement. Movement can have
substantial and highly region-dependent effects on the BOLD
time-courses, as well-typified by the strong spectral correlations
observed by Soddu et al. (2012) between the movement vectors
and BOLD activity in a brain death patient.

Because DoC patients can present severely enlarged ventricles,
due to increased intracranial pressure as well as atrophy, there is
the possibility that the signal fluctuations due to pulsatile cere-
brospinal fluid flow may be substantially over-represented with
respect to a healthy brain, biasing the determination of the ICA
un-mixing matrix (e.g., Power et al., 2012) and impairing the
detection of weaker neuronal sources and affecting SBA through
contamination of the seed signals by partial voluming with pulsat-
ing fluid in ventricles and sulci. Here, the effect of introducing the
rejection of outlier volumes (procedure P4) and ventricle masking
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FIGURE 3 | Peak z-scores for activity within the four main DMN

nodes for (A) healthy controls and (B) patients. Top row: DMN
component extracted by ICA; bottom row: correlation maps computed
using precuneus seeds (SBA). As preprocessing steps were added to the

pipeline (P1–P5), the median z-scores for the DMN component extracted
through ICA generally increased, indicating better component extraction,
whereas the z-scores from SBA diminished (see text for comment and
Figures 6–9).

(procedure P5) was more limited in comparison to that of BPF
and removal of movement and global variance (procedures P2
and P3), yet at group level it was statistically significant for SBA,
particularly reflecting into reduced extent of spurious correlations
outside the expected DMN nodes. Importantly, even though for
ICA the effect of these additional steps was not statistically signif-
icant at group level (Table 3), in several patients (e.g., Table 4 and
Figures 7–9) ICA failed to extract an identifiable DMN compo-
nent for procedures P1–P3 but not P4–P5, and in specific cases
(e.g., Figure 6) the visual appearance of activity in DMN nodes
improved appreciably for procedure P5. Since procedures P4 and
P5 are computationally parsimonious, we advise that they are
always included in the preprocessing pipeline. While it may be

argued that ICA should in principle not need any preprocess-
ing thanks to its ability to isolate independent components, our
data confirm that careful preprocessing is important not only for
SBA, but also for ICA, as it improves component un-mixing and
therefore reduces the risk of false negatives in DMN detection; of
note, this effect was evident in patients but not in controls, plau-
sibly reflecting differences in the entity of movement artifacts and
strength of component signals.

Further insight into the effect of movement on correla-
tions between regional time-courses is provided by the linear
regression analyses. As discussed in Power et al. (2012) and
Satterthwaite et al. (2013), correlation between two regions can
be inflated if they undergo a common translation or masked if
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they undergo a rotation around a point located between them.
In other words, head movement artifactually increases functional
coupling across local networks and decreases it for long-range
connections (Power et al., 2012; Van Dijk et al., 2012). Here,
elevating preprocessing grade had markedly different effects on
the evaluation of the shorter latero-lateral connections between
the lateral parietal cortex and the precuneus and longer anterior-
posterior connections between the precuneus and the medial
prefrontal cortex (Figure 5). In the first case, a gradual reduc-
tion of the correlation coefficients was observed, signaling that a
substantial part of the raw covariance was induced by movement
and global fluctuations. In the second case, a biphasic response
emerged: while the correlation coefficients overall increased, ini-
tially regressing-out movement-related variance (procedure P2)

FIGURE 4 | Volume of significant activations (z = 2) outside the

regions-of-interest covering the expected DMN nodes (i.e., PCC, LPR,

LPL, and MPFC), for the DMN maps extracted through ICA (left) and

SBA (right), expressed as percent with respect to the parenchymal

volume for (A) healthy controls and (B) patients. As preprocessing steps
were added to the pipeline (P1–P5), the extent of activations outside the
expected localization of the DMN was progressively reduced, representing
greater specificity of the functional connectivity maps; the effect was
considerably more marked for SBA than ICA.

boosted the correlations but subsequently eliminating global vari-
ance reduced them again (procedure P3). This suggests that
movement initially masked the covariance between these regions,
which was, however, dominated by unspecific, global fluctuations
in patients. In controls, the effect of preprocessing procedure on
latero-lateral connections was more constrained, plausibly due to
less movement, but greater changes were observed in anterior-
posterior connectivity with respect to patients: this plausibly
reflects the fact that frontal DMN connectivity is strong in con-
trols but very weak or lost in patients, and may also be related
to different movement patterns along the three axes. These differ-
ent effects along the lateral and anterior-posterior directions agree
with previous investigations and further underline the potential
for complex confounding effects (Power et al., 2012; Van Dijk
et al., 2012; Satterthwaite et al., 2013), stressing the importance of
adopting comprehensive preprocessing approaches that attempt
to eliminate as much spurious signal variance as possible.

The present study has several limitations that need to be
considered. First, because no gold-standard reference for DMN
activity is available, the evaluation necessarily remains an empir-
ical one, and it is not possible to formally confirm how much of
the signal variance eliminated in each step was artifactual rather
than neural. Yet, since the DMN has a highly stereotyped appear-
ance (i.e., is expected to involve specific nodes at relatively stable
anatomical locations), its increased detectability reassured on the
overall beneficial effect of the suggested preprocessing techniques
(Esposito et al., 2008). Second, almost all DoC patients are char-
acterized by extensive brain anatomical abnormalities, and the
present study did not consider in detail the effect of imperfect
normalization caused by poor structural similarity between the
damaged individual brains and the standardized healthy brain
template. This issue, which equally affects all other studies in

FIGURE 5 | Linear correlation coefficients for regionally-averaged BOLD signal time-series between DMN regions for (A) healthy controls and (B)

patients. See text for description of the results.
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FIGURE 6 | DMN functional connectivity maps computed with ICA (top

row) and SBA (middle and bottom rows) for a patient with a clinical

diagnosis of vegetative state (maximum displacement 4.0 mm, 27/200

outlier volumes). As preprocessing steps were added (left to right, P1–P5),

activity in the right angular gyrus became more evident on the ICA maps. For
SBA, enhanced preprocessing had the effect of progressively reducing the
diffuse correlations observed throughout the brain, revealing a topographical
pattern that converged to that extracted by ICA.

FIGURE 7 | DMN functional connectivity maps computed with ICA

(top row) and SBA (middle and bottom rows) for a patient with a

clinical diagnosis of vegetative state (maximum displacement

0.8 mm, 3/200 outlier volumes); red crosses denote inability to

identify DMN activity in any of the 20 components extracted by

ICA. As preprocessing grade was elevated (left to right, P1–P5),
coherent activity between the precuneus and the angular gyri became
identifiable through ICA and SBA. Notably, in this patient an apparent
“split” between left and right DMN connectivity was observed through
both analyses.
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FIGURE 8 | DMN functional connectivity maps computed with ICA (top

row) and SBA (middle and bottom rows) for a patient with a clinical

diagnosis of minimally-conscious state (maximum displacement

20.3 mm, 16/200 outlier volumes); red crosses denote inability to

identify DMN activity in any of the 20 components extracted by ICA. Due
to the gross anatomical damage visible on the volumetric T1 scan, SBA with

the right precuneus seed was not performed. Here, elevating preprocessing
grade (left to right, P1–P5) revealed coherent activity between the left
precuneus and angular gyrus: applying procedures 4 and 5, ICA
decomposition became able to orthogonalize activity for this preserved DMN
subset, and SBA maps were “cleaned” of unspecific physiological
fluctuations that originally extended to areas of gross anatomical damage.

FIGURE 9 | DMN functional connectivity maps computed with ICA (top

row) and SBA (middle and bottom rows) for a patient with a clinical

diagnosis of minimally-conscious state (maximum movement 5.0 mm,

24/200 outlier volumes); red crosses denote inability to identify DMN

activity in any of the 20 components extracted by ICA. Here, applying
procedures 4 and 5 made ICA decomposition capable of revealing coherent

activity between the precuneus, angular gyri and a cluster in the left superior
frontal lobe. For SBA, a non-monotonic effect is evident, whereby applying
procedure 3 removed substantial unspecific covariation across the brain
parenchyma, and the subsequent steps implemented in procedures 4 and 5
revealed coherent activity between the precuneus, angular gyrus and
superior frontal lobe.

this area, will need to be evaluated in future studies. Third,
anti-correlations were not considered and the evaluation of com-
ponent detectability with ICA and SBA was limited, as in some
other studies in this area, to positive correlations. While there is
increasing evidence that negative correlations may also represent
architecturally important forms of functional connectivity, the
interpretation of such effects remains unclear, hence they were not
considered here (e.g., Rosazza and Minati, 2011). Fourth, we did
not include relative displacements in our regressors as advised by
Satterthwaite et al. (2013) and Power et al. (2012); this parameter
needs to be considered in future work. Our approach otherwise

maps closely with their suggestions and includes additional steps
that are specifically beneficial in this population where move-
ment is substantial and requires outright rejection of volumes
and the extent of atrophy and weak signal justify the mask-
ing of non-brain structures. Fifth, the DMN component was
selected and rated manually by expert operators. Spatial tem-
plates of the DMN (Esposito et al., 2008) are available, as well
as automated techniques based on multi-dimensional “finger-
prints” and support vector machines which have been successfully
applied to data from DoC patients (Soddu et al., 2012), and the
effect of preprocessing choices on their performance should be
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evaluated in future work (De Martino et al., 2007). An inherent
issue is the inability to quantify the proportion of false neg-
atives: because no gold-standard of DMN integrity exists, our
data suggest that elevating preprocessing grade reduces the inci-
dence of false negatives, but do not enable quantifying the risk
of false negatives. That parameter will need to be determined in
future studies addressing correlation with clinical status as well
as test-retest reliability. Finally, recent work has demonstrated the
possibility to explicitly extract the cardiac and respiratory regres-
sors directly from the fMRI data (Beall, 2010), and additionally
offered specific advice regarding movement regressor filtering
(Hallquist et al., 2013) and rejection of movement-contaminated
data (Christodoulou et al., 2013); the corresponding techniques
will need to be considered to update and extend the results
obtained in the present investigation.

CONCLUSION
This study provides a comprehensive evaluation of the effect
of data preprocessing choices on rs-fMRI in DoC patients, and
corroborates the existing literature in this area through system-
atic comparison of five preprocessing procedures of increasing
complexity. ICA and SBA were both found to be significantly
impacted by data preprocessing settings, albeit with different pat-
terns. Elevating preprocessing grade improved the ability of ICA
to successfully un-mix DMN activity and generally enhanced
the significance and extent of DMN correlations. By contrast,
for SBA high-grade preprocessing had the principal effect of
reducing contamination by unspecific, systemic signal sources,
reflecting in progressively more focal and well-defined activity

patterns. As preprocessing grade was elevated, the topographi-
cal maps provided by the two techniques tended to converge.
The results strongly underline the importance of performing
high-grade preprocessing, including rejection of outlier volumes,
ventricle masking, removal of movement related and global sig-
nal covariance and BPF. Even though a gold-standard measure
of connectivity preservation does not exist, since the DMN
has highly characteristic topographical features the observation
that its detectability increases with better preprocessing indi-
cates reduced risk of false negative errors. We propose that the
described preprocessing procedures should be adopted as a min-
imum standard in future studied in this area to reduce the
probability of wrongly inferring that DMN activity is absent, with
potential implications for clinical management.
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Brain imaging is a natural intermediate phenotype to understand the link between genetic
information and behavior or brain pathologies risk factors. Massive efforts have been
made in the last few years to acquire high-dimensional neuroimaging and genetic data
on large cohorts of subjects. The statistical analysis of such data is carried out with
increasingly sophisticated techniques and represents a great computational challenge.
Fortunately, increasing computational power in distributed architectures can be harnessed,
if new neuroinformatics infrastructures are designed and training to use these new tools
is provided. Combining a MapReduce framework (TomusBLOB) with machine learning
algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with
non-parametric statistics on high-dimensional data. End-users describe the statistical
procedure to perform and can then test the model on their own computers before
running the very same code in the cloud at a larger scale. We illustrate the potential
of our approach on real data with an experiment showing how the functional signal
in subcortical brain regions can be significantly fit with genome-wide genotypes. This
experiment demonstrates the scalability and the reliability of our framework in the cloud
with a 2 weeks deployment on hundreds of virtual machines.

Keywords: machine learning, neuroimaging-genetic, cloud computing, fMRI, heritability

1. INTRODUCTION
Using genetics information in conjunction with brain imaging
data is expected to significantly improve our understanding of
both normal and pathological variability of brain organization.
It should lead to the development of biomarkers and in the
future personalized medicine. Among other important steps, this
endeavor requires the development of adapted statistical methods
to detect significant associations between the highly heteroge-
neous variables provided by genotyping and brain imaging, and
the development of software components with which large-scale
computation can be done.

In current settings, neuroimaging-genetic datasets consist of
a set of (1) genotyping measurements at given genetic loci,
such as Single Nucleotide Polymorphisms (SNPs) that repre-
sent a large amount of the genetic between-subject variability,
and (2) quantitative measurements at given locations (voxels) in

three-dimensional images, that represent e.g., either the amount
of functional activation in response to a certain task or an
anatomical feature, such as the density of gray matter in the corre-
sponding brain region. These two sets of features are expected to
reflect differences in brain organization that are related to genetic
differences across individuals.

Most of the research efforts so far have been focused on design-
ing association models, while the computational procedures used
to run these models on actual architectures have not been consid-
ered carefully. Voxel intensity and cluster size methods have been
used for genome-wide association studies (GWAS) (Stein et al.,
2010), but the multiple comparisons problem most often does
not permit to find significant results, despite efforts to estimate
the effective number of tests (Gao et al., 2010) or by paying the
cost of a permutation test (Da Mota et al., 2012). Working at the
genes level instead of SNPs (Hibar et al., 2011; Ge et al., 2012) is
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a promising approach, especially if we are looking at monogenic
(or few causal genes) diseases.

For polygenic diseases, gains in sensitivity might be provided
by multivariate models in which the joint variability of sev-
eral genetic variables is considered simultaneously. Such models
are thought to be more powerful (Meinshausen and Bühlmann,
2010; Vounou et al., 2010; Bunea et al., 2011; Kohannim et al.,
2011; Floch et al., 2012), because they can express more com-
plex relationships than simple pairwise association models. The
cost of unitary fit is high due to high-dimensional, potentially
non-smooth optimization problems and various cross-validation
loops needed to optimize the parameters; moreover, permuta-
tion testing is necessary to assess the statistical significance of
the results of such procedures in the absence of analytical tests.
Multivariate statistical methods require thus many efforts to be
tractable for this problem on both the algorithmic and implemen-
tation side, including the design of adapted dimension reduction
schemes. Working in a distributed context is necessary to deal
efficiently with the memory and computational loads.

Today, researchers have access to many computing capabilities
to perform data-intensive analysis. The cloud is increasingly used
to run such scientific applications, as it offers a reliable, flexible,
and easy to use processing pool (Vaquero et al., 2008; Jackson
et al., 2010; Hiden et al., 2012; Juve et al., 2012). The MapReduce
paradigm (Chu et al., 2006; Dean and Ghemawat, 2008) is the
natural candidate for these applications, as it can easily scale the
computation by applying in parallel an operation on the input
data (map) and then combine these partials results (reduce).
However, some substantial challenges still have to be addressed
to fully exploit the power of cloud infrastructures, such as data
access, as it is currently achieved through high latency protocols,
which are used to access the cloud storage services (e.g., Windows
Azure Blob). To sustain geographically distributed computation,
the storage system needs to manage concurrency, data placement
and inter-site data transfers.

We propose an efficient framework that can manage infer-
ences on neuroimaging-genetic studies with several pheno-
types and permutations. It combines a MapReduce framework
(TomusBLOB, Costan et al., 2013) with machine learning algo-
rithms (Scikit-learn library) to deliver a scalable analysis tool. The
key idea is to provide end-users the capability to easily describe
the statistical inference that they want to perform and then to test
the model on their own computers before running the very same
code in the cloud at a larger scale. We illustrate the potential of
our approach on real data with an experiment showing how the
functional signal in subcortical brain regions of interest (ROIs)
can be significantly predicted with genome-wide genotypes. In
section 2, we introduce methodological prerequisites, then we
describe our generic distributed machine learning approach for
neuroimaging-genetic investigations and we present the cloud
infrastructure. In section 3, we provide the description of the
experiment and the results of the statistical analysis.

2. MATERIALS AND METHODS
2.1. NEUROIMAGING-GENETIC STUDY
Neuroimaging-genetic studies test the effect of genetic variables
on imaging target variables in presence of exogenous variables.

The imaging target variables are activation images obtained
through functional Magnetic Resonance Imaging (fMRI), that
yield a standardized effect related to experimental stimulation
at each brain location of a reference brain space. For a study
involving n subjects, we generally consider the following model:

Y = Xβ1 + Zβ2 + ε,

where Y is a n × p matrix representing the signal of n subjects
described each by p descriptors (e.g., voxels or ROIs of an fMRI
contrast image), X is the n × q1 set of q1 explanatory variables and
Z the n × q2 set of q2 covariates that explain some portion of the
signal but are not to be tested for an effect. β1 and β2 are the fixed
coefficients of the model to be estimated, and ε is some Gaussian
noise. X contains genetic measurements and variables in Z can be
of any type (genetic, artificial, behavioral, experimental, . . . ).

2.1.1. The standard approach
It consists in fitting p Ordinary Least Square (OLS) regressions,
one for each column of Y, as a target variable, and each time per-
form a statistical test (e.g., F-test) and interpret the results in term
of significance (p-value). This approach suffers from some limita-
tions. First, due to a low signal-to-noise ratio and a huge number
of tests, this approach is not sensitive. Moreover, the statistical
score only reflects the univariate correlation between a target and
a set of q1 explanatory variables, it does not inform on their
predictive power when considered jointly. Secondly, with neu-
roimaging data as a signal, we are not in a case vs. control study. It
raises the question whether the variability in a population can be
imputed to few rare genetic variants or if it is the addition of many
small effects of common variants. Unfortunately, the model holds
only if n � (q1 + q2), which is not the case with genome-wide
genotypes.

2.1.2. Heritability assessment
The goal of our analysis is to estimate the proportion of dif-
ferences in a trait between individuals due to genetic variabil-
ity. Heritability evaluation traditionally consists in studying and
comparing homozygous and dizygous twins, but recently it has
been shown that it can be estimated using genome-wide geno-
types (Lee et al., 2011; Lippert et al., 2011; Yang et al., 2011b).
For instance, common variants are responsible of a large por-
tion of the heritability of human height (Yang et al., 2010) or
schizophrenia (Lee et al., 2012). These results show that the vari-
ance explained by each chromosome is proportional to its length.
As we consider fMRI measurements in an unsupervised setting
(no disease), this suggests to use regression models that do not
enforce sparsity. Like the standard approach, heritability has some
limitations. In particular, the estimation of heritability requires
large sample sizes to have an acceptable standard error (at least
4000 according to Lee et al., 2012). Secondly, the heritability is the
ratio between the variance of the trait and the genetic variance in a
population. Therefore, for a given individual, a trait with an heri-
tability at 0.6 does not mean it can be predicted at 60% on average
with the genotype. It means that a fraction of the phenotype vari-
ability is simply explained by the average genetic structure of the
population of interest.
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2.1.3. High-dimensional statistics
The key point of our approach is to fit a model on training
data (train set) and evaluate its goodness on unseen data (test
set). To stabilize the impact of the sets for training and testing,
a cross-validation loop is performed, yielding an average predic-
tion score over the folds. This score yields a statistic value and a
permutation test is performed to tabulate the distribution of this
statistic under the null hypothesis and to estimate its significance
(p-value). In practice, this corresponds to swapping the labels
of the observations. As a prediction metric we generally choose
the coefficient of determination (R2), which is the ratio between
the variance of the prediction and the variance of the pheno-
types in the test set. If we consider all the genotypes at the same
time, this approach is clearly related to heritability, but focuses on
the predictive power of the model and its significance. Through
cross-validation, the estimation of the CV-R2 with an acceptable
standard error does not require as large sample sizes as for the
estimation of heritability (Yang et al., 2011a).

CV-R2 = 1 − mean(train, test) ∈ split(n)
‖Y test − Xtestβ train

1 − Ztestβ train
2 ‖2

‖Y test − Ztestβ train
2 ‖2

2.2. GENERIC PROCEDURE FOR DISTRIBUTED MACHINE LEARNING
If one just wants to compute the prediction score for few phe-
notypes, a multicore machine should be enough. But, if one is
interested in the significance of this prediction score, one will
probably need a computers farm (cloud, HPC cluster, etc.) Our
approach consists in unifying the description and the computa-
tion for neuroimaging-genetic studies to scale from the desktop
computer to the supercomputing facilities. The description of the
statistical inference is provided by a descriptive configuration in
human-readable and standard format: JSON (JavaScript Object
Notation). This format requires no programming skills and is far
easier to process as compared to the XML (eXtensible Markup
Language) format. In a sense, our approach extends the Scikit-
learn library (cf. next paragraph) for distributed computing, but
focuses on a certain kind of inferences for neuroimaging-genetic
studies. The next paragraphs describe the strategy, framework
and implementation used to meet the heritability assessment
objective.

2.2.1. Scikit-learn
Scikit-learn is a popular machine learning library in
Python (Pedregosa et al., 2011) designed for a multicore
station. In the Scikit-learn vocabulary, an estimator is an
object that implements a fit and a predict method. For
instance a Ridge object (lines 12–13 of Figure 1) is an estimator

that computes the coefficients of the ridge regression model
on the train set and uses these coefficients to predict data
from the test set. If this object has a transform method, it is
called a transformer. For instance a SelectKbest object (lines
10–11 of Figure 1) is a transformer that modifies the input
data (the design matrix X) by returning the K best explana-
tory variables w.r.t. a scoring function. Scikit-learn defines a
Pipeline (lines 8–13 of Figure 1) as the combination of several
transformers and an final estimator: It creates a combined
estimator. Model selection procedures are provided to evaluate
with a cross-validation the performance of an estimator (e.g.,

cross_val_score) or to select parameters on a grid (e.g.,
GridSearchCV).

2.2.2. Permutations and covariates
Standard machine learning procedures have not been designed
to deal with covariates (such as those assembled in the
matrix Z), which have to be considered carefully in a permutation
test (Anderson and Robinson, 2001). For the original data, we fit
an Ordinary Least Square (OLS) model between Y and Z, then we
consider the residuals of the regression (denoted RY|Z) as the target
for the machine learning estimator. For the permutation test, we
permute RY|Z (the permuted version is denoted RY|Z ∗), then we fit an
OLS model between RY|Z ∗ and Z, and we consider the residuals as
the target for the estimator (Anderson and Robinson, 2001). The
goal of the second OLS on the permuted residuals is to provide an
optimal approximation (in terms of bias and computation) of the
exact permutation tests while working on the reduced model.

2.2.3. Generic problem
We identify a scheme common to the different kinds of infer-
ence that we would like to perform. For each target phenotype
we want to compute a prediction score in the presence of covari-
ates or not and to evaluate its significance with a permutation
test. Scikit-learn algorithms are able to execute on multiple CPU
cores, notably cross-validation loop, so a task will be executed on
a multicore machine: cluster nodes or multicore virtual machine
(VM). As the computational burden of different machine learn-
ing algorithms is highly variable, owing to the number of samples
and the dimensionality of the data, we thus have to tune the
number of tasks and their average computation time. An opti-
mal way to tune the amount of work is to perform several
permutations on the same data in a given task to avoid I/O
bottlenecks. Finally, we put some constraints on the descrip-
tion of the machine learning estimator and the cross validation
scheme:

• The prediction score is computed using the Scikit-learn
cross_val_score function and the folds for this cross valida-
tion loop are generated with a ShuffleSplit object.

• An estimator is described with a Scikit-learn pipelinewith one
or more steps.

• Python can dynamically load modules such that a program
can execute functions that are passed in a string or a config-
uration file. To notify that a string contains a Python module
and an object or function to load, we introduce the prefix
DYNAMIC_IMPORT::

• To select the best set of parameters for an estimator, model
selection is performed using Scikit-learn GridSearchCV and a
5-folds inner cross-validation loop.

2.2.4. Full example (cf. script in Figure 1)
• General parameters (Lines 1–3): The model contains covariates,

the permutation test makes 10,000 iterations and only one per-
mutation is performed in a task. 10,000 tasks per brain target
phenotypes will be generated.

• Prediction score (Lines 4–7): The metrics for the cross-validated
prediction score is R2, the cross-validation loop makes 10
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FIGURE 1 | Top: Representation of the computational framework: given
the data, a permutation and a phenotype index together with a
configuration file, a set of computations are performed, that involve two
layers of cross-validation for setting the hyper-parameters and evaluate
the accuracy of the model. This yields a statistical score associated
with the given phenotype and permutation. Bottom: Example of
complex configuration file that describes this set of operations. General
parameters (Lines 1–3): The model contains covariates, the permutation
test makes 10,000 iterations and only one permutation is performed in

a task. Prediction score (Lines 4–7): The metrics for the cross-validated
prediction score is R2, the cross-validation loop makes 10 iterations,
20% of the data are left out for the test set and the seed of the
random generator was set to 0. Estimator pipeline (Lines 8–13): The
first step consists in filtering collinear vectors, the second step selects
the K best features and the final step is a ridge estimator. Parameters
selection (Lines 14–16): Two parameters of the estimator have to be
set: the K for the SelectKBest and the alpha of the Ridge regression.
A set of 3 × 5 parameters are evaluated.

iterations, 20% of the data are left out for the test set and the
seed of the random generator was set to 0.

• Estimator pipeline (Lines 8–13): The first step consist in filtering
collinear vectors, the second step selects the K best features and
the final step is a ridge estimator.

• Parameters selection (Lines 14–16): Two parameters of the esti-
mator have to be set: the K for the SelectKBest and the alpha
of the Ridge regression. A set of 3 × 5 parameters are evaluated.

2.3. THE CLOUD COMPUTING ENVIRONMENT
Although researchers have relied mostly on their own clusters
or grids, clouds are raising an increasing interest (Jackson et al.,
2010; Simmhan et al., 2010; Ghoshal et al., 2011; Hiden et al.,
2012; Juve et al., 2012). While shared clusters or grids often
imply a quota-based usage of the resources, those from clouds are
owned until they are explicitly released by the user. Clouds are
easier to use since most of the details are hidden to the end user
(e.g., network physical implementation). Depending on the char-
acteristics of the targeted problem, this is not always an advantage
(e.g., collective communications). Last but not least, clouds avoid
owning expensive infrastructures—and associated high cost for
buying and operating—that require technical expertise.

The cloud infrastructure is composed of multiple data cen-
ters, which integrate heterogeneous resources that are exploited

seamlessly. For instance, the Windows Azure cloud has five sites
in United States, two in Europe and three in Asia. As resources
are granted on-demand, the cloud gives the illusion of infinite
resources. Nevertheless, cloud data centers face the same load
problems (e.g., workload balancing, resource idleness, etc.) as
traditional grids or clusters.

In addition to the computation capacity, clouds often provide
data-related services, like object storage for large datasets (e.g.,
S3 from Amazon or Windows Azure Blob) and queues for short
message communication.

2.4. NEUROIMAGING-GENETICS COMPUTATION IN THE CLOUD
In practice, the workload of the A-Brain application 1 is more
resource demanding than the typical cloud applications and could
induce two undesirable situations: (1) other clients do not have
enough resource to lease on-demand in a particular data center;
(2) the computation creates performance degradations for other
applications in the data center (e.g., by occupying the network
bandwidth, or by creating high number of concurrent requests
on the cloud storage service). Therefore, we divide the workload
into smaller sub-problems and we select the different datacenters
in collaboration with the cloud provider.

1http://www.irisa.fr/kerdata/abrain/
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For balancing the load of the A-Brain application, the compu-
tation was distributed across four deployments in the two biggest
Windows Azure datacenters. In the cloud context, a deployment
denotes a set of leased resources, which are presented to the user
as a set of uniform machines, called compute nodes. Each deploy-
ment is independent and isolated from the other deployments.
When a compute node starts, the user application is automati-
cally uploaded and executed. The compute nodes of a deployment
belong to the same virtual private network and communicate with
the outside world or other deployments either through public end-
points or using the cloud storage services (i.e., Windows Azure
Blob or Queue).

TomusBlobs (Costan et al., 2013) is a data management sys-
tem designed for concurrency-optimized PaaS-level (Platform
as a Service) cloud data management. The system relies on the
available local storage of the compute nodes in order to share
input files and save output files. We built a processing frame-
work (called TomusMapReduce) derived from MapReduce (Chu
et al., 2006; Dean and Ghemawat, 2008) on top of TomusBlobs,
such that it leverages its benefits by collocating data with com-
putation. Additionally, the framework is restricted to associa-
tive and commutative reduction procedures (Map-IterativeReduce
model Tudoran et al., 2012) in order to allow efficient out-of-
order and parallel processing for the reduce phase. Although
MapReduce is designed for single cluster processing, the lat-
ter constraint enables straightforward geographically distributed
processing. The hierarchical MapReduce (which is described
in Costan et al., 2013) aggregates several deployments with
MapReduce engines and a last deployment that contains a
MetaReducer, that computes the final result, and a Splitter, that
partitions the data and manages the overall workload in order to
leverage data locality. Job descriptions are sent to the MapReduce
engines via Windows Azure Queue and the MetaReducer collects
intermediate results via Windows Azure Blob. For our applica-
tion, we use the Windows Azure Blob storage service instead of
TomusBlobs for several reasons: (1) concurrency-optimized capa-
bilities are not relevant here; (2) for a very long run, it is better to
rely on a proven storage; (3) TomusBlob storage does not support

yet multi-deployments setting. An overview of the framework is
shown in Figure 2.

For our application, the Map step yields a prediction score for
an image phenotype and a permutation, while the reduce step
consists in collecting all results to compute statistic distribution
and corrected p-values. The reduce operation is trivially commu-
tative and associative as it consists in searching the maximum of
the statistic for each permutation (Westfall and Young, 1993). The
upper part of Figure 1 gives an overview of the generic mapper.

2.5. IMAGEN: A NEUROIMAGING-GENETIC DATASET
IMAGEN is a European multi-centric study involving adoles-
cents (Schumann et al., 2010). It contains a large functional
neuroimaging database with fMRI associated with 99 different
contrast images for 4 protocols in more than 2000 subjects, who
gave informed signed consent. Regarding the functional neu-
roimaging data, we use the Stop Signal Task protocol (Logan,
1994) (SST), with the activation during a [go wrong] event, i.e.,
when the subject pushes the wrong button. Such an experimental
contrast is likely to show complex mental processes (inhibition
failure, post-hoc emotional reaction of the subject), that may be
hard to disentangle. Our expectation is that the amount of Blood
Oxygen-Level Dependent (BOLD) response associated with such
events provides a set of global markers that may reveal some
heritable psychological traits of the participants. Eight differ-
ent 3T scanners from multiple manufacturers (GE, Siemens,
Philips) were used to acquire the data. Standard preprocessing,
including slice timing correction, spike and motion correction,
temporal detrending (functional data) and spatial normaliza-
tion (anatomical and functional data), were performed using
the SPM8 software and its default parameters; functional images
were resampled at 3 mm resolution. All images were warped in
the MNI152 coordinate space. Obvious outliers detected using
simple rules such as large registration or segmentation errors
or very large motion parameters were removed after this step.
BOLD time series was recorded using Echo-Planar Imaging,
with TR = 2200 ms, TE = 30 ms, flip angle = 75◦ and spatial
resolution 3 × 3 × 3 mm. Gaussian smoothing at 5 mm-FWHM

FIGURE 2 | Overview of the multi site deployment of a hierarchical

Tomus-MapReduce compute engine. (1) The end-user uploads the data
and configures the statistical inference procedure on a webpage. (2) The
Splitter partitions the data and manages the workload. The compute
engines retrieves job information trough the Windows Azure Queues.

(3) Compute engines perform the map and reduce jobs. The
management deployment is informed of the progression via the Windows
Azure Queues system and thus can manage the execution of the global
reducer. (4) The user downloads the results of the computation on the
webpage of the experiment.
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was finally added. Contrasts were obtained using a standard
linear model, based on the convolution of the time course of
the experimental conditions with the canonical hemodynamic
response function, together with standard high-pass filtering
procedure and temporally auto-regressive noise model. The esti-
mation of the first-level was carried out using the SPM8 soft-
ware. T1-weighted MPRAGE anatomical images were acquired
with spatial resolution 1 × 1 × 1 mm, and gray matter proba-
bility maps were available for 1986 subjects as outputs of the
SPM8 New Segmentation algorithm applied to the anatomical
images. A mask of the gray matter was built by averaging and
thresholding the individual gray matter probability maps. More
details about data preprocessing can be found in Thyreau et al.
(2012).

DNA was extracted from blood samples using semi-
automated process. Genotyping was performed genome-wide
using Illumina Quad 610 and 660 chips, yielding approximately
600,000 autosomic SNPs. 477,215 SNPs are common to the
two chips and pass plink standard parameters (Minor Allele
Frequency >0.05, Hardy-Weinberg Equilibrium P < 0.001, miss-
ing rate per SNP <0.05).

3. AN APPLICATION AND RESULTS
3.1. THE EXPERIMENT
The aim of this experiment is to show that our framework
has the potential to explore links between neuroimaging and
genetics. We consider an fMRI contrast corresponding to events
where subjects make motor response errors ([go wrong] fMRI
contrast from a Stop Task Signal protocol). Subjects with too
many missing voxels or with bad task performance were dis-
carded. Regarding genetic variants, 477,215 SNPs were available.
Age, sex, handedness and acquisition center were included in the
model as confounding variables. Remaining missing data were
replaced by the median over the subjects for the correspond-
ing variables. After applying all exclusion criteria 1459 subjects
remained for analysis. Analyzing the whole brain with all the
genetic variants remains intractable due to the time and mem-
ory requirements and dimension reduction techniques have to be
employed.

3.1.1. Prior neuroimaging dimension reduction
In functional neuroimaging, brain atlases are mainly used to
provide a low-dimensional representation of the data by consid-
ering signal averages within groups of neighboring voxels. In this
experiment we focus on the subcortical nuclei using the Harvard–
Oxford subcortical atlas. We extract the functional signal of 14
regions of interest, 7 in each hemisphere: thalamus, caudate,
putamen, pallidum, hippocampus, amygdala and accumbens (see
Figure 4). White matter, brain stem and ventricles are of no inter-
est for functional activation signal and were discarded. This prior
dimension reduction decreases the number of phenotypes from
more than 50,000 voxels to 14 ROIs.

3.1.2. Configuration used (cf. script in Figure 3)
• (Lines 1–3): covariates, 10,000 permutations and 5 permuta-

tions per computation unit (mapper).
• (Lines 4–7): 10-folds cross-validated R2.

• (Lines 9–11): The first step of the pipeline is an univariate fea-
tures selection (K = 50, 000). This step is used as a dimension
reduction so that the next step fits in memory.

• (Lines 12–13): The second and last step is the ridge estimator
with a low penalty (alpha = 0.0001).

The goal of the experiment described by this configuration file
is to evaluate how the 50,000 mostly correlated genetic variants,
once taken together, are predictive of each ROI and to associate a
p-value with these prediction scores. Note that more than 50,000
covariates would not fit into memory. This configuration gener-
ates 28,000 map tasks (14 × 10, 000/5), but we can set to 1 the
number of permutations per task, which means that the compu-
tation can use up to 140,000 multicore computers in parallel, and
thus millions of CPU cores.

3.1.3. The cloud experimental setup
The experiment was performed using the Microsoft Windows
Azure PaaS cloud in the North and West US datacenters, that were
recommended by the Microsoft team for their capacity. We use
the Windows Azure storage services (Blob and Queue) in both
datacenters in order to take advantage of the data locality. Due to
our memory requirements, the Large VM type (4 CPU cores, 7
GB of memory and 1000 GB of disk) is the best fit regarding the
Azure VMs offer2.

3.1.4. TomusBlobs
We set up two deployments in each of the two recommended sites
for a total of four deployments. It used 250 large VM nodes, total-
izing 1000 CPUs: each of the 3 MapReduce engines deployments
had 82 nodes and the last deployment used 4 nodes. The reduc-
tion process was distributed in approximately 600 reduce jobs.

3.2. RESULTS
3.2.1. Cloud aspects
The experiment timespan was 14 days. The processing time for
a single map job is approximately 2 h. There are no notice-
able time differences between the execution times of the map
jobs with respect to the geographical location. In large infras-
tructures like the clouds, failures are possible and applications
need to cope with this. In fact, during the experiment the Azure
services became temporary inaccessible 3, due to a failure of a
secured certificate. Despite this problem, the framework was able
to handle the failure with a fault tolerance mechanism which sus-
pended the computation until all Azure services became available
again. The monitoring mechanism of the Splitter, that supervises
the computation progress, was able to restore aborted jobs. The
IterativeReduce approach eliminates the implicit barrier between
mappers and reducers, but yields negligible gains due to the huge
workload of the mappers. The effective cost of the experiment
was approximately equal to 210,000 h of sequential computation,
which corresponds to almost $20,000 (VM pricing, storage and
outbound traffic).

2http://msdn.microsoft.com/fr-fr/library/windowsazure/dn197896.aspx
3Azure Failure Incident: http://readwr.it/tAq
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FIGURE 3 | Configuration used for the experiment. (Lines 1–3): Covariates,
10,000 permutations and five permutations per computation unit (mapper).
(Lines 4–7): 10-folds cross-validated R2. (Lines 9–11): The first step of the

pipeline is an univariate features selection (K = 50, 000). This step is used as a
dimension reduction so that the next step fits in memory. (Lines 12–13): The
second and last step is the ridge estimator with a low penalty (alpha = 0.0001).

FIGURE 4 | Results of the real data analysis procedure. (Left)
predictive accuracy of the model measured by cross-validation, in the
14 regions of interest, and associated statistical significance obtained
in the permutation test. (Up right) distribution of the CV -R2 at

chance level, obtained through a permutation procedure. The
distribution of the max over all ROIs is used to obtain the
family-wise error corrected significance of the test. (Bottom right)
outline of the chosen ROIs.

3.2.2. Application side
Figure 4 shows a summary of the results. Despite the fact that
some prediction scores are negative, the activation signal in each
ROI is fit significantly better than chance using the 50,000 best
genetic variants over the 477,215. The mean BOLD signal is bet-
ter predicted in the left and right thalamus. The distribution of the
CV-R2 is also very informative, showing that by chance the mean
prediction score is negative (familywise-error corrected or not).
While this phenomenon is somewhat counter-intuitive within the
framework of classical statistics, it should be pointed out that
the cross-validation procedure used here opens the possibility of
negative R2: this quantity is by definition a model comparison

statistic that takes the difference between a regression model
with a non-informative model; in high-dimensional settings, a
poorly fitting linear model performs (much) worse than a non-
informative model. Hence a model performing at chance gets
a negative score: This is actually what happens systematically
when the association between y and X is broken by the per-
mutation procedure, even if we consider the supremum over
many statistical tests (Westfall and Young, 1993). A slightly neg-
ative value can thus be the marker of a significant association
between the variables of interest. Twin and SNP-based studies
suggest high heritability of structural brain measures, such as
total amount of gray and white matter, overall brain volume and
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addiction-relevant subcortical regions. Heritability estimates for
brain measures are as high as 0.89 (Kremen et al., 2010) or even
up to 0.96 (van Soelen et al., 2012) and subcortical regions appear
to be moderately to highly heritable. One recent study on subcor-
tical volumes (den Braber et al., 2013) reports highest heritability
estimates for the thalamus (0.80) and caudate nucleus (0.88) and
lowest for the left nucleus accumbens (0.44). Despite the fact that
the CV-R2 metric is not exactly an heritability measurement, our
metric evaluates the predictability of the fitted model (i.e., how
well it predicts the activation signal of a brain region with genetic
measurements on unseen data) which is a good proxy for heri-
tability. Thus, our results confirm that brain activation signals are
an heritable feature in subcortical regions. These experiments can
be used as a basis to further localize the genetic regions (pathways
or genes) that are actually predictive of the functional activation.
An important extension of the present work is clearly to extend
this analysis to the cortical regions.

4. CONCLUSION
The quantitative evaluation of statistical models with machine
learning techniques represents an important step in the com-
prehension of the associations between brain image pheno-
types and genetic data. Such approaches require cross validation
loops to set the hyper-parameters and to evaluate performances.
Permutations have to be used to assess the statistical significance
of the results, thus yielding prohibitively expensive analyses. In
this paper, we present a framework that can deal with such a
computational burden. It relies on two key points: (1) it wraps
the Scikit-learn library to enable coarse grain distributed com-
putation. Yet it enforces some restrictions, i.e., it solves only a
given class of problems (pipeline structure, cross-validation pro-
cedure and permutation test). The result is a simple generic code
(few lines) that provides the user a quick way to conduct early,
small-scale investigations on its own computer or at a larger scale
on a high-performance computing cluster. With JSON we pro-
vide a standard format for the description of statistical inference
so that no programming skills are required and so that it can
be easily generated from a webpage form. (2) TomusBLOB per-
mits to execute seamlessly the very same code on the Windows
Azure cloud. We could also disable some parts of TomusBLOB
to achieve a good compromise between the capabilities and the
robustness. We demonstrate the scalability and the efficiency of
our framework with a 2 weeks geographically distributed execu-
tion on hundreds of virtual machines. The results confirm that
brain activation signals are an heritable feature.
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Many contemporary neuroscientific investigations face significant challenges in terms
of data management, computational processing, data mining, and results interpretation.
These four pillars define the core infrastructure necessary to plan, organize, orchestrate,
validate, and disseminate novel scientific methods, computational resources, and
translational healthcare findings. Data management includes protocols for data acquisition,
archival, query, transfer, retrieval, and aggregation. Computational processing involves the
necessary software, hardware, and networking infrastructure required to handle large
amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and
meta-data. Data mining refers to the process of automatically extracting data features,
characteristics and associations, which are not readily visible by human exploration
of the raw dataset. Result interpretation includes scientific visualization, community
validation of findings and reproducible findings. In this manuscript we describe the
novel high-throughput neuroimaging-genetics computational infrastructure available at the
Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging
(LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and
standard-field MRI brain scanners along with an imaging-genetics database for storing the
complete provenance of the raw and derived data and meta-data. In addition, the institute
provides a large number of software tools for image and shape analysis, mathematical
modeling, genomic sequence processing, and scientific visualization. A unique feature
of this architecture is the Pipeline environment, which integrates the data management,
processing, transfer, and visualization. Through its client-server architecture, the Pipeline
environment provides a graphical user interface for designing, executing, monitoring
validating, and disseminating of complex protocols that utilize diverse suites of software
tools and web-services. These pipeline workflows are represented as portable XML
objects which transfer the execution instructions and user specifications from the client
user machine to remote pipeline servers for distributed computing. Using Alzheimer’s
and Parkinson’s data, we provide several examples of translational applications using this
infrastructure1.

Keywords: aging, pipeline, neuroimaging, genetics, computation solutions, Alzheimer’s disease, big data,

visualization

INTRODUCTION
The long-term objectives of computational neuroscience research
are to develop models, validate algorithms and engineer powerful

1Some of the data used in preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu/). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or provided data
but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/
wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

tools facilitating the understanding of imaging, molecular, cellar,
genetic, and environmental associations with brain circuitry and
observed phenotypes. Most of the time, functioning teams of
interdisciplinary investigators are necessary to develop innova-
tive approaches to substantively expand the ways by which brain
structure and function can be imaged in humans. Prototype
development, proof of concept pilot studies and high-risk, high-
impact research requires substantial infrastructure to support the
data management, processing and collaboration.

There are significant barriers that inhibit our ability to under-
stand the fundamental relations between brain states and the wide
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spectrum of observable, direct and indirect, biological, genetic,
imaging, clinical, and phenotypic markers. Some of these chal-
lenges pertain to lack of models and algorithms for representing
heterogeneous data, e.g., classifying normal and pathological
variation (biological noise vs. technological errors) (Liu et al.,
2012; Sloutsky et al., 2013). Others are driven by limitations in the
available hardware and infrastructure resources, e.g., data size and
complexity, data management, and sharing logistics, Distributed
processing and data mining (Dinov et al., 2013; Kandel et al.,
2013; Van Horn and Toga, 2013).

There are a number of teams and ongoing efforts that develop
computational infrastructures to address specific research needs.
For instance, the efforts of the Enhancing Neuroimaging Genetics
through Meta-Analysis (ENIGMA) consortium (http://enigma.
loni.usc.edu) represents a collection of World-wide research
groups which agreed on a social networking strategy for data
aggregation and sharing (Novak et al., 2012). ENIGMA manages
imaging and genomics data facilitating the process of understand-
ing brain structure and function using structural, functional,
diffusion imaging and genome-wide association study (GWAS)
data. The network’s goal is to enable meta-research and repli-
cated findings via increasing sample-sizes (cf. statistical power to
detect phonotypic, imaging or genetic effects) in a collaborative
fashion where investigators and groups share algorithms, data,
information, and tools.

The high-throughput analysis of large amounts of data has
become the ubiquitous norm in many computational fields,
including neuroimaging (Barker and Van Hemert, 2008; Barrett
et al., 2009; Dinov et al., 2009). The driving forces in this
natural evolution of computerization and protocol automation
are parallelization, increased network bandwidth, and the wide
distribution of efficient and potent computational and com-
munication resources. In addition, there are now more and
larger data archives, often accumulating many hundreds, if not
thousands, of subjects with enormous amounts of data. These
can only be processed using efficient and structured systems.
Efficient and effective tool interoperability is critical in many
scientific endeavors as it enables new types of analyses, facil-
itates new applications, and promotes interdisciplinary collab-
orations (Dinov et al., 2008). The Pipeline Environment (Rex
et al., 2003; Dinov et al., 2009) is a visual programming lan-
guage and execution environment that enables the construction
of complete study designs and management of data provenance
in the form of complex graphical workflows. It facilitates the
construction, validation, execution, and dissemination of analy-
sis protocols, computational tools, and data services. The Pipeline
has been used to construct advanced neuroimaging protocols
analyzing multi-subject data derived from the largest publically
available archives, including the International Consortium for
Brain Mapping (ICBM) (Mazziotta et al., 1995), Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005),
Australian twin data of brain activation and heritability (Blokland
et al., 2008), British infant database (Gousias et al., 2008), and the
MNI (Evans, 2006) pediatric database.

Other significant efforts to provide computational infras-
tructure for high throughput brain data analyses include
Taverna (Oinn et al., 2005) http://www.taverna.org.uk, Kepler

(Ludäscher et al., 2006) kepeler-project.org, Khoros (Kubica
et al., 1998), www.khoral.com, Trident Workbench (Toga
et al., 2012), http://tridentworkflow.codeplex.com, Karma2
(Simmhan et al., 2008), http://www.extreme.indiana.edu/dist/
java-repository/workflow-tracking/, Galaxy (Goecks et al., 2010),
http://galaxy.psu.edu, and many others.

Examples of significant scientific, computational, and analytic
challenges include:

1. Software Tool Interoperability: Differences in software develop-
ment strategies can force intrinsic incompatibilities in algo-
rithm design, implementation strategy, data format, or tool
invocation syntax. For example, there are data type, array
management, and processing differences in different language
platforms, which complicate the integration of inputs and
outputs. There also can be variations in implicit and explicit
parameter specifications and services vs. command-line invo-
cation syntax. The Distributed Pipeline addresses this barrier
by providing an extensible markup language protocol for
dynamic interoperability of diverse genomics data, informatics
software tools, and web-services.

2. Hardware Platform Dependencies: Processor endianness (e.g.,
byte-swaps), architectural differences (e.g., 32 vs. 64-bit), com-
piler variations, and security incompatibilities cause signifi-
cant problems in the integration of data and computational
resources residing on multiple platforms. These hardware
idiosyncrasies limit the potential to utilize the most appropri-
ate computational resources on multi-platform systems and
reduce the efficiency of many computational approaches. The
distributed Pipeline server will provide a native and virtu-
alized environment for configuring, deploying, and running
Distributed Pipeline on different hardware platforms.

3. Data Heterogeneity: Biological data often include heteroge-
neous information, such as clinical, genetic, phenotypic, and
imaging data. Moreover, these data can be large (often mea-
sured in Gigabytes). These two characteristics necessitate care
in the design and execution of data processing protocols.
Frequently, the processing of heterogeneous data is performed
by independent analyses within each data type followed by
ad hoc strategies for integration, visualization, and interpre-
tation. For instance, neuroimaging genetics studies (Ho et al.,
2010a,b) utilize imaging, genetic, and phenotypic data, but
most bioinformatics data analysis tools enable processing of
only uni-modal spatiotemporal, sequence, or spreadsheet type
data. The joint modeling and analysis of such multiform data
will significantly increase our ability to discover complex asso-
ciations, biomarkers, and traits that are currently implicit
in the complex genomics data. The Distributed Pipeline
study-design mechanism will enable the integration of imag-
ing and meta-data as well as the construction of complete
study protocols using the entire data collection. For instance,
Distributed Pipeline will enable dynamic decision making,
branching, and looping based on the meta-data and on data
derived in the analysis protocol itself. Another data-related
challenge includes anonymization and/or de-identification of
hosted data, to comply with IRB/HIPAA regulations, pro-
tect personal information and ensure subject privacy. The
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LONI/INI infrastructure provides a two-tier mechanism for
data de-identification. First the Imaging Data Archive system
ensures that all data (imaging, genetic, demographic) submit-
ted to the database excludes all personal identifiable infor-
mation (http://www.loni.usc.edu/Software/DiD). Second, the
Pipeline environment provides customizable modules for data
anonymization, which can be included in the beginning of
any graphical processing workflow to ensure the protocol
generates intermediate and final results excluding personal
information.

4. Result Reproducibility: Genomics and informatics protocol dis-
semination, study replication, and reproducibility of findings
have become increasingly important in scientific investigation.
Dissemination includes technical publications, distribution of
data, URL links, software tools, and execution scripts, as well
as screencast, videos, tutorials, and training. Most of these
methods for distribution of novel research protocols do not
enable outside investigators to independently and efficiently
test, validate, or replicate newly proposed techniques. As a
result, investigators may frequently reinvent analysis proto-
cols, fail to follow exact procedures, or misinterpret alternative
findings. Even when there is a clear description of the scien-
tific model employed in a study (e.g., general linear model),
there may be differences in the algorithmic implementation,
hardware platform, compiler, environment configuration, or
execution-syntax, which can cause differences in the results
even using the same input data. The Distributed Pipeline
infrastructure will enable flexible and efficient distribution
of published (peer-reviewed) workflows, which will facilitate
result reproducibility and validation of analysis protocols by
the entire user community. Previously developed, validated
and published workflows are available online (http://pipeline.
loni.usc.edu/explore/library-navigator/).

5. Steep Learning Curve: Other informatics challenges include
steep learning curves for utilizing general distributed comput-
ing environments, and incompatible differences in communi-
cation protocols. Currently, significant technical knowledge is
required to configure, utilize, and link diverse sequence analy-
sis tools. This task is typically done by developing sophisticated
scripts and/or repackaging software resources within specific
graphical workflow environments. The Distributed Pipeline
computational library will contain a large number of data
references and software resources. The included XML data,
module, and workflow descriptions will abstract many of the
technical details about the standard and advanced features of
these resources and promote appropriate access, easy use and
efficient modification of the entire compendium of resources
available within the Distributed Pipeline library.

Three notable successes include the Biomedical Informatics
Research Network (BIRN), the International Neuroinformatics
Coordinating Facility (INCF) and the cancer Biomedical
Informatics Grid (caBIG). BIRN is a national initiative focused on
advancing biomedical research through data sharing and online
collaboration. It is funded by the National Institute of General
Medicine Sciences (NIGMS), and provides data-sharing infras-
tructure, software tools, strategies and advisory services—all from

a single source (Keator et al., 2008). INCF supports a collaborative
neuroinformatics infrastructure and promotes the sharing of data
and computing resources to the international research commu-
nity. INCF is funded by contributions from its member countries,
based on gross domestic expenditures on research and devel-
opment (GERD), www.incf.org. The caBIG program developed
and supports access to digital capabilities essential to enhanc-
ing researchers’ capacity to utilize biomedical information. The
initiative aims to disseminate and promote the use of open
source standards for data exchange and interoperability in can-
cer research, develop, maintain, enhance, and share innovative
biomedical informatics capabilities, and facilitate the manage-
ment and analysis of big and heterogeneous cancer research data
sets (von Eschenbach and Buetow, 2006).

In this paper, we present the novel infrastructure at the USC
Institute for Neuroimaging and Informatics, which is available to
the entire computational neuroscience community and addresses
many of the current computational neuroscience barriers—lack
of integrated storage, hardware, software and processing Big Data
infrastructure, limitations of current infrastructure for processing
of complex and incomplete data, and the difficulties with resource
interoperability.

RESOURCE INFRASTRUCTURE
The INI provides an extensive infrastructure designed and oper-
ated to facilitate modern informatics research and support for
hundreds of projects including several multi-site national and
global efforts. We have redundancies built in to all equipment,
and a secure facility to protect equipment and data. The resources
described below provide networking, storage and computational
capabilities that will ensure a stable, secure and robust environ-
ment. It is an unprecedented test bed to create and validate big
data solutions. Because these resources have been designed, built
and continuously upgraded over the years by our systems admin-
istration team, we have the appropriate expertise and operating
procedures in place to use these resources to their maximum
benefit.

The INI/LONI data center contains a 300 KVa UPS/PDU capa-
ble of providing uninterruptible power to mission-critical equip-
ment housed in the room, dual 150 KVa connections to build-
ing power, an 800 kW Caterpillar C27 diesel backup generator,
three Data Aire computer room air conditioning (CRAC) units,
humidity control, and a Cisco fire suppression and preaction sys-
tem. A sophisticated event notification system is integrated in
this space to automatically notify appropriate personnel of any
detrimental power and HVAC issues that arise.

DATA CENTER SECURITY
The LONI datacenter is secured by two levels of physical access,
to insure HIPAA compliance for data security. The main facility
is secured 24/7 with access control devices. Only authorized per-
sonnel are allowed in, and guests are permitted only after checking
in, and only during business hours. The datacenter itself is addi-
tionally secured by a second layer of proximity card access. Only
authorized staffs are permitted to enter the datacenter facility.
Individual racks containing HIPAA data are secured by lock and
key to prevent cross access.
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COMPUTATIONAL AND STORAGE RESOURCES
Rapid advancements in imaging and genetics technology have
provided researchers with the ability to produce very high-
resolution, time-varying, multidimensional data sets of the brain.
The complexity of the new data, however, requires immense
computing capabilities. The compute infrastructure within the
datacenter boasts 3328 cores and 26 Tb of aggregate mem-
ory space, Figure 1. This highly available, redundant system is
designed for demanding big data applications. Blades in the Cisco
UCS environment are easy to replace. A failing blade sends an
alert to Cisco where a replacement ticket is generated automat-
ically. Upon arrival, the new blade can go from the shipping
box to being fully provisioned and in production in as little as
5 min. Institutions and scientists worldwide rely on the LONI’s
resources to conduct research. LONI is architected using a fault-
tolerant, high-availability systems design to ensure 24/7 func-
tionality. The primary storage cluster is 23 Isilon nodes with 2.4
usable petabytes of highly available, high performance storage.
Data in these clusters moves exclusively over 10 g links except-
ing node to node communication in the Isilon cluster which
is handled by QDR Infiniband, providing 40 gigabit bidirec-
tional throughput on each of the Isilon cluster’s 46 links. Fault
tolerance is as important as speed in the design of this dat-
acenter. The Isilon storage cluster can gracefully lose multiple
nodes simultaneously without noticeably affecting throughput or
introducing errors.

External services are load balanced across four F5 BIG-IP
2200S load balancers. The F5 load balancers provide balanc-
ing services for web sites, applications, as well as ICSA-certified
firewall services. The INI core network is entirely Cisco Nexus
hardware. Each of the two Cisco Nexus 5596 s supports 1.92 Tb
per second of throughput. Immediately adjacent to this machine
room is a user space with twelve individual stations separated
by office partitions. These workspaces are manned by staff who
constantly monitor the health of the data center as well as plan
for future improvements. Each space is also equipped with a
networked workstation for image processing, visualization and
statistical analysis.

NETWORK RESOURCES
Service continuity, deterministic performance and security were
fundamental objectives that governed the design of LONI’s net-
work infrastructure. The laboratory intranet is architected using
separate edge, core and distribution layers, with redundant
switches in the edge and core for high availability, and with Open
Shortest Path First (OSPF) layer 3 routing, instead of a traditional
flat layer 2 design, to leverage the fault tolerance offered by packet
routing and to minimize network chatter. While ground network
connectivity is entirely Gigabit, server data connectivity is nearly
all 10 Gb fiber and Twinax connected to a core of 2 Cisco Nexus
5596 switches, 10 Cisco Nexus 6628 switches, and 6 Cisco Nexus
2248 fabric extenders. For Internet access, INI is connected to the

FIGURE 1 | LONI/INI network infrastructure and supercomputing environnement.
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vBNS of Internet2 via quad fiber optic Gigabit lines using differ-
ent route paths to ensure that the facility’s external connectivity
will be maintained in the case of a single path failure.

The facility has two Cisco Adaptive Security Appliances pro-
viding network security and deep packet inspections. LONI has
also implemented virtual private network (VPN) services using
SSLVPN and IPsec services to facilitate access to internal resources
by authorized users. A VPN connection establishes an encrypted
tunnel over the Internet between client and server, ensuring that
communications over the Web are secure. Furthermore, the lab-
oratory has an extensive library of communications software for
transmitting data and for recording transaction logs. The library
includes software for monitoring network processes, automati-
cally warning system operators of potential problems, restarting
processes that have failed, or migrating network services to an
available server. For instance, the laboratory has configured mul-
tiple web servers with Linux Virtual Server (LVS) software for
high-availability web, application and database service provision-
ing as well as load balancing. A round-robin balancing algorithm
is currently used such that if the processing load on one server
is heavy, incoming requests, be it HTTP, JSP or MySQL, are for-
warded to the next available server by the LVS software layer.
Listeners on one virtual server monitor the status and responsive-
ness of the others. If a failure is detected, an available server is
elected as master and it assumes control and request forwarding
for the entire LVS environment.

VIRTUALIZED RESOURCES
Due to the rate that new servers need to be provisioned for
scientific research, INI deploys a sophisticated high availabil-
ity virtualized environment. This environment allows INI sys-
tems administrators to deploy new compute resources (virtual
machines or VM’s) in a matter of minutes rather than hours
or days. Furthermore, once deployed, these virtualized resources
can float uninhibitedly between all the physical servers within
the cluster. This is advantageous because the virtualization cluster
can intelligently balance virtual machines amongst all the physi-
cal servers, which permits resource failover if a virtual machine
becomes I/O starved or a physical server becomes unavailable.
The net benefit for LONI is more software resources are being effi-
ciently deployed on a smaller hardware footprint, which results in
a savings in hardware purchases, rack space and heat expulsion.

The software powering LONI virtualized environment is
VMware’s ESX 5. The ESX 5 is deployed on eight Cisco UCS
B200 M3 servers, each with sixteen 2.6/3.3 GHz CPU cores and
128 Gb of DDR3 RAM. These eight servers reside within a Cisco
UCS 5108 blade chassis with dual 8 × 10 Gb mezzanine cards pro-
viding a total of 160 Gb of available external bandwidth. Storage
for the virtualization cluster is housed on the 23 nodes of Isilon
storage. The primary bottleneck for the majority of virtualization
solutions is disk I/O and the Isilon cluster more than meets the
demands of creating a highly available virtualized infrastructure
whose capabilities and efficiency meet or greatly exceed those of
a physical infrastructure. A single six rack unit (6RU), eight blade
chassis can easily replicate the resources of a 600+ server physical
infrastructure when paired with the appropriate storage solution
such as the INI Isilon storage cluster.

WORKFLOW PROCESSING
To facilitate the submission and execution of compute jobs in
this compute environment, various batch-queuing systems such
as SGE (https://arc.liv.ac.uk/trac/SGE) can be used to virtualize
the resources above into a compute service. A grid layer sits atop
the compute resources and submits jobs to available resources
according to user-defined criteria such as CPU type, processor
count, memory requirements, etc. The laboratory has successfully
integrated the latest version of the LONI Pipeline (http://pipeline.
loni.usc.edu) with SGE using DRMAA and JGDI interface bind-
ings (Dinov et al., 2009, 2010; Torri et al., 2012). The bindings
allow jobs to be submitted natively from the LONI Pipeline to
the grid without the need for external scripts. Furthermore, the
LONI Pipeline can directly control the grid with those interfaces,
significantly increasing the operating environment’s versatility
and efficacy, and improving overall end-user experience. Figure 2
illustrates the latest version of the pipeline client software.

The data center will be approximately 3000 square feet and is
being designed using cutting edge high density cooling solutions
and high density bladed compute solutions. A total of 48 racks
will be installed and dedicated to research use. Of the 48, 10 racks
will be reserved for core services. The core services are on sepa-
rate, dedicated, redundant power to ensure continuous operation.
The current design of the data center includes a Powerware 9395
UPS system providing two 750 kW/825 kVA UPSs in a N+1 con-
figuration for non-core racks and two 225 kW/250 kVA in a 2N
configuration for core services racks. The UPS sends conditioned
power to 300 kVA Power Distribution Units (PDUs) located inside
the data center. The PDUs feed 400 A rated Track Power Busways
mounted above rows of racks providing an “A” bus and a “B”
bus for flexible overhead power distribution to the racks. The
design calls for the use of VRLA batteries with 9 min of battery
run time for the core services UPS and 6 min of battery run time
for the non-core UPS (note that the generator requires less than
2 min of battery run time in order to fully take over the load
in the event of an outage). A 750 kW/938 kVA diesel emergency
generator located in a weatherproof sound attenuated enclosure
adjacent to the building will provide at least 8 h of operation
before needing to be refueled.

The Cisco UCS blade solution described above allows LONI
to run the services of a much larger physical infrastructure in a
much smaller footprint without sacrificing availability or flexibil-
ity. Each Cisco chassis hosts 8 server blades and has 160 Gb of
external bandwidth available per chassis. Each of the 48 racks can
hold up to 6 chassis plus requisite networking equipment (4 fab-
ric extenders). Thus, the new data center has adequate rack space
to accommodate this project.

In addition to a new data center, the INI infrastructure will
house a 50-seat high definition theater—the Data Immersive
Visualization Environment (DIVE). The prominent feature of
the DIVE is a large curved display that can present highly
detailed images, video, interactive graphics, and rich media gen-
erated by specialized research data. The DIVE display will feature
a dominant image area, with consistent brightness across the
entire display surface, high contrast, and 150◦ horizontal viewing
angle. The display resolution target is 4 k Ultra HD, 3840 × 2160
(8.3 megapixels), in a 16:9 aspect ratio. Due to the ceiling height
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FIGURE 2 | The client interface to the LONI Pipeline execution environment.

requirements, the DIVE will require two floors of the build-
ing. The DIVE is designed to facilitate research communication,
dissemination, training, and high levels of interaction.

EXEMPLARY STUDIES
ALZHEIMER’S DISEASE IMAGING-GENETICS STUDY
Using subjects over the age of 65 from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) archive, http://adni.loni.usc.
edu (Weiner et al., 2012), we investigated cognitive impairment
using neuroimaging and genetic biomarkers. Querying the ADNI
database, we selected 808 participants including 200 Alzheimer’s
Disease (AD) patients (108 males and 92 females), 383 mild cog-
nitive impairment (MCI) subjects (246 males and 137 females),
and 225 asymptomatic normal control (NC) volunteers (116
males and 109 females). After downloading the individual ADNI
imaging data we carried standard quality control genetic analysis,
using PLINK version 1.09, (Purcell et al., 2007). All data analyt-
ics were performed using the LONI Pipeline environment (Dinov
et al., 2010; Torri et al., 2012). The global shape analysis protocol
provides a set of 20 derived neuroimaging markers (P < 0.0001,
between group ANOVA), which are studied in the context of
the 20 most significant single nucleotide polymorphisms (SNPs),
chosen by Manhattan plot, associated with the AD, MCI, and NC
cohorts, as subject phenotypes. The structural ADNI data (1.5T
MRI) were parcellated using BrainParser (Tu et al., 2008). The
complete data analysis protocol and some of the intermediate
results are shown on Figure 3.

This large scale study identified that neuroimaging phenotypes
were significantly associated with the progression of dementia
from NC to MCI and ultimately to AD. Our results pooling MCI
and AD subjects together (N1 = 583) compared to NC subjects
(N2 = 225) indicates significant association between 20 SNPs
and 2 neuroimaging phenotypes as shown in the heatmap plot,
Figure 4. The data analytics presented in this case study demand
significant data storage, processing power and bandwidth capabil-
ities to accomplish the end-to-end data processing, analysis and
visualization. In this study the protocol includes about 100 inde-
pendent processing steps and the analysis tool 2 days on a 1200
compute node shared cluster.

PARKINSON DISEASE ANALYTICS
There is some clinical evidence that the different subtypes of
Parkinson’s disease (PD) may follow different clinical courses.
Tremor-dominant cohorts show a slower progress of the disease
and less cognitive decline than akinetic rigid group (Kang et al.,
2013). The clinical subtypes probably are in concordance with
differences in brain biochemical abnormalities. In this example,
using the Parkinson Progression Marker Initiative (PPMI) brain
data (Marek et al., 2011), we analyze structural brain changes
in Parkinson’s disease relative to their relationship with subtypes
of Parkinson’s disease. Specifically, the goal was to utilize the
INI/LONI computational infrastructure to study interrelations
between subtypes and biomedical imaging features in 150 PPMI
subjects. This analysis protocol includes automatic generation of
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FIGURE 3 | Global shape analysis (GSA) protocol extracting neuroimaging biomarkers for each of the 3 cohorts (top), genetic phenotyping (bottom

left), and examples of intermediate derived neuroimaging biometrics (bottom right).
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FIGURE 4 | Heatmap plot of 20 neuroimaging derivative measures associated with the subject phenotype (columns) and the SNP genotypes.

56 regions of interest (ROIs) for each subject and computing
various volume-based and shape-based measures for each region
of interest (ROI), e.g., volume, dice coefficient, overlap measure,
mean curvature, surface area, mean fractal dimension, shape-
index, curvedness) (Dinov et al., 2010). Figure 5 illustrates a
high-level view of the morphometric analysis of the data (left)
and an example of an automatically generated gray matter thick-
ness map for one of the processed cases. This workflow completed
on the INI cluster in 2 days, competing with thousands of other
processes that are run in parallel and submitted by different users.

Although both of these examples demonstrate a small fraction
of the available processing modules and end-to-end computa-
tional workflow solutions, the Pipeline environment includes a
much larger library of resources for image processing (Dinov
et al., 2009), shape analysis (Dinov et al., 2010), next generation
sequence analysis (Torri et al., 2012), and bioinformatics. These
examples were chosen as they indicate demand for significant
computational power to process hundreds of cases in parallel,
the ability to handle high-throughput data transfer (near real
time) with access to external databases, and the software necessary
to pre-process, model, integrate, and visualize large multivariate
datasets.

DISCUSSION
The neuroscience of the Twentieth Century was built upon
the Popperian ideal of forming questions suitable as empirical

hypotheses to be tested using experimentally derived data. Yet,
with modern neuroimaging and genomics technologies, we are
now able to gather more data per experiment that was gathered
in perhaps years of collection 20 years ago. While the philosophy
of science ideal based on hypothesis testing has by no means been
surpassed, it is clear that the data being obtained offers greater
information beyond the hypotheses under test which, indeed,
offers more opportunity to explore larger data spaces and there-
fore form new testable lines for scientific investigation. Thus, in
as much as the question itself is the driver of scientific progress,
the data being obtained provides the chance to identify new ques-
tions worthy of our attention. For which, we will need to gather
still more data.

As large quantities of data are gathered for any particular
experiment, their accumulation into local databases and pub-
licly available archives (e.g., the LONI Image and Data Archive;
http://ida.loni.usc.edu) there is an increasing need for large-scale
computational resources such as those discussed above. Be these
resources local or remote (“in the cloud”), their availability helps
to expedite data analysis, synthesis, its mining, and summariza-
tion such that old questions can be readily addressed and new
questions can be formulated. With the increases in data size come
increased needs to process data faster. The LONI/INI computa-
tional systems are one such example of pushing processing capa-
bility to the forefront of neuroimaging and genomic analytics.
Other resources include Amazon, Microsoft, and Google services
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FIGURE 5 | Pipeline workflow protocol for automated extraction of

imaging biomarkers and association of imaging and phenotypic PPMI

data (left), and a 3D rendering of the cortical surface, colored by the

gray matter thickness map, for one individual (right).

which, for a fee, users can provision data storage and multi-
processor virtual systems upon which to configure and perform
neuroimaging or genetics analyses. Irrespective of the form the
computational infrastructure takes, there is little question that
such services are a necessary element for Twenty-first Century
biomedical science where data is king.

Data management including archival, query, retrieval,
aggregation, and fusion are enabled via the LONI Pipeline
Environment. For example, the initial data-sources within
each workflow can pull data from different servers, aggregate
it into the computational workflow, jointly process it and save
intermediate and final results in different locations. As there is a
growing array of publicly available data sets, this functionality is

critical for large-scale collaborative studies requiring significant
sample-sizes to identify associations and relations for (marginal)
effect-sizes. Pipeline cloud-based data sources (inputs) and sinks
(outputs) are similar to regular data sources and sinks, except
that data are stored in the cloud. The Pipeline takes care of the
data transfer between the cloud vendor and the compute nodes.
Currently supported cloud source vendors include Amazon S3
and Dropbox (http://pipeline.loni.usc.edu/learn/user-guide/
building-a-workflow/#Cloud%20sources%20and%20sinks). In
addition, users can set up instances replicating the entire Pipeline
infrastructure on Amazon EC2 (http://pipeline.loni.usc.edu/
products-services/pipeline-server-on-ec2/).

The INI/LONI infrastructure has been specifically designed
to meet the big data storage and processing challenges as
evident from large-scale, multi-site neuroimaging initiatives such
as ADNI, the Autism Centers of Excellence (ACE), PPMI,
the Human Connectome Project (Toga et al., 2012), and
others. With new NIH programs for brain research on the
horizon, the computational systems and processing capabil-
ities described here will find immediate application for the
archiving, processing, and mining of vast quantities of neuro-
science data from healthy as well as diseased subjects. There
are several alternative Cloud-based computational neuroscience
resources with similar goals and infrastructure. For example, the
Neuroscience Gateway (www.nsgportal.org) portal is supported
by the Extreme Science and Engineering Discovery Environment
(XSEDE) Resource Allocation Committee and provides High
Performance Computing resources for the neuroscience com-
munity. The Neuroimaging Tools and Resources Clearinghouse
(NITRC) Amazon EC2 Computational Environment is a vir-
tual computing platform configured with many neuroimaging
data analysis applications (https://aws.amazon.com/marketplace/
pp/B00AW0MBLO?sr=0-2). The INI/LONI infrastructure does
have its limitations. System bottlenecks include potential for
large number of simultaneous users (hundreds), or a few
heavy users (e.g., a dozen users with complex protocols
involving tens of thousands of jobs managed in parallel),
can significantly impact the performance of the back-end
Pipeline server and NFS manager. Data I/O access could
be affected when managing a huge number of simultaneous
read-write requests, including handling intermediate results.
Upgrading the infrastructure (e.g., hardware expansions, sys-
tem updates, software upgrades) require a significant concerted
effort.

INI/LONI welcomes new ideas from the entire computa-
tional community and constantly promotes new collaborations
with outside investigators. The LONI/INI infrastructure is freely
available to the entire community (registration and accounts
are required). There is a variety of data, modeling, compu-
tational, scientific or translational-research collaborations we
support, which can be initiated by completing one of the
online web-forms (http://resource.loni.usc.edu/collaboration/
collaborator-application/). This manuscript attempts to demon-
strate how the entire biomedical community can utilize the LONI
resources, as well as demonstrate the design-challenges, capabili-
ties, and maintenance of such integrated data, software and hard-
ware architectures, which may be valuable to others interested in
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building similar, alternative or federated computational frame-
works.
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Analysis of functional magnetic resonance imaging (fMRI) data is becoming ever
more computationally demanding as temporal and spatial resolutions improve, and
large, publicly available data sets proliferate. Moreover, methodological improvements
in the neuroimaging pipeline, such as non-linear spatial normalization, non-parametric
permutation tests and Bayesian Markov Chain Monte Carlo approaches, can dramatically
increase the computational burden. Despite these challenges, there do not yet exist any
fMRI software packages which leverage inexpensive and powerful graphics processing
units (GPUs) to perform these analyses. Here, we therefore present BROCCOLI, a
free software package written in OpenCL (Open Computing Language) that can be
used for parallel analysis of fMRI data on a large variety of hardware configurations.
BROCCOLI has, for example, been tested with an Intel CPU, an Nvidia GPU, and
an AMD GPU. These tests show that parallel processing of fMRI data can lead
to significantly faster analysis pipelines. This speedup can be achieved on relatively
standard hardware, but further, dramatic speed improvements require only a modest
investment in GPU hardware. BROCCOLI (running on a GPU) can perform non-linear
spatial normalization to a 1 mm3 brain template in 4–6 s, and run a second level
permutation test with 10,000 permutations in about a minute. These non-parametric
tests are generally more robust than their parametric counterparts, and can also enable
more sophisticated analyses by estimating complicated null distributions. Additionally,
BROCCOLI includes support for Bayesian first-level fMRI analysis using a Gibbs sampler.
The new software is freely available under GNU GPL3 and can be downloaded from github
(https://github.com/wanderine/BROCCOLI/).

Keywords: Neuroimaging, fMRI, Spatial normalization, GPU, CUDA, OpenCL, Image registration, Permutation test

1. INTRODUCTION
Functional magnetic resonance imaging (fMRI) has become the
de facto standard methodology in contemporary efforts to image
the functioning of the human brain in both health and dis-
ease. Nonetheless, fMRI-based research arguably lags behind in
its adoption of recent advances in computer hardware, despite
several recent trends that have underlined the need for greater
computational resources. First, the temporal and the spatial reso-
lution of fMRI data continues to improve with stronger magnetic
fields and more advanced scanning protocols (Moeller et al.,
2010; Feinberg and Yacoub, 2012), leading to the production
of significantly larger datasets. Second, fMRI studies are trend-
ing toward larger numbers of subjects to increase their statistical
power (Eklund et al., 2012a; Thyreau et al., 2012; Button et al.,
2013) sometimes aided by a proliferation of data sharing initia-
tives (Biswal et al., 2010; Poldrack et al., 2013) 1,2 that provide
open access to large amounts of data. The human connectome

1http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
2https://openfmri.org/

project (van Essen et al., 2013) 3, for example, shares high
resolution data from a large number of subjects (the goal is 1200),
and a single resting state scan results in a dataset of the size
104 × 90 × 72 × 1200. Third, non-parametric methods based on
permutation and Bayesian Markov Chain Monte Carlo (MCMC)
methods are more frequently being used to improve neuroimag-
ing statistics (da Silva, 2011; Eklund et al., 2012a, 2013b), but
suffer from long processing times compared to conventional para-
metric methods. Some progress toward parallelization has been
made in each of the three major packages commonly used in
fMRI-based research (SPM, FSL, and AFNI). For example, AFNI
has direct support for running some functions in parallel on
several CPU cores, using the open multi-processing (OpenMP)
library; FSL can take advantage of several computers or CPU
cores, by installing packages like Condor or GridEngine, and
has recently added graphics processing unit (GPU) support for
MCMC based diffusion tensor analysis (Hernandez et al., 2013);
and Huang et al. (2011) recently proposed to accelerate image

3http://www.humanconnectome.org/
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registration in SPM by using a GPU. Moreover, a number of
prominent projects are underway to enable big data approaches
to functional neuroimaging at large supercomputing centers
[e.g., (Lavoie-Courchesne et al., 2012)]. At this stage, however,
these approaches still require a significant investment of time and
effort by expert technical staff, and thus remain inaccessible to the
majority of investigators. Thus, despite efforts by existing anal-
ysis packages, we feel that the community could benefit from
a more comprehensive focus on parallel computation. Further,
being relatively new, GPUs offer some unique challenges as well
as promising potential benefits.

Since the introduction of the CUDA programming language
in 2007, general purpose computing on graphics processing units
(GPGPU) (Owens et al., 2007) has gained prominence in a wide
range of scientific fields, including medical imaging (Shams et al.,
2010; Pratx and Xing, 2011; Eklund et al., 2013a) and neuro-
science (Jeong et al., 2010; Pezoa et al., 2012; Ben-Shalom et al.,
2013; Hoang et al., 2013; Yamazaki and Igarashi, 2013). The main
reasons are that GPUs are inexpensive, power efficient and able
to run several thousand threads in parallel, commonly provid-
ing a performance boost of 1–2 orders of magnitude for a small
investment (see Table 1). Nonetheless, GPGPU is still uncommon
in the neuroimaging field, where medical imaging and neuro-
science intersect. Here, we therefore present BROCCOLI, a free
software for parallel analysis of fMRI data on many-core CPUs
and GPUs. BROCCOLI contains a large number of additions
and improvements over our previous work (Eklund et al., 2010,
2011a; Forsberg et al., 2011; Eklund et al., 2012b). Some exam-
ples are Bayesian fMRI analysis using MCMC, first level statistical
analysis using the Cochrane-Orcutt procedure (Cochrane and
Orcutt, 1949), linear and non-linear registration for an arbi-
trary number of scales and support for F-tests as well as a
larger number of regressors. While our previous implementa-
tions used CUDA, the most popular programming language for
GPGPU, BROCCOLI is instead written in the open computing
language (OpenCL) [see e.g., Munshi et al. (2011)]. This makes it
possible to run BROCCOLI on many types of hardware, includ-
ing CPUs, Nvidia GPUs, AMD GPUs, field programmable gate
arrays (FPGAs), digital signal processors (DSPs) and other accel-
erators (e.g., the Intel Xeon Phi). As neuroimaging researchers
use a wide range of operating systems (Hanke and Halchenko,
2011), it is also important that BROCCOLI can run efficiently
regardless of the platform. One way to achieve this is to develop
BROCCOLI for a specific platform (e.g., Windows), and then
simply run BROCCOLI through a virtual machine for other

platforms (e.g., Linux). However, direct access to GPU hard-
ware through a virtual machine can currently be problematic,
and was therefore not an option for our software. Instead, we
have developed BROCCOLI using a combination of the platform-
independent languages OpenCL and C++, and have made the
source code freely available so that it can be compiled on any
desired operating system supporting these widely deployed stan-
dards. In addition, as an added convenience, we have provided
pre-compiled libraries for the Linux and Windows operating sys-
tems that can be linked to projects developed on either platform.
A wrapper for Matlab is currently available, a Python wrapper is
being developed and future plans include wrappers for bash and
R. In addition to the improvements described above, BROCCOLI
has also been extensively tested and compared to SPM, FSL, and
AFNI by using a large number of freely available fMRI datasets.
BROCCOLI is available as free software under GNU GPL3 and
can be downloaded from github4.

2. METHODS AND IMPLEMENTATION
The typical analysis pipeline for fMRI data is compromised of
image registration, image segmentation, slice timing correction,
smoothing, and statistical analyses. The methods used for these
different processing steps in BROCCOLI are described in this
section, and implementation details are given at the end of the
section.

2.1. IMAGE REGISTRATION
Image registration for fMRI is used to align an anatomical T1
volume to a brain template (e.g., MNI or Talairach), to align
an fMRI volume to the anatomical T1 volume, and to per-
form motion correction. The registration between the anatomical
space and a standard brain space, often called spatial normal-
ization, can be performed using a linear transformation model
(e.g., affine or rigid) or by using a non-linear approach, which
is much more computationally demanding. In a comparison of
non-linear deformation algorithms for human brain MRI reg-
istration (Klein et al., 2009), the DARTEL algorithm in SPM
took an average of 71 min to register a single T1 volume to
the MNI template (1 mm3 resolution) and the FNIRT algo-
rithm in FSL used an average of 29 min. The AFNI software
did not until recently have support for non-linear registration,
but can now be achieved through the function 3dQwarp. Based
on our benchmarking, non-linear registration with 3dQwarp

4https://github.com/wanderine/BROCCOLI/

Table 1 | Hardware configuration and performance measures of the computer used for testing the different software packages.

Device Processor cores Memory Single precision Double precision Memory bandwidth Price

(GB) (GFLOPS) (GFLOPS) (GB/s) (USD)

Intel Core i7-3770K 4 (8 with hyper threading) 16 1 core: 56, 4 cores: 224 1 core: 28, 4 cores: 112 26 330

Nvidia GTX 680 1536 4 3090 129 192 500

AMD Radeon 7970 2048 3 3790 947 264 500

A Linux operating system was used (CentOS 6.4 64 bit) with an OCZ 128 GB SSD hard drive. The theoretical performance for single (32 bit floats) and double (64 bit

floats) precision is given as giga floating point operations per second (GFLOPS). Prices are from newegg.com and should be seen as approximate.
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takes about 36 min with a single-threaded version of AFNI, and
13 min using the multi-threaded OpenMP version (for a CPU
running 8 threads). Thus, depending on the algorithm, nor-
malization for a study involving 30 subjects can take 5–35.5 h.
Moreover, to obtain satisfactory results, it may be necessary to
run the registration algorithm with a number of different set-
tings. For these reasons, affine registration to a standard brain
space is sometimes performed instead of a non-linear one, even
though the non-linear approach can yield a better registration.
Another time saving approach is to perform spatial normal-
ization to a brain template of lower resolution, e.g., 2 mm3

voxels, but this solution is less appealing, since spatial resolu-
tion is sacrificed. Due to the computational challenges of image
registration, GPU acceleration of such algorithms is very pop-
ular with some 60 publications since 1998 (Shams et al., 2010;
Fluck et al., 2011; Pratx and Xing, 2011; Eklund et al., 2013a).
GPUs can thus easily be used in the neuroimaging field, to for
example enable more widespread use of demanding non-linear
registration algorithms.

2.1.1. Linear image registration
BROCCOLI uses a single registration algorithm to perform
the three described registrations (T1-to-MNI,fMRI-to-T1, and
motion correction). Here we summarize the algorithm, which has
been previously described (Eklund et al., 2010). The main idea
of the algorithm is to use the optical flow equation (Horn and
Schunck, 1981)

∇ITv = �I, (1)

where ∇I is the gradient of the volume, v is a motion vector that
describes the difference between the volumes and �I is the inten-
sity difference between the two volumes. The aperture problem,
however, prevents us from solving this equation directly, as there
are three unknown variables (the motion in x, y, and z), but only
one equation. Instead of solving the equation for each voxel sep-
arately, one can minimize the expression over the entire volume.
The total squared error can be written as

ε2 =
∑

i

(
∇I(xi)

Tv(xi) − �I(xi)
)2

, (2)

where xi denotes the position of voxel i. A linear model of
the motion field can be used to represent a motion vector in
each voxel. The motion field v(x) for affine transformations in
3D can be modelled with a 12-dimensional parameter vector,
p = [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12]T , and a base
matrix B(x) according to (Hemmendorff et al., 2002)

v(x) =
⎡

⎣
p1

p2

p3

⎤

⎦ +
⎡

⎣
p4 p5 p6

p7 p8 p9

p10 p11 p12

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ (3)

=
⎡

⎣
1 0 0 x y z 0 0 0 0 0 0
0 1 0 0 0 0 x y z 0 0 0
0 0 1 0 0 0 0 0 0 x y z

⎤

⎦

︸ ︷︷ ︸
B

p.

The first three parameters are the translations and the last nine
parameters form a transformation matrix (if an identity matrix
is added, as the parameter vector p used here only describes the
difference between the two volumes). The variables x, y, and z are
the coordinates of voxel x. By using the model of the motion field,
v(x) = B(x) p , the error measure can be written as

ε2 =
∑

i

(
∇I(xi)

TB(xi) p − �I(xi)
)2

. (4)

The derivative of this expression, with respect to the parameter
vector, is given by

∂ε2

∂p
= 2

∑

i

BT
i ∇Ii

(
∇IT

i Bi p − �Ii

)
, (5)

and setting the derivative to zero yields the following linear
equation system

∑

i

BT
i ∇Ii∇IT

i Bi

︸ ︷︷ ︸
A

p =
∑

i

BT
i ∇Ii�Ii

︸ ︷︷ ︸
h

, (6)

where A is a matrix of size 12 × 12 and h is a vector of size 12 × 1.
The best parameter vector can finally be calculated as

p = A−1h. (7)

The system of linear equations is easy to solve, while the com-
putationally demanding part is to sum over all voxels. L2 norm
minimization makes it possible to calculate the parameters that
give the best solution. The solution can then be improved by iter-
ating the algorithm and accumulating the parameter vector (to
avoid repeated interpolation). The most common approach is
otherwise to maximize a similarity measure by searching for the
best parameters, using some optimization algorithm. To handle
large differences between two volumes, it is common to start the
registration on a coarse scale and then improve the registration by
moving to finer scales. BROCCOLI uses three to four scales for the
registration between T1 and MNI and between fMRI and T1; the
difference between each scale is a factor two in each dimension.

The estimated affine transformation parameters can be
restricted to a rigid transformation (i.e., translations and rota-
tions only), and is accomplished in BROCCOLI by applying a sin-
gular value decomposition (SVD) to the transformation matrix
and then forcing the singular values to be one. Rigid registration
is used for fMRI-T1 registration and for motion correction, while
affine registration (12 parameters) is used for the T1-MNI regis-
tration. For the motion correction procedure, the rotation angles
θ1, θ2, θ3 are extracted from the estimated rotation matrix for
each time point using the following formulas (Shoemake, 1994;
Day, 2012)
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θ1 = atan2(p9, p12),

c2 = √
p4 · p4 + p5 · p5,

θ2 = atan2(−p6, c2),

s1 = sin(θ1),

c1 = cos(θ1),

θ3 = atan2(s1 · p10 − c1 · p7, c1 · p8 − s1 · p11),

(8)

where atan2(a, b) is the four quadrant arctangent of a and b. The
main reasons for extracting the rotation angles are to use them as
nuisance regressors in the statistical analysis and to present them
to the user.

2.1.2. Non-intensity based image registration
The registration algorithm used in BROCCOLI is not based on
the image intensity directly, e.g., the image gradient as described
above. Instead, the algorithm is based on matching edges to
edges and lines to lines, by using the concept of local phase
from quadrature filter responses (Granlund and Knutsson, 1995;
Knutsson and Andersson, 2003). A quadrature filter is complex
valued in the spatial domain; the real part is a line detector and the
imaginary part is an edge detector. The local phase is the relation-
ship between the real and imaginary filter responses and describes
the type of local structure (e.g., a line or an edge), while the mag-
nitude can be seen as a certainty measure of how likely it is that the
filter detected a structure. The local phase concept is illustrated
in Figure 1. The quadrature filters need to be created using filter
optimization techniques, which simultaneously consider proper-
ties in the spatial domain and the frequency domain (Granlund
and Knutsson, 1995; Knutsson et al., 1999). In the presented equa-
tions, the image gradient ∇I is replaced with a phase gradient ∇ϕ

FIGURE 1 | This figure presents the main concept of local phase ϕ from

quadrature filter responses. A quadrature filter is complex valued in the
spatial domain; the real part is a line detector and the imaginary part is an
edge detector. If the filter response only contains a real valued component,
it means that the filter detected a line. If the filter response only contains
an imaginary valued component, it means that the filter detected an edge.
It is important to combine the local phase with the magnitude of the
complex valued filter response, as the local phase does not have any
meaning for a low magnitude.

and the image difference �I is replaced with a phase difference
�ϕ. The phase difference can be calculated as

�ϕ = arg
(
q1 · q∗

2

)
, (9)

where q1 and q2 are the complex valued quadrature filter
responses for the two volumes and ∗ denotes complex conjuga-
tion. A nice property of the local phase is that it is invariant to
the image intensity (all edges are for example interpreted equally,
regardless if the image intensity changes from 0 to 1 or from 10
to 11), making it easier to register volumes from different modal-
ities or volumes with different or varying contrast. Phase based
optical flow was introduced in the field of computer vision (Fleet
and Jepson, 1990) and eventually propagated to the medical imag-
ing domain (Hemmendorff et al., 2002; Knutsson and Andersson,
2005; Mellor and Brady, 2005). While phase based image reg-
istration can in some cases be more robust against intensity
differences (Hemmendorff et al., 2002; Mellor and Brady, 2005;
Eklund et al., 2011b), a drawback is that it requires filtering with a
number of (non-separable) filters in each iteration, which is com-
putationally demanding. Fortunately, GPUs are perfectly suited
for parallel operations like filtering (Eklund and Dufort, 2014).

2.1.3. Non-linear image registration
As previously mentioned, non-linear methods can lead to
a significantly better registration between a subject specific
anatomical volume and a brain template. BROCCOLI uses the
Morphon (Knutsson and Andersson, 2005; Forsberg et al., 2011;
Forsberg, 2013) to perform non-linear registration. The Morphon
is also based on phase based optical flow, and the two most impor-
tant parts of the Morphon are, therefore, the same as for the linear
registration algorithm; to apply a number of quadrature filters
and to calculate phase differences. The main differences are that
the linear algorithm uses three quadrature filters (oriented along
x, y, and z) and solves one equation system for the entire volume,
while the Morphon uses six quadrature filters (evenly distributed
on the half sphere of an icosahedron) and solves as many equa-
tion systems as there are voxels. The error being minimized in
each voxel can be written as

ε2 =
N∑

k=1

(
ckT

(
�ϕkn̂k − d

))2

, (10)

where �ϕk is the phase difference between the two volumes for
quadrature filter k, ck is a certainty estimate for filter k, n̂k is the
orientation vector for filter k, N is the number of quadrature fil-
ters, d is the displacement vector to be optimized and T is a local
structure tensor (Knutsson, 1989; Granlund and Knutsson, 1995;
Knutsson et al., 2011). A local structure tensor in image process-
ing is analogous to a diffusion tensor in diffusion tensor imaging
(DTI); it represents the magnitude and orientation of the sig-
nal in each neighborhood. The tensor can be calculated from the
six complex valued quadrature filter responses as (Granlund and
Knutsson, 1995)

T =
N∑

k = 1

∣
∣qk

∣
∣
(

5

4
n̂kn̂T

k − 1

4
I

)
, (11)
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where I is an identity tensor. The purpose of using the tensor in
the error measure is to reinforce displacement estimates along the
local predominant orientations (i.e., displacements perpendicular
to edges and lines). Using an L2-norm, the best displacement vec-
tor can be calculated for each voxel directly, by once again solving
a linear system (of size 3 x 3), i.e.,

d =
( N∑

k = 1

c2
kTTT

)−1 N∑

k = 1

c2
k�ϕkTTTn̂k. (12)

The estimated displacement field is regularized by applying
Gaussian smoothing separately to each motion component
(x, y, z) before it is used to warp the T1 volume. Just as for the
linear registration, the displacement field is accumulated in each
iteration to avoid repeated interpolation. An affine registration
(12 parameters) is first estimated between the T1 volume and the
MNI template before estimation of the non-linear displacement
field.

2.2. IMAGE SEGMENTATION
SPM has several functions for segmenting brain volumes. FSL
provides BET (brain extraction tool) and FAST (FMRIB’s auto-
mated segmentation tool) while AFNI provides the function
3dSkullStrip. BROCCOLI performs skullstripping by first regis-
tering the T1 volume to MNI space, using an MNI template with
skull, then applies an inverse transform to the MNI brain mask
and finally performs a multiplication between the transformed
mask and the original T1 volume to obtain a skullstripped version
of the T1 volume. The skullstripped T1 volume is then aligned to
an MNI template without skull, to improve the alignment, and
the MNI brain mask is again inversely transformed (using the new
registration parameters) and multiplied with the original T1 vol-
ume, to obtain a better skullstrip. The fMRI data is segmented by
first applying 4 mm 3D Gaussian smoothing to one of the fMRI
volumes and then using a threshold that is 90% of the mean value.

2.3. SLICE TIMING CORRECTION
Slice timing correction is normally applied to fMRI data (Sladky
et al., 2011), as the slices in each volume are collected at slightly
different time points. BROCCOLI sets the middle slice as the ref-
erence and then applies cubic interpolation in time to correct for
the temporal difference between the slices.

2.4. SMOOTHING
fMRI data is frequently spatially smoothed. The non-linear reg-
istration algorithm also uses Gaussian smoothing, for example
to reguralize the tensor components and the resulting displace-
ment field in each iteration. BROCCOLI utilizes a simple form
of normalized convolution (Knutsson and Westin, 1993), called
normalized averaging, to avoid problems with voxels close to the
edge of the brain being influenced by voxels outside the brain. The
normalized filter response nfr is calculated as

nfr = (v · c) ∗ f

c ∗ f
, (13)

where f is the filter, v is one fMRI volume, c is a certainty measure,
∗ denotes convolution and · denotes pointwise multiplication.

The certainty is simply the fMRI brain mask, such that the cer-
tainty is one inside the brain and zero outside. If a gray matter
segmentation is available, the same approach can be used to pre-
vent similar problems with smoothing that includes values from
other types of brain matter (by setting the certainty to one for
gray voxels and zero for all other voxels).

2.5. STATISTICAL ANALYSIS
The statistical analysis is the core of all fMRI software packages.
The use of GPUs for statistical computations is a relatively new
concept (Suchard et al., 2010; Guo, 2012) and can for exam-
ple be used to speedup demanding Markov Chain Monte Carlo
(MCMC) simulations (Lee et al., 2010). We believe that GPUs
(or at least the computational capacity they confer) are a neces-
sary component for incorporation of developments in the field
of statistics to the field of neuroimaging, especially for high reso-
lution fMRI data (Feinberg and Yacoub, 2012). By using GPUs,
computationally demanding non-parametric tests can be used
instead of parametric ones (Nichols and Holmes, 2002; Eklund
et al., 2011a) and MCMC based methods [e.g., (Woolrich et al.,
2004)] also become feasible (da Silva, 2011).

The SPM, FSL, and AFNI software packages are all mainly
based on the general linear model (GLM) for first (subject) and
second level (group) analyses, as proposed by Friston et al. (1994).
The GLM can be written in matrix form as

y = Xβ + ε, (14)

where y are the observations for one voxel, β are the parame-
ters to estimate, X is the design matrix (model) containing all the
regressors and ε are the errors that cannot be explained by the
model. As the GLM is applied to each voxel independently, it is
perfectly suited for parallel implementations. By minimizing the
squared error ||ε||2, it can be shown that the best parameters (for
independent errors) are given by

β̂ =
(

XTX
)−1

XTy. (15)

A useful property of this expression is that the term
(
XTX

)−1
XT

is the same for all voxels and can, thus, be precalculated. A t-test
value can easily be calculated from the estimated weights as

t = cT β̂ − u
√

var
(
ε̂
)

cT
(
XTX

)−1
c
, (16)

where c is a contrast vector, ε̂ is the residual of the GLM and u is
a scalar for the null hypothesis cT β̂ = u. An F-test value can in a
similar manner be calculated as

F =
(

Cβ̂ − u
)T (

var
(
ε̂
)

C
(
XTX

)−1
CT

)−1 (
Cβ̂ − u

)

N
, (17)

where C is a contrast matrix and N is the number of contrasts.
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2.5.1. First level analysis
The first level fMRI analysis starts with slice timing correction
and motion correction. The estimated motion parameters (trans-
lations and rotations) are included in BROCCOLI by default
as additional regressors in the GLM design matrix, to further
reduce effects of head motion (Johnstone et al., 2006). Gaussian
smoothing is applied to each fMRI volume and the GLM is finally
applied to the smoothed volumes. In addition to motion regres-
sors and regressors for the experimental design, the design matrix
in BROCCOLI also contains regressors to remove the mean and
trends that are linear, quadratic or cubic. The effect of using these
additional regressors is similar to a highpass filtering. The GLM
errors are for first level fMRI analysis often modelled as an auto
regressive (AR) process,

εt =
p∑

i = 1

ρiεt − i + wt, (18)

where p is the order of the AR process, ρi are the AR parame-
ters and w is white noise with variance σ 2. A Cochrane-Orcutt
procedure (Cochrane and Orcutt, 1949) is used in BROCCOLI
to estimate the beta weights for autocorrelated errors. The GLM
weights β are first estimated using ordinary least squares (equa-
tion 15) and then a voxel-wise AR model of the fourth order
is used to model the residuals (Worsley et al., 2002). The AR
parameters are estimated by solving the Yule-Walker equations
independently for each voxel. Each volume of AR estimates is spa-
tially smoothed with a 7 mm Gaussian filter to further improve
the estimates (Woolrich et al., 2001; Worsley et al., 2002; Gautama
and Hulle, 2004), before the actual whitening is applied to the
smoothed fMRI data and the regressors in the design matrix (such
that each voxel gets its own specific design matrix). The compo-
nents of the whitened data ỹ and the whitened regressors X̃ are
thus calculated as

ỹt = yt −
4∑

i = 1

ρiyt − i, (19)

X̃t, r = Xt, r −
4∑

i = 1

ρiXt − i, r, (20)

where ρi are the spatially smoothed AR estimates, r denotes
regressor and t denotes time point. The whitened data ỹ and the
whitened regressors X̃ are then used to estimate new beta weights,
according to

β̃ =
(

X̃
T

X̃
)−1

X̃
T

ỹ. (21)

As a last step, the AR parameters are re-estimated using residuals
calculated with the new weights β̃, the original data y and the
original regressors X. The Cochrane-Orcutt procedure is repeated
three times to obtain good estimates of the GLM weights and the
AR parameters. Finally, the statistical maps are calculated using
the variance of the uncorrelated residuals ε̃, obtained as

ε̃ = ỹ − X̃β̃. (22)

FSL uses a similar iterative approach to estimate a voxel-wise
prewhitening matrix (Woolrich et al., 2001), with the exception
that the spatial smoothing is done separately for different tis-
sue types. The voxel-specific noise model used in BROCCOLI
has been shown to yield more valid results than those obtained
from SPM (Eklund et al., 2012a), which uses a global AR(1)
model. After the first level statistical analysis, the results (e.g., beta
weights) are transformed to MNI space, by combining the esti-
mated registration parameters for T1-to-MNI and fMRI-to-T1
transformations and the estimated displacement field from the
non-linear registration.

2.5.2. Second level analysis
The second level analysis in fMRI is straightforward compared
to the first level analysis, once all the first level results are in
a common brain space. A group-wise t-test or F-test can eas-
ily be performed by using the same functions as for the first
level GLM. BROCCOLI currently only supports conventional
t-tests and F-tests for second level analysis, but we plan to also
include other types of analyses (e.g., where the variance of the
beta estimates are used as weights) in future releases.

2.5.3. Frequentist inference
In contrast to other software packages for fMRI analysis,
BROCCOLI is not based on parametric statistics. All p-values
are instead calculated through non-parametric permutation
tests (Dwass, 1957; Nichols and Holmes, 2002), both for first level
and second level analyses. The main motivation is that paramet-
ric statistics require several assumptions to be met for the results
to be valid. In fMRI it is also necessary to correct for a large
number of tests, due to the high spatial resolution. The multiple
testing makes the parametric assumptions much more critical, as
one has to move far along the tail of the null distribution. The
SPM software relies on Gaussian random field theory (GRFT)
to correct for the multiple testing (Worsley et al., 1992), while
FSL mainly works with GRFT and non-parametric permutation
tests (for group analyses only). AFNI instead uses the false discov-
ery rate (FDR) (Genovese et al., 2002) and a cluster simulation
tool. A permutation test solves the problem of multiple testing
in a very simple way. In each permutation, only the largest value
of the statistical map (e.g., the maximum t-test value, the max-
imum F-test value, the size or mass of the largest cluster etc.) is
saved to form the null distribution of the maximum test statistics.
Corrected p-values are finally calculated as the proportion of val-
ues in the estimated null distribution that are larger than or equal
to the test value for the current voxel or cluster. A threshold for a
certain significance level α, corrected for multiple testing, can be
calculated by first sorting the estimated null distribution values,
and then simply using the value that is larger than (100 − α) %
of the values. The main problem is that a large number of per-
mutations, normally 1000–10,000, are required to obtain a good
estimate of the null distribution. Since a full statistical analysis
needs to be performed in each permutation, the total process-
ing time can be several hours or days for a single test, using
conventional multi-core CPU implementations. This is the main
reason why permutation tests are not standard procedure in the
neuroimaging field.

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 24 | 213

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Eklund et al. Ultra-fast fMRI analysis using BROCCOLI

For first level analysis in BROCCOLI, detrending and whiten-
ing [using a voxel-wise AR(4) model as previously described]
is applied to the motion corrected data and new fMRI data is
then generated in each permutation by using an inverse whitening
transform with randomly permuted whitened data. The smooth-
ing has to be applied in each permutation, as the smoothing alters
the autocorrelation structure of the fMRI data. Permutation test-
ing for the second level analysis is much easier, as no whitening or
smoothing is required. See our previous work for further infor-
mation on the non-parametric analysis (Eklund et al., 2011a,
2012a).

2.5.4. Bayesian inference
The GLM model previously described can alternatively be ana-
lyzed using Bayesian methods. A Bayesian analysis begins with a
prior distribution p(β, σ 2, ρ) over the model parameters and
subsequently updates the prior with the observed data. The result
is the posterior distribution p(β, σ 2, ρ|X, y), which encapsu-
lates all information about the unknown parameters conditional
on the observed data. In fMRI, the brain activity can be visu-
alized as a heat map of Pr(βi > 0|X, y), commonly known as
a posterior probability map (PPM) (Friston et al., 2002). The
joint posterior p(β, σ 2, ρ|X, y) is often not tractable in ana-
lytical form, but can be approximated by different approaches.
The most common approach in the fMRI field is to use approx-
imation techniques like variational Bayes, where the posterior is
factorized into several independent factors to obtain an analyti-
cal expression (Penny et al., 2003). A less common approach is
to use techniques based on Markov Chain Monte Carlo (MCMC)
simulation. MCMC produces a sample from the posterior, and
the probability of activity Pr(βi > 0|X, y) can be approximated
by the proportion of simulated βi being larger than zero. The
PPM for any contrast is also directly available from the pos-
terior simulations. Note that since simulations are done using
the joint posterior, PPMs are not conditional on point esti-
mates of σ 2 and ρ, leading to more accurate inferences regarding
brain acitivity.

BROCCOLI uses a specific MCMC algorithm, the Gibbs sam-
pler, to generate draws from the posterior by iteratively sim-
ulating from two full conditional posteriors. First, the auto-
correlation parameters ρ are updated by simulation from
ρ|β, σ 2, y, X as a (multivariate) Gaussian distribution. Second,
the variance σ 2 is updated by simulation from σ 2|ρ, y, X
as an inverse Gamma distribution and the GLM weights β

are finally updated by simulation from β|σ 2, ρ, y, X as
a (multivariate) Gaussian distribution. These conditional dis-
tributions are obtained when the priors for β|σ 2 and ρ are
Gaussian and the prior on σ 2 is inverse Gamma. The exact
details of each updating step can be found in most Bayesian
textbooks, see e.g., Murphy (2012). Note that each updat-
ing step conditions on the most recently simulated value
for the conditioning parameters. While MCMC methods can
theoretically be used to approximate any posterior, a com-
mon problem is the significantly longer processing time com-
pared to techniques like variational Bayes. BROCCOLI runs
a large number of MCMC chains in parallel to reduce the
processing time.

2.6. IMPLEMENTATION
We will here describe the implementation of BROCCOLI for the
different algorithms. Readers are referred elsewhere for introduc-
tions to GPU programming (Kirk and Hwu, 2010; Munshi et al.,
2011; Sanders and Kandrot, 2011). Most of the OpenCL code uses
single precision to achieve maximum performance, while some
host code uses double precision (to for example obtain the opti-
mal affine registration parameter vector). The open source library
Eigen5,6 is used in BROCCOLI to perform matrix calculations on
the host.7

2.6.1. Image registration
The described linear and non-linear registration algorithms are
easy to run in parallel. The filtering operation applied in each
iteration is the most demanding part, especially since quadrature
filters are non-separable, and has therefore been carefully opti-
mized. Filtering can be performed as a multiplication in the fre-
quency domain, after the application of a fast Fourier transform
(FFT) to the signal and the filter, or as a convolution in the spa-
tial domain. BROCCOLI uses the convolution approach, for three
reasons. First, the FFT approach requires an FFT library while
the convolution approach can rather easily be implemented man-
ually. The CUDA programming language provides the CUFFT
library, and a similar OpenCL library called clFFT has recently
appeared. However, clFFT is in our opinion not yet as mature as
CUFFT. The user, for example, has to compile the whole project
to obtain a library file. Second, a convolution approach often pro-
vides high performance over a wide range of data sizes, while an
FFT normally performs best for data sizes being a power of 2.
Third, the convolution approach is less memory demanding as
the FFT approach requires that the filters are stored as the size of
the signal for an elementwise multiplication.

Convolution is easy to run in parallel, and high performance
can be achieved by taking advantage of the fact that the filter
responses for neighboring voxels use mainly the same input data.
An easy way to implement a non-separable 3D convolution is
to take advantage of the texture memory, as the texture mem-
ory cache can be used to speedup reads that are spatially local.
Such an implementation will, however, be limited by the global
memory bandwidth. A better approach is to take advantage of
the local memory8 available in modern GPUs (CPUs do not nor-
mally have local memory physically; it can instead be simulated by
the OpenCL driver). By first reading values from global memory
into local memory, all the threads in a thread block can repeatedly
read from the local memory very efficiently. The Nvidia GTX 680
has 48 KB of local memory per multiprocessor; it can for exam-
ple store a 3D array of 32 × 32 × 12 float values. The quadrature
filters used in BROCCOLI contain 7 × 7 × 7 coefficients, only
26 × 26 × 6 = 4,056 filter responses will therefore be valid for
each multiprocessor. The reason for this is that the convolution
is undefined along a boundary of (N − 1)/2 pixels for an N ×

5http://eigen.tuxfamily.org/index.php?title=Main_Page
6https://bitbucket.org/eigen/eigen/
7For readers not familiar with GPU programming, the CPU is often called the
host while the GPU is called the device.
8Local memory in OpenCL is the same thing as shared memory in CUDA.
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N kernel. The yellow pixels in Figure 2 illustrate the invalid fil-
ter responses along the image borders for a filter size of 7 × 7.
To maximize the number of valid filter responses per multipro-
cessor, a better approach to non-separable 3D convolution is to
instead perform non-separable 2D convolution on the GPU, and
then accumulate the filter responses by calling the convolution
kernel for each slice of the filter [i.e., instead of running all 6 for-
loops (three for the data and three for the filter) on the GPU, run
5 on the GPU and 1 on the CPU]. The local memory can for 2D
be used to store two arrays of 96 × 64 float values, which instead
gives a total of 10,440 valid filter responses per multiprocessor
(two blocks of 90 × 58 pixels). The reason for using two arrays
instead of one, is that each multiprocessor on the Nvidia GTX
680 can concurrently run 2048 threads, but only 1024 threads per
thread block. The 1024 threads per block are arranged as 32 along
the x-direction and 32 along the y-direction, to for example fit
the number of local memory banks (32). Each thread starts by
reading 6 values from global memory into local memory (96 ×
64 / 1024 = 6) and then calculates 2 filter responses (giving two
32 × 32 blocks). Three additional filter responses are then calcu-
lated by most of the threads, yielding two blocks of 32 × 26 pixels
and one block of 26 × 32 pixels. Finally, a number of threads are
used to calculate the final 26 × 26 filter responses. The usage of
local memory for non-separable 2D convolution is illustrated in
Figure 2. As several quadrature filters need to be applied to the
two volumes being registered (3 for linear registration and 6 for
non-linear registration), 3 filters are applied simultaneosly once

FIGURE 2 | The grid represents 96 × 64 pixels in local memory (each

square is one pixel). As 32 x 32 threads are used per thread block, each
thread needs to read 6 values from global memory into local memory [(96
× 64)/(32 × 32) = 6]. A yellow halo needs to be loaded into local memory
to be able to calculate all the filter responses. In this case 90 × 58 valid
filter responses are calculated, making it possible to apply at most a filter of
size 7 × 7. The 90 × 58 filter responses are calculated as 6 runs, the first 2
consisting of 32 × 32 pixels (marked light red and light blue). The 1024 filter
responses (32 × 32) are calculated in parallel, and the gray squares
represent three filter responses being calculated. Note that neighboring
filter responses are calculated using mainly the same pixels. Three
additional filter responses are calculated in blocks of 32 × 26 or 26 × 32
pixels (marked green, dark blue and dark red). Finally, a block of 26 × 26
pixels is processed (marked purple). The halo can easily be changed to
handle larger filters.

the data has been loaded into local memory. To achieve maxi-
mum performance, the for-loops have been unrolled manually
using a Matlab script. To run a short for-loop on a GPU can
result in a sub-optimal performance, as it can take a longer time to
setup the for-loop than to run it (this is especially true for nested
for-loops). The filters are stored in constant memory, as they are
used by all threads and since each multiprocessor has a constant
memory cache. The filter responses are stored in thread specific
registers. Note that calculating 6 filter responses per thread results
in a much better ratio of memory operations and calculations,
compared to a straight forward approach using texture memory
(where each thread calculates a single filter response). Interested
readers are referred to our previous work (Eklund and Dufort,
2014) and our separate github repository9 for further details. The
AMD GPU and the Intel CPU used in our case have only 32 KB
of local memory, the AMD GPU can also only run 256 threads
per thread block. The code for these devices instead uses one local
memory array of 128 × 64 pixels and calculates 120 × 58 filter
responses in blocks of 16 × 16 pixels.

The linear registration algorithm involves a summation over
all voxels to setup an equation system (equation 6). BROCCOLI
performs this summation using three kernels. The first kernel
performs all the necessary multiplications and each thread cal-
culates the sum for one voxel along the x-direction. The number
of threads per thread block is equal to the width of the volume.
The second kernel continues the summation along the y-direction
(the number of threads per block is set to the depth of the volume)
and the third kernel sums along z. The resulting equation system
is finally copied to the host, to calculate the best parameter vector.

Except for the filtering and the summation operation, the
other required functions are straight forward to implement.
For the linear registration algorithm, one kernel is used in
BROCCOLI to calculate phase differences (equation 9) and cer-
tainties and three kernels are used to calculate phase gradients
∇ϕ along x, y and z (Eklund et al., 2010). For the non-linear
registration algorithm, one kernel is used to calculate the ten-
sor components (equation 11), one kernel is used to setup the
equation system in each voxel and one kernel solves the equation
system (equation 12). Both the linear and the non-linear registra-
tion algorithm use one additional kernel to interpolate from the
volume being moved to match the template. The texture memory
is used for these two kernels, as it has hardware support for linear
interpolation in 1, 2, and 3 dimensions. For all these kernels, each
thread performs the operations for one voxel. To make sure that
the same code runs on both Nvidia and AMD GPUs, 256 threads
per block are used.

2.6.2. Smoothing
The smoothing operation is also implemented as a convolution.
As the Gaussian smoothing filters are Cartesian separable, three
kernels are used to smooth along x, y, and z. Similarly to the
non-separable convolution, local memory is used to obtain a
more efficient implementation. The details of how the separable
smoothing is performed will therefore not be given here.

9https://github.com/wanderine/NonSeparableFilteringCUDA
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2.6.3. Statistical analysis
The statistical analysis of fMRI data is perfect for parallel process-
ing; each thread performs the required calculations for one voxel.
Just as for the registration kernels, all the statistical kernels use 256
threads per block to fit both Nvidia and AMD GPUs. For first level
analysis assuming independent errors and for second level anal-

ysis, the pseudo inverse of the design matrix [i.e.,
(
XTX

)−1
XT]

is calculated on the host and stored in constant memory (as it is
the same for all voxels). Calculation of the beta weights for one
voxel can then be simply performed as a number of scalar prod-
ucts between the rows of the pseudo inverse and the data points
of the current voxel (see equation 15). The resulting beta weights
are stored as registers in each thread. However, each GPU thread
can only handle a limited number of variables, BROCCOLI cur-
rently therefore supports a maximum of 25 regressors. To simply
loop over the number of regressors may result in suboptimal per-
formance, for two reasons. The first reason is that if the index
to the beta array is not known at compile time, e.g., beta[i], the
compiler may put beta in global memory instead of registers. The
second reason is that short for-loops are inefficient on GPUs (as
mentioned in the filtering implementation). For optimal perfor-
mance, BROCCOLI instead uses a switch-case approach to first
determine the number of regressors being used. The code for each
case is also unrolled, such that all accesses to the beta array are
known at compile time. To calculate the t-test or F-test value effi-

ciently in each voxel, some additional values, e.g., cT
(
XTX

)−1
c

from equation 16, are also pre-calculated and stored in constant
memory. A limitation of the described approach is that the con-
stant memory is normally only 32–128 KB; it can thus not store
arbitrary large design matrices. A potential solution to this prob-
lem is to instead use texture memory, and take advantage of the
texture memory cache instead of the constant memory cache.

The Cochrane-Orcutt procedure is harder to implement, as
each voxel then uses a specific design matrix (after whitening
according to equation 20). To calculate a pseudo inverse in each
thread is problematic, as a design matrix for first level analy-
sis easily can contain 200 timepoints and 15 regressors. Such an
operation would thus require at least 3000 floats per thread, far
outstripping the capabilities of some contemporary devices. For
example, the Nvidia GTX 680 can handle only 63 floats per thread
in its registers. Additional floats will spill into slow global mem-
ory (called local memory in CUDA), which may degrade the
performance significantly. GPUs that have a L1 and/or L2 cache
may be able to still use a larger number of registers efficiently. A
possible solution could be to instead use the updating formula
derived for MCMC (equation 24), but such an approach can also
require a large number of registers [e.g., 40 registers for the mij

variables for 10 regressors and an AR(1) model]. The current
solution is to instead calculate all the pseudo inverses on the host
and then copy them to slow global memory. For these reasons,
the Cochrane-Orcutt procedure is not yet optimized in terms of
speed. Permutation testing for first level analysis therefore cur-
rently uses the simpler approach assuming independent errors.
The permutation based p-values will still be valid, as the same
analysis is applied in each permutation (whitening is applied prior
to the permutations, and the autocorrelation is then put back in
each permutation).

The whitening operation that is applied prior to the single
subject permutations, and in the Cochrane-Orcutt procedure,
requires that an AR model is estimated for each voxel. To accom-
plish this, each thread loops over time and sets up the Yule-Walker
system of equations for one voxel. The AR(4) parameters are
then calculated by directly solving these equations using a matrix
inverse. One limitation of this approach is that more advanced
AR models [e.g., an AR(8) model] requires a larger number of
registers, both to store the parameters and to calculate the matrix
inverse. For the inverse whitening applied in each permutation, to
generate new data, all the threads also loop over time to generate
new time series.

Permutation tests involving cluster based inference require that
a clustering operation is performed in each permutation, to cal-
culate the extent or mass of the largest cluster. BROCCOLI uses
the parallel label equivalence algorithm proposed by Hawick et al.
(2010) for this purpose. The algorithm is implemented as five
kernels. The first kernel assigns an unique starting label to each
voxel that survives the initial voxel-wise threshold (e.g., p = 0.01,
uncorrected for multiple comparisons). In the second kernel each
voxel checks its 26 neighbors to see if there is a label with a lower
value. If a lower label is found, the label of the center voxel is
updated and an update flag is set to 1. The third kernel resolves
label equivalences, in order to minimize the number of times the
second kernel has to be launched [see Hawick et al. (2010) for
details]. The second and third kernels are launched repeatedly,
until the update flag is no longer set to 1. To calculate the size of
each cluster, a fourth kernel is applied where each thread atom-
ically increments a cluster specific counter (determined by the
cluster label). Finally, a fifth kernel is used to obtain the size of
the largest cluster; the implementation relies on the atomic max
operation.

The Bayesian MCMC algorithm can with careful memory
management lead to a substantial time reduction compared to a
sequential approach. To see the importance of memory manage-
ment, consider simulating from the full conditional posterior of
β and σ 2. Conditional on ρ, this is a standard linear regression
update on the transformed model

ỹ = X̃β̃ + ε̃, (23)

where X̃ and ỹ are obtained by pre-whitening X and y with the
most recently simulated coefficients in ρ (as described in equa-
tions 19 and 20). Since ρ changes in every ρ-update, both X̃
and ỹ need to re-computed in each iteration of the Gibbs sam-
pler. Both X and y are, however, too large to be stored in the
fastest GPU memory (thread specific registers), and the cost of
repeatedly accessing data from slower memory can be very large.

To solve this problem, BROCCOLI instead updates X̃
T

X̃ after a
change in ρ, according to

X̃
T

X̃ =
p∑

i = 0

p∑

j = 0

ρiρjSij, (24)

where we for convenience define ρ0 = −1, p is the order of the AR
model and Sij = ∑N

t = 1 xt − ixT
t − j are data matrices independent
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of ρ (xt is a vector that contains all the regressors for time point
t, while X is the full design matrix). Note that Sij = Sji and that
all Sij are symmetric. For a first order AR model, the update is
given by

X̃
T

X̃ = S00 − 2ρS01 + ρ2S11. (25)

Note how the data matrices Sij are separated from ρ in the
above expressions. The Sij matrices are not voxel-specific and
can, therefore, be pre-computed and stored in constant mem-

ory. Analogous formulas are easily derived for X̃
T

ỹ (with data

moments mij = ∑N
t = 1 xt − iyt − j) and ỹT ỹ (with data moments

gij = ∑N
t = 1 yt − iyt − j), both of which are needed for the Gibbs

sampling. The mij and the gij values are voxel-specific, but
low-dimensional and can therefore be stored in thread specific
registers. Despite these optimizations, the implementation can
currently only handle a small number of regressors and an AR(1)
model of the residuals. The extension to more elaborate models
is in principle straight forward however, and rapid advancements
in GPU memory are likely to remove these limitations in the near
future

The Bayesian fMRI analysis also requires random number gen-
eration to estimate the joint posterior distribution. The CURAND
library can be used for this purpose for the CUDA program-
ming language, but there exists no similar library for OpenCL.
Instead, random numbers are first generated in BROCCOLI from
a uniform distribution, using a voxel/thread specific seed and a
modulo operation (Langdon, 2009). This is the only part of the
OpenCL code that currently uses double precision. The seeds
are generated on the host side, as this operation only needs to
be performed once. The uniformly distributed numbers are then
used to generate numbers from a normal distribution, by apply-
ing the Box-Muller transform (Box and Muller, 1958). Random
numbers from an inverse Gamma distribution can finally be
generated as

g = 2B
∑2A

i = 1 n2
i

, (26)

where n is a random number from a normal distribution with
zero mean and unit variance, A is the shape parameter of the
Gamma distribution and B is the scale parameter.

3. RESULTS
A number of freely available fMRI datasets (Biswal et al., 2010;
Poldrack et al., 2013) were used to test our software, and to
compare it to existing software packages. The hardware used for
testing is specified in Table 1. Specifically, BROCCOLI was used
with an Intel CPU, an Nvidia GPU and an AMD GPU, to demon-
strate that the same code can run on different types of hardware.
The following software packages were compared to BROCCOLI:
SPM8, FSL 5.0.4 (Smith et al., 2004) (with the package Condor
installed for parallel processing) and AFNI (Cox, 1996) (with
OpenMP support for parallel processing). For FSL, the shell vari-
able FSLPARALLEL was set to “condor” to measure multi-core
results. For AFNI, the shell variable OMP_NUM_THREADS was

set to “1” to generate processing times for single-core processing,
and to “8” for multi-core processing. BROCCOLI running on
a CPU automatically uses all available processor cores for all
processing steps. All testing scripts can be downloaded from
github 10. To make the comparison reflective of each package’s
standard use, our testing scripts were posted on the mailing lists
for SPM, FSL, and AFNI and modified according to responses.

It should be stressed that the different software packages use
different algorithms, programming languages and libraries. It is
therefore hard to make a quantitatively meaningful performance
comparison. For this reason, we also added the processing time
for BROCCOLI running on a single CPU core, such that there
is a baseline comparison for each algorithm. This was achieved
by setting the shell variable CPU_MAX_COMPUTE_UNITS to
1 (a more general and complicated way is to use OpenCL device
fission).

3.1. SPATIAL NORMALIZATION
The quality of the normalization to MNI space was tested by
aligning 198 T1-weighted volumes to the MNI brain templates (1
and 2 mm3 resolution) provided in the FSL software (MNI152_
T1_1 mm_brain.nii.gz, MNI152_T1_2 mm_brain.nii.gz). The T1
volumes were downloaded from the 1000 functional connec-
tomes project (Biswal et al., 2010), and the Cambridge dataset
was selected for its large number of subjects. Each T1 volume is of
the size 192 × 192 × 144 voxels with a resolution of 1.2 × 1.2 ×
1.2 mm. To fully focus on the registration algorithm, the provided
skullstripped T1 volumes were used rather than the original T1
volumes.

For SPM the functions “Normalize” and “Segment” were used
for normalization. For “Normalize,” the parameter ’Source image
smoothing’ was changed from 8 mm to 4 mm, to try to match the
smoothness of the FSL T1 template (the T1 template in SPM is
more blurred than the T1 template in FSL). For ’Segment’, an ini-
tial parametric alignment of each T1 volume was first performed
using the function ’Coregister’ (otherwise several normalized T1
volumes were far off from the MNI template). Except for these
modifications, the default settings were used. For FSL, the T1 vol-
umes were aligned by running FLIRT (which performs linear reg-
istration) using the skullstripped volume and template, followed
by FNIRT (which performs non-linear registration) using the vol-
ume and template with skull (this is the recommended usage).
The estimated deformation field was finally applied to the skull-
stripped volume. For registration to the 2 mm3 MNI template, the
configuration file “T1_2_MNI152_2 mm.cnf” was used, while the
default settings were used for registration to the 1 mm3 template
(there is no “T1_2_MNI152_1 mm.cnf”). For AFNI, alignment
was performed correspondingly by running 3dUnifize (which
normalizes the image intensity) both for the T1 volume and the
MNI template, 3dAllineate and 3dQwarp. The estimated displace-
ment field was finally applied to the original T1 volume without
intensity normalization, using the function 3dNwarpApply. The
default interpolation method for 3dNwarpApply is sinc interpola-
tion, but as SPM, FSL and BROCCOLI all use linear interpolation
by default, 3dNwarpApply was tested with linear as well as sinc

10https://github.com/wanderine/BROCCOLI/tree/master/code/testing_scripts
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interpolation. The non-linear registration in 3dQwarp is done
with a combination of cubic and quintic basis functions, and it is
not possible to change this to linear interpolation. Since 3dQwarp
in AFNI is a very new method, we used settings proposed in the
help text. For all software packages, the same settings were used
for each T1 volume.

Average normalized T1 volumes were calculated for SPM, FSL,
AFNI, and BROCCOLI, to visually compare the algorithms, and
are given in Figure 3. It should be noted that for FSL, the resulting
displacement field from the 2 mm3 normalization was upscaled
and used to generate the normalized T1 volumes used here (as
recommended by the FSL mailing list). For a more numerical
comparison of the image registration quality, the normalized
cross-correlation, mutual information and sum of squared dif-
ferences were calculated between each normalized T1 volume and
the MNI template, the mean results are given in Figure 4. Only
the voxels inside the MNI brain mask were used to calculate these
similarity measures, as 75% of the voxels are outside the brain.
The processing time for the different software packages are given
in Figure 5.

3.2. MOTION CORRECTION
The motion correction algorithms in SPM (realign), FSL
(MCFLIRT), AFNI (3dvolreg), and BROCCOLI were tested by
using test datasets with known motion parameters. The test
datasets were generated by repeatedly using only the first fMRI
volume in each dataset and applying known random rigid trans-
formations to this first volume. The translations and rotations
were independently generated from a normal distribution with

FIGURE 3 | A visual comparison of spatial normalization with the

different software packages, by averaging 198 normalized T1 volumes.

(A) MNI template, (B) SPM Normalize average normalized T1 volume, (C)

SPM Segment average normalized T1 volume, (D) FSL average normalized
T1 volume, (E) AFNI average normalized T1 volume, (F) BROCCOLI average
normalized T1 volume. Note that AFNI uses a combination of cubic, quintic,
and sinc interpolation as default, while SPM, FSL, and BROCCOLI all use
linear interpolation as default.

a mean of 0 and a standard deviation of 0.5 (voxels for transla-
tions and degrees for rotations). Gaussian white noise was then
added to each volume. To further demonstrate the robustness
of BROCCOLI’s phase based algorithm, a shading was added to
each transformed fMRI volume. An example of the added shad-
ing is given in Figure 6. The test datasets were created using the
198 resting state datasets in the Cambridge dataset (Biswal et al.,
2010). Each rest dataset is of the size 72 × 72 × 47 × 119 with a
voxel resolution of 3 × 3 × 3 mm.

For SPM and AFNI, the algorithms were tested with lin-
ear interpolation in addition to the default setting (b-spline for
SPM and Fourier for AFNI), as FSL and BROCCOLI use linear
interpolation as default. For SPM and FSL, the reference vol-
ume was set to the first volume, which is the default for AFNI
and BROCCOLI. Except for these changes, the default settings
were used for all software packages. The quality of the motion
correction was evaluated by comparing the estimated transfor-
mations to the true ones. For each dataset, the total error was
calculated as the square root of the sum of the squared dif-
ferences over all motion parameters p and time points t, i.e.,

ε =
√√√
√

119∑

t = 1

6∑

p = 1

(
motionestimated(t, p) − motiontrue(t, p)

)2

.

(27)
The mean error measures for the different software pack-
ages, averaged over the 198 subjects, are given in Figure 7
and the processing times for motion correction are given in
Figure 8.

FIGURE 4 | Similarity measures between each normalized T1 volume

and the MNI template for the different software packages, averaged

over 198 subjects. The error bars represent the standard deviation. NCC
stands for normalized cross correlation (higher is better), MI stands for
mutual information (higher is better) and SSD stands for sum of squared
differences (lower is better). For visualization purposes, the SSD similarity
measure was divided by 300,000. Only the voxels in the MNI brain mask
were used to calculate these similarity measures, as 75% of the voxels are
outside the brain. Different interpolation modes were tested, as the
software packages have different default settings for interpolation (d
denotes the default interpolation).
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FIGURE 5 | Processing times for non-linear spatial normalization of

one T1 volume of size 192 × 192 × 144 voxels to a MNI template (1 and

2 mm3 resolution) for the different software packages, averaged over

198 T1 volumes. The error bars represent the standard deviation. Note that
AFNI uses a combination of cubic, quintic, and sinc interpolation as default,
while SPM, FSL, and BROCCOLI all use linear interpolation as default. A
linear registration was first applied to achieve a good starting point for the
non-linear registration. BROCCOLI running on a GPU can perform non-linear
normalization to a 1 mm3 template in 4–6 s, and still provide a satisfactory
result. BROCCOLI running on a CPU is also significantly faster than FSL and
AFNI OpenMP, even if a single CPU core is used.

FIGURE 6 | Left: One slice of one fMRI dataset used for testing the motion
correction algorithms. Right: The same slice after the application of a
random translation and rotation, and addition of a shading (gradient)
increasing upwards. The shading will affect all algorithms that use the
image intensity directly. The phase based algorithm used in BROCCOLI
will, however, not be affected by this shading. The main reason for this is
that quadrature filters are bandpass filters, which remove low frequency
variations (e.g., shadings) as well as high frequency variations (e.g., noise).

3.3. FIRST LEVEL ANALYSIS
The first level analysis was tested by analyzing freely available task
fMRI datasets, downloaded from the OpenfMRI (Poldrack et al.,
2013) homepage. Specifically, the OpenfMRI “rhyme judgment”
dataset was used where the subjects were presented with pairs of
either words or pseudowords, and made rhyming judgments for
each pair. See the work by Xue and Poldrack (2007) for further
information about this dataset.

3.3.1. Frequentist inference
To the best of our knowledge, the SPM software package does
not have any default processing pipeline. Instead, we used a batch

FIGURE 7 | Motion parameter errors for the different software

packages, averaged over 198 datasets with artificial motion. The error
bars represent the standard deviation. The testing datasets were generated
by applying random translations and rotations to the first fMRI volume in
each dataset, and then adding Gaussian noise or a shading. The amount of
noise was defined by setting the standard deviation to a percentage of the
maximum intensity value. Different interpolation modes were tested, as the
software packages have different default settings for interpolation (d
denotes the default interpolation). The presented results were generated
with an Nvidia GPU, and equal results were also obtained by the Intel CPU
and the AMD GPU.

script for first level analysis available on the SPM homepage 11.
For FSL, the analysis was setup and started through the graphi-
cal user interface. For AFNI, the Python script afni_proc.py was
used, through the graphical interface uber_subject.py. The set-
tings used for each software are given in Table 2. Processing times
for first level analysis for the different software packages are given
in Figure 9. A visual comparison of one brain activity map, for
BROCCOLI and FSL, is given in Figure 10. Processing times for
BROCCOLI for a first level permutation-based analysis, using
10,000 permutations, are given in Figure 11.

3.3.2. Bayesian inference
The Bayesian fMRI analysis was tested by generating a total of
11,000 draws from the posterior distribution for each brain voxel
(44,220 voxels), and the first 1000 draws were discarded as “burn
in” samples. The PPM was calculated as the percentage of draws
where the GLM weight of interest was larger than zero. The result-
ing PPM is given in Figure 12, and can be compared to the t-map
in Figure 10. The processing time was 4706 s using the Intel CPU
and one core, 835 s using the Intel CPU and all the four cores,
190 s for the Nvidia GPU and 91 s for the AMD GPU. This can be
compared to about 20 h for a naive Matlab implementation.

3.4. SECOND LEVEL ANALYSIS
To test the second level analysis, the permutation functional-
ity in BROCCOLI was compared to the function randomize

11http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_spm5_batch.m
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in FSL (SPM and AFNI do not have any support for permu-
tation based analysis, although AFNI for example has support
for Kruskal-Wallis tests and Wilcoxon tests). The function ran-
domize_parallel in FSL automatically divides the number of
permutations to a number of computers or CPU cores (if for
example Condor or GridEngine is installed), and was therefore
also used for testing. First level results generated by FSL (down-
loaded from the OpenfMRI homepage) were used as inputs to
the second level analysis, to fully focus on the permutation pro-
cedure. Here we used the OpenfMRI dataset “word and object
processing”, as it has the largest number of subjects (49). See the
work by Duncan et al. (2009) for further information about this
dataset. Processing times for FSL and BROCCOLI for a second
level permutation-based analysis of the 49 subjects, using 10,000
permutations, are given in Figure 13. Null distributions gener-
ated by FSL and BROCCOLI, for a design matrix containing a
single regressor, were compared numerically and were found to

FIGURE 8 | Processing times for motion correction of one fMRI dataset

of size 72 × 72 × 47 × 119 for the different software packages,

averaged over 198 datasets. The error bars represent the standard
deviation. All algorithms registered all volumes to the first one. The
processing times for AFNI and AFNI OpenMP are the same, as the AFNI
software does not have any OpenMP support for motion correction.
Different interpolation modes were tested, as the software packages have
different default settings for interpolation (d denotes the default
interpolation).

be equivalent. A direct comparison for more than one regres-
sor is more problematic, as the randomize function in FSL first
transforms the design matrix to effective regressors and effec-
tive confound regressors, by using information from the contrast
vector.

4. DISCUSSION
We have presented a new software package for fMRI analysis.
BROCCOLI is written in OpenCL, making it possible to run the
analysis in parallel, taking full advantage of a large variety of
hardware configurations. To exemplify this, BROCCOLI has been
tested with an Intel CPU, an Nvidia GPU and an AMD GPU.
The main objective of BROCCOLI is to demonstrate the advan-
tages of parallel processing and to enable the neuroimaging field
to avail itself of more computationally demanding normalization
algorithms, and statistical methods that are based on a smaller
number of assumptions (e.g., by using non-parametric statistics).
Currently, BROCCOLI reduces the fMRI processing time by at
least an order of magnitude compared to existing software pack-
ages (even if only a CPU and not a GPU is used). For non-linear
spatial normalization, BROCCOLI running on an Nvidia GPU is
approximately 525 times faster compared to FSL and AFNI, and
195 times faster than AFNI OpenMP. For second level permu-
tation tests, BROCCOLI using an Nvidia GPU is 100–200 times
faster than FSL and 33–130 times faster than the parallel version
of FSL.

4.1. SPATIAL NORMALIZATION
The accuracy measures illustrated in Figures 3 and 4 reveal a
number of interesting differences. The normalization in AFNI
yields the highest mean correlation and mutual information. It
might seem non-intuitive that the sinc interpolation in AFNI
gives a higher sum of squared differences compared to the lin-
ear interpolation, but this is possibly explained by the fact that
the sinc interpolation preserves high resolution details, perhaps
beyond the meaningful resolution of the MNI template. The aver-
age normalized T1 volumes generated by SPM are clearly the most
blurred, although the algorithms are fast compared to FSL and
AFNI. The results presented here are consistent with a previous
comparison (Klein et al., 2009), where the FSL function FNIRT
was shown to provide better normalizations than the SPM func-
tions “Segment” and “Normalize.” AFNI was not included in this
comparison, as the function 3dQwarp was released recently.

These comparisons should not be considered as a thor-
ough head-to-head evaluation of the different software packages.

Table 2 | Settings for first level analysis for the different software packages (for AFNI it is currently not possible to select non-linear

registration in the graphical user interface).

Normalization Motion Motion Smoothing Cluster Modeling of

regressors (mm) simulation GLM residuals

SPM Linear + non-linear to MNI template Yes Yes, 6 6 Not available Global AR(1)

FSL Linear + non-linear to MNI template Yes Yes, 6 6 Not available FILM prewhitening
(Woolrich et al., 2001)

AFNI Linear to MNI template Yes Yes, 6 6 No Voxel-wise ARMA(1, 1)

BROCCOLI Linear + non-linear to MNI template Yes Yes, 6 6 Not available Voxel-wise AR(4)
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FIGURE 9 | Processing times for first level analysis of 13 fMRI datasets

(of size 64 × 64 × 33 × 160). The analysis includes non-linear
normalization to a brain template, slice timing correction, motion correction,
smoothing, and statistical analysis. A Matlab script, available on the SPM
homepage, was used for SPM. For FSL, the analysis was setup and started
through the graphical user interface. For AFNI, the analysis was performed
with afni_proc.py , through the graphical user interface uber_subject.py . It
should be noted that SPM, FSL and BROCCOLI use linear and non-linear
registration, while AFNI uses linear registration only (currently, it is not
possible to select non-linear registration in uber_subject.py). To compensate
for this, the non-linear registration for AFNI was done separately. Note that
it is not possible to select a 2 mm3 brain template in uber_subject.py, these
processing times are therefore not defined. Also note that the processing
times for BROCCOLI do not include any first level permutation test.

Rather, the motivation was to show that BROCCOLI can provide
a satisfactory normalization to MNI space in a short amount of
time. An aspect not considered here, for example, is the smooth-
ness of the resulting displacement fields. It is also possible that the
different algorithms would perform better if the default settings
were changed.

4.2. MOTION CORRECTION
The evaluation of the motion correction algorithms shows that
BROCCOLI yields the smallest difference between the true
motion parameters and the estimated ones, closely followed by
AFNI. BROCCOLI using a GPU and AFNI perform the motion
correction in a similar amount of time, while SPM and FSL
are significantly slower. For BROCCOLI running on a CPU, the
processing time is rather long, which is mainly explained by
the fact that three (non-separable) quadrature filters need to be
applied for each time point and for each iteration (3–5 itera-
tions of the linear registration algorithm is normally sufficient
for motion correction). BROCCOLI also estimates 12 affine reg-
istration parameters for each time point, and then restricts them
to a rigid transformation (6 parameters). The results presented
here are consistent with a previous comparison of motion correc-
tion algorithms (Oakes et al., 2005), where the AFNI software was
shown to provide the most accurate motion estimates.

It should be noted that the test used here is not based on real-
istic head motion, as completely random transformations were

FIGURE 10 | Brain activity maps (representing t-values) from first level

analysis of one OpenfMRI dataset, for BROCCOLI and FSL. Subjects
were presented with pairs of either words or pseudowords in a block based
design, and made rhyming judgments for each pair. The first level analysis
here includes motion correction, segmentation of the fMRI data,
smoothing, and statistical analysis. Both BROCCOLI and FSL used motion
regressors in the statistical analysis. As BROCCOLI and FSL use different
models of the GLM residuals, we here present activity maps with and
without whitening. The activity maps have been arbitrarly thresholded at a
t-value of 5.

applied for each time point. This can, for example, negatively
effect the MCFLIRT function used in FSL. The reason for this is
that MCFLIRT uses the motion estimate from the previous time
point as a starting estimate for the next time point (Jenkinson
et al., 2002). Similarly, 3dvolreg in AFNI is only intended for small
motions, and the transformations applied here may have been too
severe. The shading test is also not very realistic, but clearly shows
the robustness of phase based registration algorithms compared
to intensity based algorithms. For these reasons, the presented
results should be interpreted with caution.

4.3. FIRST LEVEL ANALYSIS
4.3.1. Frequentist inference
The first level analysis using FSL and BROCCOLI yield very sim-
ilar results, both with and without pre-whitening to correct for
auto correlation in the GLM residuals. The small differences in
activation between FSL and BROCCOLI can be explained by a
number of factors. The motion correction algorithms, for exam-
ple, provide slightly different results according to Figure 7 and
this will affect further processing. There are also some differences
in how FSL and BROCCOLI setup the design matrix and treat
the auto correlation of the GLM residuals. BROCCOLI uses four
detrending regressors (mean, linear trend, quadratic trend, cubic
trend) while FSL instead applies a temporal filtering to the data
and the regressors. BROCCOLI smooths all the AR estimates in
the same way, while FSL separately smooths AR estimates in white
and gray brain matter (Woolrich et al., 2001).
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FIGURE 11 | Processing times for BROCCOLI for first level analysis using

a permutation based t-test with 10,000 permutations (SPM, FSL, and

AFNI do not provide any functions for first level permutation based

analysis). Left: Voxel-level inference, the maximum t-test value is saved in
each permutation. Right: Cluster-level inference, the extent of the largest
cluster is saved in each permutation. A t-value of 3 was used as a cluster
defining threshold. The data used is of the size 64 × 64 × 33 × 160. A brain

mask was used to only perform the statistical calculations for the brain
voxels. Note that these processing times do not include smoothing in each
permutation. Smoothing the fMRI data 10,000 times takes about 8970 s
using one core on the Intel CPU, 2710 s using all the four cores on the Intel
CPU, 335 s with the Nvidia GPU and 550 s with the AMD GPU. Also note that
ordinary least squares is used to estimate the GLM beta weights in each
permutation, and not the more demanding Cochrane-Orcutt procedure.

FIGURE 12 | A posterior probability map (PPM) from a Bayesian first

level analysis of one OpenfMRI dataset. Subjects were presented with
pairs of either words or pseudowords in a block based design, and made
rhyming judgments for each pair. The first level analysis here includes
motion correction, segmentation of the fMRI data, smoothing, and
statistical analysis. The PPM represents the probability of the first GLM
beta weight being larger than zero, and has been arbitrarly thresholded at a
probability of 0.99. Note that the PPM has been calculated by using a Gibbs
sampler, and not by using techniques based on variational Bayes. Also note
that the frequentist approach uses a voxel-wise AR(4) model of the GLM
residuals, while the Bayesian currently uses a voxel-wise AR(1) model (due
to hardware limitations).

BROCCOLI is significantly faster than SPM, FSL, and AFNI,
even when the analysis is run on a CPU. SPM is also faster
than FSL and AFNI, which is mainly explained by a faster spa-
tial normalization. The parallel version of FSL, where one first
level analysis in our case runs on each CPU thread, is significantly
faster than the non-parallel version. However, as the first level

analysis in FSL requires more than 2 GB of memory, we were only
able to run 6 (instead of 8) threads in parallel (since the computer
used for testing has 16 GB of memory).

4.3.2. Bayesian inference
The Bayesian first level analysis yields results that are similar to
the t-maps, although the results cannot be compared directly. It
might seem confusing that the AMD GPU is faster than the Nvidia
GPU, especially since the Nvidia GPU is faster for permutation
tests. The reason for this is that the random number generation
currently uses double precision, and the AMD GPU used in our
case has better support for such calculations than the Nvidia GPU
(see Table 1).

4.4. SECOND LEVEL ANALYSIS
The processing times in Figure 13 for the second level permuta-
tion test may at first appear confusing. The speedup of using ran-
domize_parallel instead of randomize decreases with the number
of regressors, from a speedup of 3.2 for a single regressor to 1.6
for 25 regressors (but the actual time saved increases). The 10,000
permutations are divided into smaller work items of 300 per-
mutations each for randomize_parallel. However, 33 work items
cannot be divided equally to a CPU running 8 threads (8 threads ∗
4 work items per thread = 32 work items). The permutation test
is therefore not completed until the last work item has been pro-
cessed, for which only a single CPU thread is active. The unequal
division is more problematic for more regressors, as each work
item then takes a longer time to process.

The processing time for BROCCOLI is not affected as much
by the number of GLM regressors as the FSL software is, result-
ing in a larger speedup for a larger number of regressors. A
GPU thread that performs a small number of calculations is
very limited by the memory bandwidth. More regressors lead
to more calculations and, thereby, a better utilization of the
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FIGURE 13 | Processing times for second level analysis using a

permutation based t-test with 10,000 permutations, for BROCCOLI

and FSL (the SPM and AFNI software packages do not provide any

functions for permutation based analysis). Left: Voxel-level inference,
the maximum t-test value is saved in each permutation. Right:

Cluster-level inference, the extent of the largest cluster is saved in each
permutation. A t-value of 3 was used as a cluster defining threshold. The
data used are beta volumes from 49 subjects, where each beta volume is
of the size 91 × 109 × 91 voxels. A brain mask was used to only perform
the statistical calculations for the brain voxels. The processing time for FSL
increases quickly with the number of regressors, while the processing

time for BROCCOLI increases much more slowly. This is explained by the
fact that calculations on a GPU are efficient, once all the data have been
loaded from the slow global memory to the fast thread specific registers.
To estimate several beta weights per voxel, instead of a single weight,
therefore results in a better utilization of the GPU performance. The
processing time for BROCCOLI using an AMD GPU is 2–5 times as high
compared to BROCCOLI using a Nvidia GPU. One possible explanation for
this is that the code was converted from CUDA to OpenCL. Note that
these processing times are for data normalized to a 2 mm3 MNI template.
The permutation tests would take approximately eight times longer for
data normalized to a 1 mm3 MNI template.

computational capabilities of a GPU. BROCCOLI running on
a CPU is also faster than the parallel version of FSL. FSL
divides the work into several CPU cores by using a pack-
age like Condor or GridEngine. Such an approach cannot
as easily take advantage of vectorized operations [e.g., Intel
streaming SIMD extensions (SSE)], where the same opera-
tion is applied to a number of elements simultaneously. Note
that this is a distinct, second layer of parallel processing. In
addition to the code running on several CPU cores instead
of just one, the processing on each individual core is vector-
ized, performing 4–16 arithmetic operations on different data at
once.

It should also be noted that the presented processing
times are for fMRI data registered to a 2 mm3 MNI tem-
plate, each permutation test would take approximately 8
times longer for data registered to a 1 mm3 MNI template.
Threshold free cluster enhancement (Smith and Nichols,
2009) is another inference method that would benefit
from GPU acceleration, as it is much more computation-
ally demanding compared to voxel-level and cluster-level
inference.

4.5. LIMITATIONS
The following list itemizes the current limitations of using
BROCCOLI:

• BROCCOLI currently has very limited support for image
segmentation, but such algorithms are often easy to run in
parallel (Eklund et al., 2013a).

• The quality of the fMRI-to-T1 registration has not been tested
as extensively as the T1-to-MNI registration. There are, at least,

two reasons why the fMRI-to-T1 registration is harder to test
than the T1-to-MNI registration. First, the fMRI data is of
much lower spatial resolution and an average of 198 registered
fMRI volumes would therefore be extremely blurry. Second,
the fMRI data is often distorted due to artifacts from the MRI
sequence.

• The SPM, FSL, and AFNI software packages have been used for
a long time and have been extensively tested, while BROCCOLI
is completely new software.

• SPM, FSL, and AFNI all provide a graphical user interface,
which BROCCOLI currently does not.

• SPM, FSL, and AFNI all provide a large number of func-
tions which can be combined to basically solve any prob-
lem. BROCCOLI is on the other hand currently limited
to image registration and first and second level fMRI
analyses.

• SPM, FSL, and AFNI all provide some sort of community
forum where users can get help.

4.6. FUTURE WORK
In the future, BROCCOLI can be improved and extended in sev-
eral ways. The most important addition may be a graphical user
interface, so that as many researchers as possible can take advan-
tage of parallel processing. For the first version of BROCCOLI
we have focused on functionality and stability, and not so much
on the computational performance. As most of the code was
converted from CUDA to OpenCL, it is likely that BROCCOLI
performs best for Nvidia GPUs. Optimizing the code for other
hardware platforms (e.g., Intel and AMD) will therefore be one
important project (Enmyren and Kessler, 2010). For permuta-
tion tests involving large datasets, multi-GPU support can be used
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to further reduce the computational burden, by running a num-
ber of permutations on each GPU (Eklund et al., 2011a). First
level analysis can also run in parallel on several GPUs with multi-
GPU support, such that each GPU independently processes one
subject. Another natural extension would be to provide several
other wrappers for BROCCOLI, such as R and bash.

Rather than using ordinary least squares to estimate beta
weights in the GLM, it would be interesting to, for example, use
a regularized regression approach such as LASSO (Tibshirani,
1996) instead. LASSO is often used together with cross valida-
tion, and would be rather time consuming to run for every voxel.
This is especially true if LASSO is combined with a permuta-
tion procedure, to correct for multiple comparisons. Most fMRI
researchers use the GLM for the statistical analysis, but multi-
variate approaches that adaptively combine timeseries of several
voxels can, in some cases, yield higher statistical power. We would
therefore also like to convert our existing CUDA code for canoni-
cal correlation analysis (CCA) (Friman et al., 2003; Eklund et al.,
2011a) to OpenCL and include it in BROCCOLI. The null dis-
tribution of canonical correlations is much more complicated
than conventional t-tests, a problem which can be solved with
permutation-based procedures.
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Using neuroimaging technologies to elucidate the relationship between genotype and
phenotype and brain and behavior will be a key contribution to biomedical research in the
twenty-first century. Among the many methods for analyzing neuroimaging data, image
registration deserves particular attention due to its wide range of applications. Finding
strategies to register together many images and analyze the differences between them
can be a challenge, particularly given that different experimental designs require different
registration strategies. Moreover, writing software that can handle different types of image
registration pipelines in a flexible, reusable and extensible way can be challenging. In
response to this challenge, we have created Pydpiper, a neuroimaging registration toolkit
written in Python. Pydpiper is an open-source, freely available software package that
provides multiple modules for various image registration applications. Pydpiper offers five
key innovations. Specifically: (1) a robust file handling class that allows access to outputs
from all stages of registration at any point in the pipeline; (2) the ability of the framework
to eliminate duplicate stages; (3) reusable, easy to subclass modules; (4) a development
toolkit written for non-developers; (5) four complete applications that run complex image
registration pipelines “out-of-the-box.” In this paper, we will discuss both the general
Pydpiper framework and the various ways in which component modules can be pieced
together to easily create new registration pipelines. This will include a discussion of the
core principles motivating code development and a comparison of Pydpiper with other
available toolkits. We also provide a comprehensive, line-by-line example to orient users
with limited programming knowledge and highlight some of the most useful features of
Pydpiper. In addition, we will present the four current applications of the code.

Keywords: neuroimaging, pipeline, image registration, software, Python

1. INTRODUCTION
Understanding the relationship between genotype and pheno-
type and brain and behavior is a core biomedical research
challenge in the twenty-first century (Henkelman, 2010; Paus,
2010). Key recent developments have relied on three-dimensional
neuroimaging in humans and animal models to aid in this
endeavor. Part of the challenge of using neuroimaging to pro-
vide insight into neuroscience questions is quantitatively assess-
ing large amounts of data in an automated, accurate and high
throughput manner. Typically, a single study will produce any-
where from twenty to hundreds of images, where the end goal is
the assessment of differences in neuroanatomy due to factors such
as genotype, behavioral training, environment and disease.

Multipe algorithms have been developed for the analysis of
neuroimaging data, ranging from tissue classification (Zijdenbos
et al., 2002) to computational geometry (Fischl and Dale,
2000; Macdonald, 2000; Kim et al., 2005) to image registration
and automatic segmentation (Collins et al., 1995; Heckemann

et al., 2006; Chakravarty et al., 2013) or combinations thereof
(Ashburner and Friston, 2000; Good et al., 2001). Image reg-
istration in particular will be the primary focus of this work,
given its wide range of applications in humans (Gogtay et al.,
2004; Joshi et al., 2007, 2012; Hyde et al., 2009; Klein et al.,
2009; Durrleman et al., 2013) and animal models (Spring et al.,
2007; Lau et al., 2008; Lerch et al., 2008; Maheswaran et al., 2009;
Ellegood et al., 2013). Image registration determines the trans-
formation mapping one image into the space of another, where
the difference between these two images is thus encoded in that
transformation. The analysis of those transformations, termed
alternately Deformation Based Morphometry (DBM) or Tensor
Based Morphometry (TBM), then produces global and local mea-
sures of changes in volume, position, and shape (Chung et al.,
2001; Lepore et al., 2006).

Given that neuroimaging studies consist of more than just two
images, strategies are needed to analyze entire datasets to iden-
tify shape or volume differences and provide a common space
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for performing analyses. There are a number of such image reg-
istration paradigms currently in use. One common approach is
to align all images in a study to a common coordinate system,
such as Talairach or MNI space (Evans et al., 2012). Alternatively,
additional power to identify shape differences can be gained when
all subjects in a study are aligned toward a single template that is
representative of the population being studied (Mazziotta et al.,
2001; Fonov et al., 2011). In the event that such a template does
not exist, a study-specific template can be created from all sub-
jects in the study (Guimond et al., 2000). One way to do this
is through iterative, group-wise registration. In this procedure,
all scans are aligned to a common target, then resampled with
the resulting transforms into the target space. These resampled
images are then averaged, creating a target for a subsequent align-
ment (Kovačević et al., 2005). The final average is then used as

common space from which to analyze shape differences in the
population.

The image registration processes described above are
extremely effective when sufficient homology between all sub-
jects in the study exist so that they can be registered to a common
coordinate system. However, there are experiments where this
is not possible (see Figure 1). This can be particularly true for
longitudinal studies, where the same subject is scanned at mul-
tiple time points. In the case of early brain growth (Studholme,
2011; Szulc et al., 2013) or the growth of a tumor (Gazdzinski
and Nieman, 2014), the anatomy of the brain changes to such
an extent that insufficient homology exists to accurately register
early time points to late ones. In spite of these difficulties, it is
often possible to accurately register adjacent time points together
if the time-series was densely sampled (Lerch et al., Manuscript

FIGURE 1 | Overview of registration scenarios. In the case of
aligning cross-sectional adult mouse brains full homology exists
between any pair of brains. Human longitudinal data, on the other
hand, has full homology between scans of the same subject but
more limited homology between different subjects. In the case of

pathology, such as brain tumor growth, homology can only be found
with a sufficiently sampled time-series, but is lost due to idiosyncratic
tumor growth across subjects. (Tumor data courtesy Lisa Gazdzinski
and Brian Nieman, The Hospital for Sick Children; see Gazdzinski and
Nieman, 2014).
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in preparation). The resulting transforms can be concatenated
and used to calculate shape changes from a common coordinate
space.

A hybrid of the two registration paradigms mentioned above
can provide additional power to detect shape differences. Here
longitudinally acquired scans from the same subject are aligned
to each other, a per subject average image generated from those
registrations, and these average images are then aligned across all
subjects. This process allows for high fidelity registrations within
subjects; after early brain development is complete and absent
severe disease processes, homology across time within subjects
is much higher than homology across subjects. This is particu-
larly true with regards to ideosyncratic cortical folding patterns
(Mangin et al., 2010). The second step of registering the per
subject average images together then provides a common coor-
dinate space so that the longitudinal data can be analyzed across
the study population and, in so far as homology exists, shape
differences across subjects computed.

Underlying the different types of image registration described
above are many common features. The most obvious of these is
the ability to align two brains to a common space, often in a
multi-step procedure, and subsequently make use of the result-
ing output transform in a meaningful way. These transforms
must be concatenated appropriately so that deformation fields
can be calculated, regardless of the type of registration or com-
mon space. Moreover, as part of the registration process, brains
must be resampled, derivatives calculated from the transforms,
and segmented atlases brought into the common space of each
study, to cite a few examples. Finally, in order for a registra-
tion to be successful, an underlying framework must be present
to run each command in the appropriate order, keep track of
dependencies (e.g., transforms must exist before they can be con-
catenated), output useful log files in case debugging is needed,
and save the necessary files for statistical analysis in an organized
fashion.

In this paper, we present Pydpiper: the computational frame-
work we have developed to address these registration challenges.
We wrote this toolkit with the following principles as paramount:
(1) high-level coding should be as simple as possible for those
with less coding experience (advanced users can still easily get
“under-the-hood” to create new modules); (2) individual build-
ing blocks of code should be as modular as possible, easy to
subclass, and geared toward a range of biologically relevant appli-
cations; (3) complete, runnable pipelines containing thousands
of stages and addressing the registration scenarios described
above should be available “out-of-the-box”; (4) at the end of any
pipeline, there should be an option to calculate the derived vol-
umes necessary for TBM based statistics, using a module that
contains all of the required stages; (5) we should include a robust
file handling class to keep track of naming schemes and file inter-
actions across many modules in a single application. This class
not only simplifies coding, but also allows seamless access to
files created at any point in the pipeline. These principles influ-
enced design choices all the way through our code hierarchy,
including mechanisms of creating and combining pipelines as
well as providing high level access to multiple image registration
routines.

The rest of this paper is structured as follows. First, we will
discuss existing neuroimaging software toolkits and describe and
how Pydpiper fits into this space. Then, we will describe the
underlying, application-independent pipelining framework that
comprises Pydpiper; next, we will discuss the main levels of
Pydpiper class structure, and how different classes may be pieced
together to create new classes and applications; finally, we will
describe in more detail the applications we have written to address
four different registration challenges. To augment these sections,
we include a worked example in section 5 that compares a reg-
istration pipeline written in Pydpiper with the corresponding
code as it would be run manually on the command line. Finally,
we conclude by highlighting the innovations Pydpiper brings
to the existing space of pipelining frameworks used to solve
neuroimaging problems.

2. MOTIVATION AND EXISTING SOLUTIONS
As described in the previous section, there are a number of
commonalities that underlie seemingly disparate image registra-
tion strategies, all of which are frequently used in our group,
and we wanted a toolkit to address all of them in a seamless
way, focusing on the four core design principles listed above.
Moreover, we found ourselves in a position that is common
among many labs: frequently, a single executable and its related
functions and libraries are coded to run one type of registra-
tion protocol and are not easily adaptable to other applications.
In our case, we have used a highly successful pipeline envi-
ronment, MICe-build-model (see https://wiki.mouseimaging.ca/
display/MICePub/MICe-build-model), to do iterative, group-
wise registration (Lerch et al., 2011), described both above and
more fully in section 4.2. Unfortunately, using this tool to cre-
ate any of the other types of pipelines was cumbersome, time-
consuming and in many instances, was not fully-automated or
required too many manual, intermediate steps. What’s more,
modification of code like this (whether written by us or others)
can be prohibitively time consuming for neuroimaging students
and post-docs who do not have an extensive computer science
background. Finally, in our work on registration sensitivity (van
Eede et al., 2013), we developed a set of optimized registration
parameters for our iterative group-wise registration procedure.
We wanted to adapt these and flexibly share them among different
registration modules, but our existing tools did not allow for this.

There are a number of different software packages currently
available for executing pipelines and building complex workflows,
including VisTrails (Callahan et al., 2006), Taverna (Oinn et al.,
2006), and Kepler (Ludäscher et al., 2006). Each of these pack-
ages provides both a comprehensive underlying framework and a
graphical user interface (GUI) for constructing workflows; how-
ever, their aim is not to tackle problems specific to neuroimaging
and they do not provide the extensive modules and support
offered in other packages. This is in direct contrast to Pydpiper:
here, the vast majority of our efforts were in constructing modules
that are useful for solving neuroimaging registration challenges.
The underlying framework, while a robust and necessary part of
the toolkit, is not the main focus of Pydpiper.

Several frameworks have been written specifically to
address the needs of the neuroimaging community. PSOM
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(Bellec et al., 2012), written for Octave and Matlab, provides a
pipelining overlay to direct scripting level programming, making
complicated mathematical and statistical analyses easy to merge
with pre-processing. The AIR (Woods et al. 1998a,b) package,
written in C, provides source code and examples for running
image registrations both within and across subjects and imaging
modalities. LONI Pipeline (Dinov et al., 2010) is an extensive
pipelining framework that, in addition to its robust underlying
architecture, provides an elegant and user-friendly graphi-
cal user interface (GUI) for constructing pipelines. Another
comprehensive and highly successful neuroimaging toolkit is
Nipype (Gorgolewski et al. 2011), a Python-based, open-source
software package. Both LONI and Nipype provide interfaces
to many common neuorimaging tools such as SPM, FSL, and
Freesurfer. These interfaces provide a powerful means for
facilitating interactions between these packages. Comprehensive
documentation and example scripts are also provided with
both, so that users may construct and execute their own
workflows.

Although the frameworks described above offer solutions to
neuroimaging analysis problems, none of them addressed all of
the design principles described in the previous section. For exam-
ple, while both PSOM and AIR have functionality that overlaps
with Pydpiper, PSOM is explicitly intended for developers and
if one wants to utilize the source code directly, AIR requires a
significant amount of user input and coding in order to execute
complex, multi-step registrations1. This is in contrast to Pydpiper,
which was designed to be accessible to researchers with little cod-
ing experience and runs four different types of pipelines upon
installation. The GUIs offered by Taverna, VisTrails, Kepler, and
LONI mitigate this issue to a degree, though users must still con-
struct their workflows via “box and arrow” graph representations,
and with the exception of LONI, were not written explicitly for
neuroimaging applications. Even though each framework allows
multistage pipelines to be combined into modules, this could still
be cumbersome for pipelines with tens of thousands of stages.
With Pydpiper, the existing building blocks are structured such
that these dependencies are already built into the code, as will
be discussed more in the following sections. In addition, because
one of our goals was to create a toolkit that would enable non-
programmers to write modules, we declined to write a GUI,
which, in our experience, tends to dissuade people from exploring
the code underneath.

In many ways, Nipype accomplishes much of what we intend
to do with Pydpiper, is also written in Python and allows users
to write their own code without needing to worry about the
underlying architecture. It also provides additional functionality
and interfacing that is not included in Pydpiper. As appropriate
throughout this manuscript, we provide comparisons between
Pydpiper and Nipype. We believe the two toolkits can provide
complementary approaches for solving various image processing
challenges. In the Discussion section, we outline both scenarios
in which Pydpiper might be the preferred toolkit and scenarios
where one would prefer Nipype.

1We note there that AIR is a module that can be used within LONI. In this
instance, we are talking about compiling and using the source.

Using the aforementioned design principles, Pydpiper was
written with four specific applications in mind: (1) iterative,
group-wise registration to create a study-specific average; (2) reg-
istration of adjacent time points in a chain-like fashion when all
subjects cannot be registered together; (3) two-level registration
for longitudinal studies where both subject-specific and study-
specific averages are created; and (4) an automated multi-atlas
label generation procedure. To assist in reusability, Pydpiper pro-
vides class types to manage distinct aspects of pipeline creation:
“atoms” wrap distinct operations (e.g., registering two images),
“modules” link together atoms into reusable processing subunits,
and “applications” provide a command-line interface allowing
users to drive a particular pipeline. In addition, we created a
comprehensive file handling framework to simplify future code
development and usage of these atoms and modules. All of this
was done with the overarching goal that atoms and modules
could be easily combined to create entirely new types of regis-
tration pipelines. Moreover, Pydpiper is specifically designed to
take advantage of grid computing environments and automati-
cally calculates stage dependencies, decreasing the time necessary
for both coding and execution.

In addition to the aforementioned design considerations, we
wanted Pydpiper to be a tool that is freely available to the
community, with low barriers for adaptation and usage by oth-
ers. This not only has the effect of continually improving upon
Pydpiper, but also increases both transparency and reproducibil-
ity of results obtained by using it (Ince et al., 2012). It is
distributed under the Modified BSD license, which allows free
copying, modification and distribution of the code and is freely
available on github (https://github.com/mfriedel/pydpiper). This
distributed version control system (git) allows for the tracking
of all changes, a complete history of the source code, and the
ability to flag issues and discuss them with other developers.
As a companion to this paper, a public wiki is also available
and contains more detailed information about development,
usage and applications. (https://wiki.mouseimaging.ca/display/
MICePub/Pydpiper) A virtual machine for code testing and
example workflow diagrams are included as well. Additionally,
Pydpiper is written in Python and uses the Pyro (https://pypi.
python.org/pypi/Pyro4) and NetworkX (http://networkx.github.

io/) libraries, all of which are freely available, straightforward to
install and enjoy broad support and usage. Pydpiper has been
developed for the Linux operating system, the most popular plat-
form currently in use by the neuroimaging community (Hanke
and Halchenko, 2011). Finally, we wanted to create a toolkit that
could be easily used without extensive programming knowledge.
While we welcome and encourage contributions to Pydpiper from
expert developers, we structured the classes and example applica-
tions such that someone with only a basic knowledge of Linux,
Python and Object Oriented Programming could create a pipline
specific to their needs.

3. DESIGN AND IMPLEMENTATION
3.1. GENERAL PIPELINE AND APPLICATION STRUCTURE
The core Pydpiper framework that serves as the base for all
applications was designed to be as modular and reusable as
possible. It is also completely independent of the application
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being executed. Although we have written this toolkit with an
image registration focus, the framework that manages pipeline
construction and execution could be used for any type of soft-
ware engineering paradigm that follows a similar design pattern.
This framework is encapsulated in five core classes: PipelineStage,
CmdStage, Pipeline, AbstractApplication, and pipelineExecutor.
Taken together, they act in concert to construct pipelines with
one or more stages, connect them through a series of interde-
pendencies, execute each stage in the appropriate order via thread
pool and encapsulate each pipeline into a larger application that
is executed on the command line.

PipelineStage is the primary base class upon which all addi-
tional executable classes are built. It was designed to contain all
of the underlying framework necessary to successfully integrate a
single stage into a larger pipeline. This framework includes iden-
tifying inputs and outputs, creating and writing to a log file, and
keeping track of both stage status (e.g., running, finished, failed)
and the amount of memory and processors required for execu-
tion. PipelineStage also contains the functions that get and set
the amount of memory and processors needed for a particular
stage as well as those needed for setting the status of a stage (e.g.,
running, finished, or failed).

The command stage (CmdStage) class inherits directly from
PipelineStage. The primary difference between CmdStage and
PipelineStage is that pipeline stages can run arbitrary pieces of
Python code, while command stages are designed to execute
individual command line programs. Although our current appli-
cations rely heavily on the CmdStage functionality, we explicitly
wrote PipelineStage as the base class, so that Pydpiper users can
include pieces of code that don’t necessarily require command
line execution.

The arguments necessary for running a command, as well as
the command itself, are passed to CmdStage as an array, appro-
priately parsed. The command is then executed at the appropriate
time using the Python function call. Any command line exe-
cutable that is called as part of a larger pipeline must be an
instance of CmdStage and each command stage can run only a
single command line executable. Although many command stages
are subclassed, as will be described further in section 3.2, they can
also be constructed on the fly. If there is a command-line exe-
cutable that is used only once (and therefore does not warrant its
own subclass of CmdStage) an array of input and output files can
easily be converted to a command stage as shown in Figure 2.

FIGURE 2 | Example of how to construct an executable Pydpiper stage

using the CmdStage class. The example command used to construct this
stage is xfminvert, which takes a transform between two subjects and
inverts it. (xfminvert is part of the MINC toolkit, described more fully in
section 3.2. A more complete usage example is also provided in section 5).
After instantiating the class, it is added to the pipeline via the addStage

function. Note that InputFile and OutputFile are themselves classes,
designed to indicate to CmdStage the required inputs and outputs for stage
interdependencies.

A pipeline (Pipeline) is composed of any number of pipeline
and/or command stages, and as such, the Pipeline class tracks
dependencies between stages and keeps a queue of runnable stages
and stage state. One of the most critical features of this class is that
it infers stage interdependencies based on stage inputs and out-
puts. That is, if one or more output files from stage A are required
for stages B and C, Pipeline keeps track of this dependency, and
does not add stages B and C to its queue of runnable stages until
stage A is complete. Conversely, stages may be executed in any
order once all of their dependencies have been satisfied. To cap-
ture stage connectivity, the NetworkX library (http://networkx.
lanl.gov/) is used to implement Pydpiper pipelines as a directed
graph. In addition to the addStage command shown as part
of Figure 2, Pipeline also provides a function called addPipeline
allowing pipelines to be combined, increasing the ease with which
modular code can be written. When stages are added to a pipeline,
they are skipped if they already exist. This not only shortens run
times, but makes Pydpiper code itself easier to write and read. An
example of this type of coding can be found in section 3.2.

In addition to maintaining a queue of runnable stages, Pipeline
tracks the state of each of its stages (running, finished, or failed).
The Pipeline class also uses the Python pickling mechanism, a
standard means of object serialization, to save essential pipeline
features after each completed stage. This allows an unfinished
pipeline to easily be restarted from pickled backup files. The
following data is pickled: the directed graph describing stage
interdependencies; an array of pipeline stages; the current stage
counter; a hash uniquely identifying each stage; a hash of out-
put files for each stage; and an array containing the statuses
of each stage. To restart a pipeline, one would simply specify
--restart as a command line option when launching pipeline
executors, as described below. The --restart option will then
load the pickled data into the appropriate variables before starting
the pipeline. The graph heads and edges can be quickly recon-
structed by iterating through the saved and reloaded directed
graph, and all stages with “finished” status are not re-run.

Because of the directed graph architecture of pipelines like
this, many stages can be run in parallel, provided their prede-
cessor stages have completed successfully. To run these stages
most efficiently, we created the pipelineExecutor class. Pipeline
executors are managed as a thread pool, with each thread execut-
ing individual stages from the pipeline’s runnable stages queue.
These executors effectively act as clients to the pipeline, which
functions as a server. The number of executors required, threads
per executor and memory necessary for each process are specified
on the command line. Executors can be launched independently,
as a stand alone command, or they can be launched as part of
an application itself. The values chosen with respect to memory
and processors will vary both with an application and available
computational resources. Each executor is then initialized as a
client of the pipeline server. This client/server architecture is
implemented using the Python Remote Objects (PYRO) library
(https://pypi.python.org/pypi/Pyro4), and support is included
for running on clusters with both the pbs and sge queueing sys-
tems. By specifying either --queue=pbs or --queue=sge,
Pydpiper will create a script with the appropriate syntax and
automatically submit it to the requested queue. For example, by

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 231

http://networkx.lanl.gov/
http://networkx.lanl.gov/
https://pypi.python.org/pypi/Pyro4
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Friedel et al. Pydpiper

including --queue=pbs --ppn=8 --num-executors
=1 --proc=8 --time=18:00:00, Pydpiper will create
and submit a pbs script requesting a single node with 8 proces-
sors (via --ppn). Once running, this script will launch a single
executor with eight threads that will run for a maximum of 18 h.

One of the most salient features of pipeline executors is how
they interact with the pipeline. Each executor can consist of one
or more threads. In turn, each thread will poll the server to get the
next available stage from the pipeline’s queue of runnable stages.
If enough memory and processors are available to run that stage,
the thread will execute the stage. Otherwise, it will sleep for a
specified interval before re-polling the server. Once a stage has
finished running (or failed to complete), the thread will release
the memory and processors used and poll the server again for
the next available stage to run. This happens repeatedly by all
threads until all stages in the pipeline have finished. Alternatively,
if there are failed stages, the pipeline will shut itself down once
no more stages can be run. (In this instance, debugging will be
necessary before restarting the pipeline). In addition, if an insuf-
ficient number of executors were launched, additional executors
may be launched at any time via the command line. This may be
done whether running locally, or if using an sge or pbs supported
cluster.

To tie together command stages, pipelines and pipeline execu-
tors into a single runnable program, we created the abstract
application (AbstractApplication) class. This is the base class for all
applications written within the Pydpiper framework. Each class
that inherits from AbstractApplication will itself be a command
line executable that, when launched with the appropriate argu-
ments, will run an entire pipeline from start to finish. This class
sets up command line options that are required for all subclasses,
initializes the pipeline (or restarts it from backup files) and sets up
a logger. It also launches the pipeline daemon, which is where the
pipeline is initialized as a server. If the appropriate command line
options are specified, subclasses of AbstractApplication will launch
executors, so that they may begin running immediately. When
writing a new application that inherits from AbstractApplication,
one only needs to extend a few functions without having to worry
about the underlying framework. These functions are shown
in Figure 6. A more complete example of a Pydpiper applica-
tion that inherits from AbstractApplication is included in the
section 5.

3.2. CLASS HIERARCHY AND FILE HANDLING
As noted in the Introduction, Pydpiper supports three main “lev-
els” of classes that are built on top of the core Pydpiper framework
described above: atoms, modules and applications. In addition,
there is a file handling framework to help simplify their usage.
All of the initial classes we developed extend the Pydpiper frame-
work to support files and pipelines that use the Medical Imaging
NetCDF (MINC) file format. MINC is a comprehensive med-
ical imaging data format and an associated set of tools and
libraries. It was initially developed at the Montreal Neurological
Institute (MNI) and is freely available online. (http://www.bic.
mni.mcgill.ca/ServicesSoftware/MINC, http://en.wikibooks.org/
wiki/MINC). In addition, we make use of pyminc, a Python
interface to the MINC2 library (https://github.com/mcvaneede/

pyminc). We expect that as development continues (by both us
and other members of the community) other file formats will be
supported as well.

Pydpiper atoms inherit directly from CmdStage and act as
wrappers around frequently used MINC tools. Each atom has
at least one required argument, an input MINC file, which may
be passed as a string or a file handler. Additionally, most atoms
require a second argument, a target MINC file, which must
be passed in the same format (e.g., string or file handler) as
the input MINC file. As is noted in the Introduction, image
registration determines the transformation mapping one image
(source) into the space of another (target), and Pydpiper’s atomic
structure reflects this. All atoms have multiple optional argu-
ments which are either specified directly or make use of the

**kwargs functionality built directly into Python. The choice
of optional arguments, and their defaults, were selected based
on the most common ways in which we use the MINC tools.
An example of minc atom usage is shown in Figure 3. This fig-
ure depicts two different ways to call the mincANTS atom. This
atom calls the command-line program of the same name, the
MINC-based implementation of the Advanced Normalization
Tools (ANTs) (Avants et al., 2008), a diffeomorphic image reg-
istration software package. Whether only two file handlers are
specified or the entire list of optional arguments is included,
the atom will handle putting together the command to be exe-
cuted and, because it inherits from CmdStage, all of the attributes
necesssary to seamlessly integrate it into an existing pipeline are
present.

As discussed above, a critical component of running any type
of pipeline is keeping track of stage dependencies, inputs and out-
puts. As is typical of the neuroimaging pipelines that formed the
motivation for Pydpiper, each input image in a pipeline is related
to others via a series of registrations, transforms and resampling.
In addition to stage interdependencies, one also needs to keep
track of, for example, the most recent transform between any
two images. Or, if a file has been resampled, it may be neces-
sary at a later point to access the original version of the file.
Keeping track of these files can be cumbersome, particularly for
novice developers, and doing so without resorting to unnecessar-
ily repetitive code can be a challenge. To address this challenge,
we have created the RegistrationPipeFH class, and its parent class,
RegistrationFHBase. Each input scan used in a pipeline (typically
read in as a command line argument) can be initialized as a file
handler (i.e., as an instance of the RegistrationPipeFH class). A
more complete discussion of how file handlers are instantiated is
included in section 5. Although this is not a requirement for using
Pydpiper, by using file handlers, all future use of a given input is
dramatically simplified. In addition, this class makes it easier to
identify the appropriate inputs and outputs to individual stages
when constructing new command stages and atoms.

One of the key features of file handlers is the way that they
allow access to the state of an image at any stage in the pipeline,
and various transforms or resampled files can be retrieved at any
time for later use. As a more specific example this, consider the
minctracc atom, which registers two files based on a specified
set of parameters. This atom serves as a wrapper for minc-
tracc, the implementation of the ANIMAL non-linear registration
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FIGURE 3 | Simplified call of the mincANTS atom (left) and a call that

includes all arguments (right). The call on the left requires only an input and
target file handler, and uses default arguments as mincANTS parameters. On
the right is a mincANTS call that includes specific arguments as parameters,

overriding the defaults. These arguments correspond to various command
line options required by mincANTS and they are discussed in more detail in
section 5. We also refer the reader to Avants et al. (2008) and references
therein for a complete discussion.

method (Collins et al., 1994, 1995). Although an extensive num-
ber of optional minctracc arguments exist, the only requirements
for this atom are an input and target. If this input and target
are file handlers, minctracc will retrieve the appropriately blurred
version of this file (created previously and saved in a dictionary by
the file handling class), and set the output transform as the sub-
sequent last transform between input and target, so it can easily
be retrieved later if desired. Moreover, if several minctracc calls
are made in succession on the same two files, the file handling
class will keep track of all previous transforms while still “know-
ing” which one was the most recent. This results in increasingly
simple function calls, particularly within more complex mod-
ules. Additionally, any of these transforms can be retrieved at any
point in the registration process. An example of this is shown in
Figure 4.

Modules are perhaps the most flexible and essential compo-
nent of the Pydpiper toolkit. A module can be composed of a
multiple atoms and command stages or a combination of atoms
and other modules. Existing modules were designed such that
they can be easily pieced together and used in multiple types
of pipelines, even for applications that at first glance seem to
have quite different architecture. A good example of a Pydpiper
module is the HierarchicalMinctracc class pictured in Figure 5.
This class calls both atoms and other modules and can be eas-
ily subclassed or called as is. Including HierarchicalMinctracc
in a larger pipeline is as simple as instantiating this class as
part of a larger module or application (hm = Hierarchical
Minctracc(inputFH, targetFH)) and adding it to the
existing pipeline (p.addPipeline(hm.p)). Additional argu-
ments (as shown in the __init__ in Figure 5) can be included
when the class is called, but are not required.

We noted in section 3.1 that coding with Pydpiper can be
done in a non-linear fashion, such that stages in the pipeline
are skipped if they already exist. One example of this is depicted
in Figure 5. On lines 52–53 of the code, we blur the images
associated with inputFH and targetFH. This is done once

for each of the blurs specified in the non-linear protocol
(self.nlin_protocol), itself defined in the __init__
function. These blurred images are then registered together, by
the minctracc call on line 58. (The rationale for blurring is
described in more detail in the following section). It is often
the case, however, that HierarchicalMinctracc is called
in a loop, once for many different input images (each with their
own file handler, inputFH) all registered toward the same tar-
get (targetFH). Because the same set of blurs is often used,
this means that line 53 will construct the exact same pipeline
stage multiple times. However, within addStage, there is a
check to see if the pipeline already contains an instance of this
stage. If it does, the stage is not added again to the pipeline.
This results in code that is easy to read (it is conceptually sim-
ple to understand why one would want to execute the same
command on both an input and target) and write (the pro-
grammer does not need to keep track of whether or not the
target file has already been blurred in a previous instantiation of
HierarchicalMinctracc).

Applications build on both atoms and modules to provide a
complete implementation of a single pipeline. The essential fea-
ture of an application is that it is a command line executable
that inherits from the AbstractApplication class described in sec-
tion 3.1. In theory, an application can be as simple as a single
pipeline stage, or one with thousands of stages that are con-
structed through multiple atoms and modules. Although the
complete pipeline for a given application can be extremely com-
plex, at its highest level the application code was designed to be
quite simple. This is shown in Figure 6. A more detailed descrip-
tion of each of Pydpiper’s current main applications is included
in the following section.

4. EXAMPLE APPLICATIONS
In section 1, we briefly introduced the scientific rationale for
the applications that motivated the development of Pydpiper. As
is noted there, different experimental designs require different
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FIGURE 4 | The buildPipeline function that is part of one of the

Pydpiper modules (top) and a portion of the highlighted minctracc

class (bottom). The minctracc class (1), called multiple times in the
for loop, is expanded to show details about how the file handling classes
operate. Each time minctracc is called, getLastXfm (2) finds the last
transform between input and target and uses it as the input transform
for the current function call. If no previous transform exists, an
appropriate default is set based on the specified registration parameters.

If an output transform is not specified as an argument when minctracc
is called (as in this example), registerVolume (3) creates the output
file name based on a set of defaults that includes the input and target
names and whether or not a previous transform exists between these
files. If an output transform is specified, addAndSetXfmToUse (4) adds
this transform to the dictionary of transforms between input and target.
If the blurs, gradient, step and simplex are not specified when minctracc
is called, defaults will be used.

registration paradigms. This is particularly true when consider-
ing whether and how a common space for all subjects should be
created. Nevertheless, commonalities that underlie seemingly dis-
parate registration strategies are largely what shaped the design
and development of Pydpiper. In this section, we will describe
these common features in more detail and then discuss how
they are combined in various ways to address specific image
registration challenges.

4.1. ESSENTIAL REGISTRATION MODULES
4.1.1. LSQ6
Each input image in a given study is scanned in a slightly differ-
ent coordinate system, and prior to more precise alignment, it
is beneficial if all scans are in the same coordinate system. This
happens by applying translations and rotations to each image
to align them toward a common target. This common target
can be one of the input images, or a specified initial model that
is in the desired coordinate system. Because this type of align-
ment involves six degrees of freedom (three translations and
three rotations), we refer to it as LSQ6. For each brain, LSQ6
involves the following steps: (1) blur each input image with a

specified Gaussian smoothing kernel (necessary so as not to overly
weight singularities or extreme inhomogeneties in an image) (2)
align, with a specified registration algorithm, each of the blurred
images (3) repeat steps 1 and 2, if desired, for a series of differ-
ent blurs and (4) resample each input brain with the transform
generated from stage 3. The Pydpiper LSQ6 module wraps all of
these stages (each of which is its own minc atom) inside a sin-
gle class. This class takes an array of file handlers (one for each
input image in the study) and applies this alignment to each
of them.

4.1.2. LSQ12
Whether or not an LSQ6 alignment is required, the next step
(or first step) in registering images is often to create an affine
alignment between a source and target. This typically involves
aligning the source and target via a series of translations, rota-
tions, scales and shears. Because each of these deformations
contributes three degrees of freedom, we call this stage of regis-
tration LSQ12. Depending on the type of registration pipeline,
LSQ12 can be used in different ways. If all subjects in a study
are being registered together, it can be beneficial to do an LSQ12
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FIGURE 5 | Code snapshot of the HierarchicalMinctracc class. In this class, there are calls to both atoms (e.g., blur and minctracc) and modules
(LSQ12). Note that minctracc is called iteratively, as is shown in Figure 4, but is using a different subset of arguments.

registration between all pairs of subjects in the study (Kovačević
et al., 2005) immediately following the LSQ6 alignment. This pro-
ceeds similarly to LSQ6: a single LSQ12 call between two brains
involves a series of blurs and alignments, with a final resam-
pling of each subject at the end. The goal of this procedure is
the creation of an average of all subjects in LSQ12 space. In
other types of pipelines, a full pairwise LSQ12 registration is not
appropriate due to insufficient homology among subjects, but an
LSQ12 alignment between specific sets of subject/template pairs

can improve registration accuracy. The Pydpiper LSQ12 module
handles both of these instances from a common class.

4.1.3. NLIN
In many ways, the most critical step of image registration is non-
linear alignment. This is typically the final stage of image registra-
tion, and involves non-uniform deformation of a source image to
a target, optimized via a particular metric. In contrast to the LSQ6
and LSQ12 modules previously described, in which all voxels
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FIGURE 6 | Example of Pydpiper application code. Along with the
required import statements (omitted from this figure for brevity), the .py

file necessary to create an executable for a given application is extremely
simple. This example is for the RegistrationChain application described in
section 4.3 and is representative of how to construct an application that
inherits from AbstractApplication. There are three functions included
in RegistrationChain: setup_options, setup_appName, and run.
run is the function that calls a unique combination of Pydpiper atoms and
modules to construct the appropriate pipeline and in spite of the complexity
inherent in this type of registration, this function is less than 100 lines of
code. At the end of the file the if __name__ = "__main__" clause is
required so that this code can be executed directly from the command line.
In section 5, we show a complete example, albeit for a different application,
of these functions.

are deformed in a uniform, global way, non-linear registration
induces non-uniform deformations. When all scans in a study can
be registered together, non-linear registration may happen itera-
tively, toward an evolving target. After each subject is registered
to an initial target (for instance, the LSQ12 average), all subjects
are resampled, a new average is created, and alignment proceeds
to this new average. Alternatively, a single subject/template pair
could be non-linearly aligned with either a single or multi-stage
call, but without iterating toward an evolving target. Examples
of this include the registration chain paradigm (described in sec-
tion 4.3) and multiple automated template generation (section
4.5). One of the design goals of Pydpiper was to create a series
of non-linear modules that handle either of these registration
scenarios in a straightforward way. Moreover, there are multiple
different types of non-linear registration metrics that are avail-
able (Klein et al., 2009), including Advanced Normalization Tools
(ANTs) (Avants et al., 2008) and Automatic non-linear Image
Matching and Anatomical Labeling (ANIMAL) (Collins et al.,
1994, 1995), the two algorithms we have utilized in Pydpiper.
Although they differ significantly “under the hood,” (elastic vs.
diffeomorphic optimization, completely different command line
options) one of our goals was to implement them such that their
usage at a high level is nearly identical. The ANTs toolkit itself
provides a number of helpful bash scripts for various types of
image alignments, including the type of iterative model building
described in section 4.2. However, by incorporating this same

paradigm directly into the Pydpiper framework, we have greater
flexiblity to use it in conjunction with other Pydpiper modules.
In addition, our file handling framework makes it easier to access
files created throughout the entire registration process, something
that would require additional scripting if using the ANTs toolkit
as a stand-alone package.

4.1.4. Pre-processing
In addition to the LSQ6 and LSQ12 modules, there are sev-
eral pre-processing steps that often need to be included before
proceeding with non-linear registration. The most important of
these is applying a non-uniformity correction to each image to
account for smooth intensity variations that are often present in
MR imaging of homogenous tissue (Sled et al., 1998). Another
pre-processing stage is intensity normalization, which addresses
interslice intensity variations (Zijdenbos et al., 1995). Although
each of these steps are most sensibly applied prior to non-linear
registration, our goal was to code them such that they could be
called at any stage of any type of pipeline. In addition to both of
these steps, another step that may be critical to a successful regis-
tration is masking. MRI scanning, particularly when done ex-vivo,
can result in images where a non-negligible amount of tissue is
present around the outside of the brain. In order to speed up the
registration process and increase its accuracy, a region of interest
is defined that encompases the entire brain, and image alignment
only occurs within this region. Defining and keeping track of
masks and using them when appropriate was also a key feature
included in our design and development of Pydpiper, particularly
with respect to the file handling class described previously.

4.1.5. Statistics
Finally, the end-goal of performing statistical analysis based on
the results of a registration, regardless of type, factored heav-
ily into the design of Pydpiper. For many types of registrations,
all statistical analysis must be done from a common space, but
how this common space is constructed varies with the type of
pipeline. Once a common space has been identified, the full trans-
form from this common space back to each individual subject
is used to calculate a deformation field. After smoothing and
taking the Jacobian determinant of this deformation field (a mea-
sure of the volume expansion or contraction at each voxel) we
can use DBM to calculate neuroanatomical differences due to
genotype, gender, environmental factors, etc. In particular, the
statistics module of Pydpiper was designed with two paradigms
in mind: the first was that once the appropriate transform was
identified, the calculation of the associated deformation field and
Jacobian determinants would proceed as uniformly as possible;
the second was that the transform concatenation often necessary
to get the appropriate average-to-subject transform would hap-
pen in a modular way, independent of determinant calculation,
to increase code reusability. This was motivated in part by dif-
ferences between iterative group-wise registration (section 4.2)
and the registration chain (section 4.3). In the latter, deforma-
tion fields can be calculated both from a space common to all
subjects, or between individual subject pairs, and we wanted code
that would handle both in a seamless fashion, particularly at the
highest levels.
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4.2. ITERATIVE GROUP-WISE REGISTRATION
Our previous implementation of iterative group-wise registration
is described in more detail in Lerch et al. (2011). In Pydpiper, we
utilized the same underlying logic and theoretical framework for
this application, but implemented it in a much more streamlined
and extensible fashion. Briefly, this iterative, group-wise registra-
tion proceeds as follows: we first bring all subjects into a common
space using the LSQ6 module. Then, following non-uniformity
correction and intensity normalization, we perform a pairwise
registration of all subjects in the study using the LSQ12 module.
This creates the best possible linear model for this data set. Using
the LSQ12 average as a starting template, we then locally deform
each scan toward this template, using either an elastic (minc-
tracc, Collins et al., 1994, 1995) or diffeomorphic (mincANTS,
Avants et al., 2008) registration algorithm. After this initial align-
ment, another average is created, and this is used as a template for
subsequent non-linear generations. This entire multi-generation
procedure is encapsulated in the non-linear (NLIN) registration
module. Once a final non-linear average is created, the appropri-
ate transforms are concatenated and used to create deformation
fields from this template to each individual subject. These defor-
mation fields are subsequently used in DBM. A schematic of this
registration process is depicted in Figure 7. A corresponding code
diagram is shown in Figure 8 and the annotated code itself is
provided in Figure 9.

One notable feature of our implementation of iterative group-
wise registration is that, at a high level, the code is deliberately
sparse. The goal of this design was to make each stage (e.g., LSQ6,
LSQ12, NLIN, statistics calculations) an independent entity, to
aid in both readability and provide a more direct correspon-
dence between the theoretical framework and the code itself. As
an example of the size of one of these pipelines, consider an

image registration with 10 mutants and 10 wild type mice, the
minimum number we typically use for a two group compari-
son. This pipeline would have a total of 2169 pipeline stages
encapsulated into four modules: LSQ6 (including intensity nor-
malization and pre-processing), LSQ12, NLIN and Statistics. For
larger studies and the alternate strategies described below, (partic-
ularly MAGeT), pipelines can often consist of tens of thousands
of stages; however, because of the modular nature of the code,
applications remain uncluttered and easy to read.

The modular nature of Pydpiper applications also makes it
easier to assess where changes to the pipeline should occur. For
example, one might want to proceed directly to non-linear regis-
tration after having performed the LSQ6 stage–this could be done
quite simply by removing only a few lines of code in the existing
application. In addition, each of these modules has a default set
of registration parameters that are based on the detected input
file resolution. Alternate parameters may be deliniated in a .csv
file that is specified on the command line when the application
is launched. This makes it simple to flexibly adjust parameters as
needed while avoiding hard coded values that are only appropri-
ate for a handful of cases. Another advantage of this modular code
is that it is simple to implement alternate registration strategies.
For example, the non-linear modules (NLIN) for both minctracc
and mincANTS registrations inherit from a common base, which
could easily be further subclassed to create an alternate non-linear
registration strategy.

4.3. REGISTRATION CHAIN
There are numerous scenarios where the iterative group-wise
registration paradigm described in the preceeding section is inap-
propriate, and alternative registration and analysis strategies must
be employed. This is particularly true in the case of specific types

FIGURE 7 | Schematic of iterative group-wise registration. This schematic depicts a registration scenario where all subjects, each scanned at one or
multiple time points, can be registered to a consensus average.
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FIGURE 8 | Code diagram to complement Figures 7, 9. This figure
illustrates the modular nature of how Pydpiper executes each of the
stages in this pipeline. Diagramatically, each of the code blocks

highlighted in Figure 9 is indicated here as a single unit. One of the
non-linear stages is expanded to show the complexity of the pipeline
that underlies it.

of longitudinal studies, where scans from early time points cannot
necessarily be registered to scans at later timepoints, even when
doing intra-subject registration. This makes the strategy of reg-
istering all brains together in an iterative fashion ineffective. As
noted in the Introduction, two examples of this type of study
include both tumor growth and normal development. Although
it is not possible to register together early and late time points in
these types of studies, adjacent time points can often be accurately
registered.

In order to address this type of longitudinal study, we have cre-
ated the registration chain application, schematically depicted in
Figure 10. This pipeline works as follows: Each subject is first lin-
early and then non-linearly registered to the next scan in the time
series for that mouse. This is done first through an LSQ12 reg-
istration from source (timepoint i) to target (timepoint i + 1),
followed immediately by a non-linear registration from source (i)
to target (i + 1). Once this has been done for all subjects, one time
point is chosen as the common time point for the registration. All
scans at this timepoint are then registered together via the iterative
procedure described previously. This creates the common space
required for statistical analysis. The appropriate transforms from
this common space to each individual scan are then concatenated
and deformation fields calculated.

The code used to accomplish this type of registration has
many parallels to the example shown in Figure 9. Like itera-
tive group-wise registration, the registration chain is composed
of a number of smaller modules, making the application easy
to read. The main registration loop, which aligns scan i to
i + 1 for each subject, is extremely compact: choosing minc-
tracc results in a call to HierarchicalMinctracc, shown

in Figure 5, and choosing mincANTS calls a very similar function
(LSQ12ANTSNlin), which uses the LSQ12 module in combi-
nation with the mincANTS atom to appropriately align input
to target. To create a common space for analysis, all subjects at a
specified timepoint are then registered together using the iterative
procedure described in section 4.2. Deformation fields are calcu-
lated from the common space via a subclass of the CalcStats
class highlighted in Figure 9.

4.4. TWO-LEVEL REGISTRATION
Two-level registration is a registration paradigm that creates both
subject and population averages. It is appropriate for data sets
where all subjects are scanned multiple times, but in contrast to
the types of longitudinal registration described in section 4.3,
all timepoints for a given subject can be registered together.
This is done using iterative group-wise registration to create
a subject-specific average, enabling meaningful statistical com-
parison among all timepoints for a given subject. All of these
subject-specific averages are then registered together, again using
the iterative group-wise procedure, to create a population aver-
age. Transform concatenation can then be used to calculate the
appropriate transform from the population average to each sub-
ject specific average, and subsequently to each individual scan.
This allows for inter-subject comparison at each of the timepoints
in the study. A schematic of this is shown in Figure 11.

4.5. MULTIPLE AUTOMATICALLY GENERATED TEMPLATES (MAGeT)
Of particular interest in the neuroimaging community is the
ability to match MRI volumes to expertly labeled atlases, as struc-
tural segmentations are a powerful tool for enhancing analyses
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FIGURE 9 | run() function in the iterative group-wise registration application. This piece of code illustrates how an extremely complex pipeline can be
built up from smaller modules making it simple to read at the application level.

(Nieman et al., 2007; Dorr et al., 2008). Unfortunately, creating
accurate atlases, particularly across the whole brain, can be chal-
lenging. While manual segmentation is often considered the “gold
standard” for atlas creation (see e.g., Burk et al., 2004), it is too

time-consuming and subjective for the ever-increasing amount of
structural MRI data that must be analyzed. As such, automated
atlas creation is a powerful and necessary tool and one that we
wanted to include in Pydpiper.
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FIGURE 10 | Schematic of the registration chain pipeline. In this
schematic, each subject is scanned at a series of timepoints. The arrows
indicate that, within each subject, timepoint i is registered to timepoint i + 1.

All subject scans at timepoint n are then iteratively registered together,
creating a common space among all subjects and timepoints. Alternatively, a
different timepoint could be chosen as the common space.

FIGURE 11 | Schematic of the two-level pipeline.

The creation of multiple automatically generated templates
from a single labeled brain (MAGeT Brain), as introduced
in (Chakravarty et al., 2013), is an example of a multi-atlas based,
label fusion technique that produces accurate atlases without
the need for manual segmentation. Briefly, it works as follows:
using an input template with a set of pre-defined labels, this
brain is non-linearly aligned to another subject or set of subjects.
Typically, this proceeds first with an LSQ12 alignment, followed
by a non-linear registration from source (template) to target (sub-
ject). The resulting transforms are then applied to the template

labels, such that each subject is now labeled as well. Then, all of
the subjects are non-linearly registered together (again, first with
an LSQ12 alignment, followed by a non-linear registration), cre-
ating a set of labels for each subject. A label voting technique is
then applied at each voxel, such that the most frequently occur-
ing label is selected for the final segmentation of that voxel. This
whole procedure is graphically depicated in Figure 12. We note
that although MAGeT Brain was the explicit motivation for this
application, the code could be easily extended to implement more
sophisticated label fusion techniques (Wang et al., 2013).
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FIGURE 12 | Schematic of the MAGeT algorithm. (A) An initial
labeled template is non-linearly aligned to a series of subjects. (B)

Using the transform that results from step A, the labels from the
template are propagated to each subject, creating a unique set of
labels for that subject. (C) Each subject is non-linearly registered to

every other subject. (D) The initial set of labels from each subject
(created in step B) are propagated to every other subject using the
transforms from step C. This creates a library of labels for each
subject. (E) A voxel voting procedure is applied, creating the best set
of labels for each subject.

As implemented in the Pydpiper framework, MAGeT re-
uses many of the classes and modules from other applications.
For example, the alignment of template to subject uses either
HierarchicalMinctracc or LSQ12ANTSNlin, exactly as
is done for the registration chain. This again illustrates the mod-
ular, re-usable nature of this toolkit. Prior to this alignment is
the option to use the LSQ6 module for an initial alignment as
well. In addition to assessing volumetric differences based on
label segmentations, the Pydpiper MAGeT application can also
be used in a number of different but related ways. As an exam-
ple, an input template (or set of templates) can be registered
to the population average created from any of the registration
pipelines detailed above. After voxel voting (necessary if more
than one template atlas is used), these labels from the population
average can be back-propagated (via the appropriately concate-
nated transforms) to each individual subject in the study, enabling
volumetric analysis from these sets of labels.

5. ANNOTATED CODE EXAMPLE
In this section, we provide a more complete Pydpiper code
example along with a corresponding shell script that one might
write to execute some of the same commands. These constrast-
ing pieces of code illustrate the utility of many of the Pydpiper
atoms and modules and provide a more detailed example for
understanding many aspects of the code discussed throughout
this paper. Additionally, because the initial Pydpiper applications
are all based on the MINC file format, this section provides
a bit more context regarding the command line tools we are
using. For more details, we refer the reader to http://www.bic.
mni.mcgill.ca/ServicesSoftware/MINC and http://en.wikibooks.
org/wiki/MINC.

The example pipeline we show here corresponds to a single
iteration of the multi-generation non-linear module discussed
in section 4.1, followed by the calculation of the displacement
field and Jacobian determinant necessary for DBM. It does the
following:

1. Aligns each input subject to a specified template using min-
cANTS. This will result in a transform from each input to the
resulting template. For clarity throughout this section, we will
refer to this transform as the “final non-linear transform.”

2. Resample each subject with its unique final non-linear
transform.

3. Create an average of these resampled brains to create a new
non-linear average.

4. Calculate the linear part of each subject’s non-linear trans-
form. The inverse of the full non-linear source-to-target
transform is also needed, but is automatically calculated by
mincANTS.

5. Concatenate these transforms to calculate the pure non-linear
transformation from target to each individual subject.

6. Calculate the pure non-linear vector field for each sub-
ject, apply a Gaussian smoothing, and calculate the Jacobian
determinant of this smoothed vector field.

Prior to starting this registration, we make the assumption that
the input files to this pipeline have already been aligned into a
common space by the LSQ6 and/or LSQ12 modules described in
section 4.1 of the text.

In Figure 13 we show how the above pipeline would be
executed in a simple bash script. In Figure 14, we show
the same pipeline in Pydpiper. In this case, we show the
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FIGURE 13 | Bash script that does a non-linear alignment from a set

of inputs to a common target, then calculates the resulting

deformation fields and their Jacobian determinants. Note that our

labeled sections for this figure begin with section B, as described in
the text. (B) File checking and initialization of average; (C) Image
alignment; (D) Statistics calculation.
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FIGURE 14 | Non-linearRegistration application in Pydpiper. This
code aligns a set of inputs toward a common target, iterating
over multiple generations if requested. Note that we have omitted
if __name__ = "__main__" from this figure, but it is included in

the .py file that runs this code. (See Figure 6 for more discussion).
(A) Pre-requisites for AbstractApplication class and integration into
pipeline; (B) File checking and initialization of average; (C) Image
alignment; (D) Statistics calculation.
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NonlinearRegistration application, which inherits from
AbstractApplication and can be run on the command
line. Each of these figures has multiple sections of code high-
lighted, and each highlighted section is labeled. The color and
label of one section in Figure 13 corresponds to the same color
and label in Figure 14. We will use these labels as a guide for dis-
cussion. In addition, registration steps 1–6, as enumerated above,
are also labeled in each figure.

5.1. SETUP AND PREREQUISITES
One of the most notable differences between the bash script
in Figure 13 and the Pydpiper code in Figure 14 is the ini-
tial code set-up and file checking. For the bash script, this is
encapsulated in section B, whereas in the Pydpiper code, this
is encapsulated in sections A, B. Note that the bash script does
not have section A, as it has nothing analogous to Pydpiper’s
AbstractApplication class.

In section A of Figure 14, there are two functions:
setup_options and setup_appName. Both of these are
necessary subclasses of AbstractApplication. setup_
options adds various option groups to the application’s option
parser, to ensure that the appropriate command line options are
available. In addition to reducing the amount of hard coding
with this application, all of the command line options themselves
are grouped together based on their functionality and can
be reused in many different applications. setup_appName
defines an application name, which is particularly useful for
parsing log files. The key thing to note about section A is
that, because NonlinearRegistration inherits from
AbstractApplication, all of the components necessary for
putting together a larger pipeline, calculating stage dependencies,
and using the executor model for running multiple stages
concurrently is present. No additional setup or coding is needed.
In contrast, when using the simple bash script provided, stages
can only be run consecutively, one-at-a-time.

In section B of both figures, three things are accomplished,
albeit in quite different ways. The first is the checking that is done
to ensure that all of the input files are in the MINC file format and
that a minimum of two are specified. The second is that output
directories are created, one for each input file. Finally, an initial
target for non-linear alignment is created by averaging all of the
input files.

In Figure 13, file checking is accomplished on lines 12–25
of code. In Figure 14, this happens on line 24 in the function
call initializeInputFiles. Not only does this function
check for the appropriate number and format of files, but it
initializes each of these files as a file handler, as discussed in
Section 3.2. In addition to file handler instantiation, if the
options.mask_dir argument is specified, a mask will be
assigned to each of the input files and their corresponding
file handlers. In order to include a mask in the bash script,
it would need to be re-written. In spite of the significant
additional features this function adds over the corresponding
bash script, it contains only 47 lines of code (not shown).
Output directory creation happens on lines 29–32 of the
bash script, and via two function calls in the Pydpiper code.
First, on line 21, the setupDirectories function, used

in virtually all other Pydpiper applications to date, creates the
main output directories for the registration. Then, as part of
initializeInputFiles, a subdirectory is created for each
input file.

Finally, on lines 35–40, the bash script calls mincaverage
to create an average target from the set of input files. This is
accomplished on lines 30–36 of the Pydpiper code, though as is
shown on lines 24–28, Pydpiper allows you to specify an initial
target on the command line, so averaging is not always neces-
sary. In both Pydpiper scenarios, the target file is initialized as
a file handler (lines 26 or 32). Because averaging happens using
the mincAverage atom (line 33), all of the appropriate file
dependencies are included in the pipeline.

5.2. IMAGE ALIGNMENT
The portion of each piece of code that does image alignment
is marked in both figures as section C. In Figure 13, a sim-
ple image alignment is shown on lines 46–65. Each input file
is first blurred (lines 46–49) with the mincblur tool, using
a Gaussian smoothing kernel with a full-width at half maxi-
mum (fwhm) of 0.224 µm. The target is blurred as well (line
53). Then, the blurred version of each input file is aligned to
the blurred version of the target via a mincANTS call (lines 59–
65). This particular call uses a cross-correlation similarity metric
(CC) with a Gaussian regularizer (Gauss[2,1]) and a transfor-
mation model that uses symmetric normalization (SyN[0.1]).
More details about these parameters can be found in Avants et al.
(2008). The resulting transform is then applied to each of the
input subjects via a mincresample call (lines 67–69) and a
new average is created via mincaverage (line 75). Although this
is a straightforward and brief script, it requires editing for any
set of images that do not use these hard coded parameters, and
extending it to multiple generations would require a fair amount
of recoding.

The Pydpiper code that accomplishes this same alignment is
effectively encapsulated two function calls, shown on lines 40–45
of Figure 14. First, the initNLINModule function is called on
line 40. This function returns the appropriate non-linear module
as nlinModule. The module returned depends on the value of
options.reg_method passed into the function. In the exam-
ple here, options.reg_method=mincANTS is specified on
the command line, and initNLINModule returns an instance
of NLINANTS.

After the instantiation of NLINANTS, the iterate() func-
tion is called. This function executes the following commands:
After blurring both input and target using the blur atom, the
blurred version of each input is registered to the blurred version of
the target using the mincANTS atom. Then, as in the bash script,
the resulting transform is applied to each input, and it is resam-
pled via the mincresample atom. Then, the mincaverage
atom is used to create a new non-linear average. (If additional
generations were required, the new average would be blurred,
and each blurred input would be registered to this new average,
with the entire cycle repeating). Note that each of these atoms
calls the command line tool of the same name, and the com-
mands exectued are nearly identical (provided the same set of
parameters) as those shown in the bash script.
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The exact registration parameters used by NLINANTS, includ-
ing (but not limited to) the Gaussian smoothing kernel neces-
sary for blurring, the similarity metric for alignment and the
transformation metric are all contained in the file specified for
options.nlin_protocol (line 43). If no protocol is spec-
ified, a set of defaults, currently optimized for registration of
mouse brains, is used. For the present example, the parameters
necessary for only one generation are included in the protocol file.
In contrast to the bash script, simply updating the non-linear pro-
tocol extends the code to an arbitrary number of generations. No
re-coding is necessary.

5.3. STATISTICS CALCULATION
Finally, in section D of each figure, we show the code neces-
sary for performing a statistics calculation. As is evident from
the bash script in Figure 13, calculating a Jacobian determinant
is a multi-step process: First, the linear part of the non-linear
transform from input to target is calculated (line 87). Then, this
transform is concatenated with the full transform from target to
input (automatically calculated by mincANTS during the align-
ment procedure) via xfmconcat on line 91. After a calculation
(line 94) and smoothing (line 96) of the displacement field, the
Jacobian determinant is calculated (lines 99–102). Note that the
determinant smoothing happens for only a single blurring ker-
nel (in this case, the specified fwhm is 0.5 µm), and keeping track
of all the inputs and outputs is a critical step in making sure this
script executes properly.

In constrast, the Pydpiper execution of this code is contained
entirely on line 60. For each input and target, the CalcStats
class is instantiated. Within this class, fullStatsCalc exe-
cutes each of the same stages as in the bash script using the
appropriate atoms and modules. The deformation field may be
smoothed with more than one blurring kernel (a list is specified
as the --stats-kernels command line option). This list of
blurs is passed as the options.stats_kernels argument to
CalcStats and results in the calculation of multiple Jacobian
determinant fields. Additionally, on lines 52–53, the target file
necessary for the statistical calculations is selected as the final
average from a series that may be generated; in the current exam-
ple, this number is one, but will be larger for multi-generation
registration.

Finally, we note the similarities between Figure 14 and
Figure 9. In particular, the code in sections C, D is nearly iden-
tical to that on lines 69–89 of Figure 9. This module reusibility
was a deliberate design choice.

5.4. RUNNING THE CODE
To run the bash script depicted in Figure 13, assuming it is located
in an appropriate directory in the user’s path, the command is:

nlin_registration_and_stats.sh input_1.mnc
input_2.mnc ... input_n.mnc

The analagous command for the Pydpiper code is:

NLIN.py input_1.mnc input_2.mnc ...
input_n.mnc --calc-stats

--nlin-protocol=ANTS_protocol.csv
--mask-dir=/directory/of/masks

--num-executors=1 --proc=8

The command line arguments for both the bash script
and Pydpiper code are simply the brains to be registered
(input_1.mnc ... input_n.mnc). Additional com-
mand line options are also specified for the Pydpiper code.
--calc-stats is required for the final statistics calculation.
(If this option is unspecified, the non-linear alignment will run
but no statistics are calculated). --nlin-protocol supplies
a non-linear protocol for registration, and --mask-dir
specifies a directory of masks to be associated with each input.
Additionally, the --num-executors and --proc options
are not required, but if they are unspecified, the NLIN.py
command will launch the pipeline server only, and executors will
need to be launched separately.

6. DISCUSSION
The ability to use neuroimaging technologies to help under-
stand the relationship between genotype and phenotype will be
an important contribution to biomedical research in the twenty-
first century. Although there are multiple different methods for
analyzing neuroimaging data, image registration is of particu-
lar interest due to its wide range of applications. Performing
image registration in an accurate and automated way is a crit-
ical component of of many neuroimaging studies, regardless
of subject-type (humans, mice) or imaging modality (MRI,
micro-CT, OPT). Different experimental designs require different
registration strategies in order to assess growth patterns, com-
pare genotype differences, or look at the impact of learning.
Nevertheless, common features underlie these registration strate-
gies, suggesting that a common computational framework may be
used to construct a multitude of different registration pipelines.
With the Pydpiper toolkit, we have created such a framework.

Throughout this paper, we have discussed many of the design
choices that influenced our development of Pydpiper. Above all
else, we were motivated by five principles: (1) high-level cod-
ing should be as simple as possible for those with less coding
experience (advanced users can still easily get “under-the-hood”
to create new modules); (2) individual building blocks of code
should be as modular as possible, easy to subclass, and geared
toward a range of biologically relevant applications; (3) complete,
runnable pipelines containing thousands of stages and address-
ing the registration scenarios described above should be available
“out-of-the-box”; (4) at the end of any pipeline, there should be
an option to calculate the derived volumes necessary for TBM
based statistics, using a module that contains all of the required
stages; (5) we should include a robust file handling class to keep
track of naming schemes and file interactions across many mod-
ules in a single application. Stemming from these principles,
we believe that Pydpiper offers the following innovations to the
community:

• A robust file handling class that allows access to outputs from
all stages of registration at any point in the pipeline. To the best
of our knowledge, no other package offers a similar framework.
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• The ability to write code in a “non-linear” way; that is (as
shown in Figure 5), duplicate stages that make conceptual
sense can be written into the code, but are only executed once.
This results in code that is both easy to read and write.

• A set of classes (in the form of atoms and modules) that are
reusable, easy to subclass and designed to be combined in
different ways to solve a variety of image registration problems.

• A toolkit that enables novice programmers to quickly piece
together relatively complex pipelines with only a few lines of
code.

• Four complete applications that run complex image registra-
tion pipelines with thousands of stages, “out-of-the-box.”

As we noted in the Introduction and throughout the text, there are
a number of pipelining frameworks currently available for run-
ning image registrations, and although our goal is not to replace
any of them, we believe we offer complementary functionality.
This is particularly true for Nipype, which is also open-source,
written in Python, and has many of the same goals as Pydpiper.
At present, Nipype offers interfaces to many more common neu-
roimaging toolkits than Pydpiper, and if one wanted to create
a pipeline using any of these tools (e.g., FSL, Freesurfer, SPM),
Nipype is the obvious choice. For other applications, such as an
iterative registration using ANTs, one could choose either frame-
work, as both Nipype and Pydpiper provide the infrastructure
to do this relatively easily. Where we believe Pydpiper offers an
advantage is via the integration of the file handling class into the
high-level code structure. Our toolkit gives users the ability to
quickly put together applications from our existing modules with
relatively simple syntax, and through the file handlers, have the
ability to access the state of each input at any stage throughout
the pipeline. In particular, using the file handling framework in
conjunction with the statistics module gives users a significant
amount of flexibility in calculating statistics, making it easy to
perform TBM at the end of any pipeline.

We hope that our architectural goals and code construction
will attract both seasoned developers and more novice coders who
want to tackle a variety of registration challenges, without hav-
ing to piece together a mish-mash of functions from scratch. By
creating Pydpiper as an open source, freely available toolkit, we
also hope to facilitate significant additional contributions from
the community. With the emergence of new imaging techniques
and experimental designs will come the need for new registra-
tion paradigms, and we expect that the existing Pydpiper code
provides a solid foundation on which to build these new pipelines.
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Micro-Electrode Arrays (MEAs) have emerged as a mature technique to investigate brain
(dys)functions in vivo and in in vitro animal models. Often referred to as “smart” Petri
dishes, MEAs have demonstrated a great potential particularly for medium-throughput
studies in vitro, both in academic and pharmaceutical industrial contexts. Enabling rapid
comparison of ionic/pharmacological/genetic manipulations with control conditions, MEAs
are employed to screen compounds by monitoring non-invasively the spontaneous and
evoked neuronal electrical activity in longitudinal studies, with relatively inexpensive
equipment. However, in order to acquire sufficient statistical significance, recordings last
up to tens of minutes and generate large amount of raw data (e.g., 60 channels/MEA,
16 bits A/D conversion, 20 kHz sampling rate: approximately 8 GB/MEA,h uncompressed).
Thus, when the experimental conditions to be tested are numerous, the availability of fast,
standardized, and automated signal preprocessing becomes pivotal for any subsequent
analysis and data archiving. To this aim, we developed an in-house cloud-computing
system, named QSpike Tools, where CPU-intensive operations, required for preprocessing
of each recorded channel (e.g., filtering, multi-unit activity detection, spike-sorting, etc.),
are decomposed and batch-queued to a multi-core architecture or to a computers cluster.
With the commercial availability of new and inexpensive high-density MEAs, we believe
that disseminating QSpike Tools might facilitate its wide adoption and customization, and
inspire the creation of community-supported cloud-computing facilities for MEAs users.

Keywords: substrate arrays of microelectrodes, MEAs, extracellular, batch analysis, embarrassingly parallel signal-

processing, cellular electrophysiology

INTRODUCTION
Among the most challenging open questions in Systems
Neuroscience, structure-function relationship has raised a
renewed interest. While novel ultrastructural anatomical investi-
gations (Briggman and Denk, 2006; Mikula et al., 2012) promise
to revolutionize the field, significant new progresses in our
understanding of neuronal networks physiology and in pre-
clinical neurotechnological applications, have been achieved by
extracellularly monitoring the electrical activity of large neu-
ronal ensembles (Rutten, 2002; Buzsaki, 2004; Schwartz, 2004;
Wise et al., 2004; Lebedev and Nicolelis, 2006; Nicolelis and
Lebedev, 2009). Complementary to high-resolution patch-clamp
microscopic access and to mesoscopic non-invasive electroen-
cephalography and functional magnetic resonance imaging, the
extracellular interfacing of neurons to artificial devices has taken a
considerable leap forward (Fromherz, 2006; Vassanelli et al., 2012;
Spira and Hai, 2013).

Since its early introduction, extracellular recordings have been
widely adopted both in academic and industrial pharmaceutical
contexts, for monitoring and evoking neuronal activity in vivo

and ex vivo under a variety of scientific, technological, neuropros-
thetic, and clinical perspectives (Berdondini et al., 2006, 2009;
Giugliano et al., 2008; Kim et al., 2009; Wang et al., 2012; Gortz
et al., 2013; Liu et al., 2013). In addition, recent advances in
real-time computing and in micro- and nanotechnologies opened
brand new possibilities (Arsiero et al., 2007; Mazzatenta et al.,
2007; Jain and Muthuswamy, 2008; Chen et al., 2009; Kim et al.,
2009; Fendyur et al., 2011; Hai and Spira, 2012; Tian and Lieber,
2013).

However, in terms of data collection, analysis, and inter-
pretation, multi-site extracellular recordings pose some chal-
lenges, given the large size of the raw data files acquired
and the inherent complexity behind their rapid and accurate
interpretation (Buzsaki, 2004; Stevenson and Kording, 2011).
From Neuroinformatics perspectives, several open-source soft-
ware toolboxes have been developed and released to the commu-
nity over the years, addressing those issues and ultimately aimed
at making electrophysiological data handling and analysis eas-
ier, faster, interactive, and more user friendly (Egert et al., 2002;
Quiroga et al., 2004; Vato et al., 2004; Bonomini et al., 2005;
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Wagenaar et al., 2005; Morup et al., 2007; Cui et al., 2008; Huang
et al., 2008; Magri et al., 2009; Novellino et al., 2009; Bologna
et al., 2010; Abdoun et al., 2011; Kwon et al., 2012; Mahmud
et al., 2012; Just et al., 2013). Hardware based techniques have
been also made available to the community to perform spike
detection and sorting (Yu et al., 2012; Hwang et al., 2013).
Nonetheless, signal processing and data analysis remain inten-
sive, even though modern personal computing power increased
dramatically and costs steadily decreased. In such perspectives,
the advantages of distributed data-analysis, cloud-based com-
puting, computer clusters, and parallel graphical co-processing
have become obvious to the neuroscience community (Wilson
and Williams, 2009; Chen et al., 2011, 2013a,b), in analogy to
what the field is witnessing for Computational Neuroscience
applications.

In this work, we addressed some of the basic requirements of
substrate-integrated microelectrode arrays (MEAs) users, focus-
ing on routine multichannel data analysis in in vitro studies,
where several experimental conditions are examined and sev-
eral binary raw data files are collected daily. We defined two
major objectives that we consider a priority in our own lab-
oratory: (i) increasing experimental throughput by freeing the
data-acquisition computers from the burden of subsequent raw-
signal analysis; (ii) providing the end-user with software tools
that could be employed with neither previous training nor com-
puter proficiency, but still easily customizable to include any
analysis algorithm. To this aim, we developed and implemented
a web-based workflow, named QSpike Tools, for the unsuper-
vised execution of generic signal preprocessing and analysis
of multichannel extracellular signals (see Figure 1). As sample
data processing primitives for demonstration purposes, we chose
a minimal set of basic operations that are performed in any
multi-unit activity analysis: filtering, peak-detection, sorting, and
simple spike-rate analysis. Tedious and long interactive analy-
sis sessions could be then replaced by an automated procedure,
and most important for us, by a more rational and efficient
use of the existing shared computing resources in our labora-
tory. This was accomplished by delegating and batch queuing
the preprocessing of the raw data files to an in-house multi-
core server. This is controlled and monitored remotely via a
simple web browser, with no (computing) programming famil-
iarity required, and leaving part of the resources of the server
free for other users. Our generic framework might be successfully
applied, or easily customized to include additional analysis scripts
(e.g., in MATLAB), in the context of routine compounds screen-
ing, with highly consolidated analysis methods and with a set
of established performance indicators. We also ultimately aimed
at a scenario where no further manipulation of post-processed
data may be required to the end-user, with one of the outcomes
of the automated analysis being a portable document format
(PDF) report, containing textual information as well as automat-
ically generated tables, graph, and plots (see the Supplementary
Material).

We are convinced by the importance of disseminating QSpike
Tools to the community, as a generic, easily customizable,
processing workflow, for the sake of its potential wide adop-
tion. Indeed, robust open-source distributed (grid) platforms

are often in use in many laboratories or (super)computing
departmental facilities. Finally, inspired by the recent creation
of community-supported Neuroinformatics shared facilities for
numerical simulations, such as the NSF-funded Neuroscience
Gateway Portal (NSG 1), our work could lead to the creation of
institutional or international facilities for remote automated MEA
data analysis.

MATERIALS AND METHODS
MULTI-ELECTRODE ARRAY RECORDINGS OF NEURONAL MULTIUNIT
ACTIVITY
Commercial microelectrode arrays (MEAs) for in vitro elec-
trophysiology were obtained from Multichannel Systems
(Reutlingen, Germany) and employed in routine experiments
(Figure 1). Briefly, MEAs consists of 60 Indium Tin Oxide
(ITO) planar microelectrodes (30 µm in diameter, 200 µm
in spacing) with 8 by 8 regular layout, microfabricated on
a glass substrate by photolithography, reactive ion etching,
and physical vapor deposition. Prior to cell seeding, MEAs
were autoclaved and coated by Polyethyleneimine (0.1% PEI,
Sigma-Aldrich). Primary cortical cell cultures were obtained
by standard methods from newborn Wistar rats (Charles River,
France), following national and institutional guidelines on
animal experimentation, upon enzymatic (0.025% trypsin) and
mechanical dissociation. Prior to seeding, cells were centrifuged
and suspended in a medium containing Modified Essential
Medium supplemented with 2 M glucose, 200 mM l-glutamine,
50 µg/mL gentamycin and 5% horse serum (Sigma-Aldrich).
Approximately 2000–3000 cells/mm2 were plated on the inner
area of each MEAs and maintained in culture medium (changed
three times per week), at 100% relative humidity, 37◦C and
5% CO2 for 1–30 days in vitro (DIV). MEAs were sealed by
fluorinated Teflon membranes, allowing gas but no water
exchanges, reducing osmolarity alterations and contamination
risks (Potter and DeMarse, 2001), making possible to perform
the recordings in a low-humidity, electronic-friendly, conditions
at 37◦C, 5% CO2.

The MEA microelectrodes were then employed to moni-
tor non-invasively the collective electrical activity of neuronal
networks developing ex vivo on their substrates. Recordings
took place after 21 DIV upon mounting of each MEA into the
recording amplifier (Figure 1A, 1060BC, Multichannel Systems,
Reutlingen, Germany) and acquiring 15–30 min of sponta-
neous electrical activity was acquired at 25 kHz/channel, after
1200x amplification. MC Rack software (Multichannel Systems,
Reutlingen, Germany) was employed to store the digitized data
on disk, as multiplexed binary files (∗.mcd file format), with
each file containing raw voltage waveforms from all the MEA
microelectrodes.

Additional hardware (Figure 1A) included an acquisition
computer with a PCI analog to digital board (MC Card, 64
channels A/D, 4 DIO, 16bits Multichannel Systems, Reutlingen,
Germany), as well as a temperature regulator and a stimulus iso-
lator (STG1002, Multichannel Systems, Reutlingen, Germany).
Figure 1B depicts a magnification of the inner area of a MEA

1http://www.nsgportal.org/
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FIGURE 1 | Recording of neuronal activity ex vivo, by means of a

commercial MEA hardware platform. Our experimental setup (A) is
composed by a pre-amplification and filtering (PF) stage and by an additional
signal amplifier, connected via an A/D board to a dedicated data acquisition
PC, which also controls a temperature controller and electrical stimulus
generation (not shown). After plating and culturing mammalian primary

cortical neurons ex vivo on a MEA for several days, spontaneous electrical
activity is detected and recorded at each microelectrode (B), arranged as a
regular 8 by 8 layout, 200 µm spacing, and displayed in real time
(C). Representative raw voltage traces from four sample microelectrodes,
recorded over 20 min, are sown in (D) with increasing levels of magnification,
to reveal the stereotypical pattern of spontaneous multi-unit electrical activity.

(i.e., 1 × 1 mm2) populated by microelectrodes, and Figure 1C
displays a typical recording session where the extracellular electri-
cal activity sensed at each microelectrode can be monitored over
time as an electrical potential. Figure 1D reports representative
raw (off-line band-pass filtered) sample recordings, acquired over
20 min from six sample microelectrodes.

SYSTEM ARCHITECTURE
The QSpike Tools workflow is based on a client-server architec-
ture (Figure 2A). The server is a stand-alone (powerful) computer
workstation, or it is the master-node of a computers cluster,
running a standard distribution of the Linux operating system.
Accordingly, the individual processor cores of the server, or the
computers of the cluster are configured as distributed computing
nodes, as in a high-performance computing intranet. The mas-
ter node also runs a web server software, capable of launching
a series of server-side operations (e.g., via the common gateway

interface, CGI2, as in web applications) when instructed by a client
computer connected to the same intranet.

The preprocessing performed by QSpike Tools includes five
steps (Figure 2B). Some of them occur and progress automat-
ically in a sequence, while others are only initiated via user
interaction with the web page hosted by the master node upon
selection appropriate hyperlinks. The links provide:

(1) A fast and secure SFTP 3 raw data transfer, from the data
acquisition setup storage hard drive to the computer(s) ded-
icated for data preprocessing;

(2) The conversion of each multiplexed raw data file into sev-
eral binary files, each containing data points from a distinct
recording channel;

2http://en.wikipedia.org/wiki/Common_Gateway_Interface
3http://www.openssh.com
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FIGURE 2 | System architecture and workflow description. The physical
configuration of computers within network(s) is reminiscent (A) of a
cloud-computing architecture. Through a web browser, the user initiates
(B) the workflow by requesting secure data transfer from the acquisition
computer to the server, and by starting the parallel batch processing and
analysis. At the end of the analysis, the server generates automatically a
portable document format (PDF) document, reporting on the execution

log, the activity summary, and the result summary, which is incorporated
in a compressed file archive along with the analysis result. When ready,
the user concludes the session by securely downloading the compressed
file archive to his/her personal computer. The flowchart (C) shows the
actions required by the user and the processing steps executed by the
server (cluster). The steps executed in parallel are outlined by the
dashed line.

(3) The scripting-based (i.e., written in MATLAB, The
Mathworks, Natick, USA), fully extensible, preprocess-
ing sequence for each file, currently including band-pass
filtering, stimulation-artifacts removal, multi-unit activity
detection and elementary spike-sorting (Figure 3B);

(4) The additional scripting-based (i.e., MATLAB) visualization
of the (multi)unit activity extracted by the previous steps
(e.g., MEA-wide synchronous bursting rate, single-channels
and MEA-wide firing rate, intra-burst instantaneous dis-
charge probability, etc.);

(5) The automated typesetting of a PDF report from a dynam-
ically generated and compiled LaTeX 4 source file, including
both textual and graphical information, extracted by the pre-
vious step and secure download of the PDF report and of
all intermediate and final preprocessed files (e.g., spike time-
stamps, spike waveforms, spike count) to the user’s personal
computer, as a compressed file archive.

Provided that certain dependencies are respected (e.g., step 4
must follow the completion of step 3, across all electrodes of the

4http://www.latex-project.org

same data file), all the remaining steps (i.e., 2–5) can also be
batch-queued and executed in parallel (e.g., one task per core,
processor, or intranet node). A flowchart explaining the detailed
processing steps is shown in Figure 2C.

The QSpike Tools workflow is in fact based on the observation
that any CPU-intensive preprocessing needed can be executed in
parallel, independently of any other recorded channel (Denker
et al., 2010). All operations, necessary for any subsequent data
analysis, can be performed in parallel across channels thus directly
exploiting the advantages of embarrassingly parallel scheduling
(Figure 3).

It is worth to note that, in our context, parallel process-
ing implies performing pre-, post-processing and analyses on
each recorded channel, independently. This excludes sophisti-
cated spike detection, sorting, and analyses algorithms that are
useful when employing, e.g., tetrode-like arranged MEAs, whose
inter-electrode distances are much smaller than those employed
here. In those circumstances, correlated information from dis-
tinct channels cannot be treated independently and must be
jointly analyzed. While the series of analyses of QSpike Tools
can be extended to include similar analysis algorithms, this has
not been yet implemented in its current version as it implies a
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FIGURE 3 | Grid computing architecture and flowchart of the data

pre-, post-processing, and analysis module. (A) When jobs arrive at
a grid computing environment, the jobs are decomposed into individual
jobs and allocated to each processor core or cluster for completion.
In a multicomputer cluster system the head node of the cluster is
responsible for job-, cluster-, resource-management and scheduling
leaving the application and job execution on the individual nodes of the
cluster system. In QSpike Tools the benefit of a multicore single
computer cluster has been exploited where the responsibilities of the

head and individual nodes are handled by the grid computing software.
(B) Flowchart of the execution model with exemplary pre-,
post-processing and analysis modules to demonstrate and distinguish
among the operations in terms of their parallelization. Dashed sections
outlines the two major sets of operations, where parallelization of the
tasks takes place. The remaining tasks instead operate serially. The
parallelization is achieved by the qsub command, provided by the
grid-scheduling environment, distributing the batch-queued jobs to the
specified cores for their parallel execution.

redesign of its principle of operation, beyond the embarrassingly
parallel computing.

SYSTEM IMPLEMENTATION
The system has been tested on a multi-core personal workstation
(Precision, T7500, Dell, Asse-Zellik, Belgium), equipped with two
six-core Xeon processors and 24 GBytes of shared memory, run-
ning the Ubuntu 5 10.10 server operating system, the Apache 6

webserver software, and MATLAB R2012a. In addition, a basic
grid-computing environment was installed and set up, using the
(now outdated) Sun Grid Engine (SGE, Sun Microsystems, Santa
Clara, California), or the equivalent Open Grid Scheduler/Grid
Engine7. The last implements a scheduling system for the manage-
ment of distributed computing resources (i.e., individual cores,
processors, and computers) and it enables the definition of one or

5http://www.ubuntu.com/download/server
6http://httpd.apache.org
7http://gridscheduler.sourceforge.net

more computing queues. Upon launching a job by a special com-
mand of the scheduler, while assigning it to a specific queue, the
operating system is not anymore in charge of balancing the com-
puting load on the entire computer architecture. Instead, that job
is scheduled for execution and assigned to an individual unused
node, among those reserved. As mentioned, these nodes may be
the processor cores of the server, as in our case, or—transparently
for the user—the cores of the processor(s) of Ethernet-connected
computers (Figure 2A).

Both the client PC(s) and the workstation run the OpenSSH
server software, which provides a secure file transfer protocol
(SFTP) 8. With the typical size of a MEA raw data file (e.g.,
60 channels/MEA, 16 bits A/D conversion, 20 kHz sampling
rate: approximately 8 GB/MEA,h uncompressed), we found that
scripted command-line SFTP performed better than drag-and-
drop over network mounted shares or graphical user interface
clients. Via scripted SFTP and by employing a gigabit Ethernet

8(Win) http://www.cygwin.com, (OS X) http://www.maclife.com/article/
howtos/how_enable_ssh_your_mac
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switch (Catalyst 2960S-48TS-L, Cisco, Diegem, Belgium), the
MEA data transfer rate was consistently approximately 100 MBps,
in our daily tests.

Figure 3A sketches the simple structure of the grid-computing
environment, and of the way we benefit from it. Upon arrival of
a preprocessing job request, the large multiplexed (∗.mcd) binary
file is decomposed into 60 individual files, containing the voltage
raw waveforms of each microelectrode. Then, the same opera-
tions (Figure 3B) are applied and repeated identically to each files,
so that the original job is distributed in parallel to the allocated
cores. The server performs the management task of submitting
the jobs to the execution queue and of checking for a free node (60
channels over, e.g., 12 cores implies an overall load of 5 jobs/core),
in a way fully transparent to the end-user. The node manager is
ultimately responsible for the execution of each parallelized task,
and logs (standard and error) output diagnostics as separate text
files.

To favor readability and user customization, most of the data
transfers, user communication, job decomposition, and schedul-
ing were coded as Bash shell9 scripts. Signals preprocessing, anal-
ysis, and automated generation of figure plots were implemented
as MATLAB scripts.

The flow chart of Figure 3B depicts the various components
of the preprocessing and analyses pipelines, and indicates (i.e.,
by dashed line boxes) the execution streams that operate in par-
allel. As mentioned in the Introduction, the user initiates the
execution of a series of sequential steps, where input and output
folder names are first provided to the non-interactive Bash scripts,
which fetch the (list of) input raw data file(s) and store output
results (e.g., the PDF report, the time-stamp of peak-detected
multiunit activity, the analog waveform of each detected event for
subsequent offline spike-sorting). Then, the individual channels
and their preprocessing are distributed simultaneously as inde-
pendent jobs among the cores using the qsub command, making
the analysis trivially parallelized and limited only by the number
of nodes available to the queue.

The decomposition of the raw data into the individual chan-
nels is the first step in the preprocessing pipeline: it is performed
by a custom code, written in C and based on the vendor data
access API.

After the extraction of individual channels, further prepro-
cessing like a causal signal filtering (Quian Quiroga, 2009),
robust peak-detection detection, elementary spike sorting (i.e.,
as positive or negative threshold crossings), and spike waveform
storage are performed (Quian Quiroga, 2012). For instance, fil-
tering is based on a band-pass, zero-phase digital filter of fourth
order (i.e., by filtfilt 10 and ellip 11 MATLAB functions, included
in its Signal Processing Toolbox 12) between 400 and 3000 Hz,
while peak detection is based on the evaluation of the median
of the raw trace, following the sample code of Wave_clus 13

(Quiroga et al., 2004), which was chosen as our golden standard.

9http://en.wikipedia.org/wiki/Bash_(Unix_shell)
10http://www.mathworks.com/help/signal/ref/filtfilt.html
11http://www.mathworks.com/help/signal/ref/ellip.html
12http://www.mathworks.nl/products/signal/
13http://www2.le.ac.uk/centres/csn/wave-clus-docs/

The final result of the peak-detection is the conversion of the
analog raw voltage waveforms into a time-series, for each chan-
nel: these are the time-stamps of the multiunit activity, which are
stored for further analyses as simple text files. As soon as these are
available for all channels, they are consolidated in a single file and
ready for further MATLAB-based analysis.

The post-processing and analyses pipeline starts with loading
the raw single channel data, made available by the channel extrac-
tion process, and the files saved during the preprocessing stage.
Analyses such as spike-train feature extraction, firing rate estima-
tion, the instantaneous discharge probability profile calculation
(Van Pelt et al., 2004), and network-wide synchronized burst-
ing frequency estimation (Bologna et al., 2010) are performed on
the preprocessed data. Each of them produces one or more fig-
ures, as well as numerical information that are also included in
the portable document format (PDF) report generated—see the
Supplementary Material. Finally, the report, the figures, and all
the intermediate (text and MATLAB binary) files are compressed
as a file archive: for each raw data file provided initially, a sin-
gle file archive is generated by the workflow and available for
subsequent user’s download.

RESULTS
PERFORMANCES AND SAMPLE PREPROCESSING
The workflow discussed in the previous sections, has been
employed daily in our laboratory and extensively tested. For
demonstration purposes, we selected typical data files, containing
the spontaneous electrical activity of ex vivo developing net-
works of primary cortical neurons, and we provide the PDF
report automatically generated by QSpike Tools of its analysis
as a Supplementary Information. By a simple web interface, as
shown in Figure 4, where the various Bash scripts are linked,
we experienced that several users with limited computer profi-
ciency could perform smoothly server-side operations, such as
visualizing the status of the server queues, clearing the input and
output directories from previous data analysis sessions, initiat-
ing file transfer, and finally launching the data preprocessing.
The same operations could be also performed remotely, form
home, upon the virtual private network (VPN14) imposed by our
university.

Figure 4 shows a screenshots of the web-interface of QSpike
Tools. Upon navigating to the web address of the server, the user
is presented with page 1, where an identification is required..
This takes the user to the page 2, containing hyperlinks to most
of QSpike Tools functionalities: (a) visualizing the current status
of the queue, (b) checking the correct availability of the (trans-
ferred) files in the input/output directories, (c) transferring data
and report to and from the server, (d) clearing the input/output
directories of their content upon completion of the analysis, and
(e) starting the work-flow by selecting the required number of
cores to be used. Once the user opts to transfer raw data files to the
server, page 3 appears with additional options. At the end, page 4
is shown with progress and diagnostic information. Finally, as the
user wants to download the report, page 5 appears and enables
downloading the corresponding file to the user’s PC.

14http://en.wikipedia.org/wiki/Virtual_private_network
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FIGURE 4 | Screenshots of the web-interface. Each window is numbered
to denote a separate stage of the workflow, and consist in: (1) the
user-identification; the (2) main control webpage; the (3) file transfer interface
from the data acquisition PC to the master node; (4) the result of the
preprocessing; and (5) the file transfer from the master node to the user PC.

Individual letter labels in (2) represent grouped functionalities, such as the
visualization (a) of the status of the computing queues, the availability check
(b) for the data files in the input and output directories, the file transfer and
management functions (c,d), and finally (e) the initiation of the parallelized
preprocessing and analysis, with an option to select the destination queue.

For the sake of testing and comparison, we configured and run
QSpike Tools on sample binary (∗.mcd) data files of two differ-
ent sizes (i.e., approximately 1.5 GB for 8 min and approximately
3.5 GB for 20 min recording). As the execution times depend on
both the raw data file and the number of multiunit events, for the
sake of fair comparison we executed repeatedly QSpike Tool anal-
ysis for 10 times over the very same files. We specifically selected
two files, from each file size groups.

We employed four distinct predefined queues (i.e., with 1, 4,
8, and 12 reserved cores) to compare the User Execution Times15

(Figure 5). Confirming the embarrassingly parallelization of the
task, we found that execution time reduced significantly (p <

0.05, ANOVA; sublinearly) with an increasing number of cores
available (see Figure 5A), with maximum and minimum execu-
tion times ranging from 34.7 min ± 10 s to 10.8 mins ± 17 s or

15http://en.wikipedia.org/wiki/Time_(Unix)

from 31.5 min ± 5 s to 4.3 min ± 6 s for large and small files,
respectively.

Despite input files were identical, their repeated analysis led
to variable execution times. In order to trace the sources of
such variability and provide a preliminary profiler analysis of
QSpike Tools, we considered separately the steps performed dur-
ing the entire workflow, launching manually three subprocesses:
(i) raw data channel demultiplexing, (ii) pre-processing of ana-
log voltages (Figure 3B), and (iii) post-processing (Figure 3B).
We then monitored, by standard Linux system calls, the
occurrence of three computationally intensive operations man-
aged by the operating systems: voluntary context-switching 16

(VCS), minor page faults 17 (Minor PF), and major page faults
(Major PF).

16http://en.wikipedia.org/wiki/Context_switch
17http://en.wikipedia.org/wiki/Page_fault
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FIGURE 5 | Execution times and efficiency, for an increasing numbers of

cores reserved. Box plots (A) with box height showing 25–75% of the
sample values were used to represent maximum and minimum (whiskers),
median (“−”) and mean (“+”) execution times, respectively, which were all
significantly different (p < 0.05) based on the number of cores used. The
vertical line in the middle separates the data representation corresponding to
distinct file sizes (3.5 vs. 1.5 GB). Pearson’s liner correlation coefficients (B,C)

show that the execution times of individual sub-processes are correlated to,
certain computationally intensive operations performed by the operating
system such as, minor page faults (Minor PF), and voluntary
context-switching (VCS) (∗∗∗p < 0.0001; ∗p < 0.05) in case of large file size
(B). Though major page faults (Major PF) were noticed while analyzing the

large file, they had either negative or no correlation to the execution times.
The execution times of the first two sub-processes for the small file were
mainly correlated to Minor PF (∗∗∗p < 0.0001; ∗p < 0.01) (C). Overall,
negligible amount of Major PF occurred during the execution of the small file
and only when large number of cores was used, correlation between
execution times and VCS were noticed. The bars in (B,C) are plotted using
the same color code of (A). The efficiency of parallelization was also
quantified (D) as referred to the slowest execution time when a single core
was used: continuous lines are best-fit logarithmic plots, whose mean
squares were 0.8807 and 0.9306 for 3.5 and 1.5 GB file sizes, respectively.
The mean execution times (E) for both file sizes also show the reduction of
the execution time, for an increasing number of cores available.

We found that the execution times are significantly corre-
lated to the occurrence of Minor PF and of VCS, in case of the
large input file (Figure 5B) (p < 0.0001 and p < 0.05, respec-
tively). The same occurs for smaller input files, particularly during
channel extraction and pre-processing sub-processes (Figure 5C).

We then noticed that the execution time with the highest num-
ber of cores was found to be more sensitive to page faults and
context-switching. This may be explained in terms of the fixed
amount of physical memory, as its allocation per core decreases
with increasing number of cores. As a consequence, memory
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FIGURE 6 | Average voltage waveforms, corresponding to (positive

or negative) peak-detection events at each microelectrode. Each
subplot represents graphically the 8 × 8 layout of the MEAs
employed in this study (see the Methods). The average voltage
trajectories (thick black lines) of the positive (A) or negative

(B) threshold crossing events are displayed for each microelectrode,
together with its point by point variability (gray shading, i.e.,
standard deviation), and with the number of events among brackets.
The numbers on the right hand side of each subplot denote the
labeled electrode name.
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FIGURE 7 | Experimental outcome at a glance. The distribution of the
number of electrodes (A) that detected activity with significant
occurrence frequency is displayed, together with the MEA-wide

distribution (B) of the interspike intervals that reveal a bimodal profile,
corresponding to the recurring transient, MEA-wide synchronization of the
electrical activity.

demanding jobs required to run in parallel will have less allotted
memory and result in frequent page faults and context-switches
(Tay and Zou, 2006). Based on the necessity one may try to reduce
the occurrence of page faults by implementing available meth-
ods in the literature for better memory management (Zhou et al.,
2004).

The efficiency E across distinct queue size, was calculated with
respect to the execution times required by a single-core system
as E = Tmax/�T × 100%, with Tmax the execution time of the
slowest execution—referred to a single core. As expected, the
execution efficiency increases (Figure 5D) and the mean execu-
tion time maintains a decaying trend (Figure 5E) with increasing
number of cores used.

We have excluded those steps when computing the execu-
tion times, such as file transfer to and from the master node file
system, since these are dependent on physical characteristics of
the Ethernet network as well as of user interactions. The signifi-
cant differences in the execution times indicate that using more
powerful computers with significantly large number of cores is
advantageous for a large set of raw data files. We note however that
suboptimal memory management by MATLAB parallel instances
still deserve attention, as the proportional decrease in the average
execution time for large data files differed from the execution time
for smaller files.

For the sake of illustration, we further comment and discuss
briefly some of the standard analyses performed by QSpike Tools.
The first step in the analysis pipeline is to display graphically
the waveforms detected at each electrode by the peak-detection
algorithm. This allows an elementary spike sorting procedure,
discriminating between positive- or negative-threshold crossing.
It also enables the user to perform a quantification of the aver-
age voltage data trajectory amplitude, its confidence interval, as
well as the overall number of events detected. Besides serving as
a quality assessment of the raw signals recorded and of the via-
bility of the culture examined (Figure 6), next to each subplot

the indication of the total number of multiunit events detected at
every electrode provides immediate feedback on the significance
of the average waveform displayed therein. This is also particu-
larly useful when distinct microelectrode materials are used (e.g.,
carbon nanotubes or nano-crystalline diamonds coated elec-
trodes), and when the majority of events detected by a given
electrodes are monophasic, biphasic, or triphasic extracellular
action potentials.

Complementary information is also displayed in the form of a
histogram (Figure 7A), which quantifies the number of micro-
electrodes that detected a sufficiently large number of events,
higher than a 0.02 Hz minimal occurrence frequency. Finally, the
interspike interval (ISI) distribution is also provided across the
entire MEAs, merging together all the events (Figure 7B), to ulti-
mately reveal whether or not a bimodal distribution is present
and corresponds to a mature bursting electrical phenotype of the
culture.

Finally, a graphical display of the first few minutes of each
recording is also produced, as a raster plot of the individual spike
times across channels (Figure 8). In our own experience, this
provides a rather immediate overview of the recording session
and on the viability of the culture. Based on a simple eyeball
estimation of the occurrence of MEA-wide synchronized events,
and from a detail of the largest synchronized event at increas-
ing temporal resolutions (Figure 9), a non-expert user can gain
immediate insight on whether the typical expected electrical pat-
terned activity occurred and the extent of the most notable
synchronous transient, useful when very small recordings are
performed.

The pdf-report, generated automatically at the end of the pre-
processing, is provided as Supplementary Information, and offers
diagnostic details on the execution of the workflow (i.e., the queue
name, start and end time of the processes, and total execution
time), as well as of the quantitative information about the data
(i.e., total recording duration, total number of samples, sampling
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FIGURE 8 | Sample spontaneous activity display. The multiunit
spontaneous activity is displayed as raster-plot (A) across the detecting
microelectrodes for the first 5 min of each data file, and its corresponding
spike count is computed (B) to reveal the MEA-wise stereotypical episodic
synchronization of neuronal activity.

rate, number of active electrodes, number of spikes, number of
bursts, mean burst duration, standard deviation of burst dura-
tion, mean and standard deviation of the inter-burst-intervals,
burst detection threshold, etc.).

DISCUSSION AND CONCLUSION
Starting in the early 2000s, the MEA-Tools (Egert et al., 2002)
laid the foundation for user-friendly analysis of MEA data, and
eventually became a platform-independent, open source frame-
work for the analysis of neuronal activity data, called FIND (Meier
et al., 2008). The toolbox provided for the first time the com-
munity with a convenient graphical user interface, and with a
set of MATLAB routines, for accessing, visualizing, and analyz-
ing MEAs data. Its minor shortcoming of being centered to a
specific hardware system was finally overcome by the DATA-
MEAns (Bonomini et al., 2005), which operates and produces
ASCII files to be used by other graphical, mathematical or sta-
tistical packages. The Neural Signal Manager package (Novellino
et al., 2009) was then designed to perform sophisticated analy-
sis of spike and bursting activities, and the SPYCODE package
(Bologna et al., 2010) increased the repertoire of standard and
advanced tools including cross-correlation analysis and neuronal
avalanche detection. MEABench (Wagenaar et al., 2005), on the

FIGURE 9 | Largest population burst. As in Figure 8, the spike count is displayed and it is centered on the largest MEA-wide synchronization event (i.e., a
burst) (A), together with its corresponding spike raster diagram (B), with increasing temporal resolution (C,D).
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other hand, was designed to provide advanced means at real-time
control of the data acquisition hardware, removal of stimulation
artifact, detection of spikes, visualization of voltage traces with
spike raster plots.

Instead of investing on our own featured package or tool-
box, we explicitly focused on the most time-consuming aspect
of preprocessing large MEA data files. We do understand that
MATLAB is an interpreted language and is not the fastest pos-
sible solution to perform stereotyped operations (e.g., filtering
and peak-detection). Nonetheless, it has inherent advantages that
we strongly favored it as many (new) algorithms are very often
proposed, shared, and validated by the community as MATLAB
code, making their rapid prototyping or implementation easier.
We aimed at taking advantage of those existing analysis tools,
but only handling much smaller and portable preprocessed files
and we obtained a significant overall reduction in the analy-
sis. For some applications (e.g., a pharma industrial context),
however a minimal set of basic analyses and their automated
reporting as a PDF file, as we demonstrated here, could instead
be sufficient to increase user access and throughput of MEA
analysis.

QSpike Tools should be then considered as complementary to
existing tools, and its advantages make it suitable for perform-
ing automated preprocessing of large datasets, prior to any user
interactive (advanced) analysis session.

The limitation of the current version of QSpike Tools is the
compatibility with a single proprietary input file format (i.e.,
∗.mcd), as generated by the acquisition software of the commer-
cial platform we use (i.e., Multichannel Systems). Overcoming
this limitation is a task for the future and it will be rather
simple, in all the cases of raw data formats for which a
file interpreter is already available for MATLAB, under Linux.
Along these lines, we will also rely on community-supported
vendor-neutral initiatives, such as the Neuroshare API library
of functions (http://neuroshare.sourceforge.net). In addition, we
also aim at (i) enriching the user interface of QSpike Tools,
(ii) including a user-specific configuration file to enable cus-
tom sets of analyses, and (iii) extending QSpike Tools to
in vivo data.

Along the lines of the creation of community-supported
Neuroinformatics shared facilities for numerical simulations,
we launch the proposal for one or more facilities dedicated
to automated MEA data analysis. Finally, our work will be
made available through the International Neuroinformatics
Coordinating Facility, INCF (http://incf.org/) website as well as
at https://sites.google.com/site/qspiketool for the community.

INFORMATION SHARING STATEMENT
QSpike Tools and its installation manual are available on request
from https://sites.google.com/site/qspiketool.
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Recent advances in neuroimaging technology and molecular genetics provide the unique
opportunity to investigate genetic influence on the variation of brain attributes. Since the
year 2000, when the initial publication on brain imaging and genetics was released, imaging
genetics has been a rapidly growing research approach with increasing publications every
year. Several reviews have been offered to the research community focusing on various
study designs. In addition to study design, analytic tools and their proper implementation
are also critical to the success of a study. In this review, we survey recent publications using
data from neuroimaging and genetics, focusing on methods capturing multivariate effects
accommodating the large number of variables from both imaging data and genetic data.
We group the analyses of genetic or genomic data into either a priori driven or data driven
approach, including gene-set enrichment analysis, multifactor dimensionality reduction,
principal component analysis, independent component analysis (ICA), and clustering. For
the analyses of imaging data, ICA and extensions of ICA are the most widely used
multivariate methods. Given detailed reviews of multivariate analyses of imaging data
available elsewhere, we provide a brief summary here that includes a recently proposed
method known as independent vector analysis. Finally, we review methods focused on
bridging the imaging and genetic data by establishing multivariate and multiple genotype-
phenotype-associations, including sparse partial least squares, sparse canonical correlation
analysis, sparse reduced rank regression and parallel ICA. These methods are designed to
extract latent variables from both genetic and imaging data, which become new genotypes
and phenotypes, and the links between the new genotype-phenotype pairs are maximized
using different cost functions. The relationship between these methods along with their
assumptions, advantages, and limitations are discussed.
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INTRODUCTION
While most genetic studies have focused on phenotypes as
diagnoses and clinical symptoms, it is relatively recent that
intermediate phenotypes have become an ever increasing focus.
Intermediate phenotypes refer to biological trait phenotypes con-
veying relatively closer association or higher penetration than
traditional phenotypes (Meyer-Lindenberg and Weinberger, 2006;
Rasetti and Weinberger, 2011). The best examples of approaches
leveraging intermediate phenotypes come from studies of psychi-
atric disorders for which diagnoses are based mainly on clinical
observations and interviews. Intermediate phenotypes derived
from neuroimaging and signals directly assessing brain struc-
ture and function not only reduce the phenotypic heterogeneity
common to many psychiatric disorders, but also increase detec-
tion power, given the genetic effects are not expressed directly
as behaviors but as molecular and cellular functions mediating
brain development and processes (Gottesman and Gould, 2003;
Rose and Donohoe, 2013). The pioneer studies utilizing neu-
roimaging features to identify genetic impact were in the year 2000
(Bookheimer et al., 2000; Heinz et al., 2000; Small et al., 2000).
They signified the birth of a new research approach using imaging
genetics. As defined (Hariri et al., 2006; Meyer-Lindenberg et al.,
2008; Silver et al., 2011; Meyer-Lindenberg, 2012), it combines

genetic information and neuroimaging data in the same subjects
to discover neuromechanisms linked to psychiatric disorders.
The overall strength of imaging genetics and its impact on psy-
chiatric disorder studies or broader have been stated clearly in
several reviews (Meyer-Lindenberg and Weinberger, 2006; Glahn
et al., 2007; Bigos and Weinberger, 2010; Meyer-Lindenberg, 2010;
Rasetti and Weinberger, 2011).

The overwhelming growth of imaging genetics in recent years
as summarized in recent studies (Roffman et al., 2006; Bigos and
Weinberger, 2010), while providing abundant promising results,
also reveals challenges embedded within study designs such as
validity of candidate genes, control of non-genetic confounding
factors, and selection of tasks to stimulate brain specific pro-
cesses. Bigos and Weinberger (2010) have provided an excellent
review with applications to demonstrate the principles in design-
ing an imaging genetic study. Another big challenge faced by both
imagers and geneticists is how to properly analyze the collected
data, since both neuroimaging and genetics tend to generate a
large amount of data. Different strategies, processing approaches,
and validation methods such as false positive control (Silver et al.,
2011) have been implemented and tailored for different condi-
tions. But there is an even greater need in the future for the
methodology development as pointed by Mayer-Lindenberg in
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his recent review (Meyer-Lindenberg, 2012), where complexity
of epistasis, pleiotropy and genetic by environment interactions
should been considered in particular in large scale genomic stud-
ies. The availability of imaging genetic analytic tools and their
proper implementation are critical for both success of individual
studies and the continuing growth of imaging genetics.

The earliest imaging genetic studies focused on candi-
date genetic variants using either a single or a few variables
(Bookheimer et al., 2000; Heinz et al., 2000; Small et al., 2000;
Egan et al., 2001). For example, the dopamine transporter gene
(SLC6A) was analyzed with neuroimaging data from single-
photon emission computed tomography (Heinz et al., 2000).
Variation within the APOE gene was associated with activities in
memory function affected by Alzheimer’s disease (Bookheimer
et al., 2000). COMT Val allele carriers showed increased activ-
ities in the prefrontal cortex compared to Met allele carriers
(Egan et al., 2001). In parallel, the intermediate phenotypes from
neuroimaging techniques can also be specified within selected
brain regions or particular processes. Straightforward univariate
analyses are often used and well suited for these studies. Candi-
date gene and candidate imaging phenotype studies in the last
decade have proven the validity of imaging genetic approach as
recapitulated in (Meyer-Lindenberg, 2012). But with the com-
pletion of human genome sequence and multimodal imaging
practices, in conjunction with increased evidence of polygenic-
ity and pleiotropy (Purcell et al., 2009; Sivakumaran et al., 2011;
Whalley et al., 2012; Smoller et al., 2013), multivariate analysis
methods are becoming more and more demanding. For instance,
thousands of genetic variants have been suggested to be linked
with the risk for schizophrenia (Purcell et al., 2009). Methods
to capture the interactive or integrated genetic effects of a set of
genetic variants, methods to extract brain networks formed from
individual voxels or regions, and methods to detect, possibly, mul-
tiple genotype-phenotype connections have been developed with
their limitations and advantages (Hardoon et al., 2009; Liu et al.,
2009b; Vounou et al., 2010; Le Floch et al., 2012). We expect to see
continued development of such powerful methods to face the chal-
lenges and promises from genome-wide whole brain association
studies.

In this review, we focus on analysis approaches and, more
specifically, on the multivariate analysis approaches. We will first
give an overview of analysis strategies. Then, we will survey the
methods and organize them according to their multivariate nature
on genetic data, neuroimaging data or both.

OVERVIEW OF ANALYSIS STRATEGIES IN IMAGING
GENETICS
While various strategies can be applied to design and perform
imaging genetic studies, several aspects of such studies require
particular caution. Firstly, when an imaging feature is selected
as the intermediate or endophenotype, useful criteria should be
applied or at least considered. As summarized in (Gottesman and
Gould, 2003) intermediate phenotypes should show association
with illness in a population, certain level of heritability, and state-
independent characters. A proper preprocessing or controlling
for possible confounding factor should also be in place, such
as scanning effects, age or gender difference, brain size, etc.

The most often used software packages to process brain imaging
data, particularly for magnetic resonance imaging (MRI) images,
include FSL1 , SPM2, and AFNI3 for functional and structural
voxel-wise preprocessing, and FreeSurfer4 for brain regional vol-
ume and cortical thickness. Secondly, genetic data either from
single genetic mutation or genomic variants should be checked
for family structure, population structure, and ethnicity differ-
ences. A rationale to pull samples together should be justified
through, for instance, from a homogenous group, no indication
of population structure, or a proper control of ethnicity differ-
ence. The most often used software package for single nucleotide
polymorphism (SNP) data is plink5, which provides tools to do
various quality control, sample relatedness tests, filtering and
population stratification. The most often used software pack-
ages (freely available) for calling copy number variation (CNV)
include PennCNV6, and BirdSuite7. Even though the effect of
CNVs on brain imaging phenotypes is understudied now, it has
been predicted to be an important extension in the future (Meyer-
Lindenberg, 2012). Thirdly, methods to test the relation between
genetics and imaging phenotypes heavily rely on the dimension-
ality of data, as explained explicitly in next paragraph. Finally,
the interpretation of results depends on the study design and
analysis approaches. Keep in mind that most imaging genetic
studies test the association between genetic variants and imag-
ing phenotypes, as the analytical method itself reveals later on.
Any causal relation and underlying biological mechanism is only
suggestive. Particular caution should be given to genome-wise
association studies which result in a set of genetic variants interac-
tively associated with imaging phenotypes. The interaction among
them, linear, non-linear, dominate, recessive, two-way or n-way,
etc., needs to be carefully explained and some methods test the
overall effect without knowing the detailed interrelations. The
verification or at least certain levels of cross evaluation for such
findings as described in (Le Floch et al., 2012) plays a very crucial
role.

Depending on the dimensionality of investigated genotypes
and imaging intermediate phenotypes, we can classify imaging
genetic studies into four categories, which is a concept bor-
rowed from Vounou et al. (2010). As plotted in Figure 1, the
first one includes studies with candidate phenotypes and can-
didate genotypes, where a direct univariate association test is
applied to assess the hypothesized connection. A control for
possible confounding factors (scanner, age, gender, medication,
etc.) should be considered for imaging phenotypes. The second
type includes studies investigating multiple genetic variants, rang-
ing from a few to 100s of 1000s of variables in a genome-wide
setting. Univariate tests corrected for multiple comparisons are
straightforward (Potkin et al., 2009), but it may miss the well

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
2http://www.fil.ion.ucl.ac.uk/spm/
3http://afni.nimh.nih.gov/afni/
4https://surfer.nmr.mgh.harvard.edu/
5http://pngu.mgh.harvard.edu/∼purcell/plink/
6http://www.openbioinformatics.org/penncnv/
7http://www.broadinstitute.org/scientific-community/science/programs/medical-
and-population-genetics/birdsuite/birdsuite
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FIGURE 1 | Overview of imaging genetic studies and methods applied.

Category 1: candidate genotype with candidate phenotype. Category 2:
sets of genotypes with candidate phenotype. Category 3: candidate
genotype with multiple imaging phenotypes. Category 4: sets of
genotypes with multiple imaging phenotypes. Methods written in bold are
multivariate analysis methods. GSEA: gene set enrichment analysis; GRS:
genetic risk score; MDR: multifactor dimensionality reduction; PCA:
principal component analysis; ICA: independent component analysis; IVA:
independent vector analysis; MULM: mass univariate linear model; PLS:
partial least square; CCA: canonical component analysis; RRR: reduced
rank regression.

documented gene–gene interactions. Data driven multivariate
methods and a priori based gene-set or pathway analyses are
the two main analytical approaches to capture the interactive or
integrated genetic effect (Liu et al., 2010b; Walton et al., 2013).
What type of interactive relation among genes can be captured
depends on the analytic methods or specifically, the models that
the methods are built on. The third type includes studies inves-
tigating multiple imaging phenotypes, which may come from
one or more imaging modalities, such as structural, functional
MRI, magnetic resonance spectroscopy, etc. The imaging pheno-
types may cover whole brain or many brain regions or voxels.
Except for voxel-wise analyses with multiple comparison correc-
tion, the strategy to analyze such phenotypes usually is to extract
brain networks formed by interactive brain regions or voxels,
thus not only accommodating interrelations but also reducing
the number of tested phenotypes (Calhoun and Adali, 2006).
The last group of studies involves associations between mul-
tiple genotypic variables and multiple phenotypic variables. A
typical example is genome-wide whole brain studies. Although
massive univariate approaches have been implemented such as
a mass-univariate linear model (MULM) in studies (Stein et al.,
2010), most utilize data reduction and factorization methods to
effectively capture the interactive and complex relations within
and between datasets. In the following, we present the analyti-
cal methods implemented in studies of the last three categories,
category 2: sets of genotypes with candidate phenotype, cate-
gory 3: candidate genotype with multiple imaging phenotypes,

and category 4: sets of genotypes with multiple imaging phe-
notypes. We focus on the multivariate approaches for each
category.

A priori BASED MULTIVARIATE ANALYSES ON
GENETIC/GENOMIC DATA (CATEGORY 2)
Gene set enrichment analysis (GSEA) is a computational method
that determines whether a prior defined set of genetic variants
shows statistically significant differences between two biologi-
cal states (Mootha et al., 2003; Subramanian et al., 2005) or,
more generally, significant associations with phenotypes com-
pared to the null hypothesis. The GSEA was first introduced in
cancer research and thereafter various modified versions have
been introduced in studies of different diseases that includes
psychiatric disorders (Subramanian et al., 2005; Holden et al.,
2008; Suarez-Farinas et al., 2010; Oh et al., 2011; Weng et al.,
2011). The basic principle of GSEA is that sets of genetic vari-
ants are first selected for tests. We will use SNPs as an example
of genetic variants without loss of generality in this review. A
set of SNPs are selected based on common biological attributes
(gene ontology or pathways), chromosome location, or reported
results in the literature. Then the overrepresentation, or “enrich-
ment,” of phenotype-association of this set of SNPs as one unit
is calculated against the null hypothesis of normally distributed
phenotype-association. Among many ways to decide the signif-
icance of enrichment (Abatangelo et al., 2009), the two most
common methods are Fisher’s exact test and enrichment score
test (Subramanian et al., 2005). Fisher’s exact test is fast but needs
a pre-defined threshold, while enrichment score does not need
a threshold but needs a permutation to get empirical p values.
Specific issues associated, such as gene size bias (Mirina et al.,
2012), linkage disequilibrium (LD) between adjacent SNPs, have
been addressed by various modified versions (Liu et al., 2010b; Li
et al., 2011). The rationale to select the set of SNPs comes from
prior information, so this approach is indeed a priori driven test
for the overall effect of multiple variables, without modeling the
exact interaction among them. Another similar approach pro-
posed by Walton et al. (2013) is to compute a cumulative genetic
risk score (GRS = ∑N

i=1 wixi), which combines the additive
effects of multiple SNPs selected from the continuously updated
meta-analysis of genetic studies. The authors showed that this
multivariate score combined the impact of many genes with
small effects, accounting for 3.6% of the total variance of brain
activity at dorsal lateral prefrontal cortex (Walton et al., 2013).
Similar approaches using polygenic risk scores have been imple-
mented in several other studies (Whalley et al., 2012; Smoller et al.,
2013).

DATA DRIVEN MULTIVARIATE ANALYSES ON
GENETIC/GENOMIC DATA (CATEGORY 2)
Unlike the approaches above, some studies have implemented
purely data driven analyses without prior information, empha-
sizing the genetic patterns embedded in the datasets to capture
the epistasis and polygenicity. Multifactor dimensionality reduc-
tion (MDR) was developed to identify combinations of gene–gene
and gene-environmental factors that are predictive of a pheno-
type (Hu et al., 2011; Gui et al., 2013; Pan et al., 2013). The heart
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of MDR is an attribute construction algorithm that creates a
new variable by pooling genotypes from multiple SNPs (Moore
et al., 2010). In brief, values from any combination of multi-
ple SNPs are classified into two distinct groups, high risk and
low risk, effectively reducing the dimensionality from multidi-
mensional to one-dimensional. Subsequently, the new variables
are used to identify, from all potential combinations, the specific
combination of SNPs showing the strongest association with the
phenotype. This method with no particular model assumption
is well suited for capturing epistasis and has been used in genet-
ics studies of various disease status (Ritchie et al., 2001; Moore
and Williams, 2002; Ma et al., 2005; Lou et al., 2007; Gui et al.,
2011). Extensions of the method have been developed for quanti-
tative phenotypes and genome-wide data (Lou et al., 2007; Pattin
et al., 2009; Cattaert et al., 2011; Oh et al., 2012; Winham, 2013).
It is expected to see more broad applications of this method even
in imaging genetics (Papassotiropoulos and de Quervain, 2011).
Within the same line of estimating aggregated effect of multiple
genetic variants, but based on a linear additive model, multi-
ple regression and its penalized or modified versions have been
implemented to assess the explanation power of gene variables
(from a couple to genome-wide) to various of phenotypes (Wang
and Abbott, 2008; Wu et al., 2009; Cule et al., 2011). Penalized
regression, specifically LASSO multiple regression, are also often
used to downsize variables (voxels or SNP) for further analyses
(Vounou et al., 2012).

Other types of data-driven approaches, as reviewed in (Jom-
bart et al., 2009), mainly include principal component analysis
(PCA), principal coordinate analysis, non-metric dimensional
scaling, and correspondence analysis, belonging to the category
of matrix decomposition and extracting factors/components of
weighted genetic variants. An addition to the review is indepen-
dent component analysis (ICA). PCA provides a set of linearly
orthogonal principal components, explaining maximal variance,
while ICA is designed to extract statistically independent com-
ponents (and thus uses higher order statistical information).
PCA is often used in genome-wide SNP data, and the top PCs
extracted most likely present the population structure helpful
for population stratification (Price et al., 2006; Liu et al., 2010a).
ICA has proven successful in a variety of biological inquiries
when applied to gene expression data (Kong et al., 2008), includ-
ing identifying tumor-related pathways (Saidi et al., 2004; Sheng
et al., 2011), classifying disease datasets (Huang and Zheng, 2006)
and mining human gene expression modules (Engreitz et al.,
2010).

The value of clustering methods has been established in vari-
ous genetic studies, as reviewed by Jiang et al. (2004), as a means
to group genetic variants according to their functional relatedness
(D’haeseleer, 2005). In an example of using imaging as pheno-
types, Sloan et al. (2010) applied a hierarchical clustering analysis
on 834 SNPs and clinical and imaging phenotypes, including left,
right hippocampal volume and gray matter density. The associ-
ation between each SNP and each endpoint was first computed,
and then the clustering was performed on the results, wherein
both genotypes and phenotypes were grouped based on similarity.
Subsequently, p-values for each cluster were estimated using boot-
strap resampling. This study showed that (1) SNPs are frequently

associated with imaging phenotypes and rarely associated with
clinical scores and (2) most of the genes found within clusters
are associated with either beta-amyloid production or apoptosis
(Sloan et al., 2010). A noteworthy point of this study is that it com-
bined a pathway-based approach and clustering analyses together,
first by selecting SNPs based on pathways and then applying clus-
tering on genotypes and phenotypes, and demonstrated that priori
driven and data driven approaches can be integrated into one
study.

COMPONENT-BASED ANALYSES ON IMAGING DATA
(CATEGORY 3)
Not only does the development of various neuroimaging tech-
niques improve the precision of measurement of brain attributes,
but it also stimulates the growth of analysis approaches. The
most common imaging modalities include functional MRI
(fMRI), measuring the dynamic brain activity based on blood-
oxygenation-level dependent contrast; structural MRI, assessing
the volume and density of gray matter, white matter, and
cerebrospinal fluid; diffusion (tensor) imaging, depicting the
white matter tract connections; and magnetic resonance spec-
troscopy, obtaining biochemical information about the tissues
of brain. Furthermore, collecting multiple types of imaging
data from the same individuals becomes a common practice
in the hope of revealing additional information and increas-
ing our knowledge. Thus, methods for multimodal analyses
have also emerged and developed rapidly. Here, we limit our-
selves to the component-based multivariate analysis approaches
applied to imaging data, though there are many other multi-
variate approaches, such as unsupervised clustering, supervised
pattern recognition, classification and projection, and others
(Dimitriadou et al., 2004; Demirci et al., 2008; Hinrichs et al., 2009;
Filipovych and Davatzikos, 2011).

ICA with various implementation algorithms (Cardoso, 1997;
Hyvirinen and Oja, 1999; Bingham and Hyvarinen, 2000) and
its modifications and extensions (Bach and Michael, 2002; Beck-
mann and Smith, 2004; Calhoun et al., 2005; Hong et al., 2005;
Lin et al., 2010) are the most popular methods for multivari-
ate analyses on imaging data. Several reviews have been offered
to the imaging field (McKeown et al., 2003; Calhoun and Adali,
2006; Calhoun et al., 2009). Here, we briefly summarize the main
points. A typical ICA model assumes that the source signals are
not observable, statistically independent and non-Gaussian with
an unknown but linear mixing process. Consider an observed
M–dimensional random vector denoted by X = [x1, x2,...,xM ]T ,
which is generated by the ICA model: X = AS, S is the source
matrix. The goal of ICA is to estimate an unmixing matrix W
such that Y given by Y = WX is a good approximation to the
“true” sources. Y is called the component matrix. In the con-
text of imaging data, components are the independent brain
networks embedded in the observed voxels. Furthermore, when
MRI data from multiple subjects, each with their own temporal
dynamics, are of interest, several ICA based multi-subject analysis
approaches have been proposed (Calhoun et al., 2001; Schmithorst
and Holland, 2004; Beckmann and Smith, 2005; Esposito et al.,
2005; Erhardt et al., 2011; Calhoun and Adali, 2012). We refer to
recent studies by Calhoun and Adali (2012); (Calhoun et al., 2009)
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for a more detailed explanation. A recent addition is indepen-
dent vector analysis (IVA), which is a generalization of ICA for
analysis of multiple datasets (Kim et al., 2006). It takes a model
of X[m] = A[m]S[m], Y[m] = W[m]X[m], where M is the number
of datasets. Its cost function, the Kullback–Leibler divergence
between two functions of dependence (joint probability density
function of components and the product of marginal probability
density function of components), allows maintaining the inde-
pendency among components while increasing dependency of
components between datasets (Lee et al., 2008a,b). Based on sim-
ulation (Lee et al., 2008b; Dea et al., 2011), IVA shows excellent
performance in capturing inter-subject variability and the perfor-
mance enhancement increases when the spatial variation of a given
component across subjects is substantial.

For multimodal imaging analyses, a set of solutions with dif-
ferent emphases have been proposed and extensive reviews of
these methods are also available (Biessmann et al., 2011; Sui et al.,
2012a). Biessmann et al. (2011) reviewed the multimodal analy-
ses from a variety of perspectives, including multimodal imaging
study setup, the advances achieved in basic research and clinical
applications, the methods for artifact removal, data-driven and
model-driven analyses, and univariate and multivariate fusion.
Sui et al. (2012a) focused on comparisons of the multivariate
multimodal fusion methods rooted in ICA, canonical component
analysis (CCA), and partial least squares (PLS) analysis. Similarity
between methods fusing multimodal imaging data and multivari-
ate analyses to bridge imaging and genetics are discussed in the
next section.

MULTIVARIATE ANALYSES BRIDGING IMAGING AND
GENETICS (CATEGORY 4)
Given the characteristics of imaging and genetic data, multivari-
ate multiple regression is a natural choice, where genetic variants
are predictors along with other influencing factors such as age
and gender, and imaging variables (regions or voxels of brain)
are response variables. In practice with a set of SNPs and brain
voxels (they are usually not independent to each other), reg-
ularization or modification of traditional multivariate multiple
regression has to be taken in place. Wang et al. (2012a) proposed
a group sparse regularization on multivariate regression. SNPs
are grouped based on genes or LD blocks. A group sparsity to
reduce to only genes or LD blocks relevant to all imaging pheno-
types, and an individual sparsity to select only important SNPs
are all enforced. Lin et al. (2012) presented a projection regres-
sion model that is also suitable for imaging genetics. The key
of this model is to estimate the principal components of heri-
tability (covariance between multiple phenotypes and genetics of
interest), followed by a multivariate regression on the principle
components.

When facing a very large number of genetic variants, such
as genomic SNPs, and a large number of voxels in the brain,
researchers in imaging genetics, very interestingly, has focused on a
series of very closely related methods to capture interactive or inte-
grated effects and possibly many genotype-phenotype pairs. These
methods include PLS, CCA, reduced rank regression (RRR), and
ICA (Hardoon et al., 2009; Liu et al., 2009b; Vounou et al., 2010,
2012; Le Floch et al., 2012; Meda et al., 2012; Chi et al., 2013).

They are designed to simultaneously extract latent variables from
both genetic and imaging data, which become new genotypes and
phenotypes, and the connections of new geno-pheno variables are
maximized using different cost functions.

We can use a typical imaging genetic example to illustrate the
relation of these methods. We denote by X an n × p matrix of
genetic SNP data, and by Y an n × q matrix of imaging data,
where n is the sample size, p is the size of SNP loci, q is the size of
voxels, and n << p or q. The latent variables are obtained through
projecting the X or Y to new directions formed by the vectors in
U or V matrices. Figure 2 plots the cost function of each method
and the condition under which two different methods become
equivalent. PLS maximizes the covariance between latent vari-
ables of the two modalities, while CCA maximizes the correlation
between them. In a high-dimensional problem where the number
of variables is significantly larger than the number of samples, it
is common to assume that the covariance matrices of X and Y are
diagonal (Vounou et al., 2010; Le Floch et al., 2012). Under such a
condition, CCA and PLS become equivalent. The RRR model takes
a more general formation that begins from a multivariate linear
regression from X to Y, and reduces the rank of the project matrix,
a product of UV ′. Through minimizing the regression error noted
as(Y − XUV ′)�(Y − XUV ′)′, RRR obtains the project matrices
U and V. When the function of � is the identify matrix, RRR is
equivalent to PLS, and when the function of � is the inverse of
covariance matrix Y′Y, RRR is equivalent to CCA. Note that the
core computations of PLS, CCA and RRR all involve single value
decomposition so that the latent variables or projection vectors
within one modality (genetic or imaging) are orthogonal to each
other. In contrast, ICA emphasizes that latent variables (compo-
nents) are maximally independent from each other, which can be
optimized through many forms of statistical measures, including
minimization of mutual information and maximization of non-
Gaussianity. One extension of ICA methods applied to imaging
genetics is parallel ICA, which simultaneously maximizes both the
independence of components and correlations between projection
vectors of the two modalities (Liu et al., 2008b).

Parallel ICA was first introduced into imaging genetics in 2009
(Liu et al., 2009b) when applied to a genetic study of schizophrenia

FIGURE 2 | Cost functions of four multivariate association methods,

and their relation and extensions for a large number of variables.
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with a 384 SNP array and auditory oddball fMRI data. Since then,
this method has been made available for the public through the
fusion ICA toolbox8. This approach has been utilized by various
other groups (Jagannathan et al., 2010; Meda et al., 2010, 2012;
Meier et al., 2012). A noteworthy point is that parallel ICA can
also be applied onto other types of data in addition to genetics
and images (Liu and Calhoun, 2007; Liu et al., 2009a; Wu et al.,
2011; Meier et al., 2012). A simulation study showed that par-
allel ICA performs better within a certain range of sample size
vs. genetic variable ratio (Liu et al., 2008a). When a genome-
wide high-density large genetic array (e.g., >100K SNP loci) is
in place with a relatively small sample size, new extensions of
parallel ICA are proposed to improve the performance by incor-
porating prior information about genetic or imaging data called
parallel ICA with reference (Liu et al., 2012a; Chen et al., 2013).
As showed by Chen et al. (2013), this approach leverages prior
knowledge of known genetic functions to guide ICA for specific
components. Thus, a specific SNP factor centered at gene ANK3,
which is a schizophrenia susceptibility gene (Ripke et al., 2011),
was extracted from a large SNP array (>700K loci). While this
method does help extract particular genetic components, which
may not be extracted otherwise (Liu et al., 2012a; Chen et al.,
2013), its performance relies on the accuracy of reference (Liu
et al., 2012a).

As noted above, PLS, CCA, and RRR are closely related. They
all introduced the sparse version of algorithms – sparse PLS
(Le Floch et al., 2012), sparse CCA (Boutte and Liu, 2010; Chi
et al., 2013), and sparse RRR (Vounou et al., 2010, 2012) – when
applied onto a large number of variables in imaging genetics.
Not only does the increase of sparsity make the interpretation
more plausible, but also strengthens the stability of results by
avoiding the over-fitting problem. Le Floch et al. (2012) showed
through simulation that different levels of regularization on spar-
sity may produce different results for CCA and PLS, and the two
methods converge together with the corresponding regulariza-
tion strength. Similarly, for RRR, sparsity affects the performance
(Vounou et al., 2010), and how to choose sparsity is critical in
real applications. Up to now, only sparse PLS (combined with a
filtering step) and sparse RRR have been applied to real imag-
ing genetic data with larger than 100k loci (Le Floch et al., 2012;
Vounou et al., 2012).

The differences among these methods besides mathematical
models listed above also include settings in practice. First, the
number of latent variables (components or ranks) to test is chosen
differently. CCA, PLS, and RRR extract same numbers of compo-
nents for genetic and imaging data, and pair-wise connections are
tested. Though guidance is discussed for the choice of component
number, users of these methods tend to be very conservative. Sil-
ver et al. (2012) only investigated the components from first rank
in their RRR application, and Vounou et al. (2010, 2012) inves-
tigated the top three ranks. In the application of CCA, Hardoon
et al. (2009) tested the top pairs of components, and Le Floch et al.
(2012) examined the first two pairs of components for both CCA
and PLS methods. In contrast, parallel ICA, following the principle
of Infomax ICA (Bell and Sejnowski, 1995; Cardoso, 1999), first

8http://mialab.mrn.org/software/fit

estimates the number of components embedded in genetic and
imaging data. Estimation is either based on information theory
(Akaike, 1974; Li et al., 2007) or stability (Chen et al., 2012a), with
the goal of reliably, maximally explaining the variance of data.
The number of components for genetic and imaging data can be
different, and the pairs of related components between the two
modalities are driven by data. Sometimes pair-wise correlations
are not necessary (Meda et al., 2012). Judging from this aspect,
parallel ICA carries advantage of exploring more possible connec-
tions between the two modalities, while other methods target only
the top correlated components.

Second, all methods are limited in handling a large number of
variables (particularly SNP loci). CCA, PLS, and RRR methods
may run into over-fitting problems, where cross evaluation per-
formance drops (Le Floch et al., 2012). Parallel ICA fails to identify
the connections between modalities (Liu et al., 2008a). The ways
to overcome this limitation are also different. Pre-filtering SNP
loci to reduce the dimensionality is successfully implemented for
CCA and PLS. Le Floch et al. (2012) presented a comprehensive
comparison of PLS and CCA combined with different filtering
methods. They showed that incorporating a filtering step before
the multivariate association test (with the goal of removing irrele-
vant SNPs) can improve the performance for both methods. Their
real data application makes clear that the dimension reduction
(which reduced 700k SNPs down to 1000 SNPs) is an impor-
tant step for avoiding over-fitting with such large genetic data.
Although various means can be used to pre-filter SNPs, we rec-
ommend leveraging large population genetic data as a reference,
such as Psychiatric Genomics Consortium9. For RRR, enhancing
the sparsity to select only a small number of SNPs is an effec-
tive way to increase stability. Yet, the choice of sparsity is not
easy (Vounou et al., 2010). N-fold cross evaluation can be used
to decide the best parameter. Vounou et al. (2012) chose to test
a range of sparsity settings and select resultant SNPs with high
probability. Parallel ICA leverages prior information (a referential
SNP set) to increase chances of extracting relevant genetic compo-
nents associated with imaging phenotypes from large SNP data.
The difficulty with this approach lies in how to decide the ref-
erence. In particular, what we should do when we do not have
any prior knowledge about genetics regarding a particular pheno-
type? While prior information helps interpret the genetic result in
a degree, parallel ICA need to threshold the resultant latent vari-
able to select the most weighted SNPs, since no sparsity is in place
(Chen et al., 2013).

Third, verification of results from latent variables is very impor-
tant to guard against false discoveries. N-fold cross evaluation has
been utilized for CCA and PLS, and sub-sampling is used in RRR,
not exactly verification but increasing the stability (Silver et al.,
2012; Vounou et al., 2012). Permutation and leave-one-out evalu-
ation are used in parallel ICA (Liu et al., 2009b; Chen et al., 2012b).
We strongly recommend future users to incorporate certain verifi-
cation steps in their studies, given the complexity of the methods
mentioned. To date, only parallel ICA has a ready-to-use package
available10.

9https://pgc.unc.edu/
10http://mialab.mrn.org/software/fit/
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Except for multivariate analyses based on latent variables,
methods in machine learning category, i.e., training algorithms
with known knowledge and using them to predict the unseen
data, have also been applied to imaging genetics. For instance,
support vector machine on ICA factors of genetic and fMRI
data together achieved better separation of schizophrenia patients
from controls than using either type of data alone, suggesting
that genetic and brain functions capture different, but partially
complementary schizophrenic features (Yang et al., 2010). Within
the same line, Wang et al. (2012b) proposed a multimodal mul-
titask learning algorithm that combines genetic and multimodal
imaging features to predict simultaneously diagnoses and cogni-
tive function. In this algorithm, classification and regression are
performed jointly, and a group L1-norm regularization is used
for feature selection to integrate heterogeneous imaging genetic
data. One of strengths of this approach is that genetic markers
and imaging biomarkers relevant for both diagnosis and cognitive
function are identified. Another new application of learning algo-
rithms in imaging genetics is random forest on distance matrices,
where by employing distance measures between input variables,
various interactions (away from original space) are modeled and
random forest search is used for selection of best sets of fea-
tures (Sim et al., 2013). While it provides promising results, the
requirement for intensive computation and sophisticated mod-
eling may hinder further applications, which is true for other
methods too.

CHALLENGE AND FUTURE DEVELOPMENTS
During the last decade, imaging genetics has rapidly developed
into a promising, high impact research field and extended into a
body of studies on mental disorders, including both human and
animal studies. As Meyer-Lindenberg (2012) stated, future imag-
ing genetic studies have to confront the complexity of epistasis,
pleiotropy and gene-by-environment interactions, and this issue
will become even more pressing as the field moves into whole
genome sequencing. Although methods reviewed here attempt to
tackle this complex problem, limitations are clear. For example,
none of the methods can really address the genome-wide whole
brain association without filtering or dimension reduction. Some
multivariate methods such as MDR and prior knowledge guided
approaches have not been fully incorporated into imaging genetics
yet. Methods of CCA, PLS and RRR, facing over-fitting issues when
handling large genetic variables, may be improved by leveraging
prior information. Methods of parallel ICA may need to enhance
sparsity within the independent genetic components. Such lim-
itation in fact relates to a common problem across multivariate
analyses, which is the difficulty in interpreting results (i.e., results
are lack of direct biological meaning). For instance, GSEA does not
model the exact interaction among SNPs. The latent component
does not necessarily hold direct biological reason why multiple
genetic variants form into one factor, or why hundreds of voxels
group into one brain network. One way to alleviate this problem
is to incorporate additional information, such as known biologi-
cal information, cellular level information, or behavioral specific
information, into analyses. Further developing current methods
and integrating more information will continue to be an important
research frontier.

As matter of fact, another pressing demand raised by Meyer-
Lindenberg (2012) in the future of imaging genetics is to integrate
various types of data relevant to imaging genetics, beyond just
two modalities. The new data can be proteomic, gene expression,
epigenetic, behavioral and environmental variables. Studies have
shown their relevance to brain structural and functional changes,
genetic mutations, and psychiatric disorders (Clark et al., 2006;
Serretti et al., 2007; Maric and Svrakic, 2012; Liu et al., 2013). The
relationship among these data is by no means simple and pair-
wise. To date, very few methods have been applied in imagine
genetics to tackle the relation beyond two modalities (expect for
post hoc analyses with behavior or diagnosis). It is very promising
to see that some studies have stepped into this direction, though
only for multimodal imaging data (Correa et al., 2010; Sui et al.,
2012b). How to integrate such data in a systemic way with embed-
ded biological hierarchy is still an untouched land. Methods and
models incorporating multiple levels of biological variables (here
including behavioral or environmental variables) into broader
imaging genetics are another research direction of great potential
and impact.

To date, very few studies focused on CNV’s effect on brain-
based phenotypes (Yeo et al., 2011; Boutte et al., 2012; Liu et al.,
2012b), even though many studies have identified a relation-
ship between CNVs with psychiatric disorders (McCarroll and
Altshuler, 2007; Bassett et al., 2008; Guilmatre et al., 2009). Meyer-
Lindenberg (2012) has indicated that the future of imaging
genetics will recognize the importance of the sizeable amount of
variation in CNVs. Given the low incidence of individual CNVs, in
particular large and rare CNVs, such studies are more likely from
multi-site collaborations, where increasing numbers of imaging
genetic studies are heading for (Schumann et al., 2010; Thomp-
son et al., 2014). Methods to encompass data from multi-sites,
controlling for not only different equipments or experiments but
also different local populations or environments, are in great
need, which have to consider both computational feasibility and
mathematical (model) validity.

Given that the future focus of imaging genetics is expected
to be multi-site, large scale, genome-wide whole brain, multiple
level association studies, we believe that more effort should be
focused on the development of methods that can confront these
challenges.
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Throughout the past few decades, the ability to treat and rehabilitate traumatic brain
injury (TBI) patients has become critically reliant upon the use of neuroimaging to acquire
adequate knowledge of injury-related effects upon brain function and recovery. As a result,
the need for TBI neuroimaging analysis methods has increased in recent years due to
the recognition that spatiotemporal computational analyses of TBI evolution are useful for
capturing the effects of TBI dynamics. At the same time, however, the advent of such
methods has brought about the need to analyze, manage, and integrate TBI neuroimaging
data using informatically inspired approaches which can take full advantage of their large
dimensionality and informational complexity. Given this perspective, we here discuss the
neuroinformatics challenges for TBI neuroimaging analysis in the context of structural,
connectivity, and functional paradigms. Within each of these, the availability of a wide range
of neuroimaging modalities can be leveraged to fully understand the heterogeneity of TBI
pathology; consequently, large-scale computer hardware resources and next-generation
processing software are often required for efficient data storage, management, and
analysis of TBI neuroimaging data. However, each of these paradigms poses challenges in
the context of informatics such that the ability to address them is critical for augmenting
current capabilities to perform neuroimaging analysis of TBI and to improve therapeutic
efficacy.

Keywords: neuroinformatics, traumatic brain injury, neuroanatomy, connectomics, rehabilitation, MRI, DTI

INTRODUCTION
Traumatic brain injury (TBI) affects ∼1.7 million people in the
United States every year, leading to roughly 50,000 cases of
mortality and 80,000 cases of permanent severe neurological dis-
ability annually (Ghajar, 2000; Faul et al., 2010). Throughout the
past few decades, the use of neuroimaging to acquire knowl-
edge of injury-related effects upon brain function and recovery
has become prominent due to the recognition that spatiotem-
poral computational analyses of TBI evolution are useful for
capturing the effects of its dynamics (Irimia et al., 2011). On the
other hand, the proliferation of neuroimaging studies has brought
about the need to analyze, manage, and integrate TBI neuroimag-
ing data with sophisticated neuroinformatics methods which can
address and handle their large dimensionality and informational
complexity.

The high dimensionality of TBI neuroimaging data poses one
of the most significant challenges to the development and imple-
mentation of data processing workflows for TBI analysis. This
dimensionality stems partly from the fact that various types of
magnetic resonance imaging (MRI) sequences reveal only cer-
tain aspects of TBI pathology, which implies that their combined
use is often necessary in order to acquire a comprehensive view
of TBI lesion type and extent. For instance, fluid attenuated
inversion recovery (FLAIR) and susceptibility weighted imaging
(SWI) are MRI sequence types which are suitable for detecting

edema and cerebral micro-hemorrhages, respectively (Irimia et al.,
2011). Partly because of such qualitative and quantitative differ-
ences between MRI sequence types as well as between MRI and
other imaging modalities such as computed tomography (CT) and
positron emission tomography (PET), a vital component of TBI
neuroimaging involves the availability of multimodal neuroimag-
ing data sets to aid in the identification and characterization of
pathology.

Present methodologies for long-term clinical assessment of
this condition include the use of scoring scales such as the Glas-
gow Coma Scale (GCS), which is a frequently used evaluator of
consciousness level and head injury severity. Additional clinical
measures of functional outcome after TBI which are used in clini-
cal practice include acute physiology and chronic health evaluation
(APACHE), Mortality Probability Model (MPM), and simplified
acute physiology score (SAPS; Vincent and Moreno, 2010), all of
which can be complemented by neuroimaging-based metrics. In
the case of the GCS and of other currently available scoring sys-
tems, their effectiveness in providing prognostic information is
hampered by their limited descriptiveness. By contrast, computa-
tional analyses of multimodal structural neuroimaging data offer
a variety of ways in which pathological changes can be assessed. It
is important to note that (a) the GCS is typically used in conjunc-
tion with a number of other clinical measures and physiological
metrics, and that (b) computational analyses vs. clinical scoring
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systems fulfill different roles. Thus, one theme of this review is
that the drawbacks of conventional clinical scoring systems can be
complemented by outcome prediction models formulated using
neuroinformatics tools, which require the exploration and min-
ing of quantitative metrics derived from structural neuroimaging
data.

Given the current trends in TBI neuroimaging, this review
aims to highlight and draw the attention of the neuroinformat-
ics community to the challenges encountered in the study of
human TBI within the context of three distinct types of neu-
roimaging: structural, connectivity, and functional. It attempts
to suggest how novel data-driven solutions should be formulated
to assist TBI neuroimaging analysis with the ultimate purpose of
improving therapeutic efficacy. The analytic approaches exam-
ined below outline the use of a varied number of neuroimaging
techniques and demonstrate the wealth of knowledge obtainable
through quantitative analysis of neuroimaging data. We pro-
pose that, to improve rehabilitation strategies and the accuracy
of TBI patient outcome prediction, it is necessary to augment
existing capabilities to facilitate the multimodal use of neu-
roimaging methods and of their application to large population
samples of TBI patients, as well as to individual patients by
means of personalized approaches. This task should be reliant
on continued development, support and input from neurologists,
neuroinformaticians and biostatisticians to provide the theoret-
ical tools and practical mechanisms required for technological
and scientific progress in this field of high priority to public
health.

STRUCTURAL NEUROIMAGING APPROACHES
Computational methods for the analysis of brain structure pro-
vide a powerful approach to the investigation of TBI-related
pathology. Typical quantitative metrics for the study of brain
structure include morphometric measures (e.g., the curvature and
folding index of the cortex) and volumetric measures – e.g., cor-
tical thickness, gray matter (GM) volume, white matter (WM)
volume, etc. – which have been highly useful in describing neu-
roanatomical profiles at the macroscopic level, in both health and
in a variety of pathological conditions (Ashburner and Friston,
2000; Thompson et al., 2003). One motivating factor behind the
decision to undertake the calculations of these metrics within
large collaborative efforts such as the Alzheimer’s Disease (AD)
Neuroimaging Initiative (ADNI) has been the desire to identify
biomarkers which are prognostic and informative of clinical out-
come, and which can be used to optimize the formulation of
patient treatment as well as the selection of rehabilitation pro-
tocols, as in the study of Jack et al. (2008). The latter authors
aimed to address the neuroinformatics challenge of longitudi-
nal ADNI data processing by (a) linking all data at each time
point, (b) making a repository available to the scientific commu-
nity, (c) developing technical standards for longitudinal imaging
studies, (d) determining optimum methods for image acquisition
and analysis, and (e) validating imaging biomarker data. Such
goals are excellently suited for future human TBI studies as well.
All of these tasks involve neuroinformatics approaches which are
currently insufficiently available in human TBI research. Subse-
quently, the ability to perform relevant systematic and quantitative

analyses of TBI brain structure has been appreciably affected by
a number of formidable challenges which this section aims to
highlight.

One challenge encountered during the task of constructing TBI
data analysis workflows for the extraction of clinically relevant
information is the task of tissue segmentation, a process often
associated with the three-dimensional analysis of MRI volumes.
In neuroimaging, tissue segmentation refers to the classification
of voxels from MRI data into relevant tissue types (e.g., GM, WM,
cerebrospinal fluid, non-cortical structures) so that morphomet-
ric and volumetric measures can be quantified. Typically, tissue
segmentation is a complex procedure involving the correction
of magnetic field inhomogeneities, image intensity normaliza-
tion, extra-cerebral voxel removal via skull-stripping, and the
assignment of each voxel to one of several classes (WM, GM,
etc.) using a probabilistic model based on image intensity dif-
ferences between voxels belonging to each class (Dale et al., 1999).
Though there are a wide variety of approaches to segmentation
including those based on machine learning (Powell et al., 2008;
Hofmann et al., 2011), brain tissue segmentation often incorpo-
rates the application of anatomical priors while computing the
probability of a voxel belonging to a certain tissue type (Irimia
et al., 2011). Whereas the application of such anatomical pri-
ors is typically quite feasible in the case of healthy brains, this
class of methods is known to fail when applied to moderate or
severe TBI volumes because, in such cases, (a) TBI neuroanatomy
can differ substantially from health due to the presence of gross
pathology and (b) edema and hemorrhage can dramatically alter
voxel intensities, thereby modifying the spatial mapping of such
voxels to atlas space in an undesirable manner. Thus, segmenta-
tion of TBI volumes can be particularly difficult to automate due
to the heterogeneity of injury location, shape, and size, none of
which are easily predictable (Filippi et al., 1998). Nevertheless, it
is important to acknowledge that neuroimaging analysis of mild
TBI exhibiting no gross pathology can typically be accommodated
using standard algorithms, although for moderate and/or severe
TBI more sophisticated methods are needed, as previously stated.
Given the fact that most automatic segmentation algorithms have
been developed for healthy brains or for brains with diminutive
amounts of gross pathology (Irimia et al., 2012c), implementing
such algorithms for moderate to severe TBI cases often necessi-
tate periodic user intervention and guidance. This suggests that
future data-processing workflows devised for facilitating TBI seg-
mentation should aim to accommodate and minimize the need for
periodic user intervention. Presently, a persistent challenge resides
in the methodological dichotomy of opting for either a manual
or automatic segmentation approach. While manual segmenta-
tion methods do not require (complex) segmentation algorithms,
such methods are significantly more costly than automatic ones
due to the comparably large amount of time and human resources
needed for adequate segmentation of even a single MRI volume.
Furthermore, the nature of manual delineation implies that sub-
stantial inter- and intra-observer variability are to be expected,
which may increase quantitative measurement errors and thereby
diminish the statistical power of inferential tests applied to sets
of such measurements (Kempton et al., 2011). In the case of
TBI lesions, however, one benefit of manual segmentation is
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that it is often more trustworthy than conventional automatic
segmentation algorithms which were developed for the tissue
classification of healthy brains (Lehmann et al., 2010), largely
because TBI pathology is extremely heterogeneous among sub-
jects. On the other hand, conventional automatic segmentation
algorithms greatly reduce data processing time and improve repro-
ducibility, but can suffer from appreciable inaccuracies in the case
of TBI.

One software package which is often used for automatic seg-
mentation and whose methodological capabilities are illustrative
of automatic segmentation packages in general is FreeSurfer (Dale
et al., 1999). As in the case of typical unsupervised segmen-
tation packages, FreeSurfer has been thoroughly validated in
healthy brains and in some diseases exhibiting structural pathol-
ogy types which are more moderate and more predictable than
those encountered in TBI (Du et al., 2007; Jovicich et al., 2009).
Nevertheless, automatic tissue classification algorithms includ-
ing FreeSurfer remain imperfect and can experience inaccuracies
in skull stripping, WM/GM boundary identification, etc. even
in healthy subjects (Strangman et al., 2010). Any such defects
may require user input to (a) add control points and thereby aid
FreeSurfer to identify WM, (b) remove unlabeled voxels represent-
ing the dura mater and thereby correct skull stripping, and/or (c)
manually restore WM/GM portions which had been inappropri-
ately removed during first-pass segmentation. In addition, typical
automatic segmentation methods do not perform lesion classifi-
cation, which suggests that additional user-guided segmentation
is needed in this step as well.

In comparison to conventional tissue classification methods, a
number of sophisticated segmentation methods now exist which
have adopted more sophisticated approaches to address the task
of TBI tissue segmentation. As stated, TBI pathology is often gross
and highly heterogeneous, even in comparison to other types of
neuropathology such as AD. In some cases, pathology patterns
may present image intensities and appearance similar to those of
normal tissues (Irimia et al., 2012c), necessitating segmentation
algorithms tailored to analyzing pathology. In dealing with the
similar problem of MR volume segmentation in multiple sclero-
sis (MS), Van Leemput et al. (2001) proposed a method which
detects MS lesions as outliers with respect to a statistical model for
the healthy brain, rather than attempting to model such lesions
explicitly. The model interleaves (a) statistical classification of the
image voxels into a number of healthy tissue types, (b) evalua-
tion of whether each voxel truly belongs to healthy tissue, and (c)
estimation of intensity distribution parameters and MR bias field
parameters only based on healthy tissue voxels. Voxels not well
constrained by the statistical model for normal brain MR images
are detected as voxels containing MS lesions. Another sophisticated
approach designed specifically for TBI (Irimia et al., 2012c; Wang
et al., 2012) employs multimodal neuroimaging data from multi-
ple time points to improve segmentations and to describe changes
in healthy tissue and pathology. Their framework utilizes several
semi-automatic segmentation tools available within 3D Slicer, a
freely available software environment for image processing where
automatic segmentation can be complemented by additional user
evaluation (Irimia et al., 2011). Examples of semi-automatic seg-
mentations obtained using such workflows are shown in Figure 1.

Similar algorithms have been derived from approaches for the MR
analysis of brain sclerosis and tumors, which present problems
similar to those of TBI lesion segmentation (Prastawa et al., 2003,
2004). Other algorithms such as the one developed by Wu et al.
(2006) use multimodal MRI to classify MS lesions into several
subtypes, each of which can be analyzed to represent different
outcome measurements.

Finally, because standard registration and segmentation meth-
ods do not account for changes in image appearance across time,
sophisticated methods have been developed to jointly estimate
a space deformation and a change in image appearance which
can lead to the construction of a spatiotemporal trajectory which
smoothly transforms the structural volume acquired from the
patient at one time point into the volume acquired at a subsequent
time point. In particular, algorithms such as that of Niethammer
et al. (2011) have the ability to explain changes in image appear-
ance by (a) a global deformation, (b) a deformation within a
geometric model, and (c) an image composition model. The devel-
opment of such longitudinal registration methods is motivated by
the challenge to predict long-term effects of TBI based on longi-
tudinal changes in tissue types and in their spatial configuration,
which may provide further clinical insight into the prediction of
tissue fate and patient outcome.

The wealth of MR segmentation algorithms is an indication
that segmentation, at least in the case of TBI, is a complicated
task which can be solved through many approaches. However, this
wealth, arguably, is also an indication that no single approach
has been demonstrably superior. Many of these methods, in fact,
still require user intervention and post processing. Therefore,
automatic segmentation may be an appropriate problem for the
neuroinformatics community to address by means of data mining
and novel workflow designs.

CONNECTIVITY NEUROIMAGING APPROACHES
As discussed in the previous section, conventional structural neu-
roimaging methods enable the calculations of volumetrics and
morphometrics, which can reveal important information on gross
anatomy changes effected by brain injury upon the brain in general
and upon cortical structures in particular. By contrast, the advent
of modern neuroimaging methods which allow the observation
of neuronal circuitry in vivo (such as diffusion tensor imaging,
DTI) has perpetuated the interest in connectivity mapping, and
further allows investigation of connectivity changes in brain injury
patients. The benefit of DTI in contrast to dissection and to WM
staining is that the former can be used noninvasively in human
patients, which is a major advantage in human studies. Techniques
such as DTI tractography enable the mapping of macroscopic WM
connections, which can yield descriptive metrics of brain con-
nectivity, including fiber bundle length and connectivity density
(Wang et al., 2012).

The ability of DTI tractography methods to reconstruct area-
to-area connectivity in TBI has been the topic of multiple
validation studies (Mori and van Zijl, 2002; Dauguet et al., 2007;
MacDonald et al., 2007; Skudlarski et al., 2008), including one
study by the present authors, where area-to-area connectiv-
ity counts obtained via DTI using purpose-built software were
independently validated by three researchers with experience in
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FIGURE 1 |Three-dimensional models of semi-automatically segmented

healthy-appearing and pathology-affected tissues are displayed for a

sample patient with severeTBI within a neuroinformatics framework.

Representative slices of the T 1 volume acquired 3 days after injury are
superimposed. Models of edematous and hemorrhagic tissues are colored in
cyan and dark red, respectively. The WM surface was segmented

automatically using FreeSurfer, demonstrating the capabilities of this software
package to perform automatic tissue classification of healthy-appearing
tissues. The WM model is translucent in each brain view to facilitate the
visibility of anatomic details obviated in the MR volume slice displayed. See
Irimia et al. (2011) for a detailed description of the neuroinformatics
methodology used to generate these visualizations.

neuroanatomy (Van Horn et al., 2012). Whereas DTI is certainly
not as accurate for reconstructing area-to-area connectivity as
some invasive methods (e.g., post-mortem dissection and WM
staining), its ability to capture connectivity information accurately
has been found to be quite reasonable provided that the size of each
brain parcel denoting a graph node is sufficiently large compared
to the DTI voxel size (Irimia et al., 2011; Irimia et al., 2012c; Van
Horn et al., 2012).

It has been acknowledged (Meythaler et al., 2001) that 40–50%
of TBI patients exhibit diffuse axonal injury (DAI), a mechanism
of brain injury which is microscopic in nature such that con-
ventional CT and MRI are typically insufficient to capture it in
detail. DTI, on the other hand, is more ideally suited to non-
invasively measure the diffusion of molecules through biological
tissue. Whereas diffusion of water along healthy axons is predom-
inantly anisotropic, studies using DTI have indicated that DAI

may be detected as a reduction in diffusion anisotropy (Arfanakis
et al., 2002). With the advancement of such techniques, the goal
of characterizing TBI-related changes in brain connectivity can be
pursued by using brain water diffusion data to reconstruct WM
tracts three-dimensionally, to visualize fiber cluster integrity and
to locate gross anatomy changes prompted by injury.

To study WM changes prompted by TBI, neuroimaging
researchers have adopted various mathematical approaches to aid
in data analysis, the most prominent of these being network theory.
This approach typically focuses upon the task of reconstructing
brain networks using graphs, which are mathematical representa-
tions consisting of nodes (vertices) and links (edges) between pairs
of nodes. Such representations have long been used to represent
brain networks (Strogatz, 2001), though their popularity for the
purpose of systematic connectivity mapping in humans via non-
invasive techniques such as DTI has only increased appreciably
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throughout the past decade (Bullmore and Sporns, 2009; Rubinov
and Sporns, 2010). In the context of neural connectivity, nodes
represent brain regions which exhibit some given functional or
anatomical pattern. Links, on the other hand, denote the presence
or absence of connections, and can be weighted to represent the
strengths of neural connections between distinct areas (Strogatz,
2001; Rubinov and Sporns, 2010). The manner in which nodes and
links are defined can vary substantially, depending on the set of
conventions used to parcellate the brain. In many cases, parcella-
tion schemes are used to delineate gyri and sulci into homogenous
regions which correspond to graph nodes (Thirion et al., 2010;
Stanley et al., 2013). The advantage of this approach is that each
graph node corresponds to an anatomical region whose identity
and spatial extent have been well documented by neuroanatomists
(Irimia et al., 2012c; Van Horn et al., 2012).

The application of network theory within TBI neuroinfor-
matics has increased in recent years (Achard et al., 2012; Irimia
et al., 2012c; Van Horn et al., 2012; Wang et al., 2012), with a
special focus upon identifying network patterns which can offer
insight into the long-term effects of TBI. A study by Pandit et al.
(2013), for example, utilizes the tools of network theory to inves-
tigate changes in brain network topology following TBI, to the
effect that the victims of this condition exhibit abnormalities with
respect to normal controls from the standpoint of several global
network-theoretic measures, including total connectivity, average
path length and network efficiency. Thus, one advantage of DTI
which is highly beneficial to the study of TBI is the fact that this
imaging modality allows the extraction of network-theoretic con-
nectivity information from which patient-specific measures can
be computed, including metrics of centrality, assortativity, node
degree, etc. (Achard et al., 2012; Irimia et al., 2012a). Statistical
comparison of such measures between TBI patients and healthy
control subjects can outline the nature, extent and location of TBI
damage upon neural pathways, and may also reveal information
which can be useful when formulating personalized rehabilitation
strategies.

Network metrics can be used to investigate patterns of connec-
tivity changes in TBI patients and to inform clinicians who wish
to incorporate the use of this knowledge into the process of treat-
ment formulation. This trend is already under way in the study of
other disorders of the nervous system; for example, previous stud-
ies have found significant differences in network-theoretic metrics
(e.g., spatial pairwise clustering and intra-nodal homogeneity)
when comparing healthy adults to schizophrenics (Zalesky et al.,
2012), AD patients, and to normal aging. Thus, the informatics
relevant to these studies offers new ways to quantitatively char-
acterize changes in anatomical network patterns, including the
means to relate WM network topology to brain function. These
techniques are particularly relevant in TBI due to the well-known
facts that (a) brain injury can cause dramatic changes in WM
connectivity (Kinnunen et al., 2011; Irimia et al., 2012a) and that
(b) such changes often result in the deterioration of cognitive
function (McDowell et al., 1997; Chen and D’Esposito, 2010).
Because cognitive deficits incurred as a result of injury may either
ameliorate or deteriorate over time depending on a variety of fac-
tors (Hoofien et al., 2001; Kraus et al., 2007), neuroinformatics
approaches designed for professionals in the field of TBI (e.g., TBI

clinicians, epidemiologists, public health professionals, etc.) are
well-suited for providing clinicians and researchers with advanced
tools for investigating the temporal evolution of TBI WM lesion
profiles. This may lead to an improvement of current understand-
ing on how neurological damage leads to functional impairment,
and may also spur the development of pathology-tolerant neu-
roimage analysis tools which can be applied to other types of brain
injury, such as stroke and MS.

Despite the widespread application of diffusion imaging over
the years, several fundamental technical challenges remain only
partially resolved. One persistent difficulty has been the chal-
lenge of correcting for head movement in the MR scanner. Head
motion not only interferes with image acquisition, but may also
lead to errors in the calculation of diffusion tensor scalars such as
fractional anisotropy (FA) and mean diffusivity (MD), as shown
in a number of studies (Ling et al., 2012; Van Dijk et al., 2012).
It should be noted that head motion is not unique to connec-
tivity neuroimaging and that it is also a concern in structural
neuroimaging. Approaches to mitigating head motion in non-
head injury patients have included the use of anesthesia (Karlik
et al., 1988; Holshouser et al., 1993), which is often used when
neuroimaging data are acquired from acute injury patients in
a neurointensive care setting. Naturally, however, this approach
may not be suitable in all TBI cases, and therefore the integra-
tion of motion correction algorithms into post-processing steps
remains critical to the usability of the acquired data. Investi-
gators have systematically examined the residual effects of head
motion in diffusion imaging, and have reported the impact of
head motion upon the calculation of diffusion metrics. Tijssen
et al. (2009) found a positive bias between head motion and
FA in regions with low anisotropy; in regions with higher
anisotropy, head motion was found by these authors to artifactu-
ally decrease FA. Ling et al. (2012) reproduced these findings and
expanded on the findings of Tijssen et al. by examining the resid-
ual effects of motion following conventional motion correction
frameworks (i.e., image registration, gradient table adjustment,
diffusion weighted image removal). This is especially problematic
in TBI studies where diffusion metrics may incorrectly repre-
sent the presence or absence of pathology-affected tissue. Thus,
further research into the development of effective motion cor-
rection algorithms is particularly critical in the context of TBI
research.

Another challenge resides in the somewhat limited ability of
tracking algorithms to correctly infer the continuity of fibers
from voxel to voxel. One drawback of probabilistic tractography
which can affect TBI studies with predilection is that the latter
is more likely to reconstructs short fibers, which can increase
the probability that WM located near GM or near a lesion is
assigned an inappropriately large number of tracts (Kuceyeski
et al., 2011). Connectivity assessment may further be complicated
by the presence of edematous or hemorrhaging tissue, where
the appreciable isotropy of water diffusion interferes with the
ability of DTI to capture fiber directionality. Yet another fac-
tor which TBI neuroinformatics tools should aim to account for
is the difficulty of detecting crossing fiber bundles, particularly
in peri-lesional regions. This phenomenon, which is tradition-
ally known to be caused by limitations in current approaches
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for reconstructing fiber trajectories (Iturria-Medina et al., 2007;
Bullmore and Sporns, 2009), can be particularly challenging to
account for in TBI where changes in anisotropy are often prompted
within and surrounding lesion sites.

A final concern for TBI connectivity analysis is the increasing
need for versatile data visualization tools. While a large num-
ber of these exist, many of them, as Margulies et al. (2013) point
out, are limited by the necessity to compromise and prioritize
the representation of information in terms of anatomic vs. con-
nectomic, aesthetics vs. informational content, and thoroughness
vs. readability. For example, although TrackVis is intended for
whole brain tractography visualization, its strength is primarily
in data visualization rather than data processing and computa-
tion. By comparison, OpenWalnut is more tailored towards data
processing due to the modularity of its software environment
design and pipelining engine. However, while both of these tools
fulfill the need for anatomic visualization, very few workflows
exist which offer comprehensive summaries (i.e., anatomy, func-
tion, connectivity) of the human connectome as reconstructed via
neuroimaging.

Research on mapping and visualizing cortical connections has
a relatively long history, beginning with animal model studies.
Scannell and Young, in particular, have performed extensive work
on the cat cerebral cortex in representing neural connectivity
using a variety of graph depiction strategies (Scannell and Young,
1993; Scannell et al., 1995). Irimia et al. (2012a) have developed a
graphical approach for representing TBI connectivity alterations,
illustrating the location and extent of WM change over time in
TBI patients. This visualization paradigm generates connectivity
representations called “connectograms” using an informatically
driven software package which allows brain connectivity informa-
tion to be depicted within a circle of radially aligned elements.
A connectogram from a sample TBI patient created using this
approach is shown in Figure 2. The purpose of this figure is to
illustrate the presence of appreciable atrophy due to TBI. Each
circular wedge element represents a specific cortical region and
is positioned on either side of the vertical axis, corresponding
to the left or right hemisphere, respectively. The location of
each fiber extremity is associated with the appropriate cortical
parcellation of a sulcus or gyrus. Inter-region connectivity is rep-
resented by a link of variable opacity drawn the between radially
aligned elements, and depends on fiber density as well as upon
pathology severity. This mode of representation emphasizes the
presence of atrophy, which is substantially more severe in TBI
than in healthy aging, particularly over a 6-month period. For this
reason, in contrast to Figure 2, it is to be expected that the con-
nectogram displaying longitudinal changes in connectivity for a
healthy adult would reveal considerably fewer and weaker changes
over a 6-month period, particularly for a young or middle-aged
adult.

The connectogram as a graphical representation method offers
a succinct means of displaying longitudinal differences in WM
connections and highlights the current impetus for incorpo-
rating neuroinformatics approaches into the development of
brain connectivity visualization methods (Margulies et al., 2013).
Advances in robust connectivity visualization and representation
methods could encourage longitudinal studies, which depend

on neuroinformatically driven workflows to process the large
amounts of data associated with capturing and quantifying
connectivity changes across multiple time points. Armed with
measurements of morphologic and connectomic alterations over
time, customized publication database search strings may addi-
tionally be crafted and submitted to PubMed or Google Scholar
to return literature relevant to damage in the affected areas, the
effects on connectivity, and putative treatment options (Irimia
et al., 2012a). Recent approaches to information retrieval, extrac-
tion and analysis of the neuroimaging literature, such as those
of Bug et al. (2008) and Keator et al. (2013) may provide addi-
tional starting points for the development of flexible tools for
the description and retrieval of neuroscience-relevant resources,
as pioneered by the Neuroscience Information Framework
(NIF).

FUNCTIONAL IMAGING AND NEUROPHYSIOLOGICAL
APPROACHES
Functional neuroimaging modalities and electrophysiological
recordings allow researchers to investigate behavioral deficits as
well as the pathophysiological responses of the brain follow-
ing injury. The techniques most frequently employed include
functional MRI (fMRI), electroencephalography (EEG), magne-
toencephalography (MEG), and PET. Each of these techniques
possesses varying levels of applicability with inherent strengths
and weaknesses depending on the aims of the study, as well as on
the condition of the patient. Accordingly, it would be beneficial to
develop data mining, processing and analysis approaches which
can facilitate the optimization of information usage acquired
across various functional imaging modalities.

Whereas fMRI is useful in post-injury investigations of cerebral
activation patterns during the performance of cognitive tasks, its
reliability in diagnostic applications may be impeded by factors
such as increased intracranial pressure, which can alter hemody-
namic responses and, subsequently, its measure of cerebral activity
(Hillary et al., 2002). In such cases, the use of EEG may be prefer-
able to that of fMRI or PET due to the high temporal resolution
of the former (in the millisecond range), and to the fact that EEG
does not rely on indirect measures of activity such as the hemody-
namic response. Nevertheless, it is useful to note that the temporal
resolution gap between fMRI and EEG may be partially alleviated
through the use of novel multi-band methods for fMRI, which
involve shorter acquisition times and thus greater temporal reso-
lution (Moeller et al., 2010; Ugurbil, 2012). One limitation of EEG
to consider, however, is the fact that the structural changes and
presence of pathology prompted by TBI may increase the diffi-
culty of localizing pathophysiological activity recorded after acute
brain injury. Specifically, electrical source localization is a prob-
lematic task due to the ill-posed nature of the bioelectric inverse
problem. The latter refers to the task of localizing the sources
of brain activity based on scalp EEG measurements. By contrast,
the calculation of electric potentials produced at the scalp due to
current sources in the brain is known as the forward problem of
bioelectricity (Lima et al., 2006; Irimia et al., 2013a). Additionally,
appreciable cancellation of cortical signals occurs in EEG (Goh
et al., 2013; Irimia et al., 2013a,b). Accurate localization of corti-
cal activity depends on a number of factors, one of which is the
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FIGURE 2 | Circular connectogram representation graphically displays

WM atrophy over a 6 month period. The left and right halves of the
connectogram correspond to the left and right hemispheres, respectively.
Each hemisphere of the brain is divided into frontal, insular, limbic, temporal,
parietal and occipital lobes, as well as into subcortical structures, cerebellum,
and the brain stem; the latter three are represented at the bottom of the
circle. Each lobe is further divided into parcels (gyri and sulci in the case of the
cortex) and is assigned a unique identifying color. Radially aligned, concentric
rings represented using various color schemes depict various attributes of
each corresponding brain parcel. From the outermost to the innermost one,
the rings contain wedges which encode GM volume, surface area, cortical

thickness, curvature, and degree of connectivity. A link of variable opacity is
drawn between certain pairs of brain parcels, reflecting structural connectivity
properties between regions. In the case of the connectogram displayed, links
displayed indicate connections which suffered from large atrophy from the
acute baseline to the chronic follow-up time point. Link transparency encodes
the percentage change � in fiber density, in the range [min(�), max(�)], with
larger changes (more negative values of �) being encoded by more opaque
hues of blue. The lowest color opacity corresponds to the smallest absolute
value of the percentage change which is greater than the selected threshold
of 30%, and the highest opacity corresponds to the maximum absolute value
of the change in fiber density. See Irimia et al. (2012a) for details.

anatomic faithfulness of the head model used in the forward cal-
culation of electric potentials (Gencer and Acar, 2004; Goh et al.,
2013). EEG localization studies involving models which account
for the presence of lesions and cavities have shown that the lat-
ter can have significant qualitative and quantitative effects upon

the computed electric potentials (He et al., 1987). Thus, from an
informatics standpoint, it is necessary to develop data process-
ing tools which incorporate realistic head model generation and
which can account not only for head anatomy and tissue conduc-
tivity profiles, but also for the effects of tissue conductivity changes
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due to TBI. Comparatively, MEG presents advantages which are
unique and often complementary to EEG. For example, a single
head volume model is typically sufficient in MEG forward mod-
eling, partly because the biomagnetic fields of the brain are far
more dependent on tissue permeability rather than conductivity.
Whereas conductivity can vary considerably across biological tis-
sues, their permeability is always very nearly equal to that of free
space (μ0), such that the use of a single head volume is justified.
An immediate consequence of this fact is that, whereas the spatial
distribution of electric potentials over the scalp is smeared and
attenuated due to the high resistivity of the skull, magnetic field
recordings are nowhere near as strongly affected by the conductiv-
ity profile of the head, which is advantageous in MEG experiments
(Lima et al., 2006; Sharon et al., 2009; Irimia et al., 2012b). In addi-
tion, the number of sensors used for MEG recordings (e.g., 306
sensors in the Elekta Neuromag® MEG scanner) is often higher
than that of EEG montages, where fewer than 256 sensors are
typically used. Finally, MEG sensors can usually sample brain sig-
nals at higher frequencies and signal-to-noise ratios than EEG
electrodes. Nonetheless, MEG scanners are available only at a
handful of brain research centers, and data acquisition costs for
this modality are prohibitively higher than for EEG. Future data-
processing tools devised for acquiring and analyzing brain signals
from TBI patients should aim to be user-friendly, regardless of
whether EEG or MEG is used. In this context, the requirement
of user friendliness implies that the approaches for data acqui-
sition and analysis should be intuitive to grasp and easy to use
by clinicians and by other health professionals who are unfamil-
iar with the complexities of anatomical modeling and of inverse
localization methods for EEG-based neurophysiological signal
analysis.

Although a variety of functional neuroimaging and electro-
physiological techniques can and have been used in neurotrauma
research, a large number of functional TBI studies are uni-modal
in the sense that they employ only a single technique to obtain
quantitative values of a specific measure. Naturally, it would be
more advantageous to combine multiple modalities in order to

achieve a more comprehensive view of how brain injury leads to
subsequent functional losses. An insufficient number of studies
have accomplished this, however, due to the difficulty associ-
ated with integrating data acquired across various measurement
modalities. Research involving the localization of brain activity
after TBI using EEG includes three recent studies (Goh et al., 2013;
Irimia et al., 2013a,b) where the combined use of MRI and EEG is
demonstrated. In both of these studies, cortical electrical activity
is inversely mapped over the cortex with clinical applications to
the localization of epileptogenic foci in post-traumatic epilepsy
(PTE). An example of this approach is shown in Figure 3. In
these studies, the effects of pathology upon forward modeling
and inverse source localization were explored in the context of
a semi-automatic, multimodal neuroimaging approach involv-
ing anatomically faithful TBI head models containing 25 tissues
types, including six types accounting for TBI-related pathology.
The multimodal aspects of these studies highlight the combined
use of structural and functional imaging data using an inverse
localization algorithm subject to anatomic constraints provided
by MRI.

In a general sense, neuroimaging-based methodologies have
not yet addressed the paucity of strategies for integrating multi-
variate connectivity data with other imaging modalities including
fMRI, PET, EEG, and MEG. The ability to extract meaningful
information from multimodal data must often make use of dimen-
sionality reduction techniques, as well as multivariate statistical
inference methods which can allow researchers to test statisti-
cal hypotheses based on large descriptive feature vectors. One
study which illustrates the integration of functional neuroimaging
modalities to the benefit of TBI research is by Storti et al. (2012),
who integrated fMRI and EEG to evaluate PTE in patients with
pharmacologically resistant epilepsy. During MRI scanning, the
patients who participated in this study were additionally equipped
with an MR-compatible EEG amplifier and cap arranged in the
10/20 montage. The combined use of these modalities allowed
the authors to compare clinical semiology, BOLD activation, and
source localization which could only be obtained as a result of

FIGURE 3 | Example of EEG inverse localization in a sample acuteTBI

patient using an integrative pipeline. The cortical sources responsible for
the generation of recorded EEG waveforms are determined using the
application of a minimum norm inverse localization method. (A) EEG
potentials recorded over the scalp (i.e., in “sensor space”) are inversely
localized onto the cortical surface (i.e., into “source space”). The inverse
estimate of the cortical activity responsible for the generation of EEG signals

is plotted using t scores, which indicate the likelihood for each cortical
location to be electrically active. The magnitude of t indicates whether the
localized electric current is oriented out of (t > 0, red hues) or into (t < 0, blue
hues) the cortex. (B) The interpolated values of the potentials measured at
each sensor location are mapped over an idealized, circular representation of
the scalp to generate a topographic map. Color indicates the magnitude of the
recorded electric potential � in μV. See Irimia et al. (2013b) for further details.

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 19 | 280

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


Goh et al. Challenges in TBI neuroimaging informatics

the advantages offered by the complementary nature of combined
fMRI/EEG. As previously stated, conventional fMRI alone offers
high spatial resolution, but poor temporal resolution, whereas
EEG alone offers high temporal resolution but relatively poor spa-
tial resolution in the absence of inverse localization. Multimodal
neuroimaging is ideally suited for TBI clinical care because differ-
ent modalities can reveal distinct information about injury. For
example, an MRI FLAIR sequence can reveal the presence and
spatial extent of brain edema, whereas an SWI sequence is ide-
ally suited for the detection of microhemorrages. Thus, the fusion
of such multimodal information can provide substantial insight
into the structural profiles of lesions, thereby helping to formulate
clinical interventions. Nevertheless, despite the trend toward inte-
gration of modalities to study TBI across all its stages, it has been
proposed that the use of fMRI and PET is more appropriate dur-
ing the sub-acute to chronic stages, as opposed to the acute phase
where the presence of increased intracranial pressure is likely and
may lead to misleading measurements (Hillary et al., 2002). In
chronic TBI, by contrast, metrics of brain function derived from
fMRI and PET have been used by various researchers to investi-
gate neuropsychiatric performance (Kasahara et al., 2011; Palacios
et al., 2013).

The motivation for diversifying the range of functional neu-
roimaging modalities which are typically included in analyses of
brain structure has increased considerably as neuroimaging anal-
ysis methods have become more sophisticated. In this respect, one
key point to address in functional TBI neuroimaging studies is the
fact that large volumes of data are often generated in the course
of neuroimage acquisition and analysis. Specifically, data acquired
using modalities such as fMRI, EEG and MEG incorporate a time
dimension: (a) in the case of multiband fMRI, the additional 3D
nature of this modality can make data storage a very substantial
challenge; (b) in the cases of EEG and MEG, the high temporal
resolution (in the MHz range, though typically down-sampled to
the kHz range or lower) can also raise storage-related challenges.
Collectively, these properties of functional neuroimaging data can
result in substantial storage demands from dedicated databases
and repositories (Van Horn and Toga, 2009). An examination of
fMRI articles from representative issues of the journal Neuroimage
found that since 1995, the amount of data collected has doubled
approximately every 26 months (Van Horn and Toga, 2009, 2013).
At this rate, it is projected that data storage requirements may
exceed 20 GB per published study by the year 2015. Consequently,
it is vital that funding agencies should support the computational
infrastructure needed to accommodate multimodal data, and that
hardware resource availability should develop alongside at the
same pace. Next-generation neuroinformatics approaches to the
management of multimodal data should also be developed, par-
ticularly for the purpose of inter-institutional collaborations and
data sharing.

An important recent trend in the consideration of functional
TBI neuroimaging has been the proliferation of approaches involv-
ing data-intensive discovery – rather than hypothesis testing – in
TBI research (Akil et al., 2011). The net result of this trend has
been the need for centralized databases to assist the research com-
munity in terms of hardware infrastructure and efficiency of data
mining. Whereas a number of neuroimaging databases exist which

are dedicated to the gathering and dissemination of neuroimaging
data for various types of diseases including ADNI (Jack et al., 2008;
Jack et al., 2010; Weiner et al., 2012), such large-scale database sys-
tems are only now becoming available for the purpose of TBI
neuroimaging research, including the informatics system of the
Federal Interagency Traumatic Brain Injury Research (FITBIR, fit-
bir.nih.gov). In addition to FITBIR, the NIF (www.neuroinfo.org)
is another useful resource established to survey and compile a list of
neuroscience databases, tools, and materials so that researchers can
efficiently search across a variety of smaller, individual databases.

For FITBIR, NIF and other resources and databases dedicated
to the task of disseminating data and functional neuroimaging
analysis software to the research community, one challenge which
requires careful consideration is the need for data sharing and
storage mechanisms to accommodate large collaborations across
multiple research centers with wide geographic distributions. The
intrinsic necessity for multidimensionality in TBI neuroimaging
data sets entails the reality that inter-institutional TBI research may
require hardware data storage capabilities in excess of those needed
by other large neuroimaging collaborative efforts such as ADNI,
for example, which does not need to rely as heavily as TBI research
does upon data multimodality. Furthermore, it would be highly
beneficial for researchers to benefit from neuroinformatics-driven
data sharing capabilities which can facilitate collaborations among
researchers from various institutions as well as among clinical and
research staff responsible for acquiring TBI neuroimaging data
(Manley and Maas, 2013).

DISCUSSION
Despite the emerging trend towards the use of multimodal imag-
ing by TBI experts, the capacity to acquire and process large
amounts of neuroimaging data remains dependent upon the
availability of sophisticated imaging hardware and large-scale
computational resources to store and manage such data. Addi-
tionally, extracting meaningful and clinically useful information
from multimodal neuroimaging data can necessitate advanced
neuroimaging processing software packages which are capable
of handling their multi-dimensionality and inherent complexity.
Although improvement of TBI treatment and rehabilitation pro-
tocols by means of multimodal neuroimaging remains a critical
goal to healthcare providers, much of the ability to accomplish
this aim is dependent upon the identification of clinical biomark-
ers which are predictive of TBI pathology progression, and the
future of TBI neuroinformatics must therefore accommodate the
use of statistical prediction models which aid in forecasting TBI
clinical outcome.

Computational neuroanatomy can aid TBI outcome prediction
by providing quantitative metrics for further analysis rather than
by resorting to the task of discerning voxel intensity differences
visually or to similar types of qualitative observations. By defini-
tion, quantitative structural imaging studies utilize mathematical
computations which can be reliably reproduced and applied across
entire cohorts, and such undertakings can be facilitated through
the use of neuroinformatics. Nevertheless, when considering the
task of performing inferential statistical analyses of neuroimaging-
derived structural metrics in TBI, it is also critical to incorporate
statistical techniques which can accommodate and account for the
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attrition rates encountered in longitudinal studies of this condi-
tion. Specifically, one-third to one-half of TBI study participants
are lost to follow-up primarily due to low socioeconomic status,
substance abuse history, and violent injury etiology (Corrigan
et al., 2003). This can be detrimental to the validity of outcome
studies, and data processing workflows tailored for structural
neuroimaging analyses should therefore implement biostatistical
techniques for addressing the problem of missing measurement
data in order to account for the attrition rates encountered in
longitudinal studies of this population.

The wealth of information which can be extracted from con-
nectivity analyses has spurred the development of graph-theoretic
quantitative approaches to describe brain network organization
following TBI. The methodologies of classical graph theory have
lent their power to the study of complex networks such as those in
the brain, and the resulting approaches have been beneficial to the
task of quantifying the networks of the brain with high reliability
and reproducibility using a manageable number of neurobiolog-
ically meaningful and easily computable quantitative measures
(Rubinov and Sporns, 2010). Furthermore, network-theoretic
metrics can be robust to the use of distinct cortical parcellations
across studies as well as to various approaches for quantifying func-
tional connectivity. This is particularly useful in the case of TBI
because investigating relationships between brain structure, neu-
rological damage, and functional impairment is essential when
attempting to formulate patient-specific rehabilitation protocols.

The goals of numerous TBI neuroimaging studies can be greatly
facilitated by the use of neuroinformatics protocols to stream-
line and perform data analysis, but the availability solutions to
facilitate the study of brain structure, function and connectivity
remains insufficient. This is partly due to the intricate complex-
ities of the human brain and its functions, and partly due to the
fact that neuroimaging-based methodologies for its study have
not yet fully matured. Structural, connectomic, and functional
data are highly multidimensional, which frequently demands the
use of sophisticated statistical methods for multivariate analysis.
Current data processing efforts for their joint analysis continue to
be hampered by the need for considerable manual customization
steps which are often needed to bridge compatibility gaps between
the various software environments employed. For instance, to per-
form anatomically faithful forward/inverse calculations in EEG,
head model generation requires not only the segmentation of
healthy-appearing tissues – which can be performed more or less
automatically – but also the segmentation of pathology-affected
tissues, which is often performed manually, as outlined in the
first section. However, because little compatibility typically exists
across software environments and the algorithms used for each of
these processing steps, neuroinformatically informed strategies are
necessary to invoke the integration of neuroimage segmentation
tools with forward model generation modules, inverse localiza-
tion algorithms, and other methodologies for the analysis of brain
functional data.

In conclusion, next-generation TBI neuroinformatics must
address the need to develop integrative workflows which (a) per-
form automatic tissue segmentation of TBI pathology, (b) lead to
a reduction in the number of algorithmic approaches and software
environments required for connectomic and functional analysis,

(c) minimize the amount of time and effort devoted by the user to
manual intervention, and which (d) promote knowledge extrac-
tion leading to targeted clinical intervention. Such integration can
allow researchers to generate strategies for analyzing brain func-
tion after injury, for extracting clinically useful information from
each modality, for combining information obtained from each
modality, and for gaining insight into the relationships between
brain metabolism, cerebral blood flow, and cortical electrical
activity underlying successful recovery in TBI.
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This paper describes neuroinformatics technologies at 1 mm anatomical scale based on
high-throughput 3D functional and structural imaging technologies of the human brain.
The core is an abstract pipeline for converting functional and structural imagery into
their high-dimensional neuroinformatic representation index containing O(1000–10,000)
discriminating dimensions. The pipeline is based on advanced image analysis coupled
to digital knowledge representations in the form of dense atlases of the human
brain at gross anatomical scale. We demonstrate the integration of these high-
dimensional representations with machine learning methods, which have become the
mainstay of other fields of science including genomics as well as social networks.
Such high-throughput facilities have the potential to alter the way medical images are
stored and utilized in radiological workflows. The neuroinformatics pipeline is used to
examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical
applications as well as longitudinal studies. We demonstrate the use of high-throughput
machine learning methods for supporting (i) cross-sectional image analysis to evaluate the
health status of individual subjects with respect to the population data, (ii) integration of
image and personal medical record non-image information for diagnosis and prognosis.

Keywords: neuro-imaging, neuroinformatics, computational anatomy, functional imaging

INTRODUCTION
Imaging is one of the most powerful medical tools for moni-
toring human health. In the era of personalized medicine, peri-
odic checkups via whole body imaging, combined with routine
medical screening, genetic information, and comparison with
population data is expected to be key information for monitor-
ing health status, pathological condition, and therapeutic effect.
High-throughput imaging technologies are becoming ubiquitous,
driven by the deployment of whole body high resolution MR,
CT, and PET imaging devices. While huge personal MR/CT based
data records are routinely being collected for cross-sectional and
longitudinal examination of the progression of diseases as man-
ifest via tumor growth or atrophic neurodegeneration, currently
while this information is stored in the medical PACS, usually only
linguistic diagnostic encoding from the physician is stored in the
searchable patient record. Such a lack of direct feature representa-
tion of the dense structural and functional phenotype precludes
its use for systematic medical analysis such as population statistics
or cross-modality correlation. Contrast this to what is emerging
in high-throughput genomics.

There are several reasons. Clearly, utilizing the information
from dense imagery from a longitudinal study, for example,
presents daunting challenges. High-resolution whole body CT
scans at 0.5 mm resolution for full body coverage would gen-
erate gigabytes of data. Visual inspection by a radiologist is
overwhelming at the original resolution. Most often the images
are down-sampled or low-resolution images are acquired to
accommodate the storage and retrieval challenges. Constructing

a parsimonious encoding of the discriminating information
presents a fundamental challenge. In high-dimensional spaces
such as that represented by the millions of measurements gen-
erated by 3D imagers, parsimonious representation of the mea-
surable structural and functional phenotype is essential.

Exploiting the maximum potential of the imagers or the asso-
ciated scans appears impractical without some form of encod-
ing, or extreme data reduction. Reduction of high-dimensional
imagery to symbolic knowledge representations encoded via the
informative discriminating dimensions is one of the holy-grails
of image analysis, a field which has advanced dramatically in the
past several decades. From our own school of Grenander’s metric
pattern (Grenander, 1993) has emerged the field of computa-
tional anatomy (CA) for medical image analysis (Grenander and
Miller, 1998, 2007; Toga and Thompson, 2001; Miller et al., 2002;
Thompson and Toga, 2002; Ardekani et al., 2009; Ashburner,
2009; Pennec, 2009). The organizing principle in CA is that while
there are variations in human structure and function, represen-
tation of the evolutionarily stable organization of processing in
human beings are to a great extent organized around the struc-
tural manifestation of the genotype, throughout what we term
the structural or anatomical phenotype. The evolutionary pro-
cess has been masterful in its conservation of neural processing
and its apparent organization around the macroscopic scales of
human anatomy. We assume throughout that while functional
layout is highly variable and ultimately associated with cellular
architecture, it is manifest at the macroscopic scale of the topo-
logical organization of human anatomy and is preserved in large
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part cross-sectionally. Striking examples include the tonotopic
organization of the auditory system for representing the axes of
complex spectral representation, the somatosensory and motor
homunculus in sensory and motor cortex, and the conformal like
representation of visual space in the visual field. In each case the
spatial axis encodes the functional axis representation.

The fact that functional topography is supported via dense
topologic correspondence to the anatomical coordinates is the
basis of our personalization of atlas based neuroinformatics.
The personalization step is accomplished via the construction of
a positioning system for neuroinformatics termed DiffeoMaps.
This is an infinite dimensional positioning system which we term
a Geodesic Positioning System (GPS) (Miller et al., 2013b) trans-
ferring information between atlas or world coordinate systems
and individualized coordinate systems. We term it geodesic posi-
tioning since the metric is constructed based on the shortest
(geodesic) flow of diffeomorphisms which connect the coordi-
nates (Miller et al., 2013b). Such a transfer of the atlas rep-
resentation to the coordinates of the individual allows for the
organization of the high-throughput medical image record into
a high-dimensional “feature vector” or an “index.” Indexing via
DiffeoMaps is the essential reduction or parsing of the individual
into metadata representations upon which the machine learn-
ing phase of high-throughput neuroinformatics may be applied.
Shown in Figure 1 is our overall solution for high-throughput
neuroinformatics, which includes atlases, diffeomorphic map-
ping for position (GPS), reduction to a high-dimensional feature
vector or index encoding the anatomical and functional phe-
notypes, and machine learning via supervised clustering. This
paper examines (i) cross-sectional image analysis to evaluate the
health status of individual subjects with respect to the population
data, (ii) integration of image and non-image information for
diagnosis and prognosis.

RELATED WORKS
The high-throughput Neuro-Imaging Informatics introduced in
this article is based on three core technologies; deformable
multi-modal brain atlases, geodesic positioning of meta-data or
semantic labels via diffeomorphic image transformation, and
machine learning algorithms, as detailed in the Materials and
Methods below. The deformable multi-modal brain atlases have
been developed in both the coordinate systems provided by
Montreal Neurological Institute (MNI) and the International
Consortium of Brain Mapping (ICBM), which is a multicen-
ter effort known for the MRI database and various brain atlases
(http://loni.usc.edu/ICBM/). The atlases developed through this
consortium have been implemented in leading software pack-
ages for the functional and anatomical brain analyses, such as
Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.
uk/spm/), FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), MRICron
(http://www.mccauslandcenter.sc.edu/mricro/mricron/), as well
as our own MRIstudio (https://www.mristudio.org/). The pri-
mary uses of the MNI or ICBM atlases are to be a reference
space for the voxel-based image analysis, in which statistical anal-
yses are performed on each voxel after all images are normalized
to the atlas space. This voxel-based approach has been widely
used since it enables researchers to statistically analyze the whole
brain with very high spatial specificity, and to report their find-
ings on a standardized coordinate system. This approach also
allows users to apply various types of anatomical parcellation
maps, such as the automatic anatomical labeling atlas (AAL)
(Tzourio-Mazoyer et al., 2002) and the LONI Probabilistic Brain
Atlas (LPBA) (Shattuck et al., 2008) for quantifying gray mat-
ter functions and anatomy. Our deformable multi-modal brain
atlases are extensions of these attempting to group voxels based
on anatomical or functional units, through which features of each
brain are preserved at 1 mm scale. While most of the “atlas-based”

FIGURE 1 | Showing the core components of the high-throughput neuroinformatics pipeline including content (the atlas family), the personalization

technology (GPS DiffeoMapping), and machine learning on the index or high-dimensional feature vector.
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approaches previously have targeted the gray matter areas of
single contrast images, the atlas used in our approach is multi-
modal, which means that the atlas consists of a set of images with
different contrasts [e.g., T1- and T2-weighted images, Diffusion
Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI), and
Susceptibility Weighted Image (SWI) contrasts] to allow multi-
modal image analysis of both gray and white matter structures
in the common anatomical framework. The multimodal capabil-
ity is supported by the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) methods that employ single and multi-
channel algorithms (Beg et al., 2005; Ceritoglu, 2008; Ceritoglu
et al., 2009; Djamanakova et al., 2013), allowing for the incorpora-
tion of multiple imaging modalities while performing simultane-
ous mapping that maximally satisfies registration of the multiple
modalities.

Another distinction we have made is to explicitly model both
the geometric component of the atlas and associate to that the
anatomical phenotype, simultaneously with the contrast compo-
nent of the atlas which we generally associate to the function.
This we do by providing a direct model in which the anatom-
ical geometry carries the function, and demonstrate explicitly
how to code via informatics both the anatomical geometry simul-
taneously with the functional contrasts. This forms the heart
of our personalization via DiffeoMaps below. This allows us to
directly generate classifiers and perform hypothesis generation
about disease groups by both the anatomical phenotype as well as
the contrast or function phenotype, and index them to different
atlases. This can be contrasted to alternative approaches which use
normalization viewing the geometric or anatomical phenotype
as a nuisance parameter which is normalized out, like the affine
group is removed rather than explicitly modeled.

Since the robustness of the machine learning framework to
detect disease related anatomical and functional features of the
brain has been demonstrated (Teipel et al., 2007; Hinrichs et al.,
2011; Zhang et al., 2011), our approach is the generalizable exten-
sion toward high-throughput whole-brain multimodality analysis
of heterogeneous brain conditions.

MATERIALS AND METHODS
ATLAS REPRESENTATION OF 1 mm STRUCTURAL—FUNCTIONAL
CONTRASTS
The core of our high-throughput neuroinformatics technology
is the conversion of the raw images into a structured, quantita-
tive, and searchable high-dimensional feature vector. The basis
for reduction to the numerical knowledge representation are the
evolutionarily stable categorizations which neuroscientists have
defined over the past decade. Our starting point is dense atlases
of neuroanatomical structure and function indexed against age
and group. We model the individual’s imagery as an orbit under
transformation of 1 mm scale coordinatized atlas information.
Figure 2 depicts our coordinatized human atlases demonstrat-
ing 3D anatomical information at different developmental stages
(multi-dimensional) (Oishi et al., 2011c), different MR contrasts
(multi-contrast) (Oishi et al., 2009), and varying coordinatized
structural and functional definitions (Mori et al., 2013). The coor-
dinate systems support MNI (Mazziotta et al., 1995, 2001) and
Talairach (Talairach and Tournoux, 1988) coordinates as well as
parcellations into different cortical areas as well as approximately

20 deep gray matter and 100 deep white matter structures all
based on anatomical parcellation. The cortical partition includes
structures such as parietal gyrus, frontal gyrus, pre-central gyrus,
cuneus, lingual and others; the subcortical structures include
amygdala, caudate, globus pallidus, hippocampus, putamen, tha-
lamus, red nucleus, substantia nigra, hypothalamus, nucleus
accumbens; the white matter structures include corticospinal,
internal capsule, thalamic radiation, corona radiate, fornix, lon-
gitudinal fasciculus, corpus callosum, and others. Such a modern
atlas also includes parcellations based on different anatomical and
functional criteria such as cytoarchitecture, vascular territories,
and anatomical and functional connectivity. This type of effort to
parcellate the brain has been a subject of research based on histol-
ogy (von Economo and Koskinas, 1925; Sarkisov et al., 1955; Mai
et al., 1997; Schleicher et al., 1999; Tzourio-Mazoyer et al., 2002;
Zilles et al., 2002) or MRI for the cortex (Lancaster et al., 2000;
Mazziotta et al., 2001; Tzourio-Mazoyer et al., 2002; Hammers
et al., 2003; Maldjian et al., 2003; Shattuck et al., 2008), white mat-
ter (Meyer et al., 1999; Mori et al., 2008; Oishi et al., 2008) and the
whole brain (Fischl et al., 2002; Desikan et al., 2006; Oishi et al.,
2009, 2011c, 2013).

PERSONALIZATION VIA DIFFEOMAPS AS A GEODESIC POSITIONING
SYSTEM
Reduction to a high-dimensional feature vector which can be
indexed requires us to model the high-throughput imagery. The
underlying assumption of our model is that the meta-data rep-
resenting the individual’s structure and function is carried by the
individual’s coordinate systems, and there exists a structure pre-
serving mapping which transforms the individual’s coordinates
into the stereotypical atlases. We term these transformations mor-
phisms, these transformations form a group φ ∈ G. The structure
preserving morphisms provide correspondence between “charts”
of the human brain as contained within atlas and the individual’s
coordinates. In this sense the morphisms provide a position-
ing system through their algebraic group action. Our group has
come to call this the metamorphism model (Miller and Younes,
2001; Trouvé and Younes, 2005), organizing the structural and
functional informatics, the images I ∈ � into the transformation
–image pair [φ(x), I(x)] , x ∈ X related via the algebraic pairing

• : (φ, I) �→ I′ .= φ • I ∈ �. (1)

In this model the morphisms denoted by φ(x), x ∈ X carries the
coordinatized contrast metadata imagery denoted by I(x), x ∈ X.

Personalization occurs via smooth transformation of the atlas
meta-data φ · Iatlas. For this we define a distance infφd(I,φ · Iatlas)

between the individual’s representation and transformed atlas
solving a variational problem for the coordinate (Dupuis et al.,
1998; Beg et al., 2005; Ceritoglu et al., 2009) transformation. The
correspondence between the individual and atlas is termed the
“DiffeoMap,” which provides an infinite dimensional positioning
between atlas and world coordinates. This is in sharp contrast to
the 7-dimensional similarity maps used in geographic position-
ing. To see this, the Eulerian velocities of Equation (2) below,
while spatially smooth are a high-dimensional field, implying the
Jacobian expressing first order transformation of coordinates in
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FIGURE 2 | Panels show a current brain atlas, including 3D

anatomical information at different developmental stages

(multi-dimension), different MR contrasts (multi-contrast), and

different structural definitions. The coordinate systems include
MNI and Talairach coordinates with the brain depicted as

parcellated into multiple cortical and subcortical areas including
deep gray and white matter structures based on anatomical
features (anatomical parcellation) as well as functional parcellation
based on cytoarchitecture, vascular territories, and anatomical and
functional connectivity.

space allows the tissue to locally scale and twist while at the same
time preserving relative organization.

Shown in Figure 3 are instantiations of our structure-function
metamorphosis model, including structural contrast imagery T1,
orientation vector imagery such as DTI, metabolic contrast as
measured via magnetic resonance spectroscopy and functional
connectivity via resting-state fMRI (Faria et al., 2012).

Each of the modalities has its own definition of the mor-
phism acting on the meta-data of the contrast imagery expli-
cating the algebra represented by •, specifically (i) for the
submanifolds of subcortical structures, gyral curves and cor-
tical surfaces the morphism acts φ · x = φ(x), (ii) for scalar
imagery such as T1 the morphism acts via the inverse φ · I =
I ◦ φ−1, and (iii) for symmetric matrix-valued DTI (color in
Figure 1) with eigen elements {λi,φi}, the morphism acts to pre-
serve the eigenvalues and determinant, rotating the eigenvectors

φ · I =̇ (
λ1 ê1 êt

1 +λ2 ê2 êt
2 +λ3 ê3 êt

3

) ◦ φ−1 with ê1 = (dφ)ê1‖(dφ)ê1‖ ,

ê2 = (dφ)ê2−〈ê1,(dφ)ê2〉 ê1√
‖(dφ)e2‖2−〈ê1,(dφ)ê2〉2

, ê3 = ê1 × ê2, and dφ =
(

∂φi
∂xj

)
the 3

by 3 Jacobian matrix, with x denoting the vector cross-product.

THE HIGH-DIMENSIONAL FEATURE VECTOR AND MACHINE LEARNING
The scanners are the high-throughput devices generating the
high-dimensional raw images of O(10,000,000) in complexity,

and the pipeline converts it into a quantitative searchable fea-
ture vector {f = X1, X2, X3, . . .} representing the individual at
O(1000–10,000) complexity. Diffeomorphic GPS (Miller et al.,
2013b) provides the basis for data reduction, since the anatomical
structure phenotype is encoded by the morphisms and the meta-
data of structure-function are encoded by the contrast imagery
represented in atlas coordinates. The metamorphism model orga-
nizes the structural and functional informatics into the pair
[φ(x), I(x)], x ∈ X.

The GPS correspondences are diffeomorphisms, one-to-one
and smooth mappings between coordinate systems φ : X ↔Y,
φ(x), x ∈ X providing correspondences φ : I ↔ Iatlas between the
individuals in the population and the atlas. The correspon-
dences are generated as solutions of the classical Lagrangian flow
equations, φ̇t = vt(φt), t ∈ [0, 1] the time derivative of the flow
vt is termed the Eulerian velocity (Christensen et al., 1996).
Constructing the DiffeoMaps occurs via the geodesic connection
of one coordinate system to the other (Miller et al., 2006), solv-
ing for the geodesic connection between individual I and atlas
φ · Iatlas according to

infvt, t∈[0, 1]:φ̇ = v(φ), φ0·Iatlas = Iatlas

1∫

0

‖vt‖V dt subject to I = φ1 · Iatlas.

(2)
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FIGURE 3 | Multiple image contrasts obtained from an individual

using different MR pulse sequences. These multiple images are
simultaneously parcellated into multiple structures, linking their coordinate
systems (Parcellation Map). This procedure reduces the vast anatomical
information into a parcellated series of approximately 200 structures and

a series of MR contrast values that are the signature of each individual.
DTI: Diffusion Tensor Image, T1-WI: T1 weighted images, rsfc: resting
state functional connectivity, MRSI: Magnetic Resonance Spectroscopy
Images. This pipeline is available at http://www.mricloud.org/
implementing multi-atlas parcellation (Tang et al., 2013b).

The geodesic connections are encoded via their initial tangent
vector at the identity, denoted as ν = vt = 0 ∈ V . This forms the
natural coordinate system of our GPS (Miller et al., 2013b). We
have reduced the anatomical phenotype to a set of coordinates
ν = vt = 0 ∈ V centered at the atlas.

This is a natural representation of the anatomical or shape
phenotype since the norm of the coordinates preserves the met-
ric structure on the space of anatomies using this framework
(Miller et al., 2006). The shortest flows connecting the template
and individual coordinate systems define the metric in this space,
the metric of Equation (2) is given by the integrated norm of
the vector fields generating the morphisms. The reduction of the
shape phenotype to these diffeomorphic connections we call dif-
feomorphometry (Miller et al., 2013b). At the 1 mm scale of MR
imagery the anatomical phenotype is extremely sparse relative to
the high-dimension of the initial data. For smooth imagery such
as MRI linear functions of the vector fields, termed the shape

momentum, are concentrated to the boundaries of the homoge-
neous subcomponents of the object (Miller et al., 2006; Qiu and
Miller, 2008). At places in the image that are constant the shape
is coded as zero. Plainly put, at the 1 mm scale gyral and subcor-
tical regions of the MRI contrasts do not discriminate the cellular
architecture.

Shown in Figure 4 is an instantiation of our pipeline, depict-
ing the personalization phase via DiffeoMap. The generation of
the geodesic of Equation (2) for image matching via the solu-
tion of a quadratic variation problem on the vector field we
call large deformation diffeomorphic metric mapping (LDDMM)
(Beg et al., 2005). The modalities are shown in the top row
in atlas coordinates with the DiffeoMap applied to the target
showing the parcellation of target modalities shown in the bot-
tom row.

Figure 5 shows a depiction of the subcortical neuronanatomy
atlas as measured in 1 mm scale MR. The left panel shows
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FIGURE 4 | Showing the pipeline starting with the modalities in atlas coordinates (top row) with the DiffeoMap applied to the target showing the

parcellation of target modalities (bottom row). The algorithm used for solving for the multi-modality DiffeoMap is multi-modality LDDMM.

the atlas of 14 subcortical structures, amygdala (A, light blue),
caudate (C), hippocampus (H, green), globus pallidus (PAL),
putamen (PUT), ventricle (VL), thalamus (TH), each sur-
face in the atlas containing order 1000 vertices. The set of
structures correspond to an atlas generated from the popula-
tion of healthy controls (HC) and Alzheimer’s disease (AD)
computed using the surface template estimation algorithm
described in Ma et al. (2010). To demonstrate the sparcity
of the anatomical phenotype at 1 mm scale, the geodesic cor-
respondence between the atlas and a database of 250 sub-
cortical brains were generated giving a coordinate identifica-
tion of each element in the population, I ∼ v, where v is
the geodesic coordinate representation of the anatomy to the
atlas. To understand the variation over the population, they
were expanded via principle component analysis into a basis
v(f1, f2 . . .) = ∑

i
fiUi; the f ’s are reduction of the anatomical

phenotypes to the basis of eigenfunctions U. The sparsity of
the anatomical phenotype was calculated across the popula-
tion calculating the dimension required for encompassing 95%
of the energy of subcortical variation. Generally each struc-
ture requires between 20 and 40 dimensions, with hippocam-
pus and thalamus having the greatest shape variation within

the population in terms of number of dimensions. The 95%
variance cutoff as a function of dimensions for each structure is
A20<PAL22<C25<PUT27,VL27<H30<THA40, the sparse sub-
cortical shape phenotype at 1 mm scale is O(1000). The right
panel shows the layout in the geodesic coordinate system of 250
of the anatomies (blue dots) in the first two geodesic dimensions
with 20 of the brains shown explicitly.

This huge data reduction is noteworthy as it is the direct
generalization of the sparsity of rigid body momentum which
itself encodes translation and angular momentum to single 3-
vectors, even though the inertia is extended over the entire object.
Taking the midbrain as roughly 1/3 of the total brain volume of
2–4 Million voxels implies a data reduction of three orders of
magnitude to O(1000).

CORTICAL, SUBCORTICAL AND WHITE MATTER PARCELLATION
FEATURE VECTOR
The global positioning solution provides registered coor-
dinates for the encoding of the target coordinates system
into a parcellation corresponding to the anatomically
defined partition of atlas coordinates in the 200 white
and gray matter parcels. Denoting the atlas partition
pi, and since there can be as many as 7 MR contrast
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FIGURE 5 | Top row: Panel shows the left-right subcortical structures for
human at 1 mm including amygdala (A, light blue), caudate (C), hippocampus
(H, green), globus pallidus (PAL), putamen (PUT), ventricle (VL), thalamus
(TH). The right panels shows the layout in the geodesic coordinate system of
250 of the anatomies (blue dots) in the first two dimensions with 20 of the
brains shown explicitly with the basis dimensions on the order of 20–40
dimensions for each subcortical structure occupying 95% of the variatiance of
anatomical variation with ordering A20<PAL22<C25<PUT27,VL27<H30<

THA40. Bottom row: Shows the geodesic coordinates of the population (top
right) relative to the atlas (top left) shown as a shape statistic computed by
averaging over all geodesic mappings and computing the Jacobian of the

tangent vector at the identity representing the anatomy. Bottom left shows
the difference in the means μHC − μAD superimposed on the template. The
log-determinant of the Jacobian is shown, with red corresponding to
shrinking and blue expansion. The bottom left panel depicts the hippocampus
and amygdala are significantly red means large shrinkage relative to the
contols, with the blue signaling the expansion of the ventricles. Bottom right
panel shows a classifier based on three structures using only volume (left
hand) and all the 20–40 dimensions of the anatomical phenotype encoded by
the geodesic coordinates for hippocampus, amygdala, and ventricle. The
images used for this analysis are a portion of a dataset published with the
methodological detail (Tang et al., 2013a).

values including T1, T2, B0, trace, FA, spectroscopy, gives
O(1000) features

f c
Pi

=
∫

Pi

Ic(x)dx, i = 1, . . . , 200, c = 1, .., 7. (3)

Shown in Figure 6 are examples of the neuroinformatics par-
cellation which is transported via the personalization phase.
Figure 6A shows the DiffeoMap personalization of the atlas
into the coordinates of a spastic cerebral palsy patient with
visually appreciable anatomical abnormalities (the color high-
lights the volume change larger than two standard deviations).
The three rows show measurement results for volume, FA, and
MD. Each column is an entry for one of the 200 anatomi-
cal structures. The top row represents anatomical information
of each parcellated structure. In feature space, the neuro-
informatics atlas supports both empirical means as well as empir-
ical variances. Only features which demonstrate as outliers are
depicted.

The bottom part, Figure 6B, shows an example of pop-
ulation data, in which the atlas partition of the anatomi-
cal phenotype for the listed structures (the bottom row in
Figure 6A) are presented for 10 cerebral palsy patients (P3 is
the individual shown in Figure 6A). All patients shared the
same spastic phenotype with varying degree of motor impair-
ment indicated by GMFCS scores. Abnormal parcellation vol-
ume values are presented by z-scores. At a glance, even though
the patients were selected by similar clinical manifestations, a
marked degree of anatomical variability can be recognized imply-
ing the importance of clustering on the spectrum of anatomical
phenotype.

FUNCTIONAL MRI AND CONNECTIVITY MAPS IN ATLAS COORDINATES
Functional magnetic resonance imagery (fMRI) also provides
ideal measurements for studying pairs of interactions in the
brains. fMRI connectivity is based on empirical correlations of
temporal responses between pairs of elements in the representa-
tion. Figure 7 shows an example of empirical correlation of fMRI
at lag-0 using the common atlas coordinate system to parcelate
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FIGURE 6 | (A) Feature vector from the personalization DiffeoMap
correspondence between the atlas and an individual’s coordinate system
associated with focal disease category. Informatics partition with 200
structures including, volume, FA and MD values into peripheral white and
gray matter, and deep white and gray matter structures. The features are
color coded according to the statistics to depict color-coded outliers: WM:

white matter, GM: gray matter. (B) Example of population data including 10
cerebral palsy patients with different prognoses in their motor disability.
Informatics partition with 200 structures of volume for each patient is shown
as 10 rows. The features are color coded according to z scores calculated
based on normal control population. CP: cerebral palsy, GMFCS: gross motor
function classification system.

symmetrically associated motor cortex areas plotting the resting-
state MRI functions (rs-fMRI) (Tzourio-Mazoyer et al., 2002;
Eickhoff et al., 2005; Achard et al., 2006; Hagmann et al., 2008;
He et al., 2009; Wang et al., 2009).

Shown is the time series of the fMRI image modal-
ity IfMRI(x, t) integrated over the right and left motor
cortex parcels. Notice the strong correlation depicted via the
superposition of the red-blue time sequences. These highly
correlated patches of tissue has resulted in the widely used

ICA model in which the measured functional signal is the
superposition of “networks,”

IfMRI(x, t) =
∑

i

f (t)
i U(x)

i (4)

the U ’s playing the role of the resting-state networks. Working in
the registered coordinates of the atlas allows for the construction
of these resting state networks in the parcellations of the atlas by
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FIGURE 7 | fMRI parcellation based on resting state correlations. The top panel shows the overlap of the resting state functional signals integrated over
the right-left motor parcellation; the bottom panel shows the value of blue and red time series over the 210 time points.

simply replacing the functional MR signal by it’s parcellated rep-
resentation IPi(t) = ∫

Pi

IfMRI(x, t)dx, Pi = 1, . . . 200. The f ’s are

the dimensions of the functional MRI signal representing 10–20
resting state dimensions added to the feature vector.

MACHINE LEARNING INVESTIGATION OF DISEASE-SPECIFIC
PHENOTYPES
High spatial resolution is one of the most significant advantages of
clinical MRI and its usefulness in studying pathological condition
and detecting abnormalities. It seems clear from many studies
that because of the noise versus signal tradeoff most detectable
pathologies from MRI are signaled via small groups of spatially
correlated voxel contrasts. Dimensionality reduction becomes the
central methodology for MRI analysis in clinical applications.
Combining unsupervised principal component analysis (PCA)
along with supervised training, on the supervised group means
under the common covariance model gives linear discriminant
analysis (LDA).

Given m-length feature vectors, a collection n of them
{

fj
}

,
then PCA calculates the singular value decomposition (SVD) of
the m × n matrix F = (

f1, f2, . . . , fn
) = U�Vt , where U is an

m × m orthonormal matrix of vectors with
∑

diagonal with
entries the singular values. The connection to least-squares and
covariance modeling of Gaussian processes is that the left singular
vectors U = (U1, . . . , Um) are the eigenfunctions of the empiri-
cal covariance FFt ; the set of diagonal entries squared of

∑
are the

variances in the rotated independent representation of the left sin-
gular vectors. LDA then is the supervised version. Given groups of

labeled feature vectors
{

f
g
j

}
, g = 1, . . . then each labeled group

has a mean and covariance:

μg =
∑ng

j = 1
f

g
j /ng, Kg =

∑ng

j = 1
(f

g
j − μg)(f

g
j − μg)

t
/ng . (5)

Then LDA is PCA on the group means μg using the com-
mon covariance K = ∑

g Kg . Quadratic discriminant analysis
is a particular non-linear discriminant analysis (QDA) relaxing
the common across groups covariance assumption. The high-
dimensional structural and functional phenotypes are encoded
via high-dimensional feature vectors. The classifiers are con-
structed from the cohorts of neuropsychiatric illnesses collected
via the supervised training component. The crucial advantage of
this approach is that the anatomical and structural phenotypes
are indexed to the coordinates of the template. For the subcortical
structures, for example, the anatomical phenotype is immediately
reduced from a feature vector of dimension O(10,000,000), to
the dimension of the surfaces which is O(10,000). Similarly, the
functional feature is indexed over the anatomical substructures.
This of course requires the notion of a template coordinate system
which is centered in the population. Unlike other methods since
we have explicitly modeled the anatomical and functional pheno-
types, we can perform classification on both rather than viewing
coordinate system transformation as a nuisance variable.
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RESULTS
THE ANATOMICAL PHENOTYPE: IMAGE RETRIEVAL AND CLUSTERING
With an estimated 100 million scans every year in radiology, a
huge amount of imaging data are generated every day, with these
data stored in clinical Picture Archiving and Communication
Systems (PACS) and are rarely used to support medical decision-
making in cross-sectional examination of patient populations.
Similar to the role of genomic and proteomic information
for personalized medicine, anatomical phenotypes are funda-
mentally important for medical decision-making, yet often not
systematically utilized in daily medical practice. While text-
based patient records for retrieval of disease cohorts is com-
monly used, to utilize the anatomical phenotype for medical
decision-making for individual patients we need to be able
to use the patient image as the search key with the diag-
nostic label being the retrieved information. Using the high-
dimensional feature vector without any diagnostic supervised
labeling allows us to group and retrieve based on the structural
phenotype.

Figure 8 shows an example of retrieval based on the anatomi-
cal phenotype, essentially delivering previously supervised cases
with clinical information already in the data base. There are
two types of information delivered in this analysis. For this
we represent the anatomical variance of the population as
shown in Figure 5 for the subcortical structures to represent
the coordinates of the anatomical position of the patient with
respect to the atlas coordinate system relative to the popu-
lation. This can be highly illustrative. For example, Figure 8
shows healthy individuals as controls (green dots in the PCA
plot of the structural volumes) and patients with two variants
of Primary Progressive Aphasis (PPA), a neurodegenerative

disease characterized by predominant and progressive deteri-
oration in language in the absence of major change in per-
sonality, behavior or cognition other than praxis for at least
two years. The z-score map in patient #3 reveals atrophy at
the temporal left side that could be dubious at visual inspec-
tion only. In the addition, this subject is closer to other PPA
patients than to the controls in the PCA plot, evidencing that
the anatomical phenotype identified agrees with the clinical
label.

Defining cohorts of similar patients is commonly done based
on a host of features, including clinical behavioral and structural
and functional phenotypes as measured in the functional and
structural imagery. Figure 8 examines clusters of cohorts based
solely on the anatomical phenotype feature vector. The first prin-
cipal component (PC1) accounts for global cortico-subcortical
atrophy and ventricle enlargement, and mainly segregates age-
matched controls from the PPA population. The segregation
between two PPA variants (Semantic-SvPPA and Logopenic-
LvPPA) is driven by severe and global atrophy of deep areas
in SvPPA (PC2) and the predominant fronto-parietal atrophy
in LvPPA, with relative preservation of temporal areas, particu-
larly left, when compared with SvPPA (PC3). This agrees with
past anatomical qualitative description of these populations. The
existence of “outliers” corresponding to patients or controls sur-
rounded by subjects of different labels are due to the singular
anatomical features of these subjects. This type of analysis pro-
vides a platform for hypothesis-free comprehensive characteriza-
tion of anatomical phenotype. Such quantitative analysis allows
the investigation of various anatomy-associating factors, such
as disease progression and functional outcomes, in a systematic
manner.

FIGURE 8 | Representation of degrees of regional atrophy as z-scores to

support diagnosis (left panel). In cross-sectional studies on patients with
similar diagnostic criteria, the patterns of atrophy from populations can be
integrated with clinical information providing diagnostic and prognostic

information. Clustering on the dimensions of the anatomical phenotype (right

panel). The PCA plot contains the volumes of 200 brain structures in 24
healthy controls and 28 PPA patients. Shown are groupings according to the
anatomical features associated to the clinical labels (controls, SvPPA, LvPPA).
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DISEASE QUANTIFICATION OF ANATOMICAL PHENOTYPE VIA
GEOODESIC COORDINATES
The GPS provides geodesic coordinates for representing every ele-
ment in the population relative to the templates. We have exam-
ined machine learning on the subcortical structure coordinates
shown in Figure 5. In the ADNI (Mueller et al., 2005) project
there is extensive diagnostic supervised labeling enabling group
based discriminations such as LDA/QDA for cross-sectional
study of cohorts in dementia. A total of 385 subjects were seg-
mented into their subcortical structures and lateral ventricle using
FreeSurfer (Fischl et al., 2002) based on the analyses published by
the Dale group (Fennema-Notestine et al., 2009). There were a
total of 210 HC and 175 subjects with AD. To illustrate the average
differences between the healthy control and Alzheimer’s disease
populations a HC-template surface and an AD-template surface
was generated representing the center of each of the populations.
We compared these two, HC-only and AD-only, template surfaces
from the two different populations, and which are represented in
geodesic coordinates relative to the overal template representing
both HA-AD populations via the two class means μHC , μAD. To
visualize these as shapes we calculated a scalar field correspond-
ing to the log-determinant of the Jacobian of the map between the
two averages, and visualized it on the template surface generated
from the HC population generated using the algorithm described
in Ma et al. (2008, 2010). This scalar field measures how much
expansion/atrophy at each vertex of averaged surface from AD
compared to that from HC in the logarithmic scale: i.e., positive
value corresponds to surface expansion in the AD averaged sur-
face at a particular location, while negative value denotes surface
atrophying. The bottom left panel of Figure 5 shows the mean
differences between the two populations (bottom left), and is a
visualization of one of the direction vectors in the Fischer dis-
criminant the difference between the means μHC − μAD, shown
as a plot of the Jacobian determinant. The color red represents the
determinant being less then one, corresponding to shrinkage. The
blue color corresponds to expansion. We see most of the shape
change occurring at the ventricle expansion and the hippocampus
and amygdala shrinkage.

The bottom right panel of Figure 5 shows the result of building
classifiers via machine learning whose discriminating dimensions
are encoded in the picture in the lower left panel. We con-
structed the LDA and quadratic QDA classifiers using one of the
Leave-One-Out Cross-Validation resampling method generating
385 LDA classifiers, testing on one of the subjects treating them as
the testing data, and constructing the LDA class means μHC,μAD

from the other 384 subjects (Tang et al., 2013a). For the two
class problem the discriminating direction resulting from LDA
on the geodesic coordinates is the projection of the differences
in the means according to K−1(μHC − μAD) on the common
covariance. The Bayes classifier for the two class problem becomes
a comparison to a threshold of the inner product of the feature
vector on the discrimating direction:

f tK−1 (
μHC − μAD) HC ≥

AD <
θ. (6)

As shown in Figure 5 we find uniformly, as depicted by the
blue bars in the classifier diagram, that the shape dimensions

associated with the subcortical structures are significantly more
discriminating then the volumes, generally reducing the errors
in discrimination by more than 10%. The significant dimen-
sions in volume and shape are associated with hippocampus and
amygdala agreeing with previous results (Qiu et al., 2009). The
specificity and sensitivity based on using the PCA shape dimen-
sions in the feature vector for these three subcortical structure
phenotypes is 90 and 81%, respectively. This is consistent with
recent findings in another preclinical dementia study (Miller
et al., 2013a) in which the shape of the temporal lobe subcortical
structures is more discriminating then volume measures as well as
in a Huntingdon’s disease study tracking caudate, putamen, and
globus pallidus (Younes et al., 2012).

PERSONALIZED ANALYSES: PREDICTING FUTURE CONVERSION
BASED ON WHITE MATTER STRUCTURAL REPRESENTATIONS
While most research studies are based on cross-sectional
population-based analyses, clinical diagnosis is always based on
single individuals. This is performed by visual inspection in daily
radiological diagnosis, in which images are most likely analyzed
in a structure-by-structure basis, not in a voxel-by-voxel basis.
Atlas-based neuroinformatic analyses in terms of their aggregate
scale of the feature vector is compatible with many current diag-
nostic practices. Interestingly, histopathological studies indicate
that white matter is an excellent target for both the early diag-
nosis of AD and for monitoring disease progression, motivating
the use of DTI for studying patients with AD (Brun and Englund,
1986; Englund et al., 1988; Meier-Ruge et al., 1992; Gunawardena
and Goldstein, 2001; Pigino et al., 2003; Sjobeck et al., 2005;
Stokin et al., 2005; Chevalier-larsen and Holzbaur, 2006; Oishi
et al., 2011b). There are already a large number of cross-sectional
group comparison studies reporting significant differences in
DTI derived measurements between the patients and controls,
suggesting that white matter damage may exist in the pre-
symptomatic phase of AD (Rose et al., 2000; Kantarci et al., 2001;
Medina et al., 2006; Ringman et al., 2007; Stahl et al., 2007; Zhou
et al., 2008; Damoiseaux et al., 2009; Salat et al., 2010; Sexton
et al., 2011). One of the important questions after group analy-
ses is whether these findings can be applicable to each individual
to predict future conversion from memory impairment without
other cognitive deficits (amnestic mild cognitive impairment) to
dementia caused by AD. This is important because the amnestic
mild cognitive impairment is a clinical category including multi-
ple diseases or conditions with different pathological background,
and not all of them develop AD (Albert et al., 2011).

Figure 9 shows results of personalizing the cross-sectional
atlas statistics to several patients. A weighted feature vector,
which could separate AD from cognitively normal population,
was created from training datasets including groups of patients
and cognitively normal age-matched individuals using dimen-
sionality reduction applied to the atlas feature vector, and then
DiffeoMapped to each individual to calculate the projection
onto each patient. Shown in Figure 9 are examples of the pre-
diction of the conversion to Alzheimer’s dementia in succes-
sive followup. Notice this projection doesn’t predict conver-
sion from amnestic mild cognitive impairment to the dementia
with Lewy body, which is another type of neurodegenerative
dementia. This type of analysis requires a large database with
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FIGURE 9 | (A) shows the result of PCA of the DTI derived measurements
(FA = fractional anisotropy and MD = mean diffusivity) from 136 white matter
areas and 12 deep gray matter structures. The first component was used as a
diagnostic feature vector; the brighter area indicates more weighting to a
degree of FA reduction and the cold brighter area indicate more weighting to
a degree of MD increase to separate the AD group from the control group.

(B) For individual images, the atlas was DiffeoMapped and projection to the
feature vector was calculated. The projection well predicted early conversion
from amnestic mild cognitive impairment (MCI) to Alzheimer’s disease (AD),
but did not predict conversion from MCI to the dementia with Lewy body
(DLB). The DTIs used for this analysis are a portion of a dataset published in
Oishi et al. (2011a).

longitudinal follow up which is an important current focus of
our efforts.

DISCRIMINATING BETWEEN MULTIPLE DISEASES
The concept of group analysis in research studies assumes con-
sistent locations of abnormalities, which does not hold for
clinical situations, with heterogeneous patient populations and
lack of an age-matched control group. The atlas-based neu-
roinformatics is compatible with the analysis of multiple dis-
eases with different anatomical features. Figure 10 shows the
applicability of atlas-based neuroinformatics to capture anatom-
ical features of multiple neurodegenerative diseases with known
macroscopic anatomical alterations. To appropriately integrate
diagnostic information to characterize the anatomical features
related to each disease category, PCA and LDA were applied
sequentially to a dataset consisting of 102 T1-weighted images
from AD, primary progressive aphasia, Huntington’s disease,
hereditary spinocerebellar ataxia and normal control participants.
These were parcellated based on the JHU-atlas [the images used
for this analysis are a portion of a dataset published with the
methodological detail (Qin et al., 2013)]. The weighted feature
vectors efficiently captured known disease-specific anatomical
alterations. For example, the medial temporal lobe and the pari-
etal lobe were negatively weighted in the feature vector of AD

to give a higher discriminant score for AD compared with other
diseases and the control group. It should be noted that ven-
tricular enlargement was not emphasized in the feature vector,
although it was seen in most of the AD patients. Ventricular
enlargement has been regarded as one of the disease-related
features in past studies based on a cross-sectional comparison
between AD and a control group, but seems to contain less
information for separating AD from other neurodegenerative
diseases.

FUNCTIONAL MRI PHENOTYPES IN ATLAS COORDINATES
Shown in Figure 11 are results from functional magnetic reso-
nance imaging done in registered atlas coordinates. Given the
accompanying structural T1 images the functional responses
can be examined in atlas coordinates with hypotheses formed
at the scale of the partition of the atlas. Shown is a com-
parison between 7 patients with stroke at deep gray mat-
ter (cortex is preserved) and age-paired HC. The inten-
sity plot shows the average of Fisher-transformed correla-
tions between the rs- fMRI time courses of each pair of
42 cortical regions in controls (bottom) and individuals with
stroke (top). In general, correlations between temporal and
frontal areas are the main source of differences between
the groups.
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FIGURE 10 | Showing four clinically labeled disease categories of

Alzheimer’s Disease, aphasia, Huntington’s, hereditary ataxia, and

one control group upon which the anatomical features were

learned including 60 PCA dimensions followed by supervised LDA

delivering 4 loading vectors for discrimination. The clustering
features in the high-dimensional index on the right are shown to
correspond to anatomically meaningful shape representation shown in
the left panel.

FIGURE 11 | The intensity plot shows average of Fisher-transformed

84 × 84 correlations of rs-fMRI response in atlas partition in individuals

with subcortical stroke (superior to the diagonal) and controls (inferior

to the diagonal). The diagram shows the connections that are different
between groups (p < 0.001); the thickness of the lines is proportional to the
ratio of the correlations (stroke/controls); blue are correlations with opposite

signal between groups (positive—negative); red are those with same signal.
R: right hemisphere, L: left hemisphere, IFG_orbitalis and IFG_triangularis:
pars orbitalis and triangularis of the inferior frontal gyrus, MFG_DPFC: dorsal
prefrontal pars of middle frontal cortex, PSTG and STG: posterior and medial
pars of the superior temporal gyrus, rostral_ACC: rostral pars of the anterior
cingulate gyrus, PrCG: pre-central gyrus, Ent: entorhinal area.
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CLINICAL INFORMATICS AND BEHAVIOR PHENOTYPES AND
FUNCTIONAL PHENOTYPES
Shown in Figure 12 are results of demonstrating high-throughput
informatics used to classify individuals into clinical pheno-
types based on functional MRI coupled to clinical behaviors.
The 3 clinical variants of PPA (logopenic—Lv, semantic—Sv,
and non-fluent—NFv) may differ in terms of disease pro-
gression and response to therapeutics. In the early stages of
the disease, when some therapeutics are being tested and will
hopefully be effective, the clinical tests are not always able
to classify all the patients. In addition, although anatomi-
cal differences among these variants are reported at group
level, the individual classification based on qualitative evalua-
tion is not usually possible. High-throughput imaging informat-
ics can contribute for individual classification. Figure 12 con-
tains the volumetric data of 120 parcellated areas from 37 PPA
patients that were scanned when, in their majority, the variant
diagnosis wasn’t completely clear, based on clinical informa-
tion only. Our classification model, created using partial least
squares—discriminant analysis (PLS-DA) and volumetric fea-
tures (120 areas) demonstrated reasonable accuracy on pre-
dicting the variant diagnosis with a significant (higher than
“by-chance”) p-value, both when tested by bootstrapping or by
external testing sample. The detection prevalence is low, partic-
ularly in the smallest group (NFv) with the sample size needed
to be increased.

High-throughput informatics is also an effective tool to scruti-
nize anatomical-functional/ behavioral correlations. Much of the
mapping of brain functions has been via lesion based studies,
by relating regions affected by a stroke or trauma, for example,
with the functional deficit. Lesion-based studies, however, have
significant limitations such as (i) areas most strongly associated
with the deficit depend on the vulnerability to ischemia/trauma
(ii) determining the part of the lesion which is responsible for
the deficit is difficult, or whether it represents a reorganiza-
tion of cognitive networks that are less efficient, and (iii) the
challenge of determining the proportion of changes leading to
functional recovery, more than functional loss, (iv) the lack of
multiple parameters, local or widespread, that might be con-
comitantly affected and whose interaction might correlate with
the deficit.

Shown in the Figure 13 is the application of quantitative
analysis to assess anatomical-functional correlations in progres-
sive disease models that affect specific functions (such as PPA,
that affects primarily language) carried out by investigating the
pattern of errors and their relationship to cortical impairment. It
shows correlations between regional volumes and PPA patients’
performance in a Naming test (Race et al., 2013). This type of
anatomical-behavioral analysis provides a better understanding
of the relationship between cognitive processes and regions neces-
sary for particular aspects of processing. In more practical terms,
we can use this information to monitor the disease progression,

FIGURE 12 | Showing partial least squares—discriminant analysis (PLS-DA) for classifying 37 individuals into PPA variants based on volumetric data

of 120 parcellated areas.
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FIGURE 13 | Correlations between regional atlas anatomy (z-scores of

volumes in y axis) and behavior (scores at Boston Naming Test—% of

correctness in x axis) in individuals with Primary Progressive

Aphasia—PPA. Regions with significant correlations are colored and the
color scale represents the degree of correlation. These data includes part of
the dataset used in Race et al. (2013).

or to categorize a clinical entity into more homogeneous groups,
which can be meaningful if such subgroups express differences in
prognosis or response to various treatments.

DISCUSSION
We have described neuroinformatics technologies at 1 mm
anatomical scale based on high-throughput 3D functional and
structural imaging technologies of the human brain. The core
is the conversion of functional and structural imagery into
their high-dimensional neuroinformatic representations index
containing O(1000–10,000) discriminating dimensions. The
pipeline is based on advanced image analysis coupled to digi-
tal knowledge representations in the form of dense atlases of the
human brain at gross anatomical scale. We demonstrate the inte-
gration of these high-dimensional representations with machine
learning methods.

The neuroinformatics pipeline is used to examine
cross-sectional and personalized analyses of neuropsychi-
atric illnesses in clinical applications as well as longitudinal
studies. We have demonstrated the use of high-throughput
machine learning methods for supporting (i) cross-sectional
image analysis to evaluate the health status of individual subjects
with respect to the population data, (ii) integration of image and
non-image information for diagnosis and prognosis.
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Recent studies have revealed the importance of high-frequency brain signals (>70 Hz).
One challenge of high-frequency signal analysis is that the size of time-frequency
representation of high-frequency brain signals could be larger than 1 terabytes (TB),
which is beyond the upper limits of a typical computer workstation’s memory (<196 GB).
The aim of the present study is to develop a new method to provide greater
sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a
single automated and versatile interface, rather than the more traditional, time-intensive
visual inspection methods, which may take up to several days. To address the aim,
we developed a new method, accumulated source imaging, defined as the volumetric
summation of source activity over a period of time. This method analyzes signals in
both low- (1∼70 Hz) and high-frequency (70∼200 Hz) ranges at source levels. To extract
meaningful information from MEG signals at sensor space, the signals were decomposed
to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every
possible sensor-pair. A new algorithm was developed and tested by calculating the
optimal CxC and source location-orientation weights for volumetric source imaging,
thereby minimizing multi-source interference and reducing computational cost. The new
method was implemented in C/C++ and tested with MEG data recorded from clinical
epilepsy patients. The results of experimental data demonstrated that accumulated source
imaging could effectively summarize and visualize MEG recordings within 12.7 h by using
approximately 10 GB of computer memory. In contrast to the conventional method of
visually identifying multi-frequency epileptic activities that traditionally took 2–3 days
and used 1–2 TB storage, the new approach can quantify epileptic abnormalities in both
low- and high-frequency ranges at source levels, using much less time and computer
memory.
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INTRODUCTION
Recent studies have revealed the significance of high-frequency
brain signals – such as high-frequency oscillations (HFOs,
90–200 Hz), ripples (80–250 Hz) and fast ripples (250–500 Hz)
relative to the conventional lower frequency brain signals
(<70 Hz) (Pulvermuller et al., 1997; Guggisberg et al., 2007;
Gotman, 2010; Worrell et al., 2012). One of the important moti-
vations behind the study of high-frequency brain signals is their
potential clinical applications. HFOs may be important biomark-
ers of epileptogenicity, a revolutionary finding revealed in recent
years (Xiang et al., 2004, 2009a, 2010). Clinical data have revealed
that removal of HFO-generating areas lead to improved surgical
outcomes (Haegelen et al., 2013). In addition, by using HFOs, it is
possible to substantially reduce the extent of cortical resections in
epilepsy surgery procedures without compromising seizure con-
trol (Weiss et al., 2013). Furthermore, HFOs also play a very

important role in many brain disorders (Uhlhaas et al., 2011). For
example, schizophrenia is associated with abnormal amplitude
and synchrony of high frequency activities (Uhlhaas and Singer,
2013). Of note, the study of high-frequency brain signals may
shed light on some of the fundamental mechanisms of neuronal
functions and brain disorders.

Numerous challenges exist in the study of high-frequency
brain signals with magnetoencephalography (MEG) and elec-
troencephalography (EEG) (Xiang et al., 2004, 2010, 2013; Dalal
et al., 2008; Papadelis et al., 2009; Chen et al., 2010; Gotman, 2010;
Gummadavelli et al., 2013). First, the size of high sampling rate
data can be over 12 terabytes (TB) (Blanco et al., 2011). The size
of high sampling rate data can cause a substantial amount of data,
posing a challenge for data transfer, storage, archiving, sharing
and analysis (Van Essen et al., 2012; Worrell et al., 2012; Zafeiriou
and Vargiami, 2012; Zijlmans et al., 2012b). Given the massive
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amounts of high-sampling rate MEG/EEG data that are collected
from patients and research subjects, it is impractical to rely on
a visual review of HFOs (Haegelen et al., 2013; Tort et al., 2013;
Xiang et al., 2013). Second, in clinical practice, MEG/EEG data are
typically analyzed with other neuroimaging data such as invasive
recordings, magnetic resonance imaging (MRI) and functional
MRI (fMRI). The considerable volume of multi-modal neu-
roimaging data produced across different communities has posed
a daunting challenge to the traditional methods of data sharing,
data archiving, data processing, and data interpreting (Van Essen
et al., 2012; Worrell et al., 2012; Zafeiriou and Vargiami, 2012;
Zijlmans et al., 2012b). Though the multi-modal data enhance
our collective understanding of the structure and function of the
brain, it is a challenge to handle these varied and heterogeneous
datasets. Even with modern computational innovations, there
remain technical challenges in data transfer, storage, and analy-
sis of large data sets of more than 12 TB (Brinkmann et al., 2009;
Le Van Quyen et al., 2010). Third, the best way to clinically utilize
analysis from high-frequency brain signals remains a challenge.
While it has been demonstrated that the brain generates signals
in wide frequency ranges, there are currently no established cri-
teria for distinguishing physiologic high-frequency signals from
pathologic neuromagnetic signals (Worrell et al., 2012; Zijlmans
et al., 2012b; Haegelen et al., 2013; Matsumoto et al., 2013; Pail
et al., 2013; Srejic et al., 2013; Tort et al., 2013). Although mul-
tiple studies with invasive recordings have shown the feasibility
and potential clinical importance of detecting HFOs (Jirsch et al.,
2006; Engel et al., 2009; Jacobs et al., 2009, 2012; Levesque et al.,
2011; Andrade-Valenca et al., 2012; Dumpelmann et al., 2012;
Zijlmans et al., 2012b), there is no noninvasive method which can
be used for clinical purposes. One remaining important clinical
question is whether a noninvasive method can extract and visu-
alize meaningful HFOs from the brain for research and clinical
purposes.

This study aimed to resolve the aforementioned challenges
associated with large scale high-frequency signal processing
by developing novel analysis methodologies and workflows
for the MEG data. Since the computer memory limits for
a 32 bit and 64 bit operating system are 4 GB and 192 GB
(Windows 7, respectively) (http://msdn.microsoft.com/en-us/
library/windows/desktop/aa366778(v=vs.85).aspx) and the size
of high-frequency brain signals are usually larger than 12 TB
(Blanco et al., 2011), one methodological question this study
would like to address is whether new algorithms could minimize
the use of computer memory and storage. To solve the challenges
of analyzing more than 12 TB of both high and low frequency
MEG data, we mathematically and experimentally developed a
systematic approach to extract meaningful frequency specific and
spatiotemporal information from MEG data. Accumulated spec-
trograms, a technique which maximizes the signal power of the
frequency of interest while simultaneously minimizing other fre-
quency contents, provides a novel method of quantifying and
visualizing the frequency signatures of brain activity in both low-
and high-frequency ranges. Accumulated source imaging, which
volumetrically reconstructs source activity in multiple frequency
ranges, provides source images for clinicians to analyze epileptic
activity at source levels. The central hypothesis of our research

is that neuromagnetic brain signals in both low and high fre-
quency ranges could be localized and visualized with accumulated
source imaging. The new algorithm calculated optimal channel-
cross-channel (CxC) matrices and source location-orientation
weights for volumetric source imaging, minimizing multi-source
interference and reducing computational cost. To demonstrate
the advancements of the new methods in research and clinical
settings, MEG data from subjects were obtained, analyzed, and
demonstrated in 2D and 3D environments.

MATERIALS AND METHODS
DETECTION OF LOW- AND HIGH-FREQUENCY MEG SIGNALS AT
SENSOR LEVELS
Multi-channel MEG data had to be digitized at a high sam-
pling rate because the sampling rate must be at least two
times higher than the frequency edge of interest. For the anal-
ysis of low-frequency signals, MEG data could be resampled
to minimize the use of memory and to improve the compu-
tational efficiency. Resampling was done by decimating signals
to extract the low frequency data. A low-pass anti-aliasing fil-
ter was applied before resampling. The high and low frequency
pass-bands depended on the sampling rate and the frequency
ranges of interest. In this study, two pass-bands of 1–70 Hz and
70–200 Hz were used. To compute the accumulated spectrogram,
filtered MEG data were then segmented into small data seg-
ments. The length of the data segments depended on the time
window of wavelet-transformation. In this study, we used a 5 s
time-window and 600 frequency bins. There was no overlap
between segments. Of note, the total length of recorded MEG
data did not always match exactly with all of the segments. To
solve this problem, data padding (typically, adding zero to make
up enough data points for computing) was applied. If there were
more than enough data points, the program also allowed for
discarding of “extra” data points. The time duration of these
segments depended on several factors including the available
computer memory, storage spaces and research purposes. Once
the time-frequency representations were computed, they were
accumulated into one spectrum by adding them together. The
“threshold” was used during data accumulating. There were two
threshold values: a minimum threshold value and a maximum
threshold value. If a time-frequency value was smaller than the
minimum threshold value (e.g., background activity) or larger
than the maximum threshold value (e.g., artifacts), the value
was discarded. Accumulated spectrum is different from an aver-
aged spectrum because the process of accumulating has several
parameters: (1) accumulating has two thresholds; and (2) the
accumulated data do not have to be averaged. Since the analy-
sis of high-frequency components required high-sampling data,
the re-sampling function was critical for low-frequency spectral
analysis, which also minimized the use of computer memory.
The workflows of data analyses at sensor levels are illustrated in
Figure 1.

Morlet continuous wavelet transform was used for transform-
ing time-domain data to frequency-domain data (see Figure 1).
The Morlet wavelet was used because brain activity is nonsta-
tionary and the wavelet is better suited for nonstationary data
(Ghuman et al., 2011). Wavelet transform can be described by the
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FIGURE 1 | Workflow for computing accumulated spectrogram (left)

and the basic principle of computing accumulated spectrogram (right).

Since the analysis of high-frequency MEG signals requires high-sampling
rate MEG data, MEG data are digitized in a high-frequency range. To
improve the performance and optimize the use of computer memory for
analyzing both low- and high-frequency MEG signals, the new method can
re-sample MEG data dynamically according to the analysis frequency
ranges. If the data points of the recorded data are smaller than the
minimum data point of wavelet transform in frequency range, the “Data
Padding” function can pad some data points so as to meet the
requirements of wavelet transform. The “Thresholding” indicates that a

spectral value can be rejected or accepted by the accumulated
spectrogram according to a threshold value. MEG data recorded are
waveforms, which are divided to segments (e.g., “Waveform 1,”
“Waveform N”) to minimize the use of memory for wavelet transform
(“Wavelet transform”). In the new method, wavelet transform transfers
each segment of waveform data to a spectrum (e.g., “Spectrum 1,”
“Spectrum N”). Of note, “N” indicates the total number of segments or
spectra, which can be theoretically infinitely large. The “+” indicates the
process of accumulation, which add all spectra together to produce an
accumulated spectrum (“Accumulated Spectrum”). The left view of the
sensor distribution of our MEG system is shown on the top right.

following equation:

G(t, f ) = 1√
2π f

e

( −t2

2σ 2

)

ei2π ft (1)

In the above formula, t indicates time, f indicates frequency, and
σ represents the standard deviation of the Gaussian curve in the
time domain. To ensure stability of the wavelet transform, σ is
typically larger than 5

2π f . Since the wavelet convolution brings

Gaussian temporal blurring with a standard deviation of σ , the
effective number of independent samples is N−1√

2π(fsσ )2
. The fs rep-

resents the sampling frequency of the data and N represents the
number of data points.

Since brain activation in a given time-window might occur in
different frequency ranges and different frequencies might have
different corresponding amplitudes, we used a different sigma

value for each frequency to capture the time-frequency changes.
Consequently, wavelet Equation (1) can be represented with an
alternate representation in Equation (2) as follows:

G(t, f ) = Cσ π
− 1

4 e− 1
2 t2

(eiσ t − κσ ) (2)

In the formula, t indicates time and f indicates frequency. Each
wavelet transform has its own sigma value. Sigma is the scaling
parameter that affects the width of the window. The sigma val-
ues are derived from the mother function in wavelet transform
by computing the number of small waves for a time-frequency
analyses (Ghuman et al., 2011). Sigma values could also be
experimentally determined. κσ represents the admissibility and
Cσ represents a normalized constant. σ represents the standard
deviation of the Gaussian curve in the time domain. If signals
appeared in the given sensitive time (a small sigma value) and
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sensitive frequency (a large sigma value) ranges, they would be
enhanced.

An accumulated spectrum was defined as the time-frequency
summation of a long-time or continuous recording which had a
time period at least two times longer than that of the time window
of the spectrum. The equation of computing accumulated spectra
is given by:

Atf (s, f ) =
T∑

t = 1

F∑

f = 1

G(t, f ) (3)

In Equation (3), Atf represents an accumulated spectrum; s
indicates the time slice of the spectrum; f indicates frequency
bands (or bins) of MEG data; T indicates total time points
of MEG data and F indicate the total frequency bands. We
defined s ≥ 1 and s ≤ T/2. From computer program point
of view, the use of computer memory and storage space by
Equation (3) depends on the s. Even though T could be infini-
tively increasing, the requirements for computer memory and
storage remain the same. Consequently, the approach automat-
ically avoided possible “overflow” or “out of space” problems
in a long-time or continuous recording for capturing epileptic
activity.

An accumulated spectrogram was computed by sequen-
tially transforming each of the segments of waveform data to
time-frequency representations using Morlet wavelet algorithm
Equation (2) and then accumulating all the spectra together
Equation (3). In this procedure, the different spectrograms of
individual time segments were mathematically summed together
to a single new overall spectrogram. An accumulated spectro-
gram can reveal brain activity in a consistent frequency range
at multiple time windows. It can be considered as a “collec-
tive result” for a long-time recording. Figure 1 demonstrates
the basic principles of computing an accumulated spectrogram.
An accumulated spectrogram could reveal brain activity in a
consistent frequency range while minimizing noise at random
frequency ranges (Figure 1). Therefore, it could be considered
to be a “collective result” of spatial- and frequency locked sig-
nals in multiple epochs of MEG data. To identify the frequency
profile of the entire brain for a recording, we developed an accu-
mulated global spectrogram. An accumulated global spectrogram
was an averaged spectrogram of all accumulated spectrograms
from the entire MEG sensor array. The accumulated global spec-
trogram was the “spatial summation” of the entire MEG sensor
array’ accumulated spectrograms. Since each sensor was posi-
tioned in a distinct location around the brain if there was a
subject, an accumulated global spectrogram should represent the
magnetic field of the entire brain. The mathematical principles
have been described in previous reports (Rau et al., 2002). The
neuromagnetic activity at each sensor was visualized with contour
maps, which showed small spectrograms at the position of each
MEG sensor. The equation of computing global spectrogram is
given by:

G(s, f ) = 1
M

M∑

m = 1

Aft(s, f ) (4)

In Equation (4), G represents the global spectrogram; Atf rep-
resents an accumulated spectrum of one MEG sensor data; m
indicates MEG sensor index and M indicates the total number
of MEG sensors; s indicates the time slice of the spectrum; f indi-
cates frequency bands (or bins) of MEG data. Since each sensor
was positioned in a distinct location around the head (Figure 1),
the global spectrogram is considered to be a “spatial summation”
for each epoch of data (Xiang et al., 2009a).

DETECTION OF LOW- AND HIGH-FREQUENCY MEG SIGNALS AT
SOURCE LEVELS
To detect low- and high-frequency neuromagnetic signals at
source levels, two computing pipelines were developed. One com-
puting pipeline generated multi-frequency datasets by processing
MEG data with filter or wavelet transforms. MEG signals in multi-
frequency datasets were in a set of frequency ranges. Of note, the
frequency ranges depended on the research tasks and can be pre-
defined. Another computing pipeline performed four tasks: (1)
creating a three-dimensional source grid (3D grid), where each
grid node represents a possible source; (2) conducting forward
solution by calculating lead fields for each source (node) for the
entire grid; (3) computing the lead field norm (or magnitude) and
ranking the norm for each source for all sensors; (4) producing
the node-beam lead field, performing single value decomposition
(SVD) and calculating spatial filter weights. The node-beam lead
field, which represents a form of sub-space solution, was com-
pleted by selecting a group of sensors which had a larger lead
field norm. According to our tests, the optimal number of sen-
sors for a node-beam lead field was in a range of 3 to M/3; here M
indicates the total number of sensors of a whole cortex MEG sys-
tem. For example, in our study, the total number of MEG sensor
was 275. Thus, the suitable number of sensors that could be used
for node-beam lead field was 3–91 (275/3). Of course, all sensors
could be used for source scan. A small number of sensors was
used in node-beam lead field because high-frequency brain sig-
nals were typically very weak and appeared only in a focal group
of sensors. The node-beam sensors were also used to generate
beam sensor MEG datasets so that the sensors in forward solution
matched with measured magnetic signals. The final step was to
compute source moments and to generate source data. Additional
components were optional (red lines, which will be discussed in
following sections). The main workflow for localizing both low-
and high-frequency MEG signals is shown in Figure 2.

Differing from the conventional volumetric source imaging or
distributed source map, each grid node consisted of multiple data
items including the strength and frequency of the source activ-
ity (Figure 2). Building on previous reports (Mosher and Leahy,
1998; Vrba and Robinson, 2001; De Gooijer-Van De Groep, 2013),
the mathematic relationship between measured MEG data and
source activity can be expressed as following equation:

B = LQ + N (5)

In Equation (4), B represents the MEG data; L represents the lead
field, Q represents the source strength, and N represents the noise.
For a given MEG dataset, B is known and L can be computed
for each node with a forward solution. The forward solution in

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 57 | 305

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Xiang et al. Multi-frequency neuromagnetic source imaging

FIGURE 2 | Workflow for computing accumulated source images.

The workflow includes two main computing pipelines. One computing
pipeline processes MEG data with filter or wavelet transforms so as to
generate multi-frequency datasets. MEG signals in multi-frequency
datasets are in a set of frequency ranges. Another computing
pipeline works on several tasks, which included the creation of a
three-dimensional source grid (3D grid), performing forward solution by

calculating lead fields, ranking the norm for each source for all sensors,
and performing SVD. The node-beam lead field is completed by
selecting a group of sensors which have a larger lead field norm (or
weights). Of note, each location in accumulated source imaging can
have multiple parameters (e.g., “Frequency Index,” “Source Strength”).
Some processes are optional (red lines) and additional parameters can
also be added to the workflow.

this study was computed according to Sarvas’ formula for out-
side hemispherical conductors in Cartesian coordinates (Sarvas,
1987).

The determination of source strength and orientation of Q
has been a challenge as discussed in many previous reports
(Mosher et al., 1999; Huang et al., 2004; Robinson, 2004;
De Munck and Bijma, 2009; Ou et al., 2009). According to
our tests, the determination of MEG data in both low- and
high-frequency ranges with conventional beamforming required
considerable time and computing power to decompose MEG
sensor data to subspaces because the data in both low- and

high-frequency ranges had more data points as compared with
the previous reports typically focusing on a single frequency
range. However, for a given MEG data set in multiple frequency
ranges in a limited time window (2 min in this study), the
positions of sensor array and the 3D source grid were fixed; con-
sequently, lead fields could be computed once and then used
for both low and high-frequency ranges. Under these assump-
tions, we propose using SVD to decompose the lead field as
following:

L = USVT (6)
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Where U ∈ Rmxm is an orthogonal (unitary in the complex
case) matrix. The columns of U are the left singular vectors of
L. V ∈ Rmxm is an orthogonal (unitary in the complex case)
matrix. The columns of V are right singular vectors of L. S =
diag(σ1, σ2, . . . σp) is an M × N diagonal matrix with p =
min (m, n) and σ1, σ2, . . . σp are the singular values of L. M indi-
cates the number of sensors and N indicates the number of source
orientations. For a single source, p = 3. The Moore-Penrose
pseudo inverse of L is given by:

L+ = VS+UT (7)

Where S+ is a diagonal formed with the multiplicative inverses of
the nonzero singular values of L placed on the diagonal. Assuming
there was no noise (N = 0), the measured MEG data, B, can be
described by the following equations:

B = LQ = USVTQ (8)

Q = BL−1 (9)

By replacing L−1 in Equation (9) with L in Equation (8), the
estimated moment, �Q, can be computed with a SVD back sub-
stitution as described in the following equation:

�Q = BVS+UT (10)

Of note, L+, pseudo inverse of L, could be computed once and
used for the analysis of data in all frequency ranges, which
makes the computation of source strength and probability more
efficient. In addition, once the �Q is determined, virtual sensor
spectrograms can be also computed with �Q for each frequency
range and time window.

V(t, f ) =
T∑

t = 1

F∑

f = 1

|| �Q||2 (TF)−1 (11)

In Equation (11), V represents the computed virtual sensor spec-
tral data. The t and T indicate time slice and total number of time
windows, respectively. The f and F indicate frequency band and
total number of frequency bands, respectively. Magnetic signals
generated by �Q can be computed with the follow equation:

Xcmp = L �Q (12)

where Xcmp represents computed magnetic signals at individual
sensors from source �Q. We used Xmea to represent the measured
magnetic signals at individual sensors, which were different from
B in Equation (3), which represents MEG data in general.

RELIABILITY ASSESSMENT OF SOURCE ACTIVITY AT LOW- AND
HIGH-FREQUENCY RANGES
To minimize the “ill-posed” inverse problem in MEG, the theory
that a given MEG sensor data pattern may have an infinite num-
ber of possible “correct” answers (Hamalainen and Sarvas, 1987;
Sarvas, 1987), we developed a channel-cross-channel (CxC) func-
tion to analyze the spatial pattern of MEG signals. Building on

the use of covariance matrix for MEG beamforming in our pre-
vious studies (Kotecha et al., 2009; Gummadavelli et al., 2013),
we applied a subtraction operation to all possible channel-pairs
to generate a matrix which described the spatial gradient of
magnetic signals among the sensors. Mathematically, each entry
outside of the main diagonal in a CxC matrix represents the
difference of a channel-pair. The diagonal entries represent the
values of the corresponding sensors. To assess the reliability of
source activity, the similarity of the measured MEG signal (Xmea)
and the computed MEG signals (Xcmp) were statistically analyzed
with the CxC matrix by computing the covariance and correlation
factors with the following formulas:

C
(
xmea, xcmp

) =
∑K

i = 1 (xmeai−xmea)(xcmpi−xcmp)
N−1 (13)

R
(
xmea, xcmp

) = C(xmea, xcmp)
SxmeaSxcmp

(14)

Where C
(
xmea, xcmp

)
indicates the covariance and R

(
xmea, xcmp

)

indicates the correlation in the CxC matrices. The xmea and xcmp

indicate signals in two channels which were paired for comput-
ing CxC. xmea and xcmp represent the mean of the signals in the
measured and computed datasets, respectively. Sxmea and Sxcmp

indicate the standard deviation of the signals in the two datasets,
respectively. K indicates the number of sensors used for source
estimation, which was smaller or equal to the total number of
measuring sensors. To statistically determine the spatial correla-
tions for each node in the 3D grid, t-values were computed for all
sources.

Tp = R
√

K−2
1−R2 (15)

In Equation (15), Tp is the t-value of a source; R indicates the
correlation of the measured and computed MEG signals for the
source; K indicates the number of sensors related to the source.

A careful observation of Equation (13) could find that xcmp is
similar to the weights of the conventional beamforming because
xcmp represents signals from a predefined location and estimated
source orientation. Similar to the conventional beamforming, the
use of xcmp could maximize signals from the source and mini-
mize environmental noise and signals from other locations. For
the analyses of multi-frequency signals, the location-orientation
weights were computed from the optimal CxC matrix for each
frequency. Thus, the source orientation was independent of fre-
quency and only dependent on the orientation of the cortical
normal vector. In other words, the solutions are approximations;
the orientation portion was frequency independent.

Building on previous reports that the spectral signatures of
low- and high-frequency signals at source levels can be measured
with the combination of accumulated spectrogram and virtual
sensors (Xiang et al., 2004, 2009a,b; Xiang and Xiao, 2009), the
present study developed accumulated source imaging (Figure 2).
With this technique, an accumulated source image was generated
by accumulating all the source data computed for each location
and each frequency band from the entire epoch of the MEG data.
Of note, the computing of accumulated source images maintained
spatial- and frequency-locked signals and minimized signals in
random-space and frequency.
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MAGNETIC SOURCE IMAGING WITH MULTI-PARAMETERS PER
LOCATION (MPPL)
This study moved one step further by developing magnetic source
images with multi-values per location or MPPL. Specifically, each
location has multi-parameters: (1) the first parameter describes
the frequency range, which is represented with a frequency index
for minimizing the use of computer memory and storage spaces;
(2) the second parameter describes the strength of source activity;
(3) the third parameter describes the reliability of the source; (4)
the fourth parameter describes the Kurtosis or “peakedness” of
source activity. The frequency index was directly obtained from
the processed MEG data (the values of high-pass and low-pass
filters or the frequency index in time-frequency representation).
The strength of source activity was the source moment com-
puted with Equation (10). The reliability could be computed with
Equations (14) or (15). Building on previous report (Robinson
et al., 2004), the Kurtosis was computed with following equation.

K =
∑T

t = 1 (q(t) − u)4

Tσ 4
t

− 3 (16)

Where T is the length of source data t in a time window, which
has a mean of u and a standard deviation of σ . K represents the
kurtosis values and is stored in parameter 4 in accumulated source
imaging.

As shown in Figure 2, the analyses of MEG signals at both
low- and high-frequency ranges generated more than one value
for each location or each node of the 3D grid (e.g., strength, reli-
ability and frequency of source activity). Notably, conventional
magnetic source imaging, which encodes one value for one loca-
tion or voxel, cannot represent the source data computed with
the developed methods. The main differences between the new
methods and existing methods are summarized in Table 1.

SOURCE LOCALIZATION WITH ACCUMULATING
Accumulated source imaging was defined as the volumetric sum-
mation of source activity over a period of time which was at least
two times longer than that of the time window of the source
image. Of note, accumulated source imaging could have more
than 1 time slices to reveal the fluctuation of source activity in
space and time. Accumulated source imaging can be described as

the following equation:

Asi(r, s) =
t = n∑

t = 1

Q(r, t) (17)

In Equation (17), Asi represents accumulated source strength at
location r; s indicates the time slice; t indicates time point of MEG
data; n indicates total time points of MEG data and Q indicate
the source activity at source r and at time point t. We defined
that s ≥ 1 and s ≤ n/2. From a computer program point of view,
the use of computer memory and storage space by Equation (12)
is dependent on the s for a fixed source imaging configuration
(e.g., spatial resolution and dimension). Even though n could be
infinitely increasing, the requirements for computer memory and
storage remain the same. Consequently, the approach automati-
cally avoided possible “overflow” or “out of space” problems in a
long-time or continuous recording for capturing epileptic activity
such as spikes. Since accumulated source imaging accumulates the
results of source data, it is different from previous reports which
compute a covariance matrix or kurtosis of sensor data for a long-
time recording. Specifically, using a covariance matrix or kurtosis
computed with sensor data for a long-time recording for source
localized is based on the assumption that the source was station-
ary during the long-time recording. Our approach, on the other
hand, did not make this assumption. Therefore, our approach has
the capability to detect both stationary and nonstationary source
activity.

MEG EXPERIMENTS, MRI SCAN AND INTRACRANIAL RECORDINGS
Participants
Ten healthy children (5 girls; 5 boys; age: 6–18 years; mean age:
12.8 years) were recruited for this study. Inclusion criteria were:
(1) healthy without a history of neurological disorders or brain
injuries; (2) age-appropriate functions including hearing, vision,
and hand movement; (3) head movement during MEG record-
ing was less than 5 mm. Ten pediatric patients (5 girls; 5 boys;
age: 6–18 years; mean age: 12.7 years) with clinically diagnosed
epilepsy were retrospectively studied. Patient inclusion criteria
were: (1) clinically diagnosed epilepsy; (2) head movement dur-
ing MEG recording was less than 5 mm; and (3) epileptic foci

Table 1 | Differences between accumulated source imaging (ASI) and similar methods.

ASI DM SAM SAM(g2) BF MN MUSIC

Optimized for localizing HFOs Yes No No No No No No

Handle large dataset Yes No No No No No No

Handle multi-frequency signals Yes No No No No No No

Multi-parameter per location Yes No No No No No No

Volumetric source scan Yes No Yes Yes Maybe Yes Yes

Detect dynamic sources Yes Yes No No No Yes Yes

Detect stationary sources Yes No Yes Yes Yes No No

Detect correlated sources Yes Yes No No No Yes Yes

Noise suppression Yes No Yes Yes Yes No Yes

ASI, accumulated source imaging; DM, dipole modeling (dipole fitting); SAM, synthetic aperture magnetometry; SAM (g2), SAM excess kurtosis (g2); BM,

conventional beamforming; MN, minimum-norm; MUSIC, multiple signal classification.
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were confirmed with electrocorticography (ECoG) and/or neu-
roimaging data. Exclusion criteria were: (1) inability to remain
still; and (2) presence of an implant such as a cochlear implant
device, a pacemaker, or a neuro-stimulator containing electrical
circuitry, generating magnetic signals, or having other metal that
could produce visible magnetic noise (>6 pT) in the MEG data.
Written consent, formally approved by the Institutional Review
Board (IRB) at Cincinnati Children’s Hospital Medical Center
(CCHMC) and Nanjing Brain Hospital, was obtained from each
healthy participant prior to testing. This study was approved by
IRB at CCHMC.

MEG recordings
MEG signals were recorded in a magnetically shielded room
(MSR) using a whole head CTF 275-Channel MEG system (VSM
MedTech Systems Inc., Coquitlam, BC, Canada) in the MEG
Center at CCHMC. Before data acquisition commenced, three
electromagnetic coils were attached to the nasion, left and right
pre-auricular points of each subject. These three coils were sub-
sequently activated at different frequencies for measuring each
subject’s head position relative to the MEG sensors. Each sub-
ject lay comfortably in the supine position, his or her arms
resting on either side, during the entire procedure. MEG data
were recorded at a sampling rate of 4000 Hz. Continuous MEG
recordings were completed for an epoch of 2 min. To ensure
the reproducibility, at least two epochs were recorded for each
subject. All MEG data were recorded with a noise cancella-
tion of third order gradients and without on-line filtering. To
identify system and environmental noise, we routinely recorded
one MEG dataset without a subject immediately prior to the
experiment.

MRI scan
Three-dimensional magnetic resonance imaging (MRI) was
obtained using a 3-T Philips Achieva scanner (Philips Healthcare,
Andover, MA). Three fiduciary marks were placed in identical
locations to the positions of the 3 coils used in the MEG record-
ings with the aid of digital photographs to allow for an accurate
co-registration of the 2 data sets. Subsequently, all anatomic
landmarks were made identifiable in the MRIs.

Similar to previous reports (Xiang et al., 2009a), clinical
intracranial electrocorticography (ECoG) data were retrospec-
tively analyzed with the MEG results. Of the 10 patients, the
8 patients reported here had implantation of subdural elec-
trodes and CCTV/EEG (VEEG) monitoring according to stan-
dard protocol at our hospital. Digital photos were taken before
and during the operation to record the placements of the
electrodes.

IMPLEMENTATION OF THE ALGORITHMS
The aforementioned method for reconstruction of brain activity
was implemented in MEG Processor with C/C++ on Windows
platform (Xiang et al., 2010; Gummadavelli et al., 2013). MEG
Processor was driven by its Windows interface. From the user
perspective, its organization is contextual rather than linear:
the multiple features from the software were not listed in long
menus, they were accessible only when needed and were typically

suggested within contextual popup menus or specific interface
windows. This structure provided faster and easier access to
requested functions.

DATA ANALYSES
MEG data were visually inspected for artifacts. MEG waveforms
with identifiable artifacts (amplitude >6 pT) were excluded from
data analyses. Similar to previous reports (Xiang et al., 2009a),
accumulated spectrograms, global spectrograms and spectral
contour maps for all subjects were computed and analyzed. Before
reconstructing brain activity for human MEG data, the head
was modeled as a homogenous conducting sphere in order to
account for volume-conducted return currents. The sphere model
used in this study was a multiple local-sphere model, where
each sphere (one per MEG sensor) was fit to a small patch of
the head model (directly under the sensor) in order to bet-
ter model the local return currents (Huang et al., 1999). The
conducting boundary was defined with individual MRI, which
was the inner skull. In other words, the best-fit sphere was fit
to the scalp. From this head model, a whole-brain, subject-
specific lead field was computed and used for magnetic source
reconstruction. Accumulated source imaging and conventional
beamforming (Vrba and Robinson, 2001) were implemented in
MEG Processor for source estimation (Kotecha et al., 2009; Chen
et al., 2010; Gummadavelli et al., 2013). CTF software package
(VSM MedTech Systems Inc., Coquitlam, BC, Canada) was used
to perform dipole fit analyses (Robinson et al., 2004; Kirsch et al.,
2006). We used MNE (Gramfort et al., 2014) and Brainstorm
(Tadel et al., 2011) to perform source estimation with Minimum-
norm and multiple signal classification (MUSIC) algorithms,
respectively.

To quantify the results, electrocorticography (ECoG) was used
as the “gold standard” for defining epileptic zones. MEG sources
were overlapped onto individual MRI data. Cerebral landmarks
including the central sulcus, Sylvian fissure and the somatosen-
sory cortex were used to define specific anatomical cortical brain
regions (Agirre-Arrizubieta et al., 2009). The brain regions were
the central, parietal, and occipital lobes. The frontal lobe was
divided in the frontal superior, medial, inferior, and fronto-
orbital regions; the temporal lobe into the lateral and mesial
regions, the latter comprising the amygdala, the hippocampus,
the parahippocampal gyrus, and the temporal-basal area. The
inter-hemispheric region consisted of the mesial surface of the
frontal, parietal, and occipital lobes (De Gooijer-Van De Groep,
2013). Similar to previous reports (Agirre-Arrizubieta et al., 2009;
De Gooijer-Van De Groep, 2013), the concordance between MEG
sources and ECoG was measured by determining if the interictal
ECoG and MEG source locations were anatomically matched in
the brain regions. We defined the sensitivity and specificity of the
methods as followings.

Sensitivity = TP
TP+FN (18)

Specificity = TN
TN+FP (19)

Where TP represents the number of true positive (both MEG
and ECoG showed epileptic foci); FN indicates the number of
false negative (ECoG showed epileptic foci while MEG showed no
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epileptic focus); TN represents the number of true negative (both
MEG method and ECoG showed no epileptic foci); FP represents
number of false positive (MEG showed epileptic foci, but ECoG
showed no epileptic focus).

STATISTICAL ANALYSIS
The comparisons of spectral and source data for epilepsy sub-
jects and controls were performed with paired Student T-tests.
The odds ratios of activity in brain areas in epilepsy subjects
other than the areas identified in control groups for each fre-
quency band were analyzed with Fisher’s exact tests. Significance
was accepted at the level of p < 0.05 for one comparison. Since
multiple frequency bands and more than one source were ana-
lyzed, Bonferroni multiple comparison corrections were applied.
Specifically, if multiple comparisons were to be taken into account
then the significance level for any one of these comparisons was
reduced from 0.05 to 0.05/parameter (e.g., for 9 frequency bands,
p < 0.005).

RESULTS
The size of 2 min MEG data digitized at a sampling rate of
4000 Hz (CTF MEG system, 275 sensors) was 0.597 GB. For
time-frequency analyses, if the frequency bin of time-frequency
transform was 600, the size of the time-frequency representation
of 0.597 GB waveform data were 358 GB (600 × 0.597). When
we computed the CxC data with time frequency data, the size
of time-frequency based covariance matrices were 128164 GB
(358 × 358 GB), which was approximately 125 TB. Of note, the
source data computed from the time-frequency data would also
be larger (>125 TB). Since the physical memory limit for win-
dows 7 (64 bits, professional version) was 192 GB, the spectral
data computed with the conventional time-frequency analy-
sis method could not be stored in our Windows workstations
because as it clearly exceeded the upper limits of the operating
system. Alternatively, with accumulated spectrogram, we were
able to limit the size of the spectrogram to 3 GB. Noticeably,
the size and time required for computing an accumulated spec-
trogram mainly depended on the dimension of the accumu-
lated spectrogram (number of frequency bins and time slices)
and frequency ranges which could be adjusted by users. For an
accumulated spectrogram with a dimension of 600 × 600 (600

frequency bins, 600 time slices) for a 2 min recording (sampling
rate 4000 Hz), it took approximately 8.1 ± 0.03 h for data in
70–200 Hz, 1.3 ± 0.002 h for data in 1–70 Hz. Of note, the pro-
cessing time would also depend on the speed of CPU and GPU,
the number of programs running, the optimization of software
compiling. In this study, we used two CPU (Intel Xeon, E4506,
2.13 Hz, each CPU has four cores). If GPU was used, the times
were shortened to 42.5 ± 0.31 min for data in 70–200 Hz and
12.2 ± 0.009 min for 1–70 Hz, respectively. GPU could signif-
icantly shorten the computing time (p < 0.0001). Examples of
accumulated spectrograms are shown in Figures 3–6. To identify
high-frequency signals in multiple frequency bands with visual
inspection, it took 2–3 days for a neurologist with 8 years of
EEG/MEG experience.

The processing time for source scan with the conventional
dynamic multi-dipole modeling (finding the 13 dipole for each
time-slice) in multi-frequency ranges for recording at a sampling
rate of 4000 Hz took 92.3 ± 0.4 h. However, our accumulated
source imaging, which automatically scanned the entire brain for
the same dataset took 12.7 ± 0.4 h. Of note, the approach was
approximately 7.6 times faster than the conventional approach
(p < 0.0001). If GPU was used, the time could be significantly
shortened to approximately 6.3 ± 0.1 h. However, the use of GPU
slowed down the user responses in our tests.

The global spectrograms of MEG datasets recorded from three
conditions (no subject, healthy subjects and epilepsy subjects)
showed that the epilepsy subjects had significantly increased spec-
tral power. Figure 3 shows an example of global spectrograms
in the three conditions. We noted that accumulated spectro-
grams revealed a clear alpha activity (approximately 8–12 Hz)
in all healthy subjects (10/10, 100%) (Figure 4). Out of the 10
epilepsy patients, 9 patients showed increased spectral power in
70–200 Hz (9/10, 90%). Further analyses revealed that increased
spectral power were around 106, 140, and 168 Hz in epilepsy
patients (Figure 5). Figure 6 shows the spatial distributions of
accumulated spectrograms in spectral contour maps.

Accumulated source imaging revealed focal increase of spectral
power (Figure 7). Accumulated source imaging in low frequency
ranges revealed that brain activities in 8–12 Hz (alpha) were local-
ized to the occipital cortex in all the healthy subjects (10/10,
100%). However, alpha activity were localized to the occipital

FIGURE 3 | Accumulated global spectrograms in three conditions.

“Magnetic Noise” was computed with MEG data recorded without
subjects. “Control Subject” was computed with MEG data recorded from
a healthy child. “Epilepsy Subject” was computed with MEG data
recorded from a child with epilepsy between seizures (interictal). The

sampling rate of all MEG recordings was 6000 Hz. An accumulated global
spectrogram represents the “spatial summation” of the entire MEG
sensor array accumulated spectrograms. The three spectrograms show
that the epilepsy subject has elevated spectral power as compared to
the control subject.
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FIGURE 4 | Accumulated spectrograms show the well-known alpha

activity in a healthy subject and an epilepsy subject. Noticeably, healthy
subject (“Healthy Subject”) has a clear activity around 8–12 Hz (alpha

activity). However, the epilepsy subject (“Epilepsy Subject”) has incrased
activity in 2–4 Hz (low-frequency activity). The color bar shows the color
coding of spectral power.

cortex in five epilepsy patients (5/10, 50%) and in nonoccipital
cortices in other five patients (see Figure 8 for example). The
five patients all had strong epileptic activity, which overshadowed
and/or interrupted alpha activity. We noted that the increased
spectral power at source levels varied among epilepsy patients.

Accumulated source imaging showed that 9 out of the 10
epilepsy patients (9/10, 90%) had increased focal spectral power
in high-frequency ranges at source levels. The epileptic areas
localized by accumulated source imaging were concordant with
clinical data. Figure 9 shows an example of epileptic foci volumet-
rically localized with high-frequency accumulated source imaging
(70–200 Hz). The sensitivity and specificity of all subjects are
shown in Table 2.

DISCUSSION
The present study demonstrated an approach for detecting both
low- and high-frequency neuromagnetic signals by integrating
time-frequency transform, source localization, accumulation and
MPPL algorithms into a comprehensive and systematic process-
ing package. The strengths of our methodologies are reflected by
the major features of our signal processing algorithms as well as
their abilities to resolve the difficulties associated with the large
data volume, multi-modality data and its clinical applicability.

FEATURES OF OUR SIGNAL PROCESSING ALGORITHMS
One of the unique features in our wavelet transform algorithm
was that the sigma value (number of waves) could be dynami-
cally changed so as to match the neurophysiological patterns. For
example, neuromagnetic signals from a brain area may appear in
multiple frequency ranges but in a similar time window. The con-
ventional wavelet algorithm typically gives a wide time-window
for low signals and a narrow time-window for high-frequency sig-
nals, which is not well-suited for analysis of brain activity. The
improved wavelet transform algorithm in the present study could
solve this problem by dynamically changing the sigma values so as
to adjust the time-window for a better analysis of brain activity.

Accumulating algorithms in the computing of accumulated
spectrograms provides a novel method for handling the large

datasets obtained when analyzing both low and high-frequency
MEG signals. Integration of time-frequency analysis and accu-
mulation into a workflow system is a novel neuroimaging data
processing algorithm technique that can summarize and visualize
high-frequency signals with a few images.

CxC matrices and functions are critical to the study of neu-
ral HFOs. Since high-frequency signals are typically obscured by
low-frequency signals (Xiang et al., 2009a), time-frequency rep-
resentations were normalized according to the magnitude of each
frequency bin across all MEG sensors to ensure that all frequency
bins contributed equally to the source reconstruction. The time-
frequency matrix allows for matrix operations such as subtraction
of control state MEG signals from the activation state MEG sig-
nals, whose purpose is to increase signal-to-noise ratio (SNR) or
to maximize the signal power at a peak frequency (or a frequency
of interest) while simultaneously minimizing it at the neighboring
surrounding frequency bins. CxC matrices based on the time-
frequency data provide unique spatial patterns and gradients of
magnetic fields for determining high-frequency sources.

The major differences between our technique and existing
methods of volumetric imaging such as beamforming, minimum-
norm are the features of accumulation and MPPL, which are
more than a source localization algorithm. To our knowledge,
none of the existing methods have the features of accumulation
and MPPL. It is necessary to point it out that, some existing
methods have internally fixed frequency ranges (e.g., 20–70 Hz)
(Robinson et al., 2004), which could not be directly compared
in our tests because our method was designed to analyze both
low- and high-frequency signals (multi-frequencies). Of note,
each method has its strengths and weaknesses (De Gooijer-Van
De Groep, 2013). According to on our clinical experience, the
unique features of the method are clinically important and nec-
essary. For example, the conventional beamforming could also
been used to detect multi-frequency signals (Vrba and Robinson,
2001). However, the conventional beamforming is based on
covariance matrices, which are computed from data in long time-
windows (if the time-windows are short, the sizes of the source
data would be a problem). The process assumes that the brain
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FIGURE 5 | Global accumulated spectrograms from 10 epilepsy

subjects and 1 healthy subject show the main frequency

components of neuromagnetic signals in 70–200 Hz in epilepsy

patients. Noticeably, the activity patterns vary across patients. The
color bar shows the color coding of spectral power for all the global
accumulated spectrograms.

activity is stationary in the time-window (Vrba and Robinson,
2001), which may be not true for real epileptic activity (Zijlmans
et al., 2012b). By using accumulation algorithms, our approach
does not making any assumption about the stationarity of the
sources. Another example is SAM (g2). SAM (g2) is an outstand-
ing method for detecting excess kurtosis (Kirsch et al., 2006).
SAM (g2) is designed for detecting rare events (spikiness activity).

It has been shown that combining SAM(g2) and other methods
such as MUSIC gives the best clinical results (De Gooijer-Van De
Groep, 2013). The development of MPPL in our method enables
us to implement both kurtosis and other algorithms by using
multiple parameters during source analyses. Consequently, both
rare events (kurtosis) and common events (frequent spikes) could
be detected by our methods.
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FIGURE 6 | Accumulated spectral contour maps from 10 epilepsy

subjects and 1 healthy subject show the spatial distributions. Noticeably,
the spectral distribution varies across patients. All the contour maps have the
same orientation defined by the arrows: the “L” indicates the left side of the
head and the “R” indicates the right side of the head. The “F” indicates that

the upper part of the contour map represents the frontal region of the head;
the “B” indicates that the lower part of the contour map represents the
posterior region of the head. Each small circle represents one MEG sensor.
The color bar shows the color coding of spectral power for all the contour
maps.

SEVERAL MAJOR CHALLENGES RESOLVED WITH THE CURRENT
METHODOLOGIES
Data volume challenge
Our results are consistent with previous reports (Blanco et al.,
2011), the size of high sampling rate MEG/EEG data could be
in the magnitude of TB (>12 TB). This was particularly true
for multi-frequency spectral data (>125 TB). However, by using
accumulating techniques, we were able to minimize the size of
MEG data to less than 10 GB without losing the high-frequency
information. Although accumulated spectrogram was utilized

with MEG in the present study, the same technology can also
be used in the analysis of EEG and intracranial EEG. In current
clinical research, the detection and labeling of interictal and ictal
epileptiform activity in intracranial EEG recordings is performed
by expert review. This manual method has been known to be
associated with a poor inter-reviewer reliability (Benbadis et al.,
2009). In addition, manual review is not feasible for large data sets
because it is very time consuming and labor-intensive (Restuccia
et al., 2011; Andrade-Valenca et al., 2012; Dumpelmann et al.,
2012; Jacobs et al., 2012; Zijlmans et al., 2012a; Haegelen et al.,
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FIGURE 7 | An illustration of the basic principle of accumulated source

imaging. The top waveforms show MEG data at sensor levels. The bottom
images show individual structural magnetic resonance image and the region
of interest (ROI, blue lines) for source scanning. MEG sensor data are firstly
divided into small segments (e.g., “Sensor Data Segment 1,” “Sensor Data
Segment 2,” “Sensor Data Segment N”). Volumetric sources are then
produced by scanning the entire ROI with each segment of sensor data. The

red, yellow and white small cubes indicate the sources (or voxels) identified.
For illustration purposes, a very low resolution (12 millimeter) spatial
resolution was used. An accumulated source image is generated by spatially
adding all volumetric sources together. Of note, only sources reach certain
thresholds (in this case, 75%) are added to accumulated source images,
which differentiate this accumulating process from averaging. The color bar
indicates the color coding of the source strength.

2013; Stacey et al., 2013). Alternatively, accumulated source imag-
ing can automatically analyze large data sets and provide images
for experts to review. This new method can be used in combina-
tion with experts’ review to verify its sensitivity and specificity and
to advance our understanding of the relationship between HFO
and epilepsy. According to our data, the new method can be fur-
ther developed as a fully automatic detector with high specificity
and sensitivity.

The development of methods for analysis of a substantial
amount of MEG/EEG data has become an important research
area. For example, data mining has been developed for the anal-
ysis of HFOs in epilepsy patients (Blanco et al., 2011; Worrell
et al., 2012). Blanco et al. (2011) reported a quantitative anal-
ysis of HFOs and their rates of occurrence in 9 patients with
neocortical epilepsy and two control patients with no history
of seizures (sampling rate: 32,556 Hz). Using the data mining
approach, they found that a cluster of ripple frequency oscilla-
tions with a median spectral centroid of 137 Hz is increased in
the seizure-onset zone more frequently than a cluster of fast ripple
frequency oscillations (median spectral centroid = 305 Hz). Our
results are consistent with their findings. The relative rate of rip-
ple frequency oscillations is an interesting potential biomarker for
the epileptic neocortex, but larger prospective studies correlating
HFOs rates with seizure-onset zones, resected tissue and surgical
outcomes are required to determine the true predictive value of
this line of research (Montazeri et al., 2009; Blanco et al., 2011;
Worrell et al., 2012). However, to our understanding, algorithmic
requirements differ substantially for data mining and for topolog-
ical (feature) data analysis. In particular, little is known about the
locations of high frequency brain signals and their relationship to
neurological disorders. In this regard, one of the unique features

of accumulated source imaging is its ability to localize and visu-
alize epileptic activity in both low- and high-frequency ranges for
correlating locations of brain signals to neurological disorders.

Multi-modality imaging data challenge
Our data have also shown that functional MEG data can be seam-
lessly integrated into structural MRI data. In comparison to con-
ventional source imaging, one important feature of accumulated
source imaging is MPPL. MPPL analysis results in multi-values
per voxel in 3D images. One parameter is dedicated to the fre-
quency signature, which is important for visualizing HFOs. For
example, HFOs may be a band-limited event (Crepon et al., 2010)
or they can be a broadband event (Staba and Bragin, 2011; Worrell
et al., 2012; Zijlmans et al., 2012b). By visualizing the frequency in
the imaging data, we can better address many current questions
in the study of HFOs (Engel et al., 2009; Staba and Bragin, 2011;
Worrell et al., 2012; Zijlmans et al., 2012b). For example, if HFOs
are band-limited, should there be specific spectral boundaries? In
other words, should a HFO be defined as an isolated event in the
time–frequency map, or could it contain a variety of frequencies
within a range? Since spontaneous activity can occur in multi-
frequency ranges, we consider the development of accumulated
source imaging with MPPL to be important for multi-modality
integration because the unique parameters from MEG is encoded
in each location (voxel) and can be easily integrated into other
modalities without losing any information.

Integration of accumulating and source localization into a
systematic approach is a powerful neuroimaging data process-
ing technique that could simplify multi-modality analyses. For
example, epileptic foci defined by HFOs are not time-locked and
can spontaneously occur at any time point or time window.

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 57 | 314

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Xiang et al. Multi-frequency neuromagnetic source imaging

FIGURE 8 | Accumulated source imaging shows low frequency brain

activity in 8–12 Hz (alpha) in an epilepsy subject (“Epilepsy Subject”)

and a healthy subject (“Control Subject”). Alpha activity is localized to
the occipital cortex in the healthy subject. However, alpha activity is
overshadowed by epileptic activity in the epilepsy subject. The epileptic
activity is localized to the left and right parietal cortices in the epilepsy
subject, which is concordant with clinical findings.

Without accumulation, thousands of MEG source images may
need to be integrated into structural MRIs, which would be
time-consuming. With accumulated source imaging, epileptic
foci can be captured and summarized as a few images, which
could be easily integrated into structural MRIs. As demonstrated
in the Results section, accumulated source imaging is a potential

powerful technique for multi-modality analysis of epileptic foci.
Importantly, our software packages and libraries are based on
C/C++. This methodology can be similarly implemented in
more advanced computer systems such as cluster/GPU/FPGA
or cloud/HPC. By using those advanced computer technologies,
accumulated source imaging can be computed in a timely manner
and routinely used in clinical practice in the future.

Clinical applicability challenge
Building on previous reports (Robinson et al., 2004; Kirsch et al.,
2006) and our clinical observation, we developed the afore-
mentioned method for detecting both low- and high-frequency
brain signals. The proposed framework and architecture may also
solve a few problems occurring in our clinical practice. First,
this method provides an objective means of data analysis. The
existing and currently practiced method for identifying epileptic
spikes relies on visual inspection, which is subjective. Second, the
proposed method provides meaningful quantitative source data,
which are not available in conventional visual identification of
epileptic spikes. Third, the new method can provide novel fre-
quency descriptions about aberrant brain activity. In addition,
the newly developed method semi-automatically quantifies MEG
spectral power and source activity. Moreover, the new method has
the capability of detecting and localizing high-frequency epileptic
signals, a feat impossible to achieve with the conventional visual
inspection of waveforms.

The results of spectral data showed that accumulated source
imaging may play a key role in the differentiation of true HFOs
from environmental noise in pre-operative workup for epilepsy
surgery. It is well known that low-frequency signals may gen-
erate high-frequency harmonics. Since any harmonic of a high-
frequency signal will localize to the corresponding low-frequency
component, accumulated source imaging (which encodes both
frequency and spatial information) can automatically reveal the
main frequency by comparing the spectral power in the location
of question. If HFOs were localized to a brain area which did
not have low-frequency signals, the location would be an index
for true HFOs. Since digital filtering may be used in the analy-
sis of HFOs, the filter characteristics must be taken into account
to avoid the detection of false oscillations (Benar et al., 2010).
It has been noted that sharp transients with spectral content in
HFO bands but without actual HFO in the raw data may be
generated by filtering. According to our observation, such false
oscillations are typically the result of the additive superposition
of harmonics. They do not have a consistent spatial pattern in
CxC and cannot be consistently localized to a location in the
brain.

Accumulated source imaging may also play a key role in the
differentiation of brain HFOs from artifacts in clinical practice.
Raw MEG data contain a mixture of high-frequency brain sig-
nals and a variety of artifacts and noise. A major obstacle to
HFO research is the unfortunate fact that various muscle activ-
ities typically result in prominent increases in gamma power
(>25 Hz), and contaminate the recorded signal in the HFO spec-
trum. Myogenic activity interferes with the detection of HFO
and represents a significant and often under-estimated challenge
in clinical and basic research. For many years, intracranial EEG
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FIGURE 9 | A digital photo of intracranial recording (“ECoG”) and

accumulated source imaging (“ASI”) show the concordance of the

two methods. The two images are placed in the similar orientation.
“Frontal” indicate the frontal cortex; “Temporal” indicates temporal lobe.
The left green arrow points to the epileptic area invasively defined by

intracranial recording; the right blue arrow points to the epileptic area
noninvasively localized with high-frequency neuromagnetic signals.
Noticeably, the areas are matched in gyrus level. The color bar shows
the color coding of accumulated source imaging. The value of the source
voxel is normalized T value (no unit).

Table 2 | The sensitivity and specificity of five MEG source

localization methods.

ASI DM BF MN MUSIC

1–70 Hz Sensitivity 72 50 60 70 70

Specificity 64 38 59 60 54

70–200 Hz Sensitivity 90 30 40 50 40

Specificity 76 42 53 62 68

recordings were assumed to be largely, if not completely, immune
to eye movements and muscle artifacts. This assumption has
recently been proven to be erroneous (Ball et al., 2009; Jerbi et al.,
2009; Kovach et al., 2011). To solve these problems, we tried
a different approach. Since high-frequency signals are typically
obscured by low-frequency signals, time-frequency representa-
tions could be normalized according to the magnitude of each
frequency bin across all MEG sensors to ensure that all frequency
bins contributed equally to the source reconstruction. The time-
frequency matrix allows for matrix operations to maximize the
signal power at a peak frequency while simultaneously mini-
mizing it at the neighboring surrounding frequency bins. CxC
matrices based on the time-frequency data provide spatial pat-
terns and gradients of magnetic fields for accurately determining
epileptic foci for clinical purposes. In addition, the method was
able to show multiple metrics of source analyses. It is important
to be able to visualize different metrics of the source data because
the frequency, strength, reliability/probability and kurtosis are
important for us to correctly interpret the results. According to
our pilot data, very strong high-frequency sources (>100 Hz)
typically pinpointed to the epileptogenic zones and the removal
of these zones would likely result in good surgical outcomes
and ultimately seizure freedom (Xiang et al., 2009a). Thus, we
postulate that these multiple metrics of source data will allow
discrimination among pathological, benign or artifactural source
signals in the future.

Although our newly developed method showed promising
results for detecting both low- and high-frequency brain signals,
several weaknesses and problems have been identified and need
to be addressed in the future. Specifically, we used multiple local
spheres in the computation of forward solution, which did not
address the effect of the inferior conductive boundary of the skull
that is not proximal to any MEG sensors. This leads to questions
as to the accuracy of the forward model for “deep” sources, as
may be encountered in temporal lobe epilepsy. A model based
on the superior and lateral curvature of the head may mitigate
this problem. The Sarvas forward solution, as applied to each
sensor’s sphere origin could only compute the field due to the
tangential components of the dipole moment. Given that there
were multiple sphere origins that might be in the vicinity of one
another, the dipole orientation and therefore the weights might
be “confused” by the rapid change (with location) of the tangen-
tial orientation. The number of sensors in node-beam lead field
was experimentally determined by using from 3 to 275 sensors.
Since three sensors have only two degrees of freedom left to atten-
uate unwanted interference or brain signal, at least five sensors
are necessary to discriminate between brain source and interfer-
ence (with 3rd gradient compensation). Of note, we continue to
perform research into improving our methodology to overcome
some of these limitations.

We also noted that source activities in a few subjects were close
to the brain-stem. Those activities might be an artifact or localiza-
tion problem or real sources. According to our data, the activity in
the center of the brain is more than likely real for several reasons:
(1) MEG data recorded without subjects did not show similar
sources. Thus, it is unlikely that the sources are from system arti-
facts (e.g., hardware, software or localization algorithms); (2) the
shape of the volumetric sources appears to mimic the structure of
individual structural MRIs in subjects. If the deep sources are sys-
tem artifacts or localization problems, they should not mimic the
structure of individual MRI. (3) There are reports showing that
MEG can detect and localize source in the deep brain areas. (4)
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We were very careful to exclude artifact by excluding subjects with
magnetic artifacts, recording MEG data with third-gradient noise
cancellation and by visually inspecting the MEG data. However,
MEG was not sensitive to sources in the brain areas and the source
images of the deep source are more diffuse as compared to the
surface sources. Therefore, further investigation and verification
are necessary. We consider that closely following the guidance
recommended by Gross and colleagues may further improve the
quality of the data (Gross et al., 2013). In particular, by using
multiple metrics of source analysis, we can incorporate new algo-
rithms into data analysis by adding one source parameter. For
example, Fatima and colleagues have developed a novel method
to significantly improve the detection and localization of MEG
sources by using independent component analysis (ICA) (Fatima
et al., 2013), which can be incorporated into our source analysis
pipeline to correct artifact and improve source localization. For
resampling, one could also reduce the number of samples by high
pass filtering the raw data and heterodyning it down to baseband,
followed by decimation. The software and supplementary materi-
als, which implemented the aforementioned algorithms, are freely
available from the following website (http://sdrv.ms/PHenGK)
for other researchers to test, reproduce, and improve the methods.

SUMMARY
In summary, the present study has demonstrated that accumu-
lated source imaging is a new powerful technique for quantita-
tively and objectively analyzing MEG signals at source levels. By
volumetrically scanning sources and accumulating source infor-
mation, accumulated source imaging could handle very large
datasets and extract meaningful spatial information about brain
activity. Accumulated source imaging based on HFO detec-
tion may play a key role in differentiating brain activity from
environmental noise and muscle artifacts. Though further ver-
ification is necessary, we believe that the next study should
focus on using more advanced computer systems such as clus-
ter/GPU/FPGA/cloud/HPC to significantly improve the perfor-
mance of the proposed methods for clinical applications in the
future.
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In the inter-subject correlation (ISC) based analysis of the functional magnetic resonance
imaging (fMRI) data, the extent of shared processing across subjects during the
experiment is determined by calculating correlation coefficients between the fMRI time
series of the subjects in the corresponding brain locations. This implies that ISC can
be used to analyze fMRI data without explicitly modeling the stimulus and thus ISC
is a potential method to analyze fMRI data acquired under complex naturalistic stimuli.
Despite of the suitability of ISC based approach to analyze complex fMRI data, no
generic software tools have been made available for this purpose, limiting a widespread
use of ISC based analysis techniques among neuroimaging community. In this paper,
we present a graphical user interface (GUI) based software package, ISC Toolbox,
implemented in Matlab for computing various ISC based analyses. Many advanced
computations such as comparison of ISCs between different stimuli, time window ISC,
and inter-subject phase synchronization are supported by the toolbox. The analyses
are coupled with re-sampling based statistical inference. The ISC based analyses are
data and computation intensive and the ISC toolbox is equipped with mechanisms to
execute the parallel computations in a cluster environment automatically and with an
automatic detection of the cluster environment in use. Currently, SGE-based (Oracle
Grid Engine, Son of a Grid Engine, or Open Grid Scheduler) and Slurm environments
are supported. In this paper, we present a detailed account on the methods behind the
ISC Toolbox, the implementation of the toolbox and demonstrate the possible use of the
toolbox by summarizing selected example applications. We also report the computation
time experiments both using a single desktop computer and two grid environments
demonstrating that parallelization effectively reduces the computing time. The ISC Toolbox
is available in https://code.google.com/p/isc-toolbox/

Keywords: functional magnetic resonance imaging, naturalistic stimulus, re-sampling test, Matlab,

grid-computing, GUI

1. INTRODUCTION
Most neuroimaging studies, such as those based on functional
magnetic resonance imaging (fMRI), have so far utilized rel-
atively simple static stimuli to analyze brain functions (Spiers
and Maguire, 2007). However, the human brain has evolved to
function in a tremendously stimulating world and the investiga-
tion of complex brain functions, including socio-emotional or
comprehension-related processes, is limited when using highly
controlled/simplistic experimental setups, because these func-
tions are only triggered under highly complex stimuli. There is
an increasing interest in studying the human brain function with
dynamic, continuous stimuli that are designed to be closer to nor-
mal everyday life than in conventional, strictly controlled research
paradigms. The used stimuli can be, for example, a movie. This
kind of fMRI data cannot be straight-forwardly analyzed based
on a general linear model (GLM), because a GLM requires a ref-
erence time course of the task that is impossible to obtain for
a multi-dimensional stimulus such as a movie, unless focusing
the data-analysis on a specific feature of the stimuli. For this

reason, new data-driven methodologies are needed. The use of
novel experimental setups involving rich stimuli and data-driven
analysis methods which are particularly designed to study com-
plex brain functions opens up entire new fields for neuroscience
research.

Inter-subject correlation (ISC) based analysis, originally intro-
duced by Hasson et al. (2004), is a conceptually simple approach
to analyze fMRI data acquired under naturalistic stimuli. In
the ISC based analysis, the extent of shared processing across
subjects during the experiment is determined by calculating cor-
relation coefficient between the fMRI time series of the subjects in
the corresponding brain locations. This way, ISC based analyses
effectively avoid the modeling of the stimuli.

ISC based analyses have been previously applied to analyze
fMRI data collected during complex stimuli or tasks, including
movies (Hasson et al., 2004; Jääskeläinen et al., 2008; Kauppi et al.,
2010b; Nummenmaa et al., 2012), TV news reports (Schmälzle
et al., 2013), auditory and audiovisual narratives (Wilson et al.,
2008), pieces of music (Abrams et al., 2013) and aesthetic
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performances (Jola et al., 2013). ISC based analysis has also been
used for feature selection as a part of multivariate pattern anal-
ysis of data collected during a movie experiment (Kauppi et al.,
2011). There can be different motivations to apply ISC based
analysis for fMRI data. One can address specific neuroscientific
research questions (some examples are provided in section 3)
or simply try to make sense of highly complex fMRI data to
generate new hypotheses. Whatever the motivation, it is impor-
tant to keep in mind that the ISC is primarily a measure of
shared hemodynamic activity across subjects and not a measure
of hemodynamic activity per se. However, as shown by Pajula
et al. (2012), when equipped with proper nonparametric statis-
tical procedures (Kauppi et al., 2010b), ISC based methods can be
used for detecting traditional fMRI activations without requiring
specific, a-priori stimulus time course models.

Despite of the suitability of the ISC based approach to analyze
complex fMRI data, no generic software tools have been made
available for this purpose, limiting a widespread use of ISC based
analysis techniques among neuroimaging community. Reliable
and sophisticated ISC based analysis requires management of sev-
eral nontrivial methodological, computational, and visualization
related issues (such as heavy computational and memory load of
the analysis, the choice of a proper ISC measure, handling non-
standard statistical significance testing, and the visualization of
multidimensional time-varying ISC maps). Hence, it is obvious
that a toolbox solving these issues would be highly beneficial and
can substantially simplify the use of the ISC based analysis among
neuroscientists, consecutively advancing our understanding of
complex human brain functions.

We have previously introduced a framework for the basic ISC
based analysis (Kauppi et al., 2010b) and started building an open
source, graphical user interface (GUI) based Matlab toolbox,
termed the ISC toolbox, for a generic, ISC based analysis of fMRI.
A set of visualization tools—particularly designed for the ISC
analyses—are integrated to the GUI. In this paper, we describe the
methods behind of the ISC toolbox that implements, in addition
to the basic ISC analysis, many advanced ISC based computations
such as phase ISC, time-windowed ISC, and comparison of ISCs
between different stimuli. We will describe the analysis meth-
ods, explain the rationales behind them and demonstrate their
potential use by reviewing selected example application studies.

As the ISC based analyses are data and computation inten-
sive, the ISC toolbox is equipped with mechanisms to execute the
parallel computations in a cluster environment automatically and
with an automatic detection of the cluster environment in use.
Currently, SGE-based environments [Unity Grid Engine (Univa
Corporation, 2013), Son of a Grid Engine (Love, 2013), or Open
Grid Scheduler (Scalable Logic, 2013)] and Slurm environment
(Yoo et al., 2003) are supported. As there are ISC method-specific
challenges in the parallelization, we will describe the automatic
parallelization mechanisms in the paper. The ISC toolbox (the
current version is 2.0) is available in https://code.google.com/p/
isc-toolbox/

The organization of the paper is as follows. In section 2,
after providing an overview of the toolbox, we will detail the
ISC methods (section 2.2), describe the implementation of the
toolbox (section 2.3), and briefly describe a set of visualization

tools, customized to the ISC analyses (section 2.4). In section
3, we demonstrate the use of ISC-based analyses by reviewing
selected studies. In section 4, as we consider cluster comput-
ing features of the toolbox important, we present the com-
putation time experiments demonstrating the added value of
parallel computing. Section 5 discusses current limitations and
future directions of the toolbox and section 6 concludes the
paper.

2. MATERIALS AND METHODS
2.1. OVERVIEW AND USAGE OF ISC TOOLBOX
The ISC toolbox is designed for generic ISC based analysis of
fMRI data. No information about the stimulus is required to carry
out the analysis, making the toolbox suitable to analyze nearly any
kind of fMRI data. Naturally, data from at least two subjects are
needed for the analysis because the analysis procedure is based on
voxel-wise correlations of fMRI time-series across subjects. A nor-
mal desktop computer equipped with the Matlab is sufficient to
carry out the basic ISC analysis in many situations. However, in
certain situations it is recommended to utilize a computer clus-
ter to carry out the analysis. For instance, the use of cluster can
be meaningful if the number of subjects is high (tens of sub-
jects), advanced ISC analyses need to be computed, or reliable
re-sampling based nonparametric statistical inference is needed
to construct ISC maps. The toolbox can efficiently and automati-
cally utilize cluster environment, allowing easy and fast ISC based
analysis.

The toolbox consists of three parts: (1) a startup GUI for
setting-up parameters for the analysis, (2) a main program that
computes ISC maps based on selected parameters, and (3) a GUI-
based visualization tool for the exploration of the findings. The
GUIs are designed to make the analysis easier but a whole analysis
pipeline can also be carried out from Matlab’s command line. The
main window of the startup GUI is shown in Figure 1 to demon-
strate the main features of the ISC toolbox. Using the startup
GUI, a user can easily select the appropriate analyses and their
parameters. In the left side of the panel, a user chooses a descrip-
tive project name and the destination folder of the analysis. For
a large textbox (“Subject source files”), a user adds the names
of the files containing fMRI time-series of the subjects used in
the analysis. The toolbox assumes that fMRI signals have been
preprocessed and preferably registered to a standard template.
Preprocessing and registration algorithms are not implemented
in the ISC toolbox because well developed free software pack-
ages exist for these purposes. Preprocessed and registered fMRI
data sets of the subjects should be given either in nifti- or mat-
format as 4-dimensional (a 3-dimensional position coordinate
and time) matrices. If several acquisitions are available for each
subject or acquisitions for more than one group are available, a
user can analyze them all by adding more sessions to the project.
The left side of the panel also contains buttons for parameter
validation and for launching the main program which computes
ISC maps once the parameters have been successfully validated.
After running the main program, the visualization GUI to ana-
lyze results can be launched from the separate button. There is
also an option to export parameters to Matlab’s workspace (using
the button “Export to workspace”). Automatic postprocessing
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FIGURE 1 | ISC Toolbox’s startup GUI where user can define the parameters for analysis, test them, run the ISC based computations and launch a

separate GUI for visualization of the results.

operations can also be used to remove portions of data generated
during the analysis to free disk space.

Different ISC analysis options are selected from the right side
of the panel. A basic ISC analysis includes the generation of
the ISC maps including thresholding of the maps based on a
nonparametric statistical test. Details of this analysis can be spec-
ified from a separate panel under a button “ISC map settings.”
If more than one session is added to the project, it is possible
to compute ISC difference maps to investigate whether ISCs in
some of the sessions (conditions) are higher than in the oth-
ers. Frequency-specific ISC decomposes fMRI time-series of the
subjects to frequency sub-bands and computes and thresholds
ISC maps for each sub-band. Time-window ISC computes ISC
maps for several consecutive time-frames. Inter-subject phase syn-
chronization combines the localization of inter-subject similarities
in space, time, and frequency. These analyses are explained in
section 2.2.

An arbitrary volume size can be used to compute ISC maps
as long as the volume is same across subjects. However, the
GUI built for the visualization of the results assumes that all
fMRI data sets have been registered to a common MNI152 tem-
plate. The toolbox also assumes that Harvard-Oxford cortical
and sub-cortical brain atlases are available to compute and visu-
alize inter-subject similarities for selected brain regions. Hence,
to allow convenient analysis of the results, it is highly recom-
mended to register the data to the MNI template prior to ISC
analysis as well as to have the Harvard-Oxford brain atlases avail-
able. The anatomical template, atlases, and the brain mask for
limiting ISC computations only for the voxels within the brain
are freely provided with the FSL software package. The directory
including the corresponding nifti-files should be provided in the
startup GUI (subpanel “Templates”). The use of a computational
cluster can be disabled under the panel “Grid computation” if
needed.
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After all parameters have been set and validated, they are auto-
matically saved under the project directory in a single structure
array called “Params” (the parameters can also be saved or the
existing parameters can be loaded by a user from the file-menu in
the upper left corner). The main program performs all ISC based
computations defined in this parameter structure array. The pro-
gram saves intermediate and final results of the computations to
the project folders. The visualization GUI allows flexible analy-
sis of ISC maps over an anatomical template together with the
brain atlases. It also allows exporting interesting data to Matlab’s
Workspace for customized analysis.

2.2. ISC METHODS
2.2.1. Generation and visualization of the ISC maps
A correlation coefficient 1 is a natural measure of similarity
between fMRI time-courses of two subjects. ISC toolbox allows
an analysis of the similarities in the time-courses across multiple
subjects. We compute the mean of the voxel-wise correlation coef-
ficients across all possible subject pairs as (Kauppi et al., 2010b):

r = 1

N(N − 1)/2

N∑

i = 1

N−1∑

j = 2,j>i

rij, (1)

where r denotes a group-level ISC in a given voxel (a voxel index
is omitted for clarity), N is the total number of subjects, and rij

is the correlation coefficient between fMRI time-courses of sub-
jects i and j. Note that because rii = 1 and rij = rji, it is sufficient
to compute correlation coefficients across N(N − 1)/2 subject
pairs (instead of N2 pairs). However, because the number of
subject pairs increases approximately quadratically with N and
Equation (1) is computed for every voxel within the brain, it
may be necessary to compute extremely high number of corre-
lation coefficients (in the order of 108) even for the most basic
ISC analysis, rendering the analysis procedure computationally
demanding.

We briefly explain our preference to r as the test-statistic, par-
ticularly over a related one used by Lerner et al. (2011). The main
reason is that the test statistic r can be seen as an estimator of the
true (but unknown) population ISC ρ under the model that ρij =
ρ + εij, where ρij is the true correlation between subjects i and
j and εij, with zero-expectation, models the between subject-pair
variation. More specifically, if rij approaches ρij and ρij approaches
ρ, then r̄ approaches ρ. Lerner et al. (2011) computed the average
correlation of the subject time course and average time course of
remaining subjects. This is closely related to r̄ statistic2 and neither
one seems to be quantitatively better than the other. However, the

1By correlation coefficient, we refer to a standard Pearsons correlation coeffi-
cient.
2Let si denote the time course of the subject i that is de-meaned and normal-
ized to unit length so that ||si|| = 1 (the conclusion of this analysis does not
depend on the normalization to the unit length but the analysis is simplified
by that assumption). Now, rij can be written as an inner-product rij = sT

i sj.
Define a test statistic similarly to Lerner et al. (2011)

l̄ = 1

N

N∑

i = 1

sT
i

⎛

⎝ 1

Z−i(N − 1)

N∑

j = 1, j �=i

sj

⎞

⎠ ,

statistic in Lerner et al. (2011) cannot be straight-forwardly inter-
preted as an estimator of the population ISC in an above sense,
which results in our preference of r̄.

2.2.2. Nonparametric re-sampling test
The correlation coefficients rij in Equation (1) are not indepen-
dent because each subject is present in more than one subject
pair (e.g., rij and rkj are overlapping because they both depend
on the same time-series measured from subject j). Also, it is
well known that BOLD-fMRI signals are temporally correlated.
Therefore, the standard tests for assessing the significance of r
are not valid. We use a fully nonparametric re-sampling based
method to evaluate the significance of r (Kauppi et al., 2010b).
In this method, we perform a test against a null hypothesis that
r statistic is the same as for data with no specific time-structure.
To compute a “null” re-sampling distribution, we circularly shift
each subjects time-series by a random amount so that they are
no longer aligned in time across the subjects, and then calculate
r statistic. This way we can account for temporal autocorrelations
present in the fMRI data. In practice, calculation of all the pos-
sible time shift combinations is computationally prohibitive and
the distribution is approximated with finite number of realiza-
tions, randomizing the experiment across voxels and time-points,
by default 100 million realizations are generated. To obtain crit-
ical thresholds for significant ISCs, we first compute p-values of
the true realizations for each voxel based on the null distribu-
tion and then correct the values using the false discovery rate
(FDR) based multiple comparisons correction (Benjamini and
Hochberg, 1995). Using our visualization tool, it is possible to
investigate thresholded ISC maps over an anatomical template
with different critical thresholds.

2.2.3. Parametric t-test
The ISC toolbox contains an option to threshold group-level
ISC maps also based on a simple parametric test proposed by
Wilson et al. (2008). For this test, correlation coefficients are first
transformed to z-scores using a Fisher’s z transformation:

zij = 1

2
log

(
1 + rij

1 − rij

)
. (2)

Then, a one-sample t-test with N(N − 1)/2 − 1 degrees of free-
dom is performed under a null hypothesis that the ISC is zero.
Note that the independence assumption of the observations made
by the test is violated in practice.

where Z−i = ||(1/(N − 1))
∑N

j = 1, j �=i sj||. A straight-forward computation
yields

l̄ = 1

N

N∑

i=1

sT
i

⎛

⎝ 1

(N − 1)Z−i

N∑

j = 1, j �=i

sj

⎞

⎠ = 1

N

1

N − 1

N∑

i = 1

∑

j �=i

sT
i sj

Z−i

= 1

N2 − N

N∑

i = 1

∑

j �=i

rij

Z−i
= 1

N2−N
2

N∑

i = 1

N∑

j = 2, j>i

rij

Z−i
,

since rij = rji. It can be seen that this is a weighted version of r̄, where
the weights are proportional to the standard deviations of the average time
courses.
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2.2.4. Generation and visualization of the ISC difference maps
With the ISC toolbox, it is also possible to generate and visu-
alize ISC difference maps to investigate if there are significant
differences in the ISCs between two conditions. For instance, in
studies where same subjects are scanned twice under different
stimuli, it can be highly interesting to analyze whether or not
ISC was stronger in one of the conditions. We use a modified
Pearson-Filon statistic based on Fisher’s z-transformation (ZPF;
Raghunathan et al., 1996) for this purpose, which is a recom-
mended statistic for testing if two nonoverlapping but dependent
correlation coefficients are different (Krishnamoorthy and Xia,
2007). Consider four time-series ta

i , ta
j , tb

i and tb
j measured from

two subjects i and j in two conditions a and b. The correspond-
ing correlation coefficients ra

ij and rb
ij are nonoverlapping, because

they have been computed using different time-series. However,
stimuli used in two conditions a and b may not be indepen-
dent, making a dependency assumption plausible. We extend
the pairwise ZPF statistic for group-level analysis by combin-
ing the pairwise statistic from all subject pairs, and design a
fully nonparametric test to assess the significance of the result-
ing group-level statistic (Reason et al., under review). Our final
“sum ZPF” statistic is given by:

ZPFab
�ij =

N∑

i = 1

N−1∑

j = 2, j>i

(za
ij − zb

ij)
√

(T − 3)/2
√

1 − cov(ra
ij, rb

ij)
/[(

1 − (ra
ij)

2)(1 − (rb
ij)

2
)] , (3)

where za
ij, zb

ij are the Fisher’s z transforms [see Equation (2)] of

the correlation coefficients ra
ij, rb

ij, respectively, T is the length

of a time-course and cov(ra
ij, rb

ij) is a large scale covariance
(Raghunathan et al., 1996). The test is performed under the
null hypothesis that each ZPF value is drawn from a distribu-
tion with zero mean, which occurs when there is no difference in
ISC between the conditions. The approximate permutation dis-
tribution is generated by randomly flipping the sign of pairwise
ZPF statistics before calculating Equation (3) using a subsample
of all possible random labelings. Maximal and minimal statis-
tics over the entire image corresponding to each labeling are
saved to account for multiple comparisons by controlling family-
wise error rate (FWER; Nichols and Holmes, 2002). Due to the
symmetry of the distribution, thresholds for both directions are
obtained with this procedure. The default number of random
permutations over the whole image is 25,000.

Note that we cannot readily confirm the full exchangeability
under the null hypothesis for the permutation test since: (1) fMRI
time series are autocorrelated and (2) the subject pairs are not
independent. Assuming temporal independence and normality,
the ZPF-statistic can be shown to be distributed according to the
standard normal distribution under the null hypothesis of no cor-
relation difference (Raghunathan et al., 1996), which is enough
to ensure the correctness of the test (Good, 2005). However, it
is unclear to what extent this distributional result holds for the
ISC analysis. We performed here a simple Monte Carlo simulation

that verified that the ZPF statistics are normally distributed with a
constant variance, not dependent on the (true) values of ra

ij = rb
ij,

thus partially verifying the permutation test. The experiment and
its results are summarized in Figure 2.

2.2.5. Frequency-specific ISC analysis
The ISC toolbox contains an option to analyze ISCs in distinct
frequency sub-bands. The approach is well-motivated because
real-world events and stimuli unfold over multiple time-scales
(Kauppi et al., 2010b). For instance, features of visual stimuli,
spoken sentences, or the development of social interaction may
unfold over very different time-scales. Thus, it is plausible to
assume that the brain processes information in distinct frequency
sub-bands. In the frequency-specific ISC analysis, we first filter
the original time-series of each voxel (and subject) to multiple
frequency sub-bands using an octave filter bank based on sta-
tionary wavelet transformation (SWT; Kauppi et al., 2010b). After
band-pass filtering each fMRI time-series, we compute ISCs using
the Equation (1) voxel-wise separately within each frequency sub-
band and threshold the ISC maps using the same test as described
in section 2.2.1.

It has been shown previously that wavelets are well-suited to
analyze fMRI data because of certain properties of the corti-
cal fMRI time-series, such as 1/f -like frequency characteristics
(Bullmore et al., 2004). Moreover, the SWT algorithm is specif-
ically suited to our analysis because it performs a time-invariant
(Bradley, 2003) transformation unlike the discrete wavelet trans-
form (DWT). In practice, this property means that a small
difference in the hemodynamic delays of two fMRI time series
transforms into a similar small difference in the filtered sig-
nals, allowing consistent estimation of the correlation coefficients
between the subjects time-series after performing the filtering.
For the DWT, even a minor delay between two identical input sig-
nals might cause a large difference in the filtered signals, making
it much less-suited algorithm for frequency-specific ISC analysis.
The SWT algorithm can be efficiently implemented using a sub-
band coding scheme based on successive decimations of so called
quadrature mirror filters (QMFs) and convolution operations
(Vetterli and Kovačević, 1995).

We use Daubechies scaling and wavelet functions as a default
filter option as they satisfy a necessary QMF relationship (Vetterli
and Kovačević, 1995) and have been successfully applied to fMRI
data earlier (Bullmore et al., 2001; Achard et al., 2006). The
maximum degree of the polynomials the scaling function can
reproduce is called the number of the vanishing moments. The
number of Daubechies filter coefficients are associated with the
number of the vanishing moments by the equation K = 2V ,
where K is the number of filter coefficients and V is the num-
ber of vanishing moments. We use short filters of length K = 4
as a default analysis option which are flexible enough to encode
polynomials with two coefficients (both constant and linear sig-
nal components). In principle, the localization in the frequency
domain could be improved by using higher filter lengths, but
the use of long filters increases computation time (SWT needs to
be computed separately for the time-series of every subject for
each brain voxel) and makes the detection of rapid signal changes
less accurate. In addition, because typical fMRI measurements
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FIGURE 2 | ZPF Monte Carlo simulation. We simulated fMRI time series
for two subjects and two conditions as xa

s = βta + na
s, where xa

s(s, a = 1, 2)

are the simulated time series, ta is the common time-series between the
two subjects in the condition a, na

s is pink noise [generated as in Pajula et al.
(2012)], and β is selected so that the true correlation between the subjects’
time-series is ρ, which is varied during the simulation. ta was generated by
smoothing white Gaussian noise with a box filter and convolving the resulting
time series by a hemodynamic response function. The times series length
was 100 with modeled TR of 2s. Note that ρ has the same value for both

conditions, according to the null-hypothesis. The simulation does not model
for the dependence between the two conditions. The simulation was
repeated 100000 times for each ρ = −0.5, −0.4, . . . , 0.5. (A) Shows the
histogram of ZPF values when ρ = 0.3, (B) Shows the QQ-plot for the same
case, and (C) Shows the average value and the standard deviation of the
ZPF-statistics as a function of ρ, where a slight dependence of the standard
deviation on ρ is observed. As it is visible (1) the distribution of the ZPF was
Gaussian (with a larger variance than 1), and (2) its parameters did not
markedly depend on the value of ρ.

contain relatively low number of time points, short filters are
preferred to minimize boundary artifacts. Daubechies basis func-
tions are optimal in the sense that they provide the shortest filter
length for the given number of vanishing moments. However, also
other basis functions have been proposed for fMRI data analy-
sis. For instance, Ruttimann et al. (1998) used symmetric spline
wavelets because of their phase-preserving property.

2.2.6. Time window ISC analysis
When analyzing complex fMRI data sets such as those collected
during a movie watching, it is likely that ISCs vary drastically
over the experiment. To analyze how ISC varies over time, it
can be highly useful to compute ISC maps for several consecu-
tive possible overlapping time windows. With the ISC toolbox,
a user can specify suitable time window parameters (window
length, step length between two consecutive windows) and com-
pute “short-time ISC maps” for each window. To obtain these
maps, we compute r statistic (across all voxels and subjects)
within each time-window and assess the significance of the ISCs
as described above. We randomize the generation of the null
distribution across all time windows which leads to a common
threshold for all windows. The length of the time window has
to be sufficient to obtain reliable estimates of r for each time
window. The choice depends on the number of subjects and
the type of the stimulus. Therefore, it is not straight-forward to
give exact suggestions about the minimal time-window length.
However, window lengths as short as 10 samples have been used
(Nummenmaa et al., 2012).

The toolbox allows the visualization of the time window ISC
maps over an anatomical template. It also automatically com-
putes the mean of r-values across voxels within different brain
region-of-interest (ROIs), allowing plotting ROI-averaged ISCs
over time. These curves can be correlated with the features of the
stimuli, behavioral ratings or other variables of interest.

2.2.7. Intersubject phase synchronization
Time window ISC and frequency-specific ISC analyses can pro-
vide neuroscientifically meaningful insights into complex fMRI
data. An obvious way to combine benefits of both approaches is to
compute frequency-specific ISC maps in several time windows to
investigate temporal evolution of the ISCs in specific time-scales.
ISC toolbox automatically computes also these maps if the user
performs both time window ISC and frequency-specific ISC anal-
yses. A limitation of this approach is that the temporal resolution
of the analysis can be modest because each time window must
contain several time points to allow meaningful interpretation
of the correlation coefficient. This problem is most prominent
in the lowest frequency sub-bands because the temporal reso-
lution of slow fluctuations is inherently poor as stated by the
time-frequency uncertainty principle (Cohen, 1995). To increase
the temporal resolution of the time-varying analysis in distinct
frequency sub-bands, we propose using phase synchronization
between subjects as a measure of inter-subject similarity. A sim-
ilarity measure based on instantaneous phase allows the analysis
of the band-pass filtered signals on the basis of inherent temporal
resolution of the time series. This is in contrast to the time win-
dow ISC analysis for which the resolution is further limited by the
length of the time-window.

Many phase synchronization measures have been designed to
analyze functional neuroimaging signals (Vinck et al., 2011) but
they are mainly used to analyze electroencephalography and mag-
netoencephalography signals. Unlike these signals, fMRI time-
series may not be characterized by oscillatory activity. However,
the analysis of the instantaneous phases still remains a valid
method to characterize a specific interrelation between phases
(Pikovsky et al., 2000; Laird et al., 2002). To extract phase infor-
mation, complex-valued analytic time-series must be available.
Hence, we apply the Hilbert transform (Goswami and Hoefel,
2004) to the fMRI time-series to obtain their corresponding
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analytic signals 3. We take the absolute angular distance (Vinck
et al., 2010) between the time-series of two subjects as a dissimi-
larity measure:

pij(t) = |θi(t) − θj(t)| mod π, (4)

where t is a time-point index and angles θi, θj are computed
based on the analytical time-series measured from subjects i
and j. This is an intuitive measure of phase interrelationship
between the fMRI time-series of two subjects: If fluctuations of
the (band-limited) time-series between subjects are highly sim-
ilar, it is expected that the absolute phase difference is smaller
than when fluctuations are different. There are different possi-
bilities to extend this measure to group-level analysis (Glerean
et al., 2012). We use a comparable definition to our ISC measure
[Equation (1)] and compute the average of all subject-pairwise
absolute angular distances as:

p(t) = 1

N(N − 1)/2

N∑

i = 1

N−1∑

j = 2, j>i

pij(t). (5)

Our final measure of inter-subject phase synchronization (IPS) is
the normalized version of p:

p̂(t) = 1 − p(t)

π
. (6)

This measure has its values always within the range [0 1], where
the value 1 indicates a complete phase similarity and the value
0 corresponds to a complete absence of phase similarity across
subjects. Similarly to time window ISCs, the ISC Toolbox allows
different plotting options for IPS results. For instance, averaged
IPS values within selected ROIs can be plotted over time. These
curves can be then correlated with the features of the stimuli or
other variables of interest.

2.3. IMPLEMENTATION
As explained in section 2.1, the use of the ISC Toolbox starts from
the startup GUI where a user defines requested analyses and their
parameters (see Figure 1). The GUI automatically detects the
operating system and checks that all necessary software and files
are available. After a user has selected desired analysis options,
the GUI validates them. After a successful validation, the param-
eters are set in a structure array called Params which is saved in a
mat-file. The GUI also generates the destination directory and all
necessary sub-directories for the analysis results.

The computational analysis is controlled inside the main func-
tion named runAnalysis. The Matlab code of this function is
grouped in six computational stages to clarify how the compu-
tations can be distributed across a computer cluster:

3The analytic signal xa(t) = x(t) + jy(t) = A(t)ejθ(t) can represent both the
instantaneous amplitude envelope A(t) and phase θ(t) of the time-series,

but only phase information θ(t) = arctan
(

y(t)
x(t)

)
is used to derive our phase

similarity measure.

Stage 1 Binary data files for the analysis results as well as the
memory map pointers to access these files are initialized.
The pointers are saved in the structure called memMaps
which is saved in the analysis destination directory. In
the later stages of the program, the files are repeatedly
accessed and modified using these pointers (see more
information about the Matlab’s memory mapping feature
below).

Stage 2 The wavelet filtering for the frequency-specific ISC anal-
ysis is performed.

Stage 3 Average ISC maps are computed, including the genera-
tion of the re-sampling distributions for the assessment
of statistical thresholds.

Stage 4 Critical thresholds are calculated based on the re-
sampling distributions including threshold correction for
multiple comparisons. In the FDR-based correction, p-
values for statistically significant (before a multiple com-
parison correction) samples need to be available. These
are estimated in a nonparametric fashion from the obser-
vations of the re-sampling distribution using a linear
interpolation.

Stage 5 Inter-subject synchronization curves over time are com-
puted for the time window ISC and IPS for all the brain
regions and thresholds defined in the Harvard-Oxford
sub-cortical and cortical atlases.

Stage 6 All the generated statistical maps in the previous stages
are saved to the analysis destination folder as nifti files.
This stage is always computed locally even if a grid
enviroment would be available.

The grouping of the code is based on the dependencies of the
analysis pipeline: the execution of the functions within any of
the stages is always dependent on the results of the preced-
ing stage and therefore cannot be performed before all previous
stages have been completed and their intermediate results have
been saved to the analysis destination directories. However, com-
putations inside the loop structures within each computational
stage are independent of each other, meaning that functions
repeatedly called inside these loops can be equally well run in
parallel. In practice, a user does not need to understand how the
code is written because the program can automatically parallelize
computations across a computer grid/cluster.

Only those stages corresponding to ISC based analyses that are
requested by the user are run when executing runAnalysis. For
example, if the frequency-specific ISC analysis is not chosen by
a user, the stage 2 is skipped.

Matlab’s memory mapping is a mechanism that maps a por-
tion of a file, or an entire file, on disk to a range of addresses
within an application’s address space. The application can then
access files on disk in the same way it accesses dynamic memory
(The Mathworks Inc., 2013). This memory mapping mechanism
is employed in the ISC Toolbox for three main reasons:

1. Because of a large memory demand, all the data cannot be held
in the central memory all the time.

2. The traditional file I/O can be very slow especially in cluster
computing environments.
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3. The memory mapping provides a mechanism for sharing the
memory between multiple processes that is important for the
cluster computing abilities in the ISC Toolbox.

The disadvantage of the used memory mapping mechanism is
that it is highly hardware and also somewhat operating system
and Matlab version dependent. The memory mapped data can
become corrupt or unreadable if the used hardware or the Matlab
version is changed. In the ISC Toolbox, the problem is circum-
vented by saving the important results out from the memory
maps to nifti files. The corrected statistical thresholds are saved
as Matlab’s mat-file and also as a text file. Therefore, the visu-
alization of the thresholded maps can be done afterwards easily
with any visualization software. The memory mapping has been
previously used in the SurfStat software within brain imaging
(Worsley, 2008).

A heavy computational burden is one of the major issues when
using the ISC Toolbox. Computations require large memory as
mentioned already and they also take a long time to compute.
Currently, the ISC Toolbox supports cluster computing in SGE-
based (Oracle Grid Engine, Son of a Grid Engine, or Open
Grid Scheduler) and Slurm (Simple Linux Utility for Resource
Management) environments. Generally, the SGE based paral-
lelization (Love, 2013; Scalable Logic, 2013; Univa Corporation,
2013) has been used extensively within brain imaging software
such as FSL. The Slurm grid engine (GE) (Yoo et al., 2003) is cur-
rently becoming more common and for this reason also Slurm
based parallelization was selected to be supported in the ISC
Toolbox. The only requirements to use parallelization procedures
in the toolbox are that the operating system of the used computer
must be Linux and the user must have access to system running
on one of these two GEs.

In both cases (SGE or Slurm), separate shell scripts must be
generated for each computational stage before distributing them
to the GE. The script generation and submission to GE is handled
with the function gridParser. The gridParser function generates
separate shell scripts for each process stage of each possible par-
allel process and submits these to the current GE. Simplified
examples from the shell scripts generated by gridParser for the
first stage of execution are presented in Listings 2.3 and 2.3.
In this example, the project name is “ISC_test_analysis,” which
defines the mat-file name for the Params struct. memMapData
function implements the stage 1 of the analysis. The only input
for the function is the Params struct. The number of generated
scripts varies from 4, for the basic analysis using a single CPU, to
hundreds depending on the selected analyses and the degree of
parallelization.

Listing 1. Bash script example for the Stage 1 of the analysis
generated by the gridParser function for the SGE environment.

m a t l a b –n o s p l a s h –n o d i s p l a y –n o j v m –n
o d e s k t o p –r " a d d p a t h ( g e n p a t h ( ’ / h o m e
/ t e s t u s e r / I S C o f f i c i a l / i s c - t o o l b o x / ’ ) ) ;
l o a d ( ’ / h o m e / t e s t u s e r / I S C t e s t / I S C _ t e s t
_ a n a l y s i s ’ ) ; memMapData( P a r a m s ) ; e x i t "

e x i t

Listing 2. Bash script example for the Stage 1 of the analysis
generated by the gridParser function for the Slurm environment.

# ! / b i n / s h
m o d u l e l o a d m a t l a b
m a t l a b –n o s p l a s h –n o d i s p l a y –n o j v m –n

o d e s k t o p –r " a d d p a t h ( g e n p a t h ( ’ / h o m e
/ t e s t u s e r / I S C o f f i c i a l / i s c - t o o l b o x / ’ ) ) ;
l o a d ( ’ / h o m e / t e s t u s e r / I S C t e s t / I S C _ t e s t
_ a n a l y s i s ’ ) ; memMapData( P a r a m s ) ; e x i t "

e x i t

The monitoring of the submitted tasks is handled with the
function waitGrid. The function requests the running processes
in the GE in defined time interval and prevents the main function
to continue before all submitted sub-processes are finished.

The data integrity is always a critical question within paral-
lel computing. It must be ensured that any two processes are not
interfering each other and all data are saved safely. The function
freeToWrite was developed to maintain the data integrity. It han-
dles a specific lock system to ensure that only one process updates
the memory maps at once. The lock is based on a simple lock-file
which is generated before the data are going to be saved and deleted
when the saving process has been finished. Every process which
updates the memory maps are using the lock system. To simplify
the debugging, every lock file has its own identifier based on the
name of the process and the current process ID from the GE.

2.4. VISUALIZATION GUI
To simplify the investigation of the ISC analysis results a separate
visualization GUI, shown in Figure 3, was developed to interac-
tively show the statistics maps and other results computed by the
ISC Toolbox. The visualization GUI can show all the statistical
maps resulting from the analyses by the toolbox. There are several
software tools for high quality, interactive visualizations of the sta-
tistical maps from neuroimaging analyses. However, as far as we
know, none of these is suitable for the visualization of advanced
ISC analysis such as 4-D statistical maps of the time window ISC.
In addition, a specialized visualization application provides addi-
tional convenience by allowing user to switch between different
analysis results by a quick button press instead of a cumber-
some reloading of the statistical maps one-by-one from a disk.
We avoid the re-loading of the statistical maps by directly access-
ing the data portion of interest from the disk. The fast random
access to the data is possible because the ISC results were mapped
to a disk during the main analysis procedure with the aid of
memory-mapping. Most of the data which are presented or used
for creating the visualizations in the GUI are precomputed by the
main analysis procedure and mapped to a memory. The memory-
mapping minimizes the need of RAM, which enables the efficient
interactive visualization and exploration of the analysis results
also with slower computers. A price to pay for this added flexibil-
ity are possible cross-platform incompatibility issues, mentioned
already in section 2.3, if the actual analysis is carried out with
a different hardware than with which the analysis results are
viewed. The simplest of these issues is the endianness, which can
be changed by ticking the checkbox “Swap bytes.”
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FIGURE 3 | The main window of the visualization GUI. In the shown
analysis example, a user has located significant ISCs in several brain areas,
including the precuneus cortex and the posterior division of the superior

temporal gyrus, whose perimetries are shown in green color over the
anatomical template. The map was thresholded and FDR corrected
(q <0.001) over the whole brain using the re-sampling test of section 2.2.1.

In addition to minimizing the memory consumption and the
access time to the data in a disk, it is important to minimize
the time that is spent for plotting accessed data on the screen.
In Matlab, the plotting of the images is much faster when using
indexed images (in an integer format) than using true color
images or intensity images in a floating point format. Indexed
images are fast to visualize because they use direct mapping of
pixel values to colormap values. Hence, to maximize the brows-
ing speed, the GUI converts ISC maps and anatomical templates
from a floating point format to an integer format and combines
these data into a single matrix of integer values. An appropri-
ate colormap is then created to allow visualization of the indexed
image on the screen in multiple colors. The colormap involves hot
(yellow and red), cold (magenta and blue), and gray colors which
allows the visualization of positive and negative ISCs as well as
anatomical intensity values over a single image.

The exact appearance of the Visualization GUI on the screen
depends which analyses, described in section 2.2, the user has
run. For example, if only the basic ISC analysis has been run the
visualization GUI enables only the analysis of ISCs across a whole
session and frequency-spectrum by disabling “temporal settings”
and “frequency settings” -panels. Statistical maps are shown in
sagittal, coronal and axial views. The MNI coordinates of the
views can be changed via the buttons below the axis. An additional
option is to visualize several axial slices across the whole brain
volume in a single figure. The exploration of the volume along
a fourth dimension (time interval or frequency range) currently

requires a button press. A user can also select Harvard-Oxford
probabilistic atlas regions for the visualization over the statistical
map and it is possible to view average ISCs for selected ROIs as a
function of time. In addition to these visualizations, the GUI con-
tains more advanced visualization options which allow detailed
localization of ISCs in spatial, temporal and spectral dimensions.

The GUI allows fast and comprehensive visualization of the
ISC analysis results in an exploratory manner. However, to
address specific research questions, a further analyses not sup-
ported by the ISC Toolbox may be needed. Moreover, it may also
be meaningful to customize the way how the results are visualized.
For these purposes, the GUI has an option to export ISC maps and
other results to the Matlab’s workspace as variables. Although the
ISC analysis results are also saved in a disk as Nifti-files and are
freely accessible for a user, the export option allows quick and easy
visualization of the threholded maps over an anatomical image
and selected atlas regions for the dimensions (spatial, temporal,
and spectral) of interest.

3. APPLICATIONS
Next, we shortly exemplify how the toolbox has been successfully
used to analyze fMRI data.

3.1. BASIC ISC ANALYSIS FOR ACTIVATION DETECTION
A primary interest in many fMRI based imaging studies is
to detect brain locations associated with a task related neural
activity. Traditionally, this is achieved by a GLM based analysis,
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where voxel time courses are compared to the task-derived refer-
ence time course. The application of the GLM requires explicit
knowledge how stimuli are varied during the experiment and
cannot therefore be used to detect activations from experiments
involving complex naturalistic stimuli. Pajula et al. (2012) showed
that our “basic” ISC analysis described in section 2.2.1 is a suitable
method to detect task related neural activation without mak-
ing any assumptions about the applied stimuli. In this study,
fMRI data from 37 right-handed subjects who all had performed
the same five blocked design tasks 4 were analyzed with both
ISC Toolbox and a GLM based method. The idea is that the
GLM-detected activations with this kind of strictly controlled and
well-known tasks can be assumed to be reliable and can be treated
as a gold standard. Interestingly, the comparison of the statistical
maps of ISC and GLM revealed high agreement of the findings.
This demonstrates that the ISC analysis can detect truly active
brain regions in a manner that is completely “blind" to stimuli,
making it highly promising method for detecting activity in data
sets collected under naturalistic stimuli experiments.

3.2. ISC DIFFERENCE MAPS FOR ANALYSIS OF AESTHETIC
EXPERIENCES

Understanding how spectators’ brains process information dur-
ing an aesthetic performance, such as a dance performance, is an
interesting topic in neuroscience. To investigate this, videos of aes-
thetic performances can be shown to subjects while their brain
activity is being measured using the fMRI. Stimuli in these exper-
iments are very rich, making ISC based methods a natural choice
for data analysis. Reason et al. (under review) used ISC toolbox to
study whether auditory stimulation have an effect on the kines-
thetic experience and/or the aesthetic appreciation of the specta-
tor while watching dance. In the study, fMRI signals were acquired
from 22 subjects under two different stimulus conditions: (1) a
full audiovisual dance performance accompanied by the sound-
scapes of Bach (condition = “Bach”), and (2) the same dance
performance without the music, including only visual stimuli as
well as sounds of breathing and footfalls of the dancer (condi-
tion = “Breathing”). ISC toolbox was used to construct individual
ISC maps of both conditions as described in section 2.2.1 as
well as to construct ISC difference maps “Bach”<“Breathing” and
“Bach”>“Breathing” as described in section 2.2.4.

The individual ISC maps showed large overlap in the visual
and auditory cortices for both conditions. However, the analysis
of the ISC difference maps revealed clusters in the temporal cor-
tex that were unique to the different audio conditions, indicating
also clear differences between the processing of the sound in the
“Bach” and “Breathing” conditions. Based on detailed investiga-
tion of the ISC difference maps, Reason et al. (under review) sug-
gested several possibilities how the presence or absence of music
may influence spectators’ experience. For instance, the postcentral
gyrus of parietal cortex (BA 7) showed significantly greater ISC in
the “Breathing” condition. The area is known for simultaneously

4Functional MRI data from the measurements with Functional Reference
Battery tasks developed by the International Consortium for Human Brain
Mapping (ICBM) were used (Mazziotta et al., 2001): http://www.loni.ucla.
edu/ICBM/Downloads/Downloads RB.shtml.

processing multiple sensory modalities, in particular the somes-
thetic modality that includes touch. This somesthetic connection
implies a form of motor cognition and could suggest that the
“Breathing” elicited greater engagement of action understanding
within body-specific mechanisms.

3.3. FREQUENCY-SPECIFIC ISC FOR ANALYSIS OF TEMPORAL BRAIN
HIERARCHY

In our previous study (Kauppi et al., 2010b), we performed
frequency-specific ISC analysis to investigate processing of movie
events that occur over multiple time-scales. We analyzed fMRI
data collected from the experiment (Jääskeläinen et al., 2008)
where 12 subjects watched the 36 min clip of an Academy Award
winning drama movie Crash (Lions Gate Films, 2005, directed
by Paul Haggis; the movie was presented with sound). We con-
structed both frequency-specific ISC maps described in section
2.2.5 as well as ISC difference maps to compare differences in ISCs
between distinct frequency subbands (see section 2.2.4).

The frequency-specific ISC analysis provided novel and inter-
esting insights into the highly complex fMRI data. For instance,
the analysis revealed that visual cortical ISC was present across
the whole frequency spectrum of the fMRI signal, ISC in tem-
poral areas occurred in all but the highest frequency band, and
frontal cortical ISC was present only in the two lowest frequency
bands. Hence, the frequency range showing significant ISC con-
tracted when moving from lower-order sensory areas toward
higher-order cortical areas. There are several possible explana-
tions for the mappings found in this study. For instance, the
findings might reflect the hierarchy of temporal receptive win-
dows (TRWs) in the human brain, with sensory visual cortical
areas showing short TRWs, and the TRWs becoming progressively
longer as one ascends to functionally higher-order cortical areas
(Hasson et al., 2008).

3.4. TIME WINDOW ISC FOR ANALYSIS OF HIGHER-ORDER BRAIN
FUNCTIONS

The use of movies as stimuli in neuroimaging studies offers new
possibilities to understand higher-order brain functions, such as
those related to social cognition and emotions. Nummenmaa
et al. (2012) used the time window ISC (which they call moment-
to-moment ISC) to analyze how ISC is associated with events that
elicit emotions in movies. Functional MRI data from 16 subjects
were collected while they watched movies depicting unpleas-
ant, neutral, and pleasant emotions. After scanning, participants
watched the movies again and continuously rated their experience
of pleasantness–unpleasantness (i.e., valence) and of arousal–
calmness. Short-time ISCs for each voxel were then computed
using the ISC toolbox as described in section 2.2.6, using a 17-
s sliding window (a step size of the time-window was one time
point). Time series of valence and arousal ratings were then used
to predict temporal variation of ISCs within each voxel.

Negative valence was associated with increased ISC in the
emotion-processing network (thalamus, ventral striatum, insula)
and in the default-mode network (precuneus, temporoparietal
junction, medial prefrontal cortex, posterior superior temporal
sulcus). High arousal was associated with increased ISC in the
somatosensory cortices and visual and dorsal attention networks
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comprising the visual cortex, bilateral intraparietal sulci, and
frontal eye fields. It was proposed that negative valence synchro-
nizes individuals brain areas supporting emotional sensations and
understanding of anothers actions, whereas high arousal directs
individuals attention to similar features of the environment.

3.5. IPS FOR TIME-VARYING ANALYSIS OF NATURALISTIC fMRI DATA
IPS described in section 2.2.7 is an alternative option for time
window ISC to analyze complex fMRI data over time. Glerean
et al. (2012) applied both time window ISC and IPS analy-
sis for naturalistic fMRI data collected from 12 subjects while
they watched a feature movie (for details of the experiment, see
Lahnakoski et al., 2012
band of 0.04–0.07 Hz and a time window ISC was computed for
several window sizes from 4 to 32 samples (corresponding to win-
dow lengths from 8 to 64-s with the TR of 2-s) using a sliding
window.

A major conclusion of the study was that the IPS approach pro-
vided improved temporal resolution as compared with the time
window ISC. In addition, an anatomical mapping of the whole-
brain temporal average of the IPS was highly consistent with the
anatomical mapping of the ISC computed across the whole movie
experiment (without using time windows), indicating that the IPS
is a realiable measure of inter-subject similarity.

4. COMPUTATION TIME
The computation time was measured in three different hardware
setups utilizing the both the local and distributed computing
abilities of the ISC Toolbox. The local computations were tested
with Dell Optiplex 755 desktop computer equipped with Intel
Core2Duo E8400 CPU @ 3.00 GHz and 5GB read access mem-
ory (RAM). The distributed computations were tested in two
computing clusters. The larger cluster, called Merope, had nodes
running on HP ProLiant SL390s G7 equipped with Intel Xeon
X5650 CPU 2,67 GHz and minimum of 4 GB RAM / core.
The GE was Slurm. The smaller of the tested computing clus-
ters, called Outolintu, was running with SGE and had nodes
running on IBM System x3550 equipped with two Intel Xeon
X5450 CPUs 3.0 GHz and 32 GB RAM (with 10 GB swap) for
each node.

In the Merope cluster, on average 32 processes were run simul-
taneously. With the Outolintu cluster the maximum of parallel
processes was limited to 10 due to global usage limitations for a
single user of this cluster. The computing times of cluster environ-
ments were averaged from three separated runs as in the cluster
the computing time can be affected from the current load of the
cluster as well as the implementation of the distributing system
causes a small variation on computing time.

The computing time was measured from “the user perspec-
tive”: Starting from the moment when user pushes the “Run
Analysis” -button of the startup GUI to the moment when the
analysis was finished. In a cluster environment, this means that
the processing times of the GE were included to the total process-
ing time.

The analyses were performed for the same measurement
data which was used in earlier studies with the ISC Toolbox
(Jääskeläinen et al., 2008; Kauppi et al., 2010b). The data was

acquired from 12 subjects (TR = 3.4 s, 244 time points) and was
registered to MNI152 space (for details see Kauppi et al.,     2010b
The image dimensions were 91 × 109 × 91 × 244 (X × Y × Z ×
time) which resulted in an 840 MB file size for each subject and
9.8 GB total size of the analysis data set.

The tested ISC Toolbox setups were “basic ISC”, “basic ISC
+ time window ISC,” and “basic ISC + frequency-specific ISC.”
The first setup computed the ISC map across the entire length
of the time-series and constructed a re-sampling distribution
based on 100 million random shufflings of the time-series as
in our earlier study (Kauppi et al., 2010b). The second setup
was similar to the first setup except that the time window ISC
with the window length and window step of 30 samples was
used in addition to the basic ISC analysis. The third setup used
frequency-specific ISC with three frequency sub-bands instead
of time window ISC. The number of randomizations to thresh-
old the ISC r-maps was the same as in setups 1 and 2, and
25,000 random permutations for each brain voxel was used to
construct a null permutation distribution of the sum ZPF statistic
to allow thresholding of ISC difference maps between frequency
bands.

The computing times are presented in Figure 4. On a sin-
gle desktop computer, the computing time varied from 11 h 52
min to 25 h 20 min depending from the selected analysis. On the
smaller Outolintu cluster, the corresponding times varied from
1 h 24 min to 6 h 10 min and, on the larger Merope cluster from
33 min to 3 h 25 min. Comparing local and distributed systems,
the speed up factor was 10 with Outolintu and 24 with Merope in
the first two setups. For the final setup with the frequency band
analysis, the speed up factor was 4 with Outlintu and 7.5 with
Merope.

The smaller speed up factors for the frequency band analysis
was probably due to a higher number of hard drive interactions
involved in this analysis as compared with the other tested analy-
ses. In a cluster computing environment, a high number of hard
drive interactions slows down the computations as the data is
commonly located on a network drive and the speed of the data
transfer in a network is usually clearly slower than the speed of
data transfer via the internal bus of a desktop computer.

FIGURE 4 | The computing times from desktop computer and two

cluster environments. The desktop computer was equipped with Intel
Core2Duo E8400 CPU 3.00 GHz and 5 GB RAM. Ten parallel processes
were run on Outolintu cluster with nodes equipped with Intel Xeon X5450
CPUs 3.0 GHz. On average, 32 parallel processes were run on Merope
cluster with nodes equipped with Intel Xeon X5650 CPUs 2,67 GHz.
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5. DISCUSSION
Branches of neuroscience investigating brain functions in exper-
iments mimicking real-world conditions are growing rapidly
and the development of data analysis methods must address
an increasing diversity of research questions. The ISC based
approaches can address key questions such as how processing dif-
fers between two groups (e.g., healthy vs. nonhealthy) exposed
to identical complex stimuli or between two conditions (e.g.,
silent vs. nonsilent video). The new analyses methods incorpo-
rated in the ISC toolbox, described in sections 2.2.4–2.2.7, are
one of the first attempts to help neuroscientists to address these
and other aspects of neural processing. In addition to these new
features, the toolbox will be continuously updated in the future
to allow even more versatile analyses. For instance, the toolbox
is currently limited to analyze between-subject correlations in
a voxel-wise manner and does not allow more general investi-
gations of functional correspondence between spatially disjoint
brain areas across subjects. Features to analyze ISCs between
different brain areas both within- and across subjects will be
incorporated in the future versions of the toolbox.

One limitation of the current analysis approach is that the
used ISC measure does not capture any information about the
variability of the ISCs among subjects as it is simply the aver-
age of the upper-triangular (or lower-triangular) elements of
the between-subject correlation matrix computed separately for
each voxel [Equation (1)]. The consequence of the averaging
is that interesting features of brain processing may be missed
especially in higher-order brain regions where inter-subject vari-
ability is expected to be very high. To increase the sensitivity
of the existing method to localize interesting brain areas as
well as to perform more fine-grained ISC based analyses, it can
be highly useful to preserve and analyze the entire structure
of the between-subject correlation matrices. We have already
taken steps toward this direction (Kauppi et al., 2010a) and will
equip the toolbox with matrix-based analysis methods in the
future.

One of the key issues in ISC based analyses is how to select a
suitable threshold to distinguish meaningful ISC values from spu-
rious ones. Because of the restrictive assumptions made by stan-
dard parametric statistical procedures, such as the ordinary t-test,
we have decided to use fully nonparametric re-sampling based
methods to determine the critical thresholds to improve reliabil-
ity of the analysis. Despite of the flexibility of the nonparametric
methods, it is important to keep in mind that also they provide
only approximations of true, underlying null re-sampling distri-
butions. This is due to finite number of realizations drawn as well
as certain assumptions required by the tests which may not be ful-
filled by real fMRI time-series. However, as shown by the results,
our easy and fully automated mechanism which distributes cal-
culations across a computational cluster allows drawing huge
number of realizations in a relatively short time, making the gen-
eration of accurate re-samplings distributions feasible. Moreover,
we showed with a simple Monte-Carlo simulation that certain
critical assumptions made by the sum ZPF test are not violated
in practice. In any case, further validation and improvement of
our current statistical procedures is another important topic of
future research.

6. CONCLUSIONS
We have presented a software package, named ISC Toolbox,
implemented in Matlab for computing various ISC based anal-
yses. The computations can be launched from a GUI making the
use of the toolbox easy. Many advanced techniques such as time
window ISC analysis, frequency-specific ISC analysis, IPS anal-
ysis and the comparison of ISCs between different stimuli are
supported by the toolbox. The analyses are coupled with non-
parametric re-sampling based statistical inference methods. As
these analyses are computationally intensive, the ISC Toolbox
is equipped with automated cluster computing mechanisms to
reduce the computation time via parallelization and a marked
reduction in computation time was achieved by cluster comput-
ing. The ISC Toolbox is available in https://code.google.com/p/
isc-toolbox/ under the MIT open source licence.
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Vetterli, M., and Kovačević, J. (1995). Wavelets and Subband Coding, Vol. 87. New
Jersey: Prentice Hall PTR Englewood Cliffs.

Vinck, M., Oostenveld, R., van Wingerden, M., Battaglia, F., and Pennartz, C.
(2011). An improved index of phase-synchronization for electrophysiologi-
cal data in the presence of volume-conduction, noise and sample-size bias.
Neuroimage 55, 1548–1565. doi: 10.1016/j.neuroimage.2011.01.055

Vinck, M., van Wingerden, M., Womelsdorf, T., Fries, P., and Pennartz, C. (2010).
The pairwise phase consistency: a bias-free measure of rhythmic neuronal syn-
chronization. Neuroimage 51, 112–122. doi: 10.1016/j.neuroimage.2010.01.073

Wilson, S. M., Molnar-Szakacs, I., and Iacoboni, M. (2008). Beyond superior
temporal cortex: intersubject correlations in narrative speech comprehension.
Cereb. Cortex 18, 230–242. doi: 10.1093/cercor/bhm049

Worsley, K. (2008). SurfStat. A Matlab Toolbox for the Statistical and Multivariate
Surface and Volumetric Data Using Linear Mixed Effects Models and Random
Field Theory. Available online at: http://www.math.mcgill.ca/keith/surfstat/
(Visited 5.11.2013).

Yoo, A., Jette, M., and Grondona, M. (2003). “SLURM: simple linux utility for
resource management,” in Job Scheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science, Vol. 2862, eds D., Feitelson, L., Rudolph, and
U., Schwiegelshohn (Berlin; Heidelberg: Springer), 44–60.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 07 November 2013; accepted: 09 January 2014; published online: 31 January
2014.
Citation: Kauppi J-P, Pajula J and Tohka J (2014) A versatile software package
for inter-subject correlation based analyses of fMRI. Front. Neuroinform. 8:2. doi:
10.3389/fninf.2014.00002
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Kauppi, Pajula and Tohka. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this jour-
nal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 8 | Article 2 | 332

http://dx.doi.org/10.3389/fninf.2014.00002
http://dx.doi.org/10.3389/fninf.2014.00002
http://dx.doi.org/10.3389/fninf.2014.00002
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


TECHNOLOGY REPORT ARTICLE
published: 12 September 2014
doi: 10.3389/fninf.2014.00074

Cyberinfrastructure for the digital brain: spatial standards
for integrating rodent brain atlases
Ilya Zaslavsky1*, Richard A. Baldock2 and Jyl Boline3

1 San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
2 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
3 Informed Minds, Wilton Manors, FL, USA

Edited by:

Xi Cheng, Lieber Institute for Brain
Development, USA

Reviewed by:

Allan MacKenzie-Graham, University
of California Los Angeles, USA
Christiaan P. J. De Kock, VU
University Amsterdam, Netherlands

*Correspondence:

Ilya Zaslavsky, San Diego
Supercomputer Center, University
of California San Diego, 9500 Gilman
Dr., La Jolla, CA 92093-0505, USA
e-mail: zaslavsk@sdsc.edu

Biomedical research entails capture and analysis of massive data volumes and new
discoveries arise from data-integration and mining. This is only possible if data can
be mapped onto a common framework such as the genome for genomic data. In
neuroscience, the framework is intrinsically spatial and based on a number of paper
atlases. This cannot meet today’s data-intensive analysis and integration challenges.
A scalable and extensible software infrastructure that is standards based but open
for novel data and resources, is required for integrating information such as signal
distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and
developmental processes. Therefore, the International Neuroinformatics Coordinating
Facility (INCF) initiated the development of a spatial framework for neuroscience
data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype
implementation of this infrastructure for the rodent brain is reported here. The
infrastructure is based on a collection of reference spaces to which data is mapped
at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of
the brain generated using high-resolution, multi-channel microMRI. The core standards
of the digital atlasing service-oriented infrastructure include Waxholm Markup Language
(WaxML): XML schema expressing a uniform information model for key elements such
as coordinate systems, transformations, points of interest (POI)s, labels, and annotations;
and Atlas Web Services: interfaces for querying and updating atlas data. The services
return WaxML-encoded documents with information about capabilities, spatial reference
systems (SRSs) and structures, and execute coordinate transformations and POI-based
requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both
mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD
Cell-Centered Database, and Edinburgh Mouse Atlas Project.

Keywords: digital atlases, atlas infrastructure, spatial data integration, brain coordinate systems, Waxholm space,

atlas services, coordinate transformations

INTRODUCTION
Frequently asked questions in neuroscience are “where” in the
brain something is happening, “what” is happening “here,” and
“what” is this structure. The extended version asks for similarity
and association between biological processes and structures
to understand complex observations. Most researchers, in one
way or another, access information from a reference brain atlas
and apply the associated material to their own datasets. This

Abbreviations: ABA, Allen Brain Atlas; AGEA, Anatomic Gene Expression Atlas;
API, Application Programming Interface; CSW, Catalog Services for the Web;
DAI, Digital Atlasing Infrastructure; EMAGE, Edinburgh Mouse Atlas Gene
Expression database; GML, Geography Markup Language; INCF, International
Neuroinformatics Coordinating Facility; MBAT, Mouse BIRN Atlasing Toolkit;
OGC, Open Geospatial Consortium; POI, Point of Interest; SOA, Service-Oriented
Architecture; SRS, Spatial Reference System; WHS, Waxholm Space; WaxML,
Waxholm Markup Language; WIB, Web Image Browser; WPS, Web Processing
Service.

allows them to compare and analyze data within their own
laboratories as well as in relation to outside sources. Mouse
brain atlases were initially developed as paper atlases (Hof
et al., 2000; Paxinos, 2004; Paxinos et al., 2007; Paxinos and
Watson, 2009), and have been used in this form for many
years to support spatial referencing in electrophysiology and
other studies. Recently, atlas providers have put significant
effort into organizing atlas information in digital form, creating
digital brain atlases as collections of spatially and semantically
consistent 2D images or 3D volumes with anatomical structure
delineations and additional annotations. These atlases have
been made accessible via desktop [e.g., MRM NeAT (http://
brainatlas.mbi.ufl.edu/), Mouse Atlas Project (http://map.

loni.usc.edu/), CIVM (http://www.civm.duhs.duke.edu/)] and
online interfaces such as the Allen Brain Atlas (http://www.

brain-map.org/), EMAP, (http://www.emouseatlas.org/emap/
home.html), MBL (http://www.mbl.org/mbl_main/atlas.html)
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Mouse Brain Atlas http://www.hms.harvard.edu/research/brain/
atlas.html, Genepaint (http://genepaint.org/Frameset.html),
Australian Mouse Brain Mapping Consortium (http://www.

tissuestack.org), Rodent Brain WorkBench (http://www.rbwb.

org/), Laboratory of Brain Anatomical MRI (http://lbam.med.

jhmi.edu/), Knife-Edge Scanning Microscope Brain Atlas (http://
kesm.cs.tamu.edu/), and SumsDB (http://sumsdb.wustl.edu/).

While such atlases have been internally consistent, they have
been developed largely independently of one another. Without
uniform conventions for brain data representation and access,
users have limited ability to quickly answer questions such as
“which atlas-based resources have images for a specified part of
the brain,” “what genes are expressed in a given tissue in atlases A
and B, at a specified expression level,” “compare spatial patterns of
protein distribution across atlases C and D,” or “what proteins are
expressed in the projection domains of hippocampal neurons.”
Yet answering such questions becomes increasingly important in
neuroscience and other domains as scientists attempt to integrate
information and knowledge encapsulated in multiple informa-
tion sources to test hypotheses or to infer novel associations and
patterns in an atlasing environment (Bjaalie, 2002; Toga, 2002;
Baldock et al., 2003; MacKenzie-Graham et al., 2003; Martone
et al., 2004; Zaslavsky et al., 2004; Boline et al., 2008; Hawrylycz
et al., 2011; Zakiewicz et al., 2011).

While this type of environment has been desired by many
members of the neuroscience community for quite some time
now, a spatial framework that enables interoperability between
existing atlasing efforts and allows the addition of other spatially-
tied data has not been built for technical, social, and financial
reasons. Creating such an environment has been one of the fore-
most goals of the Digital Atlasing Program of the International
Neuroinformatics Coordination Facility, INCF (Hawrylycz et al.,
2009, 2011). Under this program, INCF has brought together
a group of neuroscientists and technology experts to organize
atlas resources, explore and outline best practices and recom-
mendations, and design and guide the development of standards,
information infrastructure, and tools for integrating digital brain
atlases.

Use cases established over recent years1 show that most neuro-
scientists want to have the ability to bring together and compare
different types of information: explore a reference atlas, juxta-
pose it with their own data, and finally, link and compare their
data to other datasets. For instance, researchers using immuno-
histochemistry to examine images for a specific protein may not
have much anatomical information in the images. Applying atlas
delineations from a canonical atlas to their images would let them
examine and quantify the level of labeling in different brain areas.
With this information, they may wish to run a quantitative analy-
sis that compares their data to another resource, such as the Allen
Brain Atlas and then visualize it in 3D.

The compendium of use cases allowed us to identify three
groups of researchers based on their use of atlases (Figure 1).
The most basic need is simply to find and examine informa-
tion about their area of interest (Figure 1, User 1). Another
group wants capabilities that include relating user resources with

1http://wiki.incf.org/mediawiki/index.php/Use_Case

external canonical atlases based on spatial properties, such as
location, shape or observed spatial pattern (Figure 1, User 2).
Finally a number of users want to share their data with others
such that image collections, 3D reconstructions, gene expres-
sion or other information they collected can be accessed online
and used as a reference in a given spatial framework (Figure 1,
User 3). While simply posting data online is possible, placing
the information into a known spatial framework provides the
ability to run novel analyses (Carson et al., 2005; Kovacević
et al., 2005; Christiansen et al., 2006; Leergaard and Bjaalie,
2007; Lein et al., 2007; Ma et al., 2008; Aggarwal et al., 2009;
Ng et al., 2009; Chuang et al., 2011) and to integrate data from
different atlas-based resources (Baldock et al., 2003; MacKenzie-
Graham et al., 2004; Martone et al., 2004; Boline et al., 2008;
Lee et al., 2010; Hawrylycz et al., 2011). Most users want to do
this at some point, but many have no idea how to even start
the process. This is an extremely daunting task, due, to a large
degree, to the complete lack or complexity of sharing conven-
tions for atlas data and supporting data publication tools. Meeting
the needs of all these users through the creation of a flexible,
expandable, and accessible spatial framework for sharing atlas
data has been one of the main goals of the INCF Digital Atlasing
Program.

A key component of this open framework is a common pub-
licly accessible 3D reference space, providing standard coordinates
and serving as a spatial anchor for other existing rodent brain atlas
resources (Hawrylycz et al., 2011). Such a canonical Waxholm
Space (WHS) has been developed for C57BL/6J mouse (Johnson
et al., 2010). In addition, two recent versions of WHS for the rat,
one Sprague Dawley (Johnson et al., 2012) and one Wistar (Papp
et al., 2013) have been created. The goal is to embed them as
the rat spatial anchors of our framework, register them to each
other and to create a mapping from mouse to rat. In addition
to standardizing reference spaces, agreements about how loca-
tion information is represented and exchanged between atlases
must be established—these agreements are the foundation of soft-
ware infrastructure that support publication, discovery, access,
and integration of distributed atlas information.

We have developed the underlying principles and imple-
mented a prototype of an open standards-based spatial data
integration framework, the Digital Atlasing Infrastructure (DAI).
This includes the backbone of the infrastructure itself, along with
a few online applications and tutorials to enable neuroscientists
to use and add to the infrastructure. We expect that a rich set
of supporting tools will be developed over time by members
of the neuroscience and neuroinformatics communities leverag-
ing standards-based information exchange protocols tested in the
prototype.

This article describes the DAI, including its rationale, com-
ponents, and the current state of the system. We focus on the
formal definition of coordinate systems and coordinate transfor-
mations for rodent brain, a service interface for DAI services, and
a standards-based XML schema for encoding atlas information,
called Waxholm2 Markup Language (WaxML). It is followed by

2Named after Waxholm, a town in Sweden where the first meeting of the INCF
atlasing task force was held in 2007.
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FIGURE 1 | Three user groups interacting with neuroscience data within

the digital atlas framework. The framework should allow integration of
datasets of various type, format, and location through the Digital Atlasing
Infrastructure (DAI). Users are able to interact with this environment using
DAI tools, which enable spatial query of data shared through this framework
or addition of new data via spatial registration. Note that we differentiate data
sharing mechanisms for User 2 and User 3: User 2 typically has a limited

number of images and needs to register them primarily to explore other atlas
sources spatially, while User 3 typically shares large volumes of
spatially-referenced data within their group or to others, for the purpose of
making it available for query and more automated analyses in a spatial
framework. User 3 may even have their own reference atlas. The framework
can be expanded to accommodate additional data types beyond those
shown.

implementation details, and a description of a spatial registration
pipeline, which illustrates how to extend the system with addi-
tional spatially-referenced data. Finally, we address the benefits of
leveraging existing spatial integration frameworks and standards
for atlas data integration, and future work.

DIGITAL ATLASING INFRASTRUCTURE: HIGH-LEVEL
REQUIREMENTS AND MAIN COMPONENTS
The vision of brain atlases as interconnected gateways to large
distributed and diverse atlas resources, including images, vol-
ume data, segmentations, gene expression, electrophysiology,
behavioral, connectivity, other spatially-organized data, implies
a number of design requirements:

• Atlases should be organized as spatial data sources, which sup-
port querying atlas data using spatial characteristics of their
content, in particular by coordinates in a brain coordinate
system.

• Information from multiple brain atlas sources should be avail-
able for searching and browsing, which typically involves
indexing data elements in a spatial data registry.

• The spatial data and metadata must be accessible via stan-
dard protocols and in common formats, following estab-
lished standard application programming interfaces (APIs)

and information models. In addition, capabilities of each
atlas resource should be advertised in a standard manner,
so that different functions can be automatically invoked
and chained to implement data integration and research
workflows.

• DAI should incorporate transparent and easy to follow mecha-
nisms for users to extend the system: by publishing and regis-
tering spatially-referenced atlas data, via standards-compliant
spatial registration pipelines, and through annotation or
segmentation.

• Brain atlas data must be accessible to a number of desktop and
web-based data management, cataloging, analysis, visualiza-
tion, and other applications that take advantage of the uniform
APIs and information encodings. This model allows software
developers the ability to use this resource for very different
application needs.

• Ideally, most of the underlying services infrastructure will be
invisible to the neuroscientists working through easy to use
software tools that directly access DAI via standard APIs. As
user needs evolve and the complexity of sharing or accessing
data in a spatial framework increases, DAI will need continuing
participation of neuroscience researchers to guide infrastruc-
ture development, through the INCF Digital Atlasing Program
or similar mechanisms.
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The DAI follows service-oriented architecture (SOA) principles
(Erl, 2005; Josuttis, 2007), whereby atlas information becomes
available via atlas web services, a collection of functions that
deliver spatial and other information in standardized agreed-
upon formats, thus alleviating the existing heterogeneity across
different atlas resources. The high-level system architecture
includes three key logical components (Figure 2):

(a) Atlas Hubs—an atlas data publication platform: a software
stack for publishing neuroscience atlas data and web ser-
vices, compliant with the WaxML schema and atlas services
specification. An atlas hub may be maintained by an atlas-
related project, or hosted by INCF as a proxy of a remote atlas
resource.

(b) INCF Atlas Central—the central data discovery and integra-
tion platform: a catalog of atlas web services from multiple
hubs, as well as other atlas-related data. Using standard cata-
log services, users and applications can search for appropriate
web services across atlas hubs. In addition, the INCF Atlas
Central system contains a special “central atlas hub” designed
as a mediator for coordinate transformation services invoked
across multiple hubs.

(c) Atlas Applications—the data synthesis and research platform:
a collection of analysis, visualization, modeling, and other
applications that consume standard atlas data and metadata
(catalog) services, or are used to manage and update atlas
information at a hub. Such applications include, for exam-
ple, the INCF Scalable Brain Atlas and the UCSD Web Image
Browser (WIB), developed by different DAI partners.

The initial focus of the atlasing infrastructure is limited to rep-
resentation of anatomic features in the brain, brain reference
systems and coordinate transformations, fiducial points and land-
marks, and a few types of spatially referenced data and annota-
tions that can be retrieved using point of interest (POI) requests.
These functions fit the needs of our “User 1,” those looking for

spatially-linked data. In our review of existing online atlases of
rodent brain we found significant heterogeneity in modalities,
formats and functionality. Individual atlas resources may support
different data types and use different metadata and data represen-
tations; they have been developed using different data collection
methods; support different data retrieval, processing and other
functions, and often adhere to different spatial and semantic
frameworks. For example, a neuroscientist might want to use POI
requests to find the name of the structure at this POI in WHS,
the Allen Mouse Brain Atlas, or a Paxinos annotated atlas. They
may wish to discover all available images in the vicinity of the
POI regardless of atlases that contain them. However, some exist-
ing atlas resources may not support structure or image retrieval
based on brain location; the structure names often belong to
different vocabularies; and structure geometries depend on dif-
ferent delineation techniques, complicating cross-comparison.
Similarly, any discovered images are likely to be in differ-
ent formats and reflect different measurement modalities and
instruments.

This heterogeneity presents an informatics challenge in devel-
oping an interoperable system for brain information that can
work across multiple, independently managed, atlas infor-
mation sources, processing services, and client applications.
Hence, development of shared information models and data
exchange protocols, and information brokers, is a central require-
ment for designing communication across DAI components.
Establishing community consensus about information mod-
els and exchange protocols ensures that infrastructure compo-
nents are structurally interoperable. Standards-compliance also
enhances extensibility of the atlas infrastructure, by making it
easier to incorporate standards-based software modules created
by developers outside the DAI project. Consequently, mainte-
nance of standards-based systems is usually less expensive, and
expertise is easier to find because it does not have to come
from a single group. In the long run, such systems evolve more
easily with changes in technology, and are more economical

FIGURE 2 | High-level design of the INCF Digital Atlasing Infrastructure.

The design follows the standard SOA “publish-find-bind” pattern, bringing
together providers of atlas data and services, catalog and discovery services,
and data synthesis and research applications. Atlas Hubs share their data via
DAI-compatible services. INCF Atlas Central contains a catalog of what is

available from the Atlas Hubs and also acts as a “translator” between the
different spatial coordinates offered by the Atlas Hubs. Various Applications
can be developed that use INCF Atlas Central to find what is available and
then access the services offered by the Atlas Hubs. This SOA-based design
allows significant flexibility in tool development.
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as they encourage cooperation, competition, and prevent a
software vendor lock-in (David and Greenstein, 1990; West,
2007).

Development of consensus about data sharing formats and
protocols, and their community adoption, is a long process; there-
fore, one of the key requirements of the DAI is enabling evolution
of the system to such standard conventions rather than enforc-
ing rigid standards compliance from the start. As described in the
next section, this approach is adopted in the choices for specifying
and implementing atlas services, markup, and in defining spatial
reference systems (SRSs) and transformations.

STANDARDIZATION OF SPATIAL REPRESENTATION AND
SPATIAL DATA ACCESS TO RODENT BRAIN DATA
Three standard components need to be specified in an interoper-
able atlas infrastructure design: (1) a common spatial framework,
(2) the structure of key information elements to be exchanged
across atlases, and (3) the respective exchange protocols.

COMMON SPATIAL FRAMEWORK
Established paper atlases of rodent brain (Paxinos and Watson,
1998; Swanson, 1998; Hof et al., 2000; Paxinos and Franklin,
2001) include coordinate systems used to describe anatomic fea-
ture locations and relationships in terms of distance to key brain
landmarks (e.g., bregma, midline) and neuroscience anatomical
axes: dorsal-ventral, anterior-posterior, left-right. In some cases,
such feature-based coordinate systems are combined with image-
based coordinates, but most typically, for a collection of images
forming an atlas, locations are only referenced by a slice index
and by image coordinates within the slice. Due to a wide variety of
imaging and processing techniques, and different physical prop-
erties of the sectioned brains, there is little consistency across such
spatial descriptions, which makes it difficult to translate location
information from one atlas to another and subsequently integrate
data based on location in the brain except in the most cursory
manner.

A similar problem has been recognized and resolved in
geodesy, where many coordinate systems have been developed
over the centuries for different purposes, at different resolutions,
using different models of the earth, and allowing for different
types of distortions (in direction, area, shape, distance). The
solution involved several components:

(a) development of more accurate mathematical descriptions of
the shape of the earth;

(b) creating precise and consistent models of projections as
transformations from earth coordinates into various 2D and
3D digital representations;

(c) standardization of coordinate transformation descriptions
(e.g., the OpenGIS Coordinate Transformation Service
Implementation Specification, see http://www.opengeospa-
tial.org/standards/ct);

(d) cataloging the available coordinate systems (e.g., the EPSG
Geodetic Parameter Dataset); and

(e) development of widely used coordinate transformation
packages (e.g., the General Cartographic Transformation
Package).

Registries of coordinate systems and coordinate transformation
libraries are foundational components of global spatial data
infrastructure; they are accessed from multiple spatial informa-
tion system software packages. For example, the geospatial SRS
registry (http://www.epsg-registry.org/) contains definitions of
thousands of SRSs. For each system, the description includes a
code (e.g., EPSG:4326), which is used by process libraries, web
services and other software applications to reference the SRS;
name (e.g., World Geodetic System 1984 or WGS84), type of SRS
(e.g., “geographic 2D”), specification of the “Area of Use” (e.g.,
“world”), as well as description of the underlying geodetic datum,
projection conversion, and versions/revisions.

While definitions of brain coordinate systems differ signifi-
cantly from geodetic coordinate systems, INCF DAI design bor-
rows several key ideas from geospatial data infrastructure. As in
geodesy, DAI recognizes a number of coordinate systems in differ-
ent atlases, and does not mandate a single reference space. At the
same time, WHS, being a publicly available open reference space,
serves as a common and convenient “go-between” system much
like latitude and longitude coordinates in a well-defined SRS (e.g.,
WGS84) are often used to transform coordinates between any two
arbitrary systems. This allows us to use space rather than struc-
tural naming conventions to convey location. Structure names
then become a type of information, which may be available at
a location in the space of the brain, and may be different across
atlases. For example, the same point location may be labeled
as “Striatum dorsal region” in the Allen Mouse Brain Atlas,
“Caudate putamen striatum” in the Paxinos atlas, or “Striatum”
in WHS (Figure 9B), with names generally depending on image
modality, delineation techniques, classification model, or adopted
level of generality.

To create spatial infrastructure for brain atlases, we:

• developed a generic representation of a rodent brain coordinate
space,

• compiled a registry of such coordinate systems,
• computed transformations between several existing reference

spaces and implemented them as a set of standard services,
and

• composed and implemented a workflow for deriving new coor-
dinate systems and associated transformations between the
new coordinate system and an existing one.

Table 1 lists several of the coordinate systems for rodent brain
initially defined by the project and included in the SRS registry.
These came from members of the atlasing community that were
able to fairly quickly share their data within a spatial framework
(e.g., User 3). Figure 3 illustrates some of them, along with origin
and axis orientation shown on each diagram with respect to neu-
roscience orientations, as well as units and spatial extent on each
coordinate axis. Note the wide variability in coordinate systems
used in the various atlases.

In the current DAI model, SRS descriptions are designed to
provide sufficient information for neuroscientists to understand
how the SRS is constructed with respect to neuroscience orienta-
tion and key anatomic features, and evaluate its applicability as an
alignment target. Therefore, SRS descriptions include:
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Table 1 | Spatial reference system core characteristics for the mouse atlases currently registered in DAI.

Code Name SRS family Version Species SRS description

INCF:0001 Mouse_WHS_0.9 WHS 0.9 Mouse WHS initial version, with origin in the back-left-bottom corner

INCF:0002 Mouse_WHS_1.0 WHS 1.0 Mouse WHS with origin shifted to the intersection of midline and the
center of anterior commissure

INCF:0100 Mouse_ABAvoxel_1.0 ABAvoxel 1.0 Mouse SRS used in the Allen Mouse Brain Atlas 3D model (circa 2005)

INCF:0101 Mouse_ABAreference_1.0 ABAreference 1.0 Mouse SRS in the Allen Mouse Brain Atlas reference atlas

INCF:0102 Mouse_AGEA_1.0 AGEA 1.0 Mouse SRS used in the Allen Mouse Brain Atlas gene expression
module, a derivative of ABAvoxel

INCF:0200 Mouse_Paxinos_1.0 Paxinos 1.0 Mouse SRS in the Paxinos and Franklin (2001) stereotaxic atlas of the
mouse brain

INCF:0300 Mouse_EMAP-T23_1.0 EMAP-T23 1.0 Mouse A T23 model of EMAP developing mouse atlas

• coordinate system origin,
• coordinate axes and measurement units,
• pointer to the SRS’s reference implementation,
• specification of the region of validity and valid extents along

each of the coordinate axes,
• the author of the SRS, and
• how the SRS was derived from another coordinate system, if

applicable.

The “Region of Validity” is a characteristic analogous to the “Area
of Use” in the EPSG registry. In addition to the whole brain
coordinate systems registered so far, DAI allows users to regis-
ter additional SRS defined more precisely for smaller regions in
the brain, using the workflow described later in the paper. For
such SRS, the region of validity is defined by an anatomic struc-
ture or a group of structures, and valid spatial extents along the
X, Y, and Z axes. The DAI ability to manage multiple coordinate
systems, both for the whole brain and local to an anatomic struc-
ture, facilitates spatial integration of neuroimaging information
across different modalities and resolution levels, as DAI users can
select an appropriate reference space (e.g., with matching resolu-
tion, region of validity, and modality) to explore available data or
to register their own data.

The coordinate system registry contains an additional manda-
tory table called “Orientation,” which provides interpretation of
neuroscience coordinate axes or their derivatives used to define
X, Y, and Z coordinates in the SRS table. These axes may be sim-
ple (e.g., describing straight dorsal-ventral, anterior-posterior, or
left-right orientations), or complex. The latter could be used to
describe orientations in the developing brain (where the poste-
rior and anterior orientations may be described as curves rather
than straight lines) or volumes/images that are tilted or oth-
erwise transformed with respect to canonical anatomical terms
of location. Note that such a description should be sufficient
for neuroscientists to understand how the coordinate system
was constructed, and roughly orient it with respect to other
SRS, but in most cases will be insufficient for deriving coor-
dinate transformations: the latter are computed and registered
separately.

Additional tables in the SRS registry are optional and include:
“Structure,” “Fiducial,” and “Slice.” “Structure” includes descrip-
tions of anatomic structures delineated in 2D or 3D, along with

references to structure vocabulary and a spatial object describing
the structure, or a method for deriving the latter. “Fiducial”s
are recognizable points or higher-dimensional features generally
derived from anatomic structures or their relationships, which
can be used to automatically relate one SRS to another, or rec-
ommend point pairs for fine alignment. Finally, “Slice” is used
when the SRS is defined through a collection of 2D plates
with segmented structures rather than by a 3D volume; it con-
tains descriptions of individual slices, or plates, that together
form the 3D atlas. A more complete description of tables in
the SRS registry can be found at http://wiki.incf.org/mediawiki/
index.php/SRS_Registry.

In INCF-DAI, information from this registry (encoded in
WaxML) is currently available via several atlas service requests
that are supported by all atlas hubs (ListSRSs and DescribeSRS).
WaxML and the atlas services are described in subsequent sections
of the paper.

In addition to the registry of SRSs, INCF-DAI also main-
tains a registry of coordinate transformations between known
coordinate systems. While there is no requirement for a specific
coordinate system to be implemented by all atlas sources, there
is a requirement that any new user-supplied atlas data are reg-
istered to at least one known coordinate system. For practical
reasons, within INCF-DAI it is recommended that at least for-
ward and inverse transformations between all SRSs and WHS are
supported, since, with WHS as an intermediary, coordinate trans-
formation between any two SRSs that do not have direct mapping,
would require two steps. While this is not a strict requirement
within DAI, limiting the number of steps in a composite trans-
formation reduces any mapping errors that might occur due to
registration.

Different procedures, depending on the representation
(collection of 2D slices, 3D model) and known relationships
between reference spaces, have been used to derive forward and
inverse transformations between pairs of registered coordinate
systems. Registration methods include those implemented in
ITK/ANTS (Avants et al., 2011) (http://www.picsl.upenn.edu/
ANTS) for 3D volume registration, warping of individual 2D
slices to matching slices in a 3D volume using thin plate spline
calculations, and piecewise linear mapping functions for selected
3D atlas slices to a 2D plate. In the absence of good assessment
techniques for transformation accuracy between two images

Frontiers in Neuroinformatics www.frontiersin.org September 2014 | Volume 8 | Article 74 | 338

http://wiki.incf.org/mediawiki/index.php/SRS_Registry
http://wiki.incf.org/mediawiki/index.php/SRS_Registry
http://www.picsl.upenn.edu/ANTS
http://www.picsl.upenn.edu/ANTS
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Zaslavsky et al. Cyberinfrastructure for the digital brain

FIGURE 3 | Selected coordinate systems for mouse brain of several

common atlas reference spaces. All coordinate systems (boxes) are shown
relative to the anatomical picture of the mouse brain shown in the upper left

corner. Note the variability in direction and origin of the atlases. Much of the
variability arose from practical reasons (e.g., stereotaxic surgery) or because
of the data collection method used.

(besides visual inspection of resultant alignment), inverse trans-
formation consistency is computed for each translation function
and returned to the user as part of coordinate transformation
responses (TransformPOI). Using the spatial alignment workflow
provided within DAI, or any other similar workflow, users
are encouraged to develop new transformations or additional
versions of existing transformations to improve registration and
coordinate transformation accuracy for their region of interest,
make them available via atlas services, and register them in the
registry of transformations.

WAXHOLM MARKUP LANGUAGE
Existing atlases often present examples of different implemen-
tations of closely related functionality, or multiple ways of
encoding similar types of data. For example, gene expression
information might be labeled as “high,” “low,” or “none” within
a neural structure or quantified as a number in a structure or
region of space. An example is the information available from
Allen Brain Atlas’s AGEA (Anatomic Gene-Expression Atlas)
via its GeneFinder requests, which return numeric normalized
expression value at a location in space (see http://help.brain-map.
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org/download/attachments/2818169/InformaticsDataProcessing.
pdf?version=1&modificationDate=1319667590884, p. 5–6). In
contrast, the Embryonic Edinburgh Map Atlas project (EMAP)
framework holds EMAGE data, where expression levels are
returned with keywords for a selected region such as “strong,”
“detected,” or “not detected” (Baldock et al., 2003; Christiansen
et al., 2006). This is likely the more common way of representing
this type of information, but even these designations may
be assigned using various methods. At the same time, there
have been several efforts to develop gene expression markup,
including MAGE-ML (Spellman et al., 2002) (http://www.mged.

org/Workgroups/MAGE/mage.html), and MINiML (Barrett
et al., 2007) (http://www.ncbi.nlm.nih.gov/geo/info/MINiML.

html). This illustrates some of the diversity of perspectives,
research approaches and methods of neuroscientists. Conveying
information about both the methods and results in a formal
schema that is human and machine readable and also acceptable
to different atlas publishers is highly desirable, but extremely
difficult. As discussed above, our strategy to overcome this hurdle
is to develop an information system that supports convergence
to a consensus representation rather than mandates a single
representation from the start. While allowing atlas hub providers
a degree of freedom, this approach recommends standard
structures and semantics appropriate for exchange of spatial
information in the brain and also allows continual updating
and improving of representations as methods and analyses
evolve.

WaxML is the information model used to express key elements
from atlas hubs. It offers formal semantics for atlas informa-
tion, defining valid elements, their attributes and relationships.
Specifically, it provides type definitions for basic atlas classes that
describe SRSs, spatial transformations and key geometry types
(Table 2). It also gives output schemas for brain location-based
service requests, which include structures for anatomic features,
gene expression, images and image collections, annotations, and

other objects returned in response to POI-based requests. As
mentioned above, we allow for differently structured responses to
similar requests, due to specific implementations and approaches
adopted by different atlases, as long as geometric representations
remain consistent and interoperable.

WaxML borrows spatial object descriptions from the Open
Geospatial Consortium (OGC) Geography Markup Language,
GML (Portele, 2007), an international standard for spatial data
encoding (ISO 19136). In particular, representation of spatial
features and locations in the brain follows the GML simple
features profile (Van den Brink et al., 2012). For example,
a GML Point construct is used to encode points of interest
(POI) (Figure 4), following POI definition in WaxML schema
(in WaxML_Base.xsd), which references GML representation of
points and multipoints—the latter construct is used when the
request is to process an array of points rather than a single point
of interest (Figure 5).

As an application schema of GML, the WaxML schema is
compiled with GML 3.2.1, which is available at http://schemas.
opengis.net/gml. Leveraging proven and well-documented stan-
dard geometric descriptions allows WaxML developers to reuse
a range of common open source software libraries, and create

FIGURE 5 | Fragment of WaxML_Base.xsd schema referencing GML

Point and MultiPoint constructs.

Table 2 | Common WaxML schema components (see https://code.google.com/p/incf-dai/).

Schema name Description

CoordinateTransformationCommon Constructs related to coordinate transformation information, including transformation code, implementing
atlas hub, input SRS, output SRS, transformation performance, order of transformations in a transformation
chain

SrsCommon Constructs related to spatial reference systems (SRS), as described in Section Common Spatial Framework

WaxML_Base Basic constructs used across WaxML, specifying base input and response types, geometry types, and key
enumerations

FIGURE 4 | Representation of point of interest (POI) using the GML Point construct. Note that spatial reference system name is a mandatory attribute of
Point.
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software interoperable with multiple existing client and server
codes, while focusing on classes that are specific to brain atlases.

ATLAS SERVICES
The atlas service interface specification is another key stan-
dard that forms the backbone of INCF-DAI. Atlas services are
web functions that support querying and updating brain atlas
resources offered by an atlas hub, returning information in
WaxML-encoded documents.

The atlas services follow OGC Web Processing Service (WPS)
interface standard (http://www.opengeospatial.org/standards/
wps), which provides a framework for describing, invoking
and chaining web requests, specifically oriented to spatial data
processing functions. The key advantage of WPS for atlas services
at this stage is that the services are self-describing (via the
mandatory GetCapabilities and DescribeProcess requests), and
the descriptions include information about the inputs and the
output schema. The set of service requests may vary between atlas
hubs, reflecting differences in implementation of atlas resources.
Adherence to the WPS standard establishes initial structural
consistency across different atlas services, and lets application
developers reuse multiple standard service libraries (including
WPS authoring libraries in Java and Python), client applications,
and service metadata registries.

The general format of a WPS request is:

http://<server-path>/<HostServiceController>?Service=
WPS&version=1.0.0

&Request=<WPS_Request>
&Identifier=<identifier_name>
&ResponseForm={format}
&DataInputs={Encoded Inputs}

where WPS_Request may be one of GetCapabilities,
DescribeProcess or Execute statements; the <identifier_name>
clause refers to the function (process) to be invoked, such as
Get2DImagesByPOI; ResponseForm specifies the output format
of the response; and DataInputs includes a list of input values.

The WPS standard, and standard libraries implementing WPS,
offers a few additional capabilities useful for DAI, including the
built-in ability to manage large volume processing on servers
without returning processing results to the client application (via
an optional &storeExecuteResponse=true clause), execute chains of
functions, request status updates for long-running processes (via
the optional &status=true clause), and return lineage information
in service responses (via the optional &lineage=true clause).

A number of core and optional INCF-DAI atlas service
requests have been defined, as described below (see http://
wiki.incf.org/mediawiki/index.php/Atlas_Services for additional
details).

Core atlas service requests
These atlas service requests include key operations enabling
exchange of location information in DAI. They provide basic
information about hub capabilities and supported functions as
well as coordinate systems and transformations, and enable exe-
cution of transformations and transformation chains.

• Service capability descriptions: GetCapabilities and
DescribeProcess. These requests, mandated by the WPS
standard, provide a list of functions (processes) included in an
atlas service, and their descriptions.

• Descriptions of SRSs hosted by an atlas service implemented at
an atlas hub: ListSRSs, DescribeSRS. These requests return coor-
dinate system origin, units, definitions of coordinate axes and
other SRS metadata (see Common Spatial Framework) format-
ted as WaxML documents. The functions are implemented at
all atlas hubs that publish data in a coordinate system unique
to that hub.

• Spatial transformations: ListTransformations, TransformPOI.
The first of these functions lists forward and inverse coordinate
transformations implemented at a hub. Additional coordinate
systems and transformations can be automatically added to the
system as new images and volumes are registered using the reg-
istration workflow described in Section Data Publication: the
Spatial Registration Workflow. The second function executes
a specified transformation for given coordinates of a point of
interest (POI) or an array of points, generating coordinates of
the POI or a POI array in the target atlas space.

• A client application may request a coordinate transformation
that involves several steps. For instance, translating coordinates
between reference plates in the Paxinos mouse atlas in stereo-
taxic coordinates, and reference plates of the Allen Mouse Brain
Atlas, requires a chain of transformations that involve WHS,
AGEA, and Allen Mouse Brain Atlas voxel model as interme-
diary coordinate spaces. An optimal transformation path is
generated by GetTransformationChain at the central atlas hub,
as described in Section Implementation. This chain could be
avoided if direct registrations existed between all of the refer-
ence atlases; however, this is not practical, so in many cases this
direct mapping does not exist.

• Some atlas hubs may provide sparse content for certain types
of data, hence atlas queries may return empty responses. For
example, requesting annotations or 2D images available at a
given POI may yield empty responses, especially in the early
phases of DAI development. To optimize POI-based requests,
general information about availability of different types of
registered objects (images, annotations, gene expression data,
etc.) in the vicinity of a given POI, across multiple atlas
hubs, should be available. This information is returned on the
GetObjectsByPOI request implemented at the central atlas hub,
which returns a list of POI-based methods that would result in
non-empty responses.

Optional atlas service requests
These atlas service requests are not mandatory but are likely to
be implemented at one or several atlas hubs. Typically, these
additional requests for individual hubs reflect information con-
tent provided by the atlas, and are implemented as WPS service
wrappers over existing native functionality of the atlas resource.

These include such POI-based requests as GetStructure-
NamesByPOI, Get2DImagesByPOI; GetCorrelationMapByPOI;
GetGenesByPOI, GetAnnotationsByPOI, which accept a point of
interest in any known SRS and return a respective WaxML
document from a given atlas service. For example, the
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GetStructureNamesByPOI method supports structure lookup for
a canonical set of segmentations defined for an atlas, returning
WaxML descriptions of structures found in the vicinity of a POI,
along with geometric properties of each structure if available.
While at this stage DAI is primarily concerned with coordinate
information exchange and spatial requests (e.g., POI-based
requests), atlas hubs may also include queries that don’t involve
brain location, e.g., queries by structure name, gene name, or
similar.

As discussed earlier, the ability to have different sets of func-
tions published by different hubs is a design requirement of
DAI, as the initial goal is to standardize treatment of coordi-
nate systems and location information, and create a framework
in which the community can converge, over time, toward a com-
mon set of POI-based functions, related semantic functions, and
the structure of requests and returned schemas.

IMPLEMENTATION
As discussed earlier, a working prototype of INCF-DAI is imple-
mented as a network of atlas hubs hosting atlas web services,
the central metadata registry, which maintains a catalog of atlas
resources, and a number of client applications that consume
atlas service requests and use the results to integrate information
from atlas hubs for analysis and visualization (Figure 2). These
components are described below.

ATLAS HUBS
The atlas services have been implemented for five hubs: Allen
Brain Atlas mouse hub, UCSD Cell-Centered Database hub,
Edinburgh Mouse Atlas Project hub, a WHS mouse hub, and a
central INCF atlas hub. In addition, rudimentary services with
minimum set of functions have been setup for the two WHS
rat hubs discussed earlier, though POI-based requests are not
yet available for them. Any group that also wants to share their
spatially-linked data in this manner may also consider setting up
an atlas hub (User 3). As outlined in Section Core Atlas Service
Requests, the hubs present service capability descriptions, SRSs
unique to the hub, and coordinate transformations between these
SRS and one or more globally-known coordinate system, such
as WHS. The criterion is that for each hub publishing atlas data
in a unique SRS, there should be at least one set of forward and
inverse transformations that can be ultimately (i.e., via a sequence
of transformations) connected with WHS, which in turn is main-
tained at the WHS hub. For example, the Allen Brain Atlas
hub publishes three coordinate systems; the Allen Mouse Brain
Atlas reference plates (ABAreference), Allen Mouse Brain Atlas
3D volume (ABAvoxel), and AGEA, in addition to several pairs
(forward and inverse) of coordinate transformations: between
ABAreference and ABAvoxel, between ABAvoxel and AGEA, and
between ABAvoxel and WHS.

Besides these core functions, atlas hubs publish different sets
of service methods, typically implemented as WPS wrappers over
native atlas functions offered by their databases. For example,
the ABA hub includes such functions as Get2DImagesByPOI;
GetCorrelationMapByPOI; GetGenesByPOI, which wrap native
ABA or AGEA functions (e.g., AGEA’s GeneFinder interface takes
coordinates of a seed point in AGEA coordinates as input).

In addition to hubs that publish specific atlas resources and/or
coordinate systems and transformations, there is a special “cen-
tral atlasing hub,” which serves as a query mediator across other
hubs and manages coordinate translations that involve more than
one hub. It hosts a standard set of WPS-based atlas functions,
which accept POI-based requests and translate them into respec-
tive web service requests against all registered hubs, then unions
the responses before returning them to the user application. For
example, a user may request a list of all 2D images available for a
particular part of the brain from all atlas sources that support the
Get2DImagesByPOI (illustrated in Figure 9). Information about
all hubs that support this request is available because the atlas
web service has been registered in the central service registry
(see The INCF Central Metadata Registry and Discovery Portal
for Atlas Resources), and lists of supported functions from each
hub have been harvested into the central catalog. With this infor-
mation available to the mediating hub, it rewrites the initial
Get2DImagesByPOI query into respective requests that are valid
for each atlas source.

An additional useful feature of DAI is that information
for POI in the brain can be requested in any known coor-
dinate system, since SRSName is a mandatory part of a
POI definition. Coordinate translation to SRS understood by
each hub are performed automatically, with the help of the
GetTransformationChain request implemented at the mediator
hub. This request uses information about all registered coordi-
nate systems (which is harvested into the central database from all
atlas services via ListSRSs calls) to construct an optimal sequence
of coordinate translations from the POI included in user request,
to target SRSs that a hub can process. The sequence of transfor-
mations is then executed as a series of TransformPOI calls. This
processing is done behind the scenes, effectively allowing users
and applications to issue service requests against any POI-based
service in any known coordinate system. For example, a service
request may use a POI in the coordinates of the Allen Mouse
Brain AGEA, and expect it to be translated into the coordinate
space of the (Paxinos and Franklin, 2001) mouse brain atlas, for
querying atlas hubs that support the latter coordinate system. The
respective GetTransformationChain request will generate a series
of coordinate transformations such as the one shown in Figure 6,
which involve a sequence of TransformPOI requests at the ABA
and UCSD atlas hubs.

In the DAI prototype project, we used Deegree WPS libraries
(http://www.deegree.org/) to develop and configure atlas ser-
vices. This open source software implements OGC WPS 1.0.0,
and configures standard WPS GetCapabilities and DescribeProcess
requests based on a list of process providers, which repre-
sent containers for processes (functions) written in Java. The
initial processes to publish through this mechanism include
ListSRSs and DescribeSRS functions. Next, the hub author gener-
ates forward and inverse coordinate transformations that connect
each of the new SRSs with WHS or another previously regis-
tered coordinate system, and makes this information available
via ListTransformations and TransformPOI functions. After that,
additional POI-based requests are implemented as appropriate
for the types of resources to be published through the hub,
using the same Java process containers. Other WPS development
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FIGURE 6 | A fragment of GetTransformationChain response. The
response describes transformations from the Allen Mouse Brain
AGEA (Mouse_AGEA_1.0) to the coordinate space developed in the
(Paxinos and Franklin, 2001) mouse brain atlas (Mouse_Paxinos_1.0). It
includes two TransformPOI request templates (with X, Y, Z
coordinates left blank) served by two different atlas hubs: the ABA

hub and the UCSD hub. The two TransformPOI service requests
need to be made in sequence to execute the transformation chain.
Note that the Mouse_WHS_0.9 coordinate space serves as the
intermediate space for the two transformations: from AGEA to WHS
0.9 and then from WHS 0.9 to the target reference space of
(Paxinos and Franklin, 2001).

libraries can be used as well, such as PyWPS (in Python, http://
pywps.wald.intevation.org/) or ZooWPS (multiple languages,
including C/C++, Fortran, Java, Python, PHP, Perl, JavaScript:
http://www.zoo-project.org/).

THE INCF CENTRAL METADATA REGISTRY AND DISCOVERY PORTAL
FOR ATLAS RESOURCES
INCF Atlas Central, hosting INCF-DAI portal and catalog, and
a set of central registries (metadata, list of reference spaces and
transformations) is the primary metadata registration, discovery,
and integration platform. It is configured to periodically har-
vest information from individual atlas hubs via GetCapabilities,
DescribeProcess, ListSRSs, and ListTransformations requests.

Atlas service metadata, as well as metadata for other
types of registered resources (atlas-related image services, web-
accessible folders with file collections, individual downloadable
files, web sites, offline data, other standard catalog services,
etc.), is organized in a central catalog, which is compli-
ant with an international standard for spatially-enabled cata-
logs called OGC Catalog Services for the Web (CSW) (http://
www.opengeospatial.org/standards/cat). This standard defines
the request and response protocol for searching, adding, updat-
ing, and deleting catalog records. This CSW catalog is the
core component of the INCF-DAI portal. The portal is imple-
mented using open source Geoportal Server (http://sourceforge.
net/projects/geoportal/) software, which is pre-configured to
recognize standard service descriptions such as WPS, sup-
ports regular harvesting and updating registered resources of
known types, and lets users browse and query atlas resource
online.

We have customized the portal to support atlas-specific data
types such as 2D images, segmentations, 3D volumes, connec-
tivity data, and segmentations (Figure 7) and integrated it with
several atlas client applications including WIB and Scalable Brain
Atlas visualization clients. Because of the adoption of the CSW

standard, the portal can be easily federated with other CSW-
compliant portals, so that resources registered with one of the
portals can be queried through another one.

CLIENT APPLICATIONS ACCESSING ATLAS WEB SERVICES
Besides the atlas portal, resources registered in DAI can be
accessed from a number of web applications (several shown
in Figure 8). These applications make use of atlas service
methods including coordinate translations and POI based
requests. For example, WIB (Orloff et al., 2013) allows users
to browse multiple atlas sections in three dimensions, and
displays segmented anatomic features over high-resolution brain
images (Figure 9). Users can zoom in to a POI and use it to
query available atlas services and retrieve resources available
from individual atlas hubs, or through the “central” atlas ser-
vice, which spawns requests to all registered hubs and unions
responses in a single output. The DAI coordinate translation
services (TransformPOI) have also been used in the Scalable
Brain Atlas (Bakker et al., 2010) (http://scalablebrainatlas.
incf.org/), the Mouse BIRN Atlasing Toolkit (MBAT) (Ruffins
et al., 2010) and the Whole Brain Catalog (Larson et al.,
2010) (www.wholebraincatalog.org). In addition, a Python
API accessing atlas web services has been developed (http://
software.incf.org/software/incfdai?searchterm=python+DAI).

With these applications, users can compare anatomic feature
descriptions, gene expression and other types of data available in
different atlases and at different locations of interest. The Python
wrapper also makes it easy for researchers to develop their own
applications that take advantage of atlas services and the DAI
framework.

DATA PUBLICATION: THE SPATIAL REGISTRATION
WORKFLOW
The key DAI challenge is making the system extensible, to let users
easily register and align their own data with existing atlases, add
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FIGURE 7 | A fragment of the DAI portal interface showing search results

and types of searchable data. The example search for “Service OR WMS”
(in Search Atlas Resources entry) returns metadata records that contain
these terms. WMS refers to the OpenGIS Web Map Service standard (http://
www.opengeospatial.org/standards/wms), which is used by the UCSD Cell
Centered DataBase (UCSD Hub) to provide online access to large
spatially-registered 2D images; thus all images stored using this method are

returned in this search. Spatial extents of the found resources, in brain
coordinates, are shown as red rectangles over a coronal slice. Users can
optionally search for specific atlas data types (under “Data Category”)
illustrated in the pop-up box in the lower left corner. In addition to search, the
portal supports metadata browsing (under the Browse tab) and search of
resources based on geographic location of the lab that published a resource
(under the GeoSearch tab).

coordinate systems and transformations, and contribute addi-
tional data to an atlas hub. This is usually done to expand
analysis options and/or to allow direct comparison to other
spatially-linked resources (User 2). Thus, the system would not
be complete without a prototype registration workflow for align-
ing user-supplied 2D images and image collections to INCF-DAI
reference spaces. While image alignment tools and pipelines have
been developed (e.g., ITK/ANTS, LONI Pipeline, Amira, Slicer,
NeuroMaps, MBAT, etc.), they often can be difficult to install,
only accept 3D volumes, or the registration transformation is not
stored along with the original datasets in an easily accessible and
reusable manner.

Our goal was to develop a lightweight and intuitive online reg-
istration system for individual 2D images that uses a slice of a
canonical atlas as the target. The system would be able to process
images that are poorly aligned or have other artifacts preventing a
straightforward 3D reconstruction; and would generate DAI SRS
descriptions and transformations that are stored in association
with the dataset, as the workflow outcome. This last step is essen-
tial to being able to reuse this information for analytic or query
purposes.

This workflow can be accessed from the atlas portal, but
requires an INCF account. The main workflow steps are shown
in Figure 10. In the first step, a collection of segmented images is
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FIGURE 8 | DAI resources can be accessed via atlas web services from a

number of atlas applications. Users can find what is available from INCF
Central, and query atlas hubs via the Central Hub or directly through their

web services. Online applications accessing atlas resources (the Whole Brain
Catalog, PivotViewer, WIB, Scalable Brain Atlas) are available from the DAI
portal.

uploaded into INCF DataSpace (http://www.incf.org/resources/
data-space) via the INCF Atlas portal. The INCF DataSpace
represents a common virtual storage space, where data from
different INCF-affiliated labs are organized logically, abstracting
specific storage resources used by each lab. It is implemented
using iRODS (http://irods.org), which supports rule-based man-
agement of distributed files and file collections. In the context of
INCF-DAI image registration workflow, iRODS rules are used to
invoke initial processing of the uploaded images or image collec-
tions: generation of image pyramids, sub-sampled versions of the
images, and image thumbnails. In addition, a manifest file is cre-
ated, holding basic provenance information about the uploaded
file collection and the processing steps.

Once the image files are packaged for processing, the con-
tent of the manifest file, and associated image thumbnails, are
presented to the user in an image gallery page. From this page,
users can visualize images in WIB or invoke the alignment inter-
face. The latter component loads a sub-sampled version of the
selected image into an alignment tool called Jibber. Jibber lets the
user select a matching reference plate from a canonical atlas (in
the current version, Allen Brain Atlas mouse reference plates or
WHS sections), then adjust the image to match the target atlas
plate as closely as possible. The affine transformation steps are fol-
lowed by thin plate spline transformation based on user-defined
links that connect correspondence point pairs or tie-points on
the image and the target atlas plate. The generated transforma-
tion coefficients are passed to an engine called Jetsam, which
generates a warped image and stores it in iRODS. The warp-
ing engine has been implemented on a computer cluster, to
ensure fast warping of very large images. Based on these com-
putations, a coordinate system description is generated, along
with forward and inverse transformations between the user-
submitted images and the canonical atlas used as the registration
target.

The SRS description and the transformations are updated
as additional images from the image gallery are registered.

This allows users to query other DAI information using spatial
locations on their own images to retrieve structure names, dis-
cover available registered images, or explore gene expression and
other data associated with user-defined POI, using an online tool
such as WIB (Figure 9).

USING DAI
In addition to DAI technical components we have also developed
tools and documentation to aid both neuroscientists and software
developers interested in using or extending the system. Here we
describe how these different users can find resources to access and
contribute to the DAI.

The three types of neuroscientist users whose needs are
addressed by DAI, are discussed in the introduction. User 1 wants
to find and examine information about their area of interest, User
2 wants to compare their data to canonical atlases, and User 3
wants to contribute large datasets to a known spatial framework.

A simple query tool has been extended to fill the needs of
User 1, WIB (see Section Client Applications Accessing Atlas
Web Services); it can be found on the atlasing portal. The
spatial registration workflow (Section Data Publication: the
Spatial Registration Workflow) was created specifically to fit
the needs of User 2. Finally, User 3 would need to first cre-
ate an atlas hub, by setting up hub software, initially with a
small set of mandatory atlas service functions, then defining
additional spatial query functions appropriate for their data,
and developing spatial transformations between hub’s data and
any other known SRS. Documentation on how to create at
atlas hub can be found at http://code.google.com/p/incf-dai/wiki/
HowToCreateAHub. The documentation points to general code
libraries and hubs implemented within the project, which can
be leveraged by software developers in creating new atlas hubs.
The software, including WaxML schema, libraries, and coding
examples is available at http://code.google.com/p/incf-dai, and
can be used by developers wishing to build on any part of
DAI. If resources allow in the future, we would create additional
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FIGURE 9 | Querying DAI resources using POI-based requests in WIB. (A)

Web Image Browser (WIB), illustrates how one can query the different
atlases from a user-selected POI. As the user browses to a location of
interest in the dataset and selects a POI for query, a menu appears showing
registered atlas services and functions offered from each hub. Items in the

menu invoke POI-based service functions, which return the requested
information to the user. The outlines of structures from a reference atlas aid
the user during navigation. (B) Example query results showing structure
names from several atlases, gene correlation map served by Allen Brain
Atlas, and spatially registered images near the POI served by CCDB.

tools to more easily implement an atlas hub, at least for certain
data types.

CONCLUSIONS AND FUTURE WORK
Today’s neuroscientist is quite familiar with using interactive
online maps to access diverse information from different sources.
Tools like Google Maps are appealing because they serve as gate-
ways to enormous amounts of spatially-registered information.
This type of functionality, if available in the realm of neuro-
science, would appeal to researchers, as everything is tied to
“where in the brain” and relating different data by brain loca-
tion would greatly facilitate our ability to do rigorous, and unique
quantitative analyses (Carson et al., 2005; Kovacević et al., 2005;
Christiansen et al., 2006; Leergaard and Bjaalie, 2007; Lein et al.,

2007; Ma et al., 2008; Aggarwal et al., 2009; Ng et al., 2009;
Chuang et al., 2011). Atlas projects of the Allen Brain Institute are
a great example of what is possible when this kind of information
is put within the context of spatial maps. Ideally, all neuroscience
data would be presented within an accessible spatial framework
such as this in order to facilitate our ability to find, analyze, and
integrate diverse information. However, given multiple reference
atlases developed with different functionality, data types, and spa-
tial and semantic conventions, opportunities for researchers to
easily access and integrate data from many of them, remain lim-
ited. Even more difficult, is the ability for most researchers to
place their own data into a compatible spatial framework for
comparison and analysis. This is becoming an acute problem
with new techniques for 3D brain imaging such as microCT and
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FIGURE 10 | Main steps of the atlas registration workflow for collections

of 2D images. The example images are from a study of innervation and
genetic similarity in brainstem (Matthews, 2012). The images are segmented,
packaged together and uploaded to INCF DataSpace. Subsequent steps
include generation of an image gallery page, aligning individual images in the
gallery with target reference plates (using Jibber), generating thin plain spline
transformations, generating warped images (using Jetsam), generating and

updating a new SRS description (called BrainStem) and forward and inverse
transformations between the new SRS and the target reference atlas (in this
case, the ABA reference atlas). Once the user has registered their data, they
can identify areas of interest in their datasets and apply information from
other Atlas Hubs to their data (e.g., what structure is found at this location in
space in the Allen Brain Atlas). More analytic capabilities are also possible,
but these are not currently offered by the INCF Digital Atlasing Program.

methodologies for whole-brain fluorescent imaging (Susaki et al.,
2014).

The purpose of this project is to fill the digital atlasing needs
of neuroscientists who lack the resources to explore the rapidly
growing collections of multidimensional atlas data based on brain
location, compare their data with canonical atlases, or publish
their data and make it accessible to others via spatial queries.
Creating a data-rich and uniform spatial integration framework
for atlas sources is challenging because of diversity across refer-
ence atlases, data types, and technologies, in addition to the lack
of native spatial query functionality of atlas publishers. Thus, our
solution has been to create a flexible and extensible framework
that accepts existing resources, offers them formal descriptions,
in addition to translations and spatial data exchange mechanisms
between them.

The INCF-DAI framework addressed these atlas data inte-
gration challenges by developing information models for spatial
references systems (SRS) in mouse brain; creating web-accessible
registries of SRS and coordinate transformations between them,
proposing a standard markup language for encoding SRS, and
transformations. It offers the ability to query based on spatial
location anatomic features and other common atlas constructs
(returned via WaxML) through a system of atlas web services that
communicate location information between atlas sources and
clients. These components became the backbone of the prototype

SOA for brain atlas data, which has been implemented via a
collection of atlas hubs hosting web services, service metadata
catalogs, central discovery portal, and a collection of atlas clients
that use the services to perform coordinate transformations or
retrieve information for a given POI. Since a broader consensus
about community spatial integration frameworks for the brain
is yet to emerge, a key requirement for the infrastructure proto-
type has been flexibility and extensibility of the specifications and
their ability to incorporate different implementations of related
functions.

This work demonstrated the power of leveraging spatial infor-
mation integration resources that have been developed and stan-
dardized in other disciplines with longer history of managing and
exchanging spatial location information. Reusing international
standards for the description of spatial features such as GML, and
spatial processing functions such as WPS, allowed us to stream-
line architecture development and create a more robust and
maintainable system leveraging open source standards-compliant
software. In addition, this helped us better understand the
specifics of spatial representation and spatial information pro-
cessing for brain data as compared to spatial descriptions used
at the earth scales.

There are a number of challenges and limitations of the infras-
tructure prototype that should be addressed in future work.
Ideally, we would be able to extend WHS and DAI approaches
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to other developmental phases and species, and fully explore the
potential of spatial data integration. Relating information across
phases and species would help address key research issues that
underlay the use of all animal models of human neurological dis-
orders. In addition, we would also like to create additional tools,
resources, and documentation that reduces the effort needed
for researchers to add their data to this framework, or to take
advantage of it for their own analysis purposes.

More technical desired additions to the DAI include:

• Formal modeling of coordinate transformations that can
accommodate different types of atlas references spaces.

• Consistent assessment of performance of coordinate transfor-
mations between atlas spaces, in particular evaluating quality
of transformations and chains of transformations;

• Incorporating multiple ways of representing location in the
brain (by coordinates, by anatomic feature name, by a collec-
tion of location rules, i.e., statements that include anatomic
features and spatial relationships), and making such repre-
sentations interoperable. This would be extremely useful for
extending DAI to different developmental phases and species,
where relating information by coordinates would be unreliable.

• Extending POI-based data exchanges to exchanging informa-
tion for regions-of-interest, trajectories (along certain paths),
transects, etc.

• Building community consensus about common data represen-
tation and functionality associated with atlases and further
standardizing atlas services.

The latter typically requires significant time, effort and a for-
mal and transparent process involving both neuroscientists and
IT experts, which includes several phases: from identifying areas
for standardization, to community review of proposed standards,
pilot implementations and interoperability experiments, and to
adoption and standards management. We believe that addressing
atlas data integration challenges in a consistent manner, mov-
ing toward best practices and, eventually, community standards
for atlas data representation and exchange, allows neuroscien-
tists to more easily share data in a common spatial framework.
This in turn, greatly increases accessible data and has the poten-
tial to facilitate data analysis, comparison, cross-validation, and
integration across disciplines, developmental stages, and species.
The work described in this paper offers first steps toward tack-
ling many of the hurdles to sharing spatially-tied data as well as
a framework that can be shaped and expanded by the research
community.

ACKNOWLEDGMENTS
This work was conducted within the DAI Task Force of the INCF
Digital Atlasing Program. Support from INCF over 2010–2012 for
the development of DAI components is gratefully acknowledged.
Key programmers are: Asif Memon (atlas services), Stephan
Lamont (spatial registration workflow), David Valentine (WaxML
schemas), David Little (service development and testing frame-
work, documentation), and Raphael Ritz (Python API). We
are especially grateful to members of the INCF DAI task force
(http://wiki.incf.org/mediawiki/index.php/DAI_TF_People) for

useful discussions of the atlasing infrastructure design, review
and testing of atlas services, and development of client
applications.

REFERENCES
Aggarwal, M., Zhang, J., Miller, M. I., Sidman, R. L., and Mori, S. (2009).

Magnetic resonance imaging and micro-computed tomography combined atlas
of developing and adult mouse brains for stereotaxic surgery. Neuroscience 162,
1339–1350. doi: 10.1016/j.neuroscience.2009.05.070

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., and Gee, J. C. (2011). A
reproducible evaluation of ANTs similarity metric performance in brain image
registration. Neuroimage 54, 2033–2044. doi: 10.1016/j.neuroimage.2010.09.025

Bakker, R., Larson, S. D., Strobelt, S., Hess, A., Wojcik, D., Majka, P., et al.
(2010). Scalable brain atlas: from stereotaxic coordinate to delineated brain
region. Front. Neurosci. Conference Abstract: Neuroinformatics 2010. doi:
10.3389/conf.fnins.2010.13.00028

Baldock, R. A., Bard, J. B. L., Burger, A., Burton, N., Christiansen, J., Feng, G., et al.
(2003). EMAP and EMAGE A framework for understanding spatially organized
data. Neuroinformatics 1, 309–325. doi: 10.1385/NI:1:4:309

Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., et al.
(2007). NCBI GEO: mining tens of millions of expression profiles–database and
tools update. Nucleic Acids Res. 35, D760–D765. doi: 10.1093/nar/gkl887

Bjaalie, J. G. (2002). Localization in the brain: new solutions emerging.
Neuroscience 3, 322–325. doi: 10.1038/nrn790

Boline, J., Lee, E. F., and Toga, A. W. (2008). Digital atlases as a framework for data
sharing. Front. Neurosci. 2, 100–106. doi: 10.3389/neuro.01.012.2008

Carson, J. P., Ju, T., Lu, H. C., Thaller, C., Xu, M., Pallas, S. L., et al. (2005). A Digital
atlas to characterize the mouse brain transcriptome. PLoS Comput. Biol. 1:e41.
doi: 10.1371/journal.pcbi.0010041

Christiansen, J. H., Yang, Y., Venkataraman, S., Richardson, L., Stevenson, P.,
Burton, N., et al. (2006). EMAGE: a spatial database of gene expression pat-
terns during mouse embryo development. Nucleic Acids Res. 34, D637–D641.
doi: 10.1093/nar/gkj006

Chuang, N., Mori, S., Yamamoto, A., Jiang, H., Ye, X., Xu, X., et al. (2011). An MRI-
based atlas and database of the developing mouse brain. Neuroimage 54, 80–89.
doi: 10.1016/j.neuroimage.2010.07.043

David, P. A., and Greenstein, S. M. (1990). The economics of compatibility stan-
dards: an introduction to recent research. Econ. Innov. New Techn. 1, 3–42. doi:
10.1080/10438599000000002

Erl, T. (2005). Service-Oriented Architecture. Vol. 8. New York, NY: Prentice Hall.
Hawrylycz, M. J., Baldock, R. A., Burger, A., Hashikawa, T., Johnson, G. A.,

Martone, M., et al. (2011). Digital atlasing and standardization in the mouse
brain. PLoS Comput. Biol. 7, 2–7. doi: 10.1371/annotation/22c5808a-56cf-46e5-
ba1b-456e838a5428

Hawrylycz, M. J., Boline, J., Burger, A., Hashikawa, T., Johnson, G. A., Martone,
M., et al. (2009). The INCF digital atlasing program: report on digital atlasing
standards in the rodent brain. Nat. Preced. doi: 10.1038/npre.2009.4000.1

Hof, P. R., Young, W. G., Bloom, F. E., Belichenko, P. V., and Cello, M. R. (2000).
Comparative Cytoarchitectonic Atlas of the C57BL/6 and 129/Sv Mouse Brains.
Amsterdam: Elsevier.

Johnson, G. A., Badea, A., Brandenburg, J., Cofer, G., Fubara, B., Liu, S., et al.
(2010). Waxholm space: an image-based reference for coordinating mouse brain
research. Neuroimage 53, 365–372. doi: 10.1016/j.neuroimage.2010.06.067

Johnson, G. A., Calabrese, E., Badea, A., Paxinos, G., and Watson, C. (2012). A
multidimensional magnetic resonance histology atlas of the wistar rat brain.
Neuroimage 62, 1848–1856. doi: 10.1016/j.neuroimage.2012.05.041

Josuttis, N. (2007). SOA in Practice: The Art of Distributed System Design. O’Reilly
Media, Inc.
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The XNAT informatics platform is an open source data management tool used by
biomedical imaging researchers around the world. An important feature of XNAT is its
highly extensible architecture: users of XNAT can add new data types to the system to
capture the imaging and phenotypic data generated in their studies. Until recently, XNAT
has had limited capacity to broadcast the meaning of these data extensions to users, other
XNAT installations, and other software. We have implemented a data dictionary service for
XNAT, which is currently being used on ConnectomeDB, the Human Connectome Project
(HCP) public data sharing website. The data dictionary service provides a framework
to define key relationships between data elements and structures across the XNAT
installation. This includes not just core data representing medical imaging data or subject
or patient evaluations, but also taxonomical structures, security relationships, subject
groups, and research protocols. The data dictionary allows users to define metadata for
data structures and their properties, such as value types (e.g., textual, integers, floats)
and valid value templates, ranges, or field lists. The service provides compatibility and
integration with other research data management services by enabling easy migration
of XNAT data to standards-based formats such as the Resource Description Framework
(RDF), JavaScript Object Notation (JSON), and Extensible Markup Language (XML). It
also facilitates the conversion of XNAT’s native data schema into standard neuroimaging
vocabularies and structures.

Keywords: XNAT, ontologies, translations, publishing, human connectome, human computer interaction

INTRODUCTION
XNAT provides a robust and advanced set of tools for searching
and filtering the data that it manages (Marcus et al., 2007)1. This
includes searching for a project or a set of projects, for subjects
that meet particular criteria, and for imaging sessions or subject
assessments that match a complex set of attributes. Users can join
searches across system object types to search on combinations
of properties including subject attributes, imaging modality, and
assessed demographic or clinical conditions.

This search function was originally created to work with the
attributes and properties of the core system data types. This
works well enough for a standard XNAT installation, but users
often need to add custom field definitions to existing data types
and custom data types to represent domain- or project-specific
imaging modalities and patient or subject assessments. Further,
XNAT’s data types and objects are maintained internally in a
verbose and fairly complex Extensible Markup Language (XML)-
based2 structure.

1XNAT, NRG Lab at the Washington University School of Medicine. http://
www.xnat.org.
2XML Core Working Group (2008). Extensible Markup Language (XML) 1.0
(Fifth Edition) http://www.w3.org/TR/xml/.

In addition, the advanced search functions in XNAT are quite
technical in their presentation and workflow design, so users
need a detailed understanding of the underlying data. This search
interface works well for experienced XNAT users, but, it is a signif-
icant barrier to users who are knowledgeable about the research
domain but unfamiliar with XNAT in general or with the specific
data models for a particular project.

This became a critical issue for the Human Connectome
Project (HCP) (Van Essen et al., 2012)3. The HCP public data dis-
tribution site is ConnectomeDB4, an XNAT instance that delivers
curated content to users and leverages the underlying XNAT data
structures to define groups of subjects within the overall research
population, such as a group of 40 unrelated subjects and a group
of 120 (some related) individuals, as well as data sets of particu-
lar interest, such as group average resting state connectivity, task
fMRI data, and behavioral data scores (Marcus et al., 2013).

The target audience for ConnectomeDB is assumed to be
sophisticated in its understanding of the data produced by HCP
data acquisition and processing, but, unlike experienced XNAT
users, cannot be assumed to have anything other than a basic

3The Human Connectome Project. https://www.humanconnectome.org.
4ConnectomeDB. https://db.humanconnectome.org.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 65 |

NEUROINFORMATICS

350

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00065/abstract
http://community.frontiersin.org/people/u/106556
http://community.frontiersin.org/people/u/168926
http://community.frontiersin.org/people/u/168927
http://community.frontiersin.org/people/u/134916
http://community.frontiersin.org/people/u/168930
http://community.frontiersin.org/people/u/135134
http://community.frontiersin.org/people/u/29867
mailto:rick.herrick@wustl.edu
http://www.xnat.org
http://www.xnat.org
http://www.w3.org/TR/xml/
https://www.humanconnectome.org
https://db.humanconnectome.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Herrick et al. Data dictionary services in XNAT and HCP

level of skill with XNAT’s search and retrieval features and little
or no familiarity with the general XNAT and HCP-specific data
models.

This issue—translating concepts, terminology, and opera-
tional paradigms specific to XNAT into vocabularies appropriate
to other contexts—is one that the XNAT team has encountered
frequently as the field of electronic medical imaging has grown
and research organizations have become more connected. This
has led to greater interest in being able to access and reference
data from researchers around the world, without the archive and
data management software imposing lexical or syntactical barri-
ers to translation. This is the motivation behind INCF efforts to
promote metadata and standards for data sharing within the med-
ical imaging research community (Poline et al., 2012). We took
the opportunity afforded by our immediate problem to solve the
larger problem in front of us: to transform XNAT from a relatively
isolated data archiving repository into an adaptable, query-able,
and standards-based data sharing, aggregation, and distribution
service.

DEVELOPMENT GOALS
One of the key features of ConnectomeDB is the subject dash-
board. The dashboard provides an intuitive way to search for
subjects based on demographics, clinical assessments, and other
relevant data, with textual cues and cumulative specification of
search criteria. In a standard XNAT installation, users define
custom subject groups by defining reusable queries using the
advanced search feature. The requirements for publishing to a
more generalized audience required a more textual and intuitive
means of achieving the same goal.

The subject dashboard lets users create one or more data filters
to identify subject groups of interest (Figure 1). Each filter works
on some instrument associated with the subjects in the system.
These instruments can be directly related to the subject, such as
demographics or other subject metadata; extrapolated from sub-
ject performance or evaluation, such as performance on cognitive
awareness tests, personality evaluations, or physical exams and
evaluations; or extracted from imaging data associated with the
subject, including types of acquired imaging data, attributes of
the data, and processed and secondary capture data.

We needed to make this sort of rich search functionality avail-
able to a general audience in a readily understandable way. The
IBM Dictionary of Computing defines a data dictionary as a
“repository of information about data such as meaning, relation-
ships to other data, origin, usage, and format5.” In this reading, a
data dictionary provides a layer of meaning and context above
simple presentation of the available data types and attributes
in the system. This enables the association of natural-language
synonyms, descriptions, and relational definitions onto the data
attributes and structures in the XNAT data store. The initial devel-
opment goal thus became creating a framework that could enable
the definition of the entities within a specific dictionary instance,
but remain general in its design, allowing the framework to
be re-purposed for other applications leveraging the advantages

5Dictionary of IBM and Computing Terminology. http://www-03.ibm.com/
ibm/history/documents/pdf/glossary.pdf.

FIGURE 1 | HCP subject dashboard.

of a well-defined contextual and descriptive structure for their
particular object structure, attributes, and relationships.

In the course of ConnectomeDB development, a second dis-
tinct but related application of data dictionary functionality
arose. The subject dashboard allows users to define groups of
subjects by various attributes of the subjects. Although measures
have been taken to protect the identities of the subjects in the
HCP study—anonymized subject identifiers, five-year age bands,
and other abstractions from direct personal characteristics—
the richness of the available demographic and physical data on
each subject raises the possibility that users could piece together
enough details about subjects that the data could be considered
individually identifiable.

The administrative solution for this was to limit the types
of subject data available to standard ConnectomeDB users.
Although all users of the site must consent to a data-use agree-
ment to access even the “open access” data, users who require
access to data deemed to be especially sensitive must accept an
additional data-use agreement with more stringent terms.

Accepting and recording acceptance of restricted data-use
agreements is just the first step. To implement tiered access to
subject data, the system needs to define what those tiers are, as
well as what types of subject attributes, assessment instruments,
imaging data, etc., are available to each tier. The data dictionary
provides a convenient means of defining the tier restriction of
entities within the system. The scope and comprehensiveness of
the system object hierarchy allows for a great deal of flexibility
in how data access may be restricted by tier. This means that
ConnectomeDB can use a broad brush to shield entire categories
of objects from access, but in other cases can limit access to only
a single attribute on a particular item. The data tiers currently
defined for ConnectomeDB are:

• Open access.
• Restricted access, for attributes that contain data that could be

potentially identifying.
• Sensitive access, which includes data like drug screening and

family history of mental illness.
• Confidential access, which is inappropriate for any release, such

as record of criminal behavior.
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FIGURE 2 | Access tiers secure subject attribute data based on the level of user data-use agreements.

Figure 2 shows how the attributes of a resource, such as data
collected on a particular subject, are categorized into access
tiers. These tiers can then be used to allow access to particular
types of information only to users approved to view the data in
that tier.

IMPLEMENTATION
FRAMEWORKS AND PLATFORMS
Creating an XNAT-specific framework allowed us to complete
development and testing of the new service within the tight
development timeframe, while also achieving the goals of fitting
within our existing development technologies and semantic con-
text, and maintaining our ability to continue to release XNAT
with minimal external dependencies.

The XNAT data dictionary was written as an abstract ser-
vice definition, specifying the contract between the service and
its clients while still allowing for flexibility in the implemen-
tation. Recent development work on the core XNAT platform
has relied primarily on a configuration framework that enables
switching between different implementations of a service defi-
nition based on the requirements and resources available to a
particular deployment—a concept known as dependency injec-
tion. Figure 3 shows how the data dictionary can be accessed
via a conceptual interface that abstracts the functionality, while
the actual core back-end functionality can be implemented in a
number of different ways.

The contract for the XNAT data dictionary service is defined
through a few simple interfaces and entity definitions, while the
initial implementation of that service is defined in a concrete
implementation class. This leaves the path open to creating future
implementations that do utilize the power of stand-alone triple-
store servers like Apache Jena, but with the advantage of an API
that fits more easily into the context of the XNAT development
framework.

DETAILS
The data dictionary service is implemented as a Java library,
with an abstract interface that defines the basic operations of
the service. These service operations are performed on a small
set of entity types, defined as Java beans, simple data objects
that amount to a list of object properties along with functions
to retrieve the value of those properties and, in many cases,
set the value for those properties. These Java beans are then
made available in XNAT through direct calls to the library from
within XNAT and through an extension of the XNAT web ser-
vices API for access from the client-side user interface. A specific
instance of a data dictionary is defined in a JavaScript Object

FIGURE 3 | Dependency injection allows service access while

providing flexibility in implementation.

Notation (JSON)-formatted6 configuration file that is read by the
dictionary service on initialization.

NODES
The basic building block of the dictionary elements is the node
entity. Nodes include a number of core properties that are used
by all objects in the dictionary service, shown in Table 1.

The service includes three specific node types: categories,
assessments, and attributes. These nodes are organized in a
simple hierarchy and contain additional hierarchy-level specific
properties.

A category maps to a research domain and contains a group
of assessments. This is the highest level of organization and
so encompasses the largest conceptual groupings in the data
dictionary.

An assessment node defines a set of related observations about
a subject. Assessments are any discreet collection of data that eval-
uates or describes some aspect of the assessed subject. An assess-
ment defined in the data dictionary generally maps to a standard
XNAT or HCP-specific data object, such as subject demographics,
clinical assessment, imaging data, and so on. However, mapping
is not defined at the assessment level but at the attribute level, so
it would be possible to create a data dictionary assessment that
actually comprises multiple data types. For example, a clinical
assessment type might combine an attribute from direct clinical
observations such as MMSE or an IQ assessment with attributes
from a genetic or demographic assessment.

An assessment is normally defined within XNAT by its rela-
tionship to its project and subject, but the data dictionary ser-
vice adds an extra definition for the assessment’s category. This
allows the data dictionary service to group similar assessments
for conceptual and organizational purposes. This relationship to
a category is the primary and only metadata contained in the
assessment dictionary type outside of the base node attributes.

6JSON is an open standard format with no canonical definition: http://en.

wikipedia.org/wiki/JSON.
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Table 1 | Node attributes.

Property Description

Name The name of the node.

Description A description of the contents of the node.

Position The suggested position of the node relative to its siblings.

Column header A shortened version of the node name for display in
column headers and restricted display areas.

Projects A list of XNAT project identifiers with which the node is
associated. Not all entities within the data dictionary may
be applicable to all projects. For example, as new data
models are added to data sets, particular nodes may only
be applicable to the later releases that include those
models.

Tier Indicates the security access level required to view or
query on the node.

FIGURE 4 | Category, assessment, and attributes are browse-able

through the ConnectomeDB dashboard.

An attribute node defines a particular evaluation or observa-
tion. Attributes are the various data points and measurements
that make up the content of an assessment. Each attribute in the
data dictionary maps directly to a field contained in a core XNAT
or HCP-specific data type. Attribute definitions also provide a
number of ways to help users enter valid values for the attribute.
For example, a list of valid comparison operators restricts the
types of operations users can perform against the value of the
attribute, a list of valid attribute values limits the values that can
be set for the attribute, and so on. The combination of these var-
ious types of user assistance provides unobtrusive guidance and
assistance to users when navigating the search function on the
subject dashboard. Table 4 shows the full list of properties on the
data dictionary attribute definition.

An example of a full relationship would be the category of
Cognition, which includes a number of assessments, such as
Fluid Intelligence, which in turn includes a number of attributes,
including number of correct responses, total skipped items, and
median reaction time for correct responses. The representation of
this relationship is illustrated in Figure 4.

Each level of data dictionary entity can be defined with a set of
attributes recognized by the data dictionary service. Tables 2–4

Table 2 | Defining category node-type properties in data-dictionary.

Property Description

Category Every assessment belongs to a single category. This
property is a key to the category name.

Example JSON {

"name": "Cognition",

"columnHeader": "Cognition",

"description": "Cognition",

"tier": 0,

"position": 4,

"projects": ["HCP_Q1","HCP_Q2",

"HCP_Q3","HCP_Q3_RST"]

}

Table 3 | Defining assessment node-type properties in

data-dictionary.

Property Description

Category Every assessment belongs to a single category. This
property is a key to the category name.

Example JSON {

"position": 1,

"category": "Cognition",

"name": "Episodic Memory

(Picture Sequence

Memory)",

"columnHeader": "Episodic Memory",

"description": "",

"tier": 0,

"projects": ["HCP_Q2","HCP_Q3"]

}

describe the unique properties available on each specific node
implementation.

This relatively simple hierarchical structure provides a frame-
work for defining, navigating, and, most importantly, searching
and querying all of the data in ConnectomeDB in a very user-
friendly manner. The specific instances of categories, assessments,
and attributes map very closely to the complex data type defini-
tions in XNAT that the advanced search functions are designed
for, but the descriptive and contextual metadata defined in the
data dictionary makes the search functionality closer to natural
language.

Once we have defined the data dictionary entries, the config-
uration is deployed to the server. At that point, the categories,
assessments, and attributes are available through the XNAT data
dictionary service and can be accessed by any other service that
wants to use them. The means by which client services access
the data dictionary depends on the relationship to the XNAT
server.

For internal XNAT services, that is, services that execute on the
same application server and within the same process space as the
data dictionary service, there is a programmatic service that can
be accessed through XNAT’s standard application context. This
allows querying of the various entities within the data dictionary,
translation of data dictionary entities into addressable XNAT data
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Table 4 | Defining attribute node-type properties in data-dictionary.

Property Description

Category Corresponds to the category that owns the attribute.

Assessment Corresponds to the assessment that owns the attribute.

XSI Type Maps to an XNAT data type that can contain the actual instances of subject data for the attribute.

Field ID Indicates the field on the XNAT data type for this particular attribute.

Display name Provides a readable name for the attribute.

Operators Indicates the types of comparison operations that can be performed on values for the attribute.

Values Indicates values for the attribute when the value is restricted to a list, e.g. M or F for gender, true or false to indicate whether a full
study protocol has been completed, and so on.

Validation A regular expression that can be used to validate data entered by the user.

Validation message A validation message to be displayed when data entered by the user has failed to match the validation regular expression.

Watermark Suggestive text displayed in free-form text entry boxes to assist users in understanding the proper format for entering data.

Example JSON {

"name": "COG_PIC_SEQ_USCR",

"category": "Cognition",

"assessment": "Episodic Memory (Picture Sequence Memory)",

"fullDisplayName": "NIH Toolbox Picture Sequence \

Memory Test. . . ",

"dictType": "Float",

"validationMessage": "Picture Sequence Unadjusted \

must be a. . . ",

"validation": "∧[−+]?[0-9]*[.]?[0-9]+$",
"columnHeader": "Picture Sequence Unadjusted",

"operators": {

"=": "=",
"!=": "NOT =",
"<": "<",

">": ">"

},

"watermark": "usually 70-140",

"xsiType": "hcp:ToolboxData",

"fieldId": "COG_PIC_SEQ_USCR",

"position": "1",

"description": "The Picture Sequence Memory Test is \

a measure. . . ",

"tier": 0,

"projects": ["HCP_Q2","HCP_Q3"]

}

types and attributes, and rendering of the data dictionary into
various data interchange formats (currently the data dictionary
service supports only JSON as an interchange format, but future
development efforts will extend the available formats to allow for
integration with non-XNAT systems and querying tools).

The data dictionary service also provides a Web service that
allows services and tools outside of XNAT full access to the meta-
data and structures in the data dictionary. This provides a means
to explore the structures that are defined in the data dictionary.
For example, the search filter function shown in Figure 3 is essen-
tially a means of browsing through the data dictionary entities
representing the categories of assessments and attributes. It also
functions as a translational layer from a conceptual entity—such
as a particular attribute and potential values for that attribute—
to an actionable data object within the XNAT system. In this
view, the XNAT data dictionary service works as a translational
tool: rendering technical or domain-specific terminology and

nomenclature into formats or language more suited to a partic-
ular audience or type of user.

APPLICATION
The first and most obvious usage of the data dictionary’s
web services API is in the various user interface elements on
ConnectomeDB. The search filters in Figure 3 act as a browser for
the various data dictionary entities. Once a user has composed
a search operation of one or more filters, the query parameters
may be checked against validation expressions associated with the
attributes. And once the query has been successfully validated, the
data dictionary translates the specified data dictionary attributes
into XNAT-specific search queries that be run against the server’s
data store. This makes it much easier for researchers to work
with language and concepts with which they are well acquainted
to leverage the functionality of XNAT’s search and data retrieval
services.
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FIGURE 5 | Translation of different vocabularies to XNAT entities.

But one of the XNAT development team’s far-reaching goals
is seamless integration with medical imaging and electronic data
capture systems across research organizations. The XNAT data
dictionary REST service can help achieve this goal precisely
through the same translational function that allows for greater
ease of use for human users. Many applications have differ-
ing terminology and particular means of structuring, storing,
and retrieving data and metadata. There are groups working to
standardize the terminology and ensure interoperability amongst
those applications, since the end goal for research data services
is almost always to make the data as available as possible to the
greater research community. It is at that point that these differ-
ences in structure and verbiage need to be negotiated and bridged.
The XNAT data dictionary services provide a flexible means of
mapping these other vocabularies and structures onto XNAT’s
internal structure, as shown in Figure 5.

DEPLOYMENT
The XNAT data dictionary service was initially deployed with the
HCP Q3 data release7. The service as deployed on ConnectomeDB
comprises the following components:

• The core data dictionary service definition and implementa-
tion, which provides the underlying metadata persistence and
retrieval service.

7HCP Q3 Data Release Reference. https://www.humanconnectome.org/
documentation/Q3.

• The data dictionary REST API, which provides access to the
data dictionary service via HTTP.

• A data dictionary search service that returns XML used to build
and decorate the tables containing the results of searches based
on criteria defined in the data dictionary.

The code and configuration files for these can be found in
the Mercurial repository for ConnectomeDB customizations
at https://bitbucket.org/hcp/db_builder_customizations. The fol-
lowing sections reference particular code components and con-
figurations from this repository.

CORE DATA DICTIONARY SERVICE
The core data dictionary service is defined by the
DataDictionaryService interface and implemented for this
deployment in the SimpleDataDictionaryService class. Upon
instantiation, the SimpleDataDictionaryService loads a statically
defined JSON configuration, contained in the datadictionary-
context.xml configuration file, to construct and manage the
system-wide data dictionary.

This simple service has the advantage of being portable and
lightweight, requiring no database connection, persistence layer,
or transaction management. Its disadvantage is a lack of flexibility
and difficulties in maintaining and extending the data dictionary.
Given the specific nature of the HCP deployment and the project’s
well defined study protocol and set of data types, we opted for
the simplest implementation at the cost of extensibility. However,
as described earlier, the abstraction of the service interface and
configurability of service libraries through dependency injection
allows for relatively easy switching between different implemen-
tations. This will ease the migration of the service to the XNAT
platform, which requires more configurability and extensibility
than a statically defined library offers.

The core data dictionary service is accessible through direct
calls to its API. The classes as currently constituted aren’t available
as a stand-alone library.

REST API
The REST API is the primary means by which clients of the
data dictionary access the service. In the case of ConnectomeDB,
service clients consist almost exclusively of authenticated users
accessing the data dictionary through their browser as part of a
login session on the Web site, but, unlike actual data from the
HCP study, the data dictionary service can be accessed without
authentication by calling the appropriate URLs directly.

The REST API can be accessed through a number of different
URIs into the system (in the following table, all calls are relative to
the root of the Web service, which in the case of ConnectomeDB
is https://db.humanconnectome.org). In the list below, italicized
terms are replaced by specific argument values that indicate what
specific data the REST call should return.

/data/services/ddict/tier
This function returns a list of data in the specified tier. The
ConnectomeDB data dictionary includes only two separate tiers,
categories, which returns the top-level categories in the data dic-
tionary, and attributes, which returns the whole data dictionary
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in a single JSON structure. The categories tier can be used to drill
down into specific categories all the way down to the attribute
level in an efficient way, while the attributes tier is used to retrieve
all data in single operation. The first approach is very efficient in
terms of the amount of data retrieved on each separate call to the
service, while the second approach is efficient in terms of limit-
ing the number of HTTP calls between the server and the REST
client.

/data/services/ddict/tier /category
This function gets a list of all metadata subordinate to the indi-
cated category in the tier. In the ConnectomeDB implementation,
the only tier for which this call is valid is categories, since getting
all attributes for all categories is synonymous with retrieving the
full attributes tier. For example, to find all assessments associated
with the FreeSurfer category, the appropriate REST URI would be
/data/services/ddict/categories/FreeSurfer.

/data/services/ddict/tier /category /assessment
This function gets a list of all metadata subordinate
to the indicated assessment. For example, to find all
attributes associated with the FreeSurfer Volume assess-
ment, the appropriate REST URI would be /data/services/
ddict/attributes/FreeSurfer/Volume. Note that calling this URI
with the categories tier effectively ignores any arguments to the
right of category.

/data/services/ddict/tier /category /assessment /attribute
This function gets the metadata associated with a particular
attribute. This is an efficient way to retrieve the metadata about
a specific attribute when you know the category and assess-
ment to which the attribute belongs. For example, to get the
metadata about the cerebral spinal fluid volume measure on
the FreeSurfer assessment, the appropriate URI path would be
/data/services/ddict/attributes/FreeSurfer/Volume/_CSF.

/data/services/ddict/tier /category /assessment /attribute/validate/value
This REST call provides validation for particular attribute val-
ues. Part of the optional metadata that can be associated with
an attribute is a regular expression to test a submitted value. If
the specified attribute has a validation expression, this method
tests the argument for value against that regular expression and
returns an error if the value doesn’t match properly.

DATA DICTIONARY SEARCH SERVICE
This service provides only a single REST function,
/data/services/search/ddict/category. This returns all attributes
for the indicated category in XML form. This XML is formatted
specifically to be used by the search results table on the subject
dashboard and is a good example of how the data dictionary can
be used to manage the display of user interface elements.

LESSONS LEARNED AND FUTURE DEVELOPMENT
At the start of development of the data dictionary service for
the HCP public site, we took the position that our first develop-
ment efforts would amount to a test run and learning experience
to drive future development efforts to create a full-fledged data
dictionary and metadata management framework for the XNAT

platform. Because release of this framework with ConnectomeDB
would not define and restrict future development efforts in core
XNAT platform development, we were free to experiment with
different approaches to managing the data dictionary, as well as
the metadata’s relationship to the primary XNAT domain objects
such as imaging sessions, research subjects, subject assessors,
etc. We also were not restricted by future development goals
related to data dictionary implementation, such as supporting
export to Resource Description Framework (RDF)8, triplestore
integration, or import and export operations to and from other
medical imaging platforms through mapping and translation of
XNAT’s internal data structures and taxonomies into common
vocabularies and taxonomies.

The primary lesson learned from the data dictionary imple-
mentation is the significant limitation in implementing the object
structure using Java class definitions. In XNAT, building Java
code into a deployable application requires a number of build
steps. This overhead made the object structure fairly inflexible,
with changes to the structure requiring changes to the under-
lying code, necessitating a new build and deploy of the server
software. The next iteration of the data dictionary service will use
flexible definitions for the dictionary node definitions themselves.
This configurable definition feature will allow an installed XNAT
server quickly define data dictionary entity structures along with
specific instances of those structures without requiring redeploy-
ment of the server and enable developers and administrators of a
system to make their data available to other services.

Another lesson, of a more positive nature, is the value of this
sort of rich metadata associated with the data types in the sys-
tem. This was demonstrated when the need arose for restricting
access to particular assessment instruments and attributes on
those assessments based on the user security level. Adding the
restricted access feature was still a significant effort, but was aided
significantly by the application of the data dictionary, which was
already carrying metadata about the object hierarchy at precisely
the level required to add security scoping to data access.

CONCLUSION
In implementing the data dictionary service for ConnectomeDB,
we were successful in bridging the gap from XNAT’s domain-
specific and technical terminology and data structures to the
vocabulary and entities that are of real interest to the user who
want to perform research rather than learning yet another data
management tool. The value and ease of use delivered to the site’s
users were worth the development resources we committed to
the implementation of this feature. We also began the process of
presenting XNAT and its data not just as a singular software ser-
vice, but as a flexible and multi-use data repository. The lessons
learned from the process of developing the first version of the
XNAT data dictionary service are currently being applied in the
planning and development of the next generation of the XNAT
imaging platform. Most importantly, we need to simplify the pro-
cess of defining a data dictionary’s structures and mapping to
XNAT internal data structures. We also will expand the target

8RDF Working Group (2014). RDF Schema 1.1 http://www.w3.org/TR/
rdf-schema/.
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dialects for translation, with the initial goal of supporting RDF
and export of XNAT metadata to standard triplestore services like
Apache Jena. By translating from XNAT-specific data to protocols
and formats understood by other applications and services, we
aim to make XNAT support industry-standard data analysis and
mining tools, reporting and visualization frameworks, and mod-
eling and graphics applications. This will allow greater flexibility
for researchers to analyze their research data and generated data
resources. It will also let XNAT serve as a back-end service for
other publishing platforms and research tools. By providing the
functions to work as an end-to-end-lifecycle data management
tool, we hope to help the research community achieve its core goal
of converting basic science into completed research.
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The growth of data sharing initiatives for neuroimaging and genomics represents an
exciting opportunity to confront the “small N” problem that plagues contemporary
neuroimaging studies while further understanding the role genetic markers play in the
function of the brain. When it is possible, open data sharing provides the most benefits.
However, some data cannot be shared at all due to privacy concerns and/or risk of
re-identification. Sharing other data sets is hampered by the proliferation of complex data
use agreements (DUAs) which preclude truly automated data mining. These DUAs arise
because of concerns about the privacy and confidentiality for subjects; though many do
permit direct access to data, they often require a cumbersome approval process that can
take months. An alternative approach is to only share data derivatives such as statistical
summaries—the challenges here are to reformulate computational methods to quantify
the privacy risks associated with sharing the results of those computations. For example,
a derived map of gray matter is often as identifiable as a fingerprint. Thus alternative
approaches to accessing data are needed. This paper reviews the relevant literature on
differential privacy, a framework for measuring and tracking privacy loss in these settings,
and demonstrates the feasibility of using this framework to calculate statistics on data
distributed at many sites while still providing privacy.

Keywords: collaborative research, data sharing, privacy, data integration, neuroimaging

1. INTRODUCTION
Neuroimaging data has been the subject of many data shar-
ing efforts, from planned large-scale collaborations such as
the Alzheimers Disease Neuroimaging Initiative (ADNI) (Jack
et al., 2008) and functional biomedical informatics research
network (FBIRN) (Potkin and Ford, 2009) (among others) to
less-formalized operations such as openfmri.org (Poldrack et al.,
2013) and the grass roots functional connectomes project (FCP)
with its international extension (INDI) (Mennes et al., 2013). The
Frontiers in Neuroinformatics special issue on “Electronic Data
Capture, Representation, and Applications in Neuroimaging”
in 2012 Turner and Van Horn (2012) included a number of
papers on neuroimaging data management systems, several of
which provide the research community some access to their
data. In many cases, an investigator must agree to a data usage
agreements (DUA): they specify who they are, what elements
of the data they want, and often what they are planning to
do with it. The researcher must agree to abide by arrange-
ments such as not attempting to re-identify the subjects, not
re-sharing the data, not developing a commercial application
off the data, and so on. These DUAs may be as simple as
a one page electronic questionnaire for contact purposes, or
a full multi-page form that requires committee review, insti-
tutional official review and signatures being faxed back and
forth.

The 2012 publication by members of the INCF Task Force
on Neuroimaging Datasharing (Poline et al., 2012), specifi-
cally on neuroimaging data sharing, reiterated that data should
be shared to improve scientific reproducibility and accelerate
progress through data re-use. However, the barriers to data shar-
ing that they identified included the well-known problems of
motivation (both the ability to get credit for the data collected,
as well as the fear of getting “scooped”,) ethical and legal issues,
and technical or administrative issues. In many cases, motivation
is less of an issue than are the perceived legal and technical issues
in keeping an investigator from sharing their data. The perceived
legal issues regarding privacy and confidentiality, and protecting
the trust that the subject has when they give their time and effort
to participate in a study, are what lead to multi-page DUAs.

Neuroimaging is not the only data type whose sharing is
hampered by these privacy concerns. Genetic data is perhaps
the most contentious to share; the eMERGE consortium worked
through a number of issues with large-scale sharing of genetic
data, including the usual administrative burdens and ethical
concerns (McGuire et al., 2011), and the five sites of the
consortium identified numerous inconsistencies across institu-
tional policies due to concerns about ethical and legal protec-
tions. It is often easy to re-identify individuals from genetic
data; one publication showing re-identification of individu-
als is even possible from pooled data (Homer et al., 2008),
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prompting the NIH to remove data from a public reposi-
tory (Couzin, 2008). Despite the existence of more sophisticated
re-identificationattacks (e.g., Schadt et al., 2012), the NIH has
not responded by removing the data. One of the most recent
efforts re-identified subjects through combining DNA sequences
with publicly available, recreational genealogy databases (Gymrek
et al., 2013). These publicized privacy breaches make patients
rightly concerned about their identifiable health information
being shared with unknown parties.

This leads to basically three categories of data that will never
be made publicly available for easy access: (1) data that are
non-shareable due to obvious re-identification concerns, such as
extreme age of the subject or a zip code/disease combination that
makes re-identification simple; (2) data that are non-shareable
due to more complicated or less obvious concerns, such as genetic
data or other data which may be re-identifiable in conjunction
with other data not under the investigator’s control; and (3) data
that are non-shareable due to the local institutional review boards
(IRBs) rules or other administrative decisions (e.g., stakeholders
in the data collection not allowing sharing). For example, even
with broad consent to share the data acquired at the time of data
collection, some of the eMERGE sites were required to re-contact
the subjects and re-consent prior to sharing within the eMERGE
consortium, which can be a permanent show-stopper for some
datasets (Ludman et al., 2010).

The first two data types may be shared with an appropriate
DUA. But this does not guarantee “easy access;” it can slow down
or even prevent research. This is particularly onerous when it is
not known if the data being requested are actually useable for the
particular analysis the data requestor is planning. For example, it
may be impossible to tell how many subjects fit a particular set
of criteria without getting access to the full data first (Vinterbo
et al., 2012). It is markedly problematic to spend weeks, months,
or even years waiting for access to a dataset, only to find out
that of the several hundred subjects involved, only a few had
usable combinations of data of sufficient quality necessary for
one’s analysis.

Problems with DUAs only become worse when trying to access
data from multiple sites. Because each DUA is different, the
administrative burden rapidly becomes unmanageable. In order
to enable analyses across multiple sites, one successful approach
is to share data derivatives. For example, the ENIGMA consor-
tia pooled together data from many hundreds of local sites and
thousands of subjects by providing analysis scripts to local sites
and centrally collecting only the output of these scripts (Hilbar
et al., 2013). Another example is DataSHIELD (Wolfson et al.,
2010), which also uses shared summary measures to perform
pooled analysis. These systems are good starting points, but they
neither quantify privacy nor provide any guarantees against re-
identification. In addition, summary measures are restricted to
those that can be computed independently of other data. An
analysis using ENIGMA cannot iterate among sites to com-
pute results informed by the data as a whole. However, by
allowing data holders to maintain control over access, such an
approach does allow for more privacy protections at the cost
of additional labor in implementing and updating a distributed
architecture.

The ENIGMA approach is consistent with the differential pri-
vacy framework (Dwork et al., 2006), a strong notion of privacy
which measures the risk of sharing the results of computations
on private data. This quantification allows data holders to track
overall risk, thereby allowing local sites to “opt-in” to analyses
based on their own privacy concerns. However, in the differen-
tial privacy model, the computation is randomized—algorithms
introduce noise to protect privacy, thereby making the computa-
tion less accurate. However, if protecting privacy permits sharing
data derivatives, then aggregating private computations across
many sites may lead to a benefit; even though each local com-
putation is less accurate (to protect privacy), the “large N” benefit
from many sites allowing access will still result in a more accurate
computation.

The system we envision is a research consortium in which sites
allow differentially-private computations on their data without
requiring an individual DUA for each site. The data stays at each
site, but the private data derivatives can be exchanged and aggre-
gated to achieve better performance. In this paper we survey some
of the relevant literature on differential privacy to clarify if and
how it could help provide useful privacy protections in conjunc-
tion with distributed statistical analyses of neuroimaging data.
The default situation is no data sharing: each site can only learn
from its own data. We performed an experiment on neuroimages
from a study to see if we could predict patients with schizophrenia
from healthy control subjects. Protecting privacy permits a pooled
analysis; without the privacy protections, each site would have to
use its own data to learn a predictor. Our experiments show that
by gathering differentially private classifiers learned from mul-
tiple sites, an aggregator can create a classifier that significant
outperforms that which could be learned at a single site. This
demonstrates the potential of differential privacy: sharing access
to data derivatives (the classifiers) improves overall accuracy.

Many important research questions can be answered by the
kind of large-scale neuroinformatics analyses that we envision.

• Regression is a fundamental statistical task. Regressing covari-
ates such as age, diagnosis status, or response to a treatment
against structure and function in certain brain regions (voxels
in an image) is simple but can lead to important findings. For
example, in examining the ability to aggregate structural imag-
ing across different datasets (Fennema-Notestine et al., 2007)
used the regression of age against brain volumes as a validity
test. Age also affects resting state measures, as Allen et al. (2011)
demonstrated on an aggregated dataset of 603 healthy subjects
combined across multiple studies within an individual institu-
tion that had a commitment to data sharing and had minimal
concerns regarding re-identification of the data. In that study,
because privacy and confidentiality requirements that limited
access to the full data, the logistics of extracting and organizing
the data took the better part of a year (personal communication
from the authors). In such a setting, asking a quick question
such as whether age interacts with brain structure differently
in healthy patients versus patients with a rare disorder would
be impossible without submitting the project for IRB approval.
This process can take months or even years and cost hundreds
of dollars, whereas the analysis takes less than a day and may

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 35 | 359

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Sarwate et al. Sharing privacy-sensitive access to data

produce negative findings. We need a framework that facil-
itates access to data on the fly for such straightforward but
fundamental analyses.

• The re-use of genetic data has been facilitated by dbGAP,
NIH’s repository for sharing genome-wide scan datasets, gene
expression datasets, methylation datasets, and other genomic
measures. The data need to be easily accessible for combined
analysis for identification or confirmation of risk genes. The
success of the Psychiatric Genomic Consortium in finding
confirmed risk genes of schizophrenia after almost 5 years
of aggregating datasets supports these goals of making every
dataset re-usable (Ripke et al., 2013). While dbGAP has been a
resounding success, it has its drawbacks. Finding the data can
be a bit daunting, as often phenotype data is made available
separately from the genetic data. For example, the PREDICT-
HD Huntington’s disease study rolled out a year before the
genetic data. DbGAP’s sharing requirements are driven by the
need to ensure the data are handled appropriately and the sub-
jects’ confidentiality and privacy are protected; requesting a
dataset entails both the PI and their institutional official sign-
ing an agreement as well as a review by the study designate.
This process must be completed prior to access being granted
or denied. As before, this precludes any exploratory analyses
to identify particular needs, such as determining how many
subjects have the all the required phenotype measures.

• The success of multimodal data integration in the analy-
sis of brain structure/function (Plis et al., 2010; Bießmann
et al., 2011; Bridwell et al., 2013; Schelenz et al., 2013), imag-
ing/genetics (Liu et al., 2012; Chen et al., 2013; van Erp
et al., 2013), and EEG/fMRI (Bridwell et al., 2013; Schelenz
et al., 2013) shows that with enough data, we can go fur-
ther than simple univariate linear models. For example, we
can try to find combinations of features which predict the
development of a disorder, response to various treatments,
or relapse. With more limited data there has been some suc-
cess in reproducing diagnostic classifications (Arbabshirani
et al., 2013; Deshpande et al., 2013), and identifying coher-
ent subgroupings within disorders which may have different
genetic underpinnings (Girirajan et al., 2013). With combina-
tions of imaging, genetic, and clinical profiles from thousands
of subjects across autism, schizophrenia, and bipolar disor-
der, for example, we could aim to identify more clearly the
areas of overlap and distinction, and what combinations of
both static features and dynamic trajectories in the feature
space identify clinically relevant clusters of subjects who may
be symptomatically ambiguous.

2. PRIVACY MODELS AND DIFFERENTIAL PRIVACY
There are several different conceptual approaches to defining pri-
vacy in scenarios involving data sharing and computation. One
approach is to create de-identified data; these methods take a
database of records corresponding to individuals and create a
sanitized database for use by the public or another party. Such
approaches are used in official statistics and other settings—a sur-
vey of different privacy models can be found in Fung et al. (2010),
and a survey of privacy technologies in a medical informatics con-
text in Jiang et al. (2013). These approaches differ in how they

define privacy and what guarantees they make with respect to this
definition. For example, k-anonymity (Sweeney, 2002) quantifies
privacy for a particular individual i with data xi (for example, age
and zip code) in terms of the number of other individuals whose
data is also equal to xi. Algorithms for guaranteeing k-anonymity
manipulate data values (e.g., by reporting age ranges instead of
exact ages) to enforce that each individual’s record is identical to
at least k other individuals.

A different conceptual approach to defining privacy is to try
and quantify the change in the risk of re-identification as a result
of publishing a function of the data. This differs from data san-
itizing methods in two important respects. Firstly, privacy is a
property of an algorithm operating on the data, rather an a prop-
erty of the sanitized data—this is the difference between semantic
and syntactic privacy. Secondly, it can be applied to systems which
do not share data itself but instead share data derivatives (func-
tions of the data). The recently proposed ε-differential privacy
model (Dwork et al., 2006) quantifies privacy in terms of risk;
it bounds the likelihood that someone can re-infer the data of an
individual. Algorithms that guarantee differential privacy are ran-
domized—they manipulate the data values (e.g., by adding noise)
to bound the risk.

Finally, some authors define privacy in terms of data secu-
rity and say that a data sharing system is private if it satisfies
certain cryptographic properties. The most common of these
models is secure multiparty computation (SMC) (Lindell and
Pinkas, 2009), in which multiple parties can collaborate to com-
pute a function of their data without leaking information about
their private data to others. The guarantees are cryptographic
in nature, and do not assess the re-inference or re-identification
problem. For example, in a protocol to compute the maximum
element across all parties, a successful execution would reveal the
maximum. A secondary issue is developing practical systems to
work on neuroinformatics data. Some progress has been made in
this direction (Sadeghi et al., 2010; Huang et al., 2011; Nikolaenko
et al., 2013), and it is conceivable that in a few years SMC will be
implemented in real distributed systems.

2.1. PRIVACY TECHNOLOGIES FOR DATA SHARING
As discussed earlier, there are many scenarios in which sharing
raw data is either difficult or impossible—strict DUAs, obvious
re-identification issues, difficulties in assessing re-identifiability,
and IRB or other policy rules. Similar privacy challenges exists
in the secondary use of clinical data (National Research Council,
1997). In many medical research contexts, there has been a
shift toward sharing anonymized data. The Health Insurance
Portability and Accountability Act (HIPAA) privacy rule (45 CFR
Part 160 and Subparts A and E of Part 164) allows the shar-
ing of data as long as the data is de-identified. However, many
approaches to anonymizing or “sanitizing” data sets (Sweeney,
2002; Li et al., 2007; Machanavajjhala et al., 2007; Xiao and Tao,
2007; Malin, 2008) are subject to attacks (Sweeney, 1997; Ganta
et al., 2008; Narayanan and Shmatikov, 2008) that use public data
to compromise privacy.

When data sharing itself is precluded, methods such as
k-anonymity (Sweeney, 2002), l-diversity (Machanavajjhala et al.,
2007), t-closeness (Li et al., 2007), and m-invariance (Xiao and
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Tao, 2007) are no longer appropriate, since they deal with con-
structing private or sanitized versions of the data itself. In such
situations we would want to construct data access systems in
which data holders do not share the data itself but instead provide
an interface to the data that allows certain pre-specified compu-
tations to be performed on that data. The data holder can then
specify the granularity of access it is willing to grant subject to its
policy constraints.

In this model of interactive data access, the software that con-
trols the interface to the raw data acts as a “curator” that screens
queries from outsiders. Each data holder can then specify the level
of access which it will provide to outsiders. For example, a medi-
cal center may allow researchers to access summaries of clinical
data for the purposes of exploratory analysis; a researcher can
assess the feasibility of doing a study using existing records and
then file a proposal with the IRB to access the real data (Murphy
and Chueh, 2002; Murphy et al., 2006; Lowe et al., 2009; Vinterbo
et al., 2012). In the neuroinformatics context, data holders may
allow outside users to receive a histogram of average activity levels
for regions of a certain size.

Being able to track the privacy risks in such an interactive
system allows data holders to match access levels with local pol-
icy constraints. The key to privacy tracking is quantification—for
each query or access to the data, a certain amount of information
is “leaked” about the underlying data. With a sufficient number of
queries it is theoretically possible to reconstruct the data (Dinur
and Nissim, 2003), so the system should be designed to mitigate
this threat and allow the data holders to “retire” data which has
been accessed too many times.

2.2. DIFFERENTIAL PRIVACY
A user of the database containing private information may wish
to apply a query or algorithm to the data. For example, they may
wish to know the histogram of activity levels in a certain brain
region for patients with a specified mutation. Because the answer
to this query is of much lower dimension than a record in the
database, it is tempting to regard disclosing the answer as not
incurring a privacy risk. A important observation of Dinur and
Nissim (2003) was that an adversary posing such queries may be
able to reconstruct the entire database from the answers to multi-
ple simple queries. The differential privacy model was introduced
shortly thereafter, and has been adopted widely in the machine
learning and data mining communities. The survey by Dwork
and Smith (2009) covers much of the earlier theoretical work,
and Sarwate and Chaudhuri (2013) review some works relevant
to signal processing and machine learning. In the basic model,
the database is modeled as a collection of N individuals’ data
records D = (x1, x2, . . . , xN), where xj is the data for individual
j. For example, xj may be the MRI data associated to individual
j together with information about mutations in certain genes for
that individual.

An even simpler example is to estimate the mean activity
in a certain region, so each xj is simply a scalar which rep-
resented the measured activity of individual j. Let us call this
desired algorithm Alg. Without any privacy constraint, the data
curator would simply apply Alg to the data D to produce an
output h = Alg(D). However, in many cases the output h could

compromise the privacy of the data and unfettered queries could
lead to reidentification of an individual.

Under differential privacy, the curator applies an approxima-
tion PrivAlg to the data instead of Alg. The approximation PrivAlg
is randomized—the randomness of the algorithm ensures that an
observer of the output will have a difficult time re-identifying
any individual in the database. More formally, PrivAlg(·) provides
ε-differential privacy if for any subset of outputs S ,

P
(
PrivAlg(D) ∈ S) ≤ eε · P

(
PrivAlg(D′) ∈ S)

(1)

for any two databases D and D′ differing in a single individual.
Here P(·) is the probability over the randomness in the algorithm.
It provides (ε, δ)-differential privacy if

P
(
PrivAlg(D) ∈ S) ≤ eε

P
(
PrivAlg(D′) ∈ S) + δ. (2)

The guarantee that differential privacy makes is that the dis-
tribution of the output of PrivAlg does not change too much,
regardless of whether any individual xj is in the database or not.
In particular, an adversary observing the output of PrivAlg and
knowing all of the data of individuals in D ∩ D′ common to both
D andD′ will still be uncertain of the remaining individual’s data.
Since this holds for any two databases which differ in one data
point, each individual in the database is guaranteed of this protec-
tion. More specifically, the parameters ε and δ control the tradeoff
between the false-alarm (Type I) and missed-detection (Type II)
errors for an adversary trying to make a test between D and D′
(see Oh and Viswanath, 2013 for a discussion).

Returning to our example of estimating the mean, the desired
algorithm Alg is simply the sample mean of the m data points,
so Alg(D) = 1

m

∑m
j = 1 xi. The algorithm Alg itself does not pro-

vide privacy because output is deterministic: the distribution
of Alg(D) is a point mass exactly at the average. If we change
one data point to form, say D′ = (x1, x2, . . . , xm−1, x′

m), then
Alg(D′) �= Alg(D) and the only way Equation (1) can hold is
if ε = ∞. One form of a private algorithm is to add noise to
the average (Dwork et al., 2006). A differentially private algo-
rithm is PrivAlg(D) = 1

m

∑m
j = 1 xi + 1

εm z, where z has a Laplace
distribution with unit variance. The Laplace distribution is a pop-
ular choice, but there are many other distributions which can
also guarantee differential privacy and may be better in some
settings (Geng and Viswanath, 2012, 2013). For more general
functions beyond averages, Gupte and Sundararajan (2010) and
Ghosh et al. (2012) showed that in some cases we can find opti-
mal mechanisms, while Nissim and Brenner (2010) show that this
optimality may not be possible in general.

Although some variations on these basic definition have been
proposed in the literature (Chaudhuri and Mishra, 2006; Rastogi
et al., 2009; Kifer and Machanavajjhala, 2011), most of the liter-
ature focuses on ε- or (ε, δ)-differential privacy. Problems that
have been studied in the literature range from statistical estima-
tion (Smith, 2011; Kifer et al., 2012; Smith and Thakurta, 2013),
to cover more complex data processing algorithms such as real-
time signal processing (Fan and Xiong, 2012; Le Ny and Pappas,
2012a,b), classification (Chaudhuri et al., 2011; Rubinstein et al.,
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2012; Zhang et al., 2012b; Jain and Thakurta, 2014), online learn-
ing (Jain et al., 2012; Thakurta and Smith, 2013), dimensionality
reduction (Hardt et al., 2012; Chaudhuri et al., 2013), graph esti-
mation (Karwa et al., 2011; Kasiviswanathan et al., 2013), and
auction design (Ghosh and Roth, 2011). The preceding citations
are far from exhaustive, and new papers on differential privacy
appear each month as methods and algorithms become more
mature.

There are two properties of differential privacy which enable
the kind of privacy quantification that we need in shared data-
access scenarios. The first property is post-processing invariance:
the output of an ε-differentially private algorithm PrivAlg main-

tains the same privacy guarantee—if ĥ = PrivAlg(D), then the

output of any function g(ĥ) applied to ĥ is also ε-differentially
private, provided g(·) doesn’t depend on the data. This means
that once the data curator has guaranteed ε-differential privacy
for some computation, it need not track how the output is used
in further processing. The second feature is composition—if we
run two algorithms PrivAlg1 and PrivAlg2 on data D with pri-
vacy guarantees ε1 and ε2, then combined they have privacy risk
at most ε1 + ε2. In some cases these composition guarantees can
be improved (Dwork et al., 2010; Oh and Viswanath, 2013).

2.3. DIFFERENTIALLY PRIVATE ALGORITHMS
A central challenge in the use of differentially private algorithms is
that by using randomization to protect privacy, the corresponding
accuracy, or utility, of the result is diminished. We contend that
the potential for a much larger sample size through data sharing
makes this tradeoff worthwhile. In this section we discuss some of
the differentially private methods for statistics and machine learn-
ing that have been developed in order to help balance privacy and
utility in data analyses.

Differentially private algorithms have been developed for a
number of important fundamental tasks in basic statistics and
machine learning. Wasserman and Zhou (2010) put the differen-
tial privacy framework in a general statistical setting, and Smith
(2011) studied point estimation, showing that many statistical
quantities can be estimated with differential privacy with similar
statistical efficiency. Duchi et al. (2012, 2013) studied a differ-
ent version of local privacy and showed that requiring privacy
essentially entails an increase in the sample size. Since differen-
tial privacy is related to the stability of estimators under changes
in the data, Dwork and Lei (2009) and Lei (2011) used tools
from robust statistics to design differentially private estimators.
Williams and McSherry (2010) studied connections to probabilis-
tic inference. More recently, Kifer et al. (2012) proposed meth-
ods for high-dimensional regression and Smith and Thakurta
(2013) developed a novel variable selection method based on the
LASSO.

One approach to designing estimators is the sample-and-
aggregate (Nissim et al., 2007; Smith, 2011; Kifer et al., 2012),
which uses subsampling of the data to build more robust
estimators. This approach was applied to problems in sparse lin-
ear regression (Kifer et al., 2012), and in particular to analyze
the LASSO (Smith and Thakurta, 2013) under the slightly
weaker definition of (ε, δ)-differential privacy. There are sev-
eral works which address convex optimization approaches to

statistical model selection and machine learning under dif-
ferential privacy (Chaudhuri et al., 2011; Kifer et al., 2012;
Rubinstein et al., 2012; Zhang et al., 2012b) that encompass
popular methods such as logistic regression, support vector
machines, and other machine learning methods. Practical kernel-
based methods for learning with differential privacy are still
in their infancy (Chaudhuri et al., 2011; Jain and Thakurta,
2013).

2.4. CHALLENGES FOR DIFFERENTIAL PRIVACY
In addition to the theoretical and algorithmic developments,
some authors have started trying to build end-to-end differen-
tially private analysis toolkits and platforms. The query language
PINQ (McSherry, 2010) was the first tool that allowed people to
write differentially-private data-analysis programs that guaran-
tee differential privacy, and has been used to write methods for
a number of tasks, including network analyses (McSherry and
Mahajan, 2010). Fuzz (Reed and Pierce, 2010) is a functional
programming language that also guarantees differential privacy.
At the systems level, AIRAVAT (Roy et al., 2010) is a differen-
tially private version of MapReduce and GUPT (Mohan et al.,
2012) uses the sample-and-aggregate framework to run general
statistical algorithms such as k-means. One of the lessons from
these implementations is that building a differentially private sys-
tem involves keeping track of every data access—each access can
leak some privacy—and systems can be vulnerable to attack from
adversarial queries (Haeberlen et al., 2011).

A central challenge in designing differentially private algo-
rithms for practical systems is setting the privacy risk level ε. In
some cases, ε must be chosen to be quite large in order to pro-
duce useful results—such a case was studied in earlier work by
Machanavajjhala et al. (2008) in the context of publishing differ-
entially private statistics about commute times. On the other side,
choosing a small value of ε may result in adding too much noise
to allow useful analysis. To implement a real system, it is neces-
sary to do a proper evaluation of the impact of ε on the utility of
the results. Ultimately, the setting of ε is a policy decision that is
informed by the privacy-utility tradeoff.

There are several difficulties with implementing existing
methods “off the shelf” in the neuroinformatics context.
Neuroimaging data is often continuous-valued. Much of the
work on differential privacy has focused on discrete data, and
algorithms for continuous data are still being investigated theo-
retically (Sarwate and Chaudhuri, 2013). In this paper we adapt
existing algorithms, but there is a need to develop methods specif-
ically designed for neuroimage analyses. In particular, images
are high-dimensional signals, and differentially private version
of algorithms such as PCA may perform poorly as the data
dimension increases (Chaudhuri et al., 2013). Some methods do
exist that exploit structural properties such as sparsity (Hardt
and Roth, 2012, 2013), but there has been insufficient empirical
investigation of these methods. Developing low-dimensional rep-
resentations of the data (perhaps depending on the task) can help
mitigate this.

Finally, neuroimaging datasets may contain few individuals.
While the signal from each individual may be quite rich, the
number of individuals in a single dataset may be small. Since
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privacy affects the statistical efficiency of estimators, we must
develop distributed algorithms that can leverage the properties
of datasets at many locations while protecting the privacy of the
data at each. Small sample sizes present difficulties for statisti-
cal inference without privacy—the hope is that the larger sample
size from sharing will improve statistical inference despite the
impact of privacy considerations. We illustrate this in the next
section.

3. APPLYING DIFFERENTIAL PRIVACY IN
NEUROINFORMATICS

In the absence of a substitute for individual DUAs, sites are left
to perform statistical analyses on their own data. Our proposal is
to have sites participate in consortium in which they share differ-
entially private data derivatives, removing the need for individual
DUAs. Differential privacy worsens the quality of a statistical esti-
mate at a single site because it introduces extra noise. However,
because we can share the results of differentially private compu-
tations at different sites, we can reduce the impact of the noise
from privacy. This larger effective sample size can give better esti-
mates than are available at a single site, even with privacy. We
illustrate this idea with two examples. The first is a simple prob-
lem of estimating the mean from noisy samples, and the second is
an example of a classification problem.

3.1. ESTIMATING A MEAN
Perhaps the most fundamental statistical problem is estimating
the mean of a variable. Suppose that we have N sites, each with m
different samples of an unknown effect:

xi,j = μ + zi,j i = 1, 2, . . . , N, j = 1, 2, . . . , m, (3)

where μ is an unknown mean, and zi,j is normally distributed
noise with zero mean and unit variance. Each site can compute its
local sample mean:

X̄i = 1

m

m∑

j = 1

xi,j = μ + 1

m

m∑

j = 1

zi,j. (4)

The sample mean X̄i is a an estimate of μ which has an error
that is normally distributed with zero mean and variance 1

m .

Thus a single site can estimate μ to within variance 1
m . A simple

ε-differentially private estimate of μ is

X̃i = 1

m

m∑

j = 1

xi,j + 1

εm
wi, (5)

where wi is a Laplace random variable with unit variance. Thus
a single site can make a differentially private estimate of μ with
error variance 1

m + 1
(εm)2 . Now turning to the N sites, we can

form an overall estimate using the differentially private local
estimates:

X̄ = 1

N

N∑

i = 1

X̃i = μ + 1

mN

N∑

i = 1

m∑

j = 1

xi,j + 1

εmN

N∑

i = 1

wi. (6)

This is an estimate of μ with variance 1
mN + 1

(εm)2N
.

The data sharing solution results in a lower error compared to
the local non-private solution whenever 1

m > 1
mN + 1

(εm)2N
, or

N > 1 + 1

ε2m
.

As the number of sites increases, we can support additional
privacy at local nodes (ε can decrease) while achieving supe-
rior statistical performance over learning at a single site without
privacy.

3.2. CLASSIFICATION
We now turn to a more complicated example of differentially
private classification that shows how a public data set can be
enhanced by information from differentially private analyses of
additional data sets. In particular, suppose there are N sites with
private data and 1 site with a publicly available dataset. Suppose
private site i has mi data points {(�xi,j, yi,j) : j = 1, 2, . . . , mi},
where each �xi,j ∈ R

d is a d-dimensional vector of numbers repre-
senting features of the j-th individual at site i, and yi,j ∈ {−1, 1} is
a label for that individual. For example, the data could be activity
levels in certain voxels and the label could indicate a disease state.
Each site can learn a classifier on its own local data by solving the
following minimization problem.

�wi = argmin
�w∈Rd

mi∑

j = 1

�(yi,j �w	�xi,j) + λ

2
‖�w‖2, (7)

where �(·) is a loss function. This framework includes many pop-
ular algorithms: for the support vector machine (SVM) �(z) =
max(0, 1 − z) and for logistic regression �(z) = log(1 + e−z).

Because the data at each site might be limited, they may ben-
efit from producing differentially private versions �wi and then
combining those with the public data to produce a better over-
all classifier. That is, leveraging many noisy classifiers may give
better results than any �wi on its own. The method we propose
is to train N differentially private classifiers using the objective
perturbation method applied to the Huberized support vector
machine (see Chaudhuri et al., 2011 for details). In this proce-
dure, the local sites minimize a perturbed version of the classifier
given in Equation (7). Let �wi be the differentially private classifier
produced by site i.

Suppose the public data set has m0 points {(�x0,j, y0,j) :
j = 1, 2, . . . , m0}. We compute a new data set {(�u0,j, y0,j) : j =
1, 2, . . . , m0} where �u0,j is an N-dimensional vector whose i-th
component is equal to �w	

i �x0,j. Thus �u0,j is the vector of “soft”
predictions of the N differentially private classifiers produced by
the private sites. The public site then uses logistic regression to
train a new classifier:

�w0 = argmin
�w∈Rd

m0∑

j = 1

log(1 + e−y0,j �w	u0,j) + λ

2
‖�w‖2. (8)

This procedure is illustrated in Figure 1. The overall classifica-
tion system produced by this procedure consists of the classifiers
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FIGURE 1 | System for differentially private classifier aggregation from

many sites. The N sites each train a classifier on their local data to learn
vectors { �wi }. These are used by an aggregator to compute new features for

its own data set. The aggregator can learn a classifier using its own data
using a non-private algorithm (if its data is public) or a differentially private
algorithm (if its data is private).

{�wi : i = 0, 1, . . . , N}. To classify a new point �x ∈ R
d, the system

computes �u = (�w	
1 �x, �w	

2 �x, . . . , �w	
N�x) and then predicts the label

ŷ = sign(�w	
0 �u). In the setting where the public site has more

data, training a classifier on pairs (�u, �x) could also work better.
We can distinguish between two cases here—in the public-

private case, described above, the classifier in Equation (8) uses
differentially private classifiers from each of the N sites on public
data, so the overall algorithm is differentially private with respect
to the private data at the N sites. In the fully-private case, the
data at the (N + 1)-th site is also private. In this case we can
replace Equation (8) with a differentially private logistic regres-
sion method (Chaudhuri et al., 2011) to obtain a classifier which
is differentially private with respect to the data at all N + 1 sites.
Note, although we assign the role of constructing the overall two-
level classifier to either the public-data site or one of the private
sites in the real use-case no actual orchestrating of the process
is required. It is convenient for the purposes of the demonstra-
tion (and without loss of generality) to treat a pre-selected site as
an aggregator, which we do in the experiments below. Figure 2.
can only be interpreted if we are consistent with the site that
does the aggregation. However, all that needs to be done for the
whole system to work is for the N (or N + 1 in the fully pri-
vate case) private sites compute and publish their classifiers �wi.
Then in the public data case, anyone (even entities with no data),
can construct and train a classifier by simply downloading the
publicly available dataset and following the above-described pro-
cedure. This could be one of the sites with the private data as well.
When no public data is available the second level classifier can
be only computed by one of the private-data sites (or each one
of them) and later published online to be useful even for enti-
ties with insufficient data. In both cases, the final classifier (or
classifiers) is based on a larger data pool that is available to any
single site.

From the perspective of differential privacy it is important to
note that the only information that each site releases about its data
is the separating hyperplane vector �wi and it does so only once.
Considering privacy as a resource a site would want to minimize
the loss of this resource. For that, a single release of informa-
tion in our scheme is better that multiple exchanges in any of the

iterative approaches (e.g., Gabay and Mercier, 1976; Zhang et al.,
2012a).

We implemented the above system on a neuroimaging dataset
(structural MRI scans) with N = 10 private sites. We combined
data from four separate schizophrenia studies conducted at Johns
Hopkins University (JHU), the Maryland Psychiatric Research
Center (MPRC), the Institute of Psychiatry, London, UK (IOP),
and the Western Psychiatric Institute and Clinic at the University
of Pittsburgh (WPIC) (see Meda et al., 2008). The sample com-
prised 198 schizophrenia patients and 191 matched healthy con-
trols (Meda et al., 2008). Our implementation relies on the
differentially private SVM and logistic regression as described
by Chaudhuri et al. (2011) and implementation available
online 1. The differentially private Hubertized SVM in our
implementation used regularization parameter λ = 0.01, pri-
vacy parameter ε = 10, and the Huber constant h = 0.5, while
parameters for differentially private logistic regression were set
to λ = 0.01 and ε = 10 (for details see Chaudhuri et al., 2011).
The quality of classification depends heavily on the quality of
features; because distributed and differentially private feature
learning algorithms are still under development, for the pur-
poses of this example we assume features are given. To learn the
features for this demonstration we used a restricted Boltzmann
machine (RBM) (Hinton, 2000) with 50 sigmoidal hidden units.
For training we have employed an implementation from Nitish
Srivastava2. We have used L1-regularization of the feature matrix
W(λ‖W‖1)(λ = 0.1) and 50% dropout to encourage sparse fea-
tures and effectively handle segmented gray matter images of
60465 voxels each. The learning rate parameter was set to 0.01.
The weights were updated using the truncated Gibbs sampling
method called contrastive divergence (CD) with a single sampling
step (CD-1). Further information on RBM model can be found
in Hinton (2000) and Hinton et al. (2006). After the RBM was
trained we activated all 50 hidden units on each subject’s MRI
producing a 50 dimensional dataset. Note, no manual feature

1http://cseweb.ucsd.edu/˜kamalika/code/dperm/
2https://github.com/nitishsrivastava/deepnet

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 35 | 364

http://cseweb.ucsd.edu/~kamalika/code/dperm/
https://github.com/nitishsrivastava/deepnet
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Sarwate et al. Sharing privacy-sensitive access to data

FIGURE 2 | Classification error rates for the mixed private-public case

(A) and the fully-private case (B). In both cases the combined differentially
private classifier performs significantly better than the individual classifiers.
The difference is statistically significant even after Bonferroni correction (to

account for multiple sites) with corrected p-values below 1.8 × 10−33.
Results thus motivate the use of differential privacy for sharing of brain
imaging and genetic data to enable quick access to data which is either hard
to access for logical reasons or not available for open sharing at all.

selection was involved as each and every feature was used. Using
these features we repeated the following procedure 100 times:

1. Split the complete set of 389 subjects into class-balanced train-
ing and test sets comprising 70% (272 subjects) and 30%
(117 subjects) of the data, respectively. The training set was
split into N + 1 = 11 class-balanced subsets (sites) of 24 or 25
subjects each.

2. Train a differentially private SVM on N = 10 of these subsets
independently (sites with private data).

3. Transform the data of the 11th subset (aggregator) using the
trained SVM classifiers (as described above).

4. Train both a differentially private classifier (fully-private) and
a standard logistic regression classifier (public-use) on the
transformed dataset (combined classifier).

5. Compute the individual error rates on the test set for each of
the N = 10 sites. Compute the error rates of a (differentially

private) SVM trained on the data of 11th dataset and the aggre-
gate classifier in Equation (8) that uses differentially private
results from all of the sites.

The results that we obtained in this procedure are summarized
in Figure 2 for the mixed private-public (Figure 2A) as well as
the fully-private (Figure 2B) cases. The 10 sites with private data
all have base-line classification error rates of a little over 20%,
indicating the relative difficulty of this classification task and
highlighting the effect of the noise added for differential privacy.
That is, on their own, each site would only be able to learn with
that level of accuracy. The distribution of the error rates across
experiments is given to the right. The last column of each fig-
ure shows the error rate of the combined classifier; Figure 2A
shows the results for a public aggregator, and Figure 2B for the
private aggregator. In both cases the error rate of the aggregated
classifier is around 5%, which is a significant improvement over
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a single site. Additionally, the distribution of the error of the
combined classifier is more tightly concentrated about its mean.
To quantify the significance of the improvement we performed
2-sample t-tests for the distribution of the error rates of the
combined classifier against error rate distributions of classifiers
produced at individual sites. The largest Bonferroni corrected
p-value was 1.8 × 10−33. The experiments clearly show the ben-
efits of sharing the results of differentially private computations
over simply using the data at a single site. Even though the clas-
sifier that each site shares is a noisy version of what they could
learn privately and thus less accurate, aggregating noisy classi-
fiers produces at multiple sites dramatically lowers the resulting
error.

4. DISCUSSION
Data sharing interfaces must take into account the realities of neu-
roimaging studies—current efforts have been very focused on the
data structures and ability to query, retrieve and share complex
and multi-modal datasets, usually under a fixed model of central-
ized warehousing, archiving, and privacy restrictions. There has
been a remarkable lack of focus on the very important issues sur-
rounding the lack of DUAs in older studies and also the privacy
challenges which are growing as more data becomes available and
predictive machine learning becomes more common.

We must consider several interlocking aspects when choos-
ing a data sharing framework and the technology to enable it.
Neuroimaging and genetics data present significant unique chal-
lenges for privacy. Firstly, this kind of data is very different from
that considered by many works on privacy—images and sequence
data are very high-dimensional and highly identifiable, which
may set limits on what we expect to be achievable. Secondly, we
must determine the data sharing structure—how is data being
shared, and to whom. Institutional data holders may allow other
institutions, individual researchers, or the public to access their
data. The structure of the arrangement can inform which privacy
technology is appropriate (Jiang et al., 2013). Thirdly, almost all
privacy-preserving data sharing and data mining technologies are
still under active research development and are not at the level
of commercially deployed security technologies such as encryp-
tion for e-Commerce. A privacy-preserving computation model
should be coupled with a legal and policy framework that allows
enforcement in the case of privacy breaches. In our proposed
model, sites can participate in a consortium in which only dif-
ferentially private data derivatives are shared. By sharing access to
the data, rather than the data itself, we mitigate the current pro-
liferation of individually-generated DUAs, by allowing local data
holders to maintain more control.

There are a number of challenges in building robust and scal-
able data sharing systems for neuroinformatics. On the policy
side, standards and best practices should be established for data
sharing within and across research consortia. For example, one
major challenge is attribution and proper crediting for data used
in large-scale studies. On the technology side, building federated
data sharing systems requires additional fault-tolerance, secu-
rity, and more sophisticated role-management than is typically
found in the research environment. As noted by Haeberlen et al.
(2011) implementing a differentially private system introduces

additional security challenges without stricter access controls.
Assigning different trust levels for different users (Vinterbo et al.,
2012), managing privacy budgets, and other data governance pol-
icy issues can become quite complicated with differential privacy.
On the statistical side, we must extend techniques from meta-
analyses to interpret statistics computed from data sampled under
heterogenous protocols. However, we believe these challenges can
be overcome so that researchers can more effectively collaborate
and learn from larger populations.
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Background: Social media has the potential to accelerate the pace of biomedical research
through online collaboration, discussions, and faster sharing of information. Focused
web-based scientific social collaboratories such as the Alzheimer Research Forum have
been successful in engaging scientists in open discussions of the latest research and
identifying gaps in knowledge. However, until recently, tools to rapidly create such
communities and provide high-bandwidth information exchange between collaboratories
in related fields did not exist.

Methods: We have addressed this need by constructing a reusable framework to build
online biomedical communities, based on Drupal, an open-source content management
system. The framework incorporates elements of Semantic Web technology combined
with social media. Here we present, as an exemplar of a web community built on
our framework, the Pain Research Forum (PRF) (http://painresearchforum.org). PRF is a
community of chronic pain researchers, established with the goal of fostering collaboration
and communication among pain researchers.

Results: Launched in 2011, PRF has over 1300 registered members with permission to
submit content. It currently hosts over 150 topical news articles on research; more than
30 active or archived forum discussions and journal club features; a webinar series; an
editor-curated weekly updated listing of relevant papers; and several other resources for
the pain research community. All content is licensed for reuse under a Creative Commons
license; the software is freely available. The framework was reused to develop other sites,
notably the Multiple Sclerosis Discovery Forum (http://msdiscovery.org) and StemBook
(http://stembook.org).

Discussion: Web-based collaboratories are a crucial integrative tool supporting rapid
information transmission and translation in several important research areas. In this article,
we discuss the success factors, lessons learned, and ongoing challenges in using PRF as
a driving force to develop tools for online collaboration in neuroscience. We also indicate
ways these tools can be applied to other areas and uses.

Keywords: social media, neuropathic pain, content management systems, Drupal

INTRODUCTION
Biomedical scientists rely heavily on the World Wide Web and
Internet to do research and to perform literature, database, and
information searches. Researchers are also increasingly adopting
the Web to collaborate and exchange ideas. Web-based commu-
nities that bring together scientists from different disciplines,
institutions, and sectors are called “collaboratories” (National
Research Council, 1993). Collaboratories with embedded social
media tools can increase the pace and quality of scientific collab-
oration with rapid, open and structured communication (Kouzes
et al., 1996; Finholt and Olson, 1997).

However, several challenges for effective collaboration exist
with respect to trust, independence, attribution, and intellectual

property (Bos et al., 2007; Clark and Kinoshita, 2007). Scientists
may prefer to work independently and may be restricted by the
boundaries of institutions to freely exchange ideas. Moreover,
there is the added complexity of communications across dis-
ciplines. Alzforum (http://www.alzforum.org) (Kinoshita and
Clark, 2007)—a community of Alzheimer’s disease researchers—
was successfully able to overcome these challenges with a com-
bination of high quality articles, neutrality, inclusiveness and
editorial solicitation/moderation to gain trust and participation
(Clark and Kinoshita, 2007). The Schizophrenia Research Forum
(SRF) (http://www.schizophreniaforum.org/) was modeled after
Alzforum to focus on schizophrenia research. SRF was built using
the same software code as the original Alzforum site, and thus has
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an identical look, feel, and functionality to the previous version
of Alzforum, before its 2013 re-launch. However, tools to rapidly
create and customize such communities were not readily available
and therefore the software cost to launch one such community
could not be effectively amortized across others using a common
software model.

To address this need, we decided to create a reusable plat-
form to build biomedical web communities. We developed the
Science Collaboration Framework (SCF) to provide the building
blocks for these communities. An earlier version of the plat-
form was developed primarily to publish scholarly articles in
biomedicine that can be indexed by the National Library of
Medicine (NLM) PubMed library (Das et al., 2009). Our newer
version has been re-engineered to add social media and com-
munity features similar to those available in Alzforum. We also
incorporated elements of Semantic Web technologies (Berners-
Lee et al., 2001) to facilitate interoperability and interdisciplinary
communications. Semantic Web is a technology developed by the
World Wide Web Consortium (W3C), which aims to promote
interoperability of Web content and creation of a “Web of Data”
through the use of machine-readable Web pages. It relies heavily
upon the used of agreed common vocabularies to describe objects
and relationships in the Web. Biomedical science has developed a
very rich set of such vocabularies or “ontologies” (over 300 vocab-
ularies with over 5 million terms registered in the National Center
for Biomedical Ontology at Stanford University Medical School).
Use of ontologies such as these permits, among other benefits,
resolution of the many synonym terms in biomedicine, to sin-
gle common identifiers. Enabling Semantic Web technologies on
our framework is meant as a step toward better integration with
biomedical vocabularies and databases.

We chose the research area of chronic pain as the first use case.
Chronic pain significantly impacts quality of life and is a sub-
stantial, growing, and unmet medical need worldwide. Although
researchers have made great strides in understanding the under-
lying mechanisms and neurobiology of pain, few of these discov-
eries have been translated into new treatments. According to a
recent report from the US Institutes of Medicine, chronic pain
affects an estimated 100 million people in the US, and costs $600
billion annually in health care and lost productivity (National
Research Council, 2011); the world-wide toll is unknown. For
the most part, chronic pain conditions lack medications that are
effective and well tolerated. One of the roadblocks to new treat-
ments is a lack of communication and collaboration between
basic, translational, and clinical researchers in the diverse scien-
tific fields and clinical specialties that make up the pain research
community. Thus, we developed an online open community, Pain
Research Forum (PRF, http://painresearchforum.org), for pain
researchers to freely exchange ideas and collectively elevate dis-
cussion of the causes of chronic pain and how that knowledge can
be translated into new treatments and better care.

MATERIALS AND METHODS
We have developed a reusable platform—SCF—to build science
communities in focused biomedical areas. Previous versions of
the platform included tools to publish scientific review articles
following the NLM Document Type Definition (DTD), which

can be indexed in PubMed (Das et al., 2009). The new release,
used for PRF, includes a large number of additional community
features, including means to publish news articles, forums, mem-
ber profiles and various community and research resources. These
features are described in the following sections.

ARCHITECTURE
The SCF is developed on an open-source content management
system, Drupal 7 1 . Drupal is based on the PHP programming
language and MySQL database running in the Linux/Apache web
server environment. We chose Drupal because it is easily extensi-
ble and there are 30,000 registered Drupal developers continually
contributing modules and enhancements to the core features 2 .
We developed several custom content types and packaged them
as features that can be installed and reused on any science com-
munity site. The graphic design (colors, fonts, etc.) is customized
for each site using a theme layer (Kumar, 2012). The key content
types available in the SCF are described in the next sections. The
software is freely available upon request and a complete manual
for editors to manage the site is under development.

NEWS ARTICLES AND FORUMS
The number of papers published in scientific journals continues
to grow at a double-exponential rate (Hunter and Cohen, 2006)
and it is becoming increasingly difficult for researchers to keep up
with the literature. One way to address this problem is to publish
news articles that summarize the research and provide context.
We have developed a news feature that allows editors of the site to
readily publish original news articles on emerging research. The
News article has the following main fields: title, subhead, author,
and body. The body text is composed in a WYSIWYG editor that
allows flexible styling and the ability to add images. News items
have references that are implemented as links to bibliographic
listings of papers (described in section Papers of the Week). We
wanted an easy method for researchers to find relevant news from
a certain field, thus news items are categorized with terms from a
pre-defined taxonomy. News articles can also be related to other
news stories or papers, which appear in a block to the right of the
article.

Discussion forums are important social media tools that
enable interactions among researchers. Forums have fields sim-
ilar to those of News. Forums can be Discussions of open research
questions, structured Webinars or Journal Clubs. Videos and
images can be embedded in Discussion, Webinars, or Journal
Clubs. Site editors can specify related items for any Discussion,
Webinar, or Journal Club.

Each News article and Forum can be commented on, book-
marked, watched, recommended or shared using social media
tools.

PAPERS OF THE WEEK
Hundreds of papers are published weekly in PubMed for a
given biomedical domain such as pain, and editor-curated weekly
digests can help researchers stay abreast of the growing literature.

1http://www.drupal.org
2http://en.wikipedia.org/wiki/Drupal
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Thus, we decided to create a module for curating and annotat-
ing papers downloaded from the NLM PubMed library. We use
the previously developed PubMed module to import biomed-
ical articles from PubMed using its Application Programming
Interface (API) (Sayers, 2008). The Drupal biblio module3 is used
to represent papers. We further developed the Journal Stream
module that runs nightly queries using the software utility cron
and imports the results in batches of 100 items. Complete doc-
umentation including a screencast and software for the Journal
Stream module is available4.

Each imported item is presented to the editors in a moder-
ation queue and can then be “accepted” or “rejected.” A screen
shot of the moderation queue is shown in Figure 1. The abstract
of each paper is displayed so that editors can determine whether
the paper should be accepted or rejected. Key papers can be
selected as Editors’ Picks, and editors can choose to highlight the
paper with a few sentences. The accepted papers are published
as weekly collections; the periodicity of posting the collections
can be configured per site. Once the collection is published, each

3https://drupal.org/project/biblio
4http://scf.github.io/journalstream/

paper can be individually commented on, bookmarked, watched,
recommended or shared using social media tools. Users may
download paper citations into the EndNote reference manage-
ment software using the Endnote XML format. Currently, only
EndNote is available to PRF users, but the Drupal biblio module
allows site administrators to enable the BibTeX format if desired,
for import into various other reference management tools such as
Mendeley, Reference Manager, or Papers.

The citation and Medline Subject Headings (MeSH) terms
associated with each paper are automatically updated periodically,
as new information is posted in PubMed.

MEMBERS AND REGISTRATION
Members are the most important component of an online scien-
tific community. We developed tools for members to join the site
and publish their profile. While much of the content on the site
is freely accessible without registration, only members can post
comments on the site and have access to other members’ pro-
files. The registration process starts with the members signing
up online using a form. Research credentials including affilia-
tion, position and research interest fields are required. The full
name, email, city, and country are also required. Members agree
to terms and conditions of membership on the site. The editor is

FIGURE 1 | Papers of the Week moderation queue. Papers are imported nightly from NLM PubMed using a tailored query. Editors are presented with an
easy-to-use interface to accept or reject the papers.
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notified when a member signs up and once the registration has
been reviewed and approved, the new member receives an email
informing them of the approval. Email authentication is required
for membership activation and reminder emails are sent if mem-
bers have not responded to the authentication request by 1 week
after approval.

Members can publish detailed research profiles on the site,
upload their biography, and have the opportunity to import a list
of publications directly from PubMed. A member’s contributions
to the site are also listed on his or her profile page. Members can
choose to allow other members to contact them via email func-
tionality provided on the member profile page. Finally, members
can subscribe to receive email alerts on new content by type
(News, Webinars, Jobs, etc.).

COMMUNITY AND RESEARCH RESOURCES
We provide a variety of structured resources for members:
Meetings and Events, Jobs, Funding Opportunities and Bulletin
Board. Meetings and Events allows researchers to quickly find
upcoming meetings of interest. These are listed automatically in
reverse chronological order. Meetings can be linked to PRF Blogs
and News stories on the event, allowing researchers to “catch-up”
if they missed the actual event. Jobs provide networking between
hiring institutions and applicants; Funding Opportunities high-
lights grants in the field and Bulletin Board is for posting ad hoc
announcements. Together, these community resources provide
content tailored to the professional needs of researchers in the
pain field. All community resource items have social media tools
and can be individually commented on, bookmarked, shared or
recommended.

We also provide a variety of tools for creating and publishing
research resources. Some are simply pages of information or col-
lections of links to other useful resources. We also developed a
structured database for genes associated with a disease or biolog-
ical condition such as pain. Fields include data to fully describe
the gene and details of data on variants associated with pain,
with literature references. For studies using research models, the
type of model is described, thus presenting a detailed overview
of the research done to associate the gene with the disease. In the
future, we would also like to create other resources, such as a drugs
database that would serve as a central repository for information
on new drugs in development and associated clinical trials.

SOCIAL MEDIA TOOLS
Social media tools are important for online collaboration. We
developed or customized a large number of social media tools and
incorporated them in our framework. Members can comment
on or invite others to comment, share, bookmark, and recom-
mend most content throughout the site. All content on PRF can
be emailed and shared on all the popular social network tools
(Facebook, Twitter, etc.) by using standard “email” and “share”
modules present on every page. RSS news and Twitter feeds are
available as well as an email newsletter.

To accommodate the needs of our scientific community, we
made a large number of enhancements to the comment feature
in Drupal. Scientific commentaries often have attachments or
figures, so we developed capabilities for attaching images or

documents. The comments can be formatted with a WYSIWYG
editor and can be associated with more than one content item if
applicable.

WEB SITE USE AND TRACKING
Websites are tracked using Google Analytics 5, which provides
extensive data on how users interact with the site. We analyze data
on number of visits, unique visitors, total pageviews, and views
of individual pages. We also look at selected demographic data
(country and city of origin), system information, and source of
traffic to the site.

SEARCH AND SEMANTIC WEB
Search is implemented using the open-source enterprise Apache
Lucene Solr 6 search platform. We also implemented section-
specific searches. Search results can be sorted by date, relevance,
number of comments or the date of the last comment. The num-
ber of search results per page can be configured by the user.
Search results can be filtered using facets. The content type, date,
categories etc. are presented as facets.

Semantic Web technologies enable publication of structured
documents that can be processed by machines, thus allowing
interoperability with the Web of Data (Berners-Lee et al., 2001).
We use the Drupal Resource Description Framework Modules
(RDF) modules (Corlosquet et al., 2009) to publish RDF of News
and Forums. The RDF is indexed and stored in a SPARQL end-
point using the PHP ARC2 libraries 7. The Dublin Core (Weibel
et al., 1998) and Semantically-Interlinked Online Communities
(SIOC) (Breslin et al., 2006) ontologies are used to express the
RDF. SPARQL queries enable us to perform flexible queries and
integrate with other knowledge repositories. Thus, incorporation
of Semantic Web technologies in the SCF platform will allow us
to network additional online communities built with SCF and
identify relevant information across multiple sites.

RESULTS
PAIN RESEARCH FORUM
The SCF platform, originally used for publishing scholarly articles
for StemBook (http://stembook.org), was reengineered to cre-
ate an online community of chronic pain researchers. The goal
was to accelerate pain research by enabling free discussion and
faster sharing of information between academia, industry, and
the clinic, to foster new collaborations and to raise interest in
pain research among the wider community of neuroscientists and
clinicians. The PRF 8 was launched in June 2011; a screenshot
of the home page is shown in Figure 2. As of December 2013,
PRF has attracted ∼1400 registered members and has published
more than 150 News stories and 25 Discussion forums, facili-
tated five Webinars and published four Journal Clubs features.
There are more than 200 member-authored comments on News,
Papers, and other content. Papers of the Week are published
every Friday and 2–6 papers are highlighted each week as Editors’

5http://www.google.com/analytics/
6http://lucene.apache.org/solr/
7https://github.com/semsol/arc2
8http://www.painresearchforum.org/
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FIGURE 2 | Pain Research Forum. Screenshot of home page for Pain Research Forum (http://www.painresearchforum.org) for anonymous users (not
logged-in).

Picks. Curated and frequently updated lists of Meetings and
Events, Jobs, Funding Opportunities, and Bulletin Board items
are posted. The site editors actively curate and maintain several
research resources. All content is licensed for reuse under Creative
Commons license BY-ND-NC9 .

NEWS
PRF publishes 1–2 news stories each week; a screen shot of the
News section is shown in Figure 3. News stories are categorized

9http://creativecommons.org/licenses/by-nc-nd/3.0/

as “Research,” “Drug Development,” “People” or “Conferences.”
PRF’s news coverage helps researchers stay abreast of the latest
findings in the field. For example, PRF was one of the first media
outlets to publish a news story about a study of how “high-dose
opioid reverses synaptic potentiation in the spinal cord in rats”
(Talkington, 2012). The research paper was published in Science
on January 13, 2012 and the PRF news story came out 3 days later.
Four prominent pain researchers presented their opinions on the
work in the form of comments to the story.

Often several related stories are published on an individual
topic, and SCF is engineered to allow integration of this material.
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FIGURE 3 | News Section in PRF. Screenshot of news section in Pain Research Forum (http://www.painresearchforum.org/news). Five stories are listed per
page, social media tools are available for each story. News stories can be filtered using categories on left. Most popular items are highlighted on the right.

For instance, PRF recently covered three high-profile brain-
imaging studies (Ahmed, 2013; Talkington, 2013; Talkington and
McCaffrey, 2013). A screen shot of one of the stories is shown
in Figure 4. The forms used to create and publish the story are
shown in Figure 5. Related stories are listed in a block on the
right. In addition, PRF conducted a webinar in December 2013,
featuring one of the principal investigators on the brain imaging

papers, along with several panelists including authors of the other
papers mentioned in the news coverage. The webinar is also listed
as related content to the news story. By hyperlinking, using the
References function, cross-posting comments on both news sto-
ries and papers, and using the Related Content feature, PRF is able
to provide a contextualized, intelligent overview of fast-moving
developments in this corner of the larger field. Social media tools
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FIGURE 4 | News story on brain imaging. Screenshot of news story on
brain imaging study (http://www.painresearchforum.org/news/27192-brain-
signature-physical-pain). Study was led by Tor Wager, University of Colorado,

Boulder, US and describes a new functional MRI-based test for measuring
pain. Related stories are listed on a block on the right. The article has 3
comments.

such as Twitter feeds and newsletters disseminate the information
quickly and effectively to members.

Brain imaging in the context of understanding and detecting
pain is a popular but controversial topic, and the three sto-
ries cited above (Ahmed, 2013; Talkington, 2013; Talkington and
McCaffrey, 2013) elicited several comments from PRF members.
It is significant that many of the researchers commenting on PRF
are junior people, including graduate students or postdoctoral fel-
lows. Often the study authors participate in the discussion: for
example, on the news story by Talkington and McCaffrey (2013),
the study authors responded to two previous comments from
researchers not involved with the study. Thus, the commenting
feature on PRF news stories serves a function similar to the “let-
ters to the editor” sections of journals, with key differences: it is
faster, has a lower barrier to entry, and welcomes contributions
from junior researchers.

Currently, the most accessed news story is one that discusses
the new research on the use of antibiotics to relieve some forms
of chronic lower back pain (Morton, 2013). The PRF news story
covers two published research studies: one suggests that pain may
be caused by a low-grade bacterial infection in the discs and the
other finds that antibiotics can effectively treat the pain and pre-
vent further tissue degeneration. Both studies have implications
for patients with long-standing low back pain, and they elicited
a lot of attention and controversy including in the popular press.
In a Google search for the query “antibiotics for back pain,” the
PRF news story is the number one hit. This shows that PRF news
stories can be highly ranked in Google searches for general pain
terms, giving many readers access to the site. This high ranking
may contribute to the unusually high number of page views for
this article, which are three times more than the second most
viewed news article.
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FIGURE 5 | Forms used by editors for a News story. Screenshot of forms used by the editors to create and publish a news story. A form is available for each
field and the body is composed using a WYSIWYG editor.

FORUMS
The PRF Forums category includes Discussions, Webinars, and
Journal Clubs. PRF editors have moderated several online dis-
cussions. The most-accessed Discussion is a debate on how the
human brain processes stimuli, initiated by a well known pain
researcher and PRF Science Advisory Board member (Basbaum,
2011). A Discussion on the challenges associated with trans-
lating pain research discoveries into clinical developments, pre-
sented by another researcher and science advisor, attracted many
follow-on comments (Mogil, 2011). In 2013, PRF conducted five
Webinars, each typically attracting ∼150 registered attendees,
plus an unknown number of additional viewers who watched
the event in groups under one registration. Each Webinar is

conducted online using a webinar-hosting service and a record-
ing is subsequently posted to PRF with a written introduc-
tion. This archives the presentation for future viewing and
enables an ongoing, online conversation beyond the duration
of the actual presentation. The Journal Club is a venue for
disseminating the results of discussions that occur in individ-
ual lab groups about recently published scientific articles. For
example, a graduate student and postdoctoral fellow studying
pediatric pain presented a journal club at their institution on
Walker et al. (2012; Birnie and Caes, 2012). They then wrote
for PRF a brief synopsis of the study and the discussion that
took place in their meeting. They also posed questions to the
author of the original paper, who responded with her own
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online comment. A screenshot of the Journal Club is shown in
Figure 6.

PAPERS OF THE WEEK
Papers of the Week are published every Friday and provide a
curated digest of recent and noteworthy pain-relevant articles
published in academic journals. For example, for the November
2–8, 2013 collection10 , 61 papers were identified and listed. Two
were further highlighted as Editors’ Picks. Highlighted papers
are often commented on by PRF-registered members, some-
times resulting in vibrant back-and-forth discussions between the
authors and other PRF members11 . Related papers are listed in a
block on the right as shown in Figure 7; a news story on the paper

10http://www.painresearchforum.org/node/33603
11http://www.painresearchforum.org/papers/22720-activation-5-ht2a-
receptors-upregulates-function-neuronal-k-cl-cotransporter-kcc2

is listed under the paper citation. Papers of the Week are archived
as weekly lists, and the database of all papers can be searched with
a detailed section-specific search. Members can also search for
other papers using links provided on the paper page to Google
Scholar or PubMed.

PRF MEMBERSHIP AND USAGE STATISTICS
As of December 17, 2013, PRF has just over 1400 registered mem-
bers, of whom 1143 have published profiles in the member direc-
tory. Member demographics are shown in Figure 8. A variety of
professionals sectors are represented including universities, hos-
pitals, industry, government, and non-profit foundations, with
the majority of members coming from academia (Figure 8A).
Most members are research scientists and academicians including
graduate students and postdoctoral fellows (Figure 8B). Two-
thirds (67%) of PRF members have an advanced degree, 41%
have earned a PhD and 20% have an MD or DDS.

FIGURE 6 | Journal Club on recently published paper. Screenshot of journal club featuring a recently published paper in the journal PAIN (http://www.
painresearchforum.org/forums/journal-club/21586-predicting-adult-outcomes-childhood-pain-profiles). Featured forums are highlighted in a block on the right.
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FIGURE 7 | Sample Paper from Papers of the Week. Screenshot of paper published in Papers of the Week (http://www.painresearchforum.org/papers/29791-
tmem16c-facilitates-na-activated-k-currents-rat-sensory-neurons-and-regulates-pain). Related paper is listed on the right. Section specific search is also available.

Although promotional efforts—emails, conference
attendance, printed literature, etc.—have been responsible
for attracting many members (Figure 8C), more than half of
members found PRF either via a Web search, word of mouth or
were directly invited to join by an existing member. Social media
tools played an important role in recruiting members (“Other”
Category).

We found that a significant proportion (about one-third)
of newly registered members failed to respond to the email
validation message, which asked them to click a link and return
to the site to complete the registration process. We installed
a module to automatically send reminder emails to these new
members, and have recovered about half of the non-responders.

Google Analytics shows that in October 2013, PRF had ∼8000
unique visitors, ∼11,000 visits and over 25,000 page views. PRF
has visitors from all over the world, with the majority from the
USA, UK, Canada, and Australia. The most popular browsers are
Chrome, Safari, and Firefox. The Papers of the Week and News
are the most popular sections; popular community pages include
Jobs and Meetings & Events. Some of the news stories mentioned
above are among the top pages visited on the site.

COMMUNITY AND RESEARCH RESOURCES
PRF lists community and research resources of interest to the
community, and the software automatically highlights new list-
ings on the home page and section landing pages. Currently users
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FIGURE 8 | Membership Statistics. (A) Shows the distribution of work
sectors, (B) shows the different position of members, and (C) depicts the
how different members heard about PRF.

can access information on more than 30 upcoming meetings and
read coverage of past meetings. Job postings 12, funding oppor-
tunities 13, and bulletin board 14 items are posted. In addition,
several research resources are also provided including a curated
pain gene resource consisting of about 25 genes that are associ-
ated with pain, according to peer reviewed, published studies, and
a collection of “Pain 101” articles covering basic questions in pain
research. A collection of useful links is planned.

SEARCH AND SEMANTIC WEB
We have implemented a general as well as section-specific search
for PRF using the Apace Solr module as described in the Methods
section. The search results can be further filtered by content type,
date, news topic or whether an item is recommended or has com-
ments (Figure 9). The search term is highlighted in the results and

12http://www.painresearchforum.org/members/jobs
13http://www.painresearchforum.org/members/funding-opportunities
14http://www.painresearchforum.org/members/bulletin-board

users have the option to sort the results by type, date, number of
comments or last comment date.

We have created Linked data and RDF for News, Forums,
and Papers using the Drupal RDF modules along with the SIOC
and DC ontologies. A sample RDF 15 illustrates the use of these
ontologies to describe the News article. The RDF is indexed
using the ARC2 PHP libraries and is available at http://www.

painresearchforum.org/sparql. The SPARQL endpoint allows us
to perform flexible queries such as “all News articles published
with greater than 2 comments” (see Table 1). In the future, we
could perform federated queries across endpoints from multiple
communities.

DISCUSSION
Our reusable platform, SCF, was successfully deployed to create a
vibrant online community of chronic pain researchers: PRF. In a
little over 2 years, PRF has attracted a large community of regis-
tered users and contributors including members from academia,
industry, government, and non-profit organizations. Scientists
engaged in laboratory research, clinicians, students, and fellows
are all represented. PRF is a network of investigators from vari-
ous sectors and disciplines and a venue for discussing, critiquing,
and advancing pain research. The response to PRF in terms of
member registrations and site use indicates a pent-up demand
for such online communities that provide researchers in disease-
circumscribed fields of biomedical research with news, forums,
and resources that are most relevant to them in one place.

In our experience, editorial involvement is crucial to keep
the site active and vibrant with user interactions. Reporting
news, moderating discussions, soliciting comments and pro-
ducing webinars and journal club pieces is labor intensive but
necessary to maintain high quality interactions within the user
community. On PRF, this is accomplished by a staff of profes-
sional editors and writers with backgrounds in research and neu-
robiology, whose primary responsibility is to create and moderate
content. Assembling an active and engaged Scientific Advisory
Board made up of leading researchers and clinicians from a vari-
ety of disciplines is also important to ensure the highest quality
content, provide community outreach and promote community
involvement.

PRF is publicized in the pain research community by several
avenues. The launch was announced with a press release and with
a direct email to several thousand pain researchers, identified
through meeting rosters, publications, and a existing pain
research listserve. In addition, fliers were distributed at pain meet-
ings and neuroscience meetings, including 7000 postcards placed
in meeting bags at the most recent World Congress on Pain in
Milan (2012), the largest gathering of pain researchers in the
world. Several pain professional groups promote the site to their
members on their websites or in member newsletters. PRF edi-
tors have given talks and posters at pain conferences. The PRF
science advisors promote the site to their colleagues using slides
and other materials provided by PRF. The site is also marketed
through word of mouth, a monthly email newsletter, and RSS and
Twitter (@PainResForum) feeds.

15http://www.painresearchforum.org/node/34289.rdf
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FIGURE 9 | Search Results. This figure displays the search results for the term MRI. The search results can be filtered using various facets on the left and
sorted by content type, date, number of comments or date of last comment.

Table 1 | Example SPARQL Query.

PREFIX schema: <http://schema.org/>

PREFIX sioc: <http://rdfs.org/sioc/ns#>

SELECT ?post ?title ?replies

WHERE {

?post a schema:NewsArticle;

schema:name ?title;

sioc:num_replies ?replies.

FILTER ($replies > 2)

}

ORDER BY DESC(?replies)

Query to find news articles with > 2 comments.

One barrier to progress in research is the reticence of
researchers to divulge unpublished or other preliminary work,
or to publicly criticize the work of others. Web commu-
nities like PRF provide a new model of open communica-
tion that will help change this culture and promote faster
and freer information exchange. A barrier to achieving more
researcher involvement in and contributions to communities
like PRF is the lack of incentives for scientists to contribute
comments or other materials that do not add to their offi-
cial publication record. In the future, sites like PRF should
aim to provide incentives for contribution, for example by
indexing content on PubMed or by arranging to provide con-
tinuing medical education (CME) credits for physicians who
contribute.

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 21 | 381

http://schema.org/
http://rdfs.org/sioc/ns
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Das et al. Pain Research Forum

All content on PRF is provided free of charge to the research
community, and funding of shared resources like PRF is an ongo-
ing challenge. To attract donors and other sponsors of the site
we must continually demonstrate both scientific credibility in all
of the content presented, and constant, lively and intellectually
valuable interactions. Consistent outreach to and education of
potential funders in the philanthropic area, professional societies,
relevant pharmaceutical and biotech companies and the academic
sector is also required. At the same time, editorial independence
from sponsors must be strictly maintained. PRF does not accept
paid advertisements and does not intend to do so.

In terms of technology, the SCF platform consists of a com-
prehensive set of building blocks for an online community. We
have effectively used the SCF platform to create other commu-
nities: the Multiple Sclerosis Discovery Forum (msdiscovery.org)
and StemBook (stembook.org). The platform incorporates ele-
ments of Semantic Web technologies, which have the potential
to accelerate the pace of inter-disciplinary research by defining a
common language and improving interoperability between vari-
ous resources on the Web (Hendler, 2003). In the future, we plan
to leverage these Semantic Web technologies to enable us to do
cross-site queries and find relevant information on other sites.
Interoperability between these multiple communities involved
in neurobiology and neurology research will, we hope, identify
common biological mechanisms behind complex neurological
diseases and accelerate translation of science to new treatments.
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A commentary on

Self-referential forces are sufficient to
explain different dendritic morphologies
by Memelli, H., Torben-Nielsen, B., and
Kozloski, J. (2013). Front. Neuroinform. 7:1.
doi: 10.3389/fninf.2013.00001

Computational models of biologically
realistic neuronal networks have advanced
neuroscience in the past 20 years. With
an ultimate goal of simulating a whole
brain, these networks must become larger
and more complex. However, a sheer mas-
sive number of neurons do not make
a brain. Neurons are all different, with
different kinetics, neurotransmitters, and
importantly different morphologies. A
network can be made by connecting copies
of the same cell together, but this kind
of homogenous network can only explain
so much. Real neuronal networks are het-
erogeneous and are made up of neurons
that follow both intrinsic and extrin-
sic cues to grow their unique dendritic
arbors (Scott and Luo, 2001). In addition
to homogenous and heterogeneous network
models, hybrid network models have been
implemented by creating a small heteroge-
neous network and replicating it to estab-
lish a larger network (Kozloski, 2011).
However, modeling studies have shown
that homogenous networks act differently
than realistic heterogeneous ones (Mäki-
Marttunen et al., 2011). Because compu-
tational neuronal networks need to grow
larger to simulate complete brain regions,
and because heterogeneity in a network
is critical to modeling a realistic brain,
algorithms for digitally generating neural
morphologies are a necessary step toward
this goal.

A new paper by Memelli et al. (2013)
joins the field of papers providing algo-
rithms for growing digital neurons. Their
algorithm can be used to build a network

consisting of millions of neurons each
with a unique morphology. The current
models, L-Neuron (Ascoli et al., 2001),
NeuGen2.0 (Wolf et al., 2013), NetMorph
(Koene et al., 2009), and CD3X (Zubler
and Douglas, 2009) have made great
strides in advancing the process of gen-
erating digital neurons. These models are
all publicly available, and can be used
to generate large networks of neurons.
Recently L-Neuron was used to generate
a 0.5 million cell model of the dentate
gyrus (Schneider et al., 2012). Each algo-
rithm has its own specific advantages.
NetMorph has a synapse-generating algo-
rithm, NeuGen2.0 is modular and adapt-
able to new data, and CD3X can isolate
intrinsic and extrinsic factors of neuron
development by growing the same neurons
in different model environments. In com-
bination with the parallelization of simula-
tion software [such as NEURON (Migliore
et al., 2006)], these neuron generators are
laying the groundwork for enabling mas-
sive biologically realistic simulations.

Memelli et al. (2013) do not attempt to
model the molecular mechanisms of den-
dritic growth, but instead work to make
a concise, computationally efficient model
that can capture the structure and variabil-
ity of realistic morphologies. Their work
adds two elements to this field. First, it
simplifies the neural growth algorithm to
contain a combination of three biologi-
cally inspired intrinsic parameters: soma-
oriented tropism, dendritic self-avoidance,
and membrane stiffness. The three param-
eters of their growth algorithm are all
intrinsic to the cell itself and do not take
into account any extrinsic signals that
could come from other neurons or phys-
ical constraints. Each of these parame-
ters has been previously described, but
Memelli et al. are the first to com-
bine them in one simple model. Second,
their algorithm is written to be fast and

massively parallel, creating the possibility
for generating billions of neurons on the
IBM Bluegene computer. Their algorithm
can generate a neuron in less than two sec-
onds, and when run on parallel cores is
capable of generating enough neurons to
simulate an entire brain region. Together,
these elements fit the need to have mor-
phological diversity within a network as
well as the need to have extremely large
networks.

Each of the current morphology sim-
ulators has their particular strengths. The
ideal situation would be for Memelli’s
new algorithm to be incorporated into
one of the existing ready-to-use packages.
For example, the application of this algo-
rithm within the external constraints of
CX3D could help isolate the extrinsic and
intrinsic aspects of dendritic arborization.
When used together these simulators can
help create massive-scale heterogeneous
networks for computational modelers and
can help investigate how dendrites actually
grow.
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This article adds Yann Le Franc as a co-
author of the technology report article
“Software and Hardware Infrastructure
for Research in Electrophysiology,”
describes his individual contribution
to the article, and presents changes in
two paragraphs in Section 2.4, where
an additional reference is also pro-
vided. Moreover, the members from
the OEN group who work and coop-
erate on building OEN are personally
acknowledged.
Co-author: Yann Le Franc
Affiliation: e-Science Data Factory
S.A.S.U., Paris, France; Ludwig-Maxim
ilians-Universität München, Planegg-Mart
insried, Germany; University of Antwerp,
Antwerpen, Belgium
Authors’ Contributions
Yann Le Franc contributed to the
Figures 3, 4 and 8 and to the work on
the Ontology for describing Experimental
Neurophysiology (OEN).
Section 2.4
Old version:

The group follows the best practices for
creating ontologies, for example, it coop-
erates with community of researchers who
design and create ontologies, uses existing
data formats and repositories (odML,

HDF5), and reuses existing resources
(terms, ontologies—NEMO, OBI). For the
general description of experimental neu-
rophysiology, the terms from ontologies
NEMO and OBI are relevant. However,
the set of the domain terms is still not
complete in these ontologies (informa-
tion stored in the EEG/ERP Portal can-
not be fully described by these ontologies)
and OEN will be finally an extension
of OBI (e.g., the granularity of OBI for
devices and related information will be
extended).
New version:

The group follows the best practices for
creating ontologies, for example, it coop-
erates with community of researchers who
design and create ontologies, uses exist-
ing data formats and repositories (odML,
HDF5), and reuses existing resources
(terms, ontologies—NEMO, OBI). For the
general description of experimental neu-
rophysiology, the terms from ontologies
NEMO and OBI are relevant. However, the
set of the domain terms needed to describe
the information stored in the EEG/ERP
Portal is not yet complete in these ontolo-
gies. OEN aims at defining these missing
terms and at term, should be used to pro-
pose an extension of OBI’s neurophysiol-
ogy model (e.g., the granularity of OBI
for devices and related information will be
extended).
Old version:

Terminologies within OEN have been
primarily developed in the odML format.
Subsequently, an OWL file has been con-
structed aided by Ontofox (Xiang et al.,
2010). The current developer’s version of

OEN is available at https://github.com/
G-Node/OEN.
New version:

The OEN device branch develop-
ment is based on the odML terminology
(Grewe et al., 2011), concepts gathered by
the Neuroscience Information Framework
(NIF) and concepts used in the EEGBase
data model to describe setups and setup
configurations. The gathered terms are
currently mapped with the aforemen-
tioned ontologies. Subsequently, an OWL
file has been constructed to contain OEN
terms and the mapped terms. Existing
terms in other ontologies will be imported
using the MIREOT approach (Courtot
et al., 2011), aided by Ontofox (Xiang
et al., 2010). The current developer’s ver-
sion of OEN is available at https://github.

com/G-Node/OEN.
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