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Clustering is an efficient way to analyze single-cell RNA sequencing data. It is commonly

used to identify cell types, which can help in understanding cell differentiation processes.

However, different clustering results can be obtained from different single-cell clustering

methods, sometimes including conflicting conclusions, and biologists will often fail to get

the right clustering results and interpret the biological significance. The cluster ensemble

strategy can be an effective solution for the problem. As the graph partitioning-based

clustering methods are good at clustering single-cell, we developed Sc-GPE, a novel

cluster ensemble method combining five single-cell graph partitioning-based clustering

methods. The five methods are SNN-cliq, PhenoGraph, SC3, SSNN-Louvain, and

MPGS-Louvain. In Sc-GPE, a consensus matrix is constructed based on the five

clustering solutions by calculating the probability that the cell pairs are divided into

the same cluster. It solved the problem in the hypergraph-based ensemble approach,

including the different cluster labels that were assigned in the individual clustering

method, and it was difficult to find the corresponding cluster labels across all methods.

Then, to distinguish the different importance of each method in a clustering ensemble, a

weighted consensus matrix was constructed by designing an importance score strategy.

Finally, hierarchical clustering was performed on the weighted consensusmatrix to cluster

cells. To evaluate the performance, we compared Sc-GPE with the individual clustering

methods and the state-of-the-art SAME-clustering on 12 single-cell RNA-seq datasets.

The results show that Sc-GPE obtained the best average performance, and achieved

the highest NMI and ARI value in five datasets.

Keywords: single-cell clustering, cluster ensemble, consensus matrix, importance score, graph partitioning

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) data measures the gene expression level in individual
cells instead of the average gene expression level in bulk RNA-seq cells (Stuart and Satija,
2019). So, it has advantages in accurately identifying the transcriptomic signatures for cell
types (Grün et al., 2015). Along with the rapid development of scRNA-seq technologies,
the cost of sequencing is reduced, and larger datasets are generated, carrying a higher
error rate (Vitak et al., 2017). The development brought some computational challenges
(Kiselev et al., 2019; Zhu et al., 2019a), for example, (1) high noise. The drop-out
rate from reverse transcription failure and sequencing depth would reach 80% (Soneson
and Robinson, 2018; Andrews and Hemberg, 2019); (2) high dimension. The dimension
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usually exceeds 10,000, making it difficult to measure the
similarity of cell pairs; (3) larger sample size. The sample size
increases from dozens to hundreds of thousands, which raises
the time and complexity involved in identifying cell types (Grun,
2020).

Clustering is an efficient way of analyzing scRNA-seq data
to identify novel cell types, and some single-cell clustering
methods are proposed (Xu et al., 2019; Yip et al., 2019). However,
it can be observed that the clustering results from various
clustering methods are different in the number of clusters and
cell assignments. Meanwhile, no method performs best on all
scRNA-seq datasets. The reason is that the existing methods
focus on a different step in identifying cell types, including
data denoising (Wang et al., 2018), dimensionality reduction
(Wang and Gu, 2018; Becht et al., 2019), similarity measurement
(Kim et al., 2019) and clustering (Qi et al., 2019; Zhu et al.,
2019b). Notably, the similarity measurement plays an important
role in identifying cell types. Some graph partitioning-based
clustering methods achieved better performance for the accurate
similarity measurement. For example, SNN-cliq (Xu and Su,
2015) constructed a weighted shared nearest neighbor (SNN)
graph; and clustered cells by partitioning the cliques on the
graph. PhenoGraph (Levine et al., 2015) performed another
weighted strategy to generate an SNN graph; and partitioned
the graph using the Louvain community detection method.
SSNN-Louvain (Zhu et al., 2020) integrated the structural
information to construct a structural SNN graph; and clustered
cells by modifying the Louvain community detection method.
The cells are sorted as per their importance in the initialization
step of Louvain community detection method. MPGS-Louvain
(Zhu et al., 2019c) constructed a novel global and path-based
similarity graph, and also partitioned it using a modified Louvain
community detection method. Therefore, it is a challenge to
enhance the accuracy of clustering by combining more efficient
clustering information in multiple views.

An increasing number of research shows that the cluster
ensemble method is a good idea, which integrates the
information of each clustering method in a different view
(Kuncheva and Vetrov, 2006; Vega-Pons and Ruiz-Shulcloper,
2011; Liu et al., 2019). ISSCE (Yu et al., 2016) designed a
clustering ensemble strategy to cluster high dimensional data,
including three steps: firstly, the incremental approach was
implemented to select clustering members; secondly, the random
subspace division was applied to handle high dimensional
data; finally, the constraint propagation method was used to
integrate prior knowledge. Recently, some cluster ensemble
methods for scRNA-seq data have been proposed. SC3 (Kiselev
et al., 2017) ensembled several clustering results from k-means
algorithm into a consensus matrix; and clustered cells using
hierarchical clustering (HC). SAFE-clustering (Yang et al., 2019)
implemented a hypergraph-based strategy to ensemble CIDR,
Seurat, tSNE, and SC3 to construct a consensus matrix. k-means
was used to cluster cells. They also proposed the SAME-clustering
(Huh et al., 2020) methods by using a consensus matrix-based
strategy to ensemble the same four clustering methods and
combining the Expectation-Maximization algorithm to cluster
cells. We find that these cluster ensemble methods are based

on hypergraph-based or voting-based integrated learning and
do not consider the different importance of the individual
clustering method.

According to the principle that the minority is subordinate
to the majority, we assume that the more consistent the cluster
labels predicted by different clustering methods are, the more
accurate they will be. That is, the individual clustering method
with a higher similarity to others would be more important in the
cluster ensemble strategy. Base on this assumption, we propose a
novel graph partitioning-based ensemble method for single-cell
clustering (Sc-GPE), integrating SNN-cliq, PhenoGraph, SSNN-
Louvain, MPGS-Louvain, and SC3 by a weighted voting-based
method. To measure the importance of the individual clustering
method, we design a scoring strategy based on the adjusted
rand index (ARI) (Hubert and Arabie, 1985). Then we construct
a weighted consensus matrix, the weight is a score of the
importance of each method. Finally, HC is performed to cluster
cells. To prove the performance, Sc-GPE is compared to the
five original clustering methods and the state-of-the-art cluster
ensemble method “SAME-clustering.” The results demonstrate
that Sc-GPE outperforms other methods.

MATERIALS AND METHODS

According to the analysis above, we can find that integrating
multiple clustering results would merge more information in
different views. Moreover, different clustering methods play
different roles in integration. Inspired by these ideas, we propose
the Sc-GPE method by ensembling five graph partitioning-
based clustering methods which are SNN-cliq, PhenoGraph,
SSNN-Louvan, MPGS-Louvain, and SC3. The main reasons
for choosing the five clustering methods are as follows: firstly,
the first four clustering methods are graph partitioning-based
methods, and the last one is the consensus matrix-based method.
Their good performance provides the basis to improve the
accuracy of the cluster ensemble. Secondly, in the five clustering
methods, different strategies of similarity graph construction and
graph partitioning have been implemented, respectively. They
would enhance the generalization ability of clustering. Sc-GPE
has three following advantages: (1) it does not need to deal
with the problem of different cluster labels from different cluster
methods, so it is suitable for unsupervised clustering lacking the
true cluster labels; (2) It is easy to implement since no special
parameters need to be adjusted; (3) The weighted strategy is
comprehensible and effective.

Sc-GPE
In Sc-GPE, a gene expression matrix with m rows (genes) and n
columns (cells) is the input of the five clustering methods. The
five clustering results sets are achieved and ensembled into a
consensus matrix with n rows (cells) and n columns (cells). Then,
based on the consensus matrix, a weighted consensus matrix
is constructed by measuring the importance of the individual
clustering method. That is, the voting strategy in the original
consensus matrix is replaced as a weighted voting strategy, and
the weight is determined according to the similarity of the
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FIGURE 1 | The overview of the Sc-GPE method. (A) The gene expression matrix is input; (B) five individual clustering methods are performed to generate five

clustering solutions; (C) the original consensus matrix is constructed; (D) the weighted consensus matrix is produced by measuring the importance of the individual

clustering methods; (E) HC clustering is performed.

clustering result pairs. The overview of Sc-GPE method is shown
in Figure 1.

Cells are defined as set C= {c1, . . . , cn}, where n is the number
of cells. Let k be the number of individual clustering methods,
the clustering results set is defined as R= {R1, . . . , Rk}. So, in the
k clustering methods, the i-th cell ci is assigned to k predicted
cluster labels, denoted as R(ci)= {R1(ci), . . . , R

k(ci)}. The detail of
Sc-GPE is described as follows.

Firstly, the original consensus matrix is constructed. The
consensus matrix Ix,y is calculated based on Equations (1) and
(2). In Equations (1) and (2), when the cell cx and cell cy are
assigned into the same cluster in the l-th method, the value
of δ(Rl(cx),R

l(cy)) is equal to 1, otherwise is 0. The element
of the consensus matrix presents the probability of cell pairs
divided into the same cluster by each method. For example,
when k is 5, the element of the consensus matrix Ix,y equals the

sum of δ(Rl(cx),R
l(cy)) in the five methods multiplying by the

same weight 1/5. Because this represents the probability of the
occurrence of cell pairs in the same cluster, this strategy does not
need to solve the problem that each cell achieves different cluster
labels from the individual clustering methods.

Ix,y =
1

k

k
∑

l=1

δ(Rl(cx),R
l(cy)) (1)

δ(X,Y) =

{

0, if X 6= Y
1, if X = Y ,

(2)

where cx and cy are cell pairs in cells set C. k is the number of

individual clustering methods. Rl is the clustering results in the
l-th method.
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Next, based on the assumption that the more consistent
cluster labels predicted by all the clustering methods are more
accurate, we design an importance score of the individual
clustering methods. As ARI is a popular index for measuring the
consensus of two clustering solutions, we use ARI to measure the
importance of the individual clustering method. The importance
score is defined as Equations (3) and (4). In Equations (3) and
(4), ωl denotes the importance of the l-th clustering method in all
kmethods. rl represents the similarity between the l-th clustering
method and other methods, which is calculated by averaging the
ARI between predicted clusters in the l-th clustering method and
the ones in each of the other methods.

ωl =
rl
k

∑

j=1
rj

(3)

rl =
1

k− 1

k
∑

j=1,j6=l

ARI(Rl,Rj), (4)

where ωl is the importance score of the l-th clustering method.
rl is the average of ARI between predicted clusters from the l-th
method and other methods, and k is the number of individual
clustering methods.

Then, the weighted consensus matrix is constructed by
introducing the importance score of the individual clustering
method to the original consensus matrix. The weighted
consensus matrix Ix,y’ is defined as Equation (5). In Equation
(5), the weighted consensusmatrix Ix,y’ multiplies the importance
score ωl of the individual clustering methods, instead of the
constant 1/k in the original consensus matrix.

Ix,y
′

=

k
∑

l=1

ωl × δ(Rl(cx),R
l(cy)), (5)

Finally, the HC method is performed to cluster cells on the
weighted consensus matrix.

Evaluation Indices
We use two popular indices to evaluate the performance of
clustering methods, including Normalized Mutual Information
(NMI) (Estévez et al., 2009) and Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985). The two criteria are statistic-based
indicators, showing the consensus of the predicted labels and the
true ones in different views. NMI demonstrates the difference by
calculating Mutual Information and Entropy between the two
clustering solutions, with the range of values from 0 to 1. ARI
presents the probability that a data pair will appear in the same
cluster in the true clusters and the predicted clusters, with the
range of values from −1 to 1. The higher the NMI or ARI value
obtained, the better performance the method has.

NMI(P,Q) = 2
I(P;Q)

H(P)+H(Q)
, (6)

where I(P; Q) is the mutual information between P and Q. H(P)
and H(Q) is the entropy of P and Q, respectively.

ARI =

∑

i,j

(

nij
2

)

−

[

∑

i

(

ai
2

)

∑

j

(

bj
2

)

]/

(

n

2

)

1
2

[

∑

i

(

ai
2

)

+
∑

j

(

bj
2

)

]

−

[

∑

i

(

ai
2

)

∑

j

(

bj
2

)

]/

(

n

2

)

,

(7)

where n is the number of cells. In the contingency table resulting
from the overlap between true clusters and predicted ones,
nij is the element in the i-th row and the j-th column, ai is
the summation of the elements in the i-th row, and bj is the
summation of the elements in the j-th column.

Datasets
We collected 12 published scRNA-seq datasets. Generally,
they serve as gold standard datasets with true labels. They
are available from Gene Expression Omnibus (GEO) and
European Bioinformatics Institute (EMBL-EBI), respectively.
These datasets have been normalized to various units, such as
Transcripts Per Million reads (TPM), Fragments Per Kilobase of

TABLE 1 | The detail of scRNA-seq datasets.

Accessed ID Datasets Data unit #Cells #Genes #Cell types References

GSE38495 Ramskold RPKM 33 21042 7 Ramsköld et al., 2012

GSE57249 Biase FPKM 49 25384 3 Biase et al., 2014

GSE36552 Yan RPKM 90 20214 6 Yan et al., 2013

E-MTAB-3321 Goolam RPM 124 40315 5 Goolam et al., 2016

GSE70657 Grover RPKM 135 15158 2 Grover et al., 2016

GSE70605 Liu RPKM 145 18855 25 Liu et al., 2016

GSE51372 Ting RPM 187 21583 7 Ting et al., 2014

GSE85908 Yeo TPM 214 27473 4 Song et al., 2017

E-MTAB-2805 Pollen TPM 249 6982 11 Pollen et al., 2014

GSE45719 Deng RPKM 259 22147 10 Deng et al., 2014

GSE52529 Trapnell FPKM 372 35988 4 Trapnell et al., 2014

GSE67835 Darmanis CPM 466 22085 9 Darmanis et al., 2015

Frontiers in Genetics | www.frontiersin.org 4 December 2020 | Volume 11 | Article 6047908

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhu et al. Sc-GPE

transcript per Million fragments mapped (FPKM), and Reads Per
Kilobase per Million mapped reads (RPKM), etc. The details of
the datasets are presented in Table 1.

EXPERIMENTS AND RESULTS

Implementation of the Five Clustering
Methods
For optimal performance, we performed the five clustering
methods with the default parameters in the references. The details
of the parameters are described as follows.

For SNN-cliq, the nearest neighbor parameter k is set to 3;
the connectivity parameter of quasi-cliques r is set to 0.7; the
threshold of the overlap of quasi-cliquesm is set to 0.5.

For PhenoGraph, the surface marker expression data is
normalized based on dividing by the maximum values. To
construct the SNN graph, the nearest neighbor parameter k is set
to 50.

For SC3, the log-transformed normalized log2(x+1)
is performed.

For SSNN-Louvain and MPGS-Louvain, SIMLR is performed
with the default parameters in the initial similarity measurement
step. The width parameter of the Gaussian kernel function
σ is set to 1.0, 1.25, 1.5, 1.75, and 2. The nearest neighbor
parameter k is set to 10, 12, 14. . . 30. (σ , k) pair resulting
in 55 Gaussian kernels. In SSNN-Louvain, to construct the
structural SNN graph, the nearest neighbor parameter k is
set to 0.1n (n is the number of nodes). In MPGS-Louvain,

FIGURE 2 | The similarity of the individual clustering methods. (A) Liu dataset; (B) Ramskold dataset; (C) Yan dataset; (D) Yeo dataset.
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the path length l is set to 2 for high performance and low
time complexity.

Furthermore, in SNN-cliq, PhenoGraph, SSNN-Louvain,
and MPGS-Louvain, the number of categories can be
automatically estimated by using quasi-clique partition
or Louvain community detection, without a priori
true categories.

Similarity Measurement of the Individual
Clustering Methods
To analyze the difference of predicted results between the
individual clustering methods, we calculate the ARI between the
different clustering results and provide the consensus matrix
heatmap. We select four scRNA-seq datasets: Ramskold, Yan,
Yeo, and Liu, in which the Ramskold dataset is easy to partition

FIGURE 3 | The performance of Sc-GPE, MPGS-Louvain, SSNN-Louvain, SSNN-cliq, PhenoGraph, and SC3. (A) NMI; (B) ARI.
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while the Liu dataset is hard to cluster. The first three datasets
have a smaller number of true categories from four to seven, and
the latter dataset has the true categories 25. The heatmaps are
shown in Figure 2.

From Figure 2, it is observed that some faint similarity exists
among the solutions of the individual clustering methods, which
is consistent with the results from Yang et al. (2019). In different
datasets, the similarities between the results of the individual
clustering methods vary. For example, SSNN-Louvain shows
relatively high similarity with SC3 and PhenoGraph on the Liu

dataset. MPGS-Louvain shows a higher similarity than other
clustering methods to the Ramskold dataset. SC3 is observed in
the high similar to PhenoGraph on the Yan dataset. SNN-cliq
shows a low similarity with other methods on the Yeo dataset.
The difference between SC3 and PhenoGraph varies greatly in
different datasets. The similarity between SC3 and PhenoGraph is
close to one on the Yan and Yeo datasets, but the opposite results
are achieved on the Liu and Ramskold datasets.

Furthermore, we can observe big differences between SNN-
cliq and SC3, PhenoGraph on the four datasets. Therefore, we can

TABLE 2 | The comparison of the number of clusters from seven methods.

Datasets Sc-GPE MPGS-Louvain SSNN-Louvain SNN-cliq PhonoGraph SC3 SAME-clustering

Ramskold 7 3 8 7 2 2 2

Biase 3 3 4 6 2 3 3

Yan 6 6 8 18 3 3 3

Goolam 5 5 6 25 4 2 3

Grover 2 2 3 12 3 3 2

Liu 25 15 7 26 3 6 4

Ting 7 8 7 21 5 11 4

Yeo 4 5 3 28 3 5 3

Pollen 11 11 7 9 7 11 NA*

Deng 10 10 7 43 6 6 5

Trapnell 4 5 6 56 6 10 4

Darmanis 9 8 5 38 6 12 5

*SAME-Clustering method achieves NA on the Pollen dataset for that the clustering member Seurat in SAME-Clustering failed to run on this dataset.

FIGURE 4 | The box plot of performance for the seven methods. (A) NMI; (B) ARI.
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find that different clustering methods would capture information
about scRNA-seq data from different perspectives.

Comparisons With the Individual
Clustering Methods and SAME-Clustering
To test the performance of our proposed Sc-GPE method, we
compare it with both the five clustering methods and the state-
of-the-art clustering ensemble algorithm SAME-clustering on
12 scRNA-seq datasets in terms of NMI and ARI. The results
are shown in Figure 3. SAME-Clustering achieves the NA value
of NMI and ARI on the Pollen dataset, because the clustering
member Seurat in SAME-Clustering failed to run on this dataset.

From the experimental results, Sc-GPE achieves the highest
average of NMI and ARI in all methods. Sc-GPE outperforms
the six methods on five scRNA-seq datasets: Yan, Grover, Liu,
Yeo, and Ramskold, while SC3 achieves the best performance on
five scRNA-seq datasets: Biase, Deng, Pollen, Ting, and Goolam.
The averages of NMI and ARI obtained by Sc-GPE are 6.92 and
17.79% higher than those of SC3, respectively. SAME-Clustering
works best on three datasets: Biase, Darmanis, and Trapnell. The
averages of NMI and ARI obtained by Sc-GPE are 21.84 and
20.19% higher than those of SAME-clustering, respectively. A
large difference in clustering performance can be observed on the
Grover, Liu, and Goolam datasets. The results show that Sc-GPE
performs well and outperforms other methods.

Moreover, we compare the number of clusters in the seven
methods, shown in Table 2. It can be observed that the number
of predicted clusters has an obvious influence on the clustering
solutions. For example, the clustering number of SNN-cliq and
PhonoGraph is quite different from that of other methods, which
is in consensus with their relatively poor performance on most
datasets. SNN-cliq achieves the clustering numbers commonly
more than the true categories except for the pollen dataset,
PhonoGraph is just the opposite.

To further demonstrate the performance of Sc-GPE, we
provide a box plot of the sevenmethods for 12 datasets, measured
by NMI and ARI, shown in Figure 4. The box plot clearly shows
that Sc-GPE outperforms the other six methods. The worse ARI
value of 0.249 in Sc-GPE is from the Trapnell dataset, where
some cells are misallocated resulting from two poor clustering
solutions. SNN-cliq achieves the worst results in terms of ARI,
and PhenoGraph performs worst on the NMI.

CONCLUSIONS

Currently, various single-cell clustering algorithms have been
proposed with the advantage of accurately representing cell
heterogeneity. However, there is a problem that the predicted
cluster results from different clustering methods are quite
different, which would limit the generalization capabilities.
Combining the information from different cluster results would
be a good resolution to improve the performance of clustering.

So, we propose a novel cluster ensemble method Sc-GPE, which
integrating five clustering methods: SNN-cliq, PhenoGraph,
SSNN-Louvain, MPGS-Louvain, and SC3.

In Sc-GPE, a consensus matrix-based ensemble model
is performed. It is a good statistics approach that can
solve the problem of the different cluster labels generated
in the individual clustering methods making it difficult to
determine the correspondence cluster labels across all methods,
which usually exists in the hypergraph-based cluster ensemble
method. Furthermore, a weighted strategy is designed to
measure the importance of individual clustering methods
according to the similarity with other methods. A weighted
consensus matrix is constructed based on the weighted
strategy, which can distinguish the role of the individual
clustering methods.

Sc-GPE provides close-to-the-best clustering solutions
by combing the clustering methods that perform various
similarity measurements and graph partitioning algorithms.
The experimental results from twelve scRNA-seq datasets show
that Sc-GPE outperforms the five individual clustering methods
and state-of-the-art SAME-clustering method. However, the
relatively small number of individual clustering methods may
provide insufficient information and limit the performance of the
Sc-GPE, and how to choose more optimal individual clustering
methods should be researched in future work.
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Identifying personalized driver genes is essential for discovering critical biomarkers
and developing effective personalized therapies of cancers. However, few methods
consider weights for different types of mutations and efficiently distinguish driver genes
over a larger number of passenger genes. We propose MinNetRank (Minimum used
for Network-based Ranking), a new method for prioritizing cancer genes that sets
weights for different types of mutations, considers the incoming and outgoing degree
of interaction network simultaneously, and uses minimum strategy to integrate multi-
omics data. MinNetRank prioritizes cancer genes among multi-omics data for each
sample. The sample-specific rankings of genes are then integrated into a population-
level ranking. When evaluating the accuracy and robustness of prioritizing driver
genes, our method almost always significantly outperforms other methods in terms of
precision, F1 score, and partial area under the curve (AUC) on six cancer datasets.
Importantly, MinNetRank is efficient in discovering novel driver genes. SP1 is selected
as a candidate driver gene only by our method (ranked top three), and SP1 RNA
and protein differential expression between tumor and normal samples are statistically
significant in liver hepatocellular carcinoma. The top seven genes stratify patients into
two subtypes exhibiting statistically significant survival differences in five cancer types.
These top seven genes are associated with overall survival, as illustrated by previous
researchers. MinNetRank can be very useful for identifying cancer driver genes, and
these biologically relevant marker genes are associated with clinical outcome. The R
package of MinNetRank is available at https://github.com/weitinging/MinNetRank.

Keywords: multi-omics, network-based methods, cancer gene prediction, driver genes, tumor stratification

INTRODUCTION

Rapid technological advances in high-throughput sequencing have driven the development of
omics field. Omics data types include genomics, transcriptomics, proteomics, epigenomics, and
metabolomics (Hasin et al., 2017). However, a single type of “omics” only provides limited
insights into the biological mechanisms of diseases. Additionally, the different omics data events
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are somewhat interdependent. An integrative study of multi-
omics data contributes to a holistic understanding of the
molecular function (Sun and Hu, 2016). An essential question
in cancer genomics is distinguishing driver genes, which are
causally implicated in oncogenesis, from biologically neutral
passenger genes that are immaterial to neoplasia (Greenman
et al., 2007). Passenger mutations can become driver mutations
(and vice versa) under changing environmental conditions and
selection pressures, increasing the complexity of intratumor
heterogeneity (Yap et al., 2012). Accumulating evidence suggests
that identifying personalized driver genes is essential for the
development of effective personalized therapies and realizing
the goals of precision medicine (Dagogo-Jack and Shaw, 2018).
A critical but challenging step is to incorporate different omics
data in a meaningful and efficient way to discover cancer driver
genes and elucidate potential causative changes of cancer (Huang
et al., 2017). The main approaches for distinguishing driver
genes from passenger genes can be divided into frequency-based
methods and network-based approaches.

Frequency-based methods estimate the background mutation
rate (BMR) representing the rate of random passenger mutations
and identify driver genes that harbor significantly more somatic
mutations than BMR (Ding et al., 2008; Pon and Marra,
2015). However, accurately estimating BMR is difficult because
of the variability among cancer types, among samples of the
same cancer type, and between genomes (Pon and Marra,
2015). Subsequent frequency-based methods, such as MuSiC and
MutSigCV, have been developed to correct for one or more of
these factors (Dees et al., 2012; Lawrence et al., 2013). Somatic
mutations are characterized by a small number of frequently
mutated genes and many infrequently mutated genes. Moreover,
more than 99.9% of the somatic mutations in tumors are
passengers (Vogelstein et al., 2013). It is challenging to identify
infrequent or rare driver genes by methods based only on
mutation frequency.

Network-based approaches have emerged as promising and
powerful methods to detect low-frequency and high-frequency
mutated driver genes due to their ability to model gene
interactions. For network-based approaches, nodes representing
genes and edges are links between two genes if there is an
interaction between them (Huang et al., 2017). Network-based
methods have been successfully applied to many biomedical
fields, such as the discovery of mutation subnetwork (Vandin
et al., 2011), prediction of drug–target interaction, and cancer
gene prioritization (Bashashati et al., 2012; Chen et al., 2012;
Yu et al., 2013). HotNet2 uses a network diffusion model to
simultaneously assess the frequency of somatic mutation and the
local topology of the interaction network and detects significantly
mutated subnetworks (Leiserson et al., 2015). Mutations for
Functional Impact on Network Neighbors (MUFFIN) is a
method for prioritizing cancer genes accounting for mutation
frequency of genes and their direct neighbors in functional
network (Cho et al., 2016). Both HotNet2 and MUFFIN use
mutation data only without integrating other omics data.
DawnRank is a single patient approach to rank potential
driver genes based on their impact on downstream differential
expression genes in the interaction network (Hou and Ma,

2014). NetICS predicts mediator genes affected by proximal
upstream-located aberrant genes and proximal downstream-
located differentially expressed genes (Dimitrakopoulos et al.,
2018). Both DawnRank and NetICS consider only incoming
degree or outgoing degree of interaction network for single
omics. For example, DawnRank only considers incoming degree
for expression data. It is desirable to use incoming and outgoing
degree simultaneously. Driver_IRW (Driver genes discovery with
Improved Random Walk method) assigns different transition
probabilities for different genes of the interaction network (Wei
et al., 2020). DeepDriver predicts cancer driver genes based
on mutation-based features and gene similarity networks using
deep convolutional neural networks (Luo et al., 2019). None of
these methods consider the different weights for the different
types of mutations; however, the weighting method is essential
for sample-specific study. Furthermore, none of these methods
investigate the relationship between the top rankings of genes
and overall survival. Therefore, we develop a more meaningful
and efficient method that considers different weight coefficients
for the various types of mutations, simultaneously considers
the incoming and outgoing degree of interaction network for
single omics, and uses minimum strategy to integrate multi-
omics data.

We present a new method called MinNetRank that uses
minimum strategy among multi-omics data to prioritize cancer
genes (Figure 1). The main steps of MinNetRank include (1)
single-omics data analysis: calculating mutation relevance scores
and expression relevance scores of genes for each sample using
network diffusion based on incoming and outgoing degree. We
further consider different weight coefficients for the different
types of mutations and propose Weighted_MinNetRank. (2) The
integration of multi-omics data: calculating the minimum value
of mutation relevance score and expression relevance score as
an integrated score for each gene in each sample. A higher
minimum value reflects a higher mutation relevance score
and expression relevance score simultaneously; (3) prioritizing
driver genes: aggregating the sample-specific and integrated-
score-based rankings of genes into a robust population-
level gene ranking.

We apply Weighted_MinNetRank and MinNetRank to
analyze five The Cancer Genome Atlas (TCGA) datasets
(hepatocellular carcinoma, stomach adenocarcinoma, bladder
urothelial carcinoma, lung adenocarcinoma, and skin cutaneous
melanoma) and one International Cancer Genome Consortium
(ICGC) dataset (hepatocellular carcinoma). We select the
top 50 genes of population-level ranking as candidate
driver genes. We systematically examine the performance
of Weighted_MinNetRank and MinNetRank from three
aspects. Firstly, Weighted_MinNetRank and MinNetRank
outperform other methods [Mean, Maximum, DawnRank,
NetICS, and a commonly used frequency-based method (Freq)]
in terms of precision, F1 score, and partial area under the
curve (AUC) value of selecting cancer driver genes. Secondly,
Weighted_MinNetRank and MinNetRank detect rare and novel
candidate driver genes (e.g., SP1 in hepatocellular carcinoma).
Finally, the top seven genes can be used as prognostic biomarkers
for risk stratification. The survival difference between two
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FIGURE 1 | Overview of MinNetRank workflow. MinNetRank integrates mutation data and expression data into the interaction network; MinNetRank utilizes
minimum strategy to select the candidate driver genes with both high mutation relevance score and high expression relevance score; the sample-specific and
integrated-score-based rankings of genes are integrated into the overall rankings. We access the performance in predicting known cancer genes, discovering
personalized driver genes, and survival risk stratification of tumor samples.

subtypes (low-risk and high-risk groups) is statistically significant
in all six datasets.

RESULTS

We propose a new method (MinNetRank) that uses minimum
strategy among multi-omics data to prioritize cancer genes.
For comparison, we also add the performance of mean (Mean)
and maximum (Maximum) to integrate the mutation data
and expression data. All mutations have the same weight for
MinNetRank. We further consider different weight coefficients
for the different types of mutations (Weighted_MinNetRank).
In this study, Weighted_MinNetRank and MinNetRank are
compared with other five methods [Mean, Maximum, DawnRank
(Hou and Ma, 2014), NetICS (Dimitrakopoulos et al., 2018),
and Freq] on five types of cancer (liver hepatocellular
carcinoma, stomach adenocarcinoma, lung adenocarcinoma,
bladder urothelial carcinoma, and skin cutaneous melanoma).
Freq is a simple and common method based only on mutation
frequency, which compares the mutation frequency of genes in
tumor patient (Dimitrakopoulos et al., 2018; Guo et al., 2018).
Weighted_MinNetRank and MinNetRank are an efficient and
easy-to-use network-based method for cancer genes discovery by
integrating multi-omics data, as shown in the subsequent results.

Overview of MinNetRank
The schematic in Figure 1 illustrates the three-step procedure of
our new method MinNetRank. MinNetRank requires three input

files: gene mutations, gene expression for tumor and normal
samples, and the interaction network.

Step 1: calculating mutation relevance score and expression
relevance score using RWR (Random Walker with Restart)
algorithm. The n×m matrix SM is the gene mutation status for
each sample, where n is the number of genes, and m is the number
of samples. SMik = 1 if gene i is mutated in sample k and SMik = 0
otherwise. We further consider different weight coefficients for
the different types of mutations and supplement a new method
(Weighted_MinNetRank). We normalize each column of SM by
SM/colSum( SM). We define the n×m mutation relevance score
matrix WM as multiplication between diffused matrix D and SM :

WM
= DSM. (1)

The Dij reflects the connectivity between gene i and
gene j, and SMik reflects the mutation status of gene i in
sample k. The product WM

ik is gene i’s mutation relevance
score in sample k, defined as the proximity of gene i to
mutation genes.

Similarly, the n×m matrix SE is RNA differential expression
score (Absolute value of Log2 Fold-Change, ALFC) for each
sample. We define the expression relevance score matrix WE as,

WE
= DSE. (2)

Step 2: minimum value of mutation relevance score and
expression relevance score. To integrate multi-omics data (gene
mutation and expression data), the mutation relevance score and
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expression relevance score are combined to produce a gene min-
score for each sample. The min-score is the minimum value of
WM

ik and WE
ik:

W = pmin
(
WM,WE) . (3)

pmin is R function and returns the minimum of the
corresponding elements of the two input vectors. Wik is the
minimum value of WM

ik and WE
ik(i ∈ 1 · · · n, k ∈ 1 · · ·m), where

n is the number of genes, and m is the number of samples. The
high score of Wik means that gene i is proximal to many mutation
genes and differentially expressed genes for each k. The minimum
value is a meaningful and efficient way to integrate multi-omics
data for the following two reasons:

Firstly, the minimum strategy reduces extreme values that
may be potential outliers in highly skewed distributions. The
probability distribution of WM

∗k (the mutation relevance scores
for genes in sample k) and WE

∗k (the expression relevance scores
for genes in sample k) is a positively skewed distribution. This
means that some genes have extremely high scores. These high
scores may be due to the technical noise of high-throughput
sequencing and the incomplete interaction network. For example,
as shown in Figure 2, sample TCGA-BC-A10X has three mutated
genes in TCGA-LIHC, and only one gene (OR2C3) of these is in
the interaction network. The OR2C3 mutation relevance score
in TCGA-BC-A10X is evidently high (WM

ik = 0.48, i =OR2C3
and k =TCGA-BC-A10X) and is ranked 1st. Meanwhile, the
OR2C3 expression relevance score in TCGA-BC-A10X is 3.24-06
and is ranked 8, 221st. Henceforth, the high mutation relevance
score needs to be cautiously processed. Lastly, the min-score
of OR2C3 mutation relevance score and expression relevance
score is ranked 1, 943rd. OR2C3 is an olfactory receptor protein
and probably is not a potential driver gene (Malnic et al., 2004;
Riessland et al., 2017).

Secondly, the minimum (“double high”) strategy is necessary
to prioritize cancer genes having a higher biological relevance. If
one gene has a relatively high mutation relevance score but low
expression relevance score (such as OR2C3 in TCGA-BC-A10X),
this gene may not be a potential driver gene since differential
gene expression is the downstream events of DNA mutation
(Sager, 1997). In the other case, the SI expression relevance
score in TCGA-DD-AAE2 is ranked 8th (WE

ik = 0.0012, i =SI,
and k =TCGA-DD-AAE2), and the mutation relevance score is
ranked last. Only MGAM interacts with SI in the interaction
network, and TCGA-DD-AAE2 has no SI or MGAM mutation.
We hope the candidate driver genes have a high mutation
relevance score and high expression relevance score.

MinNetRank used a minimum strategy to integrate multi-
omics data (mutation data and expression data). We further
investigated which data have the greatest effect on the minimum
score. We calculated the proportion of mutation relevance score
and expression relevance score in minimum scores for the
top 50 candidate cancer genes. The proportion of mutation
relevance score was 0.657 in all six datasets, and expression
relevance score was 0.347. Mutation relevance score affected the
minimum score more.

Step 3: integrating sample-specific rankings of genes into
a population-level ranking. We transform the min-scores into

rankings, since min-scores indicate the relative importance of
each sample’s genes. To integrate the sample-specific rankings
of genes into a robust population-level ranking, we calculate
the sum of per-sample ranking. Each step of MinNetRank is
based on single sample analysis, such as using the per-sample
network diffusion, calculating the minimum value of mutation
relevance score and expression relevance score for each gene
in each sample, and transforming min-scores into rankings for
each sample. We calculate the sum of per-sample ranking as the
population-level ranking.

To perform a systematic comparison of seven methods
(Weighted_MinNetRank, MinNetRank, Mean, Maximum,
DawnRank, NetICS, and Freq), the 576 genes annotated in
cancer gene census (CGC) are used as the gold standard cancer
driver gene set, and the genes not in CGC are the negative set.
The evaluation metrics (precision, F1 score, and partial AUC
value) are based on the top 50 genes of six different datasets (five
TCGA datasets and one ICGC dataset). The five TCGA datasets
are regarding hepatocellular carcinoma (TCGA-LIHC), stomach
adenocarcinoma (TCGA-STAD), bladder urothelial carcinoma
(TCGA-BLCA), lung adenocarcinoma (TCGA-LUAD), and
skin cutaneous melanoma (TCGA-SKCM), respectively. The
one ICGC dataset includes hepatocellular carcinoma data from
LIRI-JP (Liver Cancer–RIKEN, JP) project (LIRI-LIHC) (Fa
et al., 2019). Skin cutaneous melanoma, lung adenocarcinoma,
bladder urothelial carcinoma, and stomach adenocarcinoma
have a high mutation burden (Martincorena and Campbell,
2015), and LIHC has two different datasets. Both are common
cancer types and pose increasing public concerns. The detailed
descriptions of six datasets are provided in Table 1. The somatic
mutations include non-synonymous simple nucleotide variation
(SNV) and insertions and deletions (InDels) in coding regions.

MinNetRank Accurately Predicted
Cancer Gene
In general, considering the weights for the different types of
mutations (Weighted_MinNetRank) had a better performance
than other six methods (MinNetRank, Mean, Maximum, NetICS,
DawnRank, and Freq) in all six cancer datasets (TCGA-LIHC,
TCGA-STAD, TCGA-BLCA, TCGA-LUAD, TCGA-SKCM, and
LIRI-LIHC). Weighting for the different types of mutations was
essential for a personalized analysis. As shown in Figure 3
(for datasets TCGA-LIHC and LIRI-LIHC), Supplementary
Figure 1 (for datasets TCGA-STAD and TCGA-BLCA), and
Supplementary Figure 2 (for datasets TCGA-LUAD and TCGA-
SKCM), Weighted_MinNetRank and MinNetRank achieved
a higher precision, F1 score, and AUC in all six datasets,
namely, Weighted_MinNetRank and MinNetRank could rank
the known gold standard cancer driver genes higher. The AUC
of Freq was not calculated as the mutation frequency for some
genes were the same.

MinNetRank Robustly Predicted Cancer
Gene
The Weighted_MinNetRank and MinNetRank also had the
advantage of obtaining robust and stable results using the subset
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FIGURE 2 | The heatmap of rankings of mutation relevance scores, expression relevance scores, and min-scores. Each row represents a gene. Ranking differences
are shown in different colors. Red means high ranking (high score), and blue means low ranking. The rankings of genes are ordered by the rankings of min-scores.
The left is the enlarged drawing of the top 50 genes with both high mutation relevance score and high expression relevance score. OR2C3 has high mutation
relevance score (red) and low expression relevance score (blue). The ranking of OR2C3 for mutation relevance score, expression relevance score, and min-score in
TCGA-BC-A10X is 1, 8,821, and 1,943, respectively.

of samples with different sample sizes. We calculated the mean
and standard deviation (SD) of the precision values P (mean
precision of the top 50 genes), F1 scores, and partial AUC values
after 10 runs. The precision value was proportional to the area
under the precision curve (Figure 3A). All six methods used
the same subset of samples, and the subset of samples was
randomly selected from all samples by R. Using the same subset of
samples, we compared the results of six methods. The mean of the
precision, F1 score, and partial AUC for Weighted_MinNetRank
and MinNetRank was higher than other methods, and the SD
was smaller [Figure 4 (for datasets TCGA-LIHC and LIRI-LIHC),
Supplementary Figure 3 (for datasets TCGA-STAD and TCGA-
BLCA), and Supplementary Figure 4 (for datasets TCGA-LUAD
and TCGA-SKCM)]. The performance in all six datasets and
different sample sizes showed the robustness of our method.

Furthermore, Weighted_MinNetRank and MinNetRank still
performed well, even with a smaller number of samples.

In order to evaluate the contribution of each part of
Weighted_MinNetRank and MinNetRank (calculating the
relevance score using both incoming and outgoing degree
of the interaction network for single omics, using minimum
strategy to integrate multi-omics data, and the different weighted
methods), we calculated the precision, F1 score, and partial
AUC value of the top 50 candidate cancer genes. We also added
network metrics (degree centrality, betweenness centrality,
and the mean of degree and betweenness centrality). We
needed to calculate the baselines of the network only once,
and the results were the same for all datasets. As shown in
Table 2, Weighted_MinNetRank had a better performance
than all other methods in terms of precision, F1 score,

Frontiers in Genetics | www.frontiersin.org 5 January 2021 | Volume 11 | Article 61303318

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-613033 December 26, 2020 Time: 15:33 # 6

Wei et al. Method for Multi-Omics Data Integration

FIGURE 3 | Comparison of precision, F1 score, and AUC for different methods in TCGA-LIHC and LIRI-LIHC datasets. (A) The X-axis is the top 50 candidate cancer
genes, and the Y-axis is the precision according to known cancer genes (in CGC). (B) The X-axis is the top 50 candidate cancer genes, and the Y-axis is the F1
score according to known cancer genes. (C) The ROC curve of the top 50 candidate cancer genes.
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FIGURE 4 | Robustness of results using the subset of samples in TCGA-LIHC and LIRI-LIHC datasets. (A) The X-axis is the subset of samples, and the Y-axis is the
mean and SD of the precision values after 10 runs using the subset of samples. (B) The X-axis is the subset of samples, and the Y-axis is the mean and SD of the
F1 score after 10 runs using the subset of samples. (C) The X-axis is the subset of samples, and the Y-axis is the mean and SD of the partial AUC after 10 runs
using the subset of samples.
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TABLE 1 | Six datasets used in MinNetRank.

Datasets Data type Samples Website

TCGA-LIHC Mutation 363 https://portal.gdc.cancer.gov/projects/TCGA-LIHC

RNA expression (tumor) 371

RNA expression (normal) 50

LIRI-LIHC Mutation 258 https://dcc.icgc.org/projects/LIRI-JP

RNA expression (tumor) 230

RNA expression (normal) 197

TCGA-STAD Mutation 437 https://portal.gdc.cancer.gov/projects/TCGA-STAD

RNA expression (tumor) 375

RNA expression (normal) 32

TCGA-BLCA Mutation 412 https://portal.gdc.cancer.gov/projects/TCGA-BLCA

RNA expression (tumor) 408

RNA expression (normal) 19

TCGA-LUAD Mutation 565 https://portal.gdc.cancer.gov/projects/TCGA-LUAD

RNA expression (tumor) 513

RNA expression (normal) 59

TCGA-SKCM Mutation 467 https://portal.gdc.cancer.gov/projects/TCGA-SKCM

RNA expression (tumor) 468

RNA expression (normal) 1

and partial AUC in all six datasets. For weighted methods,
Weighted_MinNetRank_PrCID had better performance than
PrDSM weighted methods (Weighted_MinNetRank_PrDSM
and Weighted_MinNetRank_Filter_PrDSM) in all
datasets. There was no significant difference between
Weighted_MinNetRank_PrCID and Weighted_MinNetRank.
There were some possible reasons for this phenomenon.
Firstly, there were many synonymous mutations in all datasets
(32,381 synonymous mutations on average); however, the
percentage of deleterious synonymous mutations was relatively
small (9.76% in the study of PrDSM) (Cheng et al., 2019).
Many benign synonymous mutations increased noise. We
may need to pre-process the scores of synonymous mutations
(Weighted_MinNetRank_Filter_PrDSM performed better
than Weighted_MinNetRank_PrDSM). Secondly, the number
of missense mutations was the largest, and the number of
frameshift mutations was small, so Weighted_MinNetRank
weighting for missense mutations had almost the same
performance as Weighted_MinNetRank_PrCID weighting
for missense mutations and frameshift mutations. LIRI-LIHC
dataset did not provide the position information of frameshift
mutations in cDNA, so Weighted_MinNetRank_PrCID was not
available for LIRI-LIHC dataset.

MinNetRank Discovered Rare and Novel
Driver Genes
In addition to obtaining the accurate and robust results, one
of the main advantages of MinNetRank was to discover rare
and personalized cancer genes. Personalized driver genes could
contribute to the development of personalized medicine.

A gene was considered as a rare gene if the gene was
mutated in a small number of samples (<5%). For the top 50
candidate driver genes of MinNetRank, the numbers of rare
genes in TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA,

TCGA-LUAD, and TCGA-SKCM were 48 (96%), 48 (96%), 42
(84%), 44 (88%), 48 (96%), and 42 (84%), respectively. Among
rare genes, 28 genes (58.33%), 27 genes (56.25%), 27 genes
(64.28%), 27 genes (61.36%), 27 genes (56.25%), and 27 genes
(64.28%) have not been classified as known cancer gene in
TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA, TCGA-
LUAD, and TCGA-SKCM, respectively. We further investigated
the rare genes in CGC (gold standard cancer driver gene set),
and there were 98.00, 97.95, 85.05, 90.79, 91.73, and 82.11% rare
genes in TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA,
TCGA-LUAD, and TCGA-SKCM, respectively. The proportion
of rare genes in CGC was high, and the proportion of rare
genes for all CGC known cancer genes was approximately
the same as the proportion of rare genes for the top 50
candidate driver genes.

MinNetRank also identified novel cancer driver genes that
have not been classified as drivers by other methods. Taking an
example for SP1, SP1 was considered as a cancer gene only by
MinNetRank and was ranked 3rd, 3rd, 3rd, 2nd, 3rd, and 1st
in TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-BLCA,
TCGA-LUAD, and TCGA-SKCM, respectively (Supplementary
Table 1). The mutation frequency of SP1 was 8.26 × 10−3,
1.60 × 10−2, 2.43 × 10−2, 8.85 × 10−3, and 1.07 × 10−2

(ranked 2903rd, 6393rd, 1599th, 7892nd, and 10330th in
terms of the mutation frequency) in TCGA-LIHC, TCGA-STAD,
TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM, respectively.
SP1 was a zinc finger transcription factor and was reported to be
associated with cell differentiation, proliferation, and apoptosis
(Beishline and Azizkhan-Clifford, 2015; Safe et al., 2018). Using
pathway enrichment analysis, we found that SP1 was involved in
multiple pathways enriched by known cancer genes, such as the
transforming growth factor (TGF)-beta signaling pathway and
choline metabolism in cancer and breast cancer.

As shown in Figure 5 (for datasets TCGA-LIHC and LIRI-
LIHC), Supplementary Figure 5 (for datasets TCGA-STAD
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TABLE 2 | The performance of each part of MinNetRank according to the precision, F1 score, and partial AUC value.

Metrics Methods TCGA-LIHC LIRI-LIHC TCGA-STAD TCGA-BLCA TCGA-LUAD TCGA-SKCM

Precision Weighted_MinNetRank 0.620 0.645 0.602 0.623 0.583 0.533

Weighted_MinNetRank_PrDSM 0.615 0.633 0.591 0.613 0.573 0.523

Weighted_MinNetRank_Filter_PrDSM 0.621 0.629 0.599 0.621 0.575 0.528

Weighted_MinNetRank_PrCID 0.628 – 0.594 0.630 0.580 0.533

MinNetRank 0.614 0.621 0.585 0.608 0.576 0.515

MinNetRank (mutation) 0.569 0.576 0.514 0.563 0.445 0.390

MinNetRank (expression) 0.574 0.580 0.479 0.517 0.512 0.549

DawnRank 0.420 0.444 0.473 0.586 0.405 0.404

NetICS 0.441 0.426 0.437 0.453 0.393 0.161

Mean 0.532 0.566 0.461 0.520 0.414 0.411

Maximum 0.498 0.546 0.452 0.483 0.405 0.420

Freq 0.255 0.277 0.249 0.511 0.194 0.149

Degree centrality 0.189 0.189 0.189 0.189 0.189 0.189

Betweenness centrality 0.521 0.521 0.521 0.521 0.521 0.521

Mean of degree and betweenness 0.493 0.493 0.493 0.493 0.493 0.493

F1 score Weighted_MinNetRank 0.048 0.049 0.046 0.048 0.044 0.042

Weighted_MinNetRank_PrDSM 0.047 0.049 0.045 0.047 0.044 0.041

Weighted_MinNetRank_Filter_PrDSM 0.048 0.048 0.046 0.047 0.044 0.041

Weighted_MinNetRank_PrCID 0.048 – 0.045 0.047 0.044 0.042

MinNetRank 0.047 0.047 0.045 0.046 0.043 0.041

MinNetRank (mutation) 0.043 0.044 0.042 0.044 0.039 0.036

MinNetRank (expression) 0.045 0.046 0.039 0.040 0.040 0.043

DawnRank 0.032 0.033 0.039 0.043 0.029 0.027

NetICS 0.037 0.037 0.037 0.037 0.035 0.016

Mean 0.042 0.044 0.038 0.041 0.037 0.037

Maximum 0.040 0.042 0.037 0.039 0.037 0.039

Freq 0.018 0.018 0.017 0.038 0.012 0.011

Degree centrality 0.013 0.013 0.013 0.013 0.013 0.013

Betweenness centrality 0.044 0.044 0.044 0.044 0.044 0.044

Mean of degree and betweenness 0.042 0.042 0.042 0.042 0.042 0.042

Partial AUC Weighted_MinNetRank 0.038 0.040 0.035 0.038 0.034 0.033

Weighted_MinNetRank_PrDSM 0.037 0.039 0.034 0.037 0.034 0.032

Weighted_MinNetRank_Filter_PrDSM 0.038 0.039 0.035 0.038 0.034 0.032

Weighted_MinNetRank_PrCID 0.038 – 0.034 0.038 0.034 0.033

MinNetRank 0.037 0.038 0.034 0.037 0.034 0.032

MinNetRank (mutation) 0.033 0.036 0.032 0.035 0.031 0.029

MinNetRank (expression) 0.034 0.035 0.031 0.031 0.031 0.034

DawnRank 0.024 0.025 0.032 0.036 0.022 0.021

NetICS 0.030 0.029 0.030 0.029 0.029 0.011

Mean 0.033 0.035 0.031 0.034 0.029 0.031

Maximum 0.032 0.033 0.029 0.031 0.028 0.030

Freq 0.011 0.011 0.010 0.026 0.007 0.006

Degree centrality 0.007 0.007 0.007 0.007 0.007 0.007

Betweenness centrality 0.035 0.035 0.035 0.035 0.035 0.035

Mean of degree and betweenness 0.033 0.033 0.033 0.033 0.033 0.033

and TCGA-BLCA), and Supplementary Figure 6 (for datasets
TCGA-LUAD and TCGA-SKCM), SP1 RNA expression of
tumor samples was statistically higher than normal samples
in TCGA-LIHC (Wilcoxon Rank-Sum, P = 6.85e-13), LIRI-
LIHC (Wilcoxon Rank-Sum, P = 2.2e-16), and TCGA-STAD
(Wilcoxon Rank-Sum, P = 5.89e-10). The differential expression
was not significant in TCGA-BLCA (Wilcoxon Rank-Sum,

P = 0.17), TCGA-LUAD (Wilcoxon Rank-Sum, P = 0.95), and
TCGA-SKCM (Wilcoxon Rank-Sum, P = 0.21). We further
validated SP1 expression on the protein level, and the differential
protein expression between tumor and normal samples was
significant in LIHC (Wilcoxon Signed Rank test, P = 4.14e-
13). Only LIHC had protein expression data from CPTAC (The
National Cancer Institute’s Clinical Proteomic Tumor Analysis
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FIGURE 5 | The SP1 differential expression between tumor and normal samples. From left to right: SP1 RNA differential expression in TCGA-LIHC dataset, SP1
RNA differential expression in LIRI-LIHC dataset, and protein differential expression for LIHC from CPTAC dataset.

Consortium) dataset. These results suggested that SP1 can be the
biomarker of hepatocellular carcinoma.

Top Genes of MinNetRank Were
Associated With Clinical Outcome
For each dataset, we selected seven genes with top ranking and
high SD as biomarkers for tumor stratification (mentioned in the
section “Materials and Methods”). We performed unsupervised
K-means clustering using obtained biomarkers to assign each
patient into either high-risk or low-risk groups. The Kaplan–
Meier survival curves of the two groups are well separated, and
the log-rank P-values of the survival difference between two
groups are 9.21e-04, 1.23e-05, 2.42e-03, 3.75e-03, 9.21e-04, and
4.19e-02 for TCGA-LIHC, LIRI-LIHC, TCGA-STAD, TCGA-
BLCA, TCGA-LUAD, and TCGA-SKCM, respectively [Figure 6
(for datasets TCGA-LIHC and LIRI-LIHC), Supplementary
Figure 7 (for datasets TCGA-STAD and TCGA-BLCA), and
Supplementary Figure 8 (for datasets TCGA-LUAD and
TCGA-SKCM)].

In the two liver cancer datasets (TCGA-LIHC and LIRI-
LIHC), there were six shared genes (CTNNB1, JUN, PIK3R1,
RAC1, SRC, and TP53). All these genes used for tumor
stratification are biologically relevant. CTNNB1 regulated cell
growth and adhesion and was predictive for recurrence in
aggressive fibromatosis (van Broekhoven et al., 2015). JUN (AP-1
Transcription Factor Subunit) participated in regulating a diverse
array of cellular processes, including proliferation, apoptosis,
differentiation, and survival (Trop-Steinberg and Azar, 2017).
PIK3R1 was a prognostic biomarker for breast cancer (Cizkova
et al., 2013). RAC1 regulated a wide range of cellular events,
including the control of cell growth and the activation of protein
kinases (Lou et al., 2018). SRC was prognostic relevant to
colon cancer and rectal cancer (Martínez-Pérez et al., 2017).
TP53 was one of the most frequent alterations and potential
prognostic markers in human cancers (Olivier et al., 2010). GRB2
was the special biomarker for TCGA-LIHC, and MAPK14 was
for LIRI-LIHC. GRB2 was evaluated as a prognostic marker
for lung adenocarcinoma (Toki et al., 2016). MAPK14 was a

member of the MAP kinase family. MAPK pathway regulated
cell proliferation, differentiation, and development (Fang and
Richardson, 2005). The seven biomarkers are the same in TCGA-
STAD and TCGA-BLCA (CTNNB1, GRB2, JUN, RAC1, SP1, SRC,
and TP53). These seven genes were reported to be related to
prognosis (Hang et al., 2016). For TCGA-LUAD and TCGA-
SKCM, there were six shared genes (CTNNB1, JUN, RAC1,
SRC, TP53, and GRB2). GNB1 was the special biomarker for
TCGA-LUAD, and FYN was for TCGA-SKCM. FYN was tyrosine
kinases and was an essential molecule in cancer pathogenesis
and drug resistance (Elias and Ditzel, 2015). In summary, the
top seven genes were associated with clinical outcome and
were biologically relevant in all six datasets. These results
suggested that MinNetRank could also be a promising method
for tumor stratification.

NetICS and DawnRank did not investigate the prognostic
value of top genes in cancer. To evaluate the performance of
predicting the clinical outcome for different methods, we used
the same criterion to choose the top seven genes for each method
in six datasets. Compared with NetICS and DawnRank, only
Weighted_MinNetRank and MinNetRank obtained a statistically
significant survival risk difference between the high-risk and
low-risk groups in all six datasets (Supplementary Table 2).

DISCUSSION

Extensive genetic heterogeneity exists between tumors of
different tissues and between individuals with the same tumor
type (Burrell et al., 2013). The personalized mutation profile is
the key to advance personalized disease diagnosis and therapy
in the clinic (Sheng et al., 2015; Olivier et al., 2019). However,
few methods could efficiently prioritize driver genes over many
passenger genes in a single patient. The critical challenge facing
today is to predict rare and even personalized driver genes with
higher accuracy. We develop MinNetRank, an efficient and easy-
to-use method that integrates the mutation data, expression data
and interaction network to prioritize each sample’s driver genes.
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FIGURE 6 | The survival difference between the high-risk group and the low-risk group.

Weighted_MinNetRank further considers the different weights
for the different types of mutations.

Weighted_MinNetRank and MinNetRank achieve a higher
precision, F1 score, and partial AUC value of prioritizing
cancer genes in five TCGA datasets (TCGA-LIHC, TCGA-
STAD, TCGA-BLCA, TCGA-LUAD, and TCGA-SKCM). We also
utilize an additional liver cancer cohort (LIRI-LIHC) to validate
the result of TCGA-LIHC. Better performance in all datasets
demonstrates the proposed approach’s robustness (Figure 3
and Table 2). We use top candidate driver genes for pathway
enrichment analysis and find some signaling pathways previously
studied in cancer, such as the Ras signaling pathway and
ErbB signaling pathway. Furthermore, we first investigate the
relationship between the top seven genes and clinical outcome
and find the statistically significant survival difference between
the low-risk and high-risk groups in all six datasets only for
Weighted_MinNetRank and MinNetRank. The top seven genes
are biologically relevant and could be used as biomarkers
for survival risk stratification. Accurate outcome prediction is
important for personalized cancer therapies in clinical practice,
for instance, a low-risk patient can be advised to select a less
radical therapy.

We demonstrate that MinNetRank can discover rare and
novel cancer genes. Personalized driver genes could contribute to
developing personalized diagnosis and therapy. SP1 is considered
a candidate driver gene only by MinNetRank and is ranked
top three in all six datasets. The RNA expression of SP1 is
significantly higher in LIHC tumor samples (TCGA-LIHC and
LIRI-LIHC datasets) and STAD tumor samples (TCGA-STAD
dataset). The differential expression is further validated on
the protein level in LIHC. SP1 is the biomarker for tumor
stratification in TCGA-STAD and TCGA-BLCA, and SP1 RNA
expression is associated with survival outcome in TCGA-STAD

dataset (Cox proportional hazards model, P = 0.02). These results
are in accordance with the reports in literatures (Shi and Zhang,
2019). Targeting SP1 is highly promising strategy in cancer
chemotherapy (Vizcaíno et al., 2015).

Using both the incoming and outgoing degree of interaction
network, the minimum strategy and weighting for the different
types of mutations all contribute to the accuracy and robustness
of prioritizing driver genes. Known cancer genes have a higher
incoming and outgoing degree, and simultaneously considering
incoming and outgoing degree is rational. MinNetRank adopts
a minimum strategy to prioritize cancer genes with a high
mutation relevance score and high expression relevance score.
These enable our method to select more relevant genes and
avoid the potential outliers, which are common in high-
throughput sequencing technologies due to the positively skewed
distributions of mutation and expression relevance scores.
Weighting for different types of mutations is essential for sample-
specific study and finding personalized driver genes.

There are some limitations to MinNetRank and similar
methods. Firstly, MinNetRank largely depends on the interaction
network. Although many interaction sources exist, such as
experiment, co-expression, and text mining, the interaction
network is still incomplete. If the mutation gene or differentially
expressed gene is not in the interaction network, this gene would
not be used for network diffusion and not be as a candidate cancer
gene. Secondly, MinNetRank uses paired tumor and normal
samples to calculate ALFC; however, TCGA datasets have a
limited number of normal samples with expression data. Thirdly,
MinNetRank only integrates mutation data and expression data
into the interaction network. Besides mutation data, other events,
such as miRNA differential expression, epigenetic changes, copy
number variation, and structure variation, could also contribute
to cancer progression. Differential expression data, including
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RNA expression data and protein expression data, could be
combined. We may need to improve MinNetRank from two
aspects in the future. On one hand, we could integrate the
gene co-expression network with the interaction networks (Hou
et al., 2019; Wei et al., 2020). We also need to incorporate
additional types of omics data (genomics, transcriptomics,
proteomics, epigenomics, and images). On the other hand,
Weighted_MinNetRank only considers mutations in coding
region. We may need to incorporate non-coding mutations. We
also need to give weight coefficients for all mutations through
multiple techniques.

Integrating different types of omics data is often used to better
elucidate the molecular function. However, sound study designs
and solid analytical strategies are needed to advance human
disease research further. For example, the mean precision of the
top 50 cancer genes is 0.61 (MinNetRank) and 0.56 (NetICS)
in TCGA-LIHC and 0.61 (MinNetRank) and 0.54 (NetICS) in
TCGA-BLCA. The top 50 candidate cancer genes of NetICS
used here are from the published paper (Dimitrakopoulos et al.,
2018). In this article, NetICS integrates different types of data that
include somatic mutation, copy number variation, methylation,
miRNA expression, gene expression, and protein expression.
Although MinNetRank only focuses on integrating the mutation
data and expression data, the mean precision of MinNetRank is
still higher than that of NetICS.

CONCLUSION

This article developed a new method (denoted as MinNetRank)
by setting weights for different types of mutations and using
the minimum strategy to integrate multi-omics for cancer genes
discovery. Minimum strategy reduced the influence of extreme
scores in highly skewed distributions and was the “double
high” strategy to prioritize cancer genes, having a relatively
high mutation score and expression score. Different weight
coefficients for the different types of mutations contributed
to the better performance. We demonstrated our method’s
accuracy and robustness in prioritizing driver genes on five
TCGA datasets and one ICGC dataset. Besides, MinNetRank
has the advantage of discovering rare and personalized cancer
genes. The top seven candidate driver genes stratified patients
into two subtypes (high-risk and low-risk groups) exhibiting
significant survival differences and could be used as prognostic
biomarkers for survival. Of course, our method has room for
improvement. Gene co-expression network and more types
of omics data should be incorporated, and different weight
coefficients should be considered.

MATERIALS AND METHODS

Dataset
The genes annotated in the CGC can be used to benchmark
known cancer genes (Tate et al., 2019). This gold standard known
cancer gene set includes 576 genes (July 2019)1. Many cancer

1https://cancer.sanger.ac.uk/census

studies use CGC genes as the benchmark for the evaluation
(Bashashati et al., 2012; Hou and Ma, 2014; Bertrand et al., 2015;
Wei et al., 2017; Guo et al., 2018).

Interaction Network
We used the interaction network that has been widely used in
the related paper (Hou and Ma, 2014; Guo et al., 2018). The
interaction network integrated a variety of resources, including
the network used in MEMo as well as the up-to-date information
from Reactome (Croft et al., 2011; Ciriello et al., 2012), the NCI-
Nature Pathway Interaction Database (Schaefer et al., 2009), and
KEGG (Kanehisa et al., 2016). The resulting interaction network
consisted of 11,648 genes and 211,794 edges. The average degree
centrality of interaction network was 34.20, and the average
betweenness centrality was 1.58E-04.

MinNetRank
MinNetRank uses an interaction network that could discover
cancer driver genes more efficiently (Leiserson et al., 2015).
One of the main reasons for this is the high connectivity (high
incoming degree and outgoing degree) of known cancer genes in
the interaction network. For example, the mean and median of
incoming degree for known cancer genes (in CGC) are 36.06 and
17, which are much higher than those of the genes that are not
classified as known cancer genes (17.41 and 3, respectively). Also,
the mean and median outgoing degree of known cancer genes are
30.37 and 12, which are much higher than those of the genes that
are not in CGC (17.66 and 4, respectively). To a certain extent,
this is expected since genes with high connectivity could exert a
more significant influence on the biological system (Winter et al.,
2012). RWR algorithm models how closely related the two genes
are and measures both the direct and indirect neighbors of each
gene in the interaction network, making it more sensitive for
prioritizing cancer driver genes (Dimitrakopoulos et al., 2018).
Unlike NetICS and DawnRank, we consider both incoming and
outgoing degree of interaction network for single omics.

Diffused Matrix
Let A be the n×n adjacency matrix of an interaction network where
n represents the number of nodes (the number of genes in the
interaction network). A is a 0–1 matrix and aij = 1 if there is
a directed edge from node j to node i. A′ is the transpose of
matrix A and aji = 1 if there is a directed edge from node i to
node j. We denote degoutj =

∑N
i=1 aij as the outgoing degree of

node j or the number of outgoing edges. While deginj =
∑N

i=1 aji
is the incoming degree of node j. MinNetRank considers both
the incoming degree and outcoming degree, so we define the
normalized adjacency matrix Anorm as,

Anorm
=


a11+a11

degout1 +deg
in
1

. . . a1n+an1
degoutn +deg

in
n

...
. . .

...
an1+a1n

degout1 +deg
in
1
· · ·

ann+ann
degoutn +deg

in
n

 . (4)

We define the diffused matrix D as,

D = β
[
I − (1− β)Anorm]−1 (5)

Frontiers in Genetics | www.frontiersin.org 12 January 2021 | Volume 11 | Article 61303325

https://cancer.sanger.ac.uk/census
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-613033 December 26, 2020 Time: 15:33 # 13

Wei et al. Method for Multi-Omics Data Integration

The value of Dij lies between 0 and 1 and reflects the connectivity
between nodes j and i. Higher score means that two genes are
more closely related. The restart probability of β(0 ≤ β ≤ 1)
determines the degree of diffusion, namely, how far the random
walker can move in the network. When β=1, there is no diffusion,
namely, we do not use the information of the interaction network.
When β=0, gene mutation score or differential expression
score (see below) diffuses to the whole network. β depends on
the interaction network and is independent of any mutation
data or expression data. We chose β to balance diffusion and
retainment (Leiserson et al., 2015), and β is 0.48 in this study.
The diffused matrix D needs to be computed only once for a given
interaction network.

ALFC
For each patient k, we calculate the Absolute value of Log2 Fold-
Change (ALFC) of gene i for the paired tumor and normal samples
as a differential expression score. The fold change, or relative
difference, is widely used to measure differential gene expression
(Love et al., 2014). The absolute value of fold change is taken in
order to capture both upregulation and downregulation.

ALFCik=


∣∣∣log2

gene i expression of tumor sample in patient k
gene i expression of normal sample in patient k

∣∣∣ paried tumor and normal samples

∣∣∣log2
gene i expression of tumor sample in patient k

the mean of gene i expression of all normal samples

∣∣∣ unpaired
(6)

Weighted_MinNetRank
Weighted_MinNetRank uses SIFT scores (between 0 and 1)
as the weight coefficients for missense mutations and gives the
same weight with 1 to other mutations (stop-gain, stop-loss,
frameshift, and non-frameshift) (Ng and Henikoff, 2001).
Although synonymous mutations do not alter amino acids,
some deleterious synonymous mutations play important
roles in cancer (Wen et al., 2016). We further incorporate
synonymous mutations and use PrDSM scores as the weights for
synonymous mutations (Weighted_MinNetRank_PrDSM).
We also use PrDSM scores greater than 0.38 as the
weights (Weighted_MinNetRank_Filter_PrDSM). If a
PrDSM score is greater than 0.308, the corresponding
synonymous mutation is considered as deleterious (Cheng
et al., 2019). Besides, we use PredCID scores as the weights
for frameshift mutations (Weighted_MinNetRank_PrCID)
(Yue et al., 2020).

Assessing the Performance in Predicting
Known Cancer Genes
In order to assess the performance in predicting known cancer
genes, our method (Weighted_MinNetRank and MinNetRank)
was compared with NetICS (Dimitrakopoulos et al., 2018),
DawnRank (Hou and Ma, 2014), and Freq. The top 50 genes of
the population-level ranking were identified as candidate driver
genes and compared with the positive genes in CGC. We used
the precision, F1 score, and partial AUC value to evaluate the
performance. The precision was defined as expression (7) and
can be viewed as the measure of exactness. The recall was the
percentage of total known cancer genes correctly predicted by
MinNetRank. F1 score combined recall and precision using

the harmonic mean. There were many more negative genes
than positive genes (positives/negatives = 0.052) and even
fewer positive genes when we considered cancer type-specific
known cancer genes (positives/negatives ≈ 0.0029). It was more
informative to use partial AUC, which considered the number
of true positives scored higher than the nth highest scoring
negatives, measured for all values from 1 to n (Dimitrakopoulos
et al., 2018). Precision, F1 score, and partial AUC were based on
the top 50 genes.

precison =
(CGC genes) ∩ (Top N predicted driver genes)

Top N predicted driver genes
.

(7)

recall =
(CGC genes) ∩ (Top N predicted driver genes)

CGC genes
. (8)

F1 Score = 2×
precision × recall
precision + recall

. (9)

AUCn =
1
nT

n∑
i=1

Ti, (10)

where T was the total number of known cancer genes in CGC, and
Ti was the number of positives scored higher than the ithhighest
scoring negatives.

Assessing the Robustness Using the
Subset of Samples
In order to further compare these methods, we calculated the
precision, F1 score, and partial AUC using the subset of samples
with different sample sizes. We experimented with sample sizes of
n = 10, 25, 50∗1, 50∗2, ... , 50∗ dN/50e, and N was the total
sample size of multi-omics data. For each sample size, we
performed 10 random samples. We defined the precision value
P= mean(pi), where pi was the precision of top i candidate
cancer gene, i = 1, 2, ... , 50. The mean and SD of precision
value, F1 score, and partial AUC value for 10 runs were used to
measure the robustness.

Tumor Stratification
Some papers used gene mutation data and expression data to
identify genes that were indicators for survival. Using these
biomarkers, patients can be stratified into subtypes (Haider et al.,
2014). We further investigated the relationship between the top
genes of population-level ranking and patients’ survival time.
Genes whose expression with a low variation between tumors
provided very limited information for tumor stratification
(Winter et al., 2012). According to the genes’ rankings, we
selected the top seven genes with a greater SD of expression
than five as biomarkers for each dataset (Winter et al., 2012).
Using these seven biomarkers, K-means clustering (unsupervised
learning algorithm) assigned each patient to one of the two
clusters (high-risk and low-risk groups). The log-rank test was
then used to compare the survival differences of the two groups
(R survival package).
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Increasing lncRNA-associated competing triplets were found to play important roles in

cancers. With the accumulation of high-throughput sequencing data in public databases,

the size of available tumor samples is becoming larger and larger, which introduces new

challenges to identify competing triplets. Here, we developed a novel method, called

LncMiM, to detect the lncRNA–miRNA–mRNA competing triplets in ovarian cancer with

tumor samples from the TCGA database. In LncMiM, non-linear correlation analysis is

used to cover the problem of weak correlations between miRNA–target pairs, which

is mainly due to the difference in the magnitude of the expression level. In addition,

besides the miRNA, the impact of lncRNA and mRNA on the interactions in triplets

is also considered to improve the identification sensitivity of LncMiM without reducing

its accuracy. By using LncMiM, a total of 847 lncRNA-associated competing triplets

were found. All the competing triplets form a miRNA–lncRNA pair centered regulatory

network, in which ZFAS1, SNHG29, GAS5, AC112491.1, and AC099850.4 are the

top five lncRNAs with most connections. The results of biological process and KEGG

pathway enrichment analysis indicates that the competing triplets are mainly associated

with cell division, cell proliferation, cell cycle, oocyte meiosis, oxidative phosphorylation,

ribosome, and p53 signaling pathway. Through survival analysis, 107 potential prognostic

biomarkers are found in the competing triplets, including FGD5-AS1, HCP5, HMGN4,

TACC3, and so on. LncMiM is available at https://github.com/xiaofengsong/LncMiM.

Keywords: lncRNA, ceRNA, competing triplet, LncMiM, ovarian cancer

INTRODUCTION

Non-coding RNAs (ncRNAs) were once considered as junk RNAs; however, evidence has
increasingly shown that ncRNAs can perform diverse functions (Slack and Chinnaiyan, 2019; Yao
et al., 2019; Chen et al., 2020; Nair et al., 2020). Among ncRNAs, the most intensively studied
subclass are microRNAs (miRNAs, usually 19–24 nucleotides long), which can regulate gene
expression posttranscriptionally by destabilizing target mRNAs via the RNA-induced silencing
complex (RISC) (Bartel, 2009; Gebert and MacRae, 2019). The miRNA-based regulation has been
reported to be involved in many pathologies including cancer (Peng and Croce, 2016; Dhawan
et al., 2018; Huang et al., 2019). By contrast, the other class of abundant ncRNAs, lncRNAs
(>200 nucleotides long), are still less understood, although much larger numbers of lncRNAs have
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been identified using high-throughput sequencing techniques
in recent years (Fang et al., 2018; Frankish et al., 2019;
Volders et al., 2019). Nevertheless, the existing well-characterized
lncRNAs have demonstrated their important roles in various
critical biological processes, such as chromatin remodeling,
genomic splicing, cell proliferation, and cell differentiation
(Fatica and Bozzoni, 2014; Han and Chang, 2015; Romero-
Barrios et al., 2018; Rossi et al., 2019; Yao et al., 2019). In
addition, dysregulation of lncRNAs is implicated in various
human diseases (Schmitt and Chang, 2016; Bao et al., 2019; Gao
et al., 2019).

Recent studies prove that lncRNAs participate in the
posttranscriptional regulation by acting as competing
endogenous RNAs (ceRNAs) (Song et al., 2017; He et al.,
2019). The lncRNAs that share miRNA response elements
(MREs) with mRNAs can compete for miRNA binding, thereby
alleviating the inhibitory effect of miRNAs on their mRNA
targets. To date, considerable lncRNA-associated competing
triplets (lncRNA–miRNA–mRNA) have been reported to be
involved in cancer progression (Du et al., 2016; Cong et al., 2019;
Wang et al., 2019). For example, the lncRNA MEG3 functions
as a ceRNA of oncogenic miR-181 to regulate gastric cancer
progression (Peng et al., 2015, 3). The lncRNAUCA1 upregulates
the expression of ERBB4 through competitively “sponging” miR-
193a−3p and functions as an oncogene in non-small cell lung
cancer (NSCLC) (Nie et al., 2016, 1). The XIST/miR-92b/Smad7
triplet is found to play an important role in the progression of
hepatocellular carcinoma (Zhuang et al., 2016). Hence, lncRNA
associated competing triplets attract more and more attention in
cancer research.

At present, several computational methods have been
proposed for identifying competing triplets (Le et al., 2017;
Hornakova et al., 2018). In general, people usually use linear
correlations between gene–gene and/or gene–miRNA pairs to
identify ceRNA triplets, since it requires a small sample size and
fewer computations (Wang et al., 2015). However, the linear
correlation-based methods do not measure the impact of the
miRNA on the gene–gene interaction within triplets, resulting in
reduced credibility of competing triplet identification results. In
order to overcome this problem, several methods based on partial
correlation (PC) or conditional mutual information (CMI) have
been developed. Among them, two typical methods are often
employed: sensitivity correlation and HERMES (Sumazin et al.,
2011; Paci et al., 2014). Sensitivity correlation calculates the
difference between linear correlation and partial correlation for
ceRNA pairs, while HERMES calculates the difference in mutual
information for each gene–gene interaction between high and
low miRNA expression levels. Despite the constant increase in
available methods (Wen et al., 2020), identification of competing
triplets through utilizing RNA-seq and miRNA-seq data remains
a challenging issue.

With the widespread application of high-throughput
sequencing technology, a great deal of data has been accumulated
in public databases (Lonsdale et al., 2013; Weinstein et al., 2013).
The increasing data lead to more competing triplets identified
by the existing methods (Wang et al., 2019); however, they also
introduce some new problems needed to be solved. First, the

bigger the data size, the fewer the number of linear correlated
miRNA–gene pairs we could find. It seems that the relationship
between the expression patterns of miRNA and its target gene
is not a linear correlation as assumed by the existing methods.
Second, it is noted that competing gene–gene interactions may
be regulated by several miRNAs, and thus, the increased data
size would make it harder to evaluate the impact of the miRNA
on gene–gene interactions by using PC and CMI. In addition,
besides the impact of the miRNA on gene pairs, the influence of
the gene on the relationship between miRNA and other target
genes should be also considered.

Here, for large data sets, we present a powerful method, named
LncMiM, to identify lncRNA-associated competing triplets with
a new framework addressing the above issues. From the large
scale of gene and miRNA expression profiles derived from the
TCGA database, 847 competing triplets were identified by using
LncMiM, while only a few triplets were identified as competing
ones by linear correlation-based methods. The enrichment
analysis shows that they are mainly involved in cell proliferation
process, cell division process, cell cycle, and ribosome pathways.
Among them, 18 competing triplets were found to be associated
with prognosis in high-grade serous ovarian cancer. Our method
will help in identifying more lncRNA-associated competing
triplets in cancer and may contribute to reveal the potential
post-transcriptional regulatory mechanism of lncRNAs.

MATERIALS AND METHODS

Data Collection and Pre-processing
As shown in Figure 1, paired RNA-seq and miRNA-seq data of
ovarian cancer (379 samples from 373 patients) are downloaded
from the Cancer Genome Atlas (TCGA) (Weinstein et al., 2013).
The RNA-seq data type is “Gene Expression Quantification,” and
its workflow type is “HTSeq-FPKM.” The miRNA-seq data type
is “Isoform Expression Quantification,” and its workflow type is
“BCGSCmiRNA Profiling.” The RPM (reads per millionmapped
reads) value was used to evaluate the expression level of miRNAs.
For different samples from the same patient, we merged them
by calculating the mean FPKM or RPM value for each lncRNA,
mRNA, and miRNA. Finally, we got 376 samples with both the
RNA-seq data and miRNA-seq data.

The annotation files of the protein-coding transcripts and
the long non-coding transcripts were downloaded from the
GENCODE (version 33) database (Harrow et al., 2012). With the
transcript annotation, we extracted the mRNA expression data
and the lncRNA expression data from the RNA-seq data, and the
mRNAs without 3′ UTR annotation were abandoned. Human
miRNA sequences and annotation were downloaded from the
miRBase (release 22.1) database (Kozomara et al., 2019), and the
seed and mature sequences of miRNAs in the miRNA-seq data
were both extracted. In order to reduce the computation burden
and avoid false-positive identification, we filtered out all the
lower expressed RNA (mRNA, lncRNA, and miRNA) based on
an artificial criterion. The remaining expressed RNAs need to be
satisfied with the following conditions: (a) RNA’s expressed value
should be >0 in more than 75% of the 376 samples; (b) RNA’s
expressed value should be >5 in more than 25% of the samples;

Frontiers in Genetics | www.frontiersin.org 2 January 2021 | Volume 11 | Article 60772230

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. Prognostic Competing Triplets in Ovarian Cancer

FIGURE 1 | The workflow of LncMiM.

and (c) the expression variation across samples (log2IQR) should
be >0.58. As a result, the expression data of 8,076 mRNAs, 225
lncRNAs, and 387 miRNAs were used for further analysis.

Construction of Candidate Triplets
TargetScan, PITA, and miRanda are three commonly used
methods to predict miRNA–target interactions (Figure 1). Due to
their distinct miRNA-target predicting strategies, these methods
are exclusive to any single one alone (Chiu et al., 2015).
Thus, TargetScan (version 7.2) (Agarwal et al., 2015), PITA
(version 6) (Kertesz et al., 2007), and miRanda (v3.3a) (Miranda
et al., 2006) were all applied to predict miRNA–target genes.
The parameters of TargetScan and PITA were set to the
default values, while the score threshold of miRanda was set
to 120 to get a larger miRNA–target gene pool. In addition,
the experimentally validated miRNA–target interactions derived
from the miRTarBase database (release 8.0) were also added into
the miRNA–target gene dataset (Huang et al., 2020).

The lncRNA–miRNA–mRNA triplets were constructed based
on the interaction relationship of miRNA–lncRNA and miRNA–
mRNA; then the lncRNA and mRNA in each triplet were
extracted as lncRNA–mRNA pairs. The Spearman’s rank
correlation coefficient (SCC) was calculated for the miRNA–
lncRNA, miRNA–mRNA, and lncRNA–mRNA pairs to evaluate
the regulatory relationships between miRNA, mRNA, and
lncRNA in each triplet. Through a rigid screening, only 0.1%
pairs were remained as functional interactions, and the cutoff

values for the miRNA–lncRNA, miRNA–mRNA, and lncRNA–
mRNA pairs are −0.305, −0.311, and 0.520, respectively. Based
on the types of remaining interactions, candidate triplets are
grouped into three classes: I, “lncRNA-centered” triplets with
miRNA–lncRNA and lncRNA–mRNA interactions; II, “miRNA-
centered” triplets with lncRNA–miRNA and miRNA–mRNA
interactions; and III, “mRNA-centered” triplets with miRNA–
mRNA and mRNA–lncRNA interactions.

Workflow of LncMiM for Identifying
Competing Triplets
For identifying competing triplets from the three types of
candidate triplets, specific workflows were respectively built
to evaluate the centered miRNA, lncRNA, and mRNA on
the relationship between the other RNAs (Figure 1). In each
workflow, samples were firstly sorted in an ascending order
based on the expression of the centered RNA in the candidate
triplet. The SCC of the other RNAs was calculated on the
samples within the sliding window, whose size is set to 94
(25% of the total samples) and step is set to 1. And then,
the maximum and minimum SCCs were calculated. Based on
the type of candidate triplets, different filtering criteria were
set to identify competing triplets. For the “lncRNA-centered”
and “mRNA-centered” triplets, their minimum SCC should be
<−0.311 and −0.305, respectively. For the “miRNA-centered”
triplets, their maximum SCC should be more than 0.520. In
addition, the difference between the maximum and minimum
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SCC should be >0.300. Finally, all the candidate triplets
meeting their corresponding filtering criteria were identified as
competing triplets.

In addition, to assess the statistical significance of the
correlation coefficient difference (1Cor), a series of null
hypotheses were tested by measuring the 1Cor distribution over
random conditions. That is, for each candidate triplet, two non-
overlapping sample subsets were randomly chosen from the
complete dataset, rather than based on the expression of miRNA,
and then the correlation coefficient and1Cor were calculated for
these two random sample subsets. This process was repeated 100
times. The p-value is defined as the fraction of 1Cor in random
condition that was larger than that on the specified conditions
mentioned above; p-values were Bonferroni-corrected for the
total number of candidate triplets. The triplets with adjusted
p-values <0.01 are statistically significant.

Functional and Survival Analysis of the
Competing Triplet
With the competing triplets, the integrative regulatory network
was built and visualized by Cytoscape (Shannon et al., 2003). The
size of the node and the width of the line are determined by
the number of competing triplets containing them. The circular
layout was produced by using the yFiles layout Algorithms.
DAVID 6.8 (https://david.ncifcrf.gov) was used to perform the
enrichment analysis of biological processes and KEGG pathways
(Huang et al., 2009). For the enriched biological process terms,
their adjusted p-values should be <0.05.

The clinical profiles of 373 patients with high-grade serous
ovarian cancer were downloaded from the TCGA database. The
patients’ ID, age at initial pathologic diagnosis, vital status, days
to death, days to last follow-up, neoplasm histologic grade, and
clinical stage were extracted from the clinical profiles. Based on
data integrity, 369 patients’ clinical data were screened out for
the following survival analysis. The days to death together with
the days to last follow-up make up the overall survival time of
patients. Both the single variate andmultivariate survival analyses
used the Cox proportional hazards (PH) regression. In addition,
to investigate the impact of specific genes on the survival
time, patients were classified into different groups through four
ways based on their expression levels. The survival analysis
and visualization were performed by using the “survminer”
R package.

RESULTS

Investigation of the Expression
Relationship Between miRNA and Target
Gene
In general, miRNAs are assumed to be linearly correlated with
their target genes. Thus, the Pearson correlation coefficient
(PCC) was initially used to identify negatively correlated
miRNA–mRNA and miRNA–lncRNA pairs. With the threshold
of −0.30, from the 74,086 miRNA–lncRNA pairs and 2,608,237
miRNA–mRNA pairs (Figures 2A,E), only 3 miRNA–lncRNA
pairs and 443 miRNA–mRNA pairs were found to be negatively

correlated, which are far less than expected. As shown in
Figure 2B, there is a negative regulatory relationship between
miR-509-3p and POSTN, but the PCC is only −0.234. Similarly,
miR-224-5p is also shown to be negatively correlated with
MIR100HG; their PCC is −0.263 (Figure 2E). If the expression
values were normalized by a logarithmic transformation,
however, the PCCs of miR-509-3p–POSTN and miR-224-
5p–MIR100HG change to −0.638 and −0.374, respectively
(Figures 2C,F). As shown in Figures 2G,I, after the logarithmic
transformation, more negatively correlated miRNA–target gene
pairs were detected. In addition, with the increase in the sample
size, the number of negatively correlated miRNA–lncRNA
pairs (PCC < −0.3, P-value < 0.05) significantly decreases
(Figure 2H). These results implied that PCC is not appropriate
for the evaluation of the regulatory relationship between miRNA
and target gene, especially for large sample data.

Here, we assumed that the relationship between miRNA
and the target is not linear. As shown in Figures 2B,C,E,F,
as compared with the PCC, the SCC is more accurate for
assessing the relationship between miRNA and the target. In
addition, the SCC is less affected by the sample size (Figure 2H)
and can detect more negatively correlated miRNA–target gene
pairs (Figure 2I). Thus, the SCC was used to screen negatively
correlated miRNA–target pairs. From the 74,086 miRNA–
lncRNA pairs and 2,608,237 miRNA–mRNA pairs, only 0.1%
were respectively screened out as the negatively correlated
miRNA–target pairs. A total of 72 negatively correlated miRNA–
lncRNA pairs and 2,608 negatively correlated miRNA–mRNA
pairs were selected, respectively, with the thresholds −0.311 and
−0.305. Besides the miRNA–target pairs, with threshold 0.52,
1,806 positively correlated mRNA–lncRNA pairs were screened
out from 1,816,605 candidate mRNA–lncRNA pairs.

Investigation of the Impact on Pairwise
Interaction by the Other One in Triplets
With the strictly selected negatively and positively correlated
interactions, 256 competing triplets can be found by using the
traditional strategy. If a miRNA is negatively correlated to two
positively correlated target genes, then they form a competing
triplet. As this traditional strategy ignores the mediating effect of
miRNA on the positive relationship between target genes, several
competing triplets may be fake ones. For example, miR-185-3p
is negatively correlated to the two positively correlated target
genes (Figures 3A–C); however, the positive correlation between
SNHG29 and RPLP0 is not related to miR-185-3p (Figure 3D).
According to the ceRNA hypothesis, SNHG29–miR-185-3p–
RPLP0 is a fake competing triplet. Thus, the impact of miRNA
on the interaction between ceRNA pairs should be considered.

To determine whether the interaction between target genes is
derived from their relationship with miRNA, a commonly used
method is to compare the correlation coefficients of target gene
pairs under conditions of high and low miRNA expression levels.
Accordingly, the differences of lncRNA–mRNA pairs’ SCCs on
the first and last quarter of samples sorted by miRNA expression
were calculated, and 15 of the 256 competing triplets were
identified to be true. A hidden hypothesis of this method is that
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FIGURE 2 | Investigation of the correlation between miRNA and the target. (A) The Venn diagram of miRNA–mRNA pairs. (B) The scatter plot of miR-509-3p and

POSTN. (C) The scatter plot of miR-509-3p and POSTN after logarithmic transformation. (D) The Venn diagram of miRNA–lncRNA pairs. (E) The scatter plot of

miR-224-5p and MIR100HG. (F) The scatter plot of miR-224-5p and MIR100HG after logarithmic transformation. (H) The density distribution of the correlation

between miRNA and lncRNA. PCC, Pearson correlation; PCC(log), Pearson correlation after logarithmic transformation; SCC, Spearman correlation. (G) The influence

of the sample size on the identification of the negatively correlated miRNA–lncRNA pairs. Negative correlation: cor(miRNA,lncRNA) <−0.3, p-value <0.05. (I) The

counts of correlated miRNA–lncRNA, miRNA–mRNA, and lncRNA–mRNA calculated on 376 ovarian cancer samples.

the strength of the interaction between lncRNA and mRNA is
linearly correlated with the miRNA expression level. However,
according to the ceRNA hypothesis, both extremely high and
extremely low miRNA expressions would impair the interaction
between ceRNA pairs and even make them unrelated with
each other. For example, miR-151a-3p is negatively correlated
to the two positively correlated target genes (Figures 3E–G).
The SCC between TRAPPC1 and SNHG29 is not linearly
correlated with the expression level of miR-151a-3p (Figure 3H).
The SCC achieves the maximum value at about the median

miRNA expression level. Therefore, in LncMiM, all the miRNA
expression levels, rather than only the highest and lowest ones,
are considered when evaluating the impact of miRNA on the
interaction between target gene pairs.

Besides the impact of miRNA on the lncRNA–mRNA
interaction, lncRNA andmRNA can also affect themiRNA–target
interactions. As shown in Figure 4, miR-151a-3p is negatively
correlated to the two positively correlated target genes (RPS6 and
SNHG29). The SCC between RPS6 and SNHG29 is significantly
changed with the rise of miR-151a-3p expression levels
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FIGURE 3 | The impact of miRNA on the interaction between ceRNA pairs in triplets. (A) The scatter plot of miR-185-3p and RPLP0. (B) The scatter plot of SNHG29

and RPLP0. (C) The scatter plot of miR-185-3p and SNHG29. (D) The impact of miR-185-3p on the SNHG29–RPLP0 interaction. (E) The scatter plot of

miR-151a-3p and TRAPPC1. (F) The scatter plot of SNHG29 and TRAPPC1. (G) The scatter plot of miR-151a-3p and SNHG29. (H) The impact of miR-151a-3p on

the SNHG29–TRAPPC1 interaction.

(Figure 4E). Moreover, the correlation relationship between
RPS6 and miR-151a-3p is impacted by the SNHG29 (Figure 4D),
and the interaction between SNHG29 and miR-151a-3p is
influenced by the RPS6 (Figure 4F). As the pairwise interactions
are impacted by the other one in the triplets, it is not enough
to assess the real relationship between each pair only based
on their own expression profiles, especially when the sample
size is very large. The triplet with two correlated pairs may
also be a competing triplet; thus, three types of candidate
triplets were analyzed in LncMiM. Using the selected miRNA–
target and lncRNA–mRNA pairs, 2060 “miRNA-centered”
triplets, 1944 “lncRNA-centered” triplets, and 1537 “mRNA-
centered” triplets were assembled. By using LncMiM, 231
“miRNA-centered” triplets, 339 “lncRNA-centered” triplets, and
439 “mRNA-centered” triplets were identified as competing
triplets (Supplementary Table 1). In total, 847 competing
triplets were found, including 38 miRNAs, 36 lncRNAs, and
236 mRNAs.

Functional Analysis of the
lncRNA-Associated Competing Triplets in
Ovarian Cancer
In the competing triplets, a considerable number of lncRNAs,
miRNAs, and mRNAs have been reported to be associated with

ovarian cancer. By searching related literature and databases,
about 30% lncRNAs have been verified to play roles in the
regulation of proliferation, invasion, and migration of ovarian
cancer cells, including ZFAS1, SNHG1, GAS5, EMX20S, GIHCG,
TP53TG1, EPB41L4A-AS1, SNHG8, SNHG6, and HCP5 (Zhan
et al., 2018; Gao et al., 2019; Wu et al., 2019; Miao et al.,
2020; Wang et al., 2020). In addition, some lncRNAs (e.g.,
SNHG29, FGD5-AS1, TRIM52-AS1, EPB41L4A-AS1, RNASEH1-
AS1, SNHG7, SPINT1-AS1, MAPKAPK5-AS1, and PITPNA-
AS1) are reported to be involved in other types of cancers
(Wang et al., 2018; Gao et al., 2019, 2; Han et al., 2019;
Zhou et al., 2020). Through retrieving the miRCancer database
(version june2020) (Xie et al., 2013), 60.5% miRNAs in the
competing triplets have been proved to be associated with
ovarian cancer. In the mRNAs, 29 ovarian cancer oncogenes
were found by searching the OCGene database (Liu et al.,
2015). These results indicate that the lncRNA-associated
competing triplets play important roles in the progression of
ovarian cancer.

To analyze the regulatory relationship between lncRNA,
miRNA, and mRNA in ovarian cancer, a comprehensive
network was established through combining the 847 lncRNA-
associated competing triplets (Figure 5A). In the network,
310 nodes are connected by 1,182 edges, including 132
miRNA–lncRNA edges, 539 miRNA–mRNA edges, and 511
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FIGURE 4 | The pairwise interaction impacted by the other one in triplets. (A) The scatter plot of miR-151a-3p and RPS6. (B) The scatter plot of SNHG29 and RPS6.

(C) The scatter plot of miR-151a-3p and SNHG29. (D) The impact of SNHG29 on the miR-151a-3p–RPS6 interaction. (E) The impact of miR-151a-3p on the

SNHG29–RPS6 interaction. (F) The impact of RPS6 on the miR-151a-3p–SNHG29 interaction.

lncRNA–mRNA edges. Among them, the top 10 nodes with
most connections are miR-151a-3p, ZFAS1, SNHG29, miR-185-
5p, GAS5, AC112491.1, let-7e-5p, miR-664a-3p, AC099850.4,
and miR-15b-3p. The top 10 edges connected with most nodes
are miR-151a-3p–AC112491.1, miR-185-5p–ZFAS1, miR-185-
5p–SNHG29, miR-151a-3p–GAS5, let-7e-5p–ZFAS1, miR-664a-
3p–AC026401.3, miR-151a-3p–SNHG29, miR-151a-3p–ZFAS1,
miR-664b-3p–AC099850.4, andmiR-15b-3p–GAS5. Based on the
connections, the nodes are divided into two groups. The small
group is mainly regulated by the miR-664a-3p and AC026401.3
pair, while the ribosome protein-related mRNAs are all located in
the large group.

Among the mRNAs, there are 39 RPL and 27 RPS genes,
which indicates that the triplets are involved in the ribosome
biogenesis. Except the RPs, the GO biological process enrichment
analysis of the other genes shows that the competing triplets
are also involved in cell division, cell proliferation, regulation
of cell cycle, anaphase-promoting complex-dependent catabolic
process, cytokinesis, chromosome segregation, and other nine
processes related with cell mitosis (Figure 5B). In addition, the
competing triplets are found to be mainly enriched in five
KEGG pathways, including cell cycle, oocyte meiosis, oxidative
phosphorylation, p53 signaling pathway, and progesterone-
mediated oocyte maturation (Figure 5C). All the results suggest
that the lncRNA-associated competing triplets mediate ovarian
cancer progression through regulating ribosome biogenesis, cell
cycle, cell division, and cell proliferation, and they may be

associated with survival in patients with high-grade serous
ovarian cancer.

Identification of Potential Prognostic
Competing Triplets
The Cox PH analysis was used to identify survival time associated
miRNAs, mRNAs, and lncRNAs in the competing triplets. The
result of univariate Cox PH analysis indicates that the lncRNA
FGD5-AS1 (p = 0.0008) is a potential prognostic biomarker
for all patients with ovarian cancer. For patients in grade G2,
C12orf45, NDUFB8, POLR2J, SNRPE, and SNRPF are found to
be associated with survival time (p < 0.001). By multivariate
analysis with patient age at diagnosis, more potential prognostic
biomarkers are found, including FGD5-AS1, GABPA, MRPS27,
NR1D2, and NR2C2. For patients in grade G2, only SNRPF is
related to the survival time with the diagnosis age. For patients
in grade G3, FGD5-AS1, LETMD1, MAPKAPK5-AS1, MRPS27,
and SDHC are screened out as prognostic biomarkers with the
diagnosis age. FGD5-AS1 andMRPS27 are found to be associated
with the survival time of patients in stage IIIC, while B9D1,
RNASEH1-AS1, SPINT1-AS1, and ZWINT are associated with
the survival time of patients in stage IV. The association between
the survival time and the triplet was also evaluated by using
multivariate Cox PH analysis. With the threshold p< 0.001, miR-
224-5p/AL354892.2/ZBTB12 is found to be survival associated
competing triplets. Considering the age of the patient at the
initial pathologic diagnosis, 18 competing triplets are found to
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FIGURE 5 | Comprehensive analysis of the lncRNA-associated competing triplets. (A) The regulatory network consists of all the competing triplets. (B) GO biological

process enrichment analysis. (C) KEGG pathway enrichment analysis.

be associated with the overall survival time of patients in ovarian
cancer, including miR-224-5p/AL354892.2/ZBTB12, miR-3653-
3p/FGD5-AS1/NR1D2, miR-224-5p/AC112491.1/NDUFB8, and
so on (Supplementary Table 2).

In addition, the Kaplan–Meier survival analysis was also
performed to evaluate the potential prognostic power ofmiRNAs,
lncRNAs, and mRNAs in the competing triplets. Considering the
large data size, for each gene, the tumor samples were divided into
two or three groups according to their expression levels by four
ways (Figure 6A). By different grouping modes, a total of 107
RNAs are found to be associated with survival time, including 13
miRNAs, 10 lncRNAs, and 84 mRNAs (Supplementary Table 3).
As show in Figure 6B, each grouping mode has its unique results.
Especially, the grouping mode b has the least common results
with the other modes, which indicates that there is a more
complicated relationship between the patient survival time and
the gene expression value. For each grouping mode, the most
significant genes are HMGN4, TACC3, RNF111, and VGLL4
(Figures 6B,C,E,F). The survival associated genes are involved in
368 competing triplets, which are found to be enriched in cell
division, cell proliferation, ribosome, and cell cycle.

DISCUSSION

In this study, TargetScan, PITA, miRanda, and miRTarBase
were used together to predict miRNA–target pairs, and a
total of 2,608,237 miRNA–mRNA and 74,086 miRNA–lncRNA

interactions were found (Supplementary Table 4). As shown
in Figures 2A,D, each tool exclusively predicted a fraction
of miRNA–target interactions. Although a vast number of
miRNA–target interactions were predicted by TargetScan, PITA,
and miRanda, there are still several experimentally validated
miRNA–target interactions predicted by none of these tools.
miRNA–mRNA pairs together with miRNA–lncRNA pairs could
construct a huge number of triplets (∼1.69E+9). Considering
the computation and time cost, miRNA–target pairs were firstly
filtered by correlation relationships.

Through the miRNA–target relationship, 1,816,605 indirect
interactions betweenmRNA and lncRNAwere established. Based
on the linear relationship calculated by the PCC, 3 negatively
correlated miRNA–lncRNA pairs (PCC = −0.3), 443 negatively
correlated miRNA–mRNA pairs (PCC = −0.3), and 27,897
positively correlated lncRNA–mRNA pairs (PCC > 0.3) were
screened out. With the linearly correlated pairs, 64 competing
triplets were established. The impact of miRNA on the linear
relationship between lncRNA and mRNA was only found in
seven competing triplets. In contrast, based on the non-linear
relationship assessed by the SCC, 89 negatively correlated
miRNA–lncRNA pairs (SCC=−0.3), 3,586 negatively correlated
miRNA–mRNA pairs (SCC < −0.3), and 33,267 positively
correlated lncRNA–mRNA pairs (SCC > 0.3) were screened out.
Comparing with the PCC, more negatively correlated miRNA–
target pairs are found by the SCC.

In most of the scatter plots of the negatively correlated
miRNA–target pairs, the points are mainly located in the
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FIGURE 6 | Survival analysis of competing triplets. (A) Four grouping modes. (B) The Kaplan–Meier curve of HMGN4 with mode a. (C) The Kaplan–Meier curve of

TACC3 with mode b. (D) The Venn diagram of survival associated genes with four grouping modes. (E) The Kaplan–Meier curve of RNF111 with mode c. (F) The

Kaplan–Meier curve of VGLL4 with mode d.

bottom left corner, which looks like a triangle other than a
line (Figure 2E). By comparison, after normalizing expression
values by a logarithmic transformation, the points become more
dispersed and scatter around a line. This result indicates that the
linear correlation between miRNA and the target is impacted by
the large span of the expression values, which is brought by the
large sample size. In addition, the different orders of magnitude
of the expression value between miRNA and the target gene
are also an impact factor. The expression value of miRNA is
calculated by RPM (max value: 8.23E5), while the expression
values of mRNA and lncRNA are calculated by FPKM (max value
of mRNA: 2.15E4, max value of lncRNA: 1.85E3). Therefore, it is
better to assess the relationship betweenmiRNA and the target by
the non-linear correlation, especially on the large scale of data.

The bigger the size of the patient data, the more complex the
relationships between ceRNAs we can observe. According to the
ceRNA hypothesis, the strength of the competing relationship
between ceRNAs is not constant but depends on the amount
of miRNA (Figures 3H, 4E). Similarly, the strength of the
interaction between miRNA and ceRNA is also impacted by the
amount of the other ceRNA (Figures 4D,F). In 231 competing
triplets, miRNAs are negatively correlated to the mRNAs and
lncRNAs. Although the positive correlation between mRNA and
lncRNA is not significant on the whole samples, their correlation
is changed with the expression level of miRNA, and a significant
positive correlation can be observed on a specific subset of
samples. In 778 competing triplets, the negative correlation
between miRNA and ceRNA is not significant on the whole

samples, but there is a significant negative correlation on a
specific subset of samples, and the correlation is influenced
by the other ceRNA. Thus, besides the impact of miRNA on
the interaction between ceRNAs, the impact of ceRNA on the
correlation between miRNA and other ceRNAs should also
be considered.

However, there is still no method considering the impact of
both the miRNA and the ceRNAs when identifying competing
triplets. The method, sensitivity partial Pearson correlation
(SPPC), only estimates the impact (sensitivity) of miRNA on
the interactions between ceRNAs (Paci et al., 2014). However,
when using SPPC on “miRNA-centered” candidate triplets, no
competing triplets were identified. JAMI is a conditional mutual
information-based method, which can only estimate the impact
of ceRNA on the interaction between miRNA and other ceRNAs
(Hornakova et al., 2018). With JAMI, 87 competing triplets were
filtered out from 1,507 “mRNA-centered” candidate triplets, and
385 competing triplets were identified from 1,944 “lncRNA-
centered” candidate triplets. The JAMI results only show that the
centered ceRNA has a significant influence on the relationship
between miRNA and the other RNA in a candidate triplet,
but it is still unknown if the other RNA is a ceRNA that
should be negatively correlated with miRNA. In addition, the
SNHG29/miR-151a-3p/RPS6 competing triplet is not identified
by JAMI (Figure 4).

Considering the drawbacks of the existing tool, we developed
a novel method named LncMiM to identify lncRNA-associated
competing triplets in ovarian cancer. Besides the impact
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of miRNA on the interaction between ceRNA pairs, the
impact of ceRNA on the interaction between miRNA and the
other ceRNA is also used to identify competing triplets. As
compared with other tools, LncMiM shows better performance
(Supplementary Table 5). By using LncMiM, 231 competing
triplets were identified from 2,060 “miRNA-centered” candidate
triplets, 339 competing triplets were identified from 1,944
“lncRNA-centered” triplets, and 439 competing triplets were
identified from 1,507 “mRNA-centered” triplets. In final, a
total of 847 lncRNA-associated competing triplets were found.
The functional enrichment analysis shows that the competing
triplets are mainly involved in cell division, cell proliferation,
and regulation of cell cycle. The KEGG pathway analysis
shows that they are associated with ribosome, cell cycle, oocyte
meiosis, oxidative phosphorylation, p53 signaling pathway, and
progesterone-mediated oocyte maturation. Among them, 18
competing triplets are found to be significantly correlated with
the overall survival in ovarian cancer.
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After years of development, the complexity of the biological sequence alignment

algorithm is gradually increasing, and the lack of high abstract level domain research

leads to the complexity of its algorithm development and improvement. By applying

the idea of software components to the design and development of algorithms, the

development efficiency and reliability of biological sequence alignment algorithms can

be effectively improved. The component assembly platform applies related assembly

technology, which simplifies the operation difficulty of component assembly and

facilitates the maintenance and optimization of the algorithm. At the same time, a friendly

visual interface is used to intuitively complete the assembly of algorithm components,

and an executable sequence alignment algorithm program is obtained, which can directly

carry out alignment computing.

Keywords: biological sequence alignment algorithm, component, component model, component assembly

platform, B/S architecture

INTRODUCTION

Bioinformatics is an interdisciplinary subject involving life sciences, mathematics, and computer
science. Its main research work lies in the acquisition, processing, and storage of biological
information, and further includes distribution, analysis, and interpretation. Its research methods
are to use various technologies and tools of computer, biology and mathematics to mine and
understand the biological significance contained in the massive data (Wang et al., 2015; Liu, 2018).
After years of development, bioinformatics has shaped big data of biological information. As a basic
method of mining biological sequence information, sequence alignment algorithms have received
extensive attention from researchers in recent years.

Sequence alignment algorithms can be divided into pairwise sequence alignment algorithms and
multiple-sequence alignment algorithms(Zhan et al., 2019, 2020). The most classic solution of the
pairwise sequence alignment algorithm is the dynamic programming algorithm, and the multiple-
sequence alignment algorithm is due to its NP completeness (Wang and Jiang, 1994), the current
research is dedicated to finding the best approximate solution, but there is a lack of research on
the level of algorithm domain. In recent years, the complexity and development difficulty of the
newly proposed sequence alignment algorithm program have been increasing, and the efficiency
of algorithm development and maintenance cannot be guaranteed. The idea of Component-Based
Software Development (CBSD) (Yin, 2017) is viewed as an effective means to solve the “software
crisis.” It is also one of the current development trends of software development. Its greatest
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advantage is that it can reuse the existing development results
and improve software development efficiency. Algorithm is
the core of software, which embodies the wisdom of software
developers. The development efficiency and running efficiency
of the algorithm have a crucial impact on the final quality
of software. Therefore, the development idea of CBSD can
be applied to algorithm development to further improve the
development activities of algorithm programs.

Don Batory proposed an algorithmic component
development method, connecting the feature model, grammar,
and proposition formula to achieve the purpose of defining
arbitrary constraints and using satisfiability solvers to debug
feature models. In addition, a logical truth maintenance system
is introduced to propagate the constraint characteristics of
feature selection. Finally, based on these theoretical foundations,
a product line development tool set that supports feature
modularization and its combination is developed, and the
combination development of graph algorithm is described
(Batory, 2005).

Through in-depth study, we found that the first step of
component-based algorithm development is to complete the
domain analysis of algorithm family in a certain domain, and
obtain a domain feature model that can guide component
design and implementation. Next step is the structural design
and interaction design of the components according to the
requirements shown in the feature model. Finally it is to
implement models using a suitable development language and
provide corresponding component assembly services. Under the
guidance of generative programming (Czarnecki and Eisenecker,
2000), FODM (Zhang and Mei, 2003) domain modeling method
and PAR (Xue, 1993, 1997, 1998, 2016; Wang and Xue, 2009;
Xue et al., 2018), domain modeling activities, component design
activities and component implementation activities for common
sequence alignment algorithms are almost done by our research
team. Based on the existing results, the paper presents the
assembly platform of sequence alignment algorithm components.
The platform mainly provides the assembly services for the
developed algorithm components, which greatly improves the
automation of the algorithm component assembly, and further
reduces the complexity of the algorithm development.

PLATFORM CONSTRUCTION

Preliminaries
Software Reuse
With the development of computer technology, its influence
in human society is gradually improved. While the complexity
and security of software are becoming increasingly prominent.
Researchers are difficult to grasp the efficiency, cost, quality and
future maintenance of software development. As early as 1968,
the North Atlantic Treaty Organization (NATO) has put forward
the definition of software crisis. And then the research of software
engineering (Wang et al., 2018) also develops rapidly. Software
reuse (Zhang and Mei, 2003, 2014; Zhang et al., 2005; Barros-
Justo et al., 2019; Feng et al., 2019) is considered to be a feasible
technology to improve the level of software industrial production
and effectively solve the software crisis.

FIGURE 1 | Interactions among component assembly modules.

FIGURE 2 | Overall platform architecture.

The idea of software reuse is to reuse the existing software in
accordance with the specifications in the development process.
When developing other systems in the same field, it is not
necessary to develop from scratch, but on the basis of reusable
resources to carry out efficient reuse development. In this process,
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FIGURE 3 | Platform functional architecture.

abstraction is the basic element (Zhu, 2017), and efficient reuse
cannot lack high-abstractionmodeling of related reuse fields. The
scope of reusable resources covers various forms of products,
including software design documents, domain models, software
patterns, code components, software architecture, software
implementation documents, application generators and so on.

Component Technology
Component assembly technology (Zhang, 2018; Wu, 2019) is
the core part of realizing CBSD. After completing a series of
component design and development work, the final goal of CBSD
is to assemble the components. From the current research (Xu et
al., 2006; Chen et al., 2012; Zhen et al., 2014), the technology has
achieved some research results.

The component assembly forms mainly include black box
assembly, white box assembly and gray box assembly. The main

difference is whether the components need to be modified before
assembly. Black box assembly is the most suitable assembly
method for component encapsulation, but it also reduces the
adaptability of components. White box assembly emphasizes
the adaptability of components. The assembly is flexible and
can achieve greater composability. However, due to too many
implementation details exposed, the ease of use of components
will be reduced, and improper modifications will occur, so
that the final assembly cannot achieve the expected. Gray box
assembly is the most widely used assembly method currently. It
combines black box assembly and white box assembly and can be
adapted to a variety of application scenarios.

The difference between sequence alignment algorithm
component and software component is that the former often
has higher coupling degree, and the algorithm component
often needs to be modified to adapt to the relevant application
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FIGURE 4 | Component assembly process.

scenarios. However, the idea of sequence alignment algorithm is
complex. If the assembler does not have a good understanding
of the algorithm, new errors will be made when modifying
it. Therefore, before assembling algorithm components, it
is necessary to conduct a detailed domain analysis, formally
describe the algorithm component, and form a structure
framework to guide the algorithm component assembly.
Finally, the gray box assembly of sequence alignment algorithm
components is completed under the guidance of domain model,
formal specification and algorithm framework.

Platform Design
Requirement Analysis
The goal of CBSD is that the software system can be automatically
generated from a series of software components according to the
system requirements supported by the generator. The purpose
of developing the component assembly platform for sequence
alignment algorithm is also to reduce the manual assembly
workload as much as possible and improve the automation level
of the whole component system.

The platform mainly includes component transformation,
component assembly and code running. By means of
C++ program generation system of PAR, the component
transformation module can transform Apla components
into C++ components, see details in Xue et al. (2018). The
component assembly function and code running function are
composed of four modules, i.e., component library, component

FIGURE 5 | Steps of ClustalW.

selection, code assembly, and code running. The interactive
relationship among the modules is shown in Figure 1.

Component library module includes two parts, one is
the source code of algorithm components that have been
transformed and stored in the files, and the other is the Apla
component assembly code that needs to be manually developed
or modified in the database. In addition, the component
library module also plays a management role, such as adding,
deleting, modifying, and checking components, supporting
further component expansion and modification in the future.

Component selection module reads the components in
the component library and displays them on the platform
interface according to their required and optional features
and the type characteristics of their affiliation. After selecting
the components, the validity of component composition
is checked. According to the multi-choice one or multi-
choice relationship of feature dimension and the dependency
relationship between components, the component composition
is constrained accordingly to prevent illegal combination from
the subsequent process.

After completing the component selection, code assembly
module obtains the required Apla assembly code from the
database, and the user can make appropriate modifications to
correctly call the selected component in the component library.
After the assembly code is developed, the Apla code is converted
into the corresponding C++ code through the transformation
system of PAR platform. Finally, the assembly and compilation of
executable codes is completed in the sever of platform to generate
executable algorithmic programs.

After the user inputs the alignment data, the code running
module executes the corresponding executable alignment
algorithm program. It enables the user to directly perform
sequence alignment operations on the platform, and displays the
final algorithm running results on the page.

System Design
The platform is developed using B/S architecture following
J2EE specifications, the Java language is used, and the Spring
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FIGURE 6 | Component selection interface.

Boot (Wang et al., 2016) and MyBatis (Rong, 2015) as well
as Thymeleaf framework, which are currently popular in web
development, are adopted, and the stability of their architecture
has been tested by practical applications.

The overall architecture of the assembly platform is shown
in Figure 2, including the data layer, service layer, and interface
layer. The data layer mainly uses MySQL and files to store
the Apla program and component source code required by the
platform. The service layer mainly includes component assembly
service, component transformation service, and program run
service. The application layer mainly uses HTML to display the
platform, uses JS to implement the relevant interaction logic.

According to the requirement analysis, the functional
architecture of the platform is shown in Figure 3. Component
transformation module includes the functions of Apla
development, Apla transformation, Apla code storage and
maintenance, and C++ code storage and maintenance.
As the core of the platform, component assembly
module consists of the functions of component display,
component selection, component combination verification,
assembly code generation, compiling code generation,
component compilation and component maintenance.
Program running module is composed of the functions
of sequence input, parameter input, code execution and
result display.

Detailed Platform Design
Through system function requirement analysis, overall
architecture design, and functional architecture design, the
sequence alignment algorithm component assembly platform is
outlined. Next is to give a detailed design of the platform system
based on the operating sequence of each module. The platform
mainly includes component conversion process, component
selection process, component assembly process and algorithm
execution process. This section mainly describes the process of
component assembly, as shown in Figure 4.

Analysis of Key Platform Algorithms
The pairwise sequence alignment algorithm and heuristic
multiple sequence alignment algorithm based on dynamic
programming have been implemented in the platform, and the
most critical one is the progressive multiple sequence alignment
algorithm based on phylogenetic tree. The most classic ClustalW
(Thompson et al., 1994) algorithm in the algorithm thought is
implemented in 1994 by Thompson and Higgins. Its operation
steps are described as follows, and the algorithm diagram is
shown in Figure 5.

(1) Pairwise sequence alignment. The sequence group is aligned
between two pairs, and the distance matrix is established by
the pairwise sequence alignment score to indicate the distance
between the sequences.

(2) Generate a phylogenetic tree. Using the information in the
distance matrix, a phylogenetic tree is established through the
corresponding clustering algorithm to guide the subsequent
multiple sequence alignment operations.

(3) Progressive alignment. The previous operation has generated
a guide tree, and the last step is to gradually complete the
alignment of all sequences in the form of keeping gaps, starting
from the close evolutionary relationship according to the
alignment sequence reflected by the guide tree.

The components involved in the algorithm are sequence validity
check component, pairwise sequence alignment component,
distance matrix component, phylogenetic tree component,
progressive alignment component, and alignment result output
component. Since the distance matrix component and the
pairwise sequence alignment component are highly coupled,
the pairwise sequence alignment component is designed as
a generic operation parameter of the distance matrix, and
the corresponding distance matrix can be generated by
instantiating different pairwise sequence alignment algorithms.
The phylogenetic tree component also includes a clustering
algorithm selection sub-component, which is also designed as a
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FIGURE 7 | Alignment result interface.

generic operation parameter. The commonly used instantiation
algorithms are the NJ algorithm (Saitou and Nei, 1987) and the
UPGMA algorithm (Zhang et al., 2018). The objective function
(Carrillo and Lipman, 1988; Notredame et al., 1998) is also
designed as a generic operation parameter while performing a
progressive alignment, here we aims to expand the scope of
algorithm components assembly.

ASSEMBLY EXAMPLE

We will carry out an example of the assembly for the progressive
alignment algorithm based on phylogenetic tree to demonstrate
how the modules of the platform work together and how they
interact with each other.

(1) Transform Apla components except those for assembling.
The transformation system of PAR platform is used
to convert the developed Apla components into C++

components and store them to the platform’s local files.

(2) Visually select several existing components satisfying the
composable constraints according to the established
domain feature model and component interaction
model. The components are grouped by the required
or optional attribute. In order to prevent the selection
of illegal combinations from the subsequent assembly,
the distinction between multi-choice-one or multi-
choice-multi is carried out in the optional components
group. The component selection interface is shown
in Figure 6.

(3) Based on the interaction relationship between the
components, read the corresponding Apla assembly
code in the database and display it on the page following the
selection of component combination. The user can check
and modify the component assembly code, and then submit
an Apla conversion request and store the converted C++

assembly code as the local file.
(4) After all the Apla component conversion and assembly

code conversion, the makefile script file for compilation is
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generated automatically, and is executed to compile and link
the C++ components. The parameter input interface of
sequence the Presentation 1 for details.

(5) After the user inputs the sequence data, and the replacement
matrix as well as the penalty model required by the multiple
sequence alignment, the algorithm program generated will
be executed, and the alignment output displayed in the user
interface. As shown in Figure 7.

SUMMARY

With the development of CBSD, component-based development
technology has been verified in many practical applications.
It can exactly improve the development efficiency and
maintenance of software. In this paper, the component
development technology is applied to the development of
biological sequence alignment algorithms. Under the guidance
of domain modeling, generative programming and PAR,
the formal transformation of sequence alignment algorithm
components is carried out, and a B/S-based visual assembly
platform for the gray box assembly of algorithm components
is constructed. On top of our previous study results, the
components required by the sequence alignment algorithm are
classified and displayed, and the corresponding combination
constraints are designed and implemented. After the legal
component combination is selected, the assembly code can
be modified and compiled to form an executable algorithm
program. In addition, the algorithm can run directly on the
platform to facilitate users to conveniently conduct sequence
alignment studies.

Next, we will release out codes in GitHub. Future work
also includes the improvement of the biological sequence
alignment algorithm component assembly platform from the
following aspects.

(1) The algorithm components of this platform will be further
expanded to enlarge the scope of algorithms generated from
component assembly.

(2) The combination constraints in the platform have not been
explicitly implemented. We will restrict the combination
constraints of algorithm components to XML files, and shape
the corresponding combination constraint documents to
make it easier for users to assemble.

(3) With the richer component library, the algorithm
component library needs to have an efficient component
search function. Recent years, the recommendation
algorithm based on artificial intelligence has developed
rapidly. The feasibility of introducing this technology into
the platform to improve the ease and automation level of
algorithm assembly platform will be carefully studied.
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As a key algorithm in bioinformatics, sequence alignment algorithm is widely used in 
sequence similarity analysis and genome sequence database search. Existing research 
focuses mainly on the specific steps of the algorithm or is for specific problems, lack of 
high-level abstract domain algorithm framework. Multiple sequence alignment algorithms 
are more complex, redundant, and difficult to understand, and it is not easy for users to 
select the appropriate algorithm; some computing errors may occur. Based on our 
constructed pairwise sequence alignment algorithm component library and the convenient 
software platform PAR, a few expansion domain components are developed for multiple 
sequence alignment application domain, and specific multiple sequence alignment 
algorithm can be designed, and its corresponding program, i.e., C++/Java/Python 
program, can be generated efficiently and thus enables the improvement of the development 
efficiency of complex algorithms, as well as accuracy of sequence alignment calculation. 
A star alignment algorithm is designed and generated to demonstrate the 
development process.

Keywords: multiple sequence alignment algorithm, domain component, algorithm generation, convenient 
software development platform, bioinformatics

INTRODUCTION

Alignment is a common and important approach in biology study. In the research of bioinformatics 
(Wang et al., 2015), biological sequence alignment is one of the important processes of similarity 
analysis between unknown and known molecular sequences, the basis of biological sequence 
analysis and database search, and used in the sequence assembly. It is the key link to apply 
high-performance computing to biology.

Sequence alignment is a technique for identifying regions of sequence similarity by arranging 
genome sequences to obtain the function, structure, or evolutionary relationship between the 
sequences to be aligned. With the implementation of the Human Genome Project, the development 
of sequencing technology has produced a large amount of raw sequence data about biological 
molecules. For example, Illumina HiSeqX Ten can generate approximately 3 billion 2  ×  150  bp 
paired-end sequencing data within 3  days (Illumina, 2016). Challenged with such a wealth of 
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genome sequence data, to efficiently process and analyze these 
data, to compare similar regions and conserved sites between 
the two sequences, to seek sequence homology structures, and 
to reveal biological heredity, variation, and evolution, etc., have 
become the main motivations for the research of sequence 
alignment algorithms.

At present, most of the research on alignment algorithms 
focus on specific problems (Isa et  al., 2014; Cattaneo et  al., 
2015; Chattopadhyay et  al., 2015; Huo et  al., 2016) or specific 
algorithm optimization (Farrar, 2007; Houtgast et  al., 2017; 
Junid et  al., 2017) in the field of sequence similarity analysis, 
but less on the whole problem domain, so it is difficult to 
get an algorithm component library with a higher level of 
abstraction and suitable for the whole field of sequence similarity 
analysis. To some extent, this leads to the redundancy of the 
sequence alignment algorithm and the errors that may be caused 
by the artificial selection algorithm. It also makes it difficult 
for people to effectively understand the algorithm structure 
and ensure the correct use of the algorithm, which reduces 
the accuracy of the sequence similarity analysis. Because of 
the specificity and low-level abstraction of existing algorithms, 
researchers need to spend a lot of time to learn and use such 
algorithms, and it is also difficult to locate and solve the errors 
generated by the algorithms; thus, maintainability and reusability 
of the algorithms are reduced, and the burden of sequence 
similarity analysis is increased.

Sequence alignment algorithms can be divided into pairwise 
alignment algorithms and multiplesequence alignment algorithms 
(Zhan et al., 2019, 2020). Among them, the most classic solution 
to the pairwise sequence alignment algorithm is dynamic 
programming. We  studied the field of dynamic programming–
based pairwise sequence alignment algorithm (DPPSAA) in 
the early stage and established a domain component library 
(Shi and Zhou, 2019), which has been successfully applied to 
the problem of pairwise sequence alignment algorithm. However, 
the multisequence alignment algorithm is rather complex. 
Because of its non-deterministic polynomial (NP)-complete 
(Wang and Jiang, 1994), current researches are all devoted to 
finding the optimal approximate solution. With the increase 
of the complexity and difficulty of the multisequence alignment 
algorithm, the reliability and efficiency of the algorithm are 
difficult to be  guaranteed.

Based on the previous work, this article adopts the formal 
method PAR (Xue, 1997, 2016; Shi and Xue, 2009, 2012; Xue 
et  al., 2018) to describe, construct, transform, and refine the 
components, models, and frameworks related to the 
multisequence alignment algorithm and expand PAR platform 
to support the generation of effective multiple sequence alignment 
algorithm via component assembly. The multilevel different 
models in the algorithm development process are unified under 
the PAR framework to effectively ensure the reliability of  
the resulting algorithm and improve the efficiency of 
algorithm development.

Through in-depth analysis of the field of multiple sequence 
alignment algorithms, based on the component library of the 
DPPSAA domain, some algorithm components have been 
improved and added, and a component library of multiple 

sequence alignment algorithms on top of the component library 
of the DPPSAA domain was established. Finally, an example, 
the successful assembly of the star alignment algorithm and 
the automatic generation of the C++ program, is shown.

ALGORITHM GENERATION UNDER THE 
PAR FRAMEWORK

Related Work
On the basis of the component library in the DPPSAA domain, 
this article has carried out the research on the algorithm design 
and program generation of multiple sequence alignment 
algorithms under the PAR framework.

PAR
The PAR framework includes two parts: software formal method 
and convenient software development platform. The PAR method 
is composed of a generic algorithm design language Radl, a 
generic abstract programming language Apla, systematic 
methodology for algorithms and programming. It combines 
two high-efficiency techniques, i.e., partition and recursion 
used in special problems, covering a variety of known algorithm 
design techniques such as dynamic programming, greedy, divide 
and conquer, and so on. It can be  used as a unified method 
of algorithm generation to avoid the difficulty of making choices 
among the existing algorithm design methods. The PAR platform 
is composed of Apla to C++/C#/Java/Python program generation 
systems and realizes the automatic generation of algorithmic 
programs such as sequential programs, parallel/concurrent 
programs, and database applications.

Practice has proven that the productivity of complex algorithm 
program and database application software can be  greatly 
improved by using the language, method, series algorithm, 
and program automatic generation tool provided by PAR. Many 
military departments, such as the National General Equipment 
Department, Beijing Military Region, and armored academy, 
have taken the lead in applying these achievements to the 
construction of China’s important military projects and have 
achieved remarkable military and economic benefits. The PAR 
framework has been appraised by the expert group of the 
Ministry of Science and Technology of China as “having the 
international advanced level, among which the theoretical 
framework of the correctness of the complex algorithm program 
has the international leading level.”

DPPSAA Domain Model and Component Library
In Shi and Zhou (2019), we  analyzed the characteristics of 
DPPSAA, extracted the common and variable features and the 
constraints and dependencies between them, established the 
DPPSAA domain model and its algorithm component interaction 
model, and further implemented the models using the abstract 
programming language Apla to form a highly abstract DPPSAA 
component library, in order to automatically or semiautomatically 
assemble components to generate sequence alignment algorithms 
for specific fields, thereby reducing the error rate and time 
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cost of manual selection algorithms for sequence similarity 
analysis, improving the efficiency of algorithm execution, and 
even assembling a more efficient new sequence alignment 
algorithm based on dynamic programming.

The experimental results show that the DPPSAA algorithm 
component library has a certain degree of practicability and has 
good expected results. It can be seen from the domain realization 
process that the domain feature model is a formal description 
at a higher level of abstraction, which not only makes the specific 
composition characteristics and dependencies of the algorithm 
clearly displayed, but also is very helpful for understanding the 
overall architecture of the algorithm. Moreover, the establishment 
of the feature interaction model makes it easier to specify the 
specific configuration knowledge required by the algorithm in 
the domain implementation process and then automatically 
assemble the components in the DPPSAA algorithm component 
library to design the desired algorithm, without paying too much 
attention to the details of algorithm implementation.

Algorithm Generation Process
Based on a large amount of practical work carried out in the 
early stage, combined with related methodologies such as PAR 
and domain engineering, the development of multisequence 
alignment algorithms can be  divided into two parts: reuse-
oriented development and application reuse development.

For reuse-oriented development, it can be  divided into the 
following steps:

 1.  Analyze the algorithm family in the field of multiple sequence 
alignment, and establish the domain model.

 2.  Formally describe the component function specifications.
3. Use the PAR method to design abstract Apla algorithm 

components, use the PAR platform to obtain highly reliable 
executable language-level components, and expand the PAR 
platform component library in a self-expanding manner.

The process of designing a specific problem-solving algorithm 
and generating a program is a development process of 
application reuse:

1. Analyze and (formally) characterize the specific problem to 
be  solved.

2. Determine the algorithm components required for assembly.
3. The Apla abstract language is used to describe the assembly 

process, and the executable program corresponding to the 
specific algorithm is automatically generated through the 
PAR platform.

The introduction of the PAR framework reduces the 
operational difficulty of algorithm component assembly and 
improves the automation of algorithm component assembly.

STAR ALIGNMENT ALGORITHM

Algorithm Idea
The star alignment algorithm (Zou et al., 2009, 2015) is a heuristic 
fast approximation algorithm for typical multisequence alignment. 

It compares all sequences in pairs and selects the sequence 
with the highest alignment score with other sequences as the 
central sequence. Then, continue to compare with other sequences 
to obtain the final alignment result. When adding subsequent 
sequences to the alignment process, follow the “leave blank 
once, leave blank everywhere” rule, which cannot guarantee 
the ultimate result of the alignment.

For example, for the sequence s1  =  CGCT, s2  =  GCGT, 
s3  =  CCTG, the pairwise alignment results of the sequences 
s1, s2, and s3 are shown in Table  1.

The star alignment algorithm adds the alignment scores of 
each sequence to other sequences and selects the sequence 
with the largest score as the central sequence. Therefore, in 
this case, s1 is selected as the center sequence, and the best 
alignment result and the final merge result with S2 and S3 
are shown in Figure  1.

Algorithm Component and Apla 
Implementation
Using feature modeling knowledge and performing process 
analysis on star alignment algorithms, we  will know that 
multisequence alignment is mainly used as the core service 
of star alignment algorithms in the star alignment process. 
The multiple sequence alignment service is mainly based on 
the pairwise sequence alignment, by selecting the optimal 
pairwise sequence alignment result as the central sequence, 
and then continuously adding the suboptimal sequence to the 
alignment until the final multisequence alignment result is 
obtained. After analyzing the execution process of the star 
alignment algorithm, the multisequence alignment operation 
service mainly consists of the following features (the component 
name of the corresponding feature in parentheses): sequence 
legality check (msa_check), distance matrix (dist_Matrix), 
pairwise alignment manipulation (align_manipulation), center 
sequence selection (msa_center), remember alignment space 

TABLE 1 | Distance matrix of s1, s2, and s3.

s1 s2 s3 Score

s1 −1 −1 −2
s2 −1 −2 −3

s3 −1 −2 −3

FIGURE 1 | Result of star sequence alignment.
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(rmb_space), multisequence alignment result output (msa_op_
result), and so on. Among them, sequence legality check, 
pairwise alignment manipulation, distance matrix, and center 
sequence selection are mandatory features in the star alignment 
algorithm, and the multisequence alignment result output feature 
mainly depends on the remember alignment space feature; 
that is, when the assembly algorithm contains a multisequence 
alignment result output component, it will include and implement 
the remember alignment space component by default.

Taking DPPSAA as the basis of sequence alignment, generic 
programming language Apla is used to abstractly represent 
the star alignment algorithm, which can realize star alignment 
algorithm by standardized assembly. Here, we  expand on the 
basis of the component library in the DPPSAA domain, so 
that the component library in this domain can be  used to 
assemble and implement the star alignment algorithm. 
We  perform Apla representation of the extended component 
as follows:

1. Sequence legality check
 msa_check is an extension based on the check component 
in the DPPSAA field that can be  used to detect multiple 
sequences. The Apla process statement is:
procedure msa_check(String str[]);
where str[ ] represents the base string array for multiple 
sequence alignment.

2. Distance matrix
dist_Matrix means that all pairwise alignment scores 
participating in multisequence alignments are returned as 
distance matrix elements, and the component uses pairwise 
sequence alignment operations as its generic parameters. The 
prototype of the Apla function is as follows:
function dist_Matrix (procalign_manipulation(sometype 
elemMatrix; ADT dp_mode(eM:elemMatrix); op_mode (func 
score_op():integer; proc traceback (proc print_align(); proc 
print_extrude() =NULL)); result:boolean; eM: elemMatrix; 
s:String; t:String))):integer[ ][ ].

3. Center sequence selection
The msa_center component is an important part of the 
components library of multiple sequence alignment algorithm. 
This component can be  used to select the best alignment in 
all pairwise alignments; take the best alignment sequence in 
the alignment as the center sequence, and then iteratively 
add the remaining sequences to obtain the best multiple 
sequence alignment results. The function prototype is as follows:
function msa_center(dist[][]: integer):integer;
The array dist represents the array returned by the distance 
matrix, and the component returns the index value of the 
center sequence.

4. Remember alignment space
In the star alignment algorithm, the algorithm follows the 
rule of “leave blank once, leave blank everywhere” when 
adding subsequent sequences to the alignment process. 
Therefore, the role of the rmb_space component is to remember 
the space inserted during each sequence alignment. The 
function prototype is as follows:
function rmb_space(): integer[][];

5. Multisequence alignment result output
This component inserts the space index value obtained in 
(4) into the sequence to output the final multisequence 
alignment result. This component can be  implemented with 
the following Apla process:
procedure msa_op_result(space[][]:integer);

Star Alignment Algorithm Generation
Using the Apla-C++ conversion system, the aforementioned 
component library is converted into the corresponding C++ 
component through the combination of automatic conversion 
and manual conversion, which can be  used to generate the 
star alignment algorithm program and conduct test analysis 
to obtain experimental results. This section shows only the 
three main components: dist_Matrix component, msa_center 
component, and rmb_space component.

As the star alignment algorithm requires the pairwise sequence 
alignment manipulation, and the alignment score result value is 
used as the element of the distance matrix, the dist_ matrix 
component needs to use the sequence alignment manipulation in 
DPPSAA as its generic parameter to obtain the score value of 
the pairwise alignment of all sequences. In the process of converting 
the Apla program to the C++ program, it is first necessary to 
assemble the components in DPPSAA to form a pairwise sequence 
alignment algorithm and design the pairwise sequence alignment 
algorithm as an independent function as the function pointer 
parameter of the distance matrix component, which reduces the 
dependency between the pairwise sequence alignment algorithm 
and the distance matrix. Here, we  set the pairwise sequence 
alignment algorithm to NW algorithm and return the pairwise 
sequence alignment scores. The C++ code is as follows:

class MsaNW{//NW algorithm assembly
public:
int Msa_NW(Score_matrix_mani& matrix,const std::string& 

s,const std::string& t){
matrix.apply_memory();
matrix.Memory_Score_of_Matrix(&Init_Score_matrix::Init_

Score_matrix1, matrix.get_Matrix(), matrix.getPenaltyMatrix(), 
matrix.get_length_s(), matrix.get_length_t());

dp_mode dp_NW;
dp_NW.align_and_score(matrix,&set_and_remember::set_

and_remember1);
return matrix.the_Last_element_score();
}
}
The C++ program obtained by transforming the dis_matrix 

component is as follows:
class dist_Matrix{
int** dist; //distance matrix
int* row_sum;//sum of row
int seqs_num;//number of sequences
public:
void Dist_Matrix(int(MsaNW::*Msa_NW)(Score_matrix_

mani&, const std::string&, const std::string&),std:string* seqs, 
Score_matrix_mani** matrix)//final score {...}

void sum_row(){...}
}
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Among them, the class dist_Matrix contains three attributes; 
dist represents the distance matrix, for example, the element 
dist[0][1] = 1, which represents the pairwise sequence alignment 
score value of the first sequence, and the second sequence is 
1; row_sum represents the sum of the scores of each sequence 
after pairwise alignment with other sequences, that is, the row 
sum of dist; seqs_num represents the number of sequences 
participating in the alignment. In the method Dist_Matrix, 
seqs represents a string pointer to all sequences participating 
in the alignment, matrix represents a two-dimensional matrix 
composed of score matrix objects obtained after pairwise 
alignment of all sequences, and the method sum_row() is used 
for calculation row_sum value.

At the same time, msa_center component is transformed 
into a class msa_center. The attribute center_index of this class 
records the index of the center sequence. The method Msa_center 
is used to calculate the center_index, and the distance matrix 
object is used as its parameter. The C++ representation of 
this component is as follows:

class msa_center{
private:
int center_index; //record center sequence index
public:
int Msa_center(dist_Matrix distM){...}
}
rmb_space component is also converted to the class rmb_space 

in C++, where the attribute Msa_space_loc represents the gap 
position inserted when the center sequence is aligned with 
other sequences, and the attribute msa_ret_str means the 
sequence alignment result after inserting gaps in all sequences 
according to the “leave blank once, leave blank this time” 
rule. The C++ representation is as follows:

class rmb_space{
int** Msa_space_loc;//the position of the space when each 

sequence is aligned with the center sequence
std::string* msa_ret_str;//MAS alignment result

public:
void Msa_add_space(MsaCenterSeq mcs, Dist_Matrix distM, 

Msa_Sequence* seqs, Score_matrix_mani** matrix){..}
}
Through the above conversion, we  can obtain the complete 

component library to assemble and generate the star alignment 
algorithm. The process of assembling and generating the star 
alignment algorithm is listed below, where Star represents the 
parameter matrix of the method Dist_Matrix used to construct 
the distance matrix in the star alignment algorithm, that is, 
the score matrix operation object in the NW algorithm.

int main{
std::string s[3]={"CGCT", "CCTG","GCGT"};
int seq_num = sizeof(s)/sizeof(s[0]);
Msa_check().check_dna(s, seq_num);
Star star(s, seq_num);
dist_Matrix distM(seq_num);
distM.Dist_Matrix(&MsaNW:Msa_NW,s, star.get_matrix());
distM.sum_row();
msa_center mc;
mc.Msa_center_seq(distM);
RmbSpace rs(seq_num, star.get_Seqs()->max_length());
rs.Msa_add_space(mc, distM, star.get_seqs(), star.

get_matrix());
Msa_print_align().msa_print_align(rs.get_ret_str(), 

seq_num);
}

Experiment Analysis
We downloaded four Escherichia coli DNA data with a length 
of approximately 200 characters from NCBI’s Genbank gene 
database website for experimental testing. The basic 
configuration of the machine is 3.40  GHz, Intel Core i7 
processor, 8  GB RAM, and Windows 7 operating system. 
The result of the experiment is shown in Figure  2. The 
comparison takes 11.318  s.

FIGURE 2 | Snapshot of the alignment result.
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The running kr alignment algorithm generated by the assembly 
can perform multisequence alignment better and has obtained 
results similar to the original star alignment algorithm, which 
verifies the practicability of the star alignment algorithm 
generated by the assembly.

CONCLUSION

Sequence alignment algorithms are widely used. Because of 
the complexity of multiple sequence alignment problems and 
the diversity of algorithm design strategies, it is difficult to 
guarantee the development efficiency and reliability of multiple 
sequence alignment algorithm programs.

This article takes the problem of multiple sequence 
alignment as a special field and works on the algorithm 
development and program generation under PAR framework. 
Through the analysis of problem characteristics, the generality 
of the domain algorithm family is extracted, the features 
are described, and abstract algorithm components are designed. 
Based on the research of the pairwise sequence alignment 
algorithm family, the method and platform under the PAR 
framework are used to assemble the specific multisequence 
alignment algorithms and generate programs automatically. 
As a case study, assembly of the star alignment algorithm 
is given to demonstrate the generation process of the specific 
algorithm program, which further proves the practicability 
of the component library in the related field and the  
reliability and efficiency of the algorithm generation under 
the PAR framework.
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The dimensionality reduction method accompanied by different norm constraints plays
an important role in mining useful information from large-scale gene expression data. In
this article, a novel method named Lp-norm and L2,1-norm constrained graph Laplacian
principal component analysis (PL21GPCA) based on traditional principal component
analysis (PCA) is proposed for robust tumor sample clustering and gene network
module discovery. Three aspects are highlighted in the PL21GPCA method. First,
to degrade the high sensitivity to outliers and noise, the non-convex proximal Lp-
norm (0 < p < 1)constraint is applied on the loss function. Second, to enhance the
sparsity of gene expression in cancer samples, the L2,1-norm constraint is used on
one of the regularization terms. Third, to retain the geometric structure of the data, we
introduce the graph Laplacian regularization item to the PL21GPCA optimization model.
Extensive experiments on five gene expression datasets, including one benchmark
dataset, two single-cancer datasets from The Cancer Genome Atlas (TCGA), and two
integrated datasets of multiple cancers from TCGA, are performed to validate the
effectiveness of our method. The experimental results demonstrate that the PL21GPCA
method performs better than many other methods in terms of tumor sample clustering.
Additionally, this method is used to discover the gene network modules for the purpose
of finding key genes that may be associated with some cancers.

Keywords: Lp-norm, graph regularization, sparse constraint, principal component analysis, tumor clustering,
gene network modules, L2,1-norm

INTRODUCTION

High-throughput sequencing technologies, including genome-wide measurements, have enabled
large-scale gene expression profiles to accumulate faster (Goodwin et al., 2016). It is of great
significance to obtain useful information from these data. Reliable and precise identification of
cancer types and obtaining key pathogenic genes are very important for cancer diagnosis and
treatment (Koboldt et al., 2012). Generally, gene expression data have a typical characteristic of
“high dimension, low sample” size (West, 2003), which is a challenge for most traditional statistical
methods. Too many variables and some uncorrelated noise variables in the gene expression
data may all have a negative effect on the tumor clustering performance regardless of whether
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supervised or unsupervised clustering methods are used. Despite
these problems, many researchers have demonstrated the
effectiveness of tumor-type identification and feature selection
by leveraging many machine learning algorithms (Hochreiter
et al., 2010; Lee et al., 2010; Liu J. X. et al., 2015; Bunte
et al., 2016; Kong et al., 2017; Wang et al., 2017; Chen et al.,
2019). Among them, algorithms based on principal component
analysis (PCA) (Collins, 2002; Jolliffe, 2002) have been widely
used to process gene expression data successfully (Liu et al.,
2013; Liu J. X. et al., 2015; Wang et al., 2017; Feng et al.,
2019) for dimension reduction and denoising. However, PCA-
based algorithms, including sparse principal component analysis
(SPCA) (Zou et al., 2006; Shen and Huang, 2008; Journee et al.,
2010; Liu et al., 2016; Feng et al., 2019) and robust principal
component analysis (RPCA) (Candès et al., 2009; Liu et al., 2013;
Liu J. X. et al., 2015; Wang et al., 2017), mainly deal with data that
lie in a linear data manifold (Jiang et al., 2013). Many methods
that can handle data lying in a non-linear manifold have been
proposed, such as locality preserving projections (LPP) (He et al.,
2005), locally linear embedding (LLE) (Roweis and Saul, 2000),
local tangent space alignment (Zhang and Zha, 2002), Laplacian
eigenmap (LE) (Belkin and Niyogi, 2002, 2003; Spielman, 2007)
and latent variable model (LELVM) (Keyhanian and Nasersharif,
2015). The purpose of these non-linear dimensionality reduction
techniques is to find a representation of points (samples) in a low-
dimensional space, in which all points (samples) still maintain the
similarity in the original high-dimensional space.

In recent years, optimization models that combine linear and
non-linear dimensionality reduction methods, especially graph
Laplacian embedding, have demonstrated their effectiveness.
Liu et al. (2017) constructed a graph Laplacian matrix for
semisupervised feature extraction. Cai et al. (2011) proposed
a method named graph regularized non-negative matrix
factorization (GNMF), which combined graph structure and
non-negative matrix factorization for an improved compact
representation of the original data. Jiang et al. (2013) developed
graph-Laplacian PCA (gLPCA), which sought a low-dimensional
representation of image data with significant improvement in
clustering and image reconstruction by incorporating graph
structures and PCA. Feng et al. (2017) employed pgLPCA
based on graph Laplacian regularization and Lp-norm for
feature selection and tumor clustering. Wang et al. (2019a) used
Laplacian regularized low-rank representation (LLRR), which
considers the intrinsic geometric structure of gene expression
data to cluster the tumor samples. In addition, many methods
benefit from norm constraints. For example, Journee et al.
(2010) employed the L0-norm constraint based on PCA to
stress the sparse expression of genes in samples. The L1-
norm (Tibshirani, 1996) was introduced as the regularization
function in sparse singular value decomposition (SSVD) (Lee
et al., 2010; Kong et al., 2017) and the mix-norm optimization
model proposed by Wang et al. (2019b). Feng et al. (2016)
employed the L1/2-norm constraint in their model to select
characteristic genes. However, there remain some facets to be
improved: for example, the robustness of the algorithm should
be enhanced further, and the sparse representation of the
data should be highlighted. For these purposes, the Lp-norm

(Chartrand, 2012; Nie et al., 2013; Feng et al., 2017; Kong
et al., 2017) constraint was used in the optimization model
to degrade the sensitivity of outliers of the data. The L2,1-
norm (Xiang et al., 2012; Yang et al., 2012) constraint was
used by Liu et al. (2017) and Wang et al. (2019b) to generate
the row sparsity.

Motivated by the literature mentioned above, especially
(Tibshirani, 1996; Chartrand, 2012; Xiang et al., 2012;
Nie et al., 2013; Feng et al., 2017; Kong et al., 2017), we
propose a new method named PL21GPCA incorporating
traditional PCA, graph Laplacian embedding and different
norm constraints on the loss function and the regularization
function for robust tumor sample clustering and gene network
module discovery. Five gene expression datasets, including
one benchmark dataset, two single-cancer datasets from
The Cancer Genome Atlas (TCGA), and two integrated
datasets of multiple cancers from TCGA, are used to evaluate
the effectiveness of our method. The experimental results
demonstrate that the PL21GPCA method outperforms
many existing methods in terms of tumor sample clustering.
Additionally, this method is employed to discover gene network
modules to identify the key genes with close relationships
to some cancers.

We organize the rest of this paper as follows. Section “Related
Works” provides the related works containing the non-convex
proximal Lp-norm, L2,1-norm and graph regularized PCA.
The optimization model of PL21GPCA is presented, and the
solution procedure is detailed in section “Methodology.” Section
“Experiments and Discussion” presents the parameter selections,
experimental results and some discussions. The tumor sample
clustering and gene network analysis are also described in this
section. In Section “Conclusion and Suggestions,” we present
the conclusion for this article and propose some suggestions for
future research.

RELATED WORKS

Definitions of the Proximal Lp-Norm and
L2,1-Norm
Let X∈Rp×n be a data matrix, the proximal Lp-norm of X is defined
as follows:

‖ X ‖p= (

p∑
i

n∑
j

∣∣xij∣∣p) 1
p (0 < p < 1) (1)

The Lp-norm with 0 < p < 1 is a function with three typical
characteristics: globally non-differentiable, non-convex, and non-
smooth (Chartrand, 2012; Zhang et al., 2015). Many researchers
have made suggestions to deal with Lp-norm (0 < p < 1)
minimization (Chartrand, 2012; Guo et al., 2013; Qin et al., 2013).
Since Lp-norm minimization can result in a sparser solution than
the L1-norm and perform better in terms of robustness to outliers
than the L2-norm in a sense, we use it to constrain the loss
function of the PL21GPCA optimization model. The generalized
shrinkage operation proposed by Chartrand (2012) is adopted to
solve the function effectively in our method.
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The L2,1-norm of matrix X is as follows:

‖ X ‖2,1=

p∑
i=1

√√√√ n∑
j=1

x2
ij =

p∑
i=1

‖ xi ‖2 (2)

where xi (corresponding to feature i) is the ith row of matrix
X . Yang et al. (2012) provided an intuitive explanation of the
L2,1-norm in the literature. To solve the L2,1-norm, we can
compute the L2-norm of each row of X first, record it as a vector
b(X) =

(
‖ x1 ‖2, ‖ x2 ‖2, ..., ‖ xp ‖2

)
, and then compute the L1-

norm of vector b(X). The components of vector b indicate the
importance of each feature. The L2,1-norm favors obtaining a
small number of non-zero rows in matrix X , and then feature
selection will be achieved.

PCA and Graph Laplacian Embedding
Principal Component Analysis (PCA)
Let X = (x1, · · · , xn) ∈ Rp×n (p� n) be a matrix whose rows
represent genes and columns represent samples. PCA is
usually used to find the optimal principal directions VT

=

(v1, · · · , vn) ∈ Rk×n (VTV = I) that define the low-dimensional
(k-dim) subspace. And the projected data points in the low
subspace Vcan be denoted as the elements of the matrix Up×k =

(u1, · · · , uk) ∈ Rp×k. The traditional PCA finds Uand V with the
squared Frobenius norm:

arg
U,V

min ‖ X-UVT
‖

2
F s.t. VTV = I (3)

In our optimization model, the proximal Lp-norm ‖g‖p (0 <
p < 1) (Chartrand, 2012; Nie et al., 2013; Feng et al., 2017) is
used instead of the traditional quadratic loss function ‖g‖F to
reduce the influence of outliers and noise. PCA naturally relates
closely to the classic clustering means known as K-means (Ding
and He, 2004). The optimal principal components contained in
matrix V provide the solution of the K-means clustering method.
It inspired us to combine PCA with Laplacian embedding, whose
principal purpose is also clustering.

Graph Laplacian Embedding
Principal component analysis can find an approximate set of basis
vectors in the case where data usually lie in a linear manifold
(Jiang et al., 2013). In consideration of the local invariance of
the intrinsic geometric structure of the data distribution, graph
Laplacian embedding is a popular method among recent studies
in non-linear manifold learning theory (Belkin and Niyogi, 2002,
2003; Spielman, 2007). The assumption of local invariance is that
if two points (samples) are close in the intrinsic geometry of
the original data distribution, the representations of these two
points (samples) in the new coordinate are also close to each
other. The local geometric structure can be modeled through
a nearest neighbor graph on a scatter of data points. Given
the data matrix X = (x1, · · · , xn) ∈ Rp×n, xi(i = 1, · · · , n)can
be regarded as one data point (one vertex in the graph).
For each data point xi, we find its k

′

nearest neighbors and
put edges between xi and its neighbors. Then, a graph with
n vertices can be constructed, on which the weight matrix

W∈Rn×n is defined. wij is the weight between vertices xi and
xj, it is used to measure the closeness of two points xi and
xj, and it is a symmetric similarity matrix. There are three
popular choices defining the weight matrix on the graph: heat
kernel weighting, 0–1 weighting, and dot-product weighting.
If nodes i and j are connected, using heat kernel weighting,

wij = e
‖xi−xj‖

2

σ , wij = 1 using 0–1 weighting and wij = wT
i wj

using dot-product weighting. The different similarity measures
are suitable for different situations. Detailed information about
the different weighting schemes can be found in the literature
(Cai et al., 2011).

Let ZT
= (z1, z2, · · · , zn) ∈ Rk×n represent the ndata points

in the k-dim embedding coordinates VT
= (v1, · · · , vn) ∈

Rk×n (VTV = I), i.e., the representation of xi in the new low-
dimensional basis is zi = [vi1, · · · , vik]. The “dissimilarity” of the
two data points in the low basis can be measured by the Euclidean
distance or the divergence distance. The Euclidean distance is
adopted in our method. Define the “dissimilarity” of the two
points in the low basis as d(zi, zj) =‖ zi − zj ‖2, combined with
the weight matrix W , and the smoothness of the low-dimensional
representation can be measured by minimizing:

S =
1
2

n∑
i,j=1

‖zi − zj‖2wij

=

n∑
i=1

zTi ziDii −

n∑
i,j=1

zTi zjwij

= Tr(VTDV)− Tr(VTWV) = Tr(VTLV) (4)

where Tr(•)is the trace of a matrix, D=diag(d1,··· ,dn)is a diagonal
matrix, and di=

∑n
j=1 wij . We call the L=D−W the Laplacian matrix

(Spielman, 2007).

METHODOLOGY

The PL21GPCA procedure is presented in this section.
Figure 1 illustrates our general research framework. In brief,
our work includes two steps. The first is obtaining the
optimal projected matrix Up×k and the principal directions
matrix Vk×n via PL21GPCA. The second is to evaluate the
validity of PL21GPCA. In this step, based on the principal
directions matrix Vk×n obtained by PL21GPCA, the classic
clustering method K-means is employed for tumor sample
clustering. According to the projected matrix Up×k, the
differentially expressed genes are selected to carry out gene
network analysis to find the key genes with close relationships
to some cancers.

To summarize, three aspects are highlighted in our method:

(1) To reduce the influence of outliers and noise, the non-
convex proximal Lp-norm ‖g‖p (0 < p < 1) is used on
the loss function, which could improve the robustness
of the optimization model effectively compared with the
other constraints.
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FIGURE 1 | The general schematic framework of the PL21GPCA methodology.

(2) To enhance the sparsity of gene expression in cancer
samples, the L2,1-norm is used on the projected matrix
Up× k.

(3) To retain the intrinsic geometric structure of the
data points (samples), the graph regularization item is
recommended in the optimization model.

Assume the input matrix X = (x1, · · · , xn) ∈ Rp×n (p� n),
which denotes p genes’ expression in n samples. Our goal is to
find the optimal low-dimensional (k-dim) subspace denoted as
VT
= (v1, · · · , vn) ∈ Rk×n (VTV = I) and the projected matrix

Up×k = (u1, · · · , uk) ∈ Rp×k in the low subspace. The traditional
PCA finds Uand V with the squared Frobenius norm in the
solution. In our optimization model, the proximal Lp-norm ‖
g‖p (0 < p < 1) (Chartrand, 2012; Nie et al., 2013; Feng et al.,
2017) replaces the traditional quadratic loss function ‖g‖F to
reduce the influence of outliers and noise. The L2,1-norm is used
on one of the regularization terms to enhance the sparse gene
expression in cancer samples. The graph Laplacian regularization
item emphasizing the local invariance of the intrinsic geometric
structure is recommended in the optimization model.

The objective function of this method is designed as follows:

arg min
U,V

{
‖ X-UVT

‖p +λ ‖ U ‖1
2 +αTr

(
VTLV

)}
s.t. VTV = I, 0 < p < 1, λ > 0, α > 0

(5)

Clearly, the objective function is somewhat intractable because
it is non-convex and non-smooth. We adopt the augmented
Lagrangian multiplier (ALM) (Hestenes, 1969; Bertsekas, 1982;
Spielman, 2007; Lin et al., 2010) to address this optimization
problem. Researchers have proven that the ALM algorithm
possesses Q-linear convergence properties under some
conditions (Bertsekas, 1982).

When using the ALM method to obtain the optimal solution
of (5), we replace X − UVT with E. Eq. (5) can be equivalently
written as:

arg min
E,U,V

{
‖ E ‖p +λ ‖ U ‖1

2 +αTr
(
VTLV

)}
s.t. E-X+ UVT

= 0, VTV = I
(6)
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According to the ALM method, eq. (6) is equivalent to
minimizing:

Lµ,Y (E,U,V) =‖ E ‖p +µ
2 ‖ E-X+ UVT

+
Y
µ
‖

2
F

+ λ ‖ U ‖1
2 +αTr

(
VTLV

)
,

(7)

where Y is the Lagrangian multiplier, and µ is the step size of
the update rule. In (7), there are three variables to be solved. The
alternating direction method (ADM) (Gabay and Mercier, 1976)
is adopted to tackle this thorny problem because the equation
with only one variable is easily solved when the others are fixed.
By this means, (7) naturally results in three subproblems.

Problem 1: When U and V are fixed, (7) is written as follows:

Lµ,Y (E,U,V) =‖ E ‖p +
µ

2
‖ E-X+ UVT

+
Y
µ
‖

2
F (8)

where 0 < p < 1. Eq. (8) can be solved by the proximal shrink
operator denoted as follows:

shrinkp(t, δ) := max{0, |t| − δ|t|p−1
}
t
|t|

(9)

Let t = X − UVT
−

Y
µ

, δ = 1
µ

. Then, according to the shrinkage
operation (soft thresholding) proposed by Chartrand (2012), E is
updated as:

Er+1
= shrinkp

{
X − Ur (V t)T

−
Yr

µr ,
1
µr

}
(10)

Problem 2: When E and V are fixed, (7) is simplified as follows:

Lµ,Y (E,U,V) =
µ

2
‖ E-X+ UVT

+
Y
µ
‖

2
F +λ ‖ U ‖1

2 (11)

To simplify (11), let H = X − E− Y
µ

. Then, (11) is written as:

Lµ,Y (E,U,V) =
µ

2
‖ UVT

−H ‖2
F +λ ‖ U ‖1

2 (12)

The partial derivatives of L with respect to Uare:

∂L
∂U
= µ(UVT

−H)V + 2λQU (13)

where Q∈Rp×p is a diagonal matrix with qi,i = 1
‖U(i,:)‖2

(i =
1, · · · , p) (Xiang et al., 2012). Letting (13) be equal to 0, the
following update rule for U is then obtained:

Ur+1
=

(
I +

2λ

µr Q
r
)−1

HrVr (14)

To simplify (14), let Ar
=

(
I + 2λ

µr Qr
)−1

, and then (14) is written
as:

Ur+1
= ArHrVr (15)

Problem 3: When E and Ware fixed, (7) is simplified as follows:

Lµ,Y(E,U,V) =
µ

2
‖ E-X+ UVT

+
Y
µ
‖

2
F +αTr(VTLV) (16)

With respect to the settings H = X − E− Y
µ

, (16) can be written
equivalently as:

Lµ(E,U,V) = µ
2 ‖ UV

T
−H ‖2

F +αTr(VTLV)

=
µ
2 Tr((UV

T
−H)(UVT

−H)T)+ αTr(VTLV)

(17)
Based on (17), V is found by minimizing:

V = arg
V

minTr(VT(
α

µ
L-HTAH)V) (18)

Therefore, Vr+1 can be obtained as follows:

Vr+1
= (v1, ..., vk) (19)

where (v1, ..., vk) are the keigenvectors corresponding to the
smallest k eigenvalues of the matrix α

µ
L-HTAH. Thus, based on

the ALM, ADM and the shrinkage operation, the solution to solve
the optimization model described in (5) is shown in Algorithm 1.
In the optimization model, there are six parameters k, p, λ, α, ρ, µ

to be pre-determined, among them. As the parameters used to
control the step size in the update rule of AML, we set µ =

10−2 and ρ = 1.2 for all gene expression datasets experiments
(Feng et al., 2016). The parameter k is determined refering
to the number of prior categories of each dataset. For the
three essential parameters p, λ, α, to be determined in (5), we
choose them corresponding to different situations for the best
clustering performance through extensive experiments. Different
parameters are chosen for different datasets. Detailed parameter
selections and discussions are described in section “Experiments
and Discussion.”

EXPERIMENTS AND DISCUSSION

Gene Expression Datasets
Five gene expression datasets, which include one benchmark
dataset, two single-cancer datasets from TCGA, and two
integrated multicancer datasets from TCGA, are used to evaluate

ALGORITHM 1 | The solution to optimized (5).

Input:

Gene expression data matrix: Xp×n ,

Parameters: k , p, λ, α, ρ, µ

Output:

Up×k , Vn×k

Initialize:

E , Y , U, V

Do

Update U by (14)

Update V by (19)

Update E by (10)

Update µ by µ=ρµ

Update Y by Y r+1=Y r+µr (Er−X+Ur (Vr )T )

Update µ by µr+1=ρµr

Until convergence
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the performance of PL21GPCA. The verified experiments consist
of two aspects: “tumor sample clustering” and “gene network
module discovery.” Based on the optimal low-dimensional (k-
dim) subspace denoted as VT=(v1,··· ,vn)∈Rk×n (VTV=I), the classical
clustering method K-means is then used for tumor clustering.
For comparison, extensive experiments are also performed using
existing dimensionality reduction methods, including SPCA
(Journee et al., 2010), RPCA (Candès et al., 2009), gLPCA (Jiang
et al., 2013), pgLPCA (Feng et al., 2017) and GNMF (Cai et al.,
2011). Among the compared methods, some are based on PCA,
and some introduce the graph Laplacian regularization item.
Based on the optimal projected matrix Up×k, the differentially
expressed genes are selected for gene network analysis to find key
genes with close relationships to some cancers.

The details of the five data sets are as follows. The benchmark
gene expression dataset is lung cancer data (Bhattacharjee et al.,
2001) that have often been employed by researchers to evaluate
their algorithms (Lee et al., 2010; Kong et al., 2017), consisting of
12,625 genes of 56 samples. There are four types of lung cancer
in the 56 samples: pulmonary carcinoid (20), colon metastases
(13), small cell lung carcinoma samples (6) and normal lung
samples (17). The two single-cancer datasets and the two
integrated multicancer datasets are all from The Cancer Genome
Atlas (TCGA) which is known as the largest tumor specimens
database. The genomic data provided by TCGA include DNA
methylation, microRNA expression, gene expression, protein
expression, and DNA copy number, etc. We downloaded gene
expression datasets (at level 3) of five different cancers from
TCGA: colorectal cancer (CRC), cholangiocarcinoma (CHOL),
squamous cell carcinoma of head and neck (HNSC), pancreatic
cancer (PAAD), and esophageal cancer (ESCA). Each dataset
consists of 20,502 genes expressed in different numbers of
samples. In our experiments, CRC and CHOL are used as single-
cancer datasets to evaluate the performance of the PL21GPCA
method. There are 281 samples for CRC and 45 for CHOL.
Each of these two datasets contains two types of cancer samples,
“negative” and “positive.” “Negative” or “NT” represents normal
samples. “Positive” or “TP” represents diseased samples. There
are 262 “TP” samples in the CRC data and 36 in the CHOL
data, and the rest are “NT” samples. Two integrated datasets are
used to further verify the performance of the PL21GPCA method.
Each integrated dataset consists of 3 types of cancers. One
of the integrated datasets, H_C_P, contains 836 “TP” samples,
among which the sample numbers of the three cancers are 398
(HNSC), 262 (CRC), and 176 (PAAD). The other integrated
dataset, E_C_C, contains 481 “TP” samples, in which the sample
numbers of the three cancers are 183 (ESCA), 36 (CHOL), and
262 (CRC). The statistics of these datasets are summarized in
Table 1.

Tumor Sample Clustering
Evaluation Metric
Based on the optimal principal directions VT

= (v1, · · · , vn) ∈
Rk×n (VTV = I), the K-means algorithm is then employed
for tumor sample clustering. The accuracy (ACC) and the
normalized mutual information (NMI) are the two most

commonly used metrics to evaluate the clustering results (Cai
et al., 2005). For the ith sample, we use pi to denote the prior label
and ri to denote the obtained clustering label. The metric ACC is
defined as follows:

ACC =
∑n

i=1 θ(pi,map(ri))
n

, (20)

where n denotes the total number of samples in every dataset. The
function θ(x, y) equals 1 if x = y and 0 otherwise. The function
map(ri) maps each obtained cluster label ri to the equivalent prior
label. Let C be the prior set of clusters and C′ be the obtained
set from our algorithm. Define their mutual information metric
MI(C,C′) as:

MI(C,C′) =
∑

p(ci, c
′

j) log2

p(ci, c
′

j)

p(ci) · · · p(c
′

j)
(21)

where p(ci) and p(c
′

j)are the probabilities that a sample arbitrarily
selected from the dataset belongs to clusters ci and c

′

j, respectively,
and p(ci, c

′

j) is the joint probability. In the experiments, the metric
NMI is defined as follows:

NMI(C,C
′

) =
MI(C,C

′

)

max(H(C),H(C′)
(22)

where H(C) and H(C
′

)are the entropies of C and C′ , respectively.
Therefore, the metric NMI(C,C

′

) ranges from 0 to 1. NMI = 1
if the two sets of clusters are identical, and if the two sets are
independent, NMI = 0.

However, a problem that needs to be resolved is that the
K-means algorithm may or may not converge to the same
solution in each run with random initial conditions. Therefore,
the evaluated metrics ACC and NMI obtained by only once-
running of k-means is not enough to explain the result. To
solve this problem, for the given cluster number k, K-means was
run 50 times on each dataset, and the average performance was
computed. As a reference, we also recorded the maximum values
of ACC and NMI of the 50 runs. Thus, four metrics, ACC_max,
ACC_mean, NMI_max and NIM_mean, are used to evaluate our
experiments. Generally, the larger the mean value is, the better
is the clustering performance, and the better are the stability
and robustness of the clustering. This also indicates that the
corresponding dimension reduction method has good robustness
and sparse effect.

TABLE 1 | Statistical information on the experimental data.

Dataset # of genes
(p)

# of
samples (n)

# of
classes (k)

Benchmark Data Lung Cancer 12625 56 4

Single-Cancer Data
from TCGA

CRC 20502 281 2
CHOL 20502 45 2

Integrated Cancer
Data from TCGA

H_C_P 20502 836 3
E_C_C 20502 481 3
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FIGURE 2 | The average performance taking the essential parameter at nine different values from 0.1 to 0.9. (A) The mean value of ACC for different cancer
datasets. (B) The mean value of NMI for different cancer datasets.

Parameter Selection
The PL21GPCA model has three essential parameters, p, λ, and α,
which need to be determined in (5). The range of each parameter
is 0 < p < 1, λ > 0, α> 0. When determining the optimal
value of one parameter, the other two parameters are fixed. We
focus on the influence of the value of p on the performance.
PL21GPCA achieves consistently good performance when the
two regularization parameters λ and α are varied from 10 to
1,000 on all three datasets. Figure 2 shows how the average
performance varies when taking the essential parameter p at
nine different values from 0.1 to 0.9. For every dataset, extensive
experiments are carried out to seek the appropriate parameters
to achieve the best performance for tumor sample clustering.
Thus, different parameters are chosen for different datasets (see
Table 2).

There is another parameter that is not appear in the
objective function of PL21GPCA. However, it is also an
important parameter affecting the performance of our method.
It is parameter k

′

, the number of nearest neighbors of every
point when constructing the graph in the step of graph
Laplacian embedding. Setting this parameter too small may
cause overfitting, and too large may increase the error. By
extensive experiments, we find that the appropriate value for
this parameter is near the square root of the sample number for
different datasets.

Clustering Results
Tables 3–5 show the clustering results on the lung cancer data,
single-cancer data from TCGA (CRC and CHOL datasets), and
integrated cancer data (H_C_P and E_C_C datasets), comparing
the PL21GPCA-based method with the competitors. For each

TABLE 2 | Values of the three parameters p, λ, and α for different datasets.

Dataset Lung Cancer CRC CHOL H_C_P E_C_C

Parameter
selections p = 0.3

λ = 10

α = 100

p = 0.5

λ = 100

α = 100

p = 0.3

λ = 10

α = 100

p = 0.9

λ = 100

α = 100

p = 0.7

λ = 10

α = 100

dataset with a given cluster number k, the K-means algorithm
was run 50 times to randomize the experiments. The maximum
and the mean value metrics are all presented in the tables. The
performance of the PL21GPCA-based method is highlighted in
bold in the tables. Regardless of the datasets, the PL21GPCA-
based method always results in the best performance on the mean
value metrics ACC_mean and NMI_mean. As mentioned above,
the mean value is more meaningful than the maximum value,
which is for reference only. By leveraging the power of three

TABLE 3 | Clustering performance on lung cancer.

Methods ACC (%) NMI (%)

ACC_Max ACC_mean NMI_Max NMI_mean

SPCA 100 84.39 100 83.07

RPCA 100 86.25 100 84.77

GNMF 85.71 79.71 75.57 69.62

gLPCA 89.29 78.5 80.82 69.86

pgLPCA 100 82 100 80.05

PL21GPCA 100 96.82 100 93.44

TABLE 4 | Clustering performance on CRC and CHOL.

Data Method ACC (%) NMI (%)

ACC_Max ACC_mean NMI_Max NMI_mean

CRC SPCA 92.17 87.57 35.3 22.57

RPCA 98.22 67.95 69.82 24.33

GNMF 88.61 60.5 30.79 18.93

gLPCA 90.75 87.01 22.7 15

pgLPCA 94.31 78.65 42.67 20.1

PL21GPCA 99.64 99.64 90.55 90.55

CHOL SPCA 100 93.38 100 60.65

RPCA 100 100 100 100

GNMF 100 100 100 100

gLPCA 100 78.04 100 54.87

pgLPCA 100 81.87 100 59.83

PL21GPCA 100 100 100 100
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TABLE 5 | Clustering performance on H_C_P and E_C_C.

Data Method ACC (%) NMI (%)

ACC_Max ACC_mean NMI_Max NMI_mean

H_C_P SPCA 55.26 51.82 17.85 14.98

RPCA 91.87 77.3 71.43 68

GNMF 57.3 54.02 29.59 22.59

gLPCA 55.62 52.96 29.43 16.89

pgLPCA 86.96 70.26 58.42 45.4

PL21GPCA 96.41 96.41 85.77 85.75

E_C_C SPCA 71.52 67.9 19.28 15.06

RPCA 81.08 76.17 55.72 32.47

GNMF 68.4 62.05 19.03 9.29

gLPCA 70.69 69.58 23.14 19.7

pgLPCA 79.63 72.72 41.33 31.35

PL21GPCA 85.65 84.09 60.31 47.15

measures, including taking the proximal Lp-norm ‖g‖p (0 < p <
1) on the loss function, employing the L2,1-norm regularization
item to insure feature selection, and introducing the Laplacian
regularization item to emphasize the geometrical structure of
the data, the PL21GPCA-based method can always get a better
clustering performance.

For the different types of data used in the experiments, a
number of meaningful points need to be emphasized further.

The benchmark data
For the lung cancer dataset, Table 3 shows that the PL21GPCA-
based method achieves the same performance as SPCA, RPCA
and pgLPCA considering the maximum value metrics (the
ACC_max and the NIM_max are also 100%) but is obviously
superior to the other methods in terms of the mean value
metric (ACC_mean reaches 96.82% and the NIM_mean reaches
93.44%).

Single-cancer data from TCGA
Table 4 shows the clustering performance of the two single-
cancer datasets from TCGA. For the CRC dataset, our method
presents very superior performance compared with other
methods, with the ACC_mean reaching 99.64% as well as the
ACC_max. The good average performance shows the robustness
of the PL21GPCA method. In addition, the two NMI metrics (all
reaching 90.55%) also go far beyond the performance of other
methods. For the CHOL dataset, all the methods achieve the same
results (100%) when considering the maximum value metrics.
Our method achieves the same performance (100%) as GNMF
and RPCA in terms of the mean value metrics. A surmise is
reported that there may be distinct discriminations for the two
kinds of samples in the original CHOL data (Kong et al., 2017).

Integrated multicancer data from TCGA
Table 5 reports the estimation results on the two integrated
datasets. It shows that the PL21GPCA method performs much
better than the competitors. As highlighted in bold in Table 5,
for H_C_P data, the ACC_max and the ACC_mean all reach
96.41%, and the NMI_max and the NMI_mean are also
superior to the corresponding values for other methods. For

E_C_C data, our method is still outstanding; taking the ACC
metric as an example, the ACC_max reaches 85.65%, and the
ACC_mean reaches 84.09%. Based on the excellent performance
on these two integrated datasets, should we speculate that the
PL21GPCA method is more suitable for learning the compact
representation of higher-dimensional and more complex data
than its competitors, which needs further verification.

Finally, as we can see from Tables 3–5, among the compared
methods, the RPCA method performs second to our method and
better than the other competitors, such as SPCA, GNMF, gLPCA,
and pgLPCA. The performance of RPCA is in italics in the tables.
If the intrinsic geometric structure is introduced to RPCA, will
the performance be improved further? This question is also worth
further verification.

Embedding Evaluation
To further show the performance of the novel dimensionality
reduction method compared others, a visualized data distribution
of the low-dimensional embedding corresponding to the first
two components of the PCA-based method are demonstrated.
Besides the proposed method PL21GPCA, the results of three
other methods including SPCA, gLPCA, pgLPCA are compared
because these methods are also the direct extensions of PCA.
Figure 3 presents the sample clustering results in a two-
dimensional space. We choose two representative datasets CRC
data and H-C-P data to show the results. Figures 3A–D are
the results of the compared methods SPCA, glPCA, gpLPCA
and PL21GPCA, respectively, on the CRC dataset. Figures 3E–
H are the compared results of the four methods on the H-C-P
dataset. No matter for the CRC data which contains two types
of cancer samples, or for the H-C-P data which contains three
types of cancer samples, SPCA and gLPCA make the samples
from different categories being mixed together, and the pgLPCA
can only separate the samples into categories roughly, so they
have unideal clustering results. However, PL21GPCA make the
embeddings of samples in clearer distribution. Therefore, the
clustering results is better than the compared methods. The
visualized results verified the robustness and the flexibility of
the proposed model.

Experiments on Simulated data
Experiments on simulation data are also carried out to evaluate
the effectiveness of PL21GPCA. The simulation data used in
the experiment is a matrix X3000×80 generated by rand function
in Matlab. In order to simulate the representation of features
in different types of samples, based on the generated matrix
X3000×80, some changes have also been made. Firstly, we add 1 to
the values of columns 1 to 20 in rows i∗30− 29 (i = 1, · · · 100)
of matrix X3000×80, add 2 to the values of columns 21 to 40 in
rows i∗30− 19 (i = 1, · · · 100), add 3 to the values of columns
41 to 60 in rows i∗30− 9 (i = 1, · · · 100), add 4 to the values
of columns 61 to 80 in rows i∗30− 5 (i = 1, · · · 100), add 2 to
the values of columns 21 to 40 in rows i∗30− 25 (i = 1, · · · 100),
add 1 to the values of columns 1 to 20 in rows i∗30− 15 (i =
1, · · · 100), which means that the 80 samples in the simulation
data contain four categories. Secondly, we use the function
imnoise in matlab to add different sizes of Gaussian white noise
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FIGURE 3 | A visualized comparison of low-dimensional embeddings by SPCA, gLPCA, pgLPCA, and PL21GPCA on COAD and H-C-P datasets. (A–D) Are the
results of the compared methods SPCA, glPCA, gpLPCA, and PL21GPCA respectively on the CRC dataset. (E–H) Are the compared results of the four methods on
the H-C-P dataset.

to X. The mean value of the added Gaussian white noise is 0 and
the variance σ2 is chosen in the range of [0.4∼1.2]. Next, we use
the proposed method PL21GPCA and the compared methods
to reduce the dimension and denoise the simulated data, and
then use the K-means method to cluster the denoised data, the
evaluation metric ACC_mean mentioned above is used to test
the effectiveness of the method. the K-means algorithm is run 50
times to randomize the experiments.

Table 6 shows the experiments results on simulated data.
It can be seen evidently that the performances of all methods
change with the increase of noise. The best performance of
different methods when adding different noises are marked
with black bold. Although the performance of pl21GPCA is
second only to RPCA when the noise is low (σ2

= 0.4), with
the increase of Gaussian white noise, the effect of our proposed
method is mostly ahead of other methods especially when σ2

=

0.6, 0.8, 1.2, which shows that the new method has better de-
noising ability and robustness.

TABLE 6 | Clustering performance on simulated data with different
Gaussian white noise.

Simulated data SPCA RPCA GNMF gLPCA gpLPCA PL21GPCA

σ2=0.4 96.6 99.75 95.35 87.37 89.47 99.45

σ2=0.6 94.35 91.33 94.35 84.68 86.45 97.45

σ2=0.8 85.87 91.1 93.85 83.2 85.57 94.35

σ2=1.0 80.12 90.85 93.4 86.48 85.67 93.33

σ2=1.2 70.25 76.43 73.58 85.83 82.12 87.15

Gene Network Module Discovery
Due to the outstanding performance of our method on the CRC
dataset and the integrated H_C_P dataset, the construction and
analysis of the gene network are based on these two datasets. The
strategy of gene network module discovery involves two steps.
First, the genes for constructing the co-expression gene networks
are selected. Second, based on the filtered genes, co-expression
networks are established, and then the key genes that may be
closely related to some cancers are analyzed.

Gene Selection
In this step, there are two problems to be solved: one is how to
select genes, and the other is how many to select. It is known
that among thousands of genes, only a handful of them regulate
a specific biological process (Delbert et al., 2005; Liu et al., 2013).
These minority of genes are called differentially expressed genes
(Liu J. et al., 2015). In this article, the differentially expressed
genes are selected to carry out gene network analysis according to
the projected matrix Up×k. Now, we mark the optimal projected
matrix Up×k as Ũ; therefore, these differentially expressed genes
can be identified according to Ũ (Liu J. et al., 2015; Feng et al.,
2016). We denote Ũas follows:

Ũ =


ũ11 ũ12 · · · ũ1k
ũ21 ũ22 · · · ũ2k
...

...
. . .

...

ũp1 ũp2 · · · ũpk

 (23)
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FIGURE 4 | The first three modules of the constructed network based on the CRC data. The five marked genes SPARC, ABCC12, COL6A3, LUM, and RPS3 have
been confirmed to be associated with CRC and other cancers. (A) Module 1; (B) Module 2; (C) Module 3.

The upregulated genes are reflected by the positive value in the
matrix Ũ, and the downregulated genes are reflected by the
positive value (Liu et al., 2013). Therefore, the absolute value
of the items in Ũ is used to identify the differentially expressed
genes. The items of each row in Ũ are summed, and then the
evaluating vector denoted as Û is obtained:

Û =

 k∑
j=1

ũ1j

k∑
j=1

ũ2j · · ·

k∑
j=1

ũpj

T

(24)

The larger item in Û indicates the more strongly differentially
expressed gene. Therefore, we sort the elements in Û in
descending order and take the top l(l� p) elements. In
many studies, it has been unclear how many genes should
be selected for gene network analysis. Since only a small
number of genes can regulate a specific biological process,
these genes may play a decisive role in the clustering results
of tumor samples. In this paper, the number of genes used for
constructing the gene network is determined according to the
clustering performance based on the selected genes. Through
experimentally investigating the clustering performance with the
number of selected genes varied from 500 to 2000, it is found that

the clustering results corresponding to 1600 genes are best for the
CRC data and 700 for the H_C_P data.

Construction of Gene Networks
Suppose l differentially expressed genes are used to construct
the gene network. Let matrix Rl×n denote the l gene expression
in n samples. We use the Pearson correlation coefficient (PCC)
(Hou et al., 2019) to measure the correlation of any two genes
in Rl×n. The values in the PCC matrix vary in the range of
[0, 1]. The larger the PCC value is, the higher the correlation
is. Based on matrix Rl×n, an adjacency matrix Al×l can be
calculated. According to the adjacency matrix, an intuitive
visualized graph of the gene interaction network composed of
several modules is obtained.

Analysis of Gene Network Modules
There are 39 modules, including 218 nodes and 504 edges, in
the constructed network based on the CRC data. We analyzed
the top 10 nodes (genes) with higher degrees in the first three
modules that retained more relevant interactions. The degree
of the node (gene) shows its role in the network modules. The
larger the degree of the node (gene) is, the more important
the node (gene) is, and such nodes (genes) may retain the
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tight connectivity of the network. Figure 4 shows the main
part of the first three gene network modules in which a small
number of nodes whose degree is very low have been removed.
The roles of the top ten genes in the first three modules are
illustrated in Figure 4. The degree value of a node in Figure 4
is represented by its size and color. The larger the node is,
the darker its color is, which corresponds to a larger degree of
the node. Referring to GeneCard with its website http://www.
genecards.org/, we list the annotations of the top ten genes
in Table 7. Five of the top ten genes have been validated as
associated with multiple cancers: SPARC, ABCC12, COL6A3,
LUM, and RPS3. The corresponding nodes of these genes are
marked with a black outline in Figure 4 and are also shown in
bold in Table 7. In the literature (Liu Q. Z. et al., 2015), the
gene SPARC has been recommended as a predictor of colorectal
cancer. The gene ABCC12 is a human ATP binding cassette
(ABC) transporter and is a multidrug resistance protein (MRP9).
However, MRP9 has been recognized as an important target
for the immunotherapy of breast cancer (Bera et al., 2002).
Studies have shown that colorectal cancer can be predicted by
the gene COL6A3 because it is overexpressed in samples of
colorectal cancer. Therefore, COL6A3 is considered a potential
diagnostic and prognostic marker gene for colorectal cancer
(Qiao et al., 2015). As one of the members of the leucine-rich
proteoglycan family, the gene Lumican (LUM) is overexpressed
in many kinds of cancers, including colorectal, neuroendocrine,
cervical, carcinoid, breast, and pancreatic cancer. LUM also
causes the growth and invasion of pancreatic cancer (Ishiwata
et al., 2007). The ribosomal protein gene S3 (RPS3) is also
overexpressed in colorectal cancer. Researchers found an increase

TABLE 7 | Annotations of the top ten genes in the first three network modules
based on CRC data.

Gene Summary

RPL32 A protein coding gene. Diseases associated with RPL32 include
frontal convexity meningioma and retinitis pigmentosa 49

SPARC Diseases associated with SPARC include osteogenesis
imperfecta, type xvii and osteogenesis imperfecta, type iv

TMEM59L TMEM59L (Transmembrane Protein 59 Like) is a protein coding
gene. An important paralog of this gene is TMEM59

LOC642929 LOC642929 (General Transcription Factor II, I Pseudogene) is a
pseudogene

ABCC12 Diseases associated with ABCC12 include familial cold
autoinflammatory syndrome 1 and episodic kinesigenic
dyskinesia 1. An important paralog of this gene is ABCC11

COL6A3 A protein coding gene. An important paralog of this gene is
COL6A6

LUM Among its related pathways are defective ST3GAL3, which
causes MCT12 and EIEE15, and keratin sulfate/keratin
metabolism

LHX2 LHX2 (LIM Homeobox 2) is a protein coding gene. Diseases
associated with LHX2 include schizencephaly and retinitis
pigmentosa

TLCD3B TLCD3B (TLC Domain Containing 3B) is a protein coding gene.
An important paralog of this gene is TLCD3A

RPS3 Diseases associated with RPS3 include eumycotic mycetoma
and Waardenburg syndrome, type 3

in ribosome synthesis in patients with colorectal cancer (Pogue-
Geile et al., 1991). Although the other five genes RPL32,
TMEM59L, LOC642929, LHX2, and TLCD3B have not been
identified in clinical studies indicating their effect on cancers,
they may be considered candidate oncogenes because of their
high ranking in our constructed gene network modules. By
constructing co-expression gene network modules based on the
CRC dataset, we found some disease-causing genes for colorectal
cancer and other related cancers. It shows that constructing gene
network modules via the genes filtered based on PL21GPCA can
help us discover the key oncogenes.

The constructed network based on the integrated data H_C_P
includes 157 nodes and 644 edges. We analyzed the five important
nodes (genes) with higher degrees in the first three modules
that retained more relevant interactions. Figure 5 illustrates
the main part of the first three gene network modules in
which the nodes of very low degree have also been removed.
Referring to GeneCards, their annotations are listed in Table 8.
The five genes RPL32, EEF1G, SPRR1B, COL1A2, and MMP2
have been recognized to be related to multiple cancers. The
corresponding nodes of these genes are marked with a black
outline in Figure 5. Wan et al. (2004) conducted large-scale
experiments on human liver cancer cells. Research has shown
that RPL32 is one of the potential genes that affect human
cell growth and cancer formation and provides an important
tool for diagnostic markers and drug targets (Wan et al., 2004).
EEF1G has been thought to be a characteristic gene for colorectal
cancer; it is highly expressed in most colorectal cancers and
could be considered a marker gene for colorectal cancer detection
(Matassa et al., 2013). In addition, the expression level of
EEF1G in pancreatic tumor cells was higher than that in normal
cells (Lew et al., 1992). SPRR1B is overexpressed in human
oral squamous cells. It has been experimentally proven that
SPRR1B overexpression in cells will signal MAP kinases but
inhibit MAP kinase signals, so SPRR1B can affect cell growth
and maintenance (Michifuri et al., 2013). Kiyoshi Misawa and
other researchers mainly studied the expression of COL1A2 in
head and neck squamous cell carcinoma (HNSC) and found
that hypermethylation of CpG may cause inactivation of the
gene COL1A2. Therefore, the COL1A2 gene may affect the
formation and development of HNSC and could become a major
biomarker (Misawa et al., 2011). As a member of the matrix
metalloproteinase (MMP) gene family. MMP2 is relevant to the
generation of malignant tumors, including colorectal cancer, lung
cancer, and breast cancer (Yu et al., 2002; Arajo et al., 2015;
Ren et al., 2015). Analysis through the gene network constructed
based on integrated multicancer data is helpful for mining the
interrelationships between different cancers and genes. It may
provide an important reference for the diagnosis and treatment
of various diseases.

CONCLUSION AND SUGGESTIONS

In this article, we propose a new dimensionality reduction
method named PL21GPCA based on PCA for robust tumor
sample clustering and gene network module discovery. Based
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FIGURE 5 | The first three modules of the constructed network based on the H_C_P data. The five marked genes RPL32, EEF1G, SPRR1B, COL1A2, and MMP2
have been confirmed to be associated with multiple cancers. (A) Module 1; (B) Module 2; (C) Module 3.

on the traditional PCA, the non-convex proximal Lp-norm
‖g‖p (0 < p < 1)is applied on the loss function to decrease
the sensitivity to outliers and noise. The L2,1-norm is used on
the projected matrix to enhance the sparse gene expression in
cancer samples. The graph regularization item is introduced
to the optimization model to retain the geometric structure
of the data. Five gene expression datasets, including one
benchmark dataset, two higher-dimensional single-cancer
datasets from TCGA, and two integrated multicancer
datasets from TCGA, are used to evaluate the performance
of our method. The compared experiments demonstrate
that the PL21GPCA method outperforms many existing
methods in terms of tumor sample clustering. Moreover,
this method is employed to discover gene network modules
to find the key genes with close relationships to cancers.
The results of our study may be a useful reference for
clinical diagnosis.

There are some suggestions for future research. First, in
the optimization model of PL21GPCA, the constraint used
on the loss function is the non-convex proximal Lp-norm
‖g‖p (0 < p < 1), since Lp-norm minimization can result in
a sparser solution than the L1-norm and perform better in
terms of robustness to outliers than the L2-norm. However, in
addition to the generalized shrinkage operation proposed by
Chartrand (2012), there are some other suggestions to address

the Lp-norm (0 < p < 1) minimization (Guo et al., 2013; Qin
et al., 2013) problems. Therefore, we will continue to explore
other solutions to the optimization model with the Lp-norm
‖g‖p (0 < p < 1). Second, we will evaluate the performance of
PL21GPCA as a compact representation method combined with
other methods, including supervised and unsupervised clustering
methods such as spectral clustering, support vector machine
(SVM) or their improved versions. Third, as mentioned above,
the PL21GPCA method gets especially outstanding performance

TABLE 8 | Annotations of the most important five genes in the first three network
modules based on H_C_P data.

Gene Summary

RPL32 A protein coding gene. Diseases associated with RPL32 include
frontal convexity meningioma and retinitis pigmentosa 49

EEF1G Diseases associated with EEF1G include gastrointestinal
carcinoma. Among its related pathways are viral mRNA translation
and gene expression

SPRR1B A protein coding gene. An important paralog of this gene is
SPRR1A

COL1A2 Among its related pathways are ERK signaling and IL4-mediated
signaling events

MMP2 Among its related pathways are direct p53 effectors and
development endothelin-1/EDNRA signaling
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for processing the integrated data, so we will use the PL21GPCA
method to process many other integrated data to verify its
performance further.
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Transmembrane protein (TMP) is an important type of membrane protein that is
involved in various biological membranes related biological processes. As major drug
targets, TMPs’ surfaces are highly concerned to form the structural biases of their
material-bindings for drugs or other biological molecules. However, the quantity of
determinate TMP structures is still far less than the requirements, while artificial
intelligence technologies provide a promising approach to accurately identify the TMP
surfaces, merely depending on their sequences without any feature-engineering. For this
purpose, we present an updated TMP surface residue predictor TMP-SSurface2 which
achieved an even higher prediction accuracy compared to our previous version. The
method uses an attention-enhanced Bidirectional Long Short Term Memory (BiLSTM)
network, benefiting from its efficient learning capability, some useful latent information is
abstracted from protein sequences, thus improving the Pearson correlation coefficients
(CC) value performance of the old version from 0.58 to 0.66 on an independent
test dataset. The results demonstrate that TMP-SSurface2 is efficient in predicting
the surface of transmembrane proteins, representing new progress in transmembrane
protein structure modeling based on primary sequences. TMP-SSurface2 is freely
accessible at https://github.com/NENUBioCompute/TMP-SSurface-2.0.

Keywords: transmembrane protein, deep learning, relative accessible surface area, attention mechanism, long
short term memory

INTRODUCTION

Transmembrane Proteins (TMPs) are the gatekeepers to the cells and control the flow of
molecules and information across the membrane (Goddard et al., 2015). The function of MPs
is crucial for a wide range of physiological processes like signal transduction, electron transfer,
and neurotransmitter transport (Roy, 2015). They span the entire biological membrane with
segments exposed on both the outside and inside of aqueous spaces and have a profound
effect on the pharmacokinetics of various drugs (Padmanabhan, 2014), cell mechanics regulation
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(Stillwell, 2016), molecule transport (Oguro and Imaoka, 2019;
Puder et al., 2019) and so on. Also, the evidence is pointing
toward TMPs associating with a wide range of diseases, including
dyslipidemia, autism, epilepsy (Rafi et al., 2019; Tanabe et al.,
2019; Weihong et al., 2019), and multiple cancers (Moon
et al., 2019; Yan et al., 2019). Moreover, based on the current
therapeutics market, it is evaluated that more than one-third of
future drug targets would be TMPs (Studer et al., 2014) and the
surface of TMPs is always identified as an interaction interface
according to statistical reports (Lu et al., 2019b).

The quantitative approach for measuring the exposure of
residues is to calculate the relatively accessible surface area
(rASA) of the residues (Tarafder et al., 2018). rASA reflects
the exposure of a single residue to the solvent, making it a
directive reference of protein structures. Predicting rASA of
TMPs is a rewarding task to biological problems like function
annotation, structural modeling, and drug discovery (Zhang
et al., 2019). In this case, accurate sequence-based computational
rASA predictors need to be developed urgently to provide more
support for structure prediction.

Many rASA predictors had been reported performing well on
soluble proteins but the structural differences between the two
protein types are significant, especially when interacting with
the phospholipid bilayer. There are a few methods released to
predict rASA of TMP residues based on their primary sequences.
Beuming and Weinstein (2004) firstly proposed a knowledge-
based method to predict the binary state (buried or exposed) of
residues in terms of a preassigned cutoff in the transmembrane
region of α-TMPs, it is the first rASA predictor of TMPs. After
that, a series of methods using machine learning including SVC,
SVR, and SVM emerged, which can be automatically divided into
two categories according to their functionality: binary classifier
and rASA real value predictor. All of these machine learning-
based methods were designed for α-TMPs, some methods were
just effective with the transmembrane region of the proteins
restrictedly, such as TMX (Liwicki et al., 2007; Wang et al., 2011),
TMexpoSVC (Lai et al., 2013), and TMexpoSVR (Lai et al., 2013),
only MPRAP (Illergård et al., 2010) and MemBrane-Rasa (Xiao
and Shen, 2015; Yin et al., 2018) were able to predict rASA of the
entire sequence. Our previous work (Lu et al., 2019a) combined
Inception blocks with CapsNet, proving that deep learning takes
many advantages for the prediction but there is still room for
accuracy improvement.

The predictors mentioned above including our previous
version all applied common methods like SVM and feed-forward
neural networks. However, these non-sequential models do not
naturally handle sequential data and have trouble capturing
long-term dependencies of a certain sequence (Sønderby and
Winther, 2014), thus being a bottleneck in rASA prediction tasks,
calling for more suitable models. In recent years, various Long
Short Term Memory (LSTM) models have already employed
to learn temporal information of protein secondary structure,
confirming the amazing ability of LSTM in handling protein
sequences through experimental verification (Sønderby and
Winther, 2014; Sønderby et al., 2015; Heffernan et al., 2017).
When it comes to sequence level issues, LSTM is definitely a
better choice. Furthermore, previous tools did not have measures

for reinforcing effective features, resulting in lower inefficiency of
model learning. Additionally, various input restrictions and long
waiting times also made the predictors less friendly to users.

In this study, we proposed an attention-enhanced
bidirectional LSTM network named TMP-SSurface2 to predict
rASA of TMPs at the residue level, which was implemented
on top of the CNN-based Z-coordinate predictor TM-ZC
(Lu et al., 2020). TMP-SSurface2 was trained and tested
against the non-redundant benchmark dataset we created
with primary sequences as input, improving the Pearson
correlation coefficients (CC) value performance of the old
version from 0.584 to 0.659, and reduced the mean absolute
error (MAE) from 0.144 to 0.140. Apart from state-of-the-art
prediction accuracy, TMP-SSurface2 also achieved the highest
output efficiency compared to existing methods with no length
restriction of input. The source codes of TMP-SSurface2
and the corresponding materials can be freely accessed at
https://github.com/NENUBioCompute/TMP-SSurface-2.0.

MATERIALS AND METHODS

Benchmark Dataset
A total of 4,007 TMPs were downloaded from PDBTM
(version: 2019-01-04). We removed the proteins which contained
unknown residues such as “X” or whose length was less than 30
residues since too short a sequence may not form a representative
structure. To avoid the redundancy of data and reduce the
influence of homology bias, CD-HIT (Li and Godzik, 2006)
was utilized to eliminate the duplicate structures with a 30%
sequence identity cut-off resulting in 704 protein chains (618 α

protein chains and 86 β protein chains) left. These proteins were
randomly divided into a training set of 604 proteins, a validation
set of 50 proteins, and a test set of 50 proteins, respectively. In this
work, five-fold cross-validation experiments were performed and
the results were compared against other predictors.

The residue solvent accessibility surface area (ASA) is defined
as the surface accessibility of a certain residue when exposed to
water or lipid. Several tools are capable of calculating ASA, such
as Naccess (Lee and Richards, 1971), PSAIA (Mihel et al., 2008),
MSMS (Sanner et al., 1996), and Dictionary of Protein Secondary
Structure (DSSP) (Kabsch and Sander, 1983).

The ASA of residues was calculating by DSSP, using a
probe with a radius of 1.4 Å. A residue’s ASA is divided by
the corresponding standard maximum accessible surface area
(MaxASA), which is the ASA of extended tri-peptides (Gly-X-
Gly) (Tien et al., 2013), to generate rASA values. rASA can be
calculated by the following formula:

rASA =
ASA

MaxASA
(1)

Features and Encoding
To make the prediction more accurate, it is vital to provide useful
features to deep learning-based methods. In our experiments, we
carefully select two encoding features to represent the protein
fragment: one-hot code and PSSM.
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Prediction of transmembrane protein residues’ rASA is a
classical regression problem, which can be formulated as follows:
for a given primary sequence of a TMP, a sliding window of k
residues was used to predict the real value of central residue’s
rASA. For instance, if k is 19, then each protein is subsequently
sliced into fragments of 19 amino acids.

For each residue in protein sequences, one-hot code is a
20-dimension vector (see Figure 1), using a 19 dimensional
“0” vector with a “1” corresponding to the amino acid at the
index of a certain protein sequence. In this way, each protein
fragment can be mapped into an exclusive and undisturbed
coding within its relative position information (He et al., 2018). It
is proved that a one-hot code is extremely easy to generate while
effective for protein function prediction associated problems
(Ding and Li, 2015).

A position-specific scoring matrix (PSSM) reflects the
evolutionary profile of the protein sequence based on a
search against a certain database. Highly conserved regions
during evolution are always functional regions according to the
researches (Jeong et al., 2010; Zeng et al., 2019), so PSSM has
been widely used in many bioinformatics problems and achieves
commendable results. In our study, PSI-BLAST (Altschul et al.,
1997) was utilized to generate PSSM searching against the
uniref50 (version: 2019-01-16) database with 3 iterations and
a 0.01 E-value cutoff. For a given protein sequence, the PSSM
feature is a 20-dimension matrix with each column representing
a profile and each row representing a residue.

As shown in Figure 2, each amino acid in the protein sequence
is represented as a vector of 41 numbers, including 20 from one-
hot code (represented as binary numbers), 20 from PSSM, and
1 Noseq label (representing a gap) (Fang et al., 2018) in the last
column to improve the prediction performance of the residues
located on both ends of protein while using a sliding window.
In order to facilitate the window sliding operation, the first and
last parts of the sequence are, respectively, padded with 1 and 0 s,
which length is half of the sliding windows size. For each protein
with L residues, we can get L matrices.

Model Design
In this section, a novel compound deep learning network is
presented. Figure 3A shows the proposed pipeline. The input
features for TMP-SSurface2 are the one-hot code and the PSSM
matrix. The CNN whose structure and parameters are all same
as TM-ZC is used to generate the Z-coordinate of TMP residues.
Z-coordinate, which is an important constituent in the field of
MP structure prediction, is often implemented to stand for a
residue’s relative position concerning the membrane (Yin et al.,
2018). After that, the final feature map containing a one-hot code,
PSSM, and Z-coordinate will be put into a bidirectional LSTM
(BiLSTM) network for training and testing.

To further optimize the model, we also attached an attention
mechanism (Baron-Cohen, 1995) layer to the top of BiLSTM,
which is motivated by how we pay visual attention to different
regions of an image or correlate words in one sentence, to help
LSTM focus on a certain region that relatively deserves more
attention. The detailed structure of the mentioned LSTM network
is shown in Figure 3B.

Formula (2) to formula (9) describe the forward recursions
for a single LSTM layer, where

⊙
equals to the elementwise

multiplication, xt means input from the previous layer, it , ft ,
ot represent “input gate,” “forget gate” and “output gate,”
respectively. ht−rec stands for the output forwarded to the next
time slice, and ht is passed upwards in a multilayer LSTM
(Sønderby and Winther, 2014). Attention neural networks have
recently demonstrated popularity in a wide range of tasks ranging
from natural language processing to computer vision (Chorowski
et al., 2014; Rocktäschel et al., 2015; Sharma et al., 2015). Inspired
by these projects, we attached an attention mechanism to LSTM
for feature capturing. As shown in formula (10), the combination
of attention mechanism enables the model to re-assign the weight
(Watt) of the feature vector (V), indicating that the next output
vector (V ′) should focus more on which part of the input
sequence, and then generate the next output according to the
focus region.

it = σ
(
xtWxi + ht−1Whi + bi

)
(2)

ft = σ
(
xtWxf + ht−1Whf + bf

)
(3)

ot = σ
(
xtWxo + ht−1Wh0 + bo

)
(4)

gt = tanh
(
xtWxg + ht−1Whg + bg

)
(5)

ct = ft
⊙

ct−1 + it
⊙

gt (6)

ht = ot
⊙

tanh (ct) (7)

ht−rec = ht + feedforwardnet
(
ht
)

(8)

σ (z) =
1

1+ exp (−z)
(9)

V ′ =Watt
⊙

V (10)

Our model was implemented, trained, and tested using Keras
and Tensorflow. Main hyperparameters (sliding window size,
training dropout rate, number of LSTM units, and layers of
LSTM) were explored. The early stopping and save-best strategy
were applied when the validation loss did not reduce in 10 epochs
during training time, the process would stop and save the best
model parameters. We used Adam optimizer to dynamically
transform the learning rate while the model was training. All the
experiments were performed using an Nvidia 1080Ti GPU.

Performance Evaluation
To quantitatively evaluate the predictions of TMP-SSurface2,
Pearson correlation coefficients (CC) and mean absolute error
(MAE) were used in this study. CC undertook the task
of measuring the linear correlation between real values and

Frontiers in Genetics | www.frontiersin.org 3 March 2021 | Volume 12 | Article 65614071

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-656140 March 9, 2021 Time: 15:37 # 4

Liu et al. Surface Accessibility of Transmembrane Protein

FIGURE 1 | One-hot code of protein residues.

FIGURE 2 | Encoding features as the model input.

FIGURE 3 | (A) Pipeline of the deep learning model. (B) The attention-enhanced bidirectional LSTM network.
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predicting values. CC ranges from −1 to 1, where −1 indicates
an abstract negative correlation, 1 positive correlation, and 0
absolutely no correlation. Formula (11) shows the definition of
CC, where L represents the number of residues, xi and yi define
the observed and predicted rASA value severally, x and y equal to
the corresponding mean value, respectively.

CC =
∑L

i=1 (xi − x)
(
yi − y

)√[∑L
i=1 (xi − x)2

] [∑L
i=1
(
yi − y

)2
] (11)

Mean absolute error measures the closeness of prediction values
to real values. As shown in formula (12), MAE is defined as the
average difference between predicted and observed rASA values
of all residues.

MAE =
1
L

L∑
i=1

∣∣yi − xi
∣∣ (12)

RESULTS

Feature Analysis
As we all know, it is the features, instead of model structures,
determine the upper-performance limit of deep learning. To
investigate the different features’ contribution to the predictor
TMP-SSurface2, we tested both independent features used in the
predictor and their various combinations on our valid dataset.

Table 1 illustrates that all of the three independent features (Z-
coordinate, one-hot, and PSSM) contain useful information for
predicting rASA by themselves, among which PSSM achieves the
best overall results (CC = 0.631 and MAE = 0.144). It is suggested
that PSSM is an important feature in rASA prediction mainly
because of the inclusion of evolutionary knowledge. When
combining these different features, as was indicated by a former
study, the CC values are almost linearly related to the MAE values
(Yuan et al., 2006), the maximum CC values always accompany
the minimum MAE. Experimental investigation shows that
every single feature made a contribution to the prediction and
achieved the most considerable performance (CC = 0.659 and
MAE = 0.140) when they were combined.

Hyperparameter Tuning and Model
Performance
Tables 2–5 summarizes the exploration of the attention-
enhanced bidirectional LSTM network with various

TABLE 1 | Prediction performance based on individual input features and their
various combinations.

Feature CC MAE

Z-coordinate 0.310 0.191

one-hot 0.417 0.180

PSSM 0.631 0.144

one-hot+PSSM 0.641 0.142

one-hot+PSSM+ Z-coordinate 0.659 0.140

*Bold fonts represent the best experimental results.

hyperparameters on the validation dataset. The object of
doing these experiments was to find out a better configuration of
our method. The tested hyperparameters were carefully selected
and only the major factors which would greatly influence the
model were explored on the validation dataset.

A sliding window approach is utilized to append useful
neighborhood information to improve prediction accuracy.
Table 2 shows how the length of the sliding window affects the
performance of our network. Since the contexts fed into the
proposed deep learning model relies on the length of the sliding
window, the prediction accuracy would be directly influenced by
its value. In general, when the window size becoming larger, it
will cost more time for training, but the prediction performance
may not be better as the window length increases. Historically, if a

TABLE 2 | Effect of sliding window length on CC performance.

Window Length CC MAE

13 0.642 0.141

15 0.641 0.143

17 0.645 0.143

19 0.648 0.140

21 0.646 0.141

23 0.640 0.142

*Bold fonts represent the best experimental results.

TABLE 3 | Effect of dropout rate on CC performance.

Dropout rate Train CC Test CC Test MAE

No 0.851 0.632 0.143

0.2 0.806 0.640 0.143

0.3 0.782 0.648 0.140

0.4 0.762 0.641 0.141

0.5 0.725 0.638 0.143

*Bold fonts represent the best experimental results.

TABLE 4 | Effect of LSTM units’ number on CC performance.

Num of units CC MAE Num of Parameters

500 0.639 0.142 2,191,381

600 0.641 0.142 3,109,591

700 0.648 0.140 4,187,781

800 0.643 0.143 5,425,981

900 0.646 0.140 6,824,181

*Bold fonts represent the best experimental results.

TABLE 5 | Effect of the number of LSTM layers on CC performance.

LSTM Layers CC MAE Num of parameters

1 0.648 0.140 4,187,781

2 0.659 0.140 15,953,381

3 0.642 0.141 27,718,981

4 0.646 0.141 39,484,581

*Bold fonts represent the best experimental results.
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sliding window was utilized by sequence-based protein structure
predicting tasks, the peak of performance often occurred when its
length was between about 13 and 23 residues (Fang et al., 2018; Lu
et al., 2019a). We searched the window length from 13 to 23 by a
step of two residues, finding the best result when the number is
19 and it was chosen as the final window length in this section.

Table 3 shows how the dropout rate affects the model
performance when the window size is 19. Deep learning
neural networks are much easier to overfit a training dataset
with few examples, dropout regularization will help reducing
overfitting and improve the generalization of deep neural

TABLE 6 | Comparison of TMP-SSurface2 with the previous predictors on the
independent dataset.

Predictor CC MAE Failure Time Cost (min)

MPRAP 0.397 0.176 9 6.5

MemBrane-Rasa 0.545 0.153 7 23.7

TMP-SSurface 0.584 0.144 0 4.7

TMP-SSurface2 0.659 0.140 0 4.3

*Bold fonts represent the best experimental results.

TABLE 7 | Performance of TMP-SSurface2 on different types of TMPs.

TMP Types Protein number CC MAE

α-helical TMPs 45 0.674 0.138

β-barrel TMPs 5 0.562 0.151

all-TMPs 50 0.659 0.140

networks (Dahl et al., 2013). The dropout rates in the range of
0.2–0.4 are all acceptable according to the training and testing
prediction performance. Finally, we chose 0.3 as our dropout
rate, and the concatenation network in our study is regularized
using a 30% dropout.

In the LSTM network, the number of LSTM units is also an
important parameter, which determines the output dimension
of different layers just like ordinary neural networks. When
the number of LSTM units in one layer changes, the scale
of parameters and prediction accuracy of the model will
immediately be affected. To find the best choice of LSTM units,
we tried different values at the same time. The results are
shown in Table 4, we chose 700 as the number of LSTM units
in a simple layer.

As it can be seen in Table 5, when the LSTM network has
two bidirectional layers (i.e., four simple layers, two forward
and two backward), the model performs best on the validation
set. However, the prediction accuracy of the model may not
grow as the number of LSTM layers increases. It is suspected
that a large number of model parameters will lead to the

TABLE 8 | Contribution of attention mechanism.

Model CC MAE

No attention 0.637 0.150

Attention with LSTM 0.659 0.140

Attention with Dropout 0.645 0.141

*Bold fonts represent the best experimental results.

FIGURE 4 | Validation loss curve of the training process with and without attention mechanism.
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FIGURE 5 | Visualization of the features learned by LSTM using PCA.

FIGURE 6 | The 3D visualization of the predicted result (surface version).

Frontiers in Genetics | www.frontiersin.org 7 March 2021 | Volume 12 | Article 65614075

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-656140 March 9, 2021 Time: 15:37 # 8

Liu et al. Surface Accessibility of Transmembrane Protein

overfitting of LSTM on the training set, thus reducing the
generalization ability of it.

Comparison With Previous Predictors
In this section, we list the existing methods that can be
used to predict the rASA of TMP in the full chain and
compare TMP-SSurface2 with them. Table 6 shows the
performance improvement of the proposed TMP-SSurface2 after
implementing the new model relative to the old version and
the other tools. During testing MPRAP and MemBrane-Rasa
on the independent dataset, we figured out that not every
sequence fed into these predictors can get a corresponding output
since some third-party tools might cause the failure. Just like
TMP-SSurface, the new version is reliable in getting prediction
results because of the simple coding scheme. Furthermore, TMP-
SSurface2 significantly outperformed the previous predictors and
has the quickest predicting speed. The details of the comparison
are shown in Table 6.

TMP Type Test
Statistical results show that most of the existing methods only
focused on α-helical TMPs while ignored β-barrel TMPs, which
made it inconvenient for the users who cannot distinguish the
protein type. As described previously, the data set we used
contains both α-helical and β-barrel TMPs, making our predictor
more suitable for all types of TMP. Table 7 illustrates that when
TMP-SSurface2 meets either of these two different TMPs, the
prediction performance on the independent testing dataset was
both considerable and reliable.

Contribution of Attention Mechanism
The attention mechanism promotes the model to extract features
more effectively, speeding up the prediction accuracy to the
peak, even improving the performance at the same time.
To verify the positive effect of the attention mechanism, we
monitoring the mean absolute error loss curve of the validation
dataset with or without the attention layer, respectively, using
the preselected best hyperparameters while training. As is
shown in Figure 4, when the network is attention-enhanced,

the convergence speed and accuracy of the training set were
significantly improved.

Moreover, we also combined attention mechanisms with
various network layers to verify whether or how much
the attention mechanism would improve the prediction
performance. Firstly, we removed the attention layer and tested
the trained model on the test set. Meanwhile, we attached
the attention mechanism to the bidirectional LSTM layer
and the Dropout layer, respectively, to conduct experiments,
the results are shown in Table 8. It can be seen that the
combination of attention mechanism and bidirectional LSTM
layer reached the best performance, which is related to the fact
that the LSTM layer had learned the most abundant features.
In essence, the attention mechanism is to enhance the feature
extraction process, so it will achieve the best effect when
combined with the network layer that is the most effective for
feature extraction.

Visualization of the Features Learnt by
LSTM
Deep neural networks can learn high-level abstract features
from original inputs, to verify whether the extracted features
are generalizable, we utilized PCA (Wold, 1987) to visualize
the input features and each LSTM unit’s output in one
bidirectional layer with test data. Figure 5 shows the
PCA scatter diagram of the test data before and after fed
into LSTM, respectively. The input data had 42 features
(i.e., 42 dimensions), PCA reduced its dimensionality and
visualized it, but there was no clear cluster. The bidirectional
LSTM layer we used contained 1,400 dimensions (twice
of units in a simple LSTM layer) and the trend toward
clustering had occurred, which demonstrates that LSTM
had effectively captured useful and powerful features
needed in this work.

Generally, buried residues are under stronger evolutionary
constraints than exposed ones irrespectively of the environment
(Kauko et al., 2008). The diagram shows that the residues whose
rASA was lower than 0.2 narrowed down to a small area through
PCA, which means these residues’ rASA values stayed closely

FIGURE 7 | The comparison between the TMP-SSurface2-predicted rASA values and real rASA values.
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aligned with the features derived from their sequence, just proved
the previous statement.

Case Studies
To further demonstrate the effectiveness of TMP-SSurface2, we
take 4n6h_A as an example of case studies. 4n6h_A is an
Escherichia coli α-TMP (subgroup: G protein-coupled receptor)
containing 408 residues as the receptor of multiple ligands like
sodium ion, heme, and so on (Fenalti et al., 2014). Figure 6 shows
the 3D visualization of the predicted result (surface version) and
Figure 7 illustrates the comparison between the TMP-SSurface2-
predicted rASA values and real rASA values. As were shown
in figures, the overall trend of rASA has been appropriately
captured, but TMP-SSurface2 seems conservative in predicting
some fully exposed or buried residues’ rASA. It is suspected
that TMP-SSurface2 may confuse these residues with the ones
located on water-soluble regions, resulting in low prediction
performance of them.

CONCLUSION

In this study, we proposed an updated TMP-SSurface predictor,
which aimed to predict transmembrane protein residues’
rASA from primary sequences. Apart from classical feed-
forward neural networks, we developed an attention-enhanced
bidirectional LSTM network on top of the CNN-based
Z-coordinate predictor to process sequential data and improved
the CC value performance of the old version from 0.58 to 0.66
on the independent test dataset. The improvement of LSTM
directly indicates that the order of residues in a sequence would
exactly influence the protein structure and LSTM has a more
powerful ability to process sequential data than CapsNet. The
Z-coordinate feature was explored and applied in TMP-SSurface2
and proved to be useful, which means the z-coordinate has
a lifting effect on rASA prediction, indicating that structural
features can support each other. We also appended various

important experiments like feature visualization and case study
to visualize the effectiveness of the model. TMP-SSurface2 had
no constraints with input since it could handle all types of TMPs
at any length. The predicted rASA would make contributions to
TMPs’ structure analysis, TMP-ligand binding prediction, TMP
function identification and so on.
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Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) with
a closed-loop structure that are mainly produced by variable processing of precursor
mRNAs (pre-mRNAs). They are widely present in all eukaryotes and are very stable.
Currently, circRNA studies have become a hotspot in RNA research. It has been
reported that circRNAs constitute a significant proportion of transcript expression, and
some are significantly more abundantly expressed than other transcripts. CircRNAs have
regulatory roles in gene expression and critical biological functions in the development
of organisms, such as acting as microRNA sponges or as endogenous RNAs and
biomarkers. As such, they may have useful functions in the diagnosis and treatment
of diseases. CircRNAs have been found to play an important role in the development
of several diseases, including atherosclerosis, neurological disorders, diabetes, and
cancer. In this paper, we review the status of circRNA research, describe circRNA-
related databases and the identification of circRNAs, discuss the role of circRNAs in
human diseases such as colon cancer, atherosclerosis, and gastric cancer, and identify
remaining research questions related to circRNAs.

Keywords: circRNAs, database, machine learning, circRNAs identification, diseases

INTRODUCTION

Circular RNAs (circRNAs) are endogenous non-coding RNAs (ncRNAs) that have gained
increasing attention in recent years. circRNAs are formed by exon or intron cyclization
that ligates the 5′ terminal cap and 3′ terminal poly(A) tail to form a circular structure.
They are mainly located in the cytoplasm or stored in exosomes, are unaffected by RNA
exonucleases, are more stably expressed and less susceptible to degradation, and have been
shown to exist in a wide variety of eukaryotic organisms (Li Y. et al., 2015; Pradeep
et al., 2020). The widespread existence of circRNAs suggests that they have certain biological
functions as lncRNAs and microRNAs (miRNAs) play (Jiang et al., 2009, 2014, 2015;
Wang et al., 2014; Cheng L. et al., 2019; Liang et al., 2019; Wei and Liu, 2020; Yang
et al., 2020). In recent years, studies have shown a diversity of formation mechanisms

Frontiers in Genetics | www.frontiersin.org 1 March 2021 | Volume 12 | Article 66523379

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.665233
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.665233
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.665233&domain=pdf&date_stamp=2021-03-19
https://www.frontiersin.org/articles/10.3389/fgene.2021.665233/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665233 March 15, 2021 Time: 15:58 # 2

Jiao et al. Circular RNAs and Human Diseases

and biological functions of circRNAs. circRNAs are formed by
various mechanisms; for example, spliceosomes (intracellular
protein–RNA complexes) catalyze splicing as follows (Salgia et al.,
2003): first, the spliceosome recognizes introns, which are flanked
by the splice donor (or 5′ splice site) and the splice acceptor
(or 3′ splice site) with specific sequences at the 5′ and 3′ ends;
then, the 2′ hydroxyl group of the downstream sequence attacks
the splice donor, resulting in a circular intron lariat structure;
finally, the 3′ hydroxyl group of the upstream exon splice donor
attacks the splice acceptor, the upstream and downstream exons
are sequentially spliced to form a linear structure, and the
intron lariat structure is usually degraded rapidly by debranching
enzyme. Variable splicing is the process by which a precursor
mRNA (pre-mRNA) can be transcribed from different RNA
splicing methods; that is, different combinations of splice sites, to
produce mutually exclusive mRNA splice isoforms, which in turn
are translated to produce different protein products (Pan et al.,
2008). This is the main function of RNA cyclization. Cyclization
of circRNAs can be divided into intron and exon cyclization
(Sanger et al., 1976), and the current mainstream cyclization
mechanisms are categorized as follows: (1) exon skipping, (2)
direct back-splicing of intron, (3) circRNA formation by RNA-
binding proteins (RBPs; Chen, 2016; Zhang et al., 2018), and (4)
circular intron RNA cyclization (Stoddard, 2014); the detailed
mechanisms are shown in Figure 1. The diversity of circRNAs,
and thus their diverse biological functions, is a direct result of
these multiple formation mechanisms. For example, circRNAs
can act as miRNA sponges (Hansen et al., 2013; Memczak et al.,
2013; Zhao et al., 2020a), be translated into proteins (Yang et al.,
2017), bind functional proteins (Li Z. et al., 2015), regulate RNA
splicing (Conn et al., 2017), and regulate transcription (Chao
et al., 1998; Memczak et al., 2013). Therefore, the identification
of circRNAs contributes to our understanding of the formation
and biological functions of circRNAs.

In 1976, Kolakofsky (1976) observed, for the first time,
defective interfering RNAs in parainfluenza virus particles using
electron microscopy. Sanger et al. (1976) discovered that plant-
infecting viroids are a class of single-stranded, circular RNA
molecules that have characteristics such as high thermal stability
and a natural circular structure by self-complementary. In 1979,
similar circular transcripts were found in HeLa cells and yeast
mitochondria by electron microscopy (Hsu and Coca-Prados,
1979). In 1981, a ribosomal RNA (rRNA) gene was discovered
in Tetrahymena that contained an intron sequence that formed
a circular RNA after splicing. In 1988, the intron of 23S rRNA
in archaea was found to be spliced at a specific site to form
a stable circular RNA and to function as a transposon. In
1991, researchers identified several circular transcripts formed by
different splicing patterns in the human oncogene DCC (Nigro
et al., 1991), and these circular RNAs were then found in human
ETS1 gene, mouse Sry (sex-determining region Y) gene, rat
cytochrome P450 2C24 gene and human P450 2C18 gene.

Despite their early discovery, research on circRNAs has been
slow in recent decades. Although circRNAs were discovered
decades ago, they could not be detected by molecular techniques
that relied on poly(A) enrichment because they did not have
free 3′ and 5′ ends. Instead, cyclizable exons were spliced

by reverse splicing, which was different from regular linear
splicing. Moreover, the mapping algorithm of early transcriptome
analysis could not directly map the sequenced fragments to the
genome, leading to the idea that circRNAs were byproducts
of missplicing. With the development of high-throughput
sequencing and bioinformatics technologies, it was first proposed
in 2012 that circRNAs are circular transcripts generated by
reverse splicing of mRNA precursors, which are found to
exist in large quantities in different types of human cells. In
2013, it was found that circRNAs can act as a sponge for
miRNAs (Hansen et al., 2013; Memczak et al., 2013), which
regulate the growth and development of organisms. Since then,
circRNAs have rapidly become a research hotspot. To identify
circRNAs, in addition to high-throughput techniques (RNA-seq),
common analytical and computational methods are used, such
as CIRI (Gao et al., 2015), segemehl (Hoffmann et al., 2014),
Mapsplice (Wang et al., 2010), and CircSeq (Guo et al., 2014).
In recent years, researchers have developed machine learning
methods to identify circRNAs based on the above methods
(Yin et al., 2021). Feature selection is an important part of
these machine learning models. Feature selection, aiming to
select a subset of features by eliminating redundant and noise
features, is an important preprocessing step in bioinformatics.
Recently, Su et al. (2018) proposed a binomial distribution
based method to perform feature selection in computational
genomics. The effectiveness of their method has been proved
by predicting lncRNA subcellular localizations (Su et al., 2018).
Since both nucleotide and amino acid composition obey binomial
distribution, this method is suggested to be used for genomic
and proteomic analysis. We provide here an overview of the
research progress of circRNAs, including the development of
circRNA databases, identification of circRNAs, and the role of
circRNAs in human diseases such as colon cancer, atherosclerosis,
and gastric cancer.

circRNA-RELATED DATABASES

In recent years, as circRNA research has progressed, an increasing
number of circRNAs have been discovered in different species,
and circRNA-related databases have been created. Some of the
main circRNA databases published so far are listed below.

(1) circBase collects and merges public circRNA datasets
and provides evidence of the genomic catalog of their
expression, as well as scripts to identify circRNAs in
sequencing data1 (Glazar et al., 2014).

(2) Circ2Trait is a comprehensive database that includes
potential associations of circRNAs with diseases and
traits by studying the interaction network of circRNAs
with miRNAs and calculating their internal SNPs and
Argonaute (Ago) interaction sites2 (Ghosal et al., 2013).

(3) deepBase contains about 150,000 circRNA genes from
organisms, including human, mouse, Drosophila,
and nematode. This database also constructs the

1http://www.circbase.org/
2http://gyanxet-beta.com/circdb/
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FIGURE 1 | Formation of circRNAs by (a) exon skipping, (b) direct back-splicing, (c) formation by RNA-binding proteins (RBPs), and (d) circular intron RNA
cyclization.

most comprehensive expression map of circRNAs3

(Yang et al., 2010).
(4) CirNet mainly includes RNA-seq data of more than 400

samples from 26 tissues collected from the sequence read
archive database. This database not only includes basic
information on circRNAs but also provides expression

3http://deepbase.sysu.edu

profile data of circRNAs in different tissues and the
competing endogenous (ce)RNA regulatory network of
circRNAs–miRNA–gene4 (Liu et al., 2016).

(5) starBase v2.0 integrates published circRNA data and
constructs interaction networks of miRNAs with circRNAs
and circRNAs with RBPs. In addition, the database looks

4http://syslab5.nchu.edu.tw/CircNet
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for potential miRNA–ncRNA, miRNA–mRNA, ncRNA–
RNA, RBP–ncRNA, and RBP–mRNA interactions through
high-throughput data. starBase also predicts the function
of ncRNAs from miRNA-mediated (ceRNA) regulatory
networks (miRNAs, lncRNAs, and pseudogenes) and
protein-coding genes using the online tools miRFunction
and ceRNAFunction5 (Li et al., 2014).

TOOLS FOR RECOGNITION OF circRNAs

Because of the low expression level of circRNAs and limitations
of previous computational methods, these RNA molecules were
only found in small numbers in individual genes and therefore
initially thought to be products of missplicing, byproducts
of RNA splicing, incidental in animals, or precursors of
linear RNAs. In recent years, with improved experimental and
computational methods for circRNAs and the use of next-
generation high-throughput sequencing technologies (Wang
et al., 2009; Zeng et al., 2017, 2019), a large number of
stable circRNAs have now been found in a variety of cells,
and 85% of circRNAs can be mapped to known genes, of
which 84% overlap with coding exons (Memczak et al., 2013).
Because of the special structure of circRNAs—they lack a
5′ terminal cap and a 3′ terminal poly(A) tail and have a
closed-loop structure with covalent bonds—and their maturation
mechanism, early sequencing methods could not easily detect
such molecules. Improvements in sequencing analysis techniques
and computational methods have made detection more efficient
(Malysiak-Mrozek et al., 2019; Mrozek, 2020). Therefore,
studies on the identification of circRNAs are reviewed from
two aspects: (1) identification based on sequencing data and
(2) identification based on sequence features and machine
learning methods.

Identification of circRNAs Based on
Sequencing
Many algorithms exist for circRNA identification, including CIRI
(Gao et al., 2015), segemehl (Hoffmann et al., 2014), Mapsplice
(Wang et al., 2010), CircSeq (Guo et al., 2014), and find_circ
(Memczak et al., 2013). Using these algorithms, researchers
have identified a large number of circRNAs in human, mouse,
nematode, archaea, and other organisms (Yang et al., 2011; Jeck
and Sharpless, 2014). We describe here several of these commonly
used sequencing-based tools for identification of circRNAs.

CIRI (Stoddard, 2014) was developed by Gao et al. (2015)
to comprehensively identify circRNAs, and it is based on the
novel chiastic clipping signal algorithm. CIRI can accurately
detect circRNAs from transcriptomic data without bias through
multiple filtering strategies. This tool is mainly used to identify
and annotate circRNAs from RNA-seq data. Unlike other
methods for annotating circRNAs, CIRI eliminates false positives
by using a new algorithm based on paired cross-clip signal
detection in the BWA-MEM sequence alignment/map and
combining it with systematic filtering.

5http://starbase.sysu.edu.cn/

CIRCexplorer, a tool for identifying circRNAs developed by
Zhang et al. (2014), was the first to elucidate the regulatory
mechanism of complementary sequences on production of
exon-derived circRNAs. This tool revealed that regulation
of variable cyclization was mediated by competitive pairing
of complementary sequences, providing a new theoretical
perspective on the complexity and diversity of gene expression at
the transcriptional and posttranscriptional levels. Nearly 10,000
circRNAs were identified in human embryonic stem cell line
H9 using a special nuclease to enrich circRNAs in combination
with computational analysis software, demonstrating exon
cyclization mediated by the complementary sequence of
intron RNA. Competitive pairing of complementary sequences
between different regions can selectively generate either linear
RNAs or circRNAs.

CircSeq, a tool developed by Guo et al. (2014) to identify and
characterize mammalian circRNAs, is a computational pipeline
to identify and quantify the relative abundance of circRNAs from
RNA-seq databases. Compared with other identification tools,
CircSeq does not require available gene annotation to identify
circRNAs. The application of the identification tool to non-
polyA-selected RNA sequencing data in the ENCODE project
proved its ability to classify and globally characterize more than
7000 human circRNAs.

The above sequencing methods all identify back-splicing sites
from high-throughput sequencing data to detect circRNAs. In
comparing some of the above identification tools, Hansen et al.
(2016) and Sekar et al. (2019) found that only a small percentage
of circRNAs could be predicted simultaneously by these
tools, indicating significant differences and species variability.
Therefore, the above tools developed around high-throughput
sequencing technology have poor identification performance
and low consistency. Moreover, these tools generally have high
false-positive rates and low sensitivity (Hansen et al., 2016). To
address these shortcomings, researchers have developed tools
to identify circRNAs on the basis of sequence features and
machine learning.

Identification of circRNAs Based on
Sequence Features and Machine
Learning
Identifying circRNAs using sequence features that distinguish
circRNAs from linear RNAs (especially mRNAs that encode
proteins) is an urgent problem to be solved in bioinformatics. In
recent years, the combination of sequence features and machine
learning has been successfully used to solve biological problems
such as the prediction of gene regulatory sites and splice sites
(Wang et al., 2008; Xiong et al., 2015), and protein function (Cao
et al., 2017; Gbenro et al., 2020; Hippe, 2020; Zhai et al., 2020),
etc (Mrozek et al., 2007, 2009; Wei et al., 2017b,c, 2018; Jin et al.,
2019; Stephenson et al., 2019; Su et al., 2019a,b; Liu B. et al., 2020;
Liu Y. et al., 2020; Smith et al., 2020; Zhao et al., 2020b,c). Some
tools have been developed to identify circRNAs using sequence
features and machine learning methods. The basic framework of
using machine learning methods to predict circRNAs is shown in
Figure 2.
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FIGURE 2 | Methodology for predicting circRNAs based on machine learning methods.

One study selected 100 RNA circularization-related sequence
features, including length, adenosine-to-inosine (A-to-I) density,
and Alu sequences of introns upstream and downstream of the
splice site, and established a machine learning model to identify
circRNAs in the human genome. The classification abilities of
two machine learning methods, random forest (RF; Cheng et al.,
2019b; Liu et al., 2019) and support vector machine (SVM; Jiang
et al., 2013; Wei et al., 2014, 2017a, 2019; Zhao et al., 2015;
Cheng, 2019; Hong et al., 2020; Li and Liu, 2020; Shao and Liu,
2020), were also compared. The results showed that the selected
sequence features could effectively identify RNA circularization
and that different sequence features contribute differently to the
classification and prediction ability of the model. The RF method
showed better classification than the SVM method.

In 2021, Yin et al. (2021) constructed a tool, named PCirc,
to identify circRNAs using multiple sequence features and RF
classification. This tool specifically targets the identification of
circRNAs in plants, mainly from RNA sequence data. The tool
encodes the sequence information of rice circRNAs by using
three feature-encoding methods: k-mers, open reading frames,
and splicing junction sequence coding (SJSC). The accuracy of
the encoded information is greater than 80% when using the RF
method for identification. The identification model can be used
not only for the identification of rice circRNAs, but also for the
recognition of circRNAs in plants such as Arabidopsis thaliana.

circRNAs AND HUMAN DISEASES

In terms of disease diagnosis, studies have found that the
exosomes released by cancer cells contain abundant circRNAs,
suggesting that circRNAs might be used as biological markers
for clinical diagnosis. The key when using circRNAs for disease
prediction is to identify the interaction site between the circRNA
and miRNA or RBP, and then indirectly determine the association
between the circRNA and disease by analyzing the relationship
between the miRNA or RBP and disease (Jiang et al., 2010; Cheng
et al., 2018; Liu, 2020; Zeng et al., 2020; Zuo et al., 2020).

In 2015, Li Y. et al. (2015) reported that exosomes are enriched
with circRNAs, so it is possible that diseases such as colon cancer
could be diagnosed by detecting circRNAs in serum. Aberrant
expression of circRNAs in colorectal cancer and pancreatic ductal

adenocarcinoma has been used as a diagnostic or predictive
biomarker. By studying their expression profile, it was found that
circRNAs may be associated with the molecular pathogenesis of
cutaneous basal cell carcinoma (Sand et al., 2016).

The first validated circRNA, cANRIL, is closely related to a
single nucleotide polymorphism (SNP) that is thought to alter
the splicing of cANRIL, leading to expression of the INK4A/ARF
loci, resulting in an increased incidence of atherosclerosis (Burd
et al., 2010). Hypoxia is one of the key factors contributing to the
development of atherosclerosis, and is therefore also regulated by
circRNA (Boeckel et al., 2015).

Xu et al. (2015) showed that mice of a transgenic line
overexpressing the miR-7 gene in β-cells developed diabetes
mellitus. The same study showed that overexpression of the
circRNA ciRS-7 inhibited miR-7 function and thus improved
insulin secretion. Potential target genes of miR-7 have been
identified by bioinformatics analysis and include Myrip (a
gene regulating insulin secretory granules) and Pax6 (a gene
enhancing insulin transcription).

A study by Li P. et al. (2015) identified the circRNA hsa-
circ002059 as being associated with gastric cancer. In that study,
expression of this circRNA was downregulated in gastric tissues
of patients compared with healthy controls. In addition, hsa-
circ002059 was found at significantly lower levels in plasma of
patients with gastric cancer than in healthy controls.

In bladder cancer, circRNAs have been identified using high-
throughput microarray technology. Using this approach, Zhong
et al. (2016) found two downregulated circRNAs (circFAM169A
and circTRIM24) and 4 upregulated circRNAs (circTCF25,
circZFR, circPTK2, and circBC048201) in bladder cancer tissue
compared with adjacent non-tumor tissues. In addition, in the
cancer tissues, circTCF25 could increase expression of the CDK6
gene by modulating miR-103a-3p and miR-107. This is closely
related to the development of cancer.

Qin et al. (2016) identified hsa-cir0001649 in hepatocellular
carcinoma (HCC) and found that its expression was significantly
decreased compared with that in adjacent normal liver tissue. In
contrast, Shang et al. (2016) found that another circRNA, hsa-
cir0005075, was significantly downregulated in HCC compared
with adjacent normal tissue.

Exosomes are highly enriched with circRNAs. Exosomes are
extracellular vesicles, 40 to 160 nm in diameter, that function
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as important intercellular signaling pathways (Li Y. et al., 2015;
Kalluri and LeBleu, 2020). The exosome database exoRBase
included 92 sequenced samples of serum exosomes, including
samples from healthy volunteers and patients with coronary
heart disease and colon cancer. The exosome samples contained
58,330 circRNAs and 18,333 mRNAs (Li et al., 2018). Zhang
et al. (2019) demonstrated that circNRIP1, when secreted via
exosome, can be taken up by gastric cancer cells and promote
their proliferation, migration, and invasion. Therefore, exosomes
can be regarded as in vivo carriers of circRNAs that can amplify
their biological functions.

CHALLENGES AND PROSPECTS

Compared with long non-coding RNAs and miRNAs, research on
circRNAs is still in its infancy and many questions remain to be
answered, primarily in four areas:

(1) Transport and degradation: because circRNAs can resist
RNase digestion and are stable in cells, the process of their
degradation is unclear.

(2) Formation: it is unknown whether circRNAs are produced
during or after transcription.

(3) Expression, translation, and function of circRNAs:
circRNAs have stable structures and are highly conserved,
underpinning their ability to play important roles
in different organisms. Their unconfirmed roles,
including acting as miRNA sponges, regulating gene
expression, and targeting RBPs, require comprehensive
and extensive elucidation.

(4) Research methodology: the experimental methodologies
and bioinformatics used to identify circRNAs are
challenging. For example, in experimental methods,
general RNA-seq procedures such as reverse transcription
may cause technical mis-ligation and generate a large
number of artificial circRNAs. These pseudo circRNAs can

account for 34–55% of the sequencing quantity, seriously
affecting the accuracy of the data. As for methods that
use machine learning and sequence features, only a few
identification tools exist and their accuracy needs to be
improved. These tools are not stable across different
species. Therefore, in the future, stable identification
models and deep learning methods are needed to
establish identification tools for circRNAs and improve
the robustness of the models.

Accurate identification will help determine additional
biological functions of circRNAs. The unique features of
circRNAs such as ceRNA may provide new ideas for drug
discovery and development. The tissue specificity and stability
of circRNAs make them potentially useful biomarkers. In the
near future, it is likely that circRNAs will play important roles in
the prevention, diagnosis, and treatment of various diseases.
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Enhancers are regulatory DNA sequences that could be bound by specific proteins
named transcription factors (TFs). The interactions between enhancers and TFs
regulate specific genes by increasing the target gene expression. Therefore, enhancer
identification and classification have been a critical issue in the enhancer field.
Unfortunately, so far there has been a lack of suitable methods to identify enhancers.
Previous research has mainly focused on the features of the enhancer’s function and
interactions, which ignores the sequence information. As we know, the recurrent neural
network (RNN) and long short-term memory (LSTM) models are currently the most
common methods for processing time series data. LSTM is more suitable than RNN
to address the DNA sequence. In this paper, we take the advantages of LSTM to
build a method named iEnhancer-EBLSTM to identify enhancers. iEnhancer-ensembles
of bidirectional LSTM (EBLSTM) consists of two steps. In the first step, we extract
subsequences by sliding a 3-mer window along the DNA sequence as features. Second,
EBLSTM model is used to identify enhancers from the candidate input sequences. We
use the dataset from the study of Quang H et al. as the benchmarks. The experimental
results from the datasets demonstrate the efficiency of our proposed model.

Keywords: enhancer, identification, classification, recurrent neural network, long short-term memory

INTRODUCTION

Enhancers, as cis-acting DNA sequences, are small pieces of DNA that are surrounded by
specific proteins that often boost the expression of specific genes, and the specific proteins are
always transcription factors (TFs) (Sen and Baltimore, 1986; Krivega and Dean, 2012; Pennacchio
et al., 2013; Liu B. et al., 2016, 2018; Nguyen et al., 2019). In fact, enhancers play a highly
important role in vivo. As we know, enhancers can increase the gene expression by interacting
with TFs. By activating the transcription of genes, one way that enhancers influence target
gene transcription is by bringing enhancers close to target genes by forming chromatin loops,
and the other way is through self-transcription. Either way will bring about increasing of gene
expression (Krivega and Dean, 2012). Moreover, it is well known that enhancers can influence
human health and many human diseases. Recently, researchers have shown that under evolutionary
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constraints, approximately 85% of human DNA corresponds
to non-protein-coding sequences with a significant portion
constituting cis-regulatory elements. It is therefore not surprising
that genetic variations within these regulatory sequences may
lead to phenotypic variations and serve as the etiological basis
of human disease (Shen and Zou, 2020). This indicates that
enhancers might contribute to evolution.

As the amount of histone modifications and other biological
data available on public databases and the development of
bioinformatics, gene expression and gene control have become
increasingly well known (Kleinjan and Lettice, 2008; Liu G.
et al., 2016, 2018; Liu et al., 2017; Wang et al., 2020), and
study about enhancers is a hot spot currently, especially how to
identify enhancers and their strength (Zou et al., 2016; Zacher
et al., 2017; Zhang T. et al., 2020). However, there remain
many challenges to identify enhancers. For example, enhancers
locate in the non-coding regions that occupy 98% of the human
genome. This feature leads to a large search space and increases
the difficulty. It is also a formidable challenge that enhancers
are located 20 kb away from the target genes, or even in
another chromosome, unlike promoters are located somewhere
around the transcription start sites of genes. These features make
identifying the enhancers more difficult (Pennacchio et al., 2013).
As a result, in recent years, a large number of researchers have
turned their attention to this topic. In 2017, Zacher et al. proposed
a hidden Markov model named Genomic State ANotation
(GenoSTAN), which is a new unsupervised genome segmentation
algorithm that overcomes many limitations, such as unrealistic
data distribution assumptions. Although the experience has
shown that chromatin state annotation is more effective in
predicting enhancers than the transcription-based definition,
sensitivity (SN) remains poor (Wang et al., 2020).There are also
other algorithms that can be used for enhancer identification
and classification. Liu et al. built a predictor that has two layers
named “IEnhancer-2L,” which is the first predictor that can
identify enhancers with the strength information. The authors
used pseudo k-tuple nucleotide composition (PseKNC) to encode
the DNA sequences and then made full use of support vector
machine (SVM) to build a classifier (Liu B. et al., 2016). In
2018, a new predictor called “iEnhancer-EL” was proposed by Bin
Liu et al. iEnhancer-EL is formed through k-mer, subsequence
profile, or PseKNC and SVM. Then it obtains the key classifiers
and final predictor for layers 1 and 2 (Liu B. et al., 2018; Nguyen
et al., 2019). This bioinformatics tool is equivalent to an advanced
version of iEnhancer-2L and therefore has better performance
than Enhancer-2L. Last year, Quang H. et al. proposed a
new model called iEnhancer-ECNN that uses both one-hot
encoding and k-mer to encode the sequence and ensembles of
convolutional neural networks as the predictor. In our view, it
has great improvements in many metrics.

In this study, we build a prediction network named iEnhancer-
ensembles of bidirectional long short-term memory (EBLSTM)
to identify enhancers and predict their strengths at the same
time. We use 3-mer to encode the input DNA sequences.
Then we predict enhancers by EBLSTM. Although we only use
DNA sequence information, the experimental results prove the
effectiveness of our method.

MATERIALS AND METHODS

Benchmark Dataset
The dataset used in our study is collected from previous studies
by Liu B. et al. (2016), Liu B. et al. (2018), and Nguyen et al.
(2019) and consists of the chromatin states of nine cell lines,
including H1ES, K562, GM12878, HepG2, HUVEC, HSMM,
NHLF, NHEK, and HMEC (Liu B. et al., 2016). The dataset
is divided into two parts; one part is used to train the model.
We called this dataset as the development set. The other part
is an independent test dataset. As shown in Figure 1A, the
development set consists of 1484 enhancer samples and 1484
negative samples and it is also the layer 1 dataset for enhancer
identification. Moreover, 1484 enhancer samples can be divided
into 742 strong enhancer samples and 742 weak enhancer
samples, and it is the layer 2 dataset for enhancer classification.
As shown in Figure 1B, the independent test set contains 200
enhancer samples (100 strong and 100 weak) and 200 negatives.
At the same time, the dataset can be presented as follows:

Dataset = Dataset+ ∪ Dataset− (1)

Dataset+ = Datasetstrong ∪ Datasetweak (2)

where the Dataset is all the data that we used, Dataset+ means
the positive dataset, which is the enhancers in our study, and
Dataset− means the negative dataset, which is the non-enhancer
dataset in our study. Therefore, these two formulas mean the
Dataset consists of Dataset+ and Dataset−, and Dataset+ consists
of Datasetstrong and Datasetweak.

To display the datasets of this experiment more intuitively,
DNA consensus sequences of enhancers (Figure 2A), non-
enhancers (Figure 2B), strong enhancers (Figure 2C), and weak
enhancers (Figure 2D) are calculated. As Figure 2 shows, the
specific distributions of A, T, C, and G on these four datasets are
different. This means that differences in DNA sequence can be
used to distinguish these four types of sequences.

Every enhancer sample has the same length of 200 bp. In the
process of building the model, the development set will be divided
into five parts, no matter whether in layer 1 or in layer 2, and
each part will be the validation in turn and other four parts will
be the training set.

Sequence Encoding Scheme
In this study, we use the principle of k-mer (Liu et al., 2019; Zou
et al., 2019; Yang et al., 2020; Zhang Z. Y. et al., 2020), which
means dividing the nucleic acid sequence into many shorter
subsequences with length of k to encode the 200-bp enhancer
sequence. As we know, enhancers are a type of DNA sequence
and are composed of two kinds of purines (including adenine and
guanine) and two kinds of pyrimidines (including cytosine and
thymine). Thus, we can encode the obtained sequence of a length
of 200 using k-mer (k = 3) as a sequence with a length of 198 by
the encoding method shown in Figure 3. For example, the DNA
sequence D is shown as follows:

D = {ATCGTATCAG} (3)
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FIGURE 1 | Dataset partition. (A) The partition of the development set. (B) The partition of the independent test set.

FIGURE 2 | DNA sequence logo. (A) The DNA logo of enhancers. (B) The DNA logo of non-enhancers. (C) The DNA logo of strong enhancers. (D) The DNA logo of
weak enhancers.
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FIGURE 3 | Coding flow of 3-mer (taking DNA sequence with the length of 10 bp as an example).

3-Mers are extracted by sliding a 3-mer window along the original
DNA sequence with one step as features. The example sequence
could be cut into eight such short sequences in S1.

S1 = {ATC, TCG, CGT, GTA, TAT, ATC, TCA, CAG} (4)

Then, eight numbers are used to represent eight short sequences
with a strategy that makes each different 3-bp subsequence
corresponds to a different number as shown in Figure 3. The
DNA sequence can be transformed as a number sequence as
follows:

S2 = {6, 27, 45, 52, 17, 6, 24, 35} (5)

Finally, a number sequence of length 8 can be extracted from a 10-
bp DNA sequence. Thus, a sequence of 200 bp in the experiment
is encoded in this way and a sequence of 198 digits is produced.
Using the sequence ATC in S1 as an example, ATC is regarded as
a quaternary three-digit number, A as 0, T as 1, C as 2, and G as
3. Then convert the number in base 3 to base 10. So 64 different
3-mers can be represented by 0–63.

BLSTM Architecture
As Figure 4 shows, a sequence of numbers with the sequence
encoding scheme with the length 198 followed by the body of
the structure is used as input to BLSTM. It is mainly composed
of an embedding layer, a bidirectional LSTM, a dropout layer,
the rectified linear unit (relu), a dropout layer, and sigmoid
activation functions. In the architecture, the main purpose of
embedding term training is to incorporate into the model to
form an end-to-end structure, and the vector trained by the

embedding layer can better adapt to the corresponding tasks
(Kleinjan and Lettice, 2008; Liu G. et al., 2016, 2018; Liu et al.,
2017; Zhang T. et al., 2020). The recurrent neural network (RNN)
is a network of nerves that processes sequential data. Compared
with the ordinary neural network, it can process the sequence
variation data (Zou et al., 2016; Zacher et al., 2017). Long short-
term memory (LSTM) is a special RNN, and it is mainly used to
solve the problem of gradient explosion and disappearance. In
short, LSTM performs better than normal RNN if the sequence
is long (Liu et al., 2019; Zou et al., 2019; Yang et al., 2020; Zhang
Z. Y. et al., 2020). Bidirectional LSTM is equivalent to the LSTM
upgraded version, which means that time sequence data are used
to input history and future data simultaneously. In contrast to
time sequence, two cyclic neural networks are connected to the
same output, and the output layer can obtain historical and future
information at the same time (Bian et al., 2014; Goldberg and
Levy, 2014; Juntao and Zou, unpublished; Tang et al., 2014).
The function of dropout layer is preventing model overfitting. In
addition, after relu and sigmoid layers (Gers et al., 1999; Graves
and Schmidhuber, 2005; Sundermeyer et al., 2012; Zaremba et al.,
2014; Huang et al., 2015; Xingjian et al., 2015; Li and Liu, 2020;
Sherstinsky, 2020), a probability of whether the sequence is an
enhancer or not can be calculated.

Ensemble Model
There are two algorithms in ensemble learning: boosting and
bagging (Li et al., 2020; Lv Z. B. et al., 2020; Sultana et al.,
2020; Zhu et al., 2020). In our experiment, the data from each
experiment are relatively independent and the bagging algorithm
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FIGURE 4 | Architecture of the BLSTM model.

is more suitable. First, the basis learner models are trained
independently by using subsamples. Finally, the strong learner
model is made by different ensemble methods. The testing result
shows that bagging is better than boosting. The entire workflow of
bagging is in perfect agreement with our experimental procedure.
After that, through several experiments, compared with the
voting and median methods, the average method (Figure 5) can
improve most of the metrics in our experiment in the process of
selecting the ensemble method.

In our experiment, the dataset is divided into five parts
according to fivefold cross-validation and each part is used as
the validation set (Cheng et al., 2019; Dao et al., 2020a; Tang
et al., 2020; Zhang D. et al., 2020; Zhao et al., 2020), respectively,
and the remaining four parts are used as the training set for
the experiment. Five different sets of parameters and models
are obtained in these five experiments, and then five sets of
models are used to test and obtain the prediction results. The
final prediction probability value of the five prediction results is
obtained by the average method, and then the prediction results
is obtained by comparing with the threshold value of 0.5.

Measurement
To get the performance of the model, some evaluation metrics
are used, such as accuracy (ACC), SN, specificity (SP), Matthews’s
correlation coefficient (MCC), and area under the ROC curve
(AUC) (Jiang et al., 2013; Cheng, 2019; Liang et al., 2019; Dao
et al., 2020b; Lv H. et al., 2020; Shao and Liu, 2020; Shao et al.,
2020; Su et al., 2020; Lv et al., 2021; Zhang et al., 2021). In the
formulas of these metrics, TP, TN, FP, and FN mean true positive,
true negative, false positive, and false negative, respectively. As
we know, ACC is a description of systematic errors, a measure of
statistical bias, and it always evaluates a model objectively when
the dataset is balanced. SN and SP can support the model more
accurately when the data are not balanced. The ROC curve is
based on a confounding factors matrix, and the abscissa and the
ordinate of the ROC curve are the false positive rate (FPR) and
true positive rate (TPR), respectively, and AUC is the area under
the curve. When comparing the different classification models,

the ROC curve of each model can be drawn to obtain the value of
the AUC, which can be used as an important indicator to evaluate
the quality of a model (Gers et al., 1999; Graves and Schmidhuber,
2005; Sundermeyer et al., 2012; Wei et al., 2014, 2017a,b, 2019;
Zaremba et al., 2014; Jin et al., 2019; Su et al., 2019; Ao et al.,
2020a,b; Li and Liu, 2020; Sherstinsky, 2020; Yu et al., 2020a,b,c).
The higher the AUC value is, the better the model is. The MCC is
used as a measure of the quality of binary classifications and it is
always used in the field of bioinformatics and machine learning.
The reason why it is seen as a balanced measure is that MCC can
take into account TP, TN, FP, and FN and we can get more ACC
results by this way. MCC is a value between+1 and−1.+1 means
a perfect prediction, 0 represents that the method does not work,
and−1 indicates that the prediction was the exact opposite. These
evaluation metrics are calculated from the count of TP, TN, FP,
and FN.

ACC =
TN + TP

TP + FN + TN + FP
(6)

SN =
TP

TP + FN
(7)

SP =
TN

TN + FP
(8)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(9)

RESULTS

Two-Layer Classification Framework
To finish the work in an orderly way, a two-layer classification
framework is proposed, which is composed in two steps:
identifying enhancer and classifying strong enhancer from weak
enhancers. In fact, layers 1 and 2 have the same encoding scheme
and network structure. The only difference between the two
layers is the input dataset. In layer 1, all data are used as the
training set, enhancer set, and non-enhancer set, as part of all
data and considered the positive set and negative set, respectively.
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FIGURE 5 | Workflow of the ensemble model (ensemble method is the averaging method).

In layer 2, only the enhancers are used in the experiment. The
strong enhancer and weak enhancer are used, respectively, as the
positive set and negative set.

Layer 1: Enhancer Identification
As we know, enhancer identification is extremely important in
the field of enhancers. Now it is a hot topic in bioinformatics.
In this study, the process of identification can be regarded as
preparation for next step. To illustrate it, before judging whether
a DNA sequence is a strong enhancer or a weak enhancer, the first
thing is to judge if the sequence is an enhancer or not. If it is an
enhancer, then the model predicts if it is strong or weak. Through
this process, it becomes easier to understand its characteristics.
Compared with layer 2 (enhancer classification), layer 1 will have
higher ACC. For the reason, there are more differences between
enhancer and non-enhancer than strong enhancer and weak
enhancer. The more the difference, the easier it is to distinguish.
In the process of the experiment, all of the datasets (enhancer +
non-enhancer) are divided into five parts. Data division strategy
is shown in Table 1.

Layer 2: Enhancer Classification
The differences between strong enhancers and weak enhancers
are small. Hence, for layer 2, enhancer classification is more
difficult than layer 1. Enhancer’s biological function and
distinguishing the enhancer’s strength are an important
component in understanding its physical and chemical

TABLE 1 | The specific division of the dataset into five parts for identifying
enhancers and non-enhancers.

Part Enhancers Non-enhancers

1 296 296

2 296 296

3 296 296

4 296 296

5 300 300

Total 1484 1484

properties. For layer 2, more effort is paid in to study it.
In this layer, the enhancer dataset (strong + weak) is split
into five parts as layer 1, but the amount of enhancer data is
smaller (Table 2). Compared with layer 1, the layer 2 data are
characterized by smaller differences and smaller quantities.

Comparison of Different Encoding
Schemes
In the second part of our study, we compared the encoding
methods that we introduced the sequence and encoding scheme.
The encoding method adopted in this article is to encode the
letters in the sequence into the numbers by 3-mer. Meanwhile,
several other coding methods have also been tested, such
as 2-mer, one-hot, and encoding by correspondence between
letters and numbers.

k-Mer is obtained by sliding on the DNA sequence with
a step size of 1 bp. In our experiment, take 3-mer (k = 3)
as an example. When k is 3, 198 3-mers can be extracted
from DNA sequence of length 200. Each 3-mer consists of the
three letters taken as a whole, so it is possible to encode the
original letter sequence into a sequence of numbers of length
198 based on the encoding method shown in Figure 3. In
addition, the purpose of k-mer is to enhance the relationship
between adjacent letters so that the model can learn better.
The same is true for 2-mer, except that we end up with
a sequence of 199 digits. Another method is to encode the

TABLE 2 | The specific division of the dataset into five parts for classifying strong
enhancers and weak enhancers.

Part Strong Weak

1 148 148

2 148 148

3 148 148

4 148 148

5 150 150

Total 742 742
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letters directly in the sequence into the corresponding numbers
according to the one-to-one correspondence between letters
and numbers (A->0, T->1, C->2, G->3). One-hot coding, in
fact, means that there are N state registers used to encode N
states. Each state has an independent register bit, and only one
of these register bits is valid. In other words, there can only
be one state. This method ignores the relationship between
adjacent sequences.

As shown in Table 3, one-hot encoding scheme showed poor
effect in every metric. Adjacent sequences are separated in this
process and coding these sequences by one-hot into the EBLSTM
may not be a good idea. The other three methods have a similar
effect by careful observation, and SN of letters to numbers and 3-
mer is equal. But in other metrics, 3-mer is undoubtedly the best
one. Similarly, as shown in Table 4, in the process of enhancer
classification, the difference among different encoding schemes
will be more obvious. It can be seen that 3-mer performs better
than the others for each item; thus, we think 3-mer is a more
suitable encoding method for this experiment.

TABLE 3 | Result of comparison of using different encoding schemes in layer 1
(enhancers identification) under 10 trials.

Encoding scheme ACC AUC SN SP MCC

Letters to numbers 0.753 0.824 0.755 0.750 0.500

One-hot 0.565 0.611 0.494 0.642 0.132

2-Mer 0.758 0.827 0.735 0.762 0.505

3-Mer 0.772 0.835 0.755 0.795 0.534

TABLE 4 | Result of comparison of using different encoding schemes in layer 2
(enhancers classification) under 10 trials.

Encoding scheme ACC AUC SN SP MCC

Letters to numbers 0.640 0.650 0.784 0.512 0.302

One-hot 0.526 0.522 0.438 0.412 0.116

2-Mer 0.645 0.662 0.786 0.498 0.304

3-Mer 0.658 0.688 0.812 0.536 0.324

TABLE 5 | Result of comparison of using different architectures in layer 1
(enhancers identification) under 10 trials.

Architecture type ACC AUC SN SP MCC

Simple RNN 0.721 0.791 0.732 0.760 0.488

Bidirectional RNN 0.745 0.801 0.767 0.751 0.492

Simple LSTM 0.742 0.812 0.802 0.746 0.512

Bidirectional LSTM 0.772 0.835 0.755 0.795 0.534

TABLE 6 | Result of comparison of using different architectures in layer 2
(enhancers classification) under 10 trials.

Architecture type ACC AUC SN SP MCC

Simple RNN 0.617 0.634 0.801 0.591 0.249

Bidirectional RNN 0.628 0.617 0.792 0.612 0.276

Simple LSTM 0.634 0.626 0.770 0.578 0.302

Bidirectional LSTM 0.658 0.688 0.812 0.536 0.324

Comparison of Different Architectures
In this experiment, we tried eight different internal structures,
including simple RNN, bidirectional RNN, simple LSTM, and
bidirectional LSTM, and then, on the basis of the four networks
doubled, respectively, which means that another four structures
are two layers of RNNs, bidirectional RNNs, simple LSTMs, and
bidirectional LSTMs. After this step, a model that has the best
performance would be chosen that with higher metrics than other
seven models. Then the dropout layer is added to produce the
final architecture.

Tables 5, 6 show the different architecture results in layers
1 and 2, respectively. The results are shown from the results
in Table 5. Except for SN, the bidirectional LSTM has better
effect based on the four other evaluation metrics. The reasons
may be that bidirectional LSTM is more complex than the other
three architectures and more features can be captured by it. In
fact, we also do the other four experiments, as mentioned in the
previous paragraph. But increasing the number of layers in this

TABLE 7 | Result of comparison of using different ensemble models in layer 1
(enhancers identification) under 10 trials.

Ensemble method ACC AUC SN SP MCC

Median 0.728 0.788 0.774 0.726 0.498

Voting 0.765 0.762 0.792 0.738 0.517

Averaging 0.772 0.835 0.755 0.795 0.534

TABLE 8 | Result of comparison of using different ensemble models in layer 2
(enhancers classification) under 10 trials.

Ensemble
method

ACC AUC SN SP MCC

Median 0.622 0.664 0.740 0.572 0.310

Voting 0.638 0.644 0.794 0.562 0.311

Averaging 0.658 0.688 0.812 0.536 0.324

TABLE 9 | Result of comparison with existing state-of-the-art methods in layer 1
(enhancers identification).

Method ACC AUC SN SP MCC Source

iEnhancer-2L 0.730 0.806 0.710 0.750 0.460 Liu B. et al., 2016

EnhancerPred 0.740 0.801 0.735 0.745 0.480 Jia and He, 2016

iEnhancer-EL 0.748 0.817 0.710 0.785 0.496 Liu B. et al., 2016;
Liu G. et al., 2018

iEnhancer-ECNN 0.769 0.832 0.785 0.752 0.537 Nguyen et al., 2019

iEnhancer-EBLSTM 0.772 0.835 0.755 0.795 0.534 This study

TABLE 10 | Result of comparison with existing state-of-the-art methods in layer 2
(enhancers classification).

Method ACC AUC SN SP MCC Source

iEnhancer-2L 0.605 0.668 0.470 0.740 0.218 Liu G. et al., 2016

EnhancerPred 0.550 0.579 0.450 0.650 0.102 Jia and He, 2016

iEnhancer-EL 0.610 0.680 0.540 0.680 0.222 Liu G. et al., 2018

iEnhancer-ECNN 0.678 0.748 0.791 0.564 0.368 Nguyen et al., 2019

iEnhancer-EBLSTM 0.658 0.688 0.812 0.536 0.324 This study
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architecture also raises the processing time longer. The efficiency
will be reduced. Therefore, the results of these four experiments
were added to the table. A similar situation occurs in Table 6,
where bidirectional LSTM is also the better choice in many
metrics, except SP. Together, these results provide important
insights into the idea that bidirectional LSTM is the best fit
for the experiment.

Comparison of Different Ensemble
Models
As mentioned in Section “Ensemble Model,” during the
experiment, we tested three ensemble strategies. Each method has
advantages and disadvantages. To explore which kind of strategy
is more suitable for enhancers DNA sequences characteristics
identification, median, voting, and averaging are tested. Set of
indicators across the different methods are assessed. In Table 7,
the voting and averaging methods are significantly better than
the median method, and their performance of the two is very
similar, but AUC and MCC in the averaging method are higher
than those in the voting method, which shows that the predictive
effect and stability of the average method are more advantageous
than those of the voting method. In addition, in Table 8,
the averaging method is still the best of these three ensemble
methods. Combining these two tables to draw a conclusion, the
indicators for the averaging method are better than the other two
methods. The averaging method is the best one, and finally in our
model, this method is applied to achieve ensemble learning.

Comparison With Existing
State-of-the-Art Methods
There are several excellent methods for the prediction of
enhancers, and the well-known methods are iEnhancer-
2L, EnhancerPred, iEnhancer-EL, and iEnhancer-ECNN.
Tables 9, 10 show the results of the comparison with existing
state-of-the-art methods in layers 1 and 2.

As Table 9 shows, compared with the previous three
experimental methods, all the results of the metrics are
significantly improved, especially in AUC and MCC. Moreover,
compared with iEnhancer-ECNN in 2019, in this study, the
results for ACC, AUC, and SP are slightly higher, but the
results for SN and MCC are slightly lower. As seen in
Table 10, iEnhancer-EBLSTM remains a reliable method that
has better performance than iEnhancer-2L, iEnhancer-EL, and
EnhancerPred, especially for SN and MCC; this method has
been greatly improved. From the experimental results, we can
see that both IEnhancer-EBLSTM and IEnhancer-ECNN are
significantly better than the previous methods. I think the reason
lies in the fact that the deep learning model itself has certain
advantages, which can capture features more accurately and learn
more efficiently. The model obtained can have more accurate

parameters, so as to obtain higher results. However, compared
with iEnhancer-ECNN, the data for AUC in our experiment are
lower than the result of them, but the data for SN are higher.
Overall, these results indicate that iEnhancer-EBLSTM performs
best in enhancer identification and classification.

DISCUSSION

In this paper, we proposed the prediction model called
iEnhancer-EBLSTM to identify enhancers and their strengths.
In addition, this model uses the principle of 3-mer to encode
the DNA sequence and EBLSTM to get the predictive result.
The biggest advantage of this method is that it only uses
DNA sequence information and does not rely on other
features such as chromosome status, gene expression data, and
histone modification. This greatly facilitates researchers to use
it. iEnhancer-BLSTM could be used not only for identifying
enhancers but also for distinguishing strong enhancers from weak
enhancers. In the first layer, the predictor can identify whether the
DNA sequence is enhancer or not, and the ACC is 0.772. In the
second layer, the predictor can classify that the enhancer is strong
or weak, and the ACC is 0.658. A lot of work still needs to be done
on the second layer. There is little difference between strong and
weak enhancers. More and more information of DNA sequences,
physical and chemical needs to be mined. The characteristic
information can be recorded more completely, and the various
models can be built based on this information in more detail.
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As one type of complex disease, gastric cancer has high mortality rate, and there are few

effective treatments for patients in advanced stage. With the development of biological

technology, a large amount of multiple-omics data of gastric cancer are generated,

which enables computational method to discover potential biomarkers of gastric cancer.

That will be very important to detect gastric cancer at earlier stages and thus assist

in providing timely treatment. However, most of biological data have the characteristics

of high dimension and low sample size. It is hard to process directly without feature

selection. Besides, only using some omic data, such as gene expression data, provides

limited evidence to investigate gastric cancer associated biomarkers. In this research,

gene expression data and DNAmethylation data are integrated to analyze gastric cancer,

and a feature selection approach is proposed to identify the possible biomarkers of

gastric cancer. After the original data are pre-processed, the mutual information (MI)

is applied to select some top genes. Then, fold change (FC) and T-test are adopted

to identify differentially expressed genes (DEG). In particular, false discover rate (FDR) is

introduced to revise p_value to further screen genes. For chosen genes, a deep neural

network (DNN) model is utilized as the classifier to measure the quality of classification.

The experimental results show that the approach can achieve superior performance

in terms of accuracy and other metrics. Biological analysis for chosen genes further

validates the effectiveness of the approach.

Keywords: gastric cancer, omics data, biomarkers, feature selection, deep neural network, machine learning

1. INTRODUCTION

Gastric cancer is one of the most common malignant tumors of the digestive system (Nogueira
et al., 2017). The pathogenesis is mainly relevant to helicobacter pylori infection, diet, environment,
and genetic factors. It remains one of the most deadly cancers worldwide, especially among older
males (Siegel et al., 2020). Generally speaking, early detection of cancer is crucial for increasing
the chances for successful treatment and prolonging the patient’s life. The 5-year survival rate
of early-stage gastric cancer can reach more than 95% (Song et al., 2017). However, the early
stage of gastric cancer is hard to monitor because of rare symptoms and some potential patients’
cancer may be advanced when they are first diagnosed. Therefore, early targeting and treatment are
very important in clinical practice of gastric cancer (Wang et al., 2020). In recent years, with the
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development of sequencing technology, the genome data of
cancer patients can be obtained easily. These genomic data have
been used to study the association between genetic changes and
diseases and contribute to diagnosis and prognosis. However,
these data always have the characteristics of high dimensions and
low sample size (HDLSS) (Han et al., 2019). It is hard to process
these data directly (Yan et al., 2018). Therefore, feature selection
technology is usually adopted to assist in analyzing the possible
cancer-causing genes, also called biomarkers, from massive
cancer data. The biomarkers can facilitate us to understand the
pathogenesis of diseases at a detailed molecular level and play an
auxiliary role in clinical diagnosis.

Till now, many researchers have applied the feature selection
methods to the field of gene expression data analysis (Ding
and Peng, 2005; Lu et al., 2017; Zhao et al., 2020). However,
it is incomprehensive to analyze cancer only using gene
expression data. The rapid accumulation of omics data can
provide disparate, partially independent, and complementary
information about the entire genome (Zhang et al., 2016). The
multi-omic data can lay an important foundation for mining
informative biomarkers for cancer (Ruffalo et al., 2015). Among
these omics data, DNA methylation is an important epigenetic
event that affects gene expression during the development in
various diseases such as cancer (Bird, 1986; Wang et al., 2018).
In general, DNA methylation status is more reliable than gene
expression (Paziewska et al., 2014). The combination of DNA
methylation data and gene expression data is more beneficial to
explain the pathogenesis of gastric cancer. Therefore, these two
kinds of data are utilized to identify the biomarkers of gastric
cancer in our study.

In this paper, we propose a novel gastric cancer biomarker
identification approach, referred to GCBMI, to discover the
possible biomarkers of gastric cancer. First, the gene expression
data and DNA methylation data of gastric cancer are collected
and processed. Then, fold change, statistical test, and mutual
information are utilized to identify the differentially expressed
genes of gastric cancer and the selected genes can serve as
guidelines to reduce the dimension of omics data. At last, the
DNN model is adopted as the classifier to measure the quality
of classification. Experimental results indicate that GCBMI
can obtain more favorable performance than other state-of-
art methods.

The main contributions of this study are summarized
as follows:

• For gastric cancer, a novel feature selection approach is
proposed to identify the potential biomarkers. Here, DNA
methylation data is integrated with the gene expression data
effectively to obtain a comprehensive analysis to discover the
relationship between gastric cancer and potential biomarkers.

• Besides T-test and FC, mutual information is introduced as
a preliminary screening method to filter out redundant genes
and FDR is adopted to revise p_value to further screen genes.

• The experimental results suggest that our approach can
achieve improvement in different evaluation indicators than
other state-of-art methods. In addition to evaluating accuracy,
GO analysis, heatmap, and literature review are executed.

The above biological validation is able to demonstrate that
the genes selected by our approach are associated with
gastric cancer.

The remainder of this paper is organized as follows: In section
2, we review related works of feature selection methods.
The proposed approach is introduced in section 3. section
4 introduces the experimental design. Experimental results
and biological analysis are described in section 5. Finally, we
summarize the paper andmake a vision for the future in section 6.

2. RELATED WORK

With the development of sequencing technology, massive
amounts of cancer genome data have been accumulated at an
accelerated speed. A number of feature selection methods have
been extensively applied to cancer data. Traditional feature
selection methods can be divided into two categories: filter
methods and wrapper methods. Among them, the filter method
has the advantage of low time consumption. So far, some filter
methods had been well-applied to gene expression data.

Principal Component Analysis (PCA) is an effective
dimensionality reduction method (Wold et al., 1987). Ding
et al. combined feature extraction with feature selection in gene
expression data (Ding et al., 2009). The relief was utilized to
feature selection, and PCA was used to extract features. Then,
they used the support vector machines (SVM) for classification.
Experimental results illustrated that their method is effective to
reduce the classification error rate in eight cancer datasets. But
such methods cannot guarantee that the features still remain
the corresponding biological significance. For example, the
dimensionality reduction of features by PCA is equivalent to
mapping the new features on the original features, and the
features obtained after PCA are different from the original genes
(Shen and Huang, 2008). Thus, it is often difficult to interpret
the results.

Hsu et al. used extremely randomized trees (ET) to calculate
the weight of the features (Hsu and Si, 2018). Feature selection
was achieved by selecting features with high weight. Then, the
linear SVM was combined to achieve about 95% accuracy on
TCGA datasets. Lee et al. developed a novel filter method to
identify the biomarkers of lung cancer and confirmed seven
possible biomarkers (Lee et al., 2011).

In addition to filter methods, the wrapper methods utilize
classification accuracy as a measurement standard for evaluation
and find the optimal feature subset by iteration of meta-heuristic
algorithms (Rodrigues et al., 2014). A lot of meta-heuristic
algorithms had been well-applied to wrapper methods for feature
selection of cancer such as bat algorithm (BA), recursive memetic
algorithm (RMA), binary krill herd algorithm (MBKH), and so
on (Dashtban et al., 2018; Ghosh et al., 2019; Zhang et al., 2020).

Dashtban et al. proposed MOBBA-LS which utilized fisher
criterion and BA (Dashtban et al., 2018). They tested their
method on three microarray cancer datasets. The accuracy
achieved 100, 97, and 100% on leukemia, prostate, and SRBCT
datasets, respectively. Ghosh et al. developed a recursive memetic
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algorithm (RMA)model for feature selection (Ghosh et al., 2019),
and Zhang et al. proposed a pre-screening method of feature
ranking, IG-MBKH, which is based on information gain (IG) and
an improved binary krill herd (MBKH) (Zhang et al., 2020). The
above methods can obtain favorable classification accuracy on
microarray data of cancer.

Multiple-omics data can enable to provide a more
comprehensive analysis of the entire genome. Among them,
DNA methylation is one of the important epigenetic regulatory
mechanisms (Luo et al., 2020). Especially, it is considered as a
molecular factor that controls and regulates gene expression
levels near the CpG sites. Its status is closely associated with
diverse diseases and is generally more stable than gene expression
(Ding et al., 2019). Therefore, the function of DNA methylation
data was widely recognized. Increasing feature selection
methods, which are based on gene expression data and DNA
methylation data, were proposed.

For Alzheimer’s disease, Park et al. proposed a biomarker
prediction model, which integrated multi-omic data (Park
et al., 2020). They used the Limma package to select possible
biomarkers. Experimental results showed that their method can
achieve better accuracy than using single data, and some chosen
genes were reported in AlzGene database.

Mallik et al. proposed a method to identify biomarkers of
cancer based on omics data (Mallik et al., 2017). The maximal
relevance and minimal redundancy (mRMR) and parameter test
like T-test were used to select the genes. The results suggested
that their method had stable performance on different classifiers
and classification accuracy can achieve about 95 and 90% in gene
expression data and DNA methylation data, respectively.

Wang et al. proposed a feature selectionmethod based on gene
expression data and DNA methylation data of the six types of
cancer (Wang et al., 2020). Their method can be divided into
three steps. First, the correlation between gene expression profile
and methylation profile of each gene was calculated to screen
genes initially. Then, the genes were further filtered by T-test and
FDR value. Finally, the genes selected in first two steps are filtered
by Elastic Net. Finally, support vector machine was utilized as the
classifier. The accuracy can be as high as 98% for the training set
and 97% for the independent test set.

3. THE PROPOSED APPROACH

In this section, the proposed approach GCBMI is introduced.
The overall workflow of GCBMI is shown in Figure 1. GCBMI
consists of three stages: data pre-processing, selection of
DEG and data combination, and using deep neural network
as the classifier.

3.1. Data Pre-processing
In this section, we regularize the gene expression data, and then
merge the individual gene expression data files. In addition,
on the basis of annotation file of the gene chip, the column
(feature) name of each sample is converted to the gene name,
and the label column is added. In the annotation file of the
gene chip, the gene name corresponding to each probe is stored.
If a gene corresponds to multiple probes, we take the median
of expression value as new expression value of the gene. After

that, the genes with null values are further removed. In order to
eliminate the influence of outliers, the dataset is standardized by
z-score according to the following formula (Zhang et al., 2014).
Finally, the datasets are divided into training set and test set in
our experiment.

x′ =
x− x

σ
(1)

where x and x
′
represent a column of data before and after

standardization. x and σ represent the mean and standard
deviation of a column of data in training set.

Likewise, DNA methylation data are also processed
accordingly to eliminate the influence of outliers.

3.2. Selection of Differentially Expressed
Genes and Data Combination
In this section, how to identify DEG in our approach is
introduced. For gene expression data, the characteristics of
high dimension and low sample size make it hard to construct
a prediction model directly and may lead to the over-fitting
(Ma and Zhang, 2019). For this issue, an appropriate method
is required to reduce the size of feature space and the risk
of over-fitting.

In GCBMI, the DEG and the differentially methylated
positions (DMP) are utilized to train the model. The overall
process contains three steps as follows.

First, MI (Liu H. et al., 2009) is applied to select TopN genes
for gene expression data andDNAmethylation data, respectively.
It is a classic filter method of feature selection, which has been
successfully applied to many feature selection problems (Peng
and Fan, 2017). In order to avoid redundancy, the MI is adopted
to filter out irrelevant genes. N is set to 3,000 through the
subsequent experiments.

Second, FC and T-test are adopted to do identify DEG and
DMP. What is more, the FDR is applied to revise the p_value.
Taking DEG as an example, FC value for each selected genes
in the first step is calculated. Since the data obey the normally
distributed by Z-score standardization. Parametric statistics like
T-test can work well on this kind of data. Then, Levene-
test (Ankarali et al., 2009) is applied to verify whether the
samples with variance homogeneity or not. If they have variance
homogeneity, performing the standard T-test (Gauvreau and
Pagano, 1993) to calculate p_value. Otherwise, the Welch’s T-
test (Algina et al., 1994) is executed to calculate the p_value.
After that, the FC value and significant p_value for each gene
are obtained. Finally, FDR is utilized to revise p_value to further
screen candidate genes. A suitable threshold for FC value,
p_value, and FDR are set to filter genes. And then we can obtain
DEG. Similarly, DMP can be obtained. As shown in Figure 1, in
gene expression data, the |FC| > 2.1 and p_value < 0.05.The
|FC| > 1.8 and p < 0.05 in DNA methylation data. The FDR
threshold value of both experimental datasets is set as 0.01. A
hypothesis is made that if the gene is differentially expressed and
occur hypermethylated and hypomethylated in different samples.
This gene may have a potential relationship with gastric cancer.
So the overlapping genes in DEG and DMP are the possible
biomarkers of gastric cancer.
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FIGURE 1 | The workflow of gastric cancer biomarker identification approach (GCBMI).

Finally, in order to extend training samples, all possible
pairs of gene expression data and DNA methylation data for
tumor and normal samples are utilized to merge into a new
dataset. As shown in Figure 2, Cartesian product (Emelyanov
and Ponomaryov, 2017) is performed on the gene expression

data and DNA methylation data. The gene expression data and
methylation data that labeled as tumor are combined into new

tumor samples, and which labeled as normal are combined
into new normal samples. In this way, the gene expression
matrix and DNA methylation matrix are combined into a

new expression matrix. This matrix has a large sample size.
For example, in one of the cross-validation, the training set
of gene expression data has 214 samples, which contains 112
tumor samples and 102 normal samples. DNA methylation data
have 237 samples, which contains 160 tumor samples and 77
normal samples. After the combination, we will obtain 17,920
tumor samples and 7,854 normal samples. Taking them as new
tumor samples and normal samples, so the new training set
contains 25,774 samples, including 17,920 tumor samples and
7,854 normal samples.

3.3. Using Deep Neural Network as the
Classifier
DNN model has excellent classification performance compared
with traditional classifiers in previous studies, such as (Chen et al.,
2020; Singh and Yamada, 2020). Here, the DNN also adopted
as the classifier and the parameters of the DNN are determined
through experiments.

In this section, the structure of the network is introduced.
Our DNN model consists of three parts: input layer, hidden
layer, and output layer. The input layer consists of two parts,
corresponding to gene expression data and DNA methylation
data, respectively. Then we add six hidden layers that applied
ReLU as the activation function. Each layer contains 100 nodes
and a additional bias nodes. The dropout is added for each hidden
layer to avoid overfitting, which refers to drop some neurons
randomly according to a certain probability during the learning
iteration. It is equivalent to train a sparser network than the
original network. Each of iterations is training a different network
model to prevent overfitting. Finally, since our data only have two
categories, the output layer with one node is sufficient. Sigmoid

Frontiers in Genetics | www.frontiersin.org 4 March 2021 | Volume 12 | Article 644378100

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. A Novel Biomarker Identification Approach

FIGURE 2 | The process of combining data.

function is adopted as the activation function of the output layer
to make the output value between 0 and 1.

In the DNN model, the loss function is binary cross entropy
and cost function is the reduced average value of cross entropy.
Adam algorithm is applied to optimize the parameters of the
network model. The formula of the loss function and cost
function are as follows:

L(ŷ, y) = −ylog(ŷ)− (1− y)log(1− ŷ) (2)

J(w, b) =
1

m

m
∑

i=1

(−yilog(ŷi)− (1− yi)log(1− ŷi) (3)

where y and ŷ represent the true value and the predicted value
of a sample. ŷ is the result of sigmoid regression. m is the total
number of samples and i represents the index of the sample. w
and b represent weights and biases, respectively.

4. EXPERIMENTAL SETTING

The experiments can be divided into two parts. First, we compare
GCBMI with other state-of-art methods. The ET (Hsu and Si,
2018), Elastic Net (Wang et al., 2020), IG-MBKH (Zhang et al.,
2020), and MOBAA-LS (Dashtban et al., 2018) are selected as the
baselines. A detailed description of the comparison methods is
as follows:

• ET was proposed by Hsu et al. They used ET to calculate the
weight of the features and select features with high weight.
SVM was combined to evaluate the feature subsets. This
method achieved about 95% accuracy on TCGA datasets.

• Elastic Net was a novel method that integrates the Pearson
correlation coefficient, T-test, and FDR. The data are based on
gene expression data and DNA methylation data. In six types

of omics-data, the accuracy can up to about 98% by combing
with SVM.

• IG-MBKH was presented and applied to feature selection for
high-dimensional datasets. This method combined IG and
krill herd algorithm and they used K-Nearest Neighbor (KNN)
classifier to evaluate the classification accuracy. The accuracy
of classification on nine different cancer datasets was more
than 90%.

• MOBAA-LS is based on fisher criterion and BA. The accuracy
achieved 100, 97, and 100% on leukemia, prostate, and SRBCT
datasets, respectively.

Second, we investigate the prediction performance of DNN in
biomarker identification for gastric cancer and how our method
using different classifiers can affect the classification accuracy.
We undertake experiments to compare our method using DNN
classifier compared with using the traditional classifiers, such as
KNN (Tahir et al., 2007), SVM (Vieira et al., 2013), and Naive
Bayesian (NB) (Bielza and Larrañaga, 2014).

4.1. Dataset
We select the GEO database, which is an authoritative database
of cancer applied in many previous studies (Zouridis et al., 2012;
Wang et al., 2013) as the benchmark database. And the gene
expression data GSE29272 (Li et al., 2014) and DNAmethylation
data GSE30601 (Lei et al., 2013; Kurashige et al., 2016) of gastric
cancer are downloaded to construct our experiment dataset. As
shown in Table 1, there are 268 samples of gene expression
data including 134 tumor samples, 134 normal samples, and
13,515 features. And DNA methylation data contains 203 tumor
samples, 94 normal samples, and 14,476 features.

4.2. Parameter Setting
The experiments are conducted on Intel Dual Core CPU,
8 GB RAM, Windows 7 operating system. The procedure
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TABLE 1 | Benchmark dataset.

Dataset Gene expression DNA methylation

GEO ID GSE29272 GSE30601

Normal samples 134 203

Tumor samples 134 94

Features 13515 14476

TABLE 2 | Parameter setting.

Methods Parameter setting

GCBMI MI: n = 3,000; Gene expression: |FC| > 2, p < 0.05, FDR <

0.01; DNA methylation: |FC| > 1.8, p < 0.05, FDR < 0.01

ET Default parameters

IG-MBKH N = 20; Iterations = 400; TopM = 80; Nmax = 4; Vf = 0.02;

Dmax = 0.005

Elastic Net p < 0.05, FDR < 0.01, ElasticNetCV (cv = 10)

MOBBA-LS opN = 500, Population = 20, iteration = 300, alpha = 0.9,

sigma = 0.7, injRate = 0.01, extRate = 0.01

is implemented under the programming environment Python
version 3.6. The feature selection algorithms, statistical detection
methods, and classifiers are provided by the Scikit-learn package
and scipy package and the DNN is built by Keras package. Related
parameters are given as follows: DNN is set as described in the
Section 3.3; SVM: degree = 3, gamma = auto, kernel = “rbf,”
cache_size = 200; KNN: K = 5. The parameters of methods are
set according to the original literature (Dashtban et al., 2018; Hsu
and Si, 2018; Wang et al., 2020; Zhang et al., 2020). The specific
settings are shown in Table 2.

According to Park et al. (2020), all experiments use five-fold
cross validation. The dataset is divided into five parts, and one
part is taken as the test set in order and the rest parts are taken
as the training set in each cross validation. After the Cartesian
product is executed, there are average 8,053 normal samples,
17,400 tumor samples as training set, and 496 normal samples,
1,079 tumor samples as test set. The accuracy, precision, recall,
F1-score and Area Under Curve (AUC) are utilized to evaluate
the classification results of the model (Tanzi et al., 2020). These
evaluation indicators are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Prediction =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1− Score =
2 · Prediction · Recall

Prediction+ Recall
(7)

The positive samples are tumor samples and the negative samples
are normal samples. True positive (TP) indicates the number

TABLE 3 | Performance comparison on different metrics (the accuracy, precision,

recall, F1-score, and AUC value are average).

Methods Accuracy Precision Recall F1-score AUC

GCBMI + DNN 0.9870 0.9971 0.9836 0.9903 0.9891

ET + SVM 0.9259 0.8571 1.0 0.9230 0.9333

Elastic Net + SVM 0.8922 0.9003 0.9433 0.9210 0.8598

IG-MBKH + KNN 0.9518 0.9730 0.9166 0.9437 0.9483

MOBBA-LS + SVM 0.94 0.9477 0.9327 0.9401 0.9412

The bold values represent the highest value of each metrics.

of tumor samples that have been correctly classified, false
positive (FP) indicates the number of normal samples which
are misclassified as tumor samples, true negative (TN) indicates
the number of correctly classified normal samples, and false
negative (FN) indicates the number of tumor samples, which are
misclassified as normal samples.

5. RESULTS AND DISCUSSION

5.1. Comparison of Other State-of-Art
Methods
In this section, GCBMI is compared with other state-of-art
methods, and the experimental results are shown in Table 3.
The accuracy of GCMBI achieved is 98.7%. The Elastic net also
applies omics data, but the accuracy of GCBMI is 9% higher than
the Elastic net. The performance of two wrapper methods IG-
MBKH and MOBBA-LS are similar in our experiment. In terms
of accuracy, these two methods are about 5% lower than our
approach. The accuracy of extremely randomized trees achieved
is 93%. What is more, in terms of precision and recall, GCBMI
also has the highest precision and the second highest recall. This
indicates FP and FN appear less frequently and the classification
performance of GCBMI is superior to other state-of-art methods.

F1-score and AUC value are often applied to evaluate the
stability and robustness of models. The two indicators of GCBMI
can achieve about 99%. It is 5–7% higher than other state-of-
art methods. In order to display the advantages of our method
more intuitively, the histogram of experimental results is plotted
in Figure 3.

Overall, GCBMI can get better performance on different
evaluation indicators than other feature selectionmethods, which
indicates that the genes identified by GCBMI havemore sufficient
capacity to classify gastric cancer. The high F1-score and AUC
value also illustrate that our model has better stability. The
experimental results suggest that combined omics data are
meaningful, and it may reveal some causal relationships between
different biological layers.

5.2. The Impact of Classifiers on
Performance
In this section, the impact of different classifiers is evaluated on
our feature selection method. Table 4 displays the experimental
results, which indicates that DNN model compared with the
other three classifiers has better performance in different
evaluation indicators. The performance of KNN is similar to

Frontiers in Genetics | www.frontiersin.org 6 March 2021 | Volume 12 | Article 644378102

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. A Novel Biomarker Identification Approach

FIGURE 3 | The experimental results of gastric cancer biomarker identification approach (GCBMI) compared with other methods.

TABLE 4 | Results with different classifiers (the accuracy, precision, recall,

F1-score, and AUC value are average).

Classifiers Accuracy Precision Recall F1-score AUC

DNN 0.9870 0.9971 0.9836 0.9903 0.9891

KNN 0.9776 0.9934 0.9729 0.9830 0.9795

SVM 0.9819 0.9878 0.9826 0.9862 0.9803

NB 0.9651 0.9698 0.9777 0.9737 0.9557

The bold values represent the highest value of each metrics.

SVM and NB is worst but still reaches 96%. The performance
of our method is stable in different classifiers. GCBMI integrates
gene expression data and DNAmethylation data and expands the
number of samples. In this way, the DNN model can be trained
better and achieves superior results than other classifiers.

On the whole, when compared with the KNN, SVM, and
NB, our deep neural network model has better performance
in different metrics, which indicates the validity of our feature
selection approach. All the experimental results indicate that
DNN model is a more appropriate classifier to feature selection
in our approach. Figure 4 shows the histogram of the average
accuracy, F1 score, and AUC value of GCBMI with different
classifiers, respectively. The classification advantage of DNN
model has been shown in it, which has demonstrated the
effectiveness of GCBMI.

5.3. Gene Analysis
In our experiment, the overlapped genes are recorded, which
are shown in Table 5. In each fold of cross-validation, about
20 genes are selected. These genes are the intersections of DEG
and DMP. Among them, eight genes appear in each intersection

and they are thought to be biomarkers of gastric cancer. In this
section, the selected genes are further analyzed to understand the
biological relevance.

Through literature retrieving, we can find the coding protein
of PGC is a digestive enzyme produced by the stomach and it is
themain component of the gastric mucosa. Polymorphism of this
gene is associated with gastric cancer susceptibility. Serum levels
of this enzyme are used as the biomarker for certain stomach
diseases, including Helicobacter pylori associated gastritis (Sun
et al., 2009). Moreover, Liu et al. discovered PGC was positively
expressed in normal gastric mucosa (100%), and the expression
rate was 6.45% in gastric cancer (Liu D. et al., 2009). The
results suggested that PGC has important application value in the
diagnosis of gastric cancer.

For gene PSCA, relevant research demonstrated that proteins
encoded by PSCA play an important role in cell proliferation.
In addition to being highly expressed in the prostate, it is
also expressed in differentiating gastric epithelial cells. This
gene includes a polymorphism that results in an upstream start
codon in some individuals; this polymorphism is thought to be
associated with a risk for gastric cancers (Bahrenberg et al., 2000;
Sakamoto et al., 2008).

Except for PGC and PSCA, gene PDGFD as a member of
PDGF family (Huang et al., 2014), its signaling pathway has
been considered as a new target for the treatment of gastric
cancer (Wang et al., 2009). Besides, gene KCNE2 is expressed
mainly in the cytoplasm of parietal cells. Kuwahara et al.
discovered that the loss of KCNE2 expression could cause gastric
adenocancer (Kuwahara et al., 2013).

For these eight genes identified, in order to observe their
expression level, gene expression heatmap is constructed. As
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FIGURE 4 | The experimental results of gastric cancer biomarker identification approach (GCBMI) with different classifiers.

TABLE 5 | Selected genes from integrating gene expression and DNA methylation dataset.

K-fold Number of overlapping

genes

Selected genes

K = 1 17 FAHD2A,PGC,FIGF,PPAP2B,FOXA1,IFITM2,HOXC10, GPRC5C,CLEC3B,FBN1,LIF,C5,PSCA,PDGFD,KCNE2,

RORC,C3

K = 2 19 PGC,FIGF,NID2,PPAP2B,IFITM2,RAB31,RORC,GPRC5C,FSCN1,TEAD4,CLEC3B,RAB17,IGFALS,C5,PSCA,PD

GFD,KCNE2,COL4A1,C3

K = 3 17 FAHD2A,PGC,PPAP2B,FOXA1,IFITM2,IGFALS,GPRC5C, TEAD4,DNM1,ORM1,PTPRN2,FBN1,PSCA,PDGFD,

KCNE2,RORC,C3

K = 4 24 PGC,FIGF,PDGFRB,PSMA7,TEAD4,C5,RORC,ADA, IFITM1,FAHD2A,PPAP2B,IGFALS,SLC1A2,GPRC5C,

CLEC3B,CAPN9,KCNE2,PSCA,IFITM2,FSCN1,RPRM, PDGFD,SERPINA4,FBN1

K = 5 17 IFITM1,PGC,FIGF,PPAP2B,KCNE2,IFITM2,HOXC10, GPRC5C,CAPN9,FBN1,HRAS,C5,PSCA,PDGFD,

SERPINA4,RORC,C3

Overlapped genes in 5-CV 8 PGC,RORC,GPRC5C,PDGFD,KCNE2,PSCA,IFITM2, PPAP2B

shown in Figure 5, the expression levels of these eight genes in
all samples are demonstrated. The first half of the heatmap are
normal samples, and others are tumor samples. Basically, the
result shows that these genes have different expression in normal
and tumor samples. Some of these genes differed significantly
between the two classes and may have some relationship with
gastric cancer.

What is more, the enrichment analysis is conducted by
DAVID database for selected genes. As shown in Table 6,
biological significance of the genes are reported through
Gene Ontology (GO). “GO:0008284 positive regulation of cell
proliferation,” “GO:0046597 negative regulation of viral entry
into host cell,” “GO:0030335 positive regulation of cell migration”
are common biological activities in human cancer (Dyrskjøt

et al., 2009). Among them, there have some items about platelet,
some studies have suggested that gastric cancer may lead to
changes in platelet count and morphology (Matowicka-Karna
et al., 2013). In addition, some studies also have been pointed out
that interferon (Ferrantini et al., 2007) and other related factors
may have relationship with the occurrence of cancer.

6. CONCLUSION

In this work, we propose a novel feature selection approach,
GCBMI, which uses gene expression and DNA methylation data
for identifying the biomarkers of gastric cancer. GCBMI consists
of three main parts, namely data pre-processing, selection
of differentially expressed genes and data combination, and
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FIGURE 5 | Heatmap of eight overlapped genes.

TABLE 6 | GO analysis of selected genes.

Category Term p-value Gene

GOTERM_BP_DIRECT GO:0071560 cellular response to transforming growth factor beta stimulus 0.003912643 CLEC3B,FBN1, PDGFD

GOTERM_BP_DIRECT GO:0043406 positive regulation of MAP kinase activity 0.005625548 HRAS,PDGFRB, PDGFD

GOTERM_BP_DIRECT GO:0008284 positive regulation of cell proliferation 0.01138237 LIF,HOXC10,HRAS, PDGFRB,PDGFD

GOTERM_BP_DIRECT GO:0002576 platelet degranulation 0.016395992 ORM1,CLEC3B, SERPINA4

GOTERM_BP_DIRECT GO:0035456 response to interferon-beta 0.017024892 IFITM1,IFITM2

GOTERM_BP_DIRECT GO:0035455 response to interferon-alpha 0.018899122 IFITM1,IFITM2

GOTERM_MF_DIRECT GO:0048407 platelet-derived growth factor binding 0.020021643 COL4A1,PDGFRB

GOTERM_MF_DIRECT GO:0005102 receptor binding 0.026443684 LIF,C3,C5,PDGFRB

GOTERM_MF_DIRECT GO:0005161 platelet-derived growth factor receptor binding 0.02720561 PDGFRB,PDGFD

GOTERM_BP_DIRECT GO:0036120 cellular response to platelet-derived growth factor stimulus 0.033768846 PDGFRB,PDGFD

GOTERM_BP_DIRECT GO:0046597 negative regulation of viral entry into host cell 0.033768846 IFITM1,IFITM2

GOTERM_BP_DIRECT GO:0030335 positive regulation of cell migration 0.047784333 HRAS,PDGFRB, PDGFD

GOTERM_BP_DIRECT GO:0048008 platelet-derived growth factor receptor signaling pathway 0.053858697 PDGFRB, PDGFD

deep neural network as the classifier. Differential expression
analysis, statistical test, and MI are integrated to obtain
comprehensive view to implement the biomarkers identification
after data pre-processing. MI is introduced to filter out irrelevant
gene, and FC and T-test are utilized to select differentially
expressed genes. In particular, FDR is applied to revise the
p_value to further screen genes. After that, Cartesian product
is performed to expand samples. Moreover, GCBMI adopts
DNN as the classifier to evaluate the classification ability of
selected genes. Experimental results on GEO dataset indicate
that the proposed approach outperforms other state-of-the-art

feature methods. The results of biological relevant verification
indicate the status of the selected gene as the biomarkers of
gastric cancer.

What is more, the performance of combined with omics
data tends to be more superior than using a single omics data
alone. In the future, some other omics data will be combined
such as copy number variation (CNV) data to identify cancer
biomarkers, and our methods will be applied to other fields as
well (Liu et al., 2020). Besides, some measures will also be taken
to improve our method so that its classification performance can
be improved further.
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Multilayer networks provide an efficient tool for studying complex systems, and with
current, dramatic development of bioinformatics tools and accumulation of data,
researchers have applied network concepts to all aspects of research problems in the
field of biology. Addressing the combination of multilayer networks and bioinformatics,
through summarizing the applications of multilayer network models in bioinformatics,
this review classifies applications and presents a summary of the latest results. Among
them, we classify the applications of multilayer networks according to the object
of study. Furthermore, because of the systemic nature of biology, we classify the
subjects into several hierarchical categories, such as cells, tissues, organs, and groups,
according to the hierarchical nature of biological composition. On the basis of the
complexity of biological systems, we selected brain research for a detailed explanation.
We describe the application of multilayer networks and chronological networks in
brain research to demonstrate the primary ideas associated with the application of
multilayer networks in biological studies. Finally, we mention a quality assessment
method focusing on multilayer and single-layer networks as an evaluation method
emphasizing network studies.

Keywords: multilayer networks, bioinformatics, brain network structure, biological systems, chronological
networks

INTRODUCTION

In recent years, the formulation of multilayer networks has provided new methods for the study
of multilevel network systems. Many biological systems comprise interconnected units that can
be effectively modeled as networks, which are mathematical structures describing connections
between points (Jing et al., 2019; Liu B. et al., 2020; Shao et al., 2020). Complex network systems
provide powerful research tools and methods for studying biological fields (Kumari and Verma,
2020; Liu X. et al., 2020; Shao and Liu, 2020), from interactions between genes and proteins
(Zhang et al., 2019; Li Z. et al., 2020; Zhai et al., 2020), to the study of tissue and organ functions
(Yang et al., 2020), and even human brain study (Zhang J. et al., 2020). The complexity and
evolutionary nature of biological systems enable the extensive application of multilayer networks
and associated methods. Additionally, ecosystems and evolutionary systems evolve and change
over time, and the corresponding network structures for these systems change correspondingly.
Furthermore, the reasons for all these changes, particularly topological changes in the course of
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network structure change, and the importance of network
feedback in network structure analyses are all topics
worthy of exploration.

A network representation is a simplified description of
a more complex, multifaceted system. A social system can
include different types of interactions of different biological
significance (e.g., cooperation or competition), while standard
network approaches usually ignore these interactions or achieve
integration through analyzing networks with different edge types
separately. In bioinformatics studies using network structures,
the progress of each biological system relies on the amount
of data and/or new discoveries about unknown biological
areas. For example, in the study of transcription-translation
relationships between genes and proteins, genes and proteins
are represented by nodes, and the correspondence between
genes and proteins is represented by links in the network.
Therefore, it is necessary to first understand the characteristics
of each individual gene and protein, and the methods used to
identify these relationships (Lin et al., 2019; Zhang D. et al.,
2021; Zhang Z.Y. et al., 2021; Zulfiqar et al., 2021). Only
then can the most relevant genes and corresponding proteins
for a disease or symptom be identified through clustering or
linkage analyses of the network, which further enables the
investigation of target therapies for symptoms of disease (Zhu
et al., 2018; Iliopoulos et al., 2020). These applications all
rely on the data set and on the biological correspondence of
genes and proteins.

The definition of a multilayer network varies slightly from
one application to another. All edges and nodes in a single
network are homogeneous, but in the real world, there is
heterogeneity in both the objects represented by the nodes and
the connections represented by the edges. Multilayer networks
add additional tagging capabilities to traditional networks. That
is, tagging terms are added to the traditional network, which
can be understood as a composite of simple (single-layer)
networks with different tags for complex networks. This is a
relatively easy way to understand the definition of complex
networks on different systems. Currently, according to different
applications and subjects, multilayer networks can be divided
into the following types:

(1) Multiplex networks: Networks in which the nodes on
different layers are connected by inter-layer edges.

(a) In multi-relational networks, each layer represents a
different type of interaction, i.e., different relationships
are the distinguishing dimension for building a multilayer
network, and the relationships are the tagged labels.

(b) In a temporal network, each layer encodes the same type of
interaction at different time points or time windows. That
is, time series (time windows) are the tagged labels between
layers in a multilayer network.

(2) Interconnected networks: Nodes in different layers do not
necessarily represent the same entities and inter-layer edges
between different types of nodes may exist.

(a) The network of networks consists of subsystems, which
are themselves networks. They are interconnected by
interlayer edges between subsystem nodes.

(b) In a contextual network, each layer is interpreted
to represent a different type of node. For example,
interactions between males in one layer, interactions
between females in another layer, and interactions between
the sexes in a third layer. These interactions are represented
by inter-layer edges.

(c) Spatial networks (also known as geometric networks) can
be connected by ecological networks of the subjects moving
between various locations.

Multilayer networks are currently used in various fields
including physics, chemistry, biology, technology, finance,
and social systems because of their inherent structural and
functional characteristics. In this review, we briefly introduce the
development of multilayer network concepts, techniques, and
applications in bioinformatics by reviewing multilayer network
applications in bioinformatics, and we summarize the outlook
and development of multilayer networks in bioinformatics by
analyzing current research.

MULTILAYER NETWORK APPLICATIONS

The definition and methodology of multilayer network models
in bioinformatics depends on the specific research problem.
Organisms can be classified into different systems under different
levels, and that system usually changes dynamically with time.
Therefore, usually the representation of bioinformatics related
networks varies depending on the specific biological system. In
this review, we classify research topics into different categories
according to the different levels of biological systems. As shown in
Figure 1, multilayer networks in bioinformatics can be classified
into five major categories.

As the understanding of DNA structure and function has
gradually improved (Liu M.L. et al., 2020), understanding the
relationships between genes and proteins, genes and disease,
and disease and drugs has greatly evolved. For example, the
correspondence between genes and disease has been mined
through network structures, where the method utilizes a
joint learning approach using the functional and connectivity
patterns of proteins to predict disease-gene relationships
using human interactome networks. In contrast to other data
structures, interactomes are characterized by a high degree
of incompleteness and lack of explicit negative knowledge,
which makes prediction particularly challenging. To maximize
potential information in the network, a second-order random
walk procedure named random walker (RWˆ2) is applied
in these studies. The random walker is able to learn rich
representations of disease gene (or gene product) characteristics.
This method has successfully compared with the best-known
disease gene prediction systems and other state-of-the-art graph-
based methods.

A large number of candidate disease-causing genes can
be sequenced and checked for variation to help determine
relationships between disease and genes (Zhang Z.M. et al., 2020).
Many different computational methods have been developed to
address this challenge. The observation that genes associated with
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FIGURE 1 | Multilayer network application area framework in bioinformatics.

similar diseases have a higher probability of interaction, many of
these methods rely on the analysis of the topological properties
of biological networks. However, the incomplete and noisy
nature of biological networks is an important challenge. Two-
step framework for disease gene ranking: (1) Construct a reliable
functional connectivity network using sequence information
and machine learning techniques. And (2) rank disease–
gene relationships on the basis of that constructed functional
connectivity network. Unlike other functional connectivity
network-based frameworks that use functional connectivity
networks based on the integration of various low-quality
biological data, protein sequences can be used as comprehensive
data to construct a reliable initial network. Additionally, the
physicochemical properties of amino acids can be used to
supplement hypotheses of protein function. In conclusion, our
assessment of these methods indicates high efficiency and
effectiveness for constructing functional linkage networks for
disease genes (Wang et al., 2008; Jiang et al., 2010, 2013; Cheng
et al., 2018; Zeng et al., 2018).

Gene function can also be determined by collecting biological
data. For example, the Drosophila ovary epidermal cells (ECs)
externally control the maintenance and progeny differentiation
of germ line stem cells (GSC). In this study, the role of
173 EC genes that control GSC maintenance and progeny
differentiation were identified using a Drosophila in vivo systemic
RNAi approach (Zeng et al., 2016; Zou et al., 2016; Wang
et al., 2019). Among the identified genes, 10 and 163 genes
were required by ECs for GSC maintenance and progeny
differentiation, respectively. The genes required for progeny
differentiation were classified into different functional categories,

including transcription, mRNA splicing, protein degradation,
signal transduction, and cytoskeleton regulation (Cao et al.,
2019). In addition, GSC progeny differentiation defects caused by
defective ECs were often associated with BMP signaling elevation,
indicating that preventing BMP signaling is a general functional
feature of the differentiation niche. Finally, EC exon junction
complex (EJC) components were identified as required for EC
maintenance and the prevention of BMP signaling, and thus the
promotion of GSC progeny differentiation. Therefore, this study
identifies the major regulators of the differentiation niche and
provides important insights into the external control of stem cell
progeny differentiation.

Corresponding network structures for different biological data
and specific subjects can also be designed to analyse specific
biological systems (Zeng et al., 2016; Jiang et al., 2017; Liu
et al., 2017). Currently, at the subcellular level, these networks
mainly include gene regulatory networks (Wang et al., 2010; Ding
et al., 2011; Jiang et al., 2014; Cheng et al., 2019; Konda et al.,
2019; Liu L. et al., 2019; Mortezaeefar et al., 2019; Hong et al.,
2020), protein functional networks (Guo et al., 2011, 2013, 2014;
Sikandar et al., 2019; Tao et al., 2020; Liu et al., 2021), metabolic
regulatory networks (Jin et al., 2020), and drug targeting networks
(Wei et al., 2014; Ding et al., 2017, 2019, 2020a,b; Jin Q. et al.,
2019; Jin S. et al., 2019; Srivastava et al., 2019; Zhao et al., 2019;
Zeng et al., 2020).

The study of human brain functional and structural
mechanisms using brain networks is also a hot field. Currently,
research has mainly studied brain function by acquiring the brain
waves of subjects, and the functional partitions of the brain
have been predominantly obtained by functional experiments or
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magneto encephalography. This portion of our review will be
introduced in detail in the next section.

Modern network theory is increasingly applied to
neuroscience to understand neurophysiology and anatomy at
different scales and under experimentally attainable physiological
and pathophysiological conditions. The first attempt was made
at the micro anatomical level of individual neurons. Watts and
Strogatz analyzed the anatomical connections of the nervous
system of Caenorhabditis elegans where neurons represent the
nodes and synaptic or gap connections of a neural network.
Their study revealed a highly clustered and efficient network,
thus representing the first evidence of a real neural system with a
small-world network. Later graph-theoretical approaches focused
on morphological representations or dynamic correlations of the
electrical stimulation activity of neuronal networks.

Network-based analyses have also been useful to address
several questions in ecology and issues in conservation. The
first study was carried out in a contextual network of so-called
species interactions. Food webs are one of the fundamental
issues in ecological studies, and despite the rather high variability
detected in network structure, food webs present a complex
topology similar to other types of real networks and host-parasite
networks. One of the main advantages of these approaches is
the direct assessment of the robustness and sensitivity of a
given ecosystem to species loss or other perturbations. Another
network type widely used in ecology is connected landscape
mapping, where nodes typically represent patches on the
landscape. The resulting spatial networks describe the linkages
between processes and patterns that characterize the landscape,
thus providing an effective way to assess important issues such as
the effects of species dispersal or habitat loss.

Understanding the interactions between different species
in a community and responses to environmental change is
a central goal of ecology. However, defining the network
structure of microbial communities is very challenging because
of associated extremely diverse and unexplored states. Although
recent developments in metagenomic technologies, such as
high-throughput sequencing and functional gene arrays, have
provided revolutionary tools for analyzing microbial community
structure, it is still difficult to study network interactions
in microbial communities based on high-throughput meta
genomic data. A mathematical and bioinformatics framework
for constructing molecular ecological networks (MENs)
based on Random Matrix Theory (RMT) has been proposed.
The remarkable feature of this approach compared with
other network construction methods is that the network is
automatically defined and robust to noise, thus providing a
good solution to several common problems associated with
high throughput.

APPLICATIONS OF MULTILAYER
NETWORKS IN BRAIN RESEARCH

The brain is the control center of most animal activities, and it has
been the goal of many researchers to unravel the mystery of the
brain and simulate the human brain with external devices such as

computers. Before that, the structure and mechanism of the brain
needs to be clarified, and it is costly to study the human brain
because of its complexity. The human brain is a complex system
organized by the structural and functional relationships among
its components (Liu et al., 2018; Song et al., 2018; Liu G. et al.,
2019). Recent experimental advances have led to unprecedented
amounts of data that describe the structure and function of the
brain, and it is now possible to model the brain as a network by
measuring pairwise interactions between its various units. This
modeling can be performed across multiple scales, where network
nodes represent units of the brain, including proteins, neurons,
brain regions, or other measurement units. Recording techniques
such as functional magnetic resonance imaging (fMRI), magneto
encephalography (MEG), and electroencephalography (EEG) are
capable of capturing brain dynamics across time and across
multiple frequency bands.

Recent neuroscience research has also exploited the versatility
of multilayer frameworks to model complex relationships in
neural data. For example, given fMRI and diffusion tensor
imaging (DTI) for a single subject, a multilayer network can be
constructed, with one layer representing the fMRI network and
another layer representing the DTI network. Using the fMRI
data, a functional network can be constructed in which the nodes
represent brain regions and the edges represent the coherence
between regional activities. On the basis of DTI data, a structural
network can be constructed by dividing the brain into regions
and then measuring the strength of physical connections between
these regions. Finally, considering each network as a layer in a
multilayer network, the edges of a brain region in the fMRI layer
can be added to the DTI layer to form a multilayer network.

The brain is an inherently dynamic system, and the
performance of cognition requires dynamic reconfiguration of
a highly evolved network of brain regions, which interact in
complex and transient communications. However, an accurate
description of these reconfiguration processes during human
cognitive function remains elusive (Liu and Jiang, 2016).
Therefore, many studies have used temporal networks to
investigate the dynamic cluster structure of brain networks and
reveal the underlying human brain dynamic changes during
learning. Temporal networks that contain temporal information
have the advantage of retaining the full information of the data
without aggregating connections into individual networks.

When we complete different cognitive vision tasks, we
subdivide the regional time series into time windows of
variable size, and determine the impact of the time window
size on the observed dynamics. Specifically, we applied a
multilayer community detection algorithm to identify temporal
communities, and we computed network flexibility to quantify
the changes in these communities over time. Within our
frequency band of interest, large and small time windows were
associated with the brain network flexibility within a narrow
range, while medium time windows were associated with broad
network flexibility. Using medium time windows of 75–100 s,
we identified brain regions with low flexibility (considered
core regions and observed in visual and attentional areas) and
brain regions with high flexibility (considered peripheral regions
and observed in subcortical and temporal lobe regions) by
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comparison with appropriate control dynamic network models.
In general, this work demonstrates the effect of time window
size on the network dynamics observed during task execution,
providing practical considerations when selecting time windows
in dynamic network analysis. More generally, this work reveals
organizing principles for functional brain connections that are
inaccessible to static network approaches.

The hypothesis that human executive functions arise from
the dynamic interactions of multiple networks has been tested
in previous research (Ding et al., 2019). To corroborate this
research, we investigated a key executive function (FCD), namely
arbitrary visuomotor mapping. MEG and intracranial EEG were
recorded using high gamma activity brain connectivity analysis.
We then generated visuomotor mapping using the dynamic
interactions of three partially overlapping cortico-cortical and
cortico-subcortical functional connectivity (FC) networks. First,
visual and parietal regions were coordinated with sensorimotor
and premotor regions. Second, dorsal fronto parietal circuits
dominated by sensorimotor and associative frontal striatal
networks were incorporated. Finally, bilateral sensory-motor
areas were coordinated with the cortico-cortical hemisphere
between the left fronto parietal network and the visual areas.
Our study argued that these networks reflect the processing
of visual information, the emergence of visuomotor plans, and
the processing of somatosensory responses or action outcomes.
Thus, our study demonstrates that visuomotor integration exists
in the dynamic reconfiguration of multiple cortico-cortical and
cortico-subcortical FC networks. More generally, the approach
demonstrates that optokinetic-related FC is unstable and shows
task performance-related switching dynamics and regional
flexibility on a time scale. In addition, our optokinetic-related FC
has sparse connectivity with a density of 10%. Taken together,
these findings shed light on the relationship between dynamic
network reconfiguration and short-time executive function and
provide a candidate start point for the better understanding of
cognitive structure.

A vast number of multilayer network applications exists in
bioinformatics, but the application of multilayer networks in
any subfield of bioinformatics still relies on the acquisition and
accumulation of bioinformatics data, and brain research is no
exception. Therefore, interdisciplinary collaboration is a very
efficient and necessary option. Brain structure and functionality
are gradually understood, driven by brain data acquisition.
According to these studies, the dynamic modeling of brain
function by combining temporal dimensions is an effective means
of study. Perhaps as research progresses, new data dimensions
will be added (Wang et al., 2018, 2020; Wei et al., 2018a; Ding
et al., 2019; Liu B. et al., 2019; Su et al., 2019b; Dao et al., 2020;
Li J. et al., 2020; Lv et al., 2020).

CONCLUSION AND PERSPECTIVES

Multilayer (complex) networks have been an effective tool for
studying complex problems in recent years and are currently
being used in a variety of fields. As systems biology develops,
multilayer networks are applicable to many aspects and research

areas within the field. Because of dataset availability, these
networks are currently more often applied to genetics and brain
research. However, as research progresses, it should become
easier to unravel structural and functional fogs in biology on one
hand, and on the other hand, research in this area will prove
beneficial to the understanding of biological principles in general
to better serve all people. In view of current research status, our
review has presented the following ideas and prospects:

(1) The development of biology is promoted by the joint
development of various fields, and the application
of multilayer networks in bioinformatics depends
on the accumulation of biological data and the
development of computer-related theories. Therefore,
as an interdisciplinary subject, it needs the collaborative
work of interdisciplinary experts.

(2) Because of the complexity and dynamic change of
biological systems, time-series multilayer networks with
the addition of temporal information will have more
and more applications in the simulation of dynamic
processes in the study of genes, disease, drug discovery,
and brain research.

(3) Exploring the communication mode between tissue cells in
the form of multi-layer network is to study the interaction
(functionality) between structures on the basis of the
network represented by the structure.

In addition to the structural and functional aspects of
multilayer network research, methods to efficiently evaluate
and assess the results of multilayer networks remains an
importan tissue. The evaluation of the algorithmic complexity of
multilayer networks has been proposed to assess if and when the
multilayer representation of a system is qualitatively superior to
classical single-layer aggregation network approaches (Wei et al.,
2017a,b,c, 2018b, 2019; Su et al., 2019a, 2020a,b; Wang D. et al.,
2021; Wang H. et al., 2021; Zhao et al., 2017).
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Single-cell Assay Transposase Accessible Chromatin sequencing (scATAC-seq) has
been widely used in profiling genome-wide chromatin accessibility in thousands of
individual cells. However, compared with single-cell RNA-seq, the peaks of scATAC-seq
are much sparser due to the lower copy numbers (diploid in humans) and the inherent
missing signals, which makes it more challenging to classify cell type based on specific
expressed gene or other canonical markers. Here, we present svmATAC, a support
vector machine (SVM)-based method for accurately identifying cell types in scATAC-seq
datasets by enhancing peak signal strength and imputing signals through patterns of
co-accessibility. We applied svmATAC to several scATAC-seq data from human immune
cells, human hematopoietic system cells, and peripheral blood mononuclear cells. The
benchmark results showed that svmATAC is free of literature-based markers and robust
across datasets in different libraries and platforms. The source code of svmATAC is
available at https://github.com/mrcuizhe/svmATAC under the MIT license.

Keywords: scATAC-seq, classification, machine learning, support vector machine, cell-type annotation

INTRODUCTION

With the technological progress in Single-cell Assay Transposase Accessible Chromatin
sequencing(scATAC-seq) (Buenrostro et al., 2013), which has overcome the previous limitations
and is able to generate thousands of single cells chromatin accessibility data at lower cost (Chen
et al., 2019), a certain number of scATAC-seq datasets have been sequenced with different
techniques in diverse libraries. For example, the Chromium Single Cell ATAC technology from 10X
genomics (10X Genomic, 2020) can profile hundreds to tens of thousands of nuclei in one chip and
finish the process from sample to sequencing-ready library in 1 day. For single-cell RNA-sequencing
(scRNA-seq) and scATAC-seq data, the processing steps typically start with unsupervised clustering
cells from coordinate-based peak matrix and then identify cell types from clustered groups. Thus,
many methods requiring a training dataset labeled with corresponding cell populations for classifier
training have been developed to get rid of the requirement of prior knowledge in scRNA-seq
(Kiselev et al., 2018; Lieberman et al., 2018; Lopez et al., 2018; Boufea et al., 2019; Johnson et al.,
2019; Ma and Pellegrini, 2019; Tan and Cahan, 2019). Support vector machine (SVM) performs
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the best among machine learning methods for classifying
cell types in scRNA-seq (Abdelaal et al., 2019), and a
lot of SVM-based tools have been proved effective and
efficient (Pedregosa et al., 2011; Alquicira-Hernandez et al.,
2019). However, the low copy number of DNA molecule in a
cell results in only 1–10% of the accessible peaks in scATAC-
seq being detectable, while the percentage for expressed genes
detected in scRNA-seq is about 10–45% (Liu et al., 2019; Mereu
et al., 2020). When clustering in scATAC-seq, such severe signal
loss in a massive sparse space makes it more challenging to
annotate cluster groups through gene-related canonical markers,
which is practical and well-received in scRNA-seq. This missing
of signal makes the SVM with linear kernel hard to work (Stewart
et al., 2018) because this method starts with dimensionality
reduction and feature selection, which is largely dependent on
the accuracy and integrity of the dataset. Even so, SVM still
outperformed other popular machine learning methods on cell-
type classification of scATAC-seq (Cui et al., 2020), though the
classification results of these methods (including SVM) are all
performing at a low level. Since the signal missing will affect the
quality of feature selection and then affects the construction of
the classification model, the data recovery and signal strength
enhancement are essential for SVM-based methods in scATAC-
seq datasets (Yan et al., 2020).

Statistical methods such as imputing dropouts and correcting
excess zero-counts have already been applied to scATAC-seq
datasets, and this type of enhancing and recovering of missing
signals has shown great power for downstream analysis. SCALE
(Xiong et al., 2019) constructs a probabilistic Gaussian Mixture
Model to characterize data, followed by denoising and imputing
missing values in clustered subgroups. scOpen (Li et al., 2019)
recovers the dropout signal in a particular cell using positive-
unlabeled learning. However, these methods basically are using
the statistic-based model, which may require an extra prior
knowledge or time-consuming globally statistics. Since the
repertoire of accessible regulatory elements in cell lines or tissues
is unique, this type of data imputation is then considered as
a kind of molecular signature for identifying. For example,
Cicero (Pliner et al., 2018) is able to predictcis-regulatory DNA
interactions through scATAC-seq from a single experiment.

Here, we present svmATAC, an automatic cell classification
SVM-based method for scATAC-seq data. svmATAC enhances
the data from cluster/group data first, followed by imputing
the signal linkage according to the co-accessibility scores from
Cicero. The enhanced and imputed data will then be input to
SVM (linear kernel) classifier for model training and cell-type
prediction (Figure 1). We applied svmATAC to several typical
scATAC-seq datasets containing different cell types, including
human immune cell (hereafter Corces2016) (Corces et al.,
2016), human hematopoietic system cell (hereafter Buenrostro
et al., 2018), and peripheral blood mononuclear cell (hereafter
10 × PBMCs) (Genomic, 2020), to evaluate its classification
ability. With fivefold cross-validation, svmATAC showed a great
advance on prediction accuracy and surpassed 7.13–21.34%
compared to SVM (linear kernel). In inter-dataset experiments,
svmATAC also maintained great predictive power to accurately
and quickly identify cell types based on a pre-trained model. We

believe that svmATAC has great potential to handle complex cell-
type identification problems in practical and realistic scenarios.

RESULTS

svmATAC as a General Framework for
Classification of scATAC-seq
svmATAC applies two pivotal functions, i.e., group-based
read signal enhancement and cis-regulatory relationship-based
imputation to cell-peak matrix, followed by training model and
predicting cell types using SVM classifier (Figure 1). With this
specific design, the peak signals of scATAC-seq are strengthened
and related by extra biological connections, which improves the
feature selection in lower dimensional space. svmATAC consists
of three main steps: (1) It applies a specific design enhancement
method to establish cell-peak matrix. The peak value 0 will
be set to 1 when the peak (column) signal rate is larger than
prior knowledge cutoff in a cell-type/cluster group. This step is
able to correctly classify some of the cell types (Supplementary
Tables 1–10), compared to directly using raw dataset, but it is
still not good enough. (2)An imputation method, i.e., Cicero,
is applied to construct the cis-regulatory relationship between
peaks and to compute the co-accessibility scores. Two peaks of
a cell-type/cluster group will be integrated for imputation when
its co-accessibility score ≥ 0.25 (Pliner et al., 2018). That is, the
value 1 will be assigned for both peaks if any one peak is distinct.
(3) The cell-peak matrix processed by the two pivotal functions
will be used as input for an SVM classifier to perform model
training. With the trained SVM model, svmATAC can achieve the
final prediction of cell types in unlabeled dataset. In order to give
a comprehensive evaluation on the performance of svmATAC,
we, respectively, designed an intra-dataset experiment and an
inter-dataset experiment as below.

Benchmark Results on Intra-Dataset
Experiments
We evaluated the performance of svmATAC in an intra-dataset
experiment by applying a fivefold cross-validation across each
dataset after cell filtering. We randomly divided all the cells
into fivefold with equal proportions of each cell population
in each fold. The first and smallest dataset we used is from
the human immune cells (hereafter Corces2016). This dataset
consists of 576 immune cells from four isolated cell populations
including leukemic blasts (Blast), lymphoid-primed multipotent
progenitors (LMPP), leukemia stem cells (LSC), and monocytes.
The gold standard labels we used here are from the original
paper and predicted by enhancer cytometry. Compared to the
SVM (linear kernel), we found an improvement on the predicted
results when using svmATAC. The percentage of correctly
predicted cells in all populations are all increased by at most
19.79% (from 75 to 94.79%) in monocyte (Figure 2A); the
F1 scores are also improved in all population with monocyte
increased the most from 0.85 to 0.97 (Figure 3A). The details for
confusion matrix and F1 score list for Corces2016 are presented
in Supplementary Tables 1, 2.
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FIGURE 1 | Summary of svmATAC method. (A) Training step. A fixed-size cell-peak matrix is constructed from a labeled scATAC-seq dataset. The peak matrix will
be filtered and (1) matrix with 5 k peak will be split by cell types for calling distinct peak and signal in qualified peaks will be enhanced; (2) matrix with Cicero peak will
be input to Cicero for calculating co-accessibility score between peaks. Two peaks with cis-regulatory interaction will be integrated for imputation in each enhanced
peak matrix. All enhanced and imputed peak matrix will be merged to a single matrix for training SVM classifier. (B) Prediction step. A clustering is necessary at first
for assigning each cell a clustering group number and then the matrix will be filtered, followed by enhancement and imputation steps. Finally, an SVM classifier will
identify the cell types of predicting dataset using the SVM model trained from step A.

The second dataset we used is from the human hematopoietic
system, which consists of 2,034 labeled hematopoietic cells
from 10 cell populations including hematopoietic stem
cells (HSC), multipotent progenitors (MPP), lymphoid-
primed multipotent progenitors (LMPP), common myeloid
progenitors (CMP), granulocyte-macrophage progenitors
(GMP), GMP-like cells, megakaryocyte-erythroid progenitors
(MEP), common lymphoid progenitors (CLP), monocytes
(mono), and plasmacytoid dendritic cells (pDC). In order to
test the ability of identifying the cells from different batches, we
divided the LMPPs into two groups: LMPP-O: generated and
first published in Corces2016; LMPP: newly generated and first
published in Buenrostro2018. We used the FACS-sorting labels
as the gold standard for this dataset. All cells in this dataset
are correctly classified using svmATAC. Similar to the results
on Corces2016, the percentage of correctly predicted cells in all
population are increased by at most 86% in MPP (Figure 2B),
and the F1 scores are also improved in all populations, with
MPP increased the most from 0.25 to 1 (Figure 3B), compared
to SVM (linear kernel). The details for confusion matrix and F1
score list for Buenrostro2018 are presented in Supplementary
Tables 3, 4.

The last two datasets we used are from the peripheral blood
mononuclear cells. These two datasets were generated from the
same healthy donor but prepared in different libraries. In total,
there are 3,917 cells profiled in 10× PBMCs v1 dataset and

4,585 cells were profiled in 10× PBMCs Next Gem dataset but
both datasets are unlabeled. Based on recent studies (Bravo
González-Blas et al., 2019; Pliner et al., 2019), we expected eight
populations in each dataset, so we clustered cells into eight
groups and use these cluster IDs as the gold label for training
and testing (Supplementary Figures 1, 2). However, though cells
with the same cluster ID may be predicted together into one
group, we cannot check whether these predicted cell-types are
true positives when only cluster ID is available. Thus, we assigned
cell types using Seurat v3 (Stuart et al., 2019) based on a labeled
scRNA-seq dataset from the same sample and then selected the
high-confidence labels as gold standard for scATAC-seq datasets.
We totally labeled 2,927 cells for the 10× PBMCs v1 dataset
and 3,670 cells for the 10× PBMCs Next Gem dataset. For the
Seurat labeled 10× PBMCs v1 dataset, the percentage of correctly
predicted cells in each population increases to 100%, while CD8+
T, DC, and FCGR3A+ Mono are barely correctly identified at
first using SVM (linear kernel) (Figure 2C); the F1 scores also
improved in all populations, notably from 0 to 1 in CD8+, 0.09–1
in DC, and 0–1 in FCGR3A+ Mono (Figure 3C), compared to
SVM (linear kernel). For the Seurat labeled 10× PBMCs Next
Gem dataset, the percentage of correctly predicted cells in all
population increases by at most 91% in CD8+ T (Figure 2D); the
F1 scores also improved and CD8+ T increased the most from
0.16 to 1 (Figure 3D). The details for confusion matrix and F1
score list for the Seurat labeled 10× PBMCs v1 dataset and the
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FIGURE 2 | Heatmap comparing the SVM (linear kernel) and svmATAC predicted cells versus true label of intra-dataset experiment. (A) The experiment on
Corces2016. In monocyte, the percentage of correctly predicted cells by svmATAC is increased the most, by 19.79% (from 75 to 94.79%), while the percentage of
LSC is increased the least, by only 0.52% (from 98.96 to 99.48%), compared to SVM (linear kernel). (B) The experiment on Buenrostro2018. All cells are correctly
classified by svmATAC, and the percentage of correctly predicted cells in all population increase by at most 86% in MPP, compared to the SVM (linear kernel).
(C) The experiment on 10× PBMCs v1. All cells are correctly classified by svmATAC. The cells of CD8+ T and FCGR3A+ Mono, which are totally incorrectly
classified by the SVM (linear kernel), are all correctly classified by svmATAC. (D) The experiment on 10× PBMCs Next Gem. All cells are correctly classified by
svmATAC. The cells of CD8+ T, DC, and FCGR3A+ Mono, most of which are incorrectly classified by the SVM (linear kernel), are all correctly classified by svmATAC.
Colors represent the percentages of cells of a specific reported type labeled as each type by svmATAC.

Seurat labeled 10 × PBMCs Next Gem dataset are presented in
Supplementary Tables 5–8.

Benchmark Results on Inter-Dataset
Experiments
In order to evaluate the ability of svmATAC to control or
even overcome the deviation between different datasets
such as batch effect, tissue type, and other technical
factors, we designed the inter-dataset experiment, in
which two datasets are generated from the same tissue,
but prepared in different libraries and sequenced from
different platforms.

We used Seurat labeled 10× PBMCs v1 to train a model
first and then classify the labels of 10× PBMCs Next Gem
based on this model. We compared the predicted labels with

Seurat labels to evaluate the performance of svmATAC, and we
found that although the model of the v1 dataset was trained on
sparser molecular data from a different method and instrument,
svmATAC is robust, performing well across datasets, and capable
of overcoming batch effect and technical bias.

svmATAC accurately classified 99.95% (3,668 out of 3,670)
cells in the 10× PBMCs Next Gem dataset (Supplementary
Tables 9, 10), compared to 47.96% using SVM (linear kernel)
(Figure 4A). We also notice that all cells in the 10× PBMCs
Next Gem dataset are correctly classified by svmATAC, even
though the cells of CD8+ T and FCGR3A+ Mono are
barely correctly classified when using SVM (linear kernel).
Therefore, the F1 scores for all populations in svmATAC are
all improved and CD8+ T and FCGR3A+ Mono increase the
most by 0.996 (from 0 to 0.996) and 0.96 (from 0.04 to 1),
respectively (Figure 4B).

Frontiers in Genetics | www.frontiersin.org 4 April 2021 | Volume 12 | Article 658352118

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-658352 March 29, 2021 Time: 15:58 # 5

Cui et al. Enhancement and Imputation of Peak Signal

FIGURE 3 | The F1 scores plot showing the performance comparison of SVM(linear kernel) and svmATAC for cell classification of intra-dataset experiment. (A) The
experiment on Corces2016. svmATAC performed best on LMPP and its F1 score is 1 and the F1 score of monocyte increased the most, by 0.12 (from 0.85 to 0.97),
compared to SVM (linear kernel). (B) The experiment on Buenrostro2018. The F1 scores of all cell types are 1 for svmATAC, which means that all cells are correctly
classified and the F1 scores of all populations are increased by at most 0.75 (from 0.25 to 1) in MPP, compared to SVM (linear kernel). (C) The experiment on Seurat
labeled 10× PBMCs v1. All cells are correctly classified by svmATAC and the F1 score of each cell type is 1. The F1 scores of CD8+ T and FCGR3A+ Mono, which
are 0 when using SVM (linear kernel), are all increased to 1 for svmATAC. (D) The experiment on Seurat labeled 10× PBMCs Next Gem. All cells are correctly
classified by svmATAC and the F1 score of each cell type is 1. The F1 scores of CD8+ T and FCGR3A+ Mono increased most by 0.84 (from 0.16 to 1) and 0.51
(from 0.49 to 1) when using SVM (linear kernel), compared to SVM (linear kernel). The red panel represents the results for svmATAC, and the blue panel represents
the results for SVM (linear kernel) on unenhanced and unimputed data.

We next investigated qualitatively the obtained classification
results, using the respective feature matrices to project the
cells onto a 2-D space using UMAP (McInnes et al., 2018)
and colored them based on the obtained classification results
or the gold standard labels. We found a high distribution
consistency between true labels and svmATAC classified
labels (Figure 4C), while SVM (linear kernel) misclassified
most of the cells into two similar cell groups. Because
of the close spatial distribution in lower-dimensional
feature space, SVM (linear kernel) misclassified almost
all cells of FCGR3A+ Mono and CD8+ T to CD14+
Mono and Naive CD4+ T, respectively. svmATAC not
only successfully classified the almost all cells of these

two cell types but also correctly classified all cells of
other cell types.

DISCUSSION

Single-cell ATAC sequencing is a new technology in the area of
the chromatin accessibility profile of individual cells and gives a
new perspective of the identification and characterization of cell
types (Cusanovich et al., 2015). Here, we introduced svmATAC, a
specially designed method for scATAC-seq data to classify single
cells based on readout enhancement, imputation, and a SVM
model. The benchmark results show that svmATAC is able to
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FIGURE 4 | Summary of inter-dataset experiment. (A) Heatmap comparing the SVM (linear kernel) and svmATAC predicted cells versus true label of inter-dataset
experiment. The cells of CD8+T and FCGR3A+ Mono are barely correctly classified when using SVM (linear kernel). svmATAC not only successfully classified all cells
of CD8+T and FCGR3A+ Mono but also correctly classified all cells of other cell types, which increased the percentage of correctly predicted cells of all cell
population from 47.96 to 99.95%. (B) The F1 scores plot displaying the performance comparison of SVM (linear kernel) and svmATAC for cell classification of
inter-dataset experiment. All cells are correctly classified by svmATAC, and the F1 score of each cell type is 1. The F1 scores of CD8+ T and FCGR3A+ Mono, which
are 0 when using SVM (linear kernel), are all increased to 1 in svmATAC. (C) Umap plots of the 10× PBMCs Next Gem (n = 3,670 cells). The first panel is colored by
the true ground cell types of dataset, i.e., Seurat labeled cell types. The second panel is colored by the SVM (linear kernel) classification and the third panel is colored
by the svmATAC classification.

accurately classify cells in both intra- and inter-datasets. The
outstanding achievements of svmATAC are mainly due to its two
pivotal modules: (1) the peak signal enhancement can overcome
the disadvantage of read loss by sequencing technology; (2)
the biological cis-regulatory relationship-based imputation can
establish connections between significant regions.

However, there are still a few shortcomings for svmATAC
that cannot be ignored. (1) In the current version of svmATAC,
the accuracy and sensitivity of cell-type classification are highly
relying on the manually selected cutoff for enhancement and
imputation, which does exist a gap for applying svmATAC
to more complex scATAC-seq datasets. We will develop an
automatic cutoff adjustment for svmATAC in the future. (2)
We also notice that a certain number of noisy read signals are
added by mistake to the enhancement and imputation processes
and decreases the performance especially in the inter-dataset
experiment. This is another point for future work about how to
avoid adding useless signal in enhancement and imputation steps.
(3) Although svmATAC shows its potential on overcoming the
batch effect on inter-dataset experiments using 10× datasets, we
still expect more datasets coming from the same tissue or sample
but generated through different sequencing pipelines.

Moreover, svmATAC also supports the user-defined
classification model from all kinds of machine learning
algorithms, which has great potentials in the adaptability

in various scATAC-seq datasets. Therefore, svmATAC is a
promising approach and benefits cutting-edge genomic studies.

MATERIALS AND METHODS

Construction of Cell-Peak Matrix
Several region definitions for cell-peak matrix have been broadly
used (Chen et al., 2019), including peaks on bulk data or
aggregate single-cell data, pseudo-bulk data, regions around
insertion sites, and fixed-size bins. The regions from bulk or
aggregate scATAC-seq data are based on peak calling, and
this process only keeps those areas covered by at least one
read. The pseudo-bulk clades created by hierarchical clustering
is different in the way of calling peaks, but the peaks are
still generated from sequencing data. These regions around
insertion sites do not rely on calling peaks from sequencing
reads; however, this kind of peak region still only covers a
part of the whole genome reference. These types of regions
selection may be suitable for the developer’s application scenarios,
such as clustering the cells into groups but cannot fulfill
the requirement of svmATAC. This is because one of the
most common scenarios for svmATAC is to predict the
cell types for a dataset using a pre-trained classifier, which
requires the two datasets used in training and predicting to
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share the same peak regions to ensure the compatibility of
selected features.

We generated two types of cell-peak matrix containing
different peak regions. One peak region is applying fixed-size
peak regions (hereafter 5 k peak) for the training and predicting
of the classifier process, in which we detected the read signal every
5,000 bp and therefore split the whole genome reference(hg19)
into more than 600 k pieces. Note that some other tools may filter
out the peaks with no read signal detected for saving memory
and computing time, and we kept all the peaks here to make
sure all regions for training data and predicting data are the
same for compatibility of data structure. The other peak region
is designed for Cicero; it is because we found that Cicero cannot
process matrix with large regions spanning too large, such as 5 k
here. We obtained a much smaller peak region (hereafter Cicero
peak) from published data or bulk ATAC-seq data for matrix
construction. This data matrix is only used for computing the
co-accessibility score in the imputation process.

For the Coces2106 dataset, we first downloaded it from
the NCBI database (GSE74310) and aligned it to hg19 using
BWA-MEM (version 0.7.17-r1188) (Li, 2013) and enabled
Picard (Broad_Institute, 2019) and Samtools (version 1.9) (Li
et al., 2009) to remove the duplicated reads. Only duplication
remove is applied to 10× PBMCs v1 and 10× PBMCs Next Gem
dataset because these datasets are obtained in bam format from
https://support.10xgenomics.com/single-cell-atac/datasets/
1.2.0/atac_pbmc_5k_v1 and https://support.10xgenomics.
com/single-cell-atac/datasets/1.2.0/atac_pbmc_5k_nextgem,
respectively. These two 10× PBMCs datasets are downloaded
with only cluster group ID available, but no true cell label was
provided; we assigned labels to each cell by Seurat v3 as it
can convincingly assign labels for scATAC-seq data when its
scRNA-seq and labels are available. The peak and count file
of Buenrostro2018 is available at GSE96769, and we obtained
the aligned data from https://github.com/pinellolab/scATAC-
benchmarking/tree/master/Real_Data/Buenrostro_2018.

Based on aligned and duplication-removed data and the cell
labels provided in the datasets, we then estimated read coverage
for each peak to build a cell-peak binary count matrix, in which
each value 1 or value 0 represents whether a read signal was
detected from the cell in this bin (1) or not (0). There is no limit
to the number of cell types or the number of cells. Peaks that
overlap ENCODE-defined blacklist regions are all set to zero. Cell
populations with a size smaller than 10 were filtered. Note that
for both kinds of peak region (5 k or Cicero), we did not filter out
columns when all values are 0, which could be a kind of feature of
classifier training.

Each cell matrix is represented in a compressed, sparse,
column-oriented numeric matrix (dgCMatrix class in R). All
these matrices are stored in RDS files and publicly available at
https://github.com/mrcuizhe/svmATAC.

Signal Strength Enhancement
The massive loss of read signal in scATAC-seq leads to incorrect
zero counts of the cell-peak matrix, which may influence the
training and prediction of the SVM classifier. Recovering the
loss signal in data is a popular and workable way to strengthen

the classification ability of machine learning classifiers, and this
method has already been broadly accepted and developed in
scRNA-seq data analysis, whose loss rate is a quarter less than
that of scATAC-seq.

The enhancement process in svmATAC is trying to recover
the inherent loss signal caused by sequencing techniques or
experimental bias and then enhance the peak signal strength of
each group. The enhancement procedure is a group-based step,
in which data must be first divided into several groups based on
its cell labels or clustering group numbers.

We first separated the cell-peak matrix by cell types into
ann mmatrix by cell types, i.e., a data matrix with ncells and
mpeaks, Then, we enhanced the read signal by recovering the
missing signal using the following formula:

• When the fraction of non-zero cells of the ith peak is larger

than the cutoff for enhancement (i.e., cenh ≤
∑n

j=1 Ci,j
n ≤ 1),

we will treat all counts in the ith peakas follows:

Si =
[
Ci,1, ...,Ci,j, ...,Ci,n

]
,Ci,j = 1 (1)

where Si represents the read count for the ith column
(peak) in cell-peak matrix, Ci,j represents the read count
of the jth cell in theith column in matrix and i ∈ [1,m], j ∈
[1, n]. cenh represents the cutoff for enhancement, and we
recommend 0.1 here based on the read loss rate of scATAC-
seq (Mereu et al., 2020; Liu et al., 2019) and experiment
results (Supplementary Tables 1–10), which also shows
that the enhancement step is efficient and necessary on
scATAC-seq data for cell-type classification.
• When the percentage of non-zero cells of a peak is less than

the cutoff for enhancement (i.e., 0≤
∑n

j=1 Ci,j
n ≤ cenh), we

will not change Si and keep it intact.

Signal Imputation
Apart from the enhancement of read signal, another way
frequently applied in scATAC-seq data analysis is imputing read
signal based on iconic biomarkers or biologic relationships,
which may benefit the selection of features for each cell type. The
imputation in svmATAC is also group-based and includes two
steps:

• Compute the co-accessibility score for every two peaks.
Co-accessibility scores represent the patterns and linkages
of co-accessible pairs of DNA elements, such as distal
elements and promoters. We use Cicero (v3.11, with default
parameters) here to compute the co-accessibility scores for
every two peaks. The co-accessibility score of each two
peaks ranges from 0 to 1, indicating the strength of Cicero
co-accessibility links. Scores closer to 1 indicate that two
elements (peaks) are more co-accessible and vice versa.
• Imputing read signal based on cis-regulatory relationship

into each group from co-accessibility score.
Two peaks from enhanced data matrix will be considered as
significantly connected if its co-accessibility score is higher
than a threshold value. We first separated the enhanced
cell-peak matrix by cell types into an n = m matrix, i.e., a
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data matrix with ncells and mpeaks; then, all Cicero-linked
peaks will be integrated for imputation using the following
formula:
When the Cicero co-accessibility score for the linkage
between the ith peak and kth peak is higher than the cutoff
for imputation and there is no zero cell for the kth peak (i.e.,
Lik ≥ cint and

∑n
j=1 Ck,j = n), we will treat all counts in the

ith peak as follows:

Si =
[
Ci,1, ...,Ci,j, ...,Ci,n

]
Ci,j = 1 (2)

where Si represents the ith column (peak) in cell-peak
matrix, Ci,j represents the read count of the jth cell
in theithpeak in matrix and i, k ∈ [1,m], j ∈ [1, n]. cint
represents the cutoff for co-accessibility score, and we
recommend 0.25 here based on the prior knowledge from
the Cicero paper and experiment results (Supplementary
Tables 1–10), which also shows that the enhancement step
is efficient and necessary on scATAC-seq data for cell-
type classification. Lik represents the Cicero co-accessibility
score for the linkage between the ithpeak and the kth peak.
When either the Cicero co-accessibility score for the linkage
between the iþ peak and kþ peak is lower than the cutoff
for imputation or there is more than one non-zero cell for
the kth peak (i.e., Lij < cintor

∑n
j=1 Ck,j 6= n), we will not

change the count value in theith peak and keep Siintact.

Note that the matrix for computing Cicero co-accessibility
score is based on Cicero peaks, which is different from the 5 k
peak used for enhanced data matrix. Only the first (leftmost) 5
k peak will be considered for imputation if a peak from Cicero
peaks is overlapped with multiple 5 k peaks. All imputed matrixes
should be merged back into one matrix by columns(peaks) for
downstream training and predicting.

Classifier Training and Predicting
The enhanced and imputed cell-peak matrix will be used as input
for SVM to train a classifier, and the trained classifier will then
be used to predict cell types in an unlabeled dataset. We totally
designed two types of experiments including intra-dataset and
inter-dataset for evaluating the performance and adjusting the
parameters in svmATAC.

In intra-dataset experiments, we performed a fivefold
cross-validation on four datasets, including Corces2016,
Buenrostro2018, 10× PBMCs v1, and 10× PBMCs Next Gem,
to evaluate the classification ability of svmATAC. The folds were
divided in a stratified manner to keep equal proportions of each
cell population in each fold. The training and testing folds were
same for all methods.

To evaluate the performance of svmATAC in more realistic
scenarios (batch effect, technical factors, etc.), we designed an
inter-dataset experiment, in which we trained a classifier based on
10× PBMCs v1 dataset and used this classifier to predict the cells
of 10× PBMCs Next Gem dataset. Note that for the predicting
dataset, since there are no known labels before classification and
our process of enhancement and imputation are both group-
based, a clustering is recommended to assign the cells a group
number for following enhancement and imputation.

Performance Evaluation Metrics
In this paper, we evaluated and compared the performance of
SVM (linear kernel) and svmATAC using the following two
metrics:

For all datasets, we compared the F1scores across different
cell types and evaluated the performance of each method
using mean F1scores.

F1 score is defined as:

F1 =
2× Precision× Recall
Precision+ Recall

(3)

where Precision is defined as:

Precision =
TruePositives

TruePositives+ FalsePositives
(4)

Similarly, Recall (or the ratio of TPs to total calls in the truth set)
is defined as:

Recall =
TruePositives

TruePositives+ FalseNegatives
(5)

We represented the percentage of cells of a specific reported
type labeled as each type in a heatmap, which flatly and
intuitively showed the confusion matrix and the percentage of
correctly/incorrectly classified cells.

The percentage of cells of a specific reported type labeled as
each type is defined as:

Percentagecell_typei,cell_typej =
Ncell_typei,cell_typej

Ncell_typei
(6)

where Percentagecell_typei,cell_typej represents the percentage
of those cell_typeicells labeled as cell_typej, Ncell_typei,cell_typej
represents the number of those cell_typeicells labeled as
cell_typej, and Ncell_typei represents the total number ofcell _typei.
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Supplementary Figure 1 | Heatmap and F1-score comparing the SVM (linear
kernel) and svmATAC predicted cells cluster versus original cluster in intra-dataset
experiment. (A) Heatmap displaying the confusion matrix of predicted cell cluster
ID versus original cluster ID in 10× PBMCs v1 with cluster ID dataset. (B)
Heatmap displaying the confusion matrix of predicted cell cluster ID versus original
cluster ID in 10× PBMCs Next Gem with cluster ID dataset. (C) Bar plot displaying
the f1 scores of 10× PBMCs v1 with cluster ID. (D) Bar plot displaying the f1
score of 10× PBMCs Next Gem with cluster ID. Colors of (A,B) represent the
percentages of cells of a specific reported type labeled as each type by svmATAC.
In (C,D), the red panel represent the results for svmATAC, and blue panel
represents the results for general SVM on unenhanced and unimputed data.

Supplementary Figure 2 | Heatmap comparing the SVM (linear kernel) and
svmATAC predicted cells cluster versus original cluster ID in inter-dataset
experiment. (A) 10× PBMCs v1 with cluster ID dataset. (B) 10× PBMCs Next

Gem with cluster ID dataset. Colors represent the percentages of cells of a
specific reported type labeled as each type by svmATAC.

Supplementary Table 1 | F1 scores of intra-dataset experiment using
Corces2016 dataset with different enhancement and imputation cutoffs.

Supplementary Table 2 | The confusion matrix across different enhancement
and imputation cutoffs.

Supplementary Table 3 | F1 scores of intra-dataset experiment using
Buenrostro2018 dataset with different enhancement and imputation cutoffs.

Supplementary Table 4 | The confusion matrix across different enhancement
and imputation cutoffs for Buenrostro2018 dataset.

Supplementary Table 5 | F1 scores of intra-dataset experiment using 10×
PBMCs v1 Seurat Labeled dataset with different enhancement and
imputation cutoffs.

Supplementary Table 6 | The confusion matrix across different enhancement
and imputation cutoffs for 10× PBMCs v1 Seurat Labeled dataset.

Supplementary Table 7 | F1 scores of intra-dataset experiment using 10×
PBMCs Next Gem Seurat Labeled dataset with different enhancement and
imputation cutoffs.

Supplementary Table 8 | The confusion matrix across different enhancement
and imputation cutoffs for 10× PBMCs Next Gem Seurat Labeled dataset.

Supplementary Table 9 | F1 scores of inter-dataset experiment that training with
10× PBMCs v1 Seurat Labeled dataset and predicting in 10× PBMCs Next Gem
Seurat Labeled dataset with different enhancement and imputation cutoffs.

Supplementary Table 10 | The confusion matrix across different enhancement
and imputation cutoffs for inter-dataset experiment that training with 10× PBMCs
v1 Seurat Labeled dataset and predicting in 10× PBMCs Next Gem Seurat
Labeled dataset.
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MicroRNAs (miRNAs) are non-coding RNAmolecules that make a significant contribution

to diverse biological processes, and their mutations and dysregulations are closely

related to the occurrence, development, and treatment of human diseases. Therefore,

identification of potential miRNA–disease associations contributes to elucidating

the pathogenesis of tumorigenesis and seeking the effective treatment method

for diseases. Due to the expensive cost of traditional biological experiments of

determining associations betweenmiRNAs and diseases, increasing numbers of effective

computational models are being used to compensate for this limitation. In this study,

we propose a novel computational method, named PMDFI, which is an ensemble

learning method to predict potential miRNA–disease associations based on high-order

feature interactions. We initially use a stacked autoencoder to extract meaningful

high-order features from the original similarity matrix, and then perform feature interactive

learning, and finally utilize an integrated model composed of multiple random forests and

logistic regression to make comprehensive predictions. The experimental results illustrate

that PMDFI achieves excellent performance in predicting potential miRNA–disease

associations, with the average area under the ROC curve scores of 0.9404 and 0.9415

in 5-fold and 10-fold cross-validation, respectively.

Keywords: miRNA-disease associations, high-order features, feature interactions, random forest, logistic

regression

1. INTRODUCTION

MiRNAs are short non-coding RNAs with length about 19–25 nucleotides (Ambros, 2001, 2004;
Bartel, 2004). Since the first miRNA (lin-4) was discovered by Victor Ambros in 1993 (Lee et al.,
1993), miRNA has been the most widely studied class of non-coding RNAs now (Esteller, 2011).
Besides, it has been confirmed that miRNAs commonly exist in plants, animals, viruses, and human
beings, and have an essential effect on cell growth, differentiation, and apoptosis because of its post-
transcriptionally gene regulation by affecting the translation of mRNAs (Wienholds and Plasterk,
2005; Das et al., 2014; Zhao et al., 2017). The important influence ofmiRNAs on biological processes
is manifested in most intronic miRNAs sharing promoter regions with host genes (Zhao et al.,
2015).Therefore, it is natural for scientists to link miRNAs with human diseases and use them as
biomarkers in the treatment of diseases. For example, miR-164a is highly expressed in pediatric
acute lymphoblastic leukemia and pediatric acute myeloid leukemia (Zhang et al., 2009; Li et al.,
2010). Studies demonstrated that miR-21 plays a crucial role in a plethora of biological diseases
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including cancer, cardiovascular diseases, and inflammation
(Kumarswamy et al., 2011). Guay and Regazzi (2015) and
Horsham et al. (2015) observed that the deregulation of miR-
7 expression can potentially affect the adaptive capacity of
β cells, contributing to the development of diabetes. The
model-based computational approach proposed by Wang et al.
(2008) identified five transcription factors and 7 miRNAs to be
potentially responsible for the level of androgen dependency.
Although miRNAs are proved to have close relationship with
human disorders, the traditional biological methods to detect
the underlying association between miRNAs and diseases are
laboratory based, costly, and time consuming. Therefore, it is
urgent and essential to apply computational methods to solve
this issue. Nowadays, many computational methods are proposed
to predict the novel association between miRNAs and diseases,
and they are mainly divided into two categories: one is based
on the assumption that the functional similarity of miRNAs
tends to relate to similar diseases, and the other is based on
machine learning.

According to the hypothesis that the functionally related
miRNAs have a positive relationship with corresponding
diseases, Chen and Zhang (2013) presented three methods
based on the microRNA similarity, phenotype similarity, and
network consistency similarity obtained by both of the two above
similarity values, which are named as MBSI, PBSI, and NetCBI,
respectively. Among these methods, NetCBI is better than the
others with area under the ROC curve (AUC) of 0.8066, which
still needs to be improved. Li et al. (2017) provided DeepWalk
method that utilizes similarities within a known miRNA–
disease association bipartite network to predict the unidentified
miRNA–disease association when biological information, such
as miRNA functional similarity and disease semantic similarity
is unavailable. Although this method could reach the highest
AUC of 0.937, it is incapable to predict associations of new
miRNA or diseases that do not exist in the known network.
Shen et al. (2017) integratedmiRNA functional similarity, disease
semantic similarity, and known miRNA–disease association, and
then employed collaborative matrix factorization to predict the
unknown miRNA–disease association (CMFMDA). CMFMDA
could predict undiscovered miRNAs and diseases without
known associations, but it may bias to miRNAs with more
verified associated diseases. Chen et al. (2016) developed
WBSMDA to reveal the novel miRNA–disease associations
by integrating confirmed miRNA–disease associations, miRNA
functional similarity, disease semantic similarity, and Gaussian
interaction profile (GIP) kernel similarity of diseases and
miRNAs, and obtained an average AUC of 0.8031. Then, they
further raised the AUC to 0.9035 with an original method called
HAMDA (Chen et al., 2017), which employs the hybrid graph-
based recommendation algorithm to uncover the unrecognized
associations between miRNAs and diseases.

As for methods based on machine learning, Peng et al.
(2019) proposed a learning-based model named MDA-CNN.
The method generates a three-layer network, including miRNA
similarity network, disease similarity network, and protein–
protein interaction network, to extract features and integrates
an autoencoder and a convolutional network to select features

and predict miRNA–disease association, respectively. Although
the highest AUC the MDA-CNN achieved is 0.8897, the method
performs well at the miRNA-phenotype association prediction.
Zheng et al. (2019) presented a model based on machine learning
named MLMDA, which utilizes miRNA sequence information
extracted by k-mer sparse matrix, combing with other similarities
of diseases and miRNAs. Besides, the MLMDA adopts a deep
autoencoder to glean more latent features and uses the random
forest (RF) to predict novel miRNA–disease associations. Chen
et al. (2019) developed a method called EDTMDA, which applies
principal component analysis (PCA) to reducing the dimension
of features and utilizes ensemble learning to gain ultimate scores
between miRNAs and diseases. EDTMDA’s AUC could reach
0.9309 in LOOCV, but the dependence on the known associations
between miRNAs and diseases may lead to a preference for
miRNAs that have more associated diseases. Jiang et al. (2013)
proposed an SVM-based method to identify disease-related
microRNAs, which can distinguish positive microRNA-disease
associations from negative microRNA-disease associations. In
10-fold cross-validation procedure, this method achieved the
AUC of up to 0.8884. Zhang et al. (2019) proposed an
unsupervised deep learning method implemented by variational
autoencoder. The method combines miRNA similarity and
disease similarity with identified associations to get two spliced
matrices as the input of variational autoencoder, and then obtains
the association scores of miRNA and disease. The model is not
affected by the dearth of negative samples, but is hard to interpret.

In conclusion, the aforementioned computational methods
could predict the underlying miRNA–disease associations
effectively, but each one still has its own limits. In this paper,
we propose a novel method called PMDFI, which is an ensemble
approach for miRNA–disease associations prediction based on
feature interaction learning. Our model can be divided into
four parts: data set collection and processing, high-level feature
extraction, feature interaction, and an integrated learning model.
In detail, we gather miRNA–disease associations from HMDD
v2.0, and calculate miRNA functional similarity, disease semantic
similarity, GIP kernel similarly for miRNA, and disease. Then,
after using the stacked autoencoder to extract the high-order
features, we send them to the feature interactive layer to gain
cross features. Finally, we design an ensemble model combining
multiple RFs and logistic regression to predict potential miRNA–
disease associations. In the experimental results, PMDFI has
achieved excellent performance in predicting potential miRNA–
disease associations, with AUC of 0.9404 and 0.9415 under 5-fold
and 10-fold cross-validation, respectively.

2. MATERIALS AND METHODS

2.1. Datasets for MDA Prediction
The experimentally supportedmiRNA–disease associations come
from HMDD v2.0, which is derived from Li et al.’s work (Li
et al., 2014). HMDD v2.0, a manual collected database, is used
to annotate in details the miRNA–disease associations from
genetics, epigenetics, circulating miRNAs, and miRNA-target
interactions. We gather 5430 miRNA–disease association pairs
encompassing 495 miRNAs and 383 diseases from the HMDD
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v2.0. In order to represent the associations between miRNA m(i)
and disease d(j), we construct an adjacency matrix A495×383,
where element A(i, j) = 1 indicates that miRNA has a definite
association with disease, and element A(i, j) = 0 indicates that
the association between miRNA and disease is uncertain. Matrix
A is a sparse matrix with 5,430 of “1,” i.e., 5,430 miRNA–disease
association pairs, and we take these pairs as positive samples.
As for the negative samples, according to Zhou et al. (2020), all
“0”s (miRNA–disease pairs with no definite association) in the
matrix A are divided into 23 clusters with k-means clustering,
and the same amount of samples are randomly selected from
each cluster to form 5,418 negative samples. It is worth noting
that, in order to ensure the validity of comparative experiments,
the positive and negative samples in our datasets are the same as
Zhou et al.’s work.

2.2. MiRNA and Disease Information
Profiles
2.2.1. MiRNA Functional Similarity
The miRNA functional similarity is useful to predict the
functions of unknown miRNAs and study the interactions
between miRNAs, because miRNAs with similar functions tend
to trigger pathologically similar diseases. The miRNA functional
similarity matrix can be represented as follows:

FS = [m1,m2, · · · ,mnm]
T ,mi ∈ ℜkm (1)

where nm is the number of miRNAs and km is the size of the
vector that represents an miRNA.

Here, we download miRNA function similarity between
miRNA pairs directly from http://www.cuilab.cn/fles/images/
cuilab/misim.zip, which calculated by Wang et al.’s work based
on advanced MISIM method (Wang et al., 2010). The miRNA
functional similarity matrix FS is a matrix with 495 rows and
495 columns, and element FS(mi,mj) represents the functional
similarity betweenmiRNA(i) andmiRNA(j).

2.2.2. Disease Semantic Similarity
If an miRNA has been proved to be linked to a certain disease,
it is possible that the miRNA is also related to other diseases
with similar phenotypes. Therefore, the semantic similarity of
the disease is effective in large-scale research on the association
between disease and miRNA. The disease semantic similarity is
described as directed acyclic graph (DAG), and

DAG(d) = {d,T(d),E(d)} (2)

where d is the disease itself, T(d) is a set of nodes consisting of
disease D and all its ancestor nodes, and E(d) corresponds to the
edge set of the direct link from the parent node to the child node.

We collect disease semantic similarity from MeSH database
(http://www.ncbi.nlm.nih.gov/), which has been widely adopted
to study miRNA–disease associations (Zou et al., 2016). And each
disease in DAG can be calculated as follows:

{

D1D(d) = 1 if d = D

D1D(d) = max
{

0.5× D1D
(

d′
)

| d′ ∈ child of d
}

if d 6= D
(3)

and

DV(D) =
∑

d∈T(d)

DD(d) (4)

Then the semantic similarity score between diseases(i) and
diseases(j) is defined as follows:

SS(d(i), d(j)) =

∑

t∈T(d(i))∩T(d0j)

(

Dd(i)(t)+ Dd(j)(t)
)

DV(d(i))+ DV(D(j))
. (5)

2.2.3. GIP Kernel Similarly for miRNA and Disease
GIP kernel similarity originates from the topological structure of
the known interaction network, which is beneficial for predicting
the miRNA–disease associations (Wang et al., 2010). We adopt
a binary vector IP(d), a row in the adjacency matrix, to express
the interaction profile of disease d with each miRNA, and the
disease GIP kernel similarity between disease d(i) and d(j) can
be calculated as follows:

GSd
(

di, dj
)

= exp
(

−γd

∥

∥IP
(

di
)

− IP
(

dj
)
∥

∥

2
)

(6)

and

γd = λ
′
d/

(

1

n

n
∑

i=1

∥

∥IP
(

di
)∥

∥

2

)

(7)

where n is the number of human diseases and equals to 383, γd
is an adjustable parameter of the kernel bandwidth, and λ

′
d
= 1

according to van Laarhoven et al.’s work (van Laarhoven et al.,
2011). Similarly, we can use a binary vector IP(m) to express the
interaction profile of miRNA m with each disease, and the GIP
kernel similarly between miRNAm(i) andm(j) can be calculated
as follows:

GSm
(

mi,mj

)

= exp
(

−γm

∥

∥IP (mi) − IP
(

mj

)∥

∥

2
)

(8)

and

γm = λ
′
m/

(

1

m

m
∑

i=1

‖IP (mi)‖
2

)

(9)

wherem is the number ofmiRNAs and equals to 495, for the same
reason, λ′m is set to 1.

2.3. PMDFI Framework
In this study, we construct a model named PMDFI to predict
potential miRNA–disease associations. The flowchart of PMDFI
is shown in Figure 1. In the data set collection and processing
stage, we gather 495 miRNAs and 383 diseases from the HMDD
v2.0 database to form an adjacency matrix A495×383, including
5430 miRNA–disease pairs with definite associations. Then,
we acquire miRNA functional similarity (FS), disease semantic
similarity (SS), and GIP kernel similarity for miRNA (GSm)
and disease (GSd). For each miRNA–disease pair, we extract
four one-dimensional features, which include a 1 × 495 miRNA
functional similarity feature, a 1×383 diseases semantic similarity
feature, and a 1 × 495 and 1 × 383 GIP kernel similarity for
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FIGURE 1 | Flowchart of PMDFI model to predict potential microRNAs (miRNAs)–diseases associations. The model can be divided into four parts: data set collection

and processing, high-order feature extraction, feature interaction, and an integrated learning model. First, we gather miRNA–disease associations from HMDD v2.0,

and form the similarity matrix between miRNA and disease; second, we adopt a stacked autoencoders to extract high-order features; then, we use the interaction

features layer to learn the interaction between different features. Finally, we combine multiple random forest (RF) with logistic regression to predict potential

miRNA–disease associations.
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miRNAs and disease. Then these features are input in parallel
into the stacked autoencoder to extract high-order features,
instead of directly concatenating and averaging them. In this
way, our method has the ability to learn the internal deep
connections in the feature matrix, which have been previously
ignored due to the lack of miRNA functional similarity or
diseases semantic similarity. In the feature interaction layer,
the high-order features derived from stacked autoencoder are
sent to perform feature interaction learning, which aims at
obtaining four cross features containing the internal potential
relationship of miRNA (disease) and the interaction information
among those features. Finally, the obtained cross features are
independently input into the four RF models for training, and
a set of four prediction scores is calculated for each sample
input. During each iteration, we constantly adjust the weight of
each RF model, and adopt a logistic regression to make a final
comprehensive prediction.

2.3.1. Stacked Autoencoder to Extract High-Order

Features
These four similarities matrix information (FS, SS,GSm, and
GSd) have inevitable restriction that they are unable to
present the inner deep connections among different miRNAs
(diseases) due to low-order feature representations. To tackle
this obstacle, inspired by Song et al.’s work (Song et al., 2019),
we use a stacked autoencoder to extract meaningful high-order
features for miRNA and disease from the established similarity
network. The autoencoder is an artificial neural network that
can learn the efficient representation of input data through
unsupervised learning (Vincent et al., 2008; Shu et al., 2018).
As a powerful feature detector, the autoencoder encodes the
original input feature and reduces the dimensionality to find
implicit associations between the input feature, and extracts
expressive high-order features. As shown in Figure 2, the stacked
encoder consists of two parts: an encoder (also known as
the recognition network) and a decoder (also known as the
generation network). The encoder converts the input feature into
an internal representation, and the decoder converts the internal
indicates conversion to output.

In order to learn high-order features, we build a stacked
autoencoder that includes three hidden layers with 256, 128,
and 64 units. The stacked autoencoder means that the feature
vectors in the previous autoencoder are used as the input of
the next autoencoder, and the whole training process is greedy
in a layered manner. In our model, the feature information of
FS =

{

fs1, fs2, · · · , fs495
}

, SS = {SS1, SS2, · · · , SS495},GSd =
{

d1, d2, · · · , d383
}

and GSm = {m1,m2, · · · ,m495} is input into
stacked autoencoder H1, H2, H3, and H4, respectively, and
divided into four parallel groups for high-order feature extraction
by minimizing the discrepancy between the input features and
the reconstruction ones.

Initially, we set NL andNGias the number of units in the input
layer and the ith hidden layer, and use one feature vector x ∈

RNL×1 to represent those input feature vectors. Subsequently,
during the encoding process, the autoencoder transforms x into a
latent representation g(i) through a composite mapping of linear
transformation and non-linear activation function f , as shown in

the following equation:

g(i) = f
(

W
(i)
1 x+ b

(i)
1

)

(10)

where i is ith hidden layer, g(i) ∈ RNGi is the latent feature,

W
(i)
1 ∈ RNGi×NL is the encoding weight matrix, b

(i)
1 ∈ RNGi is

the bias vector, and f (·) is the sigmoid function.
Here, we adopt three hidden layers, i.e., i = 3. Then there is

the process of decoding, which learns features inverse mapping.
The latent representation y(i) is mapped to a feature vector
as follows:

y(i) = f
(

W
(i)
2 g(i) + b

(i)
2

)

(11)

similarly, g(i) is the latent data, W
(i)
2 ∈ RNL×NGi is the decoding

weight matrix, b
(i)
2 is the bias vector.

Given a training feature vector x(k), which can be
shown as: x(k) =

{

fS(k), ss(k), d(k),m(k) (Denotedasχ =

{FS, SS, GSd, GSm}), we can learn the underlying features by
minimizing the reconstruction error of the cost function:

HN(X,Y , θ) =
1

2

m
∑

K=1

‖x(k)− y(k)‖22 + λ‖θ‖22 (12)

whereN= 1, 2, 3, 4, andY represents all the reconstructed feature
vectors, y(k) is the kth reconstructed feature vector, x(k) is the
kth training feature vector, m is the number of training feature
vectors, λ is the weight decay parameter, θ = {W, b}, W is the
weight, and b is the biases of the autoencoder.

2.3.2. Feature Interaction
In the previous section, we have obtained four different types
of high-order features (Dfs, Dss, Dgs−m

, and Dgs−d
) derived

from miRNA functional similarity, disease semantic similarity,
and GIP kernel similarity for miRNA and disease. However,
these four features are unilateral feature representations, which
only express the degree of closeness among different miRNAs
(diseases) and extract their meaningful latent connections. An
effective prediction accuracy not only depends on valuable
high-order features, but also on the feature interactive
information. Therefore, we obtain cross features by combining
different high-order features and use them to learn feature
interaction information.

In our model, a feature interaction layer is adopted to gain the
interaction information between different high-order features.
Considering the miRNA–disease associations, we combine the
two features of miRNA with the two features of disease,
respectively, and gain a total of four cross features. In order to
predict the association between a specific miRNA and a certain
disease,Dfs andDss are simultaneously mapped to the same space
to obtain cross features, which can be expressed as:

D1 =

[

DfS

DSS

]T

(13)
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FIGURE 2 | Extract high-order features based on autoencoder.

Similarly, the other three cross features are shown as follows:

D2 =

[

Dgs−
m

Dss

]T

(14)

D3 =

[

Dfs

Dgs−d

]T

(15)

D4 =

[

Dgs−m

Dgs−d

]T

(16)

As a result, the high-order features of miRNA and disease are
mapped to different spaces for feature interaction, and four
unilateral high-order features are converted into four cross
features with deep interactivity.

2.3.3. Ensemble Model Based on Multiple RF and

Logistic Regression
An RF consists of an set of classification trees, and each tree
divides the feature space into different regions based on the
division of each node in the tree. During the training process,
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the randomness allows the trees to give independent estimates,
which collectively contribute to achieve accurate and robust
results. Here, we use four RFs and each RF is consisted of 300
independent trees. The core idea of our model is to input four
interactive cross features into respective RF in parallel for self-
learning and model building, and then merge the four RFs with
logistic regression to make comprehensive predictions.

Our dataset includes 5,430 positive samples labeled as “1,” and
5,418 negative samples labeled as “0.” The input sample xk of
each four cross features covers diversified feature information
and the four cross features could be represented as fk =
{

D
(k)
1 , D

(k)
2 , D

(k)
3 , D

(k)
4

}

,
(

DN ∈ ℜ1×64, (N = 1, 2, 3, 4)
)

. And we

use θR =
{[

x1; f1
]

,
[

x2; f2
]

, · · · ,
[

xm; fm
]}

to denote all training
miRNA–disease pairs, where m is the number of all training
sample pairs. In order to train a robust model, all samples are
randomly input into the random forest for pre-training. For a
sample xk, the interactive cross features fk are input into the
corresponding RF, and a set of prediction score can be obtained

and expressed as, p(k) =
{

p
(k)
1 , p

(k)
2 , p

(k)
3 , p

(k)
4

}

. p
(k)
N is a probability

score between 0 and 1, which represents the degree of association
between a miRNA and a disease. Subsequently, we use logistic
regression to do the final classification task for each miRNA–
disease pair, instead of simply averaging the probability score of
the four RF regression models. We consider the score P(k) of each

sample pair xk as a new feature x′(k) =

{

x
′(k)
1 , x

′(k)
2 , x

′(k)
3 , x

′(k)
4

}

and assign it a weight W(k) =

{

w
(k)
1 ,w

(k)
2 ,w

(k)
3 ,w

(k)
4

}

, and

constantly update the weights during each iteration. After logistic
regression training, the comprehensive prediction performance
can be expressed as: Y = wTx′ + b, where b is a constant. Finally,
We conduct 5-fold cross-validation and 10-fold cross-validation
on all samples to test the performance of our method.

3. RESULTS AND DISCUSSION

3.1. Evaluation Criteria
To assess the performance of PMDFI, we adopt 5-fold cross-
validation (5-CV) and 10-fold cross-validation (10-CV) as well
as several widely used measures, including recall, precision, F1-
score, AUC, and area under the PR curve (AUPR). And these
measures are calculated as follows:

Recall =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

F1− score =
2× Precision× Recall

Precision + Recall
(19)

where TP, FP, TN, and FN represent the true positive, false
positive, true negative, and false negative, respectively.

3.2. Prediction of miRNA–Disease
Association Based on PMDFI
We use 5-fold and 10-fold cross-validation to evaluate
the performance of PMDFI in predicting miRNA–disease

associations. In 5-CV (10-CV), all sample pairs are randomly
divided into five (10) equal groups, and four (nine) groups of
them are regarded as training samples, and the remaining one
group is used as test samples. Table 1 lists the results of 5-CV
and 10-CV obtained by PMDFI, and indicates that under 5-CV
(10-CV), the AUC, AUPR, Precision, Recall, and F1-score of
PMDFI are 0.9404 (0.9415), 0.9373 (0.9385), 0.8663 (0.8669),
0.8812 (0.8832), and 0.8736 (0.8748), respectively. The average
AUC of our model exceeds 0.94 in either the 5-fold cross-test or
the 10-fold cross-test. Therefore, the results fully demonstrate
that PMDFI has a good performance in predicting the latent
associations between miRNAs and diseases.

3.3. Comparison With Existing
State-of-the-Art Methods
In order to systematically evaluate the performance of
PMDFI, we compare our method with other state-of-the-
art computational models, such as GBDT-LR (Zhou et al.,
2020), LMTRDA (Wang et al., 2019), and RFMDA (Chen et al.,
2018). GBDT-LR is a original model that combines gradient
boosting decision tree with logistic regression to prioritize
miRNA candidates for diseases. LMTRDA is a logistic model
tree used to predict miRNA–disease associations by fusing
multi-source information. RFMDA is a computational model
of random forest for miRNA–disease associations prediction
based on machine learning. The comparison between PMDFI
and these models is carried out based on 5-CV and illustrated
specifically in Table 2. From the table, PMDFI, GBDT-LR,
LMTRDA, and RFMDA models achieve AUC of 0.9404, 0.9274,
0.8479, and 0.7388, respectively, and PMDFI presents the
best performance. PMDFI outperforms GBDT-LR by 1.3%,
LMTRDA by 9.25%, and RFMDA by 20.16% in terms of AUC.
Figure 3 further describes the comparison of our method with
other methods in 5-CV with the format of histograms, and
the leftmost one represents our method. In conclusion, except
that the recall is 0.0736 lower than RFMDA, PMDFI makes a
significant improvement in the field of prediction for potential
miRNA–disease associations.

TABLE 1 | The results of 5-fold and 10-fold cross-validation obtained by PMDFI.

C. val. AUC AUPR Precision Recall F1-score

5-CV 0.9404 0.9373 0.8663 0.8812 0.8736

10-CV 0.9415 0.9385 0.8669 0.8832 0.8748

TABLE 2 | The comparison of different methods based on 5-fold cross-validation.

Method AUC AUPR Precision Recall F1-score

PMDFI 0.9404 0.9373 0.8663 0.8812 0.8736

GBDT-LR 0.9274 0.9014 0.8315 0.8273 0.8302

LMTRDA 0.8479 0.8217 0.8013 0.6190 0.7076

RFMDA 0.7388 0.7034 0.6253 0.9548 0.7453
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FIGURE 3 | Histograms of the results of different methods based on 5-fold cross-validation.

3.4. Comparison With Different Interactive
Cross Features
In order to further illustrate the contribution of distinct
interactive cross features to the potential miRNA–disease
associations prediction, we separately input cross features

D1 (Dfs ⊕ Dss), D2
(

Dfs ⊕ Dgs−d

)

, D3
(

Dgs−m
⊕ Dss

)

, and

D4
(

Dgsm⊕ Dgs−d

)

into the RF model for training, without
integrating the overall performance of the four cross features.
Table 3 displays the performance of each interactive cross
features on miRNA–disease potential association prediction.
In the table, the AUC and AUPR score of the four interactive
cross features fluctuate in the range of 0.9249 ± 0.0143 and
0.9213 ± 0.0121, respectively. And the cross feature D1 has the
worst performance with an AUC of 0.9106, which is 2.98% lower
than the optimal score. Besides, the D4 cross feature has the
best performance compared to other three, and its AUC, AUPR,
Precision, Recall, and F1-score are 0.9392, 0.9334, 0.8630, 0.8834,
and 0.8730, respectively. Although D4 is the best performer

TABLE 3 | Comparison of the performance of four interactive cross features.

Method AUC AUPR Precision Recall F1-score

D1 (Dfs ⊕ Dss) 0.9106 0.9093 0.8289 0.8388 0.8338

D2
(

Dfs ⊕ Dgs−d

)

0.9283 0.9240 0.8513 0.8692 0.8601

D3
(

Dgs−m ⊕ Dss

)

0.9239 0.9193 0.8381 0.8642 0.8509

D4
(

Dgsm⊕ Dgs−d

)

0.9392 0.9334 0.8630 0.8834 0.8730

PMDFI 0.9404 0.9373 0.8663 0.8812 0.8736

among the four cross features, the performance of it is still slightly
worse than that of the integration of the whole four features.
For a clearer comparison, we also draw a line graph of the four
interactive cross features and their combinations in terms of AUC
and AUPR values. Figure 4 gives a clue that the performance of
integrating the four interactive cross features is the best, and its
AUC and AUPR values are both at the highest point.
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FIGURE 4 | Line chart of area under the ROC curve (AUC) and area under the PR curve (AUPR) scores of different interaction cross features.

FIGURE 5 | The ROC curves of different classifier models.
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3.5. Comparison With Different Classifier
Models
In our method, we use an ensemble learning model composed
of multiple RFs to predict the potential miRNA–disease
associations. To confirm the excellence of the RF-based ensemble
learning model, we compare it with several common classifier
models, such as SVM, k-nearest neighbor (KNN), and decision
tree (DT), using a common data set and feature set. Figure 5
is the ROC curve of these four classifier models, where the
AUC of SVM, KNN, DT, and PMDFI are 0.9336, 0.8348, 0.9171,
and 0.9404, respectively. From the picture, the performance of

TABLE 4 | The specific outcomes based on different feature representation

methods.

Method AUC AUPR Precision Recall F1-score

FeaRep1 0.9083 0.9119 0.8430 0.8543 0.8486

FeaRep2 0.9307 0.9252 0.8554 0.8731 0.8641

FeaRep3 0.9367 0.9327 0.8619 0.8746 0.8682

PMDFI 0.9404 0.9373 0.8663 0.8812 0.8736

SVM is slightly worse than PMDFI; the AUC of DT is 2.33%
lower than PMDFI; the performance of KNN is the worst among
them, and its AUC is 10.56% lower than PMDFI. In summary,
our method, RF-based PMDFI, has a curve above all the other
three ones, which stands for the best performance in predicting
miRNA–disease associations.

3.6. Analysis of High-Order Feature
Extraction and Feature Interaction
Unlike other models that directly use miRNA and disease
similarity feature information, our method PMDFI utilizes high-
order feature extraction and feature interaction to represent
features. In order to verify the validity of the proposed
feature representation approach, we compare it with other three
methods. The first one is DBNMDA (Chen et al., 2020), which
directly extracts the features of all miRNA–disease pairs to pre-
train the Restricted Boltzmann Machine (RBM). The second one
is DBMDA (Zheng et al., 2020), which utilizes the autoencoder to
resize the miRNA (disease) similarity features and then fuses the
features during the feature set construction stage. The third one
is GBDT-LR (Zhou et al., 2020), which uses gradient boosting
decision tree (GBDT) to extract distinguishing features and

FIGURE 6 | Histograms of comparison of performance based on different feature representation methods.
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feature combinations. We name the feature representation in
each of the aforementioned three methods as FeaRep1 (based
on DBNMDA), FeaRep2 (based on DBMDA), and FeaRep3
(based on GBDT-LR). Table 4 reveals in details the outcome of
distinct feature representation methods. The AUC of the feature
representation method used in the PMDFI are 3.21, 0.97, and
0.37% higher than FeaRep1, FeaRep2, and FeaRep3, respectively.
And we plot more straightforward histograms to illustrate the
results of the comparison, as shown in Figure 6. From the figure,
the feature representation method used by PMDFI, the rightmost
one, is superior to the other three methods in all evaluation
dimensions. To summarize, the experiment further demonstrates
that high-order feature extraction and feature interaction have
profound contributions to predicting the potential relevance of
miRNA–disease.

3.7. Case Studies
To analyze the prediction performance of PMDFI in practical
situations, we conduct several common disease case studies with
PMDFI, including breast cancer, melanoma, and lymphoma.
We initially train all known miRNA–disease associations in
the HMDD v.2.0 with PMDFI, and then list top-10 predicted
miRNAs for validation using two other databases, namely
dbDEMC 2.0 (Yang et al., 2017) and miRCancer (Xie et al.,
2013). The dbDEMC 2.0 is a database designed to store and
display differentially expressed miRNAs in detected human
cancers, which contains 2,224 differentially expressed miRNAs
in 36 cancer types. And the miRCancer is a microRNA–cancer
association database, which currently records 878 relationships
between 236 miRNAs and 79 human cancers.

According to recent studies, we choose three prevalent
diseases as our case studies and the results are listed in Table 5.
The first one is breast cancer, as the most common cancer
affecting women, which accounts for 23% of all cancers and
14% of cancer deaths (Jemal et al., 2011; Anastasiadi et al.,
2017). The studies have shown that loss of the tumor suppressor
miRNA or overexpression of the oncogenic miRNA may lead
to the occurrence or metastasis of breast cancer (Serpico et al.,
2014). Therefore, finding the relationship between miRNAs and
breast cancer offers a direction for the diagnosis and treatment
of breast cancer. From Table 5, we can see that nine out of the
10 predicted breast cancer related miRNAs appear in dbDEMC
2.0 or miRCancer. The second disease is Melanoma, which
is the most serious type of skin cancer. It is caused by the
cancerous transformation of skin cells when prolonged exposing
under the ultraviolet light (Rastrelli et al., 2014). Pencheva et al.
(2012) have identified a set of miRNAs that are deregulated
in independent metastatic lines derived from multiple patients
with melanoma, which manifests the importance to research
the association between miRNAs and melanoma. The data from
the middle line of Table 5 illustrate that the PMDFI model has
accurately predict all the top 10 melanoma-related miRNAs. The
last disorder is malignant lymphoma, which is a large group
of tumors with considerable heterogeneity. Although it occurs
in the lymph nodes, due to the distribution characteristics of
the lymphatic system, lymphoma is a systemic disease that can
invade almost any tissue and organ in the body (Dean et al., 2005;

TABLE 5 | The candidate miRNAs associated with breast cancer, melanoma, and

lymphoma.

Diseases miRNA Evidence

hsa-mir-150 dbDEMC 2.0;miRCancer

hsa-mir-15b dbDEMC 2.0

hsa-mir-130a dbDEMC 2.0;miRCancer

hsa-mir-196b dbDEMC 2.0

Breast cancer hsa-mir-98 dbDEMC 2.0;miRCancer

hsa-mir-106a dbDEMC 2.0;miRCancer

hsa-mir-142 miRCancer

hsa-mir-378a Unconfirmed

hsa-mir-30e miRCancer

hsa-mir-372 dbDEMC 2.0;miRCancer

hsa-mir-150 miRCancer

hsa-mir-373 miRCancer

hsa-mir-127 dbDEMC 2.0

hsa-mir-181b dbDEMC 2.0

Melanoma hsa-mir-10b dbDEMC 2.0;miRCancer

hsa-mir-224 dbDEMC 2.0;miRCancer

hsa-mir-101 dbDEMC 2.0;miRCancer

hsa-mir-223 dbDEMC 2.0

hsa-mir-27a dbDEMC 2.0;miRCancer

hsa-mir-30c dbDEMC 2.0

hsa-mir-34a dbDEMC 2.0;miRCancer

hsa-mir-34c Unconfirmed

hsa-mir-9 dbDEMC 2.0;miRCancer

hsa-mir-29a dbDEMC 2.0;miRCancer

Lymphoma hsa-mir-222 dbDEMC 2.0

hsa-mir-7a dbDEMC 2.0

hsa-mir-29b dbDEMC 2.0;miRCancer

hsa-mir-181b dbDEMC 2.0

hsa-mir-145 dbDEMC 2.0;miRCancer

hsa-mir-221 dbDEMC 2.0

Paydas et al., 2016). Zheng et al. (2018) list several examples to
describe miRNAs’ role in the development of B-cell lymphoma,
both as oncogenes and tumor suppressor genes, and nine out of
the 10 predicted lymphoma-associated miRNAs are verified in
dbDEMC 2.0 or miRCancer.

4. CONCLUSION

Given the significance that the miRNA–diseases associations
make to the diagnosis of diseases and superiority that
computer have compared to biological experiments, emerging
computational models pop up in the miRNA–disease
associations prediction realm. In this paper, we propose a
novel computational model called PMDFI, which is an ensemble
learning method to predict the miRNA–disease associations
based on feature interactive learning. Our method not only
integrates the four RF models of separated cross features, but
also incorporates logistic regression to provide comprehensive
predictions by assigning adjustable weights. Moreover, we
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apply stacked autoencoders to extracting meaningful high-
order features from miRNA functional similarity, disease
semantic similarity, and GIP kernel similarity of miRNA
and disease. And we also construct a feature interaction
layer to promote the interactions between distinct features.
As a result, PMDFI reaches the average AUC of 0.9404
and 0.9415 under 5-fold and 10-fold cross-validation and
successfully predicted miRNA–disease associations within three
case studies.

However, there is room for improvement in the future.
First, with the rapid development of sequencing technology,
all types of data have exploded, and we will integrate those
multi-source data to dramatically improve the robustness of the
model. Second, in future researches, we would devote ourselves
to discovering more original features of miRNAs and diseases
to boost the performance and explore some brand-new feature
calculation methods. Third, concerning the negative samples,
we randomly select them from unlabeled samples, which may
include unreliable false samples. To offset these negative effect on
the eventual prediction, we would introduce the measurement of
reliable negative samples in the future.
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As a common type of structural variation, an insertion refers to the addition of a DNA
sequence into an individual genome and is usually associated with some inherited
diseases. In recent years, many methods have been proposed for detecting insertions.
However, the accurate calling of insertions is also a challenging task. In this study, we
propose a novel insertion detection approach based on soft-clipped reads, which is
called SIns. First, based on the alignments between paired reads and the reference
genome, SIns extracts breakpoints from soft-clipped reads and determines insertion
locations. The insert size information about paired reads is then further clustered to
determine the genotype, and SIns subsequently adopts Minia to assemble the insertion
sequences. Experimental results show that SIns can achieve better performance than
other methods in terms of the F-score value for simulated and true datasets.

Keywords: structural variation, alignment, short read, the next generation sequencing technology, soft-clipped
read

INTRODUCTION

Although single-nucleotide polymorphisms (SNPs) represent the most frequent genomic variation,
it is generally acknowledged that human genomes show more differences as a consequence of
structural variations (SVs) (Gusnanto et al., 2012). SVs generally refer to genome sequence changes
greater than 50 bp and can be further categorized as insertions, deletions, duplications, inversions,
and translocations, among others, as well as combinations of these categories (Feuk et al., 2006;
Alkan et al., 2011; Baker, 2012). Some studies have shown that phenotypic changes and some
diseases are caused by SVs, e.g., autism, Parkinson’s disease, and schizophrenia (Suzuki et al., 2011).
Therefore, the accurate detection of SVs is of great significance for gene expression analysis and
related disease research (MacConaill and Garraway, 2010). However, until a few years ago, there
were no efficient methods for the detection of SVs with high precision. The development of
next-generation sequencing (NGS) technology has allowed researchers to obtain a large amount
of sequence data, which has improved research on SV detection (The 1000 Genomes Project
Consortium, 2010; Zhang et al., 2010; Guan and Sung, 2016; Kosugi et al., 2019).

As one type of SV, an insertion refers to the addition of a DNA sequence to the genome. This
sequence might be novel or could exist in the original genome, which would be equivalent to
translocation or duplication. In general, insertions can be divided into two types: (i) novel insertions
refer to the insertion of a sequence that cannot be found or mapped to the reference genome,
and (ii) mobile element insertions or duplications constitute insertions in which the sequence
comes from the original sequence. The sequence of this second type of insertion can be obtained
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through a comparison with the reference genome. Based on the
identification of discordant patterns in sequence data, some SV
detection methods can currently be utilized to detect insertions.
In general, these methods can be categorized into the following
four classes: (i) paired-end mapping (PEM-based methods, such
as BreakDancer (Chen et al., 2009), PEMer (Korbel et al., 2009)
and GASV (Sindi et al., 2009)), which is based on the physical
position and distance information of paired-end or mate-pair
reads (Lee et al., 2009; Hormozdiari et al., 2010); (ii) split
read (SR)-based methods, which search for split alignments of
unmapped or clipped reads, and an example is CREST, which uses
clipped reads to identify structural variations through multiple
alignments and assembly (Wang et al., 2011); (iii) depth of
coverage (DoC)-based methods such as SegSeq (Chiang et al.,
2009), EWT (Yoon et al., 2009) and CNVnator (Abyzov et al.,
2011)), which provide a macroscopic view of whether there is a
high coverage area on the genome; and (iv) de novo assembly,
which uses related reads to recover insertion sequences. The latter
methods, such as ANISE and BASIL (Holtgrewe et al., 2015),
SvABA (Wala et al., 2018), EPGA (Luo et al., 2015b) and EPGA2
(Luo et al., 2015a), require a coverage depth that is not less than
40X and have a high cost. However, these methods usually focus
on abnormal information, such as variations in the insertion
size and soft-clipped information, and thus cannot yield accurate
detection results for insertions with variable sizes.

Some hybrid methods have been proposed for the detection
of insertions with variable sizes in recent years. For example,
Pindel, as a classical method, is mainly designed for deletions
and small insertions and uses PEM and SR signatures to locate
the breakpoints (Ye et al., 2009). However, for large insertions
over 50 bp, Pindel does not perform well and yields many
false positive results. MindTheGap uses a k-mer-based method
to detect the insertion site and recovers insertion sequences
through an assembly of k-mers (Rizk et al., 2014). This method
enables the detection of small and large insertions, but the
methods finds it difficult to locate a breakpoint when other
polymorphisms occur near the insertion site, which leads to a
high number of false negative results. As an insertion detection
approach based on breakpoints, BreakSeek applies a Bayesian
model for the PEM and SR signatures to find the accurate
position of an insertion (Zhao and Zhao, 2015). The BreakSeek
method can obtain accurate breakpoint results and genotypes
without assembly, but the coverage depth of the dataset has
some impact on the performance. In addition, although some
insertion detection methods, such as PopIns (Kehr et al., 2016)
and Pamir (Kavak et al., 2017), perform well, they may require a
large number of data points.

In this paper, we propose an insertion detection approach
called SIns, which is based on soft-clipped reads and achieves
high insertion detection accuracy. SIns adopts PEM to identify
and correct the breakpoints from a previous analysis of soft-
clipped reads and clusters the insert size to determine the
genotype. For sequence assembly, SIns directly extracts all
abnormal reads and uses Minia to recover the insertion
sequences. We conducted experiments using simulated data and
real datasets, and the results show that SIns exhibits high accuracy
in breakpoint detection and genotype determination.

The rest of this paper is organized as follows: in Section 2,
we introduce the proposed method in detail. The experimental
results are shown in Section 3, and we summarize and discuss the
findings in Section 4.

METHODS

In this study, we propose a novel insertion detection approach
named SIns for the detection of insertions based on soft-clipped
reads. In general, SIns performs the following three steps: (i)
breakpoint detection, determining the location of insertions
based on comprehensive information; (ii) genotyping, identifying
the genotype of the insertion based on clustering results; and (iii)
assembly of insertion sequences. The overall pipeline of SIns is
shown (Figure 1).

Breakpoint Detection
Breakpoint detection is an important step in SIns. In this study,
the breakpoints can be obtained through the following steps.

Step 1 Selection of Soft-Clipped Reads
For each soft-clipped read, SIns first obtains its clipped part, Sc,
and then extracts a sequence Sr from the reference genome, which
corresponds to Sr. Note that the length of Sr equals that of Sc.

Based on the Smith-Waterman algorithm, a score matrix
between Sc and Sr can then be constructed to reflect their detailed
matching degree. Moreover, SIns can obtain the maximum score
from the matrix, which refers to the length of the longest
successive sequence. To identify and screen out real soft-clipped
reads, a threshold parameter c is then set to select those reads
whose Sc and Sr exhibit higher similarity. This parameter c can
be computed using the following equation:

c =
{

1, max score < cliplength ∗m
0, max score ≥ cliplength ∗m

(1)

where m represents the mappability (m ∈ [0,1]). If c equals 1,
SIns selects it for the following steps; otherwise, SIns abandons
it. A larger m indicates greater similarity between Sc and Sr. The
default value for the parameter m is 0.5.

Step 2 Determination of Candidate Breakpoints
In our study, the soft-clipped reads were further divided into four
types, namely, LL, LR, RL, and RR, which are shown in Figure 2.
Taking “LL” as an example, the first L means that the left mate
read is soft-clipped, and the second “L” specifies that this read is
clipped on its head, whereas “RR” indicates that the right mate
read is soft-clipped on its tail.

A true insertion might be related to the four types of soft-
clipped reads. These soft-clipped reads can provide similar
breakpoint information. In general, an insertion breakpoint is
regarded strongly as true if the four types of soft-clipped reads
mentioned above exist. However, it is difficult to find all types of
soft-clipped reads for a true insertion, particularly if the DoC is
low. In this paper, SIns defines four types of breakpoints, which
are represented as {LL, LR}, {LL, RL}, {RL, LR}, and {RL, RR}. For
a breakpoint, SIns collects all related soft-clipped reads that are
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FIGURE 1 | The process of Sins.

FIGURE 2 | Sequence A and B is normal, and sequence C is insertion sequence. R1, R2, R4′,and R3′ are soft-clipped reads. R1 belongs to the LL type, R2 belongs
to the LR type, R4′ belongs to the RL type, and R3′ belongs to the RR type.

kept to PSD and determines their types, and SIns then uses the
following equation to determine whether a breakpoint is true:

J = (LL ∨ RL) ∧ (LR ∨ RR) (2)

where LL∧LR indicates that the PSD of a breakpoint contains
LL and LR, and LL∨RL indicates that it contains LL or
RL. Subsequently, SIns obtains a list of breakpoints using
the above-described method. However, the method yields

some false positive breakpoints, which can be due to a
high GC content, sequencing error or SNPs. Therefore, even
though their proportion is small, these breakpoints should be
checked and filtered.

Step 3 Filtering of the Breakpoints
Through the above-described steps, SIns can obtain candidate
breakpoints, which might include some false breakpoints. SIns
then uses a filter method based on the insertion size to further
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FIGURE 3 | For a breakpoint, SIns only consider reads aligned in the region [p – (µ+3σ), p + (µ+3σ)], where p is the position of the breakpoint.

improve the precision of these breakpoints. An insertion usually
causes a series of abnormal reads with an anomalous insert
size distribution.

For a candidate breakpoint, SIns first finds the paired reads
that span this breakpoint and OEA reads (one-end-anchored
reads). Note that these reads should be aligned in the region
[p − (µ++3σ), p + (µ+3σ)], where p is the position of the
breakpoint, µ is the insert size of the read library, and σ is the
standard deviation of µ as shown in Figure 3. If the sum of
paired reads and OEA reads is larger than Cov/2, SIns treats
this breakpoint as true, otherwise, the method considers the
breakpoint to be false. Cov is the coverage of the read library.

Genotyping
Genotyping is a necessary step of SIns. In a polyploid,
the genotype is divided into heterozygous and homozygous
genotypes. Taking diploid as an example, a heterozygous
variation is only included in one chromosome and not the other
one contains. In contrast, homozygosity indicates that the same
variation is found in both chromosomes.

Genotyping can provide great convenience for subsequent
studies, and many approaches, particularly assembly-based
methods, are available for genotyping; however, all the assembly-
based methods usually require considerable time and memory.
Here, SIns adopts a cluster-based method, which can save as
much time as possible.

If an insertion occurs, it will inevitably cause a change in the
insert size for paired reads around the breakpoint, such as OEA
reads, and a decrease in the normal insert size. For a heterozygous
insertion, the insert size is difficult to determine because the
paired reads might originate from two different chromosomes.
Some paired reads contain insertions, whereas others do not.
We defined P (Pl, Pr , and i) for a paired read spanning the
breakpoint, where Pl is the aligning position of the left mate
read, Pr is the aligning position of the right mate read and i is
the insert size value around this paired read. After obtaining P

for all paired reads spanning the breakpoint, SIns applies the
DBSCAN for clustering. In DBSCAN, the parameter eps = 50,
min_samples = 2 in default, and these parameters can be adjusted.
And, SIns determines a breakpoint as heterozygote if there is
one cluster in the clustering result, otherwise, the breakpoint is
deemed as homozygous. Two types of insert size distributions are
shown in Figure 4.

Assembly Insertion Sequences
In the assembly stage, SIns extracts OEA, soft-clipped and
unmapped reads for a breakpoint to recover all possible insertion
sequences. After applying the Minia (Boeva et al., 2012) algorithm
to these abnormal reads, SIns generate a series of sequences with
overlap, which contain insertion sequences. SIns then maps these
sequences to the reference genome and obtains the insertion
sequence results. For example, if the CIGAR value of a candidate
sequence is 132M186I130M, the algorithm finds the length of this
insertion, i.e., 186 bp, and determines that the sequence content
is 133–318 bases.

EXPERIMENTS AND ANALYSIS

To verify the performance of SIns, we used SURVIVOR (Jeffares
et al., 2017) and ART (Huang et al., 2012) to simulate a large
number of insertions on human chromosome 22 ranging in size
from 50 to 1,500 bp and in coverage from 5X to 50X. The
recent popular detection methods MindTheGap and BreakSeek
were compared with the proposed SIns method. In addition,
the real human dataset NA12878 was selected to test the
performance of SIns.

Experimental Settings
Simulation Datasets and Parameter Setting
The simulation dataset was based on human chromosome 22, and
the error rate of the dataset was set to 0.1%. SURVIVOR was used
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FIGURE 4 | The paired reads (r1, r1′), (r2, r2′), and (r3, r3′) are obtained on the first chain, which contains an insertion. The other paired reads were obtained on the
normal chain as shown. These insert sizes can be clustered into two clusters.

to simulate the structural variation. Here, we selected insertions
for the simulation, and other types of structural variations
were set to 0. ART was used to simulate different read sets
from the simulated chromosome 22 containing insertions. We
first generated some simulations of chromosome 22 containing
insertions of different sizes, namely, 50–300 bp, 301–600 bp, 601–
1,000 bp, and 1,001–1,500 bp, and ART was then used to simulate
read sets with different coverages, i.e., 5X, 10X, 20X, 30X, 40X,
and 50X. The read length was uniformly set to 150 bp, the inset
size was 500 bp, and the standard deviation was 50. Using the
above parameters, we can understand the detection ability of SIns
under various conditions.

Evaluation Metrics
If the difference between the detected breakpoint and the
simulated breakpoint does not exceed 10 bp, we consider it a
positive result, which is represented by TP; otherwise, the result
is represented by FP. True breakpoints that were not detected are
indicated by FN. To clearly show the detection performance of
various methods, we used the metrics precision (Pr), recall (Rc)
and F-score as follows:

Pr =
TP

TP + FP
× 100% (3)

Rc =
TP

TP + FN
× 100% (4)

The F-score was defined as the harmonic average of precision
and recall:

Fscore =
2Pr × Rc
Pr + Rc

× 100% (5)

Simulation Dataset
Results on Homozygous Dataset
We compared SIns with MindTheGap and BreakSeek,
selected chromosome 22 as the reference and simulated
a chromosome containing 1,051 insertions of 50–300 bp,
a chromosome containing 597 insertions of 301–600 bp, a
chromosome containing 597 insertions of 601–1,000 bp and
a chromosome containing 790 insertions of 1,001–1,500 bp.
Based on different coverages, we simulated six read sets for

each simulated chromosome. The experimental results are
shown in Table 1.

As shown in Table 1, the performances of SIns and BreakSeek
in detecting insertions of 50–300 bp were better. Although the
precision of BreakSeek was generally higher than that of SIns,
its F-score was only better than that of SIns when the coverages
of the read set were 40X and 50X. We also found that SIns
has a higher recall, which means that SIns can detect more true
insertions. SIns exhibited higher precision and recall regardless of
the coverage and the length of insertions. In addition, none of the
methods worked well with low DoCs. However, for the case with
a low coverage (DoC ≤ 10X), SIns showed better performance
than the other methods.

Results on Heterozygous Dataset
To verify the performance of SIns in detecting heterozygous
insertions, we simulated read sets of chromosome 22. Simulations
of chromosome 22 containing insertions of 50–300 bp were used
to produce these read sets, and other simulations of chromosome
22 containing an insertion of 301–600 bp were also used to
generate other read sets. We then combine the read sets from the
normal chromosome 22 and the simulations of chromosome 22.
Note that the read sets were simulated with different coverages:
10X, 20X, 40X, 60X, and 80X. The experimental results are
shown in Table 2.

As illustrated in Table 2, the detection results obtained
with MindTheGap were less effective than those obtained
with homozygous detection because MindTheGap has more
sequences to choose from when selecting k-mers, which will
yield some conflicting issues. The performance of BreakSeek on
these two datasets was not as good as the results obtained with
homozygotes, and a reason for this finding might be that normal
reads extracted from the reference genome, which contained
many contradictory PEM and SR information, were added. When
BreakSeek iteratively analyses the PEM signature, there is too
much contradictory information that can be used, and thus,
the result cannot show the most authentic SV information.
In contrast, when SIns extracts breakpoint information at the
initial stage, the method relies more on SR information and thus
experiences less interference from contradictory information. At
the subsequent filtering stage, due to the addition of normal
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TABLE 1 | Comparison of three tools for four ranges.

Doc Tool 50-300 301–600 601-1,000 1,001-1,500

Pr Rc F-score Pr Rc F-score Pr Rc F-score Pr Rc F-score

5X SIns 99.784 87.726 93.367 100 64.992 78.782 100 61.977 76.525 100 63.924 77.992

BreakSeek 99.791 45.48 62.484 100 14.405 25.183 98.592 11.725 20.958 100 11.899 21.267

MindTheGap 11.949 26.546 16.48 2.317 27.471 4.274 3.104 26.801 5.563 4.551 29.494 7.885

10X SIns 99.412 96.48 97.924 99.815 90.62 94.996 100 89.615 94.523 100 90.127 94.807

BreakSeek 99.892 87.631 93.36 100 61.809 76.398 99.701 55.946 71.674 99.774 55.823 71.591

MindTheGap 30.356 64.986 41.381 20.918 65.662 31.728 21.315 67.337 32.38 25.962 67.468 37.496

20X SIns 99.037 97.812 98.42 99.65 95.477 97.519 100 93.802 96.802 99.868 95.57 97.671

BreakSeek 99.603 95.433 97.473 99.27 91.122 95.022 99.259 89.782 94.283 99.447 91.013 95.043

MindTheGap 85.845 80.209 82.932 75.955 79.899 77.878 73.242 80.235 76.579 79.597 80 79.798

30X SIns 98.848 98.002 98.423 99.308 96.147 97.702 100 94.807 97.334 99.867 95.316 97.539

BreakSeek 99.509 96.384 97.922 99.298 94.807 97.001 99.284 92.965 96.021 99.459 93.165 96.209

MindTheGap 86.829 81.541 84.102 77.564 81.072 79.279 75.425 81.742 78.457 80.73 81.139 80.934

40X SIns 98.102 98.382 98.242 100 96.482 98.21 99.825 95.477 97.603 99.868 95.949 97.87

BreakSeek 99.708 97.431 98.556 99.123 94.64 96.829 99.295 94.305 96.735 99.597 93.797 96.61

MindTheGap 86.917 81.541 84.143 77.404 80.905 79.115 75.889 82.245 78.939 80.832 81.139 80.985

50X SIns 98.57 98.382 98.476 98.969 96.482 97.71 100 95.477 97.686 99.869 96.203 98.001

BreakSeek 99.708 97.431 98.556 98.614 95.31 96.934 99.118 94.137 96.564 99.338 94.937 97.087

MindTheGap 87.018 81.637 84.242 77.28 80.905 79.051 75.153 82.077 78.463 80.881 81.392 81.136

The bold values represent the highest value of each data set in different depth.

TABLE 2 | Result of 50–300 and 301–600 bp heterozygous insertions.

50-300 Tool 50-300 301-600

Pr Rc F-score Pr Rc F-score

10X SIns 100 92.959 96.351 100 89.782 94.616

BreakSeek 100 33.111 49.75 100 21.441 35.31

MindTheGap 11.275 21.789 14.86 5.211 22.111 8.435

20X SIns 99.903 97.907 98.895 100 96.985 98.469

BreakSeek 99.707 64.7 78.477 100 48.576 65.389

MindTheGap 88.596 57.659 69.856 79.669 56.449 66.078

40X SIns 99.807 98.573 99.186 100 97.99 98.985

BreakSeek 98.847 65.271 78.625 98.805 41.541 58.491

MindTheGap 98.609 67.46 80.113 97.387 68.677 80.55

60X SIns 99.425 98.763 99.093 100 97.99 98.985

BreakSeek 98.389 63.939 77.509 98.214 46.064 62.714

MindTheGap 99.349 72.598 83.892 98.42 73.032 83.846

80X SIns 99.616 98.858 99.236 100 97.99 98.985

BreakSeek 98.503 62.607 76.556 98.264 47.404 63.955

MindTheGap 98.84 72.978 83.963 98.42 73.032 83.846

The bold values represent the highest value of each data set in different depth.

reads, the filtering conditions were more rigorous and precise,
which explains why the precision of SIns increased, whereas the
recall value decreased.

Experiments Based on Real Dataset
NA12878 is the gold standard dataset commonly used
in genomics. Experiments with NA12878 (ERR194147
50X1) samples were conducted using the SIns, MindTheGap and

1http://www.ebi.ac.uk/ena

BreakSeek methods. We extracted the reads with a probability of
0.1 because the coverage was too high. The generally recognized
VCF file of this sample contains 50,016 insertion reports larger
than 50 bp. The corresponding vcf file can be downloaded
from NCBI. We only selected the detected results in the file
records as true values. The test results are shown in Table 3.

We have filtered out the SNPs and Indels of this data set.
The above results show that SIns has good performance on

TABLE 3 | Results obtained with NA12878.

SIns MindTheGap BreakSeek

chr1 123 98 90

chr2 180 136 74

chr3 107 57 38

chr4 105 87 37

chr5 94 68 44

chr6 117 84 43

chr7 134 91 44

chr8 73 72 43

chr9 77 69 48

chr10 101 62 42

chr11 88 46 41

chr12 99 65 46

chr13 66 27 36

chr14 51 29 28

chr15 42 44 29

chr16 88 63 69

chr17 67 46 29

chr18 72 42 27

chr19 67 46 23

chr20 38 50 25

chr21 57 16 24

chr22 28 27 21

Frontiers in Genetics | www.frontiersin.org 6 April 2021 | Volume 12 | Article 665812143

http://www.ebi.ac.uk/ena
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665812 April 26, 2021 Time: 15:4 # 7

Yan et al. SIns

TABLE 4 | Homozygote results obtained with four ranges.

Doc 50–300 301–600 601–1,000 1,001–1,500

Mind
TheGap

Break
Seek

SIns Mind
TheGap

Break
Seek

SIns Mind
TheGap

Break
Seek

SIns Mind
TheGap

Break
Seek

SIns

5X 176s 1868s 20s 174s 1842s 35s 178s 2130s 29s 177s 2127s 31s

10X 217s 1868s 40s 216s 2250s 68s 227s 2156s 65s 212s 2089s 61s

20X 243s 2177s 77s 242s 2178s 119s 242s 2054s 142s 235s 4349s 123s

30X 264s 2249s 116s 264s 2109s 180s 257s 3723s 191s 203s 5281s 184s

40X 284s 2415s 154s 286s 2589s 250s 292s 4948s 240s 204s 2736s 245s

50X 304s 2577s 193s 310s 2943s 343s 310s 3207s 319s 211s 2539s 307s

TABLE 5 | Heterozygous results obtained with four ranges.

Doc 50–300 301–600

Mind
TheGap

Break
Seek

SIns Mind
TheGap

Break
Seek

SIns

10X 140s 1997s 38s 139s 2020s 19s

20X 152s 2041s 76s 154s 1990s 47s

40X 171s 2224s 150s 180s 2495s 84s

60X 190s 2779s 227s 193s 2869s 122s

80X 212s 2703s 305s 215s 3294s 204s

100X 227s 3634s 425s 254s 3719s 259s

most chromosomes compared with MindTheGap and BreakSeek.
Although the detection number of insertions on chromosome 15
and 20 are lower than that of MindTheGap, we can find the result
on the rest of chromosomes are better than other two methods.
And the average of F-score on all 22 chromosomes is 5.46% for
SIns. MindTheGap is 2.42%, and BreakSeek is 2.85%. The average
of F-score shows the same conclusion.

Running Time Comparison
Here we list the time comparison results of homozygote and
heterozygous experiments.

Although clustering is useful in the SIns process, it does not
require as many iterations as in BreakSeek, MindTheGap and
other methods; thus, SIns exhibits a relatively obvious advantage
in terms of running time. As shown in Tables 4, 5, all the methods
were run in the same machine and a single thread by default. As
a result, SIns exhibited better performance than the other two
methods in most cases. The main time-consuming step of SIns is
the third step: the reads used for assembly are extracted from the
original read collection, which is the most work-intensive step.
If the assembly is not considered and the method aims to just
detect breakpoints and judge genotypes, SIns can complete the
task within a short time.

DISCUSSION

In this article, we propose an insertion detection method
named SIns based on the comprehensive processing of soft-
clipped read information. SIns can provide more precise
detection of breakpoints and can perform relatively accurate
genotyping. In addition, SIns uses the Minia algorithm for
assembly of the insertion sequence, and the successfully
assembled sequence is then filtered and tailored according to the

breakpoint information. After these steps, the complete insertion
sequence is provided.

Most of the existing methods show effectiveness in detecting
small insertions but show poor performance in cases of low
coverage. These methods usually are difficult to detect all types
of SVs of all sizes. SIns focuses on the detection of insertions
of different sizes. We tested the detection performance of
SIns using various simulated datasets and compared it with
MindTheGap and BreakSeek. In most cases, the performance of
SIns was better than those of the other two methods. Comparing
with the other two methods, SIns performs well both on low
and high coverage data sets and different size insertions. The
experimental results using a real dataset show that SIns exhibits
good detection capability.
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Retrocopies, which are considered “junk genes,” are occasionally formed via the
insertion of reverse-transcribed mRNAs at new positions in the genome. However, an
increasing number of recent studies have shown that some retrocopies exhibit new
biological functions and may contribute to genome evolution. Hence, the identification
of retrocopies has become very meaningful for studying gene duplication and new
gene generation. Current pipelines identify retrocopies through complex operations
using alignment programs and filter scripts in a step-by-step manner. Therefore, there
is an urgent need for a simple and convenient retrocopy annotation tool. Here, we
report the development of RetroScan, a publicly available and easy-to-use tool for
scanning, annotating and displaying retrocopies, consisting of two components: an
analysis pipeline and a visual interface. The pipeline integrates a series of bioinformatics
software programs and scripts for identifying retrocopies in just one line of command.
Compared with previous methods, RetroScan increases accuracy and reduces false-
positive results. We also provide a Shiny app for visualization. It displays information on
retrocopies and their parental genes that can be used for the study of retrocopy structure
and evolution. RetroScan is available at https://github.com/Vicky123wzy/RetroScan.

Keywords: retrocopy, pipeline, evolution, visualization, genome

INTRODUCTION

Gene duplications, which are generated by DNA- or RNA-mediated mechanisms (Innan and
Kondrashov, 2010; Sakai et al., 2011), are a major source of the origination of new genes (Long
et al., 2003) and play pivotal roles in genome evolution, new biological process origination and
functional diversification (Flagel and Wendel, 2009). Retrocopies are a special type of RNA-
mediated duplication (Brosius, 1991) in which the reverse transcripts of mRNAs derived from
parental genes are occasionally reinserted at an ectopic location in the genome (Long et al., 2003).
Retrocopies are new sequence fragments formed by retrotransposition events. Most retrocopies
are non-functional due to their insertion at inappropriate sites or a lack of parental gene features
such as introns or regulatory elements and are believed to be retropseudogenes (Lynch and Conery,
2000; Navarro and Galante, 2013). Another group of retrocopies may inherit the complete open
reading frames (ORFs) of the parental genes or recruit regulatory elements such as promoters,
enhancers and coding sequences from flanking regions to generate a functional retrogene (Pan
and Zhang, 2009). Furthermore, the fusion of a retrocopy with coding sequences near the
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insertion site generates a chimeric gene (Betran et al., 2002;
Wang et al., 2002). Recent studies have systematically identified
a substantial number of retrocopies in the genomes of fruit flies
(Bai et al., 2007), Caenorhabditis elegans (Schrider et al., 2011),
humans (Ohshima et al., 2003; Zhang et al., 2003; Vinckenbosch
et al., 2006), zebrafish (Fu et al., 2010), and other mammals (Pan
and Zhang, 2009). Some studies have searched for retrocopies
in plant genomes, mainly in Arabidopsis thaliana (Zhang et al.,
2005), rice (Sakai et al., 2011), poplar (Zhu et al., 2009), and
green algae (Jąkalski et al., 2016). Moreover, some functions of
retrocopies have been verified through experiments; for example,
Jingwei functions in the metabolism of recruitment pheromones
and juvenile hormones in fruit flies (Long and Langley, 1993;
Zhang et al., 2010), and CYP98A8 and CYP98A9 are involved
in pollen development in Arabidopsis thaliana (Matsuno et al.,
2009). Retrocopies not only contribute to the diversity of genome
sequences but can also cause rapid and significant changes in the
genome by altering genome structures. Therefore, they are an
important driving force for the origination of new genes (Carelli
et al., 2016) and provide evidence of evolutionary innovations
(Navarro and Galante, 2015). With the rapid development
of next-generation sequencing technology, many studies have
assembled chromosome-level genomes of new species, and a
tool for annotating retrocopies at the genome-wide level would
help us to fully understand their positions in the genome and
the process of their production. Such a tool would be highly
significant for studying genome evolution and subsequently
analyzing the function of retrocopies (Kaessmann et al., 2009).

Since retrocopies have often lost introns and but are otherwise
highly similar to their parental genes, the identification of
retrocopies in the whole genome is generally based on the
use of protein sequences as templates for sequence alignment.
Current retrocopy identification pipelines are based mainly on
the TBLASTN, BLAT, and paralog methods (Casola and Betrán,
2017). Most studies of retrocopies are based on the TBLASTN
method, which aligns the annotated protein-coding sequences
to whole-genome sequences. Candidate hits are determined by
alignment with parental genes to determine the numbers of
lost introns, point mutations and frameshift mutations using
FASTA (Pearson and Lipman, 1988) and GENEWISE (Birney
et al., 2004). This method has been used to find retrocopies
in humans (Vinckenbosch et al., 2006), Caenorhabditis elegans
(Abdelsamad and Pecinka, 2014), Arabidopsis thaliana (Zhang
et al., 2005), rice (Sakai et al., 2011), poplar (Zhu et al., 2009),
and green algae (Jąkalski et al., 2016). However, the speed of
the TBLASTN method is relatively slow, and scanning a large
genome often takes several days or even a few weeks. But Kabza
et al. (2014) were the first use LAST to identify retrocopies
instead of TBLASTN, which greatly improved the speed of
alignment. The use of BLAT to align genomic sequences with
cDNA sequences instead of proteins is also a good option. The
BLAT method directly estimates the number of missing introns
according to the alignment results without additional programs.
However, compared with the TBLASTN method, the BLAT
method shows lower accuracy, and some positive retrocopies will
be ignored. This is not conducive to further evolutionary analysis
because the BLAT method cannot get the proteins mutations

information between parental genes and retrocopies. Navarro
and Galante (2015) used the BLAT method to scan for retrocopies
in seven primate genomes, and the PlantRGDB database provides
annotations for the retrocopies of 49 plant genomes (Wang,
2017). Moreover, a new method developed by Abdelsamad and
Pecinka (2014) divides the annotated genes into two types,
intron-free genes and intron-containing genes, and then aligns
them using paralogs to identify retrocopies. Compared to the
previous two methods, this approach can find more retrocopies
in intron-free genes but also produces more false-positive results.
It is impossible to find retropseudogenes via the paralog method
because it focuses only on annotated genes rather than genome
sequences. All of the above methods for identifying retrocopies
present some disadvantages. Therefore, there is an urgent need to
develop a comprehensive and uncomplicated tool for identifying,
annotating and analyzing retrocopies in the genome which could
facilitate in-depth research on retrocopies.

In the development of an easy-to-use retrocopy identification
pipeline, the following requirements must be met. First, the
increasing number of genome sequences generated by high-
throughput sequencing technology have brought retrocopy
research a new era, so the new pipeline must be suitable
for various species, including large-scale genomes. Second, it
must be convenient for users to configure and run, requiring
few extra operations. Third, it should effectively reduce false-
positive results. Finally, all results should be clearly displayed
in the form of clear figures. To meet all of these design
needs, we developed a convenient and accurate tool, RetroScan,1

which is based on the method of aligning protein sequences
with genome sequences to recognize retrocopies by integrating
multiple software programs and scripts. Next, RetroScan was
used to explore the expression, age distribution and functions
of the retrocopies. Finally, we constructed a reliable graphical
interface to display the results, thus helping researchers to
easily obtain information on retrocopies and achieve a deep
understanding them.

MATERIALS AND METHODS

RetroScan is an easy-to-use tool for retrocopy identification
that integrates a series of bioinformatics tools [LAST
(Kielbasa et al., 2011), BEDtools (Quinlan and Hall, 2010),
ClustalW2 (Larkin et al., 2007), KaKs_Calculator (Wang
et al., 2010), HISAT2 (Kim et al., 2015), StringTie (Pertea
et al., 2015), SAMtools (Li et al., 2009), and Shiny] and
scripts. It scans retrocopies based on alignments between
protein-coding genes and whole-genome sequences. This tool
can also analyze heterosense substitution and synonymous
substitution, compare gene structure between parental genes
and retrocopies, and calculate corresponding expression
values. Moreover, RetroScan has a user-friendly visualization
interface that provides overall statistical information, a
retrocopy structure diagram, the non-synonymous/synonymous
substitution (Ka/Ks) ratio distribution and the fragments

1https://github.com/Vicky123wzyw/RetroScan
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per kilobase per million (FPKM) heatmap using the
Shiny package in R.

Retrocopy Identification
RetroScan mainly relies on the identification of genomic
intronless alignments from mature transcripts (mRNAs) for
the reason that retrocopies are processed copies of multiexon
proteins. It requires at least two input files (Figure 1): a genome
sequence file (FASTA format) and a corresponding annotation file
(GFF format), from which it can provide detailed information on
retrocopies and parental genes in the genome. If users wish to
obtain the expression values of retrocopies, they need to submit
additional RNA-Seq data.

According to genome sequences and GFF file (Figure 1),
RetroScan first employs the peptide sequences used as queries
in similarity searches against complete genome sequences using
LAST to identify candidate hits. To avoid duplicate results, the
longest transcripts of each gene for alignment are retained for
the next step. Multiexon proteins are selected for subsequent
analysis because the parental genes must lose at least two introns.
According to the alignment results from the previous step, users
can set the sequence identity, coverage and alignment length
parameters to consider the specific conditions of the species.
Multiple alignment hits to the same genomic locus are clustered
using BEDTools. When the distance between the hits is less than
a certain length, indicating that they are unlikely to be separated
by introns, adjacent homology hits are merged using BEDTools.
The gap default is 40 bp in RetroScan, but if users want to change
this threshold, they should take into consideration that the length
of most introns ought to be larger than the threshold.

Next, the merged sequences are aligned back to multiexon
proteins using LAST, and the best hits are retained as putative
parental genes. Finally, the number of lost introns is estimated
to obtain reliable results according to the alignment output. We
calculate the position of the introns on the protein sequences
according to the annotation file. RetroScan only retains parental
genes (excluding the first and last 10 amino acids) that span
at least two introns and single-exon retrocopies. We discard
any cases involving possible DNA-based duplications by aligning
retrocopy sequences back to genome sequences to minimize the
number of false-positive results. If a retrocopy shows multiple
highly similar sequences in the genome, it will be deleted.

In addition, retrocopies with either premature stop codons or
frameshift mutations are defined as retropseudogenes; otherwise,
they are defined as intact retrocopies. If one intact retrocopy can
recruit novel regulatory elements or new protein-coding exons
and evolve into a functional retrogene, it can be defined as a
chimeric retrogene. RetroScan is more convenient and easier to
use, which integrates multiple softwares and there is no need for
the user to call the softwares at each step. Compared with the
traditional processes, LAST alignment is faster. We also align the
results of retrocopy back to the genome to avoid rertocopy caused
by DNA duplication, which effectively reduces false positives.

Ka/Ks Analysis
The age distribution of the retrocopies (Figure 1) is determined
by calculating Ka, Ks and the Ka/Ks ratio between each retrocopy

and its parental gene. The coding sequence (CDS) information of
the retrocopies and their parental genes based on the annotation
file are extracted for Ka/Ks calculation. Then, RetroScan
performs multiple alignments between the corresponding protein
sequences using ClustalW2. Finally, the Ka, Ks, and Ka/Ks values
are calculated using KaKs_calculator_2.0.

Retrocopy Expression Analysis
Although the sequences of the parental genes and retrocopies
are similar, some retrocopies are not expressed, which implies
that they have no function. Some retrocopies exhibit expression
patterns similar to those of their parental genes and may have
similar functions, and some retrocopies exhibit much higher
expression values than their parental genes, which means that
they may replace the parental gene function. Therefore, analyzing
the expression of retrocopies in different tissues and organs is
helpful for exploring their functions. As retrocopies show high
similarity with their parental genes, the expression values of
them might be biased by the lack of RNA-seq reads mapping
uniquely to either copy. There are two factors that could
possibly cause this. First, it is well known that retrocopies have
very low expression and are usually limited to one or a few
tissues (Carelli et al., 2016). Secondly, sequences that matched
equally well to a given retrogene progenitor were excluded what
additionally reduced the number of positive results (Rosikiewicz
et al., 2017). To estimate the expression values of retrogenes
(Figure 1), RetroScan uses HISAT2, SAMtools, and StringTie
to analyze the RNA-Seq data based on retrocopy and parental
gene position information, which has the advantages of high
accuracy and fast speed. After the reads are mapped to the
corresponding annotated sequences using HISAT2, RetroScan
converts SAM files into BAM files and sorts them using
SAMtools. Finally, StringTie calculates FPKM values, which are
helpful for analyzing differential expression. All programs are run
with the default settings.

Visualization
We developed a visual interface that can clearly display retrocopy
structure, the ka/ks distribution, expression levels, sequence
alignments and statistical figures. We use R to analyze the
RetroScan results, while the web pages are mainly built with
Shiny and a series of R packages such as ggplot2, UpSetR, ggmsa,
VennDiagram, dplyr, DT, shinydashboard, Biostrings, muscle,
pheatmap, stringr, shinyjs, RColorBrewer, ape, etc. The interface
layout is divided into four parts: summary, retrocopy, KaKs and
expression. Users can upload the RetroScan result files generated
by RetroScan through the START button on the homepage.

The “Summary” page shows the RetroScan results and related
statistical information which are mainly displayed in the form
of tables, histograms, pie charts, line graphs, Venn diagrams,
heat maps, and so on. There is a table containing all of the
information for retrocopies and their parental genes, including
the retrocopy ID, chromosome, start site and end site of
the retrocopy; the parental gene ID, identity, coverage, and
description; and the host gene ID (Figure 2A). The other
parts of the page show seven statistical figures illustrating the
chromosome distribution of the parental genes corresponding
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FIGURE 1 | The pipeline of retrocopy annotation.

to the retrocopies on each chromosome (Figure 2B), the
distribution of the number of retrocopies of by each parental
gene, the retrocopy length distribution, the percentage of identity
(Figure 2C), the percentage of coverage and the percentage of
retropseudogenes, intact retrocopies and chimeric retrocopies.
The static UpSet plot (Conway et al., 2017; Figure 2D) visualizes
the intersections of datasets showing an identity ≥ 90%, ≥ 3 lost
introns, host genes, a Ka/Ks ≤ 0.1, and coverage ≥ 90% in a
matrix layout and introduces aggregates based on groupings and
queries. The upper bar graph corresponds to the lower dot matrix
graph including the intersections of related datasets.

The “Retrocopy” page includes a search box where users can
enter any retrocopy ID. The search result integrates the detailed
information, sequence structure, alignment and expression of a
certain retrocopy. The structure figure (Figure 2E) shows the
structural differences in the gene sequences among the parental
genes, retrocopies and host genes so that users can clearly
understand the formation of retrocopies from parental genes.

The sequence section contains the sequences of the retrocopy
gene and protein sequences (Figure 2F). The alignment section
shows the sequence alignment between the retrocopy and the
parental gene to allow users to identify the differences in bases
(Figure 2G). The expression patterns in different developmental
stages and tissues could be used as a basis for judging whether
a retrocopy has a biological function and whether there is
functional correlation between the retrocopy and its parental
gene. The page displays the expression values in a line chart in
which two lines represent the expression of the retrocopy and the
parental gene (Figure 2H).

A Ka/Ks table and four statistical figures are provided to
investigate the origin and evolution of retrocopies on the “KaKs”
page. Users can view the table of Ka, Ks, and Ka/Ks values
and set reasonable thresholds for filtering retrocopies. The age
distribution is shown with a Ks histogram and is estimated
by comparing the protein sequences of the parental genes
and retrocopies (Figure 2I). Another Ks histogram shows the
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FIGURE 2 | Visualization of the retrocopy results. (A) The table contains all information on retrocopies and parental genes. (B) The chromosome distribution of
retrocopies. (C) The percentage of identity. (D) The UpSet plot visualizes the intersections of datasets showing an identity ≥ 90%, ≥ 3 lost introns, host genes,
Ka/Ks ≤ 0.1 and coverage ≥ 90%. (E) The structure figure shows the differences in the gene sequences between the parental genes and retrocopies. (F) The
retrocopy sequence and the parental gene mRNA and protein sequences. (G) Sequence alignment between the retrocopy and parental gene. (H) The expression
values of retrocopy and parental genes. (I) Ks distribution histograms. (J) Histogram showing the mean FPKM values of retrocopies (blue bar) and parental genes
(brown bar) in all tissues. (K) Heatmap showing the expression of all retrocopies.
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Ks distribution in three categories: retropseudogenes, intact
retrocopies and chimeric retrocopies.

The expression page provides information on estimated
retrocopy expression. The table shows the accurate FPKM values
of the retrocopies and their parental genes. The histogram shows
the mean FPKM values for each tissue (Figure 2J). Moreover,
the heatmap shows the expression of all retrocopies (Figure 2K).
The heatmap clearly shows the tissues in which retrocopies are
highly expressed or not expressed, so that user can explore the
function of retrocopies and whether their expression shows an
organizational preference.

Users can filter the data based on any table column on each
page and can directly search for keywords in the search box
above the tables. All image colors and text sizes can be adjusted
according to users’ needs. All information tables and figures can
be downloaded by clicking the download tabs.

RESULTS

Test
RetroScan is suitable for species with available scaffold-level or
chromosome-level genome assemblies and detailed annotation
information. If users upload the relevant RNA-Seq data, they
can further explore the expression values of retrocopies. A well-
developed retrocopy annotation tool requires tests to examine
its accuracy and improve its applicability. Here, we selected
six eukaryotic species for verification, including two vertebrates
[Homo sapiens (Falconer et al., 2012), Danio rerio (Howe et al.,
2013)], two plants [Arabidopsis thaliana (Theologis et al., 2000),
Oryza sativa (Sasaki and International Rice Genome Sequencing
Project, 2005)] and two insects [Drosophila melanogaster (Adams
et al., 2000), Aedes aegypti (Nene et al., 2007)]. The data were all
downloaded from NCBI (Supplementary Table 1). In addition,
we also tested species genomes from databases such as JGI
(Phytozome), Ensembl and FlyBase (Supplementary Table 2). In
our tests, RetroScan performed well and was suitable for genomic
data of various databases. The running time and results of
RetroScan are listed in Table 1. We ran RetroScan by entering the
genome sequence files and corresponding annotation files. For
evaluation, the programs were run on a dedicated Linux machine
with Ubuntu18.04 running no other job, using the GNU time
command to obtain real time. The machine had 16 GB of physical
RAM and a six core Intel i7 CPU. We set all parameters to the
default settings (thread = 1, identity ≥ 50%, coverage_rate ≥ 50%,
coverage_len ≥ 50 aa, intron_loss_num ≥ 2, gap_len ≥ 40 bp,
parent_loss_intron_len ≥ 60 bp, retro_one_exon_len ≤ 30,
kaksmethod = NG). The size of the genomes ranged from 121
M to 3.3 G, and the number of retrocopy results reached 7048.
The size of the genome, the number of annotated proteins and
the proportion of repeated sequences have the greatest impact on
the running time.

Comparison With Previous Studies
There is a lack of a uniform definition of retrocopy identity.
The criteria for judging retrocopies are based mainly on the
core definition that the sequences of retrocopies and their

TABLE 1 | RetroScan results for retrocopies in Homo sapiens, Danio rerio,
Arabidopsis thaliana, Oryza sativa, Drosophila melanogaster, and Aedes aegypti.

Species Genome
size

Protein number Time Retrocopy
number

Homo sapiens 3.3 G 1,302,060 768 min 7,048

Danio rerio 1.7 G 659,618 256 min 449

Drosophila melanogaster 145.7 M 336,015 11 min 221

Aedes aegypti 1.3 G 330,718 61 min 410

Arabidopsis thaliana 121.2 M 259,756 13 min 343

Oryza sativa 387.6 M 189,861 27 min 661

parental genes are highly similar but the parental genes lose
multiple introns. Current retrocopy identification pipelines are
based on the TBLASTN, BLAT, and paralog methods, and we
selected representative studies in these pipelines to compare with
RetroScan: RetrogeneDB (Rosikiewicz et al., 2017) for TBLASTN,
PlantRGDB (Wang, 2017) for BLAT and the study of Abdelsamad
and Pecinka (2014) and Zhang et al. (2005) for paralog
(Supplementary Table 3). The results between these methods
vary greatly, so we used Arabidopsis thaliana as an example
to explain the reasons for these differences. RetroScan includes
343 retrocopies, RetrogeneDB includes 27, PlantRGDB includes
114 (duplicates have been removed), Zhang includes 69 and
Abdelsamad includes 251. To compare other results with those
of RetroScan, we considered any two retrocopies that overlapped
at the same genomic position in which the overlap region was
more than 50% of their sequence length to be the same retrocopy.
An UpSet plot was generated to represent the intersections
between five datasets (Figure 3). The total number of retrocopies
in all studies was 627. Among the RetroScan retrocopies, 87
were shared with retrocopies from other pipelines, and 256 were
novel (Figure 3). The 256 novel retrocopies consisted partly
of retropseudogenes, which were mainly distributed in non-
coding regions. Other novel retrocopies were newly discovered
retrocopies that were ignored by the other four pipelines. We
observed that all of the RetrogeneDB retrocopies overlapped
with the RetroScan results because that study applied a similar
pipeline to directly align protein-coding sequences with genome
sequences using LAST. However, RetrogeneDB involved more
stringent criteria (e.g., regarding alignment length, identity and
coverage), and few retrocopies could be found in non-coding
regions. RetroScan and PlantRGDB showed only 50 overlapping
results, as PlantRGDB used the BLAT tool to identify retrocopies
in plants. The BLAT method is not as accurate as BLASTN
and will result in the loss of some positive results. The parental
genes identified by the BLAT method do indeed lose multiple
introns, but the sites of lost introns are located in the marginal
area of the retrocopies, which are easily excluded in RetroScan
(Figure 4A). Abdelsamad and Zhang developed a new method
for identifying retrocopies. The method mainly compares intron-
free genes and intron-genes with paralogs to find retrocopies.
The paralog method can find more retrocopies in intron-free
genes than the previous two methods but also produces more
false-positive results. Therefore, only 39 overlapping results were
observed with the results of this method. Moreover, it cannot find
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FIGURE 3 | Comparison of Arabidopsis thaliana retrocopies identified by RetroScan and four other methods.

FIGURE 4 | False-positive retrocopies. (A) The sites of lost introns are located in the marginal area of the retrocopies in PlantRGDB. (B) The parental genes identified
by Zhang do not lose any introns. (C) The parental genes identified by Abdelsamad lose only one intron.
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retropseudogenes because it only uses annotated genes rather
than genomic sequences. A portion of the retrocopies identified
by the paralog method were found in the ortholog clusters
shared with other species, such as rice. Another possibility
is that parental genes with multiple exons do not lose any
introns (Figure 4B) or lose only one intron (Figure 4C) in
the region corresponding to the retrocopies. RetroScan can
solve most of the above problems. Because two alignments
are performed, mapping proteins to genome sequences and
confirming lost introns, RetroScan guarantees that the results are
accurate and reliable.

DISCUSSION

Retrocopies are fragments of genomic sequences which are highly
similar to protein coding genes. They were considered as non-
functional pseudogenes at some time in the past. Approaches
established to identify pseudogenes include PseudoPipe (Zheng
and Gerstein, 2006), HAVANA method (Searle et al., 2004),
PseudoFinder (Chen et al., 2011), RetroFinder (Zheng et al.,
2007), GIS-PET method (Ng et al., 2005), and consensus method
(Zheng et al., 2007). These methods were developed by different
teams, which mainly use alignment tools such as Blast, Blastz,
and Blat to align DNA, protein, cDNA, and mRNA sequences
and then accord to homology, intron-exon structure, existence
of stop codons or frameshifts and so on to judge whether it is a
pseudogene. However, not all retrocopies are pseudogenes, which
are formed by retrotransposition and partly play some regulatory
or other important roles in genome. Therefore, based on the
identification of pseudogenes, researchers have developed new
identification methods specifically for retrocopies by exhaustively
aligning of genomic sequences against all possible parental
genes. But different prediction methods often result in different
numbers or sets of retrocopies because each researcher uses
different criteria for identification.

Here, we draw up the criteria for judging retrocopies
by RetroScan, which is a promising software developed to
scan, annotate and display retrocopies. Regarding the coverage,
similarity, the number of lost introns and other parameters
between the parental genes and retrocopies, users can set
according to the species situation. Compared to previous
approaches, our new computational analysis tool shows increased
accuracy and speed and is more convenient to use, especially
when processing species with large-scale genomes. RetroScan is
faster than the BLAT method and produces fewer false positives,
similar to the paralog method. We used six species data to
compare the results of RetroScan and three classic pipelines.
Compared the sequence structure of retrocopies with parental
genes, we found that RetroScan had the lowest false positives.
At the same time, we ensure that the final results have nothing
to do with DNA duplication by comparing the results back to
the genome and deleting retrocopies with a large number of
duplicates. It involves only one step and requires at least two
input files (genome sequence file and annotation file). If RNA-Seq
data are provided, it can further calculate the expression values
of retrocopies. We used multiple sets of model species genomes

for testing, and the results proved that RetroScan is effective for
the identification of retrocopies. In addition, our study is the first
to provide a user-friendly visual interface that displays results,
including information on retrocopies, Ka/Ks values, retrocopy
structure and expression. Our approach shows great potential for
retrocopy identification and will make an important contribution
to evolutionary research, providing a powerful tool for promoting
research on the duplication of genes and the origination of new
genes and new functions.

Unlike RetroScan that identifies retrocopies of a single species,
there are studies that focus on the genetic variations between
groups. Schrider et al. (2013) describe a computational approach
leveraging next-generation sequence data to detect gene copy-
number variants caused by retrotransposition (retroCNVs), and
find that these variants account for a substantial number of
gene copy-number differences between individuals, and that
gene retrotransposition may often result in both deleterious and
beneficial mutations. Miller et al. (2021) exploit sideRETRO,
a pipeline dedicated to detecting retroCNVs in whole-genome
sequencing data and revealing their insertion sites, zygosity and
genomic context and classifying them as somatic or polymorphic
events. These tools focus on identifying the CNVs of retrocopy in
the population, while RetroScan contributes greatly to research
on retrocopies in individual organisms, which is of great
significance for establishing a foundation for the future analysis
of retroCNVs between subgroups.

In summary, RetroScan is a comprehensive, efficient and one-
step retrocopy identification tool developed for users. We firmly
believe that RetroScan will be useful for further comparative and
evolutionary studies.
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