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Editorial: Integrated Quantum
Photonics
Shinichi Saito*

Center for Exploratory Research Laboratory, Research and Development Group, Hitachi, Ltd., Tokyo, Japan

Keywords: quantum random number generators, Si photonics integrated circuits, optical vortex, photonic crystal,
poincare sphere, quantum photonic circuits

Editorial on the Research Topic

Integrated Quantum Photonics

Integration of electronic transistors in a silicon (Si) chip has now exceeded more than 10 B in micro-
processing units (MPUs) and graphics processing units (GPUs), which is even larger than the
number of neurons in a human brain. The extensive usages of these processing units for various
machine-learning and artificial intelligence (AI) applications also demand integration of photonic
devices for Internet-Of-Things (IOT) networks and big data analysis. Si photonics will be a key
technology for photonics integration, and for the future, photonic-based quantum technologies will
be introduced. One of the obvious advantages to use photons instead of electrons for quantum
technologies is the potential to introduced these devices at room temperatures without complicated
expensive cryogenic systems. We thought it is a good time to call for papers in integrated quantum
photonics in Frontiers. In this research topic, five papers were submitted, one paper was rejected, four
papers were accepted, but one paper was retracted by the authors. The number of papers which we
have attracted was smaller than we expected, but we think the research area will grow over the years.

In the paper of Bisadi et al. a compact quantum random number generator was
demonstrated, using a novel light-emitting diode using Si nanocrystals. The group, led by
Pavesi, is a leading group for light emissions from Si nanocrystals, and a random number
generator will be a suitable application, relying on quantum mechanical probabilistic
characteristics of spontaneous emissions. They have developed an integrated system
together with an Si photomultiplier and a field-programmable gate array (FPGA)
processing unit and showed that their data pass all statistical standards as random
numbers. The recorded bit rate of 0.5 Mbps is already comparable to commercial products
without using Si nanocrystals. The technology with Si nanocrystals will be used for applications
which require even more severe security controls, such as secure communications, among
governments, mobile banking, and statistical research.

For various quantum applications, we need a two-level system for describing a quantum bit
(qubit). In the paper of Sotto et al. they found a new way to control a polarization state as a two-level
system by introducing a phase mismatch between adjacent photonic crystals. In a standard design of
a waveguide in a photonic crystal, a line defect is introduced simply by removing holes for a
waveguide, and the parity symmetry against mirror reflection is maintained. They intentionally
introduced a mismatch by introducing a phase shift among adjacent photonic crystals across the
waveguide, which allowed coupling of two propagationmodes. By applying a simple model for a two-
level system, they found the energy gap is opening up by controlling the amount of the phase shift.

In the last paper, another two-level system is proposed by using photons with left and right
vortices. Photons with vortices have optical orbital angular momentum (OAM), and we expect
a quantum mechanical superposition state among left and right circulations in a hyper-
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Poincaré sphere. By using a simple Si photonic two-bus
waveguide together with a complex micro-gear, the
amplitudes and phases are controlled for the left and right
vortices. The device was named a Poincaré rotator, since it
allows to rotate the vectorial OAM state in a hyper-Poincaré
sphere. The conservation law of spin and OAM was discussed.

We believe the research area of integrated quantum
photonics will be even more important for the future, and
proposed devices will be developed beyond original foreseeable
applications.
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Compact Quantum Random Number
Generator with Silicon Nanocrystals
Light Emitting Device Coupled to a
Silicon Photomultiplier
Zahra Bisadi 1*, Fabio Acerbi 2, Giorgio Fontana 1, Nicola Zorzi 2, Claudio Piemonte 2,

Georg Pucker 2 and Lorenzo Pavesi 1

1Nanoscience Laboratory, Department of Physics, University of Trento, Trento, Italy, 2Center for Materials and Microsystems,

Bruno Kessler Foundation (FBK), Trento, Italy

A small-sized photonic quantum random number generator, easy to be implemented

in small electronic devices for secure data encryption and other applications, is

highly demanding nowadays. Here, we propose a compact configuration with Silicon

nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to

generate random numbers. The random number generation methodology is based on

the photon arrival time and is robust against the non-idealities of the detector and the

source of quantum entropy. The raw data show high quality of randomness and pass

all the statistical tests in national institute of standards and technology tests (NIST) suite

without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency

of 4 bits per detected photon.

Keywords: compact photonic quantum random number generation, silicon nanocrystals LED, silicon

photomultiplier, robust methodology, NIST tests

1. INTRODUCTION

Thanks to the quantum properties of light, “truly” random numbers can be produced by photonic
quantum random number generators (PQRNG). Cryptographic tasks of encryption and decryption
of private data can be executed using secret keys based on high quality random numbers. Even
though mathematical algorithms are extensively used to generate random numbers, they suffer
from high guessability provided the seed of the algorithm is known. If they have a short periodicity,
their repeatability would be a serious flaw, as well.

PQRNGs benefit from the intrinsically random and unpredictable properties of physical
processes involving photons as the quanta of light. The randomness in path taken by photons
arriving on a beam splitter1 [1], the comparison of the waiting time for photon arrivals in
adjacent time intervals [2] and the combination of both methods [3] have been used to generate
random numbers. In some other works, encoding the number of arriving photons in observation
windows [4–6] and the randomness in the photon arrival times [7–9] have been used to produce
random numbers. Recently, a robust approach based on arrival times of photons has been proposed
by our group [9]. It considers all the non-idealities of the source as well as the detector, producing
high quality random numbers which pass all the statistical tests in national institute of standards
and technology (NIST) tests suite and TestU01 without a post-processing algorithm1.

1Dataset. http://www.idquantique.com/wordpress/wp-content/uploads/white-paper-understanding-qkd.pdf. (2016).
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However, in all the above-mentioned approaches a bulky setup
is used to generate random numbers. A small-sized and compact
PQRNG, easy to be implemented in small electronic devices
such as mobile phones and cameras for secure data encryption
and decryption as well as other applications, is highly essential
for facile accessibility to everyone. Here, we present a first step
toward this goal: a PQRNG with a novel, compact configuration
comprising a silicon nanocrystals large area LED (Si-NCs LLED)
coupled with a silicon photomultiplier (SiPM) in free space.
Based on some statistical analyses described in section 5, it is
proved that the generated hexadecimal random symbols have a
very high quality and the corresponding random bits pass all
the statistical tests in NIST tests suite with no post-processing
operations. The highest bit rate of 0.5 Mbps is achieved with the
efficiency of 4-bits per detected photon.

In a previous work [9], we have demonstrated a procedure to
extract high quality random numbers from the arrival time of
photons emitted by a Si-NCs LED, collected by a fiber bundle
and detected by a commercial single photon avalanche diode
(SPAD). In this work we use the same robust methodology of
random number extraction of Bisadi et al. [9] but we demonstrate
a PQRNG where the LLED is directly faced to a SiPM. Moreover,
both devices are fabricated by the same silicon pilot line of Bruno
Kessler Foundation (FBK) with a dimension allowing optimum
coupling which is specifically challenging for the Si-NCs LLED.

This work is organized as follows. In section 2, the Si-
NCs LLEDs and their electrical and optical characteristics are
described. In section 3, the SiPM is introduced and explained.
Section 4 describes the experimental procedure and random
numbers extraction. Randomness analyses are discussed in
section 5 and at the end the conclusions are presented.

2. SI-NCS LARGE AREA LED

Si-NCs are silicon quantum dots which emit light at room
temperature in the visible range due to quantum confinement.
The emitted photons are emitted independently by a quantum
process named spontaneous emission and their statistics obey
Poisson statistics (see more in section 4).

Si-NCs LEDs are fabricated by complementary metal-
oxide-semiconductor (CMOS) processing, they can be easily
incorporated in integrated configurations, they emit photons
with wavelengths in the spectral range detectable by silicon
detectors allowing the fabrication of an all-silicon-based device
and since the spontaneous emission of photons in a Si-NCs
LED is a non-deterministic, quantum mechanical and random
process, they can be used as a quantum source of randomness
to generate random numbers. The Si-NCs LEDs were fabricated
with a large emitting surface in order to illuminate large area
detectors like the SiPM we use here. The matching of the emitter
and detector surfaces allows their direct coupling, i.e., without
any coupling optics. The Si-NCs LLED (large area LED) has
the active layer structure formed by a multilayer structure with
5 periods of silicon rich oxide (SRO)/SiO2 layers of 3.5–4 nm
and 2 nm thicknesses, respectively (Figure 1A). The Si-NCs are
grown in a silica matrix through the plasma enhanced chemical

vapor deposition (PECVD) technique and annealed at 1150◦C for
30 min to form the Si-NCs.

The Si-NCs LLEDs have been prepared in three different sizes:
big (b), medium (m) and small (s) with emitting surface area
of 1.3mm × 0.99 mm, 0.99mm × 0.82 mm and 1.02mm ×

0.11 mm, respectively (see Figure 1B).
The electroluminescence (EL) spectra of the Si-NCs LLEDs

can be seen in Figure 2Awith a high peak at∼ 900 nm attributed
to the emission from Si-NCs. Note that all the LLEDs show the
same EL lineshape which points to the great uniformity of the
fabrication. Table 1 reports the optoelectronic characteristics of
these LLEDs. The figure of merit is the efficiency of the EL which
is measured as the ratio between the EL intensity and the driving
electrical power. The electrical power density is calculated to be
5.87, 0.93 and 0.08 mW/cm2 for the (b), (m) and (s) LLEDs,
respectively. It should be noted that the applied currents to the
(b), (m) and (s) LLEDs are 30, 3 and 3 µA, respectively.

At currents lower than 30µA to the (b) LLED, no appreciable
EL is observed. Therefore, by applying the previously-mentioned
currents to the LLEDs, we tried to keep the voltages and hence the
electric field through the active area of the LLEDs (with actual
thickness of ∼22.5 nm) more or less the same. The low current
density and high EL intensity of the (m)LLED yield the higher
efficiency of this LLED compared with the (b) and (s) LLEDs.
In addition to the efficiency, the active area of (m)LLED allows
a suitable coupling with the large area SiPM since the SiPM
dimensions are of 1mm× 1mm. It should be noted that all three
LLEDs result in the generation of high quality random numbers
since they are fabricated in a very similar way and the detected
photons from all of them follow a Poisson distribution.

The current-voltage (I/V) characteristics of Si-NCs LLED are
presented in Figure 2B. They show a rectifying behavior with
more current density at forward regime—i.e., negative voltage
applied to the cathode and zero voltage to the anode—than
the reverse regime—i.e., positive voltage applied to the cathode
and zero voltage to the anode. It is observed that at a fixed
forward voltage, the current density through the (b) LLED is
larger than (m) and (s) LLEDs (particularly at 0.5–3 V): this is
due to the larger free carrier density flowing through the active
area in (b) than (m) and (s) LLEDs. In the reverse bias region (1–
6 V), however, the (b), (m), and (s) LLEDs show the same order
of magnitude current densities that is related to the inefficient
carrier injection to the active area by the accumulation of the
charges near the boundaries of the cathode and the anode. This
effect blocks the carriers from flowing through, recombining
and contributing to the net current and consequently makes the
current density independent of the gate areas of the LLEDs2. The
charge blocking seems to be more effective for (s) LLED with a
flat I/V curve at the region of−0.5–1 V (Figure 2B).

These LLEDs can emit light over long hours of operation.
Figure 3 shows the EL of the (m) LLED over ∼16 h. Note that
the EL variation is compensated by the randomness extraction [9]
and does not influence the quality of random numbers and
therefore no adjustment of the QRNG is needed over a very long
working period.

2Dataset. “http://www.ieee.li/pdf/essay/pin_diode_handbook.pdf/” (1998).

Frontiers in Physics | www.frontiersin.org 2 February 2018 | Volume 6 | Article 97

http://www.ieee.li/pdf/essay/pin_diode_handbook.pdf/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Bisadi et al. Compact Quantum Random Number Generator

FIGURE 1 | (A) The multilayer structure of Si-NCs LLED with 5 periods of 3.5–4 nm silicon rich oxide (SRO) sandwiched between 2 nm thick SiO2. (B) The geometry

of Si-NCs LLED with different sizes b (big), m (medium) and s (small). The cathode and common anode electrodes are shown.

FIGURE 2 | (A) The EL spectra of the three different sizes of Si-NCs LLED illustrated in Figure 1A. A high peak at ∼900 nm can be seen which is attributed to the

emission from Si-NCs. The EL spectra are acquired by a Spectra-Pro 2300i monochromator coupled with a nitrogen-cooled charge coupled device (CCD) camera.

The measurements were performed at room temperature in a dark chamber. EL intensity is normalized for the responsivity of the spectrometer. (B) The I/V

characteristics of the Si-NCs LLEDs. A quite rectifying behavior is observed in the I/V curves with more current density at forward regime—i.e., negative voltage

applied to the n-type contact electrode and zero voltage to the p-type contact electrode—than reverse regime—i.e., positive voltage applied to the n-type contact

electrode and zero voltage to the p-type contact electrode.

TABLE 1 | The efficiency (EL over injected power) of (b), (m), and (s)LLED.

LLED Area

(mm2)

Voltage (V) Current Density

(mA/cm2)

EL (Kcps) Efficiency

(Kcps/W)

b 1.29 2.52 2.33 ∼533 70

m 0.81 2.34 0.37 ∼363 517

s 0.11 3 2.67 ∼364 413

3. SILICON PHOTOMULTIPLIER

The analog SiPM is an array of many (hundreds) of single

photon avalanche diodes (SPADs). They are all connected in
parallel to a common anode and cathode, each one with its own

quenching resistor. Each cell (i.e., SPAD+resistor) is sensitive

to a single photon and provides a current pulse at the output.
Therefore, the counts at the SiPM output are proportional to

the number of triggered cells, thus to the number of detected
photons. Different technologies for SiPM have been developed
in FBK during last few years, with peak sensitivity in the
green part (RGB-SiPM) or in the blue part (NUV-SiPM) of
the visible spectrum, and with different cell sizes. The NUV
technology, in particular, benefits from an upgraded silicon
material [10], employing an epi/substrate structure with a lower-
lifetime substrate. This gives particular benefits in terms of
correlated noise reduction, i.e., afterpulsing probability (AP)
and delayed crosstalk probability (DeCT), which are particularly
detrimental for QRNG applications [9].

In this work we employ a 1mm ×1 mm NUV SiPM (inset
in Figure 4B), containing 625 cells (SPADs) with the cell size
of 40 µm and the fill factor (FF) of 60 %. This particular
technology has a photon detection efficiency (PDE) (and in
particular spectral sensitivity) notmatched to the LLED emission.
PDE is about 5% at 800 nm, at 4 V of excess bias (i.e., the
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difference between the applied bias and the breakdown voltage
(Vbd)), as shown in Figure 4A. However, NUV SiPM has the
advantage of a low primary dark count rate (DCR), less than
100 kcps/mm2 at 5 V of excess bias (see Figure 4B), meaning
less than 200 cps per single SPAD. In addition, it has a reduced
correlated noise probability (overall AP+DeCT probability lower
than 5%), which is very important in this kind of application.

We designed a custom front-end board to amplify and
digitalize the analog output signal from the detector (see
Figure 5B). This is based on a AD8000 amplifier in a trans-
impedance configuration, followed by a comparator with an
adjustable voltage threshold and a monostable, creating pulses
of 3.3 V and 100 ns width. This fixes the maximum count

FIGURE 3 | EL of the (m) LLED vs. time at the applied current density of

0.62 mA/cm2 (corresponding to an applied voltage of 2.61 V). The right hand

side of the figure (blue axis) shows the EL variation percentage.

rate of the detection system, which is anyhow limited by the
afterpulsing time constant of the detector, giving an overall
time to let all traps to empty, thus an overall time to avoid
any possible afterpulsing, of few hundreds of nanoseconds, as
seen in the autocorrelation function. As will be explained in
section 4, this signal is transferred to a field-programmable gate
array (FPGA) processing unit for the generation of random
symbols.

4. EXPERIMENTAL

The experimental setup is schematically shown in Figure 5A. The
(m)LLED is directly facing a SiPM at a distance of ∼ 1 mm
without any interposed optics or diffuser. The Si-NCs LLED is
driven by an Agilent B1500A Semiconductor Device Parameter
Analyzer. The TTL output of the SiPM is directly connected to
the high speed digital input of an FPGA. A voltage of ∼30–36 V
is applied to the SiPM by an Agilent E3631A DC Power Supply.
The measurement of the arrival times is performed by a fully
synchronous logic. The FPGA continuously samples the detector
at the frequency of 100 MHz, which is crystal controlled. A valid
detection is produced by a high analog logic level heralded by one
clock cycle (10 ns) of low analog logic level. A Digilent ATLYS
FPGA board has been used with the programming language
VHDL.

In order to verify that the Si-NCs emit independent
photons, cross correlation measurements can be performed. The
measurement is based on the random transmission of the emitted
photons from the source ( i.e., a Si-NCs LLED) into two arms
of a fiber beam splitter (see Figure 6A) each connected to a
detector (i.e., a SPAD). The longer arms of the fiber splitter
are long enough (15 m) to prevent any possible peaks in the
correlogram due to the correlation of either backflashs or back
reflections and the real signals on the silicon SPADs within
60 ns time lags. Therefore, any visible peaks in the correlogram

FIGURE 4 | (A) Measured photon detection efficiency (PDE), including the FF, as a function of wavelength for NUV SiPM at excess bias of 2, 4, and 6 V. (B) Dark

count rate (DCR) of NUV SiPM vs. excess bias at temperature of 20◦C. The inset shows 1 mm×1 mm SiPM containing 625 SPADs with cell size of 40 µm.
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FIGURE 5 | (A) Schematic of the experimental setup with a Si-NCs LLED coupled with a SiPM at a distance of ∼ 1 mm. The SiPM board is connected to ±5 V and a

bias voltage (Vbias) is applied to the SiPM. The Si-NCs LLED is driven by an applied current (voltage) provided by the power supply. The output signal of the SiPM is

transmitted to an FPGA connected to a PC for the generation of random numbers. (B) The front-end board to amplify and digitalize the analog output signal from the

detector. This is based on an AD8000 amplifier in a trans-impedance configuration, followed by a comparator with an adjustable voltage threshold (adj.Vth) and a

monostable, creating pulses of 3.3 V and 100 ns width.

FIGURE 6 | (A) The cross-correlation setup consisting of a 50:50 optical multimode fiber splitter coupled with Si-NCs LED from one of the shorter arms (0.5 m) end

and with commerical silicon SPADs from the longer arms (15 m) ends and a linear cross-correlator to perform cross-correlation measurement of the output signals

from the silicon SPADs. The other 0.5 m arm is being blocked to light exposure. (B) The cross-correlogram of the output pulses. The flat graph indicates that the

detected photons follow a Poisson distribution within the resolution of the instrument. The plot is not normalized and the error bars can be seen for some data points.

would be the result of photon bunching. The output signal of
the two detectors are then sent to the two channels of a linear-
tau cross-correlator having the time resolution of 1.3 ns, where
the cross-correlation function, g2(τ ), is computed. A peak in the
cross-correlogram indicates photon bunching while a dip shows
anti-bunching. Photon bunching occurs in the case of chaotic or
thermal light which has a super-Poissonian distribution with the
mean greater than the variance and photon number fluctuations
larger than in a coherent light beam. Photon antibunching
refers to a sub-Poissonian distribution with the mean lower
than the variance and photon number fluctuations smaller
than in a coherent light beam [11]. A flat cross-correlogram
demonstrates that the photons are emitted independently with a
Poisson distribution [12]. Measurement results are presented in
Figure 6B. As can be seen, a flat cross-correlation graph (with no
peak or dip) is observed, which demonstrates that the detected

photons follow a Poisson distribution. This is another proof, in
addition to the χ2 statistic [6], that the Poisson distribution is a
good match for the distribution of the detected photons which
are emitted from the Si-NCs LLED.

In order to characterize afterpulsing and crosstalk in
the SiPM, autocorrelation, g2(τ ), measurements of its signal
were performed via a multitau digital correlator with 4 ns
resolution [13]. g2(τ ) exhibits a main peak within ∼140 ns from
the main autocorrelation peak at τ = 0 (Figure 7). The plateau in
g2(τ ) approaches the normalization value of 1 at about 950 ns.

The measurements for random number generation
were performed on the (m)LLED with an active area of
∼ 0.99 mm× 0.82 mm (see Figure 1A) which matches the SiPM
dimension of 1 mm×1 mm. The applied forward current to
LLED was kept below ∼ 45 µA corresponding to the forward
voltage of 3 V (see Figure 2B) in order to avoid degradation of
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FIGURE 7 | Autocorrelation function (g2(τ )) of the SiPM signal (peak at zero is out of scale). Dead time and afterpulsing distribution of the SiPM can be seen here. The

dead time of ∼110 ns is not due to limitation of the SiPM, but it is set by the monostable in the electronics (front-end shown in Figure 5B). The inset shows “super

interval” which consists of 16 “double length” intervals with first half of no numbers (N) and second half of alternate hexadecimal symbols and Ns (zoomed in above

the “super interval”). Consecutive one-rotation of hexadecimal symbols in the second half of the “double length” intervals is indicated by a circular arrow. The inset is

taken from Bisadi et al. [9].

the oxide layer in the active area of the Si-NCs LLED [14]. The
Vbias to SiPM was 32 V corresponding to an excess bias of ∼6 V
(Vbd = 26 V) with the DCR of∼80 kcps/mm2.

The methodology to generate random numbers is similar
to our recent work [9]. It is based on the property of the
Poisson statistics that, if an event is observed in a time interval
T, the probability that the observation is performed in any
subinterval of fixed length of T is uniform. Based on this property
and to account for the system limitations, we can describe
the methodology by defining “double length” periodic time
intervals with an associated fully deterministic “target function”.
In the case of 16 random number generating subintervals, the
alphabet of the symbols is N, 0, 1, ... F, that reads N (no-
number), and the hexadecimal numbers 0 to F. Each interval
has 32 N subintervals in the first half and an alternation of
N subintervals and the full set of numeric symbols in the second
half, with a total of 64 subintervals (inset of Figure 7). Only if
one single detection (event) hits the target function associated
with an interval, a random symbol is generated. A mitigation
technique is developed in order to improve the non-uniformity
in the probability distribution of the generated random symbols.
It is called “super interval structure” and is made before the
possible arrival of a photon in an interval. As can be seen
in the inset of Figure 7, it is composed of 16 “double length”
intervals in which the random number generating symbols
are ordered as 0, 1,... F in the first interval, F, 0, ... E in
the second one and so on [9]. This approach results in the

nearly uniform probability distribution of the generated symbols
(Figure 9).

The duration of the “double length” interval is determined by
the afterpulsing and crosstalk distribution of the SiPM (Figure 7).
In order to mask the afterpulsing and crosstalk distribution of
SiPM, we needed to set the first half of “double length” interval
to ∼950 ns (see Figure 7). We considered target functions with
“super interval” of lengths 640, 1280, and 1920 ns and studied the
autocorrelation coefficient of the generated hexadecimal symbols
at time lag 1. It is observed to decrease as the length of “super
interval” increases with the values of 1.29 × 10−4, 1.05 × 10−4

and 1.45 × 10−5 corresponding to the “double length” interval
of 640, 1280, and 1920 ns, respectively. Therefore, we fixed the
“double length” interval to 1920 ns and acquired sequences of
random symbols.

5. EVALUATION OF RANDOMNESS

A very straightforward way to detect an observable pattern
among the random symbols or codes is to create a 2-dimensional
map of them. A 512 × 512 map of the 16 hexadecimal symbols
generated by our methodology from a recording of our system
is presented in Figure 8. As can be seen clearly, no particular,
periodic pattern is observed among the symbols.

Figure 9 shows the probability of generated hexadecimal
symbols in a sequence of 1 G symbols. It is seen to follow an
uniform distribution (the theoretical value for the probability
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FIGURE 8 | A 512× 512 map of the hexadecimal symbols. No particular,

periodic pattern is observable among the symbols.

FIGURE 9 | Probability distribution of 16 hexadecimal symbols in a sequence

of 1 G symbols raw data. The solid red line shows the theoretical value of 1/16.

distribution of 16 bin symbols (1/16) is indicated by a solid red
line in Figure 9).

The high quality of random symbols is proved through the
evaluation of the joint probability mass function (JPMF) [15],
which shows a very low deviation of ∼ 5 × 10−6 from the
expected theoretical value of (1/16) × (1/16) = 0.00390625
(Figure 10), and the evaluation of the mutual information (MI)
[16], which is calculated to be ∼ 1.5 × 10−7 bits considering
1 G random symbols.

To further analyze the quality of generated random numbers,
each symbol is replaced with its corresponding 4-bit binary
values. In this way, we obtain a binary sequence of random bits.
We then apply the 15 statistical tests in the NIST tests suite to the

FIGURE 10 | Joint probability mass function for 1 G symbols showing the

probability of having each symbol after the other one.

TABLE 2 | NIST tests results for 2 G random bits (2× 109 bits). The significance

level is α = 0.01. In order to pass, the p-value should be larger than 0.01 and the

proportion should be more than 0.983.

Statistical test P-value Proportion Result

Frequency 0.2861 0.9930 Passed

Block frequency 0.2868 0.9935 Passed

Cumulative sum 0.1657 0.9920 Passed

Runs 0.3298 0.9935 Passed

Longest run 0.4817 0.9910 Passed

Rank 0.3611 0.9860 Passed

FFT 0.0401 0.9910 Passed

Non-overlapping template 0.5666 0.9905 Passed

Overlapping template 0.4064 0.9900 Passed

Universal 0.1404 0.9850 Passed

Approximate entropy 0.2854 0.9930 Passed

Random excursions 0.5310 0.9938 Passed

Random excursions variant 0.3127 0.9883 Passed

Serial 0.3376 0.9870 Passed

Linear complexity 0.2550 0.9905 Passed

generated raw data. Various datasets with 1 and 2 Gbits length
at different applied currents to the (m)LLED were obtained.
They all passed the NIST tests without the application of a post-
processing algorithm irrespective of the EL variations of the
(m)LLED during data acquisition. The results for a dataset of
2 Gbits are tabulated inTable 2. The highest experimental bit-rate
is calculated to be 0.5 Mbps at the EL intensity of∼ 550 Kcps.

6. CONCLUSIONS

We realized a compact quantum random number generator
with a novel configuration comprising a Si-NCs LLED directly
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interfaced with a SiPM without any coupling optics. This paves
the way to the further integration of the photon source and the
single photon detectors in a single integrated circuits. Indeed,
both the devices were fabricated by using the FBK technology.
Our research is currently focusing to define a single fabrication
process allowing the fabrication of both devices in a single silicon
chip.

Remarkably the Si-NCs LLED have similar emission
properties and statistics as the standard small Si-NCs which
we have previously developed for PQRNG application [6, 9].
Therefore we could use the same robust methodology to extract
high quality random numbers which is implemented on a FPGA.
The methodology considers the non-idealities of the detector and
the source of photons, including parameters (like EL) drifts. The
generated high quality random numbers pass all the statistical
tests in NIST tests suite without any post-processing. The highest
bit rate is 0.5 Mbps with the efficiency of 4-bits per detected
photon.

This compact QRNG, with the capability of producing high
quality random numbers, can be implemented in small electronic
devices providing utmost security accessible to everyone. The
proposed device configuration has several advantage with respect
to what we already reported in Bisadi et al. [9], particularly
with respect to the simplicity of the system (no optics, no
thermoelectrical cooler, simple power supply). Still the proposed

device can be further optimized by improving the spectral
overlap between the LLED and the SiPM and by increasing
the parallelization of the Si-NCs LLED/SiPM which can further
improve the bit rate to higher values if required by some
applications.
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In a line-defect waveguide of a planer photonic crystal (PhC), we found a new rotational

state of polarized light, which exhibits “polarization rotation” on the PhC plane, when

a phase mismatch m was added to the air-hole alignment of the waveguide, where

mode splitting was simultaneously observed in the dispersion curve. To account for

the polarization rotation together with the mode splitting, we propose a two-state

model that is constructed from Schrödinger equation obtained from the equation for

electromagnetic waves. The proposed two-state model gives an explanation on the

relation between the polarization-rotational angle θ and the mismatch m and on its

rotational direction (i.e., clockwise or anticlockwise direction) that depends on the mode.

Using the two-state model, we also discuss the angular momenta of the polarized light in

the PhC waveguide, which are directly related to the Stokes parameters that characterize

the polarization rotations.

Keywords: silicon photonics, polarization, photonic crystal, phase mismatch, Stokes parameters

1. INTRODUCTION

In a line-defect waveguide of a planer photonic crystal (PhC), the polarization of light can rotate
on the two dimensional PhC plane by addition of a phase mismatch to the air-hole alignment of
the waveguide, which occurs without non-linear optical interactions (e.g., optical Kerr effects and
photorefractive effects). Originally, the presence of light rotation, given as an optical vortex that
carries angular momentum, in photonic bandgap media [1–4] via such non-linear interactions has
been found in theoretical and experimental investigations [5–10]; This mechanism is attributed to
the localized vortex state induced by those non-linear effects in the bandgap media, which is thus
sometimes called a gap vortex. This is an analogous concept to a gap soliton in the bandgap media
[11, 12].

However, without such non-linear effects, we can show the presence of a rotational state of
polarized light just by adding themismatchm (0 < m < a) to the air-hole alignment of a sidewall of
the waveguide [13], as illustrated in Figure 1, where a is the air-hole period of the PhC waveguide.
Mock et al. also studied the same waveguide [14], but did not report such rotation. They just
reported that the light path in the waveguide was “zigzag.” An interesting feature of the rotation
that we found is that if light propagates from a non-mismatched region to the mismatched region
with a gradual mismatch change between them, the light polarization gradually rotates. Here we
can define its rotational angle θ for a givenm, and as will be shown later, θ is proportional tom (for
smallm compared with a) via numerical simulations.

14
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FIGURE 1 | PhC line-defect waveguides, where light propagates through the

central part in the x-direction. The white circles are air-holes made on a black

material (e.g., silicon), where the air-hole spacing (or lattice constant) is a, and

the air-hole diameter is assumed to be smaller than a. (A) Air-hole alignments

are symmetric with respect to the central line (or the x-axis). (B) The lower part

of the air-hole alignment is shifted with the addition of a mismatch m, which

causes the polarization rotation of light.

Moreover, with the addition of m, mode splitting (or level
splitting) is observed in the dispersion curve [13, 14], which
is created from an originally degenerated mode that contains
different polarizations. The main cause of this mode splitting is
symmetry breaking; When m = 0, structural symmetry in the
x and y directions is maintained (despite the presence of a line-
defect waveguide at y = z = 0), which causes highly degenerated
states in the dispersion curve. But, structural symmetry breaking
caused bym 6= 0 can resolve the degenerated states, creating two
split modes, as will be shown in detail in section 2.

We infer from our numerical simulations that the polarization
rotation is intimately connected with the mode splitting, because
they occur simultaneously, triggered by the addition of m.
(Because of the above reasons, the mechanism of the rotational
light obtained in our research is completely different from that
of a gap vortex with non-linear interactions; the rotation that
we found is spatial rotation, not temporal rotation seen for the
localized vortex.)

In this paper, we will gain a qualitative understanding of the
simultaneous polarization rotation and mode splitting from our

FIGURE 2 | Band structure of the PhC line-defect waveguide. Here, the

air-hole period a is 450 nm, the air-hole radius is 0.29 a, and the waveguide

width is 1.2
√
3 a. Mode-crossing points exist for m/a = 0. As m increases

(e.g., m/a = 1/8, 1/4, 3/8, 1/2), each mode-crossing point splits into two

modes (the upper and lower modes) and the split-mode spacing (or gap size)

becomes large. The light line for the waveguide with upper and lower

air-claddings is indicated by the slanted dashed line.

two-state model constructed via Schrödinger equation derived
from the equation for electromagnetic (EM) waves in the
waveguide. In this analysis, we can show that there is a relation
between the polarization-rotational angle θ and the mismatch
m (via a relation between the mode-splitting spacing ω and the
mismatch m), which is an analogous relation to that between an
electron-energy-level splitting h̄ω and an applied magnetic field
B, or h̄ω ∝ B.

In the next section, we will give some numerical simulation
results, and then introduce a theory that connects the mode
splitting with the polarization rotation within linear optics.

2. NUMERICAL RESULTS FOR MODE
SPLITTING AND POLARIZATION
ROTATION

Finite-difference time-domain computations [13, 14] show that
when m = 0, the band structure (or the dispersion curve)
of a PhC line-defect waveguide has mode-crossing points, as
depicted in Figure 2. Each of the mode-crossing points consists
of two degenerated modes with different polarizations, which are
yielded by band-folding (realized in the reduced zone for the
wavenumber k at −π/a ≤ k ≤ π/a). With the addition of
non-zero m, the two-fold degeneracy is resolved (see Figure 2),
thereby creating two split modes, where the gap size f between
the split modes increases with increasingm. (Schematic diagrams
of Figure 3 well describe this behavior, and show that the mode
splitting can be regarded as level splitting). The electric fields
with different polarizations (with even or odd modes) come to
what we call TE−1 or TE+1 , respectively, as displayed in Figure 4

for k = 0.2925 × 2π/a at m/a = 0, 1/8, 1/4, 3/8, 1/2. (Much
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FIGURE 3 | Schematic diagrams for (A) a mode-crossing point with m = 0, which can be regarded as a single level with degeneracy, and (B) mode-split points with

m 6= 0, which can be looked upon as two split levels.

FIGURE 4 | Electric fields with different polarizations that come to the TE−1 - and TE+1 -polarizations with even and odd modes, respectively, for m/a = 0, 1/8, 1/4, 3/8,

1/2 at k = 0.2925× 2π/a. Here, the absolute value of Ex and Ey is plotted.

clearer polarization rotation can be seen in Hz , and this will also
be shown below.)

Figure 5 with the blue (TE+1 ) and red (TE−1 ) curves depicts a
calculated m-dependence of the split modes, TE+1 and TE−1 , that
correspond to those in Figure 3B, which are produced from the
lowest degenerated TE1 mode at 190.13 THz with k = 0.2925 ×
2π/a. Here, we chiefly focus on the lowest mode (TE1) because its
crossing point at 190.13 THz with k = 0.2925 × 2π/a is placed
inside the light cone, that is, the light at that point is a really-
propagating mode, not a radiation mode. Also, we observed that
a maximum gap size fmax = 8.68 THz was obtained atm/a = 0.5
and that the splitting behavior was symmetric for (a) 0 < m/a ≤

0.5 and (b) 0.5 < m/a < 1. Thus we plotted the figure for
Case (a) only, which is sufficient to look at the essence of the

behavior. The inset of Figure 5 shows the m-dependence of the
normalized gap size, f /fmax. Here, we phenomenologically found
that it had good linearity, i.e., f /fmax = g m/a (g = 2.5615)
at m/a . 0.3 (but f /fmax leveled off near m/a = 0.5). The
g = 2.5615 was obtained via the least square fitting with a straight
line for the data points at m/a less than or equal to 0.2875. Note
that we also observed that the center (say �̄ = (�0 + �1)/2)
of the TE+1 and TE−1 modes (say �0 and �1) showed little m-
dependence (almost nom-dependence), as indicated by the black
dashed curve in Figure 5 (although�1−�0 = ω = 2π f showed
a largem-dependence, as seen in Figure 5).

We then give clearer field and intensity profiles of the TE−1
and TE+1 modes for Hz : Figure 6A shows the field profile or the
real part of Hz in a unit cell at k = π/a of the Brillouin-zone
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FIGURE 5 | Calculated m-dependence of the two split modes, TE+1 (blue

curve) and TE−1 (red curve), produced from a mode-crossing point at 190.13

THz with k = 0.2925× 2π/a of a degenerated TE1 mode. The centre of the

TE+1 and TE−1 modes has little m-dependence, as indicated by the black

dashed curve. The gap size f between the TE+1 and TE−1 modes increases

with m, and the maximum gap size fmax(= 8.68 THz) is obtained at m/a = 0.5.

The inset shows the m-dependence of f/fmax by the green dots, where the

green dots at m/a . 0.3 fit well with the black dashed line with

f/fmax = gm/a (g = 2.5615).

(BZ) end, and Figure 6B shows the intensity profile |Hz|
2 at a

mode-crossing point, k = 0.2925 × 2π/a. We then observe
clearer tilted field and intensity profiles with a tilted angle (or a
rotational angle) θ that increases with increasing m. In this case,
we found that the rotation of the intensity profiles of TE+1 (TE−1 )
in Figure 6B was in the anticlockwise (clockwise) direction; A
similar tendency remained in the field rotations of Figure 6A at
the BZ end (since we observed in numerical simulations that the
mode-splitting spacing became large even at the BZ end as m
increased).

The above results were obtained only from the numerical
simulations (i.e., with no theoretical explanations via analytical
methods). In the next section, we will explain the observed
simultaneous polarization rotation and mode splitting by use of
an analytical method with a two-state model derived from the
equation for EM waves.

3. ANALYTICAL INTERPRETATION AND
DISCUSSION

To derive the two-state model to account for the above
phenomena, we start with the following wave equation (obtained
fromMaxwell’s equations) for light propagating in the x direction
with polarization Ei:

(

∇
2
−

n2

c2
∂2

∂t2

)

Ei = 0, (1)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, n is the refractive index
that includes the PhC spatial modulation, and c is the velocity of
light.

In the following, we make an approximation that the input-
pulse spatial-width W(> λ) is larger than the air-hole period a
in the waveguide, where the input wavelength λ also needs to
suffices λ > a. This approximation makes it possible to deal
with the phenomenon (light rotation) analytically, but cannot
well describe it near the PhC band edge because the backward
reflection of propagating light is strong due to Bragg reflection
with the air-hole arrays. Within the above approximation, an
average nature of the rotation of light in a size of order ∼ λ can
be obtained.

While keeping the above approximation, we insert Ei =

ui e
i(βx−wt) into Equation (1) and obtain the next Schrödinger

equation [15] (see Appendix):

ih̄
∂ui

∂t
= −

h̄2

2neff
∇

2
2 ui + Vui (2)

≡ H(t) ui, (3)

where we used the notations: h̄ ≡ λ/2π , t ≡ x, V ≡ neff−n, β =

neffk = 2πneff/λ, ∇
2
2 = ∂2/∂y2 + ∂2/∂z2, and neff is the effective

refractive index in the waveguide. Here we also used the slowly-
varying-envelope approximation, |∂2ui/∂x

2| ≪ |2β ∂ui/∂x|. In
addition, we omitted a small difference in β for waves with
different polarizations (and with the same node numbers). In
this situation, we can perfectly utilize ideas and descriptions in
quantum mechanics to study the phenomena. Hereafter, we will
deal with all quantities in units of h̄ = c = 1, as often used in
quantum mechanics.

Now we concentrate on the lowest eigenvalue of the right-
hand side of Equation (2) whenm = 0, as described in section 2.
In this case, we denote �̄ as the lowest eigenvalue, or the lowest
frequency at the crossing point (with m = 0). When m is added
(i.e., m 6= 0), since the mode with �̄ with degeneracy splits into
two modes, we set their eigenvalues to be �0 and �1, where
�0 = �̄− ω/2 and �1 = �̄+ ω/2 with a gap size of ω(= 2π f )
between the two split modes, where ω has a large m-dependence
but �̄ has littlem-dependence, as already shown in Figure 5.

For those two split modes, the Hamiltonian H(t) in Equation
(3) can be written in the matrix representation as

H(t) =

(

�1 0
0 �0

)

=
�1 +�0

2
1̂+

�1 −�0

2
σ̂3

= �̄ 1̂+ ω
σ̂3

2
, (4)

which is known as a two-state model [16]. In Equation (4), 1̂ is a
unit matrix and σ̂3 is the z-component of the Pauli matrices (σ̂1,
σ̂2, σ̂3):

σ̂1 =

(

0 1
1 0

)

, σ̂2 =

(

0 −i
i 0

)

, σ̂3 =

(

1 0
0 −1

)

(5)

Frontiers in Physics | www.frontiersin.org 4 August 2018 | Volume 6 | Article 8517

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sotto et al. Polarization Rotation and Mode Splitting

FIGURE 6 | Mode profiles of TE+1 and TE−1 at m/a = 0, 1/8, 1/4, 3/8, 1/2 (for odd and even modes). (A) Field profile of the real part of Hz at k = π/a of the BZ end.

(B) Intensity |Hz|
2 at k = 0.2925× 2π/a of a crossing point.

that suffice

[σ̂i, σ̂j] = 2iǫijkσ̂k, (6)

{σ̂i, σ̂j} = 2δij1̂ (7)

and thus

σ̂iσ̂j = δij1̂+ iǫijkσ̂k, (8)

where [X,Y] = XY −YX, {X,Y} = XY +YX, and i, j, k run from
1 to 3. ǫijk is the Levi-Civita symbol, and δij is the Kronecker delta.
In what follows, we also use the vector notation of Equation (5),
i.e., σ̂ = (σ̂1, σ̂2, σ̂3).

For the Hamiltonian (4), the Schrödinger equation is of the
form:

i
d

dt
|φ(t)

〉

= H(t)|φ(t)
〉

, (9)

=

(

�̄ 1̂+ ω
σ̂3

2

)

|φ(t)
〉

, (10)

where |φ(t)
〉

is a two-component wave function, or a spinor
[17, 18]. (Its detail is described below.) In Equation (10), using
the following transformation

|φ(t)
〉

= e−i�̄1̂t
|ψ(t)

〉

= e−i�̄t
|ψ(t)

〉

, (11)

we can simplify the Equation (10) as

i
d

dt
|ψ(t)

〉

= H (t)|ψ(t)
〉

, (12)

where

H (t) = ω
σ̂3

2
. (13)

In Equation (11), deriving the e−i�̄t-term from |φ(t)
〉

is accepted,
because we observed a sizable field/intensity tilt induced by a
change inm orω (becauseω has a largem-dependence, but not �̄
because �̄ has littlem-dependence). Thus clearly, we can say that
the tilt does not depend on �̄. Furthermore, when we calculate
the expectation value for an operator Ô , we can rigorously say
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that no �̄ term contributes to the expectation value: In fact, we
obtain via the transformation (11).

〈

Ô
〉

t
=

〈

φ(t)|Ô|φ(t)
〉

=
〈

ψ(t)|Ô|ψ(t)
〉

. (14)

Further, at the initial state (or at t = 0), the next relation holds:

|φ(0)
〉

= |ψ(0)
〉

≡ |ψ
〉

, (15)

where |ψ
〉

is the (time-independent) eigenvector of Equation
(13), or a spinor:

|ψ
〉

=

(

u1
u2

)

. (16)

Here, u1 and u2 are polarized electric fields or wave functions
that will come into the TE−1 mode and TE+1 mode, respectively.
Equation (16) is almost the same as the Jones vector constructed
with polarized electric fields, which is expressed as a spinor with
an appropriate basis [19, 20]. There is a slight difference in
definition between Equation (16) and the Jones vector defined
with plane EM waves, because our EM waves are the waves
propagating along the PhC waveguide with different polarization
directions; nonetheless, almost the same definition can be used
(except for the polarization directions).

The above spinor of a two-state model with Equation (13)
can be regarded as that of an electron with spin 1

2 . In this case,
as is well-known, the size of ω in Equation (13) is proportional
to the strength B of an applied magnetic field, i.e., ω ∝ B
(for weak B) [16]. In this situation, we can look upon m as B
phenomenologically by help of the “equivalence” between ω ∝ m
and ω ∝ B (for smallm and B).

Next, to see the time evolution of the system with H (t), we
use the following equation for a unitary operator U(t) [16, 21].

i
d

dt
U(t) = H (t)U(t). (17)

Equation (17) can be derived from the derivative of the identity
U(t)†U(t) = U(t)U(t)† = 1̂, that is,

i
dU(t)

dt
U(t)† = −iU(t)

dU(t)†

dt
, (18)

which indicates that the left-hand side of Equation (18) is
hermitian. If we set this hermitian part as H (t), Equation (17)
can be obtained from Equation (18).

By inserting Equation (13) into Equation (17) and integrating

Equation (17) with the initial condition U(0) = 1̂, we obtain

U(t) = 1̂− i

∫ t

0
dt1 H (t1)+ (−i)2

∫ t

0
dt1

∫ t1

0
dt2 H (t1)H (t2)+ . . .

(19)

=

∞
∑

n = 0

(−i)n
(

ω
σ̂3

2

)n tn

n!
(20)

= e−iω
σ̂3
2 t (21)

= 1̂ cos
ω t

2
− iσ̂3 sin

ω t

2
, (22)

where the time-integration parts have been simply calculated as

∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtn =

tn

n!
(23)

because H (t) = ω σ̂3/2 has no time-dependence.
In this case, the time-evolution |ψ(t)

〉

of the spinor |ψ
〉

in
Equation (16) is of the form:

|ψ(t)
〉

= U(t)|ψ
〉

(24)

= e−iω
σ̂3
2 t
|ψ

〉

(25)

=

(

1̂ cos
ω t

2
− iσ̂3 sin

ω t

2

)

|ψ
〉

. (26)

where if we interpret that ω t is an angle θ for the polarization
rotation, then Equation (26) gives a double-valuedness to u2 (or
u1) in the θ-rotation. Here, t should be interpreted as the length of
the interconnection part between the non-mismatched entrance
and the mismatched exit (when we use the units of h̄ = c = 1);
The “t” is a constant when the interconnection length has a fixed
value. Even in this situation, θ can vary asm changes because the
insertion of f = g fmaxm/a into ω = 2π f in Equation (26) gives
θ = ω t = 2πgfmaxt m/a = θ0m/a, where θ0 = 2πgfmaxt is a
constant. Inserting ω t = θ into Equation (26), we obtain

|ψ(θ)
〉

=

(

1̂ cos
θ

2
− iσ̂3 sin

θ

2

)

|ψ
〉

, (27)

which provides the relation |ψ(2π)
〉

= −|ψ(0)
〉

. Furthermore,
Equation (27) can explain the aforementioned anticlockwise
(clockwise) rotation of the TE+1 (TE−1 ) mode, because the explicit
expression of Equation (27) with

|ψ(θ)
〉

=

(

u1(θ)
u2(θ)

)

, |ψ
〉

=

(

u1
u2

)

(28)

is of the form:
(

u1(θ)
u2(θ)

)

=

(

e−iθ/2 u1
eiθ/2 u2

)

. (29)

Thus, if u2(θ) rotates anticlockwise, then u1(θ) rotates clockwise
(and vice versa). Note that in terms of |φ(t)

〉

(not |ψ(t)
〉

), we
obtain in place of Equation (29):

(

u1(θ)
u2(θ)

)

=

(

e−i20 e−iθ/2 u1
e−i20 eiθ/2 u2

)

, (30)

where 20 = �̄ t is a constant when the “length” t is a constant,
as described above. If m = 0, then θ = 0, but 20 remains as
a constant (because �̄ in 20 has (almost) no m-dependence); in
this case (orm = 0), Equation (30) becomes

(

u1(0)
u2(0)

)

=

(

e−i20 u1
e−i20 u2

)

. (31)

Equation (31) corresponds to the zero-m fields, as given at
the leftmost ones in Figure 6A. We can see that adjusting the
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parameter “t” in 20 of Equation (31) enables setting various
initial polarized states at m = 0. We should examine the field
tilt for m 6= 0 as a difference from those initial field profiles,
(u1(0) u2(0)), and thus what we should look upon as a field tilt
is given by

(

u1(θ)
u2(θ)

)

=

(

e−iθ/2 u1(0)

eiθ/2 u2(0)

)

, (32)

and hence we obtain the same result as that in Equation (29).
As for the evolution of the angular momentum operator σ̂ , we

can calculate it as

σ̂ (t) = U†(t)σ̂U(t). (33)

Using Equations (21),(33), we obtain





σ̂1(t)
σ̂2(t)
σ̂3(t)



 =





cosωt − sinωt 0
sinωt cosωt 0
0 0 1









σ̂1
σ̂2
σ̂3



 , (34)

where Equations (8),(22) have been used in the calculations. For
convenience, we rewrite Equation (34) as

σ̂i(t) = aij(t)σ̂j, (35)

where j is a dummy index and runs from 1 to 3. Since σ̂i is defined
in the SU(2) space [22], it is not yet related to a vector in our real
space, i.e., in the SO(3) space.

Next, we show how a vector rotating in SO(3) space is related
to σ̂i in the SU(2) space. To perform this, we start with the
following Schrödinger equation:

i
d

dt
|ψ(t)

〉

= H (t)|ψ(t)
〉

, (36)

i
d

dt
|ψ(t)

〉

− H (t)|ψ(t)
〉

= 0. (37)

By multiplying
〈

ψ(t)|σ̂i from the left to Equation (37), we obtain

i
〈

ψ(t)|σ̂i
d

dt
|ψ(t)

〉

−
ω

2

〈

ψ(t)|σ̂iσ̂3|ψ(t)
〉

= 0, (38)

where Equation (13) was also used. We then multiply σ̂i|ψ(t)
〉

from the right to the hermitian conjugate of Equation (37) and
obtain

− i

(

d

dt

〈

ψ(t)|

)

σ̂i|ψ(t)
〉

−
ω

2

〈

ψ(t)|σ̂3σ̂i|ψ(t)
〉

= 0. (39)

By subtracting Equation (39) from Equation (38), we have

i
d

dt

〈

ψ(t)|σ̂i|ψ(t)
〉

−
ω

2

〈

ψ(t)|[σ̂i, σ̂3]|ψ(t)
〉

= 0, (40)

i
d

dt

〈

ψ(t)|σ̂i|ψ(t)
〉

+ iǫij3
〈

ψ(t)|σ̂j|ψ(t)
〉

ω = 0, (41)

where [σ̂i, σ̂3] = 2iǫi3kσ̂k = −2iǫij3σ̂j was used. In Equation
(41),

〈

ψ(t)|σ̂i|ψ(t)
〉

is an expectation value of σ̂i at “time” t and

is observed as a vector in the SO(3) space. Also, we can show that
〈

ψ(t)|σ̂i|ψ(t)
〉

is actually proportional toMi(t) of a general vector
M(t) rotating in the SO(3) space, where it suffices the same-form
equation as Equation (41):

d

dt
Mi(t)+ ǫij3Mj(t)ω = 0 (42)

that is obtained [23] from

d

dt
M(t)− ω ×M(t) = 0, (43)

whereM(t) is fixed in amoving systemwith an angular frequency
vector ω = ωe3 and e3 is a unit vector in the e3-direction.
Furthermore, in order to check the transformation property of
〈

ψ(t)|σ̂i|ψ(t)
〉

, by use of |ψ(t)
〉

= U(t)|ψ
〉

, we get

〈

ψ(t)|σi|ψ(t)
〉

=
〈

ψ |U†(t)σiU(t)|ψ
〉

(44)

= aij(t)
〈

ψ |σj|ψ
〉

. (45)

This means that
〈

ψ(t)|σi|ψ(t)
〉

is a vector that transforms via
aij(t), i.e., the rotation in SO(3). In the above, we have assumed
ω t = θ since its use in Equations (27),(29). Thus, we consistently
use it in the rotation of the angular momentum. We then obtain





〈

σ̂1
〉

θ
〈

σ̂2
〉

θ
〈

σ̂3
〉

θ



 =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1









〈

σ̂1
〉

〈

σ̂2
〉

〈

σ̂3
〉



 (46)

as the explicit matrix representation of Equation (45), where
〈

σi
〉

=
〈

ψ |σi|ψ
〉

and
〈

σi
〉

θ
=

〈

ψ(t)|σi|ψ(t)
〉

with ω t = θ (or
〈

σi
〉

θ
=

〈

ψ(θ)|σi|ψ(θ)
〉

). The relation of
〈

σi
〉

θ
with the electric

fields is easily obtained from the direct calculations of
〈

σi
〉

θ
=

〈

ψ(θ)|σi|ψ(θ)
〉

with Equations (5),(28):

〈

σ̂1
〉

θ
= u∗1(θ)u2(θ)+ u1(θ)u

∗
2(θ)

= 2 Re(u∗1(θ)u2(θ)) ≡ S2, (47)
〈

σ̂2
〉

θ
= −iu∗1(θ)u2(θ)+ iu1(θ)u

∗
2(θ)

= 2 Im(u∗1(θ)u2(θ)) ≡ S3, (48)
〈

σ̂3
〉

θ
= |u1(θ)|

2
− |u2(θ)|

2
≡ S1, (49)

where S1, S2, and S3 are the Stokes parameters that characterize
polarization rotations [24, 25]. The electric-field intensity relates
to the rest (S0) of the Stokes parameters:

〈

1̂
〉

θ
= |u1(θ)|

2
+ |u2(θ)|

2
≡ S0. (50)

Note that the rotation of the angularmomentum in Equation (46)
shows a single-valuedness with respect to θ , which is completely
different from the double-valuedness of the wave function |ψ(θ)

〉

;

If we treated an electron of spin 1
2 , |ψ(θ)

〉

would be the wave
function of the electron, and the angular-momentum motion
would correspond to spin precession [26].

In this paper, we have pointed out the “equivalence” between
the PhC line-defect waveguide with an added phase mismatch m
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and the spin-half electron with an applied magnetic field B. In
particular, the EM wave equation in the PhC waveguide could be
reduced to the Schrödinger equation; Both systems showed the
same two-level splitting and had the split mode or level spacing in
proportion to the size of the perturbation,m or B. At the present
stage of the theory with some approximations, we cannot prove
the “equivalence” mathematically, but we showed it from some
supporting evidence. A further development of the theory with
much less approximations will be able to explain the equivalence.

4. SUMMARY

Using the Schrödinger equation derived from the EM wave
equation, we have built a two-state model that can explain the
observed polarization rotation and mode splitting that occur
simultaneously when a phase mismatchm is added to a PhC line-
defect waveguide. The theory has given a double-valuedness to
the light field (or the wave function) with different polarizations
and a single-valuedness to themotion of angularmomenta. Using
a spinor representation, the former has explained the difference
in the rotational direction (i.e., clockwise or anticlockwise
direction) of TE−1 or TE+1 mode, and the latter has clarified the
relation between the angular momenta and the Stokes parameters
that define the polarization rotations. Also, the theory has given
a relation between the rotational angle θ and the mismatch m

for small m (via the numerical result between f and m). In
this analysis, the “equivalence” between both systems has been
indicated for the light field with two split modes and the electron
wave function with two split levels and for the light angular
motion and the electron spin precession.
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APPENDIX

To derive the Schrödinger equation from the wave equation, we
insert Ei = ui e

i(βx−wt) into

(

∇
2
−

n2

c2
∂2

∂t2

)

Ei = 0, (A1)

and obtain

∇
2
2 ui e

i(βx−wt)
+
∂2ui

∂x2
ei(βx−wt)

+ 2iβ
∂ui

∂x
ei(βx−wt)

+

(

n2

c2
w2

− β2
)

ui e
i(βx−wt)

= 0, (A2)

where ∇2
2 = ∂2/∂y2 + ∂2/∂z2 and β = neffk = 2πneff/λ, k is the

wavenumber in vacuum, and w is the angular frequency.
By use of the slowly-varying-envelope approximation,

|∂2ui/∂x
2| ≪ |2β ∂ui/∂x|, Equation (A2) is of the form:

∇
2
2 ui + 2iβ

∂ui

∂x
+

(

n2

c2
w2

− β2
)

ui = 0. (A3)

By substituting β = neffk for Equation (A3) and using an
approximation, |n− neff| ≪ n+ neff, we obtain

iλ–
∂ui

∂x
= −

λ–2

2neff
∇

2
2 ui + (neff − n)ui, (A4)

where λ– = λ/2π . In Equation (A4), by setting h̄ = λ–, V =

neff − n, we finally get

ih̄
∂ui

∂t
= −

h̄2

2neff
∇

2
2 ui + Vui. (A5)
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A Poincaré sphere is a powerful prescription to describe a polarized state of coherent

photons, oscillating along certain directions. The polarized state is described by a vector

in the sphere, and various passive optical components, such as polarization plates

and quartz rotators are able to rotate the vectorial state by changing the phase and

the amplitude among two orthogonal basis states. The polarization is originated from

spin of photons, and recently, significant attentions have been made for optical Orbital

Angular Momentum (OAM) as another fundamental degree of freedom for photons. The

beam shape of photons with OAM is a vortex with a topological charge at the core, and

the state of vortexed photons can be described by a hyper-Poincaré sphere. Here, we

propose a compact Poincaré rotator, which controls a vortexed state of photons in a

silicon photonic platform, based on Finite-Difference Time-Domain (FDTD) simulations.

A ring-shaped gear is evanescently coupled to two silicon photonic waveguides, which

convert optical momentum to OAMwith both left and right vortexed states. By controlling

the relative phase and the amplitude of two traveling waves in input ports, we can control

the vortexed states in the hyper-Poincaré sphere for photons out of the gear. The impact

of the geometrical Pancharatnam-Berry-Guoy’s phase and the conservation law of spin

and OAM for vortexed photons out of the gear are discussed.

Keywords: orbital angular momentum, vortex, Poincaré sphere, stokes parameter, silicon photonics

1. INTRODUCTION

Planck discovered momentum p of a photon is determined by its wavelength λ in a vacuum as

p =
h

λ
= h̄

2π

λ
= h̄k, (1)

where h is the Plank constant [1], h̄ = h/(2π)is the Dirac constant [2], and k is the wavenumber,
through investigations on black body radiation [3, 4]. This discovery was a landmark for the
development of quantum mechanics, which is based on fundamental principles of all elementary
particles [5–7]. The quantization condition of the Plank formula was further refined by the
Bohr-Sommerfeld model [3, 4, 8, 9],

∮

C
p · dq = nh, (2)

where q is a generalized coordinate, which is the conjugate of the momentum p for a counter
integration along a closed loop of C, and n is a quantum number for this orbital. By applying
the quantization condition for the orbitals of electrons in an atom, the electronic structures
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were systematically classified by radial and azimuthal quantum
numbers for energy and angular momentum to explain various
material properties based on atomic orbitals for the periodic
table [3, 4, 8, 9]. In modern quantum mechanics, momentum
and angular momentum are understood based on generators of
translational and rotational symmetries of the system [5–7, 10–
13]. It is interesting to be aware that both photons and electrons
are characterized by integer quantum numbers of orbitals,
regardless of the difference in statistics governed by Bose-Einstein
and Fermi-Dirac distribution functions, respectively [14–18].

Despite its historical importance on the nature of photons,
it is relatively recent to pay attention to optical Orbital Angular
Momentum (OAM) [19–46]. Allen et al. showed that the optical
beam with Laguerre-Gauss mode carry OAM of h̄m per photon
along the direction of propagation, where m is the integer
quantum number to characterize the helical rotation of the phase
front [19]. In order to allow the finite OAM (|m| 6= 0), the
amplitude of the Laguerre-Gauss mode must have nodes at the
core, and m is the winding number of the phase along the
closed contour perpendicular to the direction of propagation
[19, 32, 33, 47–49]. m is also called as a topological charge
[19, 21, 22, 26, 32, 33, 35, 38, 39]. From fundamental points of
views, it was argued whether it is possible to split spin angular
momentum andOAM from the total angularmomentum defined
from the Poynting vector [24], or not [20, 27, 34]. This issue is
posing a critical question whether we can treat OAM as a similar
degree of freedom with polarization [50, 51] for internal spin
degree of freedom. It is beyond our scope of this paper to explore
the splitting issue of spin and OAM in a rigorous way [20, 27, 34].

Practically, however, it is well-established that a state with
OAM is described in a hyper-Poincaré sphere [21, 28, 36, 37]
similar to a Poincaré sphere [52–54] for visualizing Stokes
parameters [47, 48, 52, 54–64] of polarization states. Polarization
states are described by two level systems corresponding to an
arbitrary orthogonal states, such as left (|L〉) and right (|R〉)
circularly polarized states, horizontally (|H〉) and vertically (|V〉)
linear-polarized states, or diagonally (|D〉) and anti-diagonally
(|A〉) polarized linear-polarized states [47, 48, 52, 54–64]. We
can also consider corresponding states with OAM in the hyper-
Poincaré sphere [21, 28, 36, 37]. We propose to call a beam with
OAM as vortexed in a close similarity to polarized photons.

Padgett and Courtial proposed to use a hyper-Poincaré sphere
by using a superposition states of left- and right- vortexed states,
and demonstrated such a superposition state is controlled by a
phase-shift, generated by rotated cylindrical lenses [21, 65]. In the
definition of the work of Padgett and Courtial [21], the duality
between vortexed states and polarized states was discussed in
general, and the polarization state of the vortexed state was not
specified. Thus, the superposition of left- and right vortexed
states with a certain fixed polarization state was considered [21].
Later, Milione et al. clarified the polarization states for photons
with OAM, and showed rich vortexed states could be realized
by allowing the superposition states of orthogonally polarized
states with a proper OAM [28]. Here, instead of considering left-
and right-vortexed states, arbitrary polarized states with a certain
vortexed state were clarified, and the further superposition
states with different OAM states were also discussed [28].

More recently, several groups successfully generated arbitrary
OAM states by transferring polarized states to vortexed states
[36, 37, 66].

In order to change the polarized state in Poincaré sphere, we
can utilize various passive and active optical components, such as
retarder plates, phase-shifters,Mach-Zehndermodulators, quartz
rotators and so on [48, 50, 51, 60, 62, 64]. We can also use several
optical components, such as vortex retarders [25, 31] and novel
micro-gears [29, 67–69] for the generations of beams with OAM.

In particular, the micro-gears [29, 68, 69] in a silicon (Si)
photonic platform [70, 71] are promising to encode various
vortexed states, such as amplitudes, phases, and vorticities
(topological charges) for high-speed optical communications
[72] as well as for potential quantum communications [46].

Nevertheless, it is not so straightforward to manipulate
vortexed states dynamically for photons in the hyper-Poincaré
sphere, compared with the polarized photons without OAM, due
to the lack of appropriate phase-shifters and rotators for OAM,
compared with those for polarization.

Motivated by these fundamental progresses on OAM and
practical advances in Si photonics, here, we propose a Poincaré
rotator to generate a beam with an arbitrary vortexed photons
in an integrated optical circuit. We use Finite-Difference
Time-Domain (FDTD) simulations for an Si micro-gear [29]
evanescently coupled to two Si photonic wire waveguides
(Figure 1). We discuss the impacts of the conservation law of
OAM and spin as well as the geometrical Pancharatnam-Berry-
Guoy’s phase [26, 48, 73–76] for vortexed photons.

2. MODEL

2.1. Device Structure
The device structure is schematically shown in Figure 1. We
assume the use of Si-On-Insulator (SOI) substrate with the top
Si layer thickness t of 220 nm, on the buried-oxide (BOX)
thickness of 2µm or beyond on top of the supporting Si substrate
[70, 71]. Two standard straight wire waveguides are designed to
be single mode with the width W of 440 nm. The polarization
of the mode propagating in the Si wire waveguide is the quasi-
Transverse-Electric (TE) mode [47, 48, 70], such that the electric
field is dominated by the horizontal linearly polarized state with
the momentum p = h̄kneff , given by the wavenumber kneff =

2πneff/λ with the effective refractive index of neff.
The Si wire waveguides are located near the Si micro-gear

(Figures 1A,B,D,E) with the distance d of 100nm. We have also
considered a ring resonator (Figure 1C) for the reference. The
width of both gears and a ring is the same width (W) with the
waveguide. The radius R of gears and a ring is 1µm.

For the gear, we introduced the grating in the inner surface of
the ring. The depth of the dip dr = W/2 is designed to be half
of the waveguide width. We have calculated modes for gears with
the grating number N of 10 (Figure 1B), 9 (Figure 1D), and 8
(Figure 1E), respectively, in order to see the impact of the grating
to the conservation law. The wavelength we have considered in
this work is fixed at λ = 1, 540 nm, for which the grating of
N = 10 satisfies the Bragg reflection condition.
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FIGURE 1 | Poincaré rotator. (A) Birds’ view of the proposed device. The silicon (Si) micro-gear is coupled to two Si wire waveguides located on top of silicon dioxide

(SiO2). Two input ports (1 and 2) are used to inject photons with certain phases and amplitudes to generate a vortex beam with a superposition state of left and right

vortexed states. The thickness of the Si layer is t = 220 nm. (B) Gear of the grating number N of 10. The width of waveguide is W = 440 nm. The depth of the grating

dip is dr = 220 nm. The distance of between the gear and the waveguide is d = 100 nm. The radius of the grating is 1µm. (C) Ring resonator for the reference. Unit

vectors of nr and nφ are shown. (D) Gears of N = 9. (E) Gears of N = 8.
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Two input ports of 1 and 2 are used to inject photons from the
waveguide into the gear. Photons from port 1 will couple to the
gear to rotate along the right hand direction, seen from the top of
the chip (from the +z direction), while photons from port 2 will
rotate the gear along the left hand direction. The idea is to control
the phase and the amplitude of the input ports to generate the
vortexed photons under a superposition state between left and
right vortexed states.

One might think that one bus arrangement is enough to
generate both left- and right- vortexed states, as demonstrated in
previous works [29, 68]. In our case, however, we are considering
to connect the waveguides to integrated Si photonic optical
modulators [70, 71, 77] to allow the phase-shift for left- and
right-vortices. Unfortunately, the coupling efficiency to a ring
resonator from a waveguide is not high [70, 78, 79], and it is
extremely sensitive to temperatures. Therefore, we must avoid
interferences from the lights passing into the other ports. So far,
on-chip isolators [80] are not integrated as an option for standard
foundries of Si photonics chip, yet. A practical option at this
moment was to employ two-bus arrangements [69, 81], such that
the transmitted lights in the through-ports could be terminated
to avoid the back reflections.

Here, we had better to explain our definition of the rotation.
We use a standard right handed (x, y, z) coordinate as shown
in Figure 1. (x, y) define the plane for the surface of the SOI
substrate, and z is perpendicular to the substrate. We define the
direction of rotation of photons, seen from the detector side. We
believe this is a natural direction to describe the rotation, since
we consider the rotation of the phase front in the (x, y) plane for
a vortex, propagating along the +z direction. Consequently, the
phase front of the left vortex is rotating in the counter clock wise
(left rotation), seen from the +z direction, while the phase front
of the right vortex is rotating in the clock wise (right rotation).
We had better to clarify the way to describe the time evolution
of the wave. We use ei(kz−ωt) for the plane wave propagating
along +z direction over t with the wavenumber of k and the
angular frequency of ω. Physicists prefer this definition, while
engineers prefer e−i(kz−ωt). Due to the duality for the definition
of the imaginary number, i2 = (−i)2 = 1, both definitions
work, properly. The use of a complex electric field is a useful
technique to calculate an electro-magnetic field, and there is no
issue to extract the observable real electric field by calculating the
sum of the complex field and its complex conjugate at the end
of the calculation [47, 48, 60]. But, the interpretation to consider
the direction of the oscillation will be opposite in the complex
fields of E, such that we needed to clarify to avoid unnecessary
confusion.We are also aware that some physicists prefer to define
the direction of rotation of photons, seen from the source side.
This is in fact quite common, for example, to define the rotation
of the screw driver or to consider the use of a handle to drive a car.
However, as far as we use the left handed x = (x, y, z) coordinate,
it is easier to show modes and phase angles in the (x, y) plane,
such that the natural direction of the observation is from +z
direction, which is the detector side.We needed to emphasize this
point, since our results would be complicated, if we are not sure
about our definition. We apologize from the beginning for those
who are not happy about our convention.

We also use the cylindrical coordinate r = (r,φ, z), as
shown in Figure 1C. The unit vectors along the radical and
the azimuthal directions are nr and nφ , respectively. These unit
vectors depend on the locations, nr = nr(r,φ) = (cosφ, sinφ, 0)
and nφ = nφ(r,φ) = (− sinφ, cosφ, 0), such that we must take
care of the difference of the fixed unit vectors to define the (x, y, z)
coordinate. Even if the components of (r,φ) are constant over
the area, the real vectors in (x, y) coordinate are changing over
the space.

2.2. Ring: Momentum to Orbital Angular
Momentum Converter
First, we have simulated a standard ring resonator [70, 82]
(Figure 1C) to understand how OAM is generated. The single
mode in the waveguide has no orbital angular momentum, and
it is propagating with the momentum of p = (px, 0, 0) injected
from the input port 1 (Figure 2). If we do not have the gear,
p is conserved due to the translational symmetry of the wire
waveguide along the x direction. This symmetry is broken due to
the presence of the ring, and the modes in the waveguide and the
ring are degenerate at the point of contact, where the resonance
to the ring waveguide is taking place [70, 82], and the fraction of
photons are transferred from the waveguide to the ring resonator.

The single mode of the input is oscillating predominantly
along y direction, since it is a TE mode, given by E = (Ex,Ey) ≈
(0,Ey). We use the arbitrary units throughout this paper, and the
input mode is normalized as

∫

dy |Ey|
2
= 1. (3)

In order to see how the direction of oscillation has been changed,
we have projected E = (Ex,Ey) to the azimuthal and the radical
directions to get each component as

Eφ = E · nφ = −Ex sinφ + Ey cosφ (4)

Er = E · nr = Ex cosφ + Ey sinφ, (5)

respectively. As shown in Figure 2, the mode in the ring
resonator is predominantly oscillating in the radical direction
(Figures 2E,F), such that the direction of the oscillation is
perpendicular to the direction of the propagation. This is
consistent with the single TE mode nature of the ring resonator.
Nevertheless, some interesting features are already going on,
since the unit vector nr is changing the direction along the
circulation. Therefore, the polarization is changing azimuthally
from horizontal, diagonal, vertical, vertical, back to horizontal
upon the rotation. In other words, the average spin angular
momentum becomes zero for the resonant mode, circulating in
the ring resonator, because of the change in the direction of
oscillation upon the time evolution. On the other hand, OAM
becomes non-zero, since the mode acquired the phase as

Er ∝ eimφ , (6)
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FIGURE 2 | Ring resonator coupled to a wire waveguide. (A) Real and (B) imaginary part of the azimuthal component of the electric field, its (C) phase, and
(D) intensity. (E) Real and (F) imaginary part of the radial component of the electric field, its (G) phase, and (H) intensity. The orbital angular momentum of m = −10 is

obtained for a ring of the radius of 1µm at the wavelength of 1,540 nm. The mode is rotating along the clock-wise (right) direction.

where the m is the OAM component along the quantization axis
of z. We confirm that it is the eignemode of the OAM operator

L̂zEr =
h̄

i

∂

∂φ
Er = h̄mEr . (7)

In our example of Figure 2, the input mode from the port
1 is coupled to the resonator mode of m = −10 and it is
rotating along the clock-wise right direction, as is evident from
the phase evolution from blue (the phase of −π), green, to red
(the phase of π) toward the right circulation (Figures 2C,D).
This corresponds to the right circulation over the time evolution.
Due to the rotational symmetry of the ring, OAM is preserved,
if it is isolated. In reality, the ring resonator is coupled to wire
waveguides, such that the loss is expected to loose some fractions
of photons leaking from the resonator. We also confirmed that
Eφ also has the same phase and OAM ofm = −10.

In this classical example, we see that the momentum of
photons in the waveguide is transferred to OAM in the ring
resonator. Therefore, the ring resonator works as a converter of
momentum to OAM. Due to the broken symmetry of the system,
the momentum is not conserved, and it adiabatically changes the
direction of the propagation. In the ring, it is circulating in the
right direction, such that the mode acquired OAM.

It is also interesting to be aware that the Bohr-Sommerfeld
quantization condition [3, 4, 8, 9],

∮

C
pφ · Rdφ = hm, (8)

is certainly satisfied to obtain the azimuthal component of
the momentum

pφ = h
m

2πR
=

h

λneff
(9)

and the effective wavelength in the waveguide

λneff =
2πR

m
. (10)

It is also important to have a node at the center of the ring. In
the ring waveguide, the amplitude of the mode vanishes at the
center due to the absence of the material of a high refractive
index, and therefore it is obvious. Even if we use a disk instead
of the ring, the Whispering-Gallery-Mode (WGM) [67] has a
node at the center. Otherwise, OAM would diverge at the center
[19]. Thus, the finite m is also called as topological charge, since
it characterizes the nature of the electric fields surrounding it.
We had better to emphasize, though, that there is no physical
observable in the unit of charge. There is no singularity of the
fields, either. It is just a node, andm is the winding number of the
phase to characterize the vortex, andm is the quantization integer
for the OAM component along the direction of the propagation.

2.3. Gear: Generator of Vortices and
Conservation Law for Optical Angular
Momentum
Next, we discuss about the generation of vortices out of the gear,
coupled to the Si wire waveguide [29, 68, 69]. Our design is much
smaller than the original proposal of Cai et al. [29], and we found
an interplay between spin and OAM upon the conservation law.
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FIGURE 3 | Left vortex generated from the gear of N = 10. The input port 1 is used to inject photons to the waveguide, and the mode profile is obtained at z = 1µm

above the gear. (A) The amplitude (|Ex |) and (B) the phase (φx ) of the horizontal electric field Ex . (C) The amplitude (|Ex |) and (D) the phase (φy )of the horizontal electric

field Ey . They show Ey ∼ −iEx ∝ eiφ , showing the direct tensor product state of the right-circularly-polarized state and the left-vortexed state, | �〉spin ⊗ | 	〉orbit.

(E) The local intensity, s0, (F) local horizontal/vertical spin component, s1, (G) local diagonal/anti-diagonal spin component, s2, and (H) local left/right spin component,

s1. Normalized Stokes parameters of (I) S0, (J) S1, (K) S2, and (L) S3. White arrows in (F–H) schematically show the direction of oscillations.

In the design of Cai et al. [29], the depth of the grating is not
significant, such that the small azimuthal component of Eφ was
scattered by the grating. On the other hand, the width of our
grating is the half of the width of the waveguide, dr = W/2,
(Figure 1B) and strong scattering of the entire mode is expected
in our design.

First, we have simulated for the gear of N = 10 (Figure 1B).
In this design, the Bragg reflection condition is satisfied, such
that the grating will give the momentum of h̄2π/3, where 3 =

2πR/N ∼ 628nm is the period of the grating, and we expect

pφ − h̄
2π

3
≈ 0 (11)

due to the momentum conservation law in a periodic system
[48, 83–85]. Using the effective refractive index of the grating as
the average value of Si and SiO2 as neff = (3.48+ 1.44)/2 = 2.46,
we obtain λneff ∼ 626 nm, and thus λneff ∼ 3. Therefore, the
momentum of photons in the plane vanishes upon acquiring the
Bragg momentum, and photons will be projected out of the gear.

The amplitudes and phases of the mode simulated at z =

1µm above the gear is shown in Figure 2. To our surprise,
OAM was not zero, and both Ex and Ey showed the clear
anti-clock-wise (left) circulation (Figures 3A–D) with the OAM
quantum number of m′ = +1, where we used ′ to stand for
the quantum number after the scattering. This corresponds to
the left circulation of a vortex over the time evolution. We
have numerically confirmed that OAM of the left-vortexed state
(Figures 3B,D) is

m =

∮

C

dφ

2π
∇φx =

∮

C

dφ

2π
∇φy = 1, (12)

which means that the winding number gives the expected z
component of OAM.

The amplitudes of |Ex| and |Ey| show the presence of a node
at the center of vortex. Moreover, if we compare the phase φx of
Ex with the phase φy of Ey, it shows φy = φx −π/2, which means
that spin s′ = −1, showing the right-circularly-polarized state.
Consequently, our numerical simulation shows the left vortexed

Frontiers in Physics | www.frontiersin.org 6 March 2021 | Volume 9 | Article 64622828

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Saito Poincaré Rotator for Vortexed Photons

FIGURE 4 | Right-circularly-polarized state, generated from the gear of N = 9. The input port 1 is used to inject photons to the waveguide, and the mode profile is

obtained at z = 1µm above the gear. (A) The amplitude (|Ex |) and (B) the phase (φx ) of the horizontal electric field Ex . (C) The amplitude (|Ex |) and (D) the phase (φy )of

the horizontal electric field Ey . There is no node in the modes, such that there is no OAM. They show Ey ∼ −iEx , such that the polarization is right-circularly-polarized

state, | �〉spin.

state, given by the extended Jones vector [48, 52, 55–57, 60]

|L〉 =
e−i π4
√
2

(

1
−i

)

eiφ , (13)

where the first component is proportional to Ex and the second
component is proportional to Ey. The polarization state is
described by the SU(2) state [5–7, 10, 11]. Here, we have omitted
to include the radial dependence, given by the Laguerre-Gauss
function or the Hermite-Gauss function [19, 48]. The global
phase factor of e−i π4 is not necessary but useful to understand
the azimuthal component. The global phase also depends on
the U(1) wave from e−i(kz−ωt), standing for the propagation
along z and t, and the choice of the phase of e−i π4 is just
coming from our random choice of the detector position at
z = 1µm. The important point of our left-vortexed state |L〉
is based on the fact that it is a direct tensor product state of
spin and OAM with opposite rotation. Therefore, it can also

be described as

|L〉 = | �〉spin ⊗ | 	〉orbit. (14)

We described this state as left-vortexed state, since we are
primarily interested in a vortex for the present work.

Consequently, the conservation law of angular momentum is
described as

s+m+ N = s′ +m′, (15)

where s = 0, m = −10, N = 10, s′ = −1, and m′ = 1.
Therefore, both spin and OAM are involved upon the scattering
from our grating gear to produce a vortex, while the total angular
momentum along the direction of propagation is zero due to the
opposite rotation by spin.

The importance of the conservation law of spin and OAM of
photons in a micro-gear was first discussed by Shao et al. [68],
where the local spin components were experimentally measured
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and spin-orbit interaction was demonstrated. They used the gear
with R = 80µm, and the conservation law of angular momentum
at the local edge of the grating was discussed [68]. Our design
is based on R = 1µm, and the entire mode profile affects the
conservation law of angular momentum. Following the analysis
[68], we have also calculated the local spin density of photons,
s = (s1, s2, s3), defined by

s1 = E† σ̂3 E =
(

E∗x E∗y
)

(

1 0
0 −1

)(

Ex
Ey

)

= |Ex|
2
− |Ey|

2 (16)

s2 = E† σ̂1 E =
(

E∗x E∗y
)

(

0 1
1 0

)(

Ex
Ey

)

= E∗xEy − E∗yEx (17)

s3 = E† σ̂2 E =
(

E∗x E∗y
)

(

0 −i
i 0

)(

Ex
Ey

)

= −iE∗xEy + iE∗yEx,

(18)

which satisfy s0 =
√

s21 + s22 + s23 = |Ex|
2+|Ey|

2 (Figure 3E). We

have also calculated the local Stokes parameters, given by

S1 = S1(x) =
s1

s0
(19)

S2 = S3(x) =
s2

s0
(20)

S3 = S2(x) =
s3

s0
, (21)

which is normalized as
√

S21 + S22 + S23 = 1 at each point x, while

S0 = S0(x) (Figure 3I) is a normalized s0 with its maximum
value. As shown in Figures 3H,L, the local density of the right-
circularly polarized state (s3 and S3) is distributed over the ring,
which describes the opposite rotation of the polarization to the
rotation of the left-vortex state, described by the left rotation of
the phases (Figures 3B,D). We also found components of locally
linearly-polarized states (s1 and s2), which are changing signs
depending on the positions (Figures 3F,G,J,K) and described by

|local spin〉 = Espin

(

− sin(φ)
cos(φ)

)

. (22)

FIGURE 5 | Right vortex generated from the gear of N = 8. The input port 1 is used to inject photons to the waveguide, and the mode profile is obtained at z = 1µm

above the gear. (A) The amplitude (|Ex |) and (B) the phase (φx ) of the horizontal electric field Ex . (C) The amplitude (|Ex |) and (D) the phase (φy )of the horizontal electric

field Ey . They show Ey ∼ −iEx ∝ e−iφ , showing the direct tensor product state of the right-circularly-polarized state and the right-vortexed state, | �〉spin ⊗ | �〉orbit.
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FIGURE 6 | Generation of left vortex from the gear of N = 10. The input port 1 is used to inject photons to the waveguide. The mode profiles are obtained at

z = 0, 0.25, 0.5, 0.75, and 1µm above the gear, which are shown in (A–C), (D–F), (G–I), (J–L), and (M–P), respectively. The amplitude |E|2 = |Ex |
2 + |Ey |

2 and the

phases φx = arg(Ex ) and φy = arg(Ey ) are shown in (A,D,G,J,M), (B,E,H,K,N), and (C,F,I,L,P), respectively.
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However, the overall contribution of this component to the total
spin vanishes after the spatial integration, since both negative and
positive values appeared equally (Figures 3F,G,J,K). Moreover,
the contribution of this component to OAM also vanishes, which
is confirmed by calculating

∮

C
dφ〈local spin|L̂z|local spin〉

=

∮

C
dφ
(

− sin(φ) cos(φ)
) h̄

i

∂

∂φ

(

− sin(φ)
cos(φ)

)

= 0. (23)

It is interesting to be aware that the local spin component
is also circulating along the azimuthal direction (schematically
shown as arrows in Figures 3F,G), due to the rotation of
the phases (Figures 3B,D). Numerically, we have obtained the
spatial averages of Stokes parameters, S̄ = (S̄1, S̄2, S̄3) =

(−0.01,+0.01,−0.52) for the left-vortexed state. The spatial
average of the OAM, m̄, was 0.53. The reduction of the expected
OAM of 1 from the left vortex is attributed to the contribution of
the local spin component with vanishing OAM. This means that
about 50% of the mode is made of the purely left-vortexed state
under right polarization, while another 50% of the mode is made
of the local spin components, which are characterized by spatially
rotating linear polarization. Therefore, the efficiency to generate
the left vortex out of our gear is about 50%.

In order to confirm our picture on the conservation law
of angular momentum, we have also simulated for the gear
of N = 9 (Figures 1D, 4). In this case, the node completely
disappeared from the mode (Figures 2A,C), such that OAM
cannot be sustained and we obtained m′ = 0 (Figure 4). On the
other hand, we confirmed the same phase difference at the center
of the mode as before φy = φx − π/2. Therefore, the state is
simply described by a polarization state

FIGURE 7 | Pancharatnam-Berry-Gouy phase for a vortex generated from the

gear. The contribution from the polarization would change the sign of the

complex electric field, and the orbital angular momentum will also add to the

phase change upon crossing of the focal point. The chirality of a vortex would

not be changed upon focusing.

| �〉spin =
e−i π4
√
2

(

1
−i

)

, (24)

which is the right-circulary-polarized state without a vortex. The
nodeless mode profile was not reported in the previous work [29],
such that our results are coming from the difference of the design
of the gear. In our example, the conservation law for angular
momentum is given by

s+m+ N = s′ +m′, (25)

where s = 0, m = −10, N = 9, s′ = −1, and m′ = 0.
Therefore, the difference between N = 10 and N = 9 is exactly
what we expected.

Furthermore, we have continued to simulate the structure of
the gear with N = 8 (Figure 1E). In this case, the grating is
far away from the perfect Bragg grating condition, such that
the mode profiles are significantly distorted (Figures 5A,C).
Nevertheless, they showed the presence of the node at the center
(Figures 5A,C), and the phase is rotating along the clock-wise
(right) direction (Figures 5B,D), which is completely opposite to
the result for N = 10, as we expected from the conservation law.
In this case, the vortexed state is described as

| �〉spin ⊗ | �〉orbit =
e−i π4
√
2

(

1
−i

)

e−iφ (26)

The conservation law for angular momentum is given by

s+m+ N = s′ +m′, (27)

where s = 0,m = −10, N = 8, s′ = −1, andm′ = −1.
In all cases, the angular momentum is conserved upon

scattering by gratings. It is important to consider both spin and
OAM, simultaneously, to understand the conservation law. On
the other hand, we cannot understand why s′ = −1 was always
chosen for N = 10, 9, and 8, simply from the conservation
law of angular momentum. This could be understood by the
evolution of the phase front, as shown in Figure 6. The original
input is TE polarized along y direction, such that the phase
front of φy is going ahead of φx, and Ex acquires the same
amplitude with that of Ey at the intersection only after the
quarterly rotation (phases inside the ring of Figures 6B,C). As a
result, we obtain φy = φx − π/2, if we compare the phases at the
same position, leading to the generation of the vortex with right
polarization (Figures 6N,P). Thus, the spin angular momentum
is fixed, while OAM is determined by the conservation law of
angular momentum.

2.4. Pancharatnam-Berry-Guoy’s Phase
We have also considered the Pancharatnam-Berry-Guoy’s phase
on the generation of a vortex from the gear [26, 48, 73–76]. We
considered the design of N = 10 (Figure 1B) and examined
the evolution of mode profiles over the propagation along the
+z direction (Figure 6). The input beam was injected from port
1, and it coupled evanescently to the gear. At the center of the
waveguide at z = 0, the mode is circulating in the ring waveguide
with OAM of m = −10. The phases of φx = arg(Ex) and
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φy = arg(Ey) show the right circulation over time. If we closely
look at φx and φy inside the ring, there is no phase difference
between them (φx ∼ φy), consistent with the dominated radical
polarization (Figures 2E,F) and thus we confirm s = 0. The
beam is diffracted by the Bragg condition by the grating of
the gear, and the mode was emitted vertically from the surface
of the device. The direction of propagation is vertical but is
slightly pointing inside the gear, since the grating is located only
inside of the ring resonator. Consequently, the emitted beam is
focused at around z = 0.5µm (Figure 6G), and defocused again
(Figures 6H,M). It is important to recognize the presence of a
node even at the focussed point (Figure 6G) to maintain the
vortex. We can recognize that the mode gradually changed its
shape to accommodate the left circulation with OAM of m′ =

+1, which is opposite rotation with the circulation of m = −10

in the ring. We also confirmed that φy = φx −π/2 for a vortex at
z ≥ 0.5µm, such that it is in the right-circularly polarized state.

We could also confirm the spatial rotation of φx and φy over

z (Figures 6K,N,L,P), expected from ei(kz−ωt). The phase front
evolution of z is opposite to t, such that the chiral rotation of

the phase of the vortex over the space is opposite to the time
evolution. The phase front has moved to the clock-wise (right)
direction from Figures 6K,L to Figures 6N,P, respectively. This
is in fact opposite to the left circulation of the vortex, and
therefore, our interpretation of OAM and polarization of a vortex
is consistent.

The schematic nature of the evolution of a vortex is shown in
Figure 7. The chirality of the vortex cannot be changed upon the
focussing, and the left circulation of the vortex is maintained. On
the other hand, we had better to be careful about the geometrical
phase facto of Pancharatnam-Berry-Gouy phase [19, 26, 73–76,
86], which is given by

φG = (2n+ |m| + 1) tan−1

(

z

z0

)

, (28)

where n is the radial quantum number of the Laguerre-Gauss
mode, and z0 is the location of the focussing point [19, 48]. In
the example of Figure 6, there is no node in the radial direction,
except for the central core, and we can assign n = 0. In the

FIGURE 8 | Far-fields and Stokes parameters of left vortex from the gear of N = 10. The input port 1 is used to inject photons to the waveguide. Far-fields and Stokes

parameters are shown (A–H) in a polar coordinate (r, θ ,φ) and (I–P) in a cylindrical coordinate (r,φ, z). The ring-shape of the mode in the near-field could not be

sustained in far-fields (A,C,E,I), because our mode is not collimated. Consequently, the vortex is not well-defined in far-fields, while the phase is still rotated over the

hemisphere (J,L), reflecting the original nature of a left-vortexed state. The polarization is also dominated by the right-circularly polarized component (H,P) with
S3 ∼ −1 for the high intensity region.
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absence of OAM (m = 0), φG would result in the phase change
of the complex electric field, (Ex,Ey) → −(Ex,Ey). In our case,
m′ = −1 will give another factor of−1, and therefore, we expect
no change of the sign upon focussing for the far field (z → ∞).

For the vortex beam with the higher order OAM, the
Pancharatnam-Berry-Gouy phase factor depends on the parity of
m. If |m| is odd, the contribution would vanish together with the
contribution from the polarization, as we saw for m′ = −1. If
|m| is even including m = 0, the phase change is expected upon
crossing over the focal point. Therefore, the parity dependent
interference is expected for a vortex, generated from the gear.

2.5. Far-Fields
We have also calculated far-fields and Stokes parameters in a
polar coordinate (r, θ ,φ) and in a cylindrical coordinate (r,φ, z),
as shown in Figure 8. In a polar coordinate, the polar (Eφ) and
the azimuthal (Eφ) components are obtained (Figures 8A–D).
In particular, the phase of Eφ is constant over the hemisphere
(Figure 8D), showing the electric field is rotating with a fixed
phase along the azimuthal direction. As noted before, the unit
vector of azimuthal component depends on φ, (nφ = nφ(r,φ) =
(− sinφ, cosφ, 0)), such that the fixed phase means the vectorial
direction of azimuthal component is also changing the direction
along the rotation.

As shown in Figures 6, 7, our near-field mode profile is not
collimated at all. Therefore, the vortex and associated OAM
are not maintained in far-fields (Figures 8E,I,K), and the mode

is spreading over the hemisphere. The intensity profiles are
spreading over the polar angle of 10 to 40◦. Nevertheless, the
original nature of rotated phase is sustained, as shown in the
rotated phases of φx (Figure 8J) and φy (Figure 8L), reflecting
the left-vortexed nature in the near-field. The polarization of the
mode is also reflecting the original mode in the near-field, and
the right polarized component of S3 ∼ −1 (Figures 8H,P) is
dominated at the region of high intensities.

3. POINCARÉ ROTATOR

In this section, we discuss about ourmain results for the proposed
Poincaré rotator (Figure 1A). As shown in the previous section,
we could generate the left-vortexed state |L〉 by injecting photons
from the port 1 of the Si wire waveguide. Due to the mirror
symmetry between the port 1 and the port 2 together with
the gear, we can generate the right-vortexed state |R〉, which is
completely opposite chiral rotation to the left-vortex, by injecting
photons from the port 2. The idea, here, is to inject from both
ports after adjusting the relative amplitudes and phases of the
injected beams, to generate an arbitrary vortexed state

|2,8〉 = e−i82 cos

(

2

2

)

|L〉 + ei
8
2 sin

(

2

2

)

|R〉 (29)

in the hyper-Poincaré sphere. In modern Si photonic
technologies, it is easy to control both amplitudes and phases by

FIGURE 9 | Left vortex generated from the gear of N = 10. The input port 1 is used to inject photons to the waveguide, and the mode profile is obtained at z = 1µm

above the gear. (A) Real part, (B) imaginary part, and (C) intensity of the azimuthal complex electric field (Eφ ). (D) Real part, (E) imaginary part, and (F) intensity of the
radial complex electric field (Er ). Eφ is almost constant over the ring, such that the mode is dominated by the azimuthal component.
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FIGURE 10 | Right vortex generated from the gear of N = 10. The input port 2 is used to inject photons to the waveguide, and the mode profile is obtained at

z = 1µm above the gear. (A) Real part, (B) imaginary part, and (C) intensity of the azimuthal complex electric field (Eφ ). (D) Real part, (E) imaginary part, and

(F) intensity of the radial complex electric field (Er ). Eφ is pointing toward nφ .

using integrated photonic circuits, such that we can control the
superposition state in the hyper-Poincaré sphere.

3.1. Left and Right Vortices
First, we continue to evaluate the left-vortexed state, injected
from the port 1. We have calculated azimuthal and radical
components for |L〉 to obtain

Eφ =

(

e−i π4
√
2

)

eiφ (− sinφ − i cosφ) = −
1

2
(1+ i) (30)

Er =

(

e−i π4
√
2

)

eiφ (cosφ − i sinφ) =
1

2
(1− i). (31)

Our numerical results support this picture, as shown in Figure 9.
Both Eφ and Er are almost constant over the location of the
ring, where the intensity is maximized. The overall intensity of
Eφ is larger than Er , as explained by the dominant scattering of
evanescent component of Eφ at the internal grating [29]. The
constant Eφ does not preclude, however, the existence of the finite
OAM of m′ = −1, as φx and φy are clearly rotating to the left
over time. The rotated local spin component of |local spin〉 also
gives rise to a contribute for Eφ , since Espin

(

sin2(φ)+ cos2(φ)
)

=

Espin, which also gives a constant Eφ along the direction of the
rotation (φ).

Similarly, we have also calculated the mode profiles for the
input from the port 2 to generate |R〉. We confirmed that the

vortex is approximately expressed as

|R〉 =
e−i π4
√
2

(

1
i

)

e−iφ , (32)

which means the generation of the right-vortexed state. As we
expected the total angular momentum is zero, since it is the direct
tensor product state with the left-circularly polarized state,

|R〉 = | 	〉spin ⊗ | �〉orbit. (33)

The conservation law of angular momentum upon the diffraction
by the grating gear is given by

s+m+ N = s′ +m′, (34)

where s = 0,m = +10, N = −10, s′ = +1, andm′ = −1.
The corresponding azimuthal and radical components for

|R〉 become

Eφ =

(

e−i π4
√
2

)

e−iφ (− sinφ + i cosφ) =
1

2
(1+ i) (35)

Er =

(

e−i π4
√
2

)

e−iφ (cosφ + i sinφ) =
1

2
(1− i). (36)

Numerical simulation completely supports this expectation, as
shown in Figure 10. Eφ (Figures 10A,B) changes its sign from
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the corresponding left-vortexed state (Figures 9A,B), while the
relative phase between real and imaginary parts are maintained,
which are determined by the location z of the detector, due to
the simple phase evolution of ei(kz−ωt). On the other hand, Er for
the right vortex (Figures 10D,E) shows the same phase with the
corresponding Er for the left vortex (Figures 9D,E).

Therefore, we could prepare two orthogonal states of |L〉
and |R〉 simply by injecting photons from different ports. The
orthogonality of the modes is guaranteed in 2-folds: one for the
spin state as

spin〈	 | �〉spin =
1

2

(

1 −i
)

(

1
−i

)

= 0, (37)

and the other for OAM

orbit〈	 | �〉orbit =

∫ 2π

0

dφ

2π
e−2φi

= 0. (38)

We can also confirm the proper normalization as

〈L|L〉 =
1

2

(

1 i
)

(

1
−i

)∫ 2π

0

dφ

2π
1 = 1 (39)

〈R|R〉 =
1

2

(

1 −i
)

(

1
i

)∫ 2π

0

dφ

2π
1 = 1. (40)

3.2. Linearly Vortexed States
Now, we have prepared two states of |L〉 and |R〉, and we will
discuss the superposition state among them. We assume that we
can control the amplitudes and phases of two input beams from
port 1 and port 2.

First, we will construct horizontally (|H〉) and vertically (|V〉)
vortexed state. Considering the analogy to the polarization
[48, 50, 51] and a spin 2-level system [5–7], we expect a
unitary transformation

(

|L 〉

|R 〉

)

=
1
√
2

(

1 i
1 −i

)(

|H 〉

|V 〉

)

, (41)

whose inverse transformation becomes
(

|H 〉

|V 〉

)

=
1
√
2

(

1 1
−i i

)(

|L 〉

|R 〉

)

. (42)

Therefore, the horizontally vortexed state is given by injecting
photons in the same amplitude and the same phase into both

FIGURE 11 | Horizontal vortex generated from the gear of N = 10. The input port 1 and 2 are used to inject photons to the waveguide, and two injected modes are in

the same phase. The mode profile of a vortex is obtained at z = 1µm above the gear. (A) Real part and (B) imaginary part of the horizontal complex electric field (Ex ).

(C) Real part and (D) imaginary part of the vertical complex electric field (Ey ). A horizontal dipole is recognized for Ex with a node at the center. (E–H) The local

spin components (s0, s1,s2,s3), and (I–L) normalised Stokes parameters (S0, S1,S2,S3 ) are also shown. The circularly polarized component of s3 (H) was
substantially reduced.
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FIGURE 12 | Vertical vortex generated from the gear of N = 10. The input port 1 and 2 are used to inject photons to the waveguide, and two injected modes are out

of the phase. The mode profile of a vortex is obtained at z = 1µm above the gear. (A) Real part and (B) imaginary part of the horizontal complex electric field (Ex ).

(C) Real part and (D) imaginary part of the vertical complex electric field (Ey ). A vertical dipole is recognized for Ex with a node at the center. (E–H) The local

spin components (s0, s1,s2,s3), and (I–L) normalised Stokes parameters (S0, S1,S2,S3 ) are also shown.

ports, to get

|H〉 =
1
√
2

(|L〉 + |R〉) . (43)

Numerically results for the generated vortex of |H〉 are shown
in Figure 11. It is important to be aware that the node is
maintained at the center of the vortex. The mode profile
of Ex is a dipole-like shape, aligned horizontally. Ex exhibits
horizontal distribution, while Ey has a profile along the vertical
direction. The difference is coming from the phase difference
between real parts and imaginary parts, due to the difference
in polarization. Therefore, the Ey component shows a conjugate
vertically vortexed structure. If we would like to observe a
purely horizontal vortexed state, we can use a polarizer to
extract only the x component. Here, we shall call this mode as
horizontally vortexed state, referring to the x component, while
the y component is always its conjugate state. We have also
calculated the local spin components (Figures 11E,F) and Stokes
parameters (Figures 11I–L). The circularly polarized component
was substantially compensated by the destructive superposition
between left- and right-vortexed states.

On the contrary, the vertically vortexed state (Figure 12) is
given by

|V〉 =
−i
√
2

(|L〉 − |R〉) , (44)

whose mode profile of Ex is a dipole-like shape, aligned vertically.
The dipole-like shape of Ey is rotated 90◦, which is in fact
a conjugate horizontally vortexed state. It also has a node at
the center.

If we include the spin state, these states correspond to a
singlet state

|V〉 =
−i
√
2

(

| ↓ 〉spin| ↑ 〉orbit − | ↑ 〉spin| ↓ 〉orbit

)

, (45)

and a triplet state

|H〉 =
1
√
2

(

| ↓ 〉spin| ↑ 〉orbit + | ↑ 〉spin| ↓ 〉orbit

)

, (46)

where we have used ↑ and ↓ instead of 	 and �, respectively,
and we have omitted to show ⊗ for simplicity. It is interesting
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FIGURE 13 | Diagonal vortex generated from the gear of N = 10. The input port 1 and 2 are used to inject photons to the waveguide, and the phase of the input 2 is

π/2 ahead of the phase of the input 1. The mode profile of a vortex is obtained at z = 1µm above the gear. (A) The amplitude (|Ex |) and (B) the phase (φx ) of the

horizontal electric field Ex . (C) The amplitude (|Ex |) and (D) the phase (φy )of the horizontal electric field Ey . The phase is not obviously rotating any more. A diagonal

dipole is recognized for Ex with a node at the center. (E–H) The local spin components (s0, s1,s2,s3), and (I–L) normalised Stokes parameters (S0, S1,S2,S3 ) are also

shown.

to make a superposition state by using both internal spin degree
of freedom and OAM. Alternatively, if we describe these states
by the horizontally (↔) and the vertically (l) polarized and
vortexed states, we obtain a singlet state

|V〉 =
1
√
2

(

| ↔ 〉spin| l 〉orbit − | l 〉spin| ↔ 〉orbit

)

, (47)

and a triplet state

|H〉 =
1
√
2

(

| ↔ 〉spin| ↔ 〉orbit + | l 〉spin| l 〉orbit

)

. (48)

If we use the gear of N = 8, we could also generate another two
states for the triplet states

| 	 〉spin| 	 〉orbit = | ↑ 〉spin| ↑ 〉orbit (49)

| � 〉spin| � 〉orbit = | ↓ 〉spin| ↓ 〉orbit. (50)

For these states, the total sum of angular momentum between
spin and OAM remain finite.

We are aware that the intensity of the intensity of |H〉

(Figure 11) is smaller than that of |V〉 (Figure 12). The reason

is presumably because of our Si photonic waveguide design. All
the modes in the waveguide is in the TE mode, which is vertically
polarized along y direction, and there exists a tiny amount of the
longitudinal component, due to the transverse nature of electro-
magnetic waves. Regardless of the cylindrical symmetry of the
gear, most of the photons are diffracted upwards by the grating
without circulating the ring resonator. Therefore, the amount of
the horizontally oscillating mode is reduced.

3.3. Diagonally Vortexed States
Next, we have considered the diagonal |D〉 (Figure 13) and
the anti-diagonal |A〉 (Figure 14) vortices. In analogy to the
polarization, we obtain

|D〉 =
1
√
2

(|H〉 + |V〉) (51)

=
e−

π
4 i

√
2

(|L〉 + i|R〉) (52)

|A〉 =
1
√
2

(|H〉 − |V〉) (53)
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FIGURE 14 | Anti-diagonal vortex generated from the gear of N = 10. The input port 1 and 2 are used to inject photons to the waveguide, and the phase of the input

1 is π/2 ahead of the phase of the input 2. The mode profile of a vortex is obtained at z = 1µm above the gear. (A) The amplitude (|Ex |) and (B) the phase (φx ) of the

horizontal electric field Ex . (C) The amplitude (|Ex |) and (D) the phase (φy )of the horizontal electric field Ey . An anti-diagonal dipole is recognized for Ex with a node at

the center. (E–H) The local spin components (s0, s1,s2,s3 ), and (I–L) normalised Stokes parameters (S0, S1,S2,S3 ) are also shown.

=
e

π
4 i

√
2

(|L〉 − i|R〉) . (54)

Numerical results for these states are shown in Figures 13, 14,
respectively. A dipole is aligned diagonally in Ex for the diagonal
vortex (Figure 13A), and anti-diagonally in Ex for the anti-
diagonal vortex (Figure 14A). Phases of these states are not
rotating clearly, such that the average OAM components along
z vanish.

If we include spin states, these states become

|D〉 =
1
√
2

(

| ↔ 〉spin| ↔ 〉orbit − | l 〉spin|
↔

〉orbit

)

(55)

|A〉 =
1
√
2

(

| ↔ 〉spin|
↔

〉orbit + | l 〉spin| ↔ 〉orbit

)

. (56)

We also confirmed the conjugate nature of these states between
Ex and Ey, as shown in Figures 13, 14.

3.4. Hyper-Poincaré Sphere
By extending above ideas, we can generate a superposition state
of left- and right- vortexed state |2,8〉, defined by the polar
angle of 2 and the azimuthal angle of 8 in a hyper-Poincaré

sphere. Here, we consider a superposition state between left- and
right-vortexed states, generated from the gear. In our design,
the polarization degree of freedom is locked to a state, which
is opposite to the direction of the rotation for a vortex. This is
a significant limitation, compared to the hyper-Poincaré sphere,
discussed by Milione et al. [28], and we cannot arbitrary change
the polarization state for each vortex. Our hyper-Poincaré sphere
is similar to the original proposal of Padgett and Courtial [21],
and we would like to control by the gear coupled to the Si
photonic wire waveguides (Figure 1).

In order to achieve it, the amplitude of the input 1 must be
cos(2/2) and the amplitude of the input 2 must be sin(2/2),
while the phase factor of the input 1 must be e−i8/2 and the phase
factor of the input 2 must be ei8/2. This is easily achievable in a Si
photonic platform [70, 71]. Therefore, the vortexed state can be
controlled in our hyper-Poincaré sphere (Figure 15).

In order to see how the vortexed state is changed, it is
convenient to define the OAM operator defined by

Ŝ1 = h̄m σ̂1 = h̄m

(

0 1
1 0

)

(57)
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FIGURE 15 | Hyper-Poincaré sphere for describing a quantum state of a vortex. The polar angle of 2 will control the amplitudes of the left and the right vortexed

states, while the azimuthal angle of 8 will control the phase between these basis states. Insets show examples of various vortexed states simulated in this work.

Ŝ2 = h̄m σ̂2 = h̄m

(

0 −i
i 0

)

(58)

Ŝ3 = h̄m σ̂3 = h̄m

(

1 0
0 −1

)

, (59)

where σi (i = 1,2, and 3) are the Pauli matrices, and these
operators will act to the Hilbert space spanned by |L〉 and |R〉
as basis states. We consider the OAM average per particle, or
we can multiply the density of photons in a coherent vortexed
state, |2,8〉. These definitions are in a close analogy to the Stokes
parameters for polarization [5–7, 10, 11, 48, 48, 50–52, 55–57, 60]
toward the application to OAM [19, 21, 28, 36, 37, 52–54]. If
we take the quantum mechanical average of these operators by
|2,8〉, we obtain Stokes parameters for hyper-Poincaré sphere

S1 = 〈Ŝ1〉 = h̄m sin(2) cos(8) (60)

S2 = 〈Ŝ2〉 = h̄m sin(2) sin(8) (61)

S3 = 〈Ŝ3〉 = h̄m cos(2), (62)

and it is quite convenient to show these parameters in a 3-
dimensional Poincaré sphere, as shown in Figure 15. The polar
angle of 2 is related to the relative amplitude among two
orthogonal modes, and the azimuthal angle of 8 corresponds
to the phase difference between the two modes. Therefore,
the proposed photonic gear with coupled two Si photonic
wire waveguides is one of the practical systems to control
these parameters in a compact on-chip module. Obviously,
there are many other ways to control both amplitudes and
phases to control the superposition state of left and right
vortexed states.
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4. CONCLUSION

We have proposed a silicon micro-gear coupled to two
silicon photonic wire waveguide to control the vortexed state,
generated out of the gear. We have shown the importance
of the conservation law of the total angular momentum
of spin and orbital angular momentum. The generated
vortexed state is described by a tensor product of spin and
orbit, and we proposed to achieve the superposition state
between two orthogonal vortexed states. The amplitudes
and the phases can be controlled by standard optical
modulators, such that the control of the vortexed state
is highly feasible. We believe Stokes parameters in the
Poincareé sphere are one to the most important description
to represent the quantum nature of spin state of photons. By
extending Stokes parameters naturally to the orbital angular
momentum in a hyper-Poincaré sphere is an important step
to utilize OAM for various practical applications including
quantum technologies.
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