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Quan Yang1,2*†, Hongyan Xie1†, Xing Li3, Yuanfa Feng1, Shihao Xie1, Jiale Qu1, Anqi Xie1,
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China, 2 Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China, 3 Department of Medical
Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University,
Guangzhou, China, 4 Department of Radiation Oncology, Zhongshan Hospital Affiliated, Xiamen University, Xiamen, China

The accumulation of myeloid-derived suppressor cells (MDSCs) is one of the major
obstacles to achieve an appropriate anti-tumor immune response and successful tumor
immunotherapy. MDSCs in tumor-bearing hosts are primarily polymorphonuclear (PMN-
MDSCs). However, the mechanisms regulating the development of MDSCs remain poorly
understood. In this report, we showed that interferon regulatory factor 4 (IRF4) plays a key
role in the development of PMN-MDSCs, but not monocytic MDSCs. IRF4 deficiency
caused a significant elevation of PMN-MDSCs and enhanced the suppressive activity of
PMN-MDSCs, increasing tumor growth and metastasis in mice. Mechanistic studies
showed that c-Myc was up-regulated by the IRF4 protein. Over-expression of c-Myc
almost abrogated the effects of IRF4 deletion on PMN-MDSCs development. Importantly,
the IRF4 expression level was negatively correlated with the PMN-MDSCs frequency and
tumor development but positively correlated with c-Myc expression in clinical cancer
patients. In summary, this study demonstrated that IRF4 represents a novel regulator of
PMN-MDSCs development in cancer, which may have predictive value for
tumor progression.

Keywords: interferon regulatory factor 4 (IRF4), myeloid-derived suppressor cells (MDSCs), c-Myc,
immunosuppression, cancer
org February 2021 | Volume 12 | Article 62707214

https://www.frontiersin.org/articles/10.3389/fimmu.2021.627072/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.627072/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.627072/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.627072/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.627072/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yquangy2015@gzhmu.edu.cn
mailto:proftomato@163.com
mailto:hj165@sina.com
https://doi.org/10.3389/fimmu.2021.627072
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.627072
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.627072&domain=pdf&date_stamp=2021-02-23


Yang et al. IRF4 Regulates PMN-MDSCs Through c-Myc
INTRODUCTION

The immunosuppressive state of individuals with tumors is a key
factor in limiting the body’s anti-tumor immune response. Immuno-
suppressive cells, including tumor-associated macrophages, marrow-
derived suppressor cells, tumor-associated neutrophils, cancer-
associated fibroblasts, and regulatory T cell interactions to actively
promote tumorigenesis (1). Myeloid-derived suppressor cells
(MDSCs) has well known roles in the suppression of anti-tumor
immunity in tumor-bearing hosts (2, 3). Therefore, the key to anti-
tumor immunotherapy is to design targeted therapy for the tumor
immunosuppression mechanism, and targeting MDSCs has become
a promising strategy for tumor immunotherapy (4, 5).

Mouse MDSCs, characterized by the co-expression of the
myeloid markers CD11b and Gr1, are broadly classified into two
distinct subsets, polymorphonuclear (PMN-MDSCs) and
monocytic (M-MDSCs), based on the expression status of the
Ly6G and Ly6C epitopes (6, 7). MDSCs are now defined as
different subpopulations with specific phenotypes in human with
clear immunosuppressive capacities, which have three subsets:
M-MDSCs (HLA-DR-CD11b+CD33hi), PMN-MDSCs (HLA-
DR-CD11b+CD33low), and e-MDSC (Lin-HLA-DR-CD33+) (8,
9). These subsets differ with respect to their function, tissue
distribution, and regulatory mechanism (8, 10, 11). Interestingly,
most tumor-derived MDSCs are polymorphonuclear (12, 13).
Although some important transcription factors and signaling
pathways have been identified to regulate the differentiation of
tumor-derived MDSCs (14–16), the concrete mechanisms
remain to be fully elucidated.

IRF4, also known as LSIRF, ICSAT, Pip and Mum1, was first
cloned independently as a member of the IRF gene family in
1996 (17). Under physiological conditions, IRF4 is a key
regulator of the differentiation of lymphoid, myeloid and DC,
including the differentiation of mature B cells into plasma cells
(18). Recent studies have found that the abnormal expression of
IRF4 is closely related to the occurrence of various malignant
tumors (lymphoma, multiple myeloma, etc.) and autoimmune
diseases (19, 20). Numerous studies suggest that IRF4 is an
oncogene (21, 22), for instance, Weilemann et al. proposed that
IRF4 is needed for the survival of anaplasia large cell lymphoma
(21). Some studies also suggest that IRF4 is a tumor suppressor
gene (23, 24). For example, Naresh et al. suggest that follicular
lymphoma does not express or rarely expresses IRF4 (23).
However, the function of IRF4 in tumor immunology is still
poorly understood compared with the extensive studies on IRF4
in tumor biology (19). Recently, it has been reported that IRF4
can regulate differentiation in the myeloid system and DC cells
(25, 26), the silencing of IRF4 could promote the development
and function of MDSCs (27).
Abbreviations: BM, bone marrow; CFSE, 5,6 carboxy fluorescein diacetate
succinimidyl ester; ChIP, Chromatin immunoprecipitation assay; Con A,
Concanavalin A; c-Myc, Cellular myelocytomatosis oncogene; HCC,
Hepatocellular carcinoma; IRF, interferon regulatory factor; KO, knockout mice;
LLC, Lewis lung carcinoma; M, monocytic; MDSCs, myeloid-derived suppressor
cells; PMN, polymorphonuclear; PB, peripheral blood; SP, spleen; WT, wild-type
C57BL/6 mice.
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The c-Myc gene, a crucial member of the Myc gene family, is an
adjustable gene, which could be regulated by a variety of substances.
It regulates the transcription of thousands of genes required for a
range of cellular processes, including proliferation, differentiation,
and metabolism, which is closely related to the development of
various tumors (28). In addition to the pivotal role in tumors, Myc is
involved in physiological and pathological processes of many other
immune diseases. Studies have confirmed that the expression of
Myc family members in immune cells is strictly regulated during the
development or activation of immune cells (29).
MATERIALS AND METHODS

Ethics Statement
This research was approved by the Ethics Review Board of
Guangzhou Medical University; written informed consent was
provided by the study participants. All experimental protocols
using animals were approved by the Animal Care and Use
Committee of Guangzhou Medical University. Animal experiments
were performed in strict accordance with the regulations of the
Administration of Affairs Concerning Experimental Animals, and all
efforts were made to minimize suffering.

Mice and Cell Lines
IRF4 conditional (floxed) mutant mice (IRF4flox/flox; Stock No.
009380) and LysM-Cre mice (B6N.129P2 (B6) Lyz2tm1(cre)Ifo/J;
Stock No: 018956) were originally were purchased from the Jackson
Laboratory (Bar Harbor, ME, USA) and maintained with a C57B/L6
background. All mice were housed in a specific pathogen-free facility.
All cell lines, including B16-F10 (B16), 3T3, 293T, and 32D were
purchased from American type culture collection (ATCC). Female
C57BL/6mice were purchased from the Animal Experimental Center
of Sun Yat-Sen University (Guangzhou, China).

Generation of Interferon Regulatory
Factor 4 KO Mice
IRF4 KO mice were generated as described previously (30).
LysM-Cre mice were mated with IRF4flox/flox mice, and cohorts
were established by mating F1 IRF4flox/+; Cre+ mice to littermate
IRF4flox/+; Cre- mice. The mice were maintained under a 14-h
light/10-h dark cycle at a constant temperature (22°C) with free
access to food and water.

Reagents
The following reagents, including Concanavalin A (Con A),
dimethyl sulfoxide and c-Myc inhibitor (10074-G5) were
purchased from Sigma-Aldrich (St. Louis, MO). The recombinant
mouse cytokines, including GM-CSF, IL-6, and IL-4 were obtained
from Peprotech (Rocky Hill, NJ). The antibodies against IRF4,
S100A9, c-Myc, and b-actin and HRP-conjugated secondary
antibodies were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA). The following fluorescein-conjugated anti-mouse
antibodies: Gr-1-PE-Cy7 (RB6-8C5), Gr-1-PE (RB6-8C5), Ly-6C-
PerCP-Cyanine5.5 (HK1.4), CD11b-FITC (M1/70.15), CD11b-PE-
Cy7 (M1/70.15), CD3e-FITC (145-2C11), CD4-PE (RM4-5),
February 2021 | Volume 12 | Article 627072
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CD8a-PE-Cy5 (53-6.7), CD8a-PE-Cy7 (53-6.7), PD-L1–APC
(MIH5), PD-L2–Brilliant Violet 421 (TY25), GM-CSF-PerCP-
Cy5.5 (MP1-22E9), IL-1a–PE (ALF-161), IL-10–APC (JES5-
16E3), and IL-6–APC (MP5-20F3) and the corresponding isotype
antibodies as well as the anti-human antibodies CD33-PE (HIM3-
4), CD11b-FITC (ICRF44), and HLA-DR-PE-Cy5 (L243) and their
isotype control antibodies (QA16A12) were obtained from
Biolegend (San Diego, CA). Fluorescein-conjugated anti-mouse
antibody Ly-6G-PE (1A8) was purchased from BD Biosciences
(San Jose, CA). Lipofectamine 2000, 5,6 carboxy fluorescein
diacetate succinimidyl ester (CFSE) and the reagents for cell
culture were purchased from Invitrogen (Carlsbad, CA). Mouse
Ly6G microbeads were purchased from Miltenyi Biotec
(Teterow, Germany).

Microarray Analysis
An aliquot of 0.1 µg of total RNA was used to synthesize double-
stranded cDNA, then produce biotin-tagged cRNA using the
MessageAmp™ Premier RNA Amplification Kit. The resulting
bio-tagged cRNA were fragmented to strands of 35–200 bases in
length according to the protocols from Affymetrix. Hybridization
was performed at 45°Cwith rotation for 16 h (Affymetrix GeneChip
Hybridization Oven 640). The GeneChip arrays were washed and
then stained (streptavidin-phycoerythrin) on an Affymetrix Fluidics
Station 450 followed by scanning on a GeneChip Scanner 3000. The
hybridization data were analyzed using GeneChip Operating
software (GCOS 1.4). The scanned images were first assessed by
visual inspection then analyzed to generate raw data files saved as
CEL files using the default setting of GCOS 1.4. An invariant set
normalization procedure was performed to normalize the different
arrays using DNA-chip analyzer.

Tumor Models and Analyses
To establish tumor growth models (31), B16-F10 tumor cells
(1×105) were injected subcutaneously (s.c.) into the flanks of
mice. The tumors were measured every 2–3 days with calipers,
and the volumes were calculated as V = ½ (length [mm] × [width
{mm}]2). For tumor metastasis models (32), mice were injected
intravenously with B16-F10 tumor cells (1×105). At 3–4 weeks post
tumor injection, the lungs were inflated with formalin followed by
nodule counts and hematoxylin/eosin (H&E) staining.

Myeloid-Derived Suppressor
Cell Depletion
For PMN-MDSCs depletion (32, 33), anti-Ly6G antibodies (IA8;
BD Biosciences) were injected (80 mg per injection) through the
tail vein 3 days and 1 day before and 1 day after the injection of
tumor cells. Depletion efficiency was evaluated by flow cytometry
3 weeks after the tumor injection. The anti-IgG antibody
(BioLegend, San Diego, CA) was used as a control.

In Vitro Generation of Myeloid-Derived
Suppressor Cell
To generate MDSCs, we followed previously described
procedures (34). Mouse Bone marrow (BM) cells were
obtained from the femurs and tibias of mice and cultured in
24-well plates in RPMI 1640 medium containing 10% FBS, 50
Frontiers in Immunology | www.frontiersin.org 36
mM 2-mercaptoethanol, 10 ng/ml IL-6, and 20 ng/ml GM-CSF.
After 5 days of culture, the level of MDSCs was analyzed by flow
cytometry. For MDSCs cultured with supernatant from tumor
cells or 3T3 cells: BM cells from naive mice were cultured with
GM-CSF and IL-6 in the presence of 30% (vol/vol) 3T3 or B16-
F10 tumor supernatants (TS), After 2 days of culture, IRF4
expression was evaluated by qRT-PCR or by WB.

Invasion Assay
Matrigel matrix solution (200 mg/ml, Matrigel™ Basement
Membrane Matrix, BD Bioscience) was applied to each
transwell (Falcon, Franklin Lakes, NJ, USA). B16 cells (5×104)
were seeded on the upper chamber of the transwell, and the
lower chamber was then filled with collagen matrix (5 mg/ml).
Noninvading cells on top of the matrix were removed after 18 h,
and invading cells on the lower surface of the Matrigel matrix
were fixed with 4% PFA and stained with 0.2% crystal violet. The
cells were counted using ImageJ software (version 1.46).

Cell Surface Staining
Cells were washed twice in sterile PBS (500 g, 8 min), and
blocked in PBS containing 1% BSA for 30 min. Then, the cells
were stained with conjugated antibodies that were specific for cell
surface antigens for 30 min at 4°C in dark. These antigens
included CD11b, Gr1, Ly6G, Ly6C, CD3e, CD4, CD8a, PD-L1,
PD-L2, CD33, HLA-DR, CD14, and CD15. The stained cells
were washed twice in in washing buffer (PBS containing 0.1%
BSA), and re-suspended in 300ul washing buffer. Cells were
analyzed by using flow cytometry (Beckman Coulter, Fullerton,
CA), and the results were analyzed with use of the software
CytoExpert 2.0 (Beckman Coulter). Isotype-matched cytokine
controls were included in each staining protocol.

Cell Sorting
For sorting of the mouse PMN-MDSC cells, mouse splenocytes
were stained with CD11b-PE-Cy7, Ly-6G-PE, and Ly-6C-PerCP-
Cyanine5.5 antibodies by cell surface staining as described
before, and CD11b+Ly6G+Ly6C−/low cells were isolated by cell
sorting on a FACS Aria cell sorter (BD, Mountain View, CA). For
sorting of the human PMN-MDSC cells, peripheral blood
mononuclear cells were stained with CD33-PE, CD11b-FITC,
and HLA-DR-PE-Cy5, and HLA-DR-CD11b+CD33low cells were
isolated by cell sorting on a FACS Aria cell sorter (BD, Mountain
View, CA). The purified cells were identified by FACS, the
purification of sorted cells was above 90%.

Cell Intracellular Cytokine and
Molecule Staining
Single-cell suspensions from the spleens of WT and IRF4 KO
tumor bearing mice were stimulated with 20 ng/ml phorbol 12-
myristate 13-acetate (PMA) plus 1 µg/ml ionomycin for 5 h at
37°C under a 5% CO2 atmosphere. Brefeldin A (10 g/ml, Sigma,
Shanghai, China) was added during the last 4 h of incubation.
Cells were washed twice in PBS, fixed with 4% paraformaldehyde,
and permeabilized overnight at 4°C in PBS buffer containing 0.1%
saponin (Sigma), 0.1% BSA, and 0.05% NaN3. Cells were then
stained for 30 min at 4°C in the dark with conjugated antibodies
February 2021 | Volume 12 | Article 627072
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specific for the cell surface antigens CD11b, and Gr1 as well as the
intracellular cytokines or proteinsGM-CSF, IL-10, IL-1a, and IL-6.
The expression phenotypes of the antibody-labeled lymphocytes
were analyzed by flow cytometry (Beckman Coulter, Fullerton,
CA), and the resultswere analyzedwith the softwareCytoExpert 2.0
(Beckman Coulter). Isotype-matched cytokine controls were
included in each staining protocol.

Lentivirus Transduction
The lentiviral stock preparation and viral transduction were
performed as previously described (35). HEK 293T cells were
transfected with lentiviral vectors and packaging plasmids
(pCMV-DR8.2, pMD.G) using Lipofectamine 2000. The culture
supernatants were collected, concentrated and stored at -80°C.
BM cells were infected with a 30% volume of concentrated
lentiviral stock solution (the virus titer was 2×108 TU/ml) with
8 mg/ml polybrene. The medium was replaced with fresh
medium at 3 h postinfection. The efficiency of infection was
about 70%.

Quantitative RT-PCR
The total RNA was extracted with an RNase Minikit, and cDNA
was synthesized with SuperScript III reverse transcriptase
(Qiagen, Valencia, CA). PCR was performed in triplicate using
SYBR Green Mastermix (TaKaRa, Otsu, Japan) and was
normalized to endogenous b-actin. The primer sequences used
are listed in Supplemental Table 1.

Western Blotting
Cultured or purified cells were collected and lysed. The protein
concentration was measured with a bicinchoninic acid protein
assay kit (Beyotime). The protein sample was separated in 10%
SDS-denatured polyacrylamide gel and transferred to a
polyvinylidene difluoride membrane. The polyvinylidene
difluoride membranes were blocked with 5% skim milk in TBST
at room temperature for 2 h. The targeted molecules were probed
using specifc primary Abs and HRP-conjugated secondary Abs
and were detected with an ECL HRP chemiluminescent substrate
reagent kit (Invitrogen, Carlsbad, CA).

Chromatin Immunoprecipitation Assay
The ChIP assay was performed following the instructions from
Millipore (Billerica, MA, USA). In brief, cultured BM cells were
fixed with a 1% formaldehyde solution, lysed and sheared by
sonication. The cell lysates were precleared with protein-G-
agarose and immunoprecipitated with specific antibodies or
the anti-IgG control. The antibody-chromatin complexes were
collected with protein-G-agarose. The DNA in the complex was
recovered and quantitated with qPCR. As an input control, 10%
of the lysate was used before immunoprecipitation. The
amplification of cyclophilin from the input was used as a
loading control.

T-Cell Proliferation Assay
To quantify T-cell proliferation, we followed previously
described procedures (35). Briefly, T-cell proliferation was
determined by CFSE dilution. CD3+ T cells from BALB/c mice
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was Purified by flow cytometric sorting, and labeled with CFSE
(1 mM) (Invitrogen), stimulated with concanavalin A (5 mg/ml)
and cultured alone or co-cultured with allogeneic MDSCs (from
WT or IRF4 KO mice) at different ratios for 3 days. The cells
were then stained with CD4-PE or CD8-PE-Cy5 antibodies, and
T-cell proliferation was analyzed by flow cytometry.

Plasmid Constructs and
Transfection Assays
The 5’-regulatory sequence of the mouse c-Myc gene was
amplified by PCR using the primers listed in Supplemental
Table 1. The wild type or mutated c-Myc promoter fragments
were cloned into a pGL3-Basic vector (Promega), and the
recombinations were confirmed by DNA sequencing. Transient
transfections of the reporter plasmid were performed on 32D
cells using Lipofectamine 2000 following the manufacturer’s
instructions. The luciferase activity was measured at 48 h
post transfection.

Patients
Hepatocellular carcinoma (HCC) patients (n=20), individuals
with hepatic fibrosis (n=20), were recruited at the Third
Affiliated Hospital of Sun Yat-sen University (Guangzhou,
China). Patients who had recently been pyrexial, had clinical
evidence of an active infection, had previous or secondary
cancers, or had received corticosteroids or nonsteroidal anti-
inflammatory drugs were excluded from the study. The basic
characteristics of patients are outlined in Supplemental Table II.

Statistics
The data were analyzed using Mann-Whitney tests, c2 tests, or
Student’s t tests as appropriate. The correlations between
different parameters were analyzed using a Spearman rank test.
Statistical tests were performed using Graph Pad Prism version
5.0a and SPSS Statistics 17.0. P-values of less than 0.05 were
considered significant.
RESULTS

Decreased Interferon Regulatory Factor 4
Expression in Tumor-Deriving Myeloid-
Derived Suppressor Cells
To determine the potential regulatory mechanism of MDSCs in
tumor, a melanoma B16-F10 (B16) was used to establish a tumor
mouse model. Gene chips were analyzed and screened by using
MDSCs (T-MDSCs) sorted from tumor-bearing mouse spleens
with immature myeloid cells from normal mouse spleens (N-
MDSCs) as a control. We found that the expression of interferon
regulatory factor 4 (IRF4) in the MDSCs of the tumor group was
significantly down-regulated (Figure 1A). This result was
validated by qRT-PCR (P<0.05, Figure 1B). The western blot
(WB) further confirmed that expression of IRF4 in T-MDSCs
was clearly down-regulated compared with N-MDSCs (Figure
1C). A lower expression of IRF4 was found in CD11b+Gr1+cells
(MDSC) compared with CD11b+Gr1- cells (no-MDSC) in the
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spleen of tumor-bearing mice (Figure 1D). In vitro cell culture
showed that the expression of IRF4 in MDSCs induced by the
supernatant of cultured tumor cells was significantly decreased
compared with the MDSCs induced by the supernatant of
cultured 3T3 cells (P<0.05, Figures 1E, F). These data
demonstrated that lower level of IRF4 was expressed in the
tumor-induced MDSCs. This finding suggested that IRF4 may be
a key transcription factor regulating MDSCs differentiation and
accumulation in tumor development.

Interferon Regulatory Factor 4 Deficiency
Could Facilitate Tumor Growth and
Metastasis
To investigate whether the IRF4 gene can affect tumor
progression in mice, a tumor growth models and tumor
metastasis models were established in mouse. 6–8 weeks old
IRF4flox/flox/LysM-Cre+ (IRF4 KO) female mice were selected for
Frontiers in Immunology | www.frontiersin.org 58
experiments, IRF4flox/flox/LysM-Cre- female mice (WT) of the
same age as a control. To detect tumor metastasis, B16 cells were
injected into the WT and IRF4 KO mice via the tail vein, and the
status of the tumor metastasis was determined 3 weeks later. The
number of lung tumor metastasized mice increased significantly
compared with WT mice (P<0.05, Figure 2A). Moreover, the
appearance of lung was imaged (Figure 2D), and the slice of lung
tissues was stained by H&E staining and observed under
microscope (Figure 2E). Result showed that the number of
lung metastasis nodules in the mouse and the area of lung
metastasis nodules in IRF4-deficient mice were significantly
increased relative to the control (P<0.05, Figures 2B, C). These
results indicated that absence of IRF4 could significantly
promote lung tumor metastasis.

In addition, to detect the role of IRF4 in tumor growth, B16
tumor cells were injected into the WT and IRF4 KO mice
subcutaneously. The diameter of tumor was recorded, and the
A B

C D

E F

FIGURE 1 | Interferon regulatory factor 4 (IRF4) expression decreases in tumor-derived MDSCs. (A) Microarray analysis showing differentially expressed genes in
splenic myeloid-derived suppressor cells (MDSCs) from tumor-bearing mice was injected with B16-F10 cells via the subcutaneously (T-MDSC) and the
corresponding control cells from naive mice (N-MDSC). (B) Interferon regulatory factor 4 (IRF4) was evaluated by qRT-PCR with additional samples. (C) IRF4
expression in splenic MDSCs from tumor-bearing mice and control cells from naive mice was determined by a western blot (WB). (D) IRF4 expression in splenic
CD11b+Gr1+cells and CD11b+Gr1-cells from tumor-bearing mice was determined by WB. (E, F) Bone marrow (BM) cells from naive mice were cultured with GM-
CSF and IL-6 in the presence of 30% (vol/vol) 3T3 or B16-F10 tumor supernatants (TS); IRF4 expression was evaluated by qRT-PCR (e) and WB (f). (B, E) Data are
shown as the mean ± SEM of six samples from three independent experiments. *P < 0.05, ** P < 0.01 compared with the corresponding controls in unpaired t tests.
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mean volume of tumor was calculated from day 7 to day 23, with
3–4 days interval. The results showed that the volume of tumor
in the skin of IRF4 KO was bigger than that in the WT mice on
day 17, day 20, and day 23 (P<0.05, Figure 2F). Furthermore, 3
weeks after B16 injection, the spleens and tumors tissue (Figure
2G) were picked out frommice, and weighed. The body weight of
WT and IRF4 KO mice were also detected. The ratio of tumor-
to-body weight and spleen-to-body weight were calculated,
respectively. The results showed that the weight ratios of
tumor/body and spleen/body were significantly increased in
the IRF4 KO mice (P<0.05, Figures 2H, I). These results
suggested that a deficiency of IRF4 in tumor-bearing mice not
only promote lung tumor metastasis, but also promote tumor
growth significantly.
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Interferon Regulatory Factor 4 Inhibits the
Effect of Primarily Polymorphonuclear-
Myeloid-Derived Suppressor Cells on
Tumor Growth and Metastasis
To detect the effect of PMN-MDSC on tumor growth and
metastasis, B16 cells were injected to both WT and IRF4 KO
mice from the vain of tail (tumor metastasis model) or
subcutaneously (tumor growth models), respectively. Three weeks
later, bone marrow (BM), spleen (SP), lung, peripheral blood (PB),
and tumor tissue were picked out from B16-bearing WT and IRF4
KO mice. Mononuclear cells were isolated, respectively. The
percentage of MDSCs (CD11b+ Gr1+) was analyzed by FACS.
Results showed that the proportion and absolute number of
MDSCs in samples from the IRF4 KO mice were significantly
A

D

F

H I

G

E

B C

FIGURE 2 | Interferon regulatory factor 4 (IRF4) deficiency in the host facilitates tumor development. (A–E) WT (n=18) or IRF4 KO (n=18) mice were injected with
B16-F10 cells via the tail vein; mice were sacrificed after 3 weeks. (A) Percentage of mice with lung nodules; *P < 0.05, c2 test. (B) The number of lung nodules per
mouse; *P < 0.05, Student’s t test. (C) Lung nodule area per mouse using NIH ImageJ; ***p < 0.001, Mann-Whitney test. (D) Representative images of lungs.
(E) Representative images of lung H&E staining; arrows indicate metastases. (F–I) Tumor growth model; mice were subcutaneously injected with 1×105 B16-F10
tumor cells (n=6). Primary tumor growth was monitored (F); *P < 0.05, Mann-Whitney test. Representative images of tumor (G). The ratio of tumor (H) or spleen
(I) weight to mouse body weight; *P < 0.05, Student’s t test.
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increased in both the tumor metastasis models (P<0.05,
Figures 3A, B) and tumor growth models (P<0.05, Figures 3C, D).

Moreover, the subsets of MDSCs in KO tumor-bearing WT
and IRF4 mice were also explored by FACS. As showed in Figure
3E, the percentage of CD11b+Ly6G+Ly6C−/low PMN-MDSCs in
the bone marrow and spleen of IRF4 KO tumor-bearing mice
were increased significantly (P<0.01), whereas there was no
significant change in the percentage of CD11b+Ly6G−Ly6Chigh

M-MDSCs (P>0.05). These findings suggested that IRF4 deletion
can specifically result in the accumulation of PMN-MDSCs in
the bone marrow and spleen of tumor mice.

To determine whether tumor progression was mediated by
PMN-MDSCs mice, B16 cells were injected to both WT and
Frontiers in Immunology | www.frontiersin.org 710
IRF4 KO mice through the vain of tail or subcutaneously. Anti-
Ly6G antibodies were injected into mice through the tail vein 3
days and 1 day before and 1 day after the injection of B16 cells as
described in materials and methods. Three weeks later, the radio
of the tumor weight to the body weight was calculated, and the
number of lung nodule was counted. The results showed that
anti-Ly6G antibodies could decrease the value of these two
detections in both WT and IRF4 KO mice (P<0.05, Figures
3F–H). More interesting is that the elimination of PMN-MDSCs
can clearly reverse tumor growth (Figure 3F) and lung tumor
metastasis (Figures 3G, H) in IRF4 KO mice. These data
indicated that IRF4 mediates the effect of PMN-MDSCs on
tumor growth and metastasis.
A

E

G H

F

B C D

FIGURE 3 | Interferon regulatory factor 4 (IRF4) deficiency causes polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) elevation in tumor-bearing
mice. (A–D) B16-F10 tumor cells were injected into WT or KO mice (n=6) via the tail veil to establish tumor metastasis (A, B) or tumor-growth (C, D) models. Mice
were sacrificed after 3 weeks. The percentages (A, C) and absolute numbers (B, D) of MDSCs were analyzed by flow cytometry; *P < 0.05, **P < 0.01, Student’s
t test. (E) The proportions of the MDSCs subtypes in the bone marrow (BM) and spleens from tumor-growth models were evaluated by flow cytometry. Each group
included six mice; representative results (left) and the graphical representation (right) are shown; **P < 0.01, Student’s t test. (F–H) Mice (n=5) were injected
intravenously with anti-Ly6G antibodies or an anti-IgG control before and after B16 tumor cell injection. (F) The ratio of tumor weight to mouse body weight;
*P < 0.05, Student’s t test. (G, H) Lung transfer was evaluated 3 weeks after tumor injection. (G) Representative images of lung tissue. (H) The number of lung
nodules per mouse; **P < 0.01, Student’s t test.
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Interferon Regulatory Factor 4 Deficiency
Enhance the Immunosuppressive Function
of Primarily Polymorphonuclear-Myeloid-
Derived Suppressor Cells
MDSCs are characterized by their immunosuppressive function,
and we next investigated whether an IRF4 deficiency could influence
the function of PMN-MDSCs. The splenic PMN-MDSCs from
Frontiers in Immunology | www.frontiersin.org 811
tumor-bearing WT and IRF4 KO mice were sorted by flow
cytometry and mixed with T lymphocytes derived from allogeneic
mice in different ratios (stimulated by ConA and labeled with
CFSE). Three days later, the proliferation of T cells was detected
by FACs. The results showed that PMN-MDSCs from the IRF4 KO
group had a stronger ability to inhibit T cell proliferation than WT-
derived PMN-MDSCs (P<0.05, Figure 4A). Simultaneously, a
A

B

C

FIGURE 4 | Functional analysis of myeloid-derived suppressor cells (MDSCs). (A) Allogeneic mixed lymphocytes reaction. Allogeneic CD3+ T cells were stimulated
with concanavalin A (ConA) and then cocultured with splenic G-MDSCs that were purified with Ly6G beads from the spleen of tumor-bearing mice at different ratios
for 3 days. T-cell proliferation was evaluated by CFSE dilution; unstimulated T cells were used as a negative control. Representative data from single experiment (left)
and mean ± SEM from three independent experiments (right) are shown. (B) B16 cells were cocultured with polymorphonuclear (PMN)-MDSCs, and a cell invasion
assay was performed with Matrigel (crystal violet). Left, representative from a single experiment; right, mean ± SEMs from three independent experiments, *P < 0.05,
**P < 0.01, unpaired t test. (C) Single-cell suspensions of spleen cells from WT and IRF4 KO tumor-bearing mice were stimulated with PMA and ionomycin. The
expression of PD-L1, PD-L2, GM-CSF, IL-1a, IL-6, and IL-10 were detected in MDSCs by FACS. Numbers in the quadrants are the percentages of cells in each
expression phenotype (n = 5 mice per group). A representative of two independent experiments is shown.
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difference in tumor metastasis was detected in WT and IRF4 KO
tumor-bearing mice. In the tumor invasion experiment, B16 tumor
cells were co-cultured with PMN-MDSCs derived from the spleens
of both WT and IRF4 KO mice for 18 h. The results demonstrated
that the PMN-MDSCs derived from IRF4 KO mice possessed a
greater ability to promote tumor invasion compared with those
from the WT group (P < 0.01, Figure 4B). The ability of MDSCs in
producing inflammatory factors, including IL-1a, IL-6, IL-10, and
GM-CSF, and the expression of PD-L1 and PD-L2 (programmed
Frontiers in Immunology | www.frontiersin.org 912
cell death 1 ligand 1/2) were detected by flow cytometry. As showed
in Figure 4C, the significantly higher levels of IL-1a and IL-10
producingMDSCs were found in IRF4 KOmice (P<0.05) compared
with the WT mice, whereas there was no clear difference in GM-
CSF and IL-6 production (P>0.05). Additionally, the expression of
PD-L1 on MDSCs derived from IRF4 KO mice was significantly
higher than that from WT mice. There was also no difference
between the groups in the expression of PD-L2 onMDSCs, (P>0.05,
Figure 4C). These results revealed that an IRF4 deficiency could
BA
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E

F

FIGURE 5 | c-Myc mediates the effects of interferon regulatory factor 4 (IRF4) on myeloid-derived suppressor cells (MDSCs) development. (A, B) Gene expression in
sorted MDSCs was determined by quantitative RT-PCR (qRT-PCR) (A) and western blot (B). (C) Mouse bone marrow (BM) cells from normal mice were cultured in
medium containing GM-CSF and IL-6 with the different concentrations of c-Myc inhibitor (10074-G5). The proportions of the indicated populations were determined
by flow cytometry after 5 days of culture. (D–F) BM cells from WT or KO mice were infected with lentivirus expressing c-Myc or an empty vector. (D) The c-Myc
gene expression was determined by qRT-PCR after 48 h of culture. (E) The proportions of indicated populations were determined by flow cytometry after 5 days of
culture. (F) MDSCs were purified by flow cytometric sorting. Allogeneic CD3+ T cells (from BALB/c mice) were stimulated with Con A and then co-cultured with
isolated PMN-MDSCs at 2:1 ratios for 3 days. T cell proliferation was evaluated by 5,6 carboxy fluorescein diacetate succinimidyl ester (CFSE) dilution. A comparison
of the suppressive activity on CD3+ T cells between MDSCs from WT or KO mice were infected with lentivirus expressing c-Myc or an empty vector. (A, D, F) Data
are shown as the mean ± SEMs from three independent experiments. *P < 0.05, compared with the corresponding controls; unpaired t tests were used.
(C, E) Representative results (left) and mean ± SEMs from 3 independent experiments; *P < 0.05, unpaired t tests.
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enhance the immunosuppressive function of PMN-MDSCs in both
tumor growth and tumor invasion, and enhance the ability of
MDSCs to produce inflammatory factors.

c-Myc Mediate the Effects of Interferon
Regulatory Factor 4 on Myeloid-Derived
Suppressor Cell Development
To explore the mechanism by which IRF4 regulates PMN-MDSCs
differentiation and tumor metastasis, the potential target genes of
IRF4 in MDSCs and the genes related to the differentiation and
survival of MDSCs were detected by gene expression. As showed in
Figure 5A, the gene expression and protein expression levels of c-
Myc in MDSCs derived from IRF4 KO mice were significantly
down-regulated compared with the MDSCs derived fromWTmice
(P<0.05). Next, the expression of c-Myc protein in MDSCs was
detected by the method of western blotting. Results showed that the
expression of c-Myc protein inMDSCs derived from IRF4 KOmice
was decreased significantly (P<0.05, Figure 5B). Moreover, different
concentrations of c-Myc inhibitors were added to the cultured
MDSCs in vitro to confirm the effects of c-Myc on the
differentiation of MDSCs. The results indicated that c-Myc
inhibitors increased the proportion of MDSCs in a concentration-
dependent manner (Figure 5C). Additionally, a lentivirus
containing a c-Myc over-expression plasmid was added to
cultured bone marrow cells from both WT and IRF4 KO mice to
induce MDSCs in vitro for 5 days. As showed in Figures 5D–F,
results indicated that c-Myc over-expression in bone marrow cells
(Figure 5D) and decreased percentage of MDSCs induced by IRF4
deletion could be produced by over-expression of c-Myc (Figure
5D). Furthermore, c-Myc over-expression significantly increased
the suppressive activity of MDSCs derived from IRF4-deficient cells
(Figure 5F). These results suggested that c-Myc may mediate the
effects of IRF4 on MDSCs development and function.

c-Myc is a Transcriptional Target of
Interferon Regulatory Factor 4 in Myeloid-
Derived Suppressor Cells
The mechanism of c-Myc regulation by IRF4 in MDSCs was further
investigated in the tumor microenvironment. First, a potential IRF4
binding site was identified in the regulatory region of c-Myc (near the
region from −4,183 to −4,291 bp upstream of the transcription start
site) after screening (Figure 6A). The chromatin immunoprecipitation
experiments confirmed that the IRF4 protein can bind to these two
sites (Figure 6B). Further experiments demonstrated that the over
expression of IRF4 in the 32Dmyeloid cell line promoted the activity of
c-Myc (P<0.05), but this effect disappeared when the potential binding
site of IRF4 was deleted (Figure 6C). These results demonstrated that
IRF4 regulates the expression of c-Myc at the level of transcription.

Clinical Significance of Interferon
Regulatory Factor 4 Regulated Primarily
Polymorphonuclear-Myeloid-Derived
Suppressor Cells Development
To explore the clinical significance of IRF4-mediated differentiation
of PMN-MDSCs, peripheral blood samples from patients with liver
cancer (HCC) were collected, and peripheral blood samples from
Frontiers in Immunology | www.frontiersin.org 1013
nontumor patients with liver fibrosis served as controls. The
proportion of the M-MDSCs (HLA-DR-CD11b+CD33hiCD14+)
and PMN-MDSCs (HLA-DR-CD11b+CD33low CD15+) in the
peripheral blood of liver cancer patients was significantly
increased (P<0.01, Figure 7A). Moreover, the expressions of IRF4
and c-Myc in PMN-MDSCs and M-MDSCs from tumor patients
was explored. Results showed that the expressions of IRF4 and c-
Myc were down-regulated in PMN-MDSCs from tumor patients
compared with those in the controls (P<0.05), but no significant
change was detected in expression of IRF4 in M-MDSCs (Figures
7B, C). Furthermore, the expression of IRF4 in PMN-MDSCs was
inversely correlated with the proportion of PMN-MDSCs in liver
cancer patients (Figure 7D). Consistent with the experimental
results in mice, the expression of IRF4 was also positively
A
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FIGURE 6 | c-Myc is a transcriptional target of interferon regulatory factor 4
(IRF4) in myeloid-derived suppressor cells (MDSCs). (A) Sequence analysis of
c-Myc promoter; the potential IRF4-binding sites are underlined. (B) A
chromatin immunoprecipitation (ChIP) assay was performed on a 3-day
culture of bone marrow (BM) cells using anti-IRF4 or anti-IgG antibodies; the
presence of the c-Myc promoter harboring the potential IRF4 binding sites
(site 1: −4,291~−4,183) was measured by qPCR. Site 2 (−3,289~−3,185)
and site 3 (−2,011~−1,910) were detected in parallel as controls. The data
were normalized against input and presented as the fold increase over the
IgG control. (C) 32D cells were co-transfected with the c-Myc reporter (WT,
+157 ~−4,480) or deletant (+157 ~−3,573) and the plasmid expressing IRF4
or vector; luciferase activity was measured 48 h posttransfection. (B, C) Mean
± SEMs from three independent experiments; *P < 0.05, ns P > 0.05,
unpaired t tests.
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correlated with the gene expression of c-Myc in the PMN-MDSCs
from tumor patients (Figure 7E). These results indicated that IRF4
mediated PMN-MDSCs differentiation has very important clinical
significance during tumor progression.
DISCUSSION

Myeloid-derived suppressor cells (MDSCs) has well known roles in
the suppression of anti-tumor immunity in tumor-bearing hosts
(2, 3). However, few reports have focused on the mechanisms
Frontiers in Immunology | www.frontiersin.org 1114
controlling the development and differentiation of MDSCs (33, 36,
37). Therefore, elucidation of the signaling events controlling
MDSCs subsets will facilitate the development of an efficient
MDSC-based clinical therapy.

It has been reported that IRF4 can regulate differentiation in
the myeloid system and DC cells (25, 26), the silencing of IRF4
could promote the development and function of MDSCs (27).
However, the role in the lineage determination of immune cells
remains unknown. Despite the extensive studies on the roles of
IRF4 in tumor biology, the function in tumor immunology
remains poorly understood. Under physiological conditions,
A
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FIGURE 7 | Clinical significance of interferon regulatory factor 4 (IRF4)-mediated polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) development.
Peripheral blood samples were collected from hepatocellular carcinoma (HCC) patients (n=20); individuals with hepatic fibrosis (HF) (n=20) were used as a control.
The levels of MDSCs and their subsets were determined by flow cytometry. (A) Representative results (upper) and mean ± SEMs (lower) are shown. (B, C) The
expression of IRF4 (B) and c-Myc (C) in PMN-MDSCs and M-MDSCs were determined by qRT-PCR. Mean ± SEMs from 4 individuals are shown. (D, E) Correlations
between IRF4 expression and PMN-MDSCs frequency (n=12) (D) and c-Myc expression in PMN-MDSCs (n=12) (E) are shown; Spearman rank test.
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the regulatory role of IRF4 in myeloid cell differentiation
deserves further investigation. Here, we demonstrate that IRF4
represents a novel regulator of PMN-MDSCs, but not of M-
MDSCs and IRF4 expression is also negatively correlated with
PMN-MDSCs levels in clinical HCC patients. Thus, our results
indicate that IRF4 may play an important role in MDSCs
subset determination.

IRF4 has been shown to be important for efficient antigen
cross-presentation of moDC (38), and IRF4 expression cloud
induce macrophage by cytokines activation and polarization
(39). Given the substantial reduction of moDC cells and
induction of M2 cells, it seems more likely that this is due to
an impaired sustained activation of anti-tumoral T cells than to
the amplification and action of MDSC in IRF4-KO mice. We
demonstrated that the PMN-MDSC frequency was correlated
with tumor weight and metastasis in the B16 model. It suggested
that the elevated levels of PMN-MDSC in the IRF4 KO mice
could be a secondary effect of the increased tumor progress.

Valdez et al. reported that Prostaglandin E2 can suppress
IRF4 expression in T cells (40). Meanwhile, Prostaglandin E2
promotes tumor progression by inducing myeloid-derived
suppressor cells (41). These studies suggest a possibility that a
high level of prostaglandin E2 in the tumor microenvironment
induces MDSCs development by suppressing IRF4 expression.
Here, we found that the expression of IRF4 was decreased in the
MDSCs treated with supernatant from tumor cells compared
with the supernatant from 3T3 cell. It implied that there might be
some Prostaglandin E2 in the supernatant of cultured tumor cells
which decreased the expression of IRF4 in MDSCs. Further
experiment was needed to elucidate it.

Although the existing evidence suggests that Myc family
members play a crucial role in regulating the development,
differentiation and activation of immune cells (macrophages,
dendritic cells, B cells and T cells, etc.) (42, 43), no studies have
focused on the regulation of MDSCs differentiation and function
by the c-Myc gene. In this study, the important role of the
c-Myc gene in regulating the differentiation and function of
MDSCs is elucidated and can be targeted for MDSCs treatment.
These findings provide a new and important theoretical and
experimental basis for improving the efficacy of current
tumor immunotherapy.

MDSCs expansion in human tumors has also been extensively
studied, revealing that MDSCs derived from distinct types of
tumors vary with respect to both their phenotype and immune
properties (8). Regardless, the significance of MDSCs subsets in
clinical cancer patients is not well defined. In this study, we
found that PMN-MDSCs, but not M-MDSCs, are associated with
tumor metastasis in HCC patients. The negative correlation
between IRF4 expression and PMN-MDSCs levels further
supports the pathological significance of IRF4 in PMN-MDSCs
development. However, we would like to note that the
relationship between IRF4 and PMN-MDSCs in human
tumors requires further detailed investigation in distinct tumor
types before firm conclusions can be drawn.

In conclusion, our study demonstrates that IRF4 is a novel
regulator of PMN-MDSCs in cancer and that c-Myc is the
Frontiers in Immunology | www.frontiersin.org 1215
transcriptional target of IRF4 in MDSCs. IRF4 may have
predictive value for determining the PMN-MDSCs level and
tumor progression in cancer patients.
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Immune infiltrates in the tumor microenvironment (TME) of breast cancer (BRCA)

have been shown to play a critical role in tumorigenesis, progression, invasion, and

therapy resistance, and thereby will affect the clinical outcomes of BRCA patients.

However, a wide range of intratumoral heterogeneity shaped by the tumor cells and

immune cells in the surrounding microenvironment is a major obstacle in understanding

and treating BRCA. Recent progress in single-cell technologies such as single-cell

RNA sequencing (scRNA-seq), mass cytometry, and digital spatial profiling has

enabled the detailed characterization of intratumoral immune cells and vastly improved

our understanding of less-defined cell subsets in the tumor immune environment.

By measuring transcriptomes or proteomics at the single-cell level, it provides an

unprecedented view of the cellular architecture consist of phenotypical and functional

diversities of tumor-infiltrating immune cells. In this review, we focus on landmark studies

of single-cell profiling of immunological heterogeneity in the TME, and discuss its clinical

applications, translational outlook, and limitations in breast cancer studies.

Keywords: single-cell sequencing, breast cancer, single cell mass cytometry, tumormicroenviroment, immune cell

INTRODUCTION

Born in 2009 (1), selected as the Method of the Year 2013 by Nature Methods (2), the single-cell
sequencing technologies are revolutionizing the details of whole-transcriptome and proteome
snapshots from a tissue to a cell (3–5). Compared with traditional bulk sequencing approaches,
the single-cell sequencing technologies enable the identification of cellular heterogeneity in
greater detail than conventional methods at the single-cell level. It shows unequaled strength
in exploring cellular diversity especially immunological heterogeneity in the TME, which is
an extremely subtle system and contains a variety of tumor cells and infiltrating immune
cells (6, 7). Recently rapid developed single-cell RNA sequencing (scRNA-seq) methods have
allowed for the identification of rare and novel cell types, simultaneous characterization of
multiple different cell states, more accurate and integrated understanding of their roles in the
tumor microenvironment. The workflow of scRNA-seq consists of single-cell capture, mRNA
reverse transcription, cDNA amplification, library preparation, high-throughput sequencing,
and data analysis. The number of sequenced reads, which represents the gene expression
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level, has been counted as a digital gene expression matrix for
bioinformatic analysis (8, 9). In this review, we will outline
the recent findings on tumor-infiltrating immune cells based
on scRNA-seq in human breast cancers, and their connections
with immunotherapy and potential clinical applications. We also
explore ways in which other single-cell approaches, such as
single-cell mass cytometry (10), that deepen our understanding
of immunological responses and resistance in the tumor
microenvironment, and examine potential future innovations in
the field.

DECOMPOSITION OF TUMOR IMMUNE
MICROENVIRONMENT USING scRNA-seq

Although the tumor–immune ecosystem is highly complex
and comprises a heterogeneous collection of cells, single-cell
RNA sequencing technology has emerged as a powerful tool
for the dissection of the tumor immune microenvironment

FIGURE 1 | State of the art of single-cell technology and its application in breast cancer studies. Single-cell sequencing technologies have been designed for almost

all the molecular layers of genetic information flow from RNA to proteins. For each molecular layer, multiple technologies have been developed, all of which have

specific advantages and disadvantages. Single-cell technologies are close to comprehensively depicting the state of the functional properties and dynamic changes of

immune cells in the tumor microenvironment.

that uncovers the mechanism of activation, regulation, and
communication (Figure 1).

THE COMPLEXITY OF
TUMOR-INFILTRATING LYMPHOCYTES
(TILs)

A research group from Australia analyzed intratumoral T cells
isolated from tumor tissues by using the multiparameter flow
cytometry method, based on a prospective cohort of 123 breast
cancer patients, and showed that significant heterogeneity existed
in the infiltrating T lymphocytes populations (11). Then, they
performed single-cell transcriptome analysis on 6,311 flow-
sorted CD3+CD45+ T cells from two samples of human primary
triple-negative breast cancer (TNBC) tumor. A total of 10
distinct cell clusters included 3 CD8+ T cell clusters and
4 CD4+ T cell clusters were identified. Of interest, among
the CD8+ T cell clusters, one cluster had the expression of
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molecules suggestive of a tissue-resident memory T (TRM) cell
phenotype. This CD8+CD103+ TRM-like cluster was highly
distinct, with 400 genes including several hallmarks of TRM

differentiation that statistically differentially expressed when
compared with the other T cell clusters, and highly expressed
both immune checkpoint molecules (such as PDCD1 and
CTLA4) and cytotoxic effector proteins (such as GZMB and
PRF1). Moreover, the gene signatures of the CD8+ TRM cluster
that confirmed by using bulk RNA-seq data, were found to
significantly correlate with favorable patient survival in early-
stage TNBC. As indicated in this study, scRNA-seq enabled
the discovery of minor subgroups of TILs that were related to
immune-suppression or immune-surveillance, and biomarkers
of these distinct immune cells may serve as prognostic factors or
therapeutic targets for breast cancer. The main limitation of this
study is that there were only two TNBC tumor samples profiled
by scRNAseq.

It is clear that T cells have a dominant role in the
tumor immune microenvironment, however, there is a growing
appreciation of other components of TILs such as B cells
may also contribute to anti-tumor immunity. Recently, Lu
et al. (12) observed a phenotype switch of B cells during
neoadjuvant chemotherapy that could enhance tumor-specific
T cell responses. scRNA-seq of tumor-infiltrating B cells was
performed in paired clinical samples of pre- (998 cells) and
post-neoadjuvant chemotherapy (1,499 cells) collected from
4 breast cancer patients. The analytic result showed that a
distinct B cell subset that expressed high levels of inducible T-
cell co-stimulator ligand (ICOSL) significantly increased after
neoadjuvant chemotherapy. Besides, the high expression of CR2
and low expression of IL-10 were also found in this special cell
subset. The comparison between patients with stable diseases
or progression and patients with partial or complete remission
indicated that this cell subset was related to improved therapeutic
efficacy. Further survival analyses indicated that ICOSL+ B
cell abundance was an independent positive prognostic factor.
They also identified the CD55, expressed by tumor cells, as
the key factor determining the subset switch and conflicting
roles of tumor-infiltrating B cells during chemotherapy. It was
proposed that this chemotherapy-associated subset of B cells
could promote tumor-specific T cell proliferation and reduce
regulatory T cells (Tregs). Collectively, this study uncovered
a new role of complement in B-cell-dependent anti-tumor
immunity and indicated that CD55 induced chemo-resistance
by impeding the induction of ICOSL+ B cells and thus
could be a potential therapeutic target to enhance the efficacy
of immunogenic chemotherapy. However, their sub-stratified
analysis and clinical conclusions should be validated in the
future hypothesis-testing experimental investigation because of
the small sample size examined in this study.

CHARACTERIZING IMMUNE CELL
HETEROGENEITY

One of the most early-stage scRNA-seq studies for
comprehensive profiling of breast cancer microenvironment was

conducted by the Samsung Genome Institute (13). Researchers
analyzed 515 cells from 11 patients representing the four
subtypes of breast cancer: luminal A; luminal B; HER2; and
triple-negative breast cancer (TNBC). The results revealed that
after the separation of carcinoma cells via RNA-seq-inferred
tumor-specific copy number variations, most of the non-
cancer cells are immune cells because of their high scoring of
the immune signatures. 175 tumor-associated immune cells
were identified and further annotated as 3 distinct clusters
including T lymphocytes, B lymphocytes, and macrophages
by using immune cell type-specific gene sets. Interestingly,
T cells and macrophages both display immunosuppressive
characteristics: T cells with a regulatory or an exhausted
phenotype and macrophages with an M2 phenotype. These
immune cells with the expression of many immunosuppressive
genes could promote tumorigenesis and restrain immune
surveillance. Although the number of profiled cells was low
and the sequencing depth was limited, this work demonstrated
the feasibility of a comprehensive characterization of the
heterogeneous immunological microenvironment of breast
cancer samples by large-scale single-cell gene expression
profiling protocol. Recently, Bao et al. (14) also described the
molecular characteristics of M2-like TAM in the TME of breast
cancer and identified the association of the immune landscape
with clinical outcomes in TNBC by using an integrative
analysis approach of combined single-cell and bulk tissue
transcriptome profiling.

Another sophisticated TME profiling work provided by a
team from the Memorial Sloan Kettering Cancer Center drew a
single-cell atlas of diverse immune phenotypes of breast cancer
samples and found the immune phenotype was associated with
the tissue of residence (15). By assessing 45,000 cells captured
from breast carcinomas, as well as matched normal breast tissue,
blood, and lymph nodes of 8 treatment-naive patients, they
identified 38 T cell, 27 myeloid lineage, 9 B cell, and 9 NK cell
clusters, and observed several phenomena via data analysis: (1) T
cells in blood and lymph node exhibited dissimilar phenotypes
compared with T cells in breast tissue; (2) T and myeloid
lineage cells exhibited considerable phenotypic overlap between
tumor and normal tissue samples, but increased phenotypic
heterogeneity and expansion of cell populations in the tumor
was also observed; (3) Naive T cells were strongly enriched in 3
blood-specific clusters, while B cells were more prevalent in the
lymph node than in other tissues; (4) A subset of T cell clusters
was present in both tumor and normal tissue, but cytotoxic
T cell clusters were more abundant in the tumor, as were
Treg clusters; (5) Some myeloid clusters were shared between
normal and tumor tissue, whereas clusters of more activated
macrophages were specific to the tumor. Their results support a
model of continuous activation and expansion (shaped by TCR
specificity) in T cells and do not comport with the macrophage
polarization model in the tumor microenvironment. Moreover,
these findings offered a more nuanced view into the association
between immune phenotypes and the tissues of residence and
suggested that the immunological landscape based on the blood
or normal samples may not reflect the functional and phenotypic
diversity in the TME.
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SPATIAL MAPPING OF SINGLE-CELL
RNA-seq DATA

While scRNA-seq has mainly been used to delineate cell
subpopulations and their lineage relationships, recently
developed spatial transcriptomics technologies have been
designed to infer cell-cell communications and spatial
architecture in the tumor microenvironment. A research group
from Sweden employed an in-house spatial transcriptomics
method to resolve spatial immune cell distribution from tumor
tissue sections of BRCA patients diagnosed with HER2+ subtype
(16, 17). The abundance and distribution of the infiltrated
immune cells in different regions of the tumor tissue including
invasive cancer regions were determined. Then the researchers
combined the cross-sectioning and computational alignment to
build three-dimensional images of the transcriptional map of the
tumor microenvironment. This spatial transcriptomic landscape
demonstrated the heterogeneous nature of tumor-immune
interactions and reveal interpatient differences in TME patterns
of breast cancer. To our knowledge, this is the first attempt to
present a spatial map of comprehensive transcriptomics data
from human breast cancer tissues and gain new insight into the
immunological heterogeneity.

DISSECTING THE TUMOR
MICROENVIRONMENT USING
SINGLE-CELL MASS CYTOMETRY

Single-cell RNA-seq captures the expression of thousands
of genes, but at the cost of sparse data. In comparison,
although mass cytometry measures a limited number of pre-
selected markers, these markers are backed with decades of
experimental experience, which makes mass cytometry an
effective and efficient way to define cellular heterogeneity and a
key complement to scRNA-seq (2, 18, 19).

To investigate immunological features of TME and their
associations with clinical characteristics of breast cancer, Wagner
et al. (20) provided a large-scale single-cell atlas of the human
breast cancer tumor microenvironment by analyzing 144 human
BRCA tumors covering all clinical subtypes and 50 non-tumor
tissue samples by using single-cell mass cytometry. Through
tumor and immune cell-centric antibody panels, a total of 73
proteins in 26 million cells was evaluated. Researchers observed
significant differences in the T cell landscape of ER− and
ER+ tumors. In more than half of ER− tumors but only 12%
of ER+ tumors, over 10% of T cells expressed PD-1. For
cell level, distinct PD-1+ phenotypes were separately enriched:
PD-1highCTLA-4+CD38+ T cells were more frequent in ER−

tumors, whereas PD-1intCTLA-4−CD38− T cells were enriched
in ER+ tumors. This observation support that patients with
ER- tumors are more suitable candidates for immunotherapy
(21). They also observed high frequencies of PD-L1+ tumor-
associated macrophages and exhausted T cells were found
in high-grade ER+ and ER− tumors, suggesting a possible
association between an immunosuppressed environment and
poor-prognosis of high-grade tumors. This sophisticated work

enhanced our comprehension of the immune ecosystem of
human breast cancer and revealed that TME-based stratification
will facilitate the identification of BRCA patients for precision
medicine approaches targeting the tumor and its immune
environment. However, there are still some limitations in this
study, and the dominant one is a lack of correlation analysis
between their ecosystem-based patient grouping and clinical
outcome or treatment response of BRCA patients.

Another impressive research work performed by Jackson et.al
depicted the first single-cell pathology landscape of breast cancer
by using the imaging mass cytometry (IMC) technology (22, 23).
By the use of a designed breast tissue-specific IMC histology
panel, a total of 855,668 cells in 381 images (289 tumors, 87
healthy breasts, and 5 liver controls) were been investigated with
35 antibodies simultaneously quantified. Cellprofiler (24) was
used for single-cell feature extraction to obtain the expression
level of marker genes. And PhenoGraph (25) was employed
to identify the 27 meta clusters which represented various
immune, stromal, and epithelial cell types. “Community” which
consists of interactions between one or more cell phenotypes,
was introduced to describe the complex multicellular interaction
pattern. The Louvain community detection algorithm (26) was
applied to identify highly interconnected spatial subunits in
the tissue graph. Researchers investigated how the organization
of single cells into communities contributes to the tissue
architecture of breast cancer and its subtypes, and found
cells from multiple meta clusters appeared in each clinically
defined breast cancer subtype, which indicated the general
classification based on pathology had limitations in explicate
inter-and intrapatient cellular heterogeneity. Then they re-
grouped patients based on their tumor cell meta cluster
composition and identified 18 novel single-cell pathologies (SCP)
subgroups using unsupervised clustering. This higher-resolution
classification was then proved to be associated with distinct
clinical outcomes. This study revealed that complex single-cell
phenotypes and their spatial context could be reflected in the
histological stratification and provided a basis for future study
on spatial and phenotypic tissue features’ influence on disease
outcome. But, currently, the high complexity of data analysis for
imaging mass cytometry approaches presents a major obstacle to
the broad use of these methods in the scientific basic research and
potential clinical use.

PERSPECTIVES OF SINGLE-CELL
TECHNOLOGIES IN BREAST CANCER
RESEARCH

Although the heterogeneous cell populations in the TME stand
out as the key barrier to delineate the tumor ecosystems,
the advances in single-cell technologies, in particular scRNA-
seq and mass cytometry, has revolutionized breast cancer
research. The pioneering studies summarized in Table 1 have
covered the development and applications of single-cell RNA
sequencing and mass cytometry to address a wide range of
topics such as intra-tumor heterogeneity of tumor samples, the
characteristics of tumor microenvironments, and the mechanism
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TABLE 1 | Summary table for the hallmark breast cancer studies using single-cell technologies.

Technology Sample/data Main findings Clinical significance References

The complexity of

tumor-infiltrating

lymphocytes (TILs)

scRNA-seq (10X Genomics) 6,311 flow-sorted

CD3+CD45+ T cells from

two samples of TNBC

Discovery of minor

subgroups of TILs that were

related to

immune-suppression

Biomarkers of the minor

distinct TILs may serve as

prognostic factors or

therapeutic targets

(11)

scRNA-seq (10X Genomics) Paired samples of pre- (998

cells) and post-neoadjuvant

chemotherapy (1,499 cells)

collected from 4 BRCA

patients

ICOSL+ B cells boost

anti-tumor immunity by

enhancing the effector to

regulatory T cell ratio

The critical role of the B cell

subset switch in

chemotherapy response,

which has implications in

designing novel anti-cancer

therapies.

(12)

Decomposition of tumor

immune microenvironment

using scRNA-seq

scRNA-seq (Fluidigm C1) 515 cells from 11 patients

representing the four

subtypes of breast cancer

T lymphocytes and

macrophages both display

immunosuppressive

characteristics

The characteristics of

different BRCA subtypes

that are shaped by tumor

cells and immune cells in

TME

(13)

scRNA-seq (inDrop);

single-cell VDJ sequencing

(10X Genomics)

45,000 cells captured in the

normal and malignant breast

tissues, lymph nodes, and

peripheral blood of 8

treatment-naive patients

Despite the significant

similarity between normal

and tumor tissue-resident

immune cells, continuous

phenotypic expansions

specific to the TME was

observed

Support a model of

continuous activation in T

cells and do not comport

with the macrophage

polarization model in cancer

(15)

Spatial mapping of

single-cell RNA-seq data

Spatial Transcriptomics

(in-house)

Tumor tissue sections from

BRCA patients diagnosed

with HER2+ subtype

Demonstration of the

heterogeneous nature of

tumor-immune interactions

and reveal interpatient

differences in immune cell

infiltration patterns

Potential for an improved

stratification and description

of the tumor-immune

interplay, which is likely to

be essential in treatment

decisions

(16, 17)

Dissecting the tumor

microenvironment using

single-cell mass cytometry

Single-Cell Mass Cytometry 26 million cells from 144

human breast tumors

including and 50 non-tumor

tissue samples

Relationship analyses

between tumor and immune

cells revealed characteristics

of TME related to

immunosuppression and

poor prognosis

TME-based classification of

BRCA will facilitate the

identification of individuals

for precision medicine

approaches

(20)

Imaging mass cytometry 855,668 cells in 381 images

(289 tumors, 87 healthy

breasts, and 5 liver controls)

Multicellular features of TME

and novel subgroups of

breast cancer that are

associated with distinct

clinical outcomes

Spatially resolved, single-cell

analysis can characterize

intratumor phenotypic

heterogeneity with the

potential to inform

patient-specific diagnosis

(23)

of immunotherapy resistance. Improvement of existing single-
cell sequencing technologies and the integration of single-
cell sequencing with other high throughput and experimental
protocols have provided powerful toolsets to understand many
of the remaining mysteries of breast cancers.

The advent of rapidly developing single-cell sequencing
technologies are revolutionizing our ability to study tumor
immunology, and these initial studies provided a proof of
concept for the utility of single-cell profiling of TME. However,
substantial limitations and challenges still exist in this approach.
First, most single-cell technologies (such as single-cell RNA-
sequencing) are very sensitive to the quality of sample
collection and library construction, and therefore couldn’t be
applied to the profiling of sub-optimally preserved or handled
clinical specimens (27, 28). Second, given the technological
and throughput constraints of cellular captures, single-cell
technologies usually profile only a partial sampling of tumor

tissues. To what extent the sequenced cells represent the
distribution of cells in the entire microenvironment is not clear.
Third, high cost limits the ability to profile large cohorts of tumor
samples, so most single-cell studies to date include a few patients,
which limits the opportunity to investigate effects on clinical
characteristics and outcomes. Spatial single-cell sequencing,
single-cell proteomics, and single-cell epigenomics technologies
are some of the major directions of single-cell sequencing
technologies that will bring the second wave of revolutions
of cancer research (29–31). Understanding the orchestrated
organizations and interactions of cancer and immune cells in a
spatial coordinate systemwill provide further insights into cancer
progression and could provide clues for improving the efficiency
of current immunotherapies.

Besides, the use of single-cell technologies in profiling the
tumor microenvironment of breast cancers has been largely
limited to basic research. Its potential for clinical utility including
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disease diagnosis, dynamical monitoring, therapeutic efficacy,
and prognostic prediction is yet to be realized (32–34). First,
the standardized procedures of sample processing for clinical
use of single-cell sequencing technologies are urgently required.
It is important to set measurable criteria and establish practical
protocols for the processing of tissue sampling from operations
(such as resection, selection, and isolation from tissue to single
cells). Second, the methodologies and procedures of single-cell
sequencing data pre-processing, quality control, data analysis,
and visualizations of results need to be simplified. Besides,
the most important issue for potential clinical use is how to
interpret analysis results to clinicians and patients, and provide
valuable information for clinical decision-making. We believe, in

the near future, the promising clinical use based on developed
single-cell technologies will improve the understanding of
molecular pathogenesis and pathophysiology, and facilitate
the discovery and validation of biomarkers and targets for
breast cancer.
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Treatment options for rare tumors are limited, and comprehensive genomic profiling may
provide useful information for novel treatment strategies and improving outcomes. The
aim of this study is to explore the treatment opportunities of patients with rare tumors
using immune checkpoint inhibitors (ICIs) that have already been approved for routine
treatment of common tumors. We collected immunotherapy-related indicators data from
a total of 852 rare tumor patients from across China, including 136 programmed cell death
ligand-1 (PD-L1) expression, 821 tumors mutational burden (TMB), 705 microsatellite
instability (MSI) and 355 human leukocyte antigen class I (HLA-I) heterozygosity reports.
We calculated the positive rates of these indicators and analyzed the consistency
relationship between TMB and PD-L1, TMB and MSI, and HLA-I and PD-L1. The
prevalence of PD-L1 positive, TMB-H, MSI-, and HLA-I -heterozygous was 47.8%,
15.5%, 7.4%, and 78.9%, respectively. The consistency ratio of TMB and PD-L1, TMB
and MSI, and HLA-I and PD-L1 was 54.8% (78/135), 87.3% (598/685), and 47.4% (54/
114), respectively. The prevalence of the four indicators varied widely across tumors
systems and subtypes. The probability that neuroendocrine tumors (NETs) and biliary
tumors may benefit from immunotherapy is high, since the proportion of TMB-H is as high
as 50% and 25.4% respectively. The rates of PD-L1 positivity, TMB-H and MSI-H in
carcinoma of unknown primary (CUP) were relatively high, while the rates of TMB-H and
MSI-H in soft tissue tumors were both relatively low. Our study revealed the distribution of
immunotherapeutic indicators in patients with rare tumors in China. Comprehensive
genomic profiling may offer novel therapeutic modalities for patients with rare tumors to
solve the dilemma of limited treatment options.
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INTRODUCTION

Currently, there exists no consensus definition for the category of
“rare tumors,” either worldwide or in China. Because of the low
incidence rate, it is difficult to carry out large-scale studies on
these diseases. Due to this lack of study, patients with rare tumors
are often unable to take advantage of therapeutic advances. In
China, there is a lack of research on rare tumors, leading to
limited options for effective treatment and poor survival and
prognosis for these patients compared to those with
common tumors.

Based on the definition of rare tumors by Food and Drug
Administration (FDA), National Cancer Institute and European
Society for Medical Oncology (1, 2), Professor Li Ning’s team
from Clinical Trial Canter, National Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical
College, proposed the definition of rare tumors in China first
time. This definition was based on data from the National Cancer
Registration Office of China National Cancer Canter, combined
with the incidence rate of cancer, the characteristics of the
population in China, classification according to the
International Classification of Diseases and the OncoTrees
(http://oncotree.mskcc.org/). The incidence threshold for a
“rare tumor” was initially set at 2.5/100,000. In a previous
study, we compared the incidence of therapeutic targets in rare
tumors in the cBioPortal database (https://www.cbioportal.org/
datasets) and a Chinese population database (Geneplus
database). We found that the incidence of therapeutic targets
in rare tumors in the Chinese population was significantly higher
than in the general population (53.43% vs. 20.40% respectively).
Moreover, in the Chinese population, prevalence of targetable
genomic alterations within those rare tumors (ALK, BRAF,
BRCA2, CDKN2A, EGFR, HER2, KIT, MET, ROS1) was
32.4%, which is more than 3 times that which is found in the
general population according to cBioPortal (3).

Using the National Comprehensive Cancer Network and
Chinese Society of Clinical Oncology guidelines as the main
data sources (https://www.nccn.org, http://www.csco.org.cn), we
collected records for the tumor types that fit the current
definition of “rare tumors,” and investigated the availability
and efficacy of various treatment modalities. With respect to
targeted therapy, of more than 100 rare tumor subtypes, only 16
tumor types were involved in targeted therapy studies, but the
disease control rate and objective response rate of rare tumors
with targetable mutations are better than those treated with
standard treatment. With respect to immunotherapy, of more
than 100 rare tumor subtypes, the research on immunotherapy
involved less than 17 tumor types. Some curative effect has been
preliminarily observed, but only skin squamous cell carcinoma
Abbreviations: CSF, cerebrospinal fluid; CUP, carcinoma of unknown primary;
dMMR, mismatch repair-deficient; FDA, Food and Drug Administration; FFPE,
formalin-fixed paraffin-embedded; HLA-I, human leukocyte antigen class I; ICIs,
immune checkpoint inhibitors; IHC, immunohistochemistry; InDels, Small
insertions and deletions; MSI, microsatellite instability; NETs, neuroendocrine
tumors; NGS, next generation sequencing; NSCLC, non-small-cell lung cancer;
OS, overall survival; PCR, polymerase chain reaction; PD-L1, programmed cell
death ligand-1; SNV, single nucleotide variants; TMB, tumor mutational burden.
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has been approved by the FDA as an indication for Libtayo (PD-
1, cemiplimab-rwlc). These results suggest that even in the
context of scarcity of clinical trials and guidelines for diagnosis
and treatment, there are still some rare tumors included in these
studies, which has yielded promising preliminary results for
targeted therapy and immunotherapy.

Immunotherapy is revolutionary cancer treatment.
Programmed cell death protein-1 and programmed cell death
ligand-1 (PD-L1) checkpoint inhibitors can benefit a variety of
malignant tumors patients, which has been shown in many
studies (4–6). PD-L1 overexpression (7, 8), mismatch repair
deficiency (dMMR) (9–11), microsatellite instability-high
status (MSI-H) (10–12), or high tumor mutational burden
(TMB-H) (13–15) are the main predictive molecular
biomarkers in these studies. Human leukocyte antigen class I
(HLA-I) is a prognostic biomarker of great concern,
representing the impact of host germline genetics on immune
checkpoint inhibitors (ICIs) therapies response. CD8 + T cells
have been shown to be the main factor in the antitumor activity
of ICIs, and the peptide presentation process on the cell surface
depends on HLA-I (16, 17). More diverse tumor antigens
presented to T cells can benefit from heterozygous HLA-I
genotypes (18). Some studies support that patients with HLA-
I heterozygosity, had longer overall survival (OS) in pan-
cancers (17), while others show that it wasn’t the case in non-
small-cell lung cancer (NSCLC) (19).

Within rare tumors, some reports have shown that
immunotherapy has demonstrated the efficacy in some
subtypes, including biliary tumors, neuroendocrine tumors
(NETs), and carcinoma of unknown primary (CUP), among
others (20–23). The same predictive molecular biomarkers that
are used for common cancers (described above) were used in
these studies (20, 22, 23), and whether HLA-I heterozygosity
improves OS is still unknown.

The purpose of this study was to analyze the prevalence of the
immunotherapy-related indicators described above within rare
tumors in China, so as to provide more insight into the treatment
options for these patients.
METHODS

Patient Recruitment
According to the definition and update of rare tumors published/
established by the China National Cancer Center (3), we collected
and retrospectively analyzed data on immunotherapy-related
indicators from a total of 852 rare tumors patients in the
Geneplus database, including 136 reports of PD-L1 expression,
821 reports of TMB, 705 of MSI and 355 of HLA-I heterozygosity.

The patients were enrolled from multiple medical canters and
hospitals in China from September 2015 to February 2020. After
signed written informed consent, all patients were tested by next
generation sequencing (NGS) in Geneplus-Beijing Institute.
Meanwhile, all patients were stratified into different
clinicopathological groups according to the OncoTrees. During
data analysis, two subtype tumors namely biliary tumors (including
gallbladder cancer and extrahepatic cholangiocarcinoma) and
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NETs drew our attentions due to the high prevalence of TMB.
(Supplementary Table 1)

PD-L1 Expression
PD-L1 expression was assessed in formalin fixed paraffin
embedded (FFPE) tumor tissues using the PD-L1 IHC 22C3
pharmDx assay (Dako, Carpinteria, CA, USA) in 94 patients;
using the SP263 pharmDx assay (Ventana Automated Systems,
Inc., Tucson, AZ, USA) in 21 patients; and using an unknown
method in 21 patients (The PD-L1 test results of these patients
were obtained from the previous medical records, and the
detection method was not described).

The 22C3 pharmDx assay were performed according to the
manufacturers’ instructions. The sections were stained with the
anti-PD-L1 22C3 mouse monoclonal primary antibody, and then
the EnVision FLEX visualization system (Agilent, Santa Clara, CA,
USA) was performed on an Autostainer Link 48 system (Dako).
The negative control reagents and cell line were also tested
simultaneously as control (24).

For SP263 pharm Dx assay, OptiView DAB IHC Detection kit
(Ventana Medical Systems, Basel, Switzerland) was used to stain
the sections with SP263 anti-PD-L1 rabbit monoclonal primary
antibody, and the analysis was performed on Ventana Bench-Mark
XT automated staining platform (Ventana Automated Systems).

The results of PD-L1 immunohistochemistry (IHC) were
interpreted by pathologists. The expression of PD-L1 in both
tumor cells and immune cells was evaluated. The criterion of PD-
L1 positive staining in tumor cells was that the complete or partial
circumferential linearmembrane staining can be distinguished from
background and diffuse cytoplasmic staining at any intensity (25).
After recording the proportion of positive cells on thewhole section,
thePD-L1positive rateof tumorcellswas scoredrelative to thewhole
tumor area (26). PD-L1 expression in tumor infiltrating
lymphocytes was defined as any staining intensity in cell
membrane or cytoplasm. The threshold of PD-L1 positive was 1%.

Next-Generation Sequencing
All tissue samples included in this study were reexamined
pathologically to confirm the histological classification and to
ensure that at least 20% of the tumor cells were present for
adequate detection. Genomic profiling was performed by Gene
+Seq 2000 instrument or Illumina Nextseq CN 500 in the
Geneplus-Beijing laboratory, which was accredited by
American College of Pathologists (27, 28). Briefly, QIAamp
DNA FFPE Tissue kit (Qiagen, Valencia, CA) was used to
extract genomic tumor DNA from serial sections of FFPE
tumor tissues. ctDNA was isolated from 4 to 5mL of plasma
using the QIAamp Circulating Nucleic Acid Kit (Qiagen,
Valencia, CA). DNA from leukocytes was extracted using the
DNeasy Blood Kit (Qiagen, Valencia, CA). Sequencing libraries
were prepared from ctDNA using KAPA DNA Library
Preparation Kits (Kapa Biosystems, Wilmington, MA, USA),
and genomic DNA sequencing libraries were prepared with
Illumina TruSeq DNA Library Preparation Kits (Illumina, San
Diego, CA). Libraries were hybridized to custom-designed
biotinylated oligonucleotide probes (Roche NimbleGen,
Madison, WI, USA) targeting 1,021 genes (~1.4 Mbp genomic
Frontiers in Immunology | www.frontiersin.org 327
regions of 1,021 cancer-related genes) (Supplementary Table 2)
and HLA-I locus (A, B, and C). Prepared libraries were
sequenced on using the Illumina Nextseq CN 500 (Illumina,
San Diego, CA) or Gene+Seq 2000 (Geneplus-Beijing, China).
Target capture sequencing required a minimal mean effective
depth of coverage of 100× in leukocytes, 300× in tumor tissue
and 1,000× in cell-free DNA samples.

Sequencing data were analyzed using default parameters.
After removing adaptor sequences and low-quality reads,
Burrows-Wheeler Aligner (BWA; version 0.7.12-r1039) was
used to aligned the clean reads to the reference human genome
(hg19). GATK (version 3.4-46-gbc02625) was performed for
realignment and recalibration. MuTect (version 1.1.4) and
NChot were used for single nucleotide variants (SNV) calling
(29). GATK and CONTRA (v2.0.8) were performed to identify
small inserts and deletions (InDels), and somatic copy number
alternations, respectively. Finally, Integrative Genomics Viewer
was used to manually verified all of the final candidate variants.

Biomarker Analysis
TMB Analysis
Somatic nonsynonymous SNV and InDels mutations in coding
regions, with allele frequency ≥ 0.03 in tumor tissue sample or ≥
0.005 in ctDNA sample respective, were included in TMB
calculation. TMB was defined as the number of above mutations
per megabase of genome. Based on 2000 samples from Geneplus
database, the threshold of TMB-H was identified as the top quartile
and determined to be ≥ 9 mutations per megabase (30, 31).

MSI Status
MSIsensor (v0.2) was used to inferred the MSI statuses, which
reported the percentage of somatic unstable microsatellites in
predefined microsatellite regions in our panel based on chi-
squared test (32). All parameters used the default settings.
According to the MSIsensor scores of tumor samples and
matched normal samples, the MSI-H threshold was established
by MSI polymerase chain reaction (PCR) and MMR IHC cross
validation. And the threshold of MSI-H was 8.

HLA-I Typing
HLA-I typing was done using the OptiType v1.0 to obtain the
four-digit HLA type at each locus of a patient (33). OptiType
performs HLA typing using a combinatorial optimization
approach. Reads were mapped to a reference panel consisting
of HLA Class I allele sequences centered around their most
polymorphic, and functionally most important region, exons 2
and 3 (34). HLA I-homozygous was defined as homozygosity for
at least one HLA-I locus (A, B, or C), and HLA I- heterozygous as
heterozygosity for all of the three HLA-I locus.
RESULTS

Clinicopathological Characteristics
of Patients
Eight hundred and fifty-two patients (852) with rare tumors
were included in this study. Table 1 summarized the
February 2021 | Volume 12 | Article 631483
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clinicopathological characteristics of all patients. The median age
was 54, and male patients accounted for 53.6% (457/852).
Among these patients, 671, 160, 10, 10, and 1 patients
respectively used tumor tissue, ctDNA, pleural effusion,
peritoneal effusion, as well as cerebrospinal fluid (CSF) samples
for genetic analysis. These 852 cases included 91 tumor subtypes
in rare tumor types, with neural, soft tissue, CUP, digestive, and
respiratory systems as the top 5 tumors systems including 264,
180, 113, 98, and 78 patients, respectively.
Frontiers in Immunology | www.frontiersin.org 428
Predictive Factors
With in th e 136 pa t i en t s who unde rwen t PD-L1
immunohistochemistry, 65 patients had PD-L1 positive tumors
(47.8%). CUP, respiratory, multiple system, digestive and soft
tissue systems were the top 5 systems with 76.5% (13/17), 65.4%
(17/26), 44.4% (4/9), 40.0% (8/20), and 39.4% (13/33) positivity
rates, respectively.

Somatic mutations were detected in most patients (98.9%,
843/852). The most common mutant genes were TP53
(40.8%), TERT (17.2%), and CNKN2A (13.4%) (Top 20
mutant genes were summarized in Figure 1). Except NF2,
KIT and TERT were the most common mutant genes in
multiple system, soft tissue system and neural system,
respectively, TP53 was the most common mutant gene in the
other nine systems (Top 5 mutant genes in 12 systems were
summarized in Figure 2).

TMB-H was identified in 127 patients among 821 patients
(15.5%). Prevalence of TMB-H varied widely across tumor
systems, ranging from 0% in patients with bone system
disease to 50.0% in patients in urinary or endocrine system
disease. Urinary, endocrine, respiratory, skin and CUP systems
were the top 5 systems with 50.0% (3/6), 50.0% (1/2), 27.8%
(20/72), 26.7% (4/15), and 21.2% (24/113) TMB-H rate,
respectively. Considering the tumor subtypes, NETs and
biliary tumors were both higher, reaching 50% (9/18) and
25.4% (15/59) respectively.

MSI-H was identified in 7.4% patients (52/705). Bone, neural,
respiratory, reproductive and head and neck systems were the
top 5 systems with 25.0% (1/4), 15.6% (39/250), 5.0% (3/60),
5.0% (1/20), and 4.8% (1/21) positivity rates, respectively.

It should be noted that the rates of PD-L1 positivity, TMB-H,
and MSI-H in CUP were relatively high, with 76.5% (13/17),
21.1% (24/113), and 4.5% (4/89), respectively. While the
proportion of both TMB-H and MSI-H in soft tissue sarcomas
FIGURE 1 | Top 20 mutant genes of all samples.
TABLE 1 | Clinicopathological characteristics of patients.

Characteristic Pts. (N=852) (%)

Age, years
median 54
range 1–91
Gender
female 395(46.4%)
male 457(53.6%)
Specimen.
tumor tissue 671(78.8%)
ctDNA 160(18.8%)
pleural effusion 10(1.2%)
peritoneal effusion 10(1.2%)
CSF 1(0.1%)
System
1.head and neck 33(3.9%)
2.digestive 98(11.5%)
3.respiratory 78(9.2%)
4.reproductive 31(3.6%)
5.urinary 6(0.7%)
6.multiple system 25(2.9%)
7.skin 16(1.9%)
8.soft tissue 180(21.1%)
9.bone 6(0.7%)
10.endocrine 2(0.2%)
11.neural 260(30.5%)
12.CUP 117(13.7%)
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FIGURE 2 | Top 5 mutant genes in 12 systems.
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was very low, with 4.1% (7/171) and 2.1% (3/143) respectively.
(Prevalence of immunotherapy related indicators in rare tumor
samples are summarized in Table 2 and Figure 3).

Among the above patients, 135 patients were tested for both
TMB and PD-L1, while 685 patients were tested for both TMB
andMSI. The consistency ratio of TMB results and PD-L1 results
was 54.8% (78/135), while that of TMB and MSI was 87.3% (598/
685) (Table 3). We summarized the consistency data of five
systems with larger sample size, including soft tissue, respiratory,
digestive, CUP, and neural system. The consistency data of most
systems were consistent with the overall consistency data, but
there were some special cases in some systems, including the
consistency ratio of TMB and PD-L1 in digestive system was as
high as 70.0% (14/20), and that of TMB and MSI in respiratory
system was as low as 69.5% (41/59) (Figure 4).
Frontiers in Immunology | www.frontiersin.org 630
Prognostic Factors
A total of 78.9% (280/355) patients were identified as HLA class
I-heterozygous. The top 5 systems were urinary, multiple
TABLE 2 | Prevalence of immunotherapy related indicators in rare tumor samples.

Systems PD-L1
test

PD-
L1(+)

% 22C3
test

22C3
(+)

% SP263
test

SP263
(+)

% TMB
test

TMB-H % MSI
test

MSI-H % HLA-I HLA-I
Het

%

Total 136 65 47.8 94 38 40.4 21 18 85.7 821 127 15.5 705 52 7.4 355 280 78.9
1.head and
neck

8 3 37.5 5 1 20.0 1 1 100.0 31 6 19.4 21 1 4.8 17 15 88.2

2.digestive 20 8 40.0 13 3 23.1 6 5 83.3 96 19 19.8 78 0 0.0 68 52 76.5
biliary 11 5 45.5 7 2 28.6 3 3 100.0 59 15 25.4 51 0 0.0 40 29 72.5
3.respiratory 26 17 65.4 13 9 69.2 5 5 100.0 72 20 27.8 60 3 5.0 33 28 84.8
neuroendocrine 6 2 33.3 2 1 50.0 1 1 100.0 18 9 50.0 17 1 5.9 6 5 83.3
4.reproductive 3 1 33.3 2 1 50.0 30 2 6.7 20 1 5.0 9 7 77.8
5.urinary 6 3 50.0 6 0 0.0 2 2 100.0
6.multiple
system

9 4 44.4 7 3 42.9 1 0 0.0 23 2 8.7 20 0 0.0 18 16 88.9

7.skin 6 1 16.7 4 0 0.0 2 1 50.0 15 4 26.7 13 0 0.0 13 10 76.9
8.soft tissue 33 13 39.4 24 7 29.2 4 4 100.0 171 7 4.1 143 3 2.1 80 63 78.8
9.bone 5 0 0.0 4 1 25.0 4 3 75.0
10.endocrine 2 1 50.0 1 0 0.0
11.neural 14 5 35.7 12 4 33.3 257 39 15.2 250 39 15.6 47 36 76.6
12.CUP 17 13 76.5 14 10 71.4 2 2 100.0 113 24 21.2 89 4 4.5 64 48 75.0
February 20
21 | V
olume 12 |
 Article 6
FIGURE 3 | The prevalence of programmed cell death ligand-1 (PD-L1) positive, tumors mutational burden (TMB)-H, microsatellite instability (MSI)-H, and human
leukocyte antigen class I (HLA)-I Het in 12 systems.
TABLE 3 | Consistency analysis of tumors mutational burden (TMB) and human
leukocyte antigen class I (HLA-I) with programmed cell death ligand-1 (PD-L1)
and microsatellite instability (MSI).

Testing method TMB (tissue) TMB (ctDNA) HLA-I

High Low High Low Het Hom

PD-L1 (+) 8 50 1 6 40 12
PD-L1 (−) 4 60 1 5 48 14
MSI-H 37 14 0 0
MSS 59 533 14 28
3
1483
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system, head and neck, respiratory and soft tissue system with
100% (2/2), 88.9% (16/18), 88.2% (15/17), 84.8% (28/33), and
78.8% (63/80) heterozygous rate, respectively (Figure 3).
Among them, 114 patients were tested for PD-L1, and the
consistency ratio of HLA-I results and PD-L1 results was 47.4%
(54/114) (Table 3). The consistency of the five systems with
larger sample size were also summarized, and the consistency
Frontiers in Immunology | www.frontiersin.org 731
ratio of HLA-I and PD-L1 in CUP was as high as 78.6% (11/14)
(Figure 4).

DISCUSSION

The purpose of this study is to explore potential novel indications
for the treatment of rare tumors in China. Results show that the
FIGURE 4 | Consistency analysis of tumors mutational burden (TMB) and human leukocyte antigen class I (HLA-I) with programmed cell death ligand-1 (PD-L1) and
microsatellite instability (MSI) in main systems. (A–C) soft tissue systems, (D–F) respiratory system, (G-I) digestive system, (J–L) CUP, (M–O) neural system.
February 2021 | Volume 12 | Article 631483
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clinical benefit-related indicators for immunotherapy are
frequently present in rare tumors, though their prevalence
varied widely across tumor systems and subtypes.

PD-L1 is the first internationally recognized therapeutic
indicator in immunotherapy. PD-L1 positivity is required in
some indications approved for immunotherapy, including in
NSCLC, gastric cancer, esophageal cancer, cervical cancer, head
and neck tumor and triple negative breast cancer. We compared
the prevalence of PD-L1 positivity in this study (47.8%) to those
of several common cancers with approved indications of
immunotherapy (Figure 5) (35–37). We found that the overall
prevalence of PD-L1 positive in this study was higher than that of
the above approved common tumors, except NSCLC (54.2%
~66%) and head and neck tumor (64.9%). This suggests that rare
tumors have a greater chance to benefit from immunotherapy
than most common tumors. In addition to advanced tumors,
studies are also underway to assess the predictive value of PD-L1
expression for early-stage tumors. In a neoadjuvant study of
NSCLC, major pathologic response was found to be positively
correlated with PD-L1 expression. In patients who have never
given anti-tumor therapy, if pathological remission can be
proved to be related to PD-L1 expression, other interference
factors that lead to the heterogeneity of tumor PD-L1 detection
are excluded (38). The predictive value of PD-L1 in early-stage
rare tumors is another interesting area to explore.

TMB is another promising immunotherapeutic biomarker.
Many studies have found that high TMB in immunotherapy is
highly correlated with clinical benefit. For example, TMB-H in
tissue (defined as >200 mutations in exome) was associated with
durable clinical benefit and longer progression-free survival in
NSCLC patients treated with pembrolizumab as monotherapy.
Similarly, in patients with melanoma given ipilimumab, higher
TMB in tissue (evaluated by whole-exome sequencing and
measured as a continuous variable) was also associated with
improved outcomes (39, 40). Additionally, in NSCLC patients
treated with nivolumab combined with ipilimumab, at least 10
mutations per megabase of tissue TMB were associated with
improved clinical outcomes (41, 42). It was also observed that in
Frontiers in Immunology | www.frontiersin.org 832
NSCLC patients treated with durvalumab plus tremelimumab or
atezolizumab, TMB with ≥16 mutations per megabase in ctDNA
based on blood samples was associated with improved clinical
outcomes (43, 44). Data of some small retrospective studies also
showed that issue TMB was associated with improved outcomes
in ICIs for multiple tumor types (45, 46), other studies including
the prospective KEYNOTE-158 study suggested that, across
multiple tumor types patients with ICIs therapy, increased
levels of tissue TMB were associated with higher response rates
(20, 47).

However, some studies have shown that TMB cannot predict
the efficacy of immunotherapy. Several studies, including
KEYNOTE-021 and KEYNOTE-189, have shown that TMB
cannot predict the clinical outcomes of corresponding first-line
immunotherapy for NSCLC (48, 49). The overall prevalence of
TMB-H in this study was 15.5%, similar to that reported in the
KEYNOTE-158 study. Also, in our study, NETs and biliary
tumors had much higher TMB-H rates than that in the
KEYNOTE-158 study (43.8% vs 29.3%, 25.5% vs 4.0%,
respectively) (20, 50). Given the high prevalence of TMB-H
status in rare tumors, the effect of TMB on immunotherapy
response in rare tumors deserves further exploration.

MSI status, along with PD-L1 and TMB, is another possibly
independent, predictive indication for ICIs. MSI-H has been
confirmed in many studies to predict the response of various
solid tumors to ICIs and has been approved by FDA as the first
indication biomarker for pan-cancer immunotherapy (9, 51).
MSI is most common in colon and endometrial cancer (highly
associated with Lynch syndrome), where it can be as high as 15%
and 28% respectively, but relatively low in other cancers (52, 53).
According to several large-scale studies, the overall incidence of
MSI-H in all cancers is about 3% (36, 51, 54). In these studies, in
addition to colon and endometrial cancer, the incidence of MSI-
H in gastric adenocarcinoma (3.4%~9%) and small intestinal
malignancies (4.6%~8%) is also relatively high, while it is low in
NSCLC (<1%) and melanoma (nearly 0). In our analysis, the
prevalence of MSI-H in rare tumors in China was 7.4%, which
was higher than that reported across all cancers. Additionally,
FIGURE 5 | Comparison of programmed cell death ligand-1 (PD-L1) positive rates between rare tumors and common tumors in different studies.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Immunotherapy Indicators of Rare Tumors
prevalence of MSI-H in head and neck, CUP and soft tissue
systems tumors in this study was still higher than that reported in
previous studies abroad (4.8% vs. 0.5%, 4.5% vs. 1.9%, 2.1% vs.
0.2%, respectively) (54).

This study also included HLA-I heterozygosity as a prognostic
indicator of immunotherapy and was the first study on HLA-I
heterozygosity in rare tumors. Previous studies have shown that in
ICIs treatment patients across multiple cancer types (including
NSCLC and melanoma), heterozygous HLA-I genotyps improved
OS compared with patients who were homozygous for at least one
HLA locus (17). Our data show a heterozygous rate of HLA-I of
78.9% in rare tumors, which was similar to that previously
reported in NSCLC (77.5%~78.4%) (19).

In our analysis of the relationship between the indicators, the
concordance between TMB and PD-L1 was only 54.8%,
indicating they are independent in predicting the benefit of
immunotherapy, which is the same as that of common tumors
(55). The same situation was found in HLA-I and PD-L1, with a
consistency of 47.4%. However, TMB and MSI showed a high
positive correlation (87.3%), which was similar to that of
colorectal cancers (36). The consistency data of most systems
were consistent with the overall consistency data, but some
systems shown particularity, which reminds us that further
research can be put into these tumors.

Within the subgroups of rare tumors, we noted that the
positivity rates of PD-L1, TMB-H and MSI-H in CUP were
relatively high, indicating that immunotherapy is a worthwhile
treatment option. The proportion of both TMB-H and MSI-H in
soft tissue sarcomas is very low, suggesting that patients with
such tumors are less likely to benefit from immunotherapy.

Due to the small number of cases in each rare tumor subtype,
it is difficult to compare the details of each tumor subtype in this
study. So we classified tumor subtypes into various tumor
systems, and then compared the indicators. In addition, since
the patients of some rare tumor systems were limited, especially
in the urinary, bone and endocrine systems, the prevalence of the
four indicators analyzed in this study may be divergent from the
actual situation. However, this study captures the overall
situation of immunotherapy-related indicators of rare tumors
and supports that a considerable proportion of patients with rare
tumors can benefit from immunotherapy.

Based on the previous study (CITE) and this study, we
designed the PLATFORM study. PLATFORM is an open, non-
randomized, multicohort, single arm, single center phase II
clinical study in advanced rare solid tumors that have been
treated with or without standard treatment. The main purpose
of the PLATFORM study is to evaluate the safety and efficacy of
targeted drugs approved in China and to evaluate/test targeted
therapy for specific tumor driver genes in patients with advanced
rare solid tumor patients who have corresponding targets, as well
as to evaluate the safety and efficacy of ICIs (PD-1 antibodies) in
patients with advanced rare solid tumors who have no druggable
target mutations. Patients with advanced rare solid tumors who
failed or did not have standard treatment will be included in the
study. Based on the results of gene detection, the subjects carrying
the targets “EGFR mutation, ALK gene fusion, ROS-1 gene
Frontiers in Immunology | www.frontiersin.org 933
fusion, MET gene amplification or mutation, BRAF mutation,
BRCA1/2 mutation, HER-2 positive, KITmutation and CDKN2A
mutation” will be divided into 13 arms according to the types of
gene variation, and will be divided into 9 targeted treatment study
groups and given the corresponding targeted drug/agent
(Almonert inib , Dacomit inib , Alect inib , Crizot inib ,
Vemurafenib, Niraparib, Pyrotinib, Imatinib, Palbociclib).
Subjects without the above targets will be enrolled in the
immunotherapy group and treated with PD-1 inhibitor
monotherapy. During the treatment, the usage and dosage of
the above drugs, the principle of dose adjustment and matters
needing attention will all be referred to the drug labels and
instructions. All AE/SAE of the above drugs in advanced rare
solid tumors will be collected for safety analysis. After the patients
are enrolled in the corresponding targeted treatment group, they
will be treated according to the standard dosage/manufacturer’s
recommended dosage until the disease progresses or intolerable
adverse reactions occur. The PLATFORM study is the first
platform study for rare tumors in the world. We look forward
to increasing opportunities for Chinese patients with rare tumors
to benefit from targeted therapy and immunotherapy through this
world leading research method and innovative structure/
design. (NCT04423185)

The most important purpose of this study is to raise awareness
of the necessity of rare tumor research among Chinese clinical
workers, government officials and drug investigators around the
world. Even though there is no consensus and effective treatment
guidelines in China, we think that promoting the development of
new drugs and treatment strategies of rare tumors will be fruitful.
In view of the high prevalence of immunotherapy related
indicators in the rare tumors population and limited treatment
options of these patients, adequate efforts should be made for rare
tumors in the near future.
CONCLUSIONS

This study included 852 tumor samples from patients whose
tumors met the definition of rare tumor in China. We analyzed
the prevalence of immunotherapy predictors and prognostic
indicators, including PD-L1, TMB, MSI, and HLA-I, and their
consistency. The results showed that a considerable proportion
of rare tumor patients are positive for the above indicators, and
especially that nearly half of patients were PD-L1 positive,
suggesting that they could benefit from immunotherapy.
Comprehensive genomic profiling may offer novel therapeutic
modalities for patients with rare tumors to solve the dilemma of
limited treatment options. All of the above facilitates the
development of new drug investigations and treatment
improvement for rare tumors in the future.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
February 2021 | Volume 12 | Article 631483

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Immunotherapy Indicators of Rare Tumors
and accession number(s) can be found in the article/
Supplementary Material.
AUTHOR CONTRIBUTIONS

NL designed the study. ZZ directed the data analysis and
gave important suggestion on the revision. XY helped design
the study but was not involved in the data analysis and
revision. SW performed the study and analyzed the data.
SW, YF, NJ, SX, QL, RC, and NL composed the manuscript.
All authors contributed to the article and approved the
submitted version.
Frontiers in Immunology | www.frontiersin.org 1034
ACKNOWLEDGMENTS

We thank the patients for voluntarily providing valuable medical
and genetic data for scientific analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.
631483/full#supplementary-material

Supplementary Table 1 | Patients’ clinicopathological subgroups and
immunotherapy related indicators data.

Supplementary Table 2 | 1021 genes list.
REFERENCES
1. Gatta G, van der Zwan JM, Casali PG, Siesling S, Dei Tos AP, Kunkler I, et al.

Rare cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer
(2011) 47(17):2493–511. doi: 10.1016/j.ejca.2011.08.008

2. Greenlee RT, GoodmanMT, Lynch CF, Platz CE, Havener LA, Howe HL. The
occurrence of rare cancers in U.S. adults, 1995-2004. Public Health Rep (2010)
125(1):28–43. doi: 10.1177/003335491012500106

3. Wang S, Chen R, Tang Y, Yu Y, Fang Y, Huang H, et al. Comprehensive
Genomic Profiling of Rare Tumors: Routes to Targeted Therapies. Front
Oncol (2020) 10:536. doi: 10.3389/fonc.2020.00536

4. Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint
inhibitors: recent progress and potential biomarkers. Exp Mol Med (2018) 50
(12):1–11. doi: 10.1038/s12276-018-0191-1

5. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade.
Science (2018) 359(6382):1350–5. doi: 10.1126/science.aar4060

6. Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer
therapeutics. J Hematol Oncol (2019) 12(1):92. doi: 10.1186/s13045-019-
0779-5

7. Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer
Immunotherapy. Mol Cancer Ther (2015) 14(4):847–56. doi: 10.1158/1535-
7163.MCT-14-0983

8. Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al.
Pembrolizumab versus chemotherapy for previously untreated, PD-L1-
expressing, locally advanced or metastatic non-small-cell lung cancer
(KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial.
Lancet (2019) 393(10183):1819–30. doi: 10.1016/S0140-6736(18)32409-7

9. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1
Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med (2015)
372(26):2509–20. doi: 10.1056/NEJMoa1500596

10. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al.
Nivolumab in patients with metastatic DNA mismatch repair-deficient or
microsatellite instability-high colorectal cancer (CheckMate 142): an open-
label, multicentre, phase 2 study. Lancet Oncol (2017) 18(9):1182–91. doi:
10.1016/S1470-2045(17)30422-9

11. Le DT, Kim TW, Van Cutsem E, Geva R, Jager D, Hara H, et al. Phase II
Open-Label Study of Pembrolizumab in Treatment-Refractory,
Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic
Colorectal Cancer: KEYNOTE-164. J Clin Oncol (2020) 38(1):11–9. doi:
10.1200/JCO.19.02107

12. Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA Approval Summary:
Pembrolizumab for the Treatment of Microsatellite Instability-High Solid
Tumors. Clin Cancer Res (2019) 25(13):3753–8. doi: 10.1158/1078-0432.CCR-
18-4070

13. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY,
et al. Tumor mutational load predicts survival after immunotherapy across
multiple cancer types. Nat Genet (2019) 51(2):202–6. doi: 10.1038/s41588-
018-0312-8
14. Reck M, Schenker M, Lee KH, Provencio M, Nishio M, Lesniewski-Kmak K,
et al. Nivolumab plus ipilimumab versus chemotherapy as first-line treatment
in advanced non-small-cell lung cancer with high tumour mutational burden:
patient-reported outcomes results from the randomised, open-label, phase III
CheckMate 227 trial. Eur J Cancer (2019) 116:137–47. doi: 10.1016/
j.ejca.2019.05.008

15. Jiang T, Shi J, Dong Z, Hou L, Zhao C, Li X, et al. Genomic landscape and its
correlations with tumor mutational burden, PD-L1 expression, and immune
cells infiltration in Chinese lung squamous cell carcinoma. J Hematol Oncol
(2019) 12(1):75. doi: 10.1186/s13045-019-0762-1

16. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al.
Checkpoint blockade cancer immunotherapy targets tumour-specific mutant
antigens. Nature (2014) 515(7528):577–81. doi: 10.1038/nature13988

17. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V,
et al. Patient HLA class I genotype influences cancer response to checkpoint
blockade immunotherapy. Science (2018) 359(6375):582–7. doi: 10.1126/
science.aao4572

18. Chowell D, Krishna C, Pierini F, Makarov V, Rizvi NA, Kuo F, et al.
Evolutionary divergence of HLA class I genotype impacts efficacy of cancer
immunotherapy. Nat Med (2019) 25(11):1715–20. doi: 10.1038/s41591-019-
0639-4

19. Negrao MV, Lam VK, Reuben A, Rubin ML, Landry LL, Roarty EB, et al. PD-
L1 Expression, Tumor Mutational Burden, and Cancer Gene Mutations Are
Stronger Predictors of Benefit from Immune Checkpoint Blockade than HLA
Class I Genotype in Non-Small Cell Lung Cancer. J Thorac Oncol (2019) 14
(6):1021–31. doi: 10.1016/j.jtho.2019.02.008

20. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K,
et al. Association of tumour mutational burden with outcomes in patients with
advanced solid tumours treated with pembrolizumab: prospective biomarker
analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet
Oncol (2020) 21(10):1353–65. doi: 10.1016/S1470-2045(20)30445-9

21. Naing A, Meric-Bernstam F, Stephen B, Karp DD, Hajjar J, Rodon Ahnert J,
et al. Phase 2 study of pembrolizumab in patients with advanced rare
cancers. J Immunother Cancer (2020) 8(1):e000347. doi: 10.1136/jitc-2019-
000347

22. D’Angelo SP, Russell J, Lebbe C, Chmielowski B, Gambichler T, Grob JJ, et al.
Efficacy and Safety of First-line Avelumab Treatment in Patients With Stage
IV Metastatic Merkel Cell Carcinoma: A Preplanned Interim Analysis of a
Clinical Trial. JAMA Oncol (2018) 4(9):e180077. doi: 10.1001/
jamaoncol.2018.0077

23. Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K, et al.
Immune activation and response to pembrolizumab in POLE-mutant
endometrial cancer. J Clin Invest (2016) 126(6):2334–40. doi: 10.1172/
JCI84940

24. Kim H, Kwon HJ, Park SY, Park E, Chung JH. PD-L1 immunohistochemical
assays for assessment of therapeutic strategies involving immune checkpoint
inhibitors in non-small cell lung cancer: a comparative study. Oncotarget
(2017) 8(58):98524–32. doi: 10.18632/oncotarget.21567
February 2021 | Volume 12 | Article 631483

https://www.frontiersin.org/articles/10.3389/fimmu.2021.631483/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.631483/full#supplementary-material
https://doi.org/10.1016/j.ejca.2011.08.008
https://doi.org/10.1177/003335491012500106
https://doi.org/10.3389/fonc.2020.00536
https://doi.org/10.1038/s12276-018-0191-1
https://doi.org/10.1126/science.aar4060
https://doi.org/10.1186/s13045-019-0779-5
https://doi.org/10.1186/s13045-019-0779-5
https://doi.org/10.1158/1535-7163.MCT-14-0983
https://doi.org/10.1158/1535-7163.MCT-14-0983
https://doi.org/10.1016/S0140-6736(18)32409-7
https://doi.org/10.1056/NEJMoa1500596
https://doi.org/10.1016/S1470-2045(17)30422-9
https://doi.org/10.1200/JCO.19.02107
https://doi.org/10.1158/1078-0432.CCR-18-4070
https://doi.org/10.1158/1078-0432.CCR-18-4070
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1016/j.ejca.2019.05.008
https://doi.org/10.1016/j.ejca.2019.05.008
https://doi.org/10.1186/s13045-019-0762-1
https://doi.org/10.1038/nature13988
https://doi.org/10.1126/science.aao4572
https://doi.org/10.1126/science.aao4572
https://doi.org/10.1038/s41591-019-0639-4
https://doi.org/10.1038/s41591-019-0639-4
https://doi.org/10.1016/j.jtho.2019.02.008
https://doi.org/10.1016/S1470-2045(20)30445-9
https://doi.org/10.1136/jitc-2019-000347
https://doi.org/10.1136/jitc-2019-000347
https://doi.org/10.1001/jamaoncol.2018.0077
https://doi.org/10.1001/jamaoncol.2018.0077
https://doi.org/10.1172/JCI84940
https://doi.org/10.1172/JCI84940
https://doi.org/10.18632/oncotarget.21567
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Immunotherapy Indicators of Rare Tumors
25. Phillips T, Simmons P, Inzunza HD, Cogswell J, Novotny J Jr, Taylor C, et al.
Development of an automated PD-L1 immunohistochemistry (IHC) assay for
non-small cell lung cancer. Appl Immunohistochem Mol Morphol (2015) 23
(8):541–9. doi: 10.1097/PAI.0000000000000256

26. Roach C, Zhang N, Corigliano E, Jansson M, Toland G, Ponto G, et al.
Development of a Companion Diagnostic PD-L1 Immunohistochemistry
Assay for Pembrolizumab Therapy in Non-Small-cell Lung Cancer. Appl
Immunohistochem Mol Morphol (2016) 24(6):392–7. doi: 10.1097/
PAI.0000000000000408

27. Sun S, Liu Y, Eisfeld AK, Zhen F, Jin S, Gao W, et al. Identification of
Germline Mismatch Repair Gene Mutations in Lung Cancer Patients With
Paired Tumor-Normal Next Generation Sequencing: A Retrospective Study.
Front Oncol (2019) 9:550. doi: 10.3389/fonc.2019.00550

28. Zhuo M, Guan Y, Yang X, Hong L, Wang Y, Li Z, et al. The Prognostic and
Therapeutic Role of Genomic Subtyping by Sequencing Tumor or Cell-Free
DNA in Pulmonary Large-Cell Neuroendocrine Carcinoma. Clin Cancer Res
(2020) 26(4):892–901. doi: 10.1158/1078-0432.CCR-19-0556

29. Yang X, Chu Y, Zhang R, Han Y, Zhang L, Fu Y, et al. Technical Validation of
a Next-Generation Sequencing Assay for Detecting Clinically Relevant Levels
of Breast Cancer-Related Single-Nucleotide Variants and Copy Number
Variants Using Simulated Cell-Free DNA. J Mol Diagn (2017) 19(4):525–
36. doi: 10.1016/j.jmoldx.2017.04.007

30. Jia Q, Wu W, Wang Y, Alexander PB, Sun C, Gong Z, et al. Local mutational
diversity drives intratumoral immune heterogeneity in non-small cell lung
cancer. Nat Commun (2018) 9(1):5361. doi: 10.1038/s41467-018-07767-w

31. Wang Y, Zhao C, Chang L, Jia R, Liu R, Zhang Y, et al. Circulating tumor
DNA analyses predict progressive disease and indicate trastuzumab-resistant
mechanism in advanced gastric cancer. EBioMedicine (2019) 43:261–9. doi:
10.1016/j.ebiom.2019.04.003

32. Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD, et al. MSIsensor:
microsatellite instability detection using paired tumor-normal sequence
data. Bioinformatics (2014) 30(7):1015–6. doi: 10.1093/bioinformatics/btt755

33. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O.
OptiType: precision HLA typing from next-generation sequencing data.
Bioinformatics (2014) 30(23):3310–6. doi: 10.1093/bioinformatics/btu548

34. Szolek A. HLA Typing from Short-Read Sequencing Data with OptiType.
Methods Mol Biol (2018) 1802:215–23. doi: 10.1007/978-1-4939-8546-3_15

35. Aggarwal C, Abreu DR, Felip E, Carcereny E, Gottfried M, Wehler T, et al.
Prevalence of PD-L1 expression in patients with non-small cell lung cancer
screened for enrollment in KEYNOTE-001, -010, and -024 , in ESMO. Ann
Oncol (2016) 27(S6):VI363. doi: 10.1093/annonc/mdw378.14

36. Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite
instability status determined by next-generation sequencing and compared
with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med
(2018) 7(3):746–56. doi: 10.1002/cam4.1372

37. Yarchoan M, Albacker LA, Hopkins AC, Montesion M, Murugesan K,
Vithayathil TT, et al. PD-L1 expression and tumor mutational burden are
independent biomarkers in most cancers. JCI Insight (2019) 4(6):e126908. doi:
10.1172/jci.insight.126908

38. Gao S, Li N, Gao S, Xue Q, Ying J, Wang S, et al. Neoadjuvant PD-1 inhibitor
(Sintilimab) in NSCLC. J Thorac Oncol (2020) 15(5):816–26. doi: 10.1016/
j.jtho.2020.01.017

39. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al.
Genomic correlates of response to CTLA-4 blockade in metastatic melanoma.
Science (2015) 350(6257):207–11. doi: 10.1126/science.aad0095

40. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al.
Cancer immunology. Mutational landscape determines sensitivity to PD-1
blockade in non-small cell lung cancer. Science (2015) 348(6230):124–8. doi:
10.1126/science.aaa1348

41. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-
Valette C, et al. Nivolumab plus Ipilimumab in Lung Cancer with a High
Tumor Mutational Burden. N Engl J Med (2018) 378(22):2093–104. doi:
10.1056/NEJMoa1801946

42. Ready N, Hellmann MD, Awad MM, Otterson GA, Gutierrez M, Gainor JF,
et al. First-Line Nivolumab Plus Ipilimumab in Advanced Non-Small-Cell
Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1
Frontiers in Immunology | www.frontiersin.org 1135
and Tumor Mutational Burden as Biomarkers. J Clin Oncol (2019) 37
(12):992–1000. doi: 10.1200/JCO.18.01042

43. Rizvi NA, Cho BC, Reinmuth N, Lee KH, Ahn M-J, Luft A, et al. Durvalumab
with or without tremelimumab vs platinum-based chemotherapy as first-line
treatment for metastatic non-small cell lung cancer: MYSTIC, in ESMO. Ann
Oncol (2018) 29(S10):X40–1. doi: 10.1093/annonc/mdy511.005

44. Velcheti V, Kim ES, Mekhail T, Dakhil C, Stella PJ, Shen X, et al. Socinski,
Prospective clinical evaluation of blood-based tumor mutational burden
(bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small
cell lung cancer (NSCLC): Interim B-F1RST results., in ASCO. J Clin Oncol
(2018) 36(15):S12001. doi: 10.1200/JCO.2018.36.15_suppl.12001

45. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-
tumor genomic biomarkers for PD-1 checkpoint blockade-based
immunotherapy. Science (2018) 362(6411):eaar3593. doi: 10.1126/
science.aar3593

46. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al.
Tumor Mutational Burden as an Independent Predictor of Response to
Immunotherapy in Diverse Cancers. Mol Cancer Ther (2017) 16(11):2598–
608. doi: 10.1158/1535-7163.MCT-17-0386

47. Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response
Rate to PD-1 Inhibition. N Engl J Med (2017) 377(25):2500–1. doi: 10.1056/
NEJMc1713444

48. Langer C, Gadgeel S, Borghaei H, Patnaik A, Powell S, Gentzler R, et al.
OA04.05 KEYNOTE-021: TMB and Outcomes for Carboplatin and
Pemetrexed With or Without Pembrolizumab for Nonsquamous
NSCLC, in WCLC. J Thorac Oncol (2019) 14(10):S216. doi: 10.1016/
j.jtho.2019.08.426

49. Garassino M, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, Speranza G,
et al. OA04.06 Evaluation of TMB in KEYNOTE-189: Pembrolizumab Plus
Chemotherapy vs Placebo Plus Chemotherapy for Nonsquamous NSCLC.
J Thorac Oncol (2019) 14(10):S216–7. doi: 10.1016/j.jtho.2019.08.427

50. Shao C, Li G, Huang L, Pruitt S, Castellanos E, Frampton G, et al. Prevalence
of High Tumor Mutational Burden and Association With Survival in Patients
With Less Common Solid Tumors. JAMA Netw Open (2020) 3(10):e2025109.
doi: 10.1001/jamanetworkopen.2020.25109

51. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al.
Mismatch repair deficiency predicts response of solid tumors to PD-1
blockade. Science (2017) 357(6349):409–13. doi: 10.1126/science.aan6733

52. Gupta R, Sinha S, Paul RN. The impact of microsatellite stability status in
colorectal cancer. Curr Probl Cancer (2018) 42(6):548–59. doi: 10.1016/
j.currproblcancer.2018.06.010

53. Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD,
Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial
carcinoma. Nature (2013) 497(7447):67–73. doi: 10.1038/nature12113

54. Trabucco SE, Gowen K, Maund SL, Sanford E, Fabrizio DA, Hall MJ, et al. A
Novel Next-Generation Sequencing Approach to Detecting Microsatellite
Instability and Pan-Tumor Characterization of 1000 Microsatellite
Instability-High Cases in 67,000 Patient Samples. J Mol Diagn (2019) 21
(6):1053–66. doi: 10.1016/j.jmoldx.2019.06.011

55. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al.
Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1
and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With
Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation
Sequencing. J Clin Oncol (2018) 36(7):633–41. doi: 10.1200/JCO.2017.75.3384

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Wang, Fang, Jiang, Xing, Li, Chen, Yi, Zhang and Li. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
February 2021 | Volume 12 | Article 631483

https://doi.org/10.1097/PAI.0000000000000256
https://doi.org/10.1097/PAI.0000000000000408
https://doi.org/10.1097/PAI.0000000000000408
https://doi.org/10.3389/fonc.2019.00550
https://doi.org/10.1158/1078-0432.CCR-19-0556
https://doi.org/10.1016/j.jmoldx.2017.04.007
https://doi.org/10.1038/s41467-018-07767-w
https://doi.org/10.1016/j.ebiom.2019.04.003
https://doi.org/10.1093/bioinformatics/btt755
https://doi.org/10.1093/bioinformatics/btu548
https://doi.org/10.1007/978-1-4939-8546-3_15
https://doi.org/10.1093/annonc/mdw378.14
https://doi.org/10.1002/cam4.1372
https://doi.org/10.1172/jci.insight.126908
https://doi.org/10.1016/j.jtho.2020.01.017
https://doi.org/10.1016/j.jtho.2020.01.017
https://doi.org/10.1126/science.aad0095
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1200/JCO.18.01042
https://doi.org/10.1093/annonc/mdy511.005
https://doi.org/10.1200/JCO.2018.36.15_suppl.12001
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1158/1535-7163.MCT-17-0386
https://doi.org/10.1056/NEJMc1713444
https://doi.org/10.1056/NEJMc1713444
https://doi.org/10.1016/j.jtho.2019.08.426
https://doi.org/10.1016/j.jtho.2019.08.426
https://doi.org/10.1016/j.jtho.2019.08.427
https://doi.org/10.1001/jamanetworkopen.2020.25109
https://doi.org/10.1126/science.aan6733
https://doi.org/10.1016/j.currproblcancer.2018.06.010
https://doi.org/10.1016/j.currproblcancer.2018.06.010
https://doi.org/10.1038/nature12113
https://doi.org/10.1016/j.jmoldx.2019.06.011
https://doi.org/10.1200/JCO.2017.75.3384
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Wei Wei,

Institute for Systems Biology (ISB),
United States

Reviewed by:
Chutamas Thepmalee,

University of Phayao, Thailand
David Linnaeus Gibbs,

Institute for Systems Biology (ISB),
United States

*Correspondence:
Qinghai Ye

ye.qinghai@zs-hospital.sh.cn
Hui Li

li.hui1@zs-hospital.sh.cn
Yongfeng Xu

xu.yongfeng@zs-hospital.sh.cn
Yongsheng Xiao

xiao.yongsheng@zs-hospital.sh.cn

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Cancer Immunity and
Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 29 December 2020
Accepted: 03 March 2021
Published: 24 March 2021

Citation:
Chen Z, Yu M, Yan J, Guo L, Zhang B,
Liu S, Lei J, Zhang W, Zhou B, Gao J,
Yang Z, Li X, Zhou J, Fan J, Ye Q, Li H,

Xu Y and Xiao Y (2021) PNOC
Expressed by B Cells in

Cholangiocarcinoma Was Survival
Related and LAIR2 Could Be a T Cell

Exhaustion Biomarker in Tumor
Microenvironment: Characterization

of Immune Microenvironment
Combining Single-Cell and Bulk

Sequencing Technology.
Front. Immunol. 12:647209.

doi: 10.3389/fimmu.2021.647209

ORIGINAL RESEARCH
published: 24 March 2021

doi: 10.3389/fimmu.2021.647209
PNOC Expressed by B Cells in
Cholangiocarcinoma Was Survival
Related and LAIR2 Could Be a T Cell
Exhaustion Biomarker in Tumor
Microenvironment: Characterization
of Immune Microenvironment
Combining Single-Cell and Bulk
Sequencing Technology
Zheng Chen1†, Mincheng Yu1†, Jiuliang Yan1†, Lei Guo1†, Bo Zhang1†, Shuang Liu2†,
Jin Lei1, Wentao Zhang1, Binghai Zhou3, Jie Gao1, Zhangfu Yang1, Xiaoqiang Li4,
Jian Zhou1, Jia Fan1, Qinghai Ye1*, Hui Li1*, Yongfeng Xu1* and Yongsheng Xiao1*

1 Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion,
Ministry of Education, Shanghai, China, 2 Neurosurgery Department of Zhongshan Hospital, Fudan University, Shanghai,
China, 3 Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University,
Nanchang, China, 4 Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China

Background: Cholangiocarcinoma was a highly malignant liver cancer with poor
prognosis, and immune infiltration status was considered an important factor in
response to immunotherapy. In this investigation, we tried to locate immune infiltration
related genes of cholangiocarcinoma through combination of bulk-sequencing and single-
cell sequencing technology.

Methods: Single sample gene set enrichment analysis was used to annotate immune
infiltration status in datasets of TCGA CHOL, GSE32225, and GSE26566. Differentially
expressed genes between high- and low-infiltrated groups in TCGA dataset were yielded
and further compressed in other two datasets through backward stepwise regression in R
environment. Single-cell sequencing data of GSE138709 was loaded by Seurat software
and was used to examined the expression of infiltration-related gene set. Pathway
changes in malignant cell populations were analyzed through scTPA web tool.

Results: There were 43 genes differentially expressed between high- and low-immune
infiltrated patients, and after further compression, PNOC and LAIR2 were significantly
correlated with high immune infiltration status in cholangiocarcinoma. Through analysis of
single-cell sequencing data, PNOC was mainly expressed by infiltrated B cells in tumor
microenvironment, while LAIR2 was expressed by Treg cells and partial GZMB+ CD8 T
cells, which were survival related and increased in tumor tissues. High B cell infiltration
org March 2021 | Volume 12 | Article 647209136

https://www.frontiersin.org/articles/10.3389/fimmu.2021.647209/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647209/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647209/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647209/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647209/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647209/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647209/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647209/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ye.qinghai@zs-hospital.sh.cn
mailto:li.hui1@zs-hospital.sh.cn
mailto:xu.yongfeng@zs-hospital.sh.cn
mailto:xiao.yongsheng@zs-hospital.sh.cn
https://doi.org/10.3389/fimmu.2021.647209
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.647209
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.647209&domain=pdf&date_stamp=2021-03-24


Chen et al. PNOC and LAIR2 in Cholangiocarcinoma

Frontiers in Immunology | www.frontiersin.
levels were related to better overall survival. Also, malignant cell populations demonstrated
functionally different roles in tumor progression.

Conclusion: PNOC and LAIR2 were biomarkers for immune infiltration evaluation in
cholangiocarcinoma. PNOC, expressed by B cells, could predict better survival of
patients, while LAIR2 was a potential marker for exhaustive T cell populations,
correlating with worse survival of patients.
Keywords: cholangiocarcinoma, immune infiltration, biomarker, single-cell sequencing technology, immunotherapy
INTRODUCTION

Cholangiocarcinoma (CCA) has long been deemed as a
malignancy with poor prognosis in liver cancer. Patients
conflicted by cholangiocarcinoma often are found in late
stages, who were not candidates for surgery and seldom benefit
from chemotherapy or comprehensive treatment (1, 2). Though
blockade of programmed cell death receptor 1/programmed cell
death receptor ligand 1 (PD1/PDL1) axis with mono-antibody,
Pembrolizumab and Nivolumab, has shed light on partial
patients, who showed high PDL1 expression in tumors, the
overall treating efficacy in advanced CCA patients still needs
further observation (3–6). Understanding tumor immune
microenvironment (TIME) and infiltration status of CCA
could better guide the clinical appliance of immunotherapy
(7–9).

With the development of single-cell sequencing (scRNA-seq),
investigators could further examine gene expression in
individual cells and try to locate functional difference between
different clinical phenotypes, especially in immune cells that have
infiltrated the tumor (10–12). Characterization of CCA immune
microenvironment is limited, so in this study to characterize
immune cell components in TIME, we combined bulk
sequencing data with scRNA-seq data, which could provide a
better understanding of functional cell clusters related to disease
severity. We found B cell infiltration levels in CCA TIME were
related to patients’ overall survival (OS), and propronociceptin
(PNOC), which was highly expressed by B cell populations in
CCA, could be an independent indicator for better prognosis.
Also, in CCA, leukocyte associated immunoglobulin like
receptor 2 (LAIR2) was highly expressed by regulatory T cells
(Tregs) and part of CD8+/GZMB+ T cells, which could be
an indicator of exhaustive immune status in CCA patients. In
addition, CCA cell sub-populations demonstrated heterogeneous
metabolic and signal transduction activities, in which some CCA
cells showed highly activated PD1/PDL1 axis signals, justifying
the application of anti-PD1 combining therapy in CCA patients.
METHODS

Datasets for Analysis and Derivation of
Gene List
In this investigation, dataset of cholangiocarcinoma (CHOL) in
database (n = 36) of the Cancer Genome Atlas (TCGA) (https://
org 237
www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga) was used to analyze the differentially
expressed genes between high- and low-immune infiltration
groups (13). After searching Gene Expression Omnibus (GEO)
database, data series with patient count over 100 were located,
and the datasets with largest patient counts (GSE32225, n = 149;
GSE26566, n = 104) were chosen for further immune infiltration
classification (14, 15). Single cell sequencing data of five
intrahepatic cholangiocarcinoma patients was procured from
dataset of GSE138709 (16). The clinical information for
patients’ cohorts were publicly accessible, which does not
require additional endorsement from the local ethic committee.
The immune meta gene list for 28 immune cell types were
downloaded from TISBID database (http://cis.hku.hk/TISIDB/
index.php) (17). Workflow of this Investigation was provided in
Figure 1.

Calculation of Immune Infiltration Scores
in Bulk Sequencing Samples and Analysis
of Differentially Expressed Genes Between
Groups
In our analysis, single sample gene set enrichment analysis
(ssGSEA) for immune infiltration annotation was performed to
calculate respective immune infiltration scores of 28 immune cell
types, which includes cell types of activated CD4 T cell, activated
CD8 T cell, activated dendritic cell, CD56 bright natural killer
(NK) cell, central memory CD4 T cell, central memory CD8 T
cell, NK cell, NK T cell, type 1 T helper cell, type 17 T helper cell,
CD56 dim NK cell, immature dendritic cell, macrophage,
myeloid derived suppressive cell (MDSC), neutrophil,
plasmacytoid dendritic cell, regulatory T cell (Treg), type 2 T
helper cell, activated B cell, eosinophil, gamma delta T cell,
immature B cell, mast cell, memory B cell, monocyte and T
follicular helper cell (18). Differentially expressed genes between
groups were analyzed using edgeR package, contrasting high-
with low-immune infiltrated patients (19, 20).

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was used to demonstrate
the altered pathways between patient groups in this study, using
software of GSEA v4.1.0 (Broad Institute, Inc., Massachusetts
Institute of Technology, and Regents of the University of
California) (21). The annotation of changed pathways in this
investigation was performed with hallmarks gene set
(version: 7.2).
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Gene Ontology and Pathway Enrichment
DAVID database was used for gene ontology (GO) analysis,
which included biological process, cellular compartment, and
molecular function (https://david.ncifcrf.gov/summary.jsp) (22).
The protein domains of differentially expressed genes between
groups were also analyzed and downloaded from the database for
demonstration. REACTOME database was also linked for
annotation of significantly changed pathways between groups
(www.reactome.org) (23).

Single Cell Data Processing
For single cell sequencing analysis, raw data for GSE138709 were
downloaded from portal website, and package of Seurat was used
to process data in R (version: 4.0.3) with R studio (version:
1.3.1903) (24–26). The raw data GSE138709 were loaded with
Seurat, and cells were filtered with the criteria of >20%
mitochondria related genes or more than 6,000 genes
expressed. A total of 32,627 cells were included for further
analysis, and variable features of each sample were analyzed
after normalization. Then we used Seurat function of
FindIntegrateionAnchors to merged sample files with common
anchors among variables (dims=1:20, k.filter=30) (26). Merged
data of cells were clustered into 15 cell populations using
function of FindClusters (resolution = 0.3). Respective
reduction of cell clustering, including UMAP, TSNE, and PCA,
were performed. For cell population annotation, we used the
signatures chosen in the original publication (16). For NK and T
cell cluster, signatures of CD7, FGFBP2, KLRF1, CD2, CD3D,
and CD3E were chosen for annotation. For malignancy and
cholangiocyte, signatures of EPCAM, KRT19, KRT7, FXYD2,
TM4SF4, and ANXA4 were chosen. For monocytes, CD14 and
CD11C were chosen for annotation. For B cell cluster, CD79A,
Frontiers in Immunology | www.frontiersin.org 338
MS4A1 were chosen. For endothelial cells, signatures of
ENG and VWF were chosen for annotation. For hepatocytes,
APOC3, FABP1, and APOA1 were chosen for annotation.
And for fibroblasts, ACTA2 and COL1A2 were chosen
for demonstration.

Analysis of Pathway Changes in Malignant
Cholangiocarcinoma Cells
To compute and analyze pathway scores in malignant
cholangiocarcinoma cells, we used scTPA, which is a web tool
for single-cell analysis of activated pathways (http://sctpa.bio-
data.cn:8080/index.html) (27, 28). The malignant cell expression
matrix was extracted by sample origins in malignancy and
cholangiocyte cluster, and then expression matrix was
uploaded online. Analyzed results were downloaded for further
analysis and demonstration.

Correlation Between Specific Genes and
Immune Infiltration Scores
TIMER 2.0 web tool (http://timer.cistrome.org) was used for
correlation of gene expression with immune cell infiltration
scores, which included scores calculated by CIBERSORT and
MCP-counter methods (29–31). Scores of TCGA CHOL
sequencing data calculated by other infiltration estimating
methods were also downloaded from website for analysis.

Correlation Between Specific Gene
Markers
Database GEPIA (http://gepia.cancer-pku.cn) was used for
correlation analysis between PNOC, LAIR2, and a series of
immune regulators in bulk sequencing data of CHOL and
hepatocellular carcinoma (LIHC) in TCGA database (32).
FIGURE 1 | Flowchart of Investigation.
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Survival Analysis of Genes in Outside
Database
Survival analysis of specific genes was performed in outside
database, KMplotter, which is an integrated portal for tumor
survival analysis, combining genomics data of microarray with
clinical information (33).

Statistics
Survival analysis in this investigation was performed with R
packages survival and survminer in R environment, which were
used to find the best cutoff values for survival comparison
between groups (34). Package of pheatmap was used to
construct heat maps (35). Dot plots for correlation analysis
and bar plots for GO analysis were generated by packages
ggplot2, using spearman correlation test, and GOplot
respectively (36, 37). A generalized linear model (GLM) in R
was used for prediction of immune infiltration status, using
differentially expressed genes, and then stepwise algorithm
(backward) was used to choose the appropriate model by an
information criterion (AIC) extracted from formerly fitted model
(AIC= −2*log L + k* edf; L: likelihood; edf: the equivalent degrees
of freedom). Receiver operating characteristics (ROC) were
examined using package plotROC. P value under 0.05 was
considered significant.
RESULTS

Cholangiocarcinoma Patients in TCGA
Dataset Were Clustered Into High- and
Low-Immune Infiltrated Groups With
Different Prognosis
Using immune gene list for 28 immune infiltrating cell
populations, we generated scores for each immune cell type.
After clustering cholangiocarcinoma patients according to the
calculated scores, we found there was a clearly different immune
status between groups (Figure 2A). We also used gene lists for
immune stimulators, inhibitors, MHC molecules, chemokine,
and chemokine receptors to calculate the corresponding scores,
and in high-immune infiltration patients, expression levels for
those genes were much higher (Figure 2B). Patients with high
immune infiltration showed better prognosis (Figure 2C).

Differentially Expressed Genes Between
High- and Low-Infiltrated Patients Were
Mainly About Immune Functions, and
Inflammatory Signals Were Highly
Enriched in High-Immune Infiltrated
Patients
Differentially expressed genes between high- and low-infiltrated
groups were analyzed, and only a set of 43 genes were up-
regulated in high-infiltrated patients (Figures 2D, E) Pathway
enrichment showed the up-regulated gene set was mainly about
inflammatory signals, immune stimulation, and PD1 axis
Frontiers in Immunology | www.frontiersin.org 439
(Figures 3A, B). Gene ontology enrichment for 43 gene set
showed those genes were involved in the process of adaptive
immune responses and T cell signaling (Figures 3C, D). The
protein functional enrichment showed most of the 43 genes were
immunoglobulins (Figures 3E, F). Among those genes that were
significantly survival-related, all could indicate better overall
survival with higher expression (Figures 3G–L). Further gene
set enrichment analysis between groups showed hallmarks of
complement signaling, IL2/STAT5 signaling, IL6/JAK/STAT3
signaling, inflammatory response signaling, interferon gamma
signaling, and TNFA signaling via NFKB were highly enriched
(Figures 3M–R).

Several Genes Were Associated With
Immune Infiltration Status by Stepwise
Regression Model
We further calculated immune infiltration scores for datasets of
GSE26566 and GSE32225, and after clustering patients into high-
and low-infiltration groups, we used backward stepwise regression
model to compress the 43 gene set in prediction of immune
infiltration status in the two datasets respectively (Table 1). In
both models (GSE26566: infiltration score = 6.846 −
0.053*SH2D1A – 0.061*PNOC – 0.021*LAIR2; GSE32225:
infiltration score = −1.690 + 0.014*SH2D1A – 0.007*LAIR2 –
0.010*ICOS + 0.019*HEMGN + 0.012*GTSF1L), LAIR2 were
related to high-immune infiltration status (Supplementary
Figure 4).

Further Demonstration of CCA Tumor
Microenvironment Showed PNOC Was
Mainly Expressed by B Cell, Which Was
Also an Indicator for Better Prognosis
In addition to bulk sequencing analysis, we analyzed the immune
microenvironment of intrahepatic cholangiocarcinoma with single
cell sequencing dataset GSE138709. We further clustered cell
populations into 15 clusters, and using genes CD7, CD3D,
KRT19, FXYD2, CD14, CD1C, CD79A, VWF, APOC3, and
ACTA2, we classified 15 cell clusters into 7 cell populations,
which were fibroblasts, NK and T cells, malignancy and
cholangiocytes, endothelial cells, monocytes, hepatocytes, and B
cells (Figures 4A–C). Proportions of cells in different tissue types
showed most cells in malignancy and cholangiocyte cluster were
from tumor samples, while most cells in NK&T cell cluster were
form adjacent samples. Also, a high portion of fibroblasts were also
seen in tumor samples (Figures 4D–F).

We found PNOC was highly expressed in tumors, though the
difference between normal and tumor tissues was not significant
(Figure 5A). We further examined genes’ expression, selected by
stepwise regression models, in single cell populations, and PNOC
was mainly expressed by B cell cluster. After sub-clustering,
activated B cells, plasma cells, and naive B cells all showed
expression of PNOC (Figures 5B–D). We further examined
the correlations between PNOC and scores for B cell
infiltration in TCGA CHOL samples, calculated by ssGSEA
and MCPcounter methods, and results showed PNOC was
March 2021 | Volume 12 | Article 647209
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highly correlated with B cells (Figures 5E–H). Also, we found
high B cell infiltration scores in cholangiocarcinoma were related
to better prognosis, though survival benefits of high immature B
cell and memory B cell scores were not significant due to small
sample size (Figures 5I–L). We further used database GEPIA to
examine B cell markers’ correlation with PNOC, and results
showed PNOC was highly correlated with CD19, CD79A, CD27,
and FCRL5 in bulk sequencing data of CHOL (Coefficients
>0.95) (Figures 5M–P).

LAIR2 Was Up-regulated in CCA Samples,
Which Was Mainly Expressed by
Regulatory T Cells and a Subset of
CD8+/GZMB+ T Cells
We further divided NK and T cells populations into sub-clusters,
and LAIR2 was found to be expressed by Foxp3+ regulatory T
cell and CD8+/GZMB+ T cell clusters (Figures 6A, B). In TCGA
Frontiers in Immunology | www.frontiersin.org 540
CHOL samples, LAIR2 expression was increased in tumor
samples (Figure 6C). After further clustering of CD8+/
GZMB+ T cells into five sub-clusters, we found four of them
showed expression of LAIR2, in which sub-cluster 2
demonstrated higher expression (Figures 6D, E). In addition,
in comparison to immune stimulators (CD28, CD40), immune
inhibitors (TGFB1, CD96, TIGIT, and LAG3) were highly
expressed by all those sub-clusters, especially clusters 1 and 3
(Figure 6F). We further correlated LAIR2 expression with Treg
scores and CD8+ T cell scores in TCGA CHOL samples,
calculated by CIBERSORT and ssGSEA methods, and results
showed LAIR2 was correlated to those cell populations (Figures
6G–J). We correlated LAIR2 with Treg cell markers (CD4,
FOXP3, CD25, and CD39) and CD8+ T cell markers (CD8A,
GZMB, TIM3, and PD1) in CHOL dataset, which all
demonstrated high coefficients. Though the correlation
between PD1 and LAIR2 was obvious, the corresponding
A B

D

E

C

FIGURE 2 | Patients with cholangiocarcinoma were divided into differentially immune infiltrated groups with different prognosis. (A) Clustering of CCA patients
according to immune infiltration status calculated by ssGSEA method. (B) Whole scores of chemokine, chemokine receptor, immune stimulator, immune inhibitor,
and MHC expression levels between groups. (C) Survival difference between high- and low-immune infiltrated cholangiocarcinoma patients. (D, E) Differentially
expressed genes between high- and low-immune infiltrated patients.
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coefficient did not achieve significance (Figures 6O–R).
Considering immune regulation was performed through
cooperation of immune regulators, we additionally analyzed
the correlation between LAIR2, PNOC, and commonly
Frontiers in Immunology | www.frontiersin.org 641
acknowledged immune regulators, and results showed both
LAIR2 and PNOC were significantly highly correlated with a
bunch of immune inhibitors and stimulators in TCGA CHOL
sequencing samples (Figure 7).
A B

D

E F

G

I

H

J K L

M N

C

O

P Q R

FIGURE 3 | Functional Enrichment of Differentially Expressed Genes Between High- and Low-Immune Infiltration Groups. (A, B) Pathway enrichment of differentially
expressed genes in REACTOME database. (C, D) Gene ontology enrichment of differentially expressed genes. (E, F) Protein function enrichment of differentially
expressed genes. (G–L) Among differentially expressed genes, PNOC, TRBC1, TRAV29DV5, IGLV3.16, and AC244205.1 were significantly correlated with CCA
patients’ overall survival, while LAIR2 did not achieve significance. (M–R) Signatures of complement pathway, IL2-STAT5 pathway, IL6-Jak-STAT3 pathway,
inflammatory response pathway, interferon-gamma response pathway, and TNF via NFKB pathway were highly enriched in high-immune infiltrated patients.
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CCA Cells Demonstrated Heterogeneous
Pathway Changes in Single Cell Level,
Which Indicated Functional Variance and
Malignant Potentials of Different Cancer
Cell Clusters
We further extracted malignancy expression matrix from
chonlangiocytes’ expression and calculated REACTOME
pathway scores for each cell. After clustering of malignant cells
according to calculated scores, cells were clustered into 11
populations (Supplementary Figures 2A, B). Of notice,
clusters 11, 2, 7, 8, and 9 demonstrated highly malignant traits
with high expression of signatures in cell mitotic cycle, IL1
signaling, PD1 signaling, and PI3K signaling (Supplementary
Figure 2C).
Frontiers in Immunology | www.frontiersin.org 742
DISCUSSION

In our analysis , we used bulk sequencing data of
cholangiocarcinoma patients in TCGA database to calculate
the immune infiltration scores of different immune cell
populations, and then we compared expression difference
between groups, locating immune infiltration highly associated
genes; we found PNOC was mainly expressed by infiltrated B
cells, which was survival related, while LAIR2 was mainly
expressed by Tregs and partial CD8+/GZMB+ T cells,
indicating exhaustive immune status of T cells.

Prepronociceptin (PNOC) was formerly reported to be a pre-
protein for a series of products, which act as pain regulators in
signal transduction (38). Recent study showed PNOC is involved
in long-term opioid response, alcoholic states, and inflammation
TABLE 1 | Stepwise Regression Model for Compression of Immune Infiltration Related Genes.

Datasets Estimate Std. Error z value Pr(>|z|)

GSE26566 (Intercept) 6.84600446 1.44844569 4.72644885 2.28E-06
SH2D1A −0.0527032 0.01226927 −4.2955398 1.74E-05
PNOC −0.0612851 0.04286357 −1.4297708 0.15278282
LAIR2 −0.0205321 0.00803995 −2.5537545 0.01065684

GSE32225 (Intercept) −1.6900303 1.95226226 −0.8656779 0.38666682
SH2D1A 0.01434228 0.01042714 1.37547498 0.16898424
LAIR2 −0.0074253 0.00197153 −3.7662633 0.00016571
ICOS −0.0098082 0.00372504 −2.6330564 0.00846203
HEMGN 0.0187238 0.00680099 2.75309954 0.00590339
GTSF1L 0.0122422 0.00485591 2.52109161 0.01169914
March 2021 | Volume 12 | A
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FIGURE 4 | Single Cell Atlas of CCA Patients According to Dataset GSE138709. (A, B) Cell clusters for GSE138709 of five CCA patients. (C) Cell markers for
clusters’ annotation. (D) Portions of adjacent and tumor tissues in different cell clusters. (E) Patient portions in different cell clusters. (F) Numbers for cell clusters in
dataset after filtration.
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process (39–44). In cancer investigations, PNOC was related to
high inflammatory status and oxidative stress in C6 glioma cells,
which also was highly up-regulated in pediatric brainstem
ganglioglioma tissues and epithelial ovarian cancer, and in
analysis of high-risk gastrointestinal stromal tumor, PNOC was
reported as a prognostic biomarker (45–48). In a study of mRNA
and microRNA network in colorectal cancer, PNOC and its
targeting microRNAs were also prognostic markers for
evaluation of patients (49). In our analysis, PNOC was up-
regulated in cholangiocarcinoma samples, though the
difference didn’t achieve significance. Low expression of PNOC
may explain why only one model of GEO datasets included
Frontiers in Immunology | www.frontiersin.org 843
PNOC for prediction of high-immune infiltration; further
analysis showed, PNOC was highly expressed by B cell
populations in TIME. Expression of PNOC and infiltrating
levels of B cell populations in CHOL were both survival-
related, and in our analysis, differentially expressed immune
genes between high- and low-immune infiltration groups were
mainly immunoglobulins, indicating B cell infiltration was
crucial in humoral anti-tumor responses. We also examined
the prognostic values of PNOC in hepatocellular carcinoma, and
we found patients with high PNOC expression also had better
overall survival, indicating PNOC could be an independent
biomarker for patients’ evaluation (Supplementary Figure 3B).
A B D

E F G
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H

J K L

M N

C

O P

FIGURE 5 | PNOC Was Highly Expressed by B Cell Populations in CCA, and B Cell Infiltration Levels in CCA Indicated Better Overall Survival. (A) PNOC was highly
expressed in CCA tumors in TCGA database, though significant difference was not achieved. (B) PNOC was mainly expressed by B cells in single cell levels. (C)
Further cluster of B cell populations. (D) Markers for sub B cell populations. (E–H) Correlation between PNOC expression and scores for activated CD8+ T cell,
immature B cell, memory B cell, and whole B cell calculated by ssGSEA and MCPcounter methods. (I–L) B cell infiltration levels for activated CD8+ T cell, immature
B cell, memory B cell, and whole B cell calculated by ssGSEA and MCPcounter methods were correlated with CCA patients’ overall survival. (M–P) Correlation
between CD19, CD79A, FCRL5, CD27, and PNOC in CHOL bulk sequencing samples from GEPIA database.
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FIGURE 6 | LAIR2 Was Highly Expressed by Regulatory T Cells and CD8+/GZMB+ T Cell Subset. (A) TSNE reduction for demonstration of NK and T cell atlas.
(B) Markers for sub T and NK cell populations. (C) LAIR2 expression levels between CCA tumor and normal tissues in TCGA database. (D) Further cluster of CD8
+/GZMB+ T cells. (E) LAIR2 expression in further clustered CD8+/GZMB+ T cell sub-populations. (F) Functional markers’ expression levels between further clustered
CD8+/GZMB+ T cell sub-populations. (G–J) Correlation between LAIR2 expression and scores for regulatory T cell and CD8+ T cell calculated by CIBERSORT or
ssGSEA method. (K–N) Correlation between LAIR2 and Treg markers [CD4, FOXP3, IL2RA (CD25), and ENTPD1 (CD39)] in CHOL bulk sequencing data from
GEPIA database. (O–R) Correlation between CD8A, GZMB, HAVCR2 (TIM3), PDCD1 (PD1), and LAIR2 in CHOL bulk sequencing data.
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High PNOC expression could predict highly infiltrated TIME.
The specific roles of PNOC, expressed by B cells in TIME
regulation, still need further experiments to illustrate.

Leukocyte associated immunoglobulin like receptor 2 (LAIR2)
was previously reported as a close member to leukocyte associated
immunoglobulin like receptor 1 (LAIR1), which is deemed as an
immune inhibitor expressed by immune cells (50–52). According
to publications, expression of LAIR1 was detected in various
immune cell populations, and it has immune receptor tyrosine-
based inhibition motif (ITIM), recruiting SHP-1, SHP-2, and Src
kinase after phosphorylation (53, 54). Collagen in tumor matrix
and damaged tissues is a common ligand for LAIR1 in broad
spectrum, inhibiting immune cell functions after ligation, while
LAIR2 was found to be a soluble protein with similar extracellular
domain, which could block LAIR1 binding by competing ligands
(55–58). Former studies also showed in autoimmune diseases,
expression of LAIR2 was increased, and genetic single nucleotide
polymorphism of LAIR2 was related to susceptibility of
autoimmune diseases (59–62). The knowledge of LAIR2 in
Frontiers in Immunology | www.frontiersin.org 1045
TIME regulation is limited, however, LAIR2 could interfere
platelet activation and adhesion, and secreted LAIR2 could
inhibit classical and lectin pathways of complement system in
killing pathogens (58, 63). Overexpression of LAIR2 in lung cancer
could increase immune infiltration levels and rescue exhaustive
CD8+ T cells’ function (58). In our analysis, the mRNA expression
of LAIR2 in Tregs and partial CD8+/GZMB+ T cells, in
comparison to LAIR1, which was widely expressed by various
cell populations, could be an indicator of exhaustive immune
status. Former studies showed LAIR1 was expressed by
macrophages, dendritic cells, as well as other CD14+ cells in
inflammation, and scientists hypothesized LAIR1 could be both a
threshold receptor and negative feedback receptor (64, 65). In our
analysis, LAIR1 was not related to immune infiltration status in
CHOL, and we believed mRNA expression of LAIR2 may be
increased to offset LAIR1’s function in feedback loop, highlighting
the role of baseline LAIR2 expression. Though LAIR2 in bulk
sequencing data of CHOL was not survival-related, high LAIR2
expression in LIHC could indicate worse prognosis
A B

DC

FIGURE 7 | Correlation Between LAIR2, PNOC, and Acknowledged Immune Checkpoints in TCGA CHOL and LIHC Datasets. (A) Correlation between expression
of PNOC and immune regulators in CHOL dataset. (B) Correlation between expression of LAIR2 and immune regulators in CHOL dataset. (C) Correlation between
expression of PNOC and immune regulators in LIHC dataset. (D) Correlation between expression of LAIR2 and immune regulators in LIHC dataset. (Immune
inhibitors were marked with light orange, while immune stimulators were marked with light green. P values over 0.05 were not significant and were marked with
white color.)
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(Supplementary Figure 3A).We further examined coefficients for
correlations between LAIR2 and other acknowledged immune
regulators, such as CD28, LAG3, CD40, CXCR4, and TIGIT, in
CHOL and LIHC datasets respectively, most of which achieved
significance with high coefficients.

In addition, we analyzed the pathway changes in intrahepatic
cholangiocarcinoma cell populations, finding functionally
heterogeneous cancer cell clusters. Those malignant cells were
clustered into 11 populations, in which several clusters showed
high self-replication potentials, while others showed activated
PI3K signal cascade through FGFR interaction. Also, cluster 2
and cluster 11 cells showed immune evasion potentials by
increasing human lymphocyte associated antigens, and in
cluster 7, expression of PDL1 (CD274) was increased. These
functionally different cell populations in tumor justify the need of
combining immune therapy in cholangiocarcinoma, and PNOC
and LAIR2 could be clinical biomarkers for patient evaluation
before immune therapy, predicting patients’ survival and tumor
immune infiltration accordingly.

There are some limitations of our study. First, though we
combined bulk sequencing and single cell sequencing data to
characterize TIME of CHOL, protein expression were not
examined, and further experiments should be conducted for
confirmation. Second, immune regulating roles of PNOC,
expressed by B cells, and LAIR2, expressed by Tregs and
partial CD8+/GZMB+ T cells, in TIME are still in mist, which
shall be further investigated.
CONCLUSION

High B cell infiltration level could indicate better prognosis in
CCA. PNOC was mainly expressed by B cells in TIME and could
be an independent indicator for better prognosis. LAIR2 was
mainly expressed by Treg and partial CD8+/GZMB T cells,
which could be an indicator for exhaustive T cell populations
in TME. Both PNOC and LAIR2 were correlated with high
immune infiltration levels in CCA patients.
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Urothelial bladder cancer (UBC) is a global challenge of public health with limited
therapeutic options. Although the emergence of cancer immunotherapy, most notably
immune checkpoint inhibitors, represents a major breakthrough in the past decade, many
patients still suffer from unsatisfactory clinical outcome. A thorough understanding of the
fundamental cellular and molecular mechanisms responsible for antitumor immunity may
lead to optimized treatment guidelines and new immunotherapeutic strategies. With
technological developments and protocol refinements, single-cell approaches have
become powerful tools that provide unprecedented insights into the kaleidoscopic
tumor microenvironment and intricate cell-cell communications. In this review, we
summarize recent applications of single-cell analysis in characterizing the UBC
multicellular ecosystem, and discuss how to leverage the high-resolution information for
more effective immune-based therapies.

Keywords: urothelial bladder cancer, immunotherapy, immune checkpoints, single-cell analysis,
tumor microenvironment
INTRODUCTION

Urothelial bladder cancer (UBC) accounts for more than half a million new diagnoses and 212,536
deaths annually (1). Approximately 75% of primary UBC cases are non-muscle invasive bladder
cancer (NMIBC), which is typically treated with transurethral resection (TURBT) followed by
intravesical instillation of chemotherapeutics or Bacillus Calmette-Guérin (BCG) (2–4). Muscle
invasive bladder cancer (MIBC) is the minor yet more lethal disease modality, for which optimizing
medical care and reducing morbidity after radical cystectomy are major goals (4–6). Clinical
management of UBC patients is undergoing rapid changes as tumor immunotherapies, molecular
targeted agents, and antibody-drug conjugates have increasingly become viable options (7, 8). In
particular, immune checkpoint inhibitors (ICIs) harness patients’ own immune system to
counteract malignant cells and represent a major breakthrough in recent years. Since 2016, up to
five different ICIs targeting programmed cell death protein 1 (PD-1), i.e., pembrolizumab and
nivolumab, or programmed cell death ligand 1 (PD-L1), i.e., atezolizumab, avelumab and
durvalumab, are approved by FDA for the treatment of late-stage urothelial carcinoma. However,
only about 20% of UBC patients show an effective response to anti-PD-1/PD-L1 monotherapy,
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which often fails to translate into long-term survival benefit
compared with standard chemotherapy (9–14).

Extensive studies have been focused on dissecting the cellular
and molecular mechanisms underlying the immune response of
UBC, in order to identify clinical biomarkers to predict ICI
treatment efficacy, and to design novel single or combination
trials of more effective regimens (15–17). Accumulative evidence
suggests that tumor cells and the associated nontumor
constituents in UBC microenvironment interact to modulate
cancer immunogenicity and immunotherapeutic outcomes (18–
20). Therefore, a comprehensive characterization of diverse cell
types and states in the context of UBC oncogenesis and
treatment is of paramount importance. Conventional
methodologies often yield incomplete and mixed signals
attributable to both malignant and nonmalignant cells,
precluding precise evaluation on the biological determinants of
ICI effects (21, 22). The emerging single-cell technologies, along
with blossoming bioinformatic tools, promise to provide a high-
resolution tumor immune landscape and exert a prominent
impact on the field of UBC immunotherapy. By analyzing the
genomic (23), transcriptomic (24–27), and proteomic (28, 29)
features at a high-throughput manner, single-cell approaches
generate new insights into complex systems like UBC. The rich
information allows to infer heterogeneous cellular compositions,
study dynamic cell state transitions, and construct cell-cell
communication networks, which collectively may transform
our understanding of responsiveness and resistance to PD-1/
PD-L1 inhibitors, and fuel rational development of new
immune-modulating therapies and combinations.

In this review, we update the current progress of cancer
immunotherapy in UBC, summarize the applications of
cutting-edge single-cell analysis in decoding the tumor
multicellular ecosystem, and discuss future prospects for using
these high-dimensional multi-faceted data to guide more
effective immune checkpoint therapies.
THE ADVANCES AND CHALLENGES OF
IMMUNOTHERAPY FOR UBC

Conventional Therapies for UBC
UBC can be divided into NMIBC and MIBC according to the
depth of tumor invasion. The two disease entities have unique
pathological characteristics and distinct standard treatment
guidelines (7). NMIBCs refer to neoplasms staged as Ta, T1, or
CIS (carcinoma in situ), and are usually managed with TURBT
followed by a single dose of intravesical chemotherapy to kill
free-floating tumor cells. After the initial TURBT, patients with
intermediate or high likelihood of recurrence will receive
adjuvant intravesical BCG as maintenance therapy to reduce
the risk of progression (30, 31). For patients who have intolerable
adverse effects or fail BCG therapy owing to persistent or
worsening disease, the most effective treatment is radical
cystectomy (32). UBC lesions invading the muscular layer or
perivesical tissues (T2-T4) are categorized as MIBC.
Neoadjuvant platinum-based chemotherapy (NAC) plus
Frontiers in Oncology | www.frontiersin.org 250
radical cystectomy is the standard of care for localized MIBC.
However, only 20% of patients are eligible to receive NAC (33),
and almost half of them still have residual disease after NAC,
leading to poor prognosis (34). Moreover, approximately 4% of
newly diagnosed UBCs present distal metastasis (4), for which
the mainstay of treatment has long been systemic cytotoxic
chemotherapy. It is noteworthy that bladder preservation is
associated with better quality of life and therefore under active
investigations as an attractive alternative in the management of
both NMIBC and MIBC. While the survival improvement
achieved with conventional therapies has reached a plateau
and there are few advances in UBC treatment over the past
decades, the paradigm is being considerably shifted with the
development and application of immune checkpoint
therapeutics (Figure 1).

Immune Checkpoint Inhibitors for UBC
Second-Line Therapy
Second-line ICIs are suitable for UBC patients with advanced
disease who have previously received platinum-based
chemotherapy and subsequently progressed or metastasized. In
the KEYNOTE-045 phase III trial (11), patients receiving
pembrolizumab experienced improved overall survival (OS)
compared to second-line physician’s choice of chemotherapy
(10.3 vs 7.4 months; HR, 0.73 [95% CI, 0.59-0.91]; P = .002).
Based on these results, pembrolizumab was approved as a
second-line treatment for those whose disease progressed
during or after platinum-based chemotherapy. In addition,
avelumab (JAVELIN Solid Tumor) (12) and nivolumab
(CheckMate 275) (13) also gained accelerated FDA approval as
second-line agents, both of which demonstrated clinical benefit
in the advanced or metastatic setting.

Unfortunately, a major setback emerged as some ICIs
originally granted accelerated approval on the basis of phase II
trials did not achieve clinical confirmation in subsequent phase
III studies. For example, despite promising phase II data
(IMvigor210) (14), atezolizumab did not improve OS in a
phase III randomized trial (IMvigor211) compared with
second-line chemotherapy (11.1 vs 10.6 months; HR, 0.87
[95% CI, 0.63-1.21]; P = .41) (35). Likewise, according to the
phase III study (DANUBE), durvalumab failed to prolong OS
(14.4 vs 12.1 months; HR, 0.89 [95% CI, 0.71-1.11]; P = .30) (36).
As a result, these two drugs have been officially withdrawn from
the second-line treatment of bladder cancer (7).
First-Line Therapy
Pembrolizumab and atezolizumab were given accelerated
approval for the first-line treatment of cisplatin-ineligible
advanced or metastatic UBC, following KEYNOTE-052 (37)
and IMvigor210 (14) phase II trials. Nevertheless, treatment
with pembrolizumab and atezolizumab only yielded an
objective response rate (ORR) of 24% and 23%, respectively.
Both studies assessed the ICI efficacy in relation to PD-L1
expression status and found that PD-L1 score alone was not
sufficient to precisely predict the treatment responsiveness.
Other potential predictive biomarkers, such as tumor
May 2021 | Volume 11 | Article 696716
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mutational burden (TMB) and relevant gene expression profiling
(GEP), are being investigated without consensus guidelines
in practice.

In contrast, three recent trials with cisplatin-eligible patients
consistently showed that first-line ICI monotherapy was not
superior to chemotherapy in unresectable locally advanced or
metastatic UBC. All these large randomized phase III trials, i.e.,
IMvigor130, KEYNOTE-361, and DANUBE, observed similar
performance of three ICI drugs and platinum-containing
chemotherapy in the front-line setting (36, 38–40). Even
though the chemoimmunotherapy combo showed some
efficacy signals, this result, as it currently stands, appears not to
be practice-changing. The next step is to further explore the
combination of different ICIs, as well as immunotherapy plus
other targeted drugs, in multiple ongoing phase III trials
including CheckMate 901, NILE, LEAP-011 and EV-302
(41–44).

Maintenance Therapy
Javelin Bladder 100 was the first phase III trial to establish the
role of maintenance immunotherapy immediately following
first-line chemotherapy in advanced or metastatic urothelial
carcinoma (45). For patients who did not have disease
progression with standard chemotherapy (4-6 cycles of
gemcitabine plus cisplatin or carboplatin), the addition of
maintenance avelumab to best supportive care significantly
prolonged overall survival (21.4 vs 14.3 months; HR, 0.69 [95%
CI, 0.56-0.86]; P = .001). The evident improvement of patient
Frontiers in Oncology | www.frontiersin.org 351
outcomes has led to the FDA approval of avelumab as
maintenance therapy in this disease setting (46). However,
although no new safety signals were identified, there was a
higher incidence of adverse events in the avelumab group than
in the control group and 11.9% of the patients receiving
maintenance avelumab discontinued the therapy because of
side effects.

Adjuvant Therapy
The role of adjuvant immunotherapy in MIBC patients after
cystectomy remains to be elucidated by prospective clinical
studies. One phase III trial (IMvigor010) did not meet its
primary endpoint of improved disease-free survival in the
atezolizumab group over observation (19.4 vs 16.6 months;
HR, 0.89 [95% CI, 0.74-1.08]; P = .24) (47). On the other hand,
first results from the phase III CheckMate 274 trial supported use
of nivolumab in MIBC after radical surgery (48). Additional
high-quality evidence is required to formulate treatment
guidelines recommending adjuvant ICIs for MIBC patients
with high-risk pathologic features.

Neoadjuvant Therapy
Clinical trials of perioperative immunotherapy are ongoing in
patients with advanced urothelial carcinoma. In PURE-01 phase
II study, 42% of patients treated with pembrolizumab achieved
pathologic complete response (pCR) and up to 54% downstaged
to pT1 or lower disease (49). The ABACUS phase II study
reported a pCR rate of 31% and the majority of patients
FIGURE 1 | Clinical management of UBC with immune checkpoint inhibitors (ICIs). Dark-colored antibodies: currently approved ICIs; circled light-colored antibodies:
in clinical trials. BCG, Bacillus Calmette-Guérin; CIS, carcinoma in situ.
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underwent surgery successfully after neoadjuvant atezolizumab
therapy (50). Encouraged by these results, a series of phase III
trials assessing ICIs as monotherapy or in combination have
been initiated (51). Although neoadjuvant ICIs demonstrate
promising antitumor activity, they also pose new challenges in
clinical decision-making (52). First, the evaluation criteria of
neoadjuvant therapy efficacy are not unified at present. Second,
when the patients meet the standard of surgical treatment, and
whether curative surgery should be averted or delayed if pCR is
achieved are all issues to be considered (4). Third, not all patients
benefit from neoadjuvant ICI treatment and selective biomarkers
are urgently needed. Finally, during the treatment, immune cells
may infiltrate into tumor tissues, causing lesion enlargement and
pseudoprogressive imaging findings. Therefore, distinguishing
between real progression and so-called “tumor flare” is of
necessity (53).

Bladder-Sparing Therapy
As a reasonable alternative to radical cystectomy, trimodal
therapy (TMT) combines maximal TURBT with concomitant
radiosensitizing chemotherapy and external-beam radiotherapy
to devise bladder-sparing strategies in well-selected patients.
Given that ICIs may further augment the immune response
triggered by radiotherapy-induced tumor cell death (5), several
studies are evaluating the potential synergy between
chemoradiation and immunotherapy, including KEYNOTE-
992 and SWOG S1806, two phase III randomized trials
investigating ICIs in bladder-sparing treatment of MIBC (4, 54,
55). Of particular note, the incorporation of clinical biomarkers
is a major consideration to carefully gauge which patients are
optimal candidates for organ-preserving opportunities and if
salvage cystectomy is needed during the course of less
aggressive treatment.
BCG-Refractory NMIBC
For patients having BCG-refractory NMIBC with CIS who are
unable or unwilling to undergo cystectomy, pembrolizumab was
recently approved on the basis of results from KEYNOTE-057
phase II study (56, 57). The complete response (CR) rate was
40.6%, and nearly half of responding patients experienced a CR
lasting at least 12 months. During the course of pembrolizumab
treatment, no patient’s disease progressed to muscle-invasive or
metastatic bladder cancer. Additional trials evaluating the use of
immunotherapy in NMIBC including the phase III KEYNOTE-
676 are underway (58).
Mechanism of Action for PD-1/PD-L1
Checkpoint Blockade
To fulfill a robust and durable clinical benefit of tumor
immunotherapy, immense efforts have been taken to
comprehensively understand the mechanism of action for PD-
1/PD-L1 checkpoint blockade (20). Under physiological
conditions, to avoid damaging autologous cells during
prolonged immune response, the activation of T lymphocytes
is strictly counterbalanced by inhibitory signals, such as immune
Frontiers in Oncology | www.frontiersin.org 452
checkpoint pathways, resulting in hyporesponsive adaptation
while limiting detrimental immunopathology. As a particularly
important regulatory axis, PD-L1 binds to the PD-1 receptor and
functions as the brake of immune cells by suppressing
lymphocyte proliferation and cytokine secretion (59, 60). In
the process of neoplastic initiation and development,
accumulating somatic aberrations give rise to tumor-specific
neoantigens, which can be recognized by host defense system
as nonself (60, 61). To elicit effective immune responses, a serial
of stepwise events, termed the ‘cancer-immunity cycle’
(Figure 2), must proceed and expand iteratively (62). In brief,
the release of neoantigens (step 1) and their presentation by
dendritic cells (step 2), is followed by effector T cell priming and
activation (step 3), trafficking to (step 4) and infiltrating the
tumor bed (step 5), consequently resulting in recognition (step 6)
and killing of target cells (step 7) to deliver additional tumor-
associated antigens (step 1 again). This cyclic process leads to an
accumulation of immune-stimulatory factors that amplify and
broaden T cell responses. However, the generation of immunity
to cancer is not always optimal, and can be halted by immune
regulatory feedback mechanisms. For example, tumor cells often
abnormally express PD-L1 to engage PD-1 and resist immune
attack. Currently approved ICIs in UBC target the PD-1/PD-L1
interaction and reinvigorate the cytotoxic capacity of T
lymphocytes against malignant cells (63). Nonetheless, other
modes of immunosuppression may exist to impair the intact
cancer-immunity cycle and tumor responsiveness to ICI
treatment (20, 64–66). At present, immunohistochemistry
staining, lymphocyte cell surface protein labeling, and bulk-
level high-throughput sequencing, are commonly used to
analyze the relevant immune characteristics. However, these
approaches yield incomplete or mixed signals from the
multicellular microenvironment, which largely ignore
biological complexity and intratumoral heterogeneity. With
recent advances in single-cell technologies, comprehensive
profiling of tumor immune components and their functional
properties would facilitate the characterization of diverse cell
types and states, shed light on the inherent immune biology
related to bladder cancer, and provide unique and nuanced
insights into primary or acquired resistance to anticancer
immunotherapies (67).
APPLYING SINGLE-CELL TECHNOLOGIES
TO UBC

Samples for Consideration
Generally, FFPE (formalin-fixed and paraffin-embedded) or
snap-frozen clinical samples, though readily available, can only
be used for single-nucleus sequencing (68). The method may
work well for DNA but not RNA detection, because the profiling
of nuclear RNA ignores its cytoplasmic counterpart and cannot
represent the whole picture of cellular transcriptome (69).
Therefore, single-cell workflows based on viable cell suspension
remain the preferred approach, despite technical challenges
associated with immediate collection and processing of fresh
May 2021 | Volume 11 | Article 696716
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tissues (68). In addition, longitudinal observation of cell types
and states during a treatment course is of vast importance but
requires repeated tumor biopsies, which is usually unfeasible due
to ethical issues. To circumvent this limitation, murine bladder
cancer induced by continuous exposure to carcinogenic
chemicals serves as an alternative system. Genetically
engineered mouse model (GEMM) or patient-derived
xenograft (PDX) in immunodeficient animals can also be
exploited (18, 70, 71). Of note, co-engraftment of human
hematopoietic stem cells partly recapitulates the human tumor
Frontiers in Oncology | www.frontiersin.org 553
immune microenvironment and may be helpful to enable
interactions between PDX and immune cells, allowing for
experimental evaluation of immunotherapy (71). Moreover,
patient-derived organoid (PDO) provides an ex vivo platform
for studying tumor evolution and drug response (72, 73). Of
special note, the urine from UBC patients, compared to
peripheral blood, is a faithful and rich source of tumor-derived
materials including DNA, protein, and exfoliated cells (74–77).
Thus, single-cell analysis of urinary lymphocytes can be
potentially employed as a noninvasive strategy to monitor
FIGURE 2 | The cancer-immunity cycle in UBC. The cancer-immunity cycle is based on the illustration by Chen and Mellman (62). The cancer-immunity cycle can be
divided into seven major steps, starting with the release of neoantigens from the cancer cells (step 1) and ending with the killing of cancer cells (step 7). DC, dendritic cell.
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tumor immune microenvironment at the cellular level. Indeed,
there is evidence that the number of urinary lymphocytes is
significantly increased following intravesical BCG instillation in
patients with NMIBC (78). In MIBC, urine-derived and tumor-
infiltrating lymphocytes closely resemble each other in immune
checkpoint landscape and T cell receptor repertoire (75).
Therefore, urinary exfoliated immune cells represent a
dynamic liquid biopsy for UBC that may be subjected to
single-cell interrogation.
Single-Cell Analysis of UBC
Single-Cell RNA Sequencing
To date, single-cell RNA sequencing (scRNA-seq) is the most
mature single-cell genomic approach and has a wide spectrum of
novel analytic tools to facilitate data interpretation (79–83). The
major application of scRNA-seq is to systematically characterize
heterogeneous cell types and molecular states in both healthy
tissues and malignant conditions. For instance, a recent study
created a single-cell transcriptomic map of human and mouse
bladders, unveiling both conservative and heterogeneous aspects
of bladder evolution (24). A subsequent study generated a single-
cell atlas of primary bladder carcinoma and uncovered the
protumor function of inflammatory cancer-associated
fibroblasts (25). Sfakianos et al. identified lineage plasticity of
human and mouse bladder cancer at single-cell resolution, which
may contribute to innate tumor heterogeneity (26). In addition,
comparative scRNA-seq analysis between pre- and post-
tipifarnib MIBC PDX revealed an increased population of
dormant drug-refractory tumor cells and simultaneous
remodeling of tumor-supporting microenvironment (27).

Single-Cell T Cell Receptor Sequencing
T cells play a vital role in adaptive immunity and represent the
major target of antitumor immunotherapy (84). T cell receptor
(TCR) locates on the surface of T cells and recognizes antigenic
peptides presented by major histocompatibility complex (MHC)
molecules. Genetic recombination creates a diverse TCR
repertoire during ontogeny or disease. The majority of TCRs
are comprised of a and b chains (85), which can be reconstructed
by single-cell T cell receptor sequencing (scTCR-seq) to elucidate
T cell clones involved in immune response (86). Furthermore,
the combined analysis of scRNA-seq and paired scTCR-seq may
link the cellular phenotypes with specific clonotypes of T
lymphocytes. Using this approach, Oh et al. demonstrated that
CD4+ T cells in bladder cancer exhibit multiple distinct tumor-
specific states of regulatory T cells and cytotoxic CD4+ T cells,
which were clonally expanded (87, 88). In contrast, the states
and repertoires of CD8+ T cells, which were traditionally
recognized as the main killers in immuno-oncology (89), were
indistinguishable in bladder tumors compared with non-
malignant tissues.

Single-Cell DNA Sequencing
According to the genomic coverage, single-cell DNA sequencing
(scDNA-seq) mainly includes whole-genome scDNA-seq,
Frontiers in Oncology | www.frontiersin.org 654
whole-exome scDNA-seq, and panel scDNA-seq detecting a
few genes of interest. Whole-genome or whole-exome scDNA-
seq covers large genomic regions but is limited by sequencing
depth, while panel scDNA-seq focuses on a narrow list of target
genes but can achieve higher throughput and sequencing depth
(90). Despite in its infancy, scDNA-seq has been applied to
identify driver mutations and investigate cancer evolution. A
notable example was that Yang et al. demonstrated the co-
mutation of ARID1A, GPRC5A, and MLL2 were the major self-
renewal driver of human bladder cancer stem cells. Through
phylogenetic analysis, the study also suggested the biclonal origin
of bladder cancer stem cells from both bladder cancer non-stem
cells and bladder epithelial stem cells (23).

CyTOF Mass Cytometry
Cytometry by time of flight (CyTOF) adopts the single-cell
format of flow cytometry technique for multiparameter
detection of protein expression using the precision of mass
spectrometry (91). By employing a pre-selected panel of metal-
labeled antibodies, dozens of surface or intracellular markers can
be quantified at the same time to infer the potential identity and
functionality of target cells. In a study to evaluate NMIBC
response to BCG treatment, CyTOF was employed to observe
a decreasing trend of T cell subsets in peripheral blood and
corresponding tissue recruitment of immune cells in treated
tumors (28), thus supporting the rationale of combining
immunotherapy to overcome BCG resistance in NMIBC
patients. Likewise, Megan et al., via CyTOF and RNA-seq
analyses, uncovered higher CD8+ T cell populations in murine
bladder cancer upon DDR2 depletion and anti-PD-1 treatment,
implying that DDR2 inhibition might fuel tumor response to
ICIs (29).
Emerging Single-Cell Technologies
As an evolving field, numerous novel single-cell technologies are
in rapid development to extract additional layers of biological
information. For example, surface protein levels can also be
measured in single cells by oligonucleotide-barcoded antibodies,
as illustrated by various methods including CITE-seq and REAP-
seq (92, 93). Another relevant knowledge tier is the cellular
epigenetic state, and recently described scATAC-seq and
scDNase-seq, among others, enable high-throughput
examination of chromatin accessibility at single-cell resolution
(94). One key attribute of tumor ecosystem is the spatial
distribution of cellular niches which directly determines
physical cell-cell interactions and intercellular signaling
communications (95). Specialized tools integrating spatially
resolved transcriptomics and advanced imaging infrastructure
characterize gene expression profiles within a broader tissue
context. Additionally, single-cell metabolomics is being added
to the toolbox for metabolic deconvolution but currently is too
premature to allow large-scale applications (96). We envision
that future studies in UBC leveraging these rising single-cell
technologies hold a great deal of promise to enrich our
understanding of disease biology and accelerate the discovery
of new therapeutic strategies.
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POTENTIAL INSIGHTS FROM SINGLE-
CELL ANALYSIS

Tumor Multicellular Ecosystem
It is increasingly evident that various cell populations residing at
neoplastic lesions and the interplay of these cellular
compartments strongly affect cancer progression and response
to immunotherapeutics. Recently, single-cell studies have
provided in-depth insights into the composition and
architecture of tumor multicellular ecosystem in UBC. By
profiling the transcriptome of 52,721 single cells from bladder
urothelial carcinoma or peritumor mucosa samples, Chen et al.
discovered seven annotated cell types including epithelial cells,
endothelial cells, fibroblasts, B cells, myeloid cells, T cells, and
mast cells (25). Despite the presence of adaptive lymphocytes,
cancer cells exhibited intrinsic ability to evade immune
surveillance by expressing lower levels of MHC-II molecules
than normal epithelial cells. In addition to diverse clusters of
myeloid cells, two distinct fibroblast subtypes were identified in
UBC: inflammatory fibroblasts and myofibroblasts with the
former expressing various cytokines and displaying pro-
proliferative effects. It is especially noteworthy that a number
of important observations in other cancers are recapitulated in
UBC. First, unrelated human malignancies surprisingly harbour
analogous cell types (97). Second, tumor cells consistently show a
patient-specific expression pattern, whereas immune and
stromal infiltrates are more homogenous across different
subjects (98–101). Third, both innate and adaptive immunity
are involved in cancer pathogenesis (102, 103). Fourth,
individual cellular components crosstalk with each other and
form intricate interaction networks (104). Collectively, the
single-cell transcriptomic atlas reveals cellular and molecular
complexity of the UBC ecosystem, and highlights ongoing
intratumoral immune suppression as a potential therapeutically
actionable abnormality.

T Cell Subsets and States in Cancer
The T cell infiltrates in human cancer largely determine natural
disease behavior and also the probability of immunotherapeutic
response. It has long been known that intratumoral T
lymphocytes span across a spectrum of subsets and states, with
the simplest distinction of CD4+ and CD8+ T cell populations
(84). While the evidence for a predominant function of CD8+ T
cells in tumor control is compelling, the role of CD4+ T cells used
to be conceptualized as indirect by either supporting CD8+ T
cell-mediated tumor killing via a helper phenotype or restricting
such processes via a regulatory phenotype (105). Oh et al. applied
scRNA-seq and paired scTCR-seq to characterize the immune
milieu of 7 MIBC patients (87). Reminiscent of heterogeneous T
cell infiltrates defined in previous studies (106–108), a diverse
range of T cell subtypes also existed in UBC, including both
CD4+ and CD8+ T cells that could be further clustered into
different functional subgroups. However, in contrast to the
canonical view, two cytotoxic CD4+ T cell populations were
unexpectedly identified in bladder cancer that correlated with a
significantly increased likelihood of clinical response to PD-L1
inhibition (87). Importantly, cytotoxic CD4+ T Cells were
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clonally expanded in tumor lesions and possessed lytic capacity
against autologous tumor cells in an MHC class II-dependent
fashion. Although there are a number of caveats about this
elegant work, e.g., mixed analysis of both treatment-naive
and chemotherapy or immunotherapy-treated samples, the
findings have substantial implications by pinpointing the
underappreciated potential of cytotoxic CD4+ T cells in UBC.
Considering that ICIs ultimately rely on the activity of a
pre-existing or newly induced tissue-resident T cell pool to
achieve tumor elimination, the identification of cytotoxic CD4+

T cells therefore redefines our thinking regarding UBC
immunotherapies and further raises several crucial questions,
such as whether these cells are associated with an ongoing
tumor-specific immune response and how the current
checkpoint inhibitors would impact them.
Tumor Cell Heterogeneity
and Plasticity
As aforementioned, single-cell analyses highlight the divergent
nature of cancer cells underlying the prevalent heterogeneity
between and within individual tumors. This observation is
perhaps not surprising given that each malignant cell is
featured by a unique evolutionary trajectory and inherent
biological stochasticity (109–111). Despite the diversity, specific
transcriptional states may still be shared across a subpopulation
of neoplastic cells or cancer patients. In the case of UBC, a string
of studies on bulk gene expression profiles have identified
distinct molecular subtypes in MIBC, including luminal-
papillary, luminal, basal-squamous, luminal-infiltrated, and
neuronal (16). Such a classification again attests to the
differential transcriptome-wide programs operating in separate
tumor cells and can be useful to stratify patients for prognosis or
treatment. Remarkably, several reports suggest that responses to
chemotherapy and immunotherapy are enriched in certain
MIBC subtypes (112). Recent scRNA-seq of human and
murine bladder cancers, however, revealed a hidden layer of
complexity by demonstrating marked cell-autonomous
heterogeneity and multidirectional plasticity of the urothelial
lineage (26). Therefore, although the initial predominant
molecular subtypes may substantially dictate UBC progression
kinetics and therapeutic response, they also undergo dynamic
changes during tumor growth or clinical treatment, e.g.,
chemotherapy (113) and immunotherapy. In turn, this subtype
transition will presumably engender functional consequences,
which should be discreetly considered in the use of immune-
modulating agents.
OUTSTANDING QUESTIONS AND FUTURE
PROSPECTS

Novel applications of single-cell technologies in characterizing
UBC are currently limited in comparison to the rapid progress
that has been seen in other human malignancies (114–117). As
a result, our understanding of bladder cancer cell hierarchy and
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tumor microenvironment is not complete, and more studies
will be required to better delineate the abundance, localization,
and functional orientation of each cellular component. For
instance, the innate immune landscape like myeloid cell
populations in UBC remains to be fully elucidated by single-
cell analysis. Likewise, the makeup of antigen presenting cells as
a crucial factor for efficient immune activation has been
insufficiently described. Ideally, all the information should be
decoded in a spatiotemporal context (19). As a relevant
example, tertiary lymphoid structures (TLS) in human cancer,
which are highly organized cellular aggregates resembling
lymph nodes, have recently emerged as key sites for the
generation of antitumor immunity with a prominent impact
on disease outcome and immunotherapeutic response (118–
121). We anticipate that single-cell analysis will soon become
essential to resolve TLS composition, location, density and
degree of maturation during UBC tumorigenesis and treatment.
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The success of cancer immunotherapy has prompted intensified
interest in defining the specific effector immune cells and
fundamental mechanisms responsible for anti-tumor immunity.
In addition, certain oncogenic pathways and transcriptional
programs in malignant cells are associated with intrinsic
sensitivity or resistance to immunotherapeutics (122, 123). These
cumulative findings hold enormous promise to facilitate biomarker
identification that can predict or monitor which patients would
benefit from immunotherapy. The treatment stratification and
surveillance are of paramount importance for UBC as ICI
therapy is being aggressively advanced into the neoadjuvant and
bladder-sparing settings, where inappropriate regimens could be
potentially detrimental. Unfortunately, individual parameters have
been proved unreliable and such a model has to take different
elements that affect tumor-host interactions into account (17,
124). Thus, taking advantage of cutting-edge approaches such
as single-cell sequencing and mass cytometry, which enable
FIGURE 3 | Workflow and applications for single-cell analysis in the immunotherapy of UBC. After sampling before and after ICI monotherapy or combination
therapy from UBC patients or alternative experimental models, single-cell suspensions with myriad cell types and states are preprocessed for downstream analysis.
The longitudinal and noninvasive single-cell profiling on liquid biopsies from peripheral circulation or urine may aid dynamic monitoring of UBC patients (left panel). A
variety of single-cell technologies enable comprehensive assessment of tumor, immune, and stromal cells to yield high-dimensional information (middle panel).
Findings from the single-cell approaches promise to allow a detailed dissection of the mechanisms underlying immunotherapeutic response and resistance, and
facilitate designing rational single or combination immune-based therapies (right panel). GEMM, genetically engineered mouse model; PDX, patient-derived xenograft;
PDO, patient-derived organoid; scRNA-seq, single-cell RNA sequencing; scTCR-seq, single-cell T cell receptor sequencing; scDNA-seq, single-cell DNA sequencing;
CyTOF, cytometry by time of flight; NK, natural killer; TAMs, tumor-associated macrophages; RBCs, red blood cells.
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high-dimensional molecular analyses during the whole course
of ICI treatment, will be valuable to simultaneously probe a
wide range of immune subsets and regulators, and systemically
nominate biomarker candidates for further detailed investigations.

Beyond anti-PD-1/PD-L1 monotherapy, a breadth of basic
research and clinical trials are ongoing to explore the strategy of
combined therapy in UBC treatment, such as different ICI pairs
(e.g., nivolumab and ipilimumab), immunotherapy and targeted
small molecules (e.g., erdafitinib) or antibody-drug conjugates
(e.g., enfortumab vedotin and sacituzumab govitecan) (125–127).
At the moment, many drug-development pipelines evaluate the
efficacy of combo agents on the basis of a simple try-and-see
approach. There are continued concerns about whether adverse
effects will be additive and whether the antitumor response will
be improved. We argue that data-driven design of synergistic
drug combinations may most likely make a breakthrough for
maximizing patient benefit from these transformative
therapies, based on a comprehensive understanding of the
bladder cancer ecosystem at the single-cell level.

Ultimately, the multiparametric data derived from single-cell
technologies ought to assist UBC patient care and inform
treatment recommendations. Achieving the ambitious goal will
need joint efforts to develop standard operating procedures for
benchmarking and implementing single-cell workflows that
meet ethical, regulatory, and temporal requirements. With all
foreseeable challenges, this venture would be imperative to
transform bladder cancer management and necessitate very
close collaboration among physicians, basic researchers and
translational scientists. Recently launched large-scale
initiatives, including the Human Tumor Atlas Network
(HTAN) and the Tumor Profiler (TuPro) study, are poised
to accelerate the standardization of key protocols, best-
practice guidelines, quality control solutions, metadata
schemata, and analytic pipelines (128, 129). These projects
may lead to refined diagnostics in precision oncology and
pave the way for the translation of single-cell profiling into
clinical decision-making.
CONCLUSIONS

The recent decade has witnessed unprecedented advances in the
clinical management of urothelial carcinoma with the advent of
various ICIs. The ever-expanding applicable range of ICI
therapies in UBC highlights the significant potential of
immune-targeted agents and advocates a more thorough
Frontiers in Oncology | www.frontiersin.org 957
interrogation of their mechanistic underpinnings. Despite
remaining questions, a number of studies using high-resolution
single-cell techniques begin to reveal the identity and state of
multiple cell types, the variety and uniqueness of tumor-
infiltrating T lymphocytes, as well as the heterogeneity and
plasticity of bladder cancer cells. This wealth of information
has allowed a better understanding of dysfunctional antitumor
immunity in UBC and variable responses to immunotherapy
across patients (Figure 3). However, single-cell methods are still
nascent, and over the coming years, an emerging repertoire of
multiplexed assays with spatial readout will further enhance their
capabilities. In addition, single-cell approaches coupled with
noninvasive blood- or urine-based liquid biopsies are
instrumental to dynamically evaluate therapeutic efficacy and
monitor disease relapse. With these innovative toolkits available,
future work should focus on establishing a molecular taxonomy
for each cell composition, defining the cellular geography within
neoplastic lesions, unravelling passive or adaptive changes upon
immune-modulating regimens, and deploying single-cell
analysis in prospective trials and clinical practice. The renewed
insights are likely to offer novel opportunities for developing
companion biomarkers to assign UBC patients into the most
effective treatment modalities, and designing rational single or
combination immunotherapies with improved response rate and
prolonged overall survival.
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71. Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, et al.
Interrogating Open Issues in Cancer Precision Medicine with Patient-
Derived Xenografts. Nat Rev Cancer (2017) 17:254–68. doi: 10.1038/
nrc.2016.140

72. Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, et al. Tumor
Evolution and Drug Response in Patient-Derived Organoid Models of
Bladder Cancer. Cell (2018) 173:515–528.e517. doi: 10.1016/j.cell.2018.03.017

73. Mullenders J, de Jongh E, Brousali A, Roosen M, Blom JPA, Begthel H, et al.
Mouse and Human Urothelial Cancer Organoids: A Tool for Bladder Cancer
Research. Proc Natl Acad Sci USA (2019) 116:4567–74. doi: 10.1073/
pnas.1803595116

74. Wang Z, Chen J, Yang L, Cao M, Yu Y, Zhang R, et al. Single-Cell
Sequencing-Enabled Hexokinase 2 Assay for Noninvasive Bladder Cancer
Diagnosis and Screening by Detecting Rare Malignant Cells in Urine. Anal
Chem (2020) 92:16284–92. doi: 10.1021/acs.analchem.0c04282

75. Wong YNS, Joshi K, Khetrapal P, Ismail M, Reading JL, Sunderland MW,
et al. Urine-Derived Lymphocytes as a non-Invasive Measure of the Bladder
Tumor Immune Microenvironment. J Exp Med (2018) 215:2748–59.
doi: 10.1084/jem.20181003

76. Chen A, Fu G, Xu Z, Sun Y, Chen X, Cheng KS, et al. Detection of Urothelial
Bladder Carcinoma Via Microfluidic Immunoassay and Single-Cell Dna
May 2021 | Volume 11 | Article 696716

https://doi.org/10.1016/j.euo.2021.02.010
https://doi.org/10.1200/JCO.2018.36.15_suppl.TPS4588
https://doi.org/10.1200/JCO.2018.36.15_suppl.TPS4588
https://doi.org/10.1016/j.critrevonc.2021.103248
https://doi.org/10.3390/cancers12061449
https://doi.org/10.3390/cancers12061449
https://doi.org/10.2147/rru.S125635
https://doi.org/10.1056/NEJMoa2002788
https://doi.org/10.1056/NEJMoa2002788
https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-avelumab-urothelial-carcinoma-maintenance-treatment
https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-avelumab-urothelial-carcinoma-maintenance-treatment
https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-avelumab-urothelial-carcinoma-maintenance-treatment
https://doi.org/10.1016/s1470-2045(21)00004-8
https://doi.org/10.1016/s1470-2045(21)00004-8
https://doi.org/10.1200/JCO.2021.39.6_suppl.391
https://doi.org/10.1200/jco.18.01148
https://doi.org/10.1038/s41591-019-0628-7
https://doi.org/10.1016/j.euo.2020.06.009
https://doi.org/10.1158/1078-0432.Ccr-19-3255
https://doi.org/10.1016/s1470-2045(17)30074-8
https://doi.org/10.1016/s1470-2045(17)30074-8
https://doi.org/10.1007/s11864-020-00800-5
https://doi.org/10.12688/f1000research.26841.1
https://doi.org/10.12688/f1000research.26841.1
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-bcg-unresponsive-high-risk-non-muscle-invasive-bladder-cancer
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-bcg-unresponsive-high-risk-non-muscle-invasive-bladder-cancer
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-bcg-unresponsive-high-risk-non-muscle-invasive-bladder-cancer
https://doi.org/10.1200/JCO.2019.37.7_suppl.350
https://doi.org/10.1200/JCO.2019.37.7_suppl.TPS502
https://doi.org/10.1200/JCO.2019.37.7_suppl.TPS502
https://doi.org/10.1038/nrc3239
https://doi.org/10.1038/s41423-020-0488-6
https://doi.org/10.1038/nature07943
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1016/j.ccell.2015.03.001
https://doi.org/10.1038/ni1102-999
https://doi.org/10.1007/s00262-004-0593-x
https://doi.org/10.1146/annurev.immunol.25.022106.141609
https://doi.org/10.1084/jem.20201574
https://doi.org/10.1016/j.ccell.2020.03.008
https://doi.org/10.1016/j.ccell.2020.03.008
https://doi.org/10.1038/nmeth.4407
https://doi.org/10.1073/pnas.1915770117
https://doi.org/10.1038/nrc.2016.140
https://doi.org/10.1038/nrc.2016.140
https://doi.org/10.1016/j.cell.2018.03.017
https://doi.org/10.1073/pnas.1803595116
https://doi.org/10.1073/pnas.1803595116
https://doi.org/10.1021/acs.analchem.0c04282
https://doi.org/10.1084/jem.20181003
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zang et al. Single-Cell Analysis in UBC Immunotherapy
Copy-Number Alteration Analysis of Captured Urinary-Exfoliated Tumor
Cells. Cancer Res (2018) 78:4073–85. doi: 10.1158/0008-5472.Can-17-2615

77. Lodewijk I, Dueñas M, Rubio C, Munera-Maravilla E, Segovia C, Bernardini
A, et al. Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for
Patient Diagnosis and Monitoring. Int J Mol Sci (2018) 19:2514–47.
doi: 10.3390/ijms19092514

78. Pieraerts C, Martin V, Jichlinski P, Nardelli-Haefliger D, Derre L. Detection of
Functional Antigen-Specific T Cells From Urine of non-Muscle Invasive Bladder
Cancer Patients. Oncoimmunology (2012) 1:694–8. doi: 10.4161/onci.20526

79. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq
Whole-Transcriptome Analysis of a Single Cell. Nat Methods (2009) 6:377–
82. doi: 10.1038/nmeth.1315

80. Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-Length
mRNA-Seq From Single-Cell Levels of RNA and Individual Circulating
Tumor Cells. Nat Biotechnol (2012) 30:777–82. doi: 10.1038/nbt.2282

81. Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R.
Full-Length RNA-seq From Single Cells Using Smart-Seq2. Nat Protoc
(2014) 9:171–81. doi: 10.1038/nprot.2014.006

82. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y,
Anavy L, et al. Cel-Seq2: Sensitive Highly-Multiplexed Single-Cell RNA-Seq.
Genome Biol (2016) 17:77. doi: 10.1186/s13059-016-0938-8

83. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al.
Massively Parallel Digital Transcriptional Profiling of Single Cells. Nat
Commun (2017) 8:14049. doi: 10.1038/ncomms14049

84. Wu J, Abraham SN. The Roles of T Cells in Bladder Pathologies. Trends
Immunol (2021) 42:248–60. doi: 10.1016/j.it.2021.01.003

85. Davis MM. T Cell Receptor Gene Diversity and Selection. Annu Rev Biochem
(1990) 59:475–96. doi: 10.1146/annurev.bi.59.070190.002355

86. Gohil SH, Iorgulescu JB, Braun DA, Keskin DB, Livak KJ. Applying High-
Dimensional Single-Cell Technologies to the Analysis of Cancer
Immunotherapy. Nat Rev Clin Oncol (2021) 18:244–56. doi: 10.1038/
s41571-020-00449-x

87. Oh DY, Kwek SS, Raju SS, Li T, McCarthy E, Chow E, et al. Intratumoral
CD4(+) T Cells Mediate Anti-Tumor Cytotoxicity in Human Bladder
Cancer. Cell (2020) 181:1612–1625.e1613. doi: 10.1016/j.cell.2020.05.017

88. Sacher AG, St Paul M, Paige CJ, Ohashi PS. Cytotoxic CD4(+) T Cells in
Bladder Cancer-a New License to Kill. Cancer Cell (2020) 38:28–30.
doi: 10.1016/j.ccell.2020.06.013

89. van der Leun AM, Thommen DS, Schumacher TN. Cd8(+) T Cell States in
Human Cancer: Insights from Single-Cell Analysis. Nat Rev Cancer (2020)
20:218–32. doi: 10.1038/s41568-019-0235-4

90. Gawad C, KohW, Quake SR. Single-Cell Genome Sequencing: Current State
of the Science. Nat Rev Genet (2016) 17:175–88. doi: 10.1038/nrg.2015.16

91. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, et al.
Multiplexed Ion Beam Imaging of Human Breast Tumors. Nat Med (2014)
20:436–42. doi: 10.1038/nm.3488

92. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B,
Chattopadhyay PK, Swerdlow H, et al. Simultaneous Epitope and
Transcriptome Measurement in Single Cells. Nat Methods (2017) 14:865–8.
doi: 10.1038/nmeth.4380

93. Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, et al.
Multiplexed Quantification of Proteins and Transcripts in Single Cells. Nat
Biotechnol (2017) 35:936–9. doi: 10.1038/nbt.3973

94. Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP, Secchia S, et al.
Chromatin Accessibility Profiling Methods. Nat Rev Methods Primers (2021)
1:10. doi: 10.1038/s43586-020-00008-9

95. Larsson L, Frisén J, Lundeberg J. Spatially Resolved Transcriptomics Adds a
New Dimension to Genomics. Nat Methods (2021) 18:15–8. doi: 10.1038/
s41592-020-01038-7

96. Artyomov MN, Van den Bossche J. Immunometabolism in the Single-Cell
Era. Cell Metab (2020) 32:710–25. doi: 10.1016/j.cmet.2020.09.013

97. Ren X, Zhang L, Zhang Y, Li Z, Siemers N, Zhang Z. Insights Gained from Single-
Cell Analysis of Immune Cells in the Tumor Microenvironment. Annu Rev
Immunol (2021) 39:583–609. doi: 10.1146/annurev-immunol-110519-071134

98. Tirosh I, Izar B, Prakadan SM, Wadsworth MH,2, Treacy D, Trombetta JJ,
et al. Dissecting the Multicellular Ecosystem of Metastatic Melanoma
by Single-Cell RNA-Seq. Science (2016) 352:189–96. doi: 10.1126/
science.aad0501
Frontiers in Oncology | www.frontiersin.org 1260
99. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-
Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems
in Head and Neck Cancer. Cell (2017) 171:1611–1624.e1624. doi: 10.1016/
j.cell.2017.10.044

100. Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS, Alter I, et al. A Single-Cell
Landscape of High-Grade Serous Ovarian Cancer. Nat Med (2020) 26:1271–
9. doi: 10.1038/s41591-020-0926-0

101. Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND,
et al. Developmental and Oncogenic Programs in H3K27M Gliomas
Dissected by Single-Cell RNA-Seq. Science (2018) 360:331–5. doi: 10.1126/
science.aao4750

102. Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, et al. A Pan-Cancer Single-Cell
Transcriptional Atlas of Tumor Infiltrating Myeloid Cells. Cell (2021)
184:792–809.e723. doi: 10.1016/j.cell.2021.01.010

103. Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C,
et al. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired
Single-Cell Analyses. Cell (2017) 169:750–765.e717. doi: 10.1016/j.cell.
2017.04.014

104. Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge C, et al. Single-Cell
Transcriptomic Architecture and Intercellular Crosstalk of Human
Intrahepatic Cholangiocarcinoma. J Hepatol (2020) 73:1118–30. doi: 10.1016/
j.jhep.2020.05.039

105. Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR,
et al. Cd8+ T Cell Immunity Against a Tumor/Self-Antigen is Augmented by
CD4+ T Helper Cells and Hindered by Naturally Occurring T Regulatory
Cells. J Immunol (2005) 174:2591–601. doi: 10.4049/jimmunol.174.5.2591

106. Peng J, Sun BF, Chen CY, Zhou JY, Chen YS, Chen H, et al. Single-Cell RNA-
seq Highlights Intra-Tumoral Heterogeneity and Malignant Progression in
Pancreatic Ductal Adenocarcinoma. Cell Res (2019) 29:725–38. doi: 10.1038/
s41422-019-0195-y

107. Chiou SH, Tseng D, Reuben A, Mallajosyula V, Molina IS, Conley S, et al.
Global Analysis of Shared T cell Specificities in Human non-Small Cell Lung
Cancer Enables HLA Inference and Antigen Discovery. Immunity (2021)
54:586–602.e588. doi: 10.1016/j.immuni.2021.02.014

108. Braun DA, Street K, Burke KP, Cookmeyer DL, Denize T, Pedersen CB,
et al. Progressive Immune Dysfunction with Advancing Disease Stage
in Renal Cell Carcinoma. Cancer Cell (2021) 39:632–48. doi: 10.1016/
j.ccell.2021.02.013

109. Burrell RA, McGranahan N, Bartek J, Swanton C. The Causes and
Consequences of Genetic Heterogeneity in Cancer Evolution. Nature
(2013) 501:338–45. doi: 10.1038/nature12625

110. Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, et al.
Neoantigen-Directed Immune Escape in Lung Cancer Evolution. Nature
(2019) 567:479–85. doi: 10.1038/s41586-019-1032-7

111. George JT, Levine H. Implications of Tumor-Immune Coevolution on
Cancer Evasion and Optimized Immunotherapy. Trends Cancer (2021)
7:373–83. doi: 10.1016/j.trecan.2020.12.005

112. Kamoun A, de Reyniès A, Allory Y, Sjödahl G, Robertson AG, Seiler R, et al.
A Consensus Molecular Classification of Muscle-invasive Bladder Cancer.
Eur Urol (2020) 77:420–33. doi: 10.1016/j.eururo.2019.09.006

113. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al.
Identification of Distinct Basal and Luminal Subtypes of Muscle-Invasive
Bladder Cancer with Different Sensitivities to Frontline Chemotherapy.
Cancer Cell (2014) 25:152–65. doi: 10.1016/j.ccr.2014.01.009

114. Salcedo A, Tarabichi M, Espiritu SMG, Deshwar AG, David M, Wilson NM,
et al. A Community Effort to Create Standards for Evaluating Tumor
Subclonal Reconstruction. Nat Biotechnol (2020) 38:97–107. doi: 10.1038/
s41587-019-0364-z

115. Skinnider MA, Squair JW, Kathe C, Anderson MA, Gautier M, Matson KJE,
et al. Cell Type Prioritization in Single-Cell Data. Nat Biotechnol (2021)
39:30–4. doi: 10.1038/s41587-020-0605-1

116. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating Copy
Number and Clonal Substructure in Human Tumors from Single-Cell
Transcriptomes. Nat Biotechnol (2021) 39:599–608. doi: 10.1038/s41587-
020-00795-2

117. Narayan A, Berger B, Cho H. Assessing Single-Cell Transcriptomic
Variability Through Density-Preserving Data Visualization. Nat Biotechnol
(2021). doi: 10.1038/s41587-020-00801-7
May 2021 | Volume 11 | Article 696716

https://doi.org/10.1158/0008-5472.Can-17-2615
https://doi.org/10.3390/ijms19092514
https://doi.org/10.4161/onci.20526
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nbt.2282
https://doi.org/10.1038/nprot.2014.006
https://doi.org/10.1186/s13059-016-0938-8
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1016/j.it.2021.01.003
https://doi.org/10.1146/annurev.bi.59.070190.002355
https://doi.org/10.1038/s41571-020-00449-x
https://doi.org/10.1038/s41571-020-00449-x
https://doi.org/10.1016/j.cell.2020.05.017
https://doi.org/10.1016/j.ccell.2020.06.013
https://doi.org/10.1038/s41568-019-0235-4
https://doi.org/10.1038/nrg.2015.16
https://doi.org/10.1038/nm.3488
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/s43586-020-00008-9
https://doi.org/10.1038/s41592-020-01038-7
https://doi.org/10.1038/s41592-020-01038-7
https://doi.org/10.1016/j.cmet.2020.09.013
https://doi.org/10.1146/annurev-immunol-110519-071134
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1038/s41591-020-0926-0
https://doi.org/10.1126/science.aao4750
https://doi.org/10.1126/science.aao4750
https://doi.org/10.1016/j.cell.2021.01.010
https://doi.org/10.1016/j.cell.2017.04.014
https://doi.org/10.1016/j.cell.2017.04.014
https://doi.org/10.1016/j.jhep.2020.05.039
https://doi.org/10.1016/j.jhep.2020.05.039
https://doi.org/10.4049/jimmunol.174.5.2591
https://doi.org/10.1038/s41422-019-0195-y
https://doi.org/10.1038/s41422-019-0195-y
https://doi.org/10.1016/j.immuni.2021.02.014
https://doi.org/10.1016/j.ccell.2021.02.013
https://doi.org/10.1016/j.ccell.2021.02.013
https://doi.org/10.1038/nature12625
https://doi.org/10.1038/s41586-019-1032-7
https://doi.org/10.1016/j.trecan.2020.12.005
https://doi.org/10.1016/j.eururo.2019.09.006
https://doi.org/10.1016/j.ccr.2014.01.009
https://doi.org/10.1038/s41587-019-0364-z
https://doi.org/10.1038/s41587-019-0364-z
https://doi.org/10.1038/s41587-020-0605-1
https://doi.org/10.1038/s41587-020-00795-2
https://doi.org/10.1038/s41587-020-00795-2
https://doi.org/10.1038/s41587-020-00801-7
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zang et al. Single-Cell Analysis in UBC Immunotherapy
118. Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary
Lymphoid Structures in the Era of Cancer Immunotherapy. Nat Rev
Cancer (2019) 19:307–25. doi: 10.1038/s41568-019-0144-6

119. Meylan M, Petitprez F, Lacroix L, Di Tommaso L, Roncalli M, Bougoüin A,
et al. Early Hepatic Lesions Display Immature Tertiary Lymphoid Structures
and Show Elevated Expression of Immune Inhibitory and Immuno
suppressive Molecules. Clin Cancer Res (2020) 26:4381–9. doi: 10.1158/
1078-0432.Ccr-19-2929

120. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, et al.
Tertiary Lymphoid Structures Improve Immunotherapy and Survival in
Melanoma. Nature (2020) 577:561–5. doi: 10.1038/s41586-019-1914-8

121. Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, et al. B Cells and
Tertiary Lymphoid Structures Promote Immunotherapy Response. Nature
(2020) 577:549–55. doi: 10.1038/s41586-019-1922-8

122. Spranger S,GajewskiTF. Impact ofOncogenicPathways onEvasionofAntitumour
Immune Responses.Nat Rev Cancer (2018) 18:139–47. doi: 10.1038/nrc.2017.117

123. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN
Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discov
(2016) 6:202. doi: 10.1158/2159-8290.CD-15-0283

124. Roviello G, Catalano M, Nobili S, Santi R, Mini E, Nesi G. Focus on
Biochemical and Clinical Predictors of Response to Immune Checkpoint
Inhibitors in Metastatic Urothelial Carcinoma: Where do we Stand? Int J Mol
Sci (2020) 21:7935–48. doi: 10.3390/ijms21217935

125. Rodriguez-Vida A, Perez-Gracia JL, Bellmunt J. Immunotherapy
Combinations and Sequences in Urothelial Cancer: Facts and Hopes. Clin
Cancer Res (2018) 24:6115–24. doi: 10.1158/1078-0432.Ccr-17-3108
Frontiers in Oncology | www.frontiersin.org 1361
126. van Dijk N, Gil-Jimenez A, Silina K, Hendricksen K, Smit LA, de Feijter JM,
et al. Preoperative Ipilimumab Plus Nivolumab in Locoregionally Advanced
Urothelial Cancer: The NABUCCO Trial. Nat Med (2020) 26:1839–44.
doi: 10.1038/s41591-020-1085-z

127. Tran L, Xiao JF, Agarwal N, Duex JE, Theodorescu D. Advances in Bladder
Cancer Biology and Therapy. Nat Rev Cancer (2021) 21:104–21.
doi: 10.1038/s41568-020-00313-1

128. Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A,
Rood JE, et al. The Human Tumor Atlas Network: Charting Tumor
Transitions Across Space and Time at Single-Cell Resolution. Cell (2020)
181:236–49. doi: 10.1016/j.cell.2020.03.053

129. Irmisch A, Bonilla X, Chevrier S, Lehmann KV, Singer F, Toussaint NC, et al.
The Tumor Profiler Study: Integrated, Multi-Omic, Functional Tumor
Profiling for Clinical Decision Support. Cancer Cell (2021) 39:288–93.
doi: 10.1016/j.ccell.2021.01.004

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zang, Ye, Fei, Zhang, Chen and Zhuang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
May 2021 | Volume 11 | Article 696716

https://doi.org/10.1038/s41568-019-0144-6
https://doi.org/10.1158/1078-0432.Ccr-19-2929
https://doi.org/10.1158/1078-0432.Ccr-19-2929
https://doi.org/10.1038/s41586-019-1914-8
https://doi.org/10.1038/s41586-019-1922-8
https://doi.org/10.1038/nrc.2017.117
https://doi.org/10.1158/2159-8290.CD-15-0283
https://doi.org/10.3390/ijms21217935
https://doi.org/10.1158/1078-0432.Ccr-17-3108
https://doi.org/10.1038/s41591-020-1085-z
https://doi.org/10.1038/s41568-020-00313-1
https://doi.org/10.1016/j.cell.2020.03.053
https://doi.org/10.1016/j.ccell.2021.01.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Qihui Shi,

Fudan University, China

Reviewed by:
Meiyi Li,

Fudan University, China
Jing Ge,

Institut Pasteur of Shanghai
(CAS), China

*Correspondence:
Anna Pasetto

anna.pasetto@ki.se
Yong-Chen Lu
YLu@uams.edu

Specialty section:
This article was submitted to

Cancer Immunity and Immunotherapy,
a section of the journal

Frontiers in Immunology

Received: 31 March 2021
Accepted: 10 May 2021
Published: 07 June 2021

Citation:
Pasetto A and Lu Y (2021)

Single-Cell TCR and Transcriptome
Analysis: An Indispensable Tool for

Studying T-Cell Biology and
Cancer Immunotherapy.

Front. Immunol. 12:689091.
doi: 10.3389/fimmu.2021.689091

REVIEW
published: 07 June 2021

doi: 10.3389/fimmu.2021.689091
Single-Cell TCR and Transcriptome
Analysis: An Indispensable Tool
for Studying T-Cell Biology and
Cancer Immunotherapy
Anna Pasetto1* and Yong-Chen Lu2,3*

1 Department of Laboratory Medicine, Division of Clinical Microbiology, ANA FUTURA, Karolinska Institutet,
Stockholm, Sweden, 2 Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States,
3 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States

T cells have been known to be the driving force for immune response and cancer
immunotherapy. Recent advances on single-cell sequencing techniques have
empowered scientists to discover new biology at the single-cell level. Here, we review
the single-cell techniques used for T-cell studies, including T-cell receptor (TCR) and
transcriptome analysis. In addition, we summarize the approaches used for the
identification of T-cell neoantigens, an important aspect for T-cell mediated cancer
immunotherapy. More importantly, we discuss the applications of single-cell techniques
for T-cell studies, including T-cell development and differentiation, as well as the role of
T cells in autoimmunity, infectious disease and cancer immunotherapy. Taken together,
this powerful tool not only can validate previous observation by conventional approaches,
but also can pave the way for new discovery, such as previous unidentified T-cell
subpopulations that potentially responsible for clinical outcomes in patients with
autoimmunity or cancer.

Keywords: single cell, cancer immune, tumor microenviroment (TME), TCR - T cell receptor, immunotherapy
INTRODUCTION

T-Cell Receptor
A T-cell receptor (TCR) is a heterodimer consisting of two chains, TCRa and TCRb chains, that
allow the recognition of peptides in the contest of major histocompatibility complex (MHC)
molecules. Each of the two chains is made of a variable region and a constant region that are spliced
together during the T cell development that happens in the thymus. In TCRb chain, there are two
constant region gene segments, Cb1 and Cb2, with some shared sequences. In TCRa chain, there is
only one constant region gene segment, Ca. The variable region of the b chain consists of three gene
segments called variable (V), diversity (D) and junctional (J), but the a chain only consists of the V
and J segments. In human, 42 V segments, 2 D and 12 J are identified in b chain locus; and 43 V and
58 J for the a locus. Within each V segment, there are three hypervariable regions, or
complementarity-determining regions (CDR1, CDR2 and CDR3). While CDR1 and CDR2 are
encoded by the V segment, the CDR3 regions results from the juxtaposition of the V, (D) and J
org June 2021 | Volume 12 | Article 689091162
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regions during somatic recombination. The joining of the V(D)J
regions is imprecise, and nucleotides can be lost or added (e.g.
the P and N nucleotides) during the process, resulting in a
unique and unpredictable amino acid sequence for each CDR3
(1). It is clear that the structure of the TCR allows for great
variability, which is further increased by the heterodimeric
pairing of the a and b chains. It is estimated that the total
number of possible combination could be greater than 1018 (2).
The great variability of TCRs is essential to enable their unique
ability to recognize antigenic targets, either pathogens or tumor
cells. Lastly, the process of antigen recognition is also
complicated. It relies on multiple interactions. The TCR needs
to contact the MHC molecule on the cell surface, mostly by
specific interactions with CDR1 and CDR2. The TCR also
interacts with the peptide presented by the MHC molecule,
mostly by specific interaction with the CDR3.

In the field of cancer immunotherapy, the identification not
only of cancer antigens, but also of the antigen-specific TCRs, is a
major research topic. Despite the evidence of tumor-specific T
cells in cancer patients both among the tumor infiltrating
lymphocytes (3–5) and in the peripheral blood (6–9), the
presence of these cells is often not sufficient to induce cancer
regressions even after checkpoint immunotherapy (10, 11). The
reasons for these mixed clinical results are still not fully
elucidated and cannot be addressed with a simple explanation.
Nevertheless, it is commonly hypothesized that such antigen-
specific T cells display an exhaustion phenotype that cannot
easily be reverted (12), especially in the contest of an
immunosuppressive tumor microenvironment (13). Adoptive
cell therapy can potentially overcome these limitation by both
increasing the number of cancer-specific T cells ex vivo before
reinfusion and also by engineering these T cells with more
powerful TCRs (14). The genetic transfer of TCRs requires the
identification and isolation of powerful and specific TCRs. As
described earlier, TCRs are heterodimers and only the match
between the correct TCRa and b chain would enable a specific
antigen recognition. TCR pairing is therefore one of the major
challenges in the process of TCR identification.

Several approaches have been proposed to overcome the
challenge of TCR pairing. Once a population of reactive T cells
is identified, next-generation sequencing of bulk TCR clonotypes
can provide a list of dominant TCRa and b clones that could be
then paired accordingly to their frequency (15, 16). This
approach gives the best results when the population of interest
is fairly oligoclonal (most dominant TCRb clonotype ≥ ~20%),
but it is possible that the most dominant clonotypes need to be
paired with each other using a matrix before the correct match is
found. Another method that has been utilized to match TCRa
and TCRb chains from a bulk T-cell population is the Pairseq
from Adaptive Biotechnologies (17). This approach is also based
on next generation sequencing of both TCRa and TCRb chains
from a T cell subset, but the pairing of the chains is assigned with
a statistical algorithm. The last approach is TCR sequencing at
the single-cell level. This represents the best approach because it
allows to quickly identify the correct TCRa and b pairs from
each single cell present in a T-cell population of interest. Several
Frontiers in Immunology | www.frontiersin.org 263
different technical approaches have been utilized for single-cell
TCR sequencing. In the following sessions, we will describe these
robust and successful methods.
SINGLE-CELL TCR AND
TRANSCRIPTOME SEQUENCING

Step One: The Isolation of Single T Cells
The first step in each single-cell sequencing technology is the
isolation of single cells (Figure 1A). The conventional technique
developed to isolate single T cells to obtain clonal T cell lines is
called limiting dilution. This approach is relatively simple.
However, due to the statistical distribution of cells per well, it
is not very efficient. Typically, only one third of the wells contain
a single cell when starting with a concentration of 0.5 cells per
aliquot (18). Micromanipulation is another technique developed
mainly to isolate embryos or stem cells, but it could be applied to
T cells, particularly since the potential of generating human
induced pluripotent stem cells to differentiate into anti-tumor T
cells has been explore (19). A microscope-guided capillary
pipette is used to pick single cells from a suspension culture
(20). Laser-capture microdissection is similarly used to isolate
individual cells or cell compartment from solid-tissue samples,
such as biopsies, paraffin-embedded or cryo-fixed tissues (21–23).
The main limitation with these approaches is that they are low-
throughput and time-consuming.

To overcome such limitation, several approaches have been
developed. One approach that has been commonly used is
fluorescence-activated cell sorting (FACS), where the T cells
are isolated based on the staining of pMHC multimers (8) or
surface markers, such as PD-1 (15) or CD137 (16). This
methodology allows to choose a specific population of interest
but has the requirement of a high number of cells as starting
materials. Microfluidic isolation of cells has the advantage of low
sample consumption. When performed in closed systems, it also
reduces the risk of contamination (24). The commercial platform
Fluidigm C1 is an example of automated system for single cell
capture coupled with cell-lysis, RNA extraction and cDNA
synthesis. A more recent commercial system, the Chromium
Controller from 10X Genomics, has recently gained popularity.
The system is based on microdroplets, where cells are captured in
aqueous droplets dispersed in oil phase. This system enables the
isolation of tens of thousands of single cells simultaneously with
high throughput and high capture efficiency (25). Notably, in the
majority of experiments, no special modifications are needed for
isolating single cells from T cells, compared to other cell types.
However, because of the relatively smaller size of T cells, the
microfluidics technique needs to be adjusted accordingly. For
example, T cells can only be captured by the smallest, 5-10 µm
integrated fluidic circuits (IFCs) using a Fluidigm C1 system.

Step Two: TCR and Gene Amplification
The next step after single T-cell capture involves in the reverse
transcription and amplification of TCR and/or genes of interest.
June 2021 | Volume 12 | Article 689091
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In the following section, we describe the most common strategies
for single-cell analysis (Figure 1B).

Multiplex PCR
The very first methodology developed to sequence TCRa and
TCRb chains was based on multiplex PCR followed by Sanger
sequencing of the different amplicons (26). Although useful for
the isolation of specific TCR clones, this methodology did not
have the adequate throughput capacity to give an estimation of
the TCR diversity in an T cell population. Only after the
technical break-thought of multiple parallel sequencing (also
called “next-generation sequencing” or NGS), it became possible
to obtain a comprehensive knowledge of the TCR arrangement
Frontiers in Immunology | www.frontiersin.org 364
including V–J segments and the complete CDR3 sequence. A
simple but effective approach to amplify the TCRs consists in a
multiplex PCR where a pool of forward primers complementary
to the different V segments of the TCRs and either a pool of
reverse primers complementary to the different J segments or
two reverse primers complementary to the C regions. The J
segment primers are mainly utilized when TCR sequences are
amplified from genomic DNA due to the intronic sequences. It’s
possible to amplify TCR sequences from cDNA using the same
pool of primers (27). However, only cDNA, but not genomic
DNA, can be amplified using reverse primers complementary to
the constant regions (28). Subsequently, additional genes
associated with specific T cell functions (e.g. cytokines) can be
FIGURE 1 | An overview of single-cell isolation techniques, followed by TCR and gene amplification strategies. (A) Several techniques have been used to isolate single cells.
The most frequently used techniques are FACS sort and microdroplet techniques. For limiting dilution, micromanipulation, FACS sort and microfluidics techniques, multiplex
PCR and full-length cDNA amplification approach can be used to perform single-cell TCR and transcriptome sequencing. For the microdroplet technique, cell barcode
approach is used to perform single-cell TCR and transcriptome sequencing. (B) For the multiplex PCR approach, individual single cells are lysed in individual PCR tubes or
wells. Reverse transcription is performed using oligo dT or gene-specific primers. Two PCR reactions are performed in individual wells using TCR or gene-specific primers.
Notably, for each PCR reaction, approximately 70 variable-region forward primers are required to amplify the majority of TCRs. Two constant-region reverse primers are
required, including one primer for constant-region Ca and one primer for constant-region Cb1 and Cb2. Lastly, barcodes for individual wells are added by an additional PCR
reaction. Single-cell PCR products from individual wells are pooled and sequenced. For the full-length cDNA amplification approach, individual single cells are lysed in individual
PCR tubes or wells, and reverse transcription is performed using oligo dT. All transcripts, including TCRs and genes of interests, are amplified by PCR reactions. Full-length
cDNA products are cut into small fragments by tagmentation. Barcodes for individual wells are added by an additional PCR reaction. Single-cell PCR products from individual
wells are pooled and sequenced. Bioinformatic analysis is used to extract TCR sequences and calculate the expression levels for genes of interests. For the cell barcode
approach, single cells are lysed in individual microdroplets, and the cell barcodes for individual single cells are added either at the 3’ or at the 5’ end of the transcripts. For 3’
barcoding, barcodes are added at the reverse transcription step. After reverse transcription and template switch, all single-cell transcripts are pooled and amplified. Similar to
the multiplex PCR approach, a pool of about 70 variable-region forward primers are required to amplify TCRs and genes of interest. Lastly, PCR products are sequenced and
analyzed. For 5’ barcoding, barcodes are added at the template switch step. After barcoding, all of the single-cell transcripts are pooled and amplified. Unlike 3’ barcoding,
only two constant-region reverse primers are required for each PCR reaction. Lastly, PCR products are sequenced and analyzed. Notably, for both 5’ and 3’ barcoding,
tagmentation and PCR amplification by universal primers can be utilized, in order to analyze all transcripts and obtain whole-transcriptome data.
June 2021 | Volume 12 | Article 689091
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also amplified in the same reaction. The introduction of short
nucleotides, or barcodes, during the PCR reaction, makes it
possible to pool the different amplicons and perform high-
throughput sequencing by NGS (29). More recently, the
technological developments have resulted in mainly two
methods commonly used to perform the amplification of the
single cell transcriptome that can be divided into full-length
cDNA amplification and cell barcode approach.

Full-Length cDNA Amplification
This approach generates a sequencing library separately for each
single-cell transcriptome. While it is more expensive than
targeting specific genes, it has the benefit of broader data
collection (e.g. on isoforms, etc.). The full-length approach has
also been used to identify TCR sequences for several applications,
including TCR repertoire analysis and pairing of TCRa and b
chains. This approach is often used when the single cells are
captured in individual wells, for example, after FACS sort or
when captured by a microfluidic device. After cell lysis, the
mRNA molecules are reverse transcribed using oligo dT primers
at the 3´end. A universal sequence is added at the 5´end by a
template-switch strategy. The template switch strategy is usually
employed when there is a variation about the exact sequence of a
gene, such as TCR variable region, or when we intend to amplify
all transcripts. The strategy employed is based on the particular
behavior of the reverse transcriptase that adds a stretch of non-
template dCTPs at the 3′ end of the cDNA. This stretch of dCTPs
can bind to a specifically designed oligo that contains a
complementary stretch of poly-G followed by a universal
sequence (30).

Once the universal sequence is introduced at the 5´end of
each transcript, the full-length transcript (from the 5’ to the 3’
end) can be amplified. The amplification step is followed by a
“tagmentation” step, usually using a transposase that can insert
Tag sequences that are then used to insert barcodes. The libraries
prepared with this method are not enriched for the TCR
sequences. Therefore, to extract each TCR sequence, it is
necessary to use a bioinformatic tool. For TCRs, the traditional
reference-based assembly, where the sequences obtained are
compared to a reference genome, is combined with de novo
assembly for the CDR3 region that has to be reconstructed based
only from the actual sequences. Several tools have been
developed to perform this type of analysis. An example is
TraCeR, a computational method that allows to reconstruct the
variable sequence of TCRa and TCRb chains through use of a
“combinatorial recombinome” library of all possible TCR
sequences, this method was initially used in combination with
the FluidigmC1 System (31, 32). Another computational method
is “single-cell TCRseq” (33) that employs several consecutive
steps to first identify and count RNA reads mapping to specific
TCR V and C regions, then perform multiple alignments to
create consensus V and C gene sequences. Finally, gaps in the
sequence are filled similarly to de novo transcript assembly. A
similar multistep approach is also used by TRAPeS (TCR
Reconstruction Algorithm for Paired-End Single-cell) (34). In
this software, the V and J segments are first identified for each
chain. Subsequently, a set of putative CDR3 reads are identified
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as potential match to the one from the previously identified V
and J segments. Lastly, an algorithm is used to reconstruct the
CDR3 region from the putative CDR3 reads. We also utilized a
similar approach to assemble TCR sequences (35). The TCR
sequence reads were first aligned to V segments, and then TCR
reads with identical CDR3 region sequences were merged to
assemble the full-length TCR sequences. Lastly, VDJ Puzzle is a
useful tool that allows to reconstruct the TCR sequence from
single cell transcriptome data (36). This method was first
described to link the TCR sequence from antigen-specific cells
based on their gene expression profile.

Cell Barcode
The cell-barcode strategy adds cell barcodes, about 10-20 bp
random nucleotide sequences, to individual single cells. This
makes it possible to pool all transcripts coming from thousands
of cells, increasing the throughput and decreasing the cost
dramatically (17, 37). This approach is usually employed after
each cell has been captured into a microdroplet and lysed. In
addition to cell barcodes, molecular barcodes are often added at
the same time. Molecular barcodes, also known as unique
molecular identifiers (UMIs), are about 10 bp random
nucleotide sequences, which allow us to identify each
individual molecules/transcripts. The advantage of UMI
technique is that the UMI counting will not be altered even
after imbalanced PCR amplification.

For the cell barcodes at the 3’ end, all mRNA transcripts
present in the cells are reverse transcribed using oligo dT primers
containing both the cell barcodes and molecular barcodes. Next,
the template switch strategy is used to add a universal sequence
at the 5’ end. This enables the PCR amplification of all
transcripts. Lastly, a set of variable-region forward primers and
gene-specific forward primers are utilized to enrich TCRs and
other genes of interest. An additional PCR reaction is required to
add necessary DNA sequences for next-generation sequencing.

For the cell barcodes at the 5’ end, all mRNA transcripts are
reverse transcribedusingoligodTprimers, but the cell barcodes and
molecular barcodes are added at the 5’ end during the template
switch step. Next, all transcripts are pooled and amplified by PCR.
TCRandother genesof interest canbeamplifiedbyconstant-region
reverse primers and gene-specific reverse primers. Lastly, an
additional PCR reaction is used to add necessary DNA sequences
for next-generation sequencing. Notably, the whole-transcriptome
analysis can be achieved by both 5’ and 3’ end barcoding. After the
PCR amplification and an additional tagmentation step for all
transcripts, transcripts at the 5’ end or 3’ end can be processed
and sequenced. Because cell barcodes and molecular barcodes are
required tobe retained in the entireprocess, only the gene sequences
near the 5’ or 3’ end, approximately 200-500 bp, can be sequenced.
As the results, the information of full-length transcripts, including
isoforms, is lost using this strategy.

The strengths and weaknesses of different strategies are
summarized in Tables 1 and 2. In recent years, the single-cell
field has been in favor of the microdroplets with cell barcode
approach, because a higher number of cells can be obtained,
compared to other approaches. Although the microdroplet
approach is less sensitive to detect low abundant genes, this
June 2021 | Volume 12 | Article 689091

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 1 | Comparison between multiplex PCR approach and full-length cDNA amplification approach.

Multiplex PCR Full-length cDNA amplification

More sensitive for individual genes or TCRs Less sensitive
Lower cost Higher cost for deeper sequencing
A set of ~70 primers for TCR variable region is required* Only a set of universal primers is required*
Impossible to obtain whole-transcriptome data Available whole-transcriptome data
Impossible to obtain full-length TCR sequences Available full-length TCR sequences

*Another set of primers is required for nested PCR amplification.

TABLE 2 | Comparison between cell barcodes at the 5’ end and 3’ end.

Barcodes at the 3’ end Barcodes at the 5’ end

More efficient to add barcodes Less efficient to add barcodes
A set of ~70 primers for TCR variable region is required* Only 2 primers for TCR constant region are required*
Suitable for all types of cells Only suitable for TCR and BCR studies
More kits and applications available due to popularity Less kits and applications available

*Another set of primers is required for nested PCR amplification.
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concern is outweighed by the high cell numbers and robust
bioinformatic tools. In addition, microdroplets with barcodes at
5’ end can use a minimum number of primers for TCR
amplification, compared to barcodes at 3’ end. As a result, 5’
barcoding is more suitable for T-cell studies that require TCR
sequence information, such as clonality analysis.
SPATIAL TRANSCRIPTOMICS

Single-cell samples are often prepared by enzymatic or mechanical
dissociation. As a result, spatial information is lost during the
Frontiers in Immunology | www.frontiersin.org 566
sample preparation. However,the interactions between T cells and
the adjacent cells in the tumor microenvironment may influence
the transcriptome of individual T cells. Stahl PL et al. have
developed a new technique to provide two-dimensional, spatial
information, which can complement single-cell transcriptome
data analysis (38). In this technique, mRNA transcripts from a
tissue section are captured on an array by oligo dT-based probes,
which contain spatial barcodes and UMIs (Figure 2). Similar to
the single-cell transcriptome analysis with barcodes at 3’ end,
transcripts containing barcodes at 3’ are amplified and sequenced.
This technique has improved significantly in recent years, and it
can now reach near the single-cell resolution, at approximately
FIGURE 2 | An overview of a spatial transcriptomics technique. A specialized slide contains several capture areas. Each capture area contains thousands of spots,
and each spot is coated by oligo dT-based probes. To obtain spatial information, mRNA transcripts from a tissue section are captured by these oligo dT-based
probes on spots. Because probes on each spot contain a unique spatial barcode and UMIs, the spatial information can be preserved in the subsequent PCR
reactions. Similar to the single-cell cell barcode approach with 3’ barcoding, transcripts containing spatial barcodes at the 3’ end are amplified by PCR reactions and
sequenced. The data obtained from spatial transcriptomics can combine with single-cell transcriptome data to obtain comprehensive information for cell-cell
interactions in the tissue microenvironment.
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1-10 cell resolution per spot, depending on the tissue type. In
addition, spatial information can combine with traditional
immunofluorescence staining to detect both mRNA and protein
expression at the same time.

Since the initial publication, scientists have used this spatial
transcriptomics technique on a variety of tissue specimens. We
have identified two publications related to T-cell studies. Thrane
K et al. utilized this technique to study melanoma lymph node
biopsies, and they were able to visualize the transcriptional
landscape within the tissue (39). The lymphoid area in close
proximity to the tumor region showed a specific expression
pattern, which might reflect the unique feature in tumor
microenvironment. Notably, an IFN-g gene signature, likely
from activated T cells, was identified within the transition area
between melanoma and lymphoid areas. In another study, Ji AL
et al. combined the techniques of spatial transcriptomics, single-
cell transcriptome and multiplexed ion beam imaging to study
the architecture of cutaneous squamous cell carcinoma (40). In
addition to a tumor-specific keratinocyte population that they
identified, they also observed regulatory T cells co-localized with
CD8+ T cells in the compartmentalized tumor stroma. Taken
together, spatial transcriptomics may have significant potential
in the future study.
T-CELL NEOANTIGEN IDENTIFICATION

Cancer is caused by a series of genetic alterations that occur in
normal cells and are responsible for their transformation in
malignant cells. These alterations confer an advantage to the
affected cells, such as increased proliferation and inhibition of
apoptosis. However, these can also result in the production of
mutant proteins that are immunogenic and can be targeted by
the immune-system. When such mutated proteins become
targets for the immune-system, they can be called neoantigens.
Because neoantigens are not expressed by normal cells, they
represent attractive targets for cancer therapy. In the vast
majority of cases the identified neoantigens arise by single
amino-acid substitutions. The mutated peptides can be
processed and presented by MHC molecules, and then the
peptide/MHC complexes can be recognized by T cells. The
presence of neoantigen-reactive T cells have been identified
across different cancer histology, like lung cancer (41, 42)
bladder cancer (43), head and neck cancer (44, 45), ovarian
cancer (46–49) pancreatic cancer (50, 51) and gastrointestinal
epithelial malignancies (35, 52–54). Interestingly, the T cells
identified in these studies recognized unique somatic
mutations, with few exceptions where the T cells recognized
hot spot mutations on oncogenes, like KRAS (55, 56) and p53
(9, 47, 48, 54). Additional studies are needed in order to evaluate
systematically the immune-response against hot spot mutations
in these highly valuable targets.

Single cell sequencing is a powerful tool for T cell biology
discovery and can be employed to dissect specific functional and
phenotypical signatures. T cells have the ability to recognize
specific antigens in the contest of MHC molecules, and this
Frontiers in Immunology | www.frontiersin.org 667
ability can be harnessed to develop anticancer therapies,
therapies against autoimmune diseases and antiviral therapies.
The “holy grail” of T cell immunology would be to predict the
antigen-specificity of a T cell simply by studying its TCR
sequence and structure. Although this antigen-prediction is not
available yet, several technologies have been developed to
identify an epitope recognized by a given T cell and rapidly
isolate its TCR. In the following sections we will describe some of
the most successful approaches used to identify T cell antigens
and their specific TCRs.

pMHC Multimers
One of the most common approaches used for this purpose is
based on the capacity of T cells to bind pMHC multimers. If the
multimers are labelled with fluorescent probes, the T cells can be
identified and isolated by flow cytometry (57). This strategy can
only be applied when the target epitope is known and also
suitable to be presented on pMHC multimers. Typically class I
epitopes give more specific binding than class II. Despite these
limitations this approach has been effective to discover important
cancer antigens that could be used for immunotherapy (58, 59).
A more recent version of this strategy employs pMHCmultimers
labelled with DNA barcodes [TetTCR-Seq (60)] which has the
advantage of high-throughput and the possibility to integrate
single-cell transcriptomics, T cell phenotype and TCR sequence
isolation. To address specific binding and recognition of class II
restricted epitope, Graham DB et al. developed a high-
throughput approach for screening of DNA-encoded pMHC
class II libraries to provide functional recognition by TCRs
identified from single cell sequencing (61). Additionally, DNA-
barcodes were linked to magnetic nanoparticles, as described by
Peng et al. (62), to identify CD8+ neoantigen-specific T cells from
tumor and blood samples of melanoma patients. This last study
highlights how both the antigen-binding specificity and the
sensitivity in detecting rare T-cell populations is important to
identify reactive T cells from clinical samples.

Screening of Antigenic Libraries
In the previous section, we described examples of technologies
that enabled to isolate specific TCRs for known antigens. This
type of approach is very useful when the specific antigen and its
MHC-binding epitope is known, for example when targeting
viral antigens or shared cancer antigens (both mutated and
normal proteins). A different situation is represented by T cells
and TCRs that have been isolated based on some particular
characteristic (e.g. the expression of a specific marker or their
high frequency in a particular T cell subset), but their specificity
is unknown. There are several strategies that can be used to
identify the cognate peptide for orphan TCRs (63). Most
approaches are based on empirical testing where the T cell
activation status is evaluated after co-culture with the
candidate antigens (15, 16, 64). An interesting variation of
these approaches consists in the screening of pMHC libraries,
where the TCRs are isolated based on their affinity to the
different pMHC, but without knowing the antigenic
specificity (63).
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SINGLE-CELL STUDIES ON T-CELL
BIOLOGY AND CANCER
IMMUNOTHERAPY

Single-cell transcriptome analysis has been used to study the
biology of T cells in several areas, including T-cell development,
differentiation, and responses during infection and
autoimmunity. The role of T cells in tumor microenvironment
and cancer immunotherapy is also a topic for intensive studies
(Figure 3). Single-cell TCR analysis can also provide important
information for these studies, such as TCR pairing and clonality.
Furthermore, it has been demonstrated that combining TCR and
gene expression information can provide deeper understanding
for T cell-mediated immune responses (29). Because many high-
quality manuscripts using single-cell techniques have been
published in recent years, we would like to focus our
discussion on some of outstanding publications utilizing
single-cell transcriptome data alone or together with the TCR
sequencing data. Notably, high-dimensional flow cytometry or
mass cytometry (CyTOF) can investigate over a dozen of cell-
surface markers at the single-cell level (65). For the scope of this
article, we will not discuss findings generated by this technique.
T-CELL DEVELOPMENT
AND DIFFERENTIATION

The thymus is the key organ for T cell development.
Abnormalities of T-cell development, including positive and
negative selections, can lead to autoimmune diseases (66, 67).
Park JE et al. performed a comprehensive single-cell study on
prenatal and postnatal thymus samples, including adult samples
(68). Pseudo-time analysis showed that gene markers and
trajectory for T cell development were consistent with
previously knowledge in mice (69). However, the authors also
identified a previous unknown subset, GNG4+ CD8aa+ T cells in
the thymus. This subset of T cells could fully mature into a
CD8Ahigh/CD8Blow phenotype, but T cells from the mouse
Frontiers in Immunology | www.frontiersin.org 768
counterpart could become triple negative (CD8Alow CD8Blow

CD4low) cells.
T cells can further differentiate in the peripheral tissue. Li N

et al. utilized single-cell sequencing and other techniques to
characterize CD4+ T cell compartment in the human fetal
intestine (70). Additionally, through the single-cell trajectory
analysis, the authors observed the generation of memory-like
CD4+ T cells in the human fetal intestine. In another report,
Galletti G et al. used single-cell analysis to study human CD8+

memory T cells from peripheral blood under physiological
conditions, and identified two previously unrecognized subsets
of stem-like CD8+ memory T cells (71). The PD-1- TIGIT- subset
was committed to a functional lineage, whereas the PD-1+

TIGIT+ subset was committed to a dysfunctional, exhausted-
like lineage. Lastly, using the transcriptome and TCR sequencing
analysis, Patil V et al. identified the CD4+ cytotoxic T cell
population within the TEMRA (effector memory T cells
expressing CD45RA) subset (72). In addition, they could
identify four distinct subsets within the CD4+ cytotoxic T cell
population, based on single-cell transcriptome analysis. These
studies provide insights on the potentially durable immunity
generated by T cells.

T-Cell Biology in Autoimmunity
T cells play an important role in autoimmunity. Corridoni D
et al. utilized single-cell transcriptome analysis to study colonic
CD8+ T cells in health and ulcerative colitis, an inflammatory
bowel disease (73). They found that IL-26 was expressed in
terminally differentiated, dysfunctional CD8+ T cells from
ulcerative colitis. Human IL-26 could attenuate immune
responses in a mouse model of acute colitis. Next, Strobl J
et al. used single-cell technique to study tissue-resident
memory T cells in skin, and they identified RUNX3 and
LGALS3 as new markers for this type of T cells (74). They also
identified a large number of host-derived tissue-resident memory
T cells in skin lesions from patients developing graft-versus-host
disease, suggesting the potential contribution of these cells to this
disease. Lastly, Seumois G et al. studied the roles of CD4+ T
helper cells and regulatory T cells in patients with asthma, and
FIGURE 3 | Several aspects of T-cell biology that can be studied by single-cell techniques. In this review article, we summarize studies that utilized single-cell TCR
and transcriptome analysis. Those studies include fields in T-cell development and differentiation, autoimmunity, infectious disease, tumor microenvironment and
cancer immunotherapy.
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they identified CD4+ T cell subsets that might contribute to the
pathogenesis of allergy and asthma (75).

The Role of T Cells in Infectious Diseases
Single-cell analysis has become a powerful tool to analyze T-cell
responses during the infection. For example, Kazer SW et al.
studied peripheral blood mononuclear cells from four
individuals with acute HIV infection, and they discovered gene
response modules that were different between cell subsets and
were changed during the course of the infection (76). More
importantly, during COVID-19 pandemic, several studies
utilized single-cell analysis to study T cells from COVID-19
patients (77–82). In one of the studies, abundant exhausted T
cells with skewed TCR repertoire were found in the immune
landscape of severe COVID-19 patients (79). In another study,
single-cell sequencing was performed on immune cells isolated
from cerebrospinal fluid (CSF) in COVID-19 patients with
neurological sequelae (82). Those CSF T cells showed a
reduced interferon response compared to viral encephalitis.

T-Cell Biology in Tumor Microenvironment
Single-cell technique has been used insensitively to study T-cell
biology in tumor microenvironment. T-cell transcriptome
profiles in the majority of cancer types have been published
(32, 83–91). Li H et al. studied intra-tumoral T cells isolated from
25 melanoma patients (92). They discovered a significant portion
of the CD8+ T cells were in a gradient of “transitional” states,
between a healthy/cytotoxic T-cell state and a dysfunctional
T-cell state. In addition, T cells in the dysfunctional state still
had proliferative capacity and formed large T-cell clones. In
another study, Ghorani E et al. utilized single-cell analysis and
high-dimensional flow cytometry analysis to analyze non-small
cell lung cancer specimens (93). They found the correlation
between T-cell differentiation status and tumor mutational
burden. The authors proposed that the characterization of
intratumoral T cells might help to predict the outcome of
immunotherapy. Lastly, Oh DY et al. studied T cells isolated
from bladder cancer and identified several subsets of CD4+

T cells containing gene signatures for cytotoxic T cells.

T Cells and Cancer Immunotherapy
Investigators have utilized single-cell techniques to study
in t ra tumora l T ce l l s p r io r and a f t e r checkpo in t
immunotherapy for melanoma (94, 95). One of the important
findings was the identification of a CD8+ T cell subset that
expressed TCF7, a key transcription factor for “memory-like”,
proliferation-competent, exhausted T cells (96–98). In addition,
the presence of TCF7+CD8+ T cells could predict clinical
response to checkpoint immunotherapy. Next, Luoma AM
et al. utilized single-cell analysis to study T cell populations in
colitis, a common and severe side effect of checkpoint
immunotherapy (99). They observed a substantial fraction of
colitis-associated CD8+ T cells that were likely originated from
tissue-resident populations, identified by single-cell TCR
clonality analysis. Similarly, studies were carried out to
perform single-cell TCR/transcriptome analysis on peripheral
Frontiers in Immunology | www.frontiersin.org 869
blood T cells after checkpoint immunotherapy (91, 100). This
approach was able to identify genes associated with clinical
responses as a result (100).

Chimeric antigen receptor (CAR) T cell therapy has shown
dramatical clinical responses against B-cell malignancies. The
majority of the CAR designs utilized two different co-stimulatory
domains derived from CD28 and 4-1BBmolecules. Boroughs AC
et al. attempted to use single-cell transcriptome analysis to
identify gene signatures associated with different CAR designs
(101). The authors identify a transcriptional signature shared
between CAR designs, as well as a unique, distinct signature
associated with 4-1BB co-stimulatory domain, compared to
CD28 co-stimulatory domain. In another study, Sheih A et al.
took advantage of highly-diverse, endogenous TCR sequences
and utilized these sequences as natural barcodes (102). They
were able to track CAR T cells after therapy and perform single-
cell analysis by following these barcodes. Taken together, the
results obtained by single-cell analysis provides more insights on
how to improve the cell products for CAR T-cell therapy.
CAVEATS ON EXPERIMENTAL DESIGN
AND DATA INTERPRETATION

Single-cell TCR and transcriptome analysis is a very powerful
tool, but it can be very costly as well. We hope those outstanding
publications described above can help readers to design single-
cell experiments and acquire data that cannot be obtained by
other approaches. One of the common errors is to utilized a
single-cell sequencing approach even when the proposed
research goals can be simply accomplished by “bulk” RNA-seq
analysis, which not only costs less, but also can acquire higher
quality of data, especially for low abundance transcripts.

Although the data quality of single-cell transcriptome has
improved significantly in recent years, the single-cell data still
suffer from the sensitivity issue for low abundance transcripts,
also known as technical dropouts. Several computational
algorithms have been developed to specifically address this
issue for single-cell transcriptome analysis (103–105).
However, the performance of these algorithms is still far from
perfect, and the results may differ between algorithms (106).
Therefore, researchers are still needed to beware of potential
artifact and bias involved in the data analysis and interpretation.
We still highly recommend researchers to validate the
observations by another independent approach, such as flow
cytometry or targeted sequencing.

Another important caveat is that the observations tend to be
simplified, leading to binary thinking. The commonly used
clustering technique in single cells analysis is based on the
assumption that cells are defined into discrete populations,
which might not reflect the true biology. Van der Leun et al.
have proposed that T cells in the tumor microenvironment are in
a gradient of cell states rather than discrete populations (107).
Therefore, we should be cautious about data interpretation using
the clustering technique.
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FUTURE PERSPECTIVE: HIGHLY
PERSONALIZED, T CELL-BASED
CANCER IMMUNOTHERAPY

Studies utilizing adoptive cell transfer of tumor-infiltrating
lymphocytes (TIL) have shown that this approach can result in
durable and complete regressions of advanced cancer diseases, in
particular metastatic melanoma. Very frequently, reactivities
against neoantigens were present among the infused TIL (108–
110). Despite the evidence of clinical responses, the adoptive
transfer of neoantigen-reactive TIL has several limitations. The
transferred cells are highly differentiated and can have a limited
proliferative ability, leading to lack of persistence in vivo after
adoptive cell transfer (111, 112). Additionally, because it is
impossible to control the skewing of the T cell repertoire
during expansion, the neoantigen-specific TIL could lead to
low abundance in the infusion product. For the same reason, it
is also very difficult to control the number and the quality of the
neoantigen that are targeted. To overcome some of these
limitations, the genetic transfer of neoantigen-specific TCRs
has been proposed (113–115). With this approach, it will be
possible to introduce highly specific TCRs into less differentiated
cells, and to combine TCRs with several specificities, affinities
and HLA restrictions in one infusion product, potentially
increasing the possibility of clinical response (14). This
approach has nevertheless its own challenges, which are mainly
related to finding a reliable source of neoantigen-reactive T cells
from where to isolate the TCRs, as well as rapidly and efficiently
transferring the TCRs to new recipient cells for treatment.

In targeting unique somatic mutations by adoptive T-cell
therapy, it is equally important to consider other aspects that
may reduce the efficacy of the therapy. Tumor heterogeneity is a
major obstacle not only because the targeted neoantigen may not
be expressed on every cell, but also because the MHC elements
may not be expressed uniformly or even lost (116, 117). Another
Frontiers in Immunology | www.frontiersin.org 970
factor to consider is that the T cell functionality may not be
always optimal even in the presence of the neoantigen-specific
TCR. Several reports have highlighted the dysfunctionality of
exhausted T cells in cancer patients (118, 119). Therefore, a
desirable therapeutic approach would target several neoantigens,
possibly restricted to different HLA elements and would be
carried out by the most effective T cells. Different strategies
have been proposed to overcome some of the most important
issues, such as the selection of T cell subsets with a stem-like
phenotype to improve persistence and antitumor activity (120)
or the genetic modification of T cells to secrete IL-12 in order to
promote HLA expression and cross-presentation by surrounding
cells in the tumor microenvironment (121).

In summary, the single-cell TCR and transcriptome analysis
has enabled T-cell biologists to ask critical questions and obtain
interesting findings. This newly available research tool may help
us to improve the current immunotherapy and develop new
treatments for cancer and other diseases. We look forward to
more exciting discoveries in the coming years.
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The tumor microenvironment (TME) is an ecosystem that contains various cell types,
including cancer cells, immune cells, stromal cells, and many others. In the TME, cancer
cells aggressively proliferate, evolve, transmigrate to the circulation system and other
organs, and frequently communicate with adjacent immune cells to suppress local tumor
immunity. It is essential to delineate this ecosystem’s complex cellular compositions and
their dynamic intercellular interactions to understand cancer biology and tumor
immunology and to benefit tumor immunotherapy. But technically, this is extremely
challenging due to the high complexities of the TME. The rapid developments of single-
cell techniques provide us powerful means to systemically profile the multiple omics status
of the TME at a single-cell resolution, shedding light on the pathogenic mechanisms of
cancers and dysfunctions of tumor immunity in an unprecedently resolution. Furthermore,
more advanced techniques have been developed to simultaneously characterize multi-
omics and even spatial information at the single-cell level, helping us reveal the
phenotypes and functional it ies of disease-specific cell populat ions more
comprehensively. Meanwhile, the connections between single-cell data and clinical
characteristics are also intensively interrogated to achieve better clinical diagnosis and
prognosis. In this review, we summarize recent progress in single-cell techniques, discuss
their technical advantages, limitations, and applications, particularly in tumor biology and
immunology, aiming to promote the research of cancer pathogenesis, clinically relevant
cancer diagnosis, prognosis, and immunotherapy design with the help of single-
cell techniques.

Keywords: single-cell omics, immunotherapy, cancer, TCR (T cell receptor), biomarkers
INTRODUCTION

The tumor microenvironment (TME) is a complex ecosystem that consists of many different cell
types, including tumor cells, immune cells, and many others. All these cells are tightly inter-
associated and interact with each other. The heterogeneous milieu of TME induces various
progression patterns of different cancers and leads to distinct treatment responses across
org June 2021 | Volume 12 | Article 697412174
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different patients (1). Among that, the levels of T cell infiltration,
the polarization of tumor-associated macrophages (TAM) can be
varied, thereby affecting the prognosis of patients differently, the
expression of PD-1 and PD-L1 in TME, the mutational
landscapes, and the drug responses of malignant cells can also
be distinct in different patients, relating to different efficacies of
immune checkpoint blockade (ICB) therapies (2–4).

The previous genomic, transcriptomic, and proteomic cancer
studies have helped develop multiple mutational- or molecular-
target therapies and elevate treatment responses across different
patients (5). However, the clinical benefits of these target-
directed therapies are still limited. Only a small subset of
patients is treatable, leading to emergent demand of using
more precise methods to dissect characteristics of individual
patients for developing better cancer treatments especially
personalized tumor immunotherapy.

In this review, we introduce the state-of-art technological
advances of single-cell omics and discuss corresponding
computational methods for single-cell data analysis and their
applications in cancer research. All of these further inspire and
guide the design of and applications of single-cell techniques in
basic and translational clinical cancer research.
THE DEVELOPMENT OF SINGLE-
CELL TECHNOLOGIES

The development of methods in single-cell isolation, indexing,
and sequencing allows in-depth profiling of the tumor milieu
from different cellular scales with extremely high dimensions (6).
Based on single omics, methods for integrated omics have also
been developed for simultaneous detection of different omics,
including genomic, transcriptomic, proteomic, and spatial
information of single cells (7). Despite multiple challenges that
remain to be addressed, these methods have been very powerful
in uncovering the cellular basis of the heterogeneous tumor
microenvironment and greatly expanded our understanding of
cancers and tumor immunology in many aspects. In this session,
we introduce the technical details of single-cell methods applied
in understanding the tumor microenvironment (Figure 1).

Mass Cytometry and Imaging
Mass Cytometry
Flow cytometry, as a widely used single-cell labeling and sorting
technique, has facilitated the understanding of cellular
composition and diversity in various tissues (8), but its spectral
overlap between nearby channels limits the number of detected
markers and unable to unveil many functionally important cell
subsets (9). To overcome this problem, mass cytometry, also
named cytometry by time of flight mass spectrometry (CyTOF),
was developed with a more specific channel signal (10, 11).
CyTOF uses rare element isotopes to replace the commonly used
fluorochrome to conjugate monoclonal antibodies (mAbs) in
flow cytometry. These isotopes usually do not exist in cells, and
the purity of rare element isotopes and their accurate detection
by mass spectrometry significantly increase the detectable
Frontiers in Immunology | www.frontiersin.org 275
dimension of a single cell to over 100 markers theoretically,
and due to the technical limits of isotope labeling onto mAbs, the
marker number on single cells to date can only reach 45 (10–12).
Meanwhile, CyTOF has already demonstrated its power and
accuracy over flow cytometry in cell profiling when applied to
analyze fresh and frozen PBMC or tumor tissues at the single-cell
level (13). Unfortunately, CyTOF cannot be used for cell sorting,
and its throughput is 25~50 times lower than flow cytometry due
to extra time expense for isotope quantification (8).

Beyond profiling the homogenously stained single cells
isolated from tissue samples, imaging CyTOF was developed to
profile the cells’ spatial information in the target tissue (14).
Similar to the multicolor immunofluorescence staining, imaging
CyTOF can simultaneously detect over 30 types of rare element
isotopes conjugated on antibodies to stain tissue sections. A
high-resolution laser is used to ablate the target tissue section
point by point, and the ionized elements were streamed into the
ICP-MS for isotope measurement. Finally, a high-dimensional
tissue imaging is reconstructed by integrating the subcellular
spatial information of each point on the tissue sample (14).

Moreover, CyTOF can also be used in the quantification of
epigenetic modification (e.g., phosphorylation, histone
modification) (15), transcripts (16), and antigen-specific T cells
(17) at the single-cell level by designated mAbs that target
chromatin marks, ligation assay for RNA, and multiplexed
peptide-major-histocompatibility-complex (pMHC)-tetramer
staining for antigen-specific T cells, respectively, allowing an
integrated inspection of cellular functionality in a multi-
omics manner.

Single-Cell RNA Sequencing
Methods for profiling single-cell transcriptome have been
developed and rapidly evolved to overcome limited markers
detected on individual cells by CyTOF, improve the single-cell
resolution of traditional bulk RNA sequencing (RNA-seq), and
identify rare cell populations and their functional dynamics at
the transcriptomic level (18). The first published single-cell RNA
sequencing (scRNA-seq) method successfully detected 5,270
more genes in one blastomere compared to the microarray
assay using hundreds of blastomeres, allowing the precise
whole-transcriptome characterization at a single-cell level (19).
And integrating the ‘cell-specific barcodes’ into the synthesized
cDNA sequences (20, 21), the throughput of scRNA-seq
improved from a few hundreds of cells to thousands of cells.

Multiple scRNA-seq or sc-nucleus RNA-seq protocols were
developed to enhance the scale, the sensitivity, or the accuracy of
single-cell transcriptome quantification (22). These methods can
be categorized into plate-based or microfluidic-based platforms.
For the plate-based platform, the representative method is
Smart-seq, which is currently upgraded into a third-generation,
Smart-seq3 (23). In Smart-seq3, a 5’ unique molecular identifier
(UMI) is integrated into the full-length cDNA for counting
transcripts, achieving the precise quantification of transcript
isoforms. Other plate-based platforms, such as cell expression
by linear amplification and sequencing (CEL-seq2) and
massively parallel single-cell RNA sequencing (MARS-seq2),
integrate the Fluidigm C1 system or liquid-handling robot to
June 2021 | Volume 12 | Article 697412
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improve the data quality and reduce labor cost, respectively (24,
25). Applying a bead-based microfluidic system has dramatically
pushed the field into a real high-throughput area for the
microfluidic platform. In a single experiment, the microfluidic
system can capture 3,000~10,000 droplets, each of which
encapsulates a single-cell and a single-bead carrying specific
DNA-barcoded primers (26–28). The transcripts in single
droplets are then captured, reversely transcribed, and barcoded
with cell barcodes and UMIs. These procedures well replace the
single-well-based cell sorting and library construction steps in
the plate-based platform and dramatically increase the detection
number of single cells in each sample. Other strategies have also
been used to profile the transcripts in single cells, such as the
split-pool-based cell barcoding strategy (29–31) and the
integration of beads with the microwell-based platform (32).
Although there are still challenges in different aspects, such as
cost, sequencing depth, and gene coverages, these scRNA-seq
methods have enabled the profiling of single cells with more than
Frontiers in Immunology | www.frontiersin.org 376
thousands of genes per cell. The data dimension is significantly
higher than the cytometry-based systems.

Single-Cell Multi-Omics Technologies
The interconnections and relations of genome, epigenome,
transcriptome, and proteome determine the function of single
cells, which requires a comprehensive understanding of the
biology process across multi-omics simultaneously at the
single-cell level (33). In the following session, we will focus on
reviewing single-cell multi-omics technologies, that could
simultaneously measure at least two of different omics
including genomics, transcriptomics, epigenomics, proteomics,
and spatial information at the single-cell level.

Yin et al. introduced the sci-L3-RNA/DNA co-assay to
simultaneously measure the genomics and transcriptomics in
single cells (34). In sci-L3-RNA-/DNA co-assay, single cellular
DNA and mRNA were respectively barcoded by Tn5 transposon
intersection and by poly-T primer, both of them carrying
June 2021 | Volume 12 | Article 697412
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FIGURE 1 | The overview of single-cell omics techniques. (A) The overview of single-cell cytometry systems, including flow cytometry with fluorescence-labeled
antibodies for single isolated cells (left), mass cytometry with metal isotope-conjugated antibodies isolated single cells (middle), and imaging mass cytometry with
metal isotope-conjugated antibodies labeled on tissues (right). (B) The overview of two canonical scRNA-seq platforms, including plate-based scRNA-seq methods
with sorted cells barcoded within each well (left), and droplet-based scRNA-seq method, single cells were barcoded within individual droplets (right). (C) The
overview of single-cell multi-omics techniques, including library preparing for genomic, epigenomic, proteomic, and spatial indexing with transcriptomic of single
cells simultaneously.
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barcoding sequences and UMIs. Both libraries were prepared
with three-level split-pool indexing and linear amplification for
downstream analysis. Another strategy is to physically separate
the nucleus and cytosol of a single cell and construct the library
for each component individually. Following this strategy, direct
nuclear tagmentation and RNA sequencing (DNTR-seq) (35)
separately obtained the whole-genome sequencing and full-
length cDNA sequencing from single cells with ultra-high
resolutions. Besides directly obtaining the whole genome of
single cells, the cDNA sequences from mRNA could also be
used to detect the mutation status of single cells (36, 37),
especially for identifying tumor-specific mutations across
different tumor cell populations.

Open chromatin regions are also important functional
characteristics for revealing cellular genomic regulations. With
the assay development for transposase-accessible chromatin
using sequencing (ATAC-seq), exploring open chromatin in
single cells becomes possible. ATAC-seq enables fast and
precise epigenomic profiling by integrating the sequencing
adaptors into the accessible chromatin by prokaryotic Tn5
enzyme (38). Combining ATAC-seq with single-cell isolation
and barcoding techniques enables access to open chromatin in
single cells (39). Moreover, as both the transposed chromatin
fragments and the synthesized cDNA fragments of cellular
transcripts can be adapted into the same cell barcoding ID,
Cao et al. and Chen et al. successfully detected chromatin
accessibility and transcriptome simultaneously at the single-cell
level (40, 41). Simultaneous high-throughput ATAC and RNA
expression with sequencing (SHARE-seq) is another method to
evaluate the relationship between chromatin accessibility and
gene expression in single cells and identify the priming role of
chrome accessibility in transcriptomic regulation, which is
helpful to infer cell differentiation (42). Meanwhile, multiple in
silico algorithms, such as model-based analyses of transcriptome
and regulome (MAESTRO) and Signac (43, 44), have been
correspondingly developed to integrated analyze scRNA-seq
and scATAC-seq data in single cells.

The protein expression can directly reflect the functionality
and biological states of cells. As a result, flow cytometry and
CyTOF have been broadly used in biological researches for
protein expression quantification despite their limited
dimensions compared to scRNA-seq. To overcome this
limitation, Stoeckius et al. came up with the idea of using
specifically designed DNA sequences to label and barcode the
protein-specific mAbs (45). The detection number of antibody-
labeled proteins is significantly increased to more than 200 (46),
which is five times more than the detection number in CyTOF.
CITE-seq uses a poly-A tail in the antibodies-conjugated
oligonucleotides to achieve compatibility with the mRNA
capturing system (45). And in the commercial platform (e.g.,
Feature Barcoding by 10X Genomics), the barcoding strategy is
further improved so that the transcriptomic and proteomic
libraries are barcoded with poly-A capture sequences and
antibody-specific capture sequences separately (47). Besides,
Zhang et al. used DNA-barcoded pMHC tetramers to
specifically label and sequence antigen-specific T cells (48). A
Frontiers in Immunology | www.frontiersin.org 477
similar strategy was also used to remove experimental and
amplification bias by staining oligo-labeled surface proteins
ubiquitously expressed on cells from different samples (49).

The in-situ cellular spatial information is essential to
accurately capture the biological functions of cells in their
physiological context. It is particularly important to investigate
the spatial information in the tumor microenvironment (TME),
such as tissue-specific T cell infiltration, the spatial distribution,
and interaction of cellular ligands and receptors, and the
distribution of malignant cells, to improve our understanding
of tumorigenesis and tumor-specific immune escape in TME
(50). The spatial transcriptome methods can be mainly classified
into fluorescence or sequencing-based methods, which have also
been comprehensively reviewed by Asp et al. (51). Based on the
technique of fluorescence in situ hybridization (FISH) (52),
seqFISH+ enables visualization transcripts at local sites and
can image more than 10,000 genes at subcellular resolution
with upgraded optical resolution and barcoding strategy (53).
Despite the high spatial resolution, the applications of
fluorescence-based platforms are usually hampered by the
intensive experiment procedures and the design of the
transcript probe. In contrast, the application of cellular
barcoding strategies in scRNA-seq enables in-situ barcoding of
local cells in tissues. The most challenging for this strategy is to
demultiplex the physical locations with the detected barcoding
sequences. In Slide-seq and high-definition spatial
transcriptomics (HDST) assays (54–56), arrayed barcoding
beads are used to capture spatial whole-transcriptomes, and
the resolution of the reconstructed spatial map depends on the
designed bead arrays. In another microfluidic-based method
(57), the tissue slide was separately barcoded by parallel
microfluidic channels within different directions, and the
different combinations of barcodes can recover the
spatial information.

Innovative Computational Methods for
Single-Cell Analysis
Accompanied by the increased capability of generating high-
dimensional and high-throughput single-cell data in one
experiment, interpreting the biological functions of cells and
functional alterations in disease status becomes even more
challenging (58). Hie et al. summarized the typical
computational workflow for single-cell RNA-seq data analysis,
including data preprocessing, batch correction, clustering, and
functional annotation of single cells (59). Among that, the
methods for inferring cell lineage trajectories under different
stimuli are broadly applied to understand cellular dynamics and
interactions. Besides, with the development of single-cell multi-
omics techniques, integrating multi-omics single-cell data is also
computationally challenging (7).

Saelens et al. comprehensively benchmarked the performance
of 45 trajectory inference methods (60), highlighting that the
preset trajectory topology of computational methods can affect
the inference results and that the performance of different
methods can vary with different datasets. The most limitation
of these methods, including Monocle3 (61), partition-based
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graph abstraction (PAGA) (62), and Slingshot (63), is that the
cell trajectory estimation calculated by the cell-cell distance
ignores the inherited cellular information. Instead, the
innovative method RNA Velocity (64, 65) addresses this issue
by quantifying the spliced and unspliced transcripts of single
cells and connecting cells with similar transcripts splicing states.
Another method, CytoTRACE, leverages the number of detected
genes to reflect the developmental potential of single cells,
providing a robust performance to delineate cellular
trajectories (66). Furthermore, the DNA sequencing
information, including T cell receptor sequencing, can also be
used as cellular labels for inferring cellular dynamics and lineage
tracing (67, 68).

The integrative analyses of single-cell multi-omics data
consider the status of single cells from different scales of
biological features and delineate cell types based on cell
similarities in higher feature space, which are challenged by the
different characteristics of single omic data and batch effects
across multiple data samples. Ma et al. comprehensively
summarized the data integration methods for analyzing single-
cell multi-omics data (7). One strategy is to estimate the cellular
distances within individual omics and then calculate the
“weighted-nearest neighbor “ distance for integrated analysis of
multiple-omics data (46). Another one exploits a modified
statistic framework to identify low-dimensional variations
across data modalities for data integration (69). In other
methods, multi-view machine learning (70), canonical
correlation (71), and deep generative model (72) have also
been used for multi-omic single-cell data integration.
APPLICATION OF SINGLE-CELL OMICS IN
TUMOR IMMUNOLOGY

With the aid of single-cell methods, the heterogeneity of tumor
cells and their interaction in the local microenvironment have
been deeply and comprehensively interrogated. The single-cell
data has been extensively used for identifying biomarkers for
cancer diagnosis, prognosis prediction, and new treatable targets
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in designated clinical cohorts. The Human Tumor Atlas Network
(HTAN) project (73) has put forward a framework of mapping
tumor atlases in molecular, cellular, anatomical, and clinical
fields, aiming to interrogate the single-cell data for clinical
transitions thoroughly. In the following session, we mainly
focus on applying different single-cell multi-omics techniques
in establishing the cellular atlas of tumor ecosystem, T cell
dynamics, and their interactions contributing to tumor
diagnosis, treatment, and prognosis. The typical applications
are correspondingly listed (Figure 2 and Table 1).

Dissecting Tumor Microenvironments at
the Single-Cell Level
Taking advantage of high throughput and high dimensional
proteomic single-cell analysis, CyTOF has been used to dissect
the immune composition of TME in different types of tumors. In
the study of early lung adenocarcinoma (74), Lavin et al. profiled
the immune atlas in paired tumor lesions, normal lung tissues,
and peripheral blood. They revealed a tumor-specific depletion
of CD8+ T effector cells and the tumor-enriched macrophages
with the expression of PPARg potentially contributing to
immune suppression in TME. This study provides potential
immunotherapies for targeting macrophages in lung cancer. By
comparing the immune atlas of clear cell renal cell carcinoma
(ccRCC) and normal renal tissues (82), Chevrier et al. identified
the polymorphic expressions of exhausted markers and CD38 on
PD-1+ exhausted T cells in tumors and a special subset of CD38+

tumor-associated macrophages (TAM) highly associated with
the immunosuppressed T cell subsets. Further integrating the
tumor-infiltrating frequencies of immune cell subsets with
clinical outcomes, they identified the abundance of several
TAM subsets that can predict the progression-free survival of
patients. Additionally, CyTOF and imaging CyTOF have also
been combined with profiling the ecosystem of malignant cells
and immune cells in breast cancer. Wagner et al. simultaneously
compared the immune and malignant cell components of breast
tumor, juxta-tumor, and mammoplasty tissue samples. The
phenotypic abnormality of tumor cells and dynamics of
immune cells suggests the tumor-immune combined
FIGURE 2 | Applications of single-cell techniques in clinical cancer research. The schematic diagram of cancer research with single-cell techniques, blood or tissue
samples of the designated patient cohort was collected and performed single-cell profiling. The collected data were integrated for downstream analysis and
visualization. With in-depth integration with clinical characteristics, biomarkers for clinical decisions, disease prognosis, and tumor immunotherapy.
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phenotypes of breast tumor patients independent of the clinical
grade and subtypes, suggesting the local interactions could be
more critical for prognosis treatment efficacy (83). Using
imaging CyTOF, Jackson et al. established the highly
multiplexed molecular spatial maps of breast tumor
microenvironments with different clinical subtypes and grades.
Interrogating the single-cell pathology features, they further
proposed that the subgroups of patients by pathology features
in the tumor microenvironment could better predict patients’
overall survival and provide new strategies for clinical
subtyping (75).

With higher dimension capability, scRNA-seq provides an
opportunity to more broadly and systematically profile TME
and its associated immune atlas with many more critical
functional aspects (84). For example, with scRNA-seq, Azizi
et al. identified the continuous cellular states of T cells and
myeloid cells in breast cancers (85). They proposed that both
TCR signals and environmental stimuli could module T cell
functionality to combine TCR clonotypes with T cell
phenotypes. scRNA-seq also enables more comprehensive
lineage analyses to reflect the dynamic immune cell responses
during tumorigenesis. With RNA Velocity analysis (64) and
mitochondrial-based lineage tracing (86), Zhang et al. revealed
that a subset of LAMP3+ dendritic cells could migrate from
tumors to hepatic lymph nodes to trigger systematic adaptive
immune responses (76).

Integrating the genotyping and single-cell transcriptomic data
of myeloproliferative neoplasm cells, Nam et al. comprehensively
delineated the contributions of CALR mutation in the
differentiation of hematopoietic stem and progenitor cells
(HSPCs). They also revealed that the CALR mutation more
affected the cellular gene expressions at a later differentiation
stage and further identified the mutation-specific activation of
Frontiers in Immunology | www.frontiersin.org 679
the IRE1-XBP1 pathway in HSPCs as a potential therapeutic
target (77). With single-cell sequencing the genomics and
transcriptomics of acute myeloid leukemia (AML) malignant
cells, van Galen et al. identified six subsets of malignant AML
cells across developmental hierarchies. They revealed the
determination role of genotype in the compositions of AML
cells in patients and further determined that the differentiated
AML cells could suppress the function of T cells. The genotype-
specific phenotype of AML cells and the immunosuppressive
functionality of differentiated AML cells could further guide the
genotype-specific immunotherapies in AML (87). Single-cell
triple omics sequencing (scTrio-seq), a platform that
s imultaneous ly profi l e s genomic , epigenomic , and
transcriptomic on individual cells, is able to delineate the more
complex insights of the coordinated regulations of copy number
variations, DNA methylation, and gene expressions in malignant
cells of hepatocellular carcinomas and colorectal cancer (88, 89).
Moreover, comparing the epigenomic regulatory networks of
bone marrow and peripheral blood mononuclear cells between
healthy and mixed-phenotype acute leukemia (MPAL) patients,
Granja et al. uncovered the common regulation factors and
revealed RUNX1 as an oncogene to upregulate CD69 in MPAL
(47). Integrating scRNA-seq and spatial transcriptomic data in
pancreatic ductal adenocarcinoma, Moncada et al. intersected
the region-specific gene expression with cell type-specific gene
expression. They revealed that the stress-response cancer cells
were colocalized with IL-6 releasing inflammatory fibroblasts,
supporting the IL-6 induced stress-response mechanism in
cancers (78). Thus, the integration of single-cell multi-omics
allows a more comprehensive exploration of cancer evolution,
local cellular interactions, and immune regulations in the tumor
microenvironment, strengthening our understanding of cancer
pathogenesis and immune suppression (90, 91).
TABLE 1 | Selected cancer research with Single-Cell omic technologies.

Cancer type Single-cell
methods

Highlights Ref

Early lung
adenocarcinoma

CyTOF, scRNA-
seq

Comparing the paired immune signatures across tumor lesion, normal lung tissue, and blood, Lavin et al. Identified the
tumor lesion-specific immune regulations, especially the modifications of innate immune cells

(74)

Breast cancer Imaging mass
cytometry

The high-dimensional pathology images of breast cancers characterized the disease-related spatial resolved cellular
signatures.

(77)

Hepatocellular
carcinoma

scRNA-seq In-depth integration of single-cell data with bioinformatic methods, Zhang et al. identified the migration of immune cells,
especially the LAMP3+ dendritic cells, potentially contributing to lymphocyte activation.

(87)

Myeloproliferative
neoplasms

scRNA-seq +
genotyping

Integrating the cellular mutation genotypes and transcriptomic data, Nam et al. revealed the upregulation of NF-kB and
IRE1-XBP1 pathways in mutated cells. And the modifications of mutations in transcriptomic outputs.

(82)

Mixed-phenotype
acute leukemias

scRNA-seq +
protein,
scATAC-seq

By comparing the transcriptomic and epigenetic blood development maps between healthy and MPAL patients, Granja
et al. uncovered the patient-specific regulatory networks, such as the RUNX1 regulation of CD69 in tumor patients.

(47)

Primary
pancreatic tumors

scRNA-seq,
spatial
transcriptomics

With intersection analyses of scRNA-seq data and spatial transcriptomic data, Moncada et al. revealed the interactions
of different cells in tumor microenvironments, especially the colocalization of inflammatory fibroblasts and cancer cells.

(86)

Basal or
squamous cell
carcinoma

scRNA-seq +
TCR

Comparisons between the tissue TCR repertoires before and after immunotherapies, Yost et al. uncovered the new
entered T cell clonotypes rather than the exhausted T cell clonotypes that may respond to immunotherapy.

(105)

Hepatocellular
carcinoma

scRNA-seq By comparing the immune landscape between primary and early-relapse HCC patients, Sun et al. indicated the innate-
like CD8 T cells might contribute to an early relapse of HCC.

(119)

Pancreatic ductal
adenocarcinoma

snRNA-seq,
spatial
transcriptomics

Comparisons of the PDAC samples before and after chemoradiotherapy, Hwang et al. revealed the basal rather than
the classical phenotype of malignant cells might benefit the therapy efficiency with single-cell and spatial transcriptomic
inspections.

(121)
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Evolution of Cancer Cells in
Tumorigenesis and Drug Resistance
In-depth single-cell characterization of cancer cells in the TME,
and their dynamic regulations in tumorigenesis, metastasis, and
drug responses can uncover the heterogeneity of cancer cells and
their causality with clinical outcomes (90, 92). The scRNA-seq
profiling of diverse cancer cells in oligodendroglioma patients
revealed a subset of undifferentiated malignant cells with stem
cell phenotypes and proliferating potentials, suggesting the
primary roles of cancer stem cells (CSCs) in cancer evolution
(93). Integrating the genetically engineered mouse models
(GEMMs) and scRNA-seq, Marjanovic et al. mimicked and
profiled the progression of human lung adenoma and
adenocarcinoma. They identified a subset of TIGIT+ cells with
the high-plasticity cell state (HPCS) and annotated these cells as
transitioning tumor cells that contributed to tumor progression
and chemoresistance (94). Neftel et al. also characterized four
malignant cell subsets of glioblastoma using scRNA-seq with
specific molecular features, and that the cellular transitions
demonstrated the plasticity of malignant cells across distinct
malignant cell subsets with additional cell barcoding and lineage
tracing (95). All of these findings highlighted the impact of high-
resolution single-cell profiling in understanding tumorigenesis
and the evolution of cancer cells.

Metastasis is the dominant cause of the deaths of cancer
patients, and its process is stochastic and dynamic (96). scRNA-
seq study in human metastatic lung adenocarcinoma (LUAD)
revealed a subset of cancer cells with distinct differentiation
trajectory and gene signature of aggressive cell movement,
proliferation, and apoptosis. And the gene signature of this
cancer cell subset is enriched in later and metastatic tumor
tissues and associated with a worse prognosis (97). Meanwhile,
the applications of scRNA-seq and Cas9-enabled high-resolution
lineage tracing of the xenograft model of LUAD cell line
delineated comprehensive disseminate routes of metastatic
cancer cells. And combining the phenotypical inspection of
scRNA-seq data, Quinn et al. uncovered the characteristics of
cancer cells with different metastatic ability and quantified their
specific transcriptomic regulation in modulating metastasis (98).

The drug resistance of cancer cells severely limits the efficacy
of chemotherapy or molecularly targeted therapies, and the
cellular states and responses during treatments can determine
further disease progression (4). In breast cancer, the single-cell
profiling of docetaxel-resistant MCF7 breast cancer cells revealed
a subset of cells with a stem-like phenotype and identified LEF1
as the critical molecule regulator in drug resistance (99). In
melanoma, an immune evasion-specific malignant cell program
identified by scRNA-seq can predict the clinical responses of
immune checkpoint inhibitors (ICIs). Targeting the signal
activation of CDK4/6 in this program can repress the drug
resistance program and enhance the ICI efficacy (100).
Meanwhile, a multimodal method (Perturb-CITE-seq) was
applied to characterize the mechanisms of resistance of ICIs.
Integrating the simultaneously RNA and protein profiling with
Cas9 genomic knockout screens, Frangieh et al. validated the
known mechanisms of resistance to ICIs, and further revealed a
Frontiers in Immunology | www.frontiersin.org 780
novel CD58 related resistance mechanism. Specifically, they
found that downregulating the expression of CD58 could
induce the expression of PD-L1 on malignant cells and reduce
the co-stimulatory signal of the CD58-CD2 axis on CD8+ T cells
(101). Overall, the comprehensive interrogating of the cellular
responses and drug resistances in malignant cells could uncover
the new treatable targets and guide the combined therapies for
cancer treatments.

T Cell Responses and TCR Repertoire in
Tumor Immunity
T cells are essential adaptive immune cells that mediate tumor
immunity. The promising immune checkpoint blockade (ICB)
therapies mainly target T cells and recover T cell immunity
through disrupting PD-1/PD-L1 and CTLA-4/CD80 or CD86
interactions or specifically activating tumor-antigen-specific T
cell clones (102, 103). Unfortunately, only a small part of patients
has beneficial responses with recovered anti-tumor T cell
responses. Improving the ICB efficacy requires a more
comprehensive understanding of dynamical T cell responses in
patients during tumorigenesis and ICB treatments (104).

Platforms that integrate scRNA-seq data and scTCR-seq in
individual T cells, such as Smart-seq3 and 10X Genomics single-
cell immune profiling, enable a more precise delineation of
immune responses and lineage tracking of T cells in
tumorigenesis or under immunotherapy treatments (105).
Smart-seq3, a representative of full-length sequencing platform,
could read full-length CDR3 sequences of TCRab chains in
single cells but with limited throughput (23). 10X single-cell
immune profiling, a commercial droplet-based platform that
integrates TCR enrichment procedures, enables more efficient
immune profiling of T cells (68).

Every T cell owns a unique TCR, which provides a valuable
lineage tracking marker to investigate the dynamics of T cells,
including T cell clonal expansion, functional changes of a TCR
clonotype, and T cell migration across different tissues. The T cell
landscape with the information of paired TCR a and b chains in
liver cancers comprehensively discloses the transition route of
exhausted CD8+ T cells in HCC and highlights that a subset of
CD8+ T cells with intermediate levels of PDCD1 and TIGIT can
be the target cells for immunotherapies (106). In another work,
Zhang et al. developed an analysis algorithm (STRATRAC) to
quantify the T cell expansion, migration, and transition with
paired TCR repertoires (107). With the T cell transition analysis
of exhausted CD8+ T cells in colorectal tumors, Zhang et al.
revealed a tight association of these cells with effector memory
CD8+ T cells but independence of the development trajectory of
effector memory and recently activated effector memory CD8+ T
cells , suggesting a TCR-dependent fate decision in
tumorigenesis. These works strengthen our understanding of
the dynamics of T cell exhaustion in tumorigenesis.
Furthermore, in-depth profiling of T cell dynamics before and
after anti-PD-1 therapy in basal or squamous cell carcinoma
suggests the newly entered T cell clonotypes, rather than the
exhausted T cell c lonotypes, respond to anti-PD-1
immunotherapy (79).
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T cells are the dominant targets of immunotherapies, and
their responses after immunotherapy treatments are critical to
evaluate the clinical efficacy (108). Thereby, the clonal
expansions and the accordant changes of TCR repertoires in
tumors, normal adjacent tissue, and peripheral blood can be used
for predicting the clinical responses to immunotherapies (109).
Meanwhile, multiple computational methods have been
developed to connect the similarities of TCR sequences with T
cell functionalities, which would expand the applications of TCR
repertoires in cancer research (110–112). Besides, the
comprehensive inspection of T cells in tumors also directs
adoptive T cell transfer (ACT) in cancer therapies to identify
tumor-responsive T cells (104).

The Molecular Biomarkers for Tumor
Diagnosis and Prognosis
The heterogeneities of the tumor microenvironment and
strikingly different clinical outcomes in tumor patients require
comprehensive molecular profiling to guide the personalized
therapies. Multiple initiatives have been founded to identify
tumor-specific biomarkers to facilitate better clinical decisions
using integrative single-cell omics data analyses (73, 113, 114).

Several groups focused on seeking potential disease or
prognosis-related biomarkers using CyTOF. Comparing the
peripheral immune atlas of 20 melanoma patients before and
after anti-PD-1 immunotherapy, Krieg et al. found that the
frequency of CD14+CD16-HLA-DR+ monocytes in peripheral
blood before treatment was highly correlated to the response of
anti-PD-1 immunotherapy and thus could help to stratify
patients before anti-PD-1 immunotherapy treatment (115). In
a similar study of dissecting immune profiling in classical
Hodgkin lymphoma (116), the peripheral TCR diversities in
CD4+ T cells at baseline and during PD-1 blockade therapy were
related to the clinical responses. Meanwhile, comparing the
development of B cells in B cell precursor acute lymphoblastic
leukemia patients and healthy controls, Good et al. revealed that
the abnormal expansions of specific B cell subsets during
development could predict disease relapse at the time of
diagnosis (117). Although implemented in a small patient
cohort, all of these strongly suggest the predictive capability of
cellular composition changes in prognosis prediction and disease
monitoring. Besides, the spatial inspection by imaging CyTOF in
molecular colocalization of metastatic melanoma highlighted the
association between the prior expression of b2m in TME and
clinical outcomes of immunotherapy (118). Profiling the
subcellular molecular maps of 483 breast tumor samples using
imaging CyTOF in the METABRIC cohort, Ali et al. uncovered
the genomic regulation of local tumor ecosystems, including
cellular compositions and cellular neighborhoods. They
intensively examined their clinical predictive roles in the
prognosis of breast cancer (119). All these studies demonstrate
the power of the single-cell CyTOF system in finding potential
molecular biomarkers for cancer prognosis and predicting
treatment efficacy.

scRNA-seq data has also been used in seeking molecular and
cellular basis of TME. The distinct transcriptional signatures of
Frontiers in Immunology | www.frontiersin.org 881
malignant cells with different genomic backgrounds help classify
tumor subtypes and the design of targeted treatments in a higher
resolution (120). Comparing the ecosystems of primary and
early-relapse HCC tissues, Sun et al. indicated and validated
the enrichment of innate-like CD161+CD8+ T cells with limited
cytotoxic ability in relapsed HCC tissues and may have poor
response to the subclonal neoantigens in early-relapsed tumor
cells, providing new targets to restrain HCC relapse (80). With
the single-cell inspection of tumor-infiltrating lymphocytes in
breast cancers, Savas et al. revealed a gene signature of tissue-
resident memory CD8+ T cells rather than the CD8 alone could
better predict the patient’s survival, suggesting these cells are
potential regulatory targets of immunotherapy in breast cancer
(121). More recently, Hwang et al. delineated the molecular
taxonomy changes of TME in pancreatic ductal adenocarcinoma
patients treated with or without neoadjuvant chemotherapy and
radiotherapy by using the integrated single-nucleus RNA
sequencing and spatially resolved transcriptomics analyses
(81). They found that the basal-like or classical-like
reprogramming of malignant cells was associated with distinct
immune infiltration in tumors and further affected the treatment
outcomes and clinical decisions.

Despite the durable clinical responses of chimeric antigen
receptor T cell (CAR-T) therapy in treating hematological
malignancies, the response rate, adverse events, and
neurotoxicity during CAR-T treatment can vary across patients
(122, 123). Single-cell omics have been applied to uncover the
molecular biomarkers of clinical responses and monitor CAR-T
cells’ functional changes for better clinical application (124, 125).
Using scRNA-seq, Deng et al. intensively interrogated the
transcriptomic phenotypes of CAR-T cells in infusion products
(IPs) with their consequent clinical outcomes on large B cell
lymphoma patients (124). They revealed that the enrichment of
the memory phenotype of CAR-T cells within IPs lead to positive
clinical responses but that the enrichment of exhaustion
phenotype of CAR-T cells associated with disease progression.
Moreover, they also identified a subset of monocyte-like cells in
IPs significantly related to high-grade immune effector cell-
associated neurotoxicity syndrome (ICANS). Furthermore,
Sheih et al. comprehensively profiled the temporal changes of
CD8+ CAR-T cells within IPs, peripheral blood early after
infusion and after the peak of CAR-T cell expansion (125).
Using the paired scRNA-seq and scTCR-seq, they identified
the CD8+ CAR-T cells, within timely increased relative
frequency (IRF) clonotypes, highly expressed the gene
signatures of T cell cytotoxicity and proliferation, suggesting
their effective roles in anti-tumor responses. These studies guide
the further applications of single-cell omics to deeper understand
the mechanistic insights of effective CAR-T therapy, which
would shed light on optimizing CAR-T therapy and
uncovering the molecular biomarkers for predicting
clinical outcomes.

Furthermore, a new concept of a three-dimensional cell atlas
during tumor evolutions has been introduced by Human Tumor
Atlas Network (HTAN) project (73), indicating the molecular,
spatial, and clinical inspections of human tumors, which would
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help uncover the fundamental mechanisms of tumorigenesis and
new biomarkers for cancer screening, tumor metastasis, cancer
immunotherapy, and drug responses in the future.
PERSPECTIVES

In this review, we comprehensively summarize the development
of multiple single-cell omics techniques and their applications in
cancer biology and cancer immunology. These innovative
methods have extensively enhanced our understanding of
tumorigenesis, the mechanisms of tumor-induced immune
escape, and the dynamic responses to different tumor
treatments. Although significant progress has been made,
multiple challenges still exist, which could limit current studies
and need to be further solved. In the CyTOF system, the preset
and limited number of designated markers hinders the
identification of novel or rare cell populations. Additional rare
elements to increase the detectable number of channels are
required to further assist their applications in the clinical field.
In the scRNA-seq system, as the number of detected genes, the
transcript-length coverage, and the measurement throughput
varied across different platforms and assays, it is challenging to
integrate and compare single-cell data from different systems.
Meanwhile, the limited transcript capture efficiency of scRNA-
seq methods leads to a high dropout of scRNA-seq data, resulting
in a higher noise level than bulk RNA-seq (126). The common
usage of 3’ end transcript capture in scRNA-seq methods
involves many non-informative transcripts, making the specific
examination of interested transcripts infeasible and wasting the
sequencing cost (127). Thus, an optimized system that is able to
economically and efficiently generate scRNA-seq data with high
data quality and uniform data format is emergently desired to
achieve robust analysis of larger sample cohorts. Meanwhile, a
more prospective direction in the future is to profile single cells
with integrated multi-omics to enable better and deeper profiling
of the complicated tumor ecosystem. Moreover, new
computational tools to improve the integrated data quality,
facilitate the biological interpretation, and speed up the
analysis procedures are valuable to be developed.

Single-cell data-driven clinical translation is important and
promising in cancer diagnosis and treatment. Due to the
Frontiers in Immunology | www.frontiersin.org 982
expensive cost of single-cell methods, the enrolled patient
cohort in current cancer research is very small, leading to
inconsistent and non-repeatable biological findings. How to
interrogate enormous single-cell features with clinical
outcomes is computationally challenging and requires more
external validations. Moreover, the tissue sites, sample status,
isolation methods, and timepoint for sample resections can be
varied across different clinical studies, leading to unstable and
non-repeatable single-cell biomarkers found in the clinical field.
Thus, a more feasible single-cell framework for performing large-
scale clinical studies and the resources for sharing and exploiting
the published single-cell data mainly in the cancer field, are
urgently needed for better clinical translation in the future.

In summary, single-cell omics techniques will be
indispensable for investigating both basic and clinical problems
in tumor biology , tumor immunology, and tumor
immunotherapy in the future, as they provide broader and
deeper insights in large patient cohort to inspire more precise
and personalized medicine in cancer treatments.
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Purpose: To evaluate the value of C1QC+ and SPP1+ TAMs gene signatures in patients
with cervical cancer.

Methods: We compare the C1QC+ and SPP1+ TAMs gene signatures with the M1/M2
gene signatures at single cell level and bulk RNA-seq level and evaluate which gene
signature can clearly divide TAMs and patients with cervical cancer into distinct clinical
subclusters better.

Results: At single-cell level, C1QC+ and SPP1+ TAMs gene signatures, but not M1 and
M2 gene signatures, could clearly divided TAMs into two subclusters in a colon cancer
data set and an advanced basal cell data set. For cervical cancer data from TCGA,
patients with C1QChigh and SPP1low TAMs gene signatures have the best prognosis,
lowest proportion (34.21%) of locally advanced cervical cancer (LACC), and highest
immune cell infiltration, whereas patients with C1QClow and SPP1high TAMs gene
signatures have the worst prognosis, highest proportion (71.79%) of LACC and lowest
immune cell infiltration. Patients with C1QChigh and SPP1low TAMs gene signature have
higher expression of most of the Immune checkpoint molecules (ICMs) than patients with
C1QClow and SPP1high TAMs gene signatures. The GSEA results suggested that
subgroups of patients divided by C1QC+ and SPP1+ TAMs gene signatures showed
different anti- or pro-tumor state.

Conclusion: C1QC+ and SPP1+ TAMs gene signatures, but not M1/M2 gene signatures,
can divide cervical patients into subgroups with different prognosis, tumor stage, different
immune cell infiltration, and ICMs expression. Our findings may help to find suitable
treatment strategy for cervical cancer patients with different TAMs gene signatures.

Keywords: cervical cancer, TAMs (tumor associated myeloid cells), C1QC, SPP1 gene, single cell, immunity
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INTRODUCTION

Despite initiatives to improve the prevention of cervical cancer
with screening and vaccination, cervical cancer is still one of the
leading causes of death among women worldwide (1).
Improvements in survival have mainly been through effective
surgery, technical radiotherapy, and addition of bevacizumab to
standard chemotherapy in recent years (2, 3). However, women
with advanced or recurrent disease still face a dismal prognosis
with potentially considerable morbidity and mortality.
Immunotherapy might be a novel choice to improve the
clinical outcomes of these patients. On the established clinical
benefit of PD-1/PD-L1 inhibitors in cervical cancer, the Food
and Drug Administration (FDA) has approved pembrolizumab
for patients with recurrent or metastatic cervical cancer with
disease progression during or after chemotherapy. However,
treatment options are still limited, extensive researches and
clinical trials are needed to be carried out to identify novel
Immunotherapy signatures and options (4, 5).

The tumor microenvironment (TME) are governed by
crosstalks within and across various cellular compartments,
including immune, malignant, endothelial, and stromal cells (6).
Tumor-associated macrophages (TAMs), which are considered as
the main components of the tumor microenvironment, reportedly
play key roles in the initiation and progression of cancers (7, 8).
The TAMs are highly dynamic and heterogeneous within and
across different cancers (6, 9). TAMs’ heterogeneity makes them
with various functions. Different subsets of TAMs may show
distinct functions. However, the distinction of different subsets
of TAMs varied in different studies. In lung cancer and breast
cancer, TAMs reportedly showed a continuous spectrum of
phenotypes (10–12). In some other cancers, TAMs were
classified into “traditional” pro-inflammatory (M1-like) or anti-
inflammatory (M2-like) TAMs (6, 13). However, Lei et al. (10)
reported that TAMs in colon cancer exhibited a remarkable
dichotomy and were defined as C1QC+ TAMs and SPP1+

TAMs. Besides, the C1QC+ TAMs and SPP1+ TAMs could not
be explained by the expression analyses based on genes associated
with M1 and M2 TAMs in the colon cancer. The tumor
angiogenesis, cell migration, ECM receptor interaction, and
tumor vasculature pathways were enriched in SPP1+ TAMs,
whereas the complement activation and antigen processing and
presentation pathways were significantly enriched in C1QC+

TAMs. In addition, the combination of C1QC+ and SPP1+

TAMs gene signatures could separate patients from TCGA
COAD and READ into subgroups of distinct prognosis. Based
on that, patients with C1QChigh and SPP1low TAMs gene
signatures had the best prognosis, whereas patients with
C1QClow and SPP1high TAMs gene signatures had the
worst prognosis.

In different stages of cervical cancer, the phenotype of
macrophages is constantly changing, which affects the ability of
proliferation, invasion, and metastasis of cancer cells in many
ways (14, 15). The number of TAMs in cervical lesion matrix
changes with the progress of cervical cancer. However, whether
TAMs in cervical cancer show as the M1 and M2 phenotypes or
C1QC+ and SPP1+ TAMs phenotypes remains unknown. It is
Frontiers in Immunology | www.frontiersin.org 287
best to use the single cell sequencing technology to distinct
subsets of TAMs of cervical cancer; however, there is no single
cell sequencing database in cervical cancer to be used so far.
However, we can use bulk transcriptome data of cervical patients
from TCGA to evaluate the gene signatures of known
TAMs subsets.

In this study, we compared the C1QC+ and SPP1+ TAMs
gene signatures, as well as classic M1 and M2 gene signatures,
using transcriptome data of TCGA cervical cancer patients. We
aim to find the relationship between different TAMs gene
signatures and clinical features and the mechanisms behind,
which may provide suggestion to treatment of cervical cancer
in clinic.
MATERIALS AND METHODS

Sources for Single Cell Data, Bulk RNA-
Seq Data, and Immune Cell Infiltration
Estimation of TCGA Samples
Processed single-cell data of colon cancer was obtained from
Gene Expression Omnibus (GEO) (GSE146771) (10). While
processed single-cell data of advanced basal cell carcinoma was
obtained from GEO (GSE123814) (16).

Bulk RNA-seq gene expression data and clinical data of
cervical cancer were downloaded from UCSC Xena (https://
xenabrowser.net/datapages/). The bulk RNA-seq gene
expressions were log2(TPM+1) transformed. Immune cell
infiltration estimation of TCGA samples were downloaded
from TIMER2.0 (http://timer.cistrome.org/), which included
immune signatures of TCGA samples calculated using TIMER,
CIBERSORT, and xCell (17). Tumor mutational burden (TMB)
data of TCGA samples were obtained from Vésteinn et al.’s
study (18).

Define C1QC+ TAMs, SPP1+ TAMs,
and M1/M2 Gene Signatures
C1QC+ TAMs and SPP1+ TAMs gene signatures defined in
Zhang et al.’s study were used in our paper (10). C1QC+ TAMs
gene signature include the following genes: C1QA, C1QB,
ITM2B, C1QC, HLA-DMB, MS4A6A, CTSC, TBXAS1,
TMEM176B, SYNGR2, ARHGDIB, TMEM176A, UCP2,
CAPZB, MAF, TREM2, and MSR1, whereas SPP1+ TAMs gene
signature includes the following genes: SPP1, PCSK5, SLC11A1,
VCAN, SLC25A37, FLNA, UPP1, BCL6, AQP9, TIMP1,
VEGFA, ADM, MARCO, FN1, and IL1RN.

The M1/M2 gene signatures were obtained from Azizi et al.’s
research (10, 11). Genes associated with “classically activated”
(M1) macrophages include CCL5, CCR7, CD40, CD86, CXCL9,
CXCL10, CXCL11, IDO1, IL1A, IL1B, IL6, IRF1, IRF5, and
KYNU, while CCL4, CCL13, CCL18, CCL20, CCL22, CD276,
CLEC7A, CTSA, CTSB, CTSC, CTSD, FN1, IL4R, IRF4, LYVE1,
MMP9, MMP14, MMP19, MSR1, TGFB1, TGFB2, TGFB3,
TNFSF8, TNFSF12, VEGFA, VEGFB, and VEGFC were used
to define the signature of “alternatively activated” (M2)
macrophages (10).
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Single-Cell Data Analysis
Processed single-cell RNA-seq data were obtained as described
above. The annotation information of cell types were included in
the metadata as described by the original articles (10, 16). The
Seurat v3 (version 3.2.2) R package was used to analyze the
processed scRNA-seq data (19). The function AddModuleScore
in Seurat was used to calculate C1QC+ TAMs, SPP1+ TAMs, and
M1/M2 gene signatures using their gene sets, respectively.

TCGA Bulk RNA-Seq Data Analysis
For the bulk RNA-seq data of TCGA cervical cancer samples, the
mean expression of genes in the given signatures (C1QC+ TAMs,
SPP1+ TAMs, and M1/M2 gene signatures) were used as the
signature scores. Also, the mean expression of given signatures
was grouped into high and low expression groups by the 55th and
45th quantile values (10). Immune cell infiltration estimation of
TCGA samples was visualized as heatmaps using the R package
ComplexHeatmap (20). Immunotherapy responses were
predicted by TIDE (Tumor Immune Dysfunction and
Exclusion) as described in a previous study (21).

Gene Set Enrichment Analysis
Different gene expression between patients with C1QChigh and
SPP1low TAMs gene signatures and patients with C1QClow and
SPP1high TAMs gene signatures were calculated with LIMMA
(version 3.46.0) package. Sorted (by log fold change) different
expression gene list was used to perform the gene set enrichment
analysis (GSEA)byusing clusterProfiler (version3.18.0) package (22).

Statistical Analysis
Either Pearson’s chi-square test or Fisher’s exact test was used to
assess the different clinicopathological factors according to the
different C1QC+ TAMs, SPP1+ TAMs gene signatures groups.
Wilcoxon signed-rank test was used to compare gene and gene
signatures between different group of patients. Kaplan-Meier
survival curves among different groups were plotted using R
function ggsurvplot. Cox proportional hazards model
implemented in the R package survival was used to find the
predict factors of prognostic. All statistical analyses were
performed using R (v4.0.3). All figures were plotted by using R.
P values <0.05 were considered as statistically significant difference.
RESULTS

C1QC+ TAMs and SPP1+ TAMs Gene
Signatures Can Divide TAMs Into Two
Different Subsets in Colon Cancer and
Advanced Basal Cell Carcinoma
In Lei’s paper (10), they found that TAMs showed a remarkable
dichotomy and could be marked as C1QC+ TAMs and SPP1+

TAMs. Also, the C1QC+ TAMs and SPP1+ TAMs were different
from “classically activated” M1 and “alternatively activated” M2
macrophages. We used single-cell data from Lei’s paper and
found that C1QC+ TAMs gene signature and SPP1+ TAMs gene
signatures have high expressions in two different TAMs subsets,
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respectively (Figure 1), whereas M1 and M2 gene signatures did
not have high expressions in different subsets of TAMs
(Figure 1). To validate if C1QC+ TAMs and SPP1+ TAMs
gene signatures can work better than M1 and M2 signatures in
other cancers, we also analyzed another single cell data of
advanced basal cell carcinoma (BCC) (16). In the BCC data,
C1QC+ TAMs and SPP1+ TAMs gene signatures, but not M1
and M2 gene signatures, can divide TAMs into two different
subsets (Figure S1). It is worth mentioning that, in both single
cell databases, both C1QC+ TAMs and SPP1+ TAMs gene
signatures had the highest expression only in TAMs but not in
other cell types (Figures 1 and S1). These data indicated that at
least in colon cancer and advanced basal cell carcinoma, C1QC+

TAMs and SPP1+ TAMs gene signatures are better separators
than M1 and M2 gene signatures to divide TAMs into different
subsets, which may represent different immune functions.

C1QC+ TAMs and SPP1+ TAMs Gene
Signatures Can Divide Cervical Patients
Into Different Prognostic and Clinical
Subgroups
Because there is no single-cell database of cervical patients, it is
unknown of separation of TAMs from cervical patients into two
distinct subgroups based on the TAMs gene signatures. We
speculate that if C1QC+ TAMs and SPP1+ TAMs gene signatures
can divide TAMs of cervical cancer patients into two distinct
functional subsets, patients with different levels of C1QC+ TAMs
and SPP1+ TAMs gene signatures may have different clinical
features. We calculated C1QC+ TAMs and SPP1+ TAMs gene
signatures in cervical cancer patients and normal cervical tissue
fromTCGA and GTEX, respectively, using their transcriptome data
(Materials and Methods). Consistent with results in single-cell level
data (10), cervical cancer samples showed higher C1QC+ TAMs
gene signature than normal cervical tissues (Figure 2A). However,
we did not find significant difference of SPP1+ TAMs gene signature
between normal cervical tissues and cervical cancer samples
(Figure 2B). Besides, we found that patients with locally
advanced cervical cancer (LACC, Stage IB2-IVA) have lower
C1QC+ TAMs signature and higher SPP1+ TAMs gene signature
compared with patients with early stage (stage I-IB1) cervical cancer
(Figures 2C, D). Although patients with locally advanced cervical
cancer and those with early stage cervical cancer have similar M1
and M2 gene signature levels (Figures S2A, B).

Next, we divided cervical patients into high and low groups by
the 55th and 45th quantile values of C1QC+ TAMs and SPP1+

TAMs gene signatures, respectively, and further separated patients
into four subgroups according to the C1QC+ and SPP1+ TAMs
gene signatures levels. We found patients with C1QChigh and
SPP1low TAMs gene signatures have the best overall survival (OS)
and disease specific survival (DSS) (Figures 2E, F), whereas
patients with C1QClow and SPP1high TAMs gene signatures have
the worst OS and DSS (Figures 2E, F). However, M1 andM2 gene
signatures could not divide patients into distinct prognosis
subgroups (Figures S2C, D). We also found that patients with
C1QChigh and SPP1low TAMs gene signatures have the lowest
proportion (34.21%) of LACC, whereas patients with C1QClow
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and SPP1high TAMs gene signature have the highest proportion
(71.79%) of LACC (Figure 2G). When comparing clinical features
between these two groups, patients with C1QClow and SPP1high

TAMs gene signatures had later FIGO stages, more positive
pathologic lymph node, higher mortality, and higher proportion
of patients developed with disease (Table 1). There was no
significant difference of histological grade, lymphovascular
invasion indicator, tumor status, and metastasis between
patients with C1QChigh and SPP1low TAMs gene signatures and
those with C1QClow and SPP1high TAMs gene signatures
(Table 1). Besides, after adjusting by age and FIGO stage, the
C1QClow and SPP1high TAMs gene signatures showed as an
independent predict factor to worse OS (Table 2). Although
advanced FIGO stage (IB2-IVA) is correlated with C1QClow and
SPP1high TAMs gene signatures (Table 1), it was not associated
with worse prognosis (P = 0.793, Table 2). These results suggested
that C1QC+ and SPP1+ TAMs gene signatures could provide
additional information besides clinicopathological factors to find
cervical patients with different clinical outcome and prognosis.

C1QC+ TAMs and SPP1+ TAMs Gene
Signatures Divide Cervical Patients Into
Subgroups With Different Immune States
The abundance of different TAM subtypes could have an impact
on other immune cells infiltration and disease outcome in
patients (6). We compared the immune cell infiltration by
using cell type scores calculated by TIMER. Patients with
C1QChigh and SPP1low TAMs gene signatures had the highest
immune cell infiltration, whereas patients with C1QClow and
SPP1high TAMs gene signatures had the lowest immune cell
Frontiers in Immunology | www.frontiersin.org 489
infiltration (Figure 3A). Also, we found patients with C1QChigh

and SPP1low TAMs gene signatures had significantly higher CD8
T cell and CD4 T cell infiltration level than patients with C1QClow

and SPP1high TAMs gene signatures (Figure 3B). The
macrophages infiltration level did not show significant
difference between patients with C1QChigh and SPP1low TAMs
gene signatures and patients with C1QClow and SPP1high TAMs
gene signatures (Figure 3B). This may suggest that it is the
different ratio of C1QC+ and SPP1+ TAMs, but not the TAMs
amount, impacts the TME.We also used immune cells infiltration
scores calculated by XCELL and CIBERSORT to perform the
same analysis, and we found similar results (Figures S3A, B).
“Hot tumors” which had higher T-cell immune infiltration was
reported to have higher response rates to immune checkpoint
inhibitors (ICIs) immunotherapies compared with “cold
tumors,” which had lower T-cell immune infiltration (23). PD1,
PD-L, and tumor mutational burden (TMB) were also reported to
be associated with response to ICIs immunotherapy (24). We
found that patients with C1QChigh TAMs gene signatures had
higher PD1 and PD-L1 expression than those with C1QClow

TAMs gene signatures (Figures 3C, D), and patients with
C1QChigh and SPP1low TAMs gene signature had the highest
PD1 expression compared with the other three subgroups
(Figure 3C). Also, we found that patients with C1QChigh and
SPP1low TAMs gene signatures had lowest TMB, whereas
patients with C1QClow and SPP1high TAMs gene signatures had
highest TMB, although the difference was not significant
(Figure 3E). Microsatellite instability (MSI) is genetic instability
in short nucleotide repeats (microsatellites) because of a high
mutation rate resulted in abnormal DNA mismatch repair (25).
A B

D E

C

FIGURE 1 | Single-cell transcriptome profiling and TAM gene signatures of the Human CRC TME. (A) tSNE plot showing major immune cell subsets in human CRC
TME. (B) tSNE plot of all immune cells colored by enrichment of C1QC+ TAM gene signatures. (C) tSNE plot of all immune cells colored by enrichment of SPP1+

TAM gene signatures. (D) tSNE plot of all immune cells colored by enrichment of M1 gene signatures. (E) tSNE plot of all immune cells colored by enrichment of M2
gene signatures.
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Tumors with MSI-H exhibit a high mutation rate and neoantigen
load that is positively associated with overall lymphocytic
infiltration. The tumor-infiltrating lymphocytes, T helper 1 cells
and memory T cells, will ultimately trigger an effective antitumor
immune response (26–28). MSI only exists in a small subset of
cervical cancer patients (29). We found that patients with
C1QChigh and SPP1low TAMs gene signatures had higher
proportion of MSI-H than patients with C1QClow and SPP1high

TAMs gene signatures (Figure 3F). All these results suggest that
patients could be divided into subgroups based on the C1QC+

and SPP1+ TAMs gene signatures. This distinction is associated
with different genomic status, immune cell infiltration, and finally
different prognosis, which implies that different ratios of C1QC+

and SPP1+ TAMs subsets may impact TME state.

Different Pathways Involved in Different
C1QC+ and SPP1+ TAMs Gene Signatures
Subgroups
To figure out if some special pathways involved in different
subsets divided by C1QC+ and SPP1+ TAMs gene signatures, we
compared transcriptome data of patients with C1QChigh and
Frontiers in Immunology | www.frontiersin.org 590
SPP1low TAMs gene signatures to that of patients with C1QClow

and SPP1high TAMs gene signatures. Gene set enrichment
analysis (GSEA) was used to detect pathways enriched in
different groups. C1QChigh and SPP1low TAMs gene signatures
group exhibited enrichment of TCR signaling and interferon
gamma signaling (Figure 4), suggesting the anti-tumor functions
in these patients. While C1QClow and SPP1high TAMs gene
signatures group exhibited TGFb associated pathways,
extracellular matrix organization, and keratinization pathway
(Figure 4), suggesting the pro-tumorigenic functions in these
patients. The GSEA results suggested that subgroups of patients
divided by C1QC+ and SPP1+ TAMs gene signatures showed
different anti- or pro-tumor states.

Different C1QC+ and SPP1+ TAMs Gene
Signatures Subgroups Showed Variable
ICMs Expression and Immunotherapy
Response
The expressions of ICMs were associated with checkpoint
inhibitor immunotherapy response (30, 31). Many ICMs, such
as PD1, CTLA4, IDO1, and HAVCR2, were used as the
A B D

E F

GC

FIGURE 2 | C1QC+ and SPP1+ TAMs gene signatures in TCGA cervical cancer patients. (A) Violin plots showing comparison of C1QC+ TAM gene signatures
levels between normal and cervical cancer samples in TCGA. Two-sided Wilcoxon test. (B) Violin plots showing comparison of SPP1+ TAM gene signatures levels
between normal and cervical cancer samples in TCGA. Two-sided Wilcoxon test. (C) Violin plots showing comparison of C1QC+ TAM gene signatures levels
between patients with FIGO stage 1-IB1 and patients with FIGO stage IB2-IVA in TCGA. Two-sided Wilcoxon test. (D) Violin plots showing comparison of SPP1+

TAM gene signatures levels between patients with FIGO stage 1-IB1 and patients with FIGO stage IB2-IVA in TCGA. Two-sided Wilcoxon test. (E) The Kaplan-Meier
overall survival curves of TCGA cervical cancer patients grouped by the gene signature expression of C1QC+ TAM and SPP1+ TAM. (F) The Kaplan-Meier Disease
specific survival curves of TCGA cervical cancer patients grouped by the gene signature expression of C1QC+ TAM and SPP1+ TAM. (G) Proportions of patients
with FIGO stage I-IB1 and IB2-IVA in cervical cancer patients grouped by the gene signature expression of C1QC+ TAM and SPP1+ TAM.
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TABLE 1 | Clinicopathological factors of cervical cancer patients from TCGA.

Overall (N=82) C1QC+-SPP1+ TAMs gene signatures P-value

High_Low (N=40) Low_High (N=42)

Age, years
Mean (SD) 46.0 (13.0) 46.9 (12.9) 45.2 (13.3) 0.567
Median [Min, Max] 44.5 [21.0, 79.0] 44.5 [25.0, 75.0] 44.5 [21.0, 79.0]

FIGO Stage
I-IB1 36 (43.9%) 25 (62.5%) 11 (26.2%) 0.002
IB2-IVA 41 (50.0%) 13 (32.5%) 28 (66.7%)
Missing 5 (6.1%) 2 (5.0%) 3 (7.1%)

Histological type
Adenosquamous 1 (1.2%) 1 (2.5%) 0 (0%) 0.400
Cervical squamous cell carcinoma 69 (84.1%) 31 (77.5%) 38 (90.5%)
Endocervical adenocarcinoma of the usual type 3 (3.7%) 1 (2.5%) 2 (4.8%)
Endocervical type of adenocarcinoma 5 (6.1%) 4 (10.0%) 1 (2.4%)
Endometrioid adenocarcinoma of endocervix 1 (1.2%) 1 (2.5%) 0 (0%)
Mucinous adenocarcinoma of endocervical type 3 (3.7%) 2 (5.0%) 1 (2.4%)

Histological grade
G1 5 (6.1%) 2 (5.0%) 3 (7.1%) 0.981
G2 34 (41.5%) 17 (42.5%) 17 (40.5%)
G3 37 (45.1%) 18 (45.0%) 19 (45.2%)
GX 6 (7.3%) 3 (7.5%) 3 (7.1%)

Lymphovascular invasion indicator
Absent 20 (24.4%) 15 (37.5%) 5 (11.9%) 0.126
Present 25 (30.5%) 12 (30.0%) 13 (31.0%)
Missing 37 (45.1%) 13 (32.5%) 24 (57.1%)

Tumor status
Tumor free 55 (67.1%) 31 (77.5%) 24 (57.1%) 0.112
With tumor 26 (31.7%) 9 (22.5%) 17 (40.5%)
Missing 1 (1.2%) 0 (0%) 1 (2.4%)

Metastasis
No 76 (92.7%) 38 (95.0%) 38 (90.5%) 0.717
Yes 6 (7.3%) 2 (5.0%) 4 (9.5%)

Pathologic M
M0 30 (36.6%) 19 (47.5%) 11 (26.2%) 0.262
M1 2 (2.4%) 2 (5.0%) 0 (0%)
MX 34 (41.5%) 17 (42.5%) 17 (40.5%)
Missing 16 (19.5%) 2 (5.0%) 14 (33.3%)

Pathologic N
N0 40 (48.8%) 30 (75.0%) 10 (23.8%) 0.002
N1 18 (22.0%) 5 (12.5%) 13 (31.0%)
NX 10 (12.2%) 4 (10.0%) 6 (14.3%)
Missing 14 (17.1%) 1 (2.5%) 13 (31.0%)

OS
No 60 (73.2%) 35 (87.5%) 25 (59.5%) 0.009
Yes 22 (26.8%) 5 (12.5%) 17 (40.5%)

DSS
No 64 (78.0%) 36 (90.0%) 28 (66.7%) 0.034
Yes 17 (20.7%) 4 (10.0%) 13 (31.0%)
Missing 1 (1.2%) 0 (0%) 1 (2.4%)

DFI
No 38 (46.3%) 26 (65.0%) 12 (28.6%) 0.900
Yes 10 (12.2%) 6 (15.0%) 4 (9.5%)
Missing 34 (41.5%) 8 (20.0%) 26 (61.9%)

PFI
No 60 (73.2%) 31 (77.5%) 29 (69.0%) 0.539
Yes 22 (26.8%) 9 (22.5%) 13 (31.0%)

Treatment
Radical surgery 24 (29.3%) 14 (35.0%) 10 (23.8%) 0.771
Radical surgery and radiotherapy, or concurrent chemoradiation 23 (28.0%) 12 (30.0%) 11 (26.2%)
Radiotherapy 17 (20.7%) 8 (20.0%) 9 (21.4%)
Other 18 (22.0%) 6 (15.0%) 12 (28.6%) 　
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TAMs, tumor-associated macrophages; High_Low, C1QChigh and SPP1low TAMs gene signatures group; Low_High, C1QClow and SPP1high TAMs gene signatures group; SD, standard
deviation; FIGO, International Federation of Gynecology and Obstetrics; OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval; PFI, progression-free interval.
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immunotherapy targets in the clinical trials (30). We compared
most ICM expression among different C1QC+ and SPP1+ TAMs
gene signatures subgroups. Most (19/25) of the ICMs express
higher in patients with C1QChigh TAMs gene signatures
compared with patients with C1QClow TAMs gene signatures
(Figure 5). Also, we found that patients with C1QChigh and
SPP1low TAMs gene signatures had the highest expression of
some ICMs (CD40LG, ADORA2A, CTLA4, IL2, LAG3, PDCD1,
and TIGIT) compared with the other three subgroups (Figure 5),
which means these patients may benefit more from ICI
immunotherapy. Also, we also notice that the patients with
C1QChigh and SPP1low TAMs gene signatures showed best OS
and DSS (Figures 2E, F). We used TIDE (21) to predict response
to immunotherapy and found that patients with C1QChigh

TAMs gene signatures had higher immunotherapy response
ratio than those with C1QClow TAMs gene signatures. Patients
with C1QClow and SPP1high TAMs gene signatures had the
lowest ratio of response to immunotherapy (Figure S4). These
results suggest that the C1QC+ and SPP1+ TAMs gene signatures
may be used to select cervical cancer patients who will benefit
more from ICI immunotherapy.
DISCUSSION

The development of cervical cancer is reportedly associated with
human papillomavirus (HPV) infection, especially HPV
Frontiers in Immunology | www.frontiersin.org 792
intergation (32, 33). On the other hand, immune system
defects play a significant role in cancer progress, It is believed
that HPV infection triggers a primarily cell-mediated immune
response (34, 35). Macrophage percentage was reported to
increase linearly with neoplasia progression (36). Some studies
showed that higher FIGO stage and lymph node metastasis or
lymphangiogenesis usually showed larger counts of M2
macrophages, which were usually associated with poor
prognosis (34). However, TAMs are of high heterogeneity,
which contain various subsets with different functions. TAMs
in different tumors also show different subsets (11, 12). In this
study, we evaluated the “traditional”M1/M2 gene signatures and
the C1QC+ and SPP1+ TAMs gene signatures in cervical cancer.
We found that C1QC+ and SPP1+ TAMs gene signatures were
more suitable to divide cervical patients into subgroups with
distinct clinical outcomes than M1/M2 gene signatures. Our
research has three important implications for understanding the
role of TAM cells in cervical cancer immunity.

First, we found that C1QC+ and SPP1+ TAMs gene
signatures, but not M1 and M2 gene signatures, could clearly
divided TAMs into two subsets in a colon cancer data set and an
advanced basal cell carcinoma data set at single cell level.
Although we did not have single cell level data to show subsets
of TAMs in cervical cancer, we showed that, by using bulk RNA-
seq data of cervical cancer from TCGA, C1QC+ and SPP1+

TAMs gene signatures, but not M1 and M2 gene signatures,
could divide cervical cancer patients into subgroups with
TABLE 2 | Prognostic values of clinical factors and C1QC+ and SPP1+ TAMs gene signatures in cervical cancer.

Overall HR (univariable) HR (multivariable)|

(n=75) HR (95% CI) P HR (95% CI) P

Age, years
Mean (SD) 46 1.03 (1.00–1.07) 0.067 1.06 (0.99–1.12) 0.078

FIGO stage
I-IB1 36
IB2-IVA 41 1.95 (0.79–4.79) 0.146 1.20 (0.30–4.77) 0.793

Histological type
SCC 69
AS 1 NA NA NA NA
Other 12 0.24 (0.03–1.76) 0.159 0.37 (0.03–4.03) 0.416

Histological grade
G1 5
G2 34 0.53 (0.07–4.33) 0.554 0.08 (0.00–1.28), 0.074
G3 37 0.90 (0.11–7.21) 0.924 0.03 (0.00–0.91) 0.044
GX 6 4.78 (0.51–45.22) 0.172 0.39 (0.01–12.22) 0.595

Pathologic M
M0 30
M1 2 2.88 (0.35–23.84) 0.327 NA NA
MX 34 0.71 (0.26–1.97) 0.514 0.10 (0.01–1.10) 0.059

Pathologic N
N0 40
N1 18 2.76 (0.84–9.07) 0.094 0.98 (0.20–4.76) 0.981
NX 10 5.48 (1.52–19.76) 0.009 4.91 (0.35–69.22) 0.238

C1QC_SPP1
High_Low 40
Low_High 42 4.08 (1.50–11.09) 0.006 8.40 (1.33–52.94) 0.023
July 2021 | Volume 12 | Article 6
TAMs, tumor-associated macrophages; HR, hazard ratio; CI, confidence interval; SD, standard deviation; FIGO, International Federation of Gynecology and Obstetrics; SCC, squamous
cell carcinoma; AS, adenosquamous cell carcinoma; C1QC_SPP1, C1QC+ and SPP1+ TAMs gene signatures; High_Low, C1QChigh and SPP1low TAMs gene signatures; Low_High,
C1QClow and SPP1high TAMs gene signatures.
NA, Not available.
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different prognosis and different tumor stages. Patients with the
C1QChigh and SPP1low TAMs gene signatures had the lowest
ratio of local advanced FIGO stages, whereas patients with the
C1QClow and SPP1high TAMs gene signatures had the highest
Frontiers in Immunology | www.frontiersin.org 893
ratio of local advanced FIGO stages. C1QC+ and SPP1+ TAMs
gene signatures were obtained from TAMs; however, they could
significantly divide patients into subgroups with distinct clinical
outcomes, implying the importance of TAMs in the development
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FIGURE 3 | Immune characteristics in different groups of TCGA cervical cancer patients. (A) Heatmap showing immune cell signatures by TIMER in cervical cancer
patients grouped by the gene signature expression of C1QC+ TAM and SPP1+ TAM. (B) Violin plots showing comparison of CD8 T cell, CD4 T cell, and macrophages
gene signatures among cervical cancer patients grouped by the gene signature expression of C1QC+ TAM and SPP1+ TAM. Two-sided Wilcoxon test. (C) Violin plots
showing comparison of PD1 gene expression among cervical cancer patients grouped by the gene signature expression of C1QC+ TAM and SPP1+ TAM. Two-sided
Wilcoxon test. (D) Violin plots showing comparison of PD-L1 gene expression among cervical cancer patients grouped by the gene signature expression of C1QC+ TAM
and SPP1+ TAM. Two-sided Wilcoxon test. (E) Violin plots showing comparison of TMB among cervical cancer patients grouped by the gene signature expression of
C1QC+ TAM and SPP1+ TAM. Two-sided Wilcoxon test. (F) Proportions of patients with MSI-H and MSS/MSI-L state in cervical cancer patients grouped by the gene
signature expression of C1QC+ TAM and SPP1+ TAM.
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of cervical cancer. Further studies are needed to figure out how
the TAMs affect cervical cancer development.

Second, cervical cancer subgroups divided by C1QC+ and
SPP1+ TAMs gene signatures showed different immune cell
infiltration, with the C1QChigh and SPP1low groups have the
highest immune cell infiltration, whereas the C1QClow and
SPP1high groups had the lowest immune cell infiltration. It was
reported that “hot tumors” (with more T cell infiltration) had
higher antitumor ability and were more responsive to
immunotherapy than “cold tumors” (with none or few T cell
infiltration) (37). In our study, we found that patients of the
C1QChigh and SPP1low group, which had the highest T-cell
infiltration, showed the best prognosis, whereas patients of the
C1QClow and SPP1high group, which had the lowest T cell
infiltration, showed the worst prognosis. Patients with different
C1QC+ and SPP1+ TAMs gene signature patterns showed different
T-cell infiltration, implying the effect of TAMs to T cell infiltration.
The mechanism behind this phenomenon needs further research.

Finally, we found that many of the immune checkpoint
molecules (ICMs) expressed differently in different C1QC+ and
SPP1+ TAMs gene signature subgroups. Generally, patients with
C1QChigh TAMs gene signatures have higher immunotherapy
checkpoint genes expression than those with C1QClow TAMs
gene signatures. Since 2015, Clinical trials on different ICIs have
been carried out for cervical cancer (38). However, the evidence
Frontiers in Immunology | www.frontiersin.org 994
is still limited to prove the correlation between ICMs and effects
of immunotherapy (39, 40). With more clinical research
conducted for cervical cancer, our findings may provide
valuable information for them.

As mentioned above, our current study is based on TCGA bulk
RNA-seq data, which inevitably has some limitations and needs
further verification. Therefore, we are now working to verify the gene
signatures of C1QC+ and SPP1+ TAMs in the clinical specimens of
patients with cervical cancer at different clinical stages by utilizing
single-cell sequencing technology.We believe that the combination of
bulk RNA-seq and single-cell sequencing data will help us confirm
the gene signatures of C1QC+ and SPP1+ TAMs in the cervical cancer
microenvironment and signaling pathways, whichmay activate or in-
activate in different TAMs subsets. RT-qPCR, FACS, and even IHC
could also be used to identify the gene signatures in a large scale of
clinical or animal model specimens. It is important to determine the
role of C1QC+ and SPP1+ TAMs subsets in cervical cancer evolution
and progression, and some ongoing experiments are in process. It is
reported that there are crosstalks between TAMs and T cells, TAMs,
and tumor cells. TAMs may interact with CD8+ T cells and tumor
cells through receptor-ligand pairs, such as SPP1-CD44 (41). The
crosstalks between TAMs and CD8+ T cells/tumor cells may be
validated by using multiplex imaging analysis (41).

In conclusion, C1QC+ and SPP1+ TAMs gene signatures
derived from TAMs can divide cervical patients into subgroups
FIGURE 4 | Enrichment plots from gene set enrichment analysis (GSEA). Differential pathway enriched in C1QClow + SPP1high TAMs gene signatures group and
C1QChigh + SPP1low TAMs gene signatures group.
July 2021 | Volume 12 | Article 694801

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


f ICMs expressions among cervical cancer patients grouped by

Liet
al.

TA
M
s
S
ignatures

P
redict

P
rognosis

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

July
2021

|
Volum

e
12

|
A
rticle

694801
FIGURE 5 | Immune checkpoint molecules (ICMs) expressions in different groups of TCGA cervical cancer patients. Violin plots showing comparison o
the gene signature expression of C1QC+ TAM and SPP1+ TAM.

95

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. TAMs Signatures Predict Prognosis
with different prognosis and tumor stage, which may due to
different immune cell infiltration. Our findings may help to find
suitable treatment strategy for different subgroups of cervical
cancer patients.
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Supplementary Figure 1 | Single-cell transcriptome profiling and TAM gene
signatures of the Human BCC TME. (A) UMAP plot showing major immune cell
subsets in human BCC TME. (B) UMAP plot of all immune cells colored by
enrichment of C1QC+ TAM gene signatures. (C) UMAP plot of all immune cells
colored by enrichment of SPP1+ TAM gene signatures. (D) UMAP plot of all immune
cells colored by enrichment of M1 gene signatures. (E) UMAP plot of all immune
cells colored by enrichment of M2 gene signatures.

Supplementary Figure 2 | M1 and M2 gene signatures in TCGA cervical cancer
patients. (A) Violin plots showing comparison of M1 gene signatures levels between
patients with FIGO stage 1-IB1 and patients with FIGO stage IB2-IVA in TCGA. Two-
sided Wilcoxon test. (B) Violin plots showing comparison of M2 gene signatures
levels between patients with FIGO stage 1-IB1 and patients with FIGO stage IB2-IVA
in TCGA. Two-sided Wilcoxon test. (C) The Kaplan-Meier overall survival curves of
TCGA cervical cancer patients grouped by the gene signature expression of M1 and
M2. (D) The Kaplan-Meier Disease specific survival curves of TCGA cervical cancer
patients grouped by the gene signature expression of M1 and M2.

Supplementary Figure 3 | Heatmaps of immune cell infiltration in different groups
of TCGA cervical cancer patients. (A) Heatmap showing immune cell signatures by
XCELL in cervical cancer patients grouped by the gene signature expression of
C1QC+ TAM and SPP1+ TAM. (B) Heatmap showing immune cell signatures by
CIBERSORT in cervical cancer patients grouped by the gene signature expression
of C1QC+ TAM and SPP1+ TAM.

Supplementary Figure 4 | Immunotherapy responses predicted by TIDE in
TCGA cervical cancer patients. Immunotherapy responses were predicted by TIDE
in cervical cancer patients grouped by the gene signature expression of C1QC+

TAM and SPP1+ TAM.
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Immune checkpoint blockade has attracted a lot of attention in the treatment of human
malignant tumors. We are trying to establish a prognostic model of gastric cancer (GC)
based on the expression profile of immunoregulatory factor-related genes. Based on the
TCGA database, we identified 234 differentially expressed immunoregulatory factors.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) conducted
enrichment analysis to clarify the biological functions of differential expression of
immunoregulatory factors. STRING database predicted the interaction network
between 234 differently expressed immune regulatory factors. The expression of 11
immunoregulatory factors was significantly related to the overall survival of gastric cancer
patients. Univariate Cox regression analysis, Kaplan–Meier analysis and multivariate Cox
regression analysis found that immunomodulatory factors were involved in the
progression of gastric cancer and promising biomarkers for predicting prognosis.
Among them, CXCR4 was related to the low survival of GC patients and a key
immunomodulatory factor in GC. Based on TCGA data, the high expression of CXCR4
in GC was positively correlated with the advanced stage and grade of gastric cancer and
related to poor prognosis. Univariate analysis and multivariate analysis indicated that
CXCR4 was an independent prognostic indicator for TCGA gastric cancer patients. In
vitro functional studies had shown that CXCR4 promoted the proliferation, migration, and
invasion of gastric cancer cells. In summary, this study has determined the prognostic
value of 11 immunomodulatory factors in gastric cancer. CXCR4 is an independent
prognostic indicator for gastric cancer patients, which may help to improve the
individualized prognostic prediction of GC and provide candidates for the diagnosis and
treatment of GC.

Keywords: gastric cancer, immunoregulatory factors, bioinformatics analysis, CXCR4, prognosis
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INTRODUCTION

As one of the widely occurred carcinomas, gastric cancer (GC) is
the third primary inducer of mortality amid cancers worldwide
(1). Despite the occurrence rate of GC has fallen sharply in
western countries, it remains high in East Asian countries (2, 3).
Nevertheless, this increasing trend of GC has decreased recently,
especially the proportion of early GC cases. Currently, surgical
resection is the possibly available strategy for GC, whereas it is
only applied in stage I of early GC cases. Clinical stage II or stage
III patients require multidisciplinary adjunctive approaches (4,
5). The primary contributor to the failure of GC treatment is
drug resistance (6, 7). In the past few decades, several pivotal
regulators are reported to participate in GC’s pathogenesis (8, 9).
For example, METTL3-mediated m6A methylation of SPHK2
targets KLF2, thus promoting advanced GC (10). Human CCR4
and CAF1 deacetylase mediate the regulation of human GC cell
proliferation and tumorigenicity via modulating the cell cycle
process (11). Understanding the regulatory mechanism of GC
will offer new insights into treating GC (12).

In the past decade, immune checkpoint blockade has
attracted a lot of attention in the human malignant neoplasms
treatment, lung carcinoma, breast carcinoma and stomach
carcinoma included (13–15). In GC, several anti-PD1 therapies
have been approved for GC treatment. For instance,
pembrolizumab largely extends the over survival (OS) and
presents increasing benefits in GC patients as the PD-L1 score
increased (16–18). Herein, pembrolizumab is approved for the
third-line therapy of PDL1- positive (CPS ≥1) GC (19, 20). In
addition, regarding the first-line therapy of HER2-negative GC
patients with PD-L1 CPS no less than 5, chemotherapy along
with nivolumab becomes a newly produced treatment.
Nevertheless, the regulatory mechanism of immunoregulatory
factors on GC still stays unclear. Previously, several
immunoregulatory factors are reported to exhibit importance
in GC (21–23). For example, BICC1 is shown to be a split-new
prognostic indicator for GC related to immune infiltration (24).

Researches have revealed that immune regulatory factors
exhibit a relationship with the poorly prognostic status of GC
patients, and promote the malignant phenotype of GC cells (25,
26). Here, our purpose is to comprehensively study the
expression features and clinicopathological parameters of
immunomodulatory factors, so as to uncover prospective
targets in treating GC. Besides, we perform loss of function
tests to confirm our bioinformatics findings. We hope that this
study can provide new therapeutic targets for GC.
MATERIALS AND METHOD

Data Collection
The RNA-Seq transcriptome data cohort (STAD) and clinical or
prognostic details of GC were derived from TCGA (https://
cancergenome.nih.gov/). CBIORTAL (www.cbioportal.org) was
employed to detect the changes in the CXCR4 genome.
Frontiers in Immunology | www.frontiersin.org 299
We acquired CXCR4 mRNA expression profile from the
International Cancer Genome Collaboration Group (ICGC) and
Genome-wide Pan Cancer Analysis (PCAWG).
Selection of Immunomodulators
Currently, 10 genes (NRP1, CXCR4, METTL14, BCL11B,
ZC3H13, HNMT, ASGR2, EZH2, ANXA5 and CDH2) are
considered as classic immunomodulators. Here, we discovered
three new immunomodulatory genes (BASP1, OsbPL1A and
CD59). We further obtained the expression profiles of these
identified genes from the TCGA STAD cohort with clinical
details. The differential expressions of these genes in GC were
shown by the Violet curve.
Consistent Cluster Analysis
In order to further explore the immunomodulatory factors, we
applied consensus cluster analysis in the STAD cohort based on
immunomodulatory factors. We identified two subgroups in this
cohort. Besides, we carried out gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis to
evaluate their involved functions and pathways in the light of
the gene profiles in the two subgroups.
Predictive Signature Generation
We employed the univariate Cox regression model to determine
the correlation of immunoregulatory genes with the OS of GC
patients. We defined it as the protection and hazard of these
genes with a hazard ratio HRs <1 and HRs >1, respectively. Five
genetic risk signals (NRP1, ZC3H13, CXCR4, ASGR2 and
CXCR4) were determined according to the minimum standard.
Besides, we calculated the risk score in view of the coefficients in
the Lasso algorithm. On the basis of the average value of the risk
score, we classified the TCGA STAD cohort into high-risk and
low-risk groups.
Genome Changes and Identification
of Co-Expressed Genes
We applied the CBioPortal tool (http://cbioportal.org) to analyze
the mutations, copy number variation (CNV) and CXCR4
mRNA changes in GC. Oncoprint provided an overall outline
of the changes of CXCR4 in STAD samples. The Linkedomics
platform (27) was utilized to conduct co-expression analysis. We
predicted potential functions through overexpression
enrichment analysis (ORA) on the basis of GO, KEGG with
Reactome pathways.
The Prognostic Value Assessment
of Genetic Markers
We employed chi-square test and heat map analysis to determine
clinicopathological features (age, gender, grade and stage, and
survival status) in high-risk and low-risk groups. We utilized
July 2021 | Volume 12 | Article 702615

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://www.cbioportal.org
http://cbioportal.org
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xue et al. Cancer Immune Regulator CXCR4
Kaplan–Meier analysis and the Log-Rank test to calculate risk
scores in high-risk groups and patients with low score group OS
of distinct groups. Receiving the operating characteristic (ROC)
and a curve were taken to investigate the prognostic value of the
patient’s survival prediction. We conducted univariate and
multivariate Cox regression analysis to determine the impacts
of risk score on GC prognosis.

Cell Culture and Transfection
HFE-145, MGC-803, HGC-27, AGS, SGC-7901 and BGC-823 were
acquired from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China). All cells were cultured in DMEM (Gibco, USA)
with10%FBS (Gibco,USA) and1%penicillin/streptomycin.CXCR4
knockout plasmid was ordered from Dharmacon (CA, USA). The
small interference RNA (siRNA) sequence was listed below: si-
CXCR4-1, GATGCCGTGGCAAACTGGTACTTTG; si-CXCR4-2,
TGGTTGGCCTTATCCTGCCTGGTAT; si-NC, UUCUC
CGAACGUGUCACGUTT. The full-length CXCR4 cDNA was
inserted into the pcDNA3.1 vector (Invitrogen, USA). About 2 mg
of overexpression plasmid or 1.5 mg of siRNA was separately
transfected into 1 × 106 cells in a 6 cm petri dish using 12 ml of
Lipofectamine®2000 reagent (Invitrogen) as instruction described.
Cell Proliferation Assay
The ability of cells to proliferate in GC cells was determined
using the CCK-8 kit (Dojindo, Japan). Specified GC cells were
inoculated in a 96-well plate and then treated differently at the
specified time. The OD values of 450 nm were detected after
incubation with CCK-8 solution on a Fluoroskan Ascent
fluorometer (Thermo Fisher, Finland).
Transwell Assay
An 8 mm Transwell chamber (Corning, USA) was set in a 24-well
plate to perform the invasion assay. We plated 200 ml of GC cells
in the upper chamber pre-coated with Matrigel (BD, USA). The
lower chamber was filled with a complete medium. At 24 h post-
incubation, we fixed the chamber with 4% paraformaldehyde and
stained it in 0.1% crystal violet solution. Then, we calculated the
number of samples in each group under a microscope. We
conducted three independent experiments in triplicate one
time. The Transwell migration assay was performed as
described above but without the Matrigel.
RNA Extraction and RT-qPCR
We employed RNeasy reagent (Qiagen, Germany) to harvest the
whole RNA. RT-qPCR was conducted with SYBR Premix ex TAG
Mastermixkit (Takara, Japan)on the ICycler real-time system (Bio-
Rad Laboratories, USA) as manual described. Glyceraldehyde-3-
phosphate dehydrogenase was an internal control. The relative
RNA expression was analyzed by the 2−DDCt approach and
presented as the target gene/internal control ratio [2−DDCt (target

gene-internal control)] (28). The data were obtained from three
independent experiments in triplicate one time. The primers of
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CXCR4 are 5’-ACTACACCGAGGAAATGGGCT-3’ (F) and 5’-
CCCACAATGCCAGTTAAGAAGA-3’ (R). The primers of
GAPDH are 5’-CTGGGCTACACTGAGCACC-3’ (F) and 5’-
CTGGGCTACACTGAGCACC-3’ (R).

Statistical Analysis
All derived data were analyzed by GraphPad Prism 8.0
(GraphPad, Inc., USA) and Image-Pro Plus 6.0 and shown as
the mean ± standard deviation (SD). We employed Student’s t-
test and one-way analysis of variance (ANOVA) to analyze the
differences existing in two groups and more groups, respectively.
Kaplan–Meier method and Log-rank test were taken to plot the
survival curve. P <0.05 meant that there was significant
difference in compared groups.
RESULTS

Immunoregulatory Factors
Expression Features
In this study, by analyzing the TCGA database, the gene expression
profiles of 782 immune regulatory factors were identified. We
identified 234 differentially expressed immunoregulatory factors
with the criteria of the absolute logarithmic 2-fold change (FC)
>1and the adjusted P-value of LIMMA <0.05 in GC compared to
normal gastric samples, including 132 immunoregulatory factors
with up-regulation and 111 immunoregulatory factors with down-
regulation (Figure 1).

Bioinformatics Analysis of Differential
Expression of Immunoregulatory Factors
Except for the regulation of immune response, we conducted GO
and KEGG pathway analysis to evaluate the biological functions of
these differently expressed immune regulatory factors. Enrichment
of the KEGG pathway indicated that these differentially expressed
immunoregulatory factors primarily took part in MAPK signaling
pathway, endocytosis and proteoglycans in cancer (Figure 2A).
GO CC analysis showed that these differentially expressed
immunoregulatory factors were significantly enriched in
endosome membrane, nuclear envelope, cell-substrate junction
and focal adhesion (Figure 2B). For GOMF analysis, the first four
significantly enriched terms are small GTPase binding, Ras
GTPase binding, protein serine/threonine kinase activity, and
ubiquitin-like protein transeferase activity (Figure 2C). The first
four significantly richer BP terms included autophagy, a process
utilizing autophagic mechanism, regulation of GTPase activity and
regulation of cell morphogenesis (Figure 2D).

The Prognostic Significance
of Immunomodulatory Factors
Then, we evaluated the significance of immunoregulatory factors
on the prognosis of patients with GC. Univariate Cox regression
and Kaplan–Meier analysis showed that higher expression of nine
regulatory factors, including OsBPL1a, CD59, CDH2, NRP1,
July 2021 | Volume 12 | Article 702615
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ANXA5, ASGR2, HNMT, BASP1, CXCR4, and were associated
with lower survival rates of GC patients (Figures 3A–I). On the
contrary, higher expression of EZH2 and BCL11B were associated
with longer survival rates of GC patients (Figures 3J, K). We
established a prognostic signal based on the multivariate Cox
regression of ABCB6, FLVCR1, SLC48A1 and SLC7A11. Risk
Score = (−0.028) ∗ of EZH2 + (0.06. 4) ∗ NRPl + (0.1308) ∗
CD59 + (0.15. 3) ∗ OsBPL1a + (−0.2268) ∗ BCL11B + (0.09 22 is)
∗ BASP1 + (0.0989) ∗ HNMT + (.0954) ∗ of CXCR4 + (0.0702) ∗
ASGR2+ (0.09 15) ∗ ANXA5+ (0.0168) ∗ CDH2. LASSO
regression with tenfold cross-validation was performed to get
the optimal lambda value that came from the minimum partial
likelihood deviance, which was related to 11 genes that were
significantly associated with OS (Figures 4A, B). Figure 4C
shows that the survival of GC patients could be significantly
predicted by the Signature risk score. Kaplan–Meier analysis
revealed that the high-risk group presented dramatically shorter
OS than the low-risk group (Figure 4D). Time-dependent ROC
at 1, 3 and 5-year area (middle curve of the AUC) were 0.64,
0.696, and 0.68, respectively (Figure 4E).

Analysis of the Correlation Between
CXCR4 and Clinical Characteristics
The above analysis revealed that CXCR4 was a key
immunoregulatory factor in GC, so CXCR4 was selected for
further analysis. According to the TCGA database, we found
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CXCR4 in GC was dramatically up-regulated in comparison with
that in normal samples (Figure 5A). According to nodal metastasis
status, stage, grade, stage and age, CXCR4 in GC was further
analyzed. The results showed that CXCR4 was up-regulated in all
N-stages of GC, with the strongest expression in N1 stage gastric
cancer (Figure 5B). CXCR4 expression was positively related to the
advanced stage and grade of GC. CXCR4 had the highest expression
level in grade 3 and stage 4 samples, respectively (Figures 5C, D).
Very interestingly, the CXCR4 expression level was negatively
correlated to the age of patients with GC (Figure 5E).

In addition, univariate analysis (Figure 6A) and multivariate
analysis (Figure 6B) indicated that CXCR4 was an independent
prognostic indicator for GC patients in TCGA. Then, we based on
AJCC stage and CXCR4 multivariate expressed Cox coefficient
regression model constructed nomogram, and 1 year by AJCC
calculated a score for each patient stage variable value, so as to
arrive GC. The patient’s 3- and 5-year survival probability and risk
score (Figure 7A). Next, through the evaluation of the C index and
AUC value, as well as the evaluation of the discriminant efficiency
and prediction accuracy of the nomogram in the training set. Our
results show that the nomogram is well-calibrated because the
curve is close to the diagonal (Figure 7B).

Survival analysis showed that STAD patients with higher
levels of CXCR4 had lower survival (Figure 8A). Compared
with Caucasians with a higher level of CXCR4, Asians with a
higher level of CXCR4 had lower survival (Figure 8B).
FIGURE 1 | Immunoregulatory factors expression features (Volcano plot). The red dots represent significantly up-regulated, the green dots represent significantly
down-regulated, and the gray dots represent no difference change.
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Compared with females with lower levels of CXCR4, males with
lower levels of CXCR4 had lower survival (Figure 8C). In
general, up-regulated CXCR4 in GC exhibits a close
relationship to GC occurrence and development.
CXCR4 Promoted GC Cells Proliferation
We analyzed the expression level of CXCR4 in five GC cell lines,
and the results showed that CXCR4 was significantly up-
regulated in GC cell lines, especially SGC-7901 and BGC-823
(Figure 9A). We designed CXCR4 siRNA to further investigate
CXCR4 function in GC cells. We established the CXCR4
knockdown cell line in SGC7901 and AGS cells, and its
knockdown efficiency was detected by RT-qPCR (Figure 9B).
RT-qPCR showed that in infected SNHG16 cells, the expression
of SNHG16 in SGC-7901 cells was significantly increased
(Figure 9C). Compared to control cells, two siRNAs could
effectively knock down CXCR4 in two cells. Overexpression of
CXCR4 significantly promoted GC cell proliferation
(Figure 9D). Abated CXCR4 dramatically inhibited GC cell
proliferation (Figures 9E, F). Collectively, CXCR4 was a
promoter in facilitating GC cell proliferation.

CXCR4 Facilitated Cell Migration
and Invasion of GC
Since GC is highly malignant, it is prone to multiple metastases
in the early stage and the survival rate is extremely low. Here, we
Frontiers in Immunology | www.frontiersin.org 5102
studied the metastasis of GC. Because CXCR4 exerted an effect
on GC cell proliferation, we will explore the influence of CXCR4
on GC cell invasion. We conducted Transwell analysis to detect
cell invasion capability. Overexpression of CXCR4 in SGC7901
cells the invasion ability was greatly promoted (Figure 10A).
After knocking down CXCR4 in SGC7901 and AGS cells, the
invasion ability was greatly inhibited (Figure 10B).
DISCUSSION

Abnormally expressed immunoregulatory factors are associated
with a variety of malignant behaviors in multiple types of
carcinoma. A series of immunoregulatory factors are shown to
play vital parts in GC. For example, a higher level of soluble PD-L1
(sPD-L1) in plasma predicts shorter overall survival for GC patients
(29, 30). Wang et al. showed that signals including 8-immune-
related genes (IRG) could function as a predictor of the OS rate of
GC patients and their response to immune checkpoint inhibitors
(28). Additionally, a prognostic model with three immune-related
genes (SEMA6A, LTBP1 and BACH2) could predict the OS rate of
GC patients with different microsatellite instability states. Here, we
evaluated the expression patterns of 782 immune regulatory factors
in GC and determined that 234 immune regulatory factors were
significantly dysregulated in GC compared to the normal sample. In
addition, except for immune regulation, we also found that these
dysregulated immune regulatory factors were related to the MAPK
A

B D

C

FIGURE 2 | Bubble diagrams showing the enrichment analysis and signal pathway analysis results of Differential Expression of Immunoregulatory Factors. The top
10 enriched terms covering (A) BP, (B) MF and (C) CC are presented. (D) The top 10 enriched pathways of Differential Expression of Immunoregulatory Factors in
KEGG analysis are introduced. GO, Gene Ontology; BP, biological processes; MF, molecular functions; CC, cellular components; KEGG, Kyoto Encyclopedia of
Genes and Genomes.
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signaling pathway, endosome membrane, small GTPase binding
and autophagy. This indicated that theymay havemultiple key roles
in GC. Finally, we found that the imbalance of 11 immune
regulatory factors could predict the overall survival time of gastric
cancer, including EZH2, NRP1, CD59, OsBPL1aBCL11B, BASP1,
HNMT, CXCR4, ASGR2, ANXA5, CDH2. This study shows for the
first time that immunomodulatory factors might be utilized as
potential biomarkers for GC prognosis.
Frontiers in Immunology | www.frontiersin.org 6103
In the past few decades, people have made a lot of efforts to
uncover potential indicators for GC’s prognosis. For instance,
PFKFB4 is a promising biomarker for predicting the poorly
prognostic status of GC patients (31). Overexpressed CLC-3 is an
indicator for poorly prognostic status of GC. The overexpression
of CLC-3 is regulated by XRCC5, which is a biomarker for the
poor prognosis of GC (32). Nevertheless, the 5-year survival rate
of distant GC is still as low as 6%. Therefore, there is an urgent
A B
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C

FIGURE 3 | The prognostic value of immunomodulatory factors in GC. The correlation analysis between the expression levels of 11 immune regulatory factors and
the OS of gastric cancer patients was analyzed, including (A) OSBPL1A, (B) CD59, (C)CDH2, (D) NRP1, (E) ANXA5, (F) ASGR2, (G) HNMT, (H) BASP1, (I) CXCR4,
(J) BCL11B and (K) EZH2. OS, overall survival.
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need to find new biomarkers. Here, we are trying to construct a
signal based on immune regulatory factors to make predictions.
We made a distinction between the prognostic risk signals with
11 genes, including EZH2, NRP1, CD59, OsBPL1A, BCL11B,
BASP1, HNMT, CXCR4, ASGR2, ANXA5CDH2. It is worth
noting that compared to previously reported prognostic
indicators (T, N, M clinical stage), our prognostic risk
characteristics present higher accuracy, with AUC value >0.8.
To sum up, our findings show that the risk signal could be
utilized as potential biomarkers, providing more clinical
applications and effective treatment guidelines.

Immune regulatory factors may also be related to tumor
progression except for the prognostic value of risk signals.
EZH2 (Enhancer of Zeste homolog 2) belongs to a member of
the Polycomb gene family and is an important class of epigenetic
modulators in inhibiting transcription (33). Polycomb suppression
complex 2 (PRC2) is one core complex of PCG, mediating gene
silencing mainly via modulating chromatin structure (34). As the
enzymatic subunit of PRC2, EZH2 alters gene expression via
trimethylating Lys-27 in histone 3 (H3K27me3) (33, 35).
Frontiers in Immunology | www.frontiersin.org 7104
H3K27Me3 is reported to be related to the inhibition of gene
expression and is considered to be a key epigenetic event in the
development of tissues and the determination of stem cell fate. In
GC, inhibiting EZH2 and EGFR exerts a synergistic effect on cell
apoptosis via raising autophagy in GC cells (36). EZH2mediates the
promotion of 5-FU resistance in GC by epigenetically inhibiting
FBXO32 expression (37). EZH2 induces the transition of epithelial–
mesenchymal and pluripotency phenotype of GC cells via
combination with the PTEN promoter (38). CD59 is a
glycosylphosphatidylinositol-anchored membrane protein, acting
as a suppressor of membrane attack complex to modulate
complement activation (39). Current reports have revealed high
expression of CD59 in various cell lines and tissues of cancer. It is
found that CD59 is necessary for the epithelial cancer stem cells to
evade complement monitoring. In breast cancer, CD59 could
promote the growth of neoplasm and predict the poorly
prognostic status (40). The transcription factor BCL11B is an
important immunoregulatory factor that can promote the typical
and adaptive differentiation of NK cells (41). Emerging reports have
shown that BASP1 could modulate multiple biological behaviors,
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FIGURE 4 | Prognostic significance analysis of immunomodulatory factor markers. (A, B) LASSO regression with tenfold cross-validation of 11. (C) survival of GC
patients by the Signature risk score. (D) Kaplan–Meier analysis of high-risk group and low-risk group. (E) Time-dependent ROC at 1, 3 and 5-year area (middle curve
of the AUC).
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such as cell proliferation, apoptosis, and differentiation (42, 43).
More and more pieces of evidence confirm that BASP1 plays as a
potential suppressor of tumor and functions importantly in
various carcinomas, including thyroid carcinoma (44), stomach
carcinoma (45) and lung carcinoma (46). Nevertheless, it is
unclear the influence of BASP1 on GC. In GC, BASP1
suppressed cell growth and metastasis via inhibiting the Wnt/b-
catenin pathway (45). This study confirms for the first time that
the imbalance of these immune regulatory factors is associated
with the survival time of GC patients.

CXCR4 displays a key role in a variety of cancers. CXCR4
expression in cancer cells is negatively related to the prognosis of
the disease and serves as an independent factor of other
prognostic parameters. The discovery involves tumor-initiating
cancer stem cells (CSC) of CXCR4 expression which is conducive
to CXCR4 in resistance to treatment, recurrence, metastasis and
poor clinical outcome. The CXCR4/RhoA signaling pathway
Frontiers in Immunology | www.frontiersin.org 8105
participates in miR-128-modulated human thyroid carcinoma
cells proliferation and apoptosis (47). In endometrial cancer, the
CXCL12/CXCR4 axis induces proliferation and invasion (48).
Recently, some studies have revealed the function of CXCR4 in
GC. For example, the block of CXCR4/mTOR signaling pathway
induces anti-metastatic properties and autophagic cell death of
CER cells in disseminated peritoneal GC (49). Here, we
systematically investigate the expression features, possible
effects and mechanisms of CXCR4 in GC. We discover CXCR4
is highly expressed in GC and closely related to the prognosis of
GC. Reducing CXCR4 largely hinders GC cells proliferation,
migration and invasion in vitro. These results demonstrated that
CXCR4 acted as an oncogene and is a potential biomarker for
GC treatment.

There are several limitations that should be taken into
consideration. First of all, this is a bioinformatics analysis
based on public databases. Therefore, the functions of the three
A B
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C

FIGURE 5 | Analysis of the expression level of CXCR4 in GC. The expression level of CXCR4 was analyzed based on (A) sample type, (B) nodal metastasis status,
(C) tumor grade, (D) individual cancer stage, and (E) patient age.
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new immunomodulatory genes (BASP1, OsbPL1A and CD59)
need to be further explored. At the same time, we have not
verified the expression of key immune regulatory genes in
clinical samples. Therefore, we plan to continue to collect
patient and clinical data to further verify this issue in the
future. Finally, we will further verify the results of CXCR4 in
vitro studies through an animal model assay.
Frontiers in Immunology | www.frontiersin.org 9106
CONCLUSION

In conclusion, this study analyzed and constructed a gastric
cancer prognosis model based on the expression profile of
immunoregulatory factor-related genes, which provided new
information for gastric cancer research. We identified 234
differently expressed immunoregulatory factors and established
A

B

FIGURE 6 | Univariate analysis and multivariate analysis for patients with gastric cancer. (A) Univariate analysis and (B) multivariate analysis.
A B

FIGURE 7 | Clinical association analysis and Fitting analysis. (A) Association Analysis between survival probability and risk score. (B) Time Fitting analysis.
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FIGURE 8 | Analysis of the expression level of CXCR4 and the ten-year survival of STAD patients. Kaplan–Meier based on (A) STAD patient, (B) STAD patient’s
race, (C) STAD patient’s gender.
Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 70261510107

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xue et al. Cancer Immune Regulator CXCR4
A B

D E

F

C

FIGURE 9 | CXCR4 was up-regulated in GC and promoted the proliferation of GC cells. (A) The expression of CXCR4 in GC cells was determined by RT-qPCR.
(B) The specific siRNA knockdown the expression of CXCR4 in the GC cell line. (C) The CXCR4 overexpression vector increase the expression of CXCR4 in the GC
cell line. (D) Overexpression of CXCR4 promoted the proliferation of the SGC-7910 cell line. Knockdown of CXCR4 inhibited the proliferation of SGC-7910 (E) and
BGX-823 (F) cell lines. * means P < 0.05; ** means P < 0.01.
A B

FIGURE 10 | CXCR4 promoted the migration and invasion of GC cells. (A) Overexpression of CXCR4 promoted metastasis of the SGC-7901 cell line. (B) Knockdown
of CXCR4 inhibited the migration and invasion of SGC-7901 and BGC-823 cell lines.
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risk signals formed by 11immunoregulatory factors for prognostic
evaluation of gastric cancer. SEDwas performed on the TCGAdata
set. Finally, we focus onCXCR4 expression and find that CXCR4 is
greatly up-regulated in GC. Additionally, we discover CXCR4 is an
oncogene of GC cell proliferation, migration and invasion. Our
research provides a new biomarker-based on immunomodulatory
factor analysis for GC prognosis and treatment.
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Lung cancer is the leading cause of cancer-related death worldwide. Cancer
immunotherapy has shown great success in treating advanced-stage lung cancer but
has yet been used to treat early-stage lung cancer, mostly due to lack of understanding of
the tumor immune microenvironment in early-stage lung cancer. The immune system
could both constrain and promote tumorigenesis in a process termed immune editing that
can be divided into three phases, namely, elimination, equilibrium, and escape. Current
understanding of the immune response toward tumor is mainly on the “escape” phase
when the tumor is clinically detectable. The detailed mechanism by which tumor
progenitor lesions was modulated by the immune system during early stage of lung
cancer development remains elusive. The advent of single-cell sequencing technology
enables tumor immunologists to address those fundamental questions. In this
perspective, we will summarize our current understanding and big gaps about the
immune response during early lung tumorigenesis. We will then present the state of the
art of single-cell technology and then envision how single-cell technology could be used to
address those questions. Advances in the understanding of the immune response and its
dynamics during malignant transformation of pre-malignant lesion will shed light on how
malignant cells interact with the immune system and evolve under immune selection. Such
knowledge could then contribute to the development of precision and early intervention
strategies toward lung malignancy.

Keywords: tumorigenesis, early-stage lung cancer, single-cell sequencing technology, immune-editing, immune
evasion, tumor immunology
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INTRODUCTION

As a life-threatening disease, lung cancer was estimated to cause
more than 1.8 million deaths per year all over the world, with a
5-year survival rate of less than 20% (1). Based on the
pathological type, lung cancer is divided into small cell lung
cancer and non-small cell lung cancer (NSCLC), with the latter
accounting for approximately 85% of the cases (1, 2). The
histological subtypes of lung cancer are complex and highly
various, which makes it challenging for the early diagnosis and
treatment of lung cancer. Thus, accurate and comprehensive
clinicopathological classification is critical in guiding the
clinical treatment and predicting the prognosis of lung cancer
(3–5). In 2016, the International Association for the Study of
Lung Cancer (IASLC) proposed the 8th edition of TNM
staging. Lung adenocarcinoma (LUAD) and its precursors
range from atypical adenomatous hyperplasia, invasive
adenocarcinoma in situ, micro-invasive adenocarcinoma, to
eventually invasive lung adenocarcinoma (6). If lung cancer
can be identified and treated at an early stage, before
angiogenesis and invasion, patients have a greater chance of
better disease control rate and survival rate.

Although many therapies, including chemotherapy,
radiosurgery, targeted therapy, and immunotherapy, have been
applied for lung cancer treatment, the 5-year survival rate is only
50% for patients with early-stage lung cancer (7). Surgery
accounts for the primary first-line treatment for patients with
early-stage lung cancer (8). However, patients with early-stage
lung cancer may be diagnosed as multiple lesions, which occurs
in 30%–50% of early-stage lung cancer (9). Besides, multiple
lesions may occur simultaneously or successively in patients with
lung cancer (10). There are great limitations in the radical and
surgical treatment for multifocal early lung adenocarcinoma,
while chemotherapy and targeted therapy cannot ameliorate the
dilemmas, either. Thus, it is urgent to develop a novel therapy
regimen for patients with early-stage lung cancer. With the
recent development of tumor immunology, immunotherapy
has provided new options for lung cancer patients (11–13).
The emergence of immune checkpoint inhibitors has opened a
new era of cancer therapy. Anti-PD-1/PD-L1 immunotherapy,
an immune normalization therapy, selectively reinvigorates the
anti-tumor immune responses in the tumor microenvironment
(TME) with fewer immune-related adverse events (14, 15).
Immunotherapy combined with surgery shows impressive
clinical benefits in early-stage resectable NSCLC (16).
Numerous ongoing clinical trials of immunotherapies and the
novel combination therapies suggest that immunotherapies can
be an optimal treatment strategy for unresectable early-stage
NSCLC (14). However, the 5-year survival rate in NSCLC
patients after combined surgery with immunotherapy
treatment is still not ideal (17, 18). On the other hand, patients
with the same TNM stage showed different prognosis outcomes
after immunotherapy (19). Therefore, despite its success, it is still
pressing to disentangle the complicated interactions between the
immune system and tumor progression for developing novel and
more effective strategies for the immune diagnosis and
immunotherapies of lung cancer (20–22).
Frontiers in Oncology | www.frontiersin.org 2112
Profiling of the molecular states of all cell types within the
lung tissue is currently revolutionizing the discovery of the
mechanisms of lung cancer development (23) and can provide
plentiful novel insights into the immune–tumor interplay in the
early stage of lung cancer (24). The single-cell sequencing
technologies in transcriptomics, genomics, epigenomics,
proteomics, metabolomics, and spatial information have
revolutionized biomedical research. The application of these
tools enables the multidimensional study of organs, from cell
atlas profiling, cell fate determination, cell–cell interaction to
spatial construction (25, 26). Single-cell multi-omics have also
emerged in recent years. All aspects of the cell, including a full
history of its molecular states, spatial positions, and
environmental interactions can be examined at the level of
single cell by multimodal technologies and integrated
computational methods (27). These methods demonstrated the
power of simultaneously characterizing multiple levels of
the immune response, which may boost our understanding of
the underlying molecular mechanisms on how tumor evolves,
and therefore contribute to the early detection and treatment of
lung cancer by aiding the rational design of innovative diagnostic
and personalized management approaches for patients (28, 29)
(Table 1). Here, we discuss recent progress in employing
multidimensional single-cell sequencing technologies to
investigate the initiation and development processes of the pre-
malignant lesion into lung cancer.
GENERAL TUMOR EVOLUTION PROCESS
AND UNIQUE CHARACTERISTICS IN THE
EARLY STAGE OF LUNG CANCER

The development of lung cancer is a multistep process defined by
spatiotemporal interactions between heterogeneous cell types,
including the malignant, immune, and stromal cells in a complex
ecosystem (48). The functional diversity of immune cells is
especially critical for the generation of the different regulator
and effector responses required to safeguard the host against
cancer, while survived tumor cells evolve to actively evade
immune surveillance (49). The innate and adaptive arms of
our immune system act as a complementary network of self-
defense against the early progression from normal to malignant
(50). Despite the fact that the immune system can identify and
destroy nascent tumor cells, it can also be hijacked to promote
tumor initiation and progression (51, 52). The dual anti-tumor
and pro-tumor roles of immunity are referred to as cancer
immunoediting (50). Immunoediting consists of three
processes that function to control and shape cancer
development either independently or in sequence. In the
elimination phase, innate and the adaptive immune systems
recognize transformed cells and destroy them, resulting in a
return to normal physiological tissue (53). However, if antitumor
immunity fails to eliminate transformed cells (also known as
immunoselection), survived tumor cells may enter into the
equilibrium phase, when the adaptive immunity prevents
tumor outgrowth (53). Then, these cell variants may eventually
January 2022 | Volume 11 | Article 716042
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acquire further mutations that help them evade immune
surveillance, and progress to clinically detectable malignancies
in the escape phase (54).

The immune responses in the process of lung cancer
evolution gradually transit from immune activation to
immunosuppression, characterized by decreased T-cell
clonotypes, increased infiltration of regulatory T cells, and the
reduced infiltration of cytotoxic T cells and anti-tumor helper T
cells (55). Meanwhile, the driver mutations, chromosomal copy
number aberrations, and abnormal epigenetic events in tumor
cells work together to influence host immune responses (56).
These results reveal that the early development of lung cancer is a
continuous and gradual process modulated by the immune-
editing mechanism (Figure 1). However, it was demonstrated
that the precancerous mutated cells in some early-stage lung
Frontiers in Oncology | www.frontiersin.org 3113
cancer patients were already able to suppress the immune system
and escape the immune surveillance before the invasive stage,
which is contradictive to the supposed elimination phase of
immune-editing theory (57, 58). Thus, the developmental
process in the early stage of lung cancer does not have to go
through the three immune-editing phases in sequence. Some
early mutations can confer the tumor cells with strong
immunosuppressive capability, paralyzing anti-tumor immune
responses to early tumor development (59). Consequently, those
tumor cells might skip the elimination and equilibrium phase
and jump into the “escape” phase. Besides, the highly
heterogeneous tumor immune microenvironments of
individual patients also limit the wide applicability of the
immune-editing theory. Furthermore, the detailed regulatory
pathways that determine the phase transition during the
FIGURE 1 | The lung cancer tumorigenesis in the early stage of lung cancer is depicted. In the pre-lesion, the immune cells dominate the microenvironment and
eliminate the malignant cells by inducing the cell death. In the immune equilibrium phase, the malignant cells become quiescent under the control of the activated
immune cells. As the disease progress, the malignant cells escape the immune surveillance.
TABLE 1 | Important discoveries of single-cell technology in the evolution of early-stage lung cancer.

Fields of Lung
Cancer

Years Pathological
Type

Conclusions Reference

Tumor Heterogeneity 2015 LUAD Identified intratumoral and intertumoral heterogeneity and the correlation with prognosis (30)
2017 SCLC Proposed a novel mutation profile and expression characteristics of SCLC (31)
2020 LUAD Detected heterogeneity at the molecular level in each tumor and stromal cells of GGN more effectively (32)
2021 LUAD Characterized the heterogenetic of tumor cells, immune cells, and stromal cells in SSN lesions (33)

Evolution and
Metastasis

2014 NSCLC Detected the differential expression in metastasis-associated cancer initiation cells (34)
2020 LUAD Revealed the progression of lung adenocarcinoma mainly depends on tumor cell reprogramming (35)
2020 LUAD Discovered a cluster of tumor cells with high plasticity and the potential to transform into different

states
(36)

2021 LUAD Analyzed unravel cell populations, states, and phenotypes in the spatial and ecologic evolution (37)
Tumor Metabolic 2017 LUAD Found a new metabolic phenotype of lung cancer and provide a theoretical framework (38)

2019 LUAD Analyzed different expressed genes of single malignant cells with different metabolic phenotypes (39)
Lung Cancer
Treatment

2015 LUAD (cell line) Revealed different expression patterns of individual cells induced by molecular targeted drug therapy
resistance

(40)

2021 LUAD Characterized the different tumor microenvironment and provided prognostic information (41)
Tumor
Microenvironment

2017 LUAD Analyzed the early immune cells, especially the innate immune cells and their molecular profiles (42)
2018 NSCLC Showed the landscape of stroma and immune cells of NSCLC (43)
2018 NSCLC Explored the heterogeneity and characteristics of T cells in TME (44)
2020 NSCLC Reveals the diversity of B cells in the early stage of non-small cell lung cancer (45)
2021 NSCLC Verified the enrichment of different macrophage subtypes in lung cancer (46)
2021 LUAD Characterize shifts in the TME from early to advanced lung cancer (47)
January 2022 | Volume 11 | Art
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immune-editing process remain elusive. Conventional strategies
using bulk cell populations are unable to fully delineate the
various cell types and states engaged in the immune process
toward malignancy, impeding further the investigation and
precise interventional therapy (60). By contrast, single-cell
techniques can classify the individual cells, gain into the multi-
dimensional interactions between the tumor and the immune
system, characterize the variations in their molecular profiles and
developmental processes, and then contribute to the
development of novel and practical strategies for the immune
diagnosis and intervention of early-stage lung cancer (61)
(Table 2). Here, we will highlight current findings and the
potential application of single-cell technology in deciphering
the evolution process of early stage of lung cancer.
APPLICATION OF SINGLE-CELL
TECHNOLOGIES IN THE EARLY STAGE
OF LUNG CANCER

Single-Cell RNA Sequencing in the Early
Stage of Lung Cancer
Single-cell RNA sequencing (ScRNA-seq) technologies allow the
dissection of the gene expression at single-cell resolution,
revolutionizing transcriptomic studies from various aspects
such as cell clustering, trajectory inference, differential
Frontiers in Oncology | www.frontiersin.org 4114
expression calling, alternative splicing, allelic expression, and
gene regulatory network reconstruction (64). These techniques
have paved the way for the discovery of previously unknown cell
types and subtypes in the normal and diseased lung, especially
facilitating the study of rare cells (65). Furthermore, scRNA-seq
can characterize immune cells and tumor cells in an unbiased
manner at the same time (66).

The analysis of the single-cell transcriptomes of the seven stages
of the mouse lung tumors, from pre-neoplastic hyperplasia to
adenocarcinoma, found that the diversity of transcriptional states
in the tumor and immune cells increased over time (36). In human
subjects, a scRNA-seq study of 16 subsolid nodules samples and 6
adjacent normal lung tissues revealed that the cytotoxic natural
killer T cells were dominant in the TME of subsolid nodules, and the
malignant cells in the subsolid nodules underwent strong metabolic
reprogramming and immune stress (67). Besides, a scRNA-seq
analysis of ground-glass nodules (GGNs) demonstrated that the
proliferation of the cancer cells was inhibited, and the immune cells
were more activated in the GGN, compared with the activated
proliferation of the cancer cells and the suppressive immune cells in
the solid adenocarcinoma (32). A study of a total of 16 subsolid
nodules (SSNs) samples from 16 treatment-naive patients provided
single-cell transcriptomic profiling of SSN and their TME and
indicated that SSNs exhibited more indolent biological behaviors
than solid LUAD, that cytotoxic natural killer/T cells dominated in
the TME of SSN, that malignant cells in SSN underwent enhanced
immune stress, and that the subtype composition of endothelial cells
TABLE 2 | Summary of advantages and disadvantages of current single-cell sequencing platforms in studying the evolution of early-stage LUAD.

Molecular
level

mRNA mRNA+ Protemoics Genome Epigenome

Method Smart-seq2 Droplet-based scRNA-seq CITE-seq, Mars-seq SNS, SCI-seq sciATAC-seq;
scATAC-seq

Indications Alternative splicing of
genes

Differential gene expression
calling

Analysis of targeted
populations;phenotypic
classifications based on
surface protein and
transcriptomic

Recording of the interaction
between mutant tumor cells
and the immune cells’
behaviors

Epigenetic biomarkers for
early cancer diagonstic and
epigentic regulation of genesAllelic expression of genes

Gene regulatory network
reconstruction dynamic
changes and heterogeneity
cell percentage and subtypes

The cell clonal evolution

Cell trajectory inference
Advantages Full-length transrcpit

to find the mutation
and splicing
alteration of tumor
cell

Available commercial kits Rare cell-type dicovery and
more presice in cell
phenotype identification

Genetic deterministic genes in
governing the emergence and
maintenance of heterogeneity
and colonel evolution

Investigation of regulatory
state transitions and
chromatin- modifying
proteins in malignant
transformation

High content to identify
different types and
heterogeneity
Sufficient quantity and quality
of gene detections

Disadvantages Pathology misdiagnosis in early stage of lung cancer High cost; difficult to
standarized in different labs

Missing information about
transcriptional heterogeneity
during tumor progression

Difficult to determine how
cells navigate these
regulatory transitions toward
malignant

Hard to identify the lineage tracing of cell phenotypes
and rare cell types
Hard to characterize the clonality, inter-patient ITH,
and initiation tumor site
Require live cells and high sample quality

Reference Marjanovic, N.D., et
al. (36)

(33, 43, 45, 47, 62) Lavin, Y., et al. (35); LaFave,
L.M., et al. (42); Leader,
Grout et al. (62)

Rooney, Shukla et al. (63) LaFave, L.M., et al. (35);
Marjanovic, N.D., et al. (36)
January 2022
NSCLC, non-small cell lung cancer; Smart-seq2, Switching Mechanism At the end of the 5’-end of the RNA Transcript; scRNA, single-cell RNA sequencing; SNS, single-nucleus
sequencing; SCI-seq, single-cell combinatorial indexed sequencing; scATAC-seq, Single-cell sequencing assay for transposase- accessible chromatin; ITH, intratumor heterogeneity;
CITE-seq, cellular Indexing of Transcriptomes and Epitopes by Sequencing; Mars-seq, massively parallel single-cell RNA-Seq.
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was more like that in normal lung samples in SSN (62). ScRNA-seq
has unmasked the complexity and heterogeneity of tumor–immune
interplay during the transformation from pre-malignant lesions to
cancerous damage.

ScRNA-seq analysis also helps elucidate the detailed interactions
between tumor cells and immune cells in the early stage of lung
cancer. A multiscale single-cell profiling of 35 early-stage NSCLC
lesions found that a key cellular module consisting of PDCD1+

CXCL13+ activated T cells, IgG+ plasma cells, and SPP1+

macrophages, closely associated with evasion of lung cancer cells
(62). A scRNA-seq analysis of human and mouse lung tumors
unveiled that tissue-resident macrophages accumulated close to
tumor cells promoted epithelial–mesenchymal transition and
invasiveness, and induced a potent regulatory T cell response that
protected tumor cells from adaptive immunity during early tumor
formation (46). Consistently, Lavin et al. also demonstrated that
Treg and non-functional T cells were enriched but cytolytic natural
killer cells were excluded in the early LUAD lesions (42).
Furthermore, Guo, Zhang et al. showed that there was a
significant proportion of inter-tissue effector T cells with a highly
migratory nature and that a high ratio of “pre-exhausted” to
exhausted T cells was associated with a better prognosis of lung
adenocarcinoma (42, 44). In addition, a study of seven stage-I/II
LUAD samples harboring EGFRmutations and five tumor-adjacent
lung tissues revealed that the adenocarcinoma cells were
characterized by activated cell proliferation and antigen
presentation to immune cells (68).

By comparing malignant lung samples with the non-malignant
counterparts, scRNA-seq also uncovered the different and plastic
interaction patterns between immune cells and normal cells or
malignant cells. Lambrechts et al. identified some heterogeneous
sub-subpopulations in stromal cells and the transcription factors
that regulate their heterogeneity in the early LUAD patients by
scRNA-seq (43). ScRNA-seq analysis of 10 normal lung tissues
and 10 fresh LUAD tissues found that the TME was composed of
cancer-associated myofibroblasts, exhausted CD8+ T cells,
proinflammatory monocyte-derived macrophages, plasmacytoid
dendritic cells, myeloid dendritic cells, anti-inflammatory
monocyte-derived macrophages, normal-like myofibroblasts, NK
cells, and conventional T cells (69). Multi-region offive early-stage
LUADs and 14 multi-region normal lung tissues found that the
Treg+ cells are increased in normal tissues with proximity to
LUAD and the signatures and fractions of cytotoxic CD8+ T cells,
antigen-presentingmacrophages, and inflammatory dendritic cells
were decreased (37).

ScRNA also unveiled the different characteristics of tumor–
immune interplays between early-stage and advanced-stage
LUAD. Compared with the early-stage LUAD, scRNA-seq
demonstrated the naï ve-like B cells decreased in advanced
NSCLC, and their lower number was associated with poor
prognosis (45). Based on scRNA-seq data of 29 lung samples
of different developmental stages, Chen, Huang et al. found that
advanced malignant cells exhibited a remarkably more complex
TME and higher intratumor heterogeneity level than early
malignant cells. In terms of immune cells, the proportions of
CD8+/cytotoxic T cells, Treg+ T cells, and follicular B cells
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remarkedly differed in early and advanced LUAD. Notably, the
ligand-receptor analysis found that the GNAI2-DRD2 and C4B-
CD46 pairs were only detected in advanced LUAD, while
COL3A1-MAG, HLA-C-SLC9C2, and COL2A1-MAG were
uniquely expressed in early LUAD (47).

Collectively, scRNA-seq has helped characterize the cellular
phenotypes of various immune and tumor cell types and reveal
their interactions within the TME during the development of
lung cancer. However, there are many limitations by now. One of
the major challenges is the paucity of human patient samples
available for scRNA-seq in the early stage of lung cancer. Further
validation by alternative methods or larger patient cohorts is
required (70). Furthermore, sample quality is a big issue because
it is impossible to separate the LUAD featured with ground glass
nodules from solid adenocarcinoma by pathological methods
when studying the initiation of LUAD (45). Moreover, the
scRNA-seq lacks the power to distinguish the ground glass
opacification part and the solid part in the same LUAD, which
is vital to identify the initiation site of the cellular activation
module. Furthermore, it is difficult to interpret the evolution
process of specific cells, identify cell phenotypes for lineage
tracing, acquire cell surface antigens information, characterize
the intratumor clonal heterogeneity and inter-patient clonal
heterogeneity, and identify genomic alterations by scRNA-seq.
Therefore, we will further discuss other single-cell techniques
and their potential applications in the investigation of early-stage
lung cancer development.

Single-Cell Genome Sequencing in the
Early Stage of Lung Cancer
In the initiation of lung cancer, a single normal cell gradually
evolves into a malignant tumor cell and forms distinct
subpopulations, which then lead to intratumoral heterogeneity
and clonal diversity by genomic alterations (71). Copy number
variations or single-nucleotide variations in EGFR, RBM10, MET,
BRAF, K-Ras, and TP53 were found to be functionally important
in the evolution of lung cancer (72). The genome doubling and
ongoing dynamic chromosomal instability in CDK4, FOXA1, and
BCL11A also resulted in the progression of lung cancer (73, 74).
These genomic alterations are also present in early-stage lung
cancer cells, determining their sensitivity to the immune cells and
associating with immune cells’ phenotypes (75). For example,
patients harboring KRAS mutations displayed significantly lower
levels of dysfunctional immune T-cell markers: PD-1 and TIM-3,
in the tumors than those with wild-type KRAS, which indicated a
suppressive immune microenvironment in EGFR-mutated tumors
(76). Furthermore, it was found that the ADCY8, PIK3CA, and
CDKN2A mutations were associated with remarkedly decreased
expression of the immune-inhibitory ligand: PD-L1 (77), which
indicated an upregulated immune response in early-stage lung
cancer patients with these gene mutations. McGranahan et al.
demonstrated the positive association of high tumor mutation
burdens with more activated CD8+ T cells and higher levels of PD-
L1 expression in early-stage NSCLC (78).

Although these results revealed the important roles of gene
mutations in the early stage of lung cancer by interacting with
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the immune system, most of the results derived from the
sequencing data of bulk tumor cells, which is difficult to
unmask the deeper underlying genotypic and phenotypic
heterogenei ty that exis ts inter- and intra-tumors .
Furthermore, the number of cells harboring the mutations
and the zygosity of these mutations cannot be accurately
assessed by bulk genome sequencing (79). Moreover, current
findings were insufficient to clarify the interactions between
the individual mutant tumor cells and the immune cells when
the normal epithelial cells transformed to malignant cells (63).
Meanwhile, it remains unclear how the components of
adaptive immune system individually respond to the
transformation at the genome level (80). Single-cell DNA
sequencing may overcome these obstacles by detecting the
founder mutations and sub-clonal mutations in tumor cells at a
single-cell level (81). Further application of the newly
developed single-genome technique, such as SNS-seq (single-
nucleus sequencing), LIANT (single-cell whole-genome
analyses by linear amplification via transposon insertion),
and SCI-seq (single-cell combinatorial indexed sequencing)
(82) may unravel the clonal relationship between different
malignant cel ls and dissect the immune responses
contributed by the genomic elements of the individual cells
during the progression from pre-malignant lesion to advanced
oncogenesis (83).

Single-Cell Epigenome Sequencing in the
Early Stage of Lung Cancer
Cellular heterogeneity of individual cells within the tumor–
immune ecosystem is displayed not only in the genome and
transcriptome, but also in the epigenome. Epigenetic alterations,
including DNA methylation, histone modifications, and non-
coding RNA expression, have been reported to play an important
role in the tumorigenesis of lung cancer (84, 85). At the
epigenetic level, the histone H3 lysine 36 methyltransferase
NSD3 could promote the development of lung squamous cell
carcinoma (86). The DNA methyltransferase inhibitors and
histone deacetylase inhibitors could reverse tumor immune
evasion in NSCLC by modulating the T-cell exhaustion state
towards the memory and effector T-cell phenotypes (87, 88).
Besides, the antigen presentations of the immune cells are also
altered by epigenetic modulations with the hypomethylating
agents or histone deacetylase inhibitors (89). These findings
demonstrated the vital roles of epigenetic regulation in cancer
evolution. However, the detailed mechanisms of how these
epigenetic events modulate the immunoediting process in
specific cell types remain unclear during lung cancer
early development.

Single-cell epigenome profiling methods include scATAC-seq
(assay for transposase-accessible chromatin in single cells with
sequencing), scCHIP-seq (single-cell chromatin immune-
precipitation followed by sequencing), sciHi-C (single-cell
combinatorial indexed Hi-C), and scCUT&Tag (single-cell
cleavage under targets & tagmentation) (90–93). ScATAC-seq
can reveal the chromatin accessibility landscape that governs
the transcriptional regulation in different cell populations (94).
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Sn-m3C-seq (single-nucleus methyl-3C sequencing) can give
information about chromatin organization and DNA
methylation and distinguish the heterogeneous cell types (95).
Smart-RRBS (single-cell methylome and transcriptome analysis)
can detect the methylation status in the promoters of specific
tumor suppressor genes and the overall number of
hypermethylated genes, which increases with the neoplastic
progression from hyperplasia to adenocarcinoma (96). A
scATAC-seq analysis of the K-Ras+/LSLG12D;p53frt/frt (KP)
mouse model found that the cancer cells were tightly regulated
by the smarca4, which regulated the activity of the lung lineage
SWI/SNF transcription factor and ultimately accelerated tumor
progression (35). Using the KP mice and sciATAC-seq
(combinatorial indexing to identify single cells without single-
cell isolation for chromatin accessibility), LaFave, Kartha et al.
also defined co-accessible regulatory programs and inferred key
activating and repressive chromatin regulators of epigenetic
changes in the tumor cells, including RUNX transcription
factors (which are predictive biomarkers for the survival of
LUAD patients) (35).

Together, these results demonstrated the power of single-cell
epigenomics to identify regulatory programs and key biomarkers
during tumor progression. Combined single-cell methods have
also emerged to allow analyses of epigenetic–transcriptional
correlations, thereby enabling detailed investigations of how
epigenetic states modulate cell phenotypes and the immune
editing process.

Single-Cell Proteomics in the Early Stage
of Lung Cancer
Although single-cell transcriptomic, genomic, and epigenomic
methods have been informative about gene expression and
genome landscapes and have demonstrated vital basic research
and clinical value in lung cancer, information on proteins is also
important and necessary since proteins are the cellular workhorses
(97). Methods of protein detection at the single-cell level include
flow cytometry, Sc-MS (liquid chromatography mass
spectrometry-based single-cell proteomics), ScoPE (isobaric
labeling for single-cell proteomics), CyTOF (cytometry by time-
of-flight), SCITO-seq (single-cell combinatorial indexed
cytometry sequencing), CITE-seq (cellular indexing of
transcriptomes and epitopes by sequencing), Mars-seq
(massively parallel single-cell RNA-Seq), and SCPFC (single-cell
phospho-specific flow cytometry) (98–100). Some of these
methods can simultaneously measure multiple cellular proteins
and RNA at the single-cell level.

Leader Grout et al. applied CITE-seq combining phenotypic
classifications based on surface protein expression and
transcriptomic profile, to characterize the cellular classification
and increase our understanding of the immune cellular
landscape in the mouse model of early-stage lung cancer (62).
Lin et al. utilized SCPFC in the investigation of signaling network
interactions and unraveled the dynamic changes of tyrosine
phospho-Stat1 (pStat1) in lung cancer cells in a mouse model
(101). More recently, Rahman et al. performed a CyTOF analysis
of cell suspensions derived from tissues of early-stage LUAD
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after surgical resection. They found that high levels of cerium
were specifically associated with a phenotypically distinct subset
of lung macrophages that were most prevalent in noninvolved
lung tissue, whereas tumor-associated macrophages had lower
levels of cerium (99). The CyTOF combined with mars-seq2 fully
characterized the immune landscape of early-stage LUAD and
distinguished the immune changes driven by the tumor lesion
from those driven by the lung tissue (42).

In sum, single-cell proteomics can add another dimension to
clarify the substantial heterogeneity and complicated interaction
among seemingly identical cells at the genome level, significantly
contributing to the quantitative understanding of the
developmental mechanisms of early-stage lung cancer.

Single-Cell Metabolic Profiling in the Early
Stage of Lung Cancer
The metabolic reprogramming is fundamental to both cancer cells
and responding immune cells during cancer development (102,
103). Moreover, metabolic heterogeneity and plasticity exist in
diverse cells, especially in the immune cells responding to cancer
cells (104–106). A recent finding indicated that lactate acid secreted
by the glycolytic cancer cells favored the activation of the immune
cells toward an immunosuppressive phenotype (107). In addition,
the cancer cells could harness the metabolic by-products to induce
the immune suppressive microenvironment (108).

The single-cell metabolomics field is at its very early stage at
this moment. The sc-MS (single-cell metabolic profiling by mass
cytometry) (109, 110) and the SCENITH (Flow Cytometry-
Based Method to Functionally Profile Energy Metabolism with
Single-Cell Resolution) were recently developed (111). These
technologies could reveal global metabolic functions and
determine complex and linked immune phenotypes in rare cell
subpopulations (112, 113).

Lineage Tracing Combined With
Single-Cell Sequencing in the Early
Stage of Lung Cancer
Another long-standing quest is to understand the developmental
origin and the cell fate determination of each cell within a tissue
(114). Cell states are highly flexible and present multipotent
characteristics before reaching differentiation destination. A
comprehensive study of the molecular alterations during cell
fate determination would be useful to better clarify those steps
involved in the precancerous stage of lung tumor. Using the
methods of lineage tracing with single-cell technology such as
CellTaging (a combinatorial cell indexing approach), TracerSeq
(transposon-based barcoding sequencing), scGESTALT (single-
cell genome editing of synthetic target arrays for lineage tracing),
and MEMOIR (memory by engineered mutagenesis with optical
in situ readout), we can investigate an individual cell early and
track the states of its clonal progeny at a later time point via
sequencing of the inherited DNA sequences, or “barcodes” (115–
117). These methods offer an opportunity to integrate
complementary information about both cell lineage and cell
states into synthetical views of cell a differentiation destination
and dynamic interactions between the tumor and immune cells
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(118, 119). ScRNA-seq combined with lineage tracing allows
simultaneous measurement of cell identity and developmental
origin at single-cell resolution (119). Zepp et al. revealed that the
transformation from the alveolar type 1 progenitor cells to
alveolar type 2 cells in the mesenchymal alveolar niche of the
lung is important for the tissue injury response by combining
scRNA-seq and signaling lineage reporter system (58, 120).
Furthermore, Wellenstein et al. tracked the fate determination
process of immune cells in response to the antigens expressed
specifically on the surface of nearby tumor cells during the
immune editing process (121). Labeling cell subpopulations
across the lung region by the Dre-Rox or Cre-LoxP
recombination system together with single-cell sequencing
technology has potential to be used for simultaneously
investigating the reciprocal evolution of tumor cells and
immune cells as well as their fate determinations in the lesion
at the initial stage (122, 123).

Together, parallel advances in single-cell sequencing
techniques and lineage tracing methods facilitate the mapping
of the clonal relationships onto the tumor immune landscape
and help decipher the crosstalk between the tumor and immune
cells during the whole developmental process.

Single-Cell Spatial Omics in the Early
Stage of Lung Cancer
Recent advances in spatially resolved methods allow us to
achieve transcriptional cell-type classifications, map cellular
spatial distributions in tissues, and reveal the intracellular and
intercellular networks in lung tumors (124). Genome
sequencing analyses of 25 spatially distinct regions of early-
stage NSCLC found that the driver mutations displayed sub-
clonal diversification in different regions, embodying the
value of combining spatial information with sequencing data
in deciphering the mechanism of the evolution of lung cancer
cells (125). Many single-cell spatial transcriptomics combines
spatial barcoding-based methods (ST, Visium, HDST,
Slidesee, Naostring, GeoMx, DBiT-seq, and Zipcode) and
imaging-based methods (osm-FISH, MERFISH, SeqFish,
STARMAP, and FISSEQ) (126–128). These technologies
may deepen our unders tanding of the funct iona l
organization of the tissue and the cellular and molecular
mechanism on how cancer cells modify their surroundings
to generate an immune suppressive microenvironment in the
early-stage lung cancer (126–128). Indeed, single-cell spatial
transcriptomics has already started to be used to delineate the
precise landscape of the TME and the crosstalk between the
tumor and immune cells at both cellular and sub-cellular
levels (129). A spatial transcriptomics analysis of LUAD and
LUSC samples has demonstrated the spatial gene expression
atlas and spatial heterogeneity variation between LUAD and
LUSC as well as differences in normal and cancerous
regions (130).

The immune responses occurring in the early stage of lung
cancer are mediated by not only the cell–cell interaction, but also
the coordinated actions of a diverse set of cytokines (131). In the
early stage of lung cancer, the majority of the cytokines consists
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of IFN-g, IL-12, and TNF-a, whereas the concentration of the
pro-angiogenic cytokine VEGF is extremely low (132, 133).
These cytokines are crucial for regulating the immune
equilibrium. However, the spatial localization of tissue-resident
immune or tumor cells producing specific modulatory cytokines
remains elusive. The application of the spatial genomic
sequencing method at the single-cell level can specifically
identify the signaling interactions and communications
between the immune and tumor cells in the early stage of lung
cancer (115, 127). Together, analyzing single-cell gene expression
in a spatially resolved context is critical for understanding the
heterotypic interactions among the cells in the TME in the early
stage of lung cancer.
CONCLUSION AND PERSPECTIVE

A comprehensive understanding of the tumor immune
microenvironment is vital to treatment options and prognosis
of lung cancer. Multi-omics simultaneous profiling of gene
expression, genetic variation, epigenetic change, cell surface
proteins, metabolic activities, and spatial information from the
same single cell allows full and robust delineation of
the developmental plasticity and immune-mediated pruning of
the tumor cells from multiple dimensions during the early
development of lung cancer (Figure 2).

The goal of tumor immunology research is to be able to
manipulate the immune cells/molecules to prevent and treat
cancer (134). A deeper understanding of the immune–tumor
Frontiers in Oncology | www.frontiersin.org 8118
interplay during early-stage lung cancer by single-cell sequencing
technology can help identify novel immunotherapy targets,
de termine which pat ients may benefi t most f rom
immunotherapy, and discover new mechanisms of resistance
to immunotherapy (135).

In sum, our views of the applications of the multi-omics
single-cell techniques in the early stage of lung cancer will
contribute to broadening their application in relevant basic
research and boosting the development of immunotherapy for
early-stage lung cancer.
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FIGURE 2 | Summary of current single-cell multi-omics technology that may be used in deciphering the early-stage lung cancer evolution.
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