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Glioblastoma is the utmost aggressive diffuse kind of glioma which is originated from
astrocytes, neural stem cells or progenitors. This malignant tumor has a poor survival rate.
A number of genetic aberrations and somatic mutations have been associated with this
kind of cancer. In recent times, the impact of long non-coding RNAs (lncRNAs) in
glioblastoma has been underscored by several investigations. Up-regulation of a
number of oncogenic lncRNAs such as H19, MALAT1, SNHGs, MIAT, UCA, HIF1A-
AS2 and XIST in addition to down-regulation of other tumor suppressor lncRNAs namely
GAS5, RNCR3 and NBAT1 indicate the role of these lncRNAs in the pathogenesis of
glioblastoma. Several in vitro and a number of in vivo studies have demonstrated the
contribution of these transcripts in the regulation of cell proliferation and apoptosis, cell
survival, invasion and metastasis of glioblastoma cells. Moreover, some lncRNAs such as
SBF2-AS1 are involved in conferring resistance to temozolomide. Finally, few
circularRNAs have been identified that influence the evolution of glioblastoma. In this
paper, we discuss the impacts of lncRNAs in the pathogenesis of glioblastoma, their
applications as markers and their implications in the therapeutic responses in this kind
of cancer.

Keywords: lncRNA, circRNA, glioblastoma, expression, polymorphism
INTRODUCTION

Being considered as grade IV glioma tumors, glioblastomas are the utmost aggressive diffuse kind of
glioma originating from the astrocytes, neural stem cells or progenitors (1). This type of brain tumor
includes about half of all glioma tumors and less than 20% of all primary brain tumors (2). Although
being a rare tumor, the poor prognosis and low survival rate of glioblastoma have made it an
important public health problem (3). It is more frequent in men compared with females, in Western
countries compared with developing world and in some ethnicities such as Asians, Latinos and
Whites (3). The etiology of this kind of tumor is largely unclarified, as no causal carcinogen has been
linked with it. High dose ionizing radiation is the solitary environmental element that is highly
associated with risk of glioblastoma (4). A number of genetic aberrations such as activation of
growth factor cascade through amplification and mutations in receptor tyrosine kinase genes,
February 2021 | Volume 10 | Article 62588415
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induction of the PI3K proteins and loss of the p53 and Rb tumor
suppressor genes have been identified in glioblastoma (5).
Genome-wide and direct sequencing techniques have also
detected recurrent disease-causing mutations in glioblastoma
samples in a number of genes such as IDH1 (6) and TERT
promoter (7). Moreover, contemporary studies have conveyed
anomalous expression of long non-coding RNAs (lncRNAs) in
glioblastoma samples indicating the impact of these transcripts in
the pathobiology of this kind of cancer (8). These transcripts are
larger than 200 nucleotides and regulate expression of numerous
genes at transcriptional, post-transcriptional, and epigenetic
phases (9). In the current paper, we discuss the impact of
lncRNAs in the pathobiology of glioblastoma and their effects
on the regulation of cell proliferation and apoptosis, cell survival,
invasion and metastatic aptitude of glioblastoma cells.
ONCOGENIC LNCRNAS IN
GLIOBLASTOMA

Several oncogenic lncRNAs have been up-regulated in
glioblastoma samples. For instance, MIR22HG is an oncogenic
lncRNA which has been shown to be highly dysregulated in
glioblastoma via assessment of accessible datasets. This lncRNA
hosts miR-22-3p and miR-22-5p. Further studies have unraveled
over-expression of the MIR22HG/miR-22 route in glioblastoma
and glioma stem-like cells. Over-expression of MIR22HG in
glioblastoma samples has been related with poor patients’
outcome. Knock down of this lncRNA has led to inactivation
of the Wnt/b-catenin route viamodulating miR-22-3p and miR-
22-5p expressions. Functionally, MIR22HG silencing has
diminished cell proliferation, invasion and tumor growth in
xenograft models. The mentioned miRNAs have been shown
to target SFRP2 and PCDH15. Taken together, MIR22HG has
been acknowledged as an important activator of the Wnt/b-
catenin signaling pathway, and its silencing has been proposed as
a therapeutic modality in this kind of cancer (10). The small
nucleolar RNA host gene 5 (SNHG5) is another up-regulated
lncRNA in glioblastoma which enhances cell proliferation and
suppresses cell apoptosis in these cells. Expression of this
lncRNA is activated by the Yin Yang 1 (YY1) transcription
factor. This lncRNA exerts its oncogenic role via stimulation of
the p38/MAPK axis (11). SNHG9 has also been demonstrated to
be over-expressed in glioblastoma samples in association with
poor survival of patients. SNHG9 has a role in suppression of
miR-199a-5p expression and enhancement of Wnt2 expression
in glioblastoma cells. This lncRNA has been revealed to enhance
aerobic glycolysis and cell proliferation (12). Expression of
SAMMSON has been increased in the plasma of patients with
glioblastoma but not in those with diffuse neurosarcoidosis, a
disorder that shares MRI signs with glioblastoma. This lncRNA
has been displayed to suppress expression of miR-622 in
glioblastoma cells and subsequently enhance cell (13). MIAT is
another up-regulated lncRNA in glioblastoma. Bountali et al.
have knocked down this lncRNA in glioblastoma cell lines and
analyzed RNA profile of these cells via RNA sequencing method.
Frontiers in Oncology | www.frontiersin.org 26
They reported differential expression of several genes including
those participating in cancer-associated functions, namely cell
growth and viability, apoptotic features, reactive oxygen species
creation and migration. Functionally, MIAT silencing abolishes
long-term viability and migration and enhances apoptosis in
these cells (14). A genome-wide expression profiling in
glioblastoma cells has identified MALAT1 as one of the most
remarkably over-expressed genes following treatment with
temozolomide (TMZ). Expression of this lncRNA has been co-
regulated by p50 and p53 through kB- and p53-binding sites
which are located in coding sequence of this lncRNA. MALAT1
silencing has increased sensitivity of patient-originated
glioblastoma cells to TMZ and improved the effects of this
drug in xenograft mice models (15). UCA1 is another
oncogenic lncRNA which enhances cell proliferation and
migration, while suppressing cell apoptosis. Figure 1 depicts
the molecular mechanisms through which UCA1 participates in
the pathogenesis of glioblastoma.

Table 1 reviews the function of oncogenic lncRNAs
in glioblastoma.
TUMOR SUPPRESSOR LNCRNAS IN
GLIOBLASTOMA

Expression of GAS5 has been decreased in glioblastoma and its
levels have been negatively correlated with miR-34a levels (61).
In addition, expression of AC016405.3 has been decreased in
glioblastoma tissues in association with numerous aggressive
characteristics of this type of cancer. Up-regulation of this
lncRNA inhibits proliferation and metastatic ability of
glioblastoma cells. The oncogenic miRNA, miR-19a-5p has
been identified as a downstream miRNA of AC016405.3.
AC016405.3 has been shown to be targeted by miR-19a-5p.
Functionally, AC016405.3 inhibits cell proliferation and
metastasis via regulation of TET2 by serving as a sponge for
miR-19a-5p (62). LINC00657 is another tumor suppressor
lncRNA whose expression has been decreased in glioblastoma
sections compared with neighboring normal section. Up-
regulation of this lncRNA has suppressed cell proliferation,
colony formation, invasiveness and migratory potential of
glioma cells through activating cell apoptosis. LINC00657 has
been acknowledged as a direct target of miR-190a-3p, a miRNA
that negatively regulates PTEN expression. The tumor
suppressive role of LINC00657 has also been verified in
xenograft models (63). The lncRNA AC003092.1 has been
shown to be down-regulated in TMZ resistance cells compared
with their original cells. Moreover, down-regulation of this
lncRNA has been correlated with resistance to TMZ, higher
possibility of tumor relapse, and poor patients’ outcome. Cell line
studies has shown improvement of TMZ sensitivity following
up-regulation of AC003092.1. The effect of this lncRNA in the
modulation of TMZ sensitivity is exerted via regulation of TFPI-
2–associated cell apoptosis through sponging miR-195 (64).
RNCR3 is another down-regulated lncRNA in glioblastoma.
Over-expression of this lncRNA significantly suppresses cell
February 2021 | Volume 10 | Article 625884
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survival and proliferation of glioblastoma cells, while enhancing
cell apoptosis and activity caspase‐3/7. Besides, up-regulation of
this lncRNA enhances expression of Krüppel‐like factor 16
(KLF16) via suppressing miR‐185‐5p (65). Table 2 gives an
outline of studies which assessed function of tumor suppressor
lncRNAs in glioblastoma.
DIAGNOSTIC AND PROGNOSTIC VALUE
OF LNCRNAS IN GLIOBLASTOMA

Expression levels of lncRNAs can distinguish patients with
glioblastoma from cancer-free individuals. Moreover, these
transcripts can possibly differentiate different brain tumors. For
instance, plasma levels of SAMMSON can differentiate glioblastoma
from both diffuse neurosarcoidosis and healthy controls (13).
Among lncRNAs whose diagnostic power has been assessed in
glioblastoma, HOTAIR has exhibited the most promising results.
Frontiers in Oncology | www.frontiersin.org 37
Tan et al. have demonstrated significant higher levels of this
lncRNA in sera of glioblastoma patients compared with controls.
The area under the receiver operating characteristic (ROC) curve
was 0.913 indicating the ideal feature of HOTAIR for this purpose.
Moreover, they reported significant correlation between its levels
and high tumor grade. Notably, there was significant correlation
between tumor and serum levels of this lncRNA. Finally, exosomes
extracted from the serum samples have been shown to contain this
lncRNA, further emphasizing the application of this lncRNA in the
prognostic and diagnostic processes in glioblastoma (49). In
addition, Kaplan-Meier analysis has indicated the correlation
between expression levels of several lncRNAs such as SNHG9,
TRG-AS1, AGAP2-AS1, lnc-TALC, SBF2-AS1, SNHG20,
AC016405.3, LINC-ROR, HOXB-AS1, H19, LINC00152,
RAMP2-AS1 and GAS5 and patients’ prognosis in the terms of
overall survival, disease-free survival and progression free survival.
Table 3 gives a summary of studies which assessed such aspect of
lncRNAs in glioblastoma.
FIGURE 1 | Glioblastoma-associated stromal cells (GASCs) are special cells in the tumor microenvironment which are phenotypically and functionally similar to the
cancer-associated fibroblasts. These cells produce CXCL14 which functions as a paracrine factor to enhance expression of UCA1. UCA1 serves as a sponge for
miR-182. Since miR-182 suppresses expression of PFKFB2, UCA1 up-regulation results in up-regulation of PFKFB2 through sequestering miR-182. PFKFB2 protein
increases glycolysis in the tumor cells (16). In addition, UCA1 decreases miR-627-5p levels. As miR-627-5p inhibits NR2C2 expression, down-regulation of miR-627-
5p by UCA1 enhances expression of NR2C2. NR2C2 binds with the promoter region of UCA1 and increase its expression through a positive feedback loop.
Moreover, NR2C2 enhances expression of SPOCK1 increasing cell proliferation, migration and invasiveness of tumor cells (17).
February 2021 | Volume 10 | Article 625884
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TABLE 1 | List of over-expressed lncRNAs in glioblastoma.
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(32)

fter
nogenic

– (33)

ss, and
ells. Exosomes
GBM cells
resistance.

– (34)

s cell
ut reduces cell

Shorter overall survival (35)

eration,
es apoptosis.

– (17)

glycolysis and Poor survival (16)

and Poor OS (36)

under
ssociated

Lower survival rate (37)

ion,
and

Lower PFS (38)

(Continued)
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lncRNA Patients’ specimens Cell line Targets/
Regulators

Signaling
pathways

Functional impact

miR155HG 24 GBM tissues and 15 adjacent
NBTs

normal human
astrocyte cell line NHA,
U87, U251, Ln229,
T98, and A172, GP1
and GP2

miR-185/ANXA2,
STAT3

PI3K-Akt miR155HG enhances epithelial-to-me
transition in glioma. miR155HG silenc
GBM cell proliferation, stimulated G1/
cycle arrest, and enhanced apoptosis

TP73-AS1 TCGA and GTEx datasets: 207
normal, 518 low grade glioma and
163 GBM

G26 and G7 ALDH1A1 – TP73-AS1 increases TMZ resistance
stem cells and enhances tumor aggre

LINC-ROR 57 GBM tissues and 10 NBTs – caspase 3
and p53

– Patients with OS less than 15 months
regulation of LINC-ROR.

MIAT – SH-SY5Y, GBM
1321N1,
GBMT98G

Many genes MAPK,
Phospholipase
D, TGF-b,
NOD-like
receptor, EGFR

MIAT enhances cell growth, survival,
reactive oxygen species and migratio
decreases basal apoptosis.

HOXB-AS1 486 low grade glioma (LGG) and
154 glioblastoma (GBM) tissues

HA, LN229, U87 and
U251 cell lines

miR-885-3p,
HOXB2

HOXB-AS1silencing suppresses cell p
through inducing S phase cell cycle a
suppresses the migration and invasio

GAPLINC High GAPLINC expressing group
(n=80) and low GAPLINC
expressing group (n=81)

NHAs,T98G, U251,
LN18, LN229, and
A172

miR-331-3p – GAPLINC enhances GBM cells prolife
migration, and invasion, and reduces

AHIF – U87-MG and T98G
GBM cell

Bax, Bcl-2, and
caspase 7

– AHIF was up-regulated in GBM cells
radiotherapy and affects GBM cell clo
formation, DNA repair and apoptosis.

31 GBM patients and 7 adjacent
NBT

U87-MG, U251-MG,
A172, T98G

VEGF,
angiogenin, Bcl-
2, Bcl-xl, Mcl-1

– AHIF enhances viability and invasiven
reduced the proportion of apoptotic c
originated from AHIF−overexpressing
enhanced viability, invasion and radio

AGAP2‐AS1 116 GBM tissues, 20 low‐grade
glioma samples and 20 adjacent
NBTs

U87, U251, human
astrocyte cell line (HA)

– – Up-regulation of AGAP2‐AS1 enhanc
proliferation, migration, and invasion,
apoptosis.

lnc-UCA1 Glioma samples: Grade I–II (n=5),
Grade III–IV (n=5) and normal
human brain tissues (n=5)

Human U87 and U251
glioma cell

miR-627-5p,
NR2C2

– UCA1 overexpression enhances proli
migration, and invasion, but suppress

42 paired glioma tissues and NBTs U251, U87MG miR-182,
PFKFB2/CXCL14

– UCA1/miR-182/PFKFB2 axis induces
invasion.

H19 50 FFPE brain tissue from GBM
patients and 10 cancer-free brain
tissue samples

– miR-326 – H19 over-expression confers poor OS
progression-free survival.

– U87, U251, Ln229,
U373, U118, GP1, GP2

miR-181d, b-
catenin/Hif-1a,
PTEN, SP1

– H19 expression is increased by Hif-1
hypoxia. H19 contributes in hypoxia-a
migration and invasion.

30 glioblastoma tissues and
adjacent NBT

U87, U373, HUVECs – – H19 enhances glioblastoma cell invas
neurosphere formation, tumor growth
angiogenesis.
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TABLE 1 | Continued

pact Impact of high expression
on patient’s prognosis

Reference

roliferation and
induced by TMZ.
33, Nanog, Oct-4,
9 upregulation.

– (39)

progression and
on.

Poor prognosis (40)

vasion and EMT. Poor survival (41)

eration, EMT and – (42)

n of ELFN2 and
. LINC00470
M cell autophagy.

Poor prognosis (43)

0470 decreased
ressed autophagy.
as associated poor

Poor prognosis (44)

d GBM cell
progression,
ttenuated invasion.

poor prognosis and OS (45)

d GBM proliferation – (46)

ited by LOXL1-AS1 Poor prognosis and low OS (47)

eration, migration, and – (48)

ith high grade brain – (49)

BM cell migration Poorer survival (50)

gression. Lower survival (51)
eration, migration and
.

Poorer prognosis (52)

(Continued)
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lncRNA Patients’ specimens Cell line Targets/
Regulators

Signaling
pathways

Functional im

– U87MG, U251, U343,
Hs683, LN215, A172,
NHA

– – H19 silencing reduced cellular
increased apoptosis rate when
Cancer stem cell markers (CD1
and Sox2) are increased by H1

LINC00152 35 samples (5 normal, 10 with
grade two, 9 with grade three and
11 with grade four GBM)

LN229, U87-MG and
N9 (patient-derived
cells)

miR-612 AKT2/NF-kB LINC00152 regulates malignan
proneural–mesenchymal transit

– U87 TPM2, PTX3,
IGFBP4, TGM2,
SPP1, LUM

– LINC00152 increases cellular in

40 glioblastoma samples and
matched NBTs

U87, U251, LN229,
A172, U118, NHA

E-cadherin, N-
cadherin,
Vimentin, and
Snail, HMGA2

– LINC00152 enhances cell proli
invasion.

LINC00470 50 GBM samples and 10 NBTs U251, U87 and U118 ELFN2, miR-101,
AurkA. and eIF2a

LINC00470 increases expressi
regulates methylation of ELFN2
suppresses ELFN2-induced GB

60 astrocytoma tissues and 12
NBT

U251, U87 FUS and AKT – Higher pAKT induced by LINC0
ubiquitination of HK1 and supp
Higher LINC00470 expression
patient outcome.

LINC01446 31 pairs of GBM samples and
adjacent normal tissues

NHA, A172, U87, U251
and T98G

miR-489-3p,
TPT1

LINC01446 silencing suppress
proliferation, arrested cell-cycle
decreased tumor growth and a

CASP5 40 pairs of GBM and NBTs A172, U87MG,
U251MG, T98G,
U118MG and the
human astrocyte cell
line HA

Cyclin D1, MMP-
9, MMP-2, E-
cadherin, N-
cadherin, and
Vimentin

– CASP5 silencing has suppress
and arrested cells in G1.

LOXL1-AS1 169 GBM RNA-seq data (68 MES
and 101 PN)

U87MG RELB NF-kB GBM cell proliferation was inhib
silencing.

MNX1-AS1 44 pairs of GBM samples and
adjacent normal tissues

U138, LN229, T98,
U251

miR-4443 – MNX1-AS1 enhanced the proli
invasion of GBM cells.

HOTAIR 43 GBM patients and 40 controls – – – HOTAIR expression correlates
tumors.

123 GBM cases from TCGA, 34
cases from CGGA2, 227 cases
from Rembrandt, 79 cases from
TTseq, and 77 cases from
GSE4290

U87, U87vIII NLK b-catenin HOTAIR silencing suppressed
and invasion.

TCGA dataset: 220 glioma U87, LN229 EZH2 – HOTAIR enhances cell cycle pr
SNHG7 53 pairs of GBM tissues and NBTs HEB, A172, U87,

T98G, SHG44
miR-5095 Wnt/b-catenin SNHG7 silencing inhibited prol

invasion and induced apoptosi
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TABLE 1 | Continued

gets/
lators

Signaling
pathways

Functional impact Impact of high expression
on patient’s prognosis

Reference

n, ICAT,
Axin2,
TAT3,

WNT/b-catenin,
EGFR, NFkB

NEAT1 enhances proliferation, clone formation, and
invasion but suppresses cell apoptosis.

– (53)

e,
te 2,

– NEAT1 silencing suppressed GSC cell proliferation,
migration and invasion and promoted GSC
apoptosis.

– (54)

-5p and
/SOX3

JAK/STAT SOX2OT promoted the proliferation, migration and
invasion of GSCs, and inhibited GSCs apoptosis.

– (55)

, VEGFA – TUG1 promotes tumor-induced endothelial cell
proliferation, migration and tube formation and
enhances spheroid-based angiogenesis.

– (56)

, DHX9, – This lncRNA regulates GSC growth, self-renewal,
hypoxia-associated molecular reprogramming and
adaptation to hypoxia within the tumor niche.

Poor OS (57)

– XIST promotes cell proliferation, migration and
invasion and suppresses apoptosis.

– (58)

P – MCM3AP-AS corresponds to the coding-gene
MCM3AP, which is involved in initiation of DNA
replication.

Lower OS (59)

NF-kB LINC01057 up-regulation increases mesenchymal
differentiation in proneural cells.

– (60)

cell; NBT, normal brain tissues.
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11
lncRNA Patients’ specimens Cell line Tar
Regu

NEAT1 – N5, N9 and N33
patient-derived cells

b-caten
GSK3B
EZH2/S
p65

120 glioma tissues and 30 NBTs U87, T98G, U251,
A272, U373, HEK293T

miR-let7
Argonau
NRAS

SOX2OT Human glioma tissues (grade
one=5, grade two=5, grade
three=8, grade four=8) and 5 NBTs

U87 and U251 miR-194
miR-122

TUG1 20 GBM specimens (grade one to
four, each 5) and 5 normal brain
tissues

U251 MG, U87MG,
293T

miR-299

HIF1A-AS2 – Primary human GSCs IGF2BP
HMGA1

XIST – Human embryonic
kidney (HEK) 293T cells

miR-152

MCM3AP-AS 422 GBM patients (TCGA dataset) – MCM3A

LINC01057 12 paired frozen fresh GBM and
adjacent NBTs and the paraffin-
embedded human GBM samples

LN229, T98G,
HEK293T

IKKa

GBM, glioblastoma multiform; TMZ, temozolomide; OS, overall survival; GSC, glioblastoma stem
i
,
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TABLE 2 | List of under-expressed lncRNAs in glioblastoma.

ne Targets/
Regulators

Signaling
pathways

Functional role Impact of low
expression on

patient’s prognosis

Reference

MG miR-19a-5p, TET2 – AC016405.3 inhibits
proliferation and metastasis via affecting
expression of TET2.

Poor prognosis (62)

, LN-18, miR-190a-3p pTEN LINC00657 suppresses viability and colony
formation in through increasing cell apoptosis.

Poor progonosis (63)

d their
lines,
251TR

TFPI-2, miR-195 – Down-regulation of AC003092.1 correlates
with TMZ resistance, higher risk of relapse,
and poor outcome.

Poor prognosis (64)

miR-34a – GAS5 level in reduced in GBM. Poor overall survival (61)
373, A172 miR‐185‐5p, KLF16 – RNCR3 overexpression suppresses cell

survival and proliferation, enhances cell
apoptosis and activity of caspase‐3/7.

– (65)

1,
8, and

Akt – NBAT1 down-regulation correlates with
proliferation ability, tumor size, degree of
malignancy and cell viability.

Lower OS and poor
prognosis

(66)

miR-10a – Under-expression of TUSC7 confers resistant
to TMZ.

– (67)

NOTCH3, P21,
DHC10

NOTCH RAMP2-AS1 suppresses GBM cell growth and
enhances cell cycle progression.

Poor prognosis (68)

TR, U87, miR-10a, EphA8 TGF-b Down-regulation of RP11-838N2.4 was
correlated with higher probability of tumor
relapse.

Poorer survival (69)

tem cell; FFPE, formalin-fixed, paraffin paraffin-embedded.
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12
lncRNA Patients’ specimens Cell l

AC016405.3 3 GBM samples and paired NBTs, 64 FFPE
GBM specimens

U87MG, U251

LINC00657 40 pairs of GBM tissues and adjacent normal
tissues

HA1800, U-87
and U-118 M

AC003092.1 108 human glioma tissue samples (75 grade IV,
5 grade III, 13 grade II, and 15 grade I
astrocytoma cases)

U87, U251 an
TMZ-resistant
U87TR and U

GAS5 50 FFPE GB specimens and 10 NBTs –

RNCR3 – U87, U251, U

NBAT1 48 cases of GBM (two groups of low=24 and
high=24 expression of NBAT1) and 30 cases of
normal brain tissues

SVGP12, U25
U87, U373, T
LZ229

TUSC7 116 GBM specimens, 72 insensitive and 44
sensitive to TMZ treatment

U87

RAMP2-AS1 20 GBM patients and adjacent normal tissue U87 and U25

RP11-838N2.4 53 patients: 38 GBM cases, 3 grade III
astrocytoma cases, 10 grade II astrocytoma
cases, 2 grade I astrocytoma cases

U87TR, U251
U251

GBM, glioblastoma multiform; TMZ, temozolomide; OS, overall survival; GSC, glioblastoma s
i
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TABLE 3 | Diagnostic/prognostic value of lncRNAs in glioblastoma.

ariate/Multivariate Cox regression Reference

was an independent prognostic factor for
S.

(12)

– (13)

– (19)
– (21)

motherapy was correlated with the OS
ts with low lnc-TALC expression.

(22)

– (23)

– (24)

– (62)

– (30)

– (31)

– (35)

– (64)

– (36)
52 levels, age, chemotherapy and
rapy have been associated with OS in
atabase. LINC00152 levels, age, IDH
nd chemotherapy have been associated
database.

(40)

– (45)

– (49)
– (52)

– (68)

– (69)

(Continued)
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Sample number Area under curve Sensitivity Specificity Kaplan–Meier analysis Uni

Two groups of high and low SNHG9
expressing patients, each contained 20
patients

– – – OS and PFS in patients with high SNHG9
expression were lower than those with down-
regulation of SNHG9. High SNHG9 expression was
correlated with high tumor grade, greater tumor
dimension, and metastasis.

SNHG9
worse O

56 patients with GBM, 34 patients with
diffuse neurosarcoidosis and 35 healthy
controls/SAMMSON levels

GBM versus diffuse
neurosarcoidosis: 0.92
GBM versus healthy
controls: 0.88

– – –

51 samples of glioma tissues – – – TRG-AS1 has been related with poor prognosis.
58 GBM patients – – – Higher levels of AGAP2-AS1 correlated with lower

OS.
79 GBM patients – – – OS in patients with TMZ therapy and low expression

of lnc-TALC was increased, whereas high
expression of lnc-TALC and therapy with TMZ
reduced OS.

TMZ ch
of patie

77 with high levels of SBF2-AS1 and 77 with
low levels of SBF2-AS1

– – – OS decreases in patients with high levels of SBF2-
AS1.

45 patients with low levels of SNHG20 and
33 patients with high levels of SNHG20

– – – High levels of SNHG20 was correlated with lower
rate of OS.

Two groups of 32 patients with high and low
levels of AC016405.3

– – – Low expression of AC016405.3 was correlated with
a shorter survival rate, a larger size of tumor, a
higher grade, and more common distant metastasis.

57 glioblastoma patients 0.653 ± 0.078 65.4 77.8 Patients with high LINC-ROR amounts had poor
survival.

LGG (n=486) and GMB (n=154) – – – High expression of
HOXB-AS1 was associated with poorer prognosis in
GBM.

136 glioma patients – – – High levels of AGAP2-AS1was correlated with lower
OS.

high (n = 37) and low (n = 38) AC003092.1
expression group

– – – High AC003092.1 expression group indicated
higher OS.

50 FFPE brain tissue from GBM patients 0.686 (0.537–0.836) 71.4 59.6 H19 overexpression correlates with poorer OS.
CGGA GBM (high expression= 45 and low
expression= 45), TCGA GBM (high
expression = 77 and low expression= 78)

– – – Higher expression of LINC00152 correlates with
lower OS.

LINC00
radiothe
CGGA d
status,
with OS

Low group (n=15) and high group (n=16) – – – Patients with a higher LINC01446 expression had a
poor survival rate in five years.

15 patients with GBM/HOTAIR 0.913 86.1 87.5 –

53 patients with GBM – – – Higher expression of SNHG7 correlated with poorer
survival rate.

20 patients with GBM – – – Lower survival rate with lower expression of
RAMP2-AS1.

53 patients: 38 GBM cases, 3 grade III
astrocytoma cases, 10 grade II astrocytoma
cases, 2 grade I astrocytoma cases

– – – High level of lncRNA RP11-838N2.4 has been
correlated with longer survival.
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TABLE 3 | Continued

der curve Sen ivariate/Multivariate Cox regression Reference

– 0470 levels, astrocytoma grade, age, and
site were associated with OS.

(44)

– – (70)

– IR over-expression, age at diagnosis, IDH1
on, KPS score, and Ki-67 expression were
ated with OS.

(50)

– – (38)

775 7 MALAT1 levels and tumor grade were
ndent prognostic factors for OS of patients
ng TMZ.

(27)

urvival; PFS, progre

opment of glioblas

Cell line Patient’s
prognosis

Reference

87, U251 with tumor-suppressor like
processes, such as cell

– (71)

87, U251 ‐671‐5p, and increases CDR1
e proliferation, migration, and

– (73)

HA, A172, U251,
87, SNB19, SHG4

orous cells. circMTO1
OX mediates circMTO1-
f U251 cells. circMTO1 directly

Lower OS (74)

172, LN229, U251
87, NHA

ll proliferation and enhances – (75)

251, U87, HEB d down-regulates it. Down-
s the proliferation and
Z sensitivity.

– (76)

87, U251 ration and invasion – (77)

87, U251,
172, LN229, NHA

nd invasion were increased by – (78)

survival; NBT, norm

R
ezaeiet

al.
lncR

N
A
s
and

G
lioblastom

a

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

February
2021

|
Volum

e
10

|
A
rticle

625884
Sample number Area un

LINC00470 expression levels in two groups:
high=37, low=38
7 low HOTAIR and 26 high HOTAIR (for
survival), 22 low HOTAIR and 46 high
HOTAIR (for DFS), 10 high GAS5 and 23 low
GAS5 (for survival), 21 high GAS5 and 47
low GAS5 (for DFS)
Low (54) and high (54) groups of HOTAIR
expression (CGGA1 dataset)

Expression of H19 in two groups: high=14,
low=16
70 high and 70 low patients of MALAT1
expression

0

GB, glioblastoma multiform; TMZ, temozolomide; OS, overall s

TABLE 4 | List of circRNAs which participate in the deve

circRNA Pattern of
expression

Patients’
specimens

circNT5E ↑ 39 pairs of glioma
and NBTs

U

circ_0001946 ↓ – U

circMTO1 ↓ 59 pairs of GBM
and NBTs

N
U

circ-PITX1 ↑ 58 pairs of GBM
and NBTs

A
U

hsa_circ_0076248 ↑ – U

circMMP9 ↑ 18 pairs of GBM
and NBTs

U

circ_0074027 ↑ 50 pairs of GBM
and NBTs

U
A

GBM, glioblastoma multiform; TMZ, temozolomide; OS, overa
.

l

ll
ivity Specificity Kaplan–Meier analysis U

– High LINC00470 amounts were correlated with
shorter survival times and poor prognosis.

LINC0
tumor

– Patients with high HOTAIR and low GAS5 levels had
worse survival rates relative to patients with low
HOTAIR and high GAS5 levels.

– Low HOTAIR expression has increased OS. HOTA
mutat
assoc

– H19 over-expression was significantly associated
with a poor PFS.

1 62.82 MALAT1 over-expression was correlated with poor
OS and RFS.

Serum
indep
receiv

n-free survival; RFS, recurrence-free survival; DFS, disease-free survival.

a.

Targets/Regulators Signaling
pathways

Function

miR-422a/ADARB2 – circNT5E suppresses activity of miRNAs
features, and increase several pathologic
proliferation, migration, and invasion.

miR‐671‐5p, CDR1 – Circ_0001946 inhibits expression of miR
levels. Circ_0001946 and CDR1 decrea
invasion and upsurge apoptosis.

WWOX, miR-92 – circMTO1 suppresses proliferation of tum
increases expression of WWOX, and WW
associated suppression of proliferation o
interact with miR-92.

miR-379–5p, MAP3K2 MAPK Down-regulation of circ-PITX1 inhibits ce
cell apoptosis.

miR‐181a, SIRT1, p53 – hsa_circ_0076248 sponges miR‐181a a
regulation of hsa_circ_0076248 depress
invasion of glioma, and enhances the TM

miR-124, CDK4,
AURKA/eIF4A3

– circMMP9 enhances the proliferation, m
capacities.

miR-518a-5p, IL17RD – Cell growth, clone formation, migration a
circ_0074027.

rain tissue.

14
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–

–

–
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Rezaei et al. lncRNAs and Glioblastoma
CIRCULAR RNAS AND GLIOBLASTOMA

In addition to lncRNAs, Circular RNAs (circRNAs) can act as
miRNA sponges to modulate expression of their target genes.
Numerous studies have assessed expression and function of
circRNAs in glioblastoma. For instance, Wang et al. have reported
over-expression of some circRNAs and lncRNAs in miR-422a–
downregulated glioblastoma samples. They have also recognized a
new circRNA originated from NT5E, termed circNT5E. Expression
of this circRNA is modulated by ADARB2 through binding to sites
neighboring circRNA-creating introns. circNT5E has been shown to
regulate cell proliferation, migration, and invasion of glioblastoma
cells through binding with miR-422a and suppressing its activity (71).
Li et al. have demonstrated down-regulation of circ_0001946
and CDR1, while up-regulation of miR‐671‐5p in glioblastoma
cells. Circ_0001946 has been shown to inhibit expression of miR‐
671‐5p, therefore enhancing CDR1 expression. Circ_0001946
and CDR1 decrease cell proliferation, migration, and invasion and
induce apoptosis in glioblastoma cells as verified by both in vitro and
in vivo assays (72). Table 4 summarizes the expression and function
of circRNAs in glioblastoma.
DISCUSSION

Both candidate gene and high throughput expression studies have
reported anomalous expression of several lncRNAs in glioblastoma
samples indicating the oncogenic roles for some lncRNAs and
tumor suppressor roles for a number of other lncRNAs. Yet, the
function of the former group of lncRNAs has been more assessed in
this kind of cancer. Like other cancers, the role of lncRNAs in the
pathogenesis of glioblastoma can be exerted through their effects on
the expression of miRNAs. Accordingly, several lncRNA/miRNA/
mRNA axes have been identified in this context among them are
SNHG9/miR-199a-5p/Wnt2, MIR155HG/miR-185/ANXA2, TRG-
AS1/miR-877-5p/SUZ12, LINC01579/miR‐139‐5p/EIF4G2,
AC016405.3/miR-19a-5p/TET2, AC003092.1/miR-195/TFPI-2,
LINC00657/miR-190a-3p/PTEN, RNCR3/miR‐185‐5p/KLF16,
and MALAT1/miR-203/thymidylate synthase axes. Thus,
comprehensive assessment of these three types of transcripts
would facilitate identification of the molecular pathways
underlying the pathogenesis of this type of cancer. Moreover, a
number of recent studies revealed the role of circRNAs in regulation
of expression of miRNAs, thus adding an extra level of complexity
in gene regulation networks. An example of the circRNA/miRNA/
Frontiers in Oncology | www.frontiersin.org 1115
mRNA functional axis in glioblastoma is represented by
circ_0001946/miR‐671‐5p/CDR1.

Association between lncRNA expression levels and resistance
to TMZ has been assessed in several studies. Notably, expressions
of oncogenic lncRNAs lnc-TALC, LncSBF2-AS1, MALAT1,
TP73-AS1, and H19 as well as expression of tumor suppressor
lncRNAs AC003092.1, TUSC7, and RP11-838N2.4 have been
shown to alter this phenotype in glioblastoma cells. Therefore, a
panel of these lncRNAs might be applied to predict response of
pateints to this chemotherapeutic agent and establish a
personalized strategy for these patients.

Finally, several oncogenic and tumor suppressor lncRNAs
have been identified as modulators of glioblastoma patients’
survival indicating the appropriateness of these transcripts as
prognostic biomarkers. The diagnostic power of lncRNAs
SAMMSON, HOTAIR, MALAT1, H19, and LINR-ROR has
been assessed in serum or tissue samples of pateints with
glioblastoma revealing the best results for the first two
mentioned lncRNAs based on the high values of the area
under the reciver operating characteristic curves. Considering
the unavialbility of tissue samples for the purpose of early
diagnosis and ambiguity of imaging techniques in early stages
of the disease, assessment of expression of lncRNAs in serum
samples provides a non-invasive method for early detection of
this kind of malignant tumor.

In brief, dysregulation of several lncRNAs has been deteceted
in glioblastoma cells leading to abnormal regualtion of cancer-
associated pathways and cellular processes namely apoptosis,
proliferation and survival. These transcripts provide promising
tools for early detection of glioblastoma and prediction of
patients’ prognosis and response to therapeutic choices
particularly TMZ. However, a limitation of in vitro studies in
this regard is that most of them has been executed using
traditional serum-grown cell lines such as U87 or U251.
Furhther functional in vitro and in vivo investigations are
required to verify the obtained data.
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Medulloblastoma (MB) is a highly heterogeneous and one of the most malignant pediatric
brain tumors, comprising four subgroups: Sonic Hedgehog, Wingless, Group 3, and
Group 4. Group 3 MB has the worst prognosis of all MBs. However, the molecular and
cellular mechanisms driving the maintenance of malignancy are poorly understood. Here,
we employed high-throughput single-cell and bulk RNA sequencing to identify novel
molecular features of Group 3 MB, and found that a specific cell cluster displayed a highly
malignant phenotype. Then, we identified the glutamate receptor metabotropic 8 (GRM8),
and AP-1 complex subunit sigma-2 (AP1S2) genes as two critical markers of Group 3MB,
corresponding to its poor prognosis. Information on 33 clinical cases was further utilized
for validation. Meanwhile, a global map of the molecular cascade downstream of the MYC
oncogene in Group 3 MB was also delineated using single-cell RNA sequencing. Our data
yields new insights into Group 3 MB molecular characteristics and provides novel
therapeutic targets for this relentless disease.

Keywords: group 3 medulloblastoma, single-cell sequencing, hallmark, prognosis, molecular cascades
INTRODUCTION

Medulloblastoma (MB) is one of the most prevalent malignant (WHO IV) brain tumors in children,
accounting for 15–20% of pediatric central nervous system tumors (1). Unfortunately, over 40% of
patients with MB are diagnosed with metastases, with a grim median survival (2–4). Multimodal
therapy, including combination of surgical resection, radiation, and adjuvant chemotherapy, has
become a standard for MB, even though approximately one-third of patients with MB die from the
disease (5). Thus, the identification of critical regulators that control MB malignance could facilitate
the development of more effective therapeutics.

Current consensus identifies the existence of four major MB subgroups (Sonic Hedgehog [SHH],
Wingless [WNT], Group 3, and Group 4) with different molecular characteristics. Group 3 MB is
refractory to intensive multimodal therapy and displays the worst prognosis. However, the molecular
Abbreviations: MB, Medulloblastoma; WHO, World Health Organization; GRM8, Glutamate Receptor Metabotropic 8;
MGLUR8, Metabotropic Glutamate Receptor 8; CNS, Central Nervous System; scRNA-seq, Single cell RNA sequencing; PDX,
Patient-derived Xenograft; GSVA, Gene Set Variation Analysis; GO/KEGG, Gene ontology/Kyoto Encyclopedia of Genes and
Genomes; PCR, Polymerase Chain Reaction; RT-Qpcr, Real Time Quantitative Polymerase Chain Reaction; IOD, Integrated
option density; GSEA, Gene Set Enrichment Analysis; t-SNE, t-distributed Stochastic Neighbor Embedding.
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characterization of Group 3 MB remains largely unknown, even
less than the cells of origin. In contrast to WNT and SHH MBs,
Group 3 tumors contain fewer nucleotide variants and germline
mutations (6–9). Previous studies demonstrated that a subset of
Group 3 tumors exhibits overexpression of transcription factors of
the growth factor independent 1 family as a result of DNA
structural changes that transform the genes encoding these
factors almost into super enhancers (10). Pathway analysis
indicated that transforming growth factor beta signaling
pathways are also activated in Group 3 MB. However, the
significance of MB tumorigenesis remains to be determined (7,
10, 11). Currently, the most validated prognostic marker is MYC
oncogene amplification, found in approximately 20% of patients
with Group 3 MB. However, how MYC drives tumorigenesis in a
subset of Group 3 tumor cells remains to be defined.

Systematic search and analysis using multi-omics sequencing
showed that MB is highly heterogeneous with intratumoral and
intertumoral heterogeneity. Recently, single-cell transcriptomic
methods have been utilized (12–16) to resolve tumor
heterogeneity (17, 18), reconstruct tumor lineages (19–21),
explore rare subpopulations (22, 23), and provide insights into
the phenotypes of stromal and tumor cells in different cancers
(24–26). It has been documented that single-cell sequencing could
remove the barriers that previously challenged bulk genomic
studies of patients with Group 3 MB, and hopefully, unearth
Group 3 MB applicable molecular hallmarks and pathways for
clinical utilization, similarly to the isocitrate dehydrogenase (IDH)
and BRAF V600E mutations for glioblastoma.

In this study, we took advantage of one cohort (GSE119926) of
scRNA-seq data composed of 25 tumor samples and 11 patient-
derived xenograft (PDX) models (27). A total of 2762 cells were
gathered from surgically removed Group 3 MB scRNA-seq data of
eight patients according to their matching subtype information.
Through detailed analysis of cellular heterogeneity, we identified a
specific cell cluster with the tumorigenesis signature of Group 3
MB and interrelated molecular cascades initiated by MYC. The
marker genes of this specific cluster were selected, followed by
validation and selection, performed with tumor samples from 33
patients with Group 3 MB. Consequently, we unearthed the
GRM8 gene, encoding metabotropic glutamate receptor 8
(MGLUR8), a G-protein coupled glutamate receptor reported to
significantly influence the risk of central nervous system (CNS)
disease (28–30), and the AP1S2 gene, encoding AP-1 complex
subunit sigma-2, a component of adaptor protein complex 1 and
correlating with CNS disorder (31), as novel hallmarks linked to
poor prognosis of Group 3 MB. Thus, our findings identified
GRM8 and AP1S2 as potential targets for treatment of patients
with MYC+ Group 3 MB in the future.
MATERIALS AND METHODS

Patient Selection and Data Preprocessing
For MB single-cell transcriptome expression data, we searched in
the Gene Expression Omnibus (GEO) and finally included one
cohort (GSE119926) with scRNA-seq data of 25 tumor samples
and 11 patient-derived xenograft (PDX) models for downstream
Frontiers in Oncology | www.frontiersin.org 219
analysis (27). According to its matching subtype information,
normalized scRNA-seq data of eight patients with Group 3 MB
(MUV11, SJ17, SJ917, SJ617, MUV29, BCH1205, MUV34, and
BCH825) were extracted from the original downloaded scRNA-
seq expression matrix. In total, after removing data with <2500
gene expression, we obtained an scRNA-seq expression matrix of
2762 cells from the surgically removed Group 3 MB sample in
our study. For bulk transcriptome expression data, we applied
Gliovis (gliovis.bioinfo.cnio.es), a web tool collecting brain
tumor sequencing data from GEO, and the Cancer Genome
Atlas database (32) to search for bulk data with MB clinical
information and follow-up data. We included two MB cohorts
(Cavalli et al., n = 763 and Griesinger et al., n = 130) in our study
(33, 34). These two MB cohorts were sequenced by Affymetrix
arrays (HG-U133_Plus_2, HG-U133A, HG_U95Av2, and
HuGene-1_0-st), normalized by a multi-array average method
using R package “affy.” For genes with several probe sets, we
chose the median value as the ultimate expression level. Using
function “Combat” in R package sva, the batch effect produced
by technical biases during the sequencing process was removed
to reduce its side effects on downstream analysis.

Single-Cell Sequencing Data Analysis
For the obtained scRNA-seq data of Group 3 MB, R package
“seurat” was applied for initial normalization and an unsupervised
clustering process was subsequently performed (35). Then, the
function “Find Variable Features” in Seurat was performed to find
genes with high variability for downstream analysis, choosing the
top 2000 genes with high standardized variance. Through
integration of principle components analysis and t-distributed
stochastic neighbor embedding (t-SNE), we reduced the
dimension of expression data and divided 2762 cells of Group 3
MB into clusters with distinct expression patterns. Simultaneously,
marker genes for each cluster were found according to its adjusted
p-value and average log-transformed fold change value.

Microarray Data Analysis
Based on R package “limma,” a differentially expression analysis
was performed on the normalized microarray data by applying a
Bayesian algorithm to find differentially expressed genes between
tumor and normal sample, only data with adjusted p-value < 0.05
were included in our study for further analysis. According to the
corresponding follow-up information, we conducted a Kaplan-
Meier survival analysis on the genes of interest.

Cell Trajectory Analysis
In addition, the R package Monocle was adopted to conduct a
time-series analysis of single-cell expression data, which orders
every cell in pseudo-time and arranges them along a trajectory
corresponding to a biological process such as cell differentiation,
without knowing in advance which gene determines that
progress (36). The Monocle reduces marker gene expression
data of individual clusters from a high dimension form into a
low-dimension form through a machine learning algorithm
called reversed graph embedding. In that low-dimensional
form, each cell is arranged into a branching line according to
the sequence of the biological process.
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Gene Set Variation Analysis (GSVA) and
GO/KEGG Enrichment Analysis
To compare the enrichment degree of pathways and functions
between each cluster, we used a GSVA algorithm, a gene set
enrichment (GSE) method that estimates the variation of pathway
activity for microarray and transcriptome data, to calculate the
GSVA score of each cluster on different gene sets (37). For the
calculation of tumor characteristics and pathway enrichment degree,
input gene sets were obtained from the molecular signature database
(MsigDB) (https://www.gsea-msigdb.org/gsea/msigdb). The gene
sets of the KEGG pathway come from the C2 collection (curated
gene sets) in MsigDB, and the tumor characteristic gene set comes
from theH collection (hallmark gene sets) inMsigDB. By comparing
the GSVA scores of each cluster, we could compare the relative
enrichment levels of tumor-related pathways or features. In addition,
the R package “ClusterProfiler” was used to conduct a
hypergeometric distribution test on each cluster’s marker genes to
perform GO and KEGG annotation (38).

Protein-Protein Interaction (PPI)
Network Development
Using the STRING database, a PPI network was developed
according to the marker genes of each cell cluster. We then
utilized Cytoscape to rearrange the PPI network downloaded for
the STRING database according to its interaction characteristic
(39). In Cytoscape, the CytoHubba plug-in was used to calculate
and rank the interaction degree between downstream proteins of
marker genes. Additionally, according to the interaction degree,
we adjusted the color and position of the protein node, turning
the highest degree node darker and placing it in the center.

Immunohistochemistry
Tumor tissues from 33 patients with Group 3 MB were perfused
with 4% paraformaldehyde and fixed in 10% neutral buffered
formalin mixed with 70% ethanol. Immunohistochemistry
staining was performed according to protocols from Cell
Signaling Technology. The antibodies used for immunostaining
were Anti-MAGP1 (encoded by MFAP2, ab231344, Abcam) and
Anti-MGLUR8 (encoded by GRM8, ab176301, Abcam).
Quantification of mean fluorescence intensity was achieved
using Image-Pro-Plus software.

Real-Time Quantitative PCR
RT-qPCR was performed using total RNA from the central
tissues of eight (Numbered 1–8) patients with normal brain
tissues (1–2), WNT/SHH (3–5), and Group 3 (6–8) MB. Total
RNA was extracted using TRI Reagent (Molecular Research
Center, Inc.) according to the manufacturer’s protocol, and
cDNA was synthesized using random hexamer and oligo (dT)
primers using Thermo ScriptTM RT-PCR (Invitrogen). The
gene-specific primers employed were purchased from the NDT
Corporation. PCR was performed for 40 cycles of 95 °C for 15 s
and 60 °C for 30 s. H-actin was amplified as a control (Forward:
ACCCTGAAGTACCCCATCGAG; reverse: AGCACAGCC
TGGATAGCAAC). Specific expression of MFAP2 and GRM8
in cell lines was established using total RNA obtained from
tumor tissues and amplified with primers for each one (MAGP:
Frontiers in Oncology | www.frontiersin.org 320
Forward, CAGTCCCAGCAGCAAGTCCA and Reverse,
AAGCAGACCTCGTTGAGACAC; GRM8: Forward ,
ACCTGCATCATTTGGTTAGCTT , a n d R e v e r s e ,
AAACCTTGGGCATATAGAGCA) using SYBR Green PCR
Master Mix (ThermoFisher Scientific).

Statistical Analysis
The correlation coefficient between the IOD area and numerical
variables including age (year), tumor size (mm3), and Ki67 (%)
was separately calculated using the Spearman and Pearson
correlation analysis. Random Grouping t-test was used to
assess the relevance between the IOD area and binary clinical
information including sex, cystic change, hydrocephalus, while
one-way ANOVA was used to compare the differences among
multi-grouped variables including tumor location. In addition,
we applied Kaplan-Meier survival analysis and log-ranked test to
conduct a survival comparison, where the median value was
implemented to cut the relative genes expression level into high
and low Groups. All the above-mentioned statistical analyses were
conducted using R software (version 3.6.0). All p-values < 0.05
were considered statistically significant.
RESULTS

Landscape of Cellular Heterogeneity at
Single-Cell Level Within Group 3 MB
Identification of critical cell clusters regulating cancer initiation
and progression may help develop novel and effective strategies
to overcome the treatment resistance associated with Group 3
MB. Thus, we initially selected the MB single-cell RNA
sequencing (seq) datasets published in the GEO and finally
included one cohort (GSE119926) of 25 tumor samples and 11
patient-derived xenograft (PDF) models for downstream
analysis. According to its matching subtype information,
normalized scRNA-seq data of eight patients with Group 3 MB
(MUV11, SJ17, SJ917, SJ617, MUV29, BCH1205, MUV34, and
BCH825) were extracted from the original scRNA-seq
expression matrix, including a total of six male patients (three
adults and three children) and two female patients (one adult and
one child) (Figure 1A). A total of 2762 single-cell datasets of the
above eight patients were organized into an expression matrix.
Data preprocessing was initiated by normalizing the RNA
expression of each cell and then removing mitochondrial
RNAs. All single cells were divided into individual clusters
according to their distance distribution after dimensionality
reduction through t-SNE, gene set enrichment analysis, and
functional annotations such as GSEA and GSVA scores on
specific cell clusters was performed (Figure 1A). The
normalization for the expression matrix was initiated by
calculating the standard deviation of the gene expression in
2762 cells. We selected 2000 sufficient genes with a high
standard deviation (Figure 1B). The normalized gene type (n-
Feature-RNA), gene counts (n-Count-RNA), and mitochondrial
gene numbers (MT-RNA) of each patient’s tumor cells
(mitochondrial genes were previously removed) were plotted,
revealing that RNA levels in each of the patient’s tumor cells were
March 2021 | Volume 11 | Article 622430
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expressed in a similar scope without apparent dispersion (Figure
1C). Notably, the gene sequencing depth was found to be
consistent with the scatter diagram since the relationship
between the number of gene types and the number of counts
was positively correlated (Figure 1D). To further explore the
expression feature of the scRNA data, we initially normalized the
gene expression matrix and selected characteristic genes with a
high standardized deviation for downstream analysis. After
Frontiers in Oncology | www.frontiersin.org 421
principle components analysis (PCA) and identification of
distinct principle components, the representative principle
components were chosen subsequently for unsupervised
clustering process. Finally, we conducted a clustering using t-
distributed stochastic neighbor embedding (t-SNE) and divided
the cells into nine individual cell clusters (Numbered 0–8) with
various differentiation features. Finally, we divided the cells into
nine individual cell clusters (Numbered 0–8) with various
A

B

D E

C

FIGURE 1 | (A) Overall data analysis process of single-cell transcriptome expression landscape of Group 3 medulloblastoma (MB) (n=8). (B) Genes with top 2000
standard variance selected for subsequent analysis. (C) Violin plot of RNA features, and RNA counts in patients with MB. (D) Scatter plot of expression level of
mitochondrial RNA, RNA features and RNA counts. (E) T-distributed stochastic neighbor embedding (t-SNE) plot of Group 3 MB cells revealing 0–8 cell clusters.
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differentiation features (Figure 1E). These data suggest that
Group 3 MB is highly heterogeneous with different cell
subgroups and genetic characteristics.

Cell Clusters Reflect Transcriptional
Heterogeneity and Trajectory
We next sought to investigate the transcriptional heterogeneity of
cells in each cluster by depicting the gene expression profile using a
Frontiers in Oncology | www.frontiersin.org 522
heatmap that showed distinguishable differences in gene expression
preferences in each cluster. Except for cluster 0, we identified
significantly upregulated genes in clusters different from each
other, indicating the transcriptional heterogeneity of the nine
clusters (Figure 2A). Then, we performed scatter plots by t-SNE
colored by the expression of a single gene in all nine cell clusters.
The genes showing the highest expression level in each individual
cluster were selected for mapping. Consistently, these genes were
A

B

DC

FIGURE 2 | (A) Heatmap showing the genes differentially expressed in each cluster. (B) t-SNE plots of marker gene expression levels in each cluster. (C) Bubble
plot depicting the expression level of selected genes in each cluster. Color depth represents average expression level and bubble size the percentage of expression.
(D) Cell trajectory analysis showing five main cell branches.
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only specifically expressed in their own cluster (Figure 2B).
Moreover, the bubble graph was also plotted to further identify
the genes that were most upregulated. Notably, the bubble color
refers to the average gene expression in all cells of each cluster,
whereas bubble size represented the gene expression percentage in
the cluster. The top genes containing the highest level of the above
two criteria in each cluster were emphasized with a large size and
darker color (Figure 2C). Due to transcriptional heterogeneity
among the nine cell clusters, we speculated that single-cell RNA-
seq may uncover the heterogeneity of biological features correlated
with MB formation. To test our hypothesis, the R package Monocle
was adopted to conduct a time-series analysis of the single-cell
expression data to address this point. We ordered every cell in
pseudo-time and arranged them along a trajectory corresponding to
a biological process such as cell differentiation, without knowing in
advance which gene determines that progress (36). Each cell of the
nine clusters was arranged into a branching line according to the
sequence of the biological process (Figure 2D). We observed that
cluster 6 (colored blue) was relatively isolated at the beginning of a
differentiation tree at point “A,” indicating that cell cluster 6 may
play a key role in cancer initiation and progression.

Annotation of the Tumorigenesis Featured
Cluster and Its Downstream Cascades
With regards to the aforementioned feature of cluster 6, we next
sought to verify its exclusive tumorigenesis feature among the
nine cell clusters. To compare the enrichment degree of
pathways and functions among each cluster, we used the
GSVA and GSE methods to estimate the variation in pathway
activity from microarray and transcriptome data, to calculate the
GSVA score of each cluster on different gene sets (37). For the
calculation of tumor characteristics and pathway enrichment
degree, the input gene sets were obtained from the molecular
signature database (MsigDB). Among them, the KEGG pathway
gene sets derived from the C2 collection (curated gene sets)
(Figure 3A). Further, we performed a violin plot by selecting the
pathways demonstrating specific up- or down-regulation in
cluster 6 compared to the others, quantified by the GSVA
score. The degree of enrichment of cluster 6 in some tumor-
related pathways was significantly higher than that of the other
clusters, such as cell adhesion molecules cams, and arginine and
proline metabolism for metastasis of tumors (40). Nevertheless,
in immune-related pathways such as antigen procession and
presentation, and natural killer cell mediated cytotoxicity which
have been correlated to antitumor cytotoxicity, the enrichment
was significantly lower (Figure 3B). Consistently, tumor
characteristic genes set from H collection (hallmark gene sets)
in MsigDB (Figure 3C) revealed that the degree of enrichment of
cluster 6 in MYC targets V1/V2 was remarkably higher than that
of other clusters identified as critical for Group 3 MB. The
enrichment of antitumor cytotoxicity in cluster 6, such as
interferon alpha response and interferon gamma response,
were much lower than those of other clusters (Figure 3D).
Collectively, these results demonstrated the pivotal role of
cluster 6 in the malignant behavior of Group 3 MB and were
marked for further validation.
Frontiers in Oncology | www.frontiersin.org 623
To depict the detailed annotation of the signaling pathways
involved in cluster 6, we then performed GO enrichment analysis
for the marker genes of the six clusters, and suggested that the
most active pathways were neuron- and axon-related, such as
axon development, axonogenesis, cell morphogenesis involved in
neuron differentiation, axon guidance, neuron projection
guidance, and regulation of neuron projection development.
Meanwhile, genes associated directly or indirectly to these
signaling pathways were shown (Figures 4A, B). The main
pathways for KEGG enrichment in cluster 6 were also
analyzed. Interestingly, the top pathways obtaining the highest
scores were tumor- or cancer-related, corresponding to previous
observations. For example, transcriptional misregulation in
cancer, hepatocellular carcinoma, gastric cancer, and the WNT
signaling pathway. We also plotted a heatmap of the genes
related to these pathways (Figures 4C, D). These findings
supported our hypothesis that cluster 6 cells were responsible
for the tumorigenic character of Group 3 MB. To gain insight
into downstream protein interaction and cascades, we
constructed a PPI network according to cluster 6 marker genes
by using the STRING database. We then utilized Cytoscape to
rearrange the PPI network downloaded for the STRING database
according to its interaction characteristic (39). In addition,
according to the interaction degree, we adjusted the color and
position of the protein by turning the highest degree node darker
and placing it in the center of the map. Importantly, our data
showed that MYC had the highest degree of interaction among
all marker genes in cluster 6, consistent with the previous
findings that amplification of the MYC oncogene is the most
common genetic alteration in patients with Group 3 MB (Figure
4E). Together, our findings indicated that cluster 6 drives
malignancy in Group 3 MB with MYC positivity.

Identification of Novel Hallmarks
in Group 3 MB
Given the stepwise dissection of cluster 6 in Group 3 MB, the
malignance signature of this cluster became relatively clear. We
selected a set of microarray data from a cohort consisting of
common pediatric malignant brain tumors containing 15 pilocytic
astrocytomas, 46 ependymomas, 20 glioblastomas, 22 MBs, and 13
non-tumor brain control samples obtained from epilepsy surgery to
generate the bulk transcriptional dataset for differential expression
analysis (34) (Figure 5A). We performed a variation analysis with
normalized microarray data of this mixed pediatric tumor cohort to
compare the expression level of cluster 6 marker genes in variant
tumor types and normal brain, and found that 54 genes in total
showed specific upregulation either in one tumor type or in the
normal brain (Figure 5A, Supplementary Materials). Notably,
some genes were specifically upregulated in MB, consistent with
their high expression in Group 3 MB in our previous analysis.
Meanwhile, another cohort of 763 patients withMBwas included to
conduct a Kaplan-Meier survival analysis on the marker genes of
cluster 6. In total, 20 genes correlated with the survival of patients
with MB. By combining these results, 10 genes showed significant
differences of either expression levels or survival analysis, including
TUBB4A, TSHZ1, SLITRK1, POU4F1, MPHOSPH6, MFAP2,
March 2021 | Volume 11 | Article 622430
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KIF5C, GRM8, CCND2, and AP1S2 (Figure 5A). Among them,
TSHZ1, MFAP2, GRM8, CCND2, and AP1S2 showed dramatically
higher expression levels in MB than other tumors and the normal
brain (Figure 5B). Of note, the prognosis of the patients highly
expressing TSHZ1, GRM8, CCND2, AP1S2 was poorer than low
expressing patients, while only MFAP2 showed an adverse
correlation between its gene expression and prognosis (Figure
5C). Taken together, these data indicate that some marker genes
in cluster 6 were truly upregulated in Group 3 MB and affected its
Frontiers in Oncology | www.frontiersin.org 724
prognosis; hence, these five genes were initially identified as
potential hallmarks of Group 3 MB.

GRM8 and AP1S2 Are Hallmarks
Indicating Poor Prognosis of Patients
With Group 3 MB
Based upon the stepwise bioinformatic analysis with single-cell
and bulk datasets, we narrowed down the pool of Group 3 MB’s
potential hallmarks. However, for further validation a biochemical
A B

D

C

FIGURE 3 | (A) Heatmap showing the gene set variation analysis (GSVA) scores of each cell cluster in the KEGG pathway. (B) Violin plot depicting the GSVA score
of specific KEGG pathways in each cell cluster. (C) Same as A in H collection in molecular signature database (MsigDB). (D) Same as B in H collection in MsigDB.
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verification was needed; therefore, we performed quantitative PCR
with samples from two normal brain tissues obtained from
epilepsy surgery (Numbered 1 and 2), three WNT/SHH MBv
(Numbered 3–5), and three Group 3 MB (Numbered 6–8) to test
the gene expression levels of TSHZ1, MFAP2, GRM8, CCND2,
and AP1S2. Among them, MFAP2, GRM8, and AP1S2 were
highly expressed in patients 6, 7, and 8, diagnosed with Group 3
MB through pathological tests (Figure 6A), while TSHZ1 and
CCND2 did not exhibit the same expression trends
(Supplementary Materials). This result supported the
provisional exclusion of these two genes and to focus on
Frontiers in Oncology | www.frontiersin.org 825
MFAP2, GRM8, and AP1S2. Then, with samples of 33 patients
pathologically diagnosed with Group 3 MB, we performed
immunohistochemistry (IHC) staining to test the expression
level of MAGP1 encoded by MFAP2, MGLUR8 encoded by
GRM8, and AP1S2 encoded by AP1S2 in each patient, aiming
to combine clinical data with gene regulation for analysis. The
heatmap of the “IOD/Area” of each gene was plotted (Figure 6B).
By implementing the median value of “IOD/Area,” 33 patients
were divided into high and low groups, respectively. Consistently,
Kaplan-Meier survival analysis indicated that GRM8 and AP1S2
expression was negatively correlated with prognosis (Figure 6C),
A
B

D E

C

FIGURE 4 | (A) GO annotation of cluster 6. (B) Gene net plot showing the common genes in multiple GO entries. (C) Heatmap showing the genes involved in each
pathway. 6. (D) KEGG annotation of cluster 6. (E) Protein-Protein Interaction network of marker genes in cluster 6, where the node with the highest degree of
interaction is darker and located in the center.
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A

B C

FIGURE 5 | (A) Diagram of the screen process of Kaplan-Meier survival and variation analyses for the marker genes of cluster 6 with two cohorts of microarray
data. Fifty-four genes showed specific upregulation in one tumor type or normal brain. Twenty genes exhibited correlation with the survival of patients with
medulloblastoma (MB). Ten genes contained significant differences of either expression or survival analysis, including TUBB4A, TSHZ1, SLITRK1, POU4F1,
MPHOSPH6, MFAP2, KIF5C, GRM8, CCND2, and AP1S2. (B) Box plot of variant analysis of microarray data of the MB patient cohort grouped showing expression
levels of TUBB4A, TSHZ1, SLITRK1, POU4F1, MPHOSPH6, MFAP2, KIF5C, GRM8, CCND2, and AP1S2 in various brain tumors and normal brain. NT, normal
tissue; MB, medulloblastoma; EM, ependymoma; Pa, pilocytic astrocytoma; GBM, glioblastoma. (C) Kaplan-Meier survival curve of microarray data of the MB patient
cohort grouped by TUBB4A, TSHZ1, SLITRK1, POU4F1, MPHOSPH6, MFAP2, KIF5C, GRM8, CCND2, and AP1S2 expression level. Data are mean ± s.e.m.
*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P < 0.0001; NS, not significant (P > 0.05).
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which demonstrated that these two genes were specific indicators
of poor diagnosis of Group 3 MB. However, with respect to
MFAP2, the protein level was not significantly correlated with
prognosis in our 33-patient series. Next, we collected detailed
clinical data of the 33 patients in addition to postoperative survival
time, such as sex, age, tumor cystic change, hydrocephalus,
location of tumor body, tumor size, and Ki67 (%), to explore the
Frontiers in Oncology | www.frontiersin.org 1027
deeper association of tumor phenotypes with the genetic
hallmarks. However, most correlation coefficients were not
statistically significant for GRM8, MFAP2, and AP1S2
(Supplementary Tables 1–3). Therefore, our study identified
GRM8 and AP1S2 as two key regulators of Group 3 MB
malignancy, which could serve as important biomarkers for
Group 3 MB diagnosis and therapeutics.
A

B

C

FIGURE 6 | (A) GRM8, AP1S2, and MFAP2 mRNA levels of two normal brain tissue obtained from epilepsy surgery (Numbered 1 and 2), three Wingless/Sonic
Hedgehog medulloblastoma (MB) (Numbered 3–5), and three Group 3 MB (Numbered 6–8). H-actin was used as the endogenous reference gene. The expression
level is presented with graphs. (B) Heatmap of Immunohistochemistry staining with (GRM8 encoding), (AP1S2 encoding), and (MFAP2 encoding) antibodies for the
33 Group 3 MB. Protein IOD/Are is represented by the indicated color. (C) Images of immunohistochemistry staining showing high and low expression of MGLUR8
(GRM8 encoding), AP1S2 (AP1S2 encoding), and MAGP1 (MFAP2 encoding) in the series of Group 3 MB patients (10X and 40X magnification). Kaplan-Meier
survival curve of the 33 patients with Group 3 MB grouped by expression level of GRM8, AP1S2, and MFAP2 encoding. Data are mean ± s.e.m. ****P < 0.0001;
NS, not significant (P > 0.05).
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DISCUSSION

Despite intensive conventional post-surgery treatments, half of
the patients with Group 3 MB die from recurrent disease. MYC
amplification and overexpression is known to play a vital role in
maintaining the malignancy of Group 3 MB; however, an
incomplete understanding of how MYC drives tumorigenesis
in a subset of Group 3 tumor cells has hampered the
development of novel therapeutic approaches for this lethal
disease. The elucidation of novel critical factors regulating the
malignant phenotype of MB cells is of great significance to
increase our knowledge of this type of cancer, and
subsequently bring more selective and efficient therapeutic
options for patients with Group 3 MB.

Single-cell RNA sequencing allows us to understand how
cellular heterogeneity contributes to the origination, progression,
and invasion of Group 3 MB. MB single-cell RNA-seq datasets
from the Gene Expression Database were analyzed in eight patients
with Group 3 MB. Nine individual cell clusters were identified
according to their distance distribution after dimensionality
reduction through t-SNE. The genetic expression features of the
cell clusters showed specific transcription preferences. Based on the
cells’ pseudo-time, a trajectory analysis was performed showing
the potent tumorigenesis characteristic of cluster 6 since
cells congregated at the beginning of a differentiation tree. A
differentiation trajectory might represent the degree of
differentiation from a pluripotent cell to a terminal state (41).
Therefore, cluster 6 is a potential tumorigenesis signature of
Group 3 MB, and could be a foundation for further studies.

It has been shown that MYC amplifications are the most
frequently observed driver events in Group 3 (42). In this study,
PPI analysis showed that MYC is at the center of the network and
crosstalks with critical downstream factors/targets pathways. Several
immune system-related anti-tumor pathways such as antigen
procession and presentation, and natural killer cell mediated
cytotoxicity were specifically downregulated in cluster 6.
Therefore, one potential therapeutic option for Group 3 would be
to develop immunotherapy targeting the immune-related pathways
and their correlated genes in cluster 6 cells, besides, to upregulate the
immune response to tumor. This observation further clarifies the
vital and specific role of cluster 6 cells in Group 3 MB.

Increasing evidence suggests that metabolic dysfunction is a
key cause of cancer development, including MB. Interestingly,
some amino acid synthesis pathways were enriched in cluster 6.
Notably, previous studies have proven the important role
of amino acids in cancer metabolism in both a tumorigenic
and tumor-suppressive manner (43). These amino acid-related
pathways specifically enriched in cluster 6 may be attributed to
cancer formation and metastasis. Aminoacyl-tRNAs are
substrates for translation, capable also of interacting with
various proteins to regulate tumorigenesis (44). Consistently,
proline and (or) arginine metabolism supports metastasis
formation (40). In addition, cysteine is necessary to promote
cancer cell proliferation and survival. The metabolic demands of
a cell from the stresses associated with proliferation by oncogenic
transformation must be met through extracellular sources of
Frontiers in Oncology | www.frontiersin.org 1128
cysteine and de novo cysteine generation (45). Moreover,
RNA polymerase (pol) III transcription contributes to the
regulation of the cell’s biosynthetic capacity, and a direct link
exists between cancer cell proliferation and deregulation
of RNA pol III transcription (46). Further studies on the
metabolism in Group 3 MB are warranted.

A pivotal role of cluster 6 has been identified and verified
from several perspectives. Naturally, marker genes of this cell
cluster are candidates for future therapeutic targets. From over
thousands of genes, microarray data screening for survival and
expression differences excluded most of them, only those
prolonging or shortening survival while specifically expressed
in MBs were selected. Therapy de-escalation of these genes
requires prospective testing using clinical samples. Only
GRM8, MFAP2, and AP1S2 were specifically upregulated in
Group 3 MB; however, GRM8 and MFAP2 both interact with
MYC as its downstream factors. The 33 cases of Group 3 MB
provide us with valuable data showing that higher expression
levels of GRM8 and AP1S2 are associated with poorer patient
outcomes. All 33 patients pathologically diagnosed with Group 3
MB underwent craniotomy and achieved gross resection;
adjuvant radiation therapy and chemotherapy were also
performed. Thus, the correlation of the expression with
survival is convincing to propose GRM8 and AP1S2 as novel
hallmarks of Group 3 MB. Nevertheless, MFAP2 remains a
potential tumor suppression feature based on previous results.
However, the scale of the 33 clinical samples may be too small to
uncover all associations.

GRM8 encodes MGLUR8, a G-protein coupled glutamate
receptor reported to significantly influence the risk of diseases
affecting the CNS including behavior, mental disorder, cognition
as well as tumorigenesis of the CNS and other systems (28–30). Of
note, GRM8 expression has been shown to characterize Group 4
MB (47) which overlaps in molecular features with Group 3 tumors.
AP1S2 is a component of adaptor protein complex 1, and AP1S2
mutation could cause various brain diseases, including
hydrocephalus and Dandy-Walker malformation, among others
(31). To the best of our knowledge, this is the first study to reveal the
functional significance of AP1S2 in Group 3 MB.

Clinical features such as cystic change, location, and tumor
size have not been clearly related to molecular MB markers, or
prognosis. Its large volume and cystic tumors can easily occlude
the fourth ventricle causing hydrocephalus, while the location of
the main tumor body is also important. Substantial Group 3 MBs
originate and extend to the fourth ventricle, and obstructive
hydrocephalus and cerebral fluid metastasis more often occur. In
contrast, most SHH MBs are laterally located in the cerebral
hemisphere; and therefore, hydrocephalus is not as common as
Group 3 MB (48, 49). The Ki-67 index has been considered a
valuable independent prognostic biomarker for adult MB (50), so
we also included this index in the study. However, on comparing
the above tumor features including age, sex, and hydrocephalus
with the expression of GRM8 and AP1S2 within these 33 patients
with Group 3 MB, no remarkable correlation between GRM8
and AP1S2 gene levels was found; therefore, a larger scale clinical
sample is needed for further investigation.
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CONCLUSION

To summarize, using single-cell transcriptomics, this study
identified GRM8 and AP1S2 as two novel hallmarks of Group
3 MB indicating poor prognosis, while simultaneously
delineating a global picture of the molecular cascade of Group
3 MB downstream of theMYC oncogene. With the development
of novel single-cell techniques combined with clinical cases, new
insights into Group 3 MBmolecular characteristics may promote
clinical treatment and offer more selective and efficient
therapeutic targets for this disease.
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Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in
the brain, but may also arise from neural stem cells, encompassing low-grade glioma and
high-grade glioblastoma. Whereas better diagnosis and new treatments have improved
patient survival for many cancers, glioblastomas remain challenging with a highly
unfavorable prognosis. This review discusses a super-family of enzymes, the 2-
oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous
processes including epigenetic modifications and oxygen sensing, and considers their
many roles in the pathology of gliomas. We specifically describe in more detail the DNA
and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of
glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes.
Better understanding of how these enzymes contribute to gliomas could lead to the
development of new treatment strategies.

Keywords: hypoxia, brain cancer, PHD, HIF-1, TET, IDH, ascorbate
INTRODUCTION

Gliomas and glioblastomas are brain cancers with significant morbidity and mortality, and limited
treatment options. Our review will briefly describe these neoplasms, then concentrate on a super-
family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD), with dozens of
members currently known (Figure 1). 2-OGDDs participate in numerous processes including
collagen and hormone synthesis, fatty acid metabolism, stress signaling, epigenetic modifications
and oxygen sensing (2–7). We will discuss specific members of the 2-OGDD family that have
attracted recent interest, including the DNA demethylases [ten-eleven translocases (TET)], the
histone demethylases [Jumonji-C domain-containing demethylases (JmjC)], and the hypoxia-
inducible factor (HIF) hydroxylases. These enzymes require molecular oxygen and 2-oxoglutarate
[2-OG, produced by isocitrate dehydrogenase (IDH)] as substrates, and non-ferrous iron (Fe2+) and
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vitamin C (ascorbate) as cofactors. Decreased availability of
either substrate or co-factors reduces 2-OGDD enzyme
activity, resulting in these enzymes acting as cellular sensors of
energy metabolism, oxygen availability, and iron homeostasis (2–
4, 8–14). Finally, we consider the potential means of modifying
the activity of the 2-OGDDs, specifically by modulating
ascorbate availability.
GLIOMA AND GLIOBLASTOMA AND
TREATMENT OPTIONS

Gliomas are a heterogeneous group of neoplasms that arise from
glial cells in the brain (15, 16), or neural stem cells (17). Low-grade
gliomas, grades II and III, include astrocytomas and
oligodendrogliomas which predominantly develop from astrocytes
or oligodendrocytes, respectively. Glioblastomas (GBM) are grade
IV and can develop either as a high-grade lesion (primary GBM), or
from astrocytoma progression (secondary GBM) (15, 16).

Gliomas accounted for 1.6% of cancer diagnoses and 2.5% of
cancer related deaths worldwide in 2018 (18). Astrocytomas,
oligodendrogliomas and secondary GBM tend to develop in
younger individuals (median age 35, 45, and 38 years,
respectively), compared to primary GBM (median age of 55
years) (17, 19). Gliomas are identified by magnetic resonance
imaging (MRI) or computed tomography (CT/CAT). Although
treatment options are available as detailed below, high grade
gliomas are incurable (20–23). Some low grade gliomas can be
cured, although these are rare (17). Following diagnosis, the
median survival for patients with oligodendroglioma can be up
to 16 years, for astrocytoma 5–8 years, and for GBM only 15–31
months (17, 24).
Frontiers in Oncology | www.frontiersin.org 232
The current standard treatment for gliomas focuses on
extending patient survival and includes maximal safe
debulking surgery followed by radiotherapy and concomitant
or adjuvant chemotherapy (20), usually with the alkylating agent
temozolomide (20, 21, 25, 26). Debulking surgery is performed to
reduce intracranial pressure and neurological symptoms, while
resected tissue is utilized for tumor classification (17, 22, 23).
Post-treatment recurrence is common with approximately 80%
of gliomas recurring in close proximity to the primary site (27).
Gliomas treated with temozolomide often hypermutate at
recurrence leading to treatment resistance, as evidenced by the
mere 20% of recurring gliomas showing response to the same
agent (17, 28). Dissemination beyond the brain is uncommon,
but some high grade gliomas may spread into the meninges or
opposing brain hemisphere (17).

Besides traditional oncogenic drivers, gliomas are
characterized by deregulated epigenetics and high levels of
hypoxia (low oxygen), processes which are largely regulated by
2-OGDDs.
2-OGDD’S AND EPIGENETIC
REPROGRAMMING

A significant proportion of 2-OGDDs in mammals are
demethylases involved in epigenetic reprogramming (6, 29).
Methylation and demethylation of DNA and histones are the
fundamental processes guiding epigenetic inheritance and
regulating transcriptional activation and repression (30, 31).
Consequently, aberrant modifications to these epigenetic
processes, causing hyper- and hypo-methylating events, have
emerged as hallmarks of cancer progression (32, 33).
FIGURE 1 | The human 2-oxoglutarate dependent dioxygenases implicated in initiation and progression of gliomas. 2-oxoglutarate dependent dioxygenases
(2-OGDDs) include the DNA demethylases Ten-eleven translocases (TETs), the Jumonji-C domain containing histone demethylases (JMJD and JAR1Ds), the prolyl
hydroxylases (PHDs) and hydroxylases that control hypoxic response (factor inhibiting HIF, FIH), and the collagen prolyl hydroxylases (P4H). Colors are used to
indicate close phylogenetic relationships [adapted from Johansson (1)].
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Demethylases regulate the epigenome through either the conversion
of methylated cytosine (5-mC) to hydroxymethylcytosine (5-hmC)
on DNA (Figure 2), or the removal of methyl groups from lysine
residues on histones (Figure 3).

Global Methylcytosine Status in Glioma
Epigenetic modifications are considered key mechanisms
regulating occurrence and prognosis of glioma (34), and are used
as classifiers of glioma subtypes (15, 16). Early genome-wide 5-mC
analyses revealed that many low-grade gliomas and secondary
GBMs contained large numbers of hypermethylated loci referred
to as the glioma CpG islandmethylator phenotype (G-CIMP), and
this was closely associated with the presence of somatic IDH1
mutations, and improved prognosis (35–37). IDH1 mutations are
considered to occur early during the genesis of glioma, persisting
during progression to secondary GBM, but they rarely appear in
primary GBM (24, 38). Although initial reports suggested that G-
CIMP remains stable during disease progression (35, 37), more
recent analyses have shown their loss upon recurrence of IDH1-
mutant gliomas (39–42). Loss of G-CIMP at recurrence resembled
genome-wide5-mCpatterns seen in IDH1wild-typeprimaryGBM,
and was associated with poorer outcomes (41). A novel 7-CpG
signature has been identified in non-G-CIMP primary GBMs,
where high-risk signatures correlated with poorer overall survival
in patients treated with temozolomide and radiation (43),
suggesting that even in the absence of G-CIMP and IDH1
mutations, 5-mC marks may be prognostic.

Interestingly however, earlier approaches for quantifying
methylation, such as those used in the identification of
G-CIMP (35, 36), relied on bisulfite conversion techniques,
which cannot differentiate between 5-mC and 5-hmC. It was
Frontiers in Oncology | www.frontiersin.org 333
the introduction of oxidative bisulfide chemistry that made the
distinction between 5-mC and 5-hmC possible (44), and
consequently, led to the discovery of 5-hmC-specific binding
proteins that are not only involved in DNA repair, but also
transcriptional regulation (45, 46). These findings suggest
that 5-hmC, in addition to being an intermediate in DNA
demethylation, may have its own unique epigenetic role.

Many studies report a loss of global 5-hmC content in glioma
compared to healthy brain tissues (47–52). Clinically, lower
levels of 5-hmC have been associated with high tumor grade
and poorer prognosis in glioma (48, 50, 53). More recent
investigations moved beyond measuring global 5-hmC levels,
to delineate, with base resolution, specific genomic locations to
show 5-hmC patterns; all reporting higher than expected levels of
5-hmC at intronic CpG dinucleotides of high-grade gliomas and
GBMs (50, 51, 54). Higher intronic 5-hmC levels correlated with
elevated expression of the corresponding gene (54), with 5-hmC
levels enriched within enhancer elements (50, 54), and 5-hmC
levels associated with histone marks for open chromatin (50, 51).
Thus, despite global loss of 5-hmC, genomic locations associated
with transcriptional regulation and expression were commonly
enriched for 5-hmC in glioma.

Ten-Eleven Translocases (TETs)
The TET family consists of three members (TET1/2/3). TET
enzymes are involved in both passive and active DNA
demethylation (55). During active DNA demethylation,
oxidized cytosine intermediates (5-hmC) are excised by
thymine DNA glycosylase and repaired with base-excision
repair (BER) to generate an unmethylated cytosine (56, 57)
(Figure 2). Passive DNA demethylation on the other hand occurs
FIGURE 2 | Activity of DNA demethylases. The ten-eleven translocases (TET1-3) hydroxylate methyl cytosine (5-mC). Hydroxy-methyl cytosine (5-hmC) are further
converted to several intermediates, which are excised and repaired by thymine DNA glycosylase and base-excision repair (Repair) to generate an unmethylated
cytosine. Methylation at CpG islands tends to repress gene expression, but some evidence suggests that gene expression is increased when 5-mC is converted to
5-hmC in gene promoters and enhancers (locality-specific); however, the exact biological role of 5-hmC is not yet known.
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during cell replication, when 5-mC at CpG sites are not recognized
and replaced with unmethylated cytosine (58). In humans, TET1 is
located on chromosome 10q21.3, TET2 on chromosome 4q24, and
TET3 on chromosome 2p13.1. It is noteworthy that 10q21.3 is
commonly deleted in gliomas (59–61).

TET2 is the most studied isoform in glioma. In comparison to
normal human brain tissue, TET2 gene and protein expression is
reduced in GBM and other gliomas (62, 63). TET2 expression is
significantly decreased with increased grade, and lower TET2
was associated with poorer overall survival (62). Similar
observations have been reported for the other two isoforms
(53). In glioma, reduction in TET3 expression was associated
with a genome-wide reduction in 5-hmC levels compared to
normal brain, and decreased TET3 expression correlated with
poorer prognosis (64). Together, these findings imply a tumor
suppressive role for TET enzymes in glioma.

Numerous studies highlight the potential mechanisms by
which TET expression and activity are dysregulated in gliomas.
A likely mechanism for reduced TET activity is the indirect
inhibition via mutated IDH1/2 (65). Mutant IDH1 enzymes
often exhibit neomorphic activity, converting isocitrate into 2-
hydroxyglutarate (2-HG), instead of 2-OG, which is required for
TET activity (66, 67). In IDH1-mutant gliomas it has been
suggested that 2-HG generation is responsible for the presence
of G-CIMP, likely due to reduced TET demethylase activity (35,
36). Independent of IDH status, a complete absence of 5-hmC
immunoreactivity was associated with nuclear exclusion of TET1
in 61% of gliomas (52). Transcription of TET2 may be repressed
by zinc finger E-box-binding homeobox 1 (ZEB1) in gliomas.
ZEB1 levels were inversely correlated with TET2 levels in tumors,
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and physical binding of ZEB1 to the TET2 promoter in glioma
cells was observed in vitro (62). However, reductions in TET2
expression and activity are unlikely to be due to TET2 mutations,
as direct sequencing of TET2 revealed very few mutations and
minimal association of mutations with levels of 5-hmC in
gliomas (68, 69). In humans, intragenic CpG sites within TET2
showed higher levels of 5-mC and lower levels of 5-hmC in GBM
compared to normal brain, although within the TET2 promoter
low levels of both 5-mC and 5-hmC were detected at CpG sites of
normal brain and GBM (63). Therefore, it is unlikely that lower
TET2 expression in glioma is transpiring as a result of promoter
methylation-mediated transcriptional suppression, but may be
an effect of transcription prevention due to intragenic DNA
methylation. Interestingly though, in a cohort of low-grade
gliomas that had promoter hypermethylation, all were wild-
type IDH1/2 (68). From this we hypothesize that in the
absence of IDH1/2 mutations, a small portion of IDH wildtype
tumors may instead remodel TET2 promoter methylation in an
attempt to disrupt TET2 activity. Taken together, these studies
demonstrate the tumor suppressive role of TET enzymes in
glioma, and highlight the potential mechanisms by which TET
expression and activity may be dysregulated. Restoration of TET
function to resemble healthy brain tissue may aid in regulating
epigenetic processors that can counteract glioma progression and
improve treatment outcomes.

Jumonji-C Domain Containing Histone
Demethylases
Many 2-OGDDs are from the large family of evolutionary
conserved jumonji-C (JmjC) domain-containing proteins that
FIGURE 3 | Activity of histone demethylases. Jumonji-C domain-containing demethylases (JMJ) act on lysine residues of the histone tails. Methylated lysine (m-Lys,
mK) are hydroxylated (hm-Lys, hmK), which via several intermediates, leads to demethylated lysine residues. The effect of m-Lys and hm-Lys on histone structure
and subsequent gene expression is very complex. Global gene expression tends to be increased in the more open methylated histone structure, compared to
compact, demethylated histones.
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are responsible for catalysing the removal of methyl groups from
lysine residues on histones (29, 70) (Figure 3). There are several
subfamilies of JmjC domain-containing histone lysine
demethylases with substrate specificity to different methylated
lysine residues, and this specificity is mediated by the functional
domains unique to each subfamily (2, 29). The dynamic interplay
between histone methylation and demethylation can result in
either gene activation [via histone 3 lysine 4 (H3K4), H3K36 and
H3K79] or inactivation (H3K9 and H3K27) (71, 72).

JmjC-domain containing demethylase isoforms are
heterogeneously expressed in different brain locations and
adult brain cell types (73, 74). Under hypoxic conditions,
JMJD3 expression increased in neurons (75), but the
modulation of specific histone methylation marks in response
to varying oxygen tensions, and ranges of iron and 2-OG levels in
brain cells, has yet to be determined.

In gliomas, changes in JmjC-dependent demethylase
expression have been associated with differences in genome-
wide histone methylation patterns (76, 77), and lower global
histone methylation was associated with poorer patient survival
(78). Conflicting reports on expression patterns of JmjC-
dependent demethylases in glioma and GBM tissues have been
published (77, 79–83). Overall, whether JmjC-dependent
demethylases promote or suppress gliomagenesis is likely
enzyme-dependent, although the majority of studies show
these enzymes to promote tumor progression.

Introduction of the IDH1R132H mutation in astrocytoma cells
has been associated with both global histone hypermethylation
(84), and enrichment of specific histone methylation marks (85).
Mutant IDH1 enzymes generate the oncometabolite 2-HG
instead of 2-OG, and 2-HG has been shown to competitively
inhibit histone demethylase activity (65, 86). Despite the fact that
reduced histone demethylase activity has been linked with higher
histone methylation in astrocytoma cells, most clinical gliomas
show increased levels of JmjC-dependent demethylases and
lower histone methylation (76–81). Thus, further investigations
of the biological mechanisms causing increased expression of
JmjC-dependent demethylases in glioma is needed.
2-OGDDs AND THE HYPOXIC PATHWAY

Gliomas are highly hypoxic tumors and this is associated with poor
patient prognosis (23, 87–89). Hypoxia induces adverse tumor
characteristics including genomic instability, decreased apoptotic
potential, increased expression of oncogenes and increased
angiogenesis, which have all been described in gliomas (90).
These characteristics are driven by the hypoxia inducible factors
(HIFs) which are regulated by microenvironmental oxygen
levels and the 2-OGDD enzymes, prolyl hydroxylases (PHD)
and factor inhibiting HIF (FIH) (Figure 4) (91). As these HIF
hydroxylases are dependent on oxygen for optimal function their
activity is likely impaired in gliomas (92–95).

Hypoxia-Inducible Factors
Hypoxic conditions typical of most solid tumors result in
accumulation of the HIF transcription factors (11, 96). The
Frontiers in Oncology | www.frontiersin.org 535
HIFs (HIF-1,2,3) are heterodimeric transcription factors,
consisting of one of three oxygen-sensitive a-subunits and a
constitutive b-subunit (also known as aryl hydrocarbon receptor
nuclear translocator (ARNT)) (97–99). HIF-1a is located on
chromosome 14q23 (100); HIF-2a, also known as endothelial
PAS domain protein 1 (EPAS1), is on 2p21, and HIF-3a is on
19q13 (101). Active HIF complexes accumulate in the nucleus and
bind to specific hypoxic response elements (HREs) in promoter
regions of HIF target genes, inducing their expression (102, 103).
HREs contain the consensus sequence 5’CGTG3’, targets of CpG
methylation, and CpG methylation blocks HIF-1 binding and
transactivation (104). Even though HIF-1 and HIF-2 have
identical HREs, their response to hypoxia, tissue distribution,
target genes and their pro- or anti-tumor effects are distinct (105).
Binding of HIF-1 and HIF-2 to their canonical HREs vary
according to histone modifications, with HIF-1 preferentially
associating with H3K4me3 modifications and HIF-2 with
H3K4me1 (106). These binding patterns were interpreted as
HIF-1 binding predominantly at regulatory regions within
promoters, and HIF-2 binding to enhancer regions (106).

HIF’s modulate expression of hundreds of genes, and as a
result, promote tumor growth and spread, adaptation to the
tumor microenvironment, and resistance to chemo- and radio-
therapy (107, 108). HIF activity also affects DNA methylation,
histone acetylation and regulates noncoding RNAs (109),
demonstrating the complexities of the hypoxic pathway.

HIF-1a has been proposed to drive glioma progression from
low-grade astrocytoma to high-grade GBM (23, 110). Higher
HIF-1a expression in human astrocytoma and GBM has been
correlated with worse prognosis (111–114). Moreover,
expression of HIF-1a, and its downstream target genes
vascular endothelial growth factor (VEGF), glucose transporter
(GLUT1), and carbonic anhydrase (CA9), show increased
expression in higher grade gliomas compared to lower grade
(115). In addition, increases in VEGF expression were shown to
localize to hypercellular and necrotic regions that form as result
of decreased oxygen and nutrient delivery (113, 116).

In comparison to HIF-1a, HIF-2a may be a specifically
attractive target in GBMs, as it is expressed in glioma stem
cells but not normal neuronal progenitors and it is activated by
long-term hypoxia, in addition to its association with poor
patient survival (117).

HIF Hydroxylases
HIF activity is regulated at the post-translational level by two
families of HIF hydroxylases, the prolyl hydroxylase domain
(PHD) and factor inhibiting HIF (FIH) 2-OGDDs (Figure 4).
PHDs hydroxylate specific proline residues on the HIF-a subunit
targeting the subunit for proteasomal degradation (9, 92, 118). FIH
hydroxylates an asparagine residue and prevents binding of the co-
activators CBP/p300 and nuclear translocation (93, 119). The
instability of HIF-a and the inhibition of transcriptional
activators binding results in a reduction in both HIF-a protein
and expression of target genes. Protein hydroxylation was
considered irreversible, but a recent study showed evidence that
FIH-mediated asparagine hydroxylation may be reversible by as
yet unknown cellular enzymes (120).
March 2021 | Volume 11 | Article 619300

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Crake et al. 2-Oxoglutarate Dependent Dioxygenases in Gliomas
The PHDs and the FIH enzymes have specific roles in oxygen
and metabolic sensing due to their exquisite requirements for
molecular oxygen and 2-OG, respectively (11). PHDs have higher
affinity for oxygen (9, 13), bind unusually tightly to Fe2+ (121), and
have a lower affinity for ascorbate compared to FIH (3), possibly
due to the narrower opening to the enzyme active site of PHDs
(122). PHD2 and FIH bind 2-OG with distinct residues, with FIH
sharing more homology with JmjC-domain containing protein
family of enzymes (94), suggesting evolutionary divergence (122).
The HIF hydroxylases therefore have different sensitivities to loss
of enzyme substrates and/or co-factors.

PHD2 (encoded by EGLN1) is generally acknowledged as the
primary mediator of HIF-1a protein degradation, with PHD1 and
3 more likely to be involved in fine-tuning of the hypoxic response
(123). This may be reflected in the subcellular localisation of each
isoform, with PHD1 detected exclusively in the nucleus, PHD2
(and FIH) in the cytoplasm, and PHD3 in both compartments
(124). Interestingly, PHD2 is activated, rather than inhibited, by
the R-enantiomer of 2-HG as it mimics 2-OG, suggesting that
IDH mutations may lead to HIF-a degradation (125–127). It has
been shown, using immunohistochemistry, that HIF-1a and
Frontiers in Oncology | www.frontiersin.org 636
IDHR132H expression are not related, supporting the ability of 2-
HG to activate PHD2 (128).

FIH (also known as HIF1AN) is mapped to chromosome
10q24 (93). Full or partial deletions of chromosome 10q often
occur in gliomas, and the frequency of these deletions increases
with tumor grade (59–61). Thus, FIH mRNA expression often
decreases with increasing tumor grade (129, 130). Investigation of
FIH in GBMs has shown that FIH reduces the interaction between
p300 and HIF-1a which is essential for transcriptional activity
(131), and correspondingly higher FIH expression was associated
with reduced GLUT1 and VEGF expression in GBM cells (131).
Loss of FIH through deletion of chromosome 10q24 may increase
the hypoxic response, and thus contribute to an aggressive and
treatment resistant glioma phenotype associated with hypoxia (23,
87, 88). While PHD2 is activated by the mutant IDH metabolite,
2-HG, FIH is inhibited, resulting in p300 interacting with HIF-a
and inducing target gene expression (125). However, FIH has
been shown to interact with a glioma tumor suppressor
gene (ANKDD1A), which increased FIH activity, thereby
reducing HIF-a activation and preventing HIF target gene
expression (132).
FIGURE 4 | Activity of HIF-hydroxylases. Response to low oxygen (hypoxia) is regulated via the prolyl (PHD) and asparaginyl hydroxylases (factor inhibiting HIF, FIH).
Specific proline (P) and asparagine (N) residues on the alpha subunit of the hypoxia inducible factor (HIFa) are hydroxylated by PHD and FIH, respectively. Proline
hydroxylation enables recognition by von Hippel Lindau (VHL) as part of the proteasome and HIFa degradation. Asparagine hydroxylation prevent binding of the
cofactor P300, thereby inactivating the HIF transcription factor. In the absence of one or more of the OGDD substrates or cofactors, PHD and FIH enzymes become
inactive, enabling the accumulation of HIFa and formation of an active HIF transcription factor via binding to HIFb. Genes under HIF control regulate cancer pathways
such as angiogenesis, metastasis, glycolysis, etc.
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SUBSTRATE AND COFACTOR
REQUIREMENTS OF 2-OGDDs

2-OGDDs contain a non-heme iron (Fe2+) in the active site, and
utilize 2-OG (also known as a-ketoglutarate) and molecular
oxygen as substrates (Figure 5). Ascorbate is an essential
cofactor, and is thought to be required to maintain the active
site Fe2+ in the reduced state (11–14, 133, 134).

Molecular Oxygen as 2-OGDD Substrate
and its Availability in Gliomas
Oxygen is an absolute requirement for all 2-OGDDs, but not all
2-OGDDs function as oxygen sensors. The PHDs have a Km for
Frontiers in Oncology | www.frontiersin.org 737
oxygen of 230-250 mM, slightly above dissolved oxygen
concentrations in air (20.9% O2 in gas phase ~ 200 mM
dissolved O2) (135), and this property makes these proteins the
predominant cellular oxygen sensors. These Km values are
significantly greater than for FIH at 90 mM, and the collagen
prolyl 4-hydroxylases (C-P4H) at 40 mM (13, 135, 136).

Tissue partial pressure of oxygen (PO2) in the human body
range from 104–108 mmHg in the alveola of the lung, to arterial
PO2 of 90 mmHg and venous PO2 of 40 mmHg, to most tissues
that have between tissue PO2 of 20–70 mmHg (137). Oxygen
levels in the brain are heterogeneous and difficult to measure,
with levels of 30–48 mmHg in normal brain recorded. Hypoxia is
defined as <5 mmHg, and levels below 2.5 mmHg are known to
FIGURE 5 | Substrate and cofactor requirements of the 2-oxoglutarate dependent dioxygenases. These enzymes hydroxylate nucleotides or amino acids (R), forming
a hydroxylated product (R-OH). 2-OGDDs require 2-oxoglutarate (2-OG) and molecular oxygen (O2) as substrates, and ferrous iron (Fe2+) and ascorbate as cofactors.
Isocitrate from the Krebs cycle is converted to 2-OG by isocitrate dehydrogenase (IDH), but mutant IDH (IDHR132H) produces the competitive inhibitor
2-hydroxyglutarate (2-HG). Low oxygen (hypoxia) is a characteristic of most solid tumors, thus reducing activity of 2-OGDDs. Iron obtained from the diet is transported
via transferrin and taken up across the BBB via transferrin receptors; the content in tumors is unknown. Ascorbate is obtained via a healthy diet or infusions, and
cannot cross the BBB but will travel via the choroid plexus. Cellular ascorbate uptake is via sodium vitamin C transporters; tumors may be low in the vitamin.
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induce clinical radioresistance (138–145). Theoretical modelling
suggests the minimum oxygen level requirement for brain tissue
is 17 mmHg and that a critical range for hypoxic injury is 4–11
mmHg (140).

Hypoxia is a prominent feature of gliomas. Oxygen levels in
tumors have been measured using a range of techniques,
including injection of hypoxia markers (146–149), direct
measurements using polarographic O2 microelectrodes (145,
150) and MRI/CT scans (151). Using these techniques, oxygen
levels were observed to be lower in gliomas and peritumoral
regions compared to normal brain tissues, and readings below
2.5 mmHg were more common in tumors of increasing grade
(145, 150, 152), with the most severe hypoxia detected in GBMs
(23, 88, 89). A review of six studies reported a median PO2 of 13
mmHg in gliomas (144). This suggests that in high grade
gliomas, the activity of 2-OGDD enzymes is likely to be
reduced, but hypoxia is not routinely measured.

As ionizing radiation remains the mainstay of glioma
treatment, and since hypoxia governs radioresistance,
considerable clinical effort has been focused on reducing tumor
hypoxia. With regards to 2-OGDD activity, these strategies may
also improve enzyme activity, and are thus briefly discussed here.
In an attempt to improve tumor oxygenation, patients have been
given pure oxygen in a pressurized environment (hyperbaric
oxygen) to breath (153). Alternatively, patients breathed 95% O2

with 5% CO2 (carbogen), which, together with hypercapnic-
induced vasodilation, increases the amount of dissolved plasma
O2 at the capillary level (154). Carbogen was tested in
combination with nicotinamide, which is believed to prevent
transient cessations in blood flow, thus inhibiting the
development of acute hypoxia (154). Drugs have been
developed to improve oxygen delivery (eg trans sodium
crocetinate, TSC) (155), to normalize the tumor vasculature
(e.g., anti-VEGF bevacizumab) (156), or to reduce oxygen
consumption rate via mitochondrial poisons (e.g., anti-
parasitic drugs atovaquone, ivermectin, proguanil, mefloquine,
and quinacrine) and tested in patients with GBM (157). Overall,
the results of these clinical trials have been disappointing and
none of the approaches have been adopted into clinical practice,
and actual oxygen measurements were largely lacking.

2-Oxoglutarate and Oncometabolites as
2-OGDD Substrates in Gliomas
The substrate 2-oxoglutarate (2-OG) is a product of the reaction
in which isocitrate dehydrogenase enzymes (IDH) convert
isocitrate to 2-OG (Figure 5). This reaction occurs in the TCA
cycle via IDH3 and in the cytosol via IDH1 and IDH2. A number
of IDH1 and IDH2mutations have been reported in glioma, with
the most common a base substitution in codon 132 of IDH1
resulting in an arginine to histidine replacement (IDH1R132H)
(24, 67). IDH1R132H has been identified in more than 70% of
grade II/III astrocytic and oligodendroglial diffuse gliomas, and
in more than 80% of secondary GBM, but rarely in primary GBM
(24, 158, 159). IDH1R132H enzymes generate 2-HG, instead of 2-
OG (66, 67), which binds competitively to 2-OGDD enzymes
and inhibits their function (Figure 5). Studies have, however,
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also reported that accumulation of 2-HG does not universally
occur in all IDH1R132H and, conversely, that some wild type IDH
cells accumulate 2-HG (160, 161). Further research is required to
understand the impact of IDH mutations on patients with
glioma, and how 2-HG accumulation interacts with other 2-
OGDD substrates and co-factors to influence their activity in
these tumors.

In gliomas with IDH1R132H mutations, drugs that inhibit the
mutant IDH1 enzymes may improve 2-OGDD activity by
reducing 2-HG production. A number of mutant IDH1
inhibitors are currently being evaluated in clinical trials with
glioma patients, including AG-120 (Ivosidenib), AG-881
(Vorasidenib), BAY1436032 (Bayer), and DS-1001b
(NCT02746081) (162–166). Pre-clinical investigations have
reported anti-proliferative effects, reductions in tumor growth
rates, and lower levels of 2-HG in both glioma cells and tumors
from animal models (167–170). To date, 2-HG levels have only
been measured in the plasma of human glioma patients following
intervention with Ivosidenib, reporting no difference compared
to those without treatment (163). Despite this, interest remains
high and data from a Phase I study of Ivosidenib and
Vorasidenib in patients with recurrent, non-enhancing, IDH1-
mutant, low-grade glioma is currently pending (162). In addition
to inhibitors, vaccines against mutant IDH1 have been tested in
mice (171, 172). Mice with mutant IDH1R132H gliomas treated
with the vaccine showed longer survival than non-immunized
mice, and had higher levels of peripheral anti- IDH1R132H

antibodies, IFN-g, and CD8+ T cells (172). However, 2-HG
levels in tumors were not measured, and thus the vaccine effect
on 2-OGDDs remains to be tested.

Iron as Cofactor for 2-OGDDs and
Availability in the Brain
Iron is the most abundant transition metal in the brain (173) and
is more concentrated in some regions than in others (range;
13.5–1.75 µmol/g dry weight) (174), including the iron-rich
substantia nigra, caudate nucleus and globus pallidus (175).
Most gliomas arise in the frontal/temporal lobe, areas rich in
glial cells and, potentially, relatively lower in iron. Astrocytes
secrete hepcidin, which modulates the expression of ferroportin
and other iron regulatory proteins, and thereby function as iron
sensors to regulate and communicate the iron requirement of the
brain through paracrine signaling (176–178).

Iron uptake into the brain is tightly regulated through the
endothelial cells and neighboring astrocytes in the blood brain
barrier (BBB) (176, 179, 180), primarily through the transferrin
bound iron (TBI) pathway (174, 181, 182) however, when this
pathway becomes saturated, non-TBI pathways are used (183).
Through the canonical TBI uptake pathway, ferric iron (Fe3+)
forms halotransferrin (174), which is able to pass through the
BBB by binding to transferrin receptors on the apical surface of
brain microvascular endothelial cells (BMVECs). Within the
BMVEC, excess iron is stored in the cytosolic labile iron pool,
which is the principle source of metals for metabolism (184).
Efflux of iron through the abluminal membrane into the brain
interstitium occurs through ferroportin (185, 186), expressed on
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the basolateral side of the BMVEC cells (186, 187). Once iron has
crossed the BBB barrier, it is taken up by neurons, astrocytes,
oligodendrocytes and microglia through TBI and nonTBI uptake
pathways (183).

Iron plays a role in carcinogenesis, with proteins that
modulate and regulate iron metabolism often dysregulated in
gliomas (188–191). GBM cancer-stem-like cells were shown to
upregulate transferrin expression, and to extract iron more
effectively from the tumor microenviroment than non-stem-
like tumor cells in an ex vivo explant model (192). The Fe2+

content in gliomas has not been reported but reduced levels may
impede 2-OGDD function in tumors and cancer stem cells.

Ascorbate as Cofactor for 2-OGDDs and
its Availability in the Brain
As a cofactor for 2-OGDDs, ascorbate acts to reduce Fe3+ back to
active Fe2+ (Figure 5). This activity appears to be specific to
ascorbate as alternative reducing agents such as glutathione or
N-Acetylcysteine are unable to substitute for ascorbate in 2-
OGDD activity (12, 193, 194). Ascorbate is also involved in
stabilizing cysteine residues in PHD enzymes, preventing
intramolecular oxidation and supporting catalytic activity (126).

Normal brain tissue has one of the highest ascorbate levels of
all tissues in the body, reaching intracellular concentrations of 2–
10 mM depending on the cell type (195–197). In times of
ascorbate insufficiency, the brain is one of the last tissues to
lose ascorbate, supporting its importance to brain function (195,
198). The specific vitamin C transporters (sodium-dependent
vitamin C transporters) are not expressed on the endothelial cells
lining the BBB (198), and ascorbate enters the central nervous
system through the choroid plexus where it can diffuse through
the cerebrospinal fluid to the brain (195, 198). Cells within the
brain express ascorbate transporters allowing intracellular
ascorbate accumulation (198).

Data on ascorbate content in gliomas is limited to a single
study that reported ascorbate levels in astrocytomas from eleven
patients (199). While ascorbate levels were not different between
astrocytoma tissue and non-neoplastic tissue, DNA content was
significantly higher in astrocytoma (tumor) tissues indicating
increased cell density (or cellularity) of the tissues. This suggests
that intracellular ascorbate per cell may be reduced in
astrocytoma tissue compared to normal, non-necrotic tissue
(199). These intriguing findings need to be confirmed.

Ascorbate and Epigenetic Reprogramming
Evidence for the effects of ascorbateonepigenetic reprogramming is
largely from embryonic cells (200, 201), but data in gliomas is
missing. In patients with myeloid malignancies, oral ascorbate
supplementation resulted in an increase in the ratio of 5-hmC
compared to5-mC inmononuclearmyeloid cells (202).Here,DNA
demethylation was not associated with changes in TET expression
(202, 203), but instead appear to result from ascorbate-mediated
restoration of endogenous TET activity, which was supported by
studies with Tet2-deficient mice (204). Gliomas show lower TET
expression independent of TET mutations (63, 68, 69), and we
hypothesize that ascorbate may compensate for lower TET
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expression by upregulating residual TET2 function as was
observed in a case study of acute myeloid leukemia (205).

Low-grade primary gliomas commonly harbor IDH
mutations that persist during progression to secondary GBM
(24). In vitro, ascorbate was able to circumventing competitive
inhibition by 2-HG in colon cancer and HOXA9-immortalized
mouse bone marrow cells with IDH1R132H mutations (206, 207).
One in vitro study reported the effects of ascorbate on epigenetic
marks in LN229 glioma cells, showing increased TET3 mRNA
expression, as well as increased 5-hmC, but these cells did not
harbor an IDH mutation (64). Yet, these findings, together with
reported associations between higher 5-hmC levels and better
prognosis in patients with GBM (50), support the notion that
sufficient ascorbate levels in glioma tumors may induce
demethylation activity and promote more favorable outcomes,
although whether sufficient ascorbate can overcome high levels
of 2-HG remains to be determined.

In addition to TET-mediated effects, ascorbate induced
H3K9me2/3 and H3K36me2/3 demethylation via JmjC-
dependent demethylases in embryonic stem, embryonic fibroblast
and Th17 cells from mice (208–210). Ascorbate caused reductions
in H3K9 methylation and increased expression of the JmjC-
dependent demethylases, JHDM2A-C and JHDM3B, as well as
widespread DNA demethylation at CpG island boundaries in
human embryonic stem cells (211). However, investigations in
gliomas are lacking, despite the well-established link between
glioma formation and global 5-hmC deficiency.

Ascorbate and the Hypoxic Pathway
The relationship between intracellular ascorbate levels and HIF
pathway activity has been investigated in numerous cancers, but
not yet in gliomas. In vitro investigations of intracellular
ascorbate levels and HIF pathway activity have been performed
in varying cancer types, findings from which have guided further
in vivo studies (212–215). In relevant mouse models (using
ascorbate-dependent Gulo-/- mice), increased ascorbate intake
or administration was associated with increased tumor ascorbate
levels, reduced HIF pathway activity and reduced tumor growth
(216). In clinical samples of endometrial (217), colorectal (218),
thyroid (214), papillary cell renal cell carcinomas (215, 219), and
breast cancer (220), high tumor ascorbate levels were associated
with low HIF-1a protein levels and low HIF target gene
expression. This relationship was not evident in clear cell renal
cell carcinoma (215, 219), that have a mutated von Hippel-
Lindau factor which prevents proteasomal degradation of
hydroxylated HIF-a (219). Higher levels of tumor ascorbate
were associated with improved disease-free survival in patients
with colorectal cancer (218) and improved disease-specific
survival in patients with breast cancer (220).
HIGH DOSE ASCORBATE AS CANCER
TREATMENT

Infusion with high dose ascorbate as an alternative or
complementary therapy for cancer is widespread (221), but
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lacks evidence of efficacy (222, 223), despite early promising data
(224, 225). Since then, pharmacokinetic data have demonstrated
that infusion results in supra-physiological plasma ascorbate
levels that are not achievable by oral administration (226–229).
Case studies and small clinical trials continue to surface that
suggest there may be circumstances under which high dose
ascorbate infusion can provide a clinical benefit (230–239).

Preclinical Models of High Dose Ascorbate
Treatment in Gliomas
In a mouse xenograft glioma model, analysis of ascorbate levels
in plasma, tumor, and cerebrospinal fluid samples showed that
ascorbate increased 1 h post intraperitoneal injection with 4 g/kg
of ascorbate (240). One study, using an intracranial GL261
glioma mouse model, reported that radiation treatment slowed
tumor growth, whereas ascorbate treatment made no difference,
and the combination of ascorbate and radiotherapy induced
faster progression (241), in conflict to in vitro findings of radio-
sensitisation by ascorbate in numerous glioma cell lines,
including GL261 cells (242–244). However, ascorbate levels in
the intracranial model were not measured, and thus the impact
of ascorbate on glioma response to radiation remain uncertain.

Clinical Trials in Patients With Gliomas
and GBMs
Preclinical data led to phase I clinical trials administering
intravenous ascorbate to glioma patients, with and without
standard radiotherapy and temozolomide (245). High dose
vitamin C (HDVC) was found to be safe and well tolerated,
reaching target 20 mM plasma levels (240, 245), but tumor
ascorbate levels were not measured. A trend of improved overall
survival was reported, but participant numbers were too small to
determine statistical significance (240). Two case reports for the
use of HDVC infusions in patients with glioma have also been
reporting (237, 246).

Previous research has shown an association between a lower
proportion of methylation at the O-6-methylguanine-DNA
methyltransferase (MGMT) promoter in glioma tumors and
poorer patient prognosis (247). MGMT is a DNA repair
enzyme responsible for resistance to temozolomide, and
hypermethylation of the MGMT promoter is evident in 40–
45% of gliomas (248, 249), with higher methylation levels in low-
grade gliomas compared to GBMs (53). Interestingly, in glioma
patients with low methylation levels at the MGMT promoters,
HDVC infusions resulted in improved overall survival (240), but
unfortunately, ascorbate levels in the glioma tissue were not
measured. Plasma ascorbate levels do not necessarily reflect
tumor ascorbate levels due reduced functioning vasculature
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and BBB in gliomas. Overall, the clinical worth of HDVC in
cancer remains unproven.
CONCLUSION

The superfamily of 2-OGDD enzymes play a vital role in glioma
progression and patient prognosis, being involved in epigenetic
modifications and oxygen sensing. Limiting supplies of one or
more of their substrates or cofactors in gliomas is likely although
reported measurements are rare. Restoration of epigenetic
modifications offers a promising target in the treatment of
cancer, as these alterations are reversible, as opposed to genetic
mutations. Attempts at increasing tumor oxygenation to
improve effectiveness of radiation and chemotherapy in glioma
are not (yet) in clinical practice (250), and new strategies are
sought. Ascorbate infusion is a safe and cheap option that may be
able to normalize 2-OGDD function in a subset of glioma tumor
subtypes. However, this will likely depend on mutation status
and on the ability to increase intracellular ascorbate levels in
these tumors. Future research will need to confirm ascorbate
status of clinical glioma tumors, on measuring 5-hmC levels and
HIF activity in clinical samples, and on determining an optimal
ascorbate dose for patients, before embarking on phase III trials
to determine clinical efficiency.
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Background: As the most aggressive tumors in the central nervous system, gliomas
have poor prognosis and limited therapy methods. Immunotherapy has become
promising in the treatment of gliomas. Here, we explored the expression pattern of
APOBEC3B, a genomic mutation inducer, in gliomas to assess its value as an immune
biomarker and immunotherapeutic target.

Methods: We mined transcriptional data from two publicly available genomic datasets,
TCGA and CGGA, to investigate the relevance between APOBEC3B and clinical
characterizations including tumor classifications, patient prognosis, and immune
infiltrating features in gliomas. We especially explored the correlation between
APOBEC3B and tumor mutations. Samples from Xiangya cohort were used for
immunohistochemistry staining.

Results: Our findings demonstrated that APOBEC3B expression level was relatively high
in advanced gliomas and other cancer types, which indicated poorer prognosis.
APOBEC3B also stratified patients’ survival in Xiangya cohort. APOBEC3B was
significantly associated with infiltrating immune and stromal cell types in the tumor
microenvironment. Notably, APOBEC3B was involved in tumor mutation and strongly
correlated with the regulation of oncogenic genes.

Conclusion: Our findings identified that APOBEC3B could be a latent molecular target
in gliomas.

Keywords: glioma, APOBEC3B, tumor microenvironment, immune response, prognosis
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INTRODUCTION

Diffuse gliomas, including lower-grade gliomas (LGGs) and
glioblastomas (GBMs), are the most malignant brain tumor in
adults (1). Glioma patients always had high mortality rate, high
recurrence risk and dismal prognosis (2). LGGs comprised of diffuse
low-grade and intermediated-grade gliomas. Nowadays, the
primary therapeutic methods for LGG is surgery with concurrent
radiotherapy and chemotherapy (3). Despite the advances in
treatment methods, the median overall survival of LGG patients is
less than 2 years due to limitations in therapeutic options. Therefore,
novel therapeutic strategies are urgently needed. In recent years,
immunotherapy, including immune checkpoint inhibitors, has
demonstrated remarkable results in cancer treatment and casted
new lights on clinical management of glioma (4, 5).

The tumor microenvironment (TME) is a highly dynamic
composition of various cell types and is considered being
responsible for the effectiveness of immunotherapies. An
immunosuppressive TME was formed during the progression and
recurrence of glioma (6). Immune infiltrating cells account for the
major part of TME and sometimes can protect tumor cells frombeing
detected and exterminated by the immune system. For example,
regulatory T cells (Tregs) and tumor-associated macrophages
(TAMs) have been proved to exert immunosuppressive effect in
glioma (7). As another important member in the TME, immune
checkpoint molecules are also involved in immunosuppressive
mechanism. Immunotherapy of immune checkpoint blockade has
become a promising treatment modality for cancers (8).

APOBEC3B, a member of APOBEC (apolipoprotein B
mRNA editing enzyme, catalytic-polypeptide-like) enzymes
with cytidine deaminase activity (9), can induce prevalent
mutagen of genomic DNA in multiple cancers. APOBEC3B
has been found to be upregulated in various cancer types with
poor prognosis (10–12), and is also considered as a mediator
regulating the growth, the metastatic outgrowths, and the
emerging therapeutic resistance of cancer cells (13). High
expression of APOBEC3B is associated with immune evasion
of cancer (14). Notably, high expression of APOBEC3B also
enhances the sensitivity to immune checkpoint blockade in
melanoma (15). However, the relationship between TME and
the APOBEC3B expression in gliomas remains largely unknown.

Therefore, we integrated and analyzed the RNA-sequencing data of
glioma patients from The Cancer Genome Atlas (TCGA) and Chinese
Glioma Genome Atlas (CGGA) databases to reveal the immune
features and clinical characteristics of APOBEC3B in gliomas.
METHODS

Data Collection
This study was ethically approved by Xiangya Hospital, Central
South University. Archived paraffin embedded glioma tissues
(WHO grades II–IV) were collected from patients (n = 58) who
underwent surgery in the Department of Neurosurgery, Xiangya
Hospital, Central South University. We collected transcriptomic
data of LGG and GBM samples from the TCGA and CGGA
datasets, and RNA seq was used for the analysis. RNA-seq data
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about specific tumor anatomic structure in GBM was
downloaded from Ivy Glioblastoma Atlas Project (http://
glioblastoma.alleninstitute.org/). APOBEC3B expression data in
distinct radiographical areas of normal brain and GBM was
downloaded from the Gill dataset.

Immunohistochemistry
Tissues of different grades of human gliomas (WHO grades
II–IV) were formalin-fixed and paraffin-embedded to obtain
sections (4 mm). Sections were then boiled in sodium citrate
buffer (pH 6.0) for antigen retrieval, 3% H2O2 was used for
blockage of endogenous HRP activity. Slides were blocked with
10% normal goat serum and incubated with primary antibody
(rabbit polyclonal anti-APOBEC3B antibody, 1:50; Proteintech;
Wuhan, China) at 4°C overnight. Signal was visualized with
horse radish peroxidase conjugated secondary antibody and 3,
3′-diaminobenzidine (DAB) as the substrate. Slides were
counterstained with hematoxylin, and representative images
were obtained using an Olympus inverted microscope. H-score
of glioma samples was subsequently calculated.

Bioinformatic Analysis
We acquired the chromosome localization of APOBEC3B on the
GeneCards database (https://www.genecards.org/). APOBEC3B
gene structure was analyzed on the Ensembl database (http://asia.
ensembl.org/), with its protein structure analyzed in the Uniprot
database (http://www.uniprot.org/). APOBEC3B gene structure was
then visualized by using Illustrator for biological sequences software
(IBS, http://ibs.biocuckoo.org/). The protein sequence comparison
among different species was analyzed by DNAMAN software
(lynnonBiosoft, USA). Correlation analysis of APOBEC3B was
performed using gene expression profiles from the TCGA and
CGGA datasets with R language (https://www.r-project.org/).
Somatic mutations and somatic copy number alternations
(CNAs) of the cases with the corresponding RNA-seq data were
downloaded from TCGA database. GSITIC analysis was adopted to
determine the genomic event enrichment. CNAs associated with
APOBEC3B expression and the threshold copy number (CN) at
alteration peaks were from GISTIC 2.0 analysis (https://gatkforums.
broadinstitute.org). GSITIC analysis was performed based on the
first 25% and last 25% of samples. The gene sets variation analysis
(GSVA) package was used to analyze the differential expression in
GO terms of immune related process and immune cell lineages
from TCGA and CGGA. As for somatic mutations, software
VarScan2 was used to detect WES data of APOBEC3Bhigh and
APOBEC3Blow groups. P <0.05 was set as the criteria for selecting
differentially mutated genes, and Fisher’s exact test was used to
identify the differentially mutation pattern. CoMEt algorithm was
used to detect the co-occurrence and mutually exclusive mutations.
R package maftools was used for the visualization of the somatic
mutations. Correlation analysis was performed by the expression
values of APOBEC3B and GO term, and the items with p <0.05 and
high correlation coefficient were selected. After Spearman
correlation analysis, Heatmap was used to construct gene
ontology (GO) analysis of the most correlated genes. The relevant
immune signaling pathways of high level of APOBEC3B expression
from GO were analyzed by ClueGO (16). ClueGO: a Cytoscape
March 2021 | Volume 11 | Article 625838

http://glioblastoma.alleninstitute.org/
http://glioblastoma.alleninstitute.org/
https://www.genecards.org/
http://asia.ensembl.org/
http://asia.ensembl.org/
http://www.uniprot.org/
http://ibs.biocuckoo.org/
https://www.r-project.org/
https://gatkforums.broadinstitute.org
https://gatkforums.broadinstitute.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. APOBEC3B in Lower-Grade Gliomas
plug-in to decipher functionally grouped gene ontology and
pathway annotation networks. ESTIMATE (Estimation of Stromal
and Immune cells in Malignant Tumor tissues using Expression)
algorithm was used to evaluate the infiltration of immune cells and
the presence of stromal cells in tumor samples, which generated
three results including immune score (reflecting the level of
immune cells infiltrations in tumor tissue), stromal score
(reflecting the presence of stroma in tumor tissue), and estimate
score (reflecting tumor purity).

We analyzed the relationship between APOBEC3B
expression and overall survival (OS) in adrenocortical
carcinoma (ACC), cholangiocarcinoma (CHOL), esophageal
carcinoma (ESCA), liver hepatocellular carcinoma (LIHC),
lung adenocarcinoma (LUAD), pancreatic adenocarcinoma
(PAAD), Uterine Corpus Endometrial Carcinoma (UCEC),
Uterine Carcinosarcoma (UCS), and Kidney Chromophobe
(KICH) cancer types based on the pan-cancer data in TCGA
dataset. We also analyzed the correlation between APOBEC3B
expression and the abundance of six immune infiltrating cell
types, including activated CD4+T cell, central memory CD8+T
cell, macrophage, Myeloid-derived suppressor cells (MDSCs),
memory B cell and type 2 helper cell in pan-cancer from TCGA.

The weighted gene co-expression network analysis (WGCNA)
package in R was used to performWGCNA. The expression profile
of 2,559 APOBEC3B related genes (correlation efficient >0.4) was
applied as the input of WGCNA. The association between
individual genes and APOBEC3B density was quantified by gene
significance, and the correlation between module eigengenes and
gene expression profiles was represented by module membership. A
power of b = 3 and a scale-free R2 = 0.87 were set as soft-threshold
parameters to ensure a scale-free topology network. A total of eight
modules were generated, and yellow module showed the highest
correlation (r = 0.96, p = 1.6e-112). Genes within the yellow module
were chosen for further GO and KEGG enrichment analysis.

Statistical Analysis
Spearman correlation analysis was used to evaluate the correlations
between continuous variables. The survival probability was
described by Kaplan–Meier survival curves. Patients were
stratified according to the median value of APOBEC3B or the
cutpoint value automatically calculated. The Student t-test was used
to determine the expression levels of APOBEC3B with regard to
pathological characteristics. The linear relationship between gene
expression levels was evaluated by the Pearson correlation. All
statistical analyses were performed using R project (version 3.6.1,
https://www.r-project.org/). P-values <0.05 were considered to be
statistically significant. And all tests were two-sided.
RESULTS

The Expression Level of APOBEC3B Is
Increased in Aggressive Glioma and
Other Cancers
The mRNA expression levels of APOBEC3B were measured
using data from publicly accessed databases including over 1,600
Frontiers in Oncology | www.frontiersin.org 350
gliomas samples: TCGA. n = 672: CGGA, n = 1013. We found
that APOBEC3B was upregulated in GBM compared to LGG
(P <.05, respectively; Figure 1A). The expression level of
APOBEC3B was also increased in order of grade II, grade III,
and grade IV (WHO classification) (P <.05,respectively; Figure
1B). Based on gene expression profiling, glioblastoma can be
classified into four distinct molecular subtypes: classical (CL),
mesenchymal (ME), proneural (PN) and neural (NE).
Practically, the CL and ME types predict worse clinical
prognosis. To figure out the relationship between APOBEC3B
and molecular subtypes, we further investigated the expression
level of APOBEC3B among subtypes: increased expression level
of APBOEC3B was found in CL and ME compared to PN and
NE (P <.05, respectively; Figure 1C). ROC further indicated that
APOBEC3B expression level can distinguish CL and ME from
GBM (area under curve (AUC) value = 0.85; P < 0.05;
Figure 1C).

We also examined the relationship between APOBEC3B and
certain genomic alterations. Glioma patients with codeletion of
1p and 19q derived more benefits in several clinical trials (17).
We observed that the expression of APOBEC3B was decreased in
the 1p19q codeletion cluster in pan-glioma analysis (P <.05,
respectively; Figure 1D). Better clinical outcome was
accompanied by MGMT promoter methylated subtype (18)
and IDHmut (19), similarly, down-regulated of APOBEC3B
mRNA expression level was found in these two types
compared to wild type patients (Figures 1E, F), and receiver
operating characteristic (ROC) curve analysis indicated that the
expression of APOBEC3B discriminated IDH mutation from
non-IDH mutation in pan-glioma analysis (the area under the
curve (AUC) value = 0.807; P < 0.05; Figure 1F). Among nine
methylation probes designed for APOBEC3B from TCGA, all of
them exhibited remarkable negative association with expression
of APOBEC3B, which most of the association was statistically
significant (Figure S1).

Furthermore, we analyzed various clinically related
characteristics of APOBEC3B in gliomas. Pathologically,
APOBEC3B has been found to be most adequately expressed
in microvascular proliferation (MVP) (Figure S2A). In copy
number (CN) analysis, glioma with APOBEC3B CN loss
expressed higher level of APOBEC3B mRNA (Figure S2B).
Radiographically, APOBEC3B was upregulated in contrast
enhancing area compared with non-contrast enhancing and
normal brain area (Figure S2C). Moreover, the expression
pattern of APOBEC3B with regard to the histology of gliomas
was shown in Figure S2D. We also examined APOBEC3B level
in primary, recurrent, and secondary patients respectively;
statistics revealed that APOBEC3B expression was higher in
recurrent patients than in primary patients (Figure S2E). And
in patients with different treatment outcomes, the expression of
APOBEC3B was significantly higher in progressive patients than
in patients who were in complete remission (Figure S2F).

APOBEC3B mRNA expression levels were analyzed in pan-
cancer (Figure 1G) and interactive body map of APOBEC3B
(Figure 1H). The results elucidated that besides LGG and GBM,
expression of APOBEC3B was higher in multiple cancers
March 2021 | Volume 11 | Article 625838
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A C
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FIGURE 1 | The expression level of APOBEC3B is increased in aggressive glioma and other cancers. Analysis of APOBEC3B mRNA levels in (A) LGG and GBM
(B) WHO grade II–IV gliomas (D) 1p19q codeletion and non-codeletion from TCGA and CGGA datasets. (C) APOBEC3B expression in distinct subclasses(upper),
ROC curve indicating sensitivity and specificity of APOBEC3B expression as a discriminative biomarker for CL+ME subtypes and GBM (lower). (E) APOBEC3B
expression in MGMT methylated and unmethylated. (F) Analysis of APOBEC3B level in IDH mutant and wildtype from TCGA and CGGA. ROC curve indicates the
sensitivity and specificity of APOBEC3B expression as a diagnostic biomarker for discriminate IDH mutation from non-IDH mutation. (G) APOBEC3B mRNA
expression levels in pan-cancer. (H) The median expression of tumor (red) and normal (green) samples in bodymap. NS, Not Statistically Significant; *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001.
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including PAAD, Head and Neck Squamous Cell Carcinoma
(HNSC), LIHC, CHOL, kidney renal papillary cell carcinoma
(KIRP), stomach adenocarcinoma (STAD), Bladder Urothelial
Carcinoma (BLCA), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), ovarian cancer (OV),
ESCA, colon adenocarcinoma (COAD), rectal adenocarcinoma
(READ), Testicular Germ Cell Tumors (TGCT), Skin Cutaneous
Melanoma (SKCM), LUAD, Thyroid Carcinoma (THCA),
UCEC, lung squamous cell carcinoma (LUSC), Breast Invasive
Carc inoma (BRCA) , KICH, ACC, UCS , Pro s t a t e
Adenocarcinoma (PRAD), kidney renal clear cell carcinoma
(KIRC) than adjacent normal tissues, respectively, while lower
in Thymoma (THYM).

APOBEC3B Expression Is Elevated in
Aggressive Glioma and Related
to Poor Prognosis
APOBEC3B was located at 22q13.1 (Figure 2A), and the protein
structure of APOBEC3B consisted of CMP/dCMP-type
deaminase 1 and CMP/dCMP-type deaminase 2 (Figure 2B).
In order to study the conservation of APOBEC3B among distinct
species, we compared protein sequences encoded by APOBEC3B
among seven different species (Figure 2C). Statistics showed that
Homo sapiens APOBEC3B shared 75.71, 54.19, 78.73, 73.81,
44.76 and 74.52% identity to PANTR, pig, rat, whale, bovine, and
dolphin, respectively. It presented that APOBEC3B was highly
conserved in most kinds of mammals, but varied significantly
between human and bovine. To confirm that APOBEC3B
expression was also upregulated at the protein level, we
performed IHC staining of APOBEC3B based on an
independent cohort consisting of different pathological grades
of glioma samples (n = 58) from our institution. APOBEC3B was
located in the nucleus and cytoplasm, and increase in order of
WHO classification (Figure 2D). The quantification of IHC
staining was shown in Figures 2E, F, in which there was an
increase of APOBEC3B expression as tumor grade increased. We
further investigated the prognostic value of APOBEC3B in
glioma based on 27 clinical samples with survival information,
and patients with higher expression of APOBEC3B are more
likely to have shorter overall survival (Figure 2G).

Higher APOBEC3B Expression Is Related
to Poor Survival in Glioma and
Multiple Cancers
We used Kaplan–Meier analysis to subsequently explore the
prognostic value of APOBEC3B in both TCGA and CGGA
datasets. We revealed that APOBEC3Bhigh patients showed
shorter overall survival (OS) than APOBEC3Blow patients in pan-
glioma, LGG, and GBM (P <.05, respectively; Figures 3A, B).
Thus, APOBEC3Bmight be a latent marker for prognosis in glioma
patients. We further investigated the prognostic value of
ABPOEC3B for pan-cancer, in which patients were divided into
high and low APOBEC3B groups. High APOBEC3B expression
was significantly correlated to worse prognosis in nine cancer types,
including ACC, CHOL, ESCA, LIHC, LUAD, PAAD, UCEC,
UCS, and KICH (P <.0001, respectively; Figure 3C).
Frontiers in Oncology | www.frontiersin.org 552
APOBEC3B Expression Is Related to
Genomic Alterations in Glioma
Genomic alterations can be easily found in glioma. Thus, we
performed copy number variation (CNV) and somatic mutation
analysis to examine whether there is a link between APOBEC3B
expression levels and specific genomic alterations in glioma. An
overall CNV profile comparison of APOBEC3Bhigh(n = 158) and
APOBEC3Blow(n = 158) cluster was carried out. Besides the
variation of chr1 and chr19, amplification of chr7 and deletion of
chr10 most frequently occurred in glioma patients (Figure 4A).
As a genomic symbol of oligodendroglioma, deletion of 1p and
19q tended to appear in APOBEC3Blow cluster (Figure 4B).
Using GSITIC analysis, we found distinct genomic alterations in
different clusters (Figures 4B, C). In APOBEC3Blow patients,
PD-1 (2q37.3), CLPTM1L (5p15.33), CDKN2A (9p21.3), SAA1
(11p15.5) were frequently deleted, while HAS2 (8q24.13),
NDRG1 (8q24.22), FGF23 (12p13.32) and CDK4 (12q14.1)
were most frequently amplified. In APOBEC3Bhigh group,
CDKN2A (9p21.3), PARK7 (1p36.23) and PTEN (10q23.31)
were most frequently deleted, at the same time, EGFR (7p11.2)
and CDK4(12q14.1) were most commonly amplified genes.
Based on the level of APOBEC3B, somatic mutation profiles
were analyzed. In low APOBEC3B group, IDH-1 (77%), TP53
(44%), ATRX (29%), and CIC (11%) are altered in high
frequency, while TP53 (33%), EGFR (28%), TTN (26%), and
PTEN (23%) were more frequently mutated in high APOBEC3B
group (Figures 4D, E). Taken together, our results demonstrated
that APOBEC3B expression level was pertinent to chromosomal
alterations in glioma.

Comparisons of Somatic Mutations
Among Different Immune Infiltration Levels
We further used the R package maftools to analyze somatic
mutations including the single-nucleotide variant (SNV), single-
nucleotide polymorphism (SNP), insertion (INS), and deletion
(DEL) under different expression levels of APOBEC3B, based on
the WES data from TCGA portal in which the mutations had
been called by VarScan2. As shown in Figure 5A, most genomic
variants were nonsense mutation, missense mutation, and silent
in the APOBEC3Bhigh and APOBEC3Blow groups. As for SNVs,
the mutation numbers of T>A, C>T, C>G, and C>A in
APOBEC3Bhigh cohort were significantly higher than those
in APOBEC3Blow cohort (Figure 5B). Furthermore, SNPs in
the APOBEC3Blow cohort were outnumbered by those in the
APOBEC3Bhigh cohort; however, INS and DEL in two cohorts
showed no significant difference (Figure 5C). Moreover, the
mutation frequencies of some genes differed from these two
groups, and the top 10 mutated genes were exhibited in Figure
5D. Common carcinogenic pathways were found to be more
active in APOBEC3Bhigh group (Figures 5E, G). The strongest
co-occurrent pairs of gene alteration in the APOBEC3Bhigh

group were ATRX-TP53, and in the APOBEC3Blow groups
were ATRX-TP53 as well as ATRX-IDH1, which was in line
with previous studies> (19–21) Meanwhile, the most mutually
exclusive pairs in APOBEC3Bhigh and APOBEC3Blow groups
were CIC-TP53 and EGFR-IDH1, respectively (Figures 5F, H).
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Genes Positively Related to APOBEC3B
Are Enriched in Immune and Inflammatory
Related Pathways
We using GO analysis and KEGG pathway analysis to further
investigate the potential function of APOBEC3B in the
Frontiers in Oncology | www.frontiersin.org 653
development of human glioma. Our results revealed that
several immune and inflammatory related pathways were
involved in APOBEC3B-mediated immune microenvironment.
GO results revealed APOBEC3B was significantly correlated with
type 1 interferon, MHC-I and cytokine-mediated signaling
A

A

B

C

D

E F G

FIGURE 2 | APOBEC3B expression is elevated in aggressive glioma and related to poor prognosis. (A) Chromosome localization and gene structure of APOBEC3B
in human. (B) Structure of APOBEC3B. (C) Comparison of protein sequences encoded by APOBEC3B among seven different species. (D) Representative images of
IHC staining for APOBEC3B in different pathological grades of gliomas [WHO II (27), WHO III (12), WHO IV (19)]. (E) Quantification of APOBEC3B IHC staining
regarding the positive rate. (F) Quantification of APOBEC3B IHC staining regarding the H-score. (G) Overall survival based on high vs low expression of APOBEC3B
in glioma patients (n = 27). The patients were stratified according to the H score of APOBEC3B in IHC staining. The H score has the range of 0–12. High group was
defined as expression intensity >=6. Low group was defined as expression intensity <6. NS, Not Statistically Significant; *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001.
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pathway, negatively regulates differentiation of T cell, positively
regulates regulatory T cell and macrophage as well as fibroblast
proliferation in LGG (Figures 6A, C) and pan-glioma analysis
(Figures S3A, C) from TCGA and CGGA. The signaling
network from KEGG pathway analysis further elucidates the
relevance between APOBEC3B and immune and inflammation
related pathways including antigen processing and presentation,
p53, JAK-STAT and T, B cell receptor signaling pathway in LGG
patients (Figures 6B, D) and pan-glioma analysis (Figures S3B, D).
As shown in Figure 6E, the result of GO pathway analysis revealed
that APOBEC3B was significantly related to immune infiltrating,
such as monocyte chemotaxis, neutrophil chemotaxis, lymphocyte
Frontiers in Oncology | www.frontiersin.org 754
chemotaxis, and lymphocyte mediated pathways. These data
suggest APOBEC3B might play an immunosuppression role in
the TME of glioma.

APOBEC3B Is Correlated With
Inflammatory Activities in Gliomas
A positive feedback loop of APOBEC3B and inflammatory response
mediator IL-6 has been found in hepatocellular carcinoma through
the JAK1/STAT3 pathway (22). Meanwhile, based on our analysis,
APOBEC3Bwas also involved in inflammatory responses in glioma.
We further observed that APOBEC3B was positively correlated with
MHC-1, MHC-2, STAT1, IFN, LCK, and HCK metagenes, but
A

B

C

FIGURE 3 | Higher APOBEC3B expression is related to poor survival in glioma and multiple cancers. Kaplan–Meier analysis of overall survival (OS) based on high vs
low expression of APOBEC3B in pan-glioma analysis, LGG, and GBM patients in (A) TCGA and (B) CGGA datasets. GBM patients were stratified according to the
cutpoint value automatically calculated in TCGA, and the cutpoint value was 3.1278. Kaplan–Meier analysis of overall survival (OS) based on high vs low expression
of APOBEC3B in (C) ACC, CHOL, ESCA, LIHC, LUAD, PAAD, UCEC, UCS and KICH.
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FIGURE 4 | APOBEC3B expression is related to genomic alterations in glioma. (A) Overall CNV profile according to high vs low APOBEC3B expression. Blue (de
changes based on (B) APOBEC3Blow and (C) APOBEC3Bhigh groups. The X-axis represents the frequency of chromosomal deletion (blue) or amplification (red).
(D) APOBEC3Blow and (E) APOBEC3Bhigh groups.
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negatively related to IgG metagene, a marker for B cells
in LGG patients (Figures S4A, B) and pan-glioma analysis
(Figures S4C, D) in TCGA and CGGA datasets.

APOBEC3B Is Related to Immune and
Stromal Cell Infiltration in Gliomas
We further explore the relevance of APOBEC3B expression and
ESTIMATE scores. Our results illuminated that APOBEC3B
expression was positively related to the immune score, stromal
score, and estimate score in the pan-glioma analysis (Figure S5A)
and LGG (Figure S5B) respectively. Immune suppression is a
significant feature of human gliomas which partly ascribes to TME
components. To further understand in-depth the relevance between
elevated APOBEC3B and immune tumor microenvironment, we
examined which immune-related cell types are influenced by
Frontiers in Oncology | www.frontiersin.org 956
APOBEC3B in glioma. Using cell type enrichment analysis, we
observed that APOBEC3B was strongly positively correlated with
activated CD4+ T cell, gd T cell, NK cells, dendritic cells and myeloid-
derived suppressor cells in LGG patients (Figures 7A, B) and pan-
glioma analysis (Figures S6A, B). Moreover, specific stromal cell
types like fibroblasts, epithelial cells, and monocyte are related to
glioma in LGG patients (Figures S5C, D) and pan-glioma analysis as
well (Figures S6C, D). Taken together, our results suggested that
increased APOBEC3B tend to recruit immune and stromal cells into
the tumor microenvironment in glioma.

Correlation Between APOBEC3B and
Immune Cells in Pan-Cancer
To further understand the relationships between APOBEC3B
and infiltrating immune cells in TME, we analyzed the
A D

B E

C F H

G

FIGURE 5 | Landscape of somatic mutation in APOBEC3Bhigh and APOBEC3Blow groups. (A–C) the comparisons of mutation frequencies of (A) every mutation type
classified by effects, (B) SNVs, (C) INDEL and SNP. (D) Forest plot shows the top 10 most significantly differentially mutated genes between two groups. Common
carcinogenic pathways in (E) APOBEC3Blow and (G) APOBEC3Nhigh group. The heatmap indicates the mutually exclusive mutations and co-occurring of the frequently
mutated genes in (F) APOBEC3Blow and (H) APOBEC3Nhigh groups. NS, Not Statistically Significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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correlation between APOBEC3B and several immune cells such
as activated CD4+ T cells, central memory CD8+ T cells,
macrophages, MDSCs, memory B cells, regulatory T cells, and
type 2 T helper cells in pan-cancer. And we found in KICH
(Figure 7C), PAAD (Figure 7D) and UCS (Figure 7E),
APOBEC3B expression was positively correlated with these
immune cells. In accordance with the results in gliomas,
APOBEC3B expression in UCS was mostly correlated with
macrophage, MDSC, regulatory T cell and type 2 helper cell,
which contributed to immunosuppression in TME, but these
immunosuppressive cells are less significantly correlated with
APOBEC3B in KICH and PAAD.
Frontiers in Oncology | www.frontiersin.org 1057
APOBEC3B Is Correlated With Other
Immune Checkpoint Molecules in Gliomas
Regarded as a prospective immunotherapy, immune checkpoint
inhibitors take an important role in the regulation of immune
response in cancers. We investigated the relationship between
APOBEC3B and several immune checkpoint genes in gliomas.
We found APOBEC3B was associated with CD276(B7-H3),
PDCD1LG2(PD-L2), IDO1, CD274(PD-L1), HAVCR2(TIM-3),
and CD80(B7-1) in pan-glioma analysis (Figure 8A) and LGG
(Figure 8B) in TCGA and CGGA datasets. We further
analyzed the prognostic value of APOBEC3B in combination
with CD276, PDCD1LG2, IDO1, and CD274. Significant worse
A B

C

E

D

FIGURE 6 | APOBEC3B-related biological functions in LGG. GO analysis based on APOBEC3B levels in (A) TCGA and (C) CGGA datasets in LGG patients. KEGG
pathway analysis based on APOBEC3B expression levels in (B) TCGA and (D) CGGA datasets in LGG patients. (E) The APOBEC3B related pathway revealed by
APOBEC3B positively associated genes in TCGA datasets with ClueGO.
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FIGURE 7 | Heatmaps illustrating the relationship between APOBEC3B and immune cell populations based on (A) TCGA and (B) CGGA in LGG patients.
Correlation of APOBEC3B expression with immune infiltration cells including activated CD4+T cells, central memory CD8+T cells, macrophages, MDSC, memory B
cell, regulatory T cells and Th2 cells in (C) KICH, (D) PAAD< (E) UCS.
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prognosis was observed in the patient group with the co-
upregulation of APOBEC3B and these genes in LGG patients
from TCGA and CGGA databases (Figures 8C, D).

Identification of a Gene Signature
Associated With Immune Cells
WGCNAs were applied to determine the genes most correlated
with high expression of APOBEC3B. Genes were clustered into
eight modules (Figures 9A), and the correlation between the
eight modules and the expression level of APOBEC3B was shown
in Figure 9B. The yellow module showed the highest correlation
coefficient with high APOBEC3B expression level. A significant
correlation between module membership in the yellow module
and gene significance for APOBEC3Bhigh was observed (Figure
9C). Then, GO enrichment analysis revealed that the neutrophil
activation, neutrophil chemotaxis, and chemokine-mediated
signaling pathway were the most related gene functions
associated with the high expression of APOBEC3B (Figure
9D). And KEGG enrichment analysis revealed that Th17 cell
differentiation, IL-17 signaling pathway, antigen processing and
presentation, Th1 and Th2 cell differentiation as well as NF-
kappa B signaling pathway were the most related pathways
involved in high expression of APOBEC3B (Figure 9E).
Frontiers in Oncology | www.frontiersin.org 1259
DISCUSSION

Somatic mutations are responsible for the transformation from
normal cells to cancer cells. Generally, somatic mutation has
been considered as a therapy evasion promoter of cancer.
Correspondingly, mutation can also promote antitumor T-cell
response. As the only member of the deaminase family with
constitutive nuclear localization, APOBEC3B, the endogenous
mutagenic factor, can induce genomic C-to-U lesions that are
correlated with a variety of mutagenic outcomes (23). Therefore,
we are interested in the characteristics of APOBEC3B in the
development of glioma.

To the best of our knowledge, studies about expression and
prognostic value of APOBEC3B have been conducted in several
cancer types. For example, highly expressed APOBEC3B is
regarded as an unfavorable prognostic factors in myeloma (11),
ovarian cancer (24), and clear cell renal cell carcinoma (25).
Immune-oncology has become a hot area for tumor therapy
nowadays. However, the immune-related and mutation-related
role of APOBEC3B in cancer metastasis has not been thoroughly
investigated. Most recently, the duality of APOBEC3B in
immunotherapy has been demonstrated, in which APOBEC3B
not only acts as the general driving force of therapy escape but
A

C

D

B

FIGURE 8 | Correlation of APOBEC3B expression with other immune checkpoint molecules in gliomas. Correlation analyses of APOBEC3B and other immune
checkpoints in (A) pan-glioma analysis and (B) LGG patients from TCGA (left) and CGGA (right) datasets. Analyzing combined prognostic value of APOBEC3B and
CD276, PDCD1LG2, IDO1 and CD274 expression in LGG patients from (C) TCGA and (D) CGGA datasets.
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also significantly activates the immune system in melanoma (15).
As important parts of TME, inflammatory cells and infiltrating
immune cells are closely related to curative effect. Thus,
understanding the TME can help to unveil the mechanisms of
tumor development and shed light on tumor therapy. Previous
study has proved that APOBEC3B is related to an active immune
infiltration in high-grade serous ovarian carcinoma (26). But the
activation of tumor-infiltrating immune cells also mediates
APOBEC3B deletion in breast cancer in Asian patients (27).

In the current study, we characterized the landscape of
APOBEC3B among glioma and other cancers via a large-scale
bioinformatic analysis. We observed that APOBEC3B expression
was upregulated in numerous cancer categories. In gliomas, the
Frontiers in Oncology | www.frontiersin.org 1360
increasing expression level of APOBEC3B is consistent with the
increasing grade of gliomas based on WHO classification.
Presumable worse prognosis was observed in glioma patients
with higher expression of APOBEC3B, and the result was further
verified in ACC, CHOL, ESCA, LIHC, LUAD, PAAD, UCEC,
UCS, and KICH in our study. Meanwhile, APOBEC3B was
closely related to oncogenic mutation in our study, indicating
its role in carcinogenesis. Thus, APOBEC3B has prognostic value
in pan-cancer.

In GO and KEGG analysis, another major finding of our
study was that elevated APOBEC3B was significantly
accompanied by inflammatory, stromal and immune related
signaling pathways in LGG, among which fibroblast
A

B C

D E

FIGURE 9 | Higher expression of APOBEC3B related gene signature identification. (A) WGCNA was applied to identify the clustered eigengene modules. (B) Seven
modules are identified by WGCNA. (C) The yellow module has the highest correlation (r = 0.96, P = 1.6e-112). (D) Go analysis was performed based on
APOBEC3Bhigh related genes. (E) KEGG analysis was performed based on APOBEC3B high related genes.
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proliferation, negative regulation of T cell, positive regulation of
Tregs and cytokines productions were most significant.
Furthermore, upregulated APOBEC3B was significantly
associated with immune cells and stromal cells’ infiltration
in gl ioma based on ESTIMATE algorithm. Several
immune infiltrating cell types possess the features of
immunosuppression: It is well documented that MDSC is able
to inhibit innate and adaptive immunity (28), and macrophages
have been indicated to promote cancer cell proliferation,
immunosuppression, and angiogenesis in cancers (29). Treg
not only can suppress the activation and expansion of different
effector cells from mediating autoimmunity, but also can
negatively affect immune therapies concerning immune
checkpoints inhibitors (30, 31). Moreover, Th2 responses are
generally considered undesirable since they mitigate against
cytotoxic antitumor immune mechanisms in glioma (31). Cell
type enrichment analysis further revealed that APOBEC3B was
significantly correlated with MDSC, macrophage, regulatory
T cells, and Th2 cells in glioma, KICH, PAAD, and UCS,
providing evidence to the statement that APOBEC3B was an
immunotherapy escape driver in LGG. Taken together, we
proposed that APOBEC3B may be involved in the regulation
of immunosuppressive microenvironment by recruiting
immunosuppression cells and might become a selective target
to inhibit immunosuppression.

The efficient treatment option for glioma is limited. Diverse
cancer immunotherapeutic approaches have exhibited
significant and exciting treatment outcomes for several cancer
types, and have also triggered unparalleled research interest in
glioma. Nowadays, glioma immunotherapy research
predominantly focuses on immunosuppressive ICBs, CAR-T
cells, vaccine, and oncolytic viruses (7). Although blood brain
barrier and immunosuppressive TME in glioma patients
suppress the efficiency of ICB treatment, ICBs do have
revolutionized the treatment of solid malignant tumor. Our
analysis illuminated that APOBEC3B was correlated with
immune checkpoints including CD276, PDCD1LG2, IDO1,
CD274, and TIM-3 in LGG and pan-glioma analysis. These
immune checkpoints are promising immunotherapeutic targets
for glioma, which CD276, PDCD1LG2, IDO1 and TIM-3 are
both unfavorable prognosticator for glioma patients (32–35). In
our current study, the co-upregulation of APOBEC3B and
CD276, PDCD1LG2, IDO1, and CD274 suggested worse
survival probability. CD276 has become a novel Cart-T target
for GBM (36) while inhibition of PD-1/PD-L1 pathway can be a
latent treatment strategy for glioma (37). Other promising
immune checkpoint molecules like 4-1BB, GITR, and TIGIT
are further being considered to enter early phase clinical trials
(38). Immune checkpoints also take part in immunosuppression:
upregulating PD-L1 can bind receptors on immune cells and
suppress lymphocyte activation (39, 40). The correlation between
APOBEC3B and these classic immune checkpoint molecules
indicates that targeting APOBEC3B may become a potential
approach for mediating immunotherapeutic response in
LGG patients.
Frontiers in Oncology | www.frontiersin.org 1461
WGCNA is well applied to classify the high-throughput
sequencing data into subsets of genes with cell-specific
expression; therefore, we applied WGCNA to identify the
APOBEC3Bhigh related genes. In our study, the yellow module
was the most correlated one; further GO analysis revealed that
neutrophil activities and chemokine-mediated signaling pathway
were the most represented activities related to higher expression
of APOBEC3B. Moreover, negative regulation of T cell activities
further demonstrated that higher expression of APOBEC3B was
correlated with activated inflammation and immunosuppression.
In the KEGG analysis, IL-17 signaling pathway was the most
relevant activity that occurred in patients with higher level of
APOBEC3B. IL-17 is a cytokine produced by Th17 cell,
suggesting the crucial role of Th17 cell in glioma pathogenesis.

In summary, our results revealed that APOBEC3B
overexpression was related to aggressive clinicopathologic
features, poor prognosis, inflammatory and immune pathways
in glioma. These findings may be helpful in further optimizing
diagnosis and immune treatments for LGG.
DATA AVAILABILITY STATEMENT

All data used in this work can be acquired from the Cancer
Genome Atlas (TCGA) datasets (https://xenabrowser.net/), the
Chinese Glioma Genome Atlas (CGGA) datasets (http://www.
cgga.org.cn/).
AUTHOR CONTRIBUTIONS

HZ and QC conceptualized and designed the study. QC and ZL
provided foundation support. HZ and ZC acquired and analyzed
the data. HZ and ZC interpreted the data. HZ, ZC, ZW, ZD, ZH,
XZ and QC drafted the manuscript and revised it for submission
quality. All authors contributed to the article and approved the
submitted version. QC supervised the study.
FUNDING

This work was supported by the National Natural Science
Foundation of China (Nos. 82073893, 81703622, 81472693,
and 81873635), China Postdoctoral Science Foundation (No.
2018M633002), Hunan Provincial Natural Science Foundation
of China (No. 2018JJ3838), Hunan Provincial Health and Health
Committee Foundation of China (C2019186).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.
625838/full#supplementary-material
March 2021 | Volume 11 | Article 625838

https://xenabrowser.net/
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://www.frontiersin.org/articles/10.3389/fonc.2021.625838/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.625838/full#supplementary-material
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. APOBEC3B in Lower-Grade Gliomas
Supplementary Figure 1 | Relationship between APOBEC3B and
methylation statues. (A). Relationship between APOBEC3B and the mean
value of methylation status at promoter region in TCGA. Relationship between
APOBEC3B and methylation status at promoter region in TCGA:
(B) cg01089751, (C) cg06837067, (D) cg11816043, (E) cg14194956,
(F) cg14387414, (G) cg16045423, (H) cg21707131, (I) cg25787886,
(J) cg26000393. The orange dots represent IDH-mutant samples, and cyan
dots represent IDH wild-type samples, respectively. The orange line and cyan
line represent linear regression between APOBEC3B expression and promoter
region methylation in IDH-mutant samples and IDH wild-type samples,
respectively.

Supplementary Figure 2 | Relationship between APOBEC3B and (A) anatomic
structure analysis. CT (Cellular Tumour), HBV (Hyperplastic Blood Vessels), IT
(Infiltrating Tumour), LE (Leading Edge), MVP (Microvascular Proliferation), PAN
(Pseudopalisading Cells Around Necrosis) and PNZ (Perinecrotic Zone).
(B) APOBEC3B copy number in TCGA pan-glioma. (C) distinct radiographical
regions of glioma. (D) different histology analysis from CGGA database. (E) different
disease conditions including primary, recurrent and secondary from CGGA
database. (F) different treatment outcomes.
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Supplementary Figure 3 | APOBEC3B-related biological functions in gliomas.
GO analysis based on APOBEC3B levels in (A) TCGA and (C) CGGA datasets in
pan-glioma analysis. KEGG pathway analysis based on APOBEC3B expression
levels in (B) TCGA and (D) CGGA datasets in pan-glioma analysis.

Supplementary Figure 4 | Heatmaps illuminating APOBEC3B related
inflammatory activities in LGG and pan-glioma. Analysis between APOBEC3B and
inflammatory metagenes in LGG from (A) TCGA and (B) CGGA datasets and pan-
glioma analysis from (C) TCGA and (D) CGGA.

Supplementary Figure 5 | Correlation between APOBEC3B expression and
ESTIMATE algorithm scores in gliomas. APOBEC3B expression was positively
correlated with immune score, stromal score and ESTIMATE score in (A) pan-
glioma analysis and (B) LGG patients. The relationship between APOBEC3B and
stromal cell populations based on (C) TCGA and (D) CGGA in LGG patients.

Supplementary Figure 6 | Heatmaps illustrating the relationship between
APOBEC3B and immune cell populations based on (A) TCGA and (B) CGGA in
pan-glioma analysis. The relationship between APOBEC3B and stromal cell
populations based on (C) TCGA and (D) CGGA in pan-glioma analysis.
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Background:Glioblastoma (GBM) is the most aggressive intracranial tumor which can be
divided into two subtypes based on status of isocitrate dehydrogenase (IDH). A small
fraction of patients after receiving standard treatment can be long-term survivors (LTS).
This study was designed to disclose the predictors and clinical implications associated
with LTS in IDH wildtype and mutant GBM.

Methods: Patients who survived beyond five years after diagnosis of GBM were
defined as LTS, while those with a survival less than one year were defined as short-
term survivors (STS). A total of 211 patients with diagnosis of GBM in Beijing Tiantan
Hospital from January 2007 to January 2015 were enrolled, including 44 (20.9%) LTS and
167 (79.1%) STS. The clinical, radiological and molecular features between groups were
systematically compared.

Results: Compared with STS, LTS were a subgroup of patients with a younger age at
diagnosis (P=0.006), a higher KPS score (P=0.011), higher rates of cystic change
(P=0.037), O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation
(P=0.007), and IDH mutation (P=0.049), and more likely to have undergone gross total
resection (P<0.001). Survival analysis demonstrated that LTS with wildtype IDH conferred
a longer progression-free survival (66.0 vs. 27.0 months, P=0.04), but a shorter post-
progression survival (46.5 months vs. not reached, P=0.0001) than those of LTS with
mutant IDH. LTS with mutant IDH showed a trend towards increased survival after
receiving re-operation (P=0.155) and reirradiation (P=0.127), while this clinical benefit
disappeared in the subset of LTS with wildtype IDH (P>0.05).

Conclusion: The prognostic value and therapeutic implications associated with LTS in
GBM population significantly differed on the basis of IDH status. Our findings provide a
new approach for physicians to better understand the two subtypes of GBM, which may
assist in making more tailored treatment decisions for patients.

Keywords: glioblastoma, long-term survivor, IDH, precision medicine, treatment
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INTRODUCTION

Glioblastoma (GBM) is one of the worldwide intractable
malignancies in adults (1). Despite advances in the therapeutic
regimens during past few decades, the clinical outcomes of
patients with GBM have not been substantially improved (2–
4). It is reported that most of patients will progress within one
year after resection, and the median survival is less than two
years (4). Although the survival rate of GBM remains
unfavorable, there are still a few patients who demonstrate an
extraordinary response to treatment with a prolonged
progression-free survival (PFS); some patients even survive
more than five years (5–7). But unfortunately, the intrinsic
characteristics of these long-term survivors (LTS) are still
unclear (5).

Previous studies have established that isocitrate dehydrogenase
(IDH) mutation was a strong predictor associated with long-term
survival of patients with GBM (8, 9), which has led the
neuropathologists to reclassify GBM into two molecular
subtypes: IDH-wildtype (IDH-wt) GBM and IDH-mutant
(IDH-mut) GBM (10). Traditionally, IDH-mut GBM is regarded
as a secondary malignancy that had transformed from a low-grade
diffuse glioma (11). Meanwhile, IDH-wt GBM, which represents
the major component (>90%) of the whole GBM cohort, is
clinically defined as primary GBM (10). There are some studies
that have explored the predictors for becoming a long-term
survivor within the GBM population (5, 6, 8, 9). But up to now,
no studies have compared the characteristics and clinical
implications associated with LTS between IDH-wt and IDH-
mut GBM.

Therefore, in the present study, we systematically compared
the clinical, radiological and molecular characteristics between
LTS and short-term survivors (STS) in the cohort of GBM.
Furthermore, the intrinsic characteristics and clinical
implications correlated with LTS between IDH-wt and IDH-
mut GBM have also been explored. We found that the clinical,
radiological, and molecular features of IDH-wt and IDH-mut
LTS were significantly different and the two subtypes of LTS
showed distinct PFS and post-progression survival (PPS), which
can help the physicians to better understand GBM and may
contribute to making more tailored treatment decisions
for patients.
MATERIALS AND METHODS

Patient Cohort
Forty-four patients who survived beyond five years after
diagnosis of GBM (LTS) and 167 patients who survived less
than one years after diagnosis of GBM (STS) between January
2007 and January 2015 in Beijing Tiantan Hospital affiliated to
Capital Medical University were selected for inclusion in this
study. Pathology review was performed by two experienced
neuropathologists according to the 2016 World Health
Organization (WHO) classification schema (10). All the
patients, in our institution, once diagnosed with GBM are
Frontiers in Oncology | www.frontiersin.org 265
recommended to proceed with post-operative combination
radiation and chemotherapy. However, there are still a small
number of patients who missed out on chemotherapy or
radiation for personal reasons. Radiation was performed within
one month after operation, with a total dose of 60 Gy which was
further divided into 30 fractions. The adjuvant chemotherapy
regimen was mainly nimostine (ACNU) and temozolomide
(TMZ), according to the previously described protocol (12).
When tumor progressed, re-operation and reirradiation were
performed if possible. Rechallenge with chemotherapy which
commonly consisted of a combination of bevacizumab and
temozolomide (TMZ) could be also attempted if patients
showed relatively normal laboratory tests and maintained a
reasonable performance status (ECOG: 0-2) (13).

Radiological Evaluation
The radiological evaluation was performed by 3 experienced
neuroradiologists who were blind to the clinical outcome of
patients. Radiological features included tumor location, tumor
size, enhancement, cystic change, and extent of resection. The
calculation of tumor size was mainly based on the T1-weighted
imaging (T1WI) contrast enhanced area. Enhancement was
classified into three subtypes: solid, ring, irregular (Figure 1)
(14). Solid subtype was relatively uniformly enhanced and
concurrent with a well-circumscribed edge. Ring subtype was
characterized by a ring-like enhancement with central necrosis
or cyst. Irregular subtype had scattered enhancement which was
irregularly shaped. A cystic tumor was defined as those with a
large cyst cavity comprising at least half of the whole tumor and
the cyst was filled with fluid that showed a radiographic
appearance similar to cerebrospinal fluid on T2-weighted
imaging (T2WI) (Figure 1) (15). Hence, tumors with fluid-
filled cysts and those with large central necrosis were both
regarded as cystic tumors in this study. Within 72 hours after
operation, an enhanced magnetic resonance imaging (MRI) was
carried out to assess the extent of resection (EOR). EOR was
calculated on the basis of contrast-enhanced T1WI, according to
the following equation: (preoperative tumor volume -
postoperative tumor volume)/preoperative tumor volume.

Molecular Biomarkers Detection
Abnormality of chromosome 1p/19q, IDH mutation and O6-
methylguanine-DNA methyltransferase (MGMT) promoter
methylation were respectively analyzed by fluorescence in situ
hybridization (FISH) (16), Sanger sequencing (17) and
pyrosequencing (18), according to previously described methods
(Figure 2). Ki-67 index was detected by immunohistochemistry
(IHC) staining which was done with a monoclonal mouse
antibody (1:80 dilution, Dako) (Figure 2). The expression level
of the Ki-67 index was defined as either high (≥30%) or low
(<30%) for interpretation, according to the percentage of IHC-
positive cells (19).

Follow-Up
After operation, patients were regularly followed up with brain
MRI scans until death. MRIs were performed at an interval of
three months, or more frequent in the event of clinical changes,
May 2021 | Volume 11 | Article 632663
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such as seizures or neurologic deterioration. Progression pattern
was divided into local and non-local subtypes based on the
preoperative and serial postoperative radiographic images
(Figure S1). Local recurrence was those with lesion located in
the resection cavity or in continuity with it, or less than 2 cm
from the primary tumor margins, while the recurrence lesion
border beyond 2 cm from the original cavity was defined as non-
local failure (20). PFS was defined as the time period from the
date of operation to the date of progression or recurrence
demonstrated by MRI, death or last follow up. Overall survival
(OS) was defined as the time period from the date of initial
operation to the date of death or last follow-up. Timespan
between the first progression and death/last follow-up was
defined as post-progression survival (PPS). The median follow-
up of this cohort was 71.5 (range: 1.0-130.0) months. There were
195 (92.4%) patients with progression and 176 (83.4%) patients
had died by the time of data analysis.

Statistical Analysis
All the analyses were performed with SPSS (version 22.0,
Chicago, IL, USA) and R software (http://www.r-project.org,
The R Foundation). Comparisons of categorical variables
Frontiers in Oncology | www.frontiersin.org 366
between the groups were performed using chi-square test or
Fisher’s exact test, while differences in age at diagnosis, tumor
size and Karnofsky performance scale (KPS) score were
evaluated by student t-test. The variables with P values less
than 0.05 were entered into the multivariate logistic regression
analysis to identify the independent predictors of LTS. Survival
rates were calculated using the Kaplan-Meier methods, and
differences were compared by log-rank tests. All tests were
two-sided, and difference with a P value less than 0.05 was
considered to be statistically significant.
RESULTS

Patient Population
We identified 211 patients, including 44 (20.9%) LTS and 167
(79.1%) STS. Of these 44 LTS, there were 17 (38.6%) patients
with wildtype IDH and 27 (61.4%) patients with mutant
IDH. Our cohort consisted of 126 males and 85 females with a
mean age of 49.0 ± 11.8 years. All the clinical, radiological,
and molecular characteristics of patients were summarized in
Table 1.
FIGURE 1 | Panel I: Representative images of solid (A), ring (B), and irregular (C) enhancement. Panel II: Typical images of cystic GBM. A tumor in the right insular
lobe with fluid-filled cysts (A, B) and a tumor in the right frontal lobe with large central necrosis (C, D).
May 2021 | Volume 11 | Article 632663
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Comparison of Baseline Characteristics
Between STS and LTS

LTS patients were younger (41.2 ± 11.1 vs. 49.9 ± 11.3, P < 0.001),
and had higher KPS score (82.2 ± 8.3 vs. 76.2 ± 14.9, P = 0.002)
than the STS. But they shared a similar gender ratio and tumor
size (P > 0.05). There were more frontal tumors in LTS (59.1% vs.
35.9%, P = 0.039), but no significant difference has been observed
in the laterality (P = 0.138). The enhancement features were also
similar between STS and LTS (P = 0.139), while LTS showed a
higher frequency of cystic change (56.8% vs. 19.2%, P < 0.001).
With respect to the treatment information, LTS patients were
more likely to have undergone gross-total resection (GTR)
(86.4% vs. 31.7%, P < 0.001), and to have received
Frontiers in Oncology | www.frontiersin.org 467
chemotherapy (100.0% vs. 91.6%, P = 0.084) and radiotherapy
(100.0% vs. 86.2%, P = 0.005), compared with the STS. The
molecular profile of LTS patients was characterized by a higher
rate of MGMT promoter methylation (70.6% vs. 34.9%,
P<0.001), IDH mutation (61.4% vs. 13.2%, P < 0.001), and 1q/
19p co-polysomy (25.7% vs. 12.6%, P = 0.047). The Ki-67 index
was similar among groups (P = 0.510) (Table 1).

On the basis of these predictors identified by univariate analyses,
a multivariate logistic regression model was built. The final results
showed that age < 50 years (odds ratio [OR] = 1.081, 95%
confidence interval [CI]: 1.022-1.141, P = 0.006), KPS score ≥ 70
(OR = 22.354, 95% CI: 2.028-246.449, P = 0.011), cystic change
(OR = 3.791, 95% CI: 1.082-13.275, P = 0.037), GTR (OR = 18.731,
95% CI: 4.636-75.690, P < 0.001), MGMT promoter methylation
FIGURE 2 | Panel I, FISH detection result of 1q/19p polysomy: 1p intact (A), 1q polysomy (B), 19q intact (C), 19p polysomy (D). Panel II: Sanger sequence of IDH1
mutation. Panel III: Assay of MGMT promoter methylation in GBM. Panel IV: Immunohistochemical staining of high (A) and low (B) Ki-67 index.
May 2021 | Volume 11 | Article 632663
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(OR = 5.553, 95% CI: 1.591-19.379, P = 0.007), and IDH mutation
(OR = 4.321, 95% CI: 1.007-18.535, P = 0.049) were confirmed as
predictive factors for LTS (Table 2).
Comparison of Baseline Characteristics
Between IDH-Wt and IDH-Mut LTS
Compared with the IDH-wt LTS, IDH-mut LTS had a lower rate
of solid enhancement (44.4% vs. 82.3%, P = 0.036), but higher
rates of cystic change (70.4% vs. 35.3%, P = 0.022), local
recurrence (95.0% vs. 37.5%, P = 0.003), and 1q/19p co-
polysomy (44.4% vs. 5.9%, P = 0.018). The Ki-67 index of
IDH-mut LTS was lower than that in the IDH-wt LTS, but the
difference was not statistically significant (16.7% vs. 47.1%, P =
0.053) (Table 3).
TABLE 1 | Comparisons of baseline characteristics between short- and long-
term survivors.

Variables All (n=211) STS (n=167) LTS (n=44) P value

Age at diagnosis (years) 49.0 ± 11.8 49.9 ± 11.3 41.2 ± 11.1 <0.001
Gender 0.432
Male 126/211 102/167 24/44

KPS score 80.0 ± 14.2 76.2 ± 14.9 82.2 ± 8.3 0.002
Tumor size (mm) 49.2 ± 18.9 49.5 ± 19.1 48.1 ± 18.3 0.652
Tumor location 0.039*
Frontal 86/211 60/167 26/44
Temporal 56/211 45/167 11/44
Parietal 35/211 32/167 3/44
Occipital 18/211 16/167 2/44
Others 16/211 14/167 2/44

Laterality 0.138
Right 92/211 67/167 25/44
Left 95/211 80/167 15/44
Bilateral 24/211 20/167 4/44

Enhancement 0.139
Solid 144/211 118/167 26/44
Ring 38/211 30/167 8/44
Irregular 29/211 19/167 10/44

Cystic change <0.001
Yes 57/211 32/167 25/44

Extent of resection <0.001
GTR 91/211 53/167 38/44

Chemotherapy 0.084
Temozolomide 170/211 134/167 36/44
Nimostine 27/211 19/167 8/44
None 14/211 14/167 0/44

Radiotherapy 0.005*
Yes 188/211 144/167 44/44

Recurrence pattern 0.838
Local 156/195 134/167 22/28

MGMT promotor <0.001
Methylation 68/160 44/126 24/34

IDH <0.001
Mutation 55/211 28/167 27/44

1q/19p co-polysomy 0.047
Yes 30/202 21/167 9/35

Ki-67 index 0.510
High 70/193 59/158 11/35
Frontiers in Oncology | ww
w.frontiersin.o
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KPS, Karnofsky performance scale; GTR, gross-total resection; MGMT, O6-
methylguanine-DNA-methyltransferase; IDH, isocitrate dehydrogenase.
*by Fisher exact test.
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TABLE 2 | Results of multivariate logistic regression analysis.

Variables Odds ratio (OR) 95% Confidence interval (CI) P value

Age at diagnosis
<50 years 1.081 1.022-1.141 0.006

KPS score
≥70 22.354 2.028-246.449 0.011

Cystic change
Yes 3.791 1.082-13.275 0.037

Extent of
resection
GTR 18.731 4.636-75.690 <0.001

MGMT promotor
Methylation 5.553 1.591-19.379 0.007

IDH
Mutation 4.321 1.007-18.535 0.049
May 2021 | Volume 11 | Article
KPS, Karnofsky performance scale; GTR, gross-total resection; MGMT, O6-
methylguanine-DNA-methyltransferase; IDH, isocitrate dehydrogenase.
TABLE 3 | Comparisons of baseline characteristics between IDH-wt and IDH-
mut long-term survivors.

Variables IDH-wt (n=17) IDH-mut (n=27) P value

Age at diagnosis (years) 41.1 ± 12.3 41.3 ± 10.5 0.938
Gender 0.651
Male 10/17 14/27

KPS score 80.0 ± 8.7 84.7 ± 7.4 0.115
Tumor size (mm) 52.4 ± 16.3 45.3 ± 19.2 0.213
Tumor location 0.351
Frontal 10/17 16/27
Temporal 6/17 5/27
Parietal 0/17 3/17
Occipital 1/17 1/27
Others 0/17 2/27

Laterality 0.342
Right 8/17 17/27
Left 8/17 7/27
Bilateral 1/17 3/27

Enhancement 0.036
Solid 14/17 12/27
Ring 2/17 6/27
Irregular 1/17 9/27

Cystic change 0.022
Yes 6/17 19/27

Extent of resection 0.380*
GTR 16/17 22/27

Chemotherapy 0.125*
Temozolomide 16/17 20/27
Nimostine 1/17 7/27

Radiotherapy NA
Yes 17/17 27/27

Recurrence pattern 0.003*
Local 3/8 19/20

MGMT promotor 1.0
Methylation 12/17 12/17

1q/19p co-polysomy 0.018*
Yes 1/17 8/18

Ki-67 index 0.053
High 8/17 3/18
IDH, isocitrate dehydrogenase; KPS, Karnofsky performance scale; GTR, gross-total
resection; MGMT, O6-methylguanine-DNA-methyltransferase; NA, not applicable.
*by Fisher exact test.
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Differential Clinical Implications Between
IDH-wt and IDH-Mut LTS
With respect to the prognostic implication of IDH in LTS
patients, the survival rates between IDH-wt and IDH-mut
subgroups in terms of PFS, OS, and PPS were compared.
Results demonstrated that IDH-wt LTS shared a similar
survival rate with IDH-mut LTS in regard to OS (P = 0.262)
(Figure 3A). But interestingly, the median PFS of IDH-wt LTS
was unexpectedly longer than that of IDH-mut LTS (66.0 vs. 27.0
months, P = 0.040). Conversely, the median PPS of IDH-wt LTS
was significantly shorter than that of IDH-mut LTS (46.5 months
vs. not reached, P = 0.0001) (Figures 3B, C).

Considering the distinct survival distribution in PFS and PPS
between IDH-wt and IDH-mut LTS, we explored the clinical
implication of recurrence pattern in LTS patients. Of these 44
LTS, 22 patients (including 3 IDH-wt LTS and 19 IDH-mut LTS)
experienced local recurrence at a median period of 18.5 (10.0-
29.0) months and 6 patients (including 5 IDH-wt LTS and 1
IDH-mut LTS) experienced non-local recurrence at a median
period of 45.0 (16.2-76.8) months, which imparted a significant
difference (P = 0.043) (Figure 4A). Moreover, the percent of
death was also markedly different between patients with local
and non-local recurrence (P = 0.006) (Figure 4B).

Of the 28 patients who underwent tumor progression, 12
(42.9%) patients (including 4 IDH-wt LTS and 8 IDH-mut LTS)
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received re-operation, 15 (53.6%) patients (including 5 IDH-wt
LTS and 10 IDH-mut LTS) received reirradiation, and all
(100.0%) patients (including 8 IDH-wt LTS and 20 IDH-mut
LTS) received rechallenge with chemotherapy (Figure S2).
Kaplan-Meier plots demonstrated that IDH-mut LTS showed a
trend towards increased survival after receiving re-operation (P =
0.155) and reirradiation (P = 0.127), while this clinical benefit
disappeared in the subset of IDH-wt (P>0.05) (Figure 5).
DISCUSSION

GBM is the most aggressive intracranial malignancy, with rapid
growth, inevitable recurrence and high mortality (4). Only a
small fraction of patients can achieve a long-term survival after
surgical resection and chemoradiotherapy. But the diagnostic
threshold of LTS varies significantly in the pre-existing
literatures, ranging from 2 years to 5 years (5, 9, 18, 21). As
the median survival of patients with GBM is about 1 year and 5-
years survival rate is regarded as a predictor of better tumor
control, patients who survived beyond 5 years after diagnosis, in
this study, were identified as LTS, while those with a survival less
than 1 year were defined as STS (5). We systematically compared
the clinical, radiological, and molecular features between STS
and LTS. Although the characteristics of LTS in GBM have been
A

C

B

FIGURE 3 | Survival comparisons in regards to OS (A), PFS (B) and PPS (C) between IDH-wt and IDH-mut LTS.
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widely investigated (5, 6, 8, 9, 18, 21, 22), there is no study
devoted to exploring the intrinsic properties of IDH-wt and
IDH-mut LTS. To our knowledge, it’s the first study that was
aimed to disclose the differential predictors and clinical
implications between IDH-wt and IDH-mut LTS. Our results
demonstrated that IDH-mut LTS had a lower rate of solid
enhancement, but higher rates of cystic change, 1q/19p co-
polysomy, and local recurrence. IDH-mut LTS showed a
shorter PFS, but a significantly prolonged PPS than those of
IDH-wt LTS.

Younger age, better performance status, and higher resection
degree are universally regarded as predictors of superior survival
in GBM (5, 23–27). In this study, we found that LTS were a
subgroup of patients who had a younger age, a higher KPS score,
and a more radical resection. In 2014, Field et al. compared the
characteristics between patients who survived more than 2 years
and those with a survival less than 6 months (23). Final results
showed that younger age, better performance status, gross
macroscopic resection, and clinical trial participation were
independent predictors of LTS (23). Similarly, some authors
have explored the features of LTS who were defined as surviving
Frontiers in Oncology | www.frontiersin.org 770
over 3 years by comparing with controls and found that LTS
were younger, had better performance status, and were more
likely to have received GTR and adjuvant chemotherapy (24, 25).
These studies, however, enrolled a small number of LTS, which
to a certain extent decreased the reliability of conclusions.
Recently, a report of 2249 LTS from National Cancer Database
maintained that factors associated with improved 5-year survival
were younger age, female gender, less medical comorbidities,
non-white race, higher salary, left-sided tumors and tumors
outside the brainstem, and radiotherapy (5). However, the
molecular parameters have not been explored in the study.

In addition to the clinical factors, the molecular biomarkers,
such as IDH and MGMT, are also closely correlated with
patient’s survival (18, 24, 28–30). Most of the prior studies
repeatedly demonstrated that IDH mutation was a prognostic
factor associated with prolonged survival (18, 31). GBM was
divided into two major categories based on the status of IDH
since 2016 when the latest World Health Organization
classification schema of brain tumor was issued (10). In our
study, the frequencies of IDH mutation and MGMT promoter
methylation in LTS were significantly higher than those in STS,
which was consistent with previous findings (18). Barbus et al.
found that IDH mutation was more prevalent in LTS (28).
However, in a larger cohort study of comparative patients, the
presence of IDH mutation was not significantly associated with
LTS (9). Of note, their further analysis showed that significantly
more LTS were MGMTmethylated and IDHmutant (9). MGMT
is a DNA repair protein involved in reversing methylation
damage from alkylating agent (32). It ’s universally
acknowledged that methylated MGMT is linked to increased
chemosensitivity and generally confers an improved survival
(32). The frequency of MGMT promoter methylation of LTS
was 70.6% in our study, which was in accordance with prior
results (6, 9, 24, 29, 30). It is well-established that methylated
MGMT is more prevalent in LTS of GBM, compared with the
STS patients (18, 24, 29, 30). Together these suggest that MGMT
methylation is one of the most important features of LTS.

Within the group of LTS, solid enhancement seemed to be
more likely occurred in IDH-wt LTS, while cystic change was
predominant in IDH-mut group. Rathore and colleagues divided
GBM into three distinct subtypes based on the signature of
enhancement and found that classical tumors were more
prevalent in the solid subtype which showed the worst clinical
outcome (14). Cystic change is confirmed as a prognostic factor
associated with favorable outcomes (33, 34). Some authors held
that cystic GBM may develop from malignant transformation of
a previously undiagnosed cystic low-grade glioma (34). This
explained why cystic change occurred more frequently in IDH-
mut GBM cases which had a history of low-grade glioma within
our cohort. Utsuki et al. (34) believed cystic GBM was less
aggressive and had little infiltration of the peritumoral brain
tissue, which is consistent with the lower Ki-67 index
demonstrated in the tumors of the IDH-mut GBM group in
our study. Furthermore, we found IDH-mut LTS presented with
a higher rate of 1q/19p co-polysomy than IDH-wt GBM. In 2017,
Zeng et al. analyzed the prognostic implication of 1q/19p
A

B

FIGURE 4 | (A) Median time from diagnosis to development of progression
was 18.5 months for local recurrence and 45.0 months for non-local
recurrence (P = 0.043). (B) Median survival after diagnosis of non-local
recurrence was 46.5 months, which was shorter than that of local recurrence
(P = 0.006).
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polysomy in two large cohorts of astrocytic gliomas and found
co-polysomy was an independent prognostic factor associated
with prolonged survival (35). All the findings imply that IDH-
mut GBM seems to be a less aggressive brain tumor, compared
with IDH-wt GBM.

The most interesting finding of our study was that IDH-wt LTS
showed a significantly higher rate of non-local failure compared
with that in IDH-mut group, which determined the different
survival distribution spectrum between IDH-wt and IDH-mut
LTS. As we all know, non-local failure is a fatal event which
commonly occurs later than local failure (20). In our study, the
median time period from diagnosis to local failure was 18.5
months, which was shorter than the interval between diagnosis
and non-local failure. Meanwhile, IDH-wt LTS had a higher rate
of non-local failure than that of IDH-mut LTS. Therefore, the
favorable PFS among IDH-wt LTS could be ascribed to a higher
rate of non-local failure. Notably, although IDH-wt LTS conferred
a longer PFS, the PPS of these patients was significantly shorter
than IDH-mut LTS. With an attempt to interpret the opposite
result observed in PPS, we explored the relationship between post-
progression treatments and PPS. Finally, the survival analyses
demonstrated that IDH-mut LTS showed a trend towards
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increased survival after receiving re-operation and reirradiation,
while the clinical benefits disappeared in the subset of IDH-wt.
Hence, non-local failure can be regarded as an endpoint event that
predicts a poor treatment response.

There are several limitations of this study. Firstly, the fact that
it is a retrospective study, means that there has been bias relating
to our patient selection. Secondly, given the wide confidence
intervals in some subgroups, our results should be interpreted
with caution. Additionally, we should continue this study until
the last patient reached the endpoint in order to recheck and
confirm the results and conclusions in the future. Finally,
functional and employment status of LTS in addition to
cognition was not recorded which was of great importance in
terms of assessing the quality of life (36).
CONCLUSIONS

Despite improvements of median survival achieved in recent
years, the percentage of patients surviving more than five years
after diagnosis of GBM remains low. IDH-wt and IDH-mut LTS
A

C

B

D

FIGURE 5 | Prognostic implications of different kinds of treatment regimens in IDH-wt and IDH-mut subtypes. In the subset of IDH-wt LTS, no obvious clinical
benefit has been observed after receiving re-operation (A) or reirradiation (C) while IDH-mut LTS show a trend towards increased survival after receiving re-operation
(B) and reirradiation (D).
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are two distinct subgroups which differ radically in terms of
clinical, radiological, and molecular characteristics. Our findings
provide a new approach for physicians to better understand the
IDH-wt and IDH-mut GBM, which may contribute to
developing more tailored therapeutic strategies for patients.
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Supplementary Figure 1 | Panel I: Representative images of local recurrence
(A–C). Preoperative image showed a lesion in the left frontal lobe, which was totally
removed during operation. While 38 months after operation, the tumor recurred at
the resection cavity. Panel II: Representative images of non-local recurrence (A–F).
Preoperative images showed a lesion in the left temporal lobe, which was totally
removed during operation. After 45 months follow-up, a new non-enhanced lesion
far from the original resection cavity was found in the corpus callosum.

Supplementary Figure 2 | No significant difference was observed between IDH-
wt and IDH-mut LTS in the number of patients who received re-operation (A),
reirradiation (B), and rechallenge with chemotherapy (C). NA, not applicable.
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Background: Leiomyosarcoma is a highly malignant soft-tissue sarcoma with a poor
prognosis. In recent years, treatment for leiomyosarcoma has not shown much progress.
Primary intracranial leiomyosarcoma (PILMS) is a much rarer type of neoplasm, which
occurs more frequently in immunocompromised patients. PILMS cases reported in the
literature are scarce and treatment strategy and prognosis are still under debate. In this
study, a case of PILMS secondary to the total resection of giant cell glioblastoma
is reported.

Case Description: A 38-year-old male was hospitalized with a three-month history of a
temporal opisthotic bump. His medical history included a total resection of a tumor
located in the right temporal lobe performed 4 years earlier. Pathological examination led
to a diagnosis of giant cell glioblastoma, and the patient underwent postoperative
chemotherapy with temozolomide for 6 weeks plus simultaneous radiotherapy with
63.66 Gary. Four years later, during regular follow-up, a preoperative MRI brain scan
resulted in a well-defined signal pointing out two nodule-like features located at the right
temporal lobe and subcutaneous soft tissue, respectively, and near the area where the
previous giant cell glioblastoma was located. The mass was completely removed by a
transtemporal approach and postoperative pathology revealed that the mass was a
leiomyosarcoma. The patient underwent postoperative radiotherapy and no recurrence
occurred until now.

Conclusions: To date, research on soft-tissue sarcoma, especially PILMS, has not made
much progress, and a limited number of studies have provided few details on the
management of PILMS. The treatment of choice for PILMS is aggressive multimodal
treatment based on total tumor resection and radiotherapy. Moreover, systemic treatment
with chemotherapy and targeted therapy, such as olaratumab, as well as further research
still needs to be performed as many questions are left unanswered. To our knowledge,
this is the first report on a case of PILMS secondary to glioblastoma, which might serve as
a potential reference for clinicians and clinical studies.

Keywords: primary intracranial leiomyosarcoma, glioblastoma, leiomyosarcoma, treatment, prognosis,
genetic diagnosis
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INTRODUCTION

Intracranial leiomyosarcoma (LMS) is rare, and most often occurs
as a result of metastasis of primary smooth muscle tissue tumors
that can therefore develop in different organs due to the ubiquitous
presence of the smooth muscle tissue in the body (1–4). Primary
intracranial leiomyosarcoma (PILMS) is extremely rare in the
central nervous system (CNS) and previous studies suggested
that less than 1% of brain biopsies (or 3 out of 25,000 brain
tumors) are positive for LMS (5). They are speculated to derive
from smooth muscle cells of the blood vessels or dura mater
pluripotent mesenchymal cells (1, 2, 6–9), and display strong
smooth muscle differentiation (10). In addition, PILMS usually
occurs in immunocompromised patients or after exposure to
radiation (8, 11, 12). Here we report a case of PILMS arising on
the right temporal robe near to the location of a previous giant cell
glioblastoma (GCG) totally excised 4-year earlier. The patient was
not immunocompromised. To the best of our knowledge, this is the
first report describing a case of PILMS secondary to a glioblastoma.
Relevant literature has been reviewed, and diagnosis, and
prognosis, especially regarding treatment strategy have
been discussed.
CASE REPORT

History and Examination
A 38-year-old male with a 3-month history of a temporal opisthotic
bump was admitted to the hospital. The patient had no history of
immunosuppressive medical treatment, intravenous drug use,
previous organ transplantation or sexual promiscuity. Moreover,
he did not experience any signs of headaches, dizziness, nausea,
vomiting nor did he have any other sensory or motor deficits.
Routine laboratory analysis showed standard parameters within
normal limits, and the serologic test was negative for Human
Immunodeficiency Virus (HIV), Hepatitis-B Virus (HBV),
Hepatitis-C Virus (HCV), and Epstein Barr virus (EBV).
According to his medical history, the patient underwent
craniotomy 4 years earlier, because of the presence of an
abnormal and heterogeneous magnetic resonance imaging (MRI)
enhancement signal located in the right temporal and parietal lobe,
together with evident edema (Figures 1A–C). The MRI performed
3 months after follow-up (Figures 1D–F) revealed that the tumor
was successfully removed. Postoperative pathological examination
of the tumor led to a diagnosis of GCG, with a Ki-67 index of 50%.
Histological examination showed that many giant tumor cells were
densely arranged, with blood vessel hyperplasia and focal necrosis.
Abbreviations: CT, computed tomography; LMS, leiomyosarcoma; PILMS,
primary intracranial leiomyosarcoma; STS, soft-tissue sarcomas; GCG, giant cell
glioblastoma; IDH, isocitrate dehydrogenase; MGMT, O6-methylguanine-DNA
methyltransferase; EMA, epithelial membrane antigen; GFAP, glial fibrillary acidic
protein; HIV, human immunodeficiency virus; HBV, hepatitis-B virus; HCV,
hepatitis-C virus; EBV, Epstein-Barr virus; MRI, magnetic resonance imaging;
PET, positron emission tomography; CNS, central nervous system; T1WI, T1-
weighted imaging; T2WI, T2-weighted imaging; BBBP, blood brain barrier
permeability; PFS, progression-free survival; OS, overall survival; GTR, gross
tumor resection; PDGFR, platelet-derived growth factor receptor.
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The tumor cells had obvious atypia and eosinophilic cytoplasm, and
the nuclei were eccentric with mitosis that was easy to observe
(Figure 2A). Moreover, pathological findings were evaluated.
Pyrosequencing presented that no O6-methylguanine-DNA
methyltransferase promoter methylation was shown (Figure 3).
Fluorescence in situ hybridization suggested no loss of
heterozygosity in 1p/19q chromosome (Figures 2B, C). Levels of
IDH1, TERT, and BRAF were determined by multiple polymerase
chain reaction amplification combined with high-throughput
sequencing, which did not indicate a mutation of IDH1-R132/
R172, TERT-C228T/C250T or BRAF-V600E. The patient accepted
to be subjected to postoperative chemotherapy with temozolomide
for 6 weeks, and concomitant local 63.66 Gray radiotherapy.
Follow-up was not stopped after the first surgery. During a visit
after 4 years when the patient presented the bump, the MRI brain
scan resulted in a well-defined signal pointing out two nodule-like
features of 3.1x2.5 cm and 4.0x1.8x3.7 cm located kin the right
temporal lobe and subcutaneous soft tissue, respectively (Figures
4A–F), with a slightly hypointense signal on T1-weighted imaging
(T1WI, Figure 4A), isointense and slightly hyperintense signal on
T2-weighted imaging (T2WI, Figure 4B), and isointense signal on
fluid attenuated inversion recovery (Figure 4C). The lesion showed
significant edge enhancement and heterogeneous reinforcement
inside the tumor (Figures 4D–F). A preoperative diagnosis of a
recurrent glioblastoma was made.

Surgery
The patient underwent transtemporal craniotomy under
preoperative and intraoperative neuronavigation, together with
electrophysiological monitoring. The tumor was pinkish in color,
solid, bloody, and was closely adherent to the brain parenchyma
and subcutaneous tissue. The entire tumor was removed.

Histopathological Findings
The postoperative histopathological examination led to a diagnosis
of leiomyosarcoma. The microscopic examination revealed the
tumor was composed of spindle-shaped cells (Figure 2D) with an
abundant mitotic activity (Figure 2E), and the Ki-67 labeling index
was 10-20%. Immunohistochemical staining was positive for h-
caldesmon (Figure 2F), vimentin, SMA, and desmin, but negative
for S-100, epithelial membrane antigen (EMA), glial fibrillary
acidic protein (GFAP), CK-pan, CD34, CD31, CD117, Oligo-2,
Dog-1, PR, and STAT6.

Postoperative Course
The postoperative course was uneventful and no postoperative
complications occurred. In addition, positron emission
tomography (PET) was performed to identify potential
extracranial primary sites, and serum tumor markers were
measured; both were negative. One month after surgery, the
patient underwent postoperative 54 Gray radiotherapy. Immediate
post-operative cranial CT (Figure 4G) and follow-up MRI were
performed 3 months after surgery (Figures 4H, I), and
demonstrated complete removal of the tumor and no signs of
recurrence. During the last telephone follow-up in December 2020,
the patient stated that he did not report any abnormal condition
and that he was leading a normal daily life. Based on these results,
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his conditions seem stable and therefore, the patients will undergo
routine follow-up with MRI.
DISCUSSION

Epidemiology
LMS is an uncommon malignant tumor, accounting for 1% of
the head and neck soft-tissue sarcomas (STS) (13), being usually
the result of metastasis of primary smooth muscle tissue tumors
(1–4, 14). PILMS is rare and sporadically reported (4, 14), indeed
accounting for approximately 0.1% of all the intracranial tumors
(3). The onset range is quite wide, from 4 to 75 years of age (2, 15,
16), commonly appearing in the second and third decades of life
(1, 6, 17–19), and in previous studies, a slight male predominance
was observed (2, 20).
Etiology
The cellular origin and tumorigenesis of PILMS is considered as
deriving from the smooth muscle cells of the blood vessels or the
pluripotent mesenchymal stem cells in the dura mater (1, 2, 6–9).
LMS also mostly occur in immunocompromised patients
Frontiers in Oncology | www.frontiersin.org 376
compared to the immunocompetent ones (11), especially patients
with HIV (7, 12, 17, 21, 22) or EBV (1, 5, 12, 21, 23, 24) infection,
subjected to organ transplantation (18), with malignancies (20),
genetic disorders (18), after radiation exposure (25), and especially
in children (8). Therefore, immunodeficiency plays a role in the
occurrence and development of PILMS.

Co-infection with EBV in immunosuppressed patients with
HIV is considered a leading factor in the development of LMS (9,
22, 26, 27), and EBV-transformed and infected smooth muscle
cells may contribute to the pathogenesis of LMS in patients with
AIDS (2, 3, 17). However, immunocompetent patients in whom
LMS occurred, were invariably negative for EBV (2, 17, 24, 28).
Radiotherapy (2) and chemotherapy (27, 29) are also considered
as potential factors inducing PILMS. Radiation oncogenesis was
first defined by Cahan et al. (30), in 1948. Since then, it was clear
that radiation doses above 50 Gray cause cell death, while lower
doses (e.g.< 30 Gray) are associated with genomic instability and
cell repair mechanisms of the caused damages (2). Suzuki et al.
(31), also described a radiation-induced sarcoma usually within
or at the edge of the tumor. Since the radiation is not uniformly
distributed within the tissue, a sufficient dose does not reach the
edge to ensure the killing of all tumor cells (31). Furthermore,
Fujimoto et al. (9), described a case of LMS arising after the
FIGURE 1 | Significant heterogeneous enhancement is observed with evident edema after gadolinium administration (A–C). A follow-up MRI, 3 months after surgery
(D–F), showed that the lesion was completely removed, without any signs of recurrence.
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resection of a neurofibroma at the left cerebellopontine angle and
concluded that the mechanical and/or heat stimulation during a
previous surgery was associated with the development of LMS.
The patient in this case report is the first ever described with
PILMS secondary to a glioblastoma, and the pathogenesis was
hypothesized as associated with the history of malignant tumor
and radiation exposure together with the mechanical and heat
stimulation during the first surgery. Nevertheless, these hypotheses
did not explain all cases of PILMS in immunocompetent patients
and further studies are needed to clarify the clinical features involved.
Frontiers in Oncology | www.frontiersin.org 477
Clinical Presentation
No specific symptoms are shown in patients with PILMS, and
they largely depend on the location of the tumor and the mass
effect (3, 4, 16, 32); the average length of the symptoms
approximately 4 months (3, 33). General symptoms include
headache (1, 32), memory impairment (17), gait instability (1),
altered mental status (34), and seizures (1). In addition, some
patients may present subdural hematoma (3, 20) or intratumoral
apoplexy (15, 20). The subdural hematoma is hypothesized to be
developed from new capillary formation, vascular hyperpermeability,
FIGURE 2 | Giant cell glioblastoma is composed of large, closely-arranged cells, with an eosinophilic cytoplasm and obvious nuclear atypia. There are also scattered
multinucleated giant cells. Local necrosis and vascular proliferation are observed (A). FISH detection suggests no loss of heterozygosity in 1p (B) or 19q (C)
chromosomes. Primary intracranial leiomyosarcoma showing spindle−shaped cells (D) and abundant mitotic activity (E) through the tumor, hematoxylin, and eosin
staining. Immunohistochemical examination was positive for H-caldesmon (F).
FIGURE 3 | Pyrosequencing demonstrates that no O6-methylguanine-DNA methyltransferase promoter methylation was found.
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and serum protein exudation, as a result of a typical inflammatory
reactions (3).

Radiological Characteristic
Due to the rarity of PILMS, radiological details describing it are
lacking in the literature. In general, PILMS presents a hyperdense
signal on CT and homogenous enhancement on enhanced
scanning images (3, 16). In addition, calcifications can be
Frontiers in Oncology | www.frontiersin.org 578
observed (16, 35). MRI is considered the primary neurological
approach to assess PILMS, which is also important for surgical
planning (14). PILMS can develop as either extra-axial or intra-
axial tumor, and the imaging features are different in these two
locations (4). The extra-axial PILMS is usually characterized by
uniform hypointense or isointense T1WI and T2WI (4, 36).
After gadolinium enhancement, well-defined homogeneous (22,
23, 28) or inhomogeneous (17, 37) enhancement with (6) or
FIGURE 4 | (A) hypointense signal is seen on T1WI (A). Isointense and slightly hyperintense signals were seen on T2WI (B); Isointense signal on FLAIR (C).
Significant enhancement was seen after gadolinium administration, without uniform enhancement in the center of the lesion (D–F). Immediate postoperative CT
(G) and follow-up MRI, 3 months after surgery (H, I) demonstrated complete removal of the tumor and no signs of recurrence.
May 2021 | Volume 11 | Article 642683
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without (4) dural tail signal is detected, resembling meningioma
(18, 22, 23, 28, 38). Moreover, the tumors were always
significantly enhanced (18, 36). No significant differences in
survival were observed in patients with dura involvement (39).
Intra-axial PILMS often appears as an irregular mass presenting
a heterogeneous intense and heterogeneous enhanced pattern (2,
24, 26, 40). Ultra-sound examination could also be performed for
patients with skull involvement (36).

Diagnosis
The diagnosis and differential diagnosis of PILMS depend on the
comprehensive analysis of all the laboratory tests, MRI and
pathological examination (2, 5, 6, 9). Histological examination
revealed the presence of elongated spindle-shaped cells with
pleomorphism and coagulative necrosis (17, 41), and most of
these cells grow following a fascicular pattern (6, 16, 36).
Moreover, PILMS is often positive for desmin, actin, h-
caldesmon, a-SMA, and occasionally vimentin (6, 9, 16, 28),
and is negative in S-100, EMA and GFAP (6, 9, 16, 28). In
addition, PILMS showed a high Ki-67 index and mitotic index
(16). H-caldesmon is considered a specific and valuable
biomarker characterizing smooth muscle cells and LMS (9, 24).
Extra-axial PILMS is sometimes difficult to differentiate from
meningioma on radiological examination (6, 9, 24, 34). However,
EMA is immunohistochemically positive in meningioma,
meningosarcoma and hemangiopericytomas (9, 24), thereby
helping in the differential diagnosis. Notably, thorough
investigation, including whole-body CT, bone scans, lumbar
punctures, and PET scans were imperative to exclude
extracranial lesions.

Treatment
Due to the rarity of PILMS, standard management guidelines
have not yet been established (39). However, currently, a
multimodal approach, including surgery, radiotherapy, and
chemotherapy is the main treatment (12, 21, 42). In addition,
surgical resection is the leading treatment to perform gross
tumor resection (GTR) and the achievement of negative
surgical margins due to extension of the resection is one of the
most frequently reported predictors of recurrence and survival
(2, 15, 16, 28, 33). Zhang et al. (39) demonstrated that the extent
of excision might result in differences because of the difference in
score systems that are presented in the literature, which needs
further unification.

Radiotherapy
In PILMS, postoperative radiotherapy is used to control local
recurrence (2, 43). In many previous studies, GTR combined
with postoperative radiotherapy is indeed the main treatment
strategy for PILMS (1, 3, 26, 27, 44, 45). However, the specific
benefit of radiotherapy in terms of the survival of PILMS patients
is not clear (39). To date, there is no consensus that patients with
PILMS should undergo radiotherapy regardless of the extent of
resection. In several studies, radiotherapy was not recommended
for patients with GTR (15). However, considering the aggressive
character, immediate adjuvant radiotherapy after GTR was
approved in some cases (3, 28, 37). In this case, the patient
Frontiers in Oncology | www.frontiersin.org 679
underwent radiotherapy immediately after GTR, and had a
relatively good survival without recurrence. In addition,
radiation therapy represents an adjuvant option in patients
with relapse or progression (39). In case of recurrent LMS,
Gallagher et al. (28), suggested to perform a re-irradiation
according to their experience in the treatment of recurrent
glioblastoma. Recently, gamma knife radiosurgery (43, 46) and
stereotactic robotic cyber knife radiosurgery (47) have been
performed to treat PILMS, revealing their feasibility and
effectiveness in treating this type of tumor, although the
number of patients was small, thus, they can be considered
potential treatment strategies. The specific treatment advantage
needs to be verified in future multicenter prospective studies.

Chemotherapy
In previous studies, it was demonstrated that PILMS is inclined
to progress to extra-cranial metastasis, such as the spinal cord,
lung, pleural, spleen, and hip (6, 26, 48). Although the role of
chemotherapy in preventing extracranial metastasis is currently
unknown, we speculate that it is difficult for radiation alone to
confine the aggressive behavior of LMS. Chemotherapy is not a
routine treatment of PILMS (9, 17), and the choice of effective
chemotherapeutic agents remains unclear (28). Because of its
good blood brain barrier permeability (BBBP) and acceptable
level of toxicity, temozolomide was the first chemotherapy drug
used in the treatment of PILMS (49). Temozolomide has
moderate activity in residual or metastatic STS, with a
response rate of 8% (41, 49, 50), which makes it a promising
drug in the treatment of PILMS. In some studies, it was revealed
that temozolomide was effective at a dose that was equivalent to
that of dacarbazine (9, 51, 52). However, the validity of
monotherapy of chemotherapeutic drugs has been questioned
(3), and the combination with other therapeutic approaches
seems somewhat effective (1–3, 6). In a recent study, Francisco
et al. (53), reported a case of PILMS where maintenance
treatment involved temozolomide and nimotuzumab.
Nimotuzumab is an epidermal growth factor receptor
monoclonal antibody. STS, like LMS, can express epidermal
growth factor receptor-34, and its blocking promoted tumor
inactivation and decreased chemoresistance (54). However, in
this study, no improvement in survival was observed. For the
current treatment of sarcomas, anthracyclines (doxorubicin and
epirubicin) remain the first-line standard treatment regimens of
advanced STSs (55), with a median overall survival (OS) of 12-18
months (56, 57). When combined with other drugs, such as
ifosfamide, a significant improvement in the response rate and
progression free survival (PFS), but not in OS, was observed (58,
59). The treatment experience with anthracyclines in PILMS is
limited and controversial, and no improvement in survival was
observed (60, 61), due to its poor BBBP and limited treatment
experience of this disease (12, 42).

Targeted Therapy
Here, we describe the application and research progress of
targeted drugs in PILMS. To date, monoclonal antibodies to
LMS, especially to PILMS, are scarce (28). However, along with
increasing the understanding of the pathophysiology and
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underlying molecular mechanisms of action of LMS, there is an
increase in research studies. For example, somatostatin receptor
subtypes have been detected in moderate and malignant
sarcomas. In 2016, Crespo-Jara A et al. (62), reported a case of
metastatic and multiple drug-resistant sarcoma, which was
successfully treated with radiolabeled somatostatin analogs.
However, this agent has not been approved in China.
Moreover, platelet-derived growth factor receptor (PDGFR),
especially the alpha (a) isoform, has been confirmed to be
associated with the metastasis and proliferation of LMS cells.
Therefore, drugs that block the action of PDGFR could be a
promising antitumor regimen (63, 64). Lartruvo® (olaratumab)
is a PDGFR-a antagonist, a first-in-class recombinant human
immunoglobulin-G subclass-1 monoclonal antibody that blocks
binding and activation of the PDGF receptor (55). In 2016, a
Phase 1b study and randomized Phase II clinical trials, showed
that advanced STS treated with olaratumab plus doxorubicin had
a significant prolonged OS when compared to doxorubicin
monotherapy (26.5 vs 14.7 months; HR 0.46, 95% CI 0.30-0.71,
p=0.0003), and slight PFS extension (6.6 vs 4.1 months; HR
0.672, 95% CI 0.442-1.021, p=0.0615) (65), with manageable
toxicity. This was the first randomized trial showing a significant
improvement in OS, compared to doxorubicin monotherapy,
which brings light for advanced STS and PILMS patients. From
2016 to 2019, olaratumab was considered the most effective
PDGFRa neutralizing antibody for LMS (56). However, the
latest Phase 3 multicenter randomized clinical trials in 2020
failed to demonstrate OS benefits of doxorubicin plus
olaratumab when compared to doxorubicin plus placebo in
advanced STS (20.4 vs 19.7 months; HR 1.05, 95% CI 0.84-
1.30, p=0.69) and LMS (21.6 months vs 21.9 months; HR 0.95,
95% CI 0.69-1.31, p=0.76) (66). The reason for the differences
between the results of the second and third clinical trial has not
yet been identified. Gennatas et al. (67), reviewed eight patients
with advanced STS who underwent at least two treatment cycles
of doxorubicin plus olaratumab between May 2017 and March
2019, and none of the patients experienced survival benefits. At
present, the treatment of STS with olaratumab has been suspended
by the drug manufacturer of olaratumab (66), and further studies
are needed. Moreover, no studies have been performed with
olaratumab for PILMS or its BBBP. Other recent first-line
studies of advanced STS included the comparison of
doxorubicin monotherapy with docetaxel plus gemcitabine (58)
or doxorubicin plus ifosfamide (51, 59), palifosfamide (68), or
evofosfamide (65). However, historical OS (12-18 months) and the
2-year survival rate (20-30%) did not show improvement. Thus,
identifying new and effective treatment for advanced STS,
especially PILMS, is of utmost importance. Mathieson et al. (3),
described a treatment including the combination of vincristine,
ifosfamide, doxorubicin, and etoposide with radiotherapy on a
pediatric PILMS patient, which did not result in recurrence in 18
months. The use of the vascular endothelial growth factor
inhibitor bevacizumab is also a promising approach, and has
been increasingly used to treat LMS (32, 52). Three Phase II
clinical trials demonstrated that bevacizumab is an effective
treatment for some STS (69, 70). Gallagher et al. (28), also
Frontiers in Oncology | www.frontiersin.org 780
reported recurrence of PILMS treated with re-operation and
bevacizumab (7.5mg/kg, 4 doses at 3-week intervals), and the
follow-up was lost two-months after the re-operation. Notably,
active antiretroviral therapy is imperative for PILMS patients with
retroviral infections, such as HIV (28).

Prognosis
The prognosis of PILMS is overall poor (3, 4, 15, 32, 33), and the
long-term prognosis is not clear (53). A limited number of studies
reported a survival range from 6 to 44 months (4, 37, 45), and the
average follow-up was 12 months, although Niwa et al. (19),
reported a patient who died 8 years after the initial surgery,
which represented the longest survival ever published. The poor
prognosis and high local recurrence rate were considered as
associated with the difficulty in obtaining negative surgical
resection margins and an inadequate radiotherapeutic dose (6,
14, 28). Vos et al. (71), contrasted the survival period of patients
with STS between 2010-2014 and 1989-1994, and found that the
OS had improved, but was not statistically significant. In some
studies, it was shown that gender, age, immunosuppressive status,
dural origin, or EBV infection did not have a significant impact on
treatment outcome, but tumor size, location, mitotic rate, residual
tumor, and inadequate dose of radiation were all unfavorable
factors with a negative effect on survival (2, 15, 16, 72). However,
Zhang, et al. (39), demonstrated that age, tumor size, and location
were not statistically linked with clinical outcome. Shotton et al.
(73), also suggested that the perineural invasion is an important
predictor of survival and recurrence (10). The local recurrence rate
is approximately 25.9% after radiotherapy on the initial lesion
(15). Taken together, GTR has a significant and unexpected
favorable outcome on survival (17, 24, 39).
CONCLUSION

Since PILMS is an extremely rare type of neoplasm, studies
reporting on PILMS cases are rare. More future clinical trials,
treatment experience, and long-term follow-up are required to
fully understand this disease. Olaratumab might be a potential
targeted drug for the treatment of PILMS, but has never been
applied to PILMS patients. Thus, further studies are needed for
its validity and BBBP. Here, we reported on PILMS secondary to
GCG for the first time, and represented an additional reference
among the few available, which might serve as a potential guide
for clinicians and clinical studies.
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Accompanying the development of biomedicine, our knowledge of glioma, one of the
most common primary intracranial carcinomas, is becoming more comprehensive.
Unfortunately, patients with glioblastoma (GBM) still have a dismal prognosis and a high
relapse rate, even with standard combination therapy, namely, surgical resection,
postoperative radiotherapy and chemotherapy. The absence of validated biomarkers is
responsible for the majority of these poor outcomes, and reliable therapeutic targets are
indispensable for improving the prognosis of patients suffering from gliomas. Identification
of both precise diagnostic and accurate prognostic markers and promising therapeutic
targets has therefore attracted considerable attention from researchers. Encouragingly,
accumulating evidence has demonstrated that long noncoding RNAs (lncRNAs) play
important roles in the pathogenesis and oncogenesis of various categories of human
tumors, including gliomas. Nevertheless, the underlying mechanisms by which lncRNAs
regulate diverse biological behaviors of glioma cells, such as proliferation, invasion and
migration, remain poorly understood. Consequently, this review builds on previous studies
to further summarize the progress in the field of lncRNA regulation of gliomas over recent
years and addresses the potential of lncRNAs as diagnostic and prognostic markers and
therapeutic targets.
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INTRODUCTION

Gliomas, originating from glial or precursor cells, which are categorized into astrocytomas,
ependymomas and oligodendrogliomas, are the most common malignant primary tumors of the
central nervous system (CNS) (1, 2). In addition, gliomas are graded by the World Health
Organization (WHO) into four classifications based on their malignancy. Gliomas with WHO
grades I-II are known as low-grade gliomas (LGGs), including angiocentric glioma and diffuse
astrocytoma, while those with WHO grades III-IV are considered high-grade gliomas (HGGs),
including mesenchymal astrocytoma and glioblastoma multiform gliomas (GBMs) (3, 4). In the
2016 WHO classification of CNS tumors, molecular parameters, including IDH, ATRX, TP53 and
1p/19, were considered in the classification of glioma subtypes, which is more detailed than its 2007
predecessor (5, 6). GBM has high mortality and recurrence rates and represents the most malignant
CNS tumor (3). The present criteria for treating GBM continue to be neurosurgical resection of the
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neoplasm accompanied by chemotherapy with temozolomide
(TMZ) and radiotherapy (7). Unfortunately, the median survival
for GBM patients is only 15 months, even with this combination
treatment (8). Therefore, exploring the specific mechanisms of
the occurrence and progression of glioma has drawn widespread
interest in recent years. Studies on precise biomarkers and
reliable therapeutic targets are urgently needed.

Approximately 98% of transcripts do not encode proteins in
the human genome, and this category of RNA is known as
noncoding RNA (ncRNA). Long noncoding RNAs (lncRNAs),
accounting for approximately 80-90% of ncRNAs, are transcripts
consisting of more than 200 nucleotides that typically lack protein-
coding capability and were once regarded as transcriptional noise
(9). Open reading frames are generally absent in lncRNAs (10).
Intriguingly, this “transcriptional noise” has been extensively
researched and demonstrated to not only serve an important
function in normal cellular physiological procedures but also play
an invaluable role in regulating the malignant behavior of tumors
(11). LncRNAs can be divided into sense lncRNAs, antisense
lncRNAs, bidirectional lncRNAs, intronic lncRNAs and intergenic
lncRNAs (LINCRNAs) based on genomic location (12). The order
of nucleotide arrangement constitutes the primary structure of
lncRNAs, and intricate secondary and tertiary structures
guarantee the multiple functions of lncRNAs. However, the
relationship between lncRNA secondary structure and functions
remains unclear. Recent evidence has indicated that lncRNAs
regulate gene expression at three levels: transcriptional, post-
transcriptional and epigenetic modification (13).

As mentioned above, lncRNAs are associated with both cellular
physiology and disease origination and progression by regulating
gene expression (11). Additionally, an increasing number of
investigations have suggested that lncRNAs play pivotal roles in
regulating the tumorigenesis, proliferation, aggression, metastasis,
and drug resistance of gliomas. Consequently, as the molecular
mechanism of lncRNA regulation of glioma is further investigated,
the etiology of glioma will gradually be revealed. Furthermore,
along with the advancement of sequencing technology, we will
gradually recognize the entire spectrum of lncRNAs, implying that
lncRNAs could be not only effective indicators for early diagnosis
and determination of prognosis but also therapeutic targets
for glioma.
THE FUNCTIONS AND MECHANISMS OF
LNCRNAS IN GLIOMAS

MiRNAs are a category of noncoding RNAs of approximately 20
nucleotides in length that can bind to target mRNAs via
microRNA response elements (MREs) and thus perform
negative regulatory functions, exerting critical post-
transcriptional regulatory effects (14). MREs are short
sequences of both lncRNAs and mRNAs that combine with
miRNAs. Therefore, lncRNAs absorb miRNAs as sponges,
enabling the expression of mRNAs that were previously
repressed by miRNAs, and such lncRNAs are referred to as
competitive endogenous RNAs (Figure 1) (15). Many studies
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have been conducted to demonstrate that lncRNAs, as ceRNAs,
impact the progression of tumors at the post-transcriptional
regulatory level (Table 1).

By analyzing GSE4290, Liu and colleagues showed that
LINC00689 was highly expressed in glioma tissue compared to
normal brain tissue. The expression of pyruvate kinase M2
(PKM2) was enhanced by LINC00689-mediated elimination of
miR-338-3p, which facilitated malignant progression of glioma
cells. As a consequence, the LINC00689/miR-338-3p/PKM2 axis
functions as a carcinogenic driver in gliomas (16). Moreover,
LINC01857 could promote tumorigenesis of glioma by sponging
miR‐1281 to upregulate TRIM65 expression (17). MALAT1 has
been proved to have a crucial role in the progression of multiple
neoplasms such as lung, colorectal and gastric cancers, and
shows a comparable regulatory role in glioma. MALAT1
promoted the level of ZHX1 by serving as a ceRNA of miR-
199a, leading to augmented glioma development (18).
LINC01579 accelerated cell proliferation and apoptosis of
GBM by the competitive binding of miR-139-5p to affect
EIF4G2 (19). Furthermore, the lncRNA SNHG1 is considered
a sponge that absorbs miR-194 to promote glioma progression
by regulating PHLDA1 expression (20). MiR-605-3p was
eliminated by lncRNA BLACAT1 to accelerate VASP
expression, contributing to glioma proliferation (21). The
expression level of NAMPT was regulated by lncRNA-
GACAT3 to promote glioma progression as a sponge for
miR135a (22). LncRNA MATN1-AS1 competitively binding
with miR-200b/c/429 also promoted the progression of glioma
by modulating CHD1 expression (23). Chai et al. demonstrated
that exosomal lncRNAe-ROR1-AS1 enhanced glioma
progression by suppressing miR-4686 (24). LEF1-AS1
promoted glioma formation by competitively binding miR-
489-3p to increase the expression of HIGD1A (25). Oncogenic
lncRNA FOXD1-AS1 promoted the proliferation and metastasis
of GBM cells by targeting miR339/342 (26). However, lncRNA
could also act as a repressor to inhibit tumor progression. Zhen
et al. indicated that NEAT1 sponged miR-107 to inhibit the
expression of cyclin-dependent kinase 14 (CDK14) to repress the
malignant progression of glioma (27). The anti-oncogene
AC016405.3 restrained GBM cell proliferation and migration
by sponging miR-19a through regulation of ten-eleven
translocation-2 (TET2) (28). LncRNA TPT1-AS1 inhibited
glioma cell autophagy by decreasing the expression of miR-
110-5p, and upregulating STMN1 expression promoted the
proliferation of glioma cells (29). In addition, mRNAs can
indirectly regulate gene phenotypes by signaling pathways via
the post-transcriptional regulation of ceRNAs. For instance,
miR-183-2-3p was sponged by lncRNA NCK1-AS1. Low levels
of miR-183-2-3p promoted TRIM24 expression and thereby
activated the Wnt/b-catenin pathway to contribute to glioma
progression (30). Correspondingly, the lncRNA AGAP2-AS1
exhibited analogous mechanisms in contributing to the
development of glioma advancement via the miR-15a/b-5p/
HDGF/WNT axis (31). The oncogene lncRNA SNHG16, in
contrast, functioned in the proliferation, aggression and
migration of glioma cells through the miR373/EGFR/PI3K/
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AKT axis (32). These researches illustrated that lncRNAs could
not only promote but also inhibit tumor progression.

By interacting with signaling pathways, lncRNAs can
facilitate tumorigenesis. For example, silencing lncRNA
MIR22HG inhibited GBM aggressiveness by suppressing the
Wnt/b-catenin signaling pathway (33), while cancer
susceptibility candidate 7 (CASC7) restrained the progression
of glioma through the Wnt/b-catenin pathway (34). BCAR4
promoted glioma cell progression by stimulating the EGFR/
PI3K/AKT pathway (35). LncRNA LPP-AS2 plays an
important role in regulating the miR-7-5p/EGFR/PI3K/AKT/c-
MYC feedback loop, which is correlated with glioma
tumorigenesis (36). LncRNA BCYRN1 could suppress
tumorigenesis of glioma as a molecular sponge of miR-619-5p
to modulate the PTEN/AKT/p21 pathway and CUEDC2
expression (37). Furthermore, lncRNA MT1JP suppressed
proliferation, invasion, and migration and promoted apoptosis
of glioma cells through stimulation of the PTEN/Akt signaling
pathway (38). LncRNA-THOR silencing accelerated human
glioma cell apoptosis by activating the MAGEA6-AMPK
signaling pathway (39). Accumulating studies have suggested
that lncRNA is involved in the regulation of diverse biological
behaviors in glioma through the regulation of signaling pathways
including but not limited to Wnt/b, PI3K/AKT and NF-kB.
Therefore, lncRNAs are promising biomarkers for glioma
diagnosis, prognosis and treatment in theory.

The interaction between RNA-binding proteins (RBPs) and
lncRNAs plays a non-negligible role in the advancement of
Frontiers in Oncology | www.frontiersin.org 386
glioma. The expression level of EZH2 positively correlated with
the malignancy of glioma and promoted the malignant behavior of
glioma (40). Chen et al. first addressed the mechanism of the
participation of lncRNA NEAT1 in tumorigenesis as a scaffold for
EZH2. LncNEAT1 recruited EZH2 to interact with the promoter
regions of downstream genes (Axin2, ICAT, GSK3B) to promote
trimethylation modification of H3K27, thereby silencing these
three genes. Further, the WNT/b-catenin pathway was activated,
resulting in tumorigenesis (41). Moreover, RBP DGCR8 could
bind with ZFAT-AS1, the interaction between DGCR8/ZFAT-
AS1 and CDX2 contributed to the malignant progression of
glioma (42). RBP, lncRNA and downstream gene could form
negative or positive feedback loop to modulate biological behavior
of glioma. SNHG1 regulated the miRNA154-5p/miR-376b-3p-
FOXP2-KDM5B positive feedback loop to promote the malignant
phenotype of glioma cells (43). LINC00475 silencing acted as a
tumor suppressor in glioma under hypoxic conditions by
impairing miRNA-449b-5p-dependent upregulation of AGAP2
expression (44). TRPM2‐AS inhibited the growth, migration, and
invasion of gliomas through JNK, c‐Jun, and RGS4 (45). HCG11
inhibited glioma progression by modulating miR‐496 to
upregulate cytoplasmic polyadenylation element binding protein
3 (CPEB3) expression (46). The lncRNA MNX1-AS1 reduced the
level of miR-4443, leading to the promotion of proliferation,
invasion and migration in glioma (47). NEAT1 and CDK6
could promote tumorigenesis of glioma cells; additionally, miR‐
139‐5p restrained the biological functions of glioma cells (48).
LncRNAs has diverse roles in glioma processes, such as
FIGURE 1 | Mechanisms of lncRNAs in glioma cell.
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proliferation, migration, apoptosis and angiogenesis, by distinct
mechanisms, including ceRNA, interaction with RBPs and
regulation of mRNA. Figure 2 portrays the lncRNAs associated
with glioma proliferation, metastasis, apoptosis and angiogenesis.
LNCRNAS AS DIAGNOSTIC AND
PROGNOSTIC BIOMARKERS
OF GLIOMAS

Medical diagnosis in the twenty-first century is gradually moving
from clinical pathology to molecular pathology. With the
development of bioinformatics, an increasing number of
studies have identified lncRNAs as biomarkers for glioma
diagnosis and prognosis by exploring RNA microarrays, and
advances in microarray and high-throughput RNA-seq
technologies have provided numerous valuable lncRNAs for
the diagnosis and prognosis of gliomas.

The detection of serum HOTAIR levels can be employed for
the clinical diagnosis of glioma, as reported by Tan et al. (49)
These researchers also observed that the serum levels of
HOTAIR were significantly higher in GBM patients than in
controls, with a sensitivity of 86.1% and specificity of 87.5% (49).
Frontiers in Oncology | www.frontiersin.org 487
This report first showed that HOTAIR can function as a novel
diagnostic and prognostic peripheral biomarker of GBM. Lin
et al. screened six lncRNAs associated with low-grade glioma
prognosis by TCGA and GTEx RNA-seq databases. These
researchers constructed a prognostic risk signature with 6
lncRNAs in LGG, and this research illustrated that AL031722.1
and LINC00844 decreased when the risk score was increased,
while the expression of AL354740.1, FGD5-AS1, and NEAT1
increased (50). The team of Li et al. indicated that the expression
of LINC01060 was upregulated in glioma and significantly
related to tumor grade and poor clinical prognosis (51).
Furthermore, Liu et al. revealed that the level of RMST was
related to histological grade, and 95.6% of HGGs had higher
RMST expression (52). The lncRNA HOTAIRM1 was identified
as a prognostic factor for glioma because it can maintain the
tumorigenicity of GSCs by regulating HOX gene expression (53).
And, LINC00115 was shown to act as a key role in GSC self-
renewal and tumorigenicity by Tang et al. (54) LINC00174
accelerated glycolysis and tumor progression by competitively
binding with miR-152-3p in glioma, indicating this molecule
might act as a molecular target for glioma diagnosis (55).
LncRNA H19, which mediates the effect of curcumin in
treating glioma accompanied by miR-675 and VDR, could act
as a novel diagnostic biomarker (56). Li et al. showed that
TABLE 1 | The role of lncRNAs as ceRNA in the glioma.

LncRNA MiRNA Expression of mRNA Function Study

LINC00689 miR-338-3p Upregulated PKM2 Promoting growth, metastasis and glycolysis 16
LINC01857 miR-1281 Upregulated TRIM65 Promoting growth, migration, and invasion 17
MALAT1 miR-199a Upregulated ZHX1 Promoting proliferation and progression. 18
SNHG1 miR-194 Upregulated PHLDA1 Promoting progression 19
BLACAT1 miR-605-3p Upregulated VASP Promoting progression 20
AC016405.3 miR-19a-5p Upregulated TET2 Acting as tumor suppressor 21
GACAT3 miR-135a. Upregulated NAMPT Promoting progression 22
MATN1-AS1 miR-200b/c/429 Upregulated CHD1 Promoting progression 23
TPT1-AS1 miRNA-770-5p Upregulated STMN1 Inhibiting autophagy and promoting proliferation 24
LEF1-AS1 miR-489-3p Upregulated HIGD1A Promoting tumorigenesis 26
NCK1-AS1 miR-138-2-3p Upregulated TRIM24 Promoting tumorigenesis 28
AGAP2-AS1 miR-15a/b-5p Upregulated HDGF Promoting proliferation 29
SNHG16 miR-373 Upregulated EGFR Promoting tumorigenicity 30
LINC00475 miR-449b-5p Upregulated AGAP2 Acting as a tumor suppressor 41
HCG11 miR-496 Upregulated CPEB3 Promoting progression 43
NEAT1 miR-139-5p Upregulated CDK6 Promoting proliferation, invasion and migration 45
NEAT1 miR-107 Upregulated CDK14 Promoting progression 52
BCYRN1 miR-619-5p Upregulated CUEDC2 Inhibiting tumorigenesis 50
LINC00174 miR-152-3p Upregulated SLC2A1 Promoting glycolysis and tumor progression 51
LPP-AS2 miR-7-5p Upregulated EGFR Promoting tumorigenesis 54
LINC00645 miR-205-3p Upregulated ZEB1 Promoting epithelial-mesenchymal transition (EMT) 55
HOTAIR miR-148b-3p Upregulated USF1 Regulating blood-tumor barrier (BTB) permeability 58
MIAT miR-140-3p Upregulated ZAK Regulating BTB permeability 59
Lnc00462717 miR-186-5p Upregulated PTBP1 Regulating BTB permeability 61
LINC00174 miR-138-5p/miR-150-5p Upregulated FOSL2 Regulating BTB permeability 62
TALC miR-20b-3p Upregulated c-Met Promoting MGMT expression 66
SNHG15 miR-726 Upregulated CDK6 Overcoming temozolomide (TMZ) resistance 68
AC003092.1 miR-195 Upregulated TFPI-2 Promoting TMZ chemosensitivity 71
CASC2 miR-181a Upregulated PTEN Promoting glioma growth and resistance to TMZ 72
SNHG16 miR-212-3p Upregulated USF1 Promoting vasculogenic mimicry 78
LINC00667 miR-429 Upregulated USF1 Promoting vasculogenic mimicry 78
SNHG1 miR-154-5p/miR-376b-3p Upregulated FOXP2 Promoting growth, migration, and invasion 39
PDIA3P1 miR-124-3p Upregulated RELA Promoting EMT 83
LINC01579 miR-139-5p Upregulated EIF4G2 Promoting proliferation 84
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LINC00645 could promote EMT, which was indispensable in the
invasion and migration of glioma cells involving TGF-b by
regulating the miR-205-3p-ZEB1 axis; thus, LINC00645 could
be a prognostic indicator for glioma (57). A novel lncRNA-
TOCN that targets the Smad2/PKCa signaling pathway to
inhibit malignant progression of glioma was highlighted by
Tang et al. and could serve as a prognostic indicator of
GBM (58). The expression of multiple lncRNAs has been
documented to correlate with the malignancy of gliomas and
to be involved in their malignant progression, providing
powerful theoretical evidence for their application as diagnostic
and prognostic markers.
LNCRNAS AS RELIABLE
THERAPEUTIC TARGETS

Treatment Strategies Involving LncRNAs
as Regulators Modulating the BTB
The BTB parallels the blood-brain barrier (BBB) and is
comprised of vascular endothelial cells, basement membrane,
and glioma cells. This structure can seriously impede the entry
of drugs into the tumor microenvironment, resulting in poor
Frontiers in Oncology | www.frontiersin.org 588
drug efficacy and extremely unfavorable patient prognosis (59–
61). Consequently, exploring lncRNAs that can regulate BTB
permeability to promote chemotherapy and thus improve drug
efficacy is one of the research directions for targeted glioma
therapy. Li et al. showed that silencing HOTAIR could increase
BTB permeability by eliminating miR-148b-3p, thereby further
reducing the expression of glioma-microvascular endothelial
cell tight junction (TJ)-related proteins by targeting USF1
(62). He et al. also indicated that MIAT regulated the
expression of ZAK to promote the delivery efficiency of
doxorubicin across the BTB (63). In addition, the IGF2BP2/
FBXL19-AS1/ZNF765 axis could regulate the permeability of
the BTB to improve the antitumor effect of doxorubicin (64).
Lnc00462717 regulated BTB permeability by interacting with
PTBP1 to restrain the miR-1865p/Occludin signaling pathway
(65). Moreover, BTB permeability was shown to be augmented
by silencing LINC00174 in glioma tissue (66). Overcoming the
obstacle of the BTB to increase the local concentration of
chemotherapeutic agents in glioma and then enhance
therapeutic efficacy is a prospective strategy. As such,
identifying appropriate targets has been a major concern. The
formulation of individual drug delivery routes based on the
corresponding targets is another strategy that can potentially
enhance chemotherapeutic efficacy.
FIGURE 2 | LncRNAs in the proliferation, migration, apoptosis and angiogenesis of glioma.
June 2021 | Volume 11 | Article 688027
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Treatment Strategies Involving LncRNAs
Overcoming TMZ Resistance
Temozolomide (TMZ) is an oral alkylating agent that passes
through the BBB, adding methyl groups to the purines of DNA
to cause DNA damage and apoptosis for therapeutic effects (67,
68). Conversely, this process is reversed by the DNA damage repair
enzyme O6-methyl-guanine-DNA methyltransferase (MGMT),
which restores the damage caused by TMZ, resulting in the
resistance of glioma cells to TMZ (69). A novel lncRNA, lnc-
TALC, was found to be highly expressed in TMZ-resistant GBM
cells by Wu et al. Lnc-TALC modulated the c-Met pathway by
functioning as a ceRNA for miR-20b-3p, facilitating MGMT
performance and in turn leading to TMZ resistance in GBM cells
(70). Sun and colleagues revealed that the overexpression of miR-
29c-3p could promote chemosensitivity to cisplatin, and CRNDE,
which competitively binds with miR-29c-3p, plays a critical role in
regulating the chemoresistance of medulloblastoma (71). In
addition, tumorigenesis of glioma was attenuated with the
downregulation of lncRNA-SNHG15 expression, and TMZ
sensitivity was increased (72). Recently, a study reported that
combining p50 and p53 with the proximal kB and p53 sites of
the MALAT1 coding region, respectively, cooperatively
downregulated MALAT1 expression, which in turn increased the
chemosensitivity of GBM cells (73). The tumor microenvironment
was remodeled with the secretion of oncogenic lncSBF2-AS1-
enriched exosomes by GBM cells, resulting in tumor drug
resistance (74). The lncRNA AC003092.1 inhibited miR-195,
increasing the expression of tfpi-2, which promoted TMZ-
induced apoptosis and thus made GBM cells more sensitive to
TMZ (75). CASC2 has an essential function in the sensitivity of
glioma to TMZ by upregulating PTEN expression through direct
inhibition of miR-181a (76). High expression of SNHG12 in TMZ-
resistant cells served as a molecular sponge for miR-129-5p to raise
the levels of MAPK1 and E2F7 to enhance the sensitivity of GBM
cells to TMZ. In contrast, knockdown of SNHG12 restored TMZ
sensitivity (77). LncRNA SOX2OT activates the Wnt5a/b-catenin
signaling pathway through upregulation of SOX2 expression,
thereby inhibiting apoptosis, promoting cell proliferation, and
resulting in resistance to TMZ (78). LncRNAs are not only
linked to chemotherapy but also closely correlated with
radioresistance. For instance, LINC-RA1 inhibited autophagy and
enhanced radioresistance by inhibiting the H2Bub1/USP44
combination in glioma cells (79). In summary, lncRNA on the
one hand can increase sensitivity of glioma to TMZ and on the
other hand induce TMZ resistance of glioma. TMZ is currently
the main chemotherapeutic agent for the treatment of glioma,
however, glioma is prone to become resistance to it. Thus, it is
feasible to target lncRNA to find drugs to overcome TMZ
resistance in glioma.
Treatment Strategy Involving LncRNAs
Mediating Angiogenesis
Angiogenesis is a requirement for the growth and metastasis of
gliomas, which are solid tumors. Additionally, extensive evidence
Frontiers in Oncology | www.frontiersin.org 689
has demonstrated that the formation of novel blood vessels
participates in the development and metabolic processes of
tumors. Therefore, vasculogenic mimicry is considered a hallmark
of malignant tumor development. Hence, antiangiogenic treatment
is anticipated to be an additional efficacious strategy for glioma.
Chen and colleagues demonstrated that overexpression of NKILAT
was negatively correlated with survival time in glioma patients, and
NKILAT augmented theWarburg effect and angiogenesis in glioma,
suggesting that it may be a promising therapeutic strategy (80). In
addition, Yang et al. elucidated the key role of the ANKHD1/
LINC00346/ZNF655 feedback loop in regulating angiogenesis in
glioma (81). Likewise, Wang et al. demonstrated that knockdown of
USF1 suppressed angiogenesis in gliomas by stressing SNHG16/
miR-212-3p and the LINC00667/miR-429 axis (82). Furthermore,
overexpression of lncRNA PAXIP1-AS1 promoted glioma
vasculogenic mimicry by recruiting the transcription factor EST
to upregulate KIF4 expression (83). SNHG20 played a crucial role in
the ZRANB2/SNHG20/FOXK1 axis to regulate vasculogenic
mimicry of glioma (84). These studies provide compelling
evidence that lncRNAs potentially act as therapeutic targets by
regulating angiogenesis in gliomas.

In addition, lncRNAs that exert regulatory effects by binding
to RBP also have the potential to become therapeutic targets.
Lin28a elevated the expression and stability of SNHG14, while
deletion of SNHG14 increased the expression of IRF6, which
inhibited the transcription of PKM2 and GLUT1 and thus
impaired glycolysis and proliferation of glioma cells and
induced apoptosis. Therefore, considering the lin28a/SNHG14/
IRF6 axis as a target provides novel insight for the treatment of
glioma (85). Additionally, the TAF15/LINC00665/MTF1(YY2)/
GTSE1 axis is crucial for regulating the malignant biological
behaviors of glioma cells, which might help in the development
of a novel therapeutic strategy for human glioma (86). The
PABPC1-BDNF-AS-RAX2-DLG5 axis was shown to play the
same role as the TAF15/LINC00665/MTF1(YY2)/GTSE1 axis in
regulating the biological behavior of gliomas (87). LncRNA
PDIA3P1 promoted glioma mesenchymal transition by
competit ively binding to miR-124-3p in a hypoxic
environment to regulate RELA expression and activate the
downstream NF-kB pathway. Consequently, the PDIA3P1-
miR-124-3p-RELA axis is a possible target for glioma therapy
(88, 89). SChLAP1 forms a complex with HNRNPL to maintain
the stability of ACTN4 and thus activates the NF-kB pathway to
promote the growth of GBM cells (90). The identification of this
complex provided a new perspective for the treatment of glioma.
The UPF1-LINC00313-miR-342-3p/miR-485-5p-Zic4-SHCBP1
positive feedback loop was capable of modulating the biological
behaviors of glioma cells, demonstrating that this loop is
probably a potential therapeutic target (91). The combination
of lncRNA and RBP forms a complex that regulates downstream
target gene to contribute to TMZ resistance of glioma. This
regulatory model provides a novel insight into the therapeutic
strategy for glioma. Thus, targeting lncRNA-regulated
angiogenesis, BTB permeability and TMZ resistance of glioma
as novel strategies for the treatment of glioma shows potential.
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CONCLUSION

Over the previous decades, lncRNA studies have made major
progress in the field of glioma research due to the rapid
development of bioinformatics, and a series of lncRNAs have
been found to act as indispensable factors in the occurrence and
progression of glioma. LncRNAs act as ceRNAs in the
cytoplasm to regulate glioma progression at the post-
transcriptional level or to regulate gene expression through
interactions with proteins in the nucleus. However, the
mechanisms of most lncRNAs remain unclear. Therefore, the
specific mechanisms of lncRNAs need to be further clarified.
Glioma continues to be a major challenge to human health, and
its advanced aggressiveness, chemoresistance and recurrence are
the main factors contributing to the poor prognosis.
Theoretically, there are numerous lncRNAs, such as HOTAIR,
H19 and NEAT1, that can be applied as diagnostic and
prognostic indicators of glioma. It is also possible that many
lncRNAs can overcome TMZ resistance, modulate BTB
permeability and control glioma angiogenesis, all of which are
theoretically effective therapeutic strategies. Regrettably, no
successful clinical use of lncRNAs has been achieved yet. In
prospective research, lncRNA-centered gene regulatory
networks should be constructed to elucidate the regulatory
mechanisms of lncRNAs in tumor cells and then used as
diagnostic, prognostic, and therapeutic indicators in clinical
practice to improve the survival of glioma patients. One of the
focuses of basic research is translation to the clinic to improve
Frontiers in Oncology | www.frontiersin.org 790
the survival of patients. Translating basic research into clinical
strategies is a long road that will require generations of
researchers to eventually understand the full picture of the
function of lncRNAs in glioma at both the scientific and
clinical levels.
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Background: Brainstem glioma is a primary glial tumor that arises from the midbrain,
pons, and medulla. The objective of this study was to determine the population-based
epidemiology, incidence, and outcomes of brainstem gliomas.

Methods: The data pertaining to patients with brainstem gliomas diagnosed between
2004 and 2016 were extracted from the SEER database. Descriptive analyses were
conducted to evaluate the distribution and tumor-related characteristics of patients with
brainstem gliomas. The possible prognostic indicators were analyzed by Kaplan-Meier
curves and a Cox proportional hazards model.

Results: The age-adjusted incidence rate was 0.311 cases per 100,000 person-years
between 2004 and 2016. A total of 3387 cases of brainstem gliomas were included in our
study. Most of the patients were white and diagnosed at 5-9 years of age. The most
common diagnosis confirmed by histological review was ependymoma/anaplastic
ependymoma. The median survival time was 24 months. Patients with tumors less than
3 cm in size had a better prognosis. Surgery was effective at improving overall survival.
There was no evidence that radiotherapy and chemotherapy improved overall survival.

Conclusion: Brainstem gliomas can be diagnosed at any age. Ependymoma/anaplastic
ependymoma is the most common pathological diagnosis. The prognosis is poor, and
timely diagnosis and surgery are effective at improving the prognosis. We suggest that
more attention should be given to the treatment of patients with brainstem gliomas.

Keywords: brainstem glioma, epidemiology, survival, SEER Program, CNS disease
INTRODUCTION

Gliomas are primary brain tumors that are thought to arise from neuroglial stem or progenitor cells
(1). Gliomas are the most common malignant primary brain tumor, and 4.3% of gliomas are
localized at the brainstem (2). Brainstem glioma is a primary glial tumor that arises from the
midbrain, pons, and medulla. In most instances, the term refers to a highly aggressive tumor of the
pons (3). Diffuse intrinsic pontine glioma has been reported to account for ~75% of brain stem
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tumors in children (2). Because of poor survival, brainstem
glioma has been a main research focus for decades (4).

The Surveillance, Epidemiology, and End Results (SEER)
program of the National Cancer Institute represents
approximately 35% of the US population (based on the 2000
census) (5). Our goal is to use SEER data to analyze the
epidemiology and survival of patients with brainstem gliomas
in the United States.
METHODS

Data Extraction and Incidence Rates
The data from SEER are available to the public for research
purposes. Therefore, ethics committee approval and informed
consent were not necessary to perform the analyses. Patients with
a diagnosis of primary brainstem gliomas were included. The
term glioma was defined by setting the variable “Histology
recode - broad groupings” as “9380-9489: gliomas”. Brainstem
gliomas were defined by setting the variable “Primary Site -
labeled” as “C71.7-Brainstem”. The research period was set from
2004 to 2016. Age-adjusted incidence rates (directly standardized
to the 2000 US standard population) between 2004 and 2016
were retrieved from the SEER 18 database (November 2019
submission) (6). The detailed patient data were obtained from
SEER 18 Regs Custom Data (November 2018 submission) (7).
All the data were obtained by using the SEER*Stat 8.3.8 program.

Variables and Population Analysis
The demographic and clinical features included age at diagnosis (0-
19 years, ≥20 years), sex (Male, Female), race (White, Black, Asian
or Pacific Islander, American Indian/Alaska Native, Unknown),
Purchased/Referred Care Delivery Area (PRCDA) Region (Alaska,
eastern region, north plains, Pacific coast, southwestern region),
tumor size (≤3 cm, >3 cm and Unknown), diagnostic confirmation
(positive microscopic confirm, others), behavior code (benign,
borderline malignancy, malignant) according to the International
Classification of Diseases for Oncology 3 (ICD-O-3), surgery (Yes,
None/Unknown), radiation therapy (Yes, None/Unknown),
chemotherapy (Yes, None/Unknown), survival months and vital
status. The pathology types (according to the code of “Histology
recode - Brain groupings”) of the patients diagnosed with positive
microscopic confirmation were analyzed. Descriptive analyses were
conducted to evaluate the distribution and tumor-related
characteristics of patients with brainstem gliomas. Bar graphs and
pie charts were also used to further describe the distribution
of patients.

Survival Analysis
The Kaplan-Meier method was used to estimate overall survival
(OS) at 1, 3, 5, and 10 years. Survival time was defined as the time
from diagnosis to death from any cause. We also used this
method to estimate the OS in different groups. The differences
between the curves were analyzed by the log‐rank test. Univariate
and multivariate Cox proportional hazard models were
performed to estimate the hazard ratios (HRs) and 95%
Frontiers in Oncology | www.frontiersin.org 294
confidence intervals (CIs) to analyze the independent
prognostic factors associated with OS in patients with
brainstem gliomas, and statistical significance was defined as
p < 0.05. All the data were analyzed by IBM SPSS Statistics 25
software (IBM Corporation, Armonk, New York, USA).
RESULTS

Population Analysis
The age-adjusted incidence rate was 0.311 cases per 100,000
person-years between 2004 and 2016. A total of 3387 cases of
brainstem gliomas were indexed between 2004 and 2016. The
demographic and clinical characteristics of the patients are
shown in Table 1. There were 1535 female patients (45.3%)
and 1852 male patients (54.7%). The median age was 18 years
(range 0 to 103 years). The majority of patients were diagnosed
when they were between 5 and 9 years old, and the distribution of
patient age at diagnosis is shown in a histogram (Figure 1).
Children and adolescents (0-19 years old) accounted for 34.3% of
all patients. White patients accounted for 80.2% of all patients
(Figure 2). Most of the patients were from the Pacific coast
(n=1740, 51.4%) and eastern region (n=1187, 35.0%). According
to ICD-0-3, most of the tumors were malignant (n=3040, 89.8%).
Among this cohort, 2023 cases were diagnosed with positive
microscopic confirmation. We analyzed pathology type among
these patients, and the results are shown in a pie chart (Figure 3).
We found that ependymoma/anaplastic ependymoma (n=438,
21.7%) and pilocytic astrocytoma (n=377, 18.6%) were the most
common pathology types. A total of 37.2% of the tumors were
less than 3 cm in size, and 33.5% of the tumors were larger than
3 cm. Radiation was the first choice of therapy for patients with
brainstem gliomas. Surgery was performed in 1479 (43.7%)
cases, radiation therapy was performed in 1746 (51.6%) cases,
and chemotherapy was performed in 1166 (34.4%) cases. The
median survival time was 24 months (range 0 to 155 months). At
the time of data collection, 1931 (57.0%) patients were alive, and
1456 (43.0%) were deceased.

Survival Analysis
The OS rates at 1, 3, 5 and 10 years after diagnosis were 70.8%,
56.3%, 53.3% and 48.8%, respectively. A Kaplan-Meier curve was
created to show the OS for the full cohort (Figure 4A). The
Kaplan-Meier log-rank test indicated that the variables age at
diagnosis (Figure 4B), race (Figure 4C), tumor size (Figure 4D),
behavior (Figure 4E), surgery (Figure 4F), radiation (Figure 4G)
and chemotherapy (Figure 4H) were possibly related to OS. The
results of multivariate Cox proportional hazard regression
analysis showed that race, age and sex were not independent
prognostic factors. Patients with tumors less than 3 cm in size or
benign or borderline tumors had a better prognosis. The results
also showed that surgery was effective for improving prognosis,
but radiation and chemotherapy did not help patients obtain a
better prognosis. The results generated by the log-rank test and
univariate and multivariate Cox proportional hazard models are
listed in Table 2.
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DISCUSSION

Brainstem glioma is a primary glial tumor that arises within the
brainstem and is believed to be a heterogeneous group of
gliomas. Some authors divided brainstem gliomas into 2
categories. Twenty percent are considered to be focal low-
grade lesions with good prognosis, and the remaining 80% of
tumors arise in and occupy the majority of the pons and are
diffuse in nature and associated with poor prognosis (8–10). We
could not define whether the tumor originated from the
midbrain, medulla, or pons, and we also could not define
whether the tumor was focal or diffuse based on the data
available in the SEER database. Some authors have conducted
cohort studies with data on high-grade glioma (11, 12) or low-
Frontiers in Oncology | www.frontiersin.org 395
grade glioma (13) based on the SEER database. Brainstem glioma
is a relative rare lesion, and previous reports have included
limited numbers of cases. We believe that this limitation might
prevent us from obtaining a better understanding of the general
characteristics of the patients diagnosed with brainstem glioma.
The SEER program represents approximately 35% of the US
population, and the data were collected from most parts of the
United States (5). To better understand brainstem glioma, we
conducted this large-scale cohort study including 3387 cases. To
the best of our knowledge, this is the largest brainstem glioma
cohort to date. We believe our report can explain the
epidemiology and survival of patients with brainstem gliomas
in the United States to some extent.

First, we wanted to conduct an analysis of cancer-specific
survival. However, because the brainstem glioma was not the first
malignant tumor in some patients, cancer-specific survival was
not applicable for approximately 10% of the cohort. Progression-
free survival cannot be adopted because we cannot obtain data
about progression from the SEER database. To include all of the
data and make the analysis accurate, we chose to analyze OS. The
World Health Organization (WHO) grade classification is widely
used by neuro-oncology doctors, but half of the tumors were not
clearly classified according to WHO grade. Therefore, we chose
the behavior code according to ICD-O-3; in our cohort, more
than 80% of the tumors were malignant, which is in agreement
with a previous study (3).

According to the report from The Central Brain Tumor
Registry of the United States (14), in children and adolescents,
brainstem tumors account for 10.8% of all primary central
nervous system tumors. Brainstem gliomas were also reported
to account for up to 20% or more of primary brain tumors (15).
In our cohort, the highest incidence was found in individuals
between 5 and 9 years old, and the median age at diagnosis was
18 years old. However, we found that brainstem gliomas could be
diagnosed at every age. Children and adolescents (0-19 years old)
accounted for 34.3% of all patients, and more than half of the
patients were adults. The predominance of white patients was
also very significant in our study, which is consistent with the
findings of other cohort studies of gliomas based on the SEER
program (13, 16). Males and females are almost equally affected.
We have also analyzed the pathological classification of the
tumors in these patients, with the intention of providing
information that could be useful when biopsy or surgery
cannot be performed but a treatment needs to be selected.
According to a previous report, diffuse intrinsic tumors
account for approximately 80% of all brainstem gliomas. These
tumors are generally high-grade anaplastic astrocytoma (WHO
grade 3), glioblastoma multiforme (WHO grade 4), or
occasionally well-differentiated diffuse astrocytoma (WHO
grade 2) (17). However, in our cohort, we found that the most
common pathology type was ependymoma/anaplastic
ependymoma and pilocytic astrocytoma. Glioblastoma
accounted for only 9% of all cases with positive histology.
Because the anatomical location of the tumor precludes
surgery, radiation is the standard therapy for patients with
diffuse intrinsic tumors (17), and tumor resection or biopsy is
TABLE 1 | Demographic and clinical characteristics of patients with brainstem gliomas.

Variables Number %

Sex
Female 1535 45.3
Male 1852 54.7
Age at diagnosis (years)
Mean±SD 26.86±23.244
Median 18.00
Range 0-103
0-19 1161 34.3
≥20 2226 65.7
Race
White 2715 80.2
Others 672 19.8
PRCDA Region
Alaska 6 0.2
East 1187 35.0
North plains 258 7.6
Pacific coast 1740 51.4
Southwest 196 5.8
Tumor Size
≤3cm 1259 37.2
>3cm 1134 33.5
Unknown 994 29.3
Diagnostic confirmation
Positive microscopic confirm 2023 59.7
Others 1364 40.3
Behavior code
Benign 113 3.3
Borderline malignancy 234 6.9
Malignant 3040 89.8
Surgery
Yes 1479 43.7
None/Unknown 1908 56.3
Radiation
Yes 1746 51.6
None/Unknown 1641 48.4
Chemotherapy
Yes 1166 34.4
None/Unknown 2221 65.6
Survival months
Mean±SD 44.22±44.404
Median 24.00
Range 0-155
Vital status
Alive 1931 57.0
Dead 1456 43.0
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not recommended for some patients. In our cohort, 59.7% of the
cases were diagnosed with a positive microscopic method. There
could be some bias in our research of the pathological
characteristics because the data were not fully included. We
believe further investigation should be conducted to clarify the
findings, and further research about molecular pathology is
also needed.

In our study, we found that race, age and sex were not
independent prognostic factors. However, patients with tumors
less than 3 cm in size had a better prognosis than patients with
Frontiers in Oncology | www.frontiersin.org 496
tumors larger than 3 cm. We believe that timely diagnosis and
treatment are essential for patients. Focal radiation therapy is the
current standard of care for children with diffuse intrinsic
pontine glioma (18). We also found that radiation therapy was
chosen more frequently than surgery and chemotherapy.
However, the results of the survival analysis showed that
radiation and chemotherapy did not improve overall survival.
The systematic review conducted by Xu et al. (19) also could not
make definitive conclusions regarding whether radiotherapy can
help patients obtain better survival. We believe that further high-
FIGURE 1 | Age distribution of the patients at diagnosis.
FIGURE 2 | Racial distribution of the patients.
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quality studies are needed to establish the role of radiotherapy in
the management of brainstem gliomas. Brainstem glioma is
believed to be composed of a heterogeneous group of gliomas,
and individualized treatment is needed based on pathology. Our
results also showed that surgery can improve prognosis. The
extent of surgery in some cases was difficult to clarify based on
the code provided. In particular, biopsy and ventricular
peritoneal shunts are widely used for patients with brainstem
gliomas. We did not analyze the impact of surgery extent on
survival. Based on the results, the prognosis of brainstem glioma
is poor, and the median survival time is 24 months. Different
attempts have been made to treat patients with brainstem
Frontiers in Oncology | www.frontiersin.org 597
gliomas (4, 18, 20), and we hope that more effective treatments
can be discovered in the future.

There are several limitations of our analysis that must be
considered. The availability of some important information was
limited, such as information on the tumor location (midbrain, pons,
and medulla), focality of diffuse glioma, molecular pathology, more
specific treatment, tumor progression and so on. The specific
location and molecular features are very important factors
affecting progression, and molecular pathological investigations
have been widely implemented in clinical practice. We hope that
we can obtainmore detailed information from the SEER database in
the future. Although it would necessitate the inclusion of a
FIGURE 3 | The distribution of the patients with different pathological types.
A B D

E F G H

C

FIGURE 4 | Kaplan-Meier survival analysis: (A) The overall survival for the whole cohort. The survival analysis of patients classified based on (B) age at diagnosis,
(C) race, (D) tumor size, (E) behavior, (F) surgery, (G) radiation and (H) chemotherapy.
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substantial amount of information, it would assist in the realization
of a better understanding of primary CNS tumors.
CONCLUSION

Brainstem gliomas can be diagnosed at every age. Ependymoma/
anaplastic ependymoma is the most common pathological
diagnosis. The predominance of white patients was significant.
The prognosis was poor, and the median survival time was 24
months. Timely diagnosis and surgery are effective in improving
the prognosis, and individualized treatment is essential for
patients. We suggest that more attention should be paid to the
treatment of patients with brainstem gliomas.
Frontiers in Oncology | www.frontiersin.org 698
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Background: Diffuse lower-grade gliomas (LGGs) are infiltrative and heterogeneous

neoplasms. Gene signature including multiple protein-coding genes (PCGs) is widely

used as a tumor marker. This study aimed to construct a multi-PCG signature to predict

survival for LGG patients.

Methods: LGG data including PCG expression profiles and clinical information

were downloaded from The Cancer Genome Atlas (TCGA) and the Chinese Glioma

Genome Atlas (CGGA). Survival analysis, receiver operating characteristic (ROC) analysis,

and random survival forest algorithm (RSFVH) were used to identify the prognostic

PCG signature.

Results: From the training (n = 524) and test (n = 431) datasets, a five-PCG signature

which can classify LGG patients into low- or high-risk group with a significantly different

overall survival (log rank P < 0.001) was screened out and validated. In terms of

prognosis predictive performance, the five-PCG signature is stronger than other clinical

variables and IDH mutation status. Moreover, the five-PCG signature could further divide

radiotherapy patients into two different risk groups. GO and KEGG analysis found that

PCGs in the prognostic five-PCG signature were mainly enriched in cell cycle, apoptosis,

DNA replication pathways.

Conclusions: The new five-PCG signature is a reliable prognostic marker for LGG

patients and has a good prospect in clinical application.

Keywords: lower-grade glioma, signature, prognostic biomarker, survival, gene expression

INTRODUCTION

Glioma is the most common primary CNS tumor and was classified into grades I–IV
according to histopathological characteristics. Glioblastoma (WHO grade IV glioma) accounts
for 70–75% of all diagnosed diffuse gliomas, with a median overall survival of 14–17
months (1). Diffuse low-grade (WHO grade II) and intermediate-grade (WHO grade III)
gliomas are considered lower-grade gliomas (LGGs), and their clinical behavior is highly
variable, with a prognosis of 1–15 years (2). Overall, the prognosis of glioma patients
is not satisfactory. For LGGs, the great prognostic variance among patients subjected
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to the same therapeutic regimen is the highlighted clinical
problem. Thus, identification of patients with bad survival is very
important for instructing subsequent treatment.

Glioma is a fatal tumor that derives from glial cell and grows
in the central nervous system, including diffuse gliomas and
nondiffuse gliomas (3). Diffuse gliomas are the most frequently
occurring intracranial malignant tumors, encompassing various
histologic types (astrocytic or oligodendroglial) and malignancy
grades [World Health Organization (WHO) grades II, III,
and IV] tumors. Astrocytomas and oligodendrogliomas in the
low grade (WHO II) and intermediate grade (WHO III) are
incorporated into diffuse lower-grade glioma (LGG) and perform
better than IV grade glioblastoma in both malignancy and
prognosis. However, it is difficult to predict the clinical outcome
of LGG patients because LGG are a highly heterogeneous group
of tumors. Firstly, there is a difference in the speed of tumor
progression within LGG. Some are relatively inert, while others
quickly progress to high-grade glioma or glioblastoma. Secondly,
therapeutic sensitivity varies in LGG patients. Some people
have effective treatments, while others have poor treatment
results. Finally, LGG patients differ greatly in the prognosis,
ranging from 1 to 15 years (2). Due to the limitations of
histologic classification of LGG, finding molecular markers that
can accurately predict prognosis and treatment response has
become an urgent task (4).

In recent years, significant progress has beenmade in the study
of molecular pathology of gliomas, and a series of molecular
markers have been discovered that are helpful for clinical
diagnosis, prognostic judgment, and treatment guidance, such
as IDH1/2 gene mutation, chromosome 1p/19q co-deletion, and
MGMT promoter methylation (5). Especially, the revised 2016
WHO classification of CNS tumors made fundamental changes
and classified diffuse gliomas based on IDH mutation and
1p/19q co-deletion status. This innovative measure highlights
the important role of novel and reliable gene biomarkers in the
diagnosis and prognosis of gliomas.

With the development of next-generation sequencing
technology, a large amount of high-throughput sequencing
data and a variety of bioinformatics methods have prompted
researchers to further understand tumorigenesis and find
prognostic markers. Hu et al. (6) selected a prognostic 35-
gene signature from 374 glioma patients carrying the 1p/19q
co-deletion. Wu constructed a six-gene signature that could
classify IDH-mutant GBM patients into high or low risk of poor
outcome using 33 samples from the Chinese Glioma Genome
Atlas RNA-sequencing data and 21 cases from Chinese Glioma
Genome Atlas microarray data (7). Deng found a four-gene
immune prognostic signature for predicting prognosis in
LGGs through analyzing 511 LGG samples from the TCGA
database and 172 LGG samples from the CGGA dataset (8).
Therefore, gene signature has become the research focus of
glioma prognostic markers.

Abbreviations: TCGA, The Cancer Genome Atlas; CGGA, the Chinese Glioma

Genome Atlas; ROC, receiver operating characteristic; Kaplan–Meier, KM; AUC,

area under the ROC curve; GO, Gene ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; CI, confidence interval; OS, overall survival.

In the present study, the protein-coding gene (PCG)
expression data from a total of 955 LGG patients were collected
from the Cancer Genome Atlas (TCGA) database and the
Chinese Glioma Genome Atlas (CGGA). We aimed to mine the
large queue of gene expression data and clinical information to
identify a prognostic PCG signature and explore its significance
of treatment guidance.

MATERIALS AND METHODS

Data Collection of Diffuse LGG Patients
The clinical information and mRNA expression data of LGG
patients were obtained from the TCGA database (http://
cancergenome.nih.gov/; https://xenabrowser.net/datapages/).
Another independent dataset used as validation or test dataset
was downloaded from the CGGA database (http://www.cgga.
org.cn/). LGG cases with clinical survival information including
survival status and survival time were selected for building the
prognostic model. Clinical details of LGG patients in the training
and test datasets are shown in Supplementary Table 1. Genes
with missing expression values in >20% samples were removed
in subsequent analysis (9).

TABLE 1 | Relationship of the five-gene signature with features in the two groups

with LGG.

Feature Training set P Test set P

Low# High# Low# High#

Age (years) 0.02 0.99

≤40 144 117 111 110

>40 118 145 105 105

Gender 0.99 0.88

Female 119 118 98 95

Male 143 144 118 120

Grade <0.001 <0.001

G2 169 88 111 69

G3 92 174 105 146

Unknown 1 0 0 0

IDH mutation status <0.001 <0.001

Mutant 69 22 183 114

Wild type 9 25 13 83

Unknown 184 215 20 18

Radiotherapy <0.001 0.31

No 119 54 47 39

Yes 113 171 157 157

Unknown 30 37 12 19

Chemotherapy 0.04

No 74 50

Yes 124 141

Unknown 18 24

1p19q co-deletion status <0.001

Co-deletion 99 29

Non-co-deletion 98 167

Unknown 19 19

#The median risk score was used to classify patients into low- and high risk groups.
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The Process of Developing the Prognostic
Signatures in the Training Dataset
Using Kaplan–Meier (KM) and receiver operating characteristic
(ROC) analysis, we identified the PCGs significantly associated
with patients’ OS with AUC > 0.6 from the TCGA group.
Then we reduced the number of the PCGs by the random

FIGURE 1 | Development of the prognostic signature in the training dataset.

(A) The survival-associated PCGs in Kaplan–Meier analysis were displayed as

red dots in the scatter diagram. (B) Random forest supervised classification

algorithm reduced the prognosis-associated PCGs to 11 PCGs. (C) The

prognostic five-PCG signature was selected because its AUC was the largest

(AUC = 0.739) among the 211−1 = 2,047 signatures.

survival forest algorithm (RSFVH). Further, prognostic models
were constructed as follows:

Riskscore =
∑

N
i =1(Expressioni × coefficienti)

whereN is the number of PCG, Expression is the PCG expression
value, and coefficient is the PCG expression in Cox regression
analysis. The final prognostic PCG signature was screened out
with the largest AUC value in all the constructed models (10).

Statistical and Bioinformatics Analysis
Kaplan–Meier analysis was used to assess the two survival risk
groups separated by the median risk score. Cox regression

FIGURE 2 | Kaplan–Meier plots indicated that LGG patients could be

classified into high- and low-risk groups according to the five-gene signature in

the training (A) and test (B) datasets.
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analysis was performed to explore the independence of
the signature. ROC and TimeROC were used to analyze
survival prediction performance. Function prediction of
prognostic PCGs was analyzed by clusterProfiler (11). R
program (www.r-project.org) with R packages including pROC,
TimeROC, randomForestSRC, and survival was used to perform
the above analyses.

RESULTS

The Process of Developing the Prognostic
Signatures in the Training Dataset
All 955 patients diagnosed with LGG were collected from the
TCGA (n = 524) and CGGA (n = 431) datasets, and a total
of 16,246 expressed PCGs were identified. From Table 1, we
found that the median age of the enrolled patients was 40
years (11–87 years) and that there were more male patients
than female patients, indicating that LGG is more likely to

occur in adult males. When focusing on the survival status
and survival time of these patients, we found that more
than one-third of patients (326 of 955) had died and the
median survival time was only 2.11 years (0.2–14.15 years).
In addition, we also obtained IDH mutation status, 1p19q
co-deletion, radiotherapy, and chemotherapy information for
further analysis.

After Kaplan–Meier and ROC analysis in the TCGA
dataset, a total of 1,702 PCGs were discovered (red dots in
Figure 1A), which were significantly associated with OS and
had a good ability to predict survival (KM P < 0.05 and
AUC > 0.6, Supplementary Table 2). Further, we screened out
11 prognostic PCGs by RSFVH analysis based on importance
scores (Figure 1B). Then, we brought the prognostic PCGs
into the risk prediction model and got 211-1 = 2,047
possible signatures in the training dataset. ROC analyses were
performed in all the 2,047 signatures to find out the signature
with the strongest predictive ability (Supplementary Table 3).
The final signature including five PCGs (ABCC3, SMC4,

FIGURE 3 | Risk score distribution, survival status, and PCG expression patterns for LGG patients in the training (A) and test (B) datasets.
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EMP3, WEE1, and HIST1H2BK) related to LGG prognosis
significantly (Supplementary Figure 1A) was screened out with
the maximum AUC (AUCsignature = 0.739; Figure 1C). The
selected risk model is as follows: risk score = (0.28 ×

expression value of ABCC3) + (0.66 × expression value of
SMC4) + (0.44 × expression value of EMP3) + (0.61 ×

expression value of WEE1) + (0.45 × expression value of
HIST1H2BK). In addition, the survival curves with univariable
Cox hazard ratio for each gene in the signature in the CGGA
group are also shown in Supplementary Figure 1B. The five
genes, significantly associated with LGG prognosis, were also
observed in the CGGA dataset. The result suggested that the
five genes were reliable prognostic biomarkers for patients
with LGG.

The Performance of PCG Signature in
Predicting LGG Patient Survival
We used the risk model to calculate the risk scores for each
patient. The median risk score was used to divide patients
in the training dataset into either the high-risk (n = 262) or
low-risk group (n = 262). The Kaplan–Meier analysis results
showed that patients in the low-risk group lived longer than
patients in the high-risk group (median survival time: 12.18
years vs. 3.84 years, P < 0.001; Figure 2A). Then, we tested
the prognostic value of the PCG signature in another large
independent LGG dataset (CGGA, n = 431). After the median
risk score in CGGA-separated patients into high- or low-risk
group, Kaplan–Meier analysis found that the 5-year survival of
patients with high risk scores was lower than that of patients
with low risk scores (5-year survival: 34.16 vs. 77.05%, log-
rank test P < 0.001; Figure 2B). We showed the relationship of
PCG expression, risk score, and survival information in Figure 3.
With the increase of gene expression value, risk scores and
death toll increased in the training (Figure 3A) and test datasets
(Figure 3B).

The Five-PCG Signature Is an Independent
Predictive Factor
In the two LGG groups (n = 524/431), we found that the
signature was related with clinical variables such as IDH
mutation status and Grade by chi-square test (P < 0.001;
Table 1). In addition, we found that the 1p19q co-deletion
status could predict the patients with LGG significantly
(Supplementary Figure 2) and the signature was also associated
with 1p19q co-deletion status based on the CGGA dataset (P
< 0.001; Table 1). Then, we further performed univariate and
multivariable Cox regression analyses to test the predictive
independence of the signature. Multivariable Cox regression
results verified that the signature was an independent predictive
factor and could independently predict patients’ clinical
outcome in training or test datasets (high- vs. low-risk, HR
training= 1.70, 95% CI 1.31–2.21, P < 0.001, n = 524;
HR test = 3.01, 95% CI: 2.12–4.27, P < 0.001, n = 431;
Table 2).

Predictive Performance Comparison
Between the Five-PCG Signature With
Other Clinical Variables
We performed ROC analysis to compare the predictive
performance of the five-PCG signature with other clinical
variables including IDH mutation status, age, and grade.
Figures 4A,B shows that the PCG signature outperformed the
above clinical variables in both the training and test sets
(AUCsignature 0.739/0.678 vs. AUCIDH 0.712/0.585; AUCgrade
0.625/0.632; AUCage 0.57/0.527). Further, TimeROC analysis
found that the AUC values of the signature from 1 to 5
years were greater than that of IDH mutation status, grade,
or age, indicating that the PCG signature had better survival
prediction when integrating the TCGA and CGGA datasets
(Figure 4C).

TABLE 2 | Univariable and multivariable Cox regression of the signature with patient survival in two LGG datasets.

Variables Univariable Multivariable

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

TCGA set

Age >40 vs. ≤40 2.82 1.96 4.04 <0.001 1.99 0.52 7.60 0.32

Gender Male vs. female 1.14 0.81 1.60 0.45 2.00 0.66 6.09 0.22

IDH status Wild type vs. mutant 5.53 2.07 14.82 <0.001 0.94 0.22 4.07 0.94

LGG Grade G3 vs. G2 3.31 2.28 4.79 <0.001 0.79 0.22 2.81 0.72

Signature High risk vs. low risk 6.86 4.26 11.04 <0.001 1.70 1.31 2.21 <0.001

CGGA set

Age >40 vs. ≤40 1.19 0.89 1.58 0.24 1.10 0.82 1.48 0.54

Gender Male vs. female 1.00 0.75 1.34 0.98 1.14 0.85 1.54 0.38

IDH status Wild type vs. mutant 2.24 1.64 3.07 <0.001 1.48 1.06 2.07 0.02

Grade G3 vs. G2 2.62 1.89 3.64 <0.001 2.58 1.81 3.66 <0.001

Signature High risk vs. low risk 3.68 2.69 5.03 <0.001 3.01 2.12 4.27 <0.001
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FIGURE 4 | Comparison of the survival predictive power of the signature with

grade, age, and IDH mutation by ROC in the training (A) and test (B) sets.

TimeROC analysis of survival predictive power for the signature, grade, age,

and IDH mutation (C).

FIGURE 5 | Radiotherapy stratification analysis. The five-PCG signature could

further divide patients with radiotherapy (A) or patients without radiotherapy

(B) into two groups with significantly different survival.

Radiotherapy Stratification Analysis
Because radiotherapy is the most commonly used treatment in
LGGs, we further explore the clinical value of the signature
in LGG patients treated with radiotherapy in TCGA and
CGGA. According to the radio-status information of all the 955
LGG patients, we found that 598 received radiotherapy, 259
patients did not, and 98 patients had unknown radiotherapy
information. For patients after radiotherapy, the five-PCG
signature could further divide patients into low- and high-
risk groups with significantly different survival (5- or 10-year
survival: 77.70/39.84% vs. 37.10/17.69%, log-rank test P < 0.001;
Figure 5A). Patients without radiotherapy can also be grouped
into different risk groups by the five-PCG signature (5- or 10-year
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FIGURE 6 | GO (A) and KEGG (B) functional enrichment analysis of the five PCGs in the signature.
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survival: 88.39/71.53% vs. 53.59/33.15%, log-rank test P < 0.001;
Figure 5B).

Function Prediction for the Five Selected
PCGs
To explore the role and function of the five selected PCGs
screened in this study, we obtained a total of 741 co-expressing
PCGs (Pearson coefficient >0.5/<−0.5, P < 0.05) using the
Pearson test in the TCGA and CGGA datasets, respectively, and
then performed KEGG andGO analysis. The co-expressing genes
of the five PCGs were significantly enriched in 425 Go terms
and 21 KEGG pathways (P < 0.05), such as cell cycle, DNA
replication, and p53 signaling pathway, indicating the specific
pathway or mechanism in which the prognostic PCGs might play
a key role (top 20 shown; Figure 6).

DISCUSSION

The heterogeneity among patients is a major contributing factor
in the adverse clinical outcome of gliomas (12). Consequently,
the latest edition (2016 edition) of theWHO glioma classification
incorporates molecular features into the classification criteria,
thereby improving the homogeneity of clinical outcomes in
patients with the same subtype (1). However, as one of
histological subtypes of glioma, LGG has substantial variation
in patient survival and lacks effective prognostic markers. In
the current study, we analyzed the survival and gene expression
information of 955 patients with LGG and found that the
five-PCG signature could be a good prognostic molecular
marker. In addition to predicting prognosis of LGG patients,
the five-PCG signature has also been found to have a role in
guiding radiotherapy.

Tumor heterogeneity and therapeutic advancements have
prompted clinicians to make individualized prognosis and
treatment choices for cancer patients, thereby achieving precision
medicine. Gene biomarkers have always been at the forefront
of the development of personalized medicine, especially in the
field of cancer. Gene signature-based RNA expression obtained
by analyzing gene profiling has been shown to predict the
tumor behavior and to distinguish patients with specific tumor
grades and/or prognosis (13, 14) in various types of cancer,
such as esophageal squamous cell carcinoma, hepatocellular
carcinoma, bladder carcinoma, breast cancer, and glioblastoma.
In the current study, we aimed to analyze the gene expression
profile and develop an effective gene signature for accurate
prognosis prediction of LGG patients. After a detailed analysis
of gene expression profiles of 955 patients with LGG from the
TCGA training set and CGGA validation set, a five-PCG-based
prognostic risk model and the five-PCG signature that could
distinguish LGG patients with high risk of poor prognosis from
patients with low risk were developed. The five-PCG signature
has the following two advantages in prognosis prediction: First,
it is an independent factor and does not depend on known
prognostic factors such as IDH mutation and tumor grade II/III;
second, it has excellent prediction performance for its AUC value
was higher than IDH mutation and tumor grade.

Notably, the five-PCG signature was found to be a predictive
marker for radiotherapy in LGG patients. More specifically, the
marker can identify who can benefit from radiotherapy or who
is suitable for radiotherapy. As a result, LGG patients have
more scientific guidance on whether to accept radiotherapy,
and clinicians can also have more standardized guidelines for
radiotherapy to facilitate their implementation. This finding
shows that the five-PCG signature not only makes the prognosis
assessment of patients more precise but also can play the role
of individualized treatment. In addition, we noted that the
five PCGs in the signature had positive risk factors, meaning
they were all prognostic risk factors. By searching the existing
literature, we found that the important role of these genes in
prognosis prediction had been reported in a variety of tumors.
ATP-binding cassette subfamily C member 3 (ABCC3), also
named multidrug resistance-associated protein 3 (MRP3), is an
organic anion transporter and contributes to drug resistance
of cancer cells (15). Consistent with the results in this article,
the poor prognosis predictive role of ABCC3 has been reported
not only in acute myeloid leukemia (16), gastric cancer (17),
pancreatic cancer (18), and lung cancer (19) but also in gliomas
(20). In addition to being found as a prognostic marker for
gliomas in this article, structural maintenance of chromosomes
4 (SMC4) has also been found to be a survival marker for
colorectal cancer (21), breast cancer (22), and prostate cancer
(23). Epithelial membrane protein 3 (EMP3) is considered to
be a tumor suppressor, but this article found that this gene
is a prognostic risk gene for LGG. Similar to our results,
Wang et al. (24) also found that EMP3 was associated with
the worse prognosis of LGG patients and Guo et al. (25)
discovered that EMP3 was also a risk gene in the process
of developing a prognostic four-gene panel for glioblastoma
patients. WEE1 G2 checkpoint kinase (WEE1) is reported
to be an oncogenic nuclear kinase and a regulator of the
G2 checkpoint. Expression of WEE1 has been found to be
associated with poor prognosis in a variety of tumor types
including gliomas (26). Two other gene signatures constructed
to predict the prognosis of LGG are also consistent with the
results of this article and found that WEE1 is a prognostic
risk factor (27, 28). H2B-clustered histone 12 (H2BC12 or
HIST1H2BK) is a replication-dependent histone and belongs to
the histone H2B family. The prognostic role of HIST1H2BK
was identified in ovarian cancer (29), breast cancer (30), and
pancreatic ductal adenocarcinoma (31). Although we had some
findings on the function of the five prognostic genes by KEGG
and GO analysis, further functional exploration of these genes
is needed.

CONCLUSION

Our study developed a prognostic five-PCG signature for LGG
patients that can predict individual clinical outcome with high
accuracy. Surprisingly, the five-gene signature can also predict
radiotherapy response, which makes the biomarker have a broad
clinical value.
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Expression of TCF7L2 in Glioma and
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and Patient Overall Survival
Shiyuan Jing, Lei Chen, Song Han, Ning Liu, MingYang Han, Yakun Yang and

Changxiang Yan*

Sanbo Brain Hospital, Capital Medical University, Beijing, China

Background: The TCF7L2 gene is known as transcription factor 7-like 2 which has

been identified as a novel transcription factor epithelial-mesenchymal transition (EMT) in

tumor cells at 10q25.3. TCF7L2 may affect cancer progression and plays a central role

in cancer proliferation, migration, and invasion. However, its clinical and prognostic value

have not been researched in glioma. The purpose of our study was to research TCF7L2

expression and evaluate the clinical value of prognosis.

Method: We collected glioma specimens including low-grade glioma (n = 46) and

glioblastoma (n = 51) from September 2015 to September 2017. Expression of

TCF7L2 in 97 specimens was detected by quantitative real-time PCR (qRT-PCR). The

chi-square test was applied to analyze the relationship between TCF7L2 expression and

clinicopathological characteristics. The overall survival (OS) was estimated by log-rank

tests among strata, and the survival curves were drawn by Kaplan-Meier. Univariate

and multivariate analysis were utilized to analyze the relationship between prognosis and

clinicopathological characteristics including TCF7L2 expression.

Results: Compared with the low-grade glioma group, the expression of TCF7L2 was

significantly increased in the glioblastoma group (p = 0.001). TCF7L2 overexpression

was associated with higher WHO grade (p = 0.001), isocitrate dehydrogenase (IDH)

wild-type (p = 0.001), and lack of O(6)-methylguanine-DNA methyltransferase (MGMT)

methylation (p = 0.001). Moreover, Kaplan-Meier analysis proved that overexpressed

TCF7L2 was associated with poor OS (p = 0.010). The multivariate analysis suggested

that TCF7L2 expression was an independent prognostic factor (p = 0.020).

Conclusions: Our research proved that TCF7L2 was overexpressed in glioblastoma,

and related with tumor long-term prognosis, which, therefore, could be an independent

prognostic factor for glioma patients.

Keywords: glioma, TCF7L2, overall survival, prognosis, clinicopathological characteristics
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BACKGROUND

Glioblastoma is a common malignant brain tumor owing
to its stronger invasive ability and resistance to treatment.
The morbidity rate of glioblastoma is approximately 0.59–
0.69/100000 people worldwide, affecting those aged 20 years
or older, especially those aged 40–70 years (1). The morbidity
is higher in men (3.97/100,000) than in women (2, 3)
(2.53/100,000).

According to NCCN Guidelines, the standard therapies
include surgery, radiotherapy with concomitant temozolomide
(TMZ), adjuvant TMZ chemotherapy, and TTF therapies, but
the 5-year overall survival (OS) is only 9.8% (3). Despite
comprehensive therapy, the median survival time is ∼12–15
months for GBM patients after diagnosis (4, 5).

An increasing number of molecular markers have been
discovered, which improves our understanding of the
mechanism of glioma and development. To date, the final
histological diagnosis, final integrated diagnosis, pathological
classification, and prognosis assessment are more accurate, which
can help develop personalized therapy for glioma. Therefore,
it is important to find novel biomarkers which can predict the
prognosis, and explore its potential as a therapeutic target for
glioma patients.

The Wnt/β-catenin signaling pathway is important in the
majority of tumor progression. There is over 90% of aberrant
activation of Wnt signaling in colorectal cancer (6). TCF7L2 is a
member of the Wnt/β-catenin signaling pathway, which plays an
important role in metabolism, cell differentiation/ proliferation,
and cell death (7). Several meta-analyses have evaluated cancer
risk induced by TCF7L2 gene variants (8–10).

A study (11) provided summary evidence that TCF7L2
genes are associated with the risk of breast, colorectal, and
lung cancer and glioma. The loss of TCF7L2 enhances tumor
cell growth, whereas a gain inhibits tumor cell growth (12).
TCF7L2 plays a significant role in the pathogenesis of human
cancers. A recent study (13) demonstrated that LEF/TCF-specific
transcriptional regulation of Wnt target genes is associated
with cancer progression and survival in human colorectal
tumor samples.

However, the study of TCF7L2 mutation mainly focused on
breast, colorectal, and lung cancer. Therefore, the aim of our
study was to analyze the clinical value of TCF7L2 in glioma.
We collected samples including 51 GBM tissues and 46 low-
grade glioma tissues WHO (I-II). We focused on the TCF7L2
effect and the expression level in glioma tissue. Subsequently,
we analyzed the relation between TCF7L2 expression level
and clinicopathological characteristics. In our study, we
performed a preliminary analysis between the expression
level of TCF7L2 and overall survival risk of glioma among
Chinese people.

Abbreviations: TCF7L2, Transcription factor 7-like 2; qRT-PCR, Real-time

quantitative PCR; OS, Overall survival; TMZ, Temozolomide; EMT, Epithelial-

mesenchymal transition; TTF, Tumor treating fields; GBM, Glioblastoma; cDNA,

Complementary DNA; HR, Hazard ratios; CI, Confidence interval; MGMT, O(6)-

methylguanine-DNA methyltransferase; IDH, Isocitrate dehydrogenase.

METHODS

Patients and Tissue Samples
Patients who underwent initial surgery in the Sanbo Brain
Hospital of Capital Medical University from September 2015 to
September 2017 were retrospectively selected for this research.
All samples were diagnosed by pathologists and stored in
liquid nitrogen.

As for patients with low-grade glioma, we identified high-
risk patients according to the literature (14), including at
least three factors (age >40 years old, astrocytomas, tumor
maximum diameter ≧6 cm, tumors across the midline, and
preoperative neurological impairment). Those patients were
treated with radiochemotherapy, while the patients at low
risk were followed up. Patients with glioblastoma received
radiotherapy with concomitant temozolomide (TMZ) and
adjuvant TMZ chemotherapy.

The patients’ characteristics are described in Table 1. Tissue
sample usage was approved by Ethics Committee of the Sanbo
Brain Hospital of Capital Medical University and written
informed consent was obtained from all study participants.

RNA Extraction and qRT-PCR Analyses
The total RNA was extracted from the frozen sample by
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA was

TABLE 1 | Relationship between the expression level of TCF7L2 and

clinicopathological parameters.

Characteristic Case number TCF7L2 expression Rs p

Low (n = 47) High (n = 50)

Age (years) 0.980

≤45 35 17 18

>45 62 30 32

Gender 0.970

Male 60 29 31

Female 37 18 19

Tumor size (cm) 0.085

≤3 33 20 13

>3 64 27 37

Necrosis 0.618

Yes 47 24 23

No 50 23 27

WHO grade 0.41 0.001

I-II 46 33 13

IV 51 14 37

IDH status 0.32 0.001

Wild-type 54 18 36

Mutation 43 29 14

1p/19q status 0.180

No deletion 72 32 40

Co-deletion 25 15 10

MGMT status 0.37 0.001

No methylation 55 17 38

Methylation 42 30 12
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reverse-transcribed to complementary DNA (cDNA) using a
PrimeScript RT reagent kit (Thermo, Beijing, China) according
to the manufacturer’s protocol. Its synthesis was conducted at
37◦C for 15min, then 85◦C for 5 s according to the experimental
protocols. Real-time PCR reactions were carried by Applied
Biosystems 7500. Real-time PCR was carried in triplicate. We
selected glyceraldehyde3-phosphate dehydrogenase (GAPDH)
as a suitable endogenous reference gene. The relative TCF7L2
expression was computed and normalized using the 2-1CT

method relative to GAPDH. The primers for TCF7L2: 5′-TGCT
CTGCGGTTGCTATGTTGAC-3′, 3′-GCT GCGAGTCCTCAC
CAATGTC-5′ and for GAPDH: 5′-CAGACCACAG TCCATGC
CATCAC-3′, 3′-GACGCCTGCTTCACCACCTTC-5′.

Data Analysis
The comparison of the TCF7L2 expression level between
GBM and low-grade glioma was performed by the two-
sample Student’s t-test. The chi-square test was used to
examine the associations between TCF7L2 expression and the
clinicopathological characteristics.

In addition, survival curves were drawn by the Kaplan-Meier
method and analyzed with log-rank test. Cox proportional-
hazards regression analysis was applied to estimate univariate
and multivariate hazard ratios for OS. A value of P < 0.05 was
considered as statistically significant. SPSS software 20.0 was
applied in the present study.

RESULTS

TCF7L2 Was Upregulated in Glioblastoma
Tissues
We measured TCF7L2 expression levels in 97 patients with
glioma by qRT-PCR. The data revealed that TCF7L2 had a higher
expression in GBM tissues than the low-grade group (p = 0.001)
(Figure 1).

Relation Between TCF7L2 Expression and
Clinicopathological Factors of GBM
Patients
We found high TCF7L2 expression in GBM. The median
expression level of TCF7L2 was used as a dividing point, and we
divided 97 patients into two groups (high and low expression).
Table 1 summarizes the relationship between TCF7L2 expression
and clinicopathological parameters in glioma. The results showed
that TCF7L2 high expression was significantly related to higher
WHO grade (p = 0.001), isocitrate dehydrogenase (IDH)
wild-type (p = 0.001), and lack of O(6)-methylguanine-DNA
methyltransferase (MGMT) methylation (p= 0.001).

Upregulation of TCF7L2 Confers Poor
Prognosis in Patients
Univariate and multivariate analyses were utilized to evaluate the
association between OS and various clinicopathological features
including TCF7L2 expression level (Table 1).

The Kaplan-Meier method indicated that the 5-year OS of
patients was significantly shorter in patients with high TCF7L2

FIGURE 1 | Expression levels of TCF7L2 in GBM tissues were significantly

higher (***p = 0.001).

expression than in those with low TCF7L2 expression (p =

0.010), but there were no significant differences in 2-year OS
(p = 0.070). The OS was significantly longer with small tumor
size (≦3 cm) compared to those with large tumor size (>3 cm)
(p = 0.020). The OS was significantly shorter in patients with
IDH wild-type than in those with IDH mutation (p = 0.010).
The OS was significantly shorter in patients receiving subtotal
resection than those receiving total resection (p= 0.010), but was
significantly longer in patients in the low-grade group compared
to those with glioblastoma (p = 0.001). The OS was significantly
shorter in patients with no 1p/19q deletion than in those with
1p/19q codeletion (p = 0.001). The OS was significantly shorter
in patients with no MGMT methylation than in those with
MGMT methylation (p = 0.010). There were no significant
differences between necrosis and non-necrosis patients (p =

0.420) (Figures 2, 3).
As for multivariate Cox regression analysis including TCF7L2

expression, WHO grade, extent of resection, 1p/19q status, IDH
status, and MGMT status, we found a 5-year OS advantage of
the low expression vs high expression of TCF7L2 (HR 2.56,
95% CI:1.16–5.68, p = 0.020), low-grade glioma vs. glioblastoma
(HR 79.94, 95% CI:18.88–338.39, p = 0.001), total resection
vs subtotal resection (HR 2.09, 95% CI:1.09–4.01, p = 0.030),
IDH mutation vs IDH wild-type (HR 0.36, 95% CI:0.15–0.87,
p = 0.020), 1p/19q codeletion vs no 1p/19q deletion (HR 0.33,
95% CI: 0.12–0.93, p = 0.040), and MGMT methylation vs no
MGMT methylation (HR 0.34, 95% CI:0.16–0.71, p = 0.010)
(Table 2).

DISCUSSION

TCF7L2 has been reported to have an effect on the suppression
of cell proliferation, migration, and invasion in the literature
(15). The transcription factor 7-like 2 (TCF7L2) gene may affect
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FIGURE 2 | Kaplan-Meier 5-year OS curves of patients with glioma according to clinicopathological features. (A) Patients with higher TCF7L2 expression showed

shorter OS compared with those with a lower expression (p = 0.010), (B) Glioblastoma patients showed worse OS compared with low-grade patients (p = 0.001). (C)

Patients with IDH wild-type showed worse OS compared with those with an IDH mutation (p = 0.010). (D) Patients who had a subtotal resection showed worse OS

compared with those who had a total resection (p = 0.010). (E) Patients with a larger tumor size (>3 cm) showed worse OS compared with those with a small tumor

size (≤3 cm) (p = 0.020). (F) Patients with no 1p/19q codeletion showed worse OS compared with those with 1p/19q codeletion (p = 0.001).

cancer development and prognosis because the TCF7L2 gene
plays an important role in the Wnt/β-catenin signaling pathway
(16, 17).

To date, various biological markers have been reported
in glioma (18, 19). TCF7L2 represents a central factor in

metabolism, cell proliferation, and cell apoptosis (20, 21). Bo
Yu et al. (15) found that TCF7L2 overexpression increased cell
viability, migration, and invasion in cells with CRNDE inhibition.
The TCF7L2 expression and prognostic value in glioma have
rarely been reported.

Frontiers in Neurology | www.frontiersin.org 4 July 2021 | Volume 12 | Article 627431113

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Jing et al. TCF7L2 Clinicopathological Characteristics Overall Survival

FIGURE 3 | Kaplan-Meier 2-year OS curves of patients with glioma according to clinicopathological features. (A) Patients with higher TCF7L2 expression showed no

significant differences compared with those with a lower expression (p = 0.008). (B) Patients with IDH wild-type showed worse OS compared with those with an IDH

mutation (p = 0.001). (C) Patients who had a subtotal resection showed worse OS compared with those who had a total resection (p = 0.001). (D) Patients with a

larger tumor size (>3 cm) showed worse OS compared with those with a small tumor size (≤3 cm) (p = 0.003). (E) Glioblastoma patients showed worse OS

compared with low-grade patients (p = 0.001). (F) Patients with necrosis showed no significant differences compared with those with no necrosis (p = 0.486).
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TABLE 2 | Univariate and multivariate analyses of 5-year OS.

Parameter Univariate Multivariate

HR 95% CI P HR 95% CI P

Age (≤45/>45) 1.01 1 0.61–1.67 0.960

Sex (Male/female) 0.85 0.52–1.38 0.510

Tumor size (≤3 cm/>3 cm) 1.77 1.07–2.92 0.020

Necrosis (Yes/no) 1.21 0.75–1.95 0.430

WHO grade (I-II/IV) 38.64 12.84–116.24 0.001 79.94 18.88–338.39 0.001

TCF7L2 expression (High/low) 1.86 1.14–3.01 0.010 2.56 1.16–5.68 0.020

IDH status (Wild-type/mutation) 0.09 0.04–0.19 0.010 0.36 0.15–0.87 0.020

Extent of resection (Subtotal/total) 6.12 3.36–11.17 0.010 2.09 1.09–4.01 0.030

1p/19q status (No deletion/co-deletion 0.10 0.05–0.23 0.001 0.33 0.12–0.93 0.040

MGMT status (No methylation/methylation 0.53 0.32–0.85 0.010 0.34 0.16–0.71 0.010

In our study, we detected significantly higher TCF7L2
expression in GBM tissues than in the low-grade group.
Moreover, TCF7L2 overexpression was significantly related with
higher WHO grade, IDH wild-type, and no MGMTmethylation,
and the coefficients were 0.41, 0.32, and 0.37, respectively.

Our study reported shorter OS in patients with higher TCF7L2
expression, however, there was no significant difference in 2-
year OS in the two groups. We found that the 2-year OS was
relatively high in the patients who underwent standard therapies
including radiotherapy with concomitant temozolomide (TMZ)
and adjuvant TMZ after surgery in the high expression group.
There was statistical significance in 5-year survival rate. On the
other hand, TCF7L2 might be more advantageous in judging
long-term prognosis.

Multivariate analysis revealed that TCF7L2, WHO grade,
IDH status, extent of resection, 1p/19q status, and MGMT
methylation status were independent prognostic factors for OS.
The hazard ratio in the high TCF7L2 expression group was 2.56
times more than the low expression group (95% CI: 1.16–5.68,
p = 0.020). TCF7L2 expression was independently related with
OS, indicating that higher TCF7L2 level was a marker of poor
prognosis for patients.

IDH mutation was found in both low-grade glioma and
glioblastoma in our study, suggesting the IDH gene played
an important role in the pathogenesis of tumors in glioma.
The mutation rate was 15.6%, which was practically consistent
with that reported in the literature (22). The multivariate
analysis revealed that the patients of IDH mutation were closely
associated with better prognosis, as compared with those of
IDH wild-type.

Previous studies have reported that IDH mutations have been
identified as one of the most important diagnostic and prognostic
factors of gliomas (23). Due to intra-group heterogeneity, we
need additional prognostic factors to subdivide the prognosis
results in gliomas. There was a correlation between IDH status
and TCF7L2 expression level, therefore, we would combine IDH
status and TCF7L2 expression to further refine the stratified study
and better judge the prognosis in a future study.

Previous studies have reported that patients with 1p/19q
co-deletion have better prognosis and response to treatment
(24, 25). 1p/19q co-deletion is a typical molecular genetic

feature of oligodendroglioma, which provides an important
reference for pathological diagnosis. We found that patients
with 1p/19q co-deletion had a better prognosis than those
no 1p/19q co-deletion. The results were consistent with
literature reports.

Surgical resection plays a critical role in glioma therapy,
which can reduce tumor load and provide an opportunity
for postoperative adjuvant therapy. We found that patients
receiving gross total resection had a better prognosis than those
receiving subtotal resection. The results were consistent with
other literature reports (26).

Glioblastoma patients showed worse OS compared with low-
grade patients. In our study, we did not include WHO III
patients, therefore, the hazard ratio was larger in the multivariate
analysis. In addition, the sample size of data was relatively
small, which might have introduced a bias. Currently, MGMT
methylation is a widely accepted biomarker in glioblastoma,
which can predict the effect of chemotherapeutic drugs (27).
Patients with MGMT methylation showed a better prognosis
than those with no methylation.

The sample size of data was relatively small. Some patients
were reluctant to attend follow-up appointments, or the follow-
up was interrupted in our study. We will increase the sample size
for detailed study in the future.

TCF7L2 could be a potential prognostic factor and
therapeutic target for patients with glioma. The underlying
molecular mechanisms of TCF7L2 involvement in the
Wnt/β-catenin signaling pathway needs to be investigated in
future studies.
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Department of Neurosurgery, Shanxi Medical University Shanxi Provincial People’s Hospital, Taiyuan, China

Background: Glioma is the most frequent malignant primary brain tumor in adults.

Objective: To explore the role of sperm-associated antigen 5 (SPAG5) in glioma.

Methods: The association between SPAG5 expression and clinical features was
investigated based on The Cancer Genome Atlas (TCGA) datasets. The function of
SPAG5 in glioma was analyzed using U87 and U251 cells. Knockdown glioma cells were
constructed by shRNA interference. qRT-PCR and Western blotting were used to
measure the expression of SPAG5 and Cadherin 2 (CDH2). Cell proliferation and
apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay, caspase 3/7 assay, and high-content screening (HCS)
proliferation analysis and colony formation assay. Transwell assays and wound-healing
assays were used to investigate cell migration and invasion.

Results: The increased expression of SPAG5 was correlated with poor outcomes in
glioma patients. Knocking down SPAG5 could inhibit the proliferation and colony
formation and promoted the apoptosis of glioma cells. Knocking down SPAG5 could
also inhibit cell migration and invasion and the expression of CDH2. Overexpression of
CDH2 with SPAG5 depletion could restore the proliferation and inhibit the apoptosis of
glioma cells, which also promoted cell migration and invasion.

Conclusions: SPAG5 is a promising prognostic factor and potential therapeutic target for
clinical intervention in glioma.

Keywords: SPAG5, glioma, proliferation, apoptosis, migration and invasion
INTRODUCTION

Glioma is a neuroectodermal tumor arising from glial or precursor cells (1), which represents one of
the most frequent malignant neoplasm in the central nervous system (2). Studies demonstrated that
glioma accounts for about 75% of primary malignant brain tumors in adults (3, 4). Despite current
advances in the therapy of glioma, the overall 5-year survival rate of glioma patients undergoing
comprehensive treatments, including surgical resection, adjuvant radiotherapy, and chemotherapy,
is disappointingly low (5). Particularly, most of the glioma patients with high grade succumb to this
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disease within 2 years of diagnosis (6). Therefore, it poses great
challenges to understand the potential molecular pathogenesis of
glioma, to identify novel prognostic molecular markers, and to
develop new therapeutic strategies (7).

Sperm-associated antigen 5 (SPAG5, also called astrin and
hMAP126), which maps to Ch17q11.2 and codes for a mitotic
spindle-associated protein (8), plays a key role in the regulatory
network of mitosis by forming a molecular switch with a mass of
protein partners (9). During mitosis, SPAG5 could interact with
many proteins, such as CLASP1, astrin, and Kif2b, to regulate the
centromere–microtubule dynamics and thus promotes mitotic
processes and their fidelity (10). It was reported that SPAG5 has
participated in growth and progression of various tumors, which
was overexpressed in breast cancer (11, 12), osteosarcoma (13),
lung cancer (14), bladder urothelial carcinoma (15), prostate
cancer (16), and cervical cancer (17). Thus, it is deduced that
SPAG5 may also take part in the tumorigenesis and progression
of glioma. However, the clinical significance of SPAG5 and its
biological role in glioma remain obscure.

The epithelial-to-mesenchymal transition (EMT) is a very
complex process underlying cell movement during embryonic
development and morphogenesis, in which several family
transcription factors form a network through many signaling
pathways, allowing cancer cells to acquire invasive properties
and penetrate adjacent stroma (18, 19). In vitro, SPAG5
silencing inhibits the EMT process of osteosarcoma cells, and
SPAG5 may serve as a prognostic indicator and potential
therapeutic target for patients with osteosarcoma (13). Although
the significance of EMT in gliomagenesis is still unclear, it has
been confirmed to be closely related to glioblastomas (GBMs)
(20). Cadherin 2 (CDH2) encodes N-cadherin, which is also a
hallmark of EMT. Tumor endothelial cell-derived CDH2
promotes angiogenesis and has prognostic significance for lung
adenocarcinoma (21). A growing body of evidence suggests that
CDH2 is closely associated with glioma.

In the present study, we intended to characterize the role of
SPAG5 in gliomagenesis and explore the underlying mechanisms.
Our results provided the evidence that downregulation of SPAG5
represses glioma cell proliferation and attenuates glioma cell
migration and invasion in vitro. To further explore the
regulatory mechanism of SPAG5 in glioma cells, the relationship
between SPAG5 and CDH2 was also analyzed. Taken together,
these data demonstrate the biological and clinical significance of
SPAG5 as a potential biomarker.
METHODS

The Cancer Genome Atlas
Database Analysis
We downloaded clinical characteristics and the data of SPAG5
mRNA expression profile chip expression data from The Cancer
Genome Atlas (TCGA) database (http://www.cbioportal.org),
including 667 glioma specimens and 10 normal specimens.
The RNA-seq level 3 data of the expression profile of these
samples were downloaded and sorted and directly used for the
analysis of the mRNA expression of SPAG5. For pathological
Frontiers in Oncology | www.frontiersin.org 2118
analysis, the RNA-seq level 3 data from the 667 glioma
specimens, which was divided into low-grade gliomas (LGGs,
n = 515, WHO II and WHO III grade gliomas) and GBMs (n =
152). We use the Affy and Limma packages in the R language to
standardize and T test our data and then filter according to
P value <0.05 and |FC| ≥2. According to the median of the SPAG5
mRNA expression, the 667 glioma specimens were further
divided into low SPAG5 expression group (n = 334) and high
SPAG5 expression group (n = 333). The association between the
mRNA expression level of SPAG5 and the overall survival time
of glioma patients was then analyzed by Kaplan–Meier curves.

Cell Culture and Transfection
Glioma cell lines (U87 and U251) were purchased from Shanghai
Genechem Co., Ltd. (Shanghai, China). Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Corning)
supplemented with 10% fetal bovine serum (FBS; Ausbian) and
cultured in a 5% CO2 incubator at 37°C. To knock down SPAG5
and overexpress CDH2, the plasmids specifically expressing
SPAG5 shRNA and CDH2 mRNA were constructed using
pAdTrack-CMV plasmid (Addgene, Cambridge, MA, USA) as
the vector. The plasmids expressing the mRNA or shRNA that
are not targeting any known human gene were used as the
negative control. The cells were transfected with shSPAG5,
CDH2 mRNA, or control mRNA or shRNA by Lipofectamine
2000 (Invitrogen, CA, USA) according to the instruction.

Quantitative Real-Time Polymerase
Chain Reaction
The total RNAs were extracted with TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s protocol
and reversed to cDNA (Invitrogen, CA, USA). qRT-PCR was
performed, and the sequences of the PCR primers are as follows:
SPAG5 F: 5′-TTGAGGCCCGTTTAGATACCA-3′ and R: 5′-
GCTTTCCTTGGAGC-AATGTAGTT-3′; glyceraldehyde 3-
phosphate dehydrogenase (GAPDH), F: 5 ’-TGACTTC
AACAGCGACACCCA-3′ and R: 5 ’-CACCCTGTTGC
TGTAGCCAAA-3′. The relative expression of SPAG5 was
presented as 2-DDCt value.

Western Blotting
Western blotting was carried out according to the literature
description (17). The primary antibodies are as follows: rabbit
polyclonal SPAG5 (1:200, Sigma-Aldrich, Germany), mouse
monoclonal GAPDH (1:2,000, Santa-Cruz, CA, USA), rabbit
polyclonal CDH2 (1:100, Cell Signaling Technology, MA,
USA), rabbit IgG (1:2,000, Santa-Cruz, CA, USA). A
horseradish peroxidase (HRP)-conjugated anti-rabbit or anti-
mouse IgG antibody was used as the secondary antibody
(1:2,000, Santa-Cruz, CA, USA).

Cell Proliferation and Apoptosis Assays
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay was used to measure cell proliferation
rate. Glioma cells (2 × 103 cells/well) were seeded onto 96-well
plates. Subsequently, 20 ml MTT (5 mg/ml) solution was added to
each well and incubated for 4 h at 37°C. After aspirating the
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medium, 100 ml dimethyl sulfoxide (DMSO) was added to
solubilize the formazan crystals formed by viable cells. Optical
density (OD) was measured at 490 nm. The observation duration
lasted for 5 days.

Colony Formation Assay
Adherent glioma cells in the logarithmic phase were trypsinized
and counted to measure viability. Then, viable cells (600 cells/
well) were seeded onto each well of a six-well plate. Glioma cells
were allowed to adhere and grow for 15 days. Media were
replaced every 3 days. When colonies were formed, we
removed media and added 1 ml 4% paraformaldehyde to each
well to fix cells for 30 min and stained them with crystal violet
solution (22). Finally, colonies were counted. Data gathered from
three independent experiments were expressed as mean colony
number ± SD.

Apoptosis Assay
Caspase 3/7 assay was used to assess apoptosis according to the
manufacturer’s instructions (Caspase-Glo® 3/7 Assay, Promega
Corporation, Cat. No. G8092).

Wound-Healing Assay
The 5 × 104 glioma cells were inoculated in 96-well plate. When
the cells grew to 90% confluence, we scratched the bottom of the
dishes across each well using a scratch tester. Cells were rinsed
2–3 times with serum-free medium and cultivated in 0.5% FBS.
The wound-healing process was observed for 24 h, and photos
were taken at 8 and 24 h.

Cell Migration and Invasion Assays
The cell migration and invasion assays were carried out by
Transwell kit (Corning, US) following the manufacturer’s
instructions. In brief, some chambers were inserted in a new 24-
well plate, and 5 × 103 cells in 100 ml medium without FBS were
seeded on the upper chamber in Transwell apparatus. Then, 600 ml
medium with 10% FBS was added in the lower chamber. After the
cells were incubated for 16 h at 37°C, themedium in chambers were
removed with absorbent paper, and cells on the chambers were
wiped off with a cotton swab. The cells adhering to chambers were
treatedwith4%paraformaldehyde for30mintofixandstainedwith
Giemsa solution and counted and visualized under amicroscope in
nine random fields (×200). The process of the invasion assay was
similar to the cell migration experiment, except that the Transwell
membrane was precoated with Matrigel basement membrane and
the cells were cultured for 18 h at 37°C. The cell count method was
the same as the cell migration assay.

High-Content Screening Proliferation
Analysis
Cells in the logarithmic growth phase were trypsinized and
completely resuspended into cell suspension and counted. The
cells (1,500 cells/well) were seeded onto each well of a 96-well
plate and cultured at 37°C with 5% CO2. The day after planking,
the number of green fluorescent cells was counted under Celigo
cytometry system (Nexcelom, Beijing, China) for 5 consecutive
days. Lentivirus 2000 was used to infect cells to make the glioma
Frontiers in Oncology | www.frontiersin.org 3119
cells express SPAG5 and green fluorescent proteins, so as to
facilitate the automatic cell count. To further explore the effect of
SPAG5 knockdown, CDH2 was overexpressed. The experiment
was divided into the following: NC+NC group (parental glioma
cells + vector), KD+NC group (parental glioma cells +
knockdown-SPAG5 + vector), and KD+OE group (parental
glioma cells + knockdown-SPAG5 + overexpression-CDH2).

Statistical Analysis
All quantified data were obtained from at least three independent
experiments and analyzed using SPSS 17.0 software. Data are
shown as mean ± SD. The Kaplan–Meier method was used for
survival analysis. The log-rank test was used to assess differences
in survival. Spearman’s method was applied in analyzing the
relationship between gene expression level and clinical variables.
Comparison of gene expression between groups was conducted
using Mann–Whitney U. The differences between groups were
analyzed using two-tailed Student’s t-test and ANOVA.
Differences were considered statistically significant when P < 0.05.
RESULTS

SPAG5 Expression Is Correlated
With Prognosis
Analysis of the mRNA expression profiles of SPAG5 in TCGA
revealed that the mRNA expression of SPAG5 was higher in
glioma tissues (n = 667) than that in normal tissues (n = 10) (P <
0.05; Figure 1A). Meanwhile, the mRNA expression of SPAG5
was higher in GBMs (n = 152) than that in LGGs (n = 515) (P <
0.05; Figure 1B).

We next analyzed the relationship between the mRNA
expression of SPAG5 and clinic characteristics, including age,
sex, and grade (Table 1) in 667 glioma patients. According to the
median of the SPAG5 mRNA expression, the 667 glioma
specimens were further divided into low SPAG5 expression
group (n = 334) and high SPAG5 expression group (n = 333).
The mRNA expression levels of SPAG5 were significantly
associated with overall survival time. And the high mRNA
level of SPAG5 indicated poor prognosis. The expression levels
of SPAG5 were not significantly associated with sex but were
significantly associated with age (P < 0.001) and grade (P <
0.001). Furthermore, the overall survival between glioma patients
with low (n = 334) and high (n = 333) expression of SPAG5 was
compared, who were grouped according to the median of the
expression of SPAG5. A Kaplan–Meier curve was obtained
(Figure 1C). Glioma patients with low expression of SPAG5
showed a higher overall survival rate than glioma patients with
high expression of SPAG5 [log-rank P = 0.03; hazard ratio
(HR) = 3.324, CI 2.521–4.328].

SPAG5 Knockdown Inhibited Cell
Proliferation and Promoted
Apoptosis In Vitro
The biological function of SPAG5 in glioma was next studied. Cell
proliferation analysis was performed in the two cell lines (U87 and
U251) transfected with SPAG5-shRNA. The mRNA and protein
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of SPAG5 in stable cell lines were examined by qRT-PCR and
Western blotting. After transfection with SPAG5-shRNA, the
mRNA and protein expression levels of SPAG5 in U87 and
U251 cell lines were all downregulated (Figure 2). Knockdown
of SPAG5 markedly suppressed the cell proliferation in the U87
cell lines and U251 cell lines (all P < 0.05; Figure 3). In accordance,
colony formation was also significantly decreased in shSPAG5
group compared with control group on the 15th day after shRNA
transfection (Figure 4). Caspase 3/7 assay was further carried out
to assess the effect of SPAG5 on apoptosis (Figure 5). In the
glioma cell lines (U87 and U251) transfected with SPAG5-shRNA,
cell apoptosis was significantly enhanced compared with that of
the normal control group. Our results revealed that SPAG5
Frontiers in Oncology | www.frontiersin.org 4120
knockdown inhibited cell proliferation and promoted apoptosis
in vitro.

SPAG5 Facilitates Cell Migration and Invasion
To further analyze the effect of SPAG5 on cell migration and
invasion, wound-healing assays and invasion assays were
performed. The results of wound-healing assays showed that
SPAG5 depletion at 24 h inhibited the migrated cells in U87 cells
(P < 0.01; Figure 6A) but had no obvious effect on U251 cells
(Figure 6B). Invasion assays demonstrated that SPAG5 enhanced
the ability of cell invasion in U87 and U251 cells (Figure 7). The
results suggested that SPAG5 might be involved in
tumor progression.
A B

C

FIGURE 1 | SPAG5 expression is correlated with prognosis. (A) Relative expression of SPAG5 in normal (n = 10) and glioma tissues (n = 667). The SPAG5 mRNA
expression profile chip data including 667 glioma specimens and 10 normal specimens were all from TCGA database. vs Normal group, **P < 0.01. (B) Relative
expression of SPAG5 in low‐grade gliomas (LGGs, n = 515) and glioblastomas (GBM, n = 152). The SPAG5 mRNA expression data of 667 glioma specimens were
from TCGA database. vs LGG group, **P < 0.01. (C) Kaplan-Meier curves for glioma patients with low (n = 334) and high (n = 333) expression of SPAG5. According to
the median, 667 glioma specimens from TCGA database were further divided into low SPAG5 expression group (n = 334) and high SPAG5 expression group (n = 333).
TABLE 1 | The relationship between SPAG5 expression level and clinic characteristics in glioma patients.

SPAG5 expression level Total P value

Low High

Age ≤46 212 128 340 <0.001
>46 122 205 327

Total 334 333 667
Sex Male 188 196 384 0.502

Female 146 137 283
Total 334 333 667
Grade LGG 317 198 515 <0.001

GBM 17 135 152
Total 334 333 667
Novembe
r 2021 | Volume 11 | Article
According to the median of the SPAG5 mRNA expression, the 667 glioma specimens were further divided into low SPAG5 expression group (n = 334) and high SPAG5 expression group
(n = 333). LGG, low-grade glioma; GBM, glioblastoma; SPAG5, sperm-associated antigen 5.
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A B

FIGURE 2 | The expression of sperm-associated antigen 5 (SPAG5) in (A) U-87 and (B) U251 cells transfected with SPAG5-shRNA was measured by Western
blotting and qRT-PCR, respectively. Results were expressed as mean ± SD from three independent experiments. **P < 0.01.
A

B

FIGURE 3 | The proliferation capacities were detected by Celigo cytometry system in (A) U-87 cells and (B) U251 cells transfected with SPAG5-shRNA. Results
were expressed as mean ± SD from three independent experiments. vs shCtrl group, **P < 0.01.
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SPAG5 Knockdown Could Reduce
+CDH2 Expression in Glioma Cells and
Overexpression of CDH2 Could Antagonize
the Effects of SPAG5 Knockdown
To further explore the mechanisms of SPAG5 in glioma cells,
several important signaling pathway molecules were examined
Frontiers in Oncology | www.frontiersin.org 6122
using Western blotting. We found that the expression of CDH2
was correlated with SPAG5 knockdown (Figures 8A, B). The
results of HCS proliferation screening analysis showed that
compared with the NC group, the proliferation of the KD
group was significantly reduced, which was consistent with
the expectation. Compared with KD group, the expression of
A

B

FIGURE 4 | Sperm-associated antigen 5 (SPAG5) silencing reduces colony formation of (A) U-87 cells and (B) U251 cells. Bar chart showed the number of colony
formation on the 15th day. Results were expressed as mean ± SD from three independent experiments. **P < 0.01.
A B

FIGURE 5 | Measurement of apoptotic cells under sperm-associated antigen 5 (SPAG5) downregulation in (A) U-87 cells and (B) U251 cells. Results are to
calculate the percentage of Caspase 3/7-positive cell population. Results were expressed as mean ± SD from three independent experiments. **P < 0.01.
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CDH2 gene in OE group was significantly increased
(Figures 8C, D). MTT showed that the proliferation of KD
+NC group was decreased compared with that in NC+NC group
(P < 0.05). Compared with KD+NC group, glioma cell
proliferation was increased in KD+OE group (P < 0.05)
(Figures 8E, F). Compared with the NC+NC group, the
Transwell transfer rate in the KD+NC group decreased (P <
0.05), and the Transwell transfer rate in the KD+NC group
increased (P < 0.05) (Figures 8G, H). Our results revealed that
SPAG5 knockdown could reduce CDH2 expression, and
overexpression of CDH2 could antagonize the effects of
SPAG5 knockdown in glioma cells.
Frontiers in Oncology | www.frontiersin.org 7123
DISCUSSION

Glioma represents the most common primary malignant
cerebral tumor in adults, and especially GBM is a severe
disease (7). Although glioma has a large number of studies, the
precise molecular mechanisms about the disease’s development
are still unclear. Additional potential markers are needed to
predict glioma progression and prognosis to provide clinical
significance. In this study, we reported that SPAG5
overexpression was associated with the clinical poor prognosis
of glioma patients in TCGA database. Notably, SPAG5 depletion
by shRNA silencing led to reduced proliferation and viability of
A

B

FIGURE 6 | Wound healing assay showed that shRNA-sperm-associated antigen 5 (SPAG5) transfection into (A) U-87 cells and (B) U251 cells for 24 h hampered
cell migrating capacity compared with that of the negative control group. Bar chart showed the relative migration ability at 8 and 24 h Results were expressed as
mean ± SD from three independent experiments. **P < 0.01.
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the glioma cells. In addition, SPAG5-depleted glioma cells
displayed increased apoptosis in vitro. In agreement, clone
formation was observably decreased after SPAG5 silencing.
Our data suggest that SPAG5 is an oncogene that promotes
glioma by downregulating CDH2.

Ideally, identification of genes contributing to tumor genesis
and progression will improve the objectivity and accuracy of
tumor diagnosis and grading and will probably lead to more
accurate judgments of prognosis and treatment response (1).
Therefore, identification of novel diagnostic markers and
therapeutic targets in glioma is urgently needed. Previous studies
have fully uncovered the clinical impact of SPAG5 in breast cancer
(11, 12, 23–25). Copy number aberration resulting in SPAG5 gain
or amplification, as well as the high-level expression of SPAG5
transcript and protein, were accompanied by shorter overall and
tumor-specific survival of patients suffering from breast cancer
(25). Upregulation of SPAG5 was associated with poor prognosis
in cervical cancer (17). In two independent cohorts, it was
reported that HCC patients who had enhanced expression of
SPAG5 frequently had a shorter survival (26, 27). SPAG5, which
interacts with centrosomal protein CEP55 resulting in the
phosphorylation of AKT at Ser473, promotes hepatocellular
carcinoma growth via CEP55-mediated Phosphatidyl inositol -3-
124
hydroxykinase (PI3K)/(protein kinase B) AKT pathway (28).
SPAG5 overexpression was an independent predictor of poor
prognosis in gastric cancer patients. Mechanistically, SPAG5
facilitates the progression of gastric cancer cell via intensifying
the Wnt/b-catenin/survivin signaling in vitro and in vivo (29).
This probably may be due to the fact that overexpression of
SPAG5 was associated with infaust clinical factors, including
poor tumor histological differentiation, large tumor volume,
advanced TNM stage, lymph node metastasis status, and tumor
vascular invasion. Furthermore, our findings suggested that
glioma cells overexpressing SPAG5 were more aggressive. EMT-
related molecules have been reported to play a key role in
glioma progression.

CDH2 encodes the N-cadherin protein, and the previous
study has confirmed that the expression of CDH2 in patients
with high-grade glioma is higher than that in patients with LGG,
and patients with high expression of CDH2 show poor prognosis
(30). Our results demonstrated that deletion of the SPAG5 gene
reduced the expression of CDH2 and inhibited the proliferation
of glioma cells, whereas restoration of CDH2 restored the
proliferation of glioma cells. This suggests that in glioma cells,
the SPAG5 gene regulates tumor cell proliferation through the
CDH2 signaling pathway.
A

B
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Our findings imply that SPAG5 plays a role in the
development of gliomas. Certain limitations of our research
should be noted. Though we described that SPAG5 is related
to proliferation, migration, and invasion of glioma cells at the
Frontiers in Oncology | www.frontiersin.org 9125
molecular and cellular levels, the exact mechanism is not clear.
Whether SPAG5 has an effect on glioma after overexpression and
in vivo experiments are our next step need further investigation
to unveil the mechanism.
A B

D

E F

G H

C

FIGURE 8 | SPAG5 knockdown decreased CDH2 expression in glioma cells. The expression of (A) CDH2 and (B) SPAG5 in cells transfected with SPAG5-
shRNA were measured by western blotting. The HCS proliferation screening analysis of (C) U-87 cells and (D) U251 cells. ShRNA lentivirus-infected (E) U-87
and (F) U251 cells were cultured for 5 d and used in MTT assay. The absorption rate of light at wavelength of 490 nm was compared with time in each group.
OD490 reflects the number of active cells. The invasion ability of transwell transferred (G) U-87 and (H) U251 cells in each experimental group was compared
with that in the control group. NC+NC: Parental glioma cells+Vector; KD+NC: Parental glioma cells+Knockdown-SPAG5+Vector; KD+OE: Parental glioma cells
+Knockdown-SPAG5+overexpression-CDH2. Results were expressed as mean ± SD from three independent experiments. vs NC+NC group, **P < 0.01; vs KD
+NC group, &&P < 0.01.
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CONCLUSIONS

In short, we show that increased expression of SPAG5 in glioma
was closely correlated with poor prognosis, indicating that
SPAG5 serves as a promising prognostic factor in glioma.
SPAG5 may represent a potential therapeutic target for the
clinical intervention of glioma.
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Background: Glioblastoma (GBM) is the most common primary intracranial malignancy.

Previous studies found incidence of GBM varies substantially by age, sex, race and

ethnicity, and survival also varies by country, ethnicity, and treatment. Gliosarcoma (GSM)

and giant cell glioblastoma (GC-GBM) are different histologic variants of GBMwith distinct

clinico-pathologic entities. We conducted a study to compare epidemiology, survival, and

prognostic factors among the three.

Methods: We identified GBM patients diagnosed between 2000 and 2016 using

the Taiwan Cancer Registry and followed them using the death registry. Survival

was compared among conventional GBM and two histologic variants. The potential

confounding factors evaluated in this study included registered year, age, sex, and

treatment modality (resection, radiotherapy, and chemotherapy).

Results: We enrolled 3,895 patients, including 3,732 (95.8%) with conventional GBM,

102 (2.6%) with GSM, and 61 (1.6%) with GC-GBM. GC-GBM patients had younger

mean age at diagnosis (49.5 years) than conventional GBM patients (58.7 years) and

GSM patients (61.3 years) (p < 0.01). The three groups had similar sex distributions

(p = 0.29). GC-GBM had a longer median survival [18.5, 95% confidence interval

(CI): 15.8–25.3 months] than conventional GBM (12.5, 95%CI: 12.0–13.0 months)

and GSM (12.8, 95%CI: 9.2–16.2 months), and the differences in overall survival

did not attain statistical significance (p = 0.08, log-rank test). In univariate analysis,

GC-GBM had better survival than conventional GBM, but the hazard ratio (0.91) did

not reach statistical significance (95%CI: 0.69–1.20) in the multivariate analysis. Young

ages (≤40 years), female sex, resection, radiotherapy, and chemotherapy were factors
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associated with better survival in overall GBMs. In subtype analyses, these factors

remained statistically significant for conventional GBM, as well as radiotherapy for GSM.

Conclusion: Our analysis found conventional GBM and its variants shared similar

poor survival. Factors with age ≤40 years, female sex, resection, radiotherapy, and

chemotherapy were associated with better prognosis in conventional GBM patients.

Keywords: glioblastoma, gliosarcoma, giant cell glioblastoma, histologic variant, epidemiology

INTRODUCTION

Primary brain tumors account for about 1% of all malignant
neoplasms. Glioma is the most common brain tumor, and
glioblastoma (GBM) is the most common primary intracranial
malignancy in adults, which has a dismal prognosis despite
multimodality therapy (1). Previous studies found the incidence
of central nervous system tumors in the Western world is higher
than that in the Eastern world, and the occurrence is also higher
in developed countries compared to less developed countries
(2). The incidence of GBM varies substantially by age, sex, race,
and ethnicity, and prognosis also vary by country, ethnicity,
and treatment (2–5). Ostrom et al. reported that non-Hispanic
whites had a higher incidence and lower survival rates compared
to individuals of other racial or ethnic groups in the US (3).
Chien et al. also found disparities by histologic type and grade
of primary malignant brain and central nervous system tumors
between the US and Taiwan (2).

Glioblastomas comprise a group of morphologically
highly heterogeneous neoplasms, as the original designation
“multiforme” implies (6). “Glioblastoma” is synonymous with
WHO grade IV astrocytoma, GBM multiforme, or conventional
GBM in the previous WHO classification. Variants are subtypes
of entities that are sufficiently well-characterized pathologically
to take a place in the classification and have potential clinical
utility (6, 7). Two histologic variants of GBM are recognized
as distinct clinicopathologic entities since the 2000 WHO
classification: gliosarcoma (GSM) and giant cell glioblastoma
(GC-GBM) (6–8). The variants of GSM and GC-GBM possess
distinct histologic identities, which may be relevant for tumor
behavior and clinical outcomes. The prognosis of GSM appears
to be equal or even worse than that of conventional GBM
(9–13). GC-GBN also bears a distinct clinico-pathologic picture,
traditionally thought to occur more in younger patients and has
better survival (13–16).

According to the literature, GSM accounts for 2–8% of overall
GBM patients, while GC-GBM comprises only about 1–5% (11–
17). The reported outcome of GC-GBM and GSM are limited in
a retrospective hospital database or case series with small patient
size. Nonetheless, the differences between GSM and GC-GBM
may not be fully evaluated, especially in different countries, in
the literature. Therefore, they may not fully reflect the distinct
clinical features of GBM variants.

To overcome the limitations associated with low incidence,
we used the Taiwan Cancer Registry (TCR) database to
study histologic variants of GBM. The aims are to identify
epidemiologic features, survival, and prognostic factors of the

GBM patients with different histologic variants. Modest, yet
clinically meaningfully, differences in the effects of treatment
modality may surface with the study of a large series. We also
conduct a literature review on the incidence and prognosis of
histologic variants of GBM reported on the basis of population-
based databases in the world.

MATERIALS AND METHODS

Database Sources
The databases of TCR and Taiwan’s death registry from 1996
to 2016 were used in this study. The TCR has been organized
and funded by the Ministry of Health and Welfare of Taiwan
since 1979. Following the enactment of the Cancer Control Act
in 2003, all hospitals are mandated to submit cancer data to
TCR. The TCR had to monitor the completeness and audit data
quality to assure the accuracy of cancer registration data from
hospitals reporting, so lag time for reporting cancer incidence is
about 4 years. Additionally, TCR data are subjected to periodic
quality control audits. It is also overseen by an advisory board
and run by the National Public Health Association, which works
to standardize terminology, coding, and procedures for the
registry. The TCR covers nearly 99% of the cancer patients
in Taiwan and records their related information, including the
individual demographics, cancer primary sites, tumor histology,
and treatment modality. However, the database did not record
the exact date of death before 2000. For research purposes,
the Health and Welfare Data Science Center (HWDC) set an
integrated database center to help academic usage of these
databases with de-identified forms in an anonymous format.

Definition of Study Subjects
The subjects of this study were selected from patients registered
in the TCR between 2000 and 2016, andwe identified brain tumor
patients with the coding of the International Classification of
Diseases for Oncology, third edition (ICD-O-3). The percentage
of microscopically confirmed cases of malignant brain and
central nervous system tumors was around 90% in TCR. Three
histologic types of brain tumor were chosen for comparison:
GBM not otherwise specified (ICD-O-3 histology code: 9440/3;
noted as conventional GBM in this study), GC-GBM (ICD-O-
3 histology code: 9441/3), and GSM (ICD-O-3 histology code:
9442/3). Cases without pathologically confirmed, prior diagnosis
of glioma or other brain tumor, and also those that were without
required data on the TCR such as the date of registration,
diagnosis, or treatment were excluded in our analysis.
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Literature Search Strategy
We conducted a search of literature published between
January 1995 and December 2019 in PubMed (National
Library of Medicine) using “glioblastoma,” “gliosarcoma,”
“giant cell glioblastoma,” or “brain tumor” combined with
“population-based” or “epidemiology” as keywords. We included
epidemiological studies published in full-text English. Case
reports, animal studies, reports of GBMs secondary to other
conditions, and reports of surgical or radiological management
of GBMs were not included.

Measurements
The primary outcome in this study was mortality. All study
subjects were followed up until death or the end date of
the study (December 31, 2016). Mortality was identified using
the death registry database. The potential confounding factors
evaluated in this study included registered year, age, sex, and
treatmentmodality (resection, radiotherapy, and chemotherapy).
The TCR database focuses on new cases and thus does not have
information about the definite tumor recurrence. Therefore, we
are unable to perform disease-free survival analysis.

Statistical Analysis
We used Pearson’s chi-square tests to evaluate the differences
in distributions of categorical variables among patients with
conventional GBM, GC-GBM, and GSM and used analyses of
variance to evaluate the differences in continuous variables. The
survival curves were plotted using the Kaplan-Meier method,
and the differences were evaluated using log-rank tests. We used
Cox proportional regressions to compared survival among the
three groups of patients. Multivariate analysis was performed
to identify independent factors associated with survival and
adjust for effects of potential confounders. We also conducted
stratified analyses by histologic type and paired comparisons
using conventional GBM as the reference group. We conducted
all statistical analyses using SAS 9.4 (SAS Institute Inc., Cary, NC,
USA) and performed statistical tests at a two-tailed significance
level of 0.05.

RESULTS

From the TCR database, we enrolled 3,895 histologically
confirmed GBM patients in the final analyses, including 3,732
(95.8%) with conventional GBM, 102 (2.6%) with GSM variant,
and 61 (1.6%) with GC-GBM.We found the distribution of these
three groups of GBMs was quite similar before and after 2007 (p
= 0.20) (Table 1). Patients with GC-GBM had a younger mean
age at diagnosis than patients with conventional GBM or GSM
(49.5 vs. 58.7 or 61.3 years, p < 0.01). While 26.2% of GC-GBM
patients were in the youngest age group (≤40 years), only 12.6%
of conventional GBM patients and 6.9% of GSM patients were in
this age group (p < 0.01). The differences in the distribution of
sex among the three groups did not reach statistical significance
(p = 0.29). Patients with conventional GBM were more likely
to receive conservative operation (i.e., incisional biopsy only)
compared to GC-GBM or GSM patients (18.8 vs. 6.6 or 5.9%,
p < 0.01). Differences in the percentage of patients who received

adjuvant radiotherapy among the three groups did not reach
statistical significance (p = 0.23). However, a higher proportion
of GSM patients (72.1%) had undergone adjuvant chemotherapy
in comparison with patients with conventional GBM or GC-
GBM (48.2 or 57.8%, p < 0.01).

The prognosis of overall GBM cohort is poor, with an overall
median survival of 12.6 [95% confidence interval (CI): 12.1–
13.2] months. GC-GBM patients had a median survival of 18.5
(95%CI: 15.8–25.3) months, longer than that of conventional
GBM [12.5 (95%CI: 12.0–13.0) months] or GSM [12.8 (95%CI:
9.2–16.2) months]. The 5-year mortality of conventional GBM,
GSM, and GC-GBM were 87.9%, 86.3%, and 82%, respectively
(p = 0.34). The differences in overall survival did not reach
statistical significance (p= 0.08, log-rank test) (Figure 1).

In univariate analyses, GC-GBM had better survival than
conventional GBM with a hazard ratio (HR) of 0.73 (95%CI:
0.55–0.97) (Table 2). Older ages (HR = 1.34, 95%CI: 1.20–1.49
for 40–70 years old and HR = 2.64, 95%CI: 2.35–2.98 for ≥70
years old as compared to ≤40 years old) and male sex (HR =

1.16, 95%CI: 1.09–1.24) were also associated with poor survival.
Tumor resection (HR = 0.64, 95%CI: 0.59–0.70), adjuvant
radiotherapy (HR = 0.51, 95%CI: 0.48–0.55), and chemotherapy
(HR= 0.57, 95%CI: 0.53–0.61) were all associated with favorable
survival. In multivariate analyses, the 5-year mortality rates of
patients with conventional GBM, GC-GBM, and GSM were
similar after adjustment for other factors. Nonetheless, younger
ages (≤40 years) (p < 0.01), female sex (p < 0.01), resection (p
< 0.01), adjuvant radiotherapy (p < 0.01), and chemotherapy (p
< 0.01) were shown to be associated with better prognosis of the
overall GBM cohort following multivariate analyses (Table 2).

In stratified analyses by histologic type, older ages (HR= 1.46,
95%CI: 1.30–1.63 for 40–70 years old and HR = 2.58, 95%CI:
2.29–2.92 for ≥70 years old as compared to ≤40 years old) and
male sex (HR = 1.13, 95%CI: 1.06–1.21) were still independent
unfavorable factors for survival in conventional GBMs (Table 3).
However, the HRs did not reach statistical significance in GC-
GBM or GSM. In fact, a lower HR associated with 40–70 years
old was observed for both GC-GBM (HR = 0.69, 95%CI: 0.35–
1.38) and GSM (HR= 0.91, 95%CI: 0.38–2.20). Tumor resection
was associated with a better survival for conventional GBM
(HR = 0.81, 95%CI: 0.74–0.89), but not GC-GBM (HR = 2.49,
95%CI: 0.63–9.93); the HR associated with operation did not
reach statistical significance for GSM (HR = 0.74, 95%CI: 0.31–
1.81), neither. Radiotherapy was associated with better survival
for all three histologic types (HR = 0.65, 95%CI: 0.60–0.71 for
conventional GBM and HR = 0.46, 95%CI: 0.28–0.78 GSM),
but the HR associated with GC-GBM did not reach statistical
significance (HR = 0.51, 95%CI: 0.21–1.21). Chemotherapy was
associated with better survival for all three histologic types
(HR = 0.73, 95%CI: 0.67–0.79 for conventional GMB), but the
associated HR did not reach statistical significance for GC-GBM
(HR = 0.51, 95%CI: 0.24–1.07) or GSM (HR = 0.65, 95%CI:
0.40–1.08) (Table 3).

In paired comparisons, after adjusting for potential
confounders, we found GC-GBM and GSM variants have
similar survival compared to conventional GBM in all strata by
age group, sex, and treatment modality (Supplementary Table).
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TABLE 1 | Demographic and clinical characteristics of patients diagnosed with glioblastoma and its histologic variants in 2000–2016, Taiwan.

Histologic variants

Characteristics All patients Conventional GBM Giant cell GBM Gliosarcoma p-value

Patients 3,895 (100.0) 3,732 (95.8) 61 (1.6) 102 (2.6)

Period of diagnosis 0.20

2000–2007 1,647 (42.3) 1,603 (97.0) 17 (0.4) 27 (1.6)

2008–2016 2,248 (57.7) 2,129 (94.7) 44 (2.0) 75 (3.3)

Age at diagnosis (mean ± SD year) 58.6 ± 16.8 58.7± 16.8 49.5 ± 17.8 61.3 ± 15.5 <0.01

Age group (year) <0.01

≤40 493 (12.7) 470 (12.6) 16 (26.2) 7 (6.9)

40–70 2,266 (58.2) 2,174 (58.3) 35 (57.4) 57 (55.9)

≥70 1,136 (29.2) 1,088 (29.2) 10 (16.4) 38 (37.3)

Sex 0.29

Male 2,229 (57.2) 2,136 (54.8) 30 (49.2) 63 (61.8)

Female 1,666 (42.8) 1,596 (45.2) 31 (50.8) 39 (38.2)

M/F ratio 1.34 1.34 0.97 1.62

Resectiona
<0.01

Yes 3,185 (81.8) 3,032 (81.2) 57 (93.4) 96 (94.1)

No 710 (18.2) 700 (18.8) 4 (6.6) 6 (5.9)

Radiotherapy 0.23

Yes 2,669 (68.5) 2,548 (68.3) 47 (77.1) 74 (72.6)

No 1,226 (31.5) 1,184 (31.7) 14 (22.9) 28 (27.4)

Chemotherapy <0.01

Yes 1,902 (48.8) 1,799 (48.2) 44 (72.1) 59 (57.8)

No 1,993 (51.2) 1,933 (51.8) 17 (17.9) 43 (42.2)

CI, confidence interval; GBM, glioblastoma; SD, standard deviation.
aSubtotal or gross-total resection, other than biopsy only.

FIGURE 1 | Kaplan-Meier overall survival curve for conventional glioblastoma, giant cell glioblastoma, and gliosarcoma (log rank p-value = 0.08).
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TABLE 2 | Univariate and multivariate Cox regression analyses of potential factors

associated the survival of overall glioblastoms cohort.

Variables Univariate Multivariatea

HR (95% CI) p-Value HR (95% CI) p-Value

Variants

Conventional GBM (reference) (reference)

Giant cell GBM 0.73 (0.55–0.97) 0.03 0.91 (0.69–1.20) 0.51

Gliosarcoma 1.03 (0.83–1.27) 0.82 1.06 (0.86–1.31) 0.59

Age at diagnosis (year)

≤40 (reference) (reference)

40–70 1.34 (1.20–1.49) < 0.01 1.42 (1.27–1.59) < 0.01

≥70 2.64 (2.35–2.98) < 0.01 2.56 (2.27–2.88) < 0.01

Sex

Female (reference) (reference)

Male 1.16 (1.09–1.24) < 0.01 1.12 (1.05–1.20) < 0.01

Resectionb

No (reference) (reference)

Yes 0.64 (0.59–0.70) < 0.01 0.82 (0.75–0.89) < 0.01

Radiation

No (reference) (reference)

Yes 0.51 (0.48–0.55) < 0.01 0.65 (0.59–0.70) < 0.01

Chemotherapy

No (reference) (reference)

Yes 0.57 (0.53–0.61) < 0.01 0.72 (0.67–0.78) <0.01

GBM, glioblastoma; HR, hazard ratio; CI, confidence interval.
aAdjusted for age, sex, and treatment modality.
bSubtotal or gross-total resection, other than biopsy only.

DISCUSSION

Glioblastoma comprise a group of morphologically highly
heterogeneous neoplasms, as the original designation
“multiforme” implies. The cellular composition, even within
a GBM tumor per se, can vary widely, and mixed histologic
features are typical. “Glioblastoma” is synonymous with WHO
grade IV astrocytoma in the previous WHO classification
or GBM multiforme (6–8). The 2016 WHO classification of
central nervous tumors first introduced molecular parameters
to define GBM tumor entities, preserved two (GC-GBM and
GSM) variants under the umbrella of isocitrate dehydronase
(IDH)-wild type GBM. The variants GSM and GC-GBM possess
distinct histologic identities, whereas it is seemingly a coherent
category of GBM variants, at least based on microscopic tumor
morphology alone without regard to biological markers. The
GSM variant retains morphologic features of the conventional
GBM, while the tumor has differentiated into both biphasic
glial and sarcomatous components, and the tumor behavior
possesses a higher potential of metastasizing to different
lobes of the brain or even to extra-cranial sites clinically. The
prognosis of GSM appears to be equal or even worse than
that of conventional GBM (9–13). The GC-GBM variant has
conventional GBM differentiation, and is further characterized
to share a predominance of bizarre multinucleated giant cells and
lymphocytic infiltration. GC-GBM also manifests distinct clinical

pictures, traditionally thought to occur more often in younger
patients and has better outcome compared to conventional
GBM (13–16).

We aimed to recruit a large GBM cohort to define the
epidemiology and survival factors using the population-based
databases in Taiwan. Our results suggest that GSM and GC-
GBMvariants represent approximately 2.6% and 1.6% of all GBM
patients in Taiwan, respectively. Surveillance, Epidemiology, and
End Results (SEER) in the US showed that GSM and GC-GBM
only accounted for 2.2% and 1% of overall GBM (11, 14), and the
ratio of GBM variants National Cancer Database and SEER in
the US reported 2.2%–2.9% for GSM and 0.8%–1% for GC-GBM
(11, 13–17). The GSM variant, like conventional GBM, shows a
propensity to affect the elderly, with a median age at diagnosis
around 60 years old in Taiwan and the US. Similarly, both GBM
and GSM variants demonstrate comparable male predominance.
The occurrence of GC-GBM in Taiwan tended to occur in
younger patients with a mean age at 49.5 years, in contrast to
51–56 years in the US (11, 13–17). Nonetheless, with regard to
the Asian or Chinese population, reported data on GBM variants
were limited. From a hospital-based series, 51 GSM patients were
identified with slightly male predominance (59%) and younger
age (median age 45 years) in 518 GBM patients at a Chinese
hospital (18). The report showed a higher incidence of GSM
(9.8%) and a younger age compared to our analysis. However, the
hospital-based study might not have sufficient power to precisely
characterize Asian GBM variants. Our study is population-based,
which enhances generalizability relative to ad-hoc hospital-based
case series.

Glioblastoma GSM is the most deadly primary brain tumor,
with a 5-year survival rate of only about 5%–10%, there are
no clinical or pathologic stage classifications of GBMs that
are generally accepted (5, 6, 19). Conventional GBM and its
histologic variants had a similar worse outcome in our study,
and the 5-year mortality rates (87.9% for conventional GBM,
86.3% for GSM, and 82.0% for GC-GBM) are in line with the
reported literature (9–19). Our database analyses found GC-
GBM patients had a higher median survival of 18.5 months,
compared to conventional GBM (12.5 months) and GSM (12.8
months). Our population study had slightly lower median OS
than that reported by Stupp et al. (12.6 vs. 14.6 months) (20).
Differences in eligibility for the clinical trial in the study by Stupp
et al. and the inclusion criteria in our population-based study
might explain the discrepancy. In univariate analysis, GC-GBM
was found to be associated with a 27% lower risk of mortality in
comparison with conventional GBM, but the difference was not
significant in multivariable analysis. The prognosis of GC-GBM
variant and conventional GBM was found to be equally poor
in a review of cases series and hospital-based cancer database
(6, 7). However, other studies found a slightly better prognosis
for the GC-GBM variant in comparison with conventional GBM
(11, 15). The US cancer registry study reported median survival
of 11–15.5 months in GC-GBM patients, which is better than
conventional GBM in the period of 1988–2004, 1998–2011,
and 2004–2014 reported from US SEER or National Cancer
Database, respectively (13–15). However, an analysis of the US
SEER database of years 1985–2014 showed that GC-GBM and
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TABLE 3 | Univariate and multivariate stratified Cox regression analyses of survival of conventional glioblastoms and histologic variants.

Variables Conventional glioblastoma Giant cell glioblastoma Gliosarcoma

Univariate Multivariate Univariate Multivariate Univariate Multivariate

HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI)

Age at diagnosis (year)

≤40 (reference) (reference) (reference) (reference) (reference) (reference)

40–70 1.37 (1.22–1.53)* 1.46 (1.30–1.63)* 0.65 (0.34–1.25) 0.69 (0.35–1.38) 0.92 (0.39–2.15) 0.91 (0.38–2.20)

≥70 2.68 (2.37–3.02)* 2.58 (2.29–2.92)* 1.53 (0.68–3.46) 1.29 (0.40–3.34) 2.33 (0.98–5.57) 2.32 (0.95–5.67)

Sex

Female (reference) (reference) (reference) (reference) (reference) (reference)

Male 1.17 (1.10–1.26)* 1.13 (1.06–1.21)* 1.05 (0.60–1.83) 1.20 (0.65–2.21) 0.75 (0.49–1.15) 0.87 (0.54–1.40)

Resectiona

No (reference) (reference) (reference) (reference) (reference) (reference)

Yes 0.64 (0.59–0.70)* 0.81 (0.74–0.89)* 1.12 (0.35–3.59) 2.49 (0.63–9.93) 0.47 (0.20–1.07) 0.74 (0.31–1.81)

Radiotherapy

No (reference) (reference) (reference) (reference) (reference) (reference)

Yes 0.51 (0.48–0.55)* 0.65 (0.60–0.71)* 0.50 (0.26–0.94)* 0.51 (021–1.21) 0.36 (0.22–0.57)* 0.46 (0.28–0.78)*

Chemotherapy

No (reference) (reference) (reference) (reference) (reference) (reference)

Yes 0.58 (0.54–0.62)* 0.73 (0.67–0.79)* 0.28 (0.21–0.70)* 0.51 (0.24–1.07) 0.51 (0.33–0.78)* (0.40–1.08)

HR, hazard ratio; CI, confidence interval.

*p-value < 0.05.
aSubtotal or gross-total resection, other than biopsy only.

conventional GBM shared similar poor prognosis (16). This
indicates that a longer study period with a large sample size might
reflect the true outcome between the GC-GBM and GBM cohort.

Some previous studies reported that GSM had a similar
survival to conventional GBM, or even worse (9, 10, 12, 13).
Our survival analysis showed that GSM and conventional GBM
had similar poor overall survival (12.8 vs. 12.5 months). The US
cancer registry database showed that, the median survival for
GSM was 9–10.7 months (11–13, 17). A review article identified
219 cases of GSM from 34 reports before 2010 and found survival
ranging from 4 to 11.5 months. This review provided distinct
clinical and pathogenetic features of GSM, including increased
metastatic dissemination and worse prognosis than conventional
GBM (10). Our analysis is also in line with our previous study that
showed no difference in survival between conventional GBM and
GSM, and two GSM cases progressed to intra- or extra-cranial
metastasis (21, 22). A Chinese study reported a similar median
overall survival between GSM (13.0 months) and conventional
GBM (14.0 months) (18). Despite the dismal outcome of GSM,
adjuvant radiotherapy was found to be an independent predictor
in the study.

To the best of our knowledge, this is the first population-based
study in Asian patients. Therefore, this is a useful study looking
into these rare histologic variants of GBM especially for patients
of Asian nationality or heritage.We conducted a literature review
to identify epidemiologic studies on the clinical features and
prognosis of GBM variants in the databases of Medline and
PubMed. Table 4 listed various epidemiologic reports in different
national population-based studies, including the US SEER and
National Cancer database, and three national registries from

Australia, France, and England. However, the three studies only
reported case numbers of the variants of GBM without detailed
demographics and outcomes (23–25). The results reported
the incidence with 1.3%–2.7% GSM and 0.7%–1.8% GC-GBM
in other population-based studies. Our study does provide
authoritative demographic and survival information on GBM
variants in an Asian population, considering that a majority of
studies are from American and European populations.

Currently, all GBM patients underwent tri-modal therapy,
including tumor excision, following chemo-radiotherapy as the
standard therapy. We found GBM patients survived longer
following standard therapy including operation, radiotherapy,
and chemotherapy. These findings parallel the literature, which
all confirmed more favorable survival through tri-modality
therapy (6, 20, 26). However, regarding GSM patients, we
only found the radiotherapy was associated with favorable
survival. For GC-GBM patients, we were unable to find favorable
prognostic predictors, even following operation, radiotherapy, or
chemotherapy. Due to the rarity, even TCR case number might
not be sufficiently powered to precisely characterize GSM and
GC-GBM. To sum up, the clinical implications of the prognosis
of GC-GBM or GSM might share similar or different risk factors
compared with conventional GBM. So, the best management of
the two rare entities (GSM and GC-GBM) should be further
investigated in future clinical trials with hints taken from the
epidemiologic study.

The 2016 WHO classification of central nervous tumors
introduced molecular parameters in addition to histology to
define GBM tumor entities (7). Although there is a trend to
incorporate molecular markers into the classification of GBM,
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TABLE 4 | Literature review on the epidemiologic data on histologic variants of glioblastoma from population-based cancer registries.

Registry [year,

reference]

Period All GBM

patients

Histologic variants

Conventional GBM GC-GBM GSM Survival outcomes

N (%) Median age

(year)

N (%) Median age

(year)

N (%) Median age

(year)

Median survival

(month)

US, SEER, [2009,

(11)]

1988–2004 16,388 16,035 (97.8) 62 – – 353 (2.2) 63 NS

9 (GBM)

8 (GSM)

US, SEER, [2009,

(14)]

1988–2004 16,430 16,259 (99.0) 62 171 (1.0) 51 – – GC-GBM > GBM

8 (GBM)

11 (GC-GBM)

Australia, [2011,

(23)]

2000–2008 2,275 2,197 (96.5) – 17 (0.7) – 62 (2.7) – –

US, NCDB, [2014,

(13)]

1998–2011 69,935 67,509 (96.5) 61 592 (0.8) 56 1,834 (2.6) 61 GC-GBM > (GBM,

GSM)

9.8 (GBM)

13.4 (GC-GBM)

8.8 (GSM)

US, NCDB, [2018,

(17)]

2004–2013 37,760 36,658 (97.1) 61.7a – – 1,102 (2.9) 61.1a NS

11.9 (GBM)

10.7 (GSM)

England, [2018,

(24)]

1995–2015 37,786 37,046 (98.0) – 263 (0.7) – 477 (1.3) – –

US, SEER, [2019,

(16)]

1985–2014 25,117 24,909 (99.2) – 208 (0.8) – – – NS

No survival data

US, SEER, [2019,

(15)]

2004–2014 79,543 78,860 (99.1) 62 683 (0.9) 57 GC-GBM > GBM

11.7 (GBM)

15.5 (GC-GBM)

France, FBTDB,

[2019, (25)]

2008–2015 2,053 1,988 (96.8) – 36 (1.8) – 29 (1.4) – –

Taiwan, current

study

2000–2016 3,895 3,732 (95.8) 58.7a 61 (1.6) 49.5a 102 (2.6) 61.3a NS

12.5 (GBM)

18.5 (GC-GBM)

12.8 (GSM)

FBTDB, French brain tumor database; GBM, glioblastoma; GC-GBM, giant cell glioblastoma; GSM, gliosarcoma; NCDB, National Cancer Database; NS, difference not statistically

significant; SEER, surveillance epidemiology and end results.
aMean age.

none of the markers has been introduced to routine clinical
practice before 2016. That is why data on such markers from
population-based studies are very limited. Taking SEER for
example, we found there were no molecular data between 2001
and 2011 (5), which cover most of our study period. Likewise,
IDH1 mutation status was not available in the National Cancer
Database between 2004 and 2014 (5). We enrolled GBM patients
between the period of 2000 and 2016, and the IDH marker was
not mandatory for routine pathologic reports during that period
and not registered in the TCR database in Taiwan. Due to lack
of data, we were unable to evaluate the prognostic significance of
these molecular markers in our study. Further, the more recently
defined subtype of epithelioid GBM, there were no registered case
data in the study.

It is well-known a younger age is significantly associated with
good survival in conventional GBM patients in the literature
(6, 20, 26–28). A younger age experienced favorable survival in
our GBM cohort. In contrast, aging was not a prognostic factor
in GSM or GC-GBM. This may indicate GBM variants possibly

differ in clinical manifestation, or it may reflect the relevant
chance of hidden bias from a small case number; so caution is
advised in interpreting these results.

In the US analysis of GBM variants, the sex factor revealed
conflicting results, with some studies showing the female sex
experienced a favorable survival in GSM and GC-GBM, yet
others reported no difference (11–17). Nonetheless, the sex
disparity was not identified in GSM or GC-GBM variants in the
study. However, the female sex was associated with improved
survival of GBM in the literature (29–31).

The TCR database, similar to other national databases,
lacks accuracy in documenting pre-existing comorbidities, and
detailed cancermanagement, which could all impact the outcome
analysis. Genetic factors also contribute closely to the prognosis
of conventional GBM and its variants. Due to the lack of
data, we were unable to evaluate the prognostic significance
of these molecular markers in our study. Furthermore, even
with large number of cases (3,895 in total), the case number
in some subgroup were relatively small and thus might
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not able to provide sufficient statistical power. For example,
chemotherapy was associated with better survival for both
GC-GBM and GSM, and the HRs (0.51 and 0.65) were
even smaller than that for GBM (0.73), but did not reach
statistical significance.

CONCLUSION

Utilizing a large national cohort and literature review, this
paper adds more information on the epidemiology of GBM
in both Asian and Western populations. We confirmed the
similar incidence of GSM and GC-GBM in Asian and Western
population. Our study showed GBM and its variants shared
similar worse outcomes. Resection, post-operative radiotherapy,
and chemotherapy did improve survival in conventional GBM,
but had different effects on histologic variants.
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Gliomas are the most common primary malignant intracranial brain tumors. Their
proliferative and invasive behavior is controlled by various epigenetic mechanisms. 5-
hydroxymethylcytosine (5-hmC) is one of the epigenetic DNA modifications that employs
ten-eleven translocation (TET) enzymes to its oxidation. Previous studies demonstrated
altered expression of 5-hmC across gliomagenesis. However, its contribution to the
initiation and progression of human gliomas still remains unknown. To characterize the
expression profiles of 5-hmC and TET in human glioma samples we used the EpiJET 5-
hmC and 5-mC Analysis Kit, quantitative real-time PCR, and Western blot analysis. A
continuous decline of 5-hmC levels was observed in solid tissue across glioma grades.
However, in glioblastoma (GBM), we documented uncommon heterogeneity in 5-hmC
expression. Further analysis showed that the levels of TET proteins, but not their
transcripts, may influence the 5-hmC abundance in GBM. Early tumor-related
biomarkers may also be provided by the study of aberrant DNA hydroxymethylation in
the blood of glioma patients. Therefore, we explored the patterns of TET transcripts in
plasma samples and we found that their profiles were variously regulated, with significant
value for TET2. The results of our study confirmed that DNA hydroxymethylation is an
important mechanism involved in the pathogenesis of gliomas, with particular reference to
glioblastoma. Heterogeneity of 5-hmC and TET proteins expression across GBM may
provide novel insight into define subtype-specific patterns of hydroxymethylome, and thus
help to interpret the heterogeneous outcomes of patients with the same disease.

Keywords: epigenetics, 5-hydroxymethylcytosine, ten-eleven translocation enzymes, brain tumors, glioblastoma
INTRODUCTION

The vast majority (80%) of malignant brain tumors is represented by gliomas (1). They have been
classified by the World Health Organization into four grades, with Grade IV glioblastoma (GBM) as
the most aggressive form. From 2016 the WHO grading is based on histological and molecular
characteristics that are observed amongst various stages of gliomas (2). Many studies focused on
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genomic or transcriptomic profiles of human gliomas
demonstrated that although histologically similar, they constitute
distinct subtypes (3–5) that are associated with different survival
outcomes (6, 7). Therefore, systematic molecular analysis of
human gliomas is essential for their comprehensive
understanding. Aberrations in genes and molecular pathways,
include IDH1/IDH2 and H3.1/H3.3 mutation or loss of TP53
tumor suppressor gene, can be used together with
histopathological findings for gliomas classification (8, 9).

However, dysregulation of epigenomes seems to be the
primary molecular mechanism involved in the pathogenesis of
human gliomas. Epigenetic alterations, such as modifications of
DNA (10, 11) and histones (12, 13), nucleosome remodeling (14,
15) and RNA-mediated silencing (16–18) are pointed out as a
source of gliomas phenotypic heterogeneity. DNAmethylation is
the best-studied epigenetic change in this field (19–21), but some
reports revealed the existence of other modifications in
DNA methylome.

The ten-eleven translocation (TET) enzymes can alter DNA
methylation status by converting 5-methylcytosine (5-mC) to 5-
hydroxymethylcytosine (5-hmC), and later to 5-formylcytosine
(5-fC) and 5-carboxylcytosine (5-caC) (22). 5-hmC may act as a
transient intermediate in the process of 5-mC demethylation, as
well as, may epigenetically regulate gene expression. Several
reports found the relationship between 5-hmC level and
glioma grades (10, 23–26). However, 5-hmC modification and
its direct effect on gliomas biology need to be investigated.

Here, we picture the TET-dependent hydroxymethylation
patterns in human gliomas. Using solid tumor tissues samples
we demonstrate heterogeneity in 5-hmC expression across
glioblastoma which can provide novel insight into define
subtype-specific patterns of 5-hmC, and thus help to interpret
the heterogeneous outcomes of patients with the same disease.
MATERIALS AND METHODS

Clinical Samples
34 pairs of matched glioma tissues and blood samples were
collected during standard neurosurgical tumor removals at the
Department of Neurosurgery, Institute of Psychiatry and
Neurology (Warsaw, Poland). Additionally, five independent
random controls of blood samples were obtained from healthy
volunteers. All solid tissues were submerged in the stayRNA
solution (A&A Biotechnology) and stored at –80°C. Blood was
collected into EDTA-treated tubes and centrifuged at 3500 rpm
(MPW, Centrifuge MPW-350R, Rotor 1236B) for 10 min at 4°C.
Then supernatant (plasma) was immediately transferred into the
clean Eppendorf tubes and stored at –80°C.

5-hmC Quantification
The absolute level of 5-hmC in genomic DNA, previously
extracted from 34 glioma tissues, was estimated with the
EpiJET 5-hmC and 5-mC Analysis Kit (ThermoFisher
Scientific). Briefly, 100 ng of DNA was glucosylated by T4
phage b-glucosyltransferase (T4 BGT), followed by subsequent
digestion with Epi MspI and Epi HpaII enzymes. Then the
Frontiers in Oncology | www.frontiersin.org 2138
percentage of cytosine modifications within CCGG sites was
determined by quantitative real-time PCR (qRT-PCR) with a
primer pair flanking recognition sequence. Primer sequences
were as follows:

primer1_forward 5′-CTGTCATGGTGACAAAGGCATC-3′,
primer2_reverse 5′-CAGGATTTCTCTATTATGAAGACCT

TG-3′.
The experiment was run in triplicate and the amount of 5-

hmC was calculated as a percentage based on controls included
in the kit.

Quantitative Real-Time PCR
Following Chomczynski`s protocol (27), total RNA of glioma
tissues was extracted by TRIzol Reagent (Life Technologies),
whereas Tota l RNA Mini Concentrator Kit (A&A
Biotechnology) was used for the extraction of RNA from
plasma samples. The concentration and purity of RNA samples
were assessed by measuring the 260/280 ratio of absorbance
values with the Synergy H4 spectrophotometer (BioTek). cDNA
was synthesized from 500 ng of RNA using random hexamers
and TaqMan Reverse Transcription Reagents (ThermoFisher
Scientific) according to the manufacturer`s instructions.
Transcript levels of TET family genes were determined by the
quantitative real-time PCR using 5x HOT FirePolEvaGreen
qPCR Mix (Solis Biodyne) and primer sets for TET1, TET2,
TET3, and the housekeeping gene GAPDH. The primer
sequences are listed in Supplementary Table S1. All samples
were run in triplicate, and data were normalized to the
expression of GAPDH (28), according to the DCt method.
While the DDCt method was applied for relative quantification
in blood samples.

Western Blot
Thirty-four human glioma tissues were homogenized with
TissueLyser LT homogenizer (Qiagen) in lysis buffer containing 2%
SDS, pH 6.8 and protease inhibitors (Sigma). According to the
protocol of Ericsson et al. (29), homogenates were incubated at
70°C and shaking at 1400 rpm (BioSan, Thermo-Shaker TS-100)
for 10min and then centrifuged at 12000 rpm (Eppendorf, Centrifuge
5415R, Rotor F45-24-11) for 5 min. The concentration of protein
extracts was determined with the Bradford protein assay (Sigma). 15
µg of each protein sample was separated with 7% SDS-
polyacrylamide gels and transferred onto nitrocellulose membranes
using the Bio-Rad MINI Protean system. Immunoblotting with
primary antibodies against TET1, TET2, TET3 (1:3000,
ThermoFisher Scientific) and GAPDH (1:5000, Millipore) was
performed overnight at 4°C, whereas secondary antibodies (a-
mouse and a-rabbit, Vector) diluted 1:10000 were incubated with
the membranes for one hour at room temperature. Blots were
visualized with the WesternBright Quantum detection system
(Advansta) on the UVITEC Cambridge scanner. Densitometry
analysis was conducted using GelAnalyzer 2010 software.

Statistical Analysis
GraphPad Prism 7.02 software was used to analyze the data.
Statistical significance of differences between groups was
determined by One-way ANOVA or nonparametric Kruskal-
April 2022 | Volume 12 | Article 621460
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Wallis tests followed by post hoc Tukey or Dunn analysis, as well
as with Mann-Whitney U test (*p < 0.05, **p < 0.01, ***p <
0.001). The results are presented as the mean ± standard
deviation of the mean (SD).
RESULTS

Global Changes in 5-hmC Abundance
in Gliomas
So far, decreased 5-hmC levels have been presented in a variety of
tumors (30–32), suggesting that the loss of 5-hmC may be
considered as an epigenetic hallmark of the disease. To
evaluate the global changes in 5-hmC abundance in human
brain tumors, we selected DNA of 34 glioma samples represented
by different WHO grades and analyzed them with EpiJET 5-hmC
and 5-mC Analysis Kit and quantitative real-time PCR. Clinical
and epigenetic characteristics of glioma samples are shown
in Table 1.

As can be seen in Figure 1 and Table 1, gliomagenesis has
generated the changes of DNA hydroxymethylation. The 5-
hmC expression correlated negatively with WHO grading,
ranged from 8.2% in Grade II gliomas to 3.0% in Grade IV-
low5-hmC GBM. Significant differences were observed between
Grades II and III (p < 0.01), as well as Grades II and IV-low5-

hmC (p < 0.01). While we observed a decreasing trend in 5-hmC
expression with a higher tumor stage, we documented a strong
elevation in 5-hmC level in around 30% of Grades IV GBM
(Grade IV-high5-hmC). In this study group, the 5-hmC level was
20% and was significantly higher than in Grade IV-low5-hmC

samples (3%, p < 0.001). To our knowledge, this is one of the
Frontiers in Oncology | www.frontiersin.org 3139
few reports describing high variability in 5-hmC abundance at
the tumor mass (10, 24). To clarify observed diversity, the
GBMs samples were categorized according to their IDH1, and
developmental status. The results had not revealed molecular
differences between both categories in this scope. A great
majority of samples (95%) were primary glioblastomas, while
all of them demonstrated the absence of mutation in
IDH1 gene.

Recognized differences might be a consequence of alterations
in the expression of TET enzymes that catalyze the conversion of
5-mC to 5-hmC.

TET Expression in Gliomas
To define the impact of TET enzymes on changes in DNA
hydroxymethylation, we analyzed their expression at the gene
and protein levels in solid tumor tissues. Quantitative real-time
PCR was performed to examine the mRNA expression of TET
family genes (TET1, TET2, and TET3) in 34 samples, including 6
Grade II gliomas, 7 Grade III gliomas and 21 Grade IV GBM.We
found that the relative mRNA levels of all three TET genes were
strongly reduced during glioma grades (Figures 2A, C, E). Their
downregulation was significantly higher in Grade IV GBM in
comparison with Grade II gliomas (TET1 and TET3 p < 0.001,
TET2 p < 0.01) and Grade III gliomas (TET1 p < 0.001, TET2 and
TET3 p < 0.01). As the decline in TET mRNA was associated
with glioma grades and 5-hmC expression, we determined the
levels of TET transcripts in two groups with high variability in
total 5-hmC abundance across GBM (Grade IV-low5-hmC and
Grade IV-high5-hmC, Figure 1). There were no significant
differences in TET1 (p = 0.1322), TET2 (p = 0.2434) and TET3
(p = 0.8208) mRNA levels between glioblastoma Grade IV-low5-
TABLE 1 | Characteristics of glioma patients.

Total cases = 34

WHO grade II III IV-low 5-hmC IV-high 5-hmC

Number of patients 6 7 15 6

Age at diagnosis (years)
Mean 39.3 41.4 65.9 63.2
Range 24 - 54 26 - 59 53 - 77 52 - 77

Gender
Male/Female 3/3 4/3 9/6 3/3

Hemisphere
Left/Right 1/5 4/3 8/7 1/5

Location
Frontal 2 2 5 –

Temporal 3 5 4 4
Pariental 1 – 2 –

Occipital – – 4 2

Tumor status
Primary/Recurrent 5/1 6/1 15/0 5/1

IDH1 status
IDH1 wild-type 6 6 15 6
IDH1 mutant 0 1 (R132G) 0 0

5-hmC (%) 8.2 3.5 3.0 20.0
April 2022 | Volume 12 |
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hmC and Grade IV-high5-hmC (Figures 2B, D, F). Next, we
evaluated the levels of TET proteins in the same samples by
Western blot. Expression levels of each TET proteins are shown
in Supplementary Table S2. Immunoblotting revealed the
absence of TET1 isoform at 235 kDa, which is mainly detected
in embryonic stem cells. But, two additional bands at 162 kDa
and 150 kDa were found in the majority of instances. TET2 and
TET3 isoforms were discovered at 224 and 194 kDa, respectively
(Figure 3A). As in the case of TET transcripts expression
(Figures 2A, C, E), levels of TET proteins were negatively
associated with advanced stages of gliomas. From Grade II
gliomas to Grade IV GBM, we noticed 2-, 4- and 6-fold
reduction in TET1162 and 150 kDa, TET2224 kDa and TET3194 kDa

levels, respectively. Interestingly, in Grade IV samples, we
observed high variability in TET isoforms expression pattern,
which could affect 5-hmC abundance. Quantification of
normalized values showed significant differences in TET1162
and 150 kDa (p < 0.01, p < 0.05), TET2224 kDa (p < 0.001) and
TET3194 kDa (p < 0.05) protein levels between GBM Grade IV-
low5-hmC and Grade IV-high5-hmC (Figures 3B–E). These
findings suggested the potential role of TET proteins patterns
in setting the 5-hmC level in Grade IV glioblastoma.

TET Transcripts Profiling in
Plasma Samples
The prospect of dist inguishing the aberrant DNA
hydroxymethylation in the blood of glioma patients may
indicate a powerful tool for early cancer detection or
monitoring its progress. To explore the potential diagnostic
features of TET transcripts profiling, we performed the
quantitative real-time PCR on 34 plasma samples obtained
Frontiers in Oncology | www.frontiersin.org 4140
from patients with Grade II or III or IV gliomas, and 5 healthy
controls. Expression of TET genes was observed in the
majority of examined samples, followed by specific numbers
for TET1 (control: 80% vs. Grade: II-83%, III-57%, IV-70%),
TET2 (control: 80% vs. Grade: II-83%, III-71%, IV-91%) and
TET3 (control: 80% vs. Grade: II-50%, III-86%, IV-91%)
transcript. Our results confirmed that the employed method
was sensitive to low-input mRNA presented in plasma samples.
The further analysis evaluated the relative mRNA levels of TET
genes in plasma samples obtaining from patients with different
WHO grades gliomas and compared them to healthy controls
(Figures 4A–C). The results displayed various profiles for each
transcript. While TET1 characterized slightly lower expression
than control, TET3 was similar to control values. The expression
of both transcripts was unaffected by WHO grading
(Figures 4A, C). Whereas, the level of TET2 was significantly
increased in plasma samples derived from patients with Grade II
gliomas compared to controls (p < 0.01, Figure 4B). Validation
of our preliminary results in a larger population of patients is
needed to evaluate their use as potential biomarkers for early-
stage gliomas diagnostics.
DISCUSSION

Currently, the molecular landscape of brain tumors is described
by epigenetic mechanisms include DNA methylation and
hydroxymethylation (10, 11), histone modifications (12, 13),
nucleosome remodeling (14, 15) and RNA-mediated silencing
(16–18), that may clarify their etiologic evolution. Recently
rediscovered, oxidized form of 5-methylcytosine (5-hmC) may
act as a transient intermediate in the process of 5-mC
demethylation or may epigenetically mark the cellular state
itself with different biological roles.

In the present study, we characterize the epigenetic profile of
DNA hydroxymethylation in human gliomas. Decreased level of 5-
hmC was observed in glioma patients compared to healthy controls
(33–35), but also it was related to glioma grades (10, 23–26). Our
results confirm that the loss of 5-hmC is a hallmark of high-grade
gliomas. However, we documented a significant increase of global 5-
hmC abundance in almost a third of Grades IV GBM. This is one of
the few findings that demonstrated heterogeneity in 5-hmC
expression across the bulk of the glioblastoma (10, 24). According
to recent research, the intra-tumoral diversity of 5-hmC levels
among single GBM cells, that represent the proliferative, stem-like
and tumorigenic states, could clarify unexpected results (36). But,
dysregulation of TET enzymes function may be a possible biological
explanation for the observed variability as well. The influence of
TETs, including their genetic alterations and subcellular
localization, on 5-hmC status in glioma cells, was described by
several studies (23–25, 37, 38). Recently, epigenetic repression of
histone marks (H4K16ac, H3K4me3, H3K9ac, H3K36me3,
H3K4me1, H3K27ac) in TET3 gene has been postulated as a
driver of glioblastoma development via genome-wide alteration of
5-hmC (39). Generally, it is believed that the decline in TET genes
expression causes a widespread reduction of 5-hmC and poorer
FIGURE 1 | Global 5-hmC abundance (%) in gliomas. Increasing WHO
grades of glioma are associated with a continuous decline in 5-hmC
levels, except for glioblastoma (IV-low5-hmC and IV-high5-hmC). Differences
among group means were evaluated by one-way ANOVA test (**p < 0.01,
***p < 0.001).
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prognosis in glioma patients. We found that TET1, TET2, TET3
mRNA, and 5-hmC levels were decreased during glioma grades.
However, similarly to Jin and Glowacka results (40, 41), there was
no correlation between expression of TET transcripts and variability
in 5-hmC abundance across the bulk of the glioblastoma. To define
the complete impact of TETs on changes in DNA
hydroxymethylation, we evaluated their protein levels in the same
samples. Proteins produced by the TET2 and TET3 isoforms were
expressed as expected bands at 224 kDa and 194 kDa. Instead of the
Frontiers in Oncology | www.frontiersin.org 5141
235 kDa canonical TET1 protein, we found two short isoforms (162
kDa and ~150 kDa). According to previous reports, they are
exclusively activated from an alternate promoter in somatic
cancer cells (42, 43). The levels of TET proteins, just as TET
transcripts, were negatively associated with high-grade gliomas.
However, Grade IV GBM samples were more variable in this
field. Significant heterogeneity in the expression of TET2 protein
in glioblastoma was also noted by Briand (44). We furthermore
pointed out the relation between variable levels of TET proteins and
A B

D

E F

C

FIGURE 2 | Quantitation of TET transcripts in gliomas. qRT–PCR analysis of TET mRNA (A–F). The expression of TET1 (A), TET2 (C), TET3 (E) mRNA significantly
decreased at a higher WHO grade of glioma. Differences among group means were evaluated by one-way ANOVA test (**p < 0.01, ***p < 0.001). High variability in
5-hmC abundance across glioblastoma (Grade IV-low5-hmC and Grade IV-high5-hmC) was not linked with levels of TET1 (B), TET2 (D), TET3 (F) transcripts.
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5-hmC abundance across glioblastoma. Our findings suggest that
the regulation of TET transcription and translation can bemade in a
different way. For example, this observed imbalance may be a result
of different actions of transcription factors, RNA binding proteins,
miRNAs targeting mRNA or post-translational modifications (like
phosphorylation, acetylation, glycosylation, etc.). Based on the
patient-derived glioma stem cells (GSCs) model, the transcription
factor (SOX2)-oncomiR (miR-10b-5p)-TET2 axis was identified,
which plays an important role in promoting GBM oncogenesis (45).
Frontiers in Oncology | www.frontiersin.org 6142
However, it is one of many potential mechanisms involved in
glioblastoma growth.

In summary, we demonstrated that expression patterns of
TET proteins and the 5-hmC abundance are changed in Grade
IV GBM, but the molecular mechanism of this process still needs
to be clarified.

Recently, many studies on gliomas indicated the presence of
circulating cell-free coding and non-coding nucleic acids in
blood or other biofluid samples (46–48). Therefore, liquid
A

B

D E

C

FIGURE 3 | TET proteins expression in gliomas. Western blot analysis of TET proteins (A–E). Exemplary immunoblots of TET1, TET2, and TET3 proteins pictured
loss of their expression across glioma stages, except some Grade IV samples (last column). Expression levels of these proteins were normalized with GAPDH (A).
High variability in protein levels of TET1 (B, C), TET2 (D) and TET3 (E) correlated with 5-hmC abundance across glioblastoma (Grade IV-low5-hmC and Grade IV-
high5-hmC). Differences between two groups were evaluated by Mann-Whitney U test (*p < 0.05, **p < 0.01, ***p < 0.001).
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biopsy has become a new diagnostic tool that may establish and
track the stage of cancer with particular biomarkers. Cai’s group,
for example, has developed a noninvasive 5-hmC detection
method in circulating cell-free DNA of glioma patients, which
was able to distinguish the difference between GBM and lower-
grade gliomas regardless of IDH1 mutation status (49). Here, we
explore the potential diagnostic features of TET transcripts in
plasma samples obtained from patients with gliomas. All three
TET transcripts were detected in plasma, but their profiles
differed from those in solid tissue. We showed that the plasma
relative mRNA level for TET1 was decreased in every stage of
glioma, while the TET3 level remained unchanged. The most
Frontiers in Oncology | www.frontiersin.org 7143
promising results were provided by TET2 gene that was
significantly increased in Grade II glioma. Validation of our
preliminary results in a larger population of patients is needed to
evaluate their use as potential biomarkers for glioma diagnostics.

To conclude, we found that global abundance of 5-hmC was
negatively correlated with glioma WHO grades and variable
across the bulk of the glioblastoma. It was followed by various
TET proteins patterns in solid tumor tissues. In contrast, profiles
of TET transcripts in plasma samples displayed its heterogeneity.
However, significant overexpression of TET2 in Grade II gliomas
might offer a new tool for effective diagnosis of lower-grade
glioma patients. Our findings provide novel information about
the potential role of TET epigenetic regulation in human
gliomas, with particular reference to glioblastoma.
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Based on clinical Ki-67
expression and serum
infiltrating lymphocytes related
nomogram for predicting the
diagnosis of glioma-grading

Zhi Zhang1†, Weiguo Gu2,3†, Mingbin Hu2†, Guohua Zhang3,
Feng Yu2,4, Jinbiao Xu4, Jianxiong Deng4, Linlin Xu5,6,
Jinhong Mei5,6*, Chunliang Wang1* and Feng Qiu3,4*

1Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China,
2Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
3Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research,
Nanchang, China, 4Department of Oncology, Gaoxin Branch of the First Affiliated Hospital
of Nanchang University, Nanchang, China, 5Department of Pathology, The First Affiliated Hospital of
Nanchang University, Nanchang, China, 6Molecular Pathology Center, The First Affiliated Hospital of
Nanchang University, Nanchang, China
Background: Compelling evidence indicates that elevated peripheral serum

lymphocytes are associated with a favorable prognosis in various cancers.

However, the association between serum lymphocytes and glioma is

contradictory. In this study, a nomogram was established to predict the

diagnosis of glioma-grading through Ki-67 expression and serum lymphocytes.

Methods: We performed a retrospective analysis of 239 patients diagnosed

with LGG and 178 patients with HGG. Immunohistochemistry was used to

determine the Ki-67 expression. Following multivariate logistic regression

analysis, a nomogram was established and used to identify the most related

factors associated with HGG. The consistency index (C-index), decision curve

analysis (DCA), and a calibration curve were used to validate the model.

Results: The number of LGG patients with more IDH1/2 mutations and 1p19q

co-deletion was greater than that of HGG patients. The multivariate logistic

analysis identified Ki-67 expression, serum lymphocyte count, and serum

albumin (ALU) as independent risk factors associated with HGG, and these

factors were included in a nomogram in the training cohort. In the validation

cohort, the nomogram demonstrated good calibration and high consistency

(C-index = 0.794). The Spearman correlation analysis revealed a significant

association between HGG and serum lymphocyte count (r = −0.238, P <0.001),

ALU (r = −0.232, P <0.001), and Ki-67 expression (r = 0.457, P <0.001).

Furthermore, the Ki-67 expression was negatively correlated with the serum

lymphocyte count (r = −0.244, P <0.05). LGG patients had lower Ki-67
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expression and higher serum lymphocytes compared with HGG patients, and a

combination of these two variables was significantly higher in HGG patients.

Conclusion: The constructed nomogram is capable of predicting the diagnosis

of glioma-grade. A decrease in the level of serum lymphocyte count and

increased Ki-67 expression in HGG patients indicate that their immunological

function is diminished and the tumor is more aggressive.
KEYWORDS

glioma, ki67, lymphocytes, isocitrate dehydrogenase 1, nomogram
Introduction

Gliomas continue to be one of the most prevalent and

malignant primary cancer-related morbidities in the central

nervous system (CNS) (1). According to the World Health

Organization (WHO, 2016), low-grade glioma (LGG) is

classified as grade I–II, while high-grade glioma (HGG) is

classified as grade III-IV (2). Although glioblastomas (GBMs,

grade IV) are treated with maximally safe surgical resection and

combined radio-chemotherapy, the median overall survival (OS)

is 15 months and the 5-year survival rate is less than 5% due to the

complexity of tumors, widespread invasiveness, and heterogeneity

(3, 4). Furthermore, several studies have demonstrated that

approximately 20%–25% of secondary glioblastomas are derived

from previously lower grade (WHOgrades II or III) gliomas (5, 6).

Therefore, numerous studies indicate that the basic clinical–

pathological features of serum laboratory indices or

immunohistochemical (IHC) staining are significant variables in

identifying secondary glioblastomas (7–10).

Histological, molecular features, and anatomical sites play an

important role in the classification and diagnosis of glioma by

the fifth edition of the WHO Classification of Tumors of the

CNS (WHO CNS5) (11). The isocitrate dehydrogenase (IDH)

gene encodes an enzyme that is involved in the control of cellular

metabolism, epigenetic regulation, redox states, and DNA repair

(12). The IDH mutation is critical for diagnosis, treatment

efficacy evaluation, survival prediction, and reduced

invasiveness of biomarkers associated with glioma, and is

widely deemed the most significant genetic alteration (13, 14).

It is associated with better outcomes in IDH1-mutant patients

than in IDH1 wild-type patients (15, 16). Therefore, according to

the new classification, all IDH-mutant diffuse astrocytic tumors

are considered a single type (astrocytoma, IDH-mutant) and are

graded as 2, 3, or 4. The restriction of the diagnosis of

glioblastoma to IDH wild-type tumors means that IDH-

mutant gliomas are not GBMs anymore (11, 17). This is

perhaps one of the most important changes to the older

version of the 2016 WHO classification. Theresia et al. found
02147
an association between the Ki-67 labeling index and

histopathological grading of glioma. LGG patients had a

significantly lower Ki-67 labeling index than HGG patients,

and a cut-off of 10% was used to differentiate LGG from HGG

(18, 19). The relationship between Ki-67 expression and IDH1

mutation status demonstrated by Zeng et al. (20) showed that

Ki-67 expression along with IDH1/2 can significantly

differentiate prognosis in glioma, with low Ki-67 expression

associated with increased IDH1/2 mutation and IDH1/2 mutant

patients with low and moderate Ki-67 expression having the best

prognosis. However, it is not known whether Ki-67 expression

along with IDH1 can differentiate glioma-grading.

Tumor immune infiltration of the microenvironment with

inflammatory factors is critical for the occurrence, development,

and prognosis of glioma. Tumor locations, in particular, release

immune infiltrates and inflammatory factors into the peripheral

blood, triggering an inflammatory immune response that might

provide prognostic information. Accumulating evidence

suggests that elevated peripheral blood lymphocytes are

associated with a favorable prognosis, particularly in lung,

breast, and colorectal cancers (21–23). Additionally,

macrophages originating from bone marrow mononuclear

cells generate an inflammatory immune response, including

the release of pro-inflammatory factors such as TNF-a,
chronic factors IL-6 and IL-1, which migrate to the glioma site

across the blood–brain barrier (24, 25). Numerous studies

indicate that T-lymphocyte subsets may affect the prognosis of

breast, melanoma, pancreatic, and colorectal cancers (21–23,

26). Kmiecik et al. (27) found a correlation between tumor-

infiltrating lymphocytes and prolonged survival in GBS patients.

However, Zhao et al. (28) found that local tumor-infiltrating

lymphocytes were a poor prognostic marker in GBS. Therefore,

the correlation between peripheral serum lymphocyte or

lymphocyte infiltration at the tumor site and glioma grade or

prognosis is contradictory, and only a few studies have

been published.

Finally, the relationship between the immunohistochemical

index of IDH1, Ki-67 expression, and the peripheral serum
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lymphocyte count in glioma grading is unknown. Therefore, we

conducted a retrospective study to determine the prognostic

usefulness of preoperative peripheral serum lymphocyte count,

postoperative immunohistochemical index of IDH1 mutation

status, and Ki-67 expression for glioma grading. Because

nomograms are widely used to predict the risk of cancer, we

established a nomogram that uses Ki-67 expression and serum

lymphocyte count to predict the differences between LGG and

HGG. This nomogram will aid clinical doctors in predicting the

glioma-grading and identifying potential risk factors for HGG

patients and allow for early treatment intervention.
Materials and methods

Patients and data collection

Between January 2012 and December 2020, we conducted a

retrospective review of glioma patients. This study was approved

by the Ethics Committee of the First Affiliated Hospital of

Nanchang University. The WHO classifies glioma grades I–II

as LGG and grades III–IV as HGG. Data of patients included

their age, sex, immunohistochemistry index, serum clinical

laboratory indicators, and glioma grade. The inclusion criteria

were as follows: 1) all patients were admitted for surgery and

histologically-confirmed glioma postoperatively; and 2) patients

with complete information and Ki-67 testing. The exclusion

criteria were as follows: 1) preoperative chemoradiotherapy or

incomplete information; 2) along with other malignant tumors;
Frontiers in Oncology
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and 3) patients with previous blood system diseases and

infection or antibiotic use.
Establishment and validation of the
nomogram

The R package “rms” was used to randomly divide the

patients into two groups in a ratio of 2:1 training cohort (n =

292) and validation cohort (n = 125) (Figure 1A). A nomogram

was established in the training cohort using multivariate logistic

regression analysis, which revealed the most important

predictive risk factors associated with HGG. The consistency

index (C-index) ranged between 0.5 (no discrimination) and 1

(perfect discrimination), and a high C-index indicated a good

prediction model. The calibration curve was used to determine

the prediction compliance, while the decision curve analysis

(DCA) was used to assess the clinical utility and threshold

probability of the model.
Statistical analysis

The continuous variables were represented as mean ±

standard deviation, and if the variables followed a normal

distribution, the comparison between the two groups was

carried out using the Student’s t-test. To perform univariate

analysis, continuous variables were converted to categorical

variables. Univariate and multivariate logistic regression
A

B D

E

C

FIGURE 1

(A) Consort diagram, enrollment, and outcome; (B) the age distribution of patients with glioma; (C) IDH1 mutation status of patients with
glioma; (D) the number of glioma patients with 1p19q codeletion status; (E) the Ki-67 curve of cut-off value (according to the LGG and HGG).
ROC, Receiver operating characteristic; IDH1, Isocitrate dehydrogenase 1.
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analyses were used to determine the independent risk factors as

well as the odds ratio (OR) and 95% confidence interval (CI).

The Spearman correlation coefficient was used to determine the

correlation between the independent risk factors and HGG. IBM

SPSS 22.0 software (SPSS Inc., Chicago, IL, USA) and GraphPad

Prism version 8.0 software (Inc., La Jolla, CA, USA) were used to

analyze the data. R statistical software version 4.0.0 (http://www.

R-project.org/) was used to construct the nomogram model,

calibration curve, and DCA. The optimal cut-off values for Ki-67

expression were determined by plotting the receiver operating

characteristic (ROC) curves for glioma grading. The normal

serum lactate dehydrogenase (LDH) levels were determined

using appropriate assay kits (29, 30). P <0.05 was considered

statistically significant.
Results

Correlation between glioma and
clinicopathological characteristics

A total of 417 (239 with LGG and 178 with HGG) patients

were postoperatively diagnosed with glioma and did not receive

any treatment preoperatively. The clinicopathological features

of glioma are summarized in Table 1. Serum white blood cells

(WBCs), lymphocytes, neutrophils, neutrophil-to-lymphocytes

ratio (NLR), platelets (PLTs), platelet-to-lymphocytes ratio

(PLR), albumin (ALU), and LDH were used as hematological

markers. There were 13 cases of grade I glioma, 226 cases of

grade II glioma, 157 cases of grade III glioma, and 21 cases of

grade IV glioma. The median age of the patients was 45 years (a

range of 3–79). The relationship between age distribution and

glioma grading revealed that the morbidity in LGG patients was

mostly in the 20–59 year age range, while in HGG patients it

was primarily in the more than 40 year age range (Figure 1B). A

total of 141 IDH1 mutant patients were identified, 176 patients

were identified as IDH1 wild-type, and 100 patients were

identified as unknown. A total of 82 patients had co-deletion

of chromosome 1 and the long arm of chromosome 19 (1p19q),

81 patients had non-codeletion, and 254 were unknown. There

were more IDH1 mutation patients in grades II and III than in

grades I and IV, with grade II having the highest number of

patients with IDH1 mutations (Figure 1C). The number of

grade II and III patients with 1p19q codeletion was more than

those in grades I and IV, and there were no grade I patients with

1p19q codeletion (Figure 1D). Figure 1E shows the cut-off

point for the Ki-67 ROC curve calculated using glioma grading

(by LGG and HGG). Because the cut-off value of 9% had the

highest sensitivity and specificity (sensitivity was 86.5%,

specificity was 72%, Yoden index 0.585, ROC = 0.86,

P <0.001), we divided the Ki-67 into low and high groups

using a cut-off value of 10%.
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Univariate and multivariate logistic
analyses in the training cohort

All glioma patients were randomly assigned to the training

cohort (n = 292) or the validation cohort (n = 125) using the R

package “rms.” There were 167 patients with LGG and 125 with

HGG in the training cohort. Univariate logistic analysis revealed

a significant correlation between age, Ki-67 expression, NLR,

serum lymphocyte count, serum ALU, and glioma-grading (P

<0.05) (Table 2). All significant factors in the univariate analysis

were included in the multivariate logistic regression analysis.

The result showed that Ki-67 >10%, serum lymphocytes count

≤1.7 (×109/L), and serum ALU ≤42.7 g/L were all independent

risk factors associated with HGG (P <0.05) (Table 3).
Correlation analysis between the
independent risk factors and HGG in all
cohorts

The Spearman correlation analyses were used to determine the

correlation between the independent risk factors and HGG in all

cohorts. The serum lymphocyte count (r = −0.238, P <0.001), ALU

(r = −0.232, P <0.001), and Ki-67 expression (r = 0.457, P <0.001)

were all shown to be significantly associated with glioma-grading

(Table 4). Ki-67 expression increased gradually from grades I to IV

and was significantly higher in HGG patients than in LGG patients

(P <0.05), regardless of glioma type, IDH1 mutation, or wild type

(Figures 2A–D). We performed subgroup analysis to determine the

correlation between IDH1, 1p19q codeletion, and Ki-67 expression.

The result indicated that Ki-67 expression was not associated with

IDH1 mutation or 1p19q codeletion Figures 2C–H). Additionally,

serum ALU levels significantly decreased from grades I to IV, and

the LGG group had better nutritional status than those in the HGG

group (Figures 2K–L).

The serum inflammatory index plays an important role in

the differentiation and proliferation of tumor cells. Therefore, we

examined the relationship between serum lymphocyte count and

glioma grade. The serum lymphocyte count significantly

decreased from grades I to IV (Figure 3A). The serum

lymphocyte count in LGG patients was significantly higher

than in HGG patients, regardless of glioma type, IDH1

mutation, or wild-type status (P<0.05) (Figures 3B–D).

Additionally, we performed a subgroup analysis of serum

lymphocytes according to their IDH mutation status or 1p19q

co-deletion status. Regardless of LGG or HGG status, the serum

lymphocyte count in 1p19q codeletion groups, as well as in

IDH1 mutation or wild-type groups, was not correlated with

them (P >0.05) (Figures 3E–J). The serum lymphocytes in high

Ki-67 expression groups were significantly lower than serum

lymphocytes in low Ki-67 expression groups in all glioma

patients (Figure 3K); the two groups exhibited a negative
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TABLE 1 Demographic and clinical–pathological characteristics of the training cohort and validation cohort.

Characteristic Groups All cohort (n = 417, %) Training cohort (n = 292, %) Validation cohort (n = 125, %)

Gender Male 230 (55.2) 160 (54.8) 70 (56.0)

Female 187 (44.8) 132 (45.2) 55 (44.0)

Age (years) <60 343 (82.3) 235 (80.5) 108 (86.4)

≥60 74 (17.7) 57 (19.5) 17 (13.6)

Tumor diameter ≤2 cm 68 (16.3) 46 (15.8) 22 (17.6)

>2 cm 349 (83.7) 246 (84.2) 103 (82.4)

Glioma grades WHO I 13 (3.1) 6 (2.1) 7 (5.6)

WHO II 226 (54.2) 161 (55.1) 65 (52)

WHO III 157 (37.7) 112 (38.4) 45 (36)

WHO IV 21 (5) 13 (4.4) 8 (6.4)

IDH1 mutation Wilds 141 (33.8) 96 (32.9) 45 (36)

Mutations 176 (42.2) 118 (40.4) 58 (46.4)

Unknown 100 (24.0) 78 (26.7) 22 (17.6)

1p/19q codeletion Negative 81 (19.4) 58 (19.9) 23 (18.4)

Positive 82 (19.7) 56 (19.2) 26 (20.8)

Unknown 254 (60.9) 178 (60.9) 76 (60.8)

Ki-67a ≤10% 273 (65.5) 202 (69.2) 71 (56.8)

>10% 144 (34.5) 90 (30.8) 54 (43.2)

ATRX Negative 24 (5.8) 15 (5.1) 9 (7.2)

Positive 87 (20.9) 63 (21.6) 24 (19.2)

Unknown 306 (73.3) 214 (73.3) 92 (73.6)

CD56 Negative 5 (1.2) 5 (1.7) 0 (0)

Positive 272 (65.2) 190 (65.1) 82 (65.6)

Unknown 140 (33.6) 97 (33.2) 43 (34.4)

P53 Negative 96 (23) 68 (23.3) 28 (22.4)

Positive 141 (33.8) 93 (31.8) 48 (38.4)

Unknown 180 (43.2) 131 (44.9) 49 (39.2)

EMA Negative 247 (59.2) 175 (59.9) 72 (57.6)

Positive 60 (14.4) 38 (13) 22 (17.6)

Unknown 110 (26.4) 79 (27.1) 31 (24.8)

GFAP Negative 15 (3.6) 11 (3.8) 4 (3.2)

Positive 279 (66.9) 195 (66.8) 84 (67.2)

Unknown 123 (29.5) 86 (29.4) 37 (29.6)

WBC (109/L)b ≤7.07 255 (61.2) 178 (61.0) 77 (61.6)

>7.07 162 (38.8) 114 (39.0) 48 (38.4)

RBC (1012/L)b ≤4.54 212 (50.8) 153 (52.4) 59 (47.2)

>4.54 205 (49.2) 139 (47.6) 66 (52.8)

HB (g/L)b ≤134 202 (48.4) 142 (48.6) 60 (48.0)

>134 215 (51.6) 150 (51.4) 65 (52.0)

PLT (109/L)b ≤223 216 (51.8) 155 (53.1) 61 (48.8)

>223 201 (48.2) 137 (46.9) 64 (51.2)

Lymphocyte (109/L)b ≤1.7 216 (51.8) 149 (51.0) 67 (53.6)

>1.7 201 (48.2) 143 (49.0) 58 (46.4)

Neutrophils (109/L)b ≤4.78 270 (64.7) 193 (66.1) 77 (61.6)

>4.78 147 (35.3) 99 (33.9) 48 (38.4)

NLRb ≤3.6 323 (77.5) 230 (78.8) 93 (74.4)

>3.6 94 (22.5) 62 (21.2) 32 (25.6)

PLRb ≤152.7 259 (62.1) 190 (65.1) 69 (55.2)

(Continued)
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correlation (Figure 3L). We then analyzed the diagnostic value of

Ki-67 expression and serum lymphocyte count in glioma. The

HGG patients were mostly classified as having a high Ki-67

expression and a low lymphocyte count. The Ki-67 index, along

with serum lymphocytes, may be used to distinguish LGG from

HGG. This approach may be critical in the diagnosis of glioma

patients (Figure 3M).
Construction and validation of the
nomogram

The multivariate logistic analysis identified Ki-67 expression,

serum lymphocyte count, and serum albumin (ALU) as

independent risk factors associated with HGG in the training

cohort, and these variables were included in a nomogram. The

weight of each variable was assigned a value between 0 and 100,

and the HGG possibility was calculated as a sum of the

corresponding scores shown on the coordinates (Figure 4).

The bootstrap c-index of the nomogram was 0.794 (0.71–

0.90), indicating that the nomogram model established had a

high degree of accuracy in distinguishing LGG from HGG

patients. Additionally, the calibration curve indicated that the

regression fitting curve was very close to the standard curve and

that there was no statistically significant difference between the

two curves (P = 0.616), indicating that the model had a high

degree of calibration and was very close to the actual outcome

(Figure 5). Additionally, the DCA demonstrated that the clinical

value of the model presented more net benefits at 30%–73% and

78%–82% threshold probabilities, indicating that the

postoperative LGG patients with high-risk factors who

received treatment had a greater net benefit than either the

treat all patients or treat none patients (Figure 6).
Discussion

Numerous studies have demonstrated that approximately

20%–25% of LGG can develop into HGG and eventually lead to

death, and the 5-year survival rate of HGG is less than 5% (4, 32).

Due to the limitations of imaging technology, we were unable to
Frontiers in Oncology
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detect micrometastasis sites in local tumor lesions even when

sophisticated magnetic resonance imaging (MRI) was used to

examine the postoperative LGG patients, resulting in the

patients missing out on their best opportunity for therapy.

IHC and serum Systemic Inflammatory Reaction (SIR) have

been shown in several studies to play an essential role in glioma

grading and prognosis (7–10). Therefore, MRI combined with

immunohistochemistry and blood inflammatory biomarkers will

be a highly effective method for predicting HGG in

future studies.

In this study, we collected the postoperative IHC and

preoperative serum inflammatory-related indicators and

establish a correlation with HGG. We found that the Ki-67

expression gradually increased, but the peripheral blood

lymphocyte count decreased with the grading of gliomas.

Spearman correlation analysis showed that Ki-67 expression

had a negative linear correlation with serum lymphocytes,

thus, high Ki-67 expression was associated with a lower serum

lymphocyte count. Furthermore, the nomogram model was

established using Ki-67 and serum lymphocytes, and it was

found to be highly accurate in predicting the HGG. This is the

first study to incorporate Ki-67 expression, serum lymphocytes,

and clinicopathological factors in predicting the glioma-grading,

which may help clinical doctors in identifying potential risk

factors for HGG patients.

The SIR tumor immune infiltration microenvironment

releases immune cytokines and inflammatory factors into the

peripheral blood, activating the inflammatory immune response,

which is critical for regulating proliferation, invasion, distant

metastasis, and prognosis in lung cancer, breast cancer, colon

cancer, and glioma (21–25). This study discovered a correlation

between the preoperative neutrophil-lymphocyte ratio (NLR)

and glioma grade, and that an elevated NLR was an independent

predictor of poor outcome in glioblastoma patients (33).

Marinari et al. (34) found that peripheral immune signatures

associated with increased inflammation, immune infiltration,

and activation were associated with poor survival in HGG

patients, and that lymphocyte infiltration at the tumor site was

also associated with poor survival, implying that immune

responses may play a pro-tumorigenic role in glioma. Kmiecik

et al. (27) described the mechanisms of immunological escape in
TABLE 1 Continued

Characteristic Groups All cohort (n = 417, %) Training cohort (n = 292, %) Validation cohort (n = 125, %)

>152.7 158 (37.9) 102 (34.9) 56 (44.8)

ALU(g/L) ≤42.7 214 (51.3) 150 (51.4) 64 (51.2)

>42.7 203 (48.7) 142 (48.6) 61 (48.8)

LDH (U/L) c ≤250 318 (76.3) 220 (75.3) 98 (78.4)

>250 99 (23.7) 72 (24.7) 27 (21.6)
IDH1, isocitrate dehydrogenase-1; 1p/19q co-deletion, chromosome 1 and the long arm of chromosome 19; ATRX, alpha-thalassemia/mental retardation syndrome X-linked; Ki-67,
nuclear proliferation antigen 67; GFAP, glial fibrillary acidic protein; EMA, epithelial membrane antigen; PLR, platelet-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; ALU,
albumin; LDH, lactate dehydrogenase; WHO, World Health Organization. aThe cut-off points was used by ROC curve (according to LGG and HGG); bThe cut-off points was used mean
value; cThe cut-off points was used relevant assay kits, and all those factors divided into high and low groups for statistical analysis.
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TABLE 2 Univariate logistic proportional hazards regression analysis in the training cohort.

Characteristic Glioma OR (95% CI) P-value

Low grades High grades

Gender Male 89 71 Ref

Female 78 54 0.868 (0.544–1.384) 0.551

Age (years) <60 148 87 Ref

≥60 19 38 3.402 (1.847–6.268) <0.001

Tumor diameter ≤2 cm 29 17 Ref

>2 cm 138 108 1.335 (0.697–2.556) 0.383

IDH1 mutation Negative 58 38 Ref

Positive 68 50 1.122 (0.649–1.942) 0.68

1p/19q codeletion Negative 37 21 Ref

Positive 30 26 1.527 (0.721–3.233) 0.269

Ki-67 ≤10% 146 56 Ref

>10% 21 69 8.566 (4.808–15.262) <0.001

ATR-X Negative 9 6 Ref 0.841

Positive 36 27 1.125 (0.357–3.543)

CD56 Negative 4 1 Ref

Positive 104 86 3.308 (0.363–30.147) 0.289

P53 Negative 44 24 Ref

Positive 47 46 1.794 (0.944–3.411) 0.074

EMA Negative 100 75 Ref

Positive 21 17 1.079 (0.533–2.187) 0.832

GFAP Negative 5 6 Ref

Positive 116 79 0.568 (0.167–1.924) 0.363

WBC (109/L)a ≤7.07 102 76 Ref

>7.07 65 49 1.012 (0.629–1.627) 0.962

RBC (1012/L)a ≤4.54 80 73 Ref

>4.54 87 52 0.655 (0.41–1.046) 0.072

HB (g/L)a ≤134 76 66 Ref

>134 91 59 0.747 (0.469–1.188) 0.218

PLT (109/L)a ≤223 81 74 Ref

>223 86 51 0.649 (0.406–1.037) 0.071

Lymphocyte (109/L)a ≤1.7 68 81 Ref

>1.7 99 44 0.373 (0.231–0.603) <0.001

Neutrophils (109/L)a ≤4.78 115 78

>4.78 52 47 1.333 (0.818–2.171) 0.249

NLRa ≤3.6 142 88 Ref

>3.6 25 37 2.388 (1.347–4.235) 0.003

PLRa ≤152.7 115 75 Ref

>152.7 52 50 1.474 (0.908–2.395) 0.117

ALU (g/L) ≤42.7 69 81 Ref

>42.7 98 44 0.382 (0.237–0.618) <0.001

LDH (U/L) b ≤250 126 94 Ref

>250 41 31 1.013 (0.592–1.735) 0.961
Frontiers in Oncology
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IDH1, isocitrate dehydrogenase-1; 1p/19q co-deletion, chromosome 1 and the long arm of chromosome 19; ATRX, alpha-thalassemia/mental retardation syndrome X-linked; Ki67, nuclear
proliferation antigen 67; GFAP, glial fibrillary acidic protein; EMA, epithelial membrane antigen; PLR, platelet-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; ALU, albumin;
LDH, lactate dehydrogenase.
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GBM, demonstrating that increased CD3(+) tumor-

infiltrating T-lymphocyte cells were associated with prolonged

survival in GBM patients and were also correlated with

integrated immunosuppressive mechanisms in the tumor

microenvironment and at the systemic level. Therefore, the

association between tumor location and peripheral blood

infiltrating lymphocytes in glioma is controversial. In this

study, we found that the peripheral blood infiltrating

lymphocyte count in LGG was higher than in HGG, and that

grade I had the highest serum lymphocyte count. Additionally, a

low serum lymphocyte count is an independent risk factor for

HGG. Numerous studies have also demonstrated that IDH

mutations play an important role in diagnosing, evaluating

medication effectiveness, predicting survival, and reducing the

invasiveness of biomarkers associated with glioma, and are

widely deemed the most significant genetic alteration (13–16).

Then, we further performed a correlation analysis between

serum lymphocyte count and IDH1 mutation or 1p19q

codeletion. In HGG or LGG patients, serum lymphocyte count

showed no correlation with IDH1 mutation or 1p19q codeletion.

Additionally, we examined the IHC expression of Ki-67 and

serum lymphocytes in glioma. The Ki-67 expression was gradually

elevated with glioma grade, and the GBM had the highest Ki-67

expression, however, there was no association between the IDH1

mutation or 1p19q codeletion status and Ki-67 expression.

Spearman correlation analysis revealed a negative linear

association between Ki-67 expression and serum lymphocytes,

with a higher Ki-67 expression corresponding to a lower serum

lymphocyte count. Then, we examined the diagnostic utility of Ki-

67 expression in glioma by combining with the serum lymphocyte

count. We discovered that LGG patients have lower Ki-67

expression and a higher blood lymphocyte count than HGG

patients and that a combination of these two factors may

significantly distinguish LGG from HGG, perhaps playing a role
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in diagnosing HGG patients. Taken together, a decrease in serum

lymphocytes and increased expression of Ki-67 in HGG patients

indicates that the tumor immune capacity of patients is diminished

and tumors are more aggressive, which may contribute to the

overall survival of LGG patients being longer than HGG patients.

Furthermore, there was no association between Ki-67 expression

and IDH1 mutation or 1p19q codeletion. As several studies have

demonstrated that overexpression of Ki-67 increases tumor

proliferation, invasion, and metastasis, it is also a critical

reference index for the diagnosis and prognosis of breast cancer,

lung cancer, and prostate cancer (35–39). Theresia et al. (18)

demonstrated an association between the Ki-67 labeling index and

the histopathological grade of glioma, with LGG having a

significantly lower grade than HGG. Ki-67 expression may be

utilized to quantify lymphocyte proliferation (40). Li et al. (41)

demonstrated a negative correlation between pre-and

postoperative expression and alterations of peripheral blood

lymphocytes and their CD25 and Ki-67 expression in renal cell

carcinoma cells using flow cytometry and immunohistochemistry.

However, no investigation has been reported to determine the

correlation between Ki-67 expression and serum lymphocytes.

Nomograms are widely used for predicting the risk of cancer,

and using basic hematological and clinicopathological data to

identify risk factors for survival prediction is also a useful and

valuable tool in tumors (42, 43). Wu et al. (44) established and

validated a novel nomogram for the preoperative diagnosis of

GBM using feasible baseline characteristics and preoperative tests.

The nomogram demonstrated excellent calibration and a

significant clinical advantage in predicting GBM. Another study

suggested that a nomogram based on inflammatory biomarkers

can accurately predict overall survival rates in patients with

glioma, with a high NLR rate associated with a poor prognosis

(45). However, no relevant studies have been reported using the

Ki-67 expression and serum lymphocytes of the nomogram to
TABLE 3 Multivariate logistic proportional hazards regression analysis in the training cohort.

Characteristic Groups OR (95% CI) P-value

Ki-67 ≤10% Ref

>10% 8.758 (4.754–16.136) <0.001

Lymphocyte (109/L) ≤1.7 Ref 0.003

>1.7 0.436 (0.252–0.755)

ALU (g/L) ≤42.7 Ref 0.001

>42.7 0.378 (0.217–0.659)
front
Ki67, nuclear proliferation antigen 67; ALU, albumin.
TABLE 4 Spearman correlation analysis independent risk factors with HGG in all cohorts.

Spearman Ki-67 Lymphocyte ALU

Glioma r 0.457 −0.238 −0.232

P <0.001 <0.001 <0.001
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predict the risk of glioma grade. In this study, univariate and

multivariate logistic regression analysis revealed that Ki-67

expression and serum lymphocytes were independent risk

factors for HGG, and the established nomogram may be used to

accurately predict HGG. This is the first study to assess the

predictive value of Ki-67 expression and serum lymphocytes in

patients with glioma.

There are some limitations to our study. Firstly, this study only

examined the correlation between peripheral blood lymphocyte

count and glioma grade, but not the survival of patients following

surgery or adjuvant chemoradiotherapy. Secondly, we only

examined the relationship between serum lymphocytes and IDH1
Frontiers in Oncology
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mutation or 1p19q codeletion status. However, the overall survival

was unclear based on both mutation status and analysis of serum

lymphocytes. Thirdly, we analyzed and verified the correlation

between peripheral lymphocytes and HGG retrospectively, but

the expression of O6-methylguanine-DNA methyltransferase

(MGMT), CD3, CD4, or CD8, etc. in peripheral blood T-

lymphocytes and which inflammatory factors were released and

passed through the blood–brain barrier to influence tumors were

unknown. Additionally, we classified glioma-grade and pathological

classification according to WHO 2016 guidelines; nevertheless, the

most recent pathological classification of glioma has undergone

significant changes. Finally, because this was a single-center,
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FIGURE 2

The relationship between Ki-67 expression and glioma, IDH1 mutation status, 1p19q co-deletion status. (A, B) the Ki-67 expression in glioma; (E–G) Ki-67
expression correlation with IDH1 mutation status in all glioma, LGG, and HGG; (H–J) Ki-67 expression correlation with 1p19q co-deletion status in all
glioma, LGG, and HGG; (C, D), Ki-67 expression correlation with glioma in IDH1 mutation group and IDH1 wild type group; (K, L) serum ALU correlation
with glioma. LGG, lower-grade glioma; HGG, high-grade glioma; ALU, albumin. nsP >0.05, ****P <0.0001, mean ± standard deviation, t-test.
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FIGURE 3

The relationship between serum lymphocyte count and glioma, IDH1 mutation status, 1p19q co-deletion status, and serum ALU correlation with
glioma. (A, B) serum lymphocyte count in glioma; (C, D) serum lymphocyte count correlation with glioma in IDH1 mutation group and IDH1
wild-type group; (E–G) serum lymphocyte count correlation with IDH1 mutation status in all glioma, HGG, and LGG; (H–J) serum lymphocyte
count correlation with 1p19q co-deletion status in all glioma, HGG, and LGG; (K) serum lymphocyte count correlation with Ki-67 expression in
all glioma; (L) linear correlation between serum lymphocyte count and Ki-67 expression; (M) the number of patients with Ki-67 expression and
serum lymphocytes count. LGG, lower-grade glioma; HGG, High-grade glioma; ALU, albumin. nsP >0.05, *P <0.05, ***P <0.001, ****P <0.0001,
mean ± standard deviation, t-test.
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retrospective study with a limited sample size and a small number of

grade I or IV glioma patients, the results may have been subject to

selection bias. Therefore, a larger sample size, multi-centered

clinical study of serum lymphocytes with glioma grade should be

considered in the future.
Frontiers in Oncology
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In conclusion, the established nomogram may be used to

predict HGG, and the HGG patients with greater serum

lymphocyte counts and lower Ki-67 expression. The reduction

in serum lymphocytes and increased expression of Ki-67 in

HGG patients indicate that their immunological function is
FIGURE 4

The nomogram used to predict the glioma grading in the training cohort. Three independent risk factors were incorporated into the nomogram
model, and the data for those variables are shown on the interactive nomogram. Each predictive variable had a value ranging from 0 to 100, and
the overall score was calculated by summing those variables. The red dot on the scale represents the corresponding score of the variable. LGG,
lower-grade glioma; HGG, High-grade glioma; ALU, albumin. **P <0.01, ***P <0.001.
FIGURE 5

The discrimination and calibration curves of prediction model.
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compromised and their tumors are more aggressive. Moreover,

IHC of Ki-67 expression along with serum lymphocytes may

accurately detect HGG. Therefore, we will further conduct long-

term follow-up of patients and predict the risk of whose LGG

will transform into HGG in the future. This may be useful in

assisting clinical doctors in predicting secondary glioma in

patients at high risk of postoperative LGG and allowing for

early treatment intervention.
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